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Preface

The 8th International Workshop on Algorithms and Computation (WALCOM
2014) was held during February 13–15, 2014 at the Indian Institute of Tech-
nology Madras, Chennai, India. This event was organized by the Department
of Computer Science and Engineering, Indian Institute of Technology Madras.
The workshop covered a diverse range of topics on algorithms and computations
including computational geometry, approximation algorithms, graph algorithms,
parallel and distributed computing, graph drawing, and computational complex-
ity.

This volume contains 29 contributed papers presented during WALCOM
2014. There were 62 submissions from 16 countries. These submissions were
rigorously refereed by the Program Committee members with the help of exter-
nal reviewers. Abstracts of three invited talks delivered at WALCOM 2014 are
also included in this volume.

We would like to thank the authors for contributing high-quality research
papers to the workshop. We express our heartfelt thanks to the Program Com-
mittee members and the external referees for their active participation in re-
viewing the papers. We are grateful to Kurt Mehlhorn, Ian Munro, and Pavel
Valtr for delivering excellent invited talks. We thank the Organizing Committee,
chaired by N.S. Narayanaswamy for the smooth functioning of the workshop. We
thank Springer for publishing the proceedings in the reputed Lecture Notes in
Computer Science series. We thank our sponsors for their support. Finally, we
remark that the EasyChair conference management system was very effective in
handling the reviewing process.

February 2014 Sudebkumar Prasant Pal
Kunihiko Sadakane



Organization

Steering Committee

Kyung-Yong Chwa KAIST, South Korea
Costas S. Iliopoulos King’s College London, UK
M. Kaykobad BUET, Bangladesh
Petra Mutzel TU Dortmund, Germany
Shin-ichi Nakano Gunma University, Japan
Subhas Chandra Nandy ISI Kolkata, India
Takao Nishizeki Tohoku University, Japan
Md. Saidur Rahman BUET, Bangladesh
C. Pandu Rangan IIT Madras, India

Organizing Committee

N.S. Narayanaswamy Indian Institute of Technology Madras,
Chennai, India (Chair)

Sasanka Roy Chennai Mathematical Institute, Chennai,
India

Sajin Koroth Indian Institute of Technology Madras,
Chennai, India

R. Krithika Indian Institute of Technology Madras,
Chennai, India

C.S. Rahul Indian Institute of Technology Madras,
Chennai, India

Program Committee

Hee-Kap Ahn Pohang University of Science and Technology,
Gyeongbuk, South Korea

V. Arvind Institute of Mathematical Sciences, Chennai,
India

Amitabha Bagchi Indian Institute of Technology, Delhi, India
Giuseppe Battista Third University of Rome, Italy
Arijit Bishnu Indian Statistical Institute, Kolkata, India
Franz Brandenburg University of Passau, Germany
Sumit Ganguly Indian Institute of Technology, Kanpur, India
Subir Ghosh Tata Institute of Fundamental Research,

Mumbai, India



VIII Organization

Sathish Govindarajan Indian Institute of Science, Bangalore, India
Shuji Kijima Kyushu University, Fukuoka, Japan
Ramesh Krishnamurti Simon Fraser University, Burnaby, BC, Canada
Giuseppe Liotta University of Perugia, Italy

Sudebkumar Pal IIT Kharagpur, India (Co-chair)
Leonidas Palios University of Ioannina, Greece
Rina Panigrahy Microsoft Research, Mountain View, CA, USA
Rosella Petreschi Sapienza University of Rome, Italy
Sheung-Hung Poon National Tsing Hua University, Hsinchu,

Taiwan
Sohel Rahman Bangladesh University of Engineering and

Technology, Dhaka, Bangladesh
Rajeev Raman University of Leicester, UK
Abhiram Ranade Indian Institute of Technology, Bombay, India
C. Pandu Rangan Indian Institute of Technology, Madras, India
Kunihiko Sadakane National Institute of Informatics, Tokyo, Japan

(Co-chair)
Nicola Santoro Carleton University, Ottawa, ON, Canada
Jayalal Sarma Indian Institute of Technology, Madras, India
Saket Saurabh Institute of Mathematical Sciences, Chennai,

India
Shakhar Smorodinsky Ben-Gurion University, Be’er Sheva, Israel
Takeshi Tokuyama Tohoku University, Sendai, Japan
Peter Widmayer ETH Zurich, Switzerland
Hsu-Chen Yen National Taiwan University, Taipei, Taiwan

Additional Reviewers

Alam, Muhammad Rashed
Angelini, Patrizio
Bae, Sang Won
Bari, Md. Faizul
Baswana, Surender
Bekos, Michael
Bohmova, Katerina
Bonifaci, Vincenzo
Calamoneri, Tiziana
Curticapean, Radu
Da Lozzo, Giordano
Das, Gautam Kumar
Di Giacomo, Emilio
Frati, Fabrizio
Fusco, Emanuele
Ghosh, Arijit
Hossain, Md. Iqbal

Iranmanesh, Ehsan
Karmakar, Arindam
Khidamoradi, Kamyar
Kindermann, Philipp
Komarath, Balagopal
Koroth, Sajin
Ku, Tsung-Han
Lin, Chun-Cheng
Lin, Jin-Yong
Lu, Chia Wei
Mehta, Shashank
Misra, Neeldhara
Mondal, Debajyoti
Monti, Angelo
Morgenstern, Gila
Nandakumar, Satyadev
Narayanaswamy, N.S.



Organization IX

Nekrich, Yakov
Nicosia, Gaia
Nishat, Rahnuma Islam
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Algorithms for Equilibrium Prices

in Linear Market Models

Kurt Mehlhorn

Max-Planck-Institut für Informatik, Saarbrücken, Germany
mehlhorn@mpi-inf.mpg.de

Near the end of the 19th century, Leon Walrus [Wal74] and Irving Fisher [Fis91]
introduced general market models and asked for the existence of equilibrium
prices. Chapters 5 and 6 of [NRTV07] are an excellent introduction into the
algorithmic theory of market models. In Walrus’ model, each person comes to
the market with a set of goods and a utility function for bundles of goods. At a
set of prices, a person will only buy goods that give him maximal satisfaction.1

The question is to find a set of prices at which the market clears, i.e., all goods
are sold and all money is spent. Observe that the money available to an agent
is exactly the money earned by selling his goods. Fisher’s model is somewhat
simpler. In Fisher’s model every agent comes with a predetermined amount of
money. Market clearing prices are also called equilibrium prices. Walrus and
Fisher took it for granted that equilibrium prices exist. Fisher designed a hydro-
mechanical computing machine that would compute the prices in a market with
three buyers, three goods, and linear utilities [BS00].

In the 20th century it became clear that the existence of equilibrium prices
requires rigorous proof. Arrow and Debreu [AD54] refined Walras’ model and
proved the existence of equilibrium prices for general convex utility functions.
Their proof is non-constructive and uses a fixed-point theorem in a crucial way.
The obvious next question for an algorithmicist is whether market clearing prices
can be computed (efficiently)? We discuss the situation for linear markets.

In the linear Fisher market, there are n buyers and n goods. We assume for
w.l.o.g that there is one unit of each good. The i-th buyer comes with a non-
negative budget bi. The utility for buyer i of receiving the full unit of good j is
uij ≥ 0. Let xij ≥ 0 be the fraction of good j that is allocated to buyer i. Under
this assigment and the assumption of linear additive utilities, the total utility of
i is ∑

j

uijxij .

1 Consider the case of linear additive utilites, i.e., two items of the same good give
twice the utility of one item and utilities of different goods add. Assume that an
agent values an item of good A twice as much as an item of good B. If the price of
an item of A is less than twice the price of an item of B, the agent will only want
A. If the price is more than twice, the agent will only want B. If the price is twice
the price of B, the agent is indifferent and any combination of A and B is equally
good. Linear utilities are a gross simplification.

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 1–4, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. A Fisher market: there are two buyers and two goods: the first buyer has a
budget of five and the second buyer has a budget of 16 (b1 = 5 and b2 = 16). The first
buyer draws a utility of 5 from both goods and the second buyer draws a utility of 2
from the first good and a utility of 1 from the second good (u11 = u12 = 5, u21 = 2,
and u22 = 1). A solution is shown on the right. For price vector p1 = 14 and p2 = 7,
the first buyer prefers the second good over the first good and therefore is only willing
to spend money on the second good, and the second buyer is indifferent and hence
is willing to spend money on both goods. For the allocation shown (the first good is
allocated completely to the second buyer and the second good is split in the ratio 5:2),
the market is in equilibrium.

Let pj be the (to be determined) price of good j. Then the utility of good j
for buyer i per unit of money is uij/pj. Buyers spend their money only on goods
that give them maximal utility per unit of money, i.e.,

xij > 0 ⇒ uij

pj
= αi = max

j
uij/pj. (1)

αi is called the bang-per-buck for agent i at price vector p.
A price vector p is market clearing in the Fisher model if there is an allocation

x = (xij) such that (1) and

∑

i

xij = 1 for all j good j is completely sold (2)

∑

j

pijxij = bi for all i buyer i spends his complete budget (3)

hold. In the linear Arrow-Debreu market there is the additional constraint

bi = pi for all i, (4)

i.e., the i-th buyer is also the owner of the i-th good and his budget is precisely
the revenue for this good. Figures 1 and 2 illustrate the market concepts.

Fisher’s model is a special case of the Arrow-Debreu model. In the former
model, each buyer comes with a budget and money has intrinsic value. In the
latter model, money is only used for comparing goods. The former model reduces
to the latter by introducing a n+ 1-th good corresponding to money.
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Fig. 2. An Arrow-Debreu market: there are two agents and two goods: the first agent
owns good one and the second agent owns good two. As in Figure 1, the first buyer
draws a utility of 5 from both goods and the second buyer draws a utility of 2 from
the first good and a utility of 1 from the second good (u11 = u12 = 5, u21 = 2, and
u22 = 1). A solution is shown on the right. For price vector p1 = 10 and p2 = 10,
the first agent is indifferent between the goods and is willing to spend money on both
goods. The second agent prefers the first good and is only willing to spend money on
the first good.

In recent years, polynomial time algorithms were found for the computation
of equilibrium prices in linear markets. Not surprisingly, Fisher’s model was
solved first. Already in 1958, Eisenberg and Gale [EG58] characterized equilib-
rium prices by a convex program. With the advent of the Ellipsoid method, the
characterization became a polynomial time algorithm. In 2008, Devanur, Pa-
padimitriou, Saberi, Vazerani [DPSV08] gave the first combinatorial algorithm.
It computes market clearing prices by repeated price adjustments and maxi-
mum flow computations. A simpler and more efficient algorithm was found by
Orlin [Orl10] in 2010. For the Arrow-Debreu market, the first polynomial time
algorithms are due to Jain [Jai07] and Ye [Ye07]. Both algorithms give a char-
acterization by a convex program and then use the Ellipsoid and interior point
method, respectively, to solve the program. Duan and Mehlhorn [DM13] found
a combinatorial algorithm in 2012.
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In as Few Comparisons as Possible

J. Ian Munro

Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

imunro@uwaterloo.ca

Abstract. We review a variety of data ordering problems with the goal
of solving them in as few comparisons as possible. En route we highlight
a number of open problems, some new, some a couple of decades old,
and others open for up to a half century. The first is that of sorting and
the Ford-Johnson Merge-Insertion algorithm [8] of 1959, which remains
the “best”, at least for the “best and worst” values of n. Is it optimal, or
are its extra .028..n or so comparisons beyond the information theoretic
lower bound necessary?

Moving to selection problems we first examine a special case. The
problem of finding the second largest member of a set is fairly straight-
forward in the worst case. The best expected case method remains the
n+Δ(lg lg n) method of Matula from 1973 [10]. It begs the question as
to whether the lg lgn term is necessary. The status of median finding has
remained unchanged for a couple of decades, since the work of Dor and
Zwick [4,5]. (3 − δ)n comparisons are sufficient, while (2 + γ)n are nec-
essary. So the constant isn’t an integer, but is it log4/3 2 as conjectured
by Paterson [11]? This worst case behavior is in sharp contrast with the
expected case of median finding where the answer has been known since
the mid-’80’s [3,6].

Finally we look at the problem of partial sorting (arranging elements
according to a given partial order) and completing a sort given partially
ordered data. The latter problem was posed and solved within n or so
comparisons of optimal by Fredman in 1975 [7]. The method, though,
could use exponential time to determine which comparisons to perform.
The more recent approaches of Cardinal et al [2,1] to these problems
are based on graph entropy arguments and require only polynomial time
to determine the comparisons to be made. Indeed the solution to the
partial ordering problem involves a reduction to multiple selection [9]. In
both cases the number of comparisons used differs from the information
theoretic lower bound by only a lower order term plus a linear term.
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The Happy End Theorem and Related Results
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The Erdős–Szekeres k-gon theorem [1] says that for any integer k ≥ 3 there
is an integer n(k) such that any set of n(k) points in the plane, no three on
a line, contains k points which are vertices of a convex k-gon. It is a classical
result both in combinatorial geometry and in Ramsey theory. Sometimes it is
called the Happy End(ing) Theorem (a name given by Paul Erdős), since George
Szekeres later married Eszter Klein who proposed a question answered by the
theorem.

It is still widely open if the minimum possible value of n(k) is equal to 2k−2+
1, as conjectured by Erdős and Szekeres [2] more than fifty years ago. The
conjecture is known to be true for k ≤ 6. It was verified for k = 6 by Szekeres and
Peters [3] about ten years ago (the paper appeared in 2006), using an extensive
computer search in a clever way.

There are many extensions and modifications of the Happy End Theorem.
Some of them will be mentioned in the talk.
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Abstract. We initiate the study of a generalization of the class cover
problem [1,2], the generalized class cover problem, where we are allowed
to misclassify some points provided we pay an associated positive penalty
for every misclassified point. We study five different variants of general-
ized class cover problem with axis-parallel strips and half-strips in the
plane, thus extending similar work by Bereg et al. [2] on the class cover
problem. For each of these variants, we either show that they are in P, or
prove that they are NP-complete and give constant factor approximation
algorithms.

Keywords: class cover problem, axis-parallel strips, approximation al-
gorithms, geometric set cover.

1 Introduction

The class cover problem [1,2] is the following : given a set R of red points, a set
B of blue points, and a set O of geometric objects, find a minimum cardinality
subset O∩ ≥ O which covers every blue point, but does not cover any red point.
If we identify the blue points as positive examples and the red points as negative
examples, the set O∩ gives us a classifier of complexity |O∩|, since every point
p ⇒ R ∪B can be correctly classified as blue or red using the disjunction of |O∩|
queries of the form “Does p lie inside object o ⇒ O∩ ?”.

In this paper, we study the generalized class cover problem where the classifier
O∩ ≥ O is allowed to misclassify some blue points as red and some red points
as blue. We measure the amount of misclassification by a penalty function P :
R ∪B → R

+ assigning positive penalties to every point, where the penalty of a
point is understood to be the cost we pay for misclassifying it using our classifier
i.e., for reporting a blue point as red and vice versa. The objective now is to
minimize the complexity of the classifier (i.e., the cardinality of the set O∩ ≥ O)
plus the sum of penalties of every point incorrectly classified by O∩.

Allowing for misclassification in the class cover problem can be useful in sev-
eral ways. First, a small fraction of the red and blue points in the data may be

λ Partially supported by grant No. SB/FTP/ETA-434/2012 under DST-SERB Fast
Track Scheme for Young Scientist.

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 8–21, 2014.
c≤ Springer International Publishing Switzerland 2014
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“outliers” and allowing for misclassification can identify these points and lead to
a classifier with much smaller complexity. Secondly, there may occur scenarios
where no subset O∩ ≥ O can completely separate blue points from red points
(one such case occurs when every object o ⇒ O contains a red point). In such
cases, all classifiers are “approximate” and the generalized class cover problem
gives us an approximate classifier which minimizes the sum of classifier com-
plexity and penalty due to misclassification. Finally, not all data points may
be equally important and the practitioner can fine-tune the point penalties to
reflect the relative importance of a data point as a positive or negative example
for the classifier.

In the following, we define P = R∪B, n = |B|, m = |R|, and for any function
f : U → R and a subset S ≥ U , we use f(S) to denote the sum

∑
x∈S f(x). We

assume that no two points have the same x- or y-coordinates. We consider two
versions of generalized class cover problem, single coverage andmultiple coverage,
which differ in the way the penalty of misclassified red points is counted:

1. Generalized Class Cover (Single Coverage). The penalty of each red
point r ⇒ R covered by O∩ is counted exactly once. The cost c1(O∩) is defined
as |O∩| +P(B∩) +P(R∩), where B∩ ≥ B is the set of blue points that are
not covered by objects in O∩ and R∩ ≥ R is the set of red points that are
covered by objects in O∩.

2. Generalized Class Cover (Multiple Coverage). The penalty of a red
point r ⇒ R is counted once for every object containing r in O∩. The cost
c2(O∩) of O∩ is defined as |O∩|+P(B∩)+

∑
r∈RP(r)·m(r,O∩), where B∩ ≥ B

is the set of blue points not covered by any object in O∩, and m(r,O∩) is the
number of objects in O∩ which contain point r.

Note that if the penalty of each red and blue point is infinity, both the single
and multiple coverage versions of generalized class cover problem reduce to the
class cover problem.

In general, the set O of geometric objects may be triangles, circles, axis-
parallel squares and rectangles, etc. [1, 2], but in this paper we assume O to
consist of only axis-parallel strips and half-strips in the plane. A horizontal
(resp. vertical) strip (a, b) is the set of points (x, y) ⇒ R

2 satisfying the equation
a ∃ y ∃ b (resp. a ∃ x ∃ b). A half-strip (a, b, c) extending to infinity in
the southern direction is the set of points satisfying a ∃ x ∃ b and y ∃ c.
Similarly, we can define half-strips extending to infinity in the northern, eastern,
and western directions. We now define the set O of geometric objects for six
different generalized class cover problems with strips and half-strips:

1. STRIP. All vertical and horizontal strips.
2. HS-1D. All half-strips extending to infinity southwards.
3. HS-2D-SAME. All half-strips extending to infinity in two opposite directions.
4. HS-2D-DIFF. All half-strips extending to infinity in two mutually orthogonal

directions.
5. HS-3D. All half-strips extending to infinity in three different directions.
6. HS-4D. All half-strips extending to infinity in four different directions.
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We denote the single and multiple coverage versions of each of the above
six problems by suffixes SC and MC respectively. For example, STRIP-SC and
STRIP-MC denote the single and multiple coverage versions of generalized class
cover problem when the objects are axis-parallel strips.

Previous Work. The class cover problem was introduced by Cannon and
Cowen [1]. They give a PTAS for the problem of separating the red points
from blue points using minimum number of disks of equal radius whose centers
are constrained to lie on the blue points. Interestingly, in the conclusion of their
paper, they note that the class cover problem is “very sensitive to misclassi-
fied points” and ask whether approximation algorithms can be designed for the
scenario where some points are allowed to be misclassified.

Bereg et al. [2] study an unconstrained version of the class cover problem
where the geometric objects (disks or axis-parallel squares) are allowed to be
centered at any location and can have different sizes. They prove that the class
cover problem with axis-parallel rectangles or squares is NP-hard. Bereg et al. [2]
also show that O(1) approximation algorithms for the class cover problem with
disks and axis-parallel squares can be derived from results in the theory of Π-
nets [3–5]. Further, they study in detail the complexity of class cover problem
when the covering objects are axis-parallel strips and half-strips in the plane.
Our paper can be looked as a further continuation of this line of research for the
generalized class cover problem.

Mustafa and Ray [6] give a PTAS using local search for geometric set cover
with disks in the plane. Aschner et al. [7] also describe a PTAS for geometric set
cover with disks (or axis-parallel squares) in the plane based on ideas in [6, 8].
They further note that this implies a PTAS for the class cover problem with
disks or axis-parallel squares. A related problem is the red-blue set cover prob-
lem [9], where the objective is to cover all blue points with the given objects
while minimizing the number of red elements covered. Recently, Chan et al. [10]
show that red-blue set cover with axis-parallel unit squares is NP-complete and
give a PTAS for the same.

Our Contributions

1. We show that STRIP-MC is in P, whereas STRIP-SC is NP-complete. We
give a factor 2 approximation algorithm for STRIP-SC (see Section 2).

2. We show that both HS-1D-SC and HS-1D-MC are in P by giving a dynamic
programming algorithm (based on [11]) (see Section 3).

3. We show that HS-2D-DIFF (and HS-3D) is NP-complete even when all
points have penalty infinity. Earlier, NP-completeness was known only for
the infinite penalty version of HS-4D [2] (see Section 4).

4. We give O(1) approximation algorithms for both single and multiple coverage
versions of HS-2D-DIFF, HS-3D, and HS-4D (see Section 5).

We leave open the question of algorithmic complexity of HS-2D-SAME-SC
and HS-2D-SAME-MC.
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2 Strip Covering Problem

We note that the set O of geometric objects in this section consists of all possible
horizontal and vertical strips. Since we can contract a strip as long as we remove
only red points, we only consider strips with blue points incident on their two
bounding lines. Further, we can assume that in any solution to STRIP-MC
(and STRIP-SC), no two horizontal and no two vertical strips overlap. (If two
horizontal or two vertical strips overlap, we can replace them by a single strip
covering their union without increasing the cost of the solution.)

2.1 Multiple Coverage

In this section, we show that STRIP-MC is in P . Let A be the ordered set
{b1, b2, . . . , bn} of blue points in B ordered by increasing x-coordinate. Similarly,
let B be the ordered set {b∩1, b∩2, . . . , b∩n} of blue points in B ordered by increasing
y-coordinate. We define an ordered 1-regular bipartite graph G = (A,B, E)
whose edge set E = {e1, e2, . . . , en} forms a perfect matching. The ith edge ei
connects bi ⇒ A with b∩β(i) ⇒ B, where σ(i) is the position of point bi in ordered

set B. The weight w∩(ei) of edge ei is equal to the penalty of the corresponding
blue point i.e., w∩(ei) = P(bi) = P(b∩β(i)).

Let I and J be the sets of all possible intervals covering points in ordered sets
A and B respectively. An interval I = (i, j) ⇒ I corresponds to the vertical strip

covering blue points from bi to bj and has weight w(I) = 1 +
∑j−1

k=i qk, where
qk is the total penalty of red points with x-coordinates between bk and bk+1.
Similarly, an interval J = (i, j) ⇒ J corresponds to the horizontal strip from b∩i
to b∩j and has weight w(J) = 1+

∑j−1
k=i q

∩
k, where q

∩
k is the total penalty of red

points with y-coordinates between b∩k and b∩k+1.
Finding the optimal solution to STRIP-MC is equivalent to finding subsets

I ∩ ≥ I,J ∩ ≥ J such that the quantity w(I ∩) + w(J ∩) + w∩(E∩(I ∩ ∪ J ∩)) is
minimized, where E∩(I ∩∪J ∩) ≥ E is the set of edges in G not covered by intervals
in I ∩ ∪ J ∩ (an edge is covered if at least one of its end points is contained in an
interval). Let us call this equivalent problem on bipartite graph G = (A,B, E)
as Prize-collecting Bipartite Interval Vertex Cover Problem (PC-BP-IVCP).

We now show that PC-BP-IVCP (and hence STRIP-MC) is in P . The key
property that makes this possible is the following restricted form of submodu-
larity [12]:

Lemma 1. Let I1, I2 ⇒ I be two intervals such that I1 ∩ I2 ⊗= φ. Then, w(I1) +
w(I2) ≈ w(I1 ∪ I2) + w(I1 ∩ I2). A similar property holds for intervals in J .

In other words, the set I of intervals forms an intersecting family [12] and w
is a submodular1 function defined on this family.

We will use Lemma 1 to show that STRIP-MC is in P by an application of
submodular function minimization [13, 14].

1 Note that our weight function w is actually modular.
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Submodular Function Minimization. We first extend the weight function
defined on intervals in I to all possible subsets of A. For S ≥ A, define ρA(S) =
min{w(I ∩)|I ∩ ≥ I and each point in S is covered by some interval in I ∩}.
Similarly, we can define a function ρB(S) for each possible subset S ≥ B. The
following lemma can be proved using results in [12]:

Lemma 2. The functions ρA : 2A → R
+ ∪ {0} and ρB : 2B → R

+ ∪ {0} are
submodular and can be computed in polynomial time.

PC-BP-IVCP is now equivalent to finding a set S ≥ A ∪ B such that ρA(S ∩
A) + ρB(S ∩ B) + w∩(E(S)) is minimized, where E(S) ≥ E is the set of edges
not covered by vertices in S. This is an instance of prize-collecting bipartite
submodular vertex cover (see [13,15,16]), which can be solved in polynomial time
using submodular function minimization [13, 14]. Hence, we get the following
theorem:

Theorem 3. STRIP-MC can be solved in polynomial time by submodular func-
tion minimization.

2.2 Single Coverage

In this section, we show that STRIP-SC is NP-complete. LetA be the ordered set
{p1, p2, . . . , pn+m} of points in P ordered by increasing x-coordinate. Similarly,
let B be the ordered set {p∩1, p∩2, . . . , p∩n+m} of points in P ordered by increasing
y-coordinate. We define an ordered 1-regular bipartite graph G = (A,B, E) as
follows (see Figures 1(a) and 1(b)). The set E = {e1, e2, . . . , en+m} has exactly
n+m edges which form a perfect matching of G. The ith edge ei connects pi ⇒ A
with p∩β(i) ⇒ B, where σ(i) is the position of point pi in ordered set B. Edge ei is
blue or red according to whether pi is blue or red. The weight w∩(ei) of edge ei
is equal to the penalty of point pi i.e., w

∩(ei) = P(pi) = P(p∩β(i)).
Let I and J be the sets of all possible intervals covering points in ordered sets

A and B respectively. A vertical strip covering points from pi to pj corresponds to
interval (i, j) ⇒ I of the ordered set A. A similar correspondence exists between
horizontal strips and intervals in J .

Finding the optimal solution to STRIP-SC is equivalent to finding subsets
I ∩ ≥ I,J ∩ ≥ J which minimize the quantity |I ∩| + |J ∩| + w∩(E1(I ∩ ∪ J ∩)) +
w∩(E2(I ∩ ∪ J ∩)), where E1(I ∩ ∪ J ∩) is the set of red edges covered by I ∩ ∪ J ∩

and E2(I ∩ ∪ J ∩) is the set of blue edges not covered by I ∩ ∪ J ∩. Let us call this
equivalent problem on 1-regular bipartite graph G(A,B, E) as Single Coverage
Prize-collecting Bipartite Interval Vertex Cover Problem (PC-BP-IVCP-SC).

We now prove that PC-BP-IVCP-SC (and hence STRIP-SC) is NP-complete
by reducing it from 3-SAT [17]. We first define 3-SAT:

Definition 1. 3-SAT [17]. We are given a 3-CNF formula φ = C1 ∧ C2 ∧
. . .∧Cm′ over n∩ variables x1, x2, . . . , xn′ , where each clause Cj is a disjunction
of exactly three literals from the set {xi, xi|i ⇒ 1, 2, . . . , n∩}. Is there a truth
assignment to the variables which satisfies the formula?
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(a) (b) (c) (d)

Fig. 1. (a) Point configuration (b) Reduced ordered 1-regular bipartite graph (c) Global
structure of Gβ (d) Interaction between variable and clause (Cj=(xi1 ∨ xi2 ∨ xi3))
gadgets

The reduction converts φ to a bipartite graph Gλ(A,B, E) whose vertex set
can be partitioned into m∩ + n∩ components, Gxi = (Ai,Bi) for each variable
xi, i = 1, 2, . . . , n∩ and GCj = (A∩

j ,B∩
j) for each clause Cj , j = 1, 2, . . . ,m∩ (Figure

1(c)). Any two components are separated by a red edge of weight ∞ which
ensures that each interval picked in the solution lies completely inside some
component.

Variable gadget: Gxi consists of two vertical columns of vertices. The right
(resp. left) column contains two vertices qji , r

j
i for every clause Cj in which xi

occurs as a positive (resp. negative) literal. There are two blue edges at the top
and bottom of Gxi with weight ∞.

Clause gadget: The clause gadgets GCj for clauses of the form (xi1 ∨ xi2 ∨
xi3) and (xi1 ∨ xi2 ∨ xi3 ) are shown in Figures 2(a) and 2(b) respectively. (The
gadgets for the remaining 6 types of clauses can be obtained by flipping these
two gadgets.) All blue and red edges in the clause gadgets are internal except
for three “interacting pairs” (sji1 , t

j
i1
), (sji2 , t

j
i2
), (sji3 , t

j
i3
) of vertices which connect

through blue edges to vertex pairs (qji1 , r
j
i1
), (qji2 , r

j
i2
), (qji3 , r

j
i3
) in variable gadgets

Gxi1
, Gxi2

, Gxi3
respectively (see Figure 1(d)). Let ECj denote the blue edges

internal to clause gadget GCj and let Ej
i1
, Ej

i2
, Ej

i3
denote the blue edges going

from GCj to Gxi1
, Gxi2

, Gxi3
respectively.

The following Lemma can be proved by extensive case analysis:

Lemma 4. If the blue edges in at least one of the sets Ej
i1
, Ej

i2
, Ej

i3
are covered

by an interval from the corresponding variable gadget, the optimal interval cover
for the remaining blue edges in GCj has cost 4. On the other hand, the optimal

interval cover in GCj for all blue edges in ECj ∪ Ej
i1
∪ Ej

i2
∪Ej

i3
has cost 4.5.

Theorem 5. φ is satisfiable iff there exists a solution to Gλ with cost at most
n∩ + 4m∩.
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(a) (b)

Fig. 2. Clause gadgets. (a) Cj = xi1 ∨ xi2 ∨ xi3 (b) Cj = xi1 ∨ xi2 ∨ xi3 .

Proof: (if part) Let ε : {x1, x2, . . . , xn′} → {0, 1} be a satisfying assignment
to φ. Pick the right (resp. left) interval in gadget Gxi according to whether xi

is true (resp. false). Since for each clause gadget GCj at least one of the three
interacting pairs is covered by an interval in the corresponding variable gadget,
by Lemma 4, the remaining blue edges can be covered at cost 4 per clause, for
a total cost of n∩ + 4m∩.

(only if part) If we have a solution of cost n∩+4m∩, by Lemma 4, each variable
gadget contributes exactly 1 and each clause gadget contributes exactly 4 to the
total cost. Set ε(xi) = 1 (resp. 0) if the right (resp. left) interval is picked by
the solution in Gxi . Since each clause gadget has cost 4, by Lemma 4, at least
one interacting pair in each clause gadget must be covered by the corresponding
variable gadget, and hence ε is a satisfying assignment. �

Factor 2 Approximation Algorithm for STRIP-SC. The approximation
algorithm finds the optimal solution to STRIP-MC on the same point set in
polynomial time and outputs it as the answer to STRIP-SC. Since each red
point can be covered by at most two strips, the optimal solution to STRIP-MC
is within factor 2 of the optimal solution to STRIP-SC on the same point set.

3 Unidirectional Half-Strip Covering Problem

We now show that an algorithm of Chin et al. [11] for variable-size rectangle
covering can be adapted to solve HS-1D-SC and HS-1D-MC in polynomial time.
We now give an outline of the algorithm along with proofs of main theorems.

Without loss of generality we assume that all points in P have positive
y-coordinates. We number the blue points in B from 1, 2, . . . , n according to
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(a) (b) (c)

Fig. 3. Possible intersections between two half-strips

increasing x-coordinate. Let (xi, yi) denote the Cartesian coordinates of the ith
blue point in this order. Let Y = {y1, y2, . . . , yn}. We denote any half-strip hs
covering points in B by a 3-tuple (i, j, z), where 1 ∃ i ∃ j ∃ n and z ⇒ Y . hs
is the region of the plane given by the equations xi ∃ x ∃ xj and y ∃ z. Let H
denote the set of all possible half-strips.

Any two half-strips hs1, hs2 ⇒ H are either (i) disjoint (see Figure 3(a)),
or (ii) partially intersecting (see Figure 3(b)), or (iii) fully intersecting (see
Figure 3(c)).

Lemma 6. There exists an optimal solution H∗ ≥ H to HS-1D-SC such that
no two half-strips in H∗ are partially intersecting.

Proof: If two half-strips in H∗ are partially intersecting, we can replace them
with two disjoint half-strips hs∩1, hs

∩
2 (see Figure 3(b)) without increasing the

cost of H∗. One can show that in a polynomial number of such replacements, we
will get an optimal solution without any partially intersecting half-strips. �

Let S(i, j, z) (1 ∃ i ∃ j ∃ n, z ⇒ Y ∪ {0}) denote the subset of points in P
with x-coordinate in the interval [xi, xj ] and y-coordinate strictly greater than
z. Let A(i, j, z) denote the cost of optimal solution to HS-1D-SC on point set
S(i, j, z). Finally, let H(i, j, z) = {(i∩, j∩, z∩)|i ∃ i∩ ∃ j∩ ∃ j and z∩ > z} be the
set of half-strips covering points in S(i, j, z).

Lemma 7. The costs A(i, j, z), where 1 ∃ i ∃ j ∃ n and z ⇒ Y ∪ {0}, satisfy
the recurrence:

A(i, j, z) = min
(i′,j′,z′)∈H(i,j,z)

(A(i, i∩ − 1, z) +A(i∩, j∩, z∩) + 1 +P(B∩) +P(R∩))

where B∩ ≥ B are the set of blue points in S(i, j, z) with x-coordinate greater
than j∩ and R∩ ≥ R is the set of red points in the set S(i, j, z) covered by half-strip
(i∩, j∩, z∩).

Proof: Let OPT (i, j, z) denote an optimal set of half-strips for HS-1D-SC on
point set S(i, j, z). Let j∗ be rightmost blue point in S(i, j, z) covered by OPT (i,
j, z) and let (i∗, j∗, z∗) denote the half-strip with minimum height among all half-
strips in OPT (i, j, z) covering j∗. Since OPT (i, j, z) is not partially intersecting
(Lemma 6), the half-strips in OPT (i, j, z) except (i∗, j∗, z∗) can be partitioned
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into two sets S1 ≥ H(i, i∗ − 1, z) and S2 ≥ H(i∗, j∗, z∗) which cover points in
S(i, i∗ − 1, z) and S(i∗, j∗, z∗) respectively. Replacing S1 and S2 by the optimal
solutions to HS-1D-SC on S(i, i∗ − 1, z) and S(i∗, j∗, z∗) can only decrease the
total cost and hence we get that A(i, j, z) is equal to the right hand side of the
above recurrence for half-strip (i∗, j∗, z∗) ⇒ H(i, j, z). �

Theorem 8. HS-1D-SC is in P.

Proof: First, all A(i, j, z)’s such that j < i are set to 0. We compute the re-
maining A(i, j, z)’s in increasing order of k = j − i. For a given k, we compute
A(i, i+ k, z) using the above recurrence where i goes from 1 to n− k and z goes
from highest to the lowest y-coordinate in Y ∪ {0}. One can show that for each
A(i, i + k, z), the right hand side of the recurrence can be evaluated in O(n3)
time and since there are O(n3) subproblems, the total time taken by the dy-
namic program is O(n6). We note that the running time can be further reduced
to O(n4) [11]. �

A minor modification of the above algorithm also shows that HS-1D-MC
is in P.

4 Hardness of HS-2D-DIFF

In this section we prove that HS-2D-DIFF is NP-complete by a reduction from
3-SAT (see Definition 1). We partition the clauses of the given 3-SAT formula φ
into two types: (i) A Type I clause contains at most one negative literal, whereas
(ii) a Type II clause contains at most one positive literal. Given a 3-SAT formula
φ, we construct an instance Vλ of HS-2D-DIFF as follows.

(a) (b)

Fig. 4. (a) Global structure of Vβ (b) Variable gadget Vxi

Globally,Vλ consists ofn
∩ variable gadgetsVxi (each contained inanaxis-parallel

square Si) arranged diagonally with respect to each other (see Figure 4(a)).
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We have a vertical strip for each clause of Type I and a horizontal strip for each
clause ofType II. These horizontal and vertical strips contain the clause gadgets for
their respective clauses. All points in Vλ have penalty infinity. In the construction
below, we use a large number of red points to restrict the set of possible half-strips.
However, we note that by carefully choosing the positions of the red points, their
number can be reduced to a polynomial in n∩,m∩.

Variable gadget Vxi : The axis-parallel square Si containing Vxi has sides of
length m∩ + 1 (see Figure 4(b)). Four blue points ai, bi, ci, di are placed at the
four corners of an axis-parallel unit square such that ai coincides with the top
left corner of Si. For every clause Cj , if xi is the only negative (resp. positive)

literal in Cj , we add a blue point qji (resp. rji ) in the unit width vertical (resp.

horizontal) half-strip containing {ai, bi, ci, di}. The blue points qji (resp. rji ) are
placed at unit distance from each other vertically (resp. horizontally). We now
add red points to the gadget so that the maximal horizontal and vertical half-
strips containing blue points in Vxi are as shown in Figure 4(b).

(a) (b)

(c) (d)

Fig. 5. Clause gadgets for different Type I clauses. (a) Cj = (xi1 ∨ xi2 ∨ xi3) (b)
Cj = (xi1 ∨ xi2 ∨ xi3) (c) Cj = (xi1 ∨ xi2 ∨ xi3) (d) Cj = (xi1 ∨ xi2 ∨ xi3).

Clause gadget VCj : The clause gadgets for the four different clauses of Type
I are shown in Figure 5. The gadgets for Type II clauses can be obtained by
flipping these gadgets about the diagonal. Two points sj , tj in each clause gadget
are special and are called “core points”.

A little care is needed in the placement of red and blue points in the clause
gadgets. We describe here only the construction in Figure 5(b). Point sj lies
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in the maximal horizontal half-strip containing the blue point qji1 . Point tj is
placed so that the horizontal line through it lies below square Si2 , above square
Si3 , and does not intersect any other square Si, 1 ∃ i ∃ n∩. The remaining two
points lie in the maximal horizontal half-strips containing {ai2 , bi2 , ci2 , di2} and
{ai3 , bi3 , ci3 , di3} respectively. We now place the red points so that maximal half-
strips containing either sj or tj are constrained to lie in the shaded region of
Figure 5(b).

Theorem 9. φ is satisfiable iff there exists a solution to HS-2D-DIFF on Vλ

with cost at most n∩ + 2m∩.

Proof: (if part) Let ε : {x1, x2, . . . , xn′} → {0, 1} be a satisfying assignment.
Cover {ai, bi, ci, di} with a horizontal half-strip if ε(xi) = 1 and with a vertical
half-strip if ε(xi) = 0. The uncovered points in each clause gadget can be
covered using 2 half-strips per clause, for a total of n∩ + 2m∩ half-strips.

(only if part) Let S = {ai|i ⇒ [1, n∩]} ∪ {sj , tj |j ⇒ [1,m∩]} denote a set of
n∩ +2m∩ points. Since no two points in S can be covered by the same half-strip,
we have a unique half-strip in the solution for every point in S. Set ε(xi) = 1
(resp. 0) if ai is covered by a horizontal (resp. vertical) half-strip. If a clause
is not satisfied by ε , then covering the five points in the shaded region of the
corresponding clause gadget VCj (see Figure 5) will require at least three half-
strips, which is a contradiction. �

5 Constant Factor Approximation Algorithms

Theorem 10. There exist O(1) approximation algorithms for HS-2D-DIFF-
MC, HS-3D-MC, and HS-4D-MC.

Proof: We first consider the case when all blue points have penalty infinity. Let
HH ,HV denote the sets of all horizontal and vertical half-strips respectively.
Then, HS-4D-SC is an instance of weighted set cover on (B,HH ∪ HV ) where
the weight w(hs) of half-strip hs is 1 plus the total penalty of red points covered
by it. We now use the technique of Gaur et al. [18]. We solve the natural LP
relaxation for weighted set cover on (B,HH ∪HV ) and partition the blue points
into two sets B1 and B2 based on whether horizontal or vertical half-strips cover
a point to value greater than 1

2 . Since HH and HV are families of pseudo-disks,
by the result of Chan et al. [19], in randomized polynomial time we can compute
integral set covers S1 and S2 of (B1,HH) and (B2,HV ) with weight at most
O(1) times the optimal fractional solutions of the respective set cover LPs. An
analysis similar to that in Gaur et al. [18] shows that S1∪S2 is an O(1) solution
to HS-4D-SC.

The approximation algorithm for the prize-collecting version (blue points have
finite penalties) can be obtained by applying the deterministic rounding tech-
nique of Bienstock et al. [20] as follows. Let (x∗, y∗, z∗) be an optimal fractional
solution to the following LP for the prize-collecting version:
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(LP)

min
∑

hs∈HV

w(hs)xhs +
∑

hs∈HH

w(hs)yhs +
∑

p∈B

P(p)zp

s.t.
∑

hs|hs∈HV & p∈hs

xhs +
∑

hs|hs∈HH & p∈hs

yhs + zp ≈ 1 ∀ p ⇒ B

(1)

xhs ≈ 0 ∀ hs ⇒ HV , yhs ≈ 0 ∀ hs ⇒ HH & zp ≈ 0 ∀ p ⇒ B (2)

Let α, 0 < α < 1, be a constant (say α = 0.5) and let Bα denote the set of
blue points p ⇒ B with z∗p ≈ α. Clearly, 1

1−α (x
∗, y∗) forms a feasible solution

to the natural set cover LP on (B \ Bα,HH ∪ HV ). Hence, by applying the
above algorithm for infinite penalties, we can obtain a half-strip cover S for
all blue points in B \ Bα with cost within O(1) of 1

1−α · (
∑

hs∈HV
w(hs)x∗

hs +∑
hs∈HH

w(hs)y∗hs). Since the penalty for not covering the blue points in Bα

is at most 1
α

∑
p∈B P(p)z∗p, the set S of half-strips gives an O(1) solution to

HS-4D-MC with arbitrary penalties. �

Lemma 11. Let OPTM and OPTS denote the optimal solution to HS-1D-MC
and HS-1D-SC respectively on point set P . Then OPTM ∃ 2 · OPTS .

Proof: For simplicity, assume all blue points are covered and all points in P
have positive y-coordinates. Then the region of R2 above the x-axis covered by
half-strips in H∗, the optimal solution to HS-1D-SC, is a disjoint union of 1.5D
rectilinear terrains.

Let RT1, RT2, . . . , RTm be these terrains. Let Si be the set of half-strips in
H∗ forming terrain RTi and let ki = |Si|. Let Ri ≥ R be the red points inside
terrain RTi. Then OPTS =

∑m
i=1 ki +

∑m
i=1 P(Ri). For each terrain RTi, we

define a set Ti of disjoint half-strips covering RTi as follows. For each horizontal
edge e ⇒ RTi, we add the half-strip with top edge e to Ti. Since each of the
half-strips in Ti are disjoint,

⋃m
i=1 Ti forms a solution to HS-1D-MC of cost∑m

i=1 li +
∑m

i=1 P(Ri), where li = |Ti|.
One can show using simple arguments, that for each i, li ∃ 2ki. This proves the

lemma, as OPTM =
∑m

i=1 li+
∑m

i=1 P(Ri) ∃ 2
∑m

i=1 ki+P(Ri) ∃ 2(
∑m

i=1 ki+
P(Ri)) = 2 · OPTS . �

Theorem 12. There exist O(1) approximation algorithms for HS-2D-DIFF-SC,
HS-3D-SC, and HS-4D-SC.

Proof: Using Lemma 11, we can show that OPT -4DM ∃ 8 · OPT -4DS, where
OPT -4DM and OPT -4DS denote the optimal solutions to HS-4D-MC and HS-
4D-SC on point set P . Therefore, the O(1) algorithm to HS-4D-MC given by
Theorem 10 also gives an O(1) approximation algorithm for HS-4D-SC. �
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Abstract. Efficiently retrieving relevant data from a huge spatial database is and
has been the subject of research in fields like database systems, geographic infor-
mation systems and also computational geometry for many years. In this context,
we study the retrieval of relevant points with respect to a query and a scoring
function: let P and Q be point sets in the plane, the skyline of P with respect to
Q consists of points P for which no other point of P is closer to all points of Q.
A skyline of a point set P with respect to a query set Q can be seen as the most
“relevant” or “desirable” subset of P with respect to Q. As the skyline of a set
P can be as large as the set P itself, it is reasonable to filter the skyline using a
scoring function f , only reporting the k best skyline points with respect to f .

In this paper, we consider the top-k Manhattan spatial skyline query problem
for monotone scoring functions, where distances are measured in the L1 metric.
We present an algorithm that computes the top-k skyline points in near linear time
in the size of P . The presented strategy improves over the direct approach of first
using the state-of-the-art algorithm to compute the Manhattan spatial skyline [1]
and then filtering it by the scoring function by a log (|P |) factor. The improve-
ment has been validated in experiments that show a speedup of up to an order of
magnitude.

1 Introduction

The amount of data collected by various devices and applications has significantly in-
creased over the last years. There is no reason to believe that this trend will change in
the near future. In the face of ever increasing amount of data, the task of efficiently re-
ceiving information of high relevance with respect to a given query and separating that
data from irrelevant information becomes more and more important.

Throughout this paper, we assume the data to be given as points in the L1 plane, that
is, distances are measured using the L1 metric. One concept of defining the relevance of
a point in a point set P with respect to a query set Q is to consider the so-called skyline
of P with respect to Q. The relevance of a point in P is correlated to its distances to the
individual points of the query: the skyline of a point set P with respect to a query set Q
consists of all points s ≥ P so that no other point of P is closer to all points of Q than
s; skylines will be formally introduced in the next section.

λ This research was supported by the National Research Foundation of Korea(NRF) grant funded
by the Korea government(MSIP) (No. 2011-0030044).

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 22–33, 2014.
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Computing the skyline of a set P of n points with respect to a query set Q ofm points
in the L1 plane is known as the Manhattan Spatial Skyline Query problem [1]. Unfortu-
nately, the entire skyline for a specific query can consist of (too) many points; actually,
the skyline may be P itself. A common strategy to further reduce the number of relevant
points is to apply a (monotone) scoring function and to reportk points of the skyline with
the highest scoring function value, where usually k is much smaller than n.

In this paper, we hence study the top-k Manhattan spatial skyline query problem. In
a top-k Manhattan spatial skyline query we ask for the k best skyline points of P with
respect to f , where the scoring function f and the parameter k are part of the input.

A straightforward algorithm to compute the top-k skyline points would be as follows:
first, compute the entire skyline, then apply the function to the resulting set and finally
report k points with the highest scores.

The best known algorithm to answer a Manhattan spatial skyline query problem takes
O(n(log n + logm) +m logm) time [1], implying that the straightforward algorithm
for the problem considered here takes O(n(log n+logm+ tf)+m logm) time, where
tf is the time to evaluate the scoring function f . This approach, however, might be
very time consuming, as one needs to test for each data point p ≥ P whether or not p
actually is part of the skyline by comparing it with all other points of P , which itself
is a time consuming operation. In this paper, we propose efficient algorithms that avoid
this inefficiency.

Contribution
In this paper, we present an algorithm for answering top-k Manhattan spatial skyline
queries for an arbitrary monotone scoring function f in time O(n(logm+log k+ tf)+
m logm) using O(n + m) space after spending O(n log n) time for a preprocessing.
This improves over the direct (and the previously only known) approach mentioned
above by a factor of logn.

In many practical applications, m and k are much smaller than n. For example,
a Geographic Information System (GIS) stores a huge number of spatial data, but a
typical query consist only of a few locations of interest chosen by a user. And as the
scoring function already reflects the users preference, only a small number of reported
points is usually desired.

The time tf to evaluate the monotone scoring function f depends on the function
itself. For some point p, f(p) is defined by relations of distances from query points to
p. Let ⇒p− p∩⇒1 denote the L1 distance between two points p and p∩. Typical monotone
scoring functions are

SDIST(p) :=
∑

q∈Q

∗p− q∗1, MAX(p) := max
q∈Q
∗p− q∗1, and MIN(p) := min

q∈Q
∗p − q∗1.

For these three functions, tf = O(logm) after a preprocessing time of O(m logm).
The computational complexity of SDIST will be investigated and presented later. In
case of MAX and MIN, the (farthest) Voronoi diagram of Q can be used to compute
the score of a point.

If m and k are much smaller than n, and tf is also small enough, our algorithm
computes top-k Manhattan spatial skyline points in a time that is almost linear in n.
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2 Problem Definition

In the Manhattan Spatial Skyline Query problem [1], we have a set P of n data points
in the L1 plane. For a given set Q of m query points, a point p ≥ P is a spatial skyline
point if and only if it is not spatially dominated by any other point of P with respect to
Q. The notion of spatial dominance of a point over another point with respect to Q is
defined as follows:

Definition 1 (spatial dominance). Let p, p∩ be points in the L1 plane and let Q be a
point set in the L1 plane. We say that p spatially dominates p∩ with respect to Q if and
only if

∪ q ≥ Q : ⇒p− q⇒1 → ⇒p∩ − q⇒1 and ∃ q∩ ≥ Q : ⇒p− q∩⇒1 < ⇒p∩ − q∩⇒1.

Definition 2 (skyline). Let P and Q be point sets in the L1 plane. A point p ≥ P is
the spatial skyline point of P with respect to Q if and only if p is not dominated by any
other point of P with respect to Q.

We want to compute top-k spatial skyline points in the L1 plane with respect to Q,
where k and a monotone scoring function f are given as part of the input. In this context,
a scoring function is called monotone, if for any two points p and p∩

∪ q ≥ Q : ⇒p− q⇒1 → ⇒p∩ − q⇒1 =∩ f(p) → f(p∩).

The top-k Manhattan spatial skyline problem can be formalized as

Problem 1 (Top-k Manhattan Spatial Skyline Query).
Given:
at preprocessing time:

P = {p1, ...., pn} a set of data points in the L1 plane
at query time:

Q = {q1, ..., qm} a set of query points
f : P ⊗ R

+ a monotone scoring function
k > 0 a parameter

Task:
Compute a set Sk ≈ P of k points in the plane, so that the points of Sk are the k-
smallest (with respect to f ) skyline points of P with respect to Q.

3 Related Work

Skyline Computation. The problem of computing the skyline was known as the max-
imal vector problem [2,3] where the goal is to find the subset of the vectors that are not
dominated by any of the vectors from the set. Recently, the maximal vector problem was
rediscovered by Börzsönyi et al. [4] who introduced skyline queries in database context.
Since then, various algorithms for skyline queries have been introduced including the
linear elimination-sort for skyline (LESS) algorithm [5], the sort-filter-skyline (SFS)
algorithm [6], and the branch and bound skyline (BBS) algorithm [7].
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Spatial skyline queries were introduced by Sharifzadeh and Shahabi [8] to support
skyline queries over spatial data. Given a set P of data points and a set Q of query
points in a d-dimensional space, spatial skyline queries retrieve skyline points among
data points with respect to Q. For each data point, its spatial attribute is defined by its
distance to query points in Q. Spatial dominance between any two data points is deter-
mined by their spatial attributes. Sharifzadeh and Shahabi presented two algorithms for
the problem in the Euclidean space. Later, Lee et al. [9] improved the results of Shar-
ifzadeh and Shahabi. Son et al. [1] recently considered the problem in the L1 plane,
which is also called the Manhattan spatial skyline queries, and proposed an efficient
algorithm.

Top-k Skyline Computation. Skyline queries provide a useful method to get desirable
objects from massive data, but the resulting skyline objects can still be too big in size to
process efficiently in practice. So it is more desirable to require users to specify some
ranking function and to retrieve the most ideal k skyline objects among skylines for
small k. This problem is called top-k skyline queries. Goncalves and Vidal [10] pre-
sented an algorithm to solve top-k skyline queries using an arbitrary scoring function.
Their algorithm maintains a sorted list of n objects for each attribute and additionally
for the scoring function, and takes O(n2d) time, where d is the number of attributes.

Recently, Xu and Gao [11] proposed an algorithm for top-k skyline queries that
uses a reference object specified by the user to evaluate user preference. Meanwhile,
there have been works to use subspace domination relationships in scoring skyline ob-
jects [12,13].

There have been another interesting line of research to retrieve top-k objects for k
larger than the number of skyline objects [14,15]. They report k objects such that each
of them is either a skyline objects or is dominated only by the reported objects.

4 Algorithm

In this section, we propose an algorithm to compute top-k Manhattan spatial skyline
points involving a given monotone scoring function f .

We first observe some properties of the dominance relation and monotone scoring
functions on a point.

Lemma 1. If a point p is not a skyline point then there is a skyline point p∩ that domi-
nates p.

Proof. Among the points that dominate p, at least one of them is a skyline point
by the transitivity of the dominance relation. By Definition 1, the remaining part is
obvious.

For a monotone scoring function f the following lemma holds.

Lemma 2. [6] For p, p∩ ≥ P , if p∩ dominates p, then f(p∩) → f(p).

Let Lq = [p1, p2, ..., pn] be a sorted list of points in P in the ascending order of
distance from a query point q. For the moment we assume that no two points have
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the same distance from q. We will discuss later how to handle the case that more than
one point of P have the same distance from q. By Lemma 1 and Lemma 2 we get the
following corollary.

Corollary 1. If pj ≥ Lq is not a skyline point, then there is a point pi ≥ Lq that satisfies
the following conditions (by Lemma 1 and Lemma 2):

1. pi is a skyline point, and i < j
2. f(pi) → f(pj)

The basic idea of our algorithm is as follows: we test the points of Lq in order until
we find the first k skyline points and store them in Sk. To be specific, for a point p,
we perform the dominance test only with points currently stored in Sk. So if p is not
dominated by any point of Sk, we insert p to Sk and update Vk = maxs≤Sk

f(s).
After finding first k skyline points, we only consider points p ≥ Lq that satisfy

f(p) < Vk, as we already have k skyline points that have a better score than p. For a
point p that satisfies f(p) < Vk, we perform the dominance test with the points in Sk.
All skyline points that dominate p should be in Sk by Corollary 1, so testing with points
in Sk is sufficient. Whenever we find a new skyline point with a score function value
smaller than the worst point of Sk, we update Sk and Vk by inserting the new point and
removing the worst point. Details of our algorithm are as follows.

1 Algorithm: Top-k-MSSQ

Input: Two lists of points in P , one sorted along the line y = x and the other
sorted along the line y = −x, a set Q of query points, a scoring function
f and a parameter k.

Output: A set Sk of the k best (with respect to f ) Manhattan spatial skyline
points of P on queries of Q.

2 begin
3 Compute a sequence p1, p2, . . . , pn of points in P ordered increasingly by

distance from a query point q ≥ Q;
4 Vk := −∧, Sk := ∞;
5 for i ⊗ 1 to n do
6 if pi is not dominated by any point in Sk then
7 insert pi to Sk;
8 Vk := max {Vk, f(pi)};
9 if |Sk| ∨ k then

10 break;
11 for j ⊗ i+ 1 to n do
12 if f(pj) ∨ Vk then
13 continue;
14 if pj is not dominated by any point in Sk then
15 insert pj to Sk;
16 delete a point p∩ in Sk such that f(p∩) = Vk;
17 update Vk;
18 return Sk;
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q

Fig. 1. L1 circle centered at q, and expanding with increasing radius

In the following, we explain how to sort P efficiently and how to break the tie for
two data points that have the same distance from the chosen query q.

4.1 Sorting Data Points from a Query Point

To compute Lq efficiently, we preprocess data points of P and maintain two lists of P ,
one sorted along the line y = x and the other sorted along the line y = −x. It is possible
that more than one data point have the same order along the line y = x or y = −x. If
this is the case, we sort them by their x-coordinates.

Once Q is given, we choose an arbitrary query point q from Q. Consider the subdivi-
sion of the plane into quadrants defined by the horizontal line and vertical line passing
through q (Figure 1). We sort points lying in each quadrant separately, and then merge
the four sorted lists into one. In the following, we explain how to sort points of P con-
tained in the top left quadrant only. Data points contained in other quadrants can be
sorted analogously.

Let I(p) be the y-intercept value of the line passing through p with slope 1. We
construct the list LI of data points of P sorted in the ascending order of I in the pre-
processing time. By using LI , we sort data points of P lying in the top left quadrant in
the ascending order of I as follows. We compute I(q) and locate the data point p in LI

whose I value is the smallest among all data points p∩ with I(p∩) ∨ I(q). This can be
done using a binary search algorithm. Then we scan the list LI starting from p in the
ascending order of I and report each data point in LI if it lies in the top left quadrant.
This gives us the list of data points contained the top left quadrant sorted in the order
of the distance from q. We also compute the sorted lists for the other three quadrants
analogously, and merge the four sorted lists into one to get Lq .

Lemma 3. We can sort n data points in P in the ascending order of distance from a
query point q ≥ Q in O(n) time after O(n log n) time preprocessing.

4.2 Sorting Data Points of the Same Distance from q

Consider now the case that two or more data points have the same distance from q. Then
Corollary 1 may not hold for Lq: For two points pi, pj in Lq with i < j and ⇒pi−q⇒1 =
⇒pj − q⇒1, it is possible that none of p1, p2, . . . , pi−1 of Lq spatially dominates pi but
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pj spatially dominates pi. For example, consider two query points q1 = (0, 0) and
q2 = (5, 0) and three data points p1 = (0, 2), p2 = (2, 2), and p3 = (3, 1). Then
Lq1 = [p1, p2, p3], and p1 is a skyline point. But p2 is spatially dominated only by p3.

Therefore we have to refine the ordering in a suitable way: we first sort by distance
from q, and if more than one point have the same distance from q we sort them by sum-
of-distances from Q. Then Corollary 1 holds for the resulting list Lq . Note that two
points of the same distance from q may also have the same sum-of-distances from Q. If
this is the case, they do not dominate each other (Definition 1) and we use any order of
them. In the following, we first propose a method for computing the sum-of-distances
of a data point from Q. Then we will explain how to use this method for sorting data
points of the same distance from q efficiently.

Let SDIST(p) denote the sum-of-distances of p from Q. In general it takes O(m)
time to compute SDIST(p) for a data point p and therefore O(nm) time for all data
points of P . We propose another method that computes SDIST(p) for each data point
p in O(logm) time after O(m logm) time preprocessing.

Consider any two data points p and p∩. Then

SDIST(p∩) =

SDIST(p) +
∑

q≤Q

(|p∩.x− q.x| − |p.x− q.x|) +
∑

q≤Q

(|p∩.y − q.y| − |p.y − q.y|)

(1)

Equation (1) suggests that SDIST(p∩) can be computed immediately once we know
the values of SDIST(p) and the last two terms. In the following we will show how to
evaluate the second term of Equation (1) efficiently. The third term can also be evaluated
in the same way.

We can rewrite the second term as follows. Without loss of generality, we assume
that p.x → p∩.x. Let QL = {q | q.x < p.x, ∪q ≥ Q}, QM = {q | p.x → q.x →
p∩.x, ∪q ≥ Q}, and QR = {q | q.x > p∩.x, ∪q ≥ Q}.

∑

q≤Q

(|p∩.x− q.x| − |p.x− q.x|)

=
∑

q≤QL

(p∩.x− q.x) +
∑

q≤QM

(p∩.x− q.x) +
∑

q≤QR

(q.x− p∩.x)

−
( ∑

q≤QL

(p.x− q.x) +
∑

q≤QM

(q.x− p.x) +
∑

q≤QR

(q.x− p.x)
)

= |QL|(p∩.x− p.x) + |QM |(p∩.x+ p.x)− 2
∑

q≤QM

q.x+ |QR|(p.x− p∩.x)

The last equation can be evaluated if we maintain a data structure on Q that supports the
following two queries: (1) given a real value r, return the number of queries q satisfying
q.x → r (or q.x ∨ r), (2) given two real values r1 and r2 with r1 → r2, return the sum
of x-coordinates of queries q satisfying r1 → q.x → r2.

We can support a query of type (1) by using a binary search algorithm and a query of
type (2) by using a partial sum query structure [16] after sorting the query points in the
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ascending order of their x-coordinates. For a set of elements stored in an array, a partial
sum query structure returns the sum of the elements that lie in an orthogonal query
range [16]. Chan and Pǎtraşcu showed that the partial sum query for one-dimensional
array of size m can be answered in O(logm/ log logm) time after O(m log0.5+Δ m)
time preprocessing for an arbitrarily small constant Π > 0 [16].

Lemma 4. For any two data points p and p∩, we can compute SDIST(p∩) in O(logm)
time if we know the value of SDIST(p).

Now we show how to sort points that have the same distance from q in the ascending
order of SDIST. Let Pt denote the set of points of P at distance t from q. Assume that
Pt contains more than one data point for some fixed t > 0. Then the points in Pt all lie
on a L1 circle C centered at q with radius t, each lying on one of four segments of C.

Let pL be the point of P with the smallest x-coordinate, and assume that we have
already computed SDIST(pL) by taking the sum-of-distances of pL from Q. We can
compute SDIST values of points in Pt by using the value of SDIST(pL) as stated in
Lemma 4. For these SDIST values, the following lemma holds.

Lemma 5. The function SDIST is a convex along a line.

Proof. Consider any line σ. Clearly the distance function from a query point q is convex
along σ. Since SDIST is the sum of these convex distance functions, SDIST is also
convex [17].

Consider the set of points in Pt that lie on a line segment of C. These points are
already sorted by their x-coordinates in the preprocessing phase. Because of convexity
of SDIST in Lemma 5, we sort them in the ascending order of SDIST in time linear to
the number of points. We do this for the remaining points of Pt in a similar way, and
get the final list of points in Pt sorted in the ascending order of SDIST in time O(|Pt|).

Lemma 6. We can sort data points having the same distance from q in the ascending
order of SDIST in time linear to the number of the points.

4.3 Analysis

We outline our algorithm as follows. For a given set Q of m query points, we sort n
data points of P in the order of distance from a query point as described in Sections 4.1
and 4.2. For the sorted list we can find top-k skyline points by using Algorithm Top-k-
MSSQ in Section 4.

Let us analyze the running time of the algorithm. In the preprocessing phase, we
spend O(n log n) time to compute two lists of points in P , one sorted along the line
y = x and the other sorted along the line y = −x.

For Algorithm Top-k-MSSQ, the time complexity is as follows. For a query set Q,
we spend O(n) time to sort P in the ascending order of distance from a query point
q ≥ Q and O(n logm) time to break ties.

We evaluate f for each point in lines 8 and 12, so we spend O(ntf ) time to evaluate
f for all points. In lines 6 and 14, we check whether a data point is dominated by any
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point in Sk. In a straightforward way, it would take O(km) time, but in the L1 plane
we can do it more efficiently by using an idea similar to the one used in Son et al. [1] as
follows.

Let C(p, q) be the L1 disk centered at q with radius ⇒p − q⇒1. Let R(p) denote the
common intersection ∀q≤QC(p, q). Definition 1 implies that a data point p∩ dominates
p if and only if p∩ lies in R(p). Therefore, it suffices to check whether R(p) contains
any point of Sk or not. To do this, we use a dynamic orthogonal range query structure of
Sk [18]. This structure allows us to determine whether an orthogonal range contains any
point of Sk. We construct this data structure for Sk and update it when Sk is updated.

To use the dominance test described above, we compute R(p) in O(logm) time
after constructing a data structure in O(m logm) time [1]. The dynamic orthogonal
range query structure for Sk uses O(k) space and takes O(log k) time for a query and
O(log k) amortized time for an update [18]. Therefore the total time complexity of our
algorithm is as follows.

Theorem 1. Given n data points and m query points in the L1 plane, we can compute
the top-k Manhattan spatial skyline points for a monotone scoring function f in time
O(n(logm + log k + tf ) + m logm) using O(n + m) space after O(n log n)- time
preprocessing, where tf is the time to evaluate f .

In many practical applications, k and m are much smaller than n, and tf is sublinear
to m. In this case our algorithm spends near linear time to compute top-k Manhattan
spatial skyline points.

5 Experimental Evaluation

In this section, we outline our experimental settings and show evaluation results to
validate the efficiency and effectiveness of our algorithms. We carry out our experiments
on Linux with Intel Q6600 CPU and 3GB memory. The algorithm is coded in C++.

We compare our algorithm Top-k-MSSQ with a straightforward implementation of
reporting the k best ones (with respect to f ) from the skylines returned by MSSQ [1].
We use both synthetic datasets and a real-world dataset of points of interest (POI) in
California 1.

A synthetic dataset contains up to a million uniformly distributed locations in the
plane. We use five datasets with 200k, 400k, 600k, 800k and 1M data points. Data
points in the synthetic datasets are independent, and uniformly distributed in the unit
square. Query points are distributed in a randomly selected bounding square contained
in the unit square. We also investigate the effect of m, k and f . The parameters are
summarized in Table 1.

We also use a POI dataset to validate our algorithm. This dataset has 104,770 loca-
tions in 63 different categories. Except dataset cardinality, we use the same parameters
in Table 1.

We first show the efficiency of our algorithm for synthetic datasets. Figure 2 shows
the efficiency of the two algorithms for synthetic datasets when f(p) = SDIST(p).

1 Available at http://www.cs.fsu.edu/˜lifeifei/SpatialDataset.htm

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
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Table 1. Parameters used for synthetic datasets

Parameter Setting (default value is underlined)
Dataset cardinality 200k, 400k, 600k, 800k, 1M
The number of query points 4, 8, 12, 16, 20
k 4, 8, 12, 16, 20
f(p) SDIST, MAX

We observe that our proposed algorithm is faster than MSSQ. The performance gap
increases as n increases. We also show the response times of the algorithms for f(p) =
MAX(p) in Figure 3.
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Fig. 2. Response time over (a) n (b) m (c) k, for synthetic dataset, when f(p) = SDIST(p)
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Fig. 3. Response time over (a) n (b) m (c) k, for synthetic dataset, when f(p) = MAX(p)

Now we show the experimental results for the POI dataset.
Figure 4 shows experimental results for f(p) = SDIST(p). We observe that our pro-

posed algorithm is faster than MSSQ. We observe similar trends for f(p) = MAX(p)
as shown in Figure 5.

All the experimental results show that Top-k-MSSQ outperforms MSSQ for both
synthetic datasets and the POI dataset.
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Fig. 4. Response time over (a) m (b) k for the POI dataset when f(p) = SDIST(p)
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Fig. 5. Response time over (a) m (b) k for the POI dataset when f(p) = MAX(p)

6 Conclusion

We have studied the top-k Manhattan spatial skyline query problem. Our algorithm
can compute top-k skyline points with respect to a monotone scoring function f in
time O(n(logm + log k + tf ) + m logm) using O(n + m) space after O(n log n)-
time preprocessing. In addition our extensive experiments validate the efficiency and
effectiveness of our proposed algorithms.
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Abstract. We present output sensitive techniques for the generalized
reporting versions of the planar range maxima problem and the planar
range convex hull problem. Our solutions are in the pointer machine
model, for orthogonal range queries on a static point set. We solve the
planar range maxima problem for two-sided, three-sided and four-sided
queries. We achieve a query time of O(log n+c) using O(n) space for the
two-sided case, where n denotes the number of stored points and c the
number of colors reported. For the three-sided case, we achieve query
time O(log2 n + c log n) using O(n) space while for four-sided queries
we answer queries in O(log3 n+ c log2 n) using O(n log n) space. For the
planar range convex hull problem, we provide a solution that answers
queries in O(log2 n+ c log n) time, using O(n log2 n) space.

1 Introduction

Generalized intersection searching was introduced by Janardan and Lopez [14].
Since then there has been a considerable amount of work on generalized search-
ing and reporting problems [9][10][11][3][12][13][1][7][22][20]. A comprehensive
survey of developments in the area can be found in [8]. In the generalized ver-
sion of a problem, points are associated with colors. Colors capture the idea
of membership, dividing objects into groups based on some common property.
Such categorization has practical applications in databases, spatial information
systems and other areas where objects are separable into classes and queries
involve membership checking in these classes.

We present here solutions for the generalized (colored) range-query versions of
two classic problems in computational geometry – Convex Hull and Skyline1 – in
the two dimensional setting, for a static set of points. Both these problems, in our
knowledge, have not been tackled before in literature. Generalized intersection
searching problems are broadly divided into two kinds, reporting and counting.
In the former, the goal is to report the distinct colors whose points fall in the
query range, while in the latter the goal is to count the number of such colors.
Our solutions are for the reporting versions of both problems.

1 We will use the terms maxima and skyline interchangeably in this paper.

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 34–43, 2014.
c∩ Springer International Publishing Switzerland 2014
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1.1 Generalized Planar Range Maxima Queries

A point p = (x, y) is said to dominate another point p≤ = (x≤, y≤) if both x ≥ x≤

and y ≥ y≤ are true. Given a set of points P in the plane, the set m ⇒ P of all
points which are not dominated by any other point in P is known as the maximal
set. In the planar range maxima problem, given a range query q, we are asked to
report the maximal set of the points in P ∪ q. Note that range maxima queries
are sometimes referred to as range skyline queries. We present a solution for the
reporting version of the problem, where the points must be preprocessed in a
way such that given an orthogonal range query q, we can efficiently report the
distinct colors on the maximal set of P ∪ q.

1.2 Generalized Planar Range Convex Hull Queries

In the planar convex hull range query problem, given a set of points P and a
query region q, the goal is to find the convex hull of the points in P ∪ q. We
present a solution for generalized reporting of the convex hull in a orthogonal
range q, for which we must preprocess the points in a way such that we can
report the distinct colors that constitute the convex hull of the points in P ∪ q.

2 Previous Work

Kalavagattu et al. [15] studied the problem of counting and reporting points
belonging to the maxima in an orthogonal range query on a static set of points.
Brodal et al. [5] presented a solution for the dynamic version of the same problem.
Rahul et al. [21] solved a similar problem where the maxima and the range
query are based on different sets of dimensions. The colored version of the range
maxima problem has not been studied before.

Brass et al. [4] studied the range convex hull problem and presented a solution
using range trees and a method similar to the gift wrapping algorithm [19]. Moidu
et al. [18] presented a more efficient solution, using a novel approach using a
modified version of the range tree. The colored version of the range convex hull
problem has also not been studied before.

3 Preliminaries

We assume that all points are distinct and have integer co-ordinates. The more
general setting can be transformed to one with integer co-ordinates by reduction
to rank space using standard methods [6][2]. Let C be the set of all colors. Let
n = |P |. Clearly, |C| → n (if |C| = n, then the problem becomes a case of standard
intersection searching, without colors). We encode the colors as integers from 1
to n for notational and operational convenience.

For both the problems under consideration, let c be the number of distinct
colors intersected by the query range. Our answer, therefore, will have size O(c).
To be output sensitive, we would therefore like our solutions to take time which
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is a function of c (and not a function of the total number of points on the
maxima or convex hull). This rules out any method involving the computation
of all maximal or convex hull points followed by some processing on them.

All queries studied in the following sections are orthogonal and axis-parallel,
unless explicitly specified otherwise. All results are in the pointer machine model.

3.1 Generalized Reporting in One Dimension

Given a set of points in one dimension where each point has a color (not neces-
sarily unique) associated with it, we want to preprocess the point-set such that
given a query range we can efficiently report the distinct colors in that range.

Gupta et al. [11] showed a transformation which reduces the generalized one
dimensional range reporting problem into the standard grounded range reporting
problem in two dimensions and solved the problem using a priority search tree
(PST) [17]. Thus, for a static set of points in one dimension, the c distinct colors
intersected by a query range can be reported using a O(n) space and O(n log n)
preprocessing time data structure D which answers queries in O(log n+ c) time
per query. We use this result in our solutions for both maxima and convex hull.

3.2 Heavy-light Decomposition

Heavy-light decomposition is a technique which allows us to break down a rooted
tree into a set of mutually disjoint paths. It was first used in literature by Tarjan
[25] while the exact phrase was coined by Sleator and Tarjan when they used
the technique in their analysis of link-cut trees [23][24].

Let T be a rooted n-ary tree. Let size(v) be the number of nodes in the subtree
rooted at a node v. An edge (p, q), where q is a child of p, is labeled heavy if
size(q) > 1

2 · size(p) and light otherwise. A tree with edges labeled in this manner
is said to be decomposed. The following properties can be shown easily for a
heavy-light decomposed tree:

– At most 1 edge from a node to its children can be heavy.
– Each connected set of heavy edges forms a vertex-disjoint path. We call such

a path a heavy path.
– A path (v, u) in the tree, where u is an ancestor of v, will consist of O(log n)

light edges and O(log n) heavy paths.

4 Generalized Range Maxima Queries

Due to the nature of information conveyed by the maximal chain of a set of
points, it is common to perform orthogonal range queries that are unbounded
in one or two directions. We present separate solutions to three representative
types of range queries for the maxima problem.
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4.1 Two Sided Queries

We begin with the simplest kind of maxima queries, where the query range is un-
bounded in two directions. We solve for query ranges of the type [xl,∃)×[yl,∃).
Notice that in such queries, the range maxima is nothing but a continuous subset
of the maximal chain of the entire point-set. Therefore for this type of two-sided
query, reporting the generalized range maxima is equivalent to the generalized
reporting problem in one dimension. This can be solved using the method de-
scribed in Section 3.1. The remaining three types of two-sided queries, however,
cannot be solved using this approach.

Theorem 1. Let P be a set of colored points in two dimensions. P can be pre-
processed into a O(n) space and O(n log n) preprocessing time data structure
such that given a two-sided query q unbounded in the positive x and positive
y directions, the c distinct colors in the maxima of P ∪ q can be reported in
O(log n+ c) time.

4.2 Three Sided Queries

In a three sided query, the maximal chain need not be a continuous subset
of the maximal chain for the entire point set. We solve the problem for three
sided queries unbounded in the positive x direction, i.e. queries of the type
[xl,∃)× [yl, yh], where yl < yh.

We construct a one dimensional range tree on the x co-ordinates of the points
in P . Let us call this tree Tx. Let S(v) be the subtree of an internal node v in
Tx. At each internal node v, we store a pointer to the point in S(v) having the
maximum y co-ordinate.

For a point p = (px, py), let next (p) be the point with maximum y co-ordinate
in its south-east quadrant, i.e. in the range [px,∃) × (−∃, py]. We construct a
graph where each point in P is a vertex and there is an edge from each pi to
next(pi). We create a dummy vertex pnull. For all such points pi for which no
next(pi) value exists in P , we add an edge (pi, pnull) to the graph. The next(.)
values can be computed in O(n log n) time using the tree Tx described above.
Each vertex in this graph, except pnull has exactly one outgoing edge (edge
pointing towards its next(.) point) and there are no cycles. Therefore, this graph
is a tree. We call it T . A maximal chain, as reported by a three sided query, will
be a path in T .

We now decompose T using heavy-light decomposition. We preprocess all
heavy paths with the data structure D of Section 3.1. For light edges we do not
perform any preprocessing.

Theorem 2. Let P be a set of colored points in two dimensions. P can be pro-
cessed into a O(n) space and O(n logn) preprocessing time data structure such
that given a three sided query q, unbounded on the right, the c distinct colors in
the maxima of P ∪ q can be reported in O(log2 n+ c logn) time per query.

Proof. The preprocessing stage involves:
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1. The building of the tree Tx, which is a one dimensional range tree. It takes
O(n) space and can be built in O(n log n) time.

2. The building of the tree T , which takes O(n log n) time. The number of
nodes in T is the same as the number of points in P , therefore T has size
O(n). In addition, for each heavy path in T we build the data structure D
of section 3.1. If the length of a heavy path is lh, it takes O(lh) space and
O(lh log lh) time to build the required data structure. Clearly the overall
space requirement is O(n) while the time required is O(n logn).

Thus, for preprocessing, the total space requirement is O(n) and the total time
required is O(n log n).

Given a query [xl,∃) × [yl, yh], let pa ∩ P be the point with the maximum
y co-ordinate lying in the range [xl,∃)× [−∃, yh]. This point can be found in
O(log n) time by an orthogonal range successor query on the tree Tx. The point
pa will be one end point of the maximal chain in P ∪ q. Let pb be the other end
point and Pmc be the path in T from pa to pb. It can be shown that pb will be
an ancestor of pa in the tree T . Therefore, it follows from Section 3.2 that the
path Pmc will consist of O(log n) light edges and O(log n) heavy paths.

For heavy paths, we can report the distinct colors using the preprocessed data
structure D of Section 3.1. This takes O(log n + c) time per heavy path. Since
there are O(log n) heavy paths, the total time required is O(log2 n+ c logn) For
the remaining points, i.e. those that are not part of a heavy path, we simply re-
port the colors when such a point is encountered. This takes a total of O(log n)
time since there are O(log n) light edges. Thus reporting the colors on the max-
imal chain for a three sided query can be done in O(log2 n + c logn). However,
there still remains the issue of duplicates.

To ensure that each color in the maxima is reported only once, we leverage
the fact that colors are encoded as integers from 1 to C. For every query we
initialize a bit-array B, of size C, with all B[i] set to 0. As colors are reported
from T , for every reported color k we check the value of B[k]. If B[k] = 0, we
output color k and set B[k] to 1, else we do not output color k and move on.
Since there are a total of O(c) colors output by T , the aggregation process will
not be a dominating factor in the query time. ⊗≈

4.3 Four Sided Queries

Four sided (rectangular) orthogonal range queries can be answered using a range
tree together with the structure for three sided queries (Section 4.2).

Theorem 3. Let P be a set of colored points in two dimensions. P can be pro-
cessed into a O(n log n) space and O(n log2 n) preprocessing time data structure
such that given a four sided query q, the c distinct colors in the maxima of P ∪ q
can be reported in O(log3 n+ c log2 n) time per query.

Proof. Let Tx be a one dimensional range tree on the x co-ordinates of all points
in P . Let S(v) be the subtree of an internal node v in Tx. At each internal
node v, we populate the structures described in Section 4.2 for three sided
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queries, using the points in S(v) as the input. This takes O(|S(v)|) space and
O(|S(v)| log |S(v)|) time per internal node v.

Now consider the set Sd of all nodes lying at depth d in the primary tree Tx.
The total time required to preprocess all nodes in Sd will be:

∑

v∈Sd

O(|S(v)| log |S(v)|) ≤
∑

v∈Sd

O(|S(v)| log n) = O(log n
∑

v∈Sd

|S(v)|) = O(n log n)

(1)

Likewise, the total space required to store the preprocessed data structures on
each node in Sd will be:

∑

v∈Sd

O(|S(v)|) = O(
∑

v∈Sd

|S(v)|) = O(n) (2)

There will be O(log n) levels in the tree Tx. From equations (1) and (2) it follows
that preprocessing the entire tree will take O(n log2 n) time and O(n logn) space.

Given a query q = [xl, xh]× [yl, yh], we first query Tx with the range [xl, xh].
This gives us O(log n) canonical nodes. We process these canonical nodes from
right to left, starting with the canonical node whose x range has upper boundary
xh. On the first canonical node, we do a three sided query [xl,∃]× [yl, yh]. Let
ym be the y co-ordinate of the point with maximum y on the maximal chain
of the points covered by this canonical node. Points whose y co-ordinate is less
than ym in the remaining canonical nodes cannot lie on the maximal chain of
the query region. So on the next canonical node, we do a three sided query
[xm,∃]× [ym, yh], and so on. Each of these queries will return at most c colors.
The time taken per canonical node will be O(log2 n + c logn). Since there are
O(log n) canonical nodes, the total time per query will be O(log3 n + c log2 n).
Note that even though the colors output by each canonical node will be distinct
within themselves, the overall set may have duplicates. To remove them, we will
once again use the bit array method described in the proof of Theorem 2. ⊗≈

5 Generalized Range Convex Hull Queries

We present an output sensitive algorithm to report the distinct colors on the
convex hull of the points lying in a query range. We use the modified two di-
mensional range tree proposed by Moidu et al. [18] together with the generalized
one dimensional range reporting structure of Section 3.1.

5.1 Preprocessing

We build a modified range tree R, as described in [18], on the set of points
P and supplement it with additional preprocessed data structures to support
generalized range reporting of the convex hull.

Constructing R takes O(n logn) time. Within R, we call the primary range
tree, built using the x co-ordinates of the points, Tx. Each vertex vi of Tx has a
secondary tree associated with it, which is built using the y co-ordinates of the



40 N. Moidu et al.

points rooted at vi. We call this tree Ty(vi). At each canonical node in every
secondary tree Ty(vi), we precompute the convex hull of the points rooted at
Ty(vi).

Lemma 1. The convex hulls of the points rooted at the canonical nodes in R
can be computed in a total of O(n log2 n) time.

Proof. Consider a node vx in the primary tree Tx. Let the number of points
rooted at vx be nvx . Therefore the total number of points in the tree Ty(vx) will
also be nvx .

Instead of computing the convex hull of the points rooted at each node of
Ty(vx) ab initio, we will proceed in a bottom-up fashion starting at the deepest
(lowermost) level, merging the convex hulls of the children of each canonical node
to get the convex hull of the points at the canonical node itself. Merging of every
pair of child hulls to form the parent hull takes O(log (n1 + n2)) time using the
method described by Kirkpatrick and Snoeyink [16] to compute outer tangents
for disjoint convex polyhedra. Here n1 and n2 are the number of points in the
respective child convex hulls. Clearly, even in the worst case, n1 + n2 → nvx (for
tree Ty(vx)). Therefore each merge step takes at most O(log nvx) time. Notice
that the total number of merge operations required to compute the convex hulls
for all canonical nodes in Ty(vx) is the same as the total number of canonical
nodes (non-leaf nodes) present in Ty(vx), i.e. O(nvx). Therefore, the total pre-
processing time required to compute the convex hull of each canonical node in
a secondary tree Ty(vx) will be O(nvx lognvx), where nvx = |Ty(vx)|.

Consider the set Sd of all nodes lying at depth d in the primary tree Tx.
The time required to preprocess the secondary trees corresponding to each node
s ∩ Sd will be O(ns logns), where ns is the number of nodes rooted at s. The
total time required to preprocess all nodes in Sd will be

∑

s∈Sd

O(ns logns) →
∑

s∈Sd

O(ns logn) = O(log n
∑

s∈Sd

ns) = O(n log n) (3)

There are a total of logn levels in the tree Tx. Therefore, preprocessing the
entire tree at the cost of O(n log n) per level will take O(n log2 n) time. ⊗≈

Once the convex hulls of all canonical nodes have been computed, we prepro-
cess each canonical convex hull (convex hull of the points rooted at the canonical
node) for generalized range reporting. To do this, we first linearize the list of
convex hull points and then preprocess it using the data structure D described in
Section 3.1. At each canonical node, we store the convex hull points in counter-
clockwise order in an array. We store a pointer from each convex hull point to its
index in the array, allowing lookups in both directions (array index to convex hull
point and vice-versa). Using the array indices as one dimensional co-ordinates,
we preprocess the array for generalized one dimensional range reporting using
the data structure D.

Lemma 2. The canonical convex hulls in R can be preprocessed for generalized
range reporting in O(n log3 n) time.
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Proof. The data structure D takes O(n log n) time to build. We build one in-
stance of D for every canonical node inR. By a similar analysis as was performed
in proving Lemma 1, it can be shown that the preprocessing of all canonical con-
vex hulls in R will take O(n log3 n) time. ⊗≈

Lemma 3. The data structure R occupies O(n log2 n) space.

Proof. The modified range tree of [18] utilizes O(n logn) space, as it only stores a
constant amount of extra information per node. Our data structure R, however,
stores two additional items at each canonical node – the canonical convex hull
and the data structure for generalized reporting. Both these structures require
O(n) space. Analysis similar to what is shown in the proof of Lemma 1 will show
that the total space requirement of the data structure R is O(n log2 n). ⊗≈

5.2 Query

Moidu et al., in [18], show that using their modified range tree, given a query
region q, in O(log2 n) time we can

1. Identify O(log n) canonical nodes whose convex hulls, when merged, form
the convex hull of the points in P ∪q. They call these nodes candidate nodes
(or blocks).

2. Find, for each candidate node, the start and end points of a continuous
segment of its convex hull which, after merging, becomes part of the convex
hull of P ∪ q. Let us call these points ps and pe.

For every candidate node nc, once we obtain the points ps and pe, we can find
the corresponding indices l and r, using the arrays populated in the preprocessing
stage for generalized reporting (refer Section 5.1). We then do the query [l, r] on
the preprocessed generalized reporting data structure D. For each of the O(log n)
candidate nodes, the corresponding instance of D outputs the distinct colors
present in the points which that node contributes to the convex hull of P ∪ q.
The set of colors returned by querying each candidate node can at most be of size
c, where c is the total number of distinct colors in the convex hull of P ∪ q. How-
ever, the same color can be output by more than one candidate node. To ensure
that each color is reported only once, we once again use the bit-array method of
Section 4.2 which ensures that there are no duplicates in the final output.

Lemma 4. The data structure R answers range queries in O(log2 n + c logn)
time.

Proof. For every range query of the form [xl, xh]× [yl, yh], our query algorithm
performs a one dimensional generalized range reporting query on the instance of
the data structure D stored in each of the O(log n) candidate canonical nodes.
D has a query time of O(log n + c), where c is the number of colors reported.
Hence our method requires O(log2 n+ c logn) time per query. ⊗≈

Thus we have the following result:



42 N. Moidu et al.

Theorem 4. Let P be a set of colored points in two dimensions. P can be
preprocessed into a O(n log2 n) space and O(n log3 n) preprocessing time data
structure such that given an orthogonal range query q, the c distinct colors in
the convex hull of P ∪ q can be reported in O(log2 n+ c logn) time.

6 Future Work

Designing output sensitive algorithms for generalized intersection searching prob-
lems is an challenging problem since the query time must depend on the number
of colors and not on the number of points in the result. Both problems discussed in
the preceding sections present interesting possibilities in the design of solutions for
generalized geometric range aggregate query problems. An immediate open ques-
tion is that of proposing more efficient solutions for the problems introduced here.
Improvements in the runtime by a logarithmic factor should be possible.

Furthermore, we have not tackled the counting versions of the generalized
range maxima and convex hull where the result is simply the number of colors.
Developing efficient algorithms for the counting versions remains an open line of
pursuit. All results here are for a static set of points. Developing solutions for
the dynamic case is still an open problem. Solutions to these problems in higher
dimensions are also yet to be proposed.
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Abstract. Boundary labeling connects each point site in a rectangular
map to a label on the sides of the map by a leader, which may be a
straight-line segment or a polyline. In the conventional setting, the la-
bels along a side of the map form a single stack of labels in which labels
are placed consecutively one by one in a sequence, and the two end sides
of a label stack must respect the sides of the map. However, such a set-
ting may be in conflict with generation of a better boundary labeling,
measured by the total leader length or the number of bends of leaders. As
a result, this paper relaxes this setting to propose the boundary labeling
with flexible label positions, in which labels are allowed to be placed at
any non-overlapping location along the sides of the map so that they do
not necessarily form only one single stack, and the two end sides of label
stacks do not need to respect the sides of the map. In this scenario, we
investigate the total leader length minimization problem and the total
bend minimization problem under several variants, which are parame-
terized by the number of sides to which labels are attached, their label
size, port types, and leader types. It turns out that almost all of the
total leader length minimization problems using nonuniform-size labels
are NP-complete except for one case, while the others can be solved in
polynomial time.

1 Introduction

One of the basic requirements for map labeling [12,13] is to make all labels
in the map pairwise disjoint. However, such a requirement is difficult to be
achieved in the case that large labels are placed on dense points. Especially in
practice, large labels are usually used in technical drawings or medical atlases.
To address this problem, Bekos et al. [4] proposed the so-called boundary labeling
(see Figure 1(a)), where all labels are attached to the boundary (four sides) of a
rectangular map enclosing all point sites, and each point site is connected to a
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unique label by a leader, which may be a rectilinear or a straight-line segment.
In such a setting, they assumed that there are no two sites with the same x- or
y-coordinates, and investigated how to place labels and leaders in a drawing such
that there are no crossings among leaders and either the total leader length or
the total number of bends of leaders is minimized under a variety of constraints.
Bekos et al. [3] later investigated a similar problem for labeling polygonal sites
under the framework of boundary labeling. Lin et al. [9] investigated the multi-
site-to-one-label boundary labeling, in which more than one site is allowed to be
connected to a common label, and Lin [8] and Bekos et al. [1] further proposed
crossing-free multi-site-to-one-label boundary labeling.
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Fig. 1. Boundary labeling for Taiwan by (a) the conventional boundary labeling, and
(b) boundary labeling with flexible label positions

In the conventional boundary labeling, the labels along a side of the map form
a single stack of labels, as shown in Figure 1(a), in which labels are placed consec-
utively one by one in a sequence along a side of the map. Note that convention-
ally there is a fixed equal gap between adjacent labels in a label stack. This paper
proposes the so-called boundary labeling with flexible label positions, as shown in
Figure 1(b), in which labels are allowed to be placed at any non-overlapping loca-
tion along the sides of the map. They do not necessarily form only one single stack,
and the upper and lower ends of each label stack do not need to respect the upper
and lower boundaries of the map area. In the Taiwanmap of Figure 1, the counties
of Taiwan are labeled using the conventional boundary labeling and our proposed
boundary labeling in Figures 1(a) and 1(b), respectively. Compared to Figure 1(a),
the boundary labeling in Figure 1(b) contains more straight leaders and thus has
much clearer connection correspondences: Figure 1(b) contains 14 straight leaders
and two non-straight leaders whereas Figure 1(a) contains no straight leader.

It should be noticed that in the conventional boundary labeling, a fixed equal
gap is assumed to lie between adjacent labels, as shown in Figure 1(a). In fact,
the gap can also be zero-sized conventionally. In the situation that there are no
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gaps or equal gaps between labels, the conventional boundary labeling cannot
avoid the occurrence of many leader bends, and the bends result in longer leader
lengths. In contrast, using flexible label positions can increase the number of
straight-line leaders, thus shortening the total leader length. This results in in-
creasing the readability of the relationships between the map regions and their
corresponding labels.

In light of the above, it is of interest and of importance to investigate how
to generate a good boundary labeling with flexible label positions, measured
by either the total leader length or the total bend number. As a result, this
paper considers, from a computational complexity viewpoint, the total leader
length minimization (TLLM ) problem and the total bend minimization (TBM )
problem for variants of one-sided and two-sided boundary labeling with flexible
label positions, which are parameterized by the number of sides to which labels
are attached, their label sizes, port types, and leader types.

The organization of this paper is given as follows. Section 2 gives preliminaries
to our boundary labeling model and a basic property that will be used in the
proofs of our results. Section 3 gives our results for one-sided boundary labeling
with type-opo leaders. Section 4 and Section 5 give our results for two-sided
boundary labeling with type-opo leaders. Section 6 gives our results for boundary
labeling with type-po leaders. Lastly, we conclude in Section 7.

2 Preliminaries

In this section, we first introduce the model of the boundary labeling with flexible
label positions, and then a basic property that will be used in the proofs for our
results.

2.1 The Model of the Boundary Labeling with Flexible Label
Positions

The conventional boundary labeling [4,5,2] is characterized as k-sided labeling
with type-t leaders (where k ≥ {1, 2} and t ≥ {opo, po}) if the labels are allowed
to attach to the k sides of the enclosing rectangle R by only type-t leaders.
When k = 2, we mean that the labels are placed on two opposite sides of R. The
parameter t specifies the way a leader is drawn to connect a site to a label. The
types opo and po stand for orthogonal-parallel-orthogonal and parallel-orthogonal
leader types, respectively, which can easily be understood from the examples
given in Figures 2(a)(b) and Figures 2(c)(d). It is assumed that the parallel (i.e.,
‘p’) segment associated with a type-opo leader lies in a track routing area located
between R and the label stack (e.g., see Figure 2(a)). Such a track routing area
is given a small fixed width in the input model. We remark that in some labeling
models in [2], more labeling sides and more types of leaders are used.

Observe the conventional boundary labeling in Figure 2(a)(b), in which the
positions of labels are constrained, i.e., the top and bottom sides of the stack of
labels have to respect the top and bottom sides of the map, respectively. Such
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a constraint may be in conflict with the objectives of general boundary labeling
problems, i.e., to minimize the total leader length or the total number of bends of
leaders. In this paper, we allow the two end sides of the label stack (sandwiching
equal gaps in between adjacent labels) to exceed the upper or lower boundaries
the map area, and each label to be placed at any location along a side of the map
only if there is no overlapping between labels. Such a setting is said to use flexible
label positions (see Figures 2(b)(d)), while the original setting is said to use fixed
label positions (see Figures 2(a)(c)). It is observable from Figures 2(b) and 2(d)
that if flexible label positions is allowed, more horizontal straight leaders can
be produced so that the total leader length is shorter and the total number of
bends is potentially fewer.

R

(a)

R

(b)

R

(c)

R

(d)

Fig. 2. (a)(b) using type-opo leaders; (c)(d) using type-po leaders. (a)(c) using fixed
label positions; (b)(d) using flexible label positions.

We consider the following labeling problem. Given a rectangular area R of
height h and width w whose left lower corner resides at the origin of the xy-plane
(i.e., R = [0, w]×[0, h]), and a set of n points (called sites) pi = (xi, yi), 1 ⇒ i ⇒ n,
located inside R (i.e., 0 ⇒ xi ⇒ w, 0 ⇒ yi ⇒ h), each of which is associated with
a rectangular label Πi of width wi and height li, the boundary labeling problem
is to place the labels along one, two, or four sides of the boundary of R, and
connect pi to Πi, 1 ⇒ i ⇒ n using rectilinear leaders (or leaders, for short) so that
a certain criterion is met. As illustrated in Figure 2, a rectilinear leader consists
of horizontal and/or vertical line segments connecting a site to its corresponding
label. Throughout the rest of this paper, we assume that there are no two sites
with the same x- or y-coordinate, and sites are labeled as p1, p2, . . . , pn in the
increasing order of their y-coordinates.

In what follows, we give a formal model for the problem of boundary labeling
with flexible label positions. Our setting assumes sites to be points of zero size
located on the plane. A label placement for all labels is called legal if the labels
do not overlap, and the leaders are crossing-free. Our objective is to find a legal
label placement, such that either the total leader length is minimum (TLLM ) or
the total bend number is minimum (TBM ).
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By an analogy of Bekos et al.’s work [3], we extend their boundary labeling
model to express our model as a 5-tuple (Leader, Side, LabelSize, LabelPort,
Objective), where:

Leader: All the leaders are of type opo or po in this paper.
Side: Labels can be placed on the East and West sides of the enclosing rectangle

R, which are denoted by E and W , respectively.
LabelSize: Each label Πi is associated with a height li and a width wi. As each

leader is connected to the left or right side of a label box, without loss of
generality, we may assume that wi = wj , ∪1 ⇒ i, j ⇒ n. Labels are of uniform
size if li = lj , ∪1 ⇒ i, j ⇒ n; otherwise, they are called nonuniform labels.

LabelPort: Depending on the location where a leader touches a label, consider
the following two types:
- Fixed port: there exists a constant 0 ⇒ σ ⇒ 1, such that the i-th leader
touches the point of height σli, from the bottom of the i-th label. For
boundary labeling with fixed ports, σ is usually assumed to be 1

2 , i.e.,
each leader touches the middle of the corresponding label.

- Sliding port: As the name suggests, the contact point of a leader can
slide along the corresponding label edge.

Objective: We aim to find a legal label placement, such that either the total
leader length is minimum (TLLM ) or the number of bends is minimum
(TBM ).

According to the above model, the main contributions of this paper are sum-
marized in Table 1. We note that in Theorems 1, 2, 3, 4, 5 and 7, the results
hold for both optimization objectives, TLLM and TBM . However, due to the
space limit, we mostly only provide the proofs for the objective TLLM in these
theorems, and some of the proofs for the other objective TBM are omitted.

2.2 Basic Property

An upward (resp., downward) bending leader is a type-opo leader or type-po
leader which bends upward (resp., downward) from its associated site. See Fig-
ure 3 for examples on upward and downward type-opo leaders.

Table 1. Time complexity for a variety of boundary labeling models for flexible labels

(Leader, Side, LabelSize, LabelPort, Objective) Time∗ Reference

(opo, E , uniform/nonuniform, fixed/sliding, TLLM/TBM ) O(n3) Thm 1
(opo, EW , uniform, fixed, TLLM/TBM ) O(n5) Thm 2
(opo, EW , uniform, sliding, TLLM/TBM ) O(n5) Thm 3
(opo, EW , nonuniform, fixed, TLLM/TBM ) NPC Thm 4
(opo, EW , nonuniform, sliding, TLLM/TBM ) NPC Thm 5
(po, E , uniform, fixed, TLLM ) O(n logn) [11]
(po, E , uniform, sliding, TLLM ) O(n3) Thm 6
(po, EW , uniform, fixed/sliding, TLLM ) O(n5) Thm 6
(po, E/EW , uniform, fixed/sliding, TBM ) open –
(po, E/EW , nonuniform, fixed/sliding, TLLM/TBM ) NPC Thm 7

∗ Note that NPC denotes NP-completeness and time denotes time complexity.
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(a) (b)

Fig. 3. (a) Upward and downward bending type-opo
leaders with fixed ports; (b) Upward and downward
bending type-opo leaders with sliding ports.

A stack of labels contains
a maximal set of labels in
a solution such that they
are placed consecutively one
by one in a sequence. Note
that throughout the rest of
this paper, if labels form a
stack, then there are no gaps
in the label stack. We now
make some observations on
the shapes and the locations of type-opo leaders in the optimal solution. First,
it is easy to see that in the optimal solution for the sliding-port model, upward
(resp., downward) bending type-opo leaders touch the bottom (resp., top) sides
of their labels. See Figure 3(b) for illustration. The reason is that otherwise, we
can push the connection port between the leader and the label downward (resp.,
upward) so that we obtain another solution with shorter total leader length for
the TLLM problem. On the other hand, for the TBM problem under the sliding-
port model, although it is not compulsory to have this property, by enforcing
such a property there is no hurt on the optimality of the solution. Next, we ob-
tain a general property on the stacks of labels for any labeling model. Its proof
is omitted.

Lemma 1. There exists an optimal solution for the one-sided or two-sided bound-
ary labeling problem (no matter whether leaders are type-opo or type-po, and no
matter whether it is TLLM or TBM) such that each stack of labels in the solution
always contains a label with a horizontal straight leader.

3 One-Sided Boundary Labeling with Type-opo Leaders

In this section, we propose a polynomial time algorithm for one-sided boundary
labeling with type-opo leaders, regardless of uniform or nonuniform label sizes, in
either fixed- or sliding-port case. In the following, we only consider the fixed-port
case; the sliding-port case is similar.

Our dynamic programming based algorithm for the TLLM problem is de-
scribed as follows:

Step 1. Let H =
∑n

i=1 li. Construct two dummy sites p0 = (w, y1 − H) and
pn+1 = (w, yn +H) connected to two one-unit-height dummy labels Π0 and
Πn+1, respectively.

Step 2. For 0 ⇒ i ⇒ n + 1, let di denote the length of the leader connected
to pi when the leader is a horizontal straight line. Let T (i, j) denote the
minimal total leader length of the boundary labeling for the map with sites
pi, pi+1, . . . , pj and labels Πi, Πi+1, . . . , Πj when both labels Πi and Πj are
connected with horizontal straight leaders. Use dynamic programming to
compute table T according to the following recursive formula:

T (i, j) = min

{
mini<k<j(T (i, k) + T (k, j)− dk),
mini≤k<j(Idown(i, k) + Iup(k + 1, j))

⎪
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where Idown(i, k) (resp., Iup(k + 1, j)) denotes the total leader length when
labels Πi, Πi+1, . . . , Πk (resp., Πk+1, Πk+2, . . . , Πj) form a stack and label Πi

(resp., Πj) is connected by a horizontal straight leader.
Step 3. Output T (0, n+ 1)− d0 − dn+1.

The explanation for the above algorithm is given as follows. By Lemma 1, there
is an optimal solution consisting of a number of stacks of labels in which each
stack always contains at least a label with a horizontal straight leader. Hence, our
dynamic programming formula uses horizontal straight leaders (from outermost
to innermost) to divide problems into subproblems. Step 1 adds dummy sites p0
and pn+1 (and their corresponding dummy labels) far away from other sites so
that both of them must be horizontal straight leaders at the outermost of the
map in the optimal labeling, in which one is the bottommost, and the other is the
topmost. By doing so, the final solution can be computed by calling T (0, n+1),
and at Step 3, the two outermost leader lengths are deducted from T (0, n+ 1).

To see why the above dynamic programming formula correctly characterizes
T (i, j), consider the following cases:

(i) There is a label Πk in {Πi+1, . . . , Πj−1} with a horizontal straight leader:
Recall that T (i, j) assumes both labels Πi and Πj to be connected with
horizontal straight leaders. Hence, the minimum T (i, j) may be T (i, k) +
T (k, j)− dk, in which the deducted term is due to that T (i, k) and T (k, j)
count dk twice.

(ii) In opposite to the above case, except for labels Πi and Πj , all the other labels
in T (i, j) are connected with bending leaders: In this case, since there are
only two horizontal straight leaders in T (i, j), there are two stacks of labels
by Lemma 1: one is led by Πi; the other is led by Πj . Hence, each label must
belong to either stack. As a result, we calculate the sum of the leader lengths
for all possible pairs of stacks: mini≤k<j−1(Idown(i, k) + Iup(k + 1, j)).

It is easy to see that the above algorithm runs in O(n3) time, and thus we
have the following theorem.

Theorem 1. Regardless of uniform or nonuniform label sizes, the TLLM and
TBM problems for one-sided boundary labeling using type-opo leaders can be
solved in O(n3) time, in either fixed or sliding label port case.

4 Two-Sided Boundary Labeling with Type-opo Leaders
and Uniform Labels

In this section, we investigate the TLLM /TBM problems for boundary labeling
with type-opo leaders and uniform labels in the fixed-port and sliding-port cases,
respectively.

4.1 Fixed-Port Case

For the fixed-port case, we obtain the following result.
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Theorem 2. The two-sided boundary labeling for the model (opo, EW , uniform ,
fixed , TLLM /TBM) can be solved in O(n5) time.

Proof: By Lemma 1, there exists some optimal solution such that each stack φ
of labels on either side of the map must contain a label Π with a straight leader.
Since all the labels are of the same height, the locations of other labels in stack
φ are predictable with respect to label Π. That is, with respect to label Π, there
are at most (2n− 2) possible label position candidates: (n− 1) consecutive label
positions above and below label Π, respectively. As we do not know beforehand
which labels have straight leaders in an optimal solution, we treat each of the
n labels of our concerned problem as being a possible candidate with a straight
leader.

Hence, there are n(2n−2) possible label position candidates in total on either
side of the map. Among these n(2n − 2) label position candidates, we then
proceed to select the appropriate label positions for an optimal solution by the
following dynamic programming strategy.

First, we give an order for the n(2n − 2) label position candidates for each
side of the map: for 1 ⇒ k ⇒ n(2n − 2), let Πk (resp.,ρk) be the k-th lowest
label position candidate on the left (resp., right) side of the map. Our objective
is to find n label position candidates (among the 2n(2n− 2) positions) for the
connection of n sites, so that either the total leader length or the total number
of bends is minimum.

Let T (i, l, r) denote the optimal total leader length or total bend number for
the boundary labeling problem with sites p1, . . . , pi, label positions Π1, . . . , Πl on
the left side, and label positions ρ1, . . . , ρr on the right side. For i = n, n−1, . . . , 1,
we determine the leader placement of site pi by the following recursive formula:

T (i, l, r) = min

⎧
⎨

⎩

T (i− 1, l− nb(Πl)− 1, r) + Left(pi, l),
T (i− 1, l, r − nb(ρr)− 1) + Right(pi, r),
T (i, l− 1, r − 1)

⎫
⎬

⎭

where nb(ε) denotes the number of label position candidates lower than and
intersecting label ε; Left(p, k) (resp., Right(p, k) ) denotes the leader length or
bend number of the type-opo leader from site p to label position Πk (resp.,
ρk). The first term of the above formula corresponds to the case that site pi
links to label Πl; the second term corresponds to the case that site pi links
to label ρr; the last term corresponds the case that site pi does not link to
label Πl or label ρr. Hence, the optimal solution can be found by calculating
T (n, n(2n− 2), n(2n− 2)). Since each entry in T can be calculated in O(1) time,
we thus obtain an O(n5)-time algorithm. �

4.2 Sliding-Port Case

Before showing our result for the sliding-port case, we need the following lemma
to bound the number of candidate label positions. Its proof is omitted.
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Lemma 2. There exists an optimal solution for the model (opo, E/EW , uniform ,
sliding ,TLLM /TBM) such that each stack of labels in the solution contains a label
with its straight leader touching either the top or bottom side of the label.

Due to this lemma, in any stack φ of the optimal solution, we know that there
is a label Π with a straight leader touching either the top or bottom side of
the label. In other words, there are exactly two candidate positions for label Π.
Consequently, the candidate label positions for the other labels in φ are the n−1
consecutive label positions above Π, and the other n−1 positions below Π. Hence,
there are totally at most O(n2) possible candidate label positions on either side
of the map area. Then, using a similar dynamic programming formulation as
for Theorem 2, we can solve our problem for the sliding case in O(n5) time. We
summarize our result in the following theorem.

Theorem 3. The two-sided boundary labeling for the model (opo, EW , uniform ,
sliding , TLLM /TBM) can be solved in O(n5) time.

5 Two-Sided Boundary Labeling with Type-opo Leaders
and Nonuniform Labels

In this section, we show that two-sided boundary labeling with type-opo lead-
ers and nonuniform labels for both fixed-port and sliding-port cases are NP-
complete.

5.1 Fixed-Port Case

In the following theorem, theNP-completeness of theTLLM problem for the fixed-
port case is proved by performing a reduction from a single-machine scheduling
problem, called total discrepancy problem [6]. Such a problem has also been used
to show the NP-completeness of other variants of boundary labeling [2,10].

Theorem 4. The boundary labeling problem for themodel (opo ,EW ,nonuniform ,
fixed, TLLM /TBM) is NP-complete.

Proof (Sketch): We guess an optimal solution with non-zero probability, for
which, due to Lemma 1, the label positions must be limited and cannot be
arbitrary, and then the decision version of this problem is in NP. In order to
show the NP-hardness of our problem, we establish a linear-time reduction to
our problem from the total discrepancy problem, which is described as follows.

On one machine, we plan to arrange the schedule for the non-preemptive
execution of a set J of 2n + 2 jobs J0, J1, . . . , J2n, J2n+1. Each job Ji has an
execution time length li ≥ Z

+ such that l0 < l1 < . . . < l2n and l2n+1 = 2.
For a planned schedule σ, the actual execution midtime for job Ji is denoted
by mi(σ). Each job has a preferred midtime, which corresponds to the time
at which we would like the first half of the job to be completed. We assume
that all the jobs except J2n+1 share a single preferred midtime M =

∑2n
i=0 li/2,
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whereas job J2n+1 has its own preferred midtime M ∈ = 2M + l2n+1/2 = 2M +1.
The penalty of job Ji for a schedule σ is defined as the absolute difference of
its midtime to its preferred midtime, i.e., |mi(σ) − M | for 0 ⇒ i ⇒ 2n and
|m2n+1(σ) − M ∈|. The cost incurred in a schedule σ is then defined to be the
total penalties incurred by all jobs. Hence, the objective of the total discrepancy
problem is to determine a schedule σ such that the total cost of the schedule, i.e.,∑2n

i=0 |mi(σ)−M |+|m2n+1(σ)−M ∈|, is minimized. Garey, Tarjan andWilfong [6]
showed the following properties for an optimal schedule σopt of the first 2n+ 1
jobs J0, J1, . . . , J2n, but the decision problem whether such a schedule exists is
NP-complete.

(i) σopt does not have any gaps between the jobs.
(ii) The midtime of the shortest job J0 is M , i.e., m0(σopt ) = M .
(iii) Jobs J1, J2, . . . , J2n are divided into two groups,A(σopt ) = {Ji : mi(σopt ) <

M} and B(σopt ) = {Ji : mi(σopt ) > M}, such that |A(σopt )| = |B(σopt )| =
n.

(iv) Suppose the sequence of the jobs in schedule σopt is An, An−1, . . . , A1, J0,
B1, B2, . . . , Bn. Then {Ai, Bi} = {J2i−1, J2i}.

(v) The optimal cost is equal to
∑n

i=1(l2i + l2i−1)(n− i+ 1/2) + nl0.

l4

l1

l0

l2

l3

l0

represent
2n + 2
sites

l0
l0

l0

.

.

.

2n labels

l0

l0

l0

.

.

.

2n labels .
.
.

.

.

.

.

.

.

δ

Fig. 4. Reduction in Theorem 4

We will see how this schedul-
ing problem can be reduced to
our problem in the following.

Recall the map R = [0, w] ×
[0, h]. Assume the width of the
routing area to be δ, which is
a very small constant. We will
put all point sites in the map
area along the vertical line x =
w
2 ; see also Figure 4. For job
Ji, i = 0, . . . , 2n, we create its
corresponding point site pi and
place it at location (w2 , (2n+

1
2 )l0+(i+1)ε), in which ε is set to be a very small con-

stant value less than, say for example min{l0/100n3,min2n−1
i=0 (li+1−li)/(100n

3)}.
Suppose that the leader for pi connects to the middle position of label Πi with
height li. In addition, a site locates at (w2 , (2n + 1

2 )l0), and is connected to the
middle position of a label with height l0. The (2n+2) point sites are represented
by the big dot in Figure 4. Then, we add 4n labels of height l0 respectively con-
nected with the 4n sites at different positions: (w2 , (→j/2∃+

1
2 )l0 + (j mod 2)ε),

∪j = 0, . . . , 4n− 1 (see the 4n point sites below the big dot in Figure 4). In all,
given 2n + 1 jobs, we construct 6n + 2 labels. First, we observe that the total
length of horizontal segments of all leaders is (6n+ 2)(w2 + δ).

Moreover, we set k =
∑n

i=1(l2i + l2i−1)(n− i+ 1
2 ) + nl0. Since ε is very small

compared to the height of any label, we can nearly treat the locations of point
sites pi to be lying exactly at (w2 , (2n+ 1

2 )l0). The difference between the total
leader length under such a scenario and that under the actual scenario is at most
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l0
n . Thus, we can show that there is a scheduling with cost at most k if and only if

there is a legal labeling with total leader length at most (6n+2)(w2 +δ)+k+ l0
n (see

the label positions in Figure 4 for a hint). This complete the NP-completeness
proof for the TLLM problem

On the other hand, the NP-completeness for the TBM problem under the
current labeling model can be proved by performing a polynomial-time reduction
from the Partition Problem [7]. The proof details are omitted. �

5.2 Sliding-Port Case

In this subsection, we show that it is NP-complete to find an optimal solution for
the boundary labeling problem for the model (opo, EW , nonuniform , sliding ,
TLLM /TBM ). Our NP-completeness proof is also based on the reduction from
the Partition Problem [7]. The proof is omitted due to lack of space.

Theorem 5. The boundary labeling problem for the model (opo, EW ,
nonuniform , sliding, TLLM /TBM) is NP-complete.

6 Boundary Labeling with Type-po Leaders

For boundary labeling with type-po leaders, we also obtain some polynomial-
time algorithms and NP-completeness results. See the following two theorems.
Their proofs are omitted.

Theorem 6. One-sided and two-sided boundary labeling for the model (po,
E/EW , uniform, fixed/sliding, TLLM ) can be solved in O(n3) and O(n5) time,
respectively.

We remark that the one-sided boundary labeling for the model (po, E , uniform ,
fixed , TLLM ) can be computed in O(n logn) time [11]. However, our O(n3)-time
algorithm here works for both models with fixed-port labels or with sliding-port
labels.

Theorem 7. Both one-sided and two-sided boundary labeling under the model
(po, E/EW , nonuniform, fixed/sliding , TLLM /TBM) are NP-complete.

7 Conclusions

We have investigated the tractability and algorithms for the one-sided and two-
sided boundary labeling problems using flexible label positions for the objective
of total leader length minimization (TLLM ) and the total bend number mini-
mization (TBM ) under several variants, which are parameterized by the number
of sides to which labels are attached, their label size, port types, and leader types.
It turns out that except for the model (po, E/EW, uniform, fixed/sliding,
TBM), almost all of the concerned TLLM /TBM problems are solved, some of
which are solvable in polynomial time, while the others are intractable in general.
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2. Bekos, M., Kaufmann, M., Nöllenburg, M., Symvonis, A.: Boundary labeling with
octilinear leaders. Algorithmica 57(3), 436–461 (2010)

3. Bekos, M., Kaufmann, M., Potina, K., Symvonis, A.: Area-feature boundary label-
ing. The Computer Journal 53(6), 827–841 (2009)

4. Bekos, M., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary labeling: models and
efficient algorithms for rectangular maps. Computational Geometry: Theory and
Applications 36(3), 215–236 (2006)

5. Benkert, M., Haverkort, H.J., Kroll, M., Nöllenburg, M.: Algorithms for multi-
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Abstract. We examine a generalization of the symmetric bipartite trav-
eling salesman problem (TSP) with quadrangle inequality, by extending
the cost function of a Hamiltonian tour to include a bias factor β ≥ 1.
The bias factor is known and given as a part of the input. We propose
a novel heuristic procedure for building Hamiltonian cycles in bipartite
graphs, and show that it is an approximation algorithm for the gener-
alized problem with an approximation ratio of 1 + 1+λ

β+λ
, where λ is a

real parameter dependent on the problem instance. This expression is
bounded above by a constant 2, for any positive real λ and β ≥ 1, which
improves a previously reported approximation ratio of 16/7. As a part
of a composite heuristic, the proposed procedure can contribute to an
approximation ratio of 1 + 2

ζ+β(2−ζ)
, where ζ is an approximation ratio

for the metric TSP.

Keywords: combinatorial optimization, approximation algorithm, ma-
troid intersection, material handling robot, bipartite TSP, biased cost.

1 Introduction

The traveling salesman problem (TSP) is a landmark problem in combinatorial
optimization (e.g., Cook [7]). Its bipartite analogue is as follows. Given a bipar-
tite graph G = (B,W ;E) with an edge weight function w : E ≥ R+, find a
shortest (w.r.t. w) alternating tour which visits every point of B ⇒ W exactly
once. We assume that the weight function w is symmetric and satisfies the quad-
rangle inequality (the bipartite analogue of the triangle inequality, see Eqs. (6)
and (7)). We do so not only because do the above conditions suffice in many cases
based on real world scenarios, but also because just like the TSP, it is hopeless
to approximate the bipartite TSP within a constant factor in the general case,
assuming that P ∪=NP [10, 15].

The bipartite TSP has justly attracted attention due to its applicability in
typical industrial settings where pick and place or grasp and delivery robots are
employed with some material handling tasks [3–5, 10, 11, 18]. For the symmetric
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c∩ Springer International Publishing Switzerland 2014
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case, the best known approximation factor 2 has been independently reported
by Chalasani et al. [5] and Frank et al. [10]. With a specific industrial sce-
nario in mind, the bipartite TSP has been extended to account for additional
transportation effort [17]. The motivation behind this generalization is to assign
certain “difficulty” when transporting an item versus simply moving through
space. This has been achieved by the means of a bias factor β → 1. The bias
factor extends the weight function w as follows

w̃(u, v) =

{
βw(u, v), u ∃ B, v ∃ W,

w(u, v), u ∃ W, v ∃ B.
(1)

To the best of our knowledge, Shurbevski et al. [17] gave the first account ex-
amining the presence of a bias factor, and at the same time, demonstrated a
constant 16/7-factor approximation algorithm. The previously reported approx-
imation ratio of 16/7 has been achieved by a composite heuristic (see, e.g., [14]
for terminology relating to composite heuristics). In this paper, we present a
novel heuristic procedure for building Hamiltonian cycles in bipartite graphs
and show that for the biased case it is an approximation algorithm with an
approximation ratio of

1 +
1 + λ

β + λ
(2)

where λ is a real parameter which depends on the problem instance and cannot
be known upfront. On one hand, the above expression is bounded by a constant
2 for any positive real λ and β → 1, thus the proposed algorithm has a constant
factor approximation ratio, improving the one from [17]. On the other hand, for
a finite λ, the above expression approaches 1 as β grows larger.

The presented approach by itself does not rely on approximating the metric
TSP, however it can be used as a part of a composite heuristic to achieve an
approximation ratio of

1 +
2

ζ + β(2 − ζ)
, (3)

where 1 < ζ ∩ 2 is an approximation ratio for the metric TSP. The expression
from Eq. (3) is also bounded above by a constant 2, but it is not dependent on
an instance-specific parameter, and has a clear relationship with the bias β for
a fixed ζ < 2.

2 Preliminaries

The set of reals (resp., nonnegative reals) is denoted by R (resp., R+).
In general, for a minimization problem P , let P ≤ be the value of an optimal

solution. An approximation algorithm ALG is such that for any instance of P ,
it can produce a feasible solution of value P ∈. We call the value

αALG = sup

{
P ∈

P ≤

}
(4)
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the approximation factor of algorithm ALG, and usually say that ALG is an
αALG-approximation algorithm.

We use standard notation from graph theory; the ordered pair G = (V,E) is a
connected undirected graph. The vertex set and the edge set of G are denoted by
V (G) and E(G), respectively. We allow for parallel edges, or think of G = (V,E)
as a multigraph. Thus, E(G) is a multiset of elements in V ×V . (We will make use
of the multiset sum function, denoted by the symbol ⊗, as well as the shorthand
k ·E for

⊎k
i=1 E.) We use {u, v}, u, v ∃ V (G) to reference any and all e ∃ E(G)

such that e is incident with u and v. For u ∃ V (G), dG(u) denotes the degree
of the node u in the graph G. A graph is weighted if we are given some weight
function w : E(G) ≥ R+ over the graph’s edges. For any subset of edges E∈ ≈ E,
w(E∈) denotes

∑
e∗E′ w(e). Similarly, for a subgraph G∈ of G, w(G∈) denotes∑

e∗E(G′) w(e). A subgraph G∈ of G is spanning if V (G∈) = V (G). We assume

that all parallel edges are of the same weight, and ∧e ∃ E(G), e = {u, v}, we
equate the expressions w(e) and w(u, v). The weight function w is said to be
symmetric if

w(u, v) = w(v, u), ∧e = {u, v} ∃ E(G), (5)

and that it satisfies the triangle inequality if

w(u, v) ∩ w(u, q) + w(q, v), ∧q, u, v ∃ V (G). (6)

A complete bipartite graph G = (B,W ;E) is such that V (G) = B ⇒ W ,
B ∞W = ∨, and E(G) = B ×W . A property similar to the triangle inequality
can be extended over complete bipartite graphs, into the quadrangle inequality

w(u, v) ∩ w(u, q) + w(q, y) + w(y, v), ∧u, y ∃ B, q, v ∃ W. (7)

For a complete graph induced by a set of vertices B, we write G[B]. By
definition, V (G[B]) = B and E(G[B]) = B ×B. Let G = (B,W ;E) be a given
bipartite graph with an edge weight function w : E(G) ≥ R+, and G[B] is
exactly the complete graph induced by the partition B. Often in practice the
vertex sets are in fact points from some metric space and the distance in this
space serves as an edge weight function. In such a case, the edge weight function
of G[B] is defined by the distance function in the metric space. However, if we
are only given a bipartite graph G = (B,W ;E) with an edge weight function
w : E(G) ≥ R+, we can extend the edge weight function over the induced graph
G[B] as such

w(u, y) = min
q∗W

{w(u, q) + w(q, y)} ∧u, y ∃ B. (8)

Lemma 1. For a given complete bipartite graph G(B,W ;E) with a symmetric
edge weight function w : E(G) ≥ R+ satisfying the quadrangle inequality, let
G[B] be the complete graph induced by the vertex partition B. The extension of
w as an edge weight function of G[B] of Eq. (8) is symmetric and satisfies the
triangle inequality.
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Given a graph G = (V,E), a Hamiltonian cycle H is a connected spanning
subgraph of G such that

dH(u) = 2, ∧u ∃ V (G). (9)

The problem of finding a Hamiltonian cycle H of minimum w(H) is commonly
referred to as the traveling salesman problem (TSP).

For a complete bipartite graph G = (B,W ;E), with |B| = |W |, let n := |B|(=
|W |) and let σ and τ be permutations on the points of B and W , respectively.
A traversal of a Hamiltonian cycle H in G is of the form

σ(1) ≥ τ(1) ≥ σ(2) ≥ · · · ≥ τ(n − 1) ≥ σ(n) ≥ τ(n) ≥ σ(1). (10)

We term Hamiltonian cycles in bipartite graphs alternating, for points in B and
W appear alternately. When using an indexing device i = 1, . . . , n, we allow it
to wrap around, i.e.

i :=

{
i+ n, i ∩ 0,

i− n, i > n.

As subgraphs of G, Hamiltonian cycles are undirected. However, once we settle
for a way to traverse them, they assume an orientation.

In addition to the edge weight w, we are concerned with a bias factor β → 1.
The bias factor impacts bipartite graphs as in Eq. (1). Assuming a traversal
orientation as in Eq. (10), we introduce the biased cost L for alternating cycles

L(H) = β

n∑

i=1

w(σ(i), τ(i)) +

n∑

i=1

w(τ(i), σ(i + 1)). (11)

We are now prepared to state the bipartite analogue of the metric TSP in
face of the bias factor β → 1.

The biased bipartite traveling salesman problem – BBTSP
Instance: A complete bipartite graph G = (B,W ;E), with |B| = |W |, a sym-
metric weight function w : E(G) ≥ R+ which satisfies the quadrangle inequality,
and a bias factor β → 1.
Task: Find an alternating Hamiltonian cycle H≤ in G such that L(H≤) is mini-
mized.

In this paper we focus exclusively on the version of the BBTSP where the edge
weight function w is symmetric and satisfies the quadrangle inequality. We settle
for this limitation because it has been shown [1, 10, 13, 15] that the bipartite
TSP is not only NP-hard to solve, but also that in the general case, there is no
constant factor approximation under the assumption that P ∪=NP.

3 Building Blocks

In this section we will exhibit some of the known lower bounds on the value
of an optimal solution for the BBTSP, as well as add a few new insights into
their correlations. The presented lower bounds are structures well known in
combinatorial optimization, and will serve as building blocks for a new procedure
for constructing alternating Hamiltonian cycles in bipartite graphs.
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3.1 Known Lower Bounds of the BBTSP

We present some of the observations made in [17] concerning the lower bounds
of an optimal solution for the BBTSP. Our analysis mainly concerns two combi-
natorial structures in bipartite graphs; perfect matchings, and alternating span-
ning trees. We will just briefly state their definitions. Let G = (B,W ;E) be a
(weighted) complete bipartite graph with an edge weight function w : E(G) ≥
R+ and |B| = |W | =: n. The edge weight function w is assumed symmetric and
satisfying the quadrangle inequality (Eq. (7)). A perfect matching M ∀ E(G) is
such that there is exactly one edge in M incident with any u ∃ V (G). An alter-
nating spanning tree T (illustrated in Fig. 1(a)) is a connected acyclic spanning
subgraph of G such that

dT (u) ∩ 2, ∧u ∃ B. (12)

Both perfect matchings and alternating spanning trees are well studied com-
binatorial structures, e.g., [12, 16], and there exist polynomial time algorithms
for computing perfect matchings and alternating spanning trees (of minimum
weight) in bipartite graphs. Henceforth, let M≤ denote a perfect matching in G
of minimum weight w(M≤), and T ≤ an alternating spanning tree with minimum
w(T ≤).

Given an instance of the BBTSP, let H≤ be an optimal solution, which mini-
mizes the biased cost L(H≤). The edges of E(H≤) can be decomposed into two

disjoint perfect matchings,
−≥
H≤ and

←−
H≤, as in Fig. 1(b). Without loss of general-

ity, we assume H≤ is to be traversed as indicated by arrows in Fig. 1(b), and
−≥
H≤

solely accounts for the bias term. The biased path cost L(H≤) is given by

L(H≤) = βw(
−≥
H≤) + w(

←−
H≤). (13)

It surely holds

w(M≤) ∩ w(
−≥
H≤) ∩ w(

←−
H≤). (14)

Concerning alternating spanning trees in G, note that w(T ≤) is a lower bound
of the weight of an alternating Hamiltonian cycle disregarding the bias
factor, i.e.,

w(T ≤) ∩ w(
−≥
H≤) + w(

←−
H≤). (15)

Observing the graph G[B] induced by the vertex partition B, we can see
that an alternating Hamiltonian cycle in G does in fact visit each vertex in B
exactly once, and can be shortcut to a Hamiltonian cycle of G[B]. We will use
the extended w from Eq. (8) for G[B]. For an optimal alternating Hamiltonian
cycle H≤, let Ĉ be the resulting shortcut, as given in Fig. 1(b). Due to Eq. (8)
we have

w(Ĉ) ∩ w(
−≥
H≤) + w(

←−
H≤). (16)

Consequently, for an optimal (w.r.t. the extended w) Hamiltonian cycle C≤ in
G[B] it holds

w(C≤) ∩ w(Ĉ) ∩ w(
−≥
H≤) + w(

←−
H≤). (17)
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Fig. 1. (a) An alternating spanning tree T . (b) A minimum cost alternating

Hamiltonian path H≤ of G. The subsets of edges
−≥
H≤ (bold gray arrows) and

←−
H≤

(slender black arrows) form two disjoint perfect matchings. The shortcut Ĉ on
G[B] is given in dashed lines.

3.2 Further Observations

We would like to bring a special attention to an observation with respect to the
structures presented above, alternating spanning trees and perfect matchings.
Let M≤ and T ≤ be a minimum weight perfect matching and a minimum weight
alternating spanning tree in a given bipartite graph G, respectively. Owing to its
special structure any alternating spanning tree in G contains a perfect matching.
Therefore, let TM ∀ E(T ≤) denote the edge set forming a perfect matching, and
T� the remaining edges of the alternating tree, i.e. T� = E(T ≤)\TM . It simply
holds

w(T ≤) = w(TM ) + w(T�). (18)

We present our view of the structure of an optimal solution,H≤, with L(H≤) =
βw(

−≥
H≤) + w(

←−
H≤), (see Eq. (13)). We introduce a parameter λ ∃ R+ as

λ =
w(

←−
H≤)

w(
−≥
H≤)

. (19)

Then, for the cost of an optimal tour H≤ we can write

L(H≤) = (β + λ)w(
−≥
H≤). (20)

For a given instance of the BBTSP, the value of the parameter λ cannot be
known without solving it exactly. However, for the purpose of our exposition, it
suffices that λ ∃ R+.

4 A New Approximation Algorithm

In this section we present a procedure for building an alternating Hamiltonian
cycle in a given bipartite graph G = (B,W ;E) with |B| = |W |. We show that if
the graph G is endowed with a positive symmetric edge weight function w which
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satisfies the quadrangle inequality, this procedure can be used as an approx-
imation algorithm for the BBTSP. The procedure for building an alternating
Hamiltonian cycle does not rely on approximating the metric TSP.

4.1 Construction

Let G = (B,W ;E), be a bipartite graph with |B| = |W | =: n. Let w : E(G) ≥
R+ be a symmetric edge weight function satisfying the quadrangle inequality.
Let M≤ and T ≤ be a perfect matching and an alternating spanning tree in G of
minimum w(M≤) and w(T ≤), respectively.

We bring to attention the union of M≤ and T ≤. As observed in Section 3.1,
the alternating tree T ≤ contains a perfect matching, TM . The union of TM and
M≤ forms a cycle cover of G. Let there be k ∩ n individual cycles, which we will
denote by R := {Ri : i = 1, 2, . . . , k}. We can think of elements of R as nodes,
and define a graph GR = (V (GR), E(GR)), where V (GR) = R. For brevity, for
a subset E∈ of E(G), we will use E∈ for E(GR) to denote that

E(GR) = {{i, j} | ∃{u, v} ∃ E∈, u ∃ Ri ∧ v ∃ Rj} , 1 ∩ i, j ∩ k. (21)

Since T ≤ is an alternating spanning tree, thus all vertices in V [G] are connected,
the individual cycles Ri must be connected with each other as well, i.e., the
graph GR = (R, T�) is connected. We can choose an inclusion wise minimal
T⊥ ≈ T�, such that the graph TR = (R, T⊥) remains connected, i.e., TR is a
spanning tree of GR, as in Fig. 2(a).

We term the procedure for constructing alternating Hamiltonian cycles 2APX.
Next, we give a brief summary of the construction procedure 2APX

Step 1: Compute a minimum weight perfect matching M≤ and a minimum
weight alternating spanning tree T ≤ in G;

Step 2: Let R := {Ri : i = 1, 2, . . . , k} be the cycle cover of G given by
M≤ + TM ;

Step 3: Choose an inclusion wise minimal T⊥ ≈ T� such that TR =
(R, T⊥) is a spanning tree;

Step 4: Construct a multigraph E2APX = (V (E2APX ), E(E2APX )), where
V (E2APX ) = V (G), and E(E2APX ) = M≤⊗TM ⊗2 ·T⊥ (Fig. 2(b));

Step 5: Shortcut an Eulerian walk of E2APX to an alternating Hamiltonian
cycle H2APX , preserving the edges from M≤.

The multigraph E2APX over the vertex set V (G) = B ⇒W in Fig. 2(b), has
as its edge set a multiset sum of M≤, TM and two copies of T⊥. We need to
show that this structure can be used to obtain a valid alternating cycle. As a
first step, we will elaborate that there is an Eulerian walk.

Lemma 2. The multigraph E2APX is Eulerian.

Proof. We need to show that E2APX is connected, and every vertex has even
degree w.r.t. E2APX . Connectedness follows from the fact that we sought the
structure TR = (R, T⊥) to be a spanning tree, where R is a cycle cover of the
vertex set V (G) = B ⇒W . Every vertex in V (G) is of degree 2 w.r.t. the cycle
cover R. Finally, we have added two copies of T⊥, hence the claim follows. ��
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Fig. 2. (a) A representation of TR = (R, T⊥). Nodes of R ( ), are individual
cycles over V (G) = B ⇒W . (b) The resulting multigraph E2APX , arrows added
to aid the image of traversing. The perfect matching M≤ is given in bold gray
lines, TM in slender black, and the two copies of T⊥ in dashed lines.

Next we show how E2APX can be shortcut to give an alternating Hamiltonian
cycle.

Lemma 3. The Eulerian graph E2APX can always be shortcut to an alternating
Hamiltonian cycle H2APX , preserving the edges from M≤.

Proof. We will prove this claim by induction over the number of cycles k in the
cycle cover R
– Case k = 1: Trivial, this is H2APX ;
– Case k > 1: Start from the observation that T⊥ is bipartite. Therefore there

must exist a certain q ∃ B connected to some y ∃ W by an arc {q, y} ∃ T⊥.
Let q ∃ Ri and y ∃ Rj . Now, let u ∃ W (also u ∃ Ri) such that {u, q} ∃ TM ,
and let v ∃ B (also v ∃ Rj), such that {y, v} ∃ TM (Fig. 2(b)). We shortcut
{{u, q}, {q, y}, {y, v}} by {u, v}, thus merging the two cycles Ri and Rj and
decreasing the number of cycles by one.

Note, all of the shortcut edges, {u, q}, {q, y} and {y, v} belong to T (either in
T⊥ ≈ T� or TM), thus edges in M≤ are preserved intact. Lastly, due to the
quadrangle inequality from Eq. (7), this shortcutting will not increase the total
weight w(E2APX ). ��

In the end, we will have obtained an alternating Hamiltonian cycle H2APX .

4.2 Approximation Ratio

Next, we investigate the applicability of the 2APX procedure as an approxima-
tion algorithm.

Lemma 4. For a given instance of the metric BBTSP, let H≤ be an alternating

Hamiltonian cycle of minimal cost L(H≤). Let the edge set
−≥
H≤ ∀ E(H≤) be

traversed in the direction from B to W , so that the value L(H≤) is parameterized

by some λ ∃ R+ as L(H≤) = (β + λ)w(
−≥
H≤). For H2APX as the result from the

2APX procedure it holds
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L(H2APX ) ∩ β + 2λ+ 1

β + λ
L(H≤). (22)

Proof. In order to derive an upper bound of the cost L(H2APX ), we will retrace
the steps from the construction process, and recall some of the bounds presented
in Section 3, especially Subsection 3.2.

First, recall that we chose a T⊥ ≈ T�, therefore w(T⊥) ∩ w(T�). It readily
follows (see Eq. (18))

w(T⊥) ∩ w(T ≤)− w(TM ). (23)

Let us partition E(H2APX ) into two disjoint matchings,
−≥
H2APX and

←−
H 2APX ,

in such a way that
−≥
H 2APX = M≤ and

←−
H 2APX is a shortcut through TM ⊗T⊥ ⊗

T⊥, as in Lemma3. We choose a traversal orientation such that exactly the edges

of
−≥
H2APX are traversed in the direction from B to W . From the bias factor β

of Eqs. (1), (11) and (13)

L(H2APX ) = βw(
−≥
H 2APX ) + w(

←−
H 2APX )

∩ βw(M≤) + w(TM ) + 2w(T⊥). (24)

Recall the partition of a minimum cost alternating spanning tree from Eq. (18)
and the related bounds from Eq. (23) and substitute them in Eq. (24). From this,
and the fact that w(M≤) ∩ w(TM ), we get

L(H2APX ) ∩ βw(M≤) + 2w(T ≤)− w(TM )

∩ 2w(T ≤) + (β − 1)w(M≤). (25)

Next we substitute for M≤ and T ≤ the bounds given with Eqs. (14) and (15)

L(H2APX ) ∩2(w(
−≥
H≤) + w(

←−
H≤)) + (β − 1)w(

−≥
H≤)

=2(1 + λ)w(
−≥
H≤) + (β − 1)w(

−≥
H≤). (26)

Finally, following Eq. (20), the expression above leads to the claim. ��

Lemma 4 gives the result announced in the Introduction, Eq. (2)

L(H2APX )

L(H≤)
∩ 1 +

1 + λ

β + λ
.

The result from Lemma4 and the definition of an approximation ratio of Eq. (4)
give the following result

α2APX = 2,

which holds true for any β → 1 and λ ∃ R+. However, Eq. (2) does provide us
with insight of the behavior of L(H2APX ) for increasing values of β, and some
reasonable finite upper bound on λ.
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4.3 As a Part of a Composite Heuristic

As the previously known approximation ratio of 16/7 described in [17] relies on
a composite heuristic, i.e., on a trade-off between two different procedures for
building an alternating Hamiltonian path, we investigate a similar approach.
For that purpose, we only briefly review a well known procedure for construct-
ing an alternating Hamiltonian cycle in a given complete bipartite graph G =
(B,W ;E), with |B| = |W | =: n. We term this procedure as procedure SWAP
(the same procedure has been termed a matching based heuristic in [17].) The
SWAP procedure has been described as a heuristic method for the swapping
problem [2], and adopted to the bipartite TSP [3]. Briefly described, it is as
follows

Step 1: Find a minimum cost perfect matching M≤ in G = (B,W ;E);
Step 2: Build a ζ-approximate Hamiltonian cycle C∈ in G[B];
Step 3: Make an Eulerian multigraph ESWAP = (V (ESWAP ), E(ESWAP )),

where V (ESWAP ) = V (G) and E(ESWAP ) = E(C∈) ⊗ 2 ·M≤;
Step 4: Appropriately shortcut an Eulerian walk in ESWAP to get an al-

ternating Hamiltonian cycle HSWAP in G, preserving one copy of
M≤.

The correctness and validity of the SWAP procedure is argued in more detail
in, e.g., [2, 3, 17].

For the purpose of arriving to a suitable expression for a composite heuristic
relying on the 2APX and SWAP procedures, we will present our bounds on
L(HSWAP ). Analogous to Eq. (17), for a ζ-approximate C∈ of an optimal C≤

we get

w(C∈) ∩ ζw(C≤) ∩ ζ
(
w(

−≥
H≤) + w(

←−
H≤)

)
. (27)

Since we can shortcut an Eulerian walk in ESWAP to obtain HSWAP in such
a way that one copy of M≤ is preserved, we can orient the traversal of HSWAP

so that exactly the edges in M≤ are traversed in the direction from B to W .
Following Eqs. (14), (20) and (27)

L(HSWAP ) ∩ζ(1 + λ)w(
−≥
H≤) + (β + 1)w(M≤)

∩ζ(1 + λ) + β + 1

β + λ
L(H≤). (28)

Since from Lemma 1 we have that the extension of w over the edges of G[B]
is symmetric and satisfies the triangle inequality, we can use, e.g., Christofides’
heuristic [6] to build a C∈ with ζ = 3/2.

We propose a simple procedure which will compute both H2APX and HSWAP

according to their respective construction procedures, and choose the one of
lower cost. Let us term this procedure COMP and the resulting alternating
Hamiltonian cycle HCOMP . From Eqs. (22) and (28) we get
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L(HCOMP ) ∩min

{
β + 2λ+ 1

β + λ
L(H≤),

ζ(1 + λ) + β + 1

β + λ
L(H≤)

}

∩
(
1 +

2

ζ + β(2 − ζ)

)
L(H≤). (29)

The trade-off in Eq. (3) is achieved for λ = ζ
2−ζ , therefore, it only makes sense

to be called when ζ < 2. It readily follows

αCOMP = 1+
2

ζ + β(2 − ζ)
,

which is not dependent on a hidden instance-specific parameter, such as λ.

4.4 Computational Complexity

Without much deliberation we will state that all procedures undertaken to obtain
an alternating Hamiltonian cycle have well known polynomial time implementa-
tions. An excellent source of information concerning the presented combinatorial
structures as well as their algorithmic implementations can be found in [12, 16],
as well as [8]. We will just state that the bottleneck procedure in the computation
is finding a minimum cost alternating spanning tree T ≤ in the bipartite graph
G = (B,W ;E) (|B| = |W | =: n), since it requires a call to a general matroid in-
tersection algorithm, which in turn requires O(n7) time ([3, 8, 9, 11, 12, 16, 18]).
As a consequence, we can state the following

Theorem 1. The biased bipartite traveling salesman problem with a symmetric
edge weight function satisfying the quadrangle inequality and a bias β → 1 can
be approximated within a constant factor α = 2, in polynomial time complexity.

5 Conclusion

We formalized the biased bipartite TSP (BBTSP) as a generalization of the
symmetric bipartite TSP with quadrangle inequality by introducing a bias term
β → 1, which introduces asymmetry in the cost of an alternating Hamiltonian
path. This generalization had been introduced as a means to better capture some
features of industrial material handling scenarios.

We presented a novel heuristic for building alternating Hamiltonian cycles
in complete bipartite graphs. With that, obtained a first nontrivial approxima-
tion algorithm which improves the approximation factor of previously known
approaches to a constant 2, and showed that this approximation ratio holds for
any value of the bias β → 1. We also analyzed the performance of the proposed
procedure for building alternating Hamiltonian cycles as a part of a composite
heuristic, and derived an approximation ratio which benefits of both a better
approximation for the metric TSP, and an increased value for the bias β.

It is a standing question whether the constant bound 2 of the approximation
ratio presented in this paper can be further improved by some algorithms similar
to existing approaches for the standard metric TSP [7].
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Abstract. We consider two variants of a max-flow problem against k
edge failures, each of which can be both approximated by a multiroute
flow algorithm. The maximum k-robust flow problem is to find the mini-
mum max-flow value among

(
m
k

)
networks that can be obtained by delet-

ing each set of k edges. The maximum k-balanced flow problem is to
find a max-flow of the network such that the flow value is maximum
against any set of k edge failures, when deleting the corresponding flow
to those k edges in the original flow. We prove CM � CM∗ � CB �
CR � (k + 1) · CM , where CM is the max-(k + 1)-route flow value, CM∗

is the effectiveness of the max-(k + 1)-route flow after k attacks, CB is
the max-k-balanced flow value, and CR is the max-k-robust flow value.
Also, we develop a polynomial-time heuristic algorithm for both cases,
called the iterative multiroute flow. Our experimental results show that
the average improvement made by our heuristic method can be up to
10% better than the multiroute flow algorithm. Compared to the opti-
mal max-k-robust flow solutions – obtained by a brute-force algorithm –
there is an average gap of 2% at most.

1 Introduction

Since its introduction by Ford and Fulkerson [1], the maximum flow problem
(max-flow) has been widely studied due to its many theoretical and practical
applications. Given a capacity on each link in a network, the problem is to
optimize the amount of flow we can send from a given source node to a given
sink node. There are many polynomial-time algorithms with which to solve this
problem. Recently, Orlin proposed an algorithm to solve it in O(nm) time [2],
where n is the number of vertices and m is the number of edges.

The amount of flow we get from a solution to those algorithms can drop
significantly if some of the links in the network are attacked or fail. Since the
best attacks are equivalent to the worst failures, we will use these two terms
interchangeably throughout this paper. A simple way to guarantee the amount
of flow sent between a source and a sink is to oversize the capacity of each link
in our network [3]. However, higher-capacity links can have a significantly higher
maintenance cost [4]. Because of that, several formulations have been introduced

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 68–79, 2014.
c∩ Springer International Publishing Switzerland 2014
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Fig. 1. Graph with distinct CM , CM∗ , CB, and CR. Capacity of each edge is shown in
black, and the max-2-route flow is shown as four unitary 2-route flows, a, b, c, and d
(each pair are denoted by a red and a green member).

to find a robust network. Those include k-EDP, k-DFP [5] and k-EDPCOL [6,7],
which show the usage of the k edge-disjoint paths against a specific type of attack.

In this work, we study the robust network problem through the use of k-
route flow, that is a nonnegative linear combination of k-edge disjoint paths.
This notion was introduced by Kishimoto and Takeuchi in [8,9], where they
extend the max-flow/min-cut duality property to the multiroute flow context
and provide an algorithm to compute a max-k-route flow based on at most k
iterations of a classical max-flow algorithm. A simpler proof of duality can be
found in [10]. Later, the algorithm was improved by Aggarwal and Orlin [11] to
an algorithm using at most min {log(nU), k} iterations, when U is the maximum
capacity on each edge and n is the number of vertices in the network. Also, a
simpler proof for the correctness and complexity of this algorithm was given by
Du and Chandrasekaran in [12].

We tackled two natural variants of the max-flow problem against k edge fail-
ures, referred to as the maximum k-robust flow and maximum k-balanced flow
problems. The maximum k-robust flow problem (max-k-robust flow) is to find
the minimum max-flow value among

(
m
k

)
networks obtained by deleting each set

of k edges. The maximum k-balanced flow problem (max-k-balanced flow) is to
find a max-flow of the network such that the flow value is maximum against any
set of k edge failures, when deleting the corresponding flow to those k edges in
the original flow. The max-k-robust flow is firstly introduced in this paper, but
the max-k-balanced flow for k = 1 is introduced and solved in [13]. For the case
when k � 2, we can infer from the discussion in [14] that the problem can be
significantly harder. Recent results [15,16] also indicate that several problems
involving k � 2 link failures are NP-hard.

Define the k-effectiveness of a flow as a minimum value of this flow that
remains after k edge failures. We denote CM the max-(k + 1)-route flow value,
CM ∗ its k-effectiveness, CB the max-k-balanced flow value, and CR the k-robust
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flow value. Figure 1 is an instance of a network subject to one edge attack,
where each one of CM , CM ∗ , CB , and CR are different. More precisely, CM = 4,
CM ∗ = 5, CB = 16

3 , and CR = 6. The max-2-route flow is made of the summation
of four unitary 2-route flows, a, b, c, and d (each pair are denoted by a red and
a green member).

This paper is organized as follow. In Section 3, we introduce the formal def-
initions and the properties of max-k-robust flow, max-k-balanced flow, and k-
effectiveness.

In Section 4, we prove that CM � CM ∗ � CB � CR � (k+1) ·CM . We deduce
from this result that the method for finding the max-(k + 1)-route flow in [9] is
a (k + 1)-approximation algorithm for both maximum k-robust and maximum
k-balanced flow problems. This guarantees that the multiroute flow algorithm is
useful for our problem when k is relatively small. When k becomes larger, the
algorithm can give a solution that is much less efficient than the optimal one.

To improve this, in Section 5, we develop a heuristic algorithm called iterative
multiroute flow. The algorithm uses O(λ2) iterations of max-flow, when λ is the
source-sink edge connectivity of our network.

Our experimental results, in Section 6, show that the average improvement
by the iterative multiroute flow can be up to 10% better than the result from
the multiroute flow algorithm. Compared to the maximum k-robust flow, there
is an average gap of 2% at most. As the value of the maximum k-balanced flow
cannot be larger than the maximum k-robust flow, the average gap is even less
than 2% for the maximum k-balanced flow problem.

2 Preliminaries

In this section, we provide the notation that we will use throughout this article.
The definition and properties of the multiroute flow are provided in Subsection
2.1.

Let G = (V,E, c) be a network, where V is a set of nodes, E is a set of links,
and c : E ≥ R

+ is a capacity function.
Let s, t ⇒ V be a source node and a sink node, respectively. Throughout this

paper, we will consider single-commodity flows from s to t. All terminologies are
based on that setting unless otherwise specified. The set C (resp., F ) refers to
the set of all s-t cuts (resp., the set all possible s-t flows) of G. λ refers to the
s-t edge connectivity of G, and k refers to the number of edges that the attacker
can remove.

Definition 2.1 (k-robust capacity [17]). Given a cut X ⇒ C ,
let {e0, e1, . . . , ep} be the cut-set of X, where c(ei) ∪ c(ei+1) for any 0 � i < p.
For 0 � k � p, we define the k-robust capacity of X as follows:

αk(X) =

p∑

i=k

c(ei).
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2.1 Multiroute Flow

In this subsection, we will briefly describe the k-route flow introduced in [9],
which, for k ∪ 2, is also called a multiroute flow.

Definition 2.2 (k-route flow). A k-route flow is a nonnegative linear com-
bination of k edge-disjoint s-t paths with unitary flow, in which the value on
each edge does not exceed the edge capacity. The value of a k-route flow is the
summation of coefficients in that linear combination.

Definition 2.3 (max-k-route flow). A maximum k-route flow is a k-route
flow such that its value is at least as large as the value of any other k-route flow.

The max-k-route flow can be efficiently found by an algorithm proposed by
Kishimoto and Takeuchi [9]. The running time of that algorithm is O(kT ), where
T is the computation time of the max-flow problem. Let Gp = (V,E, cp), where
cp(e) = min(c(e), p). It is shown in that paper that for some p≤ ⇒ R the max-flow
of Gp∗

is the max-k-route flow of G. Kishimoto and Takeuchi also propose an
effective method to search for that p≤ based on the max-flow value of Gp for at
most k distinct values of p.

Definition 2.4 (k-capacity [17]). The k-capacity of a cut X is given by

βk(X) = min
0�i�k−1

(
1

k − i
· αi(X)

)
.

A min-k-route cut is a cut minimizing the k-capacities over all the cuts in the
network. Now, we can state the k-route duality theorem.

Theorem 2.1 (k-route duality [9,10]). The value of a max-k-route flow is
equal to the k-capacity of a min-k-route cut. Formally, if we denote M as a
max-k-route flow solution, its value is min

X∈C
βk(X). We use CM to represent the

value of max-(k + 1)-route flow.

3 k-robust and k-balanced Flow

In this section, we will give a precise definition for the maximum k-robust flow
and the maximum k-balanced flow. Also, we will show some of their properties
that will be useful for proving our main result in the following section.

For the maximum k-robust flow, the attacker will choose k edges to break
before we determine the flow. Our optimal choice is to choose the max-flow from
the network in which the broken edges are removed. An optimal choice for the
attacker is to minimize the value of that max-flow.

The attacker can try all the subsets of links with size k, check the max-flow
value after those k edges are removed, and select the subset that minimizes that
value. By doing this, we can obtain the max-k-robust flow in

(
m
k

)
iterations of

max-flow, when m is the number of links in our network.
Recall the definition of k-robust capacity in Section 2, and define φS as the

value of the max-flow of the network (V,E\S). The formal definition of the max
k-robust flow is as follows.
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Definition 3.1 (max k-robust flow). Let S≤ = argmin
S∗E:|S|=k

φS . The maximum

k-robust flow is the max-flow of the network (V,E\S≤). We use CR to represent
its value.

Definition 3.2 (min k-robust cut). The minimum k-robust cut problem is to
find a s-t cut with the minimum k-robust capacity. The solution to this problem,
X≤

k , is formally expressed by X≤
k = argmin

X∈C
αk(X).

Lemma 3.1. The k-robust capacity of a minimum k-robust cut, min
X∈C

αk(X), is

equal to the value of a maximum k-robust flow, CR.

Proof. Let μS be the capacity of a minimum cut of (V,E\S). We note μS(X)
the capacity of a cut X . By the max-flow/min-cut duality, we know that

CR = min
S∗E:|S|=k

φS = min
S∗E:|S|=k

μS = min
S∗E:|S|=k

(
min
X∈C

μS(X)

)
.

Let consider an edge-set S≤ and a cut X≤ such that

S≤ := argmin
S∗E:|S|=k

(
min
X∈C

μS(X)

)
, and X≤ := argmin

X∈C

(
min

S∗E:|S|=k
μS(X)

)
.

Let the cut-set of X≤ be E≤ = {e0, . . . , ep}, where c(e0) ∪ c(e1) ∪ · · · ∪ c(ep).
Then we get μS∗(X≤) =

∑
e∈E∗\S∗ c(e). We can consider two cases, E≤ → S≤ and

E≤
∅ S≤. When E≤ → S≤, μS∗(X≤) = αk(X

≤) = 0 and CR = min
X∗∈C

αk(X
≤) = 0.

Next, we consider the case when E≤
∅ S≤. Assume S≤

∅ E≤. Let e, e′ be edges
such that e ⇒ S≤\E≤ and e′ ⇒ E≤\S≤. If S′ := S≤ ∃ {e′} − {e}, then μS∗(X≤) =
μS∗(X≤) − c(e′) < μS∗(X≤). This contradicts the assumption that μS∗(X≤) is
the minimum value among X ⇒ C and S → E for |S| = k.
Hence, S≤ → E≤. To minimize μS∗(X≤) =

∑
e∈E∗\S∗ c(e), it is obvious that S≤

must be a set of edges in E≤ with the largest capacity, {e0, . . . , ek−1}. Then
μS∗(X≤) = αk(X

≤), and CR = min
X∈C

αk(X). ∩⊗

Next, we will consider the maximum k-balanced flow. In this setting, we will
choose the flow F ⇒ F before the attacker selects the edges to attack. Assume
that our choice is F . We will call the value of the flow that remains after the
attack the k-effectiveness of F , and we define it as follows.

Definition 3.3 (Effectiveness of a Flow). Let F be a valid flow, and let φF
S

be a max-flow of a network G′ = (V,E\S, f), where f(e) is a value of the flow
F on edge e. We define the k-effectiveness of F , CF ∗ as

CF ∗ = min
S∗E:|S|=k

φF
S .
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φF
S , defined in Definition 3.3, is actually the amount of flow F that remains

after all the edges in S have been removed. In a way similar to what we did for
CR, we can compute CF ∗ by calculating φF

S for all possible S, and then take the
smallest one. Since the value of the flow on any edge cannot be larger than its
capacity, it is obvious that φF

S � φS for any S and F . From this, we know that
CF ∗ � CR for any flow F .

Let M be a max-(k+ 1)-route flow, and let CM ∗ be its k-effectiveness. Recall
the multiroute flow value CM defined in Theorem 2.1. While CR, CF ∗ , and CM ∗

denote the values of flows in the traditional sense, CM denotes the value of a
(k + 1)-route flow. As discussed in [11], the k-effectiveness of the (k + 1)-route
flow CM ∗ is guaranteed to be greater than or equal to the value of CM .

The formal definition of the maximum k-balanced flow is as follow.

Definition 3.4 (max k-balanced flow). The maximum k-balanced flow can
be defined as

F ≤ = argmax
F∈F

CF ∗ .

We will use CB to denote the value of F ≤.

4 Relations between the Different Kinds of Flow

In this section, we will give various bounds that justify the use of multiroute
flow to approximate both max-k-balanced flow and max-k-robust flow. We will
compare a k-robust flow with a (k + 1)-route flow.

Recall the notation that we defined in Sections 2 and 3. We use CM to repre-
sent the value of a max-(k+ 1)-route flow, CM ∗ to represent the effectiveness of
that max-(k+1)-route flow, CB to represent the value of a max-k-balanced flow,
and CR to represent the value of the max-k-robust flow. From those definitions,
we can formulate Proposition 4.1.

Proposition 4.1. CM � CM ∗ � CB � CR.

We know that CM � CM ∗ and CB � CR from the discussion in Section 3. It
is obvious from the definition of the maximum k-balanced flow in Section 2.1
that CB is the maximum effectiveness that can be obtained from our network.
Hence, the effectiveness of the maximum multiroute flow CM ∗ cannot be larger
than CB.

Lemma 4.1. For a given cut X, αk(X) � (k + 1) · βk+1(X).

Proof. By Definition 2.4, βk+1(X) = min
0�i�k

(
1

k+1−i · αi(X)
)
. Hence,

αk(X)
βk+1(X) = αk(X)

min
0�i�k

( 1
k+1−i ·αi(X))

= αk(X) · max
0�i�k

(
k+1−i
αi(X)

)

� αk(X) · max
0�i�k

(
k+1

αi(X)

)
= k + 1.

∩⊗
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Corollary 4.1. CR � (k + 1) · CM .

Proof. Let us assume that X is the cut for a max-k-robust flow, and Y is the
cut for a max-(k + 1)-route flow. Hence, CR = αk(X), and CM = βk+1(Y ). We

know from the previous lemma that αk(X)
βk+1(X) � k + 1 and αk(Y )

βk+1(Y ) � k + 1.

By Theorem 2.1 and Definition 3.1, βk+1(Y ) � βk+1(X) and αk(X) � αk(Y ).

We will prove this by contradiction and assume that CR

CM
= αk(X)

βk+1(Y ) > k+1. Since
αk(Y )

βk+1(Y ) � k + 1, αk(X)
βk+1(Y ) > αk(Y )

βk+1(Y ) . By multiplying βk+1(Y ) to both sides of

the inequality, we get αk(X) > αk(Y ). That contradicts the starting assumption
that X is a min-k-robust cut. ∩⊗

Now we will give and prove a set of propositions to show that k+1 is an exact
approximation ratio, and this leads to the main theoretical result of this work,
Theorem 4.1.

Proposition 4.2. There exists an infinite graph such that CM ∗ = (k+ 1) ·CM .

Proposition 4.3. There exists an infinite graph such that CB = (k + 1) · CM ∗ .

Proposition 4.4. There exists an infinite graph such that CR = (k + 1) · CB.

Proof (4.2). Let us consider the graph from Figure 2a andM , a max-(k+1)-route
flow solution between s and r. On that graph, CM = m

k+1 and CM ∗ = CR = m−k.
We have the result we wanted when m approaches infinity. ∩⊗

Proof (4.3). Let us consider the graph from Figure 2a, this time with s and t as
the source and sink, respectively. Based on Definition 2.1, for any flow solution
M of the max-(k+1)-route flow, CM = m

k+1 . We chooseM such that on the right
cut, the flow of M goes through only k+1 edges. Hence CM ∗ = m

k+1 . Obviously
CB = m− k. We have the result we wanted when m approaches infinity. ∩⊗

Proof (4.4). Let us consider the graph from Figure 2b. Here, the max-flow value
is m + k. Naturally, CB = m+k

k+1 and CR = m. We have the result we wanted
when m approaches infinity. ∩⊗

Theorem 4.1. The algorithm for the max-(k+1)-route flow problem in [8,9] is
also a (k + 1)-approximation algorithm for the maximum k-robust flow and the
maximum k-balanced flow problems.

4.1 Approximation Ratio and Graph Connectivity

In this subsection, we further improve the upper bound discussed in this section,
for a graph with small source-sink edge connectivity λ. We will show in Theo-
rem 4.2 that the approximation ratio of the maximum multiroute flow can be
significantly smaller than k + 1.
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Fig. 2. The network used in the proof of Propositions 4.2-4.4

Lemma 4.2. Let X be a minimum k-robust cut, and let Y be a minimum k-
route cut. The ratio between the k-robust capacity of X and k-capacity of Y
cannot be larger than p−k

p (k+1) when p = min(pX , pY ), pX is the cardinality of
the cut-set of X, and pY is the cardinality of the cut-set of Y .

Proof. By Definitions 2.4 and 3.1,

CR

CM
=

αk(X)

min
0�i�k

[
αi(Y )
k+1−i

] = αk(X) · max
0�i�k

k + 1− i

αi(Y )
� αk(Y ) · max

0�i�k

k + 1− i

αi(Y )
.

We know that the average value of the capacity αi(Y )
pX−i should be at least

αj(Y )
pX−j

if i � j . Hence, αk(Y )
pX−k � αi(Y )

pX−i . Then,

αk(Y ) · max
0�i�k

k+1−i
αi(Y ) � αk(Y ) · max

0�i�k

k+1−i
pX−i

pX−kαk(Y )

� max
0�i�k

[
(pX − k)k+1−i

pX−i

]

� pX−k
pX

(k + 1)

Using a similar proof, we know that αk(X)

min
0�i�k

[
αi(Y )

k+1−i

] � pY −k
pY

(k + 1). Hence,

αk(X)

min
0�i�k

[
αi(Y )

k+1−i

] � p−k
p (k + 1). ∩⊗

Theorem 4.2. Let U be the ratio between the largest and smallest capacities of
the edges in our network. The maximum multiroute flow algorithm is a
U(λ−k)

U(λ−k)+k (k + 1)-approximation algorithm for the maximum k-robust flow and

the maximum k-balanced flow problems.

Proof. Let X be a minimum k-robust cut, and let Z be a cut in which its cut-set
has minimum cardinality. Here, αk(Z) is the sum of the λ − k edge capacities.
αk(X) is the sum of the p − k edge capacities, when p is the cardinality of the
cut-set of X . If we let U be the ratio between the largest and smallest capacities,
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then we know that αk(Z)
αk(X) � U · λ−k

p−k . Since αk(Z) � αk(X) by the definition of

the minimum k-robust cut, 1 � αk(Z)
αk(X) � U · λ−k

p−k . Then, p − k � U · (λ − k),

p � U ·(λ−k)+k. We update our upper bound to p−k
p ·(k+1) � U(λ−k)

U(λ−k)+k (k+1).
∩⊗

Corollary 4.2. If the cut-set of min-(k + 1)-route cut has cardinality k + 1,
CR = CB = CM .

Proof. By Lemma 4.2, we know that CR

CM
� p−k

p (k + 1). For this corollary,

p = k + 1. Hence, CR

CM
� k+1−k

k+1 (k + 1) = 1. ∩⊗

5 Balancing with Iterative Multiroute Flow

In the previous section, we showed that there can be significantly large differences
between the values of the solutions to the max-(k+1)-route flow and to the max-
k-balanced flow. We will close that gap in this section by proposing a tighter
heuristic algorithm called the iterative multiroute flow algorithm. This method
is presented as Algorithm 1.

Next, we will discuss some of the intuitive ideas behind the algorithm. We
know from Subsection 4.1 that with larger values of k, the k-route flow tends
to be more well balanced, because its effectiveness tends to be close to the
effectiveness of a k-balanced flow. However, the value of k-route flows can be
much smaller, as it is seen in [11]. The iterative multiroute flow algorithm is
proposed as a way to find a well-balanced flow with a large value. To find that
flow, we begin our algorithm by finding a k-route flow when k is assigned to λ,
which is the largest value of k for which the value of the k-route flow is more
than 0. As shown in Corollary 4.2, the flow we obtain in this step tends to be
very well balanced, but the value of the flow is small. We then proceed to the
next step and consider the capacity that remains after that λ-route flow. We
reduce k by one to λ − 1, and find a k-route flow for that remaining capacity.
By doing that, the well-balanced property that we can get from the λ-route flow
is conserved, while the value of our flow increases. From there, to maximize the
value of our flow, we iteratively reduce the value of k by one and take the k-route
flow for the remaining capacity until k = 1.

Theorem 5.1. The running time of the iterative multiroute flow algorithm is
O(λ2T ), where λ is the source-sink edge connectivity of an input network, and
T is the computation complexity of the max-flow algorithm.

Proof. As we iterate over k from λ down to 1, the number of executions of the

max-flow algorithm is
∑λ

k=1(k + 1) = (λ+1)(λ+2)
2 = O(λ2). ∩⊗

6 Experimental Results

In this section, we evaluate the iterative multiroute flow algorithm proposed in
Section 5 for several different network conditions. In each of these settings, we de-
termined the average result from 100 experiments. Let CI∗ be the k-effectiveness
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input : A network graph G = (V,E, c), where c : E → R
+ is the capacity of

each edge
output: The flow on each edge F : E → R

+

1 Let λ be the source-sink edge connectivity of graph G.
2 Assign F (e) ← 0 for all e ∈ E.
3 for k ← λ to 1 do
4 Find the k-route flow of graph G.
5 Let Fk : E → R

+ be the flow on each edge in that k-route flow.
6 F (e) = F (e) + Fk(e).
7 c(e) = c(e)− Fk(e).

8 end

Algorithm 1: Iterative multiroute flow algorithm

of an iterative multiroute flow. We can show the improvement due to our pro-
posed method by comparing its results CI∗ with those of the previous method
for the effectiveness of a max-(k + 1)-route flow, CM ∗ . We also perform an ex-
periment to compare our result CI∗ with the value of a maximum k-robust flow
CR to show the difference between our solution and the optimal solution.

In Figures 3a and 3b, we present the results of experiments on a network with
|V | = 10 and |E| = 40. To have a network with higher source-sink connectivity,
each node is chosen with probability 1

|V | = 0.1 to be the tail endpoint of an edge.

Exceptions to this are the source node and sink node, where the probabilities
are 2

|V | = 0.2 and 0, respectively. Similarly, the probabilities that the source

node, the sink node, and the other nodes are chosen to be a head endpoint are 0,
2

|V | = 0.2, and 1
|V | = 0.1, respectively. For this setting, the capacity of each edge

was picked at random between 0 and 20. Figure 3a shows the improvement due
to the multiroute flow. When k = 3, the effectiveness of our iterative multiroute
flow is 9.8% larger than the effectiveness of the maximum multiroute flow. We
can also see from the figure that the improvement increases with increasing k.

As shown in Figure 3b, the average gap between our result CI∗ and the opti-
mal solution CR is less than 1.2% for any k � 3. For all of the network conditions
considered in this work, this average gap was seldom larger than 2%. Currently,
there is no efficient algorithm that finds the maximum k-balanced flow CB . How-
ever, we can guarantee from these experimental results that CI∗ is an accurate
approximation of CB , since we know from Section 3 that the value cannot be
larger than CR. Therefore, the gap between CI∗ and CB must be even smaller
than 2%. We also performed experiments on the graph where a small number
of edges had capacities that were larger than those of others. Let G = (V,E, c)
be a network used for the experimental results shown in Figure 3a. We modified

the network to G′ = (V,E, c′), where c′(e) = c(e)h

20h−1 for 1 � h � 3. By doing this,
the capacity will follow a power-law distribution with h as the exponent [18]. In
Figure 3c, we can see that our improvement significantly increases in this graph
setting. That improvement is even larger when the exponent of the distribution
is increased.
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Fig. 3. Comparison between iterative multiroute flow, (k+1)-route flow, and k-robust
flow: (a) improvement in the different number of links attacked; (b) gap between the
result and the upper bound; (c) improvement when the capacity is not chosen uni-
formly and at random (a larger exponent represents more bias); (d) improvement in
the different number of nodes when the number of edges is fixed; (e) improvement in
the different number of nodes when the number of edges is changed proportionally to
the number of nodes

Although the multiroute flow and iterative multiroute flow algorithms are
fast and efficient, no polynomial-time algorithm exists to find CM ∗ or CI∗ . In
other words, we can efficiently find the flows, but it is hard to evaluate how well
balanced the flows are, especially in large networks. Thus, we have to perform
the experiments on a comparatively small graph in which the number of nodes
ranges from 5 to 20, and the number of edges ranges from 20 to 80. In Figures 3d
and 3e, we show random networks that were generated in the same way as under
the previous settings, and we plot the relationship between the improvements we
made and the number of nodes. We are unable to find any associations between
the improvement we made and the number of nodes and/or edges for either
the case where |E| = 40 (Figure 3d) or the case where |E| = 4|V | (Figure 3e).
Because of this, experiments on relatively small graphs are sufficient to show the
differences between our algorithm, the previous one, and the upper bound.

7 Conclusion

In this work, we make two main contributions to the problem of finding an
optimal flow for a network in which some links have failed. The first one is a
theoretical result showing that the classic maximum multiroute flow algorithm
can solve the problem effectively. The other is a new algorithm that can, in
practice, solve the problem even more efficiently. Currently, we are developing
algorithms that can solve the problem with a smaller approximation ratio. We are
also interested in developing a faster algorithm for the maximum k-robust cut, a
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nontrivial exact algorithm for the maximum k-balanced flow, and a theoretical
model for the iterative multiroute flow.
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Abstract. In this paper we focus on a total (but non-lexicographic) or-
dering of strings called V-order. We devise a new linear-time algorithm
for computing the V -comparison of two finite strings. In comparison with
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more straightforward to implement, requiring only linked lists.
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organizing words in a natural language dictionary. Binary comparison of finite
strings (words) thus arises as a primitive operation, a building block, in more
complex procedures, which therefore requires efficient implementation.

In this paper we first discuss some known techniques for totally ordering sets,
and then introduce our contribution: a new linear string comparison algorithm
using V -order.

Given an integer n ≥ 1 and a nonempty set of symbols Π (bounded or un-
bounded), a string of length n over Π takes the form x = x1 . . . xn with each
xi ⇒ Π. The classic and commonly used method for organizing sets of strings
is lexicographic (dictionary) order. Formally, if Π is a totally ordered alphabet
then lexicographic ordering (lexorder) u < v with u, v ⇒ Π+ is defined if and
only if either u is a proper prefix of v, or u = ras, v = rbt for some a, b ⇒ Π
such that a < b and for some r, s, t ⇒ Π≤.

Lexorder is a very natural method for deciding precedence and organizing
information which also finds many uses in computer science, typically in con-
structing data structures and related applications:

– Building indexes for information retrieval, particularly self-indexes which
replace the text and support almost optimal space and search time [NM-07].

– Constructing suffix arrays, which record string suffix starting positions in
the lexorder of the suffixes, and thus support binary search [KA-03, KSB-06,
NZC-09].

– The Burrows-Wheeler Transform (BWT), which applies suffix sorting, and
exhibits data clustering properties, hence is suitable for preprocessing data
prior to compression activities [ABM-08, CDP-05].

– The application of automata for bioinformatics sequence alignment. The
BWT is extended for finite automata representing the multiple alignment
problem - the paths in the automaton are sorted into lexorder thus extending
the suffix sorting framework related to the classic BWT [SVM-11].

– An important class in the study of combinatorics on words is Lyndon words
[L-83] - strings (words) which are lexicographically least amongst the cyclic
rotations of their letters (characters) – see also [S-03]; furthermore, any string
can be uniquely factored into Lyndon words [CFL-58] - Duval’s algorithm
cleverly detects the lexicographic order between factors in linear time [Du-83,
D-11]. The Lyndon decomposition allows for efficient ‘divide-and-conquer’
of a string into patterned factors; numerous applications include: periodic
musical structures [C-04], string matching [BGM-11, CP-91], and algorithms
for digital geometry [BLPR-09].

– Hybrid Lyndon structures, introduced in [DDS-13], based on two methods
of ordering strings one of which is lexorder.

Naively, lexorder u < v can be decided in time linear in the length of the
shorter string, and space linear in the length of the longer string; various data
structures may be used for enhancing this string comparison. In [DIS-94] the
Four Russians technique [IS-92] is proposed to compare strings of length n on a
bounded alphabet in O(1) time, while for an unbounded alphabet the parallel
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construction of a merged suffix tree using the CRCW PRAM model [IS-92] is
proposed that can be constructed in O(log n log logn) time using O(n/ log n)
processors; using this tree, sequential comparison requires O(log logn) time.

A class of lexorder-type total orders is easily obtained from permuting the
usual order 1, 2, . . . n of pairwise comparison of letters, along with interchanging
< with > and so on; for example relex order (reverse lexicographic) [R-03], and
co-lexorder (lexorder of reversed strings) studied and applied to string factoriza-
tion in [DDS-09].

Non-lexicographic methods include deciding precedence by minimal change
such as Gray’s reflected binary code, where two successive values differ in only one
bit, hence well-suited for error correction in digital communications [G-53, S-97].
A more recent example is V -order [D-85, DaD-96, DaD-97] which is the focus of
this paper: we first introduce this technical method for comparing strings and
then consider it algorithmically.

Let Π be a totally ordered alphabet, and let u = u1u2...un be a string over Π.
Define h ⇒ {1, . . . , n} by h = 1 if u1 ∪ u2 ... ∪ un; otherwise, by the unique value
such that uh−1 > uh ∪ uh+1 ∪ uh+2 ∪ ... ∪ un. Let u

≤ = u1u2...uh−1uh+1...un,
where the star * indicates deletion of the letter uh. Write us≤ for (...(u≤)≤...)≤

with s ≥ 0 stars 1. Let g = max{u1, u2, ..., un}, and let k be the number of
occurrences of g in u. Then the sequence u,u≤,u2≤, ... ends gk, ..., g2, g1, g0 = ε.
In the star tree each string u over Π labels a vertex, and there is a directed edge
from u to u≤, with ε as the root.

Definition 1. We define V -order → between distinct strings u,v. First v → u
if v is in the path u,u≤,u2≤, ..., ε. If u,v are not in a path, there exist smallest
s, t such that u(s+1)≤ = v(t+1)≤. Put c = us≤ and d = vt≤; then c ∃= d but
|c| = |d| = m say. Let j be the greatest i in 1 ∪ i ∪ m such that c[i] ∃= d[i]. If
c[j] < d[j] in Π then u → v. Clearly → is a total order.

Example 1. Over the binary alphabet with 0 < 1: in lexorder, 0101 < 01110; in
V -order, 0101 → 01110.
Over the naturally ordered integers: in lexorder, 123456 < 2345; in V -order, 2345
→ 123456.
Over the naturally ordered Roman alphabet: in lexorder, eabecd < ebaedc; in
V -order, ebaedc → eabecd.

String comparison in V -order → was first considered algorithmically in
[DDS-11, DDS-13] - the dynamic longest matching suffix of the pair of input
strings, together with a doubly-linked list which simulated letter deletions and
hence paths in the star tree, enabled deciding order; these techniques achieved
V -comparison in worst-case time and space proportional to string length - thus
asymptotically the same as naive comparison in lexorder.

Currently known applications of V -order, utilizing linear-time V -comparison,
and generally derived from lexorder or Lyndon cases are as follows:

1 Note that this star operator, as defined in [DaD-96], [DD-03] etc, is distinct from
the Kleene star operator: Kleene star is applied to sets, while this V -star is applied
to strings.
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– A V -order structure, an instance of a hybrid Lyndon word and known as a
V -word [DD-03], similarly to the classic Lyndon case, gives an instance of
an African musical rhythmic pattern [CT-03].

– Linear factorization of a string into factors (V -words) sequentially [DDS-11]
and in parallel [DDIS-13] - yielding factors which are distinct from the Lyn-
don factorization of the given string [DDS-13].

– Modification of a linear suffix array construction [KA-03] from lexorder to
V -order [DS-13] thus allowing efficient V -ordering of the cyclic rotations of
a string.

– Applying the above suffix array modification to compute a novel Burrows-
Wheeler transform (V -BWT) using, not the usual lexorder, but rather V -
order [DS-13] - achieving instances of enhanced data clustering.

These initial avenues suggest that further uses of V -order, analogous to the
practical functions listed for lexorder and Lyndon words, will continue to arise,
including for instance those for suffix trees - thus necessitating efficient imple-
mentations of the primitive V -comparison.

We introduce here a new algorithm for computing the V -comparison of two
finite strings - the advantage is that it is both conceptually simpler, based
on recording letter positions in increasing order, and more straightforward
to implement, requiring only linked lists. The time complexity is O(n + |Π|)
and similarly the space complexity is O(n + |Π|). However, in computational
practice the alphabet, like the input, can be assumed to be finite - at most O(n)
- and so the algorithm runs in essentially linear time.

2 V -Order String Comparison Algorithm

In this section, we present a novel linear-time algorithm for V -order string com-
parison. Before going into the algorithmic details, we present relevant definitions
and results from the literature useful in describing and analyzing our algorithm,
starting with a unique representation of a string.

Definition 2. ([DD-03, DDS-11, DDS-13]) The V-form of a string x is de-
fined as

Vk(x) = x = x0gx1g · · ·xk−1gxk

for possibly empty xi, i = 0, 1, . . . , k, where g is the largest letter in x – thus we
suppose that g occurs exactly k times.

The following lemma is the key to our algorithm.

Lemma 1. ([DaD-96, DD-03, DDS-11, DDS-13]) Suppose we are given distinct
strings v and x with the corresponding V-forms as follows:

v = v0Lvv1Lvv2 · · ·vj−1Lvvj

x = x0Lxx1Lxx2 · · ·xk−1Lxxk
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Let h ⇒ {0 . . .max(j, k)} be the least integer such that vh ∃= xh. Then v → x
if, and only if, one of the following is true:

– Lv < Lx

– Lv = Lx and j < k
– Lv = Lx, j = k and vh → xh.

Lemma 2. ([DDS-11, DDS-13]) Suppose we are given distinct strings v and x.
If v (x) is a subsequence of x (v) then v → x (x → v).

We will use some simple data structures, which are initialized by preprocessing
steps. We useMapu(a) to store, in increasing order, the positions of the character
a in a string u. Mapu(Π) records the ‘maps’ of all a ⇒ Π. To construct Mapu(Π)
we take an array of size Π. For each a ⇒ Π, we construct a linked list that stores
the positions i ⇒ [1..|u|] in increasing order such that u[i] = a.

Example 2. Suppose we have a string u as follows:
1 2 3 4 5 6 7 8 9 10 11

u = 8 5 8 2 1 8 7 6 5 4 3

Mapu(Π) is shown below for the string u defined above.
1 2 3 4 5 6 7 8
∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩
5 4 11 10 2 8 7 1

∩ ∩
9 3

∩
6

This leads to the following lemma.

Lemma 3. Given a string u of length n we can build Mapu(Π) in O(n + |Π|)
time and space.

Proof. Proof will be provided in the journal version.

We will now prove a number of new lemmas that will be used in the
string comparison algorithm – first we will introduce some notation. Let
firstMiss(u,v) denote the first mismatch entry between u,v. More formally,
we say σ = firstMiss(u,v) if and only if u[σ] ∃= v[σ] and u[i] = v[i],
for all 1 ∪ i < σ. In what follows, the notion of a global mismatch and
a local mismatch is useful in the context of two strings u,v and their re-
spective substrings u′,v′. In particular, firstMiss(u,v) would be termed
as the global mismatch in this context and firstMiss(u′,v′) would be
termed as a local mismatch, i.e., local to the corresponding substrings. For
this global/local notion, the context C is important and is defined with
respect to the two strings and their corresponding substrings, i.e., the
context here would be denoted by C⊗(u,u′), (v,v′)≈. Also, for the V -form
of a string u we will use the following convention: Lu,β denotes the σ-th Lu
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in the V -form of u and pos(Lu,β) will be used to denote its index/position in u.
With this extended notation, the V -form of u can be rewritten as follows:

u = u0 Lu,1 u1 Lu,2 u2 · · · uj−1 Lu,j uj .

Moreover, within the context C, the strings u,v are referred to as the superstrings
and u′,v′ as the substrings.

Lemma 4. Suppose we are given distinct strings v and x with the corresponding
V -forms as follows:

v = v0Lvv1Lvv2 · · ·vj−1Lvvj

x = x0Lxx1Lxx2 · · ·xk−1Lxxk

Assume that Lv = Lx and j = k. Let h ⇒ {0 . . .max(j, k)} be the least
integer such that vh ∃= xh. Now assume that σh = firstMiss(vh,xh) and
σf = firstMiss(v,x). In other words, σh is the index of the first mismatch entry
between the substrings vh,xh, whereas σf is the index of the first mismatch entry

between the two strings v and x. Then we must have σf =
∑h−1

i=0 (|vi|+ 1) + σh.

(Or equivalently, σf =
∑h−1

i=0 (|xi|+ 1) + σh.)

Proof. Proof will be provided in the journal version.

Corollary 1. If in Case 2 of Lemma 4 we have σf = pos(Lv,β), then vh is a
proper prefix of xh.

Interestingly, we can extend Lemma 4 further if we consider the (inner) con-
texts within (outer) contexts as the following lemma shows. In other words V -
form can be applied recursively and independently as shown in [DDS-11]. In
what follows, for given distinct strings v and x with corresponding V -forms, the
condition that Lv = Lx, j = k will be referred to as Cond-I(v,x).

Lemma 5. Suppose we are given distinct strings v and x with corresponding
V -forms, and assume that Cond-I(v,x) holds. Now consider the (outer) context
C0⊗(v,vh0), (x,xh0)≈, where h0 is the least integer such that vh0 ∃= xh0 .

Now similarly consider the V -forms of vh0 and xh0 and assume
that Cond-I(vh0 ,xh0) holds. Further, consider the (inner) context
C1⊗(vh0 ,vh1), (xh0 ,xh1)≈, where h1 is the least integer such that vh1 ∃= xh1 .

Then the global mismatch of the context C0 coincides with the local mismatch
of the context C1.

Proof. Proof will be provided in the journal version.

Corollary 2. Given nested contexts Ci, 0 ∪ i ∪ k satisfying the hypotheses of
Lemma 5, the global mismatch of context C0 coincides with the local mismatch
of context Ck.
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Corollary 2 establishes that the first global mismatch will always be the first
mismatch as we go further within inner contexts through the chain of outer and
inner contexts.

Now we can focus on the string comparison algorithm: Algorithm CompareV .
Suppose we are given two distinct strings p and q, then the algorithm performs
the following steps.

Step 1: Preprocessing Step. ComputeMapp(Π) andMapq(Π). We also
compute the first mismatch position σf between p and q. This
will be referred to as the global mismatch position and will be
independent of any context within the iterations of the algorithm.
Then we repeat the following sub-steps in Step 2. During dif-
ferent iterations of the execution of these stages we will be
considering different contexts by proceeding from outer to in-
ner contexts. Initially, we will start with the outermost context,
i.e., C0⊗(p,ph0), (q, qh0)≈, where h0 is the least integer such that
ph0 ∃= qh0 . At each iteration, we will be considering the largest
φ ⇒ Π that is present within one of the superstrings in the context.
In other words, if the current context is C0, as is the case during
the initial iteration, we will consider the largest φ such that φ ⇒ p
or φ ⇒ q.

Step 2: Throughout this step we will assume that the current context is
C⊗(v,vh), (x,xh)≈, where h is the least integer such that vh ∃= xh.
So, initially we have C = C0. Suppose we are now considering
φ ⇒ Π, then it must be the largest φ ⇒ Π such that either φ ⇒ v
or φ ⇒ x. We proceed to the following sub-steps:

Step 2.a: We compute Mapv(φ) from Mapp(φ) where Mapv(φ) contains
the positions that are only within the range of v in the current
context C. Similarly, we compute Mapx(φ) from Mapq(φ) where
Mapx(φ) contains the positions that are only within the range
of x in the current context C. Now we compare Mapv(φ) and
Mapx(φ), which yields two cases.

Step 2.a.(i): In this case, Mapv(φ) = Mapx(φ).
This means that within the current context C, considering the V -
form of the superstrings v and x, we must have Lv = Lx and
j = k. So, we need to check Condition 3 of Lemma 1. We identify
h such that h is the least integer with vh ∃= xh. By Lemmas 4,
5 and Corollary 2 we know that this h can be easily identified
because it is identical to the global mismatch position σf .
Then we iterate to Step 2 again with the inner context
C1⊗(vh,vh1), (xh,xh1)≈, where h1 is the least integer such that
vh1 ∃= xh1 . In other words, we assign C = C1 and then repeat Step
2 for ρ ⇒ Π where ρ < φ.

Step 2.a.(ii): In this case, Mapv(φ) ∃= Mapx(φ).
[C1] If Mapv(φ) = ∧ (Mapx(φ) = ∧), we have Condition 1 of
Lemma 1 satisfied (ε is the least string in V -order) and hence
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we return v → x (x → v). Note that this effectively decides p →
q (q → p) and the algorithm terminates.
[C2] If |Mapv(φ)| < |Mapx(φ)| (|Mapx(φ)| < |Mapv(φ)|), we
have Condition 2 of Lemma 1 satisfied and hence we return v →
x (x → v). Similarly, this effectively decides p → q (q → p) and
the algorithm terminates.
[C3] Otherwise, we have Lv = Lx and j = k. So, we need to check
Condition 3 of Lemma 1, and identify h such that h is the least in-
teger such that vh ∃= xh. By Lemmas 4, 5 and Corollary 2 we know
that h can be easily identified because it is identical to the global
mismatch position σf . Now we do a final check as to whether vh is
a subsequence (in fact, a prefix ) of xh according to Corollary 1.
If so, then by Lemma 2 we return v → x (x → v), which decides
that p → q (q → p) and the algorithm terminates. Otherwise, we
return to Step 2 with the inner context C1⊗(vh,vh1), (xh,xh1)≈,
where h1 is the least integer such that vh1 ∃= xh1 . In other words,
we assign C = C1 and then repeat Step 2 again.

To prove the correctness of the algorithm we need the following lemmas.

Lemma 6. Step 2 of Algorithm CompareV can be realized through a loop that
considers each character φ ⇒ Π in decreasing order, skipping the ones that are
absent in both v and x or in the current context.

Proof. Proof will be provided in the journal version.

Lemma 7. Algorithm CompareV terminates at some point.

Proof. Note that Algorithm CompareV can terminate only by conditions [C1]
and [C2] of Step 2.a.(ii). Also recall that the input of the algorithm is two
distinct strings. Furthermore, we have computed a global mismatch position σf .
Hence, clearly at some point we will reach either [C1] or [C2] of Step 2.a.(ii).
Therefore, the algorithm will definitely terminate.

The correctness of the algorithm follows immediately from Lemmas 1, 2, 6
and 7. Finally we analyze the running time of Algorithm CompareV as follows.

Lemma 8. Algorithm CompareV runs in O(n + |Π|) time and space.

Proof. Proof will be provided in the journal version.

Note that a naive O(n2) rendition of this algorithm was proposed by a reviewer
in [DDS-13].
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3 Conclusion

Lexicographic orderings have also been considered in the case of parallel com-
putations: for instance, an optimal algorithm for lexordering n integers is given
in [I-86], and parallel Lyndon factorization in [DIS-94, DDIS-13]. Analogously,
we propose future research into parallel forms of V -ordering strings.
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Abstract. Sequential agglomerative hierarchical non-overlapping
(SAHN) clustering techniques belong to the classical clustering methods
that are applied heavily in many application domains, e.g., in cheminfor-
matics. Asymptotically optimal SAHN clustering algorithms are known
for arbitrary dissimilarity measures, but their quadratic time and space
complexity even in the best case still limits the applicability to small
data sets. We present a new pivot based heuristic SAHN clustering
algorithm exploiting the properties of metric distance measures in order
to obtain a best case running time of O(n log n) for the input size n. Our
approach requires only linear space and supports median and centroid
linkage. It is especially suitable for expensive distance measures, as it
needs only a linear number of exact distance computations. In extensive
experimental evaluations on real-world and synthetic data sets, we
compare our approach to exact state-of-the-art SAHN algorithms in
terms of quality and running time. The evaluations show a subquadratic
running time in practice and a very low memory footprint.

Keywords: SAHN clustering, nearest neighbor heuristic, data mining.

1 Introduction

Clustering is a generic term for methods to identify homogeneous subsets, so-
called clusters, in a set of objects. It is a key technique in exploratory data anal-
ysis and widely applied in many fields like drug discovery, storage and retrieval,
network analysis and pattern recognition [4,12]. A wealth of different clustering
algorithms have emerged with varying definition of homogeneity. Typically this
definition is based on a symmetric dissimilarity measure for pairs of objects.

A special class of clustering algorithms are hierarchical methods, which
provide additional information on the relationship between clusters and can
reveal nested cluster structures. A prominent example are sequential agglom-
erative hierarchical non-overlapping clustering techniques (SAHN) [12]. These
approaches start with singleton clusters and iteratively merge two clusters with
minimal dissimilarity until only one cluster remains. The inter-cluster dissimi-
larity is determined by a linkage strategy and based on the dissimilarity of the
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objects contained in the clusters. The single, complete, average, median, centroid,
and Ward linkage methods are well-studied and widely used [11]. A unique ad-
vantage of hierarchical methods is that the result can naturally be visualized as a
dendrogram, a rooted binary tree where each node is linked to a merge operation
with a certain dissimilarity. Cutting the dendrogram horizontally at a specific
height leads to a set of subtrees where each root is associated with a subcluster.
Thus, the result of SAHN clustering allows for iterative refinement of clusters
making these methods especially suitable for an interactive exploration process,
even for very large data sets [3].

We motivate further requirements for our clustering algorithm by a concrete
example arising in cheminformatics, although similar constraints apply in other
application areas: (1) Data sets in cheminformatics are often large containing
tens of thousands of molecules. (2) A hierarchical method is needed since the
whole similarity structure of the data is important. Furthermore, SAHN cluster-
ing methods are well-known and studied in cheminformatics [4] and users may
be accustomed to dendrogram representations. (3) Support for arbitrary metric
distance measures is required, since chemical compounds are complex structures,
which are typically represented as graphs or bit vectors, so-called fingerprints.
(4) Distance measures between these objects may be expensive, e.g., based on
the maximum common subgraph of two molecular graphs. Thus, we desire a low
dependence on the computational complexity of the distance measure.

A major drawback of hierarchical clustering algorithms is their high time and
space complexity. The best exact algorithms known for arbitrary dissimilarity
measures have a worst-case running time of O(n2) [6] and are optimal since the
general problem requires time Ω(n2) [13]. Exact approaches are typically based
on a symmetric distance matrix, which leads to quadratic memory requirements
and a quadratic number of distance computations. However, quadratic time and
space complexity is prohibitive when applied to large data sets in practice.

Related Work. Several exact algorithms with quadratic worst-case running time
are known, some of which are limited to specific linkage methods, e.g., the NN-
Chain algorithm [11], the single linkage minimum spanning tree algorithm [16]
and methods based on dynamic closest pairs [6]. Some SAHN algorithms (e.g.,
NNChain) can avoid the quadratic distance matrix when using representatives,
e.g., centroids, for cluster representation. However, this approach is limited to
vector space and leads to an increased amount of exact distance computations.

Several methods to speed up clustering have been proposed. Data summariza-
tion is a common acceleration technique. An easy approach is to draw a random
sample and cluster it instead of the whole data set. However, using random
sampling leads to distortions in the clustering results. The kind of distortion is
influenced by the used linkage method and because of this, many sophisticated
summarization techniques are only suitable for special linkages. For example Pa-
tra et al. [15] proposed to use an accelerated leaders algorithm to draw a better
sampling for average linkage. Another example is the Data Bubble summariza-
tion technique [2,21], which was originally developed for OPTICS clustering [1],
but is also suitable for single linkage SAHN clustering.
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Further acceleration is possible when using heuristic methods. Koga et al. [8]
proposed Locality Sensitive Hashing (LSH) for a single linkage like algorithm. Its
time complexity is reduced to O(nB), where B is practically a constant factor.
Although the runtime is very promising, it relies on vector data and is limited
to single linkage, which is rarely used in cheminformatics.

Using the properties of metric distance functions is a common approach to
accelerate different clustering techniques. Pivot based approaches have been pro-
posed to reduce the number of exact distance computations for hierarchical clus-
tering [14] and to speedup k-means [5]. To accelerate OPTICS a pivot based
approach for heuristic k-close neighbor rankings was proposed by Zhou and
Sander [19,20]. They also introduced a pivot tree data structure that enhances
the effectiveness of the pivots for close neighbor rankings. SAHN clustering al-
gorithms often rely on nearest neighbor (NN) queries (e.g., NNChain, Generic
Clustering [13], Conga Line data structure [6]), which can be accelerated for met-
ric distance functions [18]. However, the reduction of the NN search complexity
does not necessarily reduce the asymptotic runtime of the clustering algorithms
(see Sect. 3 for more details).

Our Contribution. We propose a new SAHN clustering algorithm for centroid
and median linkage that benefits from sublinear NN queries and combine it with a
pivot based indexing structure to obtain subquadratic running time in practice.
The theoretical time complexity of our algorithm for clustering n objects is
O(n2 log n) in the worst case and O(n log n) in the best case. Our approach
is broadly applicable since it is not limited to the Euclidean vector space and
many dissimilarity measures actually are metrics. Moreover, the new method
requires only linear space and a linear number of distance computations and
therefore allows to cluster large data sets even when distance computations are
expensive. Our extensive experimental evaluation on a real-world data set from
cheminformatics and on two synthetic data sets shows that the new method
yields high-quality results comparable to exact algorithms, in particular when
the data sets indeed contain a nested cluster structure. To our knowledge there
are no other competing heuristic SAHN algorithms for general metric space
supporting centroid or median linkage.

2 Preliminaries

A clustering of a set of objects X = {x1, . . . , xn} is a partition C = {C1, . . . , Ck}
of X . A hierarchical clustering of n objects yields n distinct clusterings ob-
tained from cutting the associated dendrogram at different heights. We refer to
a clustering that results from such a cut and contains i clusters as the cluster-
ing at level i ∈ {1, . . . , n}. SAHN clustering is performed based on a distance
function d : X × X → R

≤0 between the objects and an inter-cluster distance
D : P(X )× P(X ) → R

≤0 which is also called linkage.
Let P ⊂ X be a set of pivots. The triangle inequality in combination with the

symmetric property fulfilled by metric distance functions yields lower and upper
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bounds for the distances between any two objects based on the exact distances
between the objects and the pivots:

∀xi, xj ∈ X , p ∈ P : |d(xi, p)− d(xj , p)| ≤ d(xi, xj) ≤ d(xi, p) + d(xj , p) (1)

In the following we are using the tilde and the hat to denote heuristic methods,
e.g., ÑN and N̂N refer to a heuristic NN search.

3 A Heuristic SAHN Clustering Algorithm

We present a heuristic SAHN (HSAHN) algorithm that is based on a variation of
the generic clustering algorithm from [13] and utilizes an index structure for NN
search. To efficiently determine heuristic NNs we adopt the approach of [20,19]
based on best frontier search combined with a pivot tree and generalize it to
support the specific requirements for use with SAHN clustering.

3.1 Generic Clustering

The original generic clustering algorithm has a complexity of Ω(n (log n+k+m))
and O(n2 (logn + k)) for geometric linkages in vector space and Ω(n2) for ar-
bitrary linkages and distance measures. The value k is the complexity of the
NN search and m the complexity of the merge process. Although other SAHN
clustering algorithms have a quadratic upper bound, the practical runtime of the
generic clustering competes with the other algorithms [13] and is orientated to-
wards the lower bound. Our modified version of the generic clustering algorithm
(Alg. 1) achieves Ω(n (log n + k +m)) for arbitrary linkage and distance mea-
sures and therefore the lower bound directly depends on the complexity of the
NN search. This is also the case for the NNChain algorithm, but it requires the
reducibility property, which is not guaranteed for heuristic NN searches. Note
that HSAHN requires a metric distance function and is therefore limited to me-
dian and centroid linkage, but this is due to the NN search and not a limitation
of the clustering algorithm.

Besides the runtime improvement, we modified the generic clustering algo-
rithm in order to minimize distance distortions caused by our heuristic NN
search. Our heuristic NN search N̂N(C) also calculates a non-symmetric, heuris-
tic distance D̂(C, N̂N(C)) (see Sect. 3.3 for more details). Since we use the lower
bound of (1), we know that:

D(C, N̂N(C)) ≥ max{D̂(C, N̂N(C)), D̂rev := D̂(N̂N(C), C)}

It is possible to detect some cases where D̂ is smaller than D̂rev without recalcu-
lating the distance over all pivots. For symmetric distance measures the minimal
pairwise distance implies a reciprocal NN pair. Although this assumption does
not hold for the used heuristic NN search, it does hold with a high probability.
In such a case, we can use the already computed reverse distance and improve
the quality of our heuristic by reinserting the tuple (C, N̂N(C)) in the priority



94 N. Kriege, P. Mutzel, and T. Schäfer

1: function genericClustering(X )
2: currentLevel ← singletonClusters(X ) Δ clusters of the actual level
3: for all C ∈ currentLevel do Δ initialization of Q
4: Q.insert(C, N̂N(C), D̂(C, N̂N(C))) Δ Q is sorted by D̂(C, N̂N(C))

(value at the time of insertion)
5: while currentLevel.size() > 1 do Δ main loop
6: (Ci, Cj) ← Q.extractMin()
7: while not currentLevel.contains(Ci) or not currentLevel.contains(Cj) do

Δ invalid entry → recalculation of NN
8: if currentLevel.contains(Ci) then
9: Q.insert(Ci, N̂N(Ci), D̂(Ci, N̂N(Ci)))

10: (Ci, Cj) ← Q.extractMin()

11: if N̂N(Cj) = Ci and D̂(Ci, Cj) < D̂(Cj , N̂N(Cj)) then
Δ using already calculated N̂N(Cj)

12: Q.insert(Ci, Cj , D̂(Cj , N̂N(Cj)))
13: continue
14: Ck ← mergeCluster(Ci, Cj) Δ (Ci, Cj) minimal N̂N pair
15: currentLevel ← currentLevel \ {Ci, Cj} ∪ Ck

16: Q.insert(Ck, N̂N(Ck), D̂(Ck, N̂N(Ck)))

17: return currentLevel.get(0) Δ return root node of the dendrogram

Algorithm 1. Modified Generic Clustering Algorithm

queue with the distance max{D̂, D̂rev} (lines 11−13 of Alg. 1). Our benchmarks
have proven that this approach is faster than recalculating the distance over all
pivots and it does not harm the observed clustering quality.

3.2 Pivot Tree

As mentioned before, we are using the lower bound of (1) for heuristic distance
approximations:

D̃(Ci, Cj) = max
p∈P

|D({p}, Ci)−D({p}, Cj)| (2)

To increase the effectiveness of the pivots for close or NN queries Zhou and
Sander proposed a pivot tree data structure [20]. The main idea behind this struc-
ture is that the heuristic distance between close objects must be more precise
than between further objects to calculate the correct close or nearest neighbors.
In our case we determine NNs according to:

ÑN(Ci) = argminCj
{D̃(Ci, Cj)} (3)

The original pivot tree is a static data structure. In contrast SAHN clustering
merges clusters and therefore we extended the data structure to allow deletion
and insertion of objects and clusters, respectively. Additionally we used a dif-
ferent strategy to calculate the heuristic distances within the pivot tree and a
simplified notion.
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X
P = {p1, . . . , pf}

Xp1

Pp1 = {p11, . . . , p1f}

Xp11

Pp11 = {p111, . . . , p11f}
Xp1f

Pp1f = {p1f1, . . . , p1ff}

Xpf

Ppf = {pf1, . . . , pff}. . .

. . . . . .
...

Fig. 1. Pivot Tree

As shown in Fig. 1 each node of the pivot tree is linked to a set of singleton
clusters X and a set of pivots P ⊆ X . The set of pivots is randomly chosen from
X . One child node is created for each pivot. The set X belongs to the root node
and contains all clusters, while the set Xpi of any child node contains all nodes
from X which are closest to pi. Therefore all clusters in Xpi are relatively close
to each other. The calculation of the heuristic distance D̃(Ci, Cj) is performed
according to (2) based on the common pivots Pi∗j :

Pi∗j = {p ∈ Pk | Ci, Cj ∈ Xk}

It is computationally cheap to compute Pi∗j since we know that each cluster is
present only on the direct path from a leaf to the root node. To find the leaf node
in constant time we store this relationship in a hashing data structure during the
construction process. The relevant nodes for Pi∗j are all ancestors of the lowest
common ancestor (LCA) of the leaf nodes for Ci and Cj and the LCA itself.

The construction process starts with the root node followed by a series of split
operations until a maximum number of leaf nodes is reached. Each split operation
creates the child nodes for a leaf node with maximum number of clusters. At
construction time the data structure contains all singleton clusters.

The deletion of a cluster C from the pivot tree is simply the removal of C
from all Xi. Inserting a merged cluster Ci∗j into the data structure is a bit more
complicated since we cannot compute the exact distances to all pivots efficiently.
It can be done efficiently with the Lance Williams Update Formula [9] for all
ancestors of the LCA of Ci and Cj , because we know the distance of both clusters
to the nodes pivots and we can use D̃ as distance between the merged clusters.
This approach has the drawback that the depth of the pivot tree will decrease
over a series of merge operations. However, this will happen relatively late in the
merge process because close clusters will be merged first during SAHN clustering.
Also the locality property of clusters in X will not be violated.

3.3 Best Frontier Search

The best frontier search was already suggested to accelerate the OPTICS clus-
tering algorithm in [19,20]. We will briefly describe the main idea below.
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When ordering all clusters by their distance to a single pivot p, the heuristic
distances D̃(Ci, Cj) to a fixed cluster Ci are monotonically increasing when Ci

and Cj are further away in the ordering. Hence, it is sufficient to consider the
neighbors of Ci (in the ordering) to find Ci’s NN with respect to a single pivot.

Typically more than one pivot is needed to achieve sufficient quality and the
minimal maximum lower bound is what we are searching for. The best frontier
search solves this problem by calculating a sorted list Lp of clusters for each
pivot p. To find the position of a cluster in Lp in constant time, the clusters are
linked to their list elements. Furthermore the best frontier search uses a priority
queue which contains entries of these lists that form the frontier. It is sorted by
the lower bound with respect to the single pivot to which the entry belongs.

When searching an NN of C, the queue initially contains all clusters next
to C in a list Lp for some p ∈ P . Then the clusters with the lowest bounds
are successively extracted from the queue and it is counted how often a certain
cluster is retrieved. After the retrieval of each cluster Cx the frontier is pushed
by adding the cluster to the queue that is next to Cx in the list Li from which
Cx was added to the queue. The cluster Cj that is first counted |P | times is
the heuristic NN with respect to (3). The rationale is that the lower bounds
induced by the clusters retrieved from the queue are monotonically increasing.
That means all lower bounds which will be obtained in the future are greater
than the heuristic distance D̃(Ci, Cj) and therefore Cj must be the heuristic NN
of Ci.

To combine the pivot tree with the best frontier search, Zhou and Sander run
a k-close neighbor ranking for each node of the pivot tree and join the different
close neighbors for each object afterwards. This approach is not feasible for
SAHN clustering since we cannot efficiently determine which of the heuristic NNs
found for each node is the best. Furthermore it is possible that the heuristic NNs
found for each node are not correct with respect to (3), while the best frontier
search in general can guarantee to find the correct heuristic NN. For that reason
we need to use a different technique which will be described below.

Our integration of the best frontier search into the pivot tree runs an NN
query for cluster Ci over all pivots p ∈ Px where Ci ∈ Xx. While searching for
the NN of Ci the cardinality of Pi∗j is not fixed for an arbitrary cluster Cj .
Therefore it must be calculated for each cluster Cj that is retrieved from the
frontier separately. The value can be calculated by finding the LCA of Ci and
Cj in the pivot tree and counting the number of all pivots on the path between
the LCA and the root node. To avoid unnecessary calculations, it is computed
on demand and cached for the time of the NN query.

Because the asymptotic worst case complexity of an NN query with the best
frontier search is not better than linear (see Sect. 3.4), a search depth bound s
is used. After s clusters are retrieved from the priority queue the best frontier
search is stopped and the cluster that is counted most often is returned as an
NN. We use the terms N̂N and D̂ for the search bounded NN search and distance.
Note that the search bound is also the reason for the asymmetric behavior of D̂.
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3.4 Theoretical Complexity

Time Complexity. To initialize the pivot tree data structure n clusters are as-
signed to f pivots on each level of the tree. The construction of the pivot tree
therefore needs Θ(d f n) time where d represents the tree depth. Since the
number of required pivots for achieving a certain quality does not depend on
the input size (Sect. 4), f and d can be considered constant and the overall
construction time is linear.

As mentioned before, the modified generic clustering algorithm has a runtime
of Ω(n (logn+ k +m)) and O(n2 (logn+ k)), if k is the complexity of the NN
search and m the complexity of the merge process. The merging consists of two
deletions from and one insertion into the pivot tree. Therefore, the complexity
for merging is O(d logn) as it takes O(logn) time to insert a cluster into a
sorted list Li. The search of an NN is bounded by O(p s) if p is the number
of the used pivot elements and s the search depth bound. The runtime includes
O(s) extractions from the frontier queue with length O(p). Pushing the frontier
and finding the initial elements in Li for each pivot takes constant time. With
the same rationale as before, p can be considered constant. It is shown in the
experimental evaluation in Sect. 4 that s can be chosen as a constant value, too.

The overall time complexity for HSAHN clustering is therefore bounded by
O(n2 log n) in the worst case and O(n logn) in the best case.

Space Requirements. Since the tree depth d is a constant factor and therefore
the number of nodes is also a constant, the pivot tree needs only linear space.
Each node stores a constant number of sorted lists Li which store at most n
clusters. The hash table (to find the leaf nodes), the priority queue in the generic
clustering algorithm and the frontier queue require O(n) space. Therefore the
overall space requirements are linear with respect to the input size.

4 Experimental Results

This section will cover performance and quality measurements of our Java im-
plementation. All tests were performed on an Intel Core i7 CPU 940 (2.93GHz)
with a Linux operating system and a Java HotSpot virtual machine (version
1.6), which was limited to 5 GB of heap space. The implementation as well as
the evaluation framework is publicly available at the Scaffold Hunter Website1
and licensed under the GPLv3.

We used real-world as well as synthetic data sets2 for the evaluation. The
real-world data set (SARFari kinase) stems from the ChEMBL3 database and
contains a set of ≈ 50 000 molecules. The Euclidean and Tanimoto distances
are utilized for this data set. The latter is applied to Daylight bit fingerprints
(1024 bits), which represent structural information of the molecules and were
generated with the toolkit CDK4. Two synthetic euclidean data sets are used
1 http://scaffoldhunter.sourceforge.net
2 https://ls11-www.cs.tu-dortmund.de/staff/schaefer/publication_data
3 https://www.ebi.ac.uk/chembldb
4 http://cdk.sourceforge.net

http://scaffoldhunter.sourceforge.net
https://ls11-www.cs.tu-dortmund.de/staff/schaefer/publication_data
https://www.ebi.ac.uk/chembldb
http://cdk.sourceforge.net
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(a) Unbounded Search Depth (b) Complete Kinase Data Set

Fig. 2. Runtime / Kinase Data Set / Tanimoto Distance

to analyze the impact of the clusterability on the quality. The first contains
uniformly distributed data and the second 32 normally distributed and well-
separated clusters.

All quality measurements are done by comparing each level of the HSAHN
results with the exact results. The Fowlkes Mallows Index (FMI) [7] and the
Normalized Variation of Information (NVI) [10] measurement are employed to
measure each single level. The first produces very differentiated results for dif-
ferent settings while the second is less sensitive to the number of clusters. All
test results are averaged over three runs, because the random selection of pivots
results in a non-deterministic behavior of the algorithm. Without an exception
the differences were very small and the results were stable over different runs. In
the plots the parameters of the best frontier search are noted as (f ; l; s), where
f is the number of pivots per node, l is the number of leaf nodes and s is the
search depth bound. Note that l = 1 means that the pivot tree is deactivated.

Speed. As shown in Fig. 2(a) the performance of the algorithm scales linear with
the number of pivots. For the unbounded search depth the empirical runtime
behavior is clearly quadratic and the absolute runtime for a high pivot count
even exceeds the runtime of the exact algorithm. It is noteworthy that the num-
ber of leaves in the pivot tree does not have a major influence on the overall
performance. With a reasonable set of parameters (the rationale follows in the
quality evaluation) the time to cluster the whole kinase data set (Fig. 2(b)) is
much lower than for the exact case. The heuristic curve flattens in the higher
levels. Therefore the observed behavior is subquadratic.

It is important to know that we were unable to cluster a data set with 30 000
structures with the exact algorithm due to memory constraints. On the contrary,
the heuristic clustering algorithm used less than 1 GB of memory to cluster the
whole kinase data set.

Quality - Pivot Count and Pivot Tree. From the theoretical point of view more
pivots should result in a better quality of the best frontier search. However, our
test results do not show significant differences in quality if the number of pivots
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(a) Quality: Number of Pivots (b) Quality: Search Depth

Fig. 3. Kinase Data Set / Euclidean Distance (5 Dimensions)

(a) Synthetic Data Sets (b) Ambiguity: Kinase / Tanimoto

Fig. 4. Influence of the Data Distribution

are increased over a certain threshold. From our observations the main aspect
that influences this threshold is the intrinsic dimensionality of the data and not
the input size. Figure 3(a) clearly shows that there is no significant difference
in quality if no pivot tree and 5, 20 or 50 pivots are used. Anyway, when using
the pivot tree data structure, the quality can be enhanced further. This is a
remarkable result, as the runtime of the setting (50; 1;∞) is more than 10 times
higher than the runtime of the setting (5; 100;∞).

Quality - Search Depth and Ambiguity. The search depth is limiting the runtime
of the best frontier search. Therefore it is very important to know, if the search
depth can be chosen in a sublinear relation to the input size, while retaining
a constant quality. Our tests revealed that this search bound can be chosen
constant. For this we calculated an average quality score over all levels but the
lowest 10% (e.g., level 9 001 to 10 000 for the input size 10 000) and compared
these values for different fixed search depths over a series of different input sizes.
Also for very low search depths the quality was constant over all input sizes. The
reason to not use the lowest 10% is that these levels are strongly influenced by
the starting situation where both clusterings contain only singletons.
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The experimental evaluation showed that the search depth can be chosen
about 500 in the low dimensional euclidean space (Fig. 3(b)). Lower values sig-
nificantly harm the quality of the results. The search depth seems to be sensitive
to the number of pivots used and the dimensionality of the data. The first ob-
servations are not surprising, since an increased amount of pivots increases the
exit condition in the best frontier search loop. The second observation can be
explained by the distribution of the distances. For high dimensional space the
distances become more equal to each other. Equal distance means that even a
small deviation of the lower distance bound (1) results in a higher probability,
that this item is retrieved falsely from the frontier.

This observation also explains why the quality of the Tanimoto measurement
(Fig. 4(b)) is lower than the quality of the Euclidean measurement and why the
limitation of the search depth has such a huge impact. The number of different
distances for the Tanimoto distance is limited by the length of the Farey sequence
which is 3n2

β2 , where n is the bit count. For a data set size of 10 000 this means
that the number of object pairs is about 300 times higher than the number of
distinct distance values. This leads to a high ambiguity in the clustering process
and makes the results even unstable when comparing two exact algorithms. It is
a general problem, that alternative equally good clusterings are not adequately
scored by such a measure.

The peak in Fig. 4(b) at level 5 000 is also explainable when having a look at
Fig. 4(a). If we have separated clusters inside the data set, the quality is good at
exactly the level which corresponds to the number of clusters. This implies that
we are able to identify real clusters in a data set with the HSAHN algorithm
albeit the clustering quality might not be very well over all levels. This conclusion
is very important because it proves the practicability of our approach.

5 Conclusions

Our tests show that the HSAHN algorithm can greatly expand the size of data
sets which can be clustered in a reasonable amount of time. Furthermore the
memory usage is lowered dramatically, which often sets a hard limit to the data
set size. The linear dependence on exact distance calculations makes it possible
to use computationally expensive distance measures even on huge data sets.

Our approach was integrated in the software Scaffold Hunter [17], a tool for
the analysis and exploration of chemical space, and has been proven a valuable
alternative to exact approaches in practice.
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Abstract. This paper studies the problem of broadcasting successive
chunks to all nodes in a network under an assumption such that each
node can upload a chunk to exactly one node at a time. This models
the delivery of a video stream in a Peer-to-Peer (P2P) network in which
chunks of a stream are successively given by the media server. We propose
two schemes for solving the problem. The first scheme attains an opti-
mum broadcast time of ⊆lg n∩ steps, where n is the number of nodes, using
an overlay network in which each node has O(lg2 n) children. The second
scheme reduces the number of children by slightly increasing the broad-
cast time. More concretely, it completes each broadcast in lg n + o(lg n)
steps when the number of children is bounded by O((f(n))2) for any
function satisfying f(n) = Π(1) and f(n) = o(n).

Keywords: Peer-to-Peer video streaming, scheduling, optimum broad-
cast time.

1 Introduction

Consider a distributed system consisting of n homogeneous computers called
nodes. Let V denote the set of nodes. All nodes in V are synchronized to a global
clock and can directly communicate with each other by using an appropriate
routing protocol such as OSPF (Open Shortest Path First) and BGP (Border
Gateway Protocol). Each time slot of the global clock is called a step. Let t
denote the step number of the global clock starting from t = 0. In each step,
each node can send a chunk of data stream to exactly one receiver in V , whereas
it is allowed to receive any number of chunks from other nodes in the same
step, i.e., we assume that the download capacity of each node is sufficiently large
compared with the upload capacity and that the simultaneous upload to several
nodes is not allowed . Such a restricted model of communication is referred to as
the serial communication model (or the single-port communication model [4, 5])
in the literature.

Let s (�⊆ V ) be a special node called source. The source issues several chunks
(of a data stream) which should be received by all nodes in V , i.e., we are
considering a situation in which the source is a publisher and the other nodes
are subscribers. The broadcast time of chunk ci is defined as Πi −αi where αi

is the time step at which ci is given to the first node in V and Πi is the earliest
time step at which ci is received by all nodes in V . The problem we will consider

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 102–113, 2014.
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in the current paper is to minimize the maximum broadcast time (MBT, for
short) over all chunks provided that ci is given to the source in the ith step for
all i ≥ 0. We do not mind the order of chunks received by each node, e.g., we
allow each node to receive ci+1 earlier than ci. The reader should note that if we
attain an MBT of M steps, then any node will receive ci no later than M − 1
steps after receiving ci+1, i.e., the size of input buffer can be bounded by M .

The problem of minimizing MBT was proposed by Liu as a part of the study
of efficient dissemination of video streams in Peer-to-Peer (P2P) environment
[9]. Liu proved that there exists a broadcasting scheme which attains MBT
of ∅lg n� steps, where lg n is the logarithm of n to base two. Note that this
bound is optimum for the MBT of successive broadcast since under the serial
communication model, the number of nodes which received a chunk becomes at
most double in each step and the source can spend exactly one step for each
chunk. More recently, a variant of the problem in which the number of possible
children of each node is bounded by a constant was extensively investigated by
Bianchi et al. [1]. Note that in Liu’s model, there is no such limitation on the
number of possible children, while it is trivially bounded by at most n. If the
number of possible children of each node is bounded by one, i.e., if the successor
of each node is fixed to a node, we can easily have a tight bound of n − 1 steps
since the propagation of chunks along one-dimensional chain of length n is the
unique solution. On the other hand, if each node can have at most two children,
where of course, it can send a chunk to at most one child at a time, a chunk
given to the source in the 0th step is received by at most Fi nodes in the ith

step, where Fi is the ith Fibonacci number1. Bianchi at al. generalized the above
result to the cases in which the possible number of children is bounded by a
constant greater than two, and derived an optimum broadcast scheme for such
cases. Some other researches pointed out that the structure of the overlay plays
an important role in realizing a short broadcast time in P2P streaming systems
[2, 3, 6–8, 10–15].

In this paper, we propose two schemes to broadcast successive chunks with
small MBT. The first scheme attains optimum MBT of ∅lg n� steps for any
n ≥ 1 using an overlay network in which each node has O(lg2 n) children. This
scheme is an explicit implementation of the snow ball scheme suggested by Liu
in [9], where the reader should note that in his paper, Liu merely pointed out
the existence of such scheme and did not give a concrete way to realize MBT
of ∅lg n� steps. In [1], Bianchi et al. also pointed out that such a bound could
be attained if the number of possible children of each node is not bounded, but
they did not give a concrete scheme as well. In this sense, our scheme is the first
scheme which explicitly gives a way to realize an optimum MBT. Our second
scheme reduces the number of children of each node by slightly increasing the
broadcat time. More concretely, it completes each broadcast in lg n + o(lg n)

1 We can prove the claim by mathematical induction, i.e., in the ith step, nodes which
received the chunk in the (i − 1)st and (i − 2)nd steps can send the chunk to the
next nodes.
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steps when the number of children is bounded by O((f(n))2) for any function
satisfying f(n) = ω(1) and f(n) = o(n).

The remainder of this paper is organized as follows. Section 2 introduces
several definitions used in the proposed schemes. Sections 3 and 4 describe our
first and second schemes, respectively. Finally, Section 5 concludes the paper
with future work.

2 Preliminaries

In this paper, we assume n = 2m + α for some m ≥ 2 and 0 ≤ α < 2m. Note
that the case of “α = 0” corresponds to the most critical situation for “optimal”
broadcast schemes, since in order to attain MBT of m (= ∅lg n�) steps, every
node must be busy all the time. Let x0, x1, . . . , xm−1 be a sequence of integers
defined as follows: 1) x0 := 1, and 2) xi := 2xi−1 for each 1 ≤ i ≤ m − 2. Note
that by definition, xm−2 = |V |/4 and

∑j
i=0 xi = 2xj − 1 hold for any j.

Let Bi denote a block consisting of xi nodes. As will be described later, our
first scheme statically partitions 2m nodes in V into several copies of blocks, in
the following manner:

1. 2m copies of block B0.
2. m − i − 1 copies of block Bi for each 1 ≤ i ≤ m − 2.

Remark 1. The total number of nodes in those copies of blocks is 2m.

Proof. See Appendix A.

An i-thread Ti is a collection of blocks defined as follows (in contrast to
blocks, threads will be dynamically constructed in the proposed scheme):

– T1 is a collection of two copies of B0.
– For each i ≥ 2, Ti consists of two copies of B0 and one copy of Bj for each

1 ≤ j ≤ i − 1.

In the following we distinguish two copies of B0 in each thread and call them as
left and right copies, respectively. It is worth noting that for any 1 ≤ i ≤ m− 1,
Ti consists of 2i nodes.

Note that Ti is associated with a set of nodes which received a chunk within
i steps under the normal broadcast scheme. More concretely, in an i-thread Ti

consisting of left and right copies of B0, say b10 and b20, and one copy of Bi for
each i, say bi, the broadcast of a chunk to all nodes in Ti proceeds as follows:

1. suppose b10 receives the chunk at time t = 0;
2. in the first step, b10 sends the chunk to b20;
3. in the second step, b10 and b20 send the received chunk to two nodes in b1 in

parallel;
4. in the third step, b10, b

2
0 and b1 send the received chunk to four nodes in b2

in parallel; and so on.
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In other words, in the jth step, all blocks which have received the chunk in
a previous step forward it to bj−1 in parallel. By conducting such a parallel
forwarding of chunks in a step, an i-thread grows to an (i + 1)-thread. Note
that all nodes belonging to such a “growing” i-thread are busy to disseminate
the chunk to the nodes which will become a new member of the same thread in
succeeding steps.

3 First Scheme

In this section, we describe the details of our first broadcast scheme which attains
an MBT of m steps for α = 0 and that of m + 1 steps for 0 < α < 2m. In the
following, after describing the basic scheme for α = 0 in Section 3.1, we will
extend it to the cases of 2m−1 ≤ α < 2m and 0 < α < 2m−1 in Sections 3.2 and
3.3, respectively.

3.1 Basic Scheme for α = 0

The broadcast of chunk ci is initiated by the source by generating a 1-thread
corresponding to ci and by sending ci to the left copy of block B0 in the thread.
Let ui be the node corresponding to the left copy, and without loss of generality,
let us assume that ui receives chunk ci at time t = 0. The received chunk is
forwarded to the right copy of B0 in the same thread at time t = 1, and in
the succeeding steps, ui disseminates chunk ci to all nodes in V by successively
growing the thread, in such a way that the size of the thread exactly doubles in
each step. More concretely, the 1-thread grows to a 2-thread at time t = 2, the
resulting 2-thread grows to a 3-thread at time t = 3, and so on. Such a grow of
thread is controlled by node ui. After becoming an (m− 1)-thread consisting of
2m−1 = |V |

2 nodes at time t = m − 1, the thread disappears in the next step.
Of course, to complete the broadcast of chunk ci, nodes in the (m − 1)-thread
must send ci to the remaining |V |

2 nodes in parallel at time t = m, but they can
receive chunks from other nodes at the same time, i.e., the word “disappear”
means that nodes contained in the (m−1)-thread will be used as a part of other
threads as a receiver while serving as a sender of chunk ci.

Such a dynamic behavior of the scheme, i.e., generation of a 1-thread, grow of
an i-thread, and disappear of an (m− 1)-thread, is realized by using the notion
of “pool of blocks.” Let S be a variable representing a pool of (copies of) blocks.
S is initialized to the collection of all copies of blocks obtained by partitioning V .
The generation of a 1-thread is easily done by picking up two copies of B0 from
the pool and by regarding them as a 1-thread. The disappear of an (m − 1)-
thread is also easily done by returning all blocks in the (m − 1)-thread to S.
Finally, in order to grow an i-thread to an (i + 1)-thread for i < m − 1, we first
pick up a copy of Bi from the pool and then add it to the tail of the i-thread
as the receivers of the nodes in the thread. More concretely, in each step of the
scheme, the following three operations are executed sequentially:
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1. Return of all blocks contained in an (m− 1)-thread Tm−1. Recall that Tm−1

consists of two copies of B0 and one copy of Bi for each 1 ≤ i ≤ m− 2. Note
that this operation is not executed in the initial m steps.

2. Pickup of two copies of B0 to generate a new 1-thread.
3. Pickup of a copy of Bi to grow an i-thread to an (i + 1)-thread for each

0 ≤ i ≤ m − 2.

The correctness of the scheme is clear. In addition, it takes m steps to broadcast
a given chunk to all nodes in V . Thus the following theorem holds.

Theorem 1. The basic scheme attains an MBT of m steps provided that
n = 2m.

As for the possible number of children of each node, we have the following
theorem.

Theorem 2. During the execution of the basic scheme, each node sends chunks
to at most (m−2)(m−1)

2 + 2 different nodes for any m ≥ 3.

Proof. See Appendix B.

3.2 Extended Scheme for 2m−1 ≤ α < 2m

The basic scheme proposed in the last subsection can be extended to the case
of |V | = 2m + α for some 2m−1 ≤ α < 2m, in the following manner. The reader
should note that since ∅lg |V |� = m+1, we can use one more step after completing
the broadcast to 2m nodes.

The extended scheme proceeds as follows. In the mth step of the broadcast
of a chunk, nodes in the (m − 1)-thread Tm−1 corresponding to the chunk tries
to grow (a part of) m-thread instead of completing the broadcast to 2m nodes
as was done in the basic scheme. The key idea is to conduct the forward of the
chunk to (a part of) the remaining 2m−1 nodes at the same time with the partial
grow of the m-thread. Since there are α − 2m−1 nodes which should receive the
chunk from Tm−1 in the mth step, 2m − α nodes in m− 1 threads organized for
the succeeding chunks can receive the chunk from Tm−1. Thus, in the (m + 1)st
step of the broadcast, it is enough to forward the chunk to the remaining α
nodes, which is always possible since the partial m-thread organized in the mth

step contains α nodes.
As for the analysis of value ν(u, t), a similar argument to the case of |V | = 2m

holds for 1 ≤ t ≤ m − 1 and t = m + 1. When t = m, α − 2m−1 nodes in Tm−1

send the chunk to α − 2m−1 nodes to grow a partial m-thread, which can be
done in the same way to the basic scheme, and the remaining 2m − α nodes in
Tm−1 send the chunk to 2m −α nodes in m−1 threads organized for succeeding
chunks, which can be done by fixing the type of block of the receiver for each
sender, i.e., ν(u, m) ≤ m for such u.

Hence we have the following claim.

Corollary 1. When 2m−1 ≤ α < 2m, a variant of the basic scheme attains an
MBT of m + 1 steps and during the execution of the scheme, each node sends
chunks to at most O(m2) different nodes for any m ≥ 3.



Optimal Serial Broadcast of Successive Chunks 107

3.3 Extended Scheme for 0 < α < 2m−1

This subsection outlines a way of extending the basic scheme to the case of
0 < α < 2m−1. Recall that in the basic scheme, after completing the (m − 1)st
step, the chunk to be broadcast is held by 2m−1 nodes in an (m − 1)-thread
Tm−1 and those nodes are used to forward the chunk to the remaining 2m−1

nodes in a single step. The key point of our extension is to separate the parallel
forwarding of the chunk in the mth step into two types, i.e., one-step forwarding
and two-step forwarding. More concretely, 2m−1 −α nodes in Tm−1 forward the
chunk to the nodes in the succeeding m threads in a single step, whereas the
remaining α nodes forward the chunk through α additional nodes which are not
contained in any of m+1 threads including Tm−1. In other words, such α nodes
are used merely to relay chunks to α nodes in the succeding m threads. Such a
modification of the scheme does not increase the maximum number of children
of nodes in the resulting broadcast trees. Hence we have the following claim.

Corollary 2. When 0 < α < 2m−1, a variant of the basic scheme attains an
MBT of m + 1 steps and during the execution of the scheme, each node sends
chunks to at most O(m2) different nodes for any m ≥ 3.

4 Second Scheme

By allowing more steps, we could significantly reduce the number of children of
each node in the overlay. In this section, we describe the details of our second
scheme which is designed to achieve such a significant reduction.

4.1 Outline

Recall that in the first scheme, we can broadcast each chunk to n nodes in ∅lg n�
steps using an overlay in which each node has O(lg2 n) children. Let C(n) denote
the overlay, and let us assume that n is a power of two. C(n) has a capability
of forwarding each chunk to n/2 “outside” nodes in the (lg n)th step of the
broadcast of the chunk, if we allow that n/2 nodes in the overlay receive the
chunk later than the (lg n)th step. Let f be a function such that f(n) = ω(1),
f(n) = o(n) and f(n) is a power of two for any n ≥ 1. The key idea of our second
scheme is to use C(f(n)) as a basic component and to connect n/f(n) copies
of such component to form a (f(n)/2)-ary tree of depth lgn

lg f(n)−1 + O(1). The
out-degree of each node within each component is O(f(n)2) by Theorem 2, and
as will be described later, those components are connected so that each node has
O(f(n)) nodes as possible children in other components; i.e., the out-degree in
the overall network is bounded by O(f(n)2). Since the dissemination of chunk to
a half of nodes in each component takes lg f(n) steps by assumption, even if the
connection between two components in the tree consumes a constant number
of steps, we can disseminate each chunk to at least n/2 nodes in lg n + o(lg n)
steps. Thus, if we could complete the broadcast to all nodes in the network by
spending o(lg n) more steps, we will have the following theorem on the second
scheme.
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C0 
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l-1 steps l-1 steps 
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Fig. 1. Connection of basic components in the second scheme

Theorem 3. The second scheme completes the broadcast of successive chunks in
lg n + o(lg n) steps using an overlay in which each node has O((f(n))2) children
for any f such that f(n) = ω(1) and f(n) = o(n).

4.2 Basic Component

Let � be a function from N to N such that �(n) = ω(1) and �(n) = O(lg n), where
N is the set of natural numbers. In the following, we denote �(n) as � if parameter
n is clear from the context. Consider 2�−1 + 1 copies of component C(2�), and
call them as C0, C1, . . . , C2�−1 . We will connect those copies by a collection of
links so that:

1. a node in C0 receives a chunk from the source in the first step,
2. the received chunk is disseminated to 2�−1−1 nodes in C0 in the succeeding

� − 1 steps (i.e., a half of nodes in C0 receive the chunk in the first � steps),
3. in the (� + 1)st step, each of those 2�−1 nodes forwards the chunk to a node

in a component so that exactly one node in Ci receives the chunk for each
1 ≤ i ≤ 2�−1, and

4. in the succeeding �− 1 steps, the received chunk is disseminated to 2�−1 − 1
nodes in Ci for each i (i.e., a half of nodes in Ci receive the chunk in the
next � steps).

See Figure 1 for illustration. In the following, we say that C0 is the parent com-
ponent of Ci and Ci is a child component of C0. Note that each child component
successively receives chunks from the parent component, and C0 simltaneously
forwards chunks to 2�−1 succeeding nodes in a successive manner.

The dissemination of chunks in each component is conducted as in the first
scheme except for the last one step (the design of links to be used in the last
step will be described later). Thus, each node has at most O(�2) children in each
component. In each step later than the (� − 1)st step of the broadcast of the
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Fig. 2. Connection of nodes in adjacent blocks (α = 4)

first chunk, nodes in component C0 dynamically organize � threads of different
sizes, i.e., two copies of 1-thread and one copy of i-thread for 2 ≤ i ≤ � − 1. In
addition, after the �th step of the broadcast of a chunk, all nodes contained in an
(�−1)-thread have successfully received the chunk. Any (�−1)-thread organized
during successive broadcasts consists of one left copy of B0, one right copy of
B0 and exactly one copy of Bi for each 1 ≤ i ≤ � − 2. Thus, the forwarding
of chunks from C0 to Ci is realized along a collection of static links connecting
nodes in C0 to nodes in the other components, in the following manner:

– For each i, component Ci contains � left copies of block B0, which are used to
receive chunks from the parent component. In the following, we call � nodes
in such copies of B0 the “originators” of component Ci.

– Each node in a left copy of B0 in C0 is connected to the originators of
component C1; i.e., each originator of C1 is connected with all originators
of C0 (Figure 2 (a)); each node in a right copy of B0 in C0 is connected to
the originators of C2 (Figure 2 (b)); two nodes in a copy of B1 in C0 are
connected with the originators of C3 and C4, respectively (Figure 2 (c));
and four nodes in a copy of B2 in C0 are connected with the originators of
C5, C6, C7 and C8, respectively, and so on (Figure 2 (d)).

Note that since each node in C0 has � children in the succeeding components,
we can still bound the number of children of each node in C0 by O(�2).

4.3 (2�−1)-ary Tree

By repeating the above parent-children structure, we have a (2�−1)-ary tree in
which the set of vertices corresponds to the set of components. Suppose that the
given set of n nodes is divided into n/2� components of size 2� each. The minimum
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height of (2�−1)-ary tree consisting of n/2� vertices is calculated as follows. Let T
be a (2�−1)-ary tree consisting of infinitely many vertices. Since there are 2j(�−1)

vertices at depth j in T , the number of vertices in a complete (2�−1)-ary tree of
depth h is given by

h∑

j=0

2j(�−1) =
2(h+1)(�−1) − 1

2�−1 − 1
.

Thus, the minimum depth of a (2�−1)-ary tree consisting of n/2� vertices is given
by the smallest integer h∗ satisfying the following inequality:

2(h
∗+1)(�−1) − 1
2�−1 − 1

≥ n

2�
.

By solving it, we have h∗ ≥ lgn
�−1 +O(1). Since each vertex in the tree associated

with a component consumes � steps for the broadcast of a chunk, the total
number of steps required for completing a dissemination of a chunk to a “half”
of nodes in V (recall that by changing the receiver in the (� + 1)st step of the
broadcast in C0 to the nodes in child components, a half of nodes in C0 can not
receive the chunk at that time) is

� × lg n

� − 1
+ O(�) =

(

1 +
1

� − 1

)

lg n + O(�) = lg n + o(lg n),

where the last equality is due to �(n) = ω(1) and �(n) = O(lg n). The above
analysis also indicates that by fixing � to an appropriate constant, we have a
scheme in which each node is connected with constant number of children. More
concretely, if � = 4, the out-degree of each node is bounded by (4−2)(4−1)

2 + 2 +

4 = 6
2 + 6 = 9 and the resulting broadcast time is

(
1 + 1

4−1

)
lg n + O(1) ≤

1.334 lgn+O(1). That is, the coefficient of lg n in the broadcast time is bounded
by 1.334. The result of similar analysis for small �’s is summarized in Table 1.

4.4 Backward Propagation of Chunks

Suppose that we complete the dissemination of a chunk, say c∗, to a half of nodes
in each non-leaf component and all nodes in each leaf component at time t = τ
(recall that in each component which has no children in the (2�−1)-ary tree, we
can complete the broadcast of c∗ in � steps using the basic scheme described in
Section 3). To complete the dissemination of c∗ to the remaining half of nodes
in non-leaf nodes by spending o(lg n) more steps, we slightly modify the way of
dissemination in each component as follows.

Let us assume � ≥ 2, without loss of generality. Recall that in the basic scheme,
each component contains two 1-threads, say T a

1 and T b
1 . At first, we partition

T a
1 into two 0-threads and remove one 0-thread (consisting of one node) from

the task of broadcasting within each component and the forwarding to a child
component. More concretely, we statically separate nodes in each component to
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Table 1. The performance of the second scheme, where the “broadcast time” represents
the coefficient of lg n in the broadcast time

α 4 5 6 7

out-degree 9 13 18 24
broadcast time 1.334 1.250 1.200 1.167

one excluded node and the remaining 2� − 1 nodes, and use the latter nodes for
the broadcasting and the forwarding of chunks. Let us call the excluded node
a preserved node. Note that by this modification, every component contains
exactly one preserved node.

Let us focus on preserved nodes in leaf components. Those nodes receive chunk
c∗ at time t = τ , by assumption. Since each child component receives c∗ from a
node in the parent component by postponing the forward of c∗ to a node, say
u∗, in the parent component, and since the preserved node is exempted from the
task of forwarding and broadcasting chunks, in the (τ + 1)st step, the preserved
node in the child component can send c∗ to node u∗ in the backward direction.
Since such a backward transmission is conducted from all children of the parent
component at the same time, in the (τ + 1)st step, all of the remaining nodes in
the parent component (including preserved node in the component) successfully
receive chunk c∗. Such a backward propagation of chunk is repeated until it
reaches the root component of the tree, and since the depth of the (2�−1)-ary
tree is (lg n)/(� − 1) + O(1), we can complete the broadcast to all nodes by
spending o(lg n) additional steps. It is not difficult to show that the number of
possible children of preserved nodes is bounded by O(�2) since the parent of each
component is statically determined. Hence Theorem 3 follows.

5 Concluding Remarks

This paper studies the problem of broadcasting several chunks in distributed
networks under an assumption such that each node can upload a chunk to exactly
one neighbor at a time and all chunks are successively given by the media server.
Such a delivery of successive chunks commonly occurs in P2P video streaming
systems such as SplitStream and CoolStreaming. We proposed two broadcast
schemes. When the given system consists of n nodes, the first scheme attains an
optimum broadcast time of ∅lg n� steps using an overlay network in which each
node has O(lg2 n) children, whereas the second scheme (significantly) reduces
the number of children by (slightly) increasing the broadcast time. An important
future work is to introduce the heterogeneity of nodes and links in the design and
analysis of optimal broadcast schemes. Performance evaluation using extensive
simulations is also an important issue to be addressed.
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A Proof of Remark 1

The number of nodes in the copies of blocks B1, . . . , Bm−2 is calculated as

m−2∑

i=1

(m − i − 1)xi =
m−2∑

j=1

j∑

i=1

xi =
m−2∑

j=1

(2xj − 2)

where the last equality is due to
∑j

i=0 xi = 2xj − 1 and x0 = 1. Thus, the
amount is represented as
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2
m−2∑

j=1

xj − 2(m − 2) = 2(2xm−2 − 2) − 2(m − 2) = 4 × 2m−2 − 2m.

Since there are 2m copies of block B0 consisting of one node, the remark follows.

B Proof of Theorem 2

Let ν(u, τ) denote the maximum number of nodes which have a possibility of
receiving a chunk from u in the τ th step of the broadcast of the chunk. In the
following, we will evaluate the value of ν(u, τ) for each 1 ≤ τ ≤ m. The case
of τ = 1 is obvious since ν(u, 1) = 1 if u is a node in the left copy of block B0

which (directly) receives a chunk from the source and ν(u, 1) = 0 otherwise. The
evaluation for 2 ≤ τ ≤ m − 1 is conducted as follows. Since there are m − j − 1
copies of block Bj for any 1 ≤ j ≤ m−2, for each 1 ≤ i ≤ m−3 and i < j ≤ m−2,
a copy of block Bi can have at most m− j−1 copies of block Bj as the successor
in the resulting broadcast trees. In addition, for any pair of copies of such Bi

and Bj , we can fix an injection from the set of nodes in the copy of Bi to the set
of nodes in the copy of Bj so that all nodes in the copy of Bj successfully receive
the chunk, say c∗, in the corresponding step, since when Bi sends c∗ to Bj , all
blocks in the j-thread containing Bj simultaneously send c∗ and the number of
nodes in the j-thread equals to the number of nodes in Bj . In the τ th step of the
broadcast of c∗, merely nodes in Bτ−1 receive c∗. Hence, for each 2 ≤ τ ≤ m−1,
ν(u, τ) ≤ m − τ for any u ⊆ V , i.e.,

∑m−1
τ=1 ν(u, τ) ≤ 1 +

∑m−2
i=1 i.

Finally, the value of ν(u, m) is evaluated as follows. Recall that in the mth

step, nodes in the (m − 1)-thread, which is organized in the (m − 1)st step
and disappear in the mth step, must send the received chunk, say c∗, to the
remaining |V |/2 nodes. Consider the following assignment of |V |/2 nodes in the
(m − 1)-thread to the remaining |V |/2 nodes:

– Nodes in (copies of) blocks B0, B0, B1, B2, . . . , Bm−3 in the (m− 1)-thread,
i.e., nodes which have received c∗ earlier than the (m−1)st step, are respon-
sible to send c∗ to the nodes in the (m− 2)-thread which is organized in the
(m−1)st step for the broadcast of the next chunk. Since there is a one-to-one
correspondence between such pair of node sets, we have ν(u, m) = 1 for such
u.

– Nodes in block Bm−2 in the (m − 1)-thread are responsible to send c∗ to
the remaining |V |/4 nodes, where the role of those nodes is fixed in advance
such that a node in block Bm−2 is responsible to send c∗ to a node in block
Bj for some fixed j. Since there are at most m copies of Bj for any j, we
have ν(u, m) ≤ m for such u.

Hence, we have
∑m

t=1 ν(u, t) ≤ ∑m−2
i=1 i + 2 for node u in a copy of block Bj for

some 0 ≤ j ≤ m−3 and
∑m

t=1 ν(u, t) ≤ m for node u in the copy of block Bm−2.
Since

∑m−2
i=1 i + 2 ≥ m for any m ≥ 3, the theorem follows.
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Abstract. We introduce the k-G-Packing with t-Overlap problem to
formalize the problem of finding communities in a network. In the k-G-
Packing with t-Overlap problem, we search for at least k communities
with possible overlap. In contrast with previous work where communities
are disjoint, we regulate the overlap through a parameter t. Our focus is
the parameterized complexity of the k-G-Packing with t-Overlap prob-
lem. Here, we provide a new technique for this problem generalizing the
crown decomposition technique [2]. Using our global rule, we achieve a
kernel with size bounded by 2(rk−r) for the k-G-Packing with t-Overlap
problem when t = r − 2 and G is a clique of size r.

1 Introduction

Many complex systems that exist in real applications can be represented by
networks, where each node is an entity, and each edge represents a relationship
between two nodes [10]. A community is a part of the network in which the nodes
are more highly interconnected to each other than to the rest [12]. To extract
these communities is known as the community discovering problem [1]. There are
approaches for this problem that determine separate communities [1,8]. However,
most real networks are characterized by well-defined communities that share
members with others [4,12]. Moreover, these approaches model a community
as a fixed graph G, when in real applications there are different models for
communities. To overcome these deficiencies, we introduce the k-G-Packing with
t-Overlap problem as a more realistic formalization of the community discovering
problem. To the best of our knowledge, the k-G-Packing with t-Overlap problem
has not been studied before.

In the k-G-Packing with t-Overlap problem, the goal is to find at least k
subgraphs (the communities) each isomorphic to a member of a family G of
graphs (the community models) in a graph H (the network) where each pair of
subgraphs can overlap in at most t vertices (the shared members).

A problem related to the k-G-Packing with t-Overlap problem when G is the
family of cliques is the cluster editing problem. This problem consists of modifying
a graph by adding or deleting edges such that the modified graph is composed
of a vertex-disjoint union of cliques. Some works have considering overlap in
the cluster editing problem [3,5]. Fellows et al. [5] proposed the conditions of
s-vertex overlap and s-edge overlap where each vertex and each edge, respec-
tively, is contained in at most s maximal cliques. This implies that instead of
a member of a network belonging to only one community, it can belong to s

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 114–124, 2014.
c∩ Springer International Publishing Switzerland 2014
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communities. However, in practical applications, there is no restriction on the
number of communities to which a member can belong, but instead it is expected
that communities overlap and that the overlap should be low [7]. Thus, it is more
realistic to impose an overlap condition directly on the communities as in the
k-G-Packing with t-Overlap problem. This problem is also a generalization of
the well-studied G-packing problem which consists of finding disjoint subgraphs
in a graph.

The k-G-Packing with t-Overlap problem is NP-complete. This follows since
every instance of the G-packing problem, which is NP-complete [9], is mapped to
an instance of the k-G-Packing with t-Overlap problem by making t = 0. Besides
introducing the k-G-Packing with t-Overlap problem, we study its parameter-
ized complexity. Our goal is to obtain problem kernels ; that is, reduced instances
with size bounded by f(k). In this paper, we introduce a global reduction rule,
the clique-crown decomposition rule, based on a non-trivial generalization of the
crown decomposition technique [2]. To the best of our knowledge, the crown
decomposition technique has not been adapted to obtain kernels for problems
that find subgraphs with arbitrary overlap. Using our clique-crown decomposi-
tion rule, we achieve a problem kernel of size 2(rk− r) for the k-G-Packing with
t-Overlap problem, when G = Kr and t = r − 2.

This paper is organized as follows. Notation and terminology is provided in
Section 2. In Section 3, we introduce our global reduction rule, as well as a
method to compute it. Section 4 shows how to apply our clique-crown reduction
rule to obtain a problem kernel. Finally, conclusions are stated in Section 5.

2 Preliminaries

All graphs in this document are undirected, simple, and connected. For a graph
G, V (G) and E(G) denote its sets of vertices and edges, respectively. |V (G)| is
the size of the graph. For a set of vertices A ≥ V (G), the neighborhood of A is
defined as N(A) = {v /⇒ A | (u, v) ⇒ E(G) and u ⇒ A}. The subgraph induced
by A in G is denoted as G[A]. For a set of cliques C, |C| is the number of cliques

in C while V (C) =
⋃|C|

i=1 V (Ci) where Ci ⇒ C.
A clique of r vertices, i.e., Kr, is also called an r-clique. For any pair of vertex-

disjoint cliquesA andB, A completes B (or viceversa) ifG[V (A)∪V (B)], denoted
A · B, is a clique of r vertices. That is, A completes B into the clique A · B. If
G[V (A) ∪ V (B)] does not have r vertices then A does not complete B even if
G[V (A) ∪ V (B)] is a clique.

Given a set of cliques Q, a clique B is minimal-completed in Q if there is at
least one clique A in Q that completes B and none subgraph (called a subclique)
A≤ → A is completed by a clique in Q. Also, A is minimal(t)-completed in Q if
the size of any subclique A≤ → A completed by a clique in Q is at most t. The
definitions are also applied when instead of having a set of cliques Q, we have a
graph R. Figure 1 provides an example of these definitions.

Our clique-crown decomposition is a generalization of the crown decomposi-
tion technique. This technique was introduced by Chor et al. [2], and it has been
adapted to obtain kernels for packing problems [6,11,14].
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C

Set Q

A B

Fig. 1. For r=4 and t = 1, the cliques B and C are minimal-completed and minimal(t)-
completed, respectively. Clique A is neither of both.

Definition 1. A crown decomposition (H,C,R) in a graph G is a partitioning
of V (G) into three sets H , C, and R that have the following properties:

1. C = Cm ∪ Cu (the crown) is an independent set in G.
2. H (the head) is a separator in G such that there are no edges in G between

vertices belonging to C and vertices belonging to R.
3. R is the rest of the graph, i.e., R = V (G)\(C ∪H).
4. There is a perfect matching between Cm and H .

Generally, vertices in Cm and in H are part of a desired solution while vertices
in Cu can be removed from G.

A crown decomposition can be computed in polynomial time for a graph G
given certain conditions.

Lemma 1. [2] If a graph G = (V,E) has an independent set of vertices I ≥
V (G) such that |I| ∃ |N(I)|, then G has a crown decomposition, where C ≥ I
and H ≥ N(I), that can be found in time O(|V (G)| + |E(G)|), given I .

3 Reduction Rules for the k-Kr-Packing with t-Overlap
Problem

A parameterized problem is reduced to a problem kernel, if any instance can be
reduced to a smaller instance such that: the reduction is in polynomial time,
the size of the new instance is depending only on an input parameter, and the
smaller instance has a solution if and only if the original instance has one.

Our goal is to reduce the k-Kr-Packing with t-Overlap problem to a problem
kernel. The formal definition of our studied problem is as follows.

Definition 2. k-Kr-Packing with t-Overlap problem
Instance: A graph G = (V,E), and non-negative integers k and t.
Parameter : k
Question: Does G contain a set of r-cliques K = {S1, S2, ..., Sl} for l ∃ k, where
|V (Si) ∩ V (Sj)| ⊗ t, for any pair Si, Sj?

We next apply a natural reduction rule to the input graph G.

Reduction Rule 1. Delete any vertex v and any edge e that are not included
in a Kr.

To further reduce the graph G, we design the clique-crown reduction rule
which is based on our proposed clique-crown decomposition.
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3.1 The Clique-Crown Reduction Rule

In the clique-crown decomposition, we have cliques in both the head H and the
crown C, and each clique in H is completed by at least one clique in C.

Definition 3. A clique-crown decomposition (H,C,R) is a partition of G that
have the following properties:

1. C = Cm ∪Cu (the crown) is a set of cliques in G where each clique has size
at most r − (t+ 1). Cliques in C are denoted with letters α, β, . . ..

2. H (the head) is a set of cliques in G where each clique has size at least t+1
and at most r− 1. Cliques in H are denoted with letters A,B, . . .. The head
satisfies the following conditions.
i. Each A ⇒ H is minimal-completed by at least one clique in C.
ii. Each pair of cliques A and B in H shares at most t vertices, i.e., |V (A)∩

V (B)| ⊗ t.
iii. Each A ⇒ H is minimal(t)-completed by a clique in R, defined below.

3. R is the rest of the graph, i.e., R = G[V (G)\(V (C) ∪ V (H))].
4. The set of vertices of the cliques in H , V (H), is a separator such that there

are no edges in G from C to R.
5. There exists an injective function f mapping each clique A ⇒ H to a distinct

clique α ⇒ Cm such that α completes A. In this way, A ·α is an r-clique that
we call a mapped r-clique. We impose the condition that any pair of mapped
r-cliques shares at most t vertices.

Figure 2 shows an example of a clique-crown decomposition. Cliques that
belong to H are highlighted with thicker lines.

To design the clique-crown reduction rule, we use an annotated version of the
k-Kr-Packing with t-Overlap problem. In this annotated version, any r-clique of
the solution overlaps in at most t vertices with any clique from a set of cliques
Q given as part of the input.

Definition 4. Annotated k-Kr-Packing with t-Overlap problem
Instance: A graph G = (V,E), a collection Q of cliques from G where any clique
in Q has size at least t+ 1 and at most r − 1 and a non-negative integer k.
Parameter : k
Question: Does G contain a set of r-cliques K = {S1, S2, ..., Sl} for l ∃ k, where
|V (Si) ∩ V (Sj)| ⊗ t, for any pair Si, Sj and |V (S) ∩ V (C)| ⊗ t for any S ⇒ K
and C ⇒ Q?

Reduction Rule 2. The Clique-Crown Reduction. If G admits a clique-crown
decomposition (H,C,R) then reduce G as G≤ = G[V (G)\V (C)], and k = k−|H |.
Make H be the set Q of the annotated k-Kr-Packing with t-Overlap problem.

The goal of the clique-crown reduction is to make the mapped r-cliques part of
the solution and remove unnecessary vertices from G. As part of the correctness
of Rule 2, we prove first that the vertices in V (Cu)\V (Cm) are not included in
any r-clique of the solution.
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R

C H

Fig. 2. Example of a clique-crown decomposition

Lemma 2. The instance (G, k) has a k-Kr-Packing with t-Overlap if and only
if the instance (G\(V (Cu)\V (Cm)), k) has a k-Kr-Packing with t-Overlap.

Proof. Cliques in Cu only complete cliques from the set H ; otherwise V (H)
would not be a separator. However, every clique in H is mapped to a unique
completing clique in Cm by the injective function. On the other hand, cliques in
H are minimal-completed in C which implies that they cannot be partitioned in
more cliques than |H | that could be completed by cliques in Cu. Since cliques
in C are not necessarily vertex disjoint, then we can remove V (Cu)\V (Cm)
from G. ≈∧

We use the next observation for the proof of correctness of the following
lemmas.

Observation 1. Any clique A
≤ ≥ A ⇒ H , where |V (A≤)| ∃ t + 1, is an induced

subgraph of at most one r-clique of any solution, since the k-Kr-Packing with
t-Overlap problem allows overlap at most t.

Lemma 3. If G admits a clique-crown decomposition (H,C,R), then the set of
mapped r-cliques is an |H |-Kr-Packing with t-Overlap in G.

Proof. Follows from Definition 3.

The input graph G≤ for the annotated k-Kr-packing with t-Overlap problem
is obtained by removing C from G. Since a clique A ⇒ H is already a subgraph
of an r-clique from the solution, A cannot be included in another r-clique from
the solution (Observation 1). Hence, we make the set H to be the set Q in the
annotated k-Kr-packing with t-Overlap problem.

Lemma 4. The instance (G, k) has a k-Kr-Packing with t-Overlap if and only
if the instance (G≤, H, k − |H |) has an annotated (k − |H |)-Kr-packing with t-
Overlap.
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Proof. Assume by contradiction that G admits a clique-crown decomposition
(H,C,R) and has a k-Kr-Packing with t-Overlap, but (G≤, H, k− |H |) does not
have an annotated (k−|H |)-Kr-Packing with t-Overlap. By Observation 1, every
A ⇒ H is in at most one r-clique of the solution. Therefore, we cannot form more
than |H | r-cliques by completing each clique of H with cliques in R rather than
with cliques in C. We could have more than |H | r-cliques, if there is a clique
A ⇒ H that has at least two subcliques A≤,A≤≤ each of size at least t+1 that are
completed by some clique in R. A contradiction since A is minimal(t)-completed
in R.

Assume now that (G≤, H, k − |H |) has an annotated (k − |H |)-Kr-Packing
with t-Overlap, but (G, k) does not have a k-Kr-Packing with t-Overlap. This
would imply that the sets H and C form more than |H | r-cliques which is a
contradiction by Lemma 3. ≈∧

3.2 Computing the Clique-Crown Decomposition

We next present a method to find a clique-crown decomposition in G given
two sets of cliques O and Cliques(O). Every clique A ⇒ Cliques(O) is minimal-
completed by at least one clique in O. Also, A is minimal(t)-completed in
the induced subgraph G[V (G)\(V (O) ∪ V (Cliques(O)))]. Any pair of cliques in
Cliques(O) shares at most t vertices. Each clique in O has size at most r−(t+1).
Since any clique in A ⇒ Cliques(O) is minimal-completed by a clique in O, then
the size of A is at least t + 1 and at most r − 1. This method is a generaliza-
tion of the method used to compute a crown-decomposition for the edge disjoint
K3-packing problem [14].

Lemma 5. Any graph G with a set O of vertex-disjoint cliques where each clique
has size at most r− (t+1) and |O| ∃ |Cliques(O)|, has a clique-crown decompo-
sition (H,C,R) where H ≥ Cliques(O), that can be found in O(|V (G)|+ |E(G)|)
time given O and Cliques(O).

Proof. First, we construct a graph G≤ from G as follows. We initialize V (G≤) =
V (G) and E(G≤) = E(G). We contract in G≤ each clique α ⇒ O into a single
vertex vα, and we denote the set of contracted cliques as Ocont. After that for
each clique A ⇒ Cliques(O), we add a vertex vA to V (G≤), i.e., a representative
vertex ; we denote as Rep the set of all representative vertices. We say that vα
“completes” vA if the clique α completes the clique A. For every vertex vα ⇒ Ocont

that completes vA, add (vα, vA) to E(G≤). After that, add to E(G≤) an edge from
vA to each vertex of A. Finally, remove from E(G≤) the edges from vα to A.

We next show that G≤ has a crown decomposition (H ≤, C≤, R≤). In G≤, the set
of contracted cliques Ocont is an independent set. By the construction of G≤, we
know thatN(Ocont) is the set of representative vertices Rep. Since we introduced
a representative vertex per clique in Cliques(O), then |N(Ocont)| = |Cliques(O)|.
Thus, since |O| ∃ |Cliques(O)| then |Ocont| ∃ |N(Ocont)| in G≤. By Lemma 1,
G≤ admits a crown decomposition (H ≤, C≤, R≤) that is computed in linear time,
where C≤ ≥ Ocont and H ≤ ≥ N(Ocont) = Rep.
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Now, we use the crown decomposition (H ≤, C≤, R≤) of G≤ to construct the
clique-crown decomposition (H,C,R) of G where H ≥ Cliques(O).

1. For each vertex vα ⇒ C≤ ≥ Ocont, add the clique α to C. The size of each
clique in C is at most r− (t+1). This follows because α ⇒ O and each clique
in O has size at most r − (t+ 1).

2. For each vertex vA ⇒ H ≤, where H ≤ ≥ Rep, we assign to H the clique that
this vertex represents, i.e., A. Since H ≥ Cliques(O), then each clique in
H has size at least t + 1 and at most r − 1. Likewise, properties i-iii from
Definition 3 follow.

3. R = G[V (G)\(C ∪H)]
4. The set of vertices of the cliques in H , V (H), is a separator. This follows

since cliques in C complete only cliques on H ; thus, vertices in V (C) are
only adjacent to vertices in V (H).

5. We make the perfect matching between C ≤ andH ≤ correspond to the injective
function f in the following way. For any matched edge (vα, vA) complete A

with α. For any pair of mapped r-cliques A·α and B·β completed in this way,
|V (A · α) ∩ V (B · β)| ⊗ t. This follows because α and β are vertex-disjoint,
and |V (A) ∩ V (B)| ⊗ t by assumption in the set Cliques(O).

Thus, if |O| ∃ Cliques(O) then G admits a clique-crown decomposition. ≈∧

One method to obtain the sets of O and Cliques(O) is to compute a max-
imal Kr-packing with t-Overlap M from G. O will be the set of all cliques
in G[V (G)\V (M)] such that each clique in O completes at least one clique in
G[M]. Cliques(O) is therefore the set of cliques in G[M] completed by cliques
in O. The overlap between an r-clique A · α, where A ⇒ Cliques(O) and α ⇒ O,
with some clique in M is at least t+ 1. Therefore, the size of A is at least t+ 1
and the size of α is at most r − (t + 1). It has to be verified if the sets O and
Cliques(O) follow the properties of the crown and the head, respectively, from
Definition 3.

4 A Kernel for the k-Kr-Packing with (r − 2)-Overlap
Problem

Using the clique-crown reduction rule, we introduce an algorithm to obtain the
kernel for the k-Kr-packing with (r − 2)-Overlap problem. First, we compute a
maximal solution for the k-Kr-packing with (r − 2)-Overlap problem. Next, we
show that the sets O and Cliques(O) are composed of vertices that are outside
and inside, respectively, of the maximal solution. Finding a maximal solution
and then reducing the instance by a set of rules, in this case the clique-crown
reduction rule, is known as the algorithmic version of the method of extremal
structure [13].
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k-Kr-packing with (r − 2)-Overlap Algorithm
Input : A graph G = (V,E) and a non-negative integer k.

1. Reduce G by Reduction Rule 1.
2. Greedily, find a maximalKr-Packing with (r−2)-OverlapM inG. If |M| ∃ k

then Accept.
3. Let O be V (G)\V (M) and Cliques(O) be the set of cliques completed by

vertices in O. If |O| ∃ |Cliques(O)|, reduce G by computing a clique-crown
decomposition in G using O (Rule 2).

We next introduce a series of lemmas that characterize the sets O and
Cliques(O).

Claim 1. O = V (G)\V (M) is an independent set.

Proof. Assume by contradiction that there exists an edge (u, v) in G[O]. After
applying Reduction Rule 1, each edge in the reduced graph is included in at
least one r-clique; thus, (u, v) belongs to at least one r-clique S≤. S≤ is not in M;
otherwise u, v would not be in O. S≤ is not in O; otherwise as S≤ would be disjoint
from M, and hence, S≤ could be added to M, contradicting the maximality of
M. Thus, S≤ should overlap with at least one r-clique S ⇒ M, for S ∞= S≤.

Since u, v are both in O, the overlap with S is at most r − 2, i.e., |V (S) ∩
V (S≤)| = r − 2, but in this case, S≤ could be added to M because the k-Kr-
packing with (r−2)-Overlap problem allows overlap at most r−2, contradicting
the maximality of M. ≈∧

Claim 2. Each clique A ⇒ Cliques(O) is minimal-completed by at least one
clique in O, and A is minimal(t)-completed in G\(V (O) ∪ V (Cliques(O))). Also,
any pair of cliques in Cliques(O) shares at most t vertices.

Proof. Each clique in Cliques(O) is completed by at least one clique in O. Since
O is an independent set, then the size of every clique in Cliques(O) is r−1. Each
clique A ⇒ Cliques(O) is minimal-completed in O. Assume by contradiction that
there is a subclique A

≤ → A of size s < r − 1 completed by a clique in V (O).
This would be possible if there would be a Kr−s in O, but we already prove
that O is an independent set. Thus, there is no subclique of A completed by
a clique in C. Any pair of cliques A,B ⇒ Cliques(O) share at most t = r − 2
vertices; this fact follows since A ∞= B and |A| = |B| = r − 1. Finally, the size of
the biggest subclique of any A ⇒ Cliques(O) is at most t− 1, and therefore, A is
minimal(t)-completed. ≈∧

Claim 3. Each Kr−1 T completed by any u ⇒ O is contained in an r-clique
S ⇒ M.

Proof. V (T ) ∩ V (O) = ∨. Assume otherwise that there is a vertex v ⇒ V (T )
contained in O. However, since T · u forms an r-clique this would imply that
there is an edge (u, v) in O which it is a contradiction since O is an independent
set. Thus, V (T ) → V (M).
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We claim that |V (T ) ∩ V (S)| = r − 1 for some S ⇒ M, i.e., V (T ) → V (S).
Suppose otherwise that |V (T )∩V (S)| < r−1, for any S ⇒ M. Since u ⇒ O, this
would imply that |V (T · u)∩ V (S)| ⊗ r− 2 for every S ⇒ M, and T · u could be
added to M as the k-Kr-packing with (r − 2)-Overlap problem allows overlap
at most r − 2, contradicting the assumption of maximality of M. ≈∧

Claim 4. The set of vertices O completes at most rk − r Kr−1’s.

Proof. By Claim 3, vertices in O only complete Kr−1’s contained in Kr’s in M.
There are r Kr−1’s in a Kr and at most k − 1 Kr’s in M; thus, there are at
most rk − r Kr−1’s that can be completed by vertices in O. ≈∧

Claim 5. |O| < rk − r

Proof. In Step 3 of the k-Kr-packing with (r − 2)-Overlap algorithm, if |O| ∃
|Cliques(O)|, O is reduced by the clique-crown reduction rule (Rule 2). Since
|Cliques(O)| < rk − r then |O| < rk − r, after applying that rule. ≈∧

Lemma 6. If |V (G)| > 2(rk − r) then the above algorithm will either find a
k-k-Kr-Packing with t-Overlap, or it will reduce G.

Proof. Assume by contradiction that |V (G)| > 2(rk − r), but the algorithm
neither finds a k-Kr-packing with (r − 2)-Overlap nor reduces the graph G.
Any vertex v ⇒ V (G) that was not reduced by Rule 1 is in V (M), or it is in
O = V (G)\V (M); thus, |V (G)| = |V (M)|+ |O|.

The size of M is at most k− 1; thus, |V (M)| is at most rk− r, and by Claim
5 we know that an upper bound for |O| is rk − r.

In this way, the size of the instance is at most 2(rk− r) which contradicts the
assumption that |V (G)| > 2(rk − r). ≈∧

Claim 6. The k-Kr-packing with (r − 2)-Overlap problem admits a 2(rk − r)
kernel which can be found in O(nr) time.

Proof. By Lemma 6, the reduced instance has size at most 2(rk − r). Rule 1 is
computed in time O(nr), which is also the same time to compute the maximal
solutionM and Cliques(O). Lemma 5 shows that the clique-crown decomposition
is computed in linear time given the set of cliques O and Cliques(O). The set
O corresponds to the independent set V (G)\V (M) (Lemma 1), and the set
Cliques(O) is the set of Kr−1’s completed by vertices in O. By Claim 3, all these
Kr−1’s are contained in the Kr’s of M. Moreover, in Rule 1, we already compute
all Kr−1’s that a vertex completes. Thus, the time to obtain Cliques(O) is O(nr).

5 Conclusion

In this work, we have introduced the k-G-Packing with t-Overlap problem to
overcome the deficiencies of previous work on the community discovering prob-
lem. We have also introduced a generalized global reduction rule, the clique-
crown decomposition, for the k-G-Packing with t-Overlap problem, when
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G = Kr. Using our reduction rule, we achieved reductions to a kernel for this
problem when t = r− 2. We emphasize that the clique-crown reduction rule can
be extended to consider other families of graphs as well. For example, it would
be interesting to consider community models less restrictive than cliques such as
s-cliques, s-clubs, and s-plexes.

When computing the clique-crown decomposition in Section 5, it is assumed
that cliques in O are vertex disjoint and cliques in Cliques(O) overlap in at most
t + 1. If these two conditions do not follow then a perfect matching would not
guarantee that a pair of mapped r-cliques overlap in at most t vertices. Therefore,
it remains how to design a different injective function that satisfies this overlap
condition.

Acknowledgments. We would like to thank to Naomi Nishimura for her in-
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Abstract. This paper addresses the minimax regret sink location prob-
lem in dynamic tree networks. In our model, a dynamic tree network
consists of an undirected tree with positive edge lengths and uniform
edge capacity, and the vertex supply which is nonnegative value is un-
known but only the interval of supply is known. A particular realization
of supply to each vertex is called a scenario. Under any scenario, the
cost of a sink location x is defined as the minimum time to complete
the evacuation to x for all supplies (evacuees), and the regret of x is de-
fined as the cost of x minus the cost of the optimal sink location. Then,
the problem is to find a sink location minimizing the maximum regret
for all possible scenarios. We present an O(n2 log2 n) time algorithm for
the minimax regret sink location problem in dynamic tree networks with
uniform capacity, where n is the number of vertices in the network. As a
preliminary step for this result, we also address the minimum cost sink
location problem in a dynamic tree networks under a fixed scenario and
present an O(n log n) time algorithm, which improves upon the existing
time bound of O(n log2 n) by [11] if edges of a tree have uniform capacity.

Keywords: minimax regret, sink location, dynamic flow, evacuation
planning.

1 Introduction

The Tohoku-Pacific Ocean Earthquake happened in Japan on March 11, 2011,
and many people failed to evacuate and lost their lives due to severe attack by
tsunamis. From the viewpoint of disaster prevention from city planning and evac-
uation planning, it has now become extremely important to establish effective
evacuation planning systems against large scale disasters in Japan. In particular,
arrangements of tsunami evacuation buildings in large Japanese cities near the
coast has become an urgent issue. To determine appropriate tsunami evacuation
buildings, we need to consider where evacuation buildings are assigned and how
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to partition a large area into small regions so that one evacuation building is
designated in each region. This produces several theoretical issues to be consid-
ered. Among them, this paper focuses on the location problem of the evacuation
building assuming that we fix the region such that all evacuees in the region
are planned to evacuate to this building. An evaluation criterion of the building
location is the time required to complete the evacuation. In order to represent
the evacuation, we consider the dynamic setting in graph networks, which was
first introduced by Ford et al. [8]. Under the dynamic setting, each edge of a
given graph has capacity which limits the value of the flow into the edge at each
time step. We call such networks under the dynamic setting dynamic networks.

This paper addresses the minimax regret sink location problem in dynamic
tree networks. In our model, a dynamic tree network consists of an undirected
tree with positive edge lengths and uniform edge capacity, and the vertex supply
which is nonnegative value is unknown but only the interval of supply is known.
Generally, the number of evacuees in an area (the initial supply at a vertex) may
vary depending on the time (e.g., in an office area in a big city there are many
people during the daytime on weekdays while there are much less people on
weekends or during the night time). So, in order to take into account the uncer-
tainty of the vertex supplies, we adopt the maximum regret for a particular sink
location as another evaluation criterion assuming that we only know the interval
of supply for each vertex. A particular realization (assignment of supply to each
vertex) is called a scenario. Under any scenario, the cost of a sink location x is
defined as the minimum time to complete the evacuation to x for all supplies,
and the regret of x is defined as the cost of x minus the cost of the optimal sink
location. Then, the problem can be understood as a 2-person Stackelberg game
as follows. The first player picks a sink location x and the second player chooses
a scenario s that maximizes the regret of x under s. The objective of the first
player is to choose x that minimizes the maximum regret.

Several researchers have studied the minimax regret facility location prob-
lems [6, 10, 12, 13]. Especially, for tree networks, some efficient algorithms have
been presented by [1–4, 7]. For dynamic networks, Cheng et al. [5] have studied
the minimax regret sink location problem in dynamic path networks with uni-
form capacity and presented an O(n log2 n) time algorithm. Recently, Wang [14]
improved the time bound by [5] to O(n log n). In this paper, we extend the prob-
lem studied by [5, 14] from path networks to tree networks, that is, address the
minimax regret sink location problem in dynamic tree networks with uniform
capacity and present an O(n2 log2 n) time algorithm.

In order to develop the above mentioned algorithm, we consider the case where
supply at each vertex is fixed to a given value. The problem is to find a sink
location in a given tree which minimizes the time to complete the evacuation to
the sink for all supplies under a fixed scenario, which is called the minimum cost
sink location problem in dynamic tree networks. An algorithm for this problem
can be used as a subroutine of the algorithm to solve the minimax regret sink
location problem in dynamic tree networks. Mamada et al. [11] have studied
the minimum cost sink location problem in dynamic tree networks with general
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capacity and presented an O(n log2 n) time algorithm. In this paper, we present
an O(n log n) time algorithm for the minimum cost sink location problem in dy-
namic tree networks with uniform capacity. Note that the paper by [11] assumed
that a sink is located on a vertex while our paper assumes that a sink can be
located at any point in the network.

This paper is the first one which studies the minimax regret sink location
problem in dynamic tree networks and presents an efficient algorithm by devel-
oping new properties. We also study the minimum cost sink location problem in
dynamic tree networks and present a whole new algorithm which improves upon
the existing time bound by [11] if edges of a given tree have uniform capacity
and gives the more clear proof of the time complexity.

2 Minimax Cost Sink Location Problem in Dynamic Tree
Networks with Uniform Capacity

Let T = (V,E) be an undirected tree with a vertex set V and an edge set E. Let
N = (T, l, w, c, Π) be a dynamic network with the underlying graph being a tree
T , where l is a function that associates each edge e ≥ E with positive length l(e),
w is also a function that associates each vertex v ≥ V with supply w(v) (which
takes a nonnegative integer) representing the number of evacuees at v, c is a
positive integer constant representing the capacity of each edge: the least upper
bound for the number of the evacuees entering an edge per unit time, and Π is
also a constant representing the time required for traversing the unit distance of
each evacuee. We call such networks with tree structures dynamic tree networks.

2.1 Formula for the Minimum Completion Time of the Evacuation

In the following, for two integers i and j, let [i, j] = {k ≥ Z | i ⇒ k ⇒ j}. We first
show a formula representing the minimum completion time for the evacuation
in a dynamic tree network with uniform capacity. In the following, we also use
a notation T to denote a set of all points on edges in E including all vertices in
V . For two points p, q ≥ T , let d(p, q) denote the distance between p and q in
T . For a vertex v ≥ V , let σ(v) denote a set of vertices adjacent to v. For a sink
location x given at a point in T , let φ(x) denote the minimum time required for
all evacuees on T to complete the evacuation to x. In this paper, we assume that
for any vertex v ≥ V , any number of evacuees can reach v in unit time step, any
number of evacuees can stay at v, and if the sink is located at v, all evacuees on
v can finish their evacuation in no time. In the following discussion, we suppose
that a sink location x is given at a vertex. Then, let T (x) be a rooted tree made
from T such that each edge has a natural orientation towards the root x. For any
vertex v ≥ V , let T (x, v) be a subtree of T (x) rooted at v, and φ(x, v) denote the
minimum time required for all evacuees on T (x, v) to complete the evacuation
to x. Then, we clearly have

φ(x) = max{φ(x, u) | u ≥ σ(x)}. (1)
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Here, we need only to consider φ(x, û) for û = argmax{φ(x, u) | u ≥ σ(x)}.
Suppose that there are n≤ vertices in T (x, û) named v1(= û), v2, . . . , vn∗ such
that d(x, vi) ⇒ d(x, vi+1) for i ≥ [1, n≤ − 1]. Then, Kamiyama et al. [9] have
observed that the value of φ(x, û) does not change if x and vi for i ≥ [1, n≤] are
relocated on a line with the same capacity so that d(x, vi) i ≥ [1, n≤] remain the
same (see Fig. 1), and φ(x, û) can be represented as follows:

φ(x, û) = max
j∈[1,n∗]

{
d(x, vj)Π +

⌈∑
i∈[j,n∗] w(vi)

c

⌉
− 1

}
. (2)

For the completeness, we now see why this formulation holds. We first define a
group as a set of evacuees who simultaneously reach x from û and the size of
a group as the number of evacuees in the group. Suppose that a group whose
size is less than c reaches x at time t≤. Then, we call a group which first reaches
x after t≤ a leading group (see Fig. 2). We also call a group which first reaches
x after time 0 a leading group. Let tlast denote the time when the last group
reaches x (i.e., the whole evacuation finishes at tlast). Suppose that a leading
group reaches x at time t≤≤ and there is no leading group which reaches x after
t≤≤ until tlast. Then, we call a leading group reaching x at t≤≤ the last leading
group and a set of groups reaching x from t≤≤ to tlast the last cluster. In order to
derive φ(x, û), we need only to observe the last cluster. Suppose that the last
leading group is located at vl for some integer l ≥ [1, n≤] at time 0. We notice
that any leading group reaches x without being blocked. Thus, the last leading
group reaches x at time d(x, vl)Π , and then, all groups except ones which belong
to the last cluster have already reached x. If d(x, vl)Π < tlast, the size of a group
reaching x at each time t ≥ [d(x, vl)Π, tlast − 1] is exactly c because of definition
of the last leading group. Therefore, φ(x, û) can be represented as follows:

φ(x, û) = d(x, vl)Π +

⌈∑
i∈[l,n∗]w(vi)

c

⌉
− 1. (3)

Note that this still holds for the case of d(x, vl)Π = tlast. We next see that
the right hand of the formula (2) is the lower bound for φ(x, û). For all evac-
uees located at vj , . . . , vn∗ with some integer j ≥ [1, n≤], the time of d(x, vj)Π +
∪
∑

i∈[j,n∗] w(vi)/c→− 1 is at least required to complete the evacuation to x, thus

we have φ(x, û) ∃ d(x, vj)Π + ∪
∑

i∈[j,n∗] w(vi)/c→ − 1 for any integer j ≥ [1, n≤].
From the above discussion, we can derive the formula (2).

v2

v3
v4

v5

v6

v7

v1 v2 v3 v4 v5 v6 v7xv1x

Fig. 1. Vertices of the tree can be relocated on a line with the same capacity
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t

c ...

leading group

Fig. 2. The size of groups reaching x from û for each time

2.2 Properties

In this section, we prove the two lemmas which are key to our presented al-
gorithm. Let xopt denote a point in T which minimizes φ(x). For two vertices
v, v≤ ≥ V , let V (v, v≤) denote the set of all vertices in T (v, v≤) and T (V ≤) denote
a subgraph induced by a vertex set V ≤ ∩ V .

Lemma 1. Along a path from a leaf to another leaf in T , a function φ(x) is
unimodal in x.

Lemma 2. For a vertex v ≥ V , if û = argmax{φ(v, u) | u ≥ σ(v)} holds, there
exists xopt ≥ T (V (v, û) ⊗ {v}).

In the proofs of two lemmas, we use the following notations. Let P be a simple
path in T from a leaf to another leaf. Suppose that there are k + 1 vertices
v0, v1, . . . , vk in P such that v0 and vk are leaves and d(v0, vi) ⇒ d(v0, vj) if
0 ⇒ i ⇒ j ⇒ k. In the following, for a sink location x ≥ P , we abuse the notation
x to denote d(v0, x), and for a vertex vi ≥ P with i ≥ [0, k], vi to denote d(v0, vi).
For a point p ≥ P , we call the direction to v0 (resp. vk) from p the left direction
(resp. right direction). For a sink location x ≥ P , let φL(x;P ) (resp. φR(x;P ))
denote the minimum time required to complete the evacuation for all evacuees
on T who come to x from the left direction (resp. right direction). For a vertex
vi ≥ P with i ≥ [1, k − 1], let

φ+0
L (vi;P ) = lim

β∗+0

{
φL(vi + ρ;P )

}
, (4)

φ−0
R (vi;P ) = lim

β∗+0

{
φR(vi − ρ;P )

}
. (5)

We first show the following claim.

Claim 1. Along a path P , a function φL(x;P ) is increasing in x and a function
φR(x;P ) is decreasing in x.

Proof. By (2), (4) and (5), we can see the following three properties of φL(x;P )
and φR(x;P ) (see Fig. 3(a)): (i) for an open interval (vi−1, vi) with i ≥ [1, k],
φL(x;P ) (resp. φR(x;P )) is linear in x with slope Π (resp. −Π), (ii) φL(x;P )
(resp. φR(x;P )) is left-continuous (resp. right-continuous) at x = vi for i ≥ [1, k]
(resp. i ≥ [0, k − 1]), (iii) φL(vi;P ) ⇒ φ+0

L (vi;P ) and φ−0
R (vi;P ) ∃ φR(vi;P )

hold at vi for i ≥ [1, k − 1]. From these properties, φL(x;P ) (resp. φR(x;P )) is
piecewise linear increasing (resp. decreasing) in x. ≈∧
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θL(x;P)

v0 vk

θR(x;P)

xv1 vk-1... v0 vk

θ(x)

xv1 vk-1...

(a) (b)

Fig. 3. Functions along P : (a) ΘL(x;P ), ΘR(x;P ) and (b) Θ(x)

By Claim 1, there uniquely exists x ≥ P minimizing max{φL(x;P ), φR(x;P )},
which we call xopt(P ) in the following. Then, we have the following claim.

Claim 2. (i) For a vertex vi ≥ P such that vi ∃ xopt(P ), φL(vi;P ) ⇒ φ(vi) ⇒
φ+0

L (vi;P ). (ii) For a vertex vi ≥ P such that vi ⇒ xopt(P ), φ−0
R (vi;P ) ∃

φ(vi) ∃ φR(vi;P ).

Proof. Here, we prove only (i) ((ii) can be similarly proved). Let us look at a
vertex vi ≥ P such that vi ∃ xopt(P ) (see Fig. 3(b)). By definition of φ(vi), we
have φ(vi) ∃ φL(vi;P ). Thus, in order to prove (i), we need only to show that

φ(vi) ⇒ φ+0
L (vi;P ). (6)

By the condition of vi ∃ xopt(P ), φ+0
L (vi;P ) ∃ φR(vi;P ) holds. Therefore,

if φ(vi) = φR(vi;P ), (6) holds. If φ(vi) = φL(vi;P ), (6) also holds by (2).
Otherwise, for a sink location x = vi, an evacuee who lastly reaches vi arrives
at vi through some adjacent vertex u ≥ σ(vi) which is not on P . Suppose that
we move the sink location from x = vi towards a point along P with distance
ρ in the right direction (i.e., x = vi + ρ) where ρ is a sufficiently small positive
number. Then, the last evacuee first reaches vi at time φ(vi), may be blocked
there, and eventually reaches x = vi + ρ, thus, he/she can reach x = vi + ρ after
time φ(vi) + ρΠ , that is, φ(vi) + ρΠ ⇒ φL(vi + ρ;P ) holds. By definition of (4),
we obtain (6). ≈∧

Proof of Lemma 1. By Claims 1 and 2, we obtain that φ(x) may possibly be
discontinuous at vi for i ≥ [1, k − 1] but it is always unimodal in x along P . ≈∧

Proof of Lemma 2. Let us consider a path P from a leaf to another leaf through
adjacent vertices v and û where û = argmax{φ(v, u) | u ≥ σ(v)}. Let us define
the left direction in P as the direction from v to û and the right direction as the
other direction. Suppose that there are k+1 vertices v0, v1, . . . , vk in P , and v =
vi and û = vi−1 with i ≥ [1, k−1]. Let φ+0(vi;P ) = max{φ+0

L (vi;P ), φR(vi;P )}.
If we can show φ(vi) ⇒ φ+0(vi;P ), there never exists xopt in the right direction
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from vi along P by Lemma 1. Then, this lemma can be proved by repeatedly
applying the same discussion to all the other paths through v and û. By the as-
sumption of û = argmax{φ(v, u) | u ≥ σ(v)}, φL(vi;P ) ∃ φR(vi;P ) holds, and
by (2), φL(vi;P ) ⇒ φ+0

L (vi;P ) holds. Thus, we have φR(vi;P ) ⇒ φ+0
L (vi;P ),

which implies that

φ+0(vi;P ) = φ+0
L (vi;P ). (7)

Then, by Lemma 1, we also have vi ∃ xopt(P ) where xopt(P ) is the unique
point in P minimizing max{φL(x;P ), φR(x;P )}. Thus, by Claim 2(i), φ(vi) ⇒
φ+0

L (vi;P ) holds, and from this and (7), we derive φ(vi) ⇒ φ+0(vi;P ). ≈∧

2.3 Algorithm

In this section, we present an O(n logn) time algorithm for the minimum cost
sink location problem in dynamic tree networks with uniform capacity, which
we call BST (Binary Search in Tree).

First, we introduce the concept of median.

Definition 1. For a set of vertices U ∩ V inducing a connected subgraph in T ,
a median of U is a vertex m ≥ U such that

max{|V (m,u) ∞ U | | u ≥ σ(m)} ⇒ |U |
2

. (8)

Note that for any set of vertices inducing a connected subgraph, there always
exists a median.

Let us look at the first iteration by algorithm BST. Letting U1 = V , the
algorithm first finds a median m1 of U1 and computes d(m1, v) for every v ≥ U1.
Then, for each u ≥ σ(m1), the algorithm computes φ(m1, u) in the following
manner: the algorithm first creates a list L(u) of all vertices v ≥ U1 ∞ V (m1, u)
which are arranged in the nondecreasing order of d(m1, v), and after that, it
computes φ(m1, u) by (2). The algorithm computes u1 = argmax{φ(m1, u) |
u ≥ σ(m1)}. It also sets V1 = U1 \ (V (m1, u1) ⊗ {m1}) and merges lists L(u) for
u ≥ σ(m1)\{u1} into a new list L1. At the end of the first iteration, the algorithm
sets U2 = U1 ∞ (V (m1, u1) ⊗ {m1}). Note that by Lemma 2, there exists xopt in
T (U2) and by Definition 1, |U2| ⇒ |U1|/2 + 1 holds. The algorithm iteratively
performs the same procedure (see Fig. 4(a)(b)). Namely, at the i-th iteration,
it finds a median mi of Ui, computes ui = argmax{φ(mi, u) | u ≥ σ(mi)}, sets
Vi = Ui \ (V (mi, ui) ⊗ {mi}), creates a list Li of vertices v ≥ Vi arranged in the
nondecreasing order of d(mi, v) and also sets Ui+1 = Ui ∞ (V (mi, ui) ⊗ {mi}).
Since the algorithm reduces the size of the subgraph where xopt exists roughly
by half at each iteration, it halts after l = O(log |V |) iterations. At this point,
it finds two vertices ml and ul ≥ Ul connected by an edge on which xopt lies.
Then, xopt can be computed as follows. Let x(t) denote a point dividing the
edge (ml, ul) with the ratio of t to 1− t for some t (0 ⇒ t ⇒ 1), and φ(x(t),ml)
(resp. φ(x(t), ul)) denote the minimum time required for all evacuees passing
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Fig. 4. Illustration of the i-th iteration: (a) i = 6 and (b) i = 7

through ml (resp. ul) to complete the evacuation to x(t). Then, φ(x(t),ml) and
φ(x(t), ul) can be represented as follows:

φ(x(t),ml) = φ(ul,ml)− (1− t)d(ml, ul)Π, (9)

φ(x(t), ul) = φ(ml, ul)− td(ml, ul)Π. (10)

If there exists t such that φ(x(t),ml) = φ(x(t), ul) and 0 ⇒ t ⇒ 1, xopt = x(t)
holds by the unimodality of φ(x). If the solution of φ(x(t),ml) = φ(x(t), ul)
satisfies t < 0, then φ(ml, ul) < φ(ul,ml) − d(ml, ul)Π holds, which implies
xopt = ml. Similarly, if t > 1, xopt = ul holds. Therefore, the algorithm can
correctly output the optimal sink location xopt.

Now, let us analyze the time complexity of algorithm BST. We first show that
the running time is O(n log2 n) which will be improved to O(n logn) later, where
n = |V |. In the following, suppose that n = |V |. Let us look at the running time
for each iteration required by the algorithm. At the i-th iteration for i ∃ 2, the
algorithm finds a median mi of Ui in O(|Ui|) time, and computes d(mi, v) for all
of v ≥ V by depth-first search in O(|V |) time. For each u ≥ σ(mi), in order to
compute φ(mi, u), the algorithm can create a list L≤(u) of vertices v ≥ V (mi, u)
arranged in the nondecreasing order of d(mi, v) in O(|V (mi, u)| log |V (mi, u)|)
by applying a simple merge sort. Thus, ui = argmax{φ(mi, u) | u ≥ σ(mi)}
can be computed in O(|V | log |V | + |V |) time. Since the algorithm halts after
O(log |V |) iterations as mentioned above, our problem can be solved in O(|Ui|+
|V |+ |V | log |V |+ |V |)×O(log |V |) = O(n log2 n) time.

Next, we show that the running time required to create lists L≤(u) for u ≥
σ(mi) can be improved from O(n logn) to O(n+ |Ui| log |Ui|). We first show the
following claim.

Claim 3. |Ui| = O( n
2i−1 ) and |Vi| = O( n

2i−1 ) hold for i ∃ 1.
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Proof. By definition of Ui, we can clearly see that |Ui| = O(n/2i−1) holds.
Remind that Vi = Ui \ (V (mi, ui)⊗{mi}) and |Ui∞V (mi, ui)| = O(|Ui|/2), thus
we have |Vi| = O(n/2i−1). ≈∧

The idea to improve the running time is to use the sorted lists Lj with j =
1, 2, . . . , i − 1. To see the idea to improve the running time, let us look at Fig.
4(a), and focus on a vertex u ≥ σ(m6) in the figure. The computation of L≤(u)
can be done in O(n logn) time if we know d(m6, v) for all v ≥ V (m6, u). But,
since we know the L1 and L4, L

≤(u) can be computed faster only by computing
d(m6, v) for all v ≥ U6 ∞ V (m6, u). The idea is formalized as follows. In detail,
for each u ≥ σ(mi), it first creates a list L(u) of vertices v ≥ Ui ∞ V (mi, u)
arranged in the nondecreasing order of d(mi, v), which takes O(n≤ logn≤) time
where n≤ = |Ui ∞ V (mi, u)|. Thus, lists L(u) for all u ≥ σ(mi) can be created
in O(|Ui| log |Ui|) time. For each u ≥ σ(mi), the algorithm merges L(u) and all
lists Lj with Vj ∩ V (mi, u) into L≤(u) (at this point, all of the original lists are
maintained since these will be used later). For this merging operation, if we apply
a simple merge sort, it takes O(|V (mi, u)| log |V (mi, u)|) time, which does not
improve the running time. Here, we notice that the |Lj | = |Vj | for j ≥ [1, i− 1].
Instead, the algorithm basically takes the following two steps to create each list
L≤(u) for u ≥ σ(mi):

[Step 1.] For Lj such that Vj ∩ V (mi, u), choose Lp = argmin{|Lj| | Vj ∩
V (mi, u)} and merge each Lj in the increasing order of size (i.e., the decreasing
order of j) with Lp one by one.
[Step 2.] Merge the list obtained at Step 1 and L(u) into L≤(u).
For all u ≥ σ(mi), it takes in O(

∑i−1
j=1 jn/2

j−1) = O(n) time at Step 1, and thus,
it takes O(n+ |Ui|) = O(n) time at Step 2. Recall that L(u) for all u ≥ σ(mi) can
be created inO(|Ui| log |Ui|) time. Then, by Claim 3, it takesO(n+|Ui| log |Ui|) =
O(n+ (n/2i−1) log(n/2i−1)) time to create lists L≤(u) for all u ≥ σ(mi).

Lemma 3. The i-th iteration of algorithm BST takes O(n+ n
2i−1 log

n
2i−1 ) time.

Recall that the algorithm halts after O(log n) iterations. Thus, by Lemma 3,
it takes O(n log n +

∑
{(n/2i−1) log(n/2i−1) | i ≥ [1, logn]}) = O(n log n) time

for the entire iterations. Therefore, we obtain the following theorem.

Theorem 1. The minimum cost sink location problem in a dynamic tree net-
work with uniform capacity can be solved in O(n log n) time.

3 Minimax Regret Sink Location Problem in Dynamic
Tree Networks with Uniform Capacity

Let N = (T, l,W, c, Π) be a dynamic tree network with the underlying graph
being a tree T = (V,E), where l, c and Π are the functions which are the same
as those defined in Section 2, and W is also a function that associates each
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vertex v ≥ V with an interval of supply W (v) = [w−(v), w+(v)], Let S denote
the Cartesian product of all W (v) for v ≥ V (i.e., a set of scenarios):

S =
∏

v∈V

[w−(v), w+(v)]. (11)

When a scenario s ≥ S is given, we use the notation ws(v) to denote the supply
of a vertex v ≥ V under the scenario s.

For a sink location x given at a point in T and a given scenario s ≥ S, let
φs(x) denote the minimum time required for all evacuees on T to complete the
evacuation to x under s. Suppose that a sink location x is given at a vertex.
For u ≥ σ(x), let φs(x, u) denote the minimum time required for all evacuees on
T (x, u) to complete the evacuation to x. Then, we have

φs(x) = max{φs(x, u) | u ≥ σ(x)}. (12)

For û = argmax{φs(x, u) | u ≥ σ(x)}, we also have by (2)

φs(x, û) = max
j∈[1,n∗]

{
d(x, vj)Π +

⌈∑
i∈[j,n∗] w

s(vi)

c

⌉
− 1

}
, (13)

where n≤ is the number of vertices in T (x, û) and v1(= û), v2, . . . , vn∗ are vertices
in T (x, û) such that d(x, vi) ⇒ d(x, vi+1) for 1 ⇒ i ⇒ n≤ − 1. For the ease of
exposition, we assume that c = 1 (the case of c > 1 can be treated in essentially
the same manner) and also omit the constant part (i.e., −1) from the formula
in the following discussion, then we have

φs(x, û) = max
j∈[1,n∗]

{
d(x, vj)Π +

∑

i∈[j,n∗]

ws(vi)

}
, (14)

Here, let xs
opt denote a point in T which minimizes φs(x) under a scenario

s ≥ (S). In the following, we use the notation φs
opt for a scenario s ≥ S to denote

φs(xs
opt). We now define the regret for x under s as

Rs(x) = φs(x)−φs
opt. (15)

Moreover, we also define the maximum regret for x as

Rmax(x) = max{Rs(x) | s ≥ S}. (16)

If ŝ = argmax{Rs(x) | s ≥ S}, we call ŝ the worst case scenario for a sink
location x. The goal is to find a point x∗ ≥ T , called the minimax regret sink
location, which minimizes Rmax(x) over x ≥ T , i.e., the objective is to

minimize {Rmax(x) | x ≥ T }. (17)



Minimax Regret Sink Location Problem in Dynamic Tree Networks 135

3.1 Properties

First, we define a set of so-called dominant scenarios for a vertex v ≥ V among
which the worst case scenario exists when the sink is located at v. Suppose that
v1 is a vertex adjacent to v, n≤ is the number of vertices in T (v, v1) and v2, . . . , vn∗

are vertices in T (v, v1) such that d(v, vi) ⇒ d(v, vi+1) for 1 ⇒ i ⇒ n≤ − 1. We
now consider a scenario s ≥ S such that ws(vi) = w+(vi) for vi ≥ T (v, v1) such
that l ⇒ i ⇒ n≤ with some l ≥ [1, n≤] and ws(v≤) = w−(v≤) for all the other
vertices v≤ ≥ V . In the following, such a scenario is said to be dominant for
v, and represented by s(v, vl). Then, let Sd(v) denote the set of all dominant
scenarios for v. Note that Sd(v) consists of n − 1 scenarios. The following is a
key lemma.

Lemma 4. If a sink is located at a vertex v ≥ V , there exists a worst case
scenario for v which belongs to Sd(v).

Basically, Lemma 4 can be obtained from a lemma in [5], so we omit its proof.
Here, we have the following claim by Lemma 1.

Claim 4. For a scenario s ≥ S, a function φs(x) is unimodal in x when x
moves along a path from a leaf to another leaf in T .

For a given scenario s ≥ S, by definition of (15) and Claim 4, a function Rs(x)
is unimodal in x along a path from a leaf to another leaf in T . Thus, a function
Rmax(x) is also unimodal in x since it is the upper envelope of unimodal functions
by (16).

Lemma 5. Along a path from a leaf to another leaf in T , a function Rmax(x)
is unimodal in x.

We also have the following claim by Lemma 2.

Claim 5. For a scenario s ≥ S and a vertex v ≥ V , if û = argmax{φs(v, u) |
u ≥ σ(v)} holds, there exists xs

opt ≥ T (V (v, û) ⊗ {v}).

Here, suppose that ŝ = argmax{Rs(v) | s ≥ S} and û = argmax{φŝ(v, u) | u ≥
σ(v)} hold for a vertex v ≥ V . We now show that there also exists the minimax
regret sink location x∗ in T (V (v, û) ⊗ {v}). Suppose otherwise: there exists x∗

in T (v, u) or on an edge (v, u) (not including endpoints) for some u ≥ σ(v) with
u ∨= û. By Claim 5, there exists xŝ

opt in T (V (v, û)⊗ {v}). Then, φŝ(x∗) > φŝ(v)

holds by Claim 4, thus Rŝ(x∗) > Rŝ(v) also holds by (15). We have Rmax(x
∗) ∃

Rŝ(x∗) by the maximality of Rmax(x
∗) and Rŝ(v) = Rmax(v) by definition of ŝ,

thus Rmax(x
∗) > Rmax(v) holds, which contradicts the optimality of x∗. By the

above discussion, we obtain the following lemma.

Lemma 6. For a vertex v ≥ V , if ŝ = argmax{Rs(v) | s ≥ S} and û =
argmax{φŝ(v, u) | u ≥ σ(v)} hold, there exists the minimax regret sink location
x∗ ≥ T (V (v, û) ⊗ {v}).
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3.2 Algorithm

In this section, we present an O(n2 log2 n) time algorithm that computes x∗ ≥ T
which minimizes a function Rmax(x).

We first show how to compute Rmax(v) for a given vertex v ≥ V . Given a
dominant scenario s ≥ Sd(v), φ

s(v) can be computed in O(n log n) time, and by
Theorem 1, φs

opt can be computed in O(n log n) time. Thus by (15), Rs(v) can
be computed in O(n log n) time. By Lemma 4, we need only to consider n − 1
dominant scenarios for v, thus, Rmax(v) can be computed by (16) in O(n2 logn)
time.

Lemma 7. For a vertex v ≥ V , Rmax(v) can be computed in O(n2 logn) time.

In order to find the minimax regret sink location x∗ ≥ T , we apply an algorithm
similar to the one presented at Section 2.3. The algorithm maintains a vertex set
Ui ∩ V which induces a connected subgraph of T including x∗. At the beginning
of the procedure, the algorithm sets U1 = V , and at i-th iteration, it finds a
median mi of Ui, computes Rmax(mi) in the above mentioned manner, and sets
Ui+1 = Ui ∞ (V (mi, ui) ⊗ {v}) where ui = argmax{φŝ(mi, u) | u ≥ σ(mi)} and
ŝ = argmax{Rs(mi) | s ≥ Sd(mi)}. Note that, by Lemma 6, T (Ui+1) contains
x∗ if T (Ui) includes x

∗. The algorithm iteratively performs the same procedure
until |Ul| becomes two where l = O(log n). Suppose that there eventually remain
two vertices ml and ul ≥ Ul. Then, the algorithm has already known that

Rmax(ml) = φŝ1(ml)− φŝ1
opt, (18)

Rmax(ul) = φŝ2(ul)−φŝ2
opt, (19)

ml = argmax{φŝ2(ul, u) | u ≥ σ(ul)}, (20)

ul = argmax{φŝ1(ml, u) | u ≥ σ(ml)}, (21)

where ŝ1 and ŝ2 are worst case scenarios for ml and ul, respectively. Let x(t)
denote a point dividing the edge (ml, ul) with the ratio of t to 1 − t for some
t (0 ⇒ t ⇒ 1). If there exists t such that Rmax(ml)−td(ml, ul)Π = Rmax(ul)−(1−
t)d(ml, ul)Π and 0 ⇒ t ⇒ 1, x∗ = x(t) holds by the unimodality of Rmax(x). If
the solution satisfies t < 0, then Rmax(ml) < Rmax(ul)−d(ml, ul)Π holds, which
implies x∗ = ml. Similarly, if t > 1, x∗ = ul holds. As above, the algorithm
correctly outputs the minimax regret sink location x∗ after O(log n) iterations.
Thus, by Lemma 7, we obtain the following theorem.

Theorem 2. The minimax regret sink location problem in a dynamic tree net-
work with uniform capacity can be solved in O(n2 log2 n) time.

4 Conclusion

In this paper, we develop an O(n2 log2 n) time algorithm for the minimax regret
sink location problem in dynamic tree networks with uniform capacity. We also
develop an O(n logn) time algorithm for the minimum cost sink location problem
in dynamic tree networks with uniform capacity.
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On the other hand, we leave as an open problem to extend the solvable net-
works for the minimax regret sink location problem to dynamic tree networks
with general capacities. Indeed, under a fixed scenario, the algorithm by [11] can
solve the minimum cost sink location problem in dynamic tree networks with
general capacity, we cannot simply apply this as a subroutine to solve the min-
imax regret sink location problem. For example, if Lemmas 4 and 6 hold in a
dynamic tree network with general capacities, we can expect that anO(n2 log3 n)
time algorithm will be achieved.
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Abstract. We consider the problem of allocating clients to base sta-
tions in wireless networks. Two design decisions are the location of the
base stations, and the power levels of the base stations. We model the
interference due to the increased power usage resulting in greater serving
radius, as capacities that are non-increasing with respect to the cover-
ing radius. We consider three models. In the first model the location of
the base stations and the clients are fixed, and the problem is to deter-
mine the serving radius for each base station so as to serve a set of clients
with maximum total profit subject to the capacity constraints of the base
stations. In the second model, each client has an associated demand in
addition to its profit. A fixed number of facilities have to be opened from
a candidate set of locations. The goal is to serve clients so as to maximize
the profit subject to the capacity constraints. In the third model the lo-
cation and the serving radius of the base stations are to be determined.
There are costs associated with opening the base stations, and the goal
is to open a set of base stations of minimum total cost so as to serve
the entire client demand subject to the capacity constraints at the base
stations. We show that for the first model the problem is NP-complete
even when there are only two choices for the serving radius, and the ca-
pacities are 1, 2. For the second model we give a 1/2 − Δ approximation
algorithm. For the third model we give a column generation procedure
for solving the standard linear programming model, and a randomized
rounding procedure. We establish the efficacy of the column generation
based rounding scheme on randomly generated instances.

1 Introduction

Given a set of client locations the covering facility location problem is to deter-
mine optimal locations for facilities to serve all the clients. Facilities can serve
clients within a prescribed radius only. A client is covered or served by a facility
if it is within the covering range of the facility, otherwise it is not covered. This
“all or nothing” covering model is too restrictive for many practical applications
and several relaxations of the model have been proposed and studied in the last
decade [3]. One relaxation is the gradual cover model, where the degree with
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which a customer is served decreases as its distance to the facility increases. In
the cooperative cover model several facilities contribute to serving a customer.
In the variable covering radius model a covering range is assigned to facilities
but the cost of opening the facility increases with its range.

We introduce a new family of covering problems, Covering with Variable
Capacities (CVC ), which addresses the client coverage problem in the presence
of interference in wireless networks. Facilities correspond to wireless base stations
employing omni-directional antennas and clients represent service subscribers.
We assume that the location of the clients is given. Associated with the clients
may be demands (bandwidth requirements) and profits (revenue). The facilities
can be opened at any location with a covering range. The range corresponds to
the power consumption by the base station. The capacity of a facility to serve the
clients is a non-increasing function of the serving radius. A client is covered by a
single facility if it is within the range assigned to the facility. The total demand
of the clients served by the facility is no larger than the available capacity for the
facility. In our model, every facility has a variable covering range. The range can
only be increased at the expense of the capacity, as increasing the power of the
radio transmitter causes more interference in the network [4,8,10]. Radwan and
Hassanein [14] show that there are significant savings in resource utilization for
wCDMA networks when the range of the base stations is appropriately chosen.
Tam et al. [16] describe a cellular network that exploits this phenomenon.

In this paper, we extend the work of Tam et al. [16]. Arguably our models
and solutions have immediate applications in the mobile telephony industry. In
addition we extend the theory of facility location problems by studying a new
class of location problems in which the facilities have variable capacities, and the
designer not only has to choose a location for the facility but also the capacity
at which the facility should operate.

We study three variants for CVC that are typically investigated for covering
facility location problems: set-cover CVC where the entire set of customers must
be covered by a set of facilities of minimum cost, maximum CVC where a set
of customers with maximum total profit must be covered by a fixed number
of facilities, and CVC with fixed facilities (or simply CVC ) where the location
of the facilities is given and the objective is to maximize the total profit of
the covered customers. We define the problems formally below. We use index
notation to refer to customers and facilities, and so ui for some index i refers to
a customer and aj for some index j refers to a facility.

Problem 1 (CVC)
Input:
– A set U = {ui : i ≥ I} of customers where I is the index set of customers.
– For each customer ui, a non-negative demand or size si and profit pi.
– A set A = {aj : j ≥ J } of open facilities, where J is the index set of facilities.
– For each facility aj , a set Rj of allowed ranges and for each r ≥ Rj a cor-
responding capacity cjr. We denote by Njr the set of customers within the
covering range r of facility aj .
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Output:
– For each facility aj , a range rj ≥ Rj .
– For each facility aj , a subset of clients indexed by Ij ⇒ I that are served
exclusively by aj so that

∑
i≤Ij

si ∪ cjrj and ui ≥ Njrj for all i ≥ Ij .
Objective:

– To maximize the total profit of clients served, max
∑

i≤⋃
j∗J Ij

pi.

Problem 2 (Maximum CVC)
Input:
– Same as for Problem 1 with the observation that the set of facilities represents
candidate facility locations.

– A positive integer k.
Output:
– k facilities are to be opened, indexed by J ∈ ⇒ J where |J ∈| = k.
– For each open facility aj for j ≥ J ∈, a range rj ≥ Rj .
– For each open facility aj for j ≥ J ∈, a subset of clients indexed by Ij ⇒ I
that are served exclusively by aj so that

∑
i≤Ij

si ∪ cjrj and ui ≥ Njrj for all
i ≥ Ij .

Objective:

– To maximize the total profit of clients served, max
∑

i≤⋃
j∗J∗ Ij

pi.

Problem 3 (Set cover CVC)
Input:
– Same as for Problem 1 with the observation that the set of facilities represents
candidate facility locations. The model can be augmented to handle arbitrary
costs to open facilities.

Output:
– A subset of facilities to be opened, indexed by J ∈ ⇒ J .
– For each open facility aj for j ≥ J ∈, a range rj ≥ Rj .
– For each open facility aj for j ≥ J ∈, a subset of clients indexed by Ij ⇒ I that
are served exclusively by aj so that

∑
i≤Ij

si ∪ cjrj , ui ≥ Njrj for all i ≥ Ij ,
and all clients are served

⋃
j≤J ∗ Ij = I.

Objective:
– To minimize the number of open facilities, min |J ∈|.
The special case when customers have unit demand and profit, si = pi = 1 for
all i ≥ I, is called the uniform version of the corresponding CVC problem.

CVC generalizes the classical capacitated covering. The latter corresponds to
a CVC instance where the set Rj of covering ranges for each facility has cardi-
nality one. Using a set to model the dependency between capacity and covering
range defines, in fact, a step function for capacity. This model is sufficiently gen-
eral for applications such as wireless networks where measurements about the
performance of the wireless channel are discrete. However, CVC can be studied
with other capacity functions as well. Our results indicate that both the capac-
ity function and the metric space where customers and facilities are located, are
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significant. For example, CVC with fixed location of facilities is NP-hard even
when the capacity function is a step function with two steps. In contrast, the
corresponding classical covering with fixed facilities can be solved in polynomial
time using flows.

Problem 1 is also related to the separable assignment problem (SAP). Given
a set of bins and a set of items, a value fij for placing item j in bin i, and for
each bin i, a family of sets of items Ii that fit in bin i, the SAP problem is to
pack items into bins so as to maximize the total value of packed items. Note
that only subsets of the sets in Ii can be packed into bin i. SAP was studied by
Fleisher et al. [7] who gave two approximation algorithms; an LP-rounding based
1 − 1/e approximation algorithm, and a local search based 1/2 approximation
algorithm. Consider an instance of the CVC problem. Construct an instance
of SAP as follows: each facility corresponds to a bin, for a given range r and
location i, we know the capacity cr of the facility. Define Ii,r to be the set of all
valid subsets of total size at most cr for candidate location i of the facility, let
Ii =

⋃
r≤R Ii,r. This reduction implies the existence of a 1 − 1/e, LP rounding

based approximation algorithm for the CVC problem. It should be noted that
the size of the resulting LP is exponential, however it can be solved in polynomial
time as there exists a separation oracle [7].

The separable assignment problem can be reduced to the problem of max-
imization of a sub-modular function over matroids (SFM); [7] attributes this
reduction to Chekuri. Fisher et al. [6] describe two 1/2 approximation algo-
rithms for the SFM problem; one greedy and the other local search based. We
give a simple 1/2 approximation algorithm for the MAX CVC problem. The
bound in Theorem 3 for the greedy algorithm also follows from Fisher et al. [6].
Following the reduction (SAP → SFM) in [7] the MAX CVC problem can also
be reduced to SFM. The details of the reduction are in the full version of the
paper. In light of the reductions above the results of Vondrak [17] and Fleischer
et al. [7] imply an 1− 1/e approximation algorithm for the MAX CVC problem.

Our Contributions: We introduce a new class of covering problems with vari-
able capacities that arise in wireless networks. We show that CVC with fixed
facilities, uniform clients (the profit and demand equals one for every client)
and a capacity function with two ranges serving either two clients or one, is
NP-complete. In contrast, under the same conditions, the classical capacitated
covering problem where facilities have a fixed capacity and a fixed covering range
is equivalent to the maximum flow problem and can be solved optimally in poly-
nomial time [15]. Three natural integer programming formulations for the CVC
problem with fixed facilities are possible but they have a large integrality gap.
The formulations can be extended to handle both the set cover and maximization
versions. Unfortunately, the formulations are too large to be solved in practice
even if we relax the integrality constraints. We give strong evidence that a set
cover based linear programming formulation that is specific for the set cover
CVC combined with a simple rounding procedure is very effective at finding ap-
proximate solutions. We then give a greedy 1

2 − Π approximation algorithm with
simple analysis for the maximum CVC where the clients have arbitrary demands
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and profits and there are no assumptions on the capacity function. The running
time of the greedy algorithm can be significantly reduced for the version of the
problem with unitary demands and profits. Finally, we mention that all three
types of uniform CVC can be solved in polynomial time when the clients and
the facilities are located on a line. The proofs are provided in the full version of
the paper.

2 Complexity

We note that the CVC problem with only one fixed facility, clients with arbitrary
demands and profits, and a constant capacity (single range) function is NP-
complete as it is equivalent to the Knapsack problem. Hence, it is natural to
examine the case of uniform demands and profits with variable capacities for
fixed facilities. The following theorem establishes the complexity of the problem.
The proof is omitted.

Theorem 1. The uniform CVC problem with fixed facilities (Problem 1) is NP-
complete even when facilities are identical and use two ranges with capacities in
the set {1, 2}.

3 Algorithms for CVC Problems

We investigated three natural compact integer programming formulations for
CVC with fixed facilities. We have shown that they exhibit a rather large inte-
grality gap. The formulations can be adapted to handle maximum and set cover
CVC but they require a quadratic number of constraints and therefore they are
impractical. Details about the compact formulations are omitted in this paper.

In Section 3.1 we provide a column generation formulation for the set cover
CVC that runs well in practice. When combined with a simple rounding scheme,
our method solves uniform set cover geometric1 CVC problems with a perfor-
mance ratio close to one. In the following section we describe a simple approxi-
mation algorithm for the maximum uniform CVC problem with a performance
ratio of 1

2 − Π. The algorithm can be extended to maximum CVC instances that
are not uniform, but at the expense of the approximation factor.

On the positive side, we argue that both maximum and set cover CVC with
uniform demands and profits can be solved optimally in polynomial time if the
clients and the facilities are located on a line. Due to space constraints, details
of the latter algorithms are included in the full version of this paper.

3.1 Column Generation and Rounding for Set Cover CVC

In the compact integer programming formulations for CVC, the number of con-
straints are proportional to the product of the number of customers and the

1 Customers and facilities are points in the plane and distances are Euclidean.
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number of candidate facility locations. An alternative formulation where the
number of constraints is equal to the number of customers, transforms the set
cover CVC problem into a weighted set cover problem.

In the weighted set cover, a set U of elements called the universe is given
along with a family S of subsets of U . Each subset S ≥ S has a known weight
wS . The goal is to find a minimum weight cover, i.e. F ⇒ S,

⋃
S≤F S = U that

minimizes
∑

S≤F wS .
We now describe how to transform an instance of the set cover CVC to an

instance of the weighted set cover. We use the notation introduced in problems
1-3 and we remind the reader that any feasible allocation of customers Ij to
facility aj that is assigned a range r must satisfy the following three conditions.

j ≥ J ∈ (1)
∑

i≤Ij

si ∪ car, (2)

ui ≥ Njr, for all i ≥ Ij (3)

Constraint (1) states that customers can only be assigned to open facili-
ties. Inequality (2) is the capacity constraint and inequality (3) is the coverage
constraint.

We can construct an equivalent weighted set cover as follows. The universe U
corresponds to the set of customers. Set S corresponds to the set of all feasible
assignments of customers to candidate facility aj for a covering range r ≥ Rj

that satisfies constraints (2)-(3), for all choices of a and r. The size of set S is
exponential in the number of customers and facilities, however the linear pro-
gramming (LP) relaxation of the weighted set cover can be solved by column
generation.

Column Generation. Consider the LP relaxation of the weighted set cover
problem,

min
∑

S≤S
wSxS , (4)

∑

S,u≤S

xS ∃ 1, ∩u ≥ U, xS ∃ 0. (5)

By convention, xS = 1 if subset S is chosen in the cover, otherwise xS = 0.
Problem (4) is called the master problem. It is much simpler than the compact
formulations for CVC since the coverage and capacity constraints are implicit
in the structure of the columns of the constraint matrix.

As hinted in the previous paragraph, the master problem is solved iteratively.
In each iteration, only a small set of variables xS are explicit. Once an optimal
fractional solution to the master problem (4) is computed, a column genera-
tion procedure attempts to compute a new set Ij′ of customers that are served
by some facility aj′ at some covering range r ≥ Rj′ subject to capacity and
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coverage constraints and that minimizes the reduced cost σj′ = 1 −
∑

i≤Ij′
yi,

where yi is the optimal dual variable of the master problem (4) corresponding to
customer i.

If there is no column with negative reduced cost then the optimal fractional
solution to the master problem is also an optimal fractional solution for the
set cover CVC and the iterative procedure stops. Otherwise, the new column
corresponding to set Ij′ is added to the constraint matrix of the master problem
and the entire procedure is repeated.

We now describe the sub-problem, the procedure for generating the column
with negative reduced cost. We iterate over every candidate facility location
aj and covering range r ≥ Rj . To minimize σj , we seek a subset of customers
reachable from facility aj with range r that maximizes the sum of the dual
variables subject to the capacity constraint. This is a knapsack problem with
the set of items i ≥ Njr, profit yi and knapsack capacity cjr. In particular, when
the demand is equal to one for all customers, this knapsack problem can be
solved by a greedy procedure.

Rounding. At the end of the column generation phase, we have an optimal
fractional solution to the set cover CVC. If the solution is not integral, we round
the fractional solution to obtain an integral solution. The solution may not be
optimal, and the cost of the linear programming solution is a lower bound on
the optimal solution which gives us a measure of the quality of the solution of
the rounding step.

The rounding proceeds in two phases. First, we obtain a partial integral set
cover solution by rounding with probabilities given by the value of the fractional
optimal solution. The outcome of this rounding step might not be feasible. We
repeat the rounding process until a feasible integral cover is obtained. In phase
two, we obtain a minimal set cover from our solution by removing some facilities.
The two phases are as in Algorithm 1. An average of 20 rounding experiments
is used to determine the performance ratio for a single instance.

Experiments. To evaluate the effectiveness of the column generation and the
randomized rounding procedure on the set cover CVC, we generated close to
500 geometric instances consisting of n points placed uniformly at random in
the unit square representing both candidate facility locations and customers. The
number of points n varies between 10 and 500 in unit increments. Each candidate
facility is assigned 5 covering ranges in the interval (0, 1) and five capacities
from set {1, . . . , 5} uniformly at random in such a way that the capacity is a
non-increasing function of the covering range. We use a compact formulation
similar to the first integer programming formulation. The column generation,
the rounding, and the compact integer and linear formulations were coded in
Octave and the GNU LP solver was used.

The results are depicted in Fig. 1. The x axis represents the number of cus-
tomers in the problem instances solved. Figure 1.a shows the performance ratio,
i.e. the ratio between the cost of the cover obtained by column generation and
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Algorithm 1. Rounding

Let S be the set of generated columns.
Let x∈

S for S ≥ S be the optimal LP solution.
F ⊗ ≈.
repeat
for all S ≥ S do
xS ⊗ 1 with probability x∈

S , otherwise xS ⊗ 0.
F ⊗ F ∧ {S : xS = 1}

end for
until F is a set cover
for all S ≥ F in random order do
if F \ {S} is a set cover then
F ⊗ F \ {S}

end if
end for
Return F

rounding and the cost of the optimal solution to the LP relaxation. The experi-
ments include the integrality gap for the compact formulation on the instances
for which the integer program reported an optimal solution. From Fig. 1.b we
see clearly that the compact formulations cannot handle instances beyond 90
clients because of thrashing. In contrast, the running time for the column gen-
eration with rounding seems to scale well with the size of the problem instance,
a fact also supported by Fig. 1.c that shows an almost linear dependency of the
number of generated columns with the problem size. Finally, Fig. 1.d shows that
the average number of rounding iterations is approximately equal to 1.4 and it
seems to be independent of the size of the problem. The average was calculated
over twenty rounding experiments.

3.2 A Greedy Algorithm for Maximum CVC

We describe our results for the CVC with fixed facilities and show at the end that
the algorithm can handle maximum CVC problems with the same approximation
factor.

The greedy algorithm relies on repeatedly solving instances of the Knapsack
problem [12]. We denote byK(φ) an φ-approximation algorithm for the knapsack
problem, and by V (φ) the greedy algorithm for CVC with fixed facilities that
uses K(φ) as a subroutine. By convention, we use an approximation factor less
than one for maximization problems, φ < 1. The crucial idea is to examine
facilities in an arbitrary but fixed order and, for each facility, to decompose the
CVC instance into several independent knapsack instances, one for each range
and capacity. The solution to the CVC instance is then constructed greedily,
by selecting the maximum profit knapsack solutions (see Algorithm 2). The
algorithm outputs the total profit of clients covered, the set of clients covered
by each facility, and the range for each facility.
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(a) Performance ratio (b) Running time in seconds

(c) Total number of columns generated (d) Number of rounding iterations

Fig. 1. Results for random planar set cover CVC

Theorem 2. Algorithm V (φ) computes an Δ
Δ+1 approximate solution to the

CVC problem with fixed facilities.

Intuitively, one expects that the knapsack subroutine in Algorithm V (φ)
would not be much worse than the optimal assignment of clients to facilities in
the CVC instance. The only reason why there might be a significant difference
between the total profit packed by Algorithm K(φ) and the optimal solution is
that Algorithm K(φ) runs on an instance consisting of those objects not already
covered by previous iterations in V (φ), and the optimal CVC uses too many of
these missing objects. However, the “missing” objects are by definition covered
by V (φ) as well, only they are covered by different facilities. Next we formalize
this intuition.

Proof of Theorem 2: Let aj be the facility examined by the algorithm in
the jth iteration. Let Qj be the set of clients assigned to aj in the optimal CVC
solution but not available to Algorithm V (φ) because they were covered by V (φ)
in previous iterations 1, . . . , j − 1. Let OPTj be the set of clients assigned to aj
in the optimal solution. Let Aj = OPTj \Qj, be the set of clients in the optimal
solution that are available to the knapsack subroutine of Algorithm V (φ).
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Algorithm 2. V (φ):

let U be the set of all available clients
for all j ≥ J , consider facility aj do
for all ranges r ≥ Rj do
use Algorithm K(φ) to solve the knapsack instance with capacity cjr and
set of items Njr.
let pjr be the profit returned by Algorithm K(φ), and let Ijr be the set
of packed clients.

end for
let pj ⊗ maxr≤Rj pjr (pj is the solution with largest profit)
let Ij be the set of clients packed by the most profitable solution
let rj be the covering range for the most profitable solution.
let I ⊗ I \ Ij .

end for
return

∑f
j=1 pj

If X is a subset of clients, then pX denotes the total profit for the clients in X .
Term pK(Δ,r,j) represents the total profit for the solution returned by Algorithm
K(φ) on the knapsack instance used by Algorithm V (φ) with facility aj and
range r.

Let rj be the range chosen by Algorithm V (φ) for facility aj . Because rj was
chosen greedily (with maximum profit) by Algorithm K(φ), and the clients in
Aj were available in the jth iteration,

pK(Δ,rj ,j) ∃ φpAj .

Summing up over all facilities aj, we obtain

f∑

j=1

pAj ∪ 1

φ

f∑

j=1

pK(Δ,rj,j) =
V

φ
,

where V is the total profit returned by Algorithm V (φ). Since set Qj represents
the clients covered by both the optimal CVC solution and the solution returned
by Algorithm V (φ), we also have,

f∑

j=1

pQj ∪ V.

Summing the last two inequalities we obtain immediately

OPT ∪ V
(
1 +

1

φ

)
,

and the theorem follows. ∞∨
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0 1 2 3

Fig. 2. Tight example for the 1
2
-factor approximation algorithm for uniform CVC with

fixed facilities

A consequence of Theorem 2 is that the greedy algorithm for the uniform
CVC problem admits a 1

2 approximation factor. For objects with unit sizes and
profits, the knapsack problem has trivial optimal solutions, and therefore φ = 1.

Corollary 1. The greedy algorithm for the uniform CVC problem with fixed
facilities has an approximation factor of 1

2 .

Next we show that the bound of 1
2 is tight for the uniform CVC problem. Con-

sider the following instance on the real line (Fig. 2): the two facilities are at points
1 and 3, and the two clients are on points 0 and 2. Each facility has only one range
(radius 1) with capacity 1. If the greedy approximation algorithm chooses the facil-
ities in the order (1, 3) and the client on point 2 is assigned to the facility on point
1, then the facility at point 3 cannot cover the client at point 0. In the optimal
solution, the facility at point 1 (3) covers the client at point 0 (2).

Remark: Note that the tight example also tells us that a modification of the ap-
proximation algorithm in which we use the facility that covers the most number
of clients (greedily) in each iteration also has performance ratio 2.

Next we analyze the running time for the approximation algorithm. For each
facility there are at most n knapsack instances. If we use the FPTAS for Knap-

sack due to Ibarra and Kim [11] with running time O(n
3

β ) to obtain a φ = 1− Π
approximate solution to the Knapsack instance, then the total running time is

O(f n4

β ) where n is the number of clients and f is the number of facilities. For the
uniform CVC problem the running time can be further reduced to O(fn log n).
In this case, the best knapsack solution for each iteration can be obtained by
sorting all clients in non-decreasing order of their distance to the facility (time
complexity O(n log n)) and finding the maximum range rj for which the capac-
ity of the facility is larger than the number of clients covered (time complexity
O(n)). The same running time complexity can be obtained for the general CVC
problem if we choose φ = 1

2 , that is, if we use the greedy algorithm for the
knapsack problem [12]. In each iteration, we can find the profit of the knapsack
sub-problem by answering an orthogonal two dimensional range search query [2].
The set of points over which the range query is invoked corresponds to the set
of clients in the CVC instance and the coordinates of the points are defined by
profit density and distance to the facility. The range search query is unbounded
and can be implemented in O(log n) time. The data structures required can be
initialized in O(n logn) time per facility.

Maximum CVC: Algorithm 2 can be extended to handle maximum CVC as fol-
lows. The algorithm consists of k iterations, where k is the number of facilities
to be opened. In each iteration, we solve a knapsack instance for all remaining
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candidate facilities and all available covering ranges. We open the facility corre-
sponding to the most profitable knapsack solution found. With this change, the
conditions necessary for the proof of Theorem 2 are satisfied and we can claim
the following theorem.

Theorem 3. There exists a greedy algorithm that computes an Δ
Δ+1 approximate

solution to the maximum CVC problem.

Proof: Details omitted. ∞∨

4 Conclusion

In this paper, we introduce a new class of covering problems called “Covering
with Variable Capacities” which generalizes the well known covering and capac-
itated facility location problems. We define three classes of problems, set cover
CVC, maximum CVC, and CVC with fixed facilities. Our model is inspired by
an application in wireless cellular networks, but is appropriate for other ap-
plications in facility location as well. We show that CVC with fixed facilities
and uniform demands is NP-hard. In contrast, under the same conditions, the
capacitated facility location problem can be solved in polynomial time using
flows. We exhibit large integrality gaps for three different integer programming
formulations for CVC with fixed facilities.

Fast approximation algorithms are of particular interest for the telecommu-
nication industry. We give evidence that random instances of the set cover CVC
have a small integrality gap on average and we propose an efficient column gen-
eration algorithm followed by randomized rounding.

We describe a simple greedy algorithm for the maximum CVC that achieves
a performance bound of 1

2 − Π. The running time of the algorithm is determined
by the knapsack sub-problem and can be quite expensive if we want to solve
knapsack very precisely using the FPTAS [11]. However, for a slightly worse
performance bound of 1

3 , we can solve the general instance CVC problem effi-
ciently, in O(mn log n) time, where m is the number of facilities and n is the
number of clients. In practice, m ∀ n. For the uniform CVC instance, knapsack
can be solved optimally, and the greedy algorithm achieves a performance bound
of 1

2 with the same time complexity.
Finally, we mention that all three types of CVC problems when clients and

facilities are constrained to lie on a line can be solved in polynomial time using
a greedy algorithm for set cover CVC and dynamic programming for maximum
CVC. Details of this result will be presented in the full version of the paper.

Open Problems: It would be interesting to develop a fast 1 − 1/e approximation
algorithm for the maximum CVC problem that does not use the connection with
the separable assignment problem and constant factor approximations for the set
cover version. Following our results on CVC on the line, it would be interesting to
examine other network topologies. Finally,CVC can be investigatedwith capacity
functions other than the step function, for example linear continuous functions.
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Abstract. A set D ⊆ V of a graph G = (V,E) is called an outer-
connected dominating set of G if for all v ∈ V , |NG[v] ∩D| ≥ 1, and the
induced subgraph of G on V \ D is connected. The Minimum Outer-
connected Domination problem is to find an outer-connected domi-
nating set of minimum cardinality of the input graph G. Given a positive
integer k and a graph G = (V,E), the Outer-connected Domination
Decision problem is to decide whether G has an outer-connected dom-
inating set of cardinality at most k. The Outer-connected Domina-
tion Decision problem is known to be NP-complete for bipartite graphs.
In this paper, we strengthen this NP-completeness result by showing
that the Outer-connected Domination Decision problem remains
NP-complete for perfect elimination bipartite graphs. On the positive
side, we propose a linear time algorithm for computing a minimum
outer-connected dominating set of a chain graph, a subclass of bipartite
graphs. We propose a Δ(G)-approximation algorithm for the Minimum
Outer-connected Domination problem, where Δ(G) is the maximum
degree of G. On the negative side, we prove that the Minimum Outer-
connected Domination problem cannot be approximated within a fac-
tor of (1− ε) ln |V | for any ε > 0, unless NP ⊆ DTIME(|V |O(log log |V |)).
We also show that the Minimum Outer-connected Domination prob-
lem is APX-complete for graphs with bounded degree 4 and for bipartite
graphs with bounded degree 7.

Keywords: Domination, outer-connecteddomination,NP-completeness,
APX-completeness.

1 Introduction

A vertex v of a graph G = (V,E) is said to dominate a vertex w if either
v = w or vw ≥ E. A set of vertices D is a dominating set of G if every vertex
of G is dominated by at least one member of D. The domination number of a
graph G, denoted by γ(G), is the cardinality of a minimum dominating set of G.
The Minimum Domination problem is to find a dominating set of minimum
cardinality of the input graph G. The concept of domination and its variations
are widely studied as can be seen in [1, 2].
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For a set S ⇒ V of the graph G = (V,E), the subgraph of G induced by
S is defined as G[S] = (S,ES), where ES = {xy ≥ E|x, y ≥ S}. A set D ⇒
V of a graph G = (V,E) is called an outer-connected dominating set of G if
D is a dominating set of G and G[V \ D] is connected. The outer-connected
domination number of a graph G, denoted by γc(G), is the cardinality of a
minimum outer-connected dominating set of G. The concept of outer-connected
domination number was introduced by Cyman [3] and further studied by others
(see [4, 5, 6]). This problem has possible applications in computer networks.
Consider a client-server architecture based network in which any client must
be able to communicate to one of the servers. Since overloading of severs is
a bottleneck in such a network, every client must be able to communicate to
another client directly (without interrupting any of the server). A smallest group
of servers with these properties is a minimum outer-connected dominating set
for the graph representing the computer network.

The Minimum Outer-connected Domination (MOCD) problem is to
find an outer-connected dominating set of minimum cardinality of the input
graph G. Given a positive integer k and a graph G = (V,E), the Outer-
connected Domination Decision (OCDD) problem is to decide whether
G has an outer-connected dominating set of cardinality at most k. Minimum
Outer-connected Domination problem is studied for some subclasses of
chordal graphs (doubly chordal graphs, undirected path graphs and proper in-
terval graphs) [5].

In this paper, we study the algorithmic aspect of the Minimum Outer-
connected Domination problem. The contributions made in this paper are
summarized below.

1. We strengthen the NP-completeness result of the OCDD problem by show-
ing that this problem remains NP-complete for perfect elimination bipartite
graphs. On the positive side, we propose a linear time algorithm for com-
puting a minimum outer-connected dominating set of a chain graph.

2. We propose aΔ(G)-approximation algorithm for the MOCD problem, where
Δ(G) is the maximum degree of G. On the negative side, we prove that the
MOCD problem cannot be approximated within a factor of (1− ε) ln |V | for
any ε > 0, unless NP ⇒ DTIME(|V |O(log log |V |)).

3. We show that the MOCD problem is APX-complete for graphs with bounded
degree 4 and for bipartite graphs with bounded degree 7.

2 Preliminaries

For a graph G = (V,E), the sets NG(v) = {u ≥ V (G)|uv ≥ E} and NG[v] =
NG(v) ∪ {v} denote the open neighborhood and closed neighborhood of a vertex
v, respectively. For a connected graph G, a vertex v is a cut vertex if G \ {v}
is disconnected. The degree of a vertex v is |NG(v)| and is denoted by dG(v).
If dG(v) = 1, then v is called a pendant vertex. For S ⇒ V , let G[S] denote
the subgraph induced by G on S. A graph G = (V,E) is said to be bipartite if
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V (G) can be partitioned into two disjoint sets X and Y such that every edge
of G joins a vertex in X to another vertex in Y . A partition (X,Y ) of V is
called a bipartition. A bipartite graph with bipartition (X,Y ) of V is denoted by
G = (X,Y,E). Let n and m denote the number of vertices and number of edges
of G, respectively. A graph H = (V ≤, E≤) is a spanning subgraph of G = (V,E) if
V ≤ = V and E≤ ⇒ E. A connected acyclic spanning subgraph of G is a spanning
tree of G. A tree with exactly one non-pendant vertex is a star and a tree with
exactly two non-pendant vertices is called a bi-star.

In the rest of the paper, by a graph we mean a connected graph with at least
two vertices unless otherwise mentioned specifically. The following observations
regarding outer-connected dominating set of a graph are straightforward and
hence the proofs are omitted.

Observation 1. (a) If v is a pendant vertex of G = (V,E), then either v ≥ D
or D = V \ {v} for every outer-connected dominating set D of G.

(b) Let G = (V,E) be a connected graph having at least three vertices. Then
there is a minimum outer-connected dominating set of G containing all the
pendant vertices of G.

(c) Every outer-connected dominating set D of cardinality at most n − 2 of a
graph G = (V,E) having n vertices contains all the pendant vertices of G.

3 NP-completeness Proof for Perfect Elimination
Bipartite Graphs

Let G = (X,Y,E) be a bipartite graph. Then uv ≥ E is a bisimplicial edge if
NG(u) ∪NG(v) induces a complete bipartite subgraph in G. Let (e1, e2, . . . , ek)
be an ordering of pairwise non-adjacent edges (no two edges have a common
end vertex) of G (not necessarily all edges of E). Let Si be the set of endpoints
of edges e1, e2, . . . , ei and let S0 = →. Ordering (e1, e2, . . . , ek) is a perfect edge
elimination ordering for G if G[(X ∪ Y ) \ Sk] has no edge and each edge ei is
bisimplicial in the remaining induced subgraph G[(X ∪Y ) \Si−1]. G is a perfect
elimination bipartite graph if G admits a perfect edge elimination ordering. The
class of perfect elimination bipartite graphs was introduced by Golumbic and
Goss [7].

To show the NP-completeness of the OCDD problem, we need to use a well
known NP-complete problem, called Vertex Cover Decision problem [8]. A
set S ⇒ V of a graph G = (V,E) is called a vertex cover of G if for every edge
uv ≥ E, either u ≥ S or v ≥ S.
Vertex Cover Decision problem
INSTANCE: A graph G = (V,E) and a positive integer k.
QUESTION: Does G have a vertex cover of cardinality at most k?

We are now ready to prove the following theorem:

Theorem 2. OCDD problem is NP-complete for perfect elimination bipartite
graphs.
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Proof. Given a perfect elimination bipartite graph G = (V,E), a positive integer
k and an arbitrary subsetD of V , we can check in polynomial time whether |D| ∃
k and D is an outer-connected dominating set of G. Hence the OCDD problem
for perfect elimination bipartite graphs is in NP. To show the hardness, we
provide the polynomial time reduction from Vertex Cover Decision problem
in general graphs to the OCDD problem in perfect elimination bipartite graphs.

Given a graph G = (V,E), construct the graph G≤ = (V ≤, E≤) as follows:
If V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, define
V ≤ = {vi, xi, yi, wi | 1 ∃ i ∃ n} ∪ {e≤i, gi, hi : 1 ∃ i ∃ m} and
E≤ = {viwi, vixi, xiyi | 1 ∃ i ∃ n} ∪ {e≤igi, gihi | 1 ∃ i ∃ m} ∪
{e≤ivj , e≤ivk, gixj , gixk | 1 ∃ i ∃ m, vj and vk are endpoints of edge ei}.

The graph G = (V,E), where V = {v1, v2, v3} and E = {e1 = v1v2, e2 =
v2v3, e3 = v3v1} and the associated graph G≤ are shown in Fig. 1 to illustrate
the above construction.
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Fig. 1. An illustration to the construction of G→ from G

Clearly G≤ is a perfect elimination bipartite graph and (x1y1, x2y2, . . . , xnyn,
v1w1, v2w2, . . . , vnwn, g1h1, g2h2, . . . , gmhm) is perfect edge elimination ordering
for G≤.

Claim. G has a vertex cover of size k if and only if G≤ has an outer-connected
dominating set of size at most 2n+m+ k.

Proof. Let us first assume that G has a vertex cover say Vc of size k. Then
Vc ∪{wi, yi | 1 ∃ i ∃ n}∪{hi | 1 ∃ i ∃ m} is an outer-connected dominating set
of G≤ of size 2n+m+ k.

Conversely suppose that D is an outer-connected dominating set of G≤ of
size 2n + m + k. Define S = {hi | 1 ∃ i ∃ m} ∪ {wi, yi | 1 ∃ i ∃ n} and
E≤ = {e≤i | 1 ∃ i ∃ m}. By using Observation 1(c), all the pendant vertices
must belong to D, hence S ⇒ D. But S does not dominate the vertices of E≤.
Define S≤ = D \ S. Hence all the vertices of E≤ are dominated using S≤. Now to
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dominate e≤i, either e
≤
i ≥ S≤ or gi ≥ S≤ or some vj ≥ S≤. If e≤i ≥ S≤ or gi ≥ S≤, we

remove it from S≤ and add vj (i.e. adjacent to e≤i) in S≤. Do this for all i between
1 to m. Define Vt = V ∩ S≤. Note that Vt is a vertex cover of G and |Vt| ∃ k.
This proves our claim. ⊗≈

Hence our theorem is proved. ⊗≈

4 Chain Graphs

We have already seen that the OCDD problem is NP-complete even for per-
fect elimination bipartite graphs. In this section, we show that the problem of
computing a minimum outer-connected dominating set of a chain graph can be
solved in polynomial time.

A bipartite graphG = (X,Y,E) is called a chain graph if the neighborhoods of
the vertices of X form a chain, that is, the vertices of X can be linearly ordered,
say x1, x2, . . . , xp, such that NG(x1) ⇒ NG(x2) ⇒ . . . ⇒ NG(xp). If G = (X,Y,E)
is a chain graph, then the neighborhoods of the vertices of Y also form a chain [9].
An ordering α = (x1, x2, . . . , xp, y1, y2, . . . , yq) of X∪Y is called a chain ordering
if NG(x1) ⇒ NG(x2) ⇒ · · · ⇒ NG(xp) and NG(y1) ∧ NG(y2) ∧ · · · ∧ NG(yq). It
is well known that every chain graph admits a chain ordering [9, 10].

Theorem 3. Let G = (X,Y,E) be a connected chain graph and α = (x1, x2, . . . ,
xp, y1, y2, . . . , yq) is chain ordering of X ∪Y . Then r− 1 ∃ γc(G) ∃ r+2, where
r is the number of pendant vertices of G. Furthermore, the following are true.

(a) γc(G) = r − 1 if and only if G = K2.
(b) γc(G) = r if and only if G is a star or bi-star of order greater than 2.
(c) Let P denotes the set of all pendant vertices of G and PA denotes the set

of vertices adjacent to the vertices of P . Then γc(G) = r + 1 if and only if
G≤ = G[V \ (P ∪ PA)] is a star.

(d) If G is a graph other than the graphs described in the above statements then
γc(G) = r + 2.

Proof. Suppose D is a minimum outer-connected dominating set of G. Then
|D| = γc(G). Now by using Observation 1(a), either D contains all the pendant
vertices of G orD = V \{v}, where v is some pendant vertex. So either γc(G) ∞ r
or γc(G) = n− 1 ∞ r − 1. Hence γc(G) ∞ r − 1.

Let P denotes the set of pendant vertices of G. Now D = P ∪ {xp, y1} is an
outer-connected dominating set of G. Hence γc(G) ∃ r + 2.

(a) If G = K2. Then r = 2 and γc(G) = 1 and hence γc(G) = r−1. Conversely
suppose that γc(G) = r−1 andD be a minimum outer-connected dominating set
of G. This implies that D does not contain at least one pendant vertex. Then by
using Observation 1(a), D contains all the vertices of G other than one pendant
vertex and hence |D| = n− 1. This implies that r − 1 = n− 1 and hence r = n.
So all the vertices of G are pendant vertices. K2 is the only such graph. Hence
G = K2.
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(b) If G is a star or a bi-star having at least 3 vertices, then clearly γc(G) = r.
Conversely suppose γc(G) = r. Let D be a minimum outer-connected dom-

inating set of G and P be the set of all pendant vertices of G. Since |D| = r,
either D = P or r = n− 1. This implies that either all the vertices are adjacent
to one of the pendant vertices or all the vertices other than one are pendant
vertices. Hence G is a star or bi-star of order greater than 2.

(c) First suppose that G≤ = G[V \ (P ∪ PA)] is a star. Note that P is not
a dominating set. Since by Observation 1(b), P is properly contained in some
minimum outer-connected dominating set of G, say D, γc(G) ∞ r + 1. Let u be
the star center of G≤. Then D = P ∪{u} dominates all the vertices of G. Now the
vertex adjacent to the pendant vertices in X , say v, is adjacent to all the vertices
of X and the vertex adjacent to the pendant vertices in Y , say w, is adjacent to
all the vertices of Y . Also v and w both are not taken in D. Hence G[V \D] is
connected. So D is an outer-connected dominating set of G. So γc(G) = r + 1.

Conversely suppose that γc(G) = r + 1. By Observation 1(b), there is a min-
imum outer-connected dominating set, say D, of G such that P ∨ D. Now the
vertices of V \ (P ∪ PA) are dominated using only one vertex. This implies that
G[V \ (P ∪ PA)] is a star as it is a bipartite graph.

(d) Proof directly follows from above statements. ⊗≈

A chain ordering of a chain graph G = (X,Y,E) can be computed in linear
time [11]. The set P of pendant vertices of G can be computed in O(n+m) time.
If |V (G)| = 2, then take D = {v}, v ≥ V (G). It can be checked in O(n + m)
whether G is a star or a bi-star. In that case, takeD = P . If G≤ = G[V \(P∪PA)],
where P (A) be the set of vertices adjacent to a vertex in P , is a star with star-
center v, then take D = P ∪{v}, otherwise take D = P ∪{y1, xp}. By Theorem 3,
D is a minimum outer-connected dominating set of G. So we have the following
theorem.

Theorem 4. A minimum outer-connected dominating set of a chain graph can
be computed in O(n +m) time.

5 Approximation Algorithm and Hardness of
Approximation

Let G = (V,E) be any graph. Let D be any minimum outer-connected dom-
inating set of G. Now V = ∪v∈DNG[v]. So, n = |V | = | ∪v∈D NG[v]| ∃∑

v∈D |NG[v]| ∃
∑

v∈D(dG(v) + 1) ∃
∑

v∈D(Δ(G) + 1) ∃ (Δ(G) + 1)|D|. So,
|D| ∞ ∀ n

Δ(G)+1←. So, we have the following result.

Lemma 1. For any graph G of order n with maximum degree Δ(G),

γc(G) ∞ ∀( n

Δ(G) + 1
)←.

So, for a graph G = (V,E), D = V (G) is an outer-connected dominating set
such that |D| ∃ (Δ(G) + 1)OPT , where OPT is the cardinality of a minimum
outer-connected dominating set of G. So we have the following theorem.
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Theorem 5. The MOCD problem in any graph G = (V,E) with maximum
degree Δ(G) can be approximated with an approximation ratio of Δ(G) + 1.

The following approximation hardness result of the Minimum Domination
problem will be used to establish an approximation hardness result of the MOCD
problem.

Theorem 6. [12] Minimum Domination problem can not be approximated
within a factor of (1− ε) ln |V | in polynomial time for any constant ε > 0 unless
NP ⇒ DTIME( |V |O(log log |V |)).

Now we are ready to prove an approximation hardness result for the MOCD
problem.

Theorem 7. MOCD problem for a graph G = (V,E) can not be approximated
within a factor of (1− ε) ln |V | in polynomial time for any constant ε > 0 unless
NP ⇒ DTIME(|V |O(log log |V |)).

Proof. We propose an approximation preserving reduction from the Minimum
Domination problem to the MOCD problem. This together with the non-
approximability bound of the Minimum Domination problem stated in Theo-
rem 6 will provide the desired result.

Let us first describe the reduction from the Minimum Domination problem
to the MOCD problem. Given a graph G = (V,E), where V = {v1, v2, . . . , vn}
construct a graph G≤ = (V ≤, E≤) as follows:

V (G≤) = V (G) ∪ {w1, w2, . . . , wn} ∪ {z}, and E(G≤) = E(G) ∪ {viwi|1 ∃ i ∃
n} ∪ {wiwj |1 ∃ i < j ∃ n} ∪ {zwi|1 ∃ i ∃ n}.

The graph G = (V,E), where V = {v1, v2, v3} and E = {v1v2, v2v3} and the
associated graph G≤ are shown in Fig. 2 to illustrate the above construction.
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Fig. 2. An illustration to the construction of G→ from G

It is easy to see that if D∗ is a minimum dominating set of G, then D∗ ∪ {z}
is a an outer-connected dominating set of G≤.

Now assume that the minimum outer-connected dominating set can be ap-
proximated within a ratio of α, where α = (1 − ε) ln |V | for some (fixed) ε > 0,
by using some algorithm, say algorithm A, that runs in polynomial time. Let l
be a fixed positive integer. Consider the following algorithm:
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Algorithm B
Input: A graph G = (V,E)
1. If a minimum dominating set D of cardinality < l exists, construct it Else:
2. Construct G≤ as above.
3. Compute outer-connected dominating set Do in G≤ using algorithm A.
4. Compute D by following procedure
5. Define D = Do

⋂
V

6. For each wi, if wi ≥ Do then D = D ∪ vi
6. Output D

This algorithm runs in polynomial time since algorithm A is a polynomial
time algorithm and step 1 runs in polynomial time as l is a constant. Note that
if D is a minimum dominating set of cardinality at most l, then it is optimal.
In the following we will analyze the case where D is not a minimum dominating
set of cardinality at most l.

Let D∗
o be a minimum outer-connected dominating set, then |D∗

o | ∞ l. Given
the graph G = (V,E) algorithm B computes a dominating set D of cardinality
|D| ∃ |Do| ∃ α|D∗

o | ∃ α(1 + |D∗|) = α(1 + 1/|D∗|)|D∗| ∃ α(1 + 1/l)|D∗|
Hence Algorithm B approximates minimum dominating set within ratio α(1+

1/l). Since α = (1 − ε) ln |V | for some (fixed) ε > 0, for some positive integer l
such that 1/l < ε/2, algorithm B approximates minimum dominating set within
ratio
α(1 + 1/l) < (1− ε)(1 + ε/2) ln(|V |) = (1− ε≤) ln(|V |) for ε≤ = ε/2 + ε2/2.

By Theorem 6, if the Minimum Domination problem can be approximated
within a ratio of (1 − ε≤) ln(|V |), then NP ⇒ DTIME(|V |O(log log |V |)). It follows
that if the Minimum Outer-connected Domination problem can be approx-
imated within a ratio of (1− ε) ln(|V |) then NP ⇒ DTIME(|V |O(log log |V |)).

Since ln |V | ≈ ln(2|V |+1) for sufficiently large values of |V |, for a graph G≤ =
(V ≤, E≤), where |V ≤| = 2|V | + 1, Minimum Outer-connected Domination
problem cannot be approximated within a ratio of (1 − ε) ln |V ≤| unless NP ⇒
DTIME(|V ≤|O(log log |V ′|)). ⊗≈

6 APX-completeness

In this section, we show that the MOCD problem is APX-complete for bounded
degree graphs.

Since Δ(G) ∃ k for some integer constant k, the following corollary follows
from Theorem 5.

Corollary 1. MOCD problem for bounded degree graphs is in APX.

Next we prove that the MOCD problem for bounded degree graphs is APX-
hard. To this end, we need the concept of a very popular reduction, known as
L-reduction.

Definition 1. Given two NP optimization problems F and G and a polynomial
time transformation f from instances of F to instances of G, we say that f is an
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L-reduction if there are positive constants α and β such that for every instance
x of F

1. optG(f(x)) ∃ α · optF (x).
2. for every feasible solution y of f(x) with objective value mG(f(x), y) = c2

we can in polynomial time find a solution y≤ of x with mF (x, y
≤) = c1 such

that |optF (x)− c1| ∃ β|optG(f(x))− c2|.

To show the APX-completeness of a problem Π ≥APX, it is enough to show that
there is an L-reduction from some APX-complete problem to Π.

Now, we are ready to proof the following result.

Theorem 8. MOCD problem is APX-complete for graphs with maximum
degree 4.

Proof. By Corollary 1, MOCD problem for bounded degree graphs is in APX.
Minimum Domination problem is known to be APX-hard for general graphs
with maximum degree 3 [13]. We describe an L-reduction f from instances of
the Minimum Domination Problem for graphs with maximum degree 3 to
the instances of the MOCD problem. Given a graph G = (V,E) of maximum
degree 3, we construct a graph G≤ = (V ≤, E≤) as follows. Let V = {v1, v2, . . . , vn}.
Let V ≤ = V ∪ {z1, z2, . . . , zn} ∪ {y1, y2, . . . , yn} and E≤ = E ∪ {viyi, yizi|1 ∃ i ∃
n} ∪ {yiyi+1|1 ∃ i ∃ n− 1}. Note that the maximum degree of G≤ is 4. Now let
us first prove the following claim:

Claim. If D∗ is a minimum cardinality dominating set of G, then the cardinality
of minimum outer-connected dominating set, say D∗

o , in G≤ is |D∗| + n, where
n = |V |.

Proof. Suppose D∗ is a minimum cardinality dominating set ofG, then D∗∪{zi |
1 ∃ i ∃ n} is an outer-connected dominating set of cardinality |D∗|+ n. Hence
the cardinality of a minimum outer-connected dominating set, say D∗

o is less
than or equal to |D∗|+ n, that is, |D∗

o | ∃ |D∗|+ n.
Next suppose that D∗

o is a minimum cardinality outer- connected dominating
set of G≤. Define Do = V ∪ {zi | 1 ∃ i ∃ n}. Then Do is an outer-connected
dominating set of cardinality 2n. Hence |D∗

o | ∃ 2n. So by Observation 1(c), all
the pendant vertices of G≤ must belong to D∗

o . Hence zi must belong to D∗
o for

all i, 1 ∃ i ∃ n. Let D≤ = D∗
o \ {zi | 1 ∃ i ∃ n}. Let S = {y1, . . . , yn} ∩D≤. Let

D≤≤ = (D≤ \ S) ∪ {vi|yi ≥ S}. Then D≤≤ is a dominating set of G and cardinality
of D≤≤ is less than or equal to |D∗

o | − n. Hence if D∗ is minimum dominating set
then |D∗| ∃ |D∗

o | − n. So |D∗
o | ∞ |D∗|+ n.

This completes the proof of the claim. ⊗≈

LetD∗ andD∗
o be a minimum dominating set and a minimum outer-connected

dominating set of G and G≤, respectively. Since G is of bounded degree 3, by
Lemma 1, |D∗| ∞ n/4. Hence |D∗

o | = |D∗|+ n ∃ |D∗|+ 4|D∗| i.e. |D∗
o | ∃ 5|D∗|.

Now consider any outer-connected dominating set Do of G≤, then we have the
following two cases:
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Case 1: zi belong to Do for all i, 1 ∃ i ∃ n.
Here yi may or may not belong to Do. Let |Do ∩ {y1, y2, . . . , yn}| = r and
|Do ∩ V (G)| = k. Then |Do| = n + r + k. Now we try to find a dominating set
D of G. First include those k vertices of V in D, which also belong to Do. If
yi ≥ Do but vi /≥ Do, then include vi in D. Suppose this happens for k≤ values
of i, where k≤ ∃ r. Then D is a dominating set of G and |D| = k≤ + k. Now
|Do| − |D∗

o | = (n+ r+ k)− |D∗
o | = r+ k− |D∗| ∞ k≤ + k− |D∗| = |D| − |D∗| (as

|D∗
o | = |D∗|+ n). This implies |D| − |D∗| ∃ |Do| − |D∗

o | in this case.
Case 2: At least one of the zi does not belong to Do for some i, where 1 ∃ i ∃ n.
In this case all the vertices except this particular zi belong to Do. Hence |Do| =
3n− 1. Now take D = Do ∩ V . Then D is a dominating set of G and |D| = n.
Then |Do|−|D∗

o | = (3n−1)−(|D∗|+n) = (2n−1)−|D∗| ∞ n−|D∗| = |D|−|D∗|.
This implies |D| − |D∗| ∃ |Do| − |D∗

o | in this case.
Hence |D| − |D∗| ∃ |Do| − |D∗

o | in both the cases and we have shown that f
is an L-reduction with α = 5 and β = 1.

Thus, the MOCD problem in graphs of bounded degree 4 is APX-complete.
⊗≈

Next we prove the APX-completeness of the MOCD problem for bipartite
graphs of bounded degree. A set S ⇒ V of a graph G = (V,E) is a total domi-
nating set if NG(v) ∩ S �= → for all v ≥ V . The Minimum Total Domination
problem is to find a total dominating set of minimum cardinality of the input
graphG. Minimum Total Domination problem is known to be APX-complete
for bipartite graphs with maximum degree 3 [14].

Theorem 9. MOCD problem is APX-complete for bipartite graphs with maxi-
mum degree 7.

Proof. By Corollary 1, the MOCD problem for bounded degree bipartite graphs
is in APX. We describe an L-reduction f from instances of the Minimum Total
Domination problem for bipartite graphs with maximum degree 3 to the in-
stances of the MOCD problem for bipartite graphs of maximum degree 7. Given
a bipartite graph G = (V,E) of maximum degree 3 construct a graph G≤ =
(V ≤, E≤) as follows. Let V (G) = {v1, v2, . . . , vn}. Let V ≤ = V ∪{w1, w2, . . . , wn}∪
{z1, z2, . . . , zn} ∪ {y1, y2, . . . , yn}. Construct a spanning tree T = (V,E1) of G.
Let ER = {wiwj |vivj ≥ E1, 1 ∃ i < j ∃ n}. Let Ei = {wivj |vj ≥ NG(vi)}. Let
E≤ = E ∪ ER ∪ {wizi, ziyi, 1 ∃ i ∃ n} ∪ (∪n

i=1E
i).

Clearly G≤ is a bipartite graph of maximum degree 7. The graph G = (V,E),
where V = {v1, v2, v3, v4} and E = {v1v2, v2v3, v3v4, v4v1} and the associated
graph G≤ are shown in Fig. 3 to illustrate the above construction.

Let us first prove the following claim:

Claim. If D∗
T is a minimum total dominating set of G and D∗

o is a minimum
outer-connected dominating set of G≤, then |D∗

o | = |D∗
T |+ n.

Proof. ClearlyD∗
T ∪{y1, y2, . . . , yn} is an outer-connected dominating set. Hence

|D∗
o | ∃ |D∗

T |+ n.
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Fig. 3. An illustration to the construction of G→ from G

Now we construct a total dominating set of G of cardinality at most |D∗
o | −n

from the minimum outer-connected dominating set D∗
o of G≤ as follows.

The minimum outer-connected dominating set D∗
o of G≤ will necessarily con-

tain all the yi, 1 ∃ i ∃ n. Given D∗
o , we construct an outer-connected dominating

set D∗∗
o such that |D∗

o | = |D∗∗
o | and D∗∗

o ∩ {w1, w2, . . . , wn} = →, as follows:
For each i, 1 ∃ i ∃ n, if wi ≥ D∗

o , then replace wi with vi.
Let us call the resultant set D∗∗

o . Define D≤ = D∗∗
o \ {y1, y2, . . . , yn}. Now to

dominate wi, either zi belongs to D≤ or some neighbor vj of wi belongs to D≤. If
zi belongs to D≤, then remove it from D≤ and add some neighbor vj of wi in D≤.
Then D≤ is a total dominating set of G and |D≤| ∃ |D∗∗

o | − n = |D∗
o | − n. Hence

|D∗
T | ∃ |D∗

o | − n. This proves our claim. ⊗≈

Since maximum degree of G is 3, for any total dominating set DT of G,
|DT | ∞ n/3. So |D∗

T | ∞ n/3. Hence |D∗
o | = |D∗

T | + n ∃ |D∗
T | + 3|D∗

T |. So
|D∗

o | ∃ 4|D∗
T |.

Now consider any outer-connected dominating set Do, then we have following
two cases:
Case 1: yi belong to Do for all i, 1 ∃ i ∃ n.

Define the sets W = {w1, w2, . . . , wn} and Z = {z1, z2, . . . , zn}. Now we
construct an outer-connected dominating set D≤

o from Do, by replacing wi with
vi, whenever wi ≥ Do, 1 ∃ i ∃ n. Note that {y1, y2, . . . , yn} ⇒ D≤

o and D≤
o∩W =

→.
So D≤

o is an outer-connected dominating set of same or lesser cardinality than
that of Do. Now suppose |D≤

o ∩Z| = r and |D≤
o ∩ V | = k, then |D≤

o| = n+ r+ k.
Since for each i, 1 ∃ i ∃ n,NG′(wi)∩V = NG(vi),D

≤
o∩V is a total dominating

set of G whenever (NG′(wi) ∩ V ) ∩D≤
o = NG(vi) ∩D≤

o �= → for all i, 1 ∃ i ∃ n.
If not so, then suppose there exist a set of vertices S ⇒ V such that for every
vertex vj ≥ S, NG(vj) ∩ D≤

o = →, that is, (NG′(wj) ∩ V ) ∩ D≤
o = →. Now since

NG′(wj) ⇒ V ∪W ∪{zj}, zj must belong to D≤
o, as NG(vj)∩D≤

o = →. Now update
D≤

o as D≤
o = (D≤

o \ {zj}) ∪ {vk}, where vk ≥ NG(vj). Do this for all the vertices
in S. Now define DT = D≤

o ∩ V . Then DT is a total dominating set of G and
|DT | = k + k1, where k1 ∃ r. Now, |DT | − |D∗

T | = k + k1 − |D∗
T | ∃ n+ r + k −

(|D∗
T |+ n) = |D≤

o| − |D∗
o | ∃ |Do| − |D∗

o |. This implies |DT | − |D∗
T | ∃ |Do| − |D∗

o |
in this case.
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Case 2: At least one yi does not belong to Do for some i, 1 ∃ i ∃ n.
In this case all the vertices except this particular yi belong to Do. Hence |Do| =
4n − 1. Now take DT = Do ∩ V . Then DT is a total dominating set of G and
|DT | = n. Then |Do| − |D∗

o | = (4n − 1) − (|D∗
T | + n) = (3n − 1) − |D∗

T | ∞
n− |D∗

T | = |DT | − |D∗
T |. This implies |DT | − |D∗

T | ∃ |Do| − |D∗
o | in this case.

Hence |DT | − |D∗
T | ∃ |Do| − |D∗

o | in both the cases and we have shown that
f is an L-reduction with α = 4 and β = 1. ⊗≈
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Abstract In this paper, we present two necessary conditions for recog-
nizing point visibility graphs. We show that this recognition problem lies
in PSPACE. We state new properties of point visibility graphs along with
some known properties that are important in understanding point visi-
bility graphs. For planar point visibility graphs, we present a complete
characterization which leads to a linear time recognition and reconstruc-
tion algorithm.

1 Introduction

The visibility graph is a fundamental structure studied in the field of compu-
tational geometry and geometric graph theory [4, 8]. Some of the early appli-
cations of visibility graphs included computing Euclidean shortest paths in the
presence of obstacles [12] and decomposing two-dimensional shapes into clusters
[16]. Here, we consider problems from visibility graph theory.

Let P = {p1, p2, ..., pn} be a set of points in the plane (see Fig. 1). We say that
two points pi and pj of P are mutually visible if the line segment pipj does not
contain or pass through any other point of P . In other words, pi and pj are visible
if P ≥ pipj = {pi, pj}. If two vertices are not visible, they are called an invisible
pair. For example, in Fig. 1(c), p1 and p5 form a visible pair whereas p1 and p3
form an invisible pair. If a point pk ⇒ P lies on the segment pipj connecting two
points pi and pj in P , we say that pk blocks the visibility between pi and pj ,
and pk is called a blocker in P . For example in Fig. 1(c), p5 blocks the visibility
between p1 and p3 as p5 lies on the segment p1p3. The visibility graph (also
called the point visibility graph (PVG)) G of P is defined by associating a vertex
vi with each point pi of P such that (vi, vj) is an undirected edge of G if and
only if pi and pj are mutually visible (see Fig. 1(a)). Observe that if no three
points of P are collinear, then G is a complete graph as each pair of points in P
is visible since there is no blocker in P . Sometimes the visibility graph is drawn
directly on the point set, as shown in Figs. 1(b) and 1(c), which is referred to as
a visibility embedding of G.

Given a point set P , the visibility graph G of P can be computed as follows.
For each point pi of P , the points of P are sorted in angular order around pi. If
two points pj and pk are consecutive in the sorted order, check whether pi, pj
and pk are collinear points. By traversing the sorted order, all points of P , that
are not visible from pi, can be identified in O(n log n) time. Hence, G can be

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 163–175, 2014.
� Springer International Publishing Switzerland 2014
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Fig. 1. (a) A point visibility graph with (v1, v2, v3, v4) as
a CSP. (b) A visibility embedding of the point visibility
graph where (p1, p2, p3, p4) is a GSP. (c) A visibility em-
bedding of the point visibility graph where (p1, p2, p3, p4)
is not a GSP.
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p5

p6(b)
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(a)

Fig. 2. (a) A planar
graphG. (b) A planar vis-
ibility embedding of G.

computed from P in O(n2 logn) time. Using the result of Chazelle et al. [3] or
Edelsbrunner et al. [6], the time complexity of the algorithm can be improved to
O(n2) by computing sorted angular orders for all points together in O(n2) time.

Consider the opposite problem of determining if there is a set of points P
whose visibility graph is the given graph G. This problem is called the visibility
graph recognition problem. Identifying the set of properties satisfied by all visi-
bility graphs is called the visibility graph characterization problem. The problem
of actually drawing one such set of points P whose visibility graph is the given
graph G, is called the visibility graph reconstruction problem.

Here we consider the recognition problem: Given a graph G in adjacency ma-
trix form, determine whether G is the visibility graph of a set of points P in
the plane [9]. In Sect. 2, we present two necessary conditions for this recogni-
tion problem In the same section, we establish new properties of point visibility
graphs, and in addition, we state some known properties with proofs that are
important in understanding point visibility graphs. Though the first necessary
condition can be tested in O(n3) time, it is not clear whether the second neces-
sary condition can be tested in polynomial time. On the other hand, we show in
Sect. 3 that the recognition problem lies in PSPACE.

If a given graphG is planar, there can be three cases: (i) G has a planar visibil-
ity embedding (Fig. 2), (ii) G admits a visibility embedding, but no visibility em-
bedding ofG is planar (Fig. 3), and (iii) G does not have any visibility embedding
(Fig. 4). Case (i) has been characterized by Eppstein [5] by presenting four infi-
nite families ofG and one particular graph. In order to characterize graphs in Case
(i) and Case (ii), we show that two infinite families and five particular graphs are
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Fig. 3. (a) A planar graph G. (b) A planar embedding
of G. (c) A non-planar visibility embedding of G.
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Fig. 4. A planar graph G
that does not admit a vis-
ibility embedding

required in addition to graphs for Case (i). Using this characterization, we present
an O(n) algorithm for recognizing and reconstructing G in Sect. 4. Note that this
algorithm does not require any prior embedding ofG. Finally, we conclude the pa-
per with a few remarks.

2 Properties of Point Visibility Graphs

Consider a subset S of vertices of G such that their corresponding points C in
a visibility embedding ξ of G are collinear. The path formed by the points of C
is called a geometric straight path (GSP). For example, the path (p1, p2, p3, p4)
in Fig. 1(b) is a GSP as the points p1, p2, p3 and p4 are collinear. Note that
there may be another visibility embedding ξ of G as shown in Fig. 1(c), where
points p1, p2, p3 and p4 are not collinear. So, the points forming a GSP in ξ may
not form a GSP in every visibility embedding of G. If a GSP is a maximal set
of collinear points, it is called a maximal geometric straight path (max GSP). A
GSP of k collinear points is denoted as k-GSP. In the following, we state some
properties of PVGs and present two necessary conditions for recognizing G.

Lemma 1. If G is a PVG but not a path, then for any GSP in any visibility
embedding of G, there is a point visible from all the points of the GSP[11].

Proof. For every GSP, there exists a point pi whose perpendicular distance to
the line containing the GSP is the smallest. So, all points of the GSP are visible
from pi. ∪→

Lemma 2. If G admits a visibility embedding ξ having a k-GSP, then the num-
ber of edges in G is at least (k − 1) + k(n− k).

Proof. Let pi and pj be two points of ξ such that pi is a point of the k-GSP
and pj is not. Consider the segment pipj . If pi and pj are mutually visible, then
(vi, vj) is an edge in G. Otherwise, there exists a blocker pk on pipj such that
(vj , vk) is an edge in G. So, pj has an edge in the direction towards pi. Therefore,
for every such pair pi and pj , there is an edge in G. So, (n − k)k such pairs in
ξ correspond to (n − k)k edges in G. Moreover, there are (k − 1) edges in G
corresponding to the k-GSP. Hence, G has at least (k− 1) + k(n− k) edges. ∪→
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Corollary 1. If a point pi in a visibility embedding ξ of G does not belong to a
k-GSP in ξ, then its corresponding vertex vi in G has degree at least k.

Let H be a path in G such that no edges exist between any two non-consecutive
vertices in H . We call H a combinatorial straight path (CSP ). Observe that in
a visibility embedding of G, H may not always correspond to a GSP. In Fig.
1(a), H = (v1, v2, v3, v4) is a CSP which corresponds to a GSP in Fig. 1(b) but
not in Fig. 1(c). Note that a CSP always refers to a path in G, whereas a GSP
refers to a path in a visibility embedding of G. A CSP that is a maximal path, is
called a maximal combinatorial straight path (max CSP ). A CSP of k-vertices
is denoted as k-CSP.

Lemma 3. G is a PVG and bipartite if and only if the entire G is a CSP.

Proof. If the entire G can be embedded as a GSP, then alternating points in
the GSP form the bipartition and the lemma holds. Otherwise, there exists at
least one max GSP which does not contain all the points. By Lemma 1, there
exists one point pi adjacent to all points of the GSP. So, pi must belong to one
partition and all points of the GSP (having edges) belong to the other partition.
Hence, G cannot be a bipartite graph, a contradiction. The other direction of
the proof is trivial. ∪→

Corollary 2. G is a PVG and triangle-free if and only if the entire G is a CSP.

Lemma 4. If G is a PVG, then the size of the maximum clique in G is bounded
by twice the minimum degree of G, and the bound is tight.

Proof. In a visibility embedding of G, draw rays from a point pi of minimum
degree through every visible point of pi. Observe that any ray may contain
several points not visible from pi. Since any clique can have at most two points
from the same ray, the size of the clique is at most twice the number of rays,
which gives twice the minimum degree of G. ∪→

Lemma 5. If G is a PVG and it has more than one max CSP, then the diameter
of G is 2 [11].

Proof. If two vertices vi and vj are not adjacent in G, then they belong to a
CSP L of length at least two. By Lemma 1, there must be some vertex vk that
is adjacent to every vertex in L. (vi, vk, vj) is the required path of length 2.
Therefore, the diameter of G cannot be more than two. ∪→

Corollary 3. If G is a PVG but not a path, then the BFS tree of G rooted at
any vertex vi of G has at most three levels consisting of vi in the first level, the
neighbours of vi in G in the second level, and the rest of the vertices of G in the
third level.

Lemma 6. If G is a PVG but not a path, then the subgraph induced by the
neighbours of any vertex vi, excluding vi, is connected.
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Fig. 5. (a) The points (u1, u2, ..., u7, u1) are visible from an internal point p1. (b) The
points (u1, u2, ..., u6) are visible from a convex hull point p1.

Proof. Consider a visibility embedding of G where G is not a path. Let
(u1, u2, ..., uk, u1) be the visible points of pi in clockwise angular order. If
pi is not a convex hull point, then (u1, u2), (u2, u3), ..., (uk−1, uk), (uk, u1)
are visible pairs (Fig. 5(a)). If pi, u1 and uk are convex hull points, then
(u1, u2), (u2, u3), ..., (uk−1, uk) are visible pairs (Fig. 5(b)). Since there exists
a path between every pair of points in (u1, u2, ..., uk, u1), the subgraph induced
by the neighbours of vi is connected. ∪→

Necessary Condition 1 If G is not a CSP, then the BFS tree of G rooted at
any vertex can have at most three levels, and the induced subgraph formed by the
vertices in the second level must be connected.

Proof. Follows from Corollary 3 and Lemma 6. ∪→

As defined for point sets, if two vertices vi and vj of G are adjacent (or, not
adjacent) in G, (vi, vj) is referred to as a visible pair (respectively, invisible pair)
of G. Let (v1, v2, ..., vk) be a path in G such that no two non-consecutive vertices
are connected by an edge in G (Fig. 6(a)). For any vertex vj , 2 ∃ j ∃ k − 1, vj
is called a vertex-blocker of (vj−1, vj+1) as (vj−1, vj+1) is not an edge in G and
both (vj−1, vj) and (vj , vj+1) are edges inG. In the same way, consecutive vertex-
blockers on such a path are also called vertex-blockers. For example, vm ∩ vm+1

is a vertex-blocker of (vm−1, vm+2) for 2 ∃ m ∃ k − 2. Note that ∩ represents
concatenation of consecutive vertex-blockers.

Consider the graph in Fig. 6(b). Though G satisfies Necessary Condition 1, it
is not a PVG because it does not admit a visibility embedding. It can be seen
that this graph without the edge (v2, v4) admits a visibility embedding (see Fig.
6(a)), where (v1, v2, v3, v4, v5) forms a GSP. However, (v2, v4) demands visibility
between two non-consecutive collinear blockers which cannot be realized in any
visibility embedding.

Necessary Condition 2 There exists an assignment of vertex-blockers to in-
visible pairs in G such that:
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v1 v2 v3 v4 v5

v6

(b)(a)

v1 v2 v3 v4 v5

v6

Fig. 6. (a) Vertices v2, v3, v4 are vertex-blockers of (v1, v3), (v3, v4) (v3, v5) respectively.
Also, v2 ∗ v3 ∗ v4 is the vertex-blocker of (v1, v5). (b) The graph satisfies Necessary
Condition 1 but is not a PVG because of the edge (v2, v4).

1. Every invisible pair is assigned one vertex-blocker.
2. If two invisible pairs in G sharing a vertex vi (say, (vi, vj) and (vi, vk) ),

and their assigned vertex-blockers are not disjoint, then all vertices in the
two assigned vertex-blockers along with vertices vi, vj and vk must be a CSP
in G.

3. If two invisible paris in G are sharing a vertex vi (say, (vi, vj) and (vi, vk)),
and vk is assigned as a vertex blocker to (vi, vj), then vj is not assigned as
a vertex blocker to (vi, vk).

Proof. In a visibility embedding of G, every segment connecting two points, that
are not mutually visible, must pass through another point or a set of collinear
points, and they correspond to vertex-blockers in G.

Since (vi, vj) and (vi, vk) are invisible pairs, the segments (pi, pj) and (pi, pk)
must contain points. If there exists a point pm on both pipj and pipk, then points
pi, pm, pj, pk must be collinear. So, vi, vm, vj and vk must belong to a CSP.

Since (vi, vj) and (vi, vk) are invisible pairs, the segments (pi, pj) and (pi, pk)
must contain points. If the point pk lies on pipj , then pj cannot lie on pipk,
because it contradicts the order of points on a line. ∪→

Lemma 7. If the size of the longest GSP in some visibility embedding of a
graph G with n vertices is k, then the degree of each vertex in G is at least ⊗n−1

k−1 ≈
[14, 13, 15].

Proof. For any point pi in a visibility embedding of G, the degree of pi is the
number of points visible from pi which are in angular order around pi. Since the
longest GSP is of size k, a ray from pi through any visible point of pi can contain
at most k − 1 points excluding pi. So there must be at least ⊗n−1

k−1 ≈ such rays,
which gives the degree of pi. ∪→

Theorem 1. If G is a PVG but not a path, then G has a Hamiltonian cycle.

Proof. Let H1, H2, ..., Hk be the convex layers of points in a visibility embedding
of G, where H1 and Hk are the outermost and innermost layers respectively. Let
pipj be an edge of H1, where pj is the next clockwise point of pi on H1 (Fig.
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Fig. 7. (a) The left tangents of pi and pj meet H2 at the same point pl. (b) The left
tangents of pi and pj meet H2 at points pl and pm of the same edge.

7(a)). Draw the left tangent of pi to H2 meeting H2 at a point pl such that the
entire H2 is to the left of the ray starting from pi through pl. Similarly, draw
the left tangent from pj to H2 meeting H2 at a point pm. If pl = pm then take
the next clockwise point of pl in H2 and call it pt. Remove the edges pipj and
plpt, and add the edges pipl and pjpt (Fig. 7(a)). Consider the other situation
where pl ∧= pm. If plpm is an edge, then remove the edges pipj and plpm, and
add the edges pipl and pjpm (Fig. 7(b)). If plpm is not an edge of H2, take the
next counterclockwise point of pm on H2 and call it pq. Remove the edges pipj
and pqpm, and add the edges pipq and pjpm (Fig. 8(a)).

Thus, H1 and H2 are connected forming a cycle C1,2. Without the loss of
generality, we assume that pm ⇒ H2 is the next counter-clockwise point of pj in
C1,2 (Fig. 8(b)). Starting from pm, repeat the same construction to connect C1,2

with H3 forming C1,3. Repeat till all layers are connected to form a Hamiltonian
cycle C1,k. Note that if Hk is just a path (Fig. 8(b)), it can be connected trivially
to form C1,k. ∪→

pi

pj

pl
H3

pi

pj

pl
H1 H1H2H2

(a) (b)

pm
pq

pm

Fig. 8. (a) The left tangents of pi and pj meet H2 points pl and pm of different edges.
(b) The innermost convex layer is a path which is connected to C1,2.

Corollary 4. Given G and a visibility embedding of G, a Hamiltonian cycle in
G can be constructed in linear time.
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(a) (b)

Fig. 9. (a) A PVG with A = {p1, p2, p3}, B={p4,
p5, p6, p7, p8, p9, p10} and C={p11, p12, p13}. (b)
Points of A and C connected by edges representing
blockers.

(a)

(c)

(b)

(d)

Fig. 10. These four infinite fam-
ilies admit planar visibility em-
bedding (Eppstein [5])

Proof. This is because the combinatorial representation of G contains all its
edges, and hence the gift-wrapping algorithm for finding the convex layers of a
point set becomes linear in the input size. ∪→

Lemma 8. Consider a visibility embedding of G. Let A, B and C be three
nonempty, disjoint sets of points in it such that ∞pi ⇒ A and ∞pj ⇒ C, the
GSP between pi and pj contains at least one point from B, and no other point
from A or C (Fig. 9(a)). Then |B| ∨ |A|+ |C| − 1 [14, 13, 15].

Proof. Draw rays from a point pi ⇒ A through every point of C (Fig. 9(b)).
These rays partition the plane into |C| wedges. Since points of C are not visible
from pi, there is at least one blocker lying on each ray between pi and the point
of C on the ray. So, there are at least |C| number of such blockers. Consider
the remaining |A − 1| points of A lying in different wedges. Consider a wedge
bounded by two rays drawn through pk ⇒ C and pl ⇒ C. Consider the segments
from pk to all points of A in the wedge. Since these segments meet only at pk,
and pk is not visible from any point of A in the wedge, each of these segments
must contain a distinct blocker. So, there are at least |A| − 1 blockers in all the
wedges. Therefore the total number of points in B is at least |A|+ |C| − 1. ∪→

Lemma 9. Consider a visibility embedding of G. Let A and C be two nonempty
and disjoint sets of points such that no point of A is visible from any point of C. Let
B be the set of points (or blockers) on the segment pipj, ∞pi ⇒ A and ∞pj ⇒ C, and
blockers in B are allowed to be points of A or C. Then |B| ∨ |A|+ |C| − 1 [15].

Proof. Draw rays from a point pi ⇒ A through every point of C. These rays
partition the plane into at most |C| wedges. Consider a wedge bounded by two
rays drawn through pk ⇒ C and pl ⇒ C. Since these rays may contain other
points of A and C, all points between pi and the farthest point from pi on a ray,
are blockers in B. Observe that all these blockers except one may be from A or
C. Thus, excluding pi, B has at least as many points as from A and C on the ray.
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Consider the points of A inside the wedge. Draw segments from pk to all points
of A in the wedge. Since these segments may contain multiple points from A,
all points on a segment between pk and the farthest point from pk are blockers
in B. All these points except one may be from A. Thus, B has at least as many
points as from A inside the wedge. Therefore the total number of points in B is
at least |A|+ |C| − 1. ∪→

3 Computational Complexity of the Recognition Problem

In this section we show that the recognition problem for a PVG lies in PSPACE.
Our technique in the proof follows a similar technique used by Everett [7] for
showing that the recognition problem for polygonal visibility is in PSPACE. We
start with the following theorem of Canny [2].

Theorem 2. Any sentence in the existential theory of the reals can be decided
in PSPACE.

A sentence in the first order theory of the reals is a formula of the form :

∀x1∀x2...∀xnP(x1, x2, ..., xn)

where the x∩
is are variables ranging over the real numbers and where

P(x1, x2, ..., xn) is a predicate built up from ¬, ←, ∨, =, <, > , +, ×, 0, 1
and -1 in the usual way.

Theorem 3. The recognition problem for point visibility graphs lies in PSPACE.

Proof. Given a graph G(V,E), we construct a formula in the existential theory
of the reals polynomial in size of G which is true if and only if G is a point
visibility graph.

Suppose (vi, vj) /⇒ E. This means that if G admits a visibility embedding, then
there must be a blocker (say, pk) on the segment joining pi and pj . Let the coor-
dinates of the points pi, pj and pk be (xi, yi), (xj , yj) and (xk, yk) respectively.
So we have :

∀t≤�
((

0 < t
)
←
(
t < 1

)
←
(
(xk−xi) = t×(xj−xi)

)
←
(
(yk−yi) = t×(yj−yi)

))

Now suppose (vi, vj) ⇒ E. This means that if G admits a visibility embedding,
no point in P lies on the segment connecting pi and pj to ensure visibility. So,
(i) either pk forms a triangle with pi and pj or (ii) pk lies on the line passing
through pi and pj but not between pi and pj . Determinants of non-collinear
points is non-zero. So we have :

∀t⇒�
((

det(xi, xj , xk, yi, yj, yk) > 0
)
∨
(
det(xi, xj , xk, yi, yj, yk) < 0

))∨((
t >

1
)
∨
(
t < −1

)
←
(
(xk − xi) = t× (xj − xi)

)
←
(
(yk − yi) = t× (yj − yi)

))

For each triple (vi, vj , vk) of vertices in V , we add a t = ti,j,k to the existen-
tial part of the formula and the corresponding portion to the predicate. So the
formula becomes:

∀x1∀y1...∀xn∀yn∀t1,2,3....∀tn−2,n−1,n P(x1, y1, ..., xn, yn, t1,2,3, ..., tn−2,n−1,n)
which is of size O(n3). This proves our theorem. ∪→
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4 Planar Point Visibility Graphs

In this section, we present a characterization, recognition and reconstruction of
planar point visibility graphs. Let G be a given planar graph. We know that
the planarity of G can be tested in linear time [1]. If G is planar, a straight line
embedding of G can also be constructed in linear time. However, this embedding
may not satisfy the required visibility constraints, and therefore, it cannot be
a visibility embedding. We know that collinear points play a crucial role in a
visibility embedding of G. It is, therefore, important to identify points belonging
to a GSP of maximum length. Using this approach, we construct a visibility
embedding of a given planar graph G, if it exists. We have the following lemmas
on visibility embeddings of G.

Lemma 10. Assume that G admits a visibility embedding ξ. If ξ has at least
one k-GSP for k ∨ 4, then the number of vertices in G is at most

k +
⌊2k − 5

k − 3

⌋

Proof. By Lemma 2, G can have at least (k − 1) + (n − k)k edges. By apply-
ing Euler’s criterion for planar graphs, we have the following inequality on the
number of permissible edges of G.

(k − 1) + (n− k)k ∃ 3(n)− 6

⇒ (k − 1) + (n− k)k ∃ 3(k + n− k)− 6

⇒ (k − 1) + (n− k)k ∃ 3k + 3(n− k)− 6

⇒ (n− k)(k − 3) ∃ 2k − 5

⇒ (n− k) ∃ 2k − 5

k − 3
(1)

Since (n− k) must be an integer, we have

(n− k) ∃
⌊2k − 5

k − 3

⌋

⇒ n ∃ k +
⌊2k − 5

k − 3

⌋
(2)

∪→
Corollary 5. There are six infinite families of planar graphs G that admit a
visibility embedding ξ with a k-GSP for k ∨ 5 (Figs. 10 and 11).

Proof. For k ∨ 5,n ∃ k+2.There can be only six infinite families of graphs having
at most two points outside a maximum size GSP in ξ (denoted as l) as follows.

1. There is no point lying outside l in ξ (see Fig. 10(a)).
2. There is only one point lying outside l in ξ that is adjacent to all points in

l (see Fig. 10(b)).
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(a)

(b)

pi

pj

pk

pk

pj

pi

Fig. 11. These two infinite
families do not admit planar
visibility embedding

Fig. 12. Six planar PVGs that do not belong to any
of the six families. Dotted lines show how the edge-
crossings in the visibility embedding can be avoided
in a planar embedding.

3. There are two points lying outside l in ξ that are adjacent to all other points
in ξ (see Fig. 10(c)).

4. There are two points lying outside l in ξ that are not adjacent to each other
but adjacent to all points of l in ξ (see Fig. 10(d)).

5. There are two points pi and pj lying outside l in ξ such that pi and pj are
adjacent to all other points in ξ except an endpoint pk of l as pj is a blocker
on pipk (see Fig. 11(a)).

6. Same as the previous case, except pk is now an intermediate point of l in ξ
(see Fig. 11(b)).

∪→

Let us identify those graphs that do not belong to these six infinite families. We
show in the following that such graphs can have a maximum of eight vertices.

Lemma 11. Assume that G admits a visibility embedding ξ. If ξ has at least
one 4-GSP, then the number of vertices in G is at most seven.

Proof. Putting k = 4 in the formula of Lemma 10, we get n ∃ 7. ∪→

Lemma 12. Assume that G admits a visibility embedding ξ. If G has at least
one 3-CSP but no 4-CSP, then G has at most eight vertices.

Proof. Since G has no 4-CSP, and G is not a clique, there is a 3-GSP in ξ.
Starting from the 3-GSP, points are added one at a time to construct ξ. Since no
subsequent point can be added on the line passing through points of the 3-GSP
to prevent forming a 4-GSP, adding the fourth and fifth points gives at least
three edges each in ξ. As ξ does not have a 4-CSP, there can be at most one
blocker between an invisible pair of points in ξ. So, for the subsequent points,
at least ⊗ i−1

2 ≈ edges are added for the ith point. Since G is planar, by Euler’s

condition we must have: 8 +
n∑

i=6

⌈ i− 1

2

⌉
∃ 3n− 6. This inequality is valid only

up to n = 8. ∪→
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Lemma 13. There are six distinct planar graphs G that admit visibility embed-
dings but do not belong to the six infinite families (Fig. 12).

Theorem 4. Planar point visibility graphs can be characterized by six infinite
families of graphs and six particular graphs.

Proof. Six particular graphs can be identified by enumerating all points of eight
vertices as shown in Fig. 12. For the details of the enumeration, see [10]. ∪→

Theorem 5. Planar point visibility graphs can be recognized in linear time.

Proof. Following Theorem 4, G is tested initially whether it is isomorphic to
any of the six particular graphs for n ∃ 8. Then, the maximum CSP is identified
before its adjacency is tested with the remaining one or two vertices of G. The
entire testing can be carried out in linear time. ∪→

Corollary 6. Planar point visibility graphs can be reconstructed in linear time.

Proof. Theorem 5 gives the relative positions and collinearity of points in the
visibility embedding ofG. Since each point can be drawn with integer coordinates
of size O(logn) bits, G can be reconstructed in linear time. ∪→

5 Concluding Remarks

We have given two necessary conditions for recognizing point visibility graphs
(which is still an open problem). Though the first necessary condition can be
tested in O(n3) time, it is not clear how vertex-blockers can be assigned to every
invisible pair in G in polynomial time satisfying the second necessary condition.
Observe that these assignments in a visibility embedding give the ordering of
collinear points along any ray starting from any point through its visible points.
These rays together form an arrangement of rays in the plane. It is open whether
such an arrangement can be constructed satisfying assigned vertex-blockers.

Let us consider the complexity issues of the problems of Vertex Cover, Inde-
pendent Set and Maximum Clique in a point visibility graph. Let G be a graph
of n vertices, not necessarily a PVG. We construct another graphG∩ such that (i)
G is an induced subgraph of G∩, and (ii) G∩ is a PVG. Let C be a convex polygon
drawn along with all its diagonals, where every vertex vi of G corresponds to a
vertex pi of C. For every edge (vi, vj) /⇒ G, introduce a blocker pt on the edge
(pi, pj) such that pt is visible to all points of C and all blockers added so far. Add
edges from pt to all vertices of C and blockers in C. The graph corresponding
to this embedding is called G∩. So, G∩ and its embedding can be constructed
in polynomial time. Let the sizes of the minimum vertex cover, maximum in-
dependent set and maximum clique in G be k1, k2 and k3 respectively. If x is
the number of blockers added to C, then the sizes of the minimum vertex cover,
maximum independent set and maximum clique in G∩ are k1 + x, k2 and k3 + x
respectively. Hence, the problems remain NP-Hard.
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Theorem 6. The problems of Vertex Cover, Independent Set and Maximum
Clique remain NP-hard on point visibility graphs.

Acknowledgements. The preliminary version of a part of this work was sub-
mitted in May, 2011 as a Graduate School Project Report of Tata Institute
of Fundamental Research [15]. The authors would like to thank Sudebkumar
Prasant Pal for his helpful comments during the preparation of the manuscript.
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Abstract. We extend the well known bottleneck paths problem in two
directions for directed unweighted graphs with positive real edge capaci-
ties. Firstly we narrow the problem domain and compute the bottleneck
of the entire network in O(m log n) time, where m and n are the num-
ber of edges and vertices in the graph, respectively. Secondly we enlarge
the domain and compute the shortest paths for all possible bottleneck
amounts. We present a combinatorial algorithm to solve the Single Source
Shortest Paths for All Flows (SSSP-AF) problem in O(mn) worst case
time, followed by an algorithm to solve the All Pairs Shortest Paths for
All Flows (APSP-AF) problem in O(

∗
tn(λ+9)/4) time, where t is the

number of distinct edge capacities and O(nλ) is the time taken to multi-
ply two n-by-nmatrices over a ring. We also discuss practical applications
for these new problems.

1 Introduction

The bottleneck (capacity) of a path is the minimum capacity of all edges on the
path. Thus the bottleneck is the maximum flow that can be pushed through this
path. The bottleneck of a pair of vertices (i, j) is the maximum of all bottleneck
values of all paths from i to j. The bottleneck paths problems are important in
various areas, such as logistics and computer networks. In this paper we consider
two extensions to this well known problem on directed unweighted (unit edge
cost) graphs with positive real edge capacities.

The bottleneck of the (entire) network is the minimum bottleneck out of all
bottlenecks for all pairs (i, j). We refer to the problem of finding the bottleneck
of the entire network as the Graph Bottleneck (GB) problem. In this paper we
introduce a simple algorithm based on binary search to show that we can solve
the GB problem faster than solving the All Pairs Bottleneck Paths (APBP)
problem. The method is based on determining the strongly connected compo-
nents and the time complexity of the algorithm is O(m log n), where m is the
number of edges and n is the number of vertices in the graph. This algorithm is
simple but effective, and provides a good starting point for this paper.
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Applications in Learning and Industry (OptALI).

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 176–187, 2014.
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Consider the shortest path from vertex u to vertex v that can push a flow
of amount up to f . If the flow demand from u to v is less than f , however,
there may be a shorter route, which is useful if one wishes to minimize the
distance for a given amount of flow. Thus we compute the shortest path for each
possible bottleneck (flow) value. We call this problem Shortest Paths for All
Flows (SP-AF). We present a non-trivial O(mn) algorithm to solve the Single
Source Shortest Paths for All Flows (SSSP-AF) problem, that is, computing the
shortest paths for all flows from one source vertex to all other vertices in the
graph.

Naturally, we move onto the All Pairs Shortest Paths for All Flows (APSP-
AF) problem, where we compute the shortest paths for all flows for all pairs
of vertices in the graph. Note that this new problem is different from the All
Pairs Bottleneck Shortest Paths (APBSP) problem [15], which is to compute the
bottlenecks for the shortest paths of all pairs. Applying our algorithm for SSSP-
AF n times gives us O(mn2). If the graph is dense, however, m = O(n2), and
the time complexity becomes O(n4). We can utilize faster matrix multiplication
over a ring to achieve a sub-quartic time bound for dense graphs. We present
an algorithm that runs in O(

≥
tn(Δ+9)/4) time, where t is the number of distinct

edge capacities and Π < 2.373 [16].
The algorithms are presented in the order of increasing complexity. Section

3 details the algorithm for solving the GB problem. In Section 4 and Section
5 we present the algorithms for solving the SSSP-AF and APSP-AF problems,
respectively. Finally, in Section 6, we describe some practical applications of the
SP-AF problem in computer networking before concluding the paper.

2 Preliminaries

Let G = {V,E} be a strongly connected directed unweighted graph with edge
capacities of positive real numbers. Let n = |V | and m = |E|. Vertices (or nodes)
are given by integers such that {1, 2, 3, ..., n} ⇒ V . Let (i, j) ⇒ E denote the edge
from vertex i to vertex j. Let cap(i, j) denote the capacity of the edge (i, j). Let
t be the number of distinct cap(i, j) values.

We call C = {cij} the capacity matrix, where cij represents a capacity from i
to j. Let Cβ = {cβij}, where cβij is defined to be the maximum bottleneck out of

all paths of lengths up to σ from i to j. Clearly c1ij = cap(i, j) if (i, j) ⇒ E, and 0
otherwise. Let c≤ij be the maximum bottleneck for all paths from i to j. We call
C≤ = {c≤ij} the closure of C and also refer to it as the bottleneck matrix. The
problem of computing C≤ is formally known as the All Pairs Bottleneck Paths
(APBP) problem. For graphs with unit edge costs, the APBP problem is well
studied in [15] and [5]. The complexities of algorithms given by the two papers
are Õ(n2+Δ/3) = Õ(n2.791) and Õ(n(Δ+3)/2) = Õ(n2.687), respectively.

Let Q = AφB denote the (max,min)-product of capacity matrices A = {aij}
and B = {bij}, where Q = {qij} is given by:

qij =
n

max
k=1

{min{aik, bkj}}
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Fig. 1. An example of a directed unweighted graph with n = 8, m = 16 and t = 10.
Capacities are shown beside each edge.

Note that if all elements in A and B are either 0 or 1, this becomes Boolean
matrix multiplication. If we interpret “max” as addition and “min” as multi-
plication, the set of non-negative numbers forms a closed semi-ring. Similarly,
the set of matrices where the product is defined as the (max,min)-product and
the sum is defined as a component-wise “max” operation also forms a closed
semi-ring. Then the bottleneck matrix is given by the closure of the capacity
matrix, where the closure of matrix A is defined by:

A≤ = I +A+A2 +A3 + ...

and I is the identity matrix with diagonal elements of ∪ and non-diagonal
elements of 0. Although A≤ is defined by an infinite series we can stop at n− 1.
The computational complexity of computing A≤ is asymptotically equal to that
of the matrix product in the more general setting of closed semi-ring [1].

Similarly to the capacity matrix, we can define the distance matrix, where
each element represents the distance from i to j. The problem of computing the
closure of the distance matrix is formally known as the All Pairs Shortest Paths
(APSP) problem. Zwick achieved Õ(n2.575) time for solving APSP on directed
graphs with unit edge costs [17], which has recently been improved to Õ(n2.53)
thanks to Le Gall’s new algorithm for rectangular matrix multiplication [7].

Let Q = A → B denote the (min,+)-product, or the distance product, of
distance matrices A and B, where Q = {qij} is given by:

qij =
n

min
k=1

{aik + bkj}

3 The Graph Bottleneck Problem

Let ρ be the bottleneck value of the entire network, that is, the solution to
the Graph Bottleneck (GB) problem. Let the capacity matrix C be defined by
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cij = cap(i, j). One straightforward method to compute ρ would be to compute
C≤ and find the minimum among them. We can solve the problem more efficiently
by a simple but effective binary search as shown in Algorithm 1.

We begin by assuming that the edge capacities are integers bounded by c.
Let the threshold value h be initialized to c/2. Let G∈ = {V,E∈} such that E∈

only contains edges that have capacities greater than or equal to h. Clearly G∈

is strongly connected iff ρ ∃ h. We repeatedly halve the possible range [ε, β]
for ρ by adjusting the threshold, h, through binary search.

Algorithm 1. Solve the GB problem in O(m logn) time

1: Δ ← 0
2: δ ← c
3: while δ − Δ > 0 do
4: h ← (Δ+ δ)/2
5: G→ ← Remove all (i, j) from G such that cap(i, j) < h
6: if G→ is strongly connected then
7: Δ ← h
8: else
9: δ ← h

10: γ ← Δ

Obviously the iteration over the while loop is performed O(log c) times. We
use the O(m) algorithm by Tarjan [14] to compute the strongly connected com-
ponents in line 6. Thus the total time becomes O(m log c). If c is large, say O(2n),
the algorithm is not very efficient, taking O(n) halvings of the possible ranges
of ρ. In this case, we sort edges in ascending order. Since there are at most m
possible values of capacities, doing binary search over the sorted edges gives us
O(m logm) = O(m log n). Obviously this method also works for edge capacities
of real numbers.

Example 1. The value of ρ for the graph in Figure 1 is 9, which is the capacity
of edges (2, 5) and (7, 8).

4 The Single Source Shortest Paths for All Flows
Problem

From a source vertex s to all other vertices v ⇒ V , we want to find the shortest
paths for each flow value. The shortest path from s to v for a given flow value f
allows us to push flows up to f as quickly as possible. For some f ∈ < f , however,
there may be a shorter path. Thus if we find the shortest path for all possible
flows, we can respond to queries of flow demands from s to v with the shortest
paths that can accommodate the flows. Let t be the number of distinct edge
capacities. If all edge capacities are distinct, then t = m. We refer to the distinct
edge capacity values as maximal flows.



180 T. Shinn and T. Takaoka

A straightforward method of solving the SSSP-AF problem is to solve the
SSSP problem for each maximal flow value f , that is, we repeatedly solve SSSP
using only (u, v) ⇒ E such that cap(u, v) ∃ f , for all f . SSSP can be solved by
a simple breadth-first-search (BFS) on graphs with unit edge costs, hence this
method takes O(tm) time, which is O(m2) in the worst case. Each BFS will
result in a shortest path spanning tree (SPT) with s as the root. Explicit paths
can be retrieved by traversing up the SPTs.

One may be led to think that SSSP-AF can be solved with a simple decremen-
tal algorithm, that is, repeatedly removing edges in decreasing order of capacity,
and checking for connectivity of vertices. This method, however, gives incorrect
results because edges with larger capacities may later be required to provide
shorter paths for smaller flows. The SP-AF problem requires solving the short-
est paths problem and the bottleneck paths problem at the same time. This is
not a trivial matter, as operations required to solve the two problems generally
take us in opposite directions; maximizing bottlenecks comes at the cost of in-
creased distances and minimizing distances comes at the expense of decreased
bottlenecks.

We have achieved O(mn) worst case time for solving SSSP-AF by fully ex-
ploiting the fact that all edges have unit costs, as shown in Algorithm 2. Let B[v]
be the largest bottleneck value currently known from s to vertex v. Let L[v] be
the current shortest possible distance from s to v. Let T represent the SPT. T
can be considered to be a persistent data structure, that is, we do not compute
T from scratch for each maximal flow value. Let Q[i] be a set of vertices that
may be added to T at distance i, such that 1 ∩ i ∩ n − 1, i.e. one set for each
possible path length from s.

Theorem 1. Algorithm 2 correctly solves the SSSP-AF problem in O(mn) time
bound.

Proof. We iterate through each maximal flow f in increasing order. At each
iteration, all v ⇒ V such that B[v] < f is cut from T and added to Q[L[v] + 1].
In other words, all paths that cannot accommodate the current flow value of f are
discarded. We then attempt to add all pruned vertices back to T at the shortest
possible distance, represented by L[v]. If it is possible to add v at distance L[v]
from the source (line 14), we maximize the bottleneck value B[v] by ensuring
that the parent node in T is the one that can give us the maximum B[v] (line
15). Thus for each maximal flow value f , we are effectively solving the SSSP
problem by making incremental updates to T . Explicit paths can be retrieved
simply by traversing up the SPT.

We perform lifetime analysis to determine the worst case time complexity.
Each vertex v can be cut from T and be re-added to T O(n) times, once per each
possible distance from s. Cutting/adding v from/to T takes O(1) time, achieved
by setting the parent of v to null or u, respectively. Thus the total time taken for
all operations involving T is O(n2). Q can be implemented with a simple linked
list structure. Therefore the total time complexity of all operations involving Q
is also O(n2). Finally we analyse the time complexity of edge inspections. O(n)
vertices can be observed at each possible distance from s. At each distance, for
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Algorithm 2. Solve single source shortest paths for all flows problem

1: for i ← 1 to n do
2: B[i] ← 0, L[i] ← 0

3: B[s] ← ∞, T ← s /* T is for SPT , initially only root s */
4: for all maximal flows f in increasing order do
5: for all v ◦ V such that B[v] < f do
6: if v is in T then
7: Cut v from T
8: L[v] ← L[v] + 1
9: Push v to Q[L[v]] /* v to be processed later */

10: for θ ← 1 to n− 1 do
11: while Q[θ] is not empty do
12: Pop v from Q[θ]
13: for all (u, v) ◦ E do
14: if L[u] = L[v]− 1 then
15: if min(cap(u, v), B[u]) > B[v] then
16: B[v] ← min(cap(u, v), B[u]) /* B[v] increased */
17: Add v to T with u as the parent

18: if v is not in T then
19: L[v] ← L[v] + 1
20: Push v to Q[L[v]] /* v to be processed later */

each vertex, we inspect all incoming edges (line 13). Therefore the time taken for
edge inspections is O(m) for each possible distance from s, resulting in O(mn)
total time complexity, which subsequently becomes the total worst case time
complexity of the algorithm. ⊗≈

Note that the worst case time complexity of Algorithm 2 is O(mn) regardless
of the value for the number of maximal flows, t. For n < t, Algorithm 2 is
faster than the straightforward method of repeatedly solving the SSSP problem
t times.

Example 2. Figure 2 shows Algorithm 2 being used to solve the SSSP-AF prob-
lem on the example graph shown in Figure 1, with s = 1. At iteration f = 4,
the edge (4, 7) is cut, because the path to vertex 7 cannot push flow f = 4. The
next shortest possible distance for vertex 7 is 3, with the new bottleneck value
of 8. That is, L[7] is increased from 2 to 3 and B[7] is increased from 2 to 8.

5 All Pairs Shortest Paths for All Flows Problem

We firstly focus on solving the All Pairs Shortest Distances for All Flows (APSD-
AF) problem, then show that the APSP-AF problem can be solved with an
additional polylog factor with a minor modification to the algorithm. For each
pair of vertices (i, j) for each maximal flow, we want to compute the shortest
distances. Thus our aim here is to obtain sets of (d, f) pairs for all (i, j), where
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Fig. 2. Changes to T at iteration f = 4

f is the maximum flow that can be pushed through the shortest path whose
length (distance) is d < n.

Let C = {cij} be the capacity matrix and let Df = {dfij} be the approximate
distance matrix for paths that can accommodate flows up to f . A more detailed
description of Df follows shortly. Let S = {sij} be a matrix such that sij is a
set of (d, f) pairs as described above, from vertex i to vertex j. Let both (d, f)
and (d∈, f ∈) be in sij such that d < d∈. We keep (d∈, f ∈) iff f < f ∈ i.e. a longer
path is only relevant if it can accommodate a greater flow. If d = d∈, we keep the
the pair that can accomodate the greater flow. Thus each sij has at most n− 1
pairs of (d, f). We assume the pairs are sorted in ascending order of d. We make
an interesting observation here that the set of first pairs for all sij is the solution
to the All Pairs Bottleneck Shortest Distances (APBSD) problem, and the set
of last pairs for sij is the solution to the All Pairs Bottleneck Distances (APBD)
problem. For APSD-AF, all relevant (d, f) pairs for all sij are computed.

Example 3. SolvingAPSD-AFon the graph given inFigure 1results in a set of four
(d, f) pairs from vertex 4 to vertex 7, that is, s47 = {(1, 2), (2, 4), (3, 8), (5, 9)}.

Algorithm 3 is largely based on the method given by Alon, Galil and Mar-
galit in [2], which is commonly used to solve various all pairs path problems
[8,12,17,15]. This method has been reviewed in [12] and we use the same set of
terminologies as the review. The algorithm consists of two phases; the acceler-
ation phase and the cruising phase. Simply speaking, we run the algorithm by
Alon et al. for all f in parallel with a modified acceleration phase.

Lemma 1. Algorithm 3 correctly solves the APSD-AF problem.
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Algorithm 3. Solve the APSD-AF problem

/* Initialization for the acceleration phase */
1: C0 ← I
2: for i ← 1 to n; j ← 1 to n do
3: sij ← φ /* φ is empty */

/* Acceleration phase */
4: for θ ← 1 to r do
5: Cζ ← Cζ−1 � C
6: for i ← 1 to n; j ← 1 to n such that i ↓= j do
7: f ← cζij
8: if f > cζ−1

ij then
9: sij ← sij ||(θ, f) /* append (θ, f) to sij */

/* Initialization for the cruising phase */
10: for i ← 1 to n; j ← 1 to n such that i ↓= j do
11: for all x in sij do
12: if x ↓= φ then
13: let x = (d, f)
14: dfij ← d
15: else
16: dfij ← ∞

/* Cruising phase */
17: θ ← r
18: while θ < n do
19: θ1 ← �θ ∗ 3/2	
20: for all maximal flow f do
21: for i ← 1 to n do
22: Scan ith row of Df with j and find the smallest set of equal dfij
23: such that �θ/2	 ≤ dfij ≤ θ and let the set of corresponding j be Bi

24: for i ← 1 to n; j ← 1 to n such that i ↓= j do
25: mij ← mink∗Bi{dfik + dfkj}
26: if mij ≤ θ1 then
27: dfij ← mij

28: θ ← θ1
/* Finalization */

29: for i ← 1 to n; j ← 1 to n such that i ↓= j do
30: for all maximal flow f in increasing order do
31: d ← dfij
32: Let the last pair of sij be x = (d→, f →)
33: if x = φ or (f > f → and d < ∞) then
34: if d = d→ then
35: Replace x with (d, f)
36: else
37: sij ← sij ||(d, f) /* append (d, f) to sij */
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Proof. We compute the (max,min)-products in the acceleration phase, multi-
plying the capacity matrix C one by one. The σth iteration of the acceleration
phase, therefore, finds the maximum bottleneck for all paths of lengths up to σ.
In other words, after the acceleration phase, for all sij , we have found all relevant
(d, f) pairs such that d ∩ σ.

After the acceleration phase, based on the current sets of (d, f) pairs in S, we
initialize a total of t distance matrices as Df , one for each distinct maximal flow
value. At this stage, dfij is the distance of the shortest path that can push flow f ,
if the path length is r or less. In the cruising phase, we perform repeated squaring
on all distance matrices in parallel with the help of the bridging set Bi, for each
row i. At the end of the cruising phase we thus have the shortest distances for
all maximal flow values for all pairs of vertices. Retrieving sets of (d, f) from
the resulting Df matrices is simply a reverse process of the initialization for the
cruising phase. ⊗≈
Lemma 2. Algorithm 3 runs in O(

≥
tn(Δ+9)/4) time when r < n.

Proof. For the acceleration phase we use the the current best known algorithm
given by Duan and Pettie [5] to compute the (max,min)-product in each it-
eration, giving us O(rn(3+Δ)/2). The time complexity for the cruising phase is
O(dn3/r). This is because |Bi| is O(n/r) as proven in [2], and no logarithmic
factor is required for repeated squaring because the path length σ increases by
a factor of 3

2 in each iteration resulting in a geometric series i.e. the first term
dominates the time complexity. The time complexity for the initialization for
the cruising phase is O(rn2) since at most r (d, f) pairs exist in any sij after the
acceleration phase, and this time complexity is absorbed by the time complexity
of the acceleration phase. The time complexity of finalization is O(tn2), which
is absorbed by O(tn3/r) of the cruising phase since n/r > 1. We balance the
time complexities of the acceleration phase and the cruising phase by setting
r =

≥
tn(3−Δ)/4, which gives us the total time complexity of O(

≥
tn(Δ+9)/4). ⊗≈

Note that the value we choose for r must be less than n, otherwise our algo-
rithm is equivalent to simply computing the (max,min)-product n times (i.e.
staying in the acceleration phase until the problem is solved), resulting in the
time complexity of O(n(5+Δ)/2). (r =

≥
tn(3−Δ)/4) ∃ n when t ∃ n(1+Δ)/2. This

can happen when the graph is relatively dense and most of the edge capacities
are distinct. Therefore a more accurate worst case time complexity of Algorithm
3 is actually O(min {n(5+Δ)/2,

≥
tn(Δ+9)/4}).

We now compare the time complexity of Algorithm 3 to various straightfor-
ward methods of solving the APSP-AF problem. One straightforward method
is to repeatedly solve the SSSP-AF problem for all v ⇒ V as the source vertex.
This can be done in O(tmn) time, or in O(mn2) by running Algorithm 2 n
times. Clearly Algorithm 3 is faster for dense graphs. Another straightforward
method of solving the APSP-AF problem is to solve the APSP problem t times.
Using Zwick’s algorithm [17], the time complexity of this second straightforward
method is O(tn2.53). For most (larger) values of t, Algorithm 3 is faster.

Theorem 2. The APSP-AF problem can be solved in Õ(
≥
tn(Δ+9)/4) time.
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Proof. There can be O(n) (d, f) pairs in each sij . Since the lengths of each
path can be O(n), explicitly listing all paths takes O(n4) time, which is too
expensive. As is common and widely accepted in graph paths problems, we get
around this by extending the pair (d, f) to the triplet (d, f, u), where u is the
successor node. In the acceleration phase witnesses can be retrieved with an
extra polylog factor [5], and the successor nodes can be computed from the
witnesses at each iteration in O(n2) time [17]. In the cruising phase retrieving
u is a trivial exercise since ordinary matrix multiplication is performed. We can
generate explicit paths in time linear to the path length by using d for looking
up subsequent successor nodes. That is, we can still retrieve each successor node
in O(1) time even with O(n) triplets of (d, f, u) in each sij because we know that
the path length decrements by 1 as we step through each successor node. ⊗≈

6 Practical Applications of the SP-AF Problem

Computer networks can be accurately modeled by unweighted directed graphs
with edge capacities, by representing each hop (e.g. router) as a vertex, each
network link as an edge, and the bandwidth of each link as edge capacities.
However, routing protocols that are commonly used today are based on less
accurate models. For example, the Routing Information Protocol (RIP) com-
putes routes based solely on the hop counts, while the Open Shortest Path First
(OSPF) protocol, by default, computes routes based solely on the bandwidths.

In today’s computer networks each router is autonomous, and therefore each
router computes SSSP. RIP is often implemented with Bellman-Ford algorithm
[6,3] and OSPF is often implemented with Dijkstra’s algorithm [4]. We present
SSSP-AF as a better solution that uses both the hop count and the bandwidth
at the same time. Advanced routers are able to gather information such as the
current flow amount from one IP subnet to another. With SSSP-AF, a router
can make a better routing decision for a given flow based on the flow amount by
choosing a route that minimizes the latency without causing congestion.

Furthermore, we introduce APSP-AF as a potential routing algorithm for
Software Defined Networking (SDN) [18]. SDN is a new paradigm in computer
networking where routers are no longer autonomous and the whole network
can be controlled at a centralized location. The central controller has in-depth
knowledge of the network and as a result SDN can benefit from more sophis-
ticated routing algorithms. By solving APSP-AF for the whole network, the
fastest routes can be determined for all flow requirements for all sources and
destinations. Algorithm 3 can be easily turned into a practical O(

≥
tn3) algo-

rithm by using the traditional O(n3) matrix multiplication method to compute
the (max,min)-product in the acceleration phase. This is very much relevant in
computer networks where distinct bandwidth values are defined (e.g. 100Mbps,
1Gbps).
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7 Concluding Remarks

We have extended the well known bottleneck paths problems, introducing new
problems that clearly have many practical applications. We provided non-trivial
algorithms to solve the problems more efficiently than straightforward methods.

This paper only considered directed unweighted graphs. In enterprise com-
puter networks, most links are bi-directional, meaning undirected graphs are
adequate for modeling those networks. Also for computer networks involving
low latency switches and long cables with repeaters, introducing edge costs may
enable more accurate modeling of the networks. Hence solving the SP-AF prob-
lem on other types of graphs would not only be a natural extension to this paper,
but also allow further practical applications.

Trivial lower bounds of δ(n2) and δ(n3) exist for SSSP-AF and APSP-AF,
respectively, on graphs with unit edge costs. Most current researches in the APSP
problem focus on breaking the cubic barrier of O(n3) to get closer to the trivial
lower bound of δ(n2). With the APSP-AF problem we have effectively shifted
the focus in time complexities from “cubic-to-quadratic” to “quartic-to-cubic”.
We anticipate many future contributions to take us closer to the lower bounds
of this interesting new problem.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. Alon, N., Galil, Z., Margalit, O.: On the Exponent of the All Pairs Shortest Path
Problem. In: Proc. 32nd IEEE FOCS, pp. 569–575 (1991)

3. Bellman, R.: On a Routing Problem. Quart. Appl. Math. 16, 87–90 (1958)
4. Dijkstra, E.: A Note on Two Problems in Connexion With Graphs. Numerische

Mathematik 1, 269–271 (1959)
5. Duan, R., Pettie, S.: Fast Algorithms for (max,min)-matrix multiplication and

bottleneck shortest paths. In: Proc. 19th SODA, pp. 384–391 (2009)
6. Ford, L.: Network Flow Theory. RAND Paper, p. 923 (1956)
7. Le Gall, F.: Faster Algorithms for Rectangular Matrix Multiplication. In: Proc.

53rd FOCS, pp. 514–523 (2012)
8. Galil, Z., Margalit, O.: All Pairs Shortest Paths for Graphs with Small Integer

Length Edges. Journal of Computer and System Sciences 54, 243–254 (1997)
9. Robinson, S.: Toward an Optimal Algorithm for Matrix Multiplication. SIAM

News 38, 9 (2005)
10. Schönhage, A., Strassen, V.: Schnelle Multiplikation Groδer Zahlen. Computing 7,

281–292 (1971)
11. Seidel, R.: On the all-pairs-shortest-path problem. In: Proc. 24th ACM STOC, pp.

213–223 (1990)
12. Takaoka, T.: Sub-cubic Cost Algorithms for the All Pairs Shortest Path Problem.

Algorithmica 20, 309–318 (1995)



Some Extensions of the Bottleneck Paths Problem 187

13. Takaoka, T.: Efficient Algorithms for the 2-Center Problems. In: Taniar, D., Ger-
vasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010, Part II.
LNCS, vol. 6017, pp. 519–532. Springer, Heidelberg (2010)

14. Tarjan, R.: Depth-first search and linear graph algorithms. Jour. SIAM 1 2, 146–
160 (1972)

15. Vassilevska, V., Williams, R., Yuster, R.: All Pairs Bottleneck Paths and Max-
Min Matrix Products in Truly Subcubic Time. Journal of Theory of Computing 5,
173–189 (2009)

16. Williams, V.: Breaking the Coppersmith-Winograd barrier. In: STOC (2012)
17. Zwick, U.: All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix

Multiplication. Journal of the ACM 49, 289–317 (2002)
18. Open Networking Foundation: Software-Defined Networking: The New Norm for

Networks ONF White Paper (2012)



I/O Efficient Algorithms for the Minimum Cut

Problem on Unweighted Undirected Graphs

Alka Bhushan and G. Sajith

Department of Computer Science and Engineering,
Indian Institute of Technology Guwahati, India-781039

{alka,sajith}@iitg.ac.in

Abstract. The problem of finding the minimum cut of an undirected
unweighted graph is studied on the external memory model. First, a
lower bound of Δ((E/V )Sort(V )) on the number of I/Os is shown for
the problem, where V is the number of vertices and E is the number
of edges. Then the following are presented, for M = Δ(B2), (1) a mini-
mum cut algorithm that uses O(c logE(MSF(V,E) + V

B
Sort(V ))) I/Os;

here MSF(V,E) is the number of I/Os needed to compute a minimum
spanning tree of the graph, and c is the value of the minimum cut.
The algorithm performs better on dense graphs than the algorithm of
[7], which requires O(E + c2V log(V/c)) I/Os, when executed on the
external memory model. For a δ-fat graph (for δ > 0, the maximum
tree packing of the graph is at least (1 + δ)c/2), our algorithm com-
putes a minimum cut in O(c logE(MSF(V,E) + Sort(E))) I/Os. (2) a
randomized algorithm that computes minimum cut with high probabil-
ity in O(c logE · MSF(V,E) + Sort(E) log2 V + V

B
Sort(V ) log V ) I/Os.

(3) a (2+ γ)-minimum cut algorithm that requires O((E/V )MSF(V,E))
I/Os and performs better on sparse graphs than our exact minimum cut
algorithm.

1 Introduction

The minimum cut problem on an undirected unweighted graph seeks to partition
the vertices into two sets while minimizing the number of edges from one side
of the partition to the other. While efficient in-core and parallel algorithms
for the problem are known [4,10,11], this problem has not been explored much
from the perspective of massive data sets. However, it is shown in [2] that the
minimum cut can be computed in a polylogarithmic number of passes using only
a polylogarithmic sized main memory on the stream sort model.

In this paper we consider the minimum cut problem on the external memory
model proposed in [1]. To the best of our knowledge, this problem has so far
not been investigated on the external memory model. This model has been used
to design algorithms intended to work on large data sets that do not fit in the
main memory. The external memory model defines the following parameters: N
(= V +E) is the input size, M is the size of the main memory and B is the size
of a disk block. It is assumed that 2B < M < N . In an I/O operation one block

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 188–199, 2014.
c∩ Springer International Publishing Switzerland 2014
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of data is transferred between the disk and the internal memory. The measure
of performance of an algorithm on this model is the number of I/Os it performs.
The number of I/Os needed to read (write) N contiguous items from (to) the
disk is Scan(N) = Π(N/B). The number of I/Os required to sort N items is
Sort(N) = Π((N/B) · logM/B(N/B)) [1]. For all realistic values of N , B, and
M , Scan(N) < Sort(N) ≥ N .

For an undirected unweighted graph G = (V,E), a cut X = (S, V − S) is
defined as a partition of the vertices of the graph into two nonempty sets S and
V −S. An edge with one endpoint in S and the other endpoint in (V −S) is called
a crossing edge of X . The value c of the cut X is the total number of crossing
edges of X . The minimum cut problem is to find a cut of minimum value. We
assume that the input graph is connected, since otherwise the problem is trivial.
A cut in G is σ-minimum, for σ > 0, if its value is at most σ times the minimum
cut value of G.

A tree packing is a set of spanning trees, each with a weight assigned to it,
such that the total weight of the trees containing a given edge is at most one.
The value of a tree packing is the total weight of the trees in it. A maximum
tree packing is a tree packing of largest value. (When there is no ambiguity, we
will use “maximum tree packing” to refer also to the value of a maximum tree
packing, and a “minimum cut” to the value of a minimum cut.) A graph G is
called a φ-fat graph for φ > 0, if the maximum tree packing of G is at least
(1+δ)c

2 , where c is the minimum cut [10].
As in [10], we say that a cutX k-respects a tree T (equivalently, T k-constrains

X), if X cuts at most k edges of T .
Several approaches have been tried in designing in-core algorithms for the

minimum cut problem [6,7,9,10,14,17]. Significant progress has been made in
designing parallel algorithms as well [8,10,11]. The current best in-core algorithm
computes the minimum cut in O(E + c2V log(V/c)) time [7] and when executed
on the external memory model, performs O(E + c2V log(V/c)) I/Os.

Karger [10] presents a near linear time randomised algorithm that computes
a minimum cut with high probability in O(min{E log3 V, V 2 logV }) time. This
algorithm also computes all σ-minimum cuts, for σ < 3/2. These cuts can be
stored in a data structure that uses O(k + V logV ) space, where k is the to-
tal number of cuts found, in O(V 2 logV ) time. With this data structure, we
can verify whether a given cut is σ-minimum in O(V ) time [10]. If we execute
this algorithm on the external memory model then the I/O complexity of the
cuts computation is O(min{E log3 V, V 2 logV }), the construction of the data
structure is O(V 2 logV ), and the answering of a query is O(V ).

A linear time algorithm for computing a (2 + ρ)-minimum cut [12] is also
known. This executes on the external memory model in O(V + E) I/Os.

The best known RNC algorithm presented in [10] can be simulated in
O(log3 V · Sort(V 2/ log2 V )) I/Os in the external memory model using the
PRAM simulation presented in [5]. The poly-logarithmic passes stream-sort
algorithm presented in [2] implies an external memory algorithm that uses
O(Sort(E)polylog(V )) I/Os under the assumption of M = ε(polylog(V )).
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In this paper, we present a lower bound of ε((E/V )Sort(V )) on the number
of I/Os for the minimum cut problem. Next, for M = ε(B2), we present:

– A minimum cut algorithm that runs in O(c logE(MSF(V,E) + V
BSort(V )))

I/Os, and performs better on dense graphs than the algorithm of [7], which re-
quiresO(E + c2V log(V/c)) I/Os, where MSF(V,E) is the number of I/Os re-
quired in computing aminimum spanning tree. The currently best knownmin-
imum spanning tree algorithm executes in O(Sort(E) ·max{1, log logE/V B})
I/Os [3]. For a φ-fat graph, our algorithm mentioned above computes a mini-
mum cut in O(c logE(MSF(V,E) + Sort(E))) I/Os.

– A randomised algorithm that computes minimum cut with high probability
in O(c logE ·MSF(V,E) + Sort(E) log2 V + V

BSort(V ) logV ) I/Os.
– A (2 + ρ)-minimum cut algorithm that requires O((E/V )MSF(V,E)) I/Os

and performs better on sparse graphs than our exact minimum cut algorithm.

The rest of the paper is organised as follows: sec. 2, defines notations used in
this paper, sec. 3 gives a lower bound result for the minimum cut problem, sec. 4
presents an external memory algorithm for the minimum cut problem, sec. 5
improves the I/O complexity of our algorithm by using randomisation, sec. 6
discusses a special class of graphs for which a minimum cut can be computed
very efficiently and section 7 presents a (2 + ρ)-minimum cut algorithm.

2 Some Notations

For a cut X of graph G, E(X) is the set of crossing edges of X . d(v) is the
degree of a vertex v in G. For a spanning tree T of G, E(T ) is the set of edges
of T , ρ(v) is the number of edges whose endpoints’ least common ancestor is v
and p(v) is the parent of v.

Let v ⇒ denote the set of vertices that are descendants of v in the rooted tree,
and v ∪ denote the set of vertices that are ancestors of v in the rooted tree.
Note that v → v ⇒ and v → v ∪. Let C(A,B) be the total number of edges with
one endpoint in vertex set A and the other in vertex set B. An edge with both
endpoints in both sets is counted twice. Thus, C(u, v) is 1, if (u, v) is an edge, 0
otherwise. For a vertex set S, let C(S) denote C(S, V − S). For a function f on
the vertices, f≤(v) =

∑
w∈v≤ f(w). See [10].

3 A Lower Bound for the Minimum Cut Problem

We define a decision problemP1 as follows: Given as input a set S of N elements,
each with an integer key drawn from the range [1, P ], say “yes” when S contains
either every odd element or at least one even element in the range [1, P ], and
say “no” otherwise (that is, when S does not contain at least one odd element
and any even element in the range [1, P ].) Then (∃P/2∩− 1)N and ∃P

2 ∩(∃P/2∩−
1)N are, respectively, lower and upper bounds on the number of different “no”
instances. We prove that in any decision tree for P1, the “no” instances and
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leaves that decide “no” correspond one to one. Therefore, the depth of any
decision tree for P1 is ε(N logP ).

Our proof, similar to the ones in [13], considers tertiary decision trees with
three outcomes: <, =, >, at every decision node. Each node, and in particular
each leaf, corresponds to a partial order on S⊗{1, . . . , P}. Consider a “no” leaf l
and the partial order PO(l) corresponding to l. All inputs visiting l must satisfy
PO(l). Let C1, . . . Ck be the equivalence classes of PO(l). Let ui and di be the
maximum and minimum values respectively of the elements of equivalence class
Ci over all “no” inputs that visit l. Exactly one input instance visits l if and only
if ui = di for all i. If ui ≈= di for some Ci then, pick a “no” input I that visits l
and fabricate a “yes” input I ∗ as follows: assign an even integer e, di < e < ui,
to every element in Ci, and consistent with this choice and PO(l) change the
other elements of I if necessary. Note that this fabrication is always possible.
Since I ∗ is consistent with PO(l), it visits l; a contradiction. Hence our claim.

Now we consider a restriction P∗
1 of P1. Suppose the input S is divided into

P subsets each of size N/P and containing distinct elements from the range
[P + 1, 2P ], where P < N < P (∃P/2∩ − 1). P∗

1 is to decide whether S contains
either every odd element or at least one even element in the range [P + 1, 2P ].
A lower bound on the number of “no” instances of P∗

1 is (P ∗ · (P ∗ − 1) · (P ∗ −
2) · . . . · (P ∗ −N/P ))P = ε(PN ), where P ∗ = ∃P/2∩− 1. An argument similar to
the above shows that in any decision tree for P∗

1, the “no” instances and leaves
that decide “no” correspond one to one. Therefore, the depth of any decision
tree for P∗

1 is ε(N logP ). Construct an undirected graph G = (V,E) from an
input instance I of P∗

1 as follows.

1. Let the integers in [1, 2P ] constitute the vertices.
2. Make a pass through I to decide if it contains an even element. If it does, then

for each i ∗ [P, 2P − 1], add an edge {i, i + 1} to G. Otherwise, remove all even
integers (vertices) > P from G.

3. Make a second pass through I . If the jth subset of I contains P + i, then add an
edge {j, P + i} to G.

4. For i ∗ [1, P − 1], add an edge {i, i+ 1} to G.

Here |V | = Π(P ) and |E| = Π(N). The construction of the graph requires
O(N/B) I/Os. It needs looking at the least significant bits (LSBs) of the keys of
the elements; if the LSBs are assumed to be given separately from the rest of the
keys, this will not violate the decision tree requirements. Note that the decision
tree arguments for P1 and P∗1 will remain unchanged, even if we assume that
each has a composite key of the form ∧i, lsb(i)∞. Any comparison between two
elements will depend only on the first components of their keys. The value of
the minimum cut of G is at least 1 iff P∗

1 answers “yes” on I.
From the following theorem, given in [13] we prove the lemma given below.

Theorem 1. [13] Let X be the problem solved by a P -way indexed I/O tree T ,
with N the number of records in the input. There exists a decision tree Tc solving
X, such that:

PathTc ∨ N logB + I/OT · O(B log
M −B

B
+ logP )
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where, PathTc denote the number of comparison nodes on the path from the
root to a leaf node in Tc and I/OT denote the maximum number of I/O nodes
from the root to a leaf node in T .

Lemma 1. The lower bound of the minimum cut problem is ε(EV Sort(V )) on
I/Os.

4 The Minimum Cut Algorithm

We present an I/O efficient deterministic algorithm for finding minimum cuts
on undirected unweighted graphs. Our I/O efficient algorithm is based on the
semi-duality between minimum cut and tree packing. The duality was used in
designing a deterministic minimum cut in-core algorithm for both directed and
undirected unweighted graphs [7] and in designing a faster but randomized in-
core algorithm for undirected weighted graphs [10]. Our algorithm uses Karger’s
ideas [10].

Nash-Williams theorem [15] states that any undirected graph with minimum
cut c has at least c/2 edge disjoint spanning trees. It follows that in such a pack-
ing, for any minimum cut, there is at least one spanning tree that 2-constrains
the minimum cut. Once we compute such a packing, the problem reduces to
finding a minimum cut that is 2-constrained by some tree in the packing. The
assumption on edge disjointness is relaxed by Karger [10] in the following lemma.

Lemma 2. [10] For any graph G, for any tree packing P of G of value δc, and
any cut X of G of value σc (σ ∀ δ), at least (1/2)(3−σ/δ) fraction (by weight)
of trees of P 2-constrains X.

If an approximate algorithm guarantees a δc packing P , for δ > 1/3, at least
1
2 (3−

1
β ) fraction (by weight) of the trees in P 2-constrains any given minimum

cut X . In particular, there is at least one tree in P that 2-constrains any given
minimum cut X .

4.1 The Algorithm

From the above discussion, we can conclude that the minimum cut problem
can be divided into two subproblems, (i) compute an approximate maximal tree
packing P of value δc, for δ > 1/3, and (ii) compute a minimum cut of the
graph G that is 2-constrained by some tree in P .

Subproblem 1. We use the greedy tree packing algorithm given in [16,18] as
described here. A tree packing P in G is an assignment of weights to the spanning
trees of G so that each edge gets a load of l(u, v) =

∑
T∈P :(u,v)∈T w(T ) ∨ 1. The

value of tree packing P is W =
∑

T∈P w(T ). In this algorithm, initial weights
on all spanning trees, load on all edges, and W are set to zero. While no edge
has load 1, following steps are executed:
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1. Pick a load minimal spanning tree T ;
2. w(T ) = w(T ) + γ2/3 logE;
3. W = W + γ2/3 logE;

4. For all edges (u, v) in T , l(u, v) = l(u, v) + w(T );

As mentioned in [18], the algorithm obtains the following result.

Theorem 2. [16] The greedy tree packing algorithm given above, when run on
a graph G, computes a (1− ρ)-approximate tree packing of value W for G; that
is, (1 − ρ)τ ∨ W ∨ τ , where τ is the maximum value of any tree packing of G.

Since each iteration increases the packing value by ρ2/(3 logE), and the packing
value can be at most c, the algorithm terminates in O(c logE/ρ2) iterations.
The I/O complexity of each iteration is dominated by the minimal spanning
tree computation. Thus, number of I/Os required is O(c logE · MSF(V,E)),
where MSF(V,E) is the number of I/Os required to compute a minimal spanning
tree. The currently best known minimum spanning tree algorithm executes in
O(Sort(E)max{1, log logE/V B} I/Os [3]. Since in each iteration, at most one
new spanning tree is added in the tree packing therefore upper bound on the
total number of trees in the computed tree packing is O(c logE).

Since the value of the maximum tree packing is at least c/2, the size of the
computed tree packing is at least (1− ρ)c/2. From Lemma 2, it follows that, for
ρ < 1/3, and any minimum cut X , the computed tree packing contains at least
one tree that 2-constrains X .

Subproblem 2. Let T = (V,E∗) be a spanning tree of graph G = (V,E). For
every K ← E∗ there is unique cut X so that K = E(T ) ∩ E(X). X can be
constructed as follows: Let A = ∅. For some s → V , for each vertex v in V , add
v to set A, iff the path in T from s to v has an even number of edges from K;
clearly X = (A, V −A) is a cut of G.

A spanning tree in the packing produced by Subproblem 1 2-constrains every
minimum cut of G. We compute the following: (1) for each tree T of the packing,
and for each tree edge (u, v) in T , a cut X such that (u, v) is the only edge of
T crossing X , (2) for each tree T of the packing, and for each pair of tree edges
(u1, v1) and (u2, v2), a cut X such that (u1, v1) and (u2, v2) are the only edges
of T crossing X . A smallest of all the cuts found is a minimum cut of G.

First we describe the computation in (1). Root tree T at some vertex r in
O(Sort(V )) I/Os [5]. (See Section 2 for notations.) C(v ⇒) is the number of
edges whose one endpoint is a descendent of v, and the other endpoint is a
nondescendent of v. If (v, p(v)) is the only tree edge crossing a cut X , then
C(v ⇒) is the value of cut X . As given in [10], C(v ⇒) = d≤(v) − 2ρ≤(v). C(v ⇒)
is to be computed for all vertices v in tree T , except for the root r.

d≤(v) can be computed by using expression tree evaluation, if the degree of
each vertex v is stored with v. ρ≤(v) can be computed using least common an-
cestor queries and expression tree evaluation. Once d≤(v) and ρ≤(v) are known
for every vertex v → T , C(v ⇒) can be computed for every vertex v using ex-
pression tree evaluation. If we use the I/O efficient least common ancestor and
expression tree evaluation algorithms of [5], the total number of I/Os needed for
the computation in (1) is O(Sort(V )).
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For the computation in (2), consider two tree edges (u, p(u)) and (v, p(v)),
the edges from two vertices u and v to their respective parents. Let X be the
cut characterised by these two edges (being the only tree edges crossing X). We
say vertices u and v are incomparable, if u ≈→ v ⇒ and v ≈→ u ⇒; that is, if they are
not on the same root-leaf path. If u → v ⇒ or v → u ⇒, then u and v are called
comparable and both are in the same root-leaf path. In the following, when we
say the cut of u and v, we mean the cut defined by edges (p(u), u) and (p(v), v).
As given in [10], if u and v are incomparable then the value of cut X is

C(u ⇒ ⊗ v ⇒) = C(u ⇒) + C(v ⇒)− 2C(u ⇒, v ⇒)

If vertices u and v are comparable then the value of X is

C(u ⇒ − v ⇒) = C(u ⇒)− C(v ⇒) + 2(C(u ⇒, v ⇒)− 2ρ≤(v))

For each tree in the packing, and for each pair of vertices in the tree we need to
compute the cuts using the above formulae. We preprocess each tree T as follows.
Partition the vertices of T into clusters V1, V2, . . . , VN (where N = Π(V/B)),
each of size Π(B), except for the last one, which can of a smaller size. Our
intention is to process the clusters one at a time by reading each Vi into the
main memory to compute the cut values for every pair with at least one of the
vertices in Vi. We assume that T is rooted at some vertex r.

Partitioning of vertices: For each vertex v → V , a variable Var(v) is initialised
to 1. The following steps are executed for grouping the vertices into clusters.

Compute the depth of each vertex from the root r. Sort the vertices u → V
in the decreasing order of the composite key ∧depth(u), p(u)∞. Depth of r is 0.
Access the vertices in the order computed above. Let v be the current vertex.

– Compute Y = Var(v) +Var(v1) + . . .+Var(vk), where v1, v2, . . . , vk are the
children of v. If Y < B then set Var(v) = Y .

– Send the value Var(v) to the parent of v, if v is not the root r.
– If Y ∀ B, divide the children of v into clusters Q = Q1, Q2, . . . , Ql such

that for each cluster Qi,
∑

u∈Qi
Var(u) = Π(B). If v = r, it joins one of the

clusters Qi.

After executing the above steps for all vertices, consider the vertices u, one
by one, in the reverse order, that is, in increasing order of the composite key
∧depth(u), p(u)∞. Let v be the current vertex. If v is the root, then it labels
itself with the label of the cluster to which it belongs. Otherwise, v labels itself
with the label received from its parent. If v has not created any clusters, then
it sends its label to all its children. Otherwise, let the clusters created by v be
Q1, Q2, . . . , Ql; v labels each cluster uniquely and sends to each child vi the label
of the cluster that contains vi. At the end, every vertex has got the label of the
cluster that contains it.

In one sort, all vertices belonging to the same cluster Vi can be brought
together. Since T is a rooted tree, each vertex u knows its parent p(u). We store
p(u) with u in Vi. Thus, Vi along with the parent pointers, forms a subforest
T [Vi] of T , and we obtain the following lemma.
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Lemma 3. The vertices of a tree T can be partitioned into clusters V1, . . . VN

(where N = Π(V/B)), of size Π(B) each, in O(Sort(V )) I/Os, with the clusters
satisfying the following property: for any two roots u and v in T [Vi], p(u) = p(v).

Proof. The partitioning procedure uses the time forward processing method for
sending values from one vertex to another and can be computed in O(Sort(V ))
I/Os [5]. The depth of the nodes can be found by computing an Euler Tour
of T and applying list ranking on it [5] in O(Sort(V )) I/Os. Thus, a total of
O(Sort(V )) I/Os are required for the partitioning procedure.

The property of the clusters mentioned in the lemma follows from the way the
clusters are formed. Each cluster Vi is authored by one vertex x, and therefore
each root in T [Vi] is a child of x.

Connect every pair Vi, Vj of clusters by an edge, if there exists an edge e → E∗

such that one of its endpoint is in Vi and the other endpoint is in Vj . The
resulting graph G∗ must be a tree, denoted as cluster tree T ∗. Note that T ∗ can
be computed in O(Sort(V )) I/Os. Do a level order traversal of the cluster tree:
sort the clusters by depth, and then by key (parent of a cluster) such that (i)
deeper clusters come first, and (ii) the children of each cluster are contiguous.
We label the clusters in this sorted order: V1, V2, . . . , VN . Within the clusters the
vertices are also numbered the same way.

Form an array S1 that lists V1, . . . , VN in that order; after Vi and before Vi+1

are listed nonempty Eij ’s, in the increasing order of j; Eij ← E−E∗, is the set of
non-T edges of G with one endpoint in Vi and the other in Vj . With Vi are stored
the tree edges of T [Vi]. Another array S2 stores the clusters Vi in the increasing
order of i. The depth of each cluster in the cluster tree can be computed in
O(Sort(V )) I/Os [5], and arrays S1 and S2 can be obtained in O(Sort(V + E))
I/Os.

Computing cut values for all pair of vertices: Now, we describe how to com-
pute cut values for all pair of vertices. Recall that the value of the cut for two
incomparable vertices u and v is

C(u ⇒ ⊗ v ⇒) = C(u ⇒) + C(v ⇒)− 2C(u ⇒, v ⇒)

and for two comparable vertices u and v is

C(u ⇒ − v ⇒) = C(u ⇒)− C(v ⇒) + 2(C(u ⇒, v ⇒)− 2ρ≤(v))

Except for C(u ⇒, v ⇒), all the other values of both expressions have already
been computed. C(u ⇒, v ⇒) can be computed using the following expression.

C(u ⇒, v ⇒) =
∑

û

C(û ⇒, v ⇒) +
∑

v̂

C(u, v̂ ⇒) + C(u, v)

where, û and v̂ vary over the children of u and v respectively. In Figure 1, we
give the procedure for computing C(u ⇒, v ⇒) and cut values for all pairs u and
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Let binary Li be 1 iff “Vi is a leaf of the cluster tree”; L̄i is its negation
Let binary lu be 1 iff “u is a leaf in its cluster”; l̄u is its negation
For 1 ← i ← N , For 1 ← j ← N

For each (u, v) ∗ Vi × Vj considered in lexicographic ordering
if lv and ¬Lj

Deletemin(Q1) to get ∞j, u, v, Y ◦; add Y to Yv;
if lu and ¬Li

Deletemin(Q2) to get ∞i, j, u, v,X◦; add X to Xu;
For each (u, v) ∗ Vi × Vj considered in lexicographic ordering

A =
∑

û C(û ↓, v ↓)
B =

∑
v̂ C(u, v̂ ↓)

C(u ↓, v ↓) = Al̄u +XuL̄ilu +Bl̄v + YvL̄j lv + C(u, v)
if u and v are incomparable vertices

C(u ↓ ∪ v ↓) = C(u ↓) + C(v ↓)− 2C(u ↓, v ↓)
if u and v are comparable vertices

C(u ↓ − v ↓) = C(u ↓) −C(v ↓) + 2(C(u ↓, v ↓) − 2θ→(v))
Let ri1, . . . rik be the roots in T [Vi]
Let rj1, . . . rjl be the roots in T [Vj ]
For each vertex u ∗ Vi

Y u = C(u, rj1 ↓) + . . .+ C(u, rjl ↓)
Store ∞P (Vj), u, p(rj1), Y

u◦ in Q1

For each vertex v ∗ Vj

Xv = C(ri1 ↓, v ↓) + . . .+ C(rik ↓, v ↓)
Store ∞P (Vi), j, p(ri1), v,X

v◦ in Q2

Fig. 1. Procedure to compute cut values for all pair of vertices

v. In the procedure, p(u) is the parent of u in T , P (Vi) is the parent of Vi in the
cluster tree.

For each i, j → N , Vi, Vj and Eij are brought in main memory. Note that
the size of Eij can be at most O(B2). We assume that size of main memory is
ε(B2). C(u ⇒) and ρ≤(u) are stored with vertex u. We mark all ancestors of
each vertex u → Vi. For any two u, u∗ → Vi, the sets of ancestors of u and u∗ that
are in cluster Vj for j ≈= i, are the same. If vertices in Vi have ancestor(s) in Vj ,
then Vj is an ancestor of Vi in the cluster tree T ∗. We can mark all the ancestors
in additional O(V/B) I/Os.

Two priority queues Q1 and Q2 are maintained during the execution of the
algorithm. Q1 holds value Y uv

ij = C(u, v1 ⇒) + . . . + C(u, vl ⇒) with key value
∧j, u, v∞ for each vertex u → Vi and v → Vj , while cluster Vj is yet to be accessed
for Vi, and after Vk (with k < j, and containing exactly v1, . . . vl among the
children of v), has been processed for Vi, and C(u, v1 ⇒), . . . C(u, vl ⇒) have been
computed. Note that it is not necessary that all children of v are in one cluster
Vj . Similarly Q2 holds valueX

uv
ij = C(u1 ⇒, v ⇒)+. . .+C(ul ⇒, v ⇒) with key value

∧i, j, u, v∞ for each vertex u → Vi and v → Vj , while cluster Vj is yet to be accessed
for Vi, and after Vj has been processed for Vk (with k < j, and containing exactly
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u1, . . . ul among the children of u), and C(u1 ⇒, v ⇒), . . . , C(ul ⇒, v ⇒) have been
computed. Note that it is not necessary that all children of u are in one node
Vk.

The correctness of the algorithm is easy to prove. Since, for each cluster we
perform O(V/B) I/Os and O(V ) insertions in each priority queue Q1 and Q2

and the vertices are partitioned into Π(V/B) clusters, the total I/O cost is
O(VBSort(V )). We obtain the following lemma.

Lemma 4. For a tree T , a minimum cut can be computed in O(Sort(E) +
(V/B)Sort(V )) I/Os, if at most two edges of it are in T .

We execute the above operations for all trees in packing and hence obtain the
following theorem.

Theorem 3. We can compute a minimum cut in O(c logE(MSF(V,E)+(V/B)
Sort(V ))) I/Os for the given undirected unweighted graph G, where c is the
minimum cut value.

5 The Randomised Algorithm

The I/O complexity of computing the minimum cut can be improved, if spanning
trees from the packing are chosen randomly. We assume that the minimum cut
is large and c > log2 V . We use ideas from [10].

The maximum tree packing τ is at least c/2. Consider a minimum cut X and a
packing P of size τ ∗ = δc. Suppose X cuts exactly one tree edge of ητ ∗ trees in P ,
and cuts exactly 2 tree edges of ντ ∗ trees in P . Since X cuts at least three edges
of the remaining trees in P , ητ ∗+2ντ ∗+3(1−η−ν)τ ∗ ∨ c. Hence, 3−2η−ν ∨ 1/δ,
and ν ∀ 3 − 1/δ − 2η. First assume that η > 1

2 log V . Uniformly randomly we
pick a tree T from our approximate maximal tree packing. The probability is
1/(2 logV ) that we pick a tree so that exactly one edge of it crosses particular
minimum cut X . If we choose 2 log2 V trees, then the probability of not selecting
a tree that crosses the minimum cut exactly once is

(
1− 1

2 logV

)2 log2 V

< 2−
log2 V
log V <

1

V

Thus, with probability (1 − 1/V ), we compute a minimum cut. Now suppose
that η ∨ 1

2 log V . Then, we have

ν ∀ 3− 1

δ
− 1

logV

Randomly pick a tree. The probability is ν that we will pick a tree whose exactly
two tree edges crosses the minimum cut. If we select log V trees from the packing
then the probability of not selecting the right tree is

(1− ν)
log V ∨

((
1

δ
− 2

)
+

1

logV

)log V

∨ 1

V
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1. k =
λmin
2+β

for γ > 0, where φmin is the minimum degree of graph G.
2. find sparse k-edge connected certificate H (see below for definition).
3. construct graph G∗ from G by contracting edges not in H and recursively find the

approximate minimum cut in the contracted graph G∗.
4. return the minimum of φmin and cut returned from step 4.

Fig. 2. Approximate minimum cut algorithm

If δ is small enough; for example δ = 1/2.2. Therefore, we compute a minimum
cut with probability 1 − 1/V . This reduces the I/O complexity to O(c logE ·
MSF(V,E) + Sort(E) log2 V + V

BSort(V ) logV ).

6 On a δ-fat Graph

A graph G is called a φ-fat graph for φ > 0, if the maximum tree packing of G is

at least (1+δ)c
2 [10]. We can compute an approximate maximal tree packing of size

at least (1 + φ/2)(c/2) from our tree packing algorithm by choosing ρ = δ
2(1+δ) .

Since c is the minimum cut, a tree shares on an average 2/(1 + φ/2) edges with
a minimum cut which is less than 2, and thus is 1. Hence, for a φ-fat graph, for
each tree T we need only to investigate cuts that contain exactly one edge of T .
Hence, the minimum cut algorithm takes only O(c logE(MSF(V,E)+Sort(E)))
I/Os; this is dominated by the complexity of the tree packing algorithm.

7 The (2 + ε)-minimum Cut Algorithm

In this section, we show that a near minimum cut can be computed more effi-
ciently than an exact minimum cut. The algorithm given in Figure 2 is based
on the algorithm of [11,12], and computes a cut of value between c and (2+ ρ)c,
if the minimum cut of the graph is c. The proof of correctness can be found
in [11]. The depth of recursion for the algorithm is O(logE) [11] and in each
iteration the number of edges are reduced by a constant factor. Except for step
3, each step can be executed in Sort(E) I/Os. Next, we show that step 3 can be
executed in O(k ·MSF(V,E)) I/Os.

A k-edge-certificate of G is a spanning subgraph H of G such that for any two
vertices u and v, and for any positive integer k∗ ∨ k, there are k∗ edge disjoint
paths between u and v in H if and only if there are k∗ edge disjoint paths between
u and v in G. It is called sparse, if E(H) = O(kV ). There is one simple algorithm,
given in [14], which computes a sparse k-edge connectivity certificate of graph
G as follows. Compute a spanning forest F1 in G; then compute a spanning
forest F2 in G − F1; and so on; continue like this to compute a spanning forest
Fi in G − ⊗1≤j<iFj , until Fk is computed. It is easy to see that connectivity
of graph H = ⊗1≤i≤kFi is at most k and the number of edges in H is O(kV ).
Thus, we can compute a sparse k-edge connectivity certificate of graph G in
O(k(MSF(V,E) + Sort(E))) I/Os.
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Since λmin is O(E/V ) and the number of edges is reduced by a constant factor
in each iteration, a total of O(EV MSF(V,E)) I/Os are required to compute a cut
of value between c and (2 + ρ)c.
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Abstract. We investigate the complexity of some problems related to the Simul-
taneous Embedding with Fixed Edges (SEFE) problem which, given k planar
graphs G1, . . . , Gk on the same set of vertices, asks whether they can be simul-
taneously embedded so that the embedding of each graph be planar and common
edges be drawn the same. While the computational complexity of SEFE with
k = 2 is a central open question in Graph Drawing, the problem isNP-complete
for k ∗ 3 [Gassner et al., WG ’06], even if the intersection graph is the same for
each pair of graphs (sunflower intersection) [Schaefer, JGAA (2013)].

We improve on these results by proving that SEFE with k ∗ 3 and sunflower
intersection is NP-complete even when (i) the intersection graph is connected
and (ii) two of the three input graphs are biconnected. This result implies that the
Partitioned T-Coherent k-Page Book-Embedding is NP-complete with k ∗ 3,
which was only known for k unbounded [Hoske, Bachelor Thesis (2012)]. Fur-
ther, we prove that the problem of maximizing the number of edges that are drawn
the same in a SEFE of two graphs isNP-complete (optimization of SEFE , Open
Problem 9, Chapter 11 of the Handbook of Graph Drawing and Visualization).

1 Introduction
Let G1, . . . , Gk be k graphs on the same set V of vertices. A simultaneous embedding
with fixed edges (SEFE) of G1, . . . , Gk consists of k planar drawings Γ1, . . . , Γk of
G1, . . . , Gk, respectively, such that each vertex v ≥ V is mapped to the same point in
every drawing Γi, and each edge that is common to more than one graph is represented
by the same open Jordan curve in the drawings of all such graphs. The SEFE problem
is the problem of testing whether k input graphs G1, . . . , Gk admit a SEFE [11].

The possibility of drawing together a set of graphs gives the opportunity to repre-
sent at the same time a set of different binary relationships among the same objects,
hence making this topic an important tool in Information Visualization [12]. Motivated
by such applications and by their theoretical aspects, simultaneous graph embeddings
received wide research attention in the last few years. For an up-to-date survey, see [6].

Recently, a new major milestone to assert the importance of SEFE has been provided
by Schaefer [21], who discussed its relationships with some other famous problems in
Graph Drawing. In particular, he proved a reduction to SEFE with k = 2 from the
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Global Measurements to Local Management”, grant no. 317647’.
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clustered planarity testing problem [9,10], that can be arguably considered as one of
the most important open problems in the field.

The SEFE problem has been proved NP-complete for k ⇒ 3 by Gassner et al. [14].
On the other hand, if the embedding of the input graphs is fixed, the SEFE problem be-
comes polynomial-time solvable for k = 3, but remains NP-complete for k ⇒ 14 [3].

In Chapter 11 of the Handbook of Graph Drawing and Visualization [6], the SEFE
problem with sunflower intersection (SUNFLOWER SEFE) is cited as an open question
(Open Problem 7). In this setting, the intersection graph G∩ (that is, the graph com-
posed of the edges that are common to at least two graphs) is such that, if an edge
belongs to G∩, then it belongs to all the input graphs. Haeupler et al. [15] conjec-
tured that SUNFLOWER SEFE is polynomial-time solvable. However, Schaefer [21]
recently proved that this problem is NP-complete for k ⇒ 3. The reduction is from
the NP-complete [16] problem PARTITIONED T-COHERENT K-PAGE BOOK EMBED-
DING (PTCKPBE), defined [5] as follows. Given a set X of elements, a tree T whose
leaves are the elements of X , and a collection of sets Si ∪ X × X , for i = 1, . . . , k,
is there a k-page book-embedding such that the edges in Si are placed on the i-th page
and the ordering of the elements of X on the spine is represented by T ? Note that, the
NP-completeness of PTCKPBE holds for k unbounded [16], which implies that the
NP-completeness of SUNFLOWER SEFE holds for instances in which the intersection
graph is a spanning forest composed of an unbounded number of star graphs.

In this paper, we improve on this result by proving that SUNFLOWER SEFE is
NP-complete with k ⇒ 3 even if G∩ is a spanning tree (actually, a caterpillar), and
two of the input graphs are biconnected. Note that, when the intersection graph is
connected, SUNFLOWER SEFE is equivalent to PTCKPBE. Hence, our result implies
NP-completeness also for PTCKPBE when k ⇒ 3.

For k = 2, the complexity of SEFE and of PTCKPBE is still unknown (note that
every instance of SEFE with k = 2 obviously has sunflower intersection). However,
polynomial-time algorithms are known for instances in which: (i) one of G1 and G2

has a fixed embedding [4]; (ii) the intersection graph G∩ is biconnected [5,15], a star
graph [5], or a subcubic graph [21]; (iii) each connected component of G∩ has a fixed
embedding [7]; or (iv) G1 and G2 are biconnected and G∩ is connected [8].

In this setting, we study the optimization version of SEFE, that we call MAX SEFE,
which is cited as an open question (Open Problem 9) in Chapter 11 of the Handbook
of Graph Drawing and Visualization [6]. In this problem, one asks for drawings of
G1 and G2 such that as many edges of G∩ as possible are drawn the same. We prove
that MAX SEFE is NP-complete, even under some strong constraints. Namely, the
problem is NP-complete if G1 and G2 are triconnected, and G∩ is composed of a
triconnected component plus a set of isolated vertices. This implies that the problem
is computationally hard both in the fixed and in the variable embedding case. In the
latter case, however, we can prove that MAX SEFE is NP-complete even if G∩ has
degree at most 2. Observe that any of these constraints would be sufficient to obtain
polynomial-time algorithms for the original SEFE problem.

In Sect. 2 we give some preliminary definitions. In Sect. 3 we deal with the sunflower
intersection scenario, while in Sect. 4 we study the MAX SEFE problem. Finally, in
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Sect. 5 we discuss some open problems. For space reasons, some proofs are sketched
or omitted; complete proofs can be found in the full version of the paper [2].

2 Preliminaries
A drawing of a graph is a mapping of each vertex to a point of the plane and of each edge
to a simple Jordan curve connecting its endpoints. A drawing is planar if the curves
representing its edges do not cross except, possibly, at common endpoints. A graph is
planar if it admits a planar drawing. A planar drawing Γ determines a subdivision of
the plane into connected regions, called faces, and a clockwise ordering of the edges
incident to each vertex, called rotation scheme. The unique unbounded face is the outer
face. Two drawings are equivalent if they have the same rotation schemes. A planar
embedding is an equivalence class of planar drawings.

The SEFE problem can be studied both in terms of embeddings and in terms of draw-
ings, since edges can be represented by arbitrary curves without geometric restrictions,
and since Jünger and Schulz [17] proved that two graphs G1 and G2 with intersection
graph G∩ have a SEFE if and only if there exists a planar embedding Γ1 of G1 and
a planar embedding Γ2 of G2 inducing the same embedding of G∩. This condition
extends to more than two graphs in the sunflower intersection setting.

A graph is connected if every pair of vertices is connected by a path. A k-connected
graph G is such that removing any k − 1 vertices leaves G connected; 3-connected and
2-connected graphs are also called triconnected and biconnected, respectively. A tree
is a graph with no cycle. A caterpillar is a tree such that the removal of all the leaves
yields a path. A subgraph H of a graph G is spanning if for each vertex v ≥ G there
exists an edge of H incident to v. The dual of a graph G with respect to an embedding
Γ of G is the graph GΔ having a vertex vf for each face f of Γ and an edge (vf1 , vf2)
if and only if faces f1 and f2 of Γ have a common edge e in G. We say that edge
(vf1 , vf2) is the dual edge of e, and vice versa.

3 SUNFLOWER SEFE
In this section we study the SUNFLOWER SEFE problem for k ⇒ 3 graphs, in which the
intersection graph G∩ is such that G∩ = Gi→Gj for each 1 ∃ i < j ∃ k. We prove that
SUNFLOWER SEFE is NP-complete with k ⇒ 3 even if G∩ is a spanning caterpillar
and two input graphs are biconnected. This implies that PARTITIONED T-COHERENT

K-PAGE BOOK EMBEDDING [5] is NP-complete with k ⇒ 3.
The proof is based on a polynomial-time reduction from the NP-complete [19]

problem BETWEENNESS, that takes as input a finite set A of n objects and a set C
of m ordered triples of distinct elements of A, and asks whether a linear ordering O
of the elements of A exists such that for each triple ∩α, β, γ⊗ of C, we have either
O =< . . . , α, . . . , β, . . . , γ, . . . > or O =< . . . , γ, . . . , β, . . . , α, . . . >.

Theorem 1. SUNFLOWER SEFE is NP-complete even if two input graphs are bicon-
nected and the intersection graph is a spanning caterpillar.

Proof: The membership in NP has been proved in [14] by reducing SEFE to the Weak
Realizability Problem.
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Fig. 1. Illustration of the composition of G∩, G1, G2, and G3, focused on the i-th triple ti =
←α, β, γ∞ of C with i = 2

The NP-hardness is proved by means of a polynomial-time reduction from problem
BETWEENNESS. Given an instance ∩A,C⊗ of BETWEENNESS, we construct an instance
∩G1, G2, G3⊗ of SUNFLOWER SEFE that admits a SEFE if and only if ∩A,C⊗ is a
positive instance of BETWEENNESS, as follows.

In order to simplify the description, we first describe a reduction in which the pro-
duced instance of SUNFLOWER SEFE is such that G1 and G2 are biconnected and the
intersection graph G∩ is a spanning pseudo-tree, that is, a connected graph containing
only one cycle. In [2] it is described how to modify such instance in order to make G∩
a spanning caterpillar while maintaining biconnectivity of G1 and G2.

Refer to Fig. 1 for an illustration of the composition of G∩, G1, G2, and G3.
Graph G∩ contains a cycle C = u1, v1, u2, v2, . . . , um, vm, wm, . . . , w1 of 3m ver-

tices. Also, for each i = 1, . . . ,m, G∩ contains a star Si with n leaves centered at ui

and a star Ti with n leaves centered at vi. For each i = 1, . . . ,m, the leaves of Si are
labeled xj

i and the leaves of Ti are labeled yji , for j = 1, . . . , n. Graph G1 contains all
the edges of G∩ plus a set of edges (yji , x

j
i+1), for i = 1, . . . ,m and j = 1, . . . , n. Here

and in the following, i + 1 is computed modulo m. Graph G2 contains all the edges of
G∩ plus a set of edges (xj

i , y
j
i ), for i = 1, . . . ,m and j = 1, . . . , n. Graph G3 contains

all the edges of G∩ plus a set of edges defined as follows. For each i = 1, . . . ,m, con-
sider the i-th triple ti = ∩α, β, γ⊗ of C, and the corresponding vertices xβ

i , xλ
i , and xα

i

of Si; graph G3 contains edges (wi, x
β
i ), (wi, x

λ
i ), (wi, x

α
i ), (x

β
i , x

λ
i ), and (xλ

i , x
α
i ).

First note that, by construction, ∩G1, G2, G3⊗ is an instance of SUNFLOWER SEFE,
and graph G∩ is a spanning pseudo-tree. Also, one can easily verify that G1 and G2 are
biconnected. In the following we prove that ∩G1, G2, G3⊗ is a positive instance if and
only if ∩A,C⊗ is a positive instance of BETWEENNESS.

Suppose that ∩G1, G2, G3⊗ is a positive instance, that is, G1, G2, and G3 admit a
SEFE ∩Γ1, Γ2, Γ3⊗. Observe that, for each i = 1, . . . ,m, the subgraph of G1 induced
by the vertices of Ti and the vertices of Si+1 is composed of a set of n paths of length
3 between vi and ui+1, where the j-th path contains internal vertices yji and xj

i+1, for
i = 1, . . . , n. Hence, in any SEFE of ∩G1, G2, G3⊗ , the ordering of the edges of Ti
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around vi is reversed with respect to the ordering of the edges of Si+1 around ui+1,
where the vertices of Ti and Si+1 are identified based on index j. Also observe that, for
each i = 1, . . . ,m, the subgraph of G2 induced by the vertices of Si and the vertices
of Ti is composed of a set of n paths of length 3 between ui and vi, where the j-th
path contains internal vertices xj

i and yji , for i = 1, . . . , n. Hence, in any SEFE of G1,
G2, and G3, the ordering of the edges of Si around ui is the reverse of the ordering
of the edges of Ti around vi, where the vertices of Si and Ti are identified based on
j. The two observations imply that, in any SEFE of G1, G2, and G3, for each i =
1, . . . ,m the ordering of the edges of Si around ui is the same as the ordering of the
edges of Si+1 around vi+1, where the vertices of Si and Si+1 are identified based on j.

We construct a linear orderingO of the elements of A from the ordering of the leaves
of S1 in ∩Γ1, Γ2, Γ3⊗. Initialize O = ≈; then, starting from the edge of S1 clockwise
following (u1, w1) around u1, consider all the leaves of S1 in clockwise order. For each
considered leaf xj

1, append j as the last element of O. We prove that O is a solution of
∩A,C⊗. For each i = 1, . . . ,m, the subgraph of G3 induced by vertices wi, ui, xβ

i , xλ
i ,

and xα
i is such that adding edge (ui, wi) would make it triconnected. Hence, it admits

two planar embeddings, which differ by a flip. Thus, in any SEFE of G1, G2, and G3,
edges (ui, x

β
i ), (ui, x

λ
i ), and (ui, x

α
i ) appear either in this order or in the reverse order

around ui. Since for each triple ti = ∩α, β, γ⊗ in C there exists vertices wi, ui, xβ
i , xλ

i ,
and xα

i inducing a subgraph of G3 with the above properties, and since the clockwise
ordering of the leaves of Si is the same for every i, O is a solution of ∩A,C⊗.

Suppose that ∩A,C⊗ is a positive instance, that is, there exists an ordering O of the
elements of A in which for each triple ti of C, the three elements of ti appear in one
of their two admissible orderings. We construct an embedding for G1,G2, and G3. For
each i = 1, . . . ,m, the rotation schemes of ui and vi are constructed as follows. Ini-
tialize first = vi−1 if i > 1, otherwise first = w1. Also, initialize last = ui+1

if i < m, otherwise last = wm. For each element j of O, place (ui, x
j
i ) between

(ui, f irst) and (ui, vi) in the rotation scheme of ui, and set first = xj
i . Also, place

(vi, x
j
i ) between (vi, last) and (vi, ui) in the rotation scheme of vi, and set last = xj

i .
Since all the vertices of G1 and of G2 different from ui and vi (i = 1, . . . ,m) have
degree 2, the embeddings Γ1 and Γ2 of G1 and G2, are completely specified. To ob-
tain the embedding Γ3 of G3, we have to specify the rotation scheme of wi and of the
three leaves of Si adjacent to wi, for i = 1, . . . ,m. Consider a triple ti = ∩α, β, γ⊗
of C. Initialize first = wi−1, if i > 1, and first = u1 otherwise. Also, initialize
last = wi+1, if i < m, and last = vm otherwise. Recall that α, β, and γ appear in
O either in this order or in the reverse one. In the former case, the rotation scheme of
wi is (wi, last), (wi, x

α
i ), (wi, x

λ
i ), (wi, x

β
i ), (wi, f irst); the rotation scheme of xβ

i is
(xβ

i , wi), (xβ
i , x

λ
i ), (x

β
i , ui); the rotation scheme of xλ

i is (xλ
i , x

β
i ), (x

λ
i , wi), (x

λ
i , x

α
i ),

(xλ
i , ui); and the rotation scheme of xα

i is (xα
i , x

λ
i ), (x

α
i , wi), (x

α
i , ui). In the latter

case, the rotation scheme of wi is (wi, last), (wi, x
β
i ), (wi, x

λ
i ), (wi, x

α
i ), (wi, f irst);

the rotation scheme of xβ
i is (xβ

i , x
λ
i ), (x

β
i , wi), (x

β
i , ui); the rotation scheme of xλ

i

is (xλ
i , x

α
i ), (x

λ
i , wi), (x

λ
i , x

β
i ), (x

λ
i , ui); and the rotation scheme of xα

i is (xα
i , wi),

(xα
i , x

λ
i ), (x

α
i , ui). In order to prove that ∩Γ1, Γ2, Γ3⊗ is a SEFE, we first observe that

the embeddings of G∩ obtained by restricting Γ1, Γ2, and Γ3 to the edges of G∩,
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respectively, coincide by construction. The planarity of Γ1 and Γ2 descends from the
fact that the orderings of the edges incident to ui and vi, for i = 1, . . . ,m, is one the
reverse of the other (where vertices are identified based on index j). The planarity of
Γ3 is due to the fact that, by construction, for each i = 1, . . . ,m, the subgraph induced
by wi, ui, xβ

i , xλ
i , and xα

i is planar in Γ3. This concludes the proof of the theorem. �

4 MAX SEFE
In this section we study the optimization version of the SEFE problem, in which two
embeddings of the input graphs G1 and G2 are searched so that as many edges of G∩
as possible are drawn the same. We study the problem in its decision version and call
it MAX SEFE. Namely, given a triple ∩G1, G2, k

≤⊗ composed of two planar graphs G1

and G2, and an integer k≤, the MAX SEFE problem asks whether G1 and G2 admit
a simultaneous embedding ∩Γ1, Γ2⊗ in which at most k≤ edges of G∩ have a different
drawing in Γ1 and in Γ2. First, in Lemma 1, we state the membership of MAX SEFE
to NP , which descends from the fact that SEFE belongs to NP . Then, in Theorem 2
we prove the NP-completeness in the general case. Finally, in Theorem 3, we prove
that the problem remains NP-complete even if stronger restrictions are imposed on the
intersection graph G∩ of G1 and G2.

Lemma 1. MAX SEFE is in NP .

In order to prove that MAX SEFE is NP-complete, we show a reduction from a
variant of the NP-complete problem PLANAR STEINER TREE (PST) [13], defined as
follows: Given an instance ∩G(V,E), S, k⊗ of PST, where G(V,E) is a planar graph
whose edges have weights ω : E ∧ N, S ∞ V is a set of terminals, and k > 0 is
an integer; does a tree T ≤(V ≤, E≤) exist such that (1) V ≤ ∪ V , (2) E≤ ∪ E, (3) S ∪
V ≤, and (4)

∑
e∈E∗ ω(e) ∃ k? The edge weights in ω are bounded by a polynomial

function p(n) (see [13]). In our variant, that we call UNIFORM TRICONNECTED PST
(UTPST), graph G is a triconnected planar graph and all the edge weights are equal
to 1. We remark that a variant of PST in which all the edge weights are equal to 1
and in which G is a subdivision of a triconnected planar graph (and no subdivision
vertex is a terminal) is known to be NP-complete [1]. However, using this variant
of the problemwould create multiple edges in our reduction. Actually, the presence of
multiple edges might be handled by replacing them in the constructed instance with
a set of length-2 paths. However, we think that an NP-completeness proof for the
PST problem with G triconnected and uniform edge weights may be of independent
interest.

Lemma 2. UNIFORM TRICONNECTED PST is NP-complete.

Proof sketch: Since instance of UTPST is also an instance of PST, we have that
UTPST belongs to NP . The NP-hardness is proved by means of a polynomial-time
reduction from PST. Namely, given an instance ∩G,S, k⊗ of PST, we construct an
equivalent instance ∩G∗, S∗, k∗⊗ of UTPST as follows. First, augment G to a tricon-
nected planar graph G∗ by adding dummy edges whose weight is the sum of the weight
of the edges of G, that is bounded by function p(n). Then, in order to obtain uniform
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(a) (b)

Fig. 2. (a) Gadget added inside a face to make G∗ triconnected. (b) Gadget replacing a vertex of
degree greater than 3 to make G∩ subcubic.

weights, replace each edge e in G∗ with a path P (e) of ω(e) weight-1 edges. Finally,
since the subdivision vertices have degree 2, add inside each face of the unique planar
embedding of G∗ a gadget as the one in Fig. 2(a), all of whose edges have weight 1. �

Then, based on the previous lemma, we prove the main result of this section.

Theorem 2. MAX SEFE is NP-complete.

Proof: The membership in NP follows from Lemma 1.
The NP-hardness is proved by means of a polynomial-time reduction from problem

UTPST. Let ∩G,S, k⊗ be an instance of UTPST. We construct an instance ∩G1, G2, k
≤⊗

of MAX SEFE as follows (refer to Fig. 3).
Since G is triconnected, it admits a unique planar embedding ΓG, up to a flip. We

now constructG∩, G1, and G2. Initialize G∩ =G1 →G2 as the dual of G with respect to
ΓG. Since G is triconnected, its dual is triconnected. Consider a terminal vertex s≤ ≥ S,
the set EG(s

≤) of the edges incident to s≤ in G, and the face fs∗ of G∩ composed of
the edges that are dual to the edges in EG(s

≤). Let v≤ be any vertex incident to fs∗ ,
and let v≤1 and v≤2 be the neighbors of v≤ on fs∗ . Subdivide edges (v≤, v≤1) and (v≤, v≤2)
with dummy vertices u≤

1 and u≤
2, respectively. Add to G∩ vertex s≤ and edges (s≤, u≤

1),
(s≤, u≤

2), and (s≤, v≤). Since v≤ has at least a neighbor not incident to fs∗ , vertices u≤
1

and u≤
2 do not create a separation pair. Hence, G∩ remains triconnected. See Fig. 3(a).

Graph G1 contains all the vertices and edges of G∩ plus a set of vertices and edges
defined as follows. For each terminal s ≥ S, consider the set EG(s) of edges incident
to s in G and the face fs of G∩ composed of the edges dual to the edges in EG(s). Add
to G1 vertex s and an edge (s, vi) for each vertex vi incident to fs, without introducing
multiple edges. Note that, graph G1 is triconnected. Hence, the rotation scheme of each
vertex is the one induced by the unique planar embedding of G1. See Fig. 3(b).

Graph G2 contains all the vertices and edges of G∩ plus a set of vertices and edges
defined as follows. Rename the terminal vertices in S as x1, . . . , x|S|, in such a way
that s≤ = x1. For i = 1, . . . , |S|− 1, add edge (xi, xi+1) to G2. The rotation scheme of
the vertices of G2 different from x1, . . . , x|S| is induced by the embedding of G∩. The
rotation scheme of vertices x2, . . . , x|S| is unique, as they have degree less or equal to 2.
Finally, the rotation scheme of s≤ is obtained by extending the rotation scheme induced
by the planar embedding of G∩, in such a way that edges (s≤, v≤) and (s≤, x2) are not
consecutive. In order to obtain an instance of MAX SEFE in which both graphs are
triconnected, we can augment G2 to triconnected by only adding edges among vertices
{u≤

1, u
≤
2} ∨ {x1, . . . , x|S|}. See Fig. 3(b). Finally, set k≤ = k.
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Fig. 3. Illustration for the proof of Theorem 2. Black lines are edges of G∩; grey lines are edges
of G; dashed red and solid blue lines are edges of G1 and G2, respectively; green edges compose
the Steiner tree T ; white squares and white circles are terminal vertices and non-terminal vertices
of G, respectively. (a) G∩, G and T ; (b) G1 ◦ G2; (c) a drawing of G∩ where 4 edges have two
different drawings; and (d) a solution ←Γ1, Γ2∞ of ←G1, G2, 4∞

We show that ∩G1, G2, k
≤⊗ admits a solution if and only if ∩G,S, k⊗ does.

Suppose that ∩G,S, k⊗ admits a solution T . Construct a planar drawing Γ1 of G1.
The drawing Γ2 of G2 is constructed as follows. The edges of G∩ that are not dual to
edges of T are drawn in Γ2 with the same curve as in Γ1. Observe that, in the current
drawing Γ2 all the terminal vertices in S lie inside the same face f (see Fig. 3(c)).
Hence, all the remaining edges of G2 can be drawn [20] inside f without intersections,
as the subgraph of G2 induced by the vertices incident to f and by the vertices of S is
planar (see Fig. 3(d)). Since the only edges of G∩ that have a different drawing in Γ1

and Γ2 are those that are dual to edges of T , ∩Γ1, Γ2⊗ is a solution for ∩G1, G2, k
≤⊗.

Suppose that ∩G1, G2, k
≤⊗ admits a solution ∩Γ1, Γ2⊗ and assume that ∩Γ1, Γ2⊗ is

optimal (that is, there exists no solution with fewer edges of G∩ not drawn the same).
Consider the graph T composed of the dual edges of the edges of G∩ that are not drawn
the same. We claim that T has at least one edge incident to each terminal in S and
that T is connected. The claim implies that T is a solution to the instance ∩G,S, k⊗ of
UTPST, since T has at most k edges and since ∩Γ1, Γ2⊗ is optimal.
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Suppose for a contradiction that there exist two connected components T1 and T2 of
T (possibly composed of a single vertex). Consider the edges of G incident to vertices
of T1 and not belonging to T1, and consider the face f1 composed of their dual edges.
Note that, f1 is a cycle of G∩. By definition of T , all the edges incident to f1 have
the same drawing in Γ1 and in Γ2. Finally, there exists at least one vertex of S that
lies inside f1 and at least one that lies outside f1. Since all the vertices in S belong
to a connected subgraph of G2 not containing any vertex incident to f1, there exist
two terminal vertices s∗ and s∗∗ such that s∗ lies inside f1, s∗∗ lies outside f1, and edge
(s∗, s∗∗) belongs to G2. This implies that (s∗, s∗∗) crosses an edge incident to f1 in Γ2, a
contradiction. This concludes the proof of the theorem. �

We note from Theorem 2 that MAX SEFE is NP-complete even if G1 and G2 are
triconnected, and G∩ is composed of a triconnected component and a set of isolated
vertices (those corresponding to terminal vertices). We remark that, under these condi-
tions, the original SEFE problem is polynomial-time solvable (actually, this is true even
if only one of the input graphs has a unique embedding [4]). Further, it is possible to
transform the constructed instances so that all the vertices of G∩ have degree at most 3,
by replacing each vertex v of degree d(v) > 3 in G∩ with a gadget as in Fig. 2(b). Such
a gadget is composed of a cycle of 2d(v) vertices and of an internal grid with degree-3
vertices whose size depends on d(v). Edges incident to v are assigned to non-adjacent
vertices of the cycle, in the order defined by the rotation scheme of v. Hence, the MAX

SEFE problem remains NP-complete even for instances in which G∩ is subcubic, that
is another sufficient condition to make SEFE polynomial-time solvable [21].

In the following we go farther in this direction and prove that MAX SEFE remains
NP-complete even if the degree of the vertices in G∩ is at most 2. The proof is based
on a reduction from the NP-complete problem MAX 2-XORSAT [18], which takes
as input (i) a set of Boolean variables B = {x1, ..., xl}, (ii) a 2-XorSat formula F =∧

xi,xj∈B(li← lj), where li is either xi or xi and lj is either xj or xj , and (iii) an integer
k > 0, and asks whether there exists a truth assignment A for the variables in B such
that at most k of the clauses in F are not satisfied by A.

Theorem 3. MAX SEFE is NP-complete even if the intersection graph G∩ of the two
input graphs G1 and G2 is composed of a set of cycles of length 3.

Proof: The membership in NP follows from Lemma 1.
The NP-hardness is proved by means of a polynomial-time reduction from problem

MAX 2-XORSAT. Let ∩B,F, k⊗ be an instance of MAX 2-XORSAT. We construct an
instance ∩G1, G2, k

≤⊗ of MAX SEFE as follows. Refer to Fig. 4(a).
Graph G1 is composed of a cycle C with 2l vertices v1, v2, . . . , vl, ul, ul−1, . . . , u1.

Also, for each variablexi ≥ B, with i = 1, . . . , l,G1 contains a set of vertices and edges
defined as follows. First, G1 contains a 4-cycle Vi = (ai, bi, ci, di), that we call variable
gadget, connected to C through edge (ai, vi). Further, for each clause (li ← lj) ≥ F (or
(lj ← li) ≥ F ) such that li ≥ {xi, xi}, G1 contains (i) a 3-cycle Vi,j = (ai,j , bi,j , ci,j),
that we call clause-variable gadget, (ii) an edge (bi,j , w), where either w = bi, if
li = xi, or w = di, if li = xi, and (iii) an edge (ai,j , ci,h), where (li← lh) (or (lh ← li))
is the last considered clause to which li participates; if (li ← lj) (or (lj ← li)) is the first
considered clause containing li, then ci,h = ci. When the last clause (li←lq) (or (lq←li))
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Fig. 4. (a) Illustration of the construction of instance ←G1, G2, k
∗∞ of MAX SEFE. (b) Illustration

of the two cases in which li evaluates to true in A.

has been considered, an edge (ci,q, ui) is added to G1. Note that, the subgraphGi
1 of G1

induced by the vertices of the variable gadget Vi and of all the clause-variable gadgets
Vi,j to which li participates would result in a subdivision of a triconnected planar graph
by adding edge (ci,q, ai), and hence it has a unique planar embedding (up to a flip).
Graph G2 is composed as follows. For each clause (li← lj) ≥ F , with li ≥ {xi, xi} and
lj ≥ {xj , xj}, graph G2 contains a triconnected graph Gi,j

2 , that we call clause gadget,
composed of all the vertices and edges of the clause-variable gadgets Vi,j and Vj,i, plus
three edges (ai,j , aj,i), (bi,j , bj,i), and (ci,j , cj,i). Finally, set k≤ = k.

Note that, with this construction, graph G∩ is composed of a set of 2|F | cycles of
length 3, namely the two clause-variable gadgets Vi,j and Vj,i for each clause (li ← lj).

We show that ∩G1, G2, k
≤⊗ admits a solution if and only if ∩B,F, k⊗ does.

Suppose that ∩B,F, k⊗ admits a solution, that is, an assignment A of truth values for
the variables of B not satisfying at most k clauses ofF . We construct a solution ∩Γ1, Γ2⊗
of ∩G1, G2, k

≤⊗. First, we construct Γ1. Let the face composed only of the edges of C
be the outer face. For each variable xi, with i = 1, . . . , l, if xi is true in A, then the
rotation scheme of ai in Γ1 is (ai, vi), (ai, bi), (ai, di) (as in Fig. 4(a)). Otherwise, xi is
false in A, and the rotation scheme of ai is the reverse (as for aj in Fig. 4(a)). Since
Gi

1 has a unique planar embedding, the rotation scheme of all its vertices is univocally
determined. Second, we construct Γ2. Consider each clause (li ← lj) ≥ F , with li ≥
{xi, xi} and lj ≥ {xj , xj}. If li evaluates to true in A, then the embedding of Gi,j

2

is such that the rotation scheme of ai,j in Γ2 is (ai,j , bi,j), (ai,j , ci,j), (ai,j , aj,i) (as in
Fig. 4(a)). Otherwise, li is false in A and the rotation scheme of ai,j is the reverse (as
for aj,i in Fig. 4(a)). Since Gi,j

2 is triconnected, this determines the rotation scheme of
all its vertices. To obtain Γ2, compose the embeddings of all the clause gadgets in such
a way that each clause gadget lies on the outer face of all the others.

We prove that ∩Γ1, Γ2⊗ is a solution of the MAX SEFE instance, namely that at
most k≤ edges of G∩ have a different drawing in Γ1 and in Γ2. Since G∩ is composed
of 3-cycles, this corresponds to saying that at most k≤ of such 3-cycles have a differ-
ent embedding in Γ1 and in Γ2 (where the embedding of a 3-cycle is defined by the
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clockwise order of the vertices on its boundary). In fact, a 3-cycle with a different em-
bedding in Γ1 and in Γ2 can always be realized by drawing only one of its edges with
a different curve in the two drawings. By this observation and by the fact that at most
k = k≤ clauses are not satisifed by A, the following claim is sufficient to prove the
statement.

Claim 1. For each clause (li← lj) ≥ F , if (li← lj) is satisifed by A, then both Vi,j and
Vj,i have the same embedding in Γ1 and in Γ2, while if (li ← lj) is not satisifed by A,
then exactly one of them has the same embedding in Γ1 and in Γ2.

Proof sketch: Consider a clause (li ← lj) ≥ F , where li ≥ {xi, xi} and lj ≥ {xj , xj}.
First note that Vi,j has the same embedding in Γ1 and in Γ2, independently of whether
(li ← lj) is satisfied or not, by construction of Γ2 and by the fact that the flip of Vi,j in
Γ1 is the same in the two cases in which li evaluates to true in A, that are depicted
in Fig. 4(b). Hence, it remains to prove that, if (li ← lj) is satisifed by A, then also Vj,i

has the same embedding in Γ1 and in Γ2. First, with a case analysis analogous to the
one depicted in Fig. 4(b), one can observe that the flip of Vi,j and of Vj,i in Γ1 only
depend on the evaluation of li and lj , respectively, in A. Hence, since one of li and lj
evaluates to true in A and the other one to false, the flip of Vi,j and of Vj,i in Γ1 are
“opposite” to each other. Further, by the construction of the triconnected clause gadget
Gi,j

2 , 3-cycles Vi,j and Vj,i have “opposite” flips also in Γ2. Since Vi,j has the same
embedding in Γ1 and in Γ2, the statement of the claim follows. �

Suppose that ∩G1, G2, k
≤⊗ admits a solution ∩Γ1, Γ2⊗. Assume that ∩Γ1, Γ2⊗ is op-

timal, that is, there exists no solution of ∩G1, G2, k
≤⊗ with fewer edges of G∩ drawn

differently. We construct a truth assignment A that is a solution of ∩B,F, k⊗, as follows.
For each variable xi, with i = 1, . . . , l, assign true to xi if the rotation scheme of ai
in Γ1 is (ai, vi), (ai, bi), (ai, di). Otherwise, assign false to xi.

We prove that A is a solution of the MAX 2-XORSAT instance, namely that at most
k clauses of B are not satisfied by A. Since ∩Γ1, Γ2⊗ is optimal, for any 3-cycle Vi,j

of G∩, at most one edge has a different drawing in Γ1 and in Γ2. Also, for any clause
(li ← lj), at most one of Vi,j and Vj,i has an edge drawn differently in Γ1 and in Γ2, as
otherwise one could flip Gi,j

2 in Γ2 (that is, revert the rotation scheme of all its vertices)
and draw all the edges of Vi,j and Vj,i with the same curves as in Γ1. Since k = k≤, the
following claim is sufficient to prove the statement, and hence the whole theorem.

Claim 2. For each clause gadget Gi,j
2 such that Vi,j and Vj,i have the same drawing in

Γ1 and in Γ2, the corresponding clause (li ← lj) is satisfied by A.

�

5 Conclusions
In this paper we proved that the SUNFLOWER SEFE problem with k ⇒ 3 remains
NP-complete even if the intersection graph is a spanning caterpillar and two of the input
graphs are biconnected. As a corollary, we have that the PARTITIONED T-COHERENT

K-PAGE BOOK EMBEDDING problem is NP-complete with k ⇒ 3.
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We also proved the NP-completeness of the optimization version MAX SEFE of
SEFE with k = 2, in which one wants to draw as many common edges as possible with
the same curve in the drawings of the two input graphs, even under strong restrictions
on the embedding of the input graphs and on the degree of the intersection graph.

Determining the complexity of the SEFE problem and of the PARTITIONED T-
COHERENT K-PAGE BOOK EMBEDDING problem when k = 2 remain the main open
questions in this context. For k ⇒ 3, an interesting open question is the complexity of
SUNFLOWER SEFE when the intersection graph is just a star graph and k is bounded by
a constant. Note that, this problem is equivalent to the PTCKPBE when tree T is a star,
and hence to the k-page book embedding problem with fixed page assignments [16].

Acknowledgements. Daniel Neuwirth would like to thank Christopher Auer and An-
dreas Gaßner for useful discussions about the topics of this paper.
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17. Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed edges. J.
of Graph Alg. and Appl. 13(2), 205–218 (2009)

18. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press, USA (2011)
19. Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)
20. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Combi-

natorics 17(4), 717–728 (2001)
21. Schaefer, M.: Toward a theory of planarity: Hanani-tutte and planarity variants. J. of Graph

Alg. and Appl. 17(4), 367–440 (2013)



On Dilworth k Graphs
and Their Pairwise Compatibility

Tiziana Calamoneri� and Rossella Petreschi�

Department of Computer Science, “Sapienza” University of Rome, Italy
{calamo,petreschi}@di.uniroma1.it

Abstract. The Dilworth number of a graph is the size of the largest subset of its
nodes in which the close neighborhood of no node contains the neighborhood of
another one. In this paper we give a new characterization of Dilworth k graphs, for
each value of k, exactly defining their structure. Moreover, we put these graphs in
relation with pairwise compatibility graphs (PCGs), i.e. graphs on n nodes that
can be generated from an edge-weighted tree T that has n leaves, each represent-
ing a different node of the graph; two nodes are adjacent in the graph if and only if
the weighted distance in the corresponding T is between two given non-negative
real numbers, m and M. When either m or M are not used to eliminate edges
from G, the two subclasses leaf power and minimum leaf power graphs (LPGs
and mLPGs, respectively) are defined. Here we prove that graphs that are either
LPGs or mLPGs of trees obtained connecting the centers of k stars with a path
are Dilworth k graphs. We show that the opposite is true when k = 1, 2, but not
when k ≥ 3. Finally, we show that the relations we proved between Dilworth k
graphs and chains of k stars hold only for LPGs and mLPGs, but not for PCGs.

Keywords: Graphs with Dilworth number k, leaf power graphs, minimum leaf
power graphs, pairwise compatibility graphs.

1 Introduction and Preliminary Definitions

A graph G = (V, E) is said to be a difference graph [15] if there is a positive real
number T , the threshold, and for every node v there is a real weight |a(v)| < T , such that
(v,w) is an edge if and only if |a(v) − a(w)| ≥ T . Difference graphs are bipartite, so the
nodes are partitioned into two stable sets. An example of a difference graph is shown in
Figure 1.a.

A graph G = (V, E) is a threshold graph [11] if there is a positive real number S ,
the threshold, and n real weights of the same sign, |a(v)| < S , each one associated to
a single node v in V , such that (v,w) is an edge if and only if |a(v) + a(w)| ≥ S . The
nodes of a threshold graph can be always partitioned into a clique and a stable set and
it is trivial to observe that all the edges connecting the clique and the stable set induce
a difference graph. An example of a threshold graph is shown in Figure 1.b.
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Phylogenetic Problems” and “Graphs and their applications to Differential Equations and to
Phylogenetics”.
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A graph G = (V, E) is a threshold signed graph [2] if there are two positive real num-
bers S , T , the thresholds, and for every node v there is a real weight |a(v)| < min(S , T )
such that (v,w) is an edge if and only if either |a(v) + a(w)| ≥ S or |a(v) − a(w)| ≥ T .
If S = T then the threshold signed graph is simply a threshold graph [20]. A thresh-
old signed graph is constituted by two threshold graphs connected by a set of edges
inducing a difference graph. An example of a threshold signed graph is shown in Figure
1.c.

In the following, when we want to highlight function a and thresholds S and T ,
we will express a threshold and a threshold signed graph as G = (V, a, S ) and G =
(V, a, S , T ), respectively.

Fig. 1. a. A difference graph; b. A threshold graph; c. A threshold signed graph

Given a graph G = (V, E), for each node v ∈ V , we call its open neighborhood the set
N(v) = {u | (u, v) ∈ E} and its closed neighborhood the set N[v] = N(v)∪{v}. Two nodes
x and y are said to be comparable if either N(y) ⊆ N[x] or N(x) ⊆ N[y], otherwise
they are said to be incomparable. A chain is a set of pairwise comparable nodes and
the Dilworth number of G is the largest number of pairwise incomparable nodes of the
graph or, in other words, the minimum size of a partition of its nodes into chains [14].

Graphs with Dilworth number 1 and 2 have been deeply studied as they correspond to
the classes of threshold and of threshold signed graphs, respectively [20]. Graphs with
Dilworth number at most 3 have received some attention as subclasses of a class of
graphs defined by a special elimination ordering scheme [16] and graphs with Dilworth
number 4 have been shown to be a subset of perfectly orderable graphs [21]. Finally, the
authors of [1] proved that a large class of vertex subset and vertex partitioning problems
can be solved in polynomial time on Dilworth k graphs. To the best of our knowledge,
nothing else is known about Dilworth k graphs, when k ≥ 5, and, unfortunately, it does
not seem possible to define Dilworth k graphs by using thresholds and node-weights for
k ≥ 3.

In this paper, we characterize Dilworth k graphs as those graphs whose node set can
be partitioned in order to form k threshold graphs and the set of edges between each pair
of threshold graphs induces a special difference graph. Although not difficult to obtain,
this result is interesting by itself because no other characterization of Dilworth k graphs
is known. This is the content of Section 2.
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A star S i is the complete bipartite graph K1,i: a tree with one internal node c, called
center, and i leaves. We define a k-star path S i1,...,ik to be a tree that consists of k stars
S i1 , . . ., S ik whose centers induce a path (i.e. the centers of stars S ij and S ij+1 , for each
j = 1, . . . , k−1, are connected by an edge). In other words, S i1,...,ik is a caterpillar whose
the j-th node on the spine has i j leaves.

The merge of two star-paths S i1,...,ir and S j1,..., js is a star-path S k1,...,kr+s where it = kt

for each t = 1, . . . , r and jt = kr+t for each t = 1, . . . , s. In other words, S k1,...,kr+s is
obtained by connecting with an edge the center of the r-th star of S i1,...,ir with the center
of the first star of S j1,..., js .

A graph G = (V, E) is a pairwise compatibility graph (PCG) [18, 22] if there exists
a tree T , a positive edge-weight function w on T and two non-negative real numbers m
and M, m ≤ M, such that V coincides with the set of leaves of T , and the edge (u, v) is
in G if and only if m ≤ distT,w(u, v) ≤ M, where distT,w(u, v) is the sum of the weights of
the edges on the unique path from u to v in T . In such a case, we say that G is a PCG of
T for m and M; in symbols, G = PCG(T,w,m,M). When the constraints on the distance
between the pairs of leaves deal only with M or m, the definition of leaf power graphs
or minimum leaf power graphs arise, respectively. More precisely, a graph G = (V, E) is
called a leaf power graph (LPG)[3], (respectively min-leaf power graph (mLPG)[10])
if there exists a tree T , a positive edge-weight function w on T , and a non-negative real
number M (respectively m) such that V coincides with the set of leaves of T , and the
edge (u, v) is in G if and only if distT,w(u, v) ≤ M (respectively distT,w(u, v) ≥ m).

The notions of PCG and LPG have been proposed in relation to sampling problems in
phylogenetics but, since then, these classes of graphs have received great interest even
from a merely graph-theoretic point of view (e.g. see [5, 6, 10, 12, 17, 19, 22–25]).

It is still unknown an algorithm testing whether a graph is a PCG (or a LPG, or an
mLPG) or not. So researchers have concentrated on single classes of graphs, trying to
identify their relation with respect to the class of PCGs (or LPGs or mLPGs). Here
we try to improve the knowledge on PCGs, LPGs, and mLPGs studying their relations
with the class of Dilworth k graphs. It is known that Dilworth 1 graphs are obtained
as LPGs of stars [10] and Dilworth 2 graphs are obtained as LPGs of 2-star paths [8].
Here, in Section 3 we prove that a graph that is either LPG or mLPG of a k-star path
has Dilworth number at most k. Moreover we show that the opposite is true only when
k = 1, 2, providing a Dilworth 3 graph that is neither a LPG nor a mLPG.

In Section 4, we highlight that the relations we proved between Dilworth k graphs
and k-star paths hold only for LPGs and mLPGs, but not for PCGs, since the PCG of a
star can have arbitrarily high Dilworth number.

A last section, listing some open problem concludes the paper.
The reader can refer to [4] for all terminology and definitions not explicitly given in

this paper.

2 A Characterization of Dilworth k Graphs

We start this section deepening the knowledge of the structure of a Dilworth 2 graph.
Namely, we prove a new characterization for Dilworth k graphs as a partition into
threshold graphs, each pair of which is connected by an edge set that induces a dif-
ference graph with a special ordering.
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First of all, let us recall some known results from [20] on difference, threshold and
threshold signed graphs.

Lemma 1. Let u and w be either any two nodes of a threshold graph or any two nodes
in the same set of the partition of a difference graph. It holds that deg(u) ≤ deg(w) if
and only if N(u) ⊆ N[w].

Consider an edge (u, v) of a threshold signed graph G = (V, a, S , T ). It is not difficult
to see that only one of the two conditions concerning the thresholds can be satisfied.
Indeed, when a(u) and a(v) have the same sign, i.e. a(u) ·a(v) > 0 it can only be satisfied
|a(u)+a(v)| ≥ S ; in this case the edge (u, v) is called S-edge. On the contrary, when a(u)
and a(v) have different sign, i.e. a(u) ·a(v) < 0, it can only hold that |a(u)−a(v)| ≥ T and
the edge is called T-edge. In the following, we will consider the two chains,V1and V2

derived from the partition of the nodes of G into the two sets V1 = {x ∈ V s.t. a(x) < 0}
and V2 = {y ∈ V s.t. a(y) > 0}.

Next lemma formalizes some concepts already presented in the previous section:

Lemma 2. Given a Dilworth 2 graph G, its two chains V1 and V2 induce each a thresh-
old graph, G1 and G2, while the edges connecting nodes in different chains induce a
difference graph D. So the graph can be expressed as G = (G1,G2,D).

We have already underlined that the definition of threshold signed graphs and of
Dilworth 2 graphs are equivalent. In the following, we will use the terms ”threshold
signed” and ”Dilworth 2” depending on what we want to highlight in the graph (either
the weight function a and the thresholds, or the structure of two threshold graphs with
a difference graph in between).

Fig. 2. Three graphs composed by two threshold graphs unified by a difference graph. Only graph
in a. is a threshold signed graph.

The opposite of Lemma 2 is not always true, as graphs in Figure 2 show. Indeed, all
the three graphs are composed by two threshold graphs unified by a difference graph,
but only the graph in Figure 2.a has Dilworth number 2, while graphs in Figure 2.b and
2.c, have higher Dilworth numbers (this can be easily seen by constructing their chains).
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This fact suggests us that in a Dilworth 2 graph the difference graph structure must
be enriched with a special order guaranteeing that the higher/lower degree nodes in the
threshold graphs are also the higher/lower degree nodes in the difference graph.

Given a graph G constituted by two threshold graphs G1 and G2 connected by a
difference graph D, G = (G1,G2,D), let SG1 = (v1

1, . . . , v
1
|V1|), SG2 = (v2

1, . . . , v
2
|V2|) and

SD = (d1, . . . , dn) be the ordered sequences of nodes V1 and V2 with respect to their
degree within G1, G2 and D, respectively. So, deg|Gi (v

i
1) ≥ . . . ≥ deg|Gi (v

i
|Vi|), i = 1, 2,

and deg|D(v1) ≥ . . . ≥ deg|D(vn). The sequence SD can be split into two subsequences
SD1 = SD ∩ V1 = (d1

1, . . . , d
1
|V1|) and SD2 = SD ∩ V2 = (d2

1, . . . , d
2
|V1|). As an example, in

Figure 2.a the sequences are: S G1 = abcd, S G2 = e f gh, S D1 = abcd and S D2 = e f gh; in
Figure 2.b the sequences are: S G1 = abcd, S G2 = e f gh, S D1 = dcba and S D2 = hg f e;
finally, in Figure 2.c the sequences are: S G1 = dcba, S G2 = e f gh, S D1 = abcd and
S D2 = e f gh.

Observe that these orderings are not unique, as nodes with the same degree can be
put in any relative order. As a particular case, isolated nodes can be added at the end
of a sequence in any order. In the following, two sequences SGi and SD ∩ Vi are equal if
vi

k = di
k for all k = 1, . . . , |Vi|.

Lemma 3. Given a graph G, the following two claims are equivalent:

a. G has Dilworth number at most 2;
b. The nodes of G can be partitioned into two sets V1 and V2, such that Vi, i = 1, 2

induces a threshold graph Gi and the edges between V1 and V2 induce a difference
graph D; furthermore, there exist three ordered sequences SG1 , SG2 and SD such that
SGi = SD ∩ Vi, for i = 1, 2.

Proof. First observe that the claim is trivially true for Dilworth 1 graphs because V2 =

∅, so in the following we consider the case in which G has Dilworth number exactly 2.
a. ⇒ b. G is a Dilworth 2 graph, so Lemma 2 states that the nodes of G can be

partitioned into two sets V1 and V2, each one inducing a threshold graph, while the
edges in between induce a difference graph. So it remains to prove that it is possible to
find the three ordered sequences SGi , i = 1, 2 and SD such that SGi = SDi , i = 1, 2.

By contradiction, assume that it is not possible to find three sequences as required by
the theorem. W.l.o.g., let us focus on G1 and on the two sequences SG1 and SD1 = SD∩V1

related to it. Among all such possible sequences, consider those such that v1
j = d1

j for

every j < s, v1
s � d1

s and s is as large as possible (although, by hypothesis, s ≤ |V1|). Let
u = v1

s and w = d1
s .

There must exist an index r > s such that w = d1
s = v1

r . It follows that deg|G1 (u) ≥
deg|G1 (w). From the other side, since a Dilworth 2 graph is a threshold signed graph
[20], all nodes belonging to the same partition are characterized by having weight values
with the same signs and, inside it, two nodes x and y are connected by an edge if
|a(x) + a(y)| ≥ S . From these facts it follows that a(u) ≥ a(w).

Analogously, there must exist an index t > s such that u = v1
s = d1

t . Furthermore, an
edge of D connects two nodes x and y if they have weight values with different signs
and if |a(x) − a(y)| ≥ T . From these inequalities, it follows that a(w) ≥ a(u).

The two inequalities a(u) ≥ a(w) and a(w) ≥ a(u) imply a(u) = a(w) and con-
sequently deg|D(u) = deg|D(w) and hence deg|D(d1

s ) = . . . = deg|D(d1
t ). So, in the
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sequence SD1 , it is possible to swap d1
s = w with d1

t = u and now v1
s = d1

s = u; but this
contradicts that s is as large as possible.

b. ⇒ a. Consider any two nodes u and w in the same set V1. By hypothesis, each of
them occupies the same position into the two orderings SG1 and SD1 : let it be u = v1

r = d1
r

and w = v1
s = d1

s . It is not restrictive to assume r < s, that is deg|G1 (w) ≤ deg|G1 (u)
and deg|D(w) ≤ deg|D(u). Since G1 is a threshold graph, and D is a difference graph,
from Lemma 1, it follows that N|G1 (w) ⊆ N|G1 [u] and N|D(w) ⊆ N|D[u]. In view of the
general choice of u and w inside V1 and observing that N(w) = N|G1 (w) ∪ N|D(w) and
N[u] = N|G1 [u] ∪ N|D[u], it follows that V1 constitutes a unique chain. ��

Now we are ready to prove a characterization for Dilworth k graphs.

Theorem 1. Given a graph G = (V, E), the following two claims are equivalent:

a. G has Dilworth number at most k;
b. The nodes of G can be partitioned into k sets V1, . . . ,Vk, such that Vi, i = 1, . . . , k

induces a threshold graph and the edges between Vr and Vs, for any r, s = 1, . . . , k,
r < s, induce a difference graph Dr,s; furthermore, there exist k2+k

2 ordered se-
quences SGi , i = 1, . . . , k and SDr,s , for all r, s = 1, . . . k, r < s, such that SGi =

SDr,s ∩ Vi, for all r, s = 1, . . . k, r � s and i = r, s.

Proof. a. ⇒ b. If G is a graph with Dilworth number at most k, it is possible to deter-
mine its k chains in polynomial time [13]; let V1, . . . ,Vk be such chains. Consider the
graphs induced by these chains. Trivially they have Dilworth number 1 and are thresh-
old graphs. Each graph induced by any pair of two chains Vr and Vs, r, s = 1, . . . k, r < s
is a Dilworth 2 graph and, by Lemma 2, the edges connecting nodes of Vr with nodes
of Vs induce a difference graph.

In order to prove the claim about the ordered sequences, observe that Lemma 3 can
be applied to each pair of chains Vr and Vs. Since r and s vary in all possible ways, we
have that SGi = SDr,s ∩ Vi, for all r, s = 1, . . . k, r < s and i = r, s. Finally, the ordered
sequences we considered are one for each threshold graph Gi, i = 1, . . . , k and one for
each difference graph Dr,s, r, s = 1, . . . , k, r < s, that is k + k(k−1)

2 = k2+k
2 .

b.⇒ a. Consider the nodes of G as partitioned into k sets, V1, . . . ,Vk. In view of the
hypothesis, the graph induced by Vi ∪ V j, for each pair i, j = 1, . . . , k, i < j satisfies
condition b. of Lemma 3 and hence is a Dilworth 2 graph.

We claim that, even when we put together all the Dilworth 2 graphs into the whole
graph G, each set Vi, i = 1, . . . k, forms a unique chain, so deducing that G is a graph
with Dilworth number at most k. In order to prove this claim, consider two nodes u and
w of the same set Vi, u = vi

x and w = vi
y. W.l.o.g. let us assume x < y. By hypothesis, u

precedes w also in all the sequences SDi, j , for each j = 1, . . . , k, i � j. 1 For any other set
V j, Vi ∪ V j induces a Dilworth 2 graph, so it also holds that N|Vi∪V j (v

i
y) ⊆ N|Vi∪V j [v

i
x].

Since the neighborhood of a node v of set Vi can be expressed as N(v) = ∪N|Vi∪V j (v),
and the same holds for the closed neighborhood, we consequently have that:

1 For the sake of simplicity, here and in the following we are omitting to differentiate the two
cases i < j and i > j, leading to the nomenclature Di, j and Dj,i, respectively. Indeed, we use
the condition i < j only to avoid to consider the same set twice, once as Di, j and once as Dj,i.
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N(vi
y)
⋃

j=1,...,k
N|Vi∪V j (v

i
y) ⊆

⋃

j=1,...,k
N|Vi∪V j[v

i
x] = N[vi

x]

so showing that set Vi constitutes a unique chain of G and proving that G is a graph
with Dilworth number at most k. ��
Corollary 1. The class of Dilworth k graphs is self-complementary.

Proof. When passing from a Dilworth k graph to its complement, the sequences S Gi ,
i = 1, . . . , k and Dr,s, r, s = 1, . . . , k, r < s, as characterized in item b. of Theorem 1,
reverse their order. The proof of the claim is then easily derived from this property and
from the self-complementarity of threshold and difference graphs. ��

3 LPGs and mLPGs of k-star Paths Are Dilworth k Graphs

In this section we highlight the relations between Dilworth k graphs, LPGs and mLPGs
of k-star chains.

Theorem 2. Given a k-star path S i1,...,ik , i1 + . . . + ik = n, an edge-weight function w
on S i1,...,ik and a value M, the graph G = LPG(S i1,...,ik ,w,M) is a graph with Dilworth
number at most k and the set of leaves of each star induces at most one chain.

Proof. We will prove the claim by induction on k.
When k = 1, the k-star path degenerates in a single star S n. Consider two leaves of

S n, u and v, such that w(u) ≤ w(v). For any other leaf x, if distS n,w(v, x) = (w(v)+w(x)) ≤
M then distS n,w(u, x) ≤ M. It follows that N(v) ⊆ N[u]. In general, all nodes belong to
the same chain, i.e. G has Dilworth number 1.

By inductive hypothesis, assume now that LPG(S i1,...,ik−1 ,w,M) is a graph with Dil-
worth number at most k − 1, where the set of leaves of each star induces at most one
chain, and consider the k-star path S i1,...,ik obtained by merging a star S ik and the previ-
ous (k − 1)-star path. We have to prove that the addition of S ik and of the edge (ck−1, ck)
does not modify in any way the existing relations between any pair of nodes in S i1,...,ik−1

and add at most one new chain.
In other words, for each u and v in S i1,...,ik , considering w.l.o.g. w(u) ≤ w(v), we have

to prove the following assertions:

– if u and v are both in S ik then N(v) ⊆ N[u];
– if u and v are both in S i1,...,ik−1 and N|V1∪...Vk−1 (v) ⊆ N|V1∪...Vk−1 [u] then

N|V1∪...Vk (v) ⊆ N|V1∪...Vk [u];
– if u in S i1,...,ik−1 and v in S ik (or, vice-versa, v in S i1,...,ik−1 and u in S ik ) then either

N(v) ⊆ N[u] or the neighborhoods of u and v are incomparable.

Let u and v be two leaves in S ik . For any other leaf x in S ik , if distS ik ,w
(v, x) =

(w(v) + w(x)) ≤ M then distS ik ,w
(u, x) ≤ M and N(v) ⊆ N[u]. In general, all nodes

in S ik belong to the same chain. For any other node x ∈ Vı̄ (where ı̄ � ik), if x ∈ N(v)
then distS i1 ,...,ik ,w

(x, v) = w(x) + w({cı̄, cı̄+1}) + . . . + w({ck−1, ck}) + w(v) ≤ M and so
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distS i1 ,...,ik ,w
(x, u) ≤ M, that is x ∈ N[u], so confirming that u and v belong to the same

chain and that at most one new chain is introduced by the nodes in S ik .
Let u and v be two leaves in S i1,...,ik−1 . If all nodes in S ik are not adjacent to any node

in S i1,...,ik−1 , then trivially the second assertion is true. Let v belong to S ı̄ , 1 ≤ ı̄ ≤ k − 1.
Now, let us consider x ∈ Vk, s.t. x ∈ N(v). This means that distS i1 ,...,ik ,w

(x, v) = w(v) +
w({cı̄, cı̄+1})+. . .+w({ck−1, ck})+w(x) ≤ M, and hence it holds that distS i1 ,...,ik ,w

(x, u) ≤ M.
The third assertion is trivially true. We want only to point out that the incomparabil-

ity implies that the Dilworth number of LPG(S i1,...,ik ,w,M) is strictly greater than the
Dilworth number of LPG(S i1,...,ik−1 ,w,M). ��

The following theorem can be proved with considerations that are very similar to
those exploited in the previous proof. Nevertheless, we prefer to present a different
approach.

Theorem 3. Given a k-star path S i1,...,ik , i1 + . . . + ik = n, an edge-weight function w
on S i1,...,ik and a value m, the graph G = mLPG(S i1,...,ik ,w,m) is a graph with Dilworth
number at most k.

Proof. W.l.o.g., let w assume integer values (if not, it is known [7] that it is
possible to find a new edge-weight function w′ and a new value m′ such that
G = mLPG(S i1,...,ik ,w

′,m′) and w′ has integer values). Consider the graph Ḡ =

LPG(S i1,...,ik ,w,m − 1). It is easy to see that Ḡ is in fact the complement of G.
From Theorem 2, Ḡ is a graph with Dilworth number at most k because it is a

LPG of a k-star path. In view of Corollary 1, the class of Dilworth k graphs is self-
complementary, and so G is a graph with Dilworth number at most k. ��

The opposite of the previous theorems holds when k = 1, 2, in view of the following
constructions:

– Let G be a threshold graph on n nodes and let Bi, i = 1, . . . , r be the set of its nodes
having degree i. G = (V, a, S ) is a leaf power graph of a star S n, the weight of each
edge {c, vi}, w({c, vi}), is equal to j if vi ∈ B j, 1 ≤ j ≤ r and M coincides with r + 1,
i.e. G = LPG(S n,w,M). G is even a minimum leaf power graph of the same star
S n, the wight of each edge {c, vi}, w′({c, vi}) is equal to r+ 1− j if vi ∈ B j, 1 ≤ j ≤ r
and m = r + 1, i.e. G = mLPG(S n,w′,m). [10].

– A threshold signed graph G = (V, a, S , T ), V = V1 ∪ V2, is a leaf power graph of a
2-star path S |V1|,|V2| whose nodes are c, vi1 , . . . , vi|V1 | and d, ui1 , . . . , ui|V2 | . The weight
of each edge {c, vi}, w({c, vi}), is equal to −a(vi) and the weight of each edge {d, ui},
w({d, ui}), is equal to a(ui). Finally, the weight of the edge {c, d} is equal to S −T and
M coincides with S , i.e. G = LPG(S |V1|,|V2|,w, S ). It is even possible to determine
an edge-weight function w′ and a value m such that G = mLPG(S |V1|,|V2|,w′,m) [8].

Hence we have:

Corollary 2. Given an n node graph G and a k-star path, with k = 1, 2, it holds:

– G is a Dilworth 1 graph if and only if G = LPG(S n,w,M) (G = mLPG(S n,w′,m))
for some edge-weight function w (w′) on S n and some value of M (m).
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– G is a Dilworth 2 graph if and only if G = LPG(S i1,i2 ,w,M) (G =

mLPG(S i1,i2 ,w
′,m)) for some edge-weight function w (w′) on S i1,i2 and some value

of M (m).

In the following we will show that the opposite of Theorem 2 is not true for k ≥ 3,
because there exists a Dilworth 3 graph that is not LPG. Before proving the existence
of such graph, let us recall two lemmas from [12].

Lemma 4. Let G, be the cycle of four nodes a,b,c,d. G = PCG(T,w,m,M) for some
tree T , edge-weight w and non-negative real numbers m and M. Then distT,w(a, c) and
distT,w(b, d) cannot be both greater than M.

Fig. 3. The graph H

Lemma 5. Let H be the graph depicted in Figure 3, where the nodes are a,b,c,d,i, j.
H = PCG(T,w,m,M) for some tree T , edge-weight w and non-negative real num-
bers m and M. Then at least one of distT,w(a, c), distT,w(b, d), distT,w(i, d), distT,w( j, b),
distT,w(i, j) must be greater than M.

Lemma 6. Graph H has Dilworth number 3 and is neither a LPG nor a mLPG.

Proof. It is easy to see that H is a Dilworth 3 graph, indeed its three chains are {a, c},
{b, i} and {d, j} and it is not possible to merge them into only two chains.

Assume now, by contradiction that H is either a LPG or a mLPG, that is either m or
M are set in order not to exclude any edge. Lemma 4 implies that at least one of the
non-existing chords {a, c} and {b, d} must necessarily be excluded from H by using m;
from the other side, Lemma 5 ensures that at least one of the non-edges of H must be
excluded by using M. It follows that both m and M are necessary and hence H is neither
a LPG nor a mLPG. ��

4 PCGs of a Star Can Have Arbitrarily Large Dilworth Number

In the previous section we have proved that LPGs and mLPGs of k-star paths are Dil-
worth k graphs. We wonder whether PCGs of k-star paths are Dilworth k graphs, too.
The answer is negative, indeed even the PCG of a single star can have arbitrarily high
Dilworth number, as proved in the following theorem.
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Theorem 4. There exists an edge-weight function w of an n leaf star, and two non-
negative numbers m and M such that the n node graph G = PCG(S n,w,m,M) has
Dilworth number at least n/3.

Proof. Consider an n leaf star where, for the sake of simplicity, n is a multiple of 3, and
partition its leaves into three equally sized sets: K = {k1, . . . , kn/3}, S 1 = {s1, . . . , sn/3}
and S 2 = {t1, . . . , tn/3}. Define the edge-weight function w as follows: w({c, si}) = i,
w({c, ki}) = n/3 + i, and w({c, ti}) = 2n/3 + i, for each i = 1, . . .n/3. Let m = 2n/3 + 1
and M = 4n/3 + 1.

In agreement with [9], where PCGs of stars are studied, K induces a clique while S 1

and S 2 induce a stable set; these sets are pairwise connected by difference graphs.
In order to prove our claim, we focus on the two difference graphs between K and

S 1 and between K and S 2. For any two nodes in K, ki and k j, with i < j, it holds:

N|K∪S 1 (ki) ⊆ N|K∪S 1 [k j]
N|K∪S 2 (k j) ⊆ N|K∪S 2 [ki].

Fig. 4. a. An edge-weighted star S 24 where w is defined according to the proof of Theorem 4; b.
The resulting PCG when m = 17 and M = 33, having Dilworth number at least 8. For the sake of
clarity, the edges between nodes in K and between S 1 and S 2 have been omitted.

It is easy to see that both the set inclusions are in fact strict, i.e there exist two nodes
sp ∈ S 1 and tq ∈ S 2 such that sp ∈ N|K∪S 1 (k j) \ N|K∪S 1 (ki) while tq ∈ N|K∪S 2 (ki) \
N|K∪S 2 (k j). For example, choose p = n/3 − i and q = n − j + 2. It holds that N(ki) =
N|K∪S 1 (ki) ∪ N|K∪S 2 (ki) and N(k j) = N|K∪S 1 (k j) ∪ N|K∪S 2 (k j), hence sp ∈ N(k j) but
sp � N(ki), while tq ∈ N(ki) but tq � N(k j); it follows that ki and k j do not belong to the
same chain.

In general, each node of K is in a different chain, so that the Dilworth number of G
is at least |K| = n/3.
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In Figure 4.a a graph with n = 24 nodes and Dilworth number at least n/3 = 8 is
depicted. Figure 4.b represents the star that witnesses that G is PCG. ��

5 Open Problems

From the results of this paper, many questions naturally arise. We list here some of
them, sure that this is not an exhaustive list.

In this paper, we preliminary provide a characterization of Dilworth k graphs, a result
that is interesting by itself because no other characterization is known in the literature
for this class of graphs. It deserves to be investigated whether this characterization is
useful to provide a fast recognition algorithm for Dilworth k graphs.

Then, we exploit this characterization to prove that graphs that are either LPGs or
mLPGs of k-star paths are Dilworth k graphs, but the opposite is not true, unless k = 1
or k = 2, indeed we provide a simple counterexample (a graph with Dilworth number
3 that is neither a LPG nor a mLPG). It is natural to wonder if graphs having Dilworth
number equal to 3 are Pairwise Compatibility Graphs ore not. In fact, it would be of
interest to understand which is the smallest Dilworth number of a graph that is not
PCG. It is neither clear whether there exists a Dilworth 3 graph that is a LPG but not a
LPG of a 3-star path.

Finally, we show that the relation we highlighted between Dilworth k graphs and
k-star paths hold only for LPGs and mLPGS, but not for PCGs; indeed the PCG of a
star can have arbitrarily high Dilworth number. We wonder if the Dilworth number of
an arbitrary LPG is unbounded or not.
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Abstract. We give efficient algorithms for Sorting k-Sets in Bins. The
Sorting k-Sets in Bins problem can be described as follows: We are given
numbered n bins with k balls in each bin. Balls in the i-th bin are
numbered n − i + 1. We can only swap balls between adjacent bins.
How many swaps are needed to move all balls to the same numbered
bins. For this problem, we design an efficient greedy algorithm with
k+1
4

n2 + O(kn) swaps. As k and n increase, this approaches the lower

bound of ∗(kn
2

)
/(2k−1)←. In addition, we design a more efficient recursive

algorithm using 15
16
n2 +O(n) swaps for the k = 3 case.

Keywords: Greedy, Mathematical puzzle, Recursion, Sorting, Swap.

1 Introduction

The Sorting problem is a classical fundamental problem in theoretical computer
science. Various kinds of sorting problems have been studied [5–7]. One of the
most basic sorting problems is the Swap-Sort problem : Given an list with n
integer numbers in non-increasing order, if we are only allowed to swap two ad-
jacent rows, how many swaps do we need to sort them in non-decreasing order?
It is well-known fact that

(
n
2

)
swaps are necessary and sufficient. In this paper,

we consider a natural extension of this problem. Peter Winkler [14] introduced
“Sorting Pairs in Bins” and Ito, Teruyama and Yoshida [12] extended it to more
general problem “Sorting k-Sets in Bins”.

Sorting k-Sets in Bins: We are given n numbered bins each with k numbered
balls, such that bin i is adjacent to bins i− 1 and i+1, bin n is not adjacent to
bin 1, and the balls in bin i are each numbered n+1− i. We may swap any two
balls between adjacent bins. How many swaps are necessary to get every ball
into the bin carrying its number?

For k = 2, Winkler [14] showed a lower bound ≥
(
2n
2

)
/3⇒ = ≥n(2n−1)

3 ⇒ and
asked whether this lower bound is optimal or not. It is easy to see n2 swaps is

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 225–236, 2014.
c∩ Springer International Publishing Switzerland 2014
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sufficient by using bubble sort twice. West [15] proposed an algorithm with 4
5n

2

swaps. Ito, Teruyama and Yoshida [12] gave an affirmative answer to Winkler’s
question by designing an almost optimal algorithm with 2

3n
2 −O(n) swaps, and

Püttman [13] independently showed a similar result. Ito, Teruyama and Yoshida
also stated (without proof) a lower bound for any k and proposed the question of
whether there exists an algorithm satisfying the lower bound when k ∪ 3. When
k = 3, by using bubble sort three times, we can easily get an algorithm with
at most 3

2n
2 swaps. Moreover, by combining bubble sort with the algorithm in

[12], the number of swaps decreases to 7
6n

2. However, the lower bound is 9
10n

2.
There still remains a large gap between the upper bound and the lower bound
even when k = 3. Therefore, a natural problem is to design a more efficient
algorithm for k = 3. In this paper, we give two efficient algorithms, one greedy,
one recursive, for this problem when k = 3 and show that our greedy algorithm
is applicable to the problem for any k and its performance approaches to the
lower bound as k and n increase.

1.1 Our Contribution

We show two algorithms for Sorting 3-Sets in Bins, one of which can be applied
to Sorting k-Sets in Bins. We call the algorithmsGreedy(n, k) and Recursive(n).
For the Sorting 3-Sets in Bins problem, the number of swaps is n2 + O(n) for
Greedy(n, 3) and 15

16n
2 + O(n)(= 0.9375n2 + O(n)) for Recursive(n). These

values are close to the 9
10n

2(= 0.9n2) lower bound shown in [12]. For Sorting

k-Sets in Bins problem, Greedy(n, k) achieves k+1
4 n2+O(kn) swaps. This result

asymptotically approaches to the lower bound (1− k−1
2k2+k−1 )

k+1
4 n2 +O(n) as k

and n increase. Formally, we prove the following two theorems.

Theorem 1. There exists a greedy algorithm Greedy(n, k) which solves Sorting
k-Sets in Bins with k+1

4 n2 +O(kn) swaps.

Theorem 2. There exists a recursive algorithm Recursive(n) which solves Sort-
ing 3-Sets in Bins with 15

16n
2 +O(n) swaps.

1.2 Related Work

There are very few results to our problem. However, many other kinds of sorting
problems have been well studied. For example, Partial Quicksort is the problem
that given a list with integer, how many comparison do we need to sort the
first l-th smallest elements in the list? It was introduced by [11] and shown a
tight upper bound in [2]. Another example is the sorting problem for partially
ordered sets, in which some pairs of elements are incomparable. Faigle and Tuŕan
introduced this problem [8] and very recently [4] made substantial advances. For
other sorting problems, e.g. [1, 3, 5–7, 9, 10].

1.3 Paper Organization

In section 2, we give a proof of the lower bound of Sorting k-Sets in Bins and
some notation needed for the description of our algorithms. In section 3, we
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present the algorithm Greedy(n, k) and provide an analysis of its performance.
In section 4, we present a more efficient algorithm Recursive(n) and analyze its
performance.

2 Preliminaries

2.1 Lower Bound

In this section, we give a precise proof of the lower bound for any k [12]. Our
proof is based on the point system used by Winkler [14]. An algorithm starts
with 0 points. With each swap, it gets some number of points corresponding to
the change in the states of the bins. We can easily calculate the total points
t needed to complete the sorting and the maximum points m obtained by any
one swap in the algorithm. Thus, we get the lower bound t/m. We prove the
following theorem:

Theorem 3. To solve Sorting k-Sets in Bins, we need at least
⌈(

kn
2

)
/(2k − 1)

⌉

swaps if n is even, and
⌈((

kn
2

)
−
(
k−1
2

))
/(2k − 1)

⌉
swaps if n is odd.

Proof. We first construct our point system. Given two balls numbered x and y,
x →= y, (without loss of generality x > y), we will refer to these balls as “ball x”,
“ball y” respectively.

Passing (1 point) : Ball x passes ball y from left to right. In other words, we
swap balls x and y.

Catching up (1/2 point) : Before the swap, ball x and y are in different bins.
After the swap, they are in the same bin. (See Fig. 1.)

Moving on (1/2 point) : Let u > v. Before the swap, balls x and y are in
the same bin. After swap, ball x is in the u-th bin and ball y is in the v-th
bin. (See Fig. 2.)

x
y

x

u v
y

x
y

u v

Fig. 1. Catching up

y y
x

u v
y

x x

u v

Fig. 2. Moving on

It is easy to see that for any x and y, a set of “catching up” and “moving on”
operations is the same as a “passing” operation.

Next, we consider the case where x = y. Because we refer to two different
balls, we will continue to refer to “ball x” and “ball y”.
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Separate (1/2 point) : Before the swap, balls x and y are in the same bin.
After the swap, they are in different bins.

Recombine (1/2 point) : Before the swap, balls x and y are in different bins.
After the swap, they are in the same bin.

Now, we calculate the total points needed to complete sorting. We first assume
the initial state is in reverse order. If balls x and y have different numbers and
x > y, clearly ball x must pass ball y. Thus, for any pair of different numbered
balls, either a passing operation or a set of moving on and catching up operations
must occur at least once. If balls x and y have the same number, then balls x
and y must separate at some swap and recombine at some other swap. In each
case, a 1 point charge is incurred. Thus, to complete sorting, we need at least(
kn
2

)
points. Note that if n is odd, k − 1 balls labeled ≥n/2⇒ may not move, so

the point total is
(
k−1
2

)
less than the case when n is even. Therefore, we charge

at least
(
kn
2

)
points if n is even, and

(
kn
2

)
−
(
k−1
2

)
points if n is odd.

Let us consider how many points can be obtained in one swap. Suppose that
ball x is in the v-th bin and ball y is in the u-th bin, where u > v. The maxi-
mum amount of points that we can get by swapping x and y is 1 (by passing).
Therefore, it suffices to consider the case of x > y. In this case, we focus on
the other balls in the v-th bin and u-th bin. Let ball zi, i ∃ {1, . . . k − 1}, be a
non-y ball in the u-th bin. If each ball zi satisfies zi ∩ x, for each zi we can get 1

2
point by catching up or recombine. In addition, we consider the relation between
ball y and ball z, for each zi satisfying y ∩ z we obtain 1

2 point by applying
moving on or separate operations between ball y and ball zi. The algorithm gets
at most 2 · 1

2 (k − 1) points by these arguments. By a similar argument on the
balls in the v-th bin, it is possible to get at most 2 · 1

2 (k − 1) points. Thus, the
maximum total point we can get is 1 + 4 · 1

2 (k − 1) = 2k − 1. Let T (n) be the

number of swaps necessary to complete sorting. T (n) ∪ ≥
(
kn
2

)
/(2k − 1)⇒ if n is

even, T (n) ∪ ≥(
(
kn
2

)
−
(
k−1
2

)
)/(2k − 1)⇒ if n is odd. ⊗≈

2.2 Notations and Definitions Used in Our Algorithms

In this section, we provide some notations and definitions used to explain our
algorithms. To be distinguishable and comparable, we assign all same-numbered
balls an index from 1 to k. Let xi be the ball labeled x and indexed i. We define
the total order of balls as xi < yj if x < y or if x = y and i < j. We represent
the state of balls and bins as in Fig 3. The numbers in the bottom row are the
labels of bins and the other numbers correspond to balls.

The initial state of the n bins is the state where the i-th bin has k balls labeled
n+ 1− i. (See Fig. 3.) The target state of the n bins is the state where the i-th
bin has k balls labeled i. (See Fig. 4.) The solution for n bins begins with an
initial state and ends with a target state for n bins.

If we move a ball xi to the u-th bin, we swap xi for the lowest-labeled ball in
the bin to xi’s right until xi arrives at the u-th bin. We know the following fact
directly from the properties of “move”.
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n1 n− 11 21 11
n2 n− 12 · · · 22 12
n3 n− 13 23 13
1 2 · · · n− 1 n

Fig. 3. Initial state of n bin as k = 3

11 21 n− 11 n1

12 22 · · · n− 12 n2

13 23 n− 13 n3

1 2 · · · n− 1 n

Fig. 4. Target state of n bin as k = 3

Fact 1. Suppose that the ball xi is in the u-th bin and the ball yj is in the v-th
bin with v < u. If the ball xi shifts to the (u − 1)-th bin by moving the ball yj
to the w-th bin (where w ∪ u), then the ball xi must have the minimum label in
the u-th bin.

3 Greedy Algorithm

3.1 Algorithm

Fig. 5 introduces a greedy algorithm Greedy(n, k) which solves Sorting k-Sets
in Bins with n bins for any n, k.

Greedy(n, k), n, k: integer
1: for x = n to 2
2: for i = k to 1
3: Move the ball xi to the x-th bin
4: end for
5: end for

Fig. 5. Greedy Algorithm

Lemma 1. The algorithm Greedy(n, k) solves Sorting k-Sets in Bins with n
bins.

Proof. Let us consider a ball ni(i ∃ [k]). At first, we see that the n-th bin contains
all balls labeled ni at the end of the loop on line 1 in this algorithm when x = n.
All balls labeled ni go to the n-th bin on lines 2–4. If a ball nj (j ∃ [k]) leaves
from the the n-th bin, it must be the minimum number in the n-th bin by Fact
1. This situation occurs only when the n-th bin has k balls labeled ni and j is
1. This means the loop on line 1 with x = n is over. Thus, the n-th bin must
contain all balls ni and the other balls are in the other bins at the end of the
loop on line 1 with x = n. Next, let us consider the loop on line 1 with x = n−1.
By substituting n with n − 1 and using the fact that this algorithm does not
swap the balls in the (n−1)-th bin with the n-th bin, we get a similar result. By
repeating this argument, we conclude that Greedy(n, k) correctly solves Sorting
k-Sets in Bins with n bins. ⊗≈



230 A. Nagao, K. Seto, and J. Teruyama

3.2 Number of Swaps

In this section, we estimate the number of swaps used by Greedy(n, k) to solve
Sorting k-Sets in Bins with n bins.

Lemma 2. The number of swaps performed by the algorithm Greedy(n, k) is at
most k+1

4 n2 +O(kn).

Proof. To prove Lemma 2, we prove the following lemma.

Lemma 3. For any x and any i, where 1 ∩ x ∩ n and 2 ∩ i ∩ k, if a ball xi

shifts left from its initial (n − x + 1)-th bin, then xi has the minimum label of
all balls in any bin from (n− x+ 1) to n.

Proof. Let us consider the case where a ball xi shifts left from its initial (n−x+1)-
th bin. From Fact 1, the ball xi is the minimum-labeled ball in the (n−x+1)-th
bin. Because i ∪ 2, the (n− x+ 1)-th bin must have a ball yj , where y > x and
j ∃ [k]. Initially, that ball yj started in the (n − y + 1)-th bin, which is further
left than the (n− x+ 1)-th bin. In each iteration of the loop on line 1, no balls
shift right except when they go to their target bin. So, if the above situation
happen, y must be (n− x+ 1) and loop iterations from n to y + 1 on line 1 are
over. By the proof of Lemma 1, for all u > n− x + 1, the u-th bin contains all
balls ul (l ∃ [k]). Thus, the proof is completed. ⊗≈

First, we count the total number of swaps needed for a ball labeled in [∧n/2∞+
1, n] to go to its target bin.

From Lemma 3, for ∧n/2∞ + 1 ∩ x ∩ n and 2 ∩ i ∩ k, a ball xi does not
shift left until it moves to the x-th bin. This means that these xi balls are in the
(n−x+1)-th bin. The number of swaps needed for a ball xi to move to the x-th
bin is 2x− n− 1. In addition, the number of swaps needed for a ball x1 moves
to x-th bin is trivially at most x− 1.

Thus, the total number of swaps needed for all balls xi (x ∃ {∧n/2∞ +
1, . . . , n}, i ∃ [k]) to move to their target bins is at most

n∑

x=≤n/2∈+1

{x− 1 + (k − 1)× (2x− n− 1)} =
2k + 1

8
n2 +O(kn). (1)

Next, we count the total number of swaps required to move the remaining
balls to their target bins. To analyse this, we need some lemmas. From Fact 1
and Lemma 3, we have Lemma 4 as follows.

Lemma 4. For x, 1 ∩ x ∩ ∧n/2∞ and i ∃ {2, . . . , k}, suppose that a ball xi has
shifted left at least once and is currently in the l-th bin, where l < n − x + 1.
Then, all balls in the u-th bin have greater labels than xi for all u > l.

Lemma 5. For x, 1 ∩ x ∩ ∧n/2∞ and i ∃ {2, . . . , k}, a ball xi does not shift left
from the x-th bin.

Proof. Assume that a ball xi shifts left from the x-th bin. From Fact 1, this ball
xi must have the minimum label in the x-th bin. Moreover, from Lemma 4, all
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balls in the u-th bin are greater than xi for all u > x. This means that the number
of balls which are greater than xi is at least (n−x+1)k−1. However, the number
of balls which have greater labels than xi is (n− x)k + k− i = (n− x+ 1)k− i.
It leads to a contradiction, because i ∪ 2. ⊗≈

Now we have all the tools required to count the total swaps to move the
remaining balls to their target bins. From the proofs of Lemmas 1 and 5, for
y ∩ ∧n/2∞, k − 1 balls yi (i ∃ {2, . . . , k}) are in the y-th bin after the iteration
of loop on line 1 with x = y. Thus we only need to move the ball y1 to complete
the loop iteration on line 1 with x = y. That is, the number of swaps we need to
move ball y1 is trivially at most y − 1. Therefore, in total, the number of swaps
required for the loop on line 1 with y = ∧n/2∞ to 2 is at most

≤n/2∈∑

y=2

(y − 1) =
1

8
n2 +O(n). (2)

From equations 1 and 2, in total, the number of swaps Greedy(n, k) needs is
at most

2k + 1

8
n2 +O(kn) +

1

8
n2 +O(n) =

k + 1

4
n2 +O(kn). (3)

Thus the Lemma 2 is proved. ⊗≈

Proof of Theorem 1. Directly follows from Lemmas 1, 2. ⊗≈

4 Recursive Algorithm

4.1 Outline of Our Algorithm

In this section, we present a recursive algorithm which is more efficient for the
case k = 3. Before describing the details of our recursive algorithm, we outline
it using the case where n is a multiple of 6 as an example.

First, we move the ball n3 from the 1st bin to the n-th bin by using n − 1
swaps. Next, we move the ball n2 from the 1st bin to the n-th bin by using n−1
swaps, and the state becomes as in Fig. 6. Then, we move the ball n− 13 from
the 2nd bin to the (n − 1)-th bin using n − 3 swaps, and move the ball n − 12
from the 2nd bin to the (n− 1)-th bin using n− 3 swaps. Now, the state is as in
Fig. 7. For x = n to n/2 + 1, we similarly move the ball labeled x3 to the x-th
bin, and then move the ball labeled x2 to the x-th bin. Now, the resulting state
is as in Fig. 8.

Here, for the first n/3 bins (i.e. from the 1st bin to the (n/3)-th bin), we
relabel the ball x1 to ≥x/3⇒ where x ∃ [n]. Using this state as the initial state
of the n/3 bins problem, we can recurse. After the recursive call, returning the
labels of the balls in the first n/3 bins to their original labels yields a state where
the 1st bin contains balls 11, 21 and 31, the 2nd bin contains balls 41, 51 and 61,
and so on. (See Fig. 9.)

Finally, for x = n to 2, we move ball x1 to the x-th bin as follows. First,
when we move the ball n1 from the (n/3)-th bin to the n-th bin, each ball
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n− 21 n− 31 n− 41 11 12 13
n− 11 n− 12 n− 22 · · · 32 22 n2

n1 n− 13 n− 23 33 23 n3

1 2 3 · · · n− 2 n− 1 n

Fig. 6. After moving balls n3 and n2 to
the n-th bin

n− 21 n− 51 n− 61 22 23 13
n− 11 n− 41 n− 22 · · · 32 n− 12 n2

n1 n− 31 n− 23 33 n− 13 n3

1 2 3 · · · n− 2 n− 1 n

Fig. 7. After moving balls n− 13 and
n− 12 to the (n− 1)-th bin

n− 21 11 12 42 n/2− 22 n/23 23 13
n− 11 · · · 21 22 52 · · · n/2− 12 n/2 + 12 · · · n− 12 n2

n1 31 33 62 n/22 n/2 + 13 n− 13 n3

1 · · · n/3 n/3 + 1 n/3 + 2 · · · n/2 n/2 + 1 · · · n− 1 n

Fig. 8. After moving all balls x3 and x2 to x-th bin for x = n to n/2 + 1

12, 42, 72, . . . n/2 − 22 and n/23, n/2 − 13, . . . , 13 is shifted left. (See Fig. 10.)
Next, when moving the ball n− 11 from the (n/3)-th bin to the (n− 1)-th bin,
each ball 22, 52, 82, . . . , n/2−12 and n/2−13, . . . , 13 is shifted left. (See Fig. 11.)
Similarly, we move balls n− 21, n− 31, . . . , 21 to their target bins respectively in
this order, the sorting completing.

For n which are not multiples of 6, the same strategy can be applied. The
details are shown in the next subsection.

4.2 Algorithm

We present a recursive algorithm Recursive(n). (See Fig 12.) This algorithm
solves for n bins with k = 3.

Now, we prove the correctness of our algorithm.

Lemma 6. The algorithm Recursive(n) solves for n bins.

Proof. We divide the algorithm into three steps as follows: Step 1 is lines 1–4,
Step 2 is lines 5–11 and Step 3 is lines 12–14, respectively. We will show which
bins have which balls after each step.

[Step 1] We will consider three cases, where each case is with respect to the
index of the balls (e.g. x1, x2, x3).

11 41 n− 21 12 n/2− 22 n/23 23 13
21 51 · · · n− 11 22 · · · n/2− 12 n/2 + 12 · · · n− 12 n2

31 61 n1 33 n/22 n/2 + 13 n− 13 n3

1 2 · · · n/3 n/3 + 1 · · · n/2 n/2 + 1 · · · n− 1 n

Fig. 9. The state after sorting for a recursive structure
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11 12 22 n/2 − 12 n/2− 13 13 n1

21 · · · n− 21 32 · · · n/22 n/2 + 12 · · · n− 12 n2

31 n− 11 43 n/23 n/2 + 13 n− 13 n3

1 · · · n/3 n/3 + 1 · · · n/2 n/2 + 1 · · · n− 1 n

Fig. 10. After moving the ball n1 to the n-th bin

11 12 32 n/2 − 13 n/2− 23 n− 11 n1

21 · · · 22 42 · · · n/22 n/2 + 12 · · · n− 12 n2

31 n− 21 52 n/23 n/2 + 13 n− 13 n3

1 · · · n/3 n/3 + 1 · · · n/2 n/2 + 1 · · · n− 1 n

Fig. 11. After moving the ball n− 11 to the (n− 1) -th bin

A. Let x1 be an arbitrary ball with index 1 and x ∃ [n]. Let m be the number of
times the ball x1 moves left. Note that the ball x1 is initially in the (n−x+1)-
th bin. We consider what happens when we move balls n−y+13 or n−y+12
from the y-th bin to the (n−y+1)-th bin for each y. If the ball x1 is located
in the u-th bin, where u > y, then x1 shifts left once during this movement.
After iterating 2 · ∧n/2∞ times, the ball x1 goes to the (n − x + 1 − m)-th
bin, where m is the largest integer which satisfies ≥m/2⇒ < n − x + 2 −m.
That is,

m = max{0 ∩ i ∩ n− 1 | i+ ≥i/2⇒ < n− x+ 2}.

We set r and q such that n− x+ 2 = 3r+ q, q ∃ {0, 1, 2}. Then, m is 2r− 1
if q = 0 and 2r if q = 1, 2. After Step 1, the ball x1 is in the bin numbered

n− x+ 1−m = 3r + q − 1−m =

{
r (q = 0, 1)

r + 1 (q = 2)
.

As x = n − 3r − q + 2, the r-th bin contains the three balls n − 3r + 11,
n− 3r + 21, and n− 3r + 31 after Step 1, where x ∃ [n], 1 ∩ r ∩ ≥n/3⇒.

B. Let x2 be an arbitrary ball with the index 2 and x ∃ {1, . . . , ≥n/2⇒}. By
analysis similar to the proof of Lemma 3, one can see the following fact.

Fact 2. The ball x2 does not shift before the ball n − x + 12 moves to the
(n− x+ 1)-th bin in Step 1.

We consider what happens to x2 when we move balls n−y+12 or n−y+13
from the y-th bin to the (n−y+1)-th bin, where n−y+1 ∩ n−x+1. If the ball
x2 is in the u-th bin, where u > y, x2 shifts left during this movement. By a
similar argument to case A, the ball x2 goes to the (n+x−m)-th bin, wherem
is the maximum integer which satisfies ≥m/2⇒ < (n−x+1)−(m−1−2x+1);
that is,

m = max{0 ∩ i ∩ n− 1 | i+ ≥i/2⇒ < n+ x+ 1}.
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Recursive(n), n: integer
1: for x = n to ∗n/2← + 1
2: Move the ball x3 to the x-th bin
3: Move the ball x2 to the x-th bin
4: end for
5: for x = 1 to n
6: Relabel the ball x1 (in the 1st bin to ∗n/3←-th bin) to ∗x/3←
7: end for
8: If the ∗n/3←-th bin has any ball y2 or y3 (y ∞ [n])
9: then Relabel this ball with ∗n/3←
10: Solve for the first ∗n/3← bins by applying Recursive(∗n/3←)
(By lines 5–9, all balls in the first ∗n/3← bins are numbered at most ∗n/3←. Therefore
the first ∗n/3← bins are reduced to an instance of Sorting 3-Sets in Bins with ∗n/3←
bins.)
11: relabel all balls in the first ∗n/3← bins with their original numbers
12: for x = n to 2
13: Move the ball x1 to the x-th bin
14: end for

Fig. 12. Recursive Algorithm

We set n+ x+ 1 = 3r + q, q ∃ {0, 1, 2}. By calculation, m is 2r − 1 if q = 0
and 2r if q = 1, 2. Thus, after Step 1, the ball x2 is in bin

n+ x−m = 3r + q − 1−m =

{
r (q = 0, 1)

r + 1 (q = 2)
.

As x = 3r + q − n − 1, the r-th bin contains the three balls 3r − n − 22,
3r − n− 12, and 3r − n2 after Step 1, where ≥(n+ 1)/3⇒ ∩ r ∩ ≥n/2⇒.

C. Any ball x3 (x = 1, . . . , ≥n/2⇒) does not shift.

[Step 2] Applying the recursive algorithm, balls x1 (x = 1, . . . , n) are sorted in
the first ≥n/3⇒ bins. Each ball x1 is in the ≥x/3⇒-th bin.

[Step 3] Let us observe the state after moving the ball n1 to the n-th bin. Note
that the ball n1 is in the ≥n/3⇒-th bin after Step 2.

Balls of the form x1 (x = 1, . . . , n− 1) do not shift, since their bin numbers
are less than or equal to ≥n/3⇒.

Balls of the form x2(x = 1, . . . , ≥n/2⇒) are each in some bin between ≥(n+1)/3⇒
and ≥n/2⇒ after Step 2. From the analysis of Step 1 for x2, the r-th bin has three
balls 3r − n − 22, 3r − n − 12, and 3r − n2. As the ball 3r − n − 22 shifts left
once while the ball n1 moves to the right, the r-th bin will have the three balls
3r − n− 12, 3r − n2, and 3r − n+ 12 after completing this movement.

Before moving ball n1, each ball of the form x3 (x = 1, . . . , ∧n/2∞) is in the
(n− x)-th bin, which is not its target bin. These balls each shift left once as the
ball n1 moves to the n-th bin. That is, every ball x3 (x = 1, . . . , ∧n/2∞) shifts to
the (n− x− 1)-th bin.
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From the above arguments, the state of the first n− 1 bins after moving the
ball n1 to the n-th bin is the same as the state after Step 2 when we apply
Recursive(n−1) to Sorting 3-Sets in Bins with n−1 bins. After the second-last
execution of the Step 3 loop (when x = 3), the state of the first two bins is the
same as the state after Step 2 in the solution of Sorting 3-Sets in Bins with two
bins. In other words, the state is as follows:

11 13
12 22
21 23
1 2

We can complete the sorting by moving 21 to the second bin. ⊗≈

4.3 Number of Swaps

We count the number of swaps for Recursive(n).

Lemma 7. The number of swaps performed by Recursive(n) is less than 15
16n

2+
12n.

Proof. We will use induction. Let S(n) be the number of swaps performed by
Recursive(n). When n = 2, S(2) = 3 < 15

162
2 + 24.

Suppose that S(l) < 15
16 l

2 + 12l holds for any l < n. We count the number of
swaps performed by Recursive(n), where n ∪ 3.

In Step 1, we need 2i − n − 1 swaps to move each ball i3 and i2 to the i-th
bin, so the total number of swaps in Step 1 is at most

∗n/2�+1∑

i=n

(2i− n− 1)× 2 = 2 · ≥n/2⇒ · (n− ≥n/2⇒) ∩ 1

2
n2.

Step 2 needs S (≥n/3⇒) < 15
16 (≥n/3⇒)

2
+ 12≥n/3⇒ swaps.

It remains to count the number of swaps in Step 3. We consider the state of
each bin. The r-th bin (r ∃ {1, . . . , ≥n/3⇒}) has three balls each labeled 3r−3+j1
(j ∃ {1, 2, 3}.) The total number of swaps needed for these three balls to move
to the target bin is at most

3∑

j=1

(3r − 3 + j − r) = 6r − 3.

Therefore, Step 3 needs at most

∗n/3�∑

r=1

6r − 3 = 3(≥n/3⇒)2

swaps. Thus,

S(n) <
1

2
n2 +

15

16
(≥n/3⇒)2 + 12≥n/3⇒+ 3(≥n/3⇒)2

<
15

16
n2 + 12n, (∵ ≥n/3⇒ < n/3 + 1 and n ∪ 3)

as required. ⊗≈
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Proof of Theorem 2. Directly follows from Lemmas 6 and 7. ⊗≈
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Abstract. We first present polynomial algorithms to compute maxi-
mum independent sets in the categorical products of two cographs or two
splitgraphs, respectively. Then we prove that computing the independent
set of the categorical product of a planar graph of maximal degree three
and K4 is NP-complete. The ultimate categorical independence ratio
of a graph G is defined as limk→∞ α(Gk)/nk. The ultimate categorical
independence ratio can be computed in polynomial time for cographs,
permutation graphs, interval graphs, graphs of bounded treewidth and
splitgraphs. Also, we present an O∗(3n/3) exact, exponential algorithm
for the ultimate categorical independence ratio of general graphs. We
further present a PTAS for the ultimate categorical independence ratio
of planar graphs. Lastly, we show that the ultimate categorical indepen-
dent domination ratio for complete multipartite graphs is zero, except
when the graph is complete bipartite with color classes of equal size (in
which case it is 1/2).

1 Introduction

Let G and H be two graphs. The categorical product also travels under the
guise of tensor product, or direct product, or Kronecker product, and even more
names have been given to it. It is defined as follows. It is a graph, denoted by
G×H . Its vertices are the ordered pairs (g, h) where g ≥ V (G) and h ≥ V (H).
Two of its vertices, say (g1, h1) and (g2, h2) are adjacent if {g1, g2} ≥ E(G)
and {h1, h2} ≥ E(H). One of the reasons for its popularity is Hedetniemi’s
conjecture, which is now more than 40 years old [10].
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Conjecture 1 ([10]). For any two graphs G and H

Hedetniemi’s conjecture: Π(G×H) = min { Π(G), Π(H) },

where Π(I) denotes the chromatic number of a graph I. It is easy to see that the
right-hand side is an upperbound. Namely, if f is a vertex coloring of G then
one can color G ×H by defining a coloring f ≤ as follows f ≤((g, h)) = f(g), for
all g ≥ V (G) and h ≥ V (H). Recently, Zhu showed that the fractional version of
Hedetniemi’s conjecture is true [25].

When restricted to perfect graphs, say G and H , Hedetniemi’s conjecture is
true. Namely, let K be a clique of cardinality at most |K| ⇒ min{σ(G), σ(H)},
where σ(A) denotes the clique number of a graph A. It is easy to check that
G × H has a clique of cardinality |K|. One obtains an ‘elegant’ proof via ho-
momorphisms as follows. By assumption, there exist homomorphisms K ∪ G
and K ∪ H . This implies that there is also a homomorphism K ∪ G×H (see,
eg, [9,11]). (Actually, if W , P and Q are any graphs, then there exist homo-
morphisms W ∪ P and W ∪ Q if and only if there exists a homomorphism
W ∪ P×Q.) In other words [9, Observation 5.1], σ(G×H) → min{σ(G), σ(H)}.
Since G and H are perfect, σ(G) = Π(G) and σ(H) = Π(H). This proves the
claim, since Π(G ×H) → σ(G ×H) → min{σ(G), σ(H)} = min{Π(G), Π(H)} →
Π(G×H).

Since much less is known about the independence number φ(G × H) of the
categorical products of two graphs G and H , we are motivated to study this
problem. It is easy to see that

φ(G×H) → max { φ(G) · |V (H)|, φ(H) · |V (G)| }. (1)

But this lowerbound can be arbitrarily bad, even for threshold graphs [13]. For
any graph G and any natural number k there exists a threshold graph H such
that φ(G ×H) → k + L(G,H), where L(G,H) is the lowerbound shown in (1).
Zhang recently proved that, when G and H are vertex transitive then equality
holds in (1) [24]. We consider the computation of the independence number of
the categorical product G×H for cographs, splitgraphs, or other graph classes,
respectively. The formal definitions of cographs and splitgraphs are as follows.

Definition 1. A graph is a cograph if it contains no induced P4, which is a path
with four vertices.

Definition 2. A graph G is a splitgraph if there is a partition {S,C} of its
vertices such that G[C] is a clique and G[S] is an independent set.

We then proceed to consider a more general product, the k-fold categorical
productGk = G×· · ·×G of k copies ofG for k ∪ ∃. Notice that, whenG is vertex
transitive then Gk is also vertex transitive and so, by the “no-homomorphism”
lemma of Albertson and Collins [1], φ(Gk) = φ(G) · nk−1.

Since the independence number φ(Gk) may not converge when k ∪ ∃, the
target is, instead, to compute the ratio of the independence number φ(Gk) ver-
sus the number of vertices of Gk. By (1) for any two graphs G and H we have
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r(G×H) → max{r(G), r(H)}. It follows that r(Gk) is non-decreasing. Also, it is
bounded from above by 1 and so the limit when k ∪ ∃ exists. This limit was in-
troduced in [4] as the ultimate categorical independence ratio. See also [2,8,12,16].
For simplicity we call it the tensor capacity of a graph. Such a concept is anal-
ogous to the Shannon’s capacity [4], which arose from a real-world problem of
transmitting words over a noisy communication channel and has a number ap-
plications. Alon and Lubetzky, and also Tóth claim that computing the tensor
capacity is NP-complete but, unfortunately neither provides a proof [2,16,19]. In
the following, we give the formal definitions of the independence ratio and the
tensor capacity.

Definition 3. The independence ratio of a graph G is r(G) = Δ(G)
|V (G)| .

Definition 4. The tensor capacity of a graph G is ρT (G) = limk∈∗ r(Gk).

To provide readers some feeling about the value of ρT (G), we mention a
related result by Tóth [20] as follows. Let G be a complete multipartite graph
where n is the number of vertices and ε is the size of the largest partite class. If
ε ⇒ n

2 , then ρT (G) = β
n ; otherwise, ρ

T (G) = 1.
We consider the computation of the tensor capacity of the k-fold categorical

products of some subclasses of perfect graphs, such as cographs and splitgraphs.
Moreover, by incorporating the domination constraint into the concept of

ultimate categorical independence ratio, we further investigate the ultimate cat-
egorical independent domination ratio problem. Such a ratio ∆(G) is defined to
be the independent domination ratio ri(G

k) of the k-fold categorical product
Gk for k ∪ ∃. In the following, we give the formal definitions of the inde-
pendent domination number, the independent domination ratio and the ultimate
categorical independent domination ratio.

Definition 5. Let G be a graph. The independent domination number i(G) is
the smallest cardinality of an independent dominating set in G. That is, i(G) is
the cardinality of a smallest maximal independent set in G.

Definition 6. The independent domination ratio of a graph G is ri(G) = i(G)
|V (G)| .

Definition 7. The ultimate categorical independent domination ratio of a graph
G is ∆(G) = limk∈∗ ri(G

k).

Then in our paper, we study the problem of computing ∆(G) for complete
multipartite graphs, which is a subclass of cographs.

The rest of this paper is organized as follows. In Section 2, we show that
φ(G × H) for two cographs or two splitgraphs G and H can be computed in
polynomial time, respectively, and that it is NP-complete to compute the max-
imum independent set of G×K4, where G is a planar graph of maximal degree
3. In Section 3, we show that the tensor capacity for cographs, splitgraphs and
three other graph classes can be computed in polynomial time, respectively, and
that the tensor capacity for graphs with n vertices can be computed in O∗(3n/3)
time. Also, we present a PTAS for the tensor capacity of planar graphs. Lastly,
in Section 4, we determine ∆(G) for complete multipartite graphs.
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2 Algorithms for Independence in Categorical Products

In the section, we first show that an equation for the computation of the categor-
ical product of two complete multipartite graphs. Then we show that φ(G×H)
for cographs G and H can be computed in O(n2) time. Lastly, we show that
φ(G×H) for splitgraphs G and H can be computed in polynomial time.

Cographs are perfect, see, eg, [15, Section 3.3]. When G and H are cographs
then G × H is not necessarily perfect. For example, when G is the paw, ie,
G ∩ K1 ⊗ (K2 ≈K1) then G ×K3 contains an induced C5 [18]. Ravindra and
Parthasarathy characterize the pairs G and H for which G × H is perfect [18,
Theorem 3.2]. (See the proof of Lemma 1 below.)

2.1 Complete Multipartite Graphs

It is well-known that G × H is connected if and only if both G and H are
connected and at least one of them is not bipartite [22]. When G and H are
connected and bipartite, then G ×H consists of two components. In that case,
two vertices (g1, h1) and (g2, h2) belong to the same component if the distances
dG(g1, g2) and dH(h1, h2) have the same parity.

Definition 8. The rook’s graph R(m,n) is the linegraph of the complete bipar-
tite graph Km,n.

The rook’s graph R(m,n) has as its vertices the vertices of the grid, (i, j), with
1 ⇒ i ⇒ m and 1 ⇒ j ⇒ n. Two vertices are adjacent if they are in the same
row or column of the grid. The rook’s graph is perfect, since all linegraphs of
bipartite graphs are perfect (see, eg, [15]). By Lovász’ perfect graph theorem,
also the complement of rook’s graph is perfect.

Proposition 1. Let m,n ≥ N. Then Km×Kn ∩ R̄, where R̄ is the complement
of the rook’s graph R = R(m,n).

Lemma 1. Let G and H be complete multipartite. Then G×H is perfect.

Proof. Ravindra and Parthasarathy prove in [18] that G × H is perfect if and
only if either

(a) G or H is bipartite, or
(b) Neither G nor H contains an induced odd cycle of length at least 5 nor an

induced paw.

Since G and H are perfect, they do not contain an odd hole. Furthermore, the
complement of G and H is a union of cliques, and so the complements are P3-
free. The complement of a paw is K1 ≈ P3 and so it has an induced P3. This
proves the claim. ∧∞

Let G and H be complete multipartite. Let G be the join of m independent
sets, say with p1, . . . , pm vertices, and let H be the join of n independent sets,
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say with q1, . . . , qn vertices. We shortly describe how G×H is obtained from the
complement of a generalized rook’s graph R(m,n).

Each vertex (i, j) in R(m,n) is replaced by an independent set I(i, j) of car-
dinality pi · qj . Denote the vertices of this independent set as (is, jt) where
1 ⇒ s ⇒ pi and 1 ⇒ t ⇒ qj . The graph G×H is obtained from the partial com-
plement of this ‘generalized rook’s graph.’ One can refer [5] for the definition of
partial complement.

Let δ(G) denote the clique cover number of a graph G.

Theorem 1. Let G and H be complete multipartite graphs. Then

φ(G×H) = δ(G×H) = max { φ(G) · |V (H)|, φ(H) · |V (G)| }. (2)

Proof. Two vertices (g1, h1) and (g2, h2) are adjacent if g1 and g2 are not in a
common independent set in G and h1 and h2 are not in a common independent
set in H .

Let Ω be a maximum independent set of G. Then {(g, h) | g ≥ Ω and h ≥
V (H)} is an independent set in G×H . We show that all maximal independent
sets are of this form or of the symmetric form with G and H interchanged.

It is easy to see that if a vertex (g, h) of G×H is in a maximal independent
set, then any vertex (g≤, h≤) where g and g≤ are in the same partite of G or h
and h≤ are in the same partite of H must be also in the same set. Thus we may
assume that G and H are cliques and consider a maximum independent set of
the complement of the rook’s graph as follows.

Any independent set must have all its vertices in one row or in one column.
This shows that every maximal independent set in G×H is a generalized row or
column in the rook’s graph. Since the graphs are perfect, the number of cliques
in a clique cover of G×H equals φ(G×H). This completes the proof. ∧∞

2.2 Cographs

Cographs are characterized by the property that every induced subgraph H
satisfies one of the following three conditions, that is, H has only one vertex,
or H is disconnected, or H̄ is disconnected. It follows that cographs can be
represented by a cotree [6].

A cotree is a pair (T, f) where T is a rooted tree and f is a 1-1 map from
the vertices of G to the leaves of T . Each internal node of T , including the root,
is labeled as ⊗ or ≈. When the label is ≈ then the subgraph H , induced by
the vertices in the leaves, is disconnected. Each child of the node represents one
component. When the node is labeled as ⊗ then the complement of the induced
subgraph H is disconnected. In that case, each component of the complement is
represented by one child of the node. When G is a cograph then a cotree for G
can be obtained in linear time [6]. We have the following theorem for cographs
by using the structure of cotrees, whose proof is omitted due to lack of space.

Theorem 2. There exists an O(n2) algorithm which computes φ(G×H) when
G and H are cographs.
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2.3 Splitgraphs

Theorem 3. Let G and H be splitgraphs. There exists a polynomial-time algo-
rithm to compute the independence number of G×H.

Proof. Let {S1, C1} and {S2, C2} be the partition of V (G) and V (H), respec-
tively, into independent sets and cliques. Let ci = |Ci| and si = |Si| for i ≥ {1, 2}.
See Figure 1(c) for an example of G×H . The vertices of C1×C2 form, of course,
a rook’s graph. Note that C1 × C2 is the complement of a rook’s graph.

(a) G (b) H (c) G×H (d) (e)
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7 8
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6 7 8 9
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Fig. 1. (a) A split graph G with S1 = {1, 2} and C1 = {3, 4, 5}. (b) A split graph H
with S2 = {6} and C2 = {7, 8, 9}. (c) G ×H . (d) The subgraph of G ×H induced by
the vertices in V (S1)×V (C2)∪V (C1)×V (S2)∪V (S1)×V (S2). (e) A bipartite graph
with the two color classes, where circles and boxes represent the vertices in the color
classes defined in (3) and (4), respectively.

We consider three cases. First consider the maximum independent sets with-
out any vertex of V (C1)×V (C2). Notice that the subgraph of G×H induced by
the vertices of V (S1)×V (C2)∨V (C1)×V (S2)∨V (S1)×V (S2) is bipartite. See
Figure 1(d). A maximum independent set in a bipartite graph can be computed
in polynomial time.

Consider maximum independent sets that contain exactly one vertex (c1, c2)
of V (C1)×V (C2). The maximum independent set of this type can be computed
as follows. Consider the bipartite graph of the previous case and remove the
neighbors of (c1, c2) from this graph, where a neighbor of a vertex x is a vertex
adjacent to x. The remaining graph is bipartite. Maximizing over all pairs (c1, c2)
gives the maximum independent set of this type.

Consider maximum independent sets that contain at least two vertices of the
rook’s graph V (C1) × V (C2). Then the two vertices must be in one row or in
one column of the grid, since otherwise they are adjacent. For example, let the
vertices of the independent set be contained in row c1 ≥ V (C1). Then the vertices
of V (S1) × V (C2) of the independent set are contained in W = {(s1, c2) | s1 /≥
NG(c1) and c2 ≥ V (C2)}. Consider the bipartite graph I with one color class
defined as the following set of vertices

W ∨ { (c1, c2) | c2 ≥ V (C2) }, (3)
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and the other color class defined as

{ (v, s2) | v ≥ V (C1) ∨ V (S1) and s2 ≥ V (S2) }. (4)

See Figure 1(e) for an example. Notice that since S1 and S2 are independent
sets of G × H , the subgraphs of G × H induced by the two color classes are
independent, respectively, and thus the graph I is bipartite. Then the maximum
independent set of this type can be computed in polynomial time by maximizing
over the rows c1 ≥ V (C1) and columns c2 ≥ V (C2). This proves the theorem. ∧∞

2.4 Hardness for Planar Graphs

In this section, we show that it is NP-complete to compute the maximum inde-
pendent set of G ×K4, where G is a planar graph of maximal degree 3 in the
following theorem, whose proof is omitted due to lack of space.

Theorem 4. Let G be a planar graph of maximal degree 3. It is NP-complete
to compute the maximum independent set of G×K4.

3 Algorithms for Computing Tensor Capacity

In this section, we consider the powers of a graph under the categorical product.
We first describe a polynomial time algorithm to compute the tensor capacity
for cographs and splitgraphs, respectively. Then, the technique for splitgraphs is
extended to handle the general graphs, giving an exact algorithm.

We start with some related works for tensor capacity as follows. First we men-
tion a result for a fundamental graph product, say Cartesian product [3]. Hahn,
Hell and Poljak prove that for the Cartesian product, 1

λ(G) ⇒ limk∈∗ r(�kG) ⇒
1

λf (G) , where Πf (G) is the fractional chromatic number of G [8]. This shows that

it is computable in polynomial time for graphs that satisfy σ(G) = Π(G).
The neighborhood N(x) of a vertex x is the set of vertices y such that x and

y are adjacent in a graph. Then the closed neighborhood of a vertex x is defined
as N [x] = N(x) ∨ {x}. The neighborhood of a set X of vertices is the union of
N(x) for x ≥ X . Similarly, the closed neighborhood of a set X of vertices is the
union of N [x] for x ≥ X .

Brown et al. [4, Theorem 3.3] obtain the following lowerbound for the tensor
capacity.

ρT (G) → a(G) where a(G) = max
I is an independent set

|I|
|I|+ |N(I)| . (5)

Notice that |I|
|I|+|N(I)| is the same as |I|

|N [I]| in [4, Theorem 3.3].

It is related to the binding number b(G) of the graph G = (V,E), where

b(G) = minA⊥V { |N(A)|
|A| |A ∀= ∅, N(A) ∀= V }. In fact, the binding number is less

than 1 if and only if a(G) > 1
2 . In that case, the binding number is realized by
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an independent set and it is equal to b(G) = 1−a(G)
a(G) [14,19]. The binding number

is computable in polynomial time [7,14,23]. See also Corollary 1 below.
The following proposition was proved in [4].

Proposition 2 ([4]). If r(G) > 1
2 then ρT (G) = 1.

Therefore, a better lowerbound for ρT (G) is provided by

ρT (G) → a∗(G) =

{
a(G) if a(G) ⇒ 1

2

1 if a(G) > 1
2 .

(6)

Definition 9. Let G = (V,E) be a graph. A fractional matching is a function
f : E ∪ R

+, which assigns a non-negative real number to each edge, such that
for every vertex x,

∑
e�x f(e) ⇒ 1. A fractional matching f is perfect if it

achieves the maximum f(E) =
∑

e∈E f(e) = |V |
2 .

Alon and Lubetzky proved the following theorem in [2] (see also [14]).

Theorem 5 ([2]). For every graph G

ρT (G) = 1 ← a∗(G) = 1 ← G has no fractional perfect matching. (7)

Corollary 1. There exists a polynomial-time algorithm to decide whether
ρT (G) = 1 or ρT (G) ⇒ 1

2 .

The following theorem was raised as a question by Alon and Lubetzky in [2,16].
The theorem was proved by Ágnes Tóth [19].

Theorem 6 ([19]). For every graph G, ρT (G) = a∗(G). Equivalently, every
graph G satisfies

a∗(G2) = a∗(G). (8)

Tóth proves that

if a(G) ⇒ 1

2
or a(H) ⇒ 1

2
then a(G×H) ⇒ max { a(G), a(H) }. (9)

Actually, Tóth shows that, if I is an independent set in G×H then

|NG×H(I)| → |I| ·min { b(G), b(H) }.

From this, Theorem 6 easily follows. As a corollary (see [2,16,19]) one obtains
that, for any two graphs G and H

r(G ×H) ⇒ max { a∗(G), a∗(H) }.

Tóth also proves the following theorem in [19]. This was conjectured by Brown
et al. [4].
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Theorem 7 ([19]). For any two graphs G and H,

ρT (G≈H) = max { ρT (G), ρT (H) }. (10)

The analogue of this statement, with a∗ instead of ρT , is straightforward. The
first part of the following theorem was proved by Alon and Lubetzky in [2].

Theorem 8. For any two graphs G and H,

ρT (G≈H) = ρT (G×H) = max { ρT (G), ρT (H) }. (11)

3.1 Cographs

For cographs we obtain the following theorem.

Theorem 9. There exists an efficient algorithm to compute the tensor capacity
for cographs.

Proof. By Theorem 6 it is sufficient to compute a(G), as defined in (5).
Consider a cotree for G. For each node the algorithm computes a table. The

table contains numbers ε(k), for k ≥ N, where

ε(k) = min { |N(I)| | I is an independent set with |I| = k }.

Notice that a(G) can be obtained from the table at the root node via a(G) =
maxk

k
k+β(k) .

Assume G is the union of two cographs G1 ≈G2. An independent set I is the
union of two independent sets I1 in G1 and I2 in G2. Let the table entries for
G1 and G2 be denoted by the functions ε1 and ε2. Then

ε(k) = min { ε1(k1) + ε2(k2) | k1 + k2 = k }.

Assume that G is the join of two cographs, say G = G1⊗G2. An independent
set in G can have vertices in at most one of G1 and G2. Therefore,

ε(k) = min { ε1(k) + |V (G2)|, ε2(k) + |V (G1)| }.

This proves the theorem. ∧∞

3.2 Splitgraphs

Let G be a splitgraph with a partition {S,C} of its n vertices such that G[C] is
a clique and G[S] is an independent set. For any independent set I of G, I can
contain at most one vertex from C. Define, for i ≥ {0, 1},

ai(G) = max

{
|I|

|I|+ |N(I)| | I is an independent set with |C ∩ I| = i

}

Then a(G) = max { a0(G), a1(G) }.
To compute a0(G), we shall make use of the following, simple observation.
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If S can be partitioned into two sets S1 and S2, such that their neighbor
sets N(S1) and N(S2) are disjoint, then there exists an optimal I∗ for
a0(G), such that I∗ ⊆ S1 or I∗ ⊆ S2.

To see this, suppose that it is not the case. Then, by assumption we can partition
I∗ into non-empty sets I1 = I∗∩S1 and I2 = I∗∩S2, and we have |I∗| = |I1|+|I2|
and |N(I∗)| = |N(I1)|+ |N(I2)|. Then

a0(G) =
|I∗|

|I∗|+ |N(I∗)| ⇒ max

{
|I1|

|I1|+ |N(I1)|
,

|I2|
|I2|+ |N(I2)|

}
⇒ a0(G).

This proves the claim.
Based on this observation, we modify a technique, maybe first described by

Cunningham [7], that transforms the problem into a max-flow (min-cut) prob-
lem. We construct a flow network F with vertices corresponding to each vertex
of S and C, a source vertex s and a sink vertex t. We make the source s adjacent
to each vertex in S, with capacity 1, and the sink t adjacent to each vertex in
C, with capacity 1 as well. In addition, if u ≥ S and v ≥ C are adjacent in the
original graph G, the corresponding vertices are adjacent in F , with capacity set
to ∃. Note that we omit the edges between vertices in C.

Consider a minimum s-t cut in F . Let S1 be the subset of S whose vertices
are in the same partition as s, and S2 = S − S1. The weight of such a cut must
be finite, as the maximum s-t flow is bounded by min { |S|, |C| }. Thus, we have
that N(S1) and N(S2) are disjoint. Moreover, the total weight of the edges in
the cut-set is |S| − |S1|+ |N(S1)|, which implies that

S1 = argmin
S′

{ |N(S≤)| − |S≤| | S≤ ⊆ S }.

So after running the flow algorithm to obtain S1, there will be three cases:

Case 1: the optimal I∗ for a0(G) is exactly S1;
Case 2: the optimal I∗ for a0(G) is a proper subset of S1;
Case 3: the optimal I∗ for a0(G) is a subset of S2;

Note that Case 2 is impossible, since for any such proper subset S≤
1, we have

|N(S≤
1)| − |S≤

1| → |N(S1)| − |S1| (by min-cut)

which implies

|N(S≤
1)| − |S≤

1|
|S≤

1|
>

|N(S≤
1)| − |S≤

1|
|S1|

→ |N(S1)| − |S1|
|S1|

⇒ |N(S≤
1)|

|S≤
1|

>
|N(S1)|
|S1|

.

Consequently, S≤
1 cannot be an optimal set that achieves a0(G).

Thus, we have either Case 1 or Case 3. To handle Case 3, we simply remove
S1 and N(S1) from the graph, and solve it recursively. In total, finding a0(G)
requires O(|S|) runs of the max-flow algorithm, and can be solved in polynomial
time.
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Finally, to compute a1(G), notice that, if an independent set I contains some
vertex v ≥ C then N(I) contains all vertices of C. When |I|/(|I| + |N(I)|) is
maximal, I will contain all the vertices in S that are nonadjacent to v. Hence
a1(G) = n−d

n , where d denotes the minimum degree of a vertex in C. It follows
that a1(G) can be obtained in linear time. This proves the following theorem.

Theorem 10. There exists a polynomial-time algorithm to compute the tensor
capacity for splitgraphs.

3.3 An Exact Exponential Algorithm for General Graphs

We modify the approach in the previous subsection to obtain an exact algorithm
for the tensor capacity of a general graph H . Let n be the number of vertices in
H . Let I be a maximal independent set of H . We let I play the role of S and
N(I) play the role of C in the analysis above. Then, by the flow algorithm, we

obtain a subset I1 ⊆ I with I1 = argmaxI′
{

|I′|
|I′|+|N(I′)| | I ≤ ⊆ I

}
.

The algorithm generates all the maximal independent sets I in H and finds
the optimal subset I1 in each of them. This yields the value a(H). By Moon
and Moser’s classic result [17], H contains at most 3n/3 maximal independent
sets. Furthermore, by, eg, the algorithm of Tsukiyama et al. [21], they can be
generated in polynomial time per maximal independent set. This proves the
following theorem.

Theorem 11. There exists an O∗(3n/3) algorithm to compute the tensor capac-
ity for a graph with n vertices.

3.4 Other Classes of Graphs

Furthermore, as the additional results, we show that the tensor capacity of per-
mutation graphs, interval graphs and graphs of bounded treewidth can be com-
puted in polynomial time, whose proofs are omitted due to lack of space.

Theorem 12. There exists O(n3) algorithms to compute the tensor capacity
for permutation graphs and interval graphs, respectively. Moreover, the tensor
capacity for the class of graphs that have treewidth at most k where k ≥ N can
be computed in polynomial-time.

Theorem 13. There exists a PTAS to approximate the ultimate categorical in-
dependence ratio in planar graphs.

4 The Ultimate Categorical Independent Domination
Ratio

In this section, we determine ∆(G) for complete multipartite graphs G in the
following theorem, whose proof is omitted due to lack of space.

Theorem 14. Let G be a complete multipartite graph with t color classes of
size n1 ⇒ · · · ⇒ nt. Then ∆(G) = 0 unless t = 2 and n1 = n2, in which case
∆(G) = 1

2 .
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Abstract. We study the complexity of editing a graph into a target
graph with any fixed critical-clique graph. The problem came up in prac-
tice, in mining a huge word similarity graph for well structured word
clusters. It also adds to the rich field of graph modification problems.
We show in a generic way that several variants of this problem are in
SUBEPT. As a special case, we give a tight time bound for edge dele-
tion to obtain a single clique and isolated vertices, and we round up this
study with NP-completeness results for a number of target graphs.

1 Introduction

Graphs in this paper are undirected and have no loops or multiple edges. In an
edge modification problem, an input graph must be modified by edge insertions
or deletions or both, into a target graph with some prescribed property. Edge
editing means both insertions and deletions. Edge insertion is also known as fill-
in. The computational problem is to use a minimum number k of edits. There is
a rich literature on the complexity for a number of target graph properties, and
on their various applications. Here we cannot survey them, we only refer to a few
representative papers on hardness results [1,10]. Ironically, results are missing
on edge modification problems for some structurally very simple target graphs.
Informally, “simple” means that the graph becomes small after identification of
its twin vertices (see Section 2). For any fixed graph H , our target graphs are
all graphs obtained from H by replacing vertices with bags of true twins.

Our motivation is the concise description of graphs with very few cliques (that
may overlap) and some extra or missing edges. They appear, e.g., as subgraphs
in co-occurence graphs of words, and constitute meaningful word clusters there.
Within a data mining project we examined a similarity matrix of some 26,000
words, where similarity is defined by co-occurence in English Wikipedia. By
thresholding we obtain similarity graphs, and we consider subgraphs that have
small diameter and only few cut edges to the rest of the graph. Words occurring
in the same contexts form nearly cliques. These are often not disjoint, as words
appear in several contexts. Synonyms may not always co-occur (as different au-
thors prefer different expressions), but they co-occur with other words. Relations
like this give rise to various cluster structures. As opposed to partitioning entire
graphs into overlapping clusters (as in [6]), we want to single out simple sub-
graphs of the aforementioned type. Experience in our project shows that some

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 249–260, 2014.
c∩ Springer International Publishing Switzerland 2014
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existing standard clustering methods generate poor word clusters which are ei-
ther too small or dragged out and not internally dense. This suggested the idea to
define the clusters directly by the desired properties, and then to determine them
by edge editing of candidate subgraphs. Next, instead of describing the clusters
naively as edge lists we list their vertices along with the few edited edges (to
achieve cliques). Altogether this yields very natural word clusters, and by varying
the threshold we also obtain different granularities. Applications of word clusters
include sentence similarity measures for text summarization, search query result
diversification, and word sense disambiguation. Thus, we believe that the prob-
lems are of importance, but they are also interesting as pure graph-algorithmic
problems.

For any fixed H , our edge modification problems are (easily) in FPT. As our
main result we get in Section 3 that they even belong to SUBEPT. (Not very
many natural SUBEPT problems are known so far, as discussed in [7].) Every

such problem has a 2
≤
k log k time bound. The special case of p-Cluster Edit-

ing, where H is the graph with p vertices and no edges, was recently treated
in [7], using techniques like enumeration of small cuts. Our result is more gen-
eral, and the quite different algorithm looks conceptually simpler, at the price
of a somewhat worse time for the special case. Therefore it remains interesting
to tighten the time bounds for other specific graphs H as well. Consequently,
we then turn to the absolutely simplest graphs H : In Section 4 we study the
(NP-complete) edge deletion problem towards a single clique plus isolated ver-
tices. We give a refined FPT time bound where the target clique size c appears
explicitly. Intuitively, 2k/c2 is an “edit density”. Using an evident relationship
to vertex covers we achieve, for small edit densities, essentially O∈(1.2738k/c)
time. For large enough k/c we invoke a naive algorithm instead, and the time

can also be bounded by O(1.6355
≤
k ln k). The base 1.2738 is due to the best

known Vertex Cover algorithm from [3]. Moreover, the bound is tight: We
show that the base of k/c cannot beat the base in the best FPT algorithm
for Vertex Cover. Section 5 gives a similar FPT time bound for edge edit-
ing towards a single clique plus isolated vertices. Here, NP-completeness is an
intriguing open question. However, in Section 6 we make some progress in prov-
ing NP-completeness systematically, for many graphs H . The results indicate
that almost all our modification problems, with rather few exceptions, might be
NP-complete. But recall that, on the positive side, they are in SUBEPT.

2 Preliminaries

The number of vertices and edges of a graph G = (V,E) is denoted n and m,
respectively. For a graph G, the complement graph Ḡ is obtained by replacing
all edges with non-edges, and vice versa. We also use standard notation for some
specific graphs: Kn, Cn, Pn is the complete graph (clique), the chordless cycle,
the chordless path, respectively, on n vertices, and Kn1,n2,...,np is the complete
multipartite graph with p partite sets of ni vertices. The disjoint union G +H
of graphs G and H consists of a copy of G and a copy of H on disjoint vertex
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sets. G− v denotes the graph G after removal of vertex v and all incident edges.
Notation G −X is similarly defined for any subset X ≥ V . The subgraph of G
induced by X ≥ V is denoted G[X ].

By definition, a graph class G is hereditary if, for every graph G ⇒ G, all
induced subgraphs of G are also members of G. Any hereditary graph class
G can be characterized by its forbidden induced subgraphs: F is a forbidden
induced subgraph if F /⇒ G, but F − v ⇒ G for every vertex v.

The open neighborhood of a vertex v is the set N(v) of all vertices adjacent
to v, and the closed neighborhood is N [v] := N(v) ∪ {v}. For a subset X of
vertices, N [X ] is the union of all N(v), v ⇒ X . Vertices u and v are called true
twins if uv is an edge and N [u] = N [v]. Vertices u and v are called false twins
if uv is a non-edge and N(u) = N(v). The true twin relation is an equivalence
relation whose equivalence classes are known as the critical cliques of the graph.
(The false twin relation is an equivalence relation as well.) In the critical-clique
graph H of a graph G, every critical clique of G is represented by one vertex
of H , and two vertices of H are adjacent if and only if some edge exists (hence
all possible edges exist) between the corresponding critical cliques of G. For
brevity we refer to the critical cliques as bags, and we say that G is a “graph H
of bags”. (Similarly one could also consider target graphs with small modular
decompositions.)

For every graph H we define three edge modification problems called H-Bag
Insertion, H-Bag Deletion, H-Bag Editing, as follows: Given an input
graph G and a parameter k, change G by at most k edge insertions, deletions, or
edits, respectively, such that the resulting graph has H or an induced subgraph
of H as its critical-clique graph. We allow induced subgraphs of H in order to
allow bags to be empty. Similarly we define the problems H [0]-Bag Deletion
andH [0]-Bag Editing. The difference is that the target graph may additionally
contain isolated vertices, that is, false twins with no edges. Thus, not all vertices
are forced into the bags. ProblemH [0]-Bag Insertion easily reduces to H-Bag
Insertion. (As only insertions are permitted, the isolated vertices in an optimal
solution are exactly the isolated vertices ofG.) We also consider problem variants
where the bags have prescribed sizes. We sometimes refer to all the mentioned
problems collectively as bag modification problems. We say that editing an edge
uv affects its end vertices u and v. A vertex is called unaffected if it is not affected
by any edit. Without loss of generality we can always assume that H has no true
twins, because they could be merged, which leads to the same problems with a
smaller graph in the role of H . For a fixed graph H understood from context,
let H be the class all graphs whose critical-clique graph is H or an induced
subgraph thereof. Let H[0] be the class of graphs consisting of all graphs of H
with, possibly, additional isolated vertices. All these classes are hereditary.

We assume that the reader is familiar with the notion of fixed-parameter
tractability (FPT) and basic facts, otherwise we refer to [5,12]. A problem with
input size n and an input parameter k is in FPT if some algorithm can solve it
in f(k) · p(n) for some computable function f and some polynomial p. We use
the O∈(f(k)) notation that suppresses p(n). The subexponential parameterized
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tractable problems where f(k) = 2o(k) form the subclass SUBEPT. In our time
analysis we will encounter branching vectors of a special form. The proof of the
branching number, by standard algebra, is omitted due to lack of space.

Lemma 1. The branching vector (1, r, . . . , r) with q entries r has a branching

number bounded by 1 + log2 r
r , if r is large enough compared to the fixed q.

3 Fixed-Parameter Tractability

Some bag modification problems (in different terminology) are known to be NP-
complete, among them cases with very simple graphsH . Specifically, forH = K1,
problem H [0]-Bag Deletion can be stated as follows. Given a graph G, delete
at most k edges so as to obtain a clique C and a set I of isolated vertices.
Equivalently, delete a set I of vertices incident to at most k edges, and delete
all these incident edges, so as to retain a clique. The problem is NP-complete
due to an obvious reduction from Maximum Clique. Next, for any fixed p, the
p-Cluster Editing problem asks to turn a graph, by editing at most k edges,
into a disjoint union of at most p cliques. p-Cluster Insertion and p-Cluster
Deletion are similarly defined. In other words, these are the bag modification
problems where H = K̄p. It is known that p-Cluster Insertion is polynomial
for every p, and so is p-Cluster Deletion for p = 2, but it is NP-complete for
every p → 3, whereas p-Cluster Editing is NP-complete for every p → 2 [13].

The hardness results provoke the question on fixed-parameter tractability. By
a well-quasi ordering argument based on Dickson’s lemma [4] one can show that
H and H[0] have only finitely many induced subgraphs, and then the general
result from [2] implies that the bag modification problems are in FPT. Although
the argument is neat, we omit the details, because we will prove a stronger
statement: membership in SUBEPT. The following observation is known for
Cluster Editing (H = K̄p) due to [8]; here we show it for general H .

Proposition 1. Any bag modification problem has an optimal solution where
any two true twins of the input graph belong to the same bag (or both are isolated)
in the target graph.

Proof. First we consider H-Bag Editing. For a vertex v, an input graph, and
a solution, we define the edit degree of v to be the number of edits that affect
v. For any class T of true twins, let v ⇒ T be some vertex with minimum edit
degree. Consider any u ⇒ T \ {v}. If u is put in a different bag than v, we undo
all edits that affect u, and instead edit each edge uw, w ∃= v, if and only if
vw is edited. We also move u to the bag of v and undo the deletion of edge
uv (if it happened). Clearly, this yields a valid solution and does not increase
the number of edits between u and vertices w ∃= v. Since we do not incur an
additional edit of uv either, the new solution is no worse. We proceed in this
way for all u ⇒ T \ {v}, and also for all T . This proves the assertion for H-Bag
Editing.

For H [0]-Bag Editing we treat the set of isolated vertices as yet another
bag. The same arguments apply. What is not covered in the previous reasoning
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is the case when v is isolated and u is in a bag. But then u and v are not
adjacent, neither before nor after the move, hence the number of edits does not
increase. For the Insertion and Deletion problems, again the same arguments
go through in all cases. Just replace “edit” with “insert” or “delete”. The only
change is that, in Insertion, the edge uv cannot have been deleted. ∩⊗

We make another simple observation. In the following let p always denote the
number of vertices of our fixed H .

Lemma 2. In any bag modification problem, the input graph has at most 2k+p
critical cliques (isolated vertices not counted), or the instance has no solution.

Proof. The unaffected vertices induce a subgraph that belongs to H or H[0],
respectively, hence it has at most p bags. Any affected vertex is adjacent to
either all or none of the vertices of any of these bags (since the latter ones
are unaffected). In the worst case, k edits affect 2k vertices, and each of them
becomes a critical clique of its own. Together this yields the bound. ∩⊗

Lemma 2 implies again that all bag modification problems for fixed H are in
FPT: Assign every critical clique in the input graph to some bag of the target
graph (or make its vertices isolated, in the H [0] case). These are at most p+ 1
options. For isolated vertices it suffices to decide how many of them we put in
each bag, which are O(np) options. Hence the time for this naive branching is
O∈((p+ 1)2k+p). Instead of this poor bound we now show:

Theorem 1. Any bag modification problem with a fixed graph H can be solved

in 2
≤
k log k time, hence it belongs to SUBEPT.

Proof. First we focus on H-Bag Editing. Let a, 0 < a < 1, be some fixed
number to be specified later. To avoid bulky notation, we omit rounding brackets
and work with terms like ka as if they were integers.

One difficulty is that the sizes of the p bags are not known in advance. A
preprocessing phase takes care of that. Initially all bags are open. In every bag
we create ka “places” that we successively treat as follows. At every place we
branch: Either we close the bag and leave it, or we decide on a critical clique
of the input graph and put any of its vertices in the bag. (Clearly, the latter
choice is arbitrary. By Proposition 1 we can even immediately fill further places
with the entire critical clique, but our analysis will not take advantage of that.)
Due to Lemma 2 these are at most 2k+ p+1 branches, hence the total number
of branches is (2k + p + 1)pk

a

= O(k)pk
a

= 2k
a log k. Note that p is fixed, and

constant factors are captured by the base of log. Every open bag has now ka

vertices. We will not add any further vertices to closed bags. Vertices that are not
yet added to bags are called undecided. We also do all necessary edits of edges
between different bags, to stick to the given graph H , and reduce k accordingly.

In the main phase we do branchings that further reduce the parameter k by
edits. The branching rules are applied exhaustively in the given order. In the
following we first consider the special case that all bags are open. Later we show
how to handle closed bags, too.
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If there exists an undecided vertex u and a bag B such that u is adjacent
to some but not all vertices of B, then we branch and either insert all missing
edges between u and B, or delete all edges between u and B. (But for now, u
is not yet added to any bag.) The branching vector is some (i, ka − i) with two
positive entries, or a better vector if already more than ka vertices got into B.

Now every undecided vertex u is either completely adjacent or completely
non-adjacent to each bag B. We say that u fits in B, if u is adjacent to exactly
those bags that belong to N [B]. Remember that H has no true twins. It follows
that every vertex u fits in at most one bag.

If there exists an undecided vertex u that fits in no bag, we branch and decide
on a bag for u, put u in this bag, and do the necessary edits. Since u does not
fit anywhere, we need at least ka edits, thus the branching vector, of length p,
is (ka, . . . , ka) or better.

After that, every undecided vertex u fits in exactly one bag B(u). Suppose
that two undecided vertices u and v have the wrong adjacency relation. That is,
either uv is an edge but B(u) and B(v) are not adjacent, or uv is not an edge
but B(u) and B(v) are adjacent or B(u) = B(v). We branch as follows. Either
we edit uv or not. If we don’t, u and v cannot be both added to their designated
bags. Then we also decide on u or v and put that vertex in one of the other p−1
bags, which again costs at least ka edits. Thus, the worst-case branching vector
is (1, ka, . . . , ka) with 2p− 2 entries ka. Finally, all undecided vertices have their
correct adjacency relations, hence the graph belongs to H.

The difficulty with closed bags is that they do not guarantee at least ka edits.
Let U be the set of vertices of H corresponding to the open bags. Note that
H [U ] may have true twins. In that case we merge every critical clique of H [U ]
into one superbag. Trivially, each superbag is larger than ka. On H [U ] and the
superbags we perform exactly the same branching rules as above. Since we have
fewer branches, the branching vectors do not get worse. A new twist is needed
only when we actually add a vertex u to a superbag S. In every such event we
also decide on the bag within S that will host u. This latter choice does not
change the adjacency relations within the union of open bags and undecided
vertices any more. Therefore we can take these decisions independently for all
u, and always choose some bag in S that causes the minimum number of edits
of edges between u and the closed bags.

The worst branching vector we encounter is (1, ka, . . . , ka) with 2p− 2 entries

ka. From Lemma 1 we obtain the bound (1 + a log2 k
ka )k = 2k

1−a log k for some

suitable logarithm base. We must multiply this with the bound 2k
a log k from the

first phase. Choosing a = 1/2 yields the product 2
≤
k log k.

For H-Bag Deletion and H-Bag Insertion we proceed similarly. Since
only one type of edits is permitted, some of the branches are disabled, which
cannot make the branching vectors worse. In H [0]-Bag Deletion and H [0]-
Bag Editing we can treat the set of isolated vertices like a bag; some necessary
adjustments are straightforward. ∩⊗
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4 Clique Deletion

If H is the one-vertex graph, then the H [0] edge modification problems aim at
a single clique plus isolated vertices. Instead of “H [0]-Bag ...” we speak in this
case of Clique Insertion, Clique Deletion, and Clique Editing, which is
more suggestive.Clique Insertion is a trivial problem. In this section we study
Clique Deletion: given a graph G, delete at most k edges so as to obtain a
clique C and a set I of isolated vertices. An equivalent formulation is to delete a
set I of vertices incident to at most k edges, and delete all these incident edges
as well, so as to retain a clique. This vertex-deletion interpretation is sometimes
more convenient. The problem is NP-complete due to an obvious reduction from
Clique or Vertex Cover, and in SUBEPT by Theorem 1.

Besides the generic time bound with unspecified constants, we are now aiming
at an FPT algorithm with a tight time bound, as a function of k and c = |C|.
We remark that the smallest possible c can be calculated from the number m
of edges in the input graph. Clearly, we must have m − k ≈ 1

2c(c − 1), thus

c → 1
2 +

√
1
4 + 2(m− k). We may even guess the exact clique size c above this

threshold and try all possible sizes, which adds at most a factor n − c to the
time bound.

Lemma 3. A partitioning of the vertex set of a graph G into sets C and I is
a valid solution to Clique Deletion if and only if I is a vertex cover of Ḡ.
Moreover, a minimum vertex cover I of Ḡ also yields a minimum number of
edge deletions in G.

Proof. The first assertion is evident. For the second assertion, note that Clique
Deletion requests a vertex cover I of Ḡ being incident to the minimum number
of edges of G. Since C is a clique, and every edge of G is either in C or incident
to I, we get the following chain of equivalent optimization problems: minimize
the number of edges incident to I, maximize the number of edges in C, maximize
|C|, minimize |I|. ∩⊗

Before we turn to an upper complexity bound, we first give an implicit lower
bound. Let us join our input graph G with a clique K, and define c∈ := |K|.
Joining means that all possible edges betweenK and G are created. Observe that
an optimal solution for the joined graph consists of an optimal solution for G,
with K added to C. Thus, if k edges are deleted in G, then k+(n−c)c∈ edges are
deleted in the joined graph, the size of the solution clique is c∈+ c. Furthermore,
the size of the vertex cover in Ḡ is n− c. If we choose c∈ “large” compared to n,
but still polynomial in n, then the number of deleted edges and the clique size
are essentially (n− c)c∈ and c∈, respectively. Their ratio is the vertex cover size
n− c. Back to the original notations k and c for these numbers, it follows that
any FPT algorithm for Clique Deletion, that runs in time bounded by some
function f(k/c), could be used to solve also Vertex Cover on Ḡ within time
f(n− c). Therefore, the best we can hope for is a Clique Deletion algorithm
with a time bound O∈(bk/c), with some constant base b > 1 that cannot be
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better than in the state-of-the-art Vertex Cover algorithm. This bound is
also tight in a sense, as we will see below.

The exponent k/c can be rewritten as c(k/c2), where the second factor has a
natural interpretation: Since the number of edges in C is roughly c2/2, we can
view 2k/c2 as an “edit density”, the ratio of deleted edges and remaining edges
in the target graph. It will be convenient to define c∗ := c − 1, and to define
the edit density slightly differently as d := 2k/c∗2. In applications we are mainly
interested in instances that are already nearly cliques, thus we keep a special
focus on the case d < 1 in the following.

Our algorithm for Clique Deletion preprocesses the input graph with a
single reduction rule: Remove each vertex v of degree smaller than c∗, along
with all incident edges. After exhaustive application, there remains a graph with
minimum degree c∗. From now on we can suppose without loss of generality that
G has already minimum degree c∗. This also bounds i := |I| as follows.
Lemma 4. With the above denotations we have i ≈ 2k/c∗, and in the case d < 1
this can be improved to i ≈ 2

1+
≤
1−d

· k/c∗.
Proof. Let h be the number of edges in I. Since at most k edge deletions are
permitted, we have ic∗ − h ≈ k. Since h ≈ k (or we must delete too many edges
already in I), it follows i ≈ 2k/c∗ = dc∗.

For d < 1, this further implies i ≈ c∗. Using h < i2/2, the previous inequality
ic∗ − h ≈ k yields ic∗ − i2/2 ≈ k, thus i2 − 2c∗i + 2k → 0 with the solution
i ≈ c∗ −

∧
c∗2 − 2k. (We had excluded the case i > c∗.) By simple algebra this

can be rewritten as i ≈ 2
1+

≤
1−d

· k/c∗. ∩⊗

Note that the factor in front of k/c∗ grows from 1 to 2 when d grows from 0 to
1. To make this factor more comprehensible, we may also simplify it to a slightly
worse upper bound: Since

∧
1− d > 1−d, we have i ≈ 2

2−d ·k/c∗. We also remark
that Clique Deletion is trivial if k < c∗, because, after the reduction phase,
either there remains a clique, or the instance has no solution.

Theorem 2. Clique Deletion can be solved in O∈(1.2738
2

1+
≤

1−d
·k/c∗

) time.

Proof. After applying our reduction rule, due to Lemma 3 it suffices to compute
a vertex cover of minimum size in Ḡ. As for the time bound, the base comes
from [3] and the exponent comes from Lemma 4. ∩⊗

For large edit densities we may also express the time bound as a function
of k only, as in the previous section, but with a specific base. The algorithm
of Theorem 2 with the simpler bound from Lemma 4 has the running time
O∈(1.27382k/c). (We replace c∗ with c, which does not make a difference asymp-
totically.) If c is small, we can instead use a brute-force approach and check all
subsets of c vertices for being cliques. This runs in O∈(2kc) time, since at most
2k + c non-isolated vertices exist, and k is large compared to c in the consid-
ered case. The two expressions decrease and increase, resepctively, as c grows.
Hence their minimum is maximized if, approximately, c = 0.492

√
k/ ln k. Plug-

ging in this c yields 1.6355
≤
k ln k time. The naive O∈(2kc) bound can certainly be

improved by excluding most c-vertex subsets as candidates for the final clique.
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5 Clique Editing

Recall that Clique Editing is the problem of editing at most k edges so as to
obtain a clique C, say of size c, and a set I of n− c isolated vertices.

Theorem 3. Clique Editing with prescribed size c of the target clique is W[1]-
complete in parameter n− c, hence also NP-complete.

Proof. We argue with the optimization versions and show that minimizing the
number of edited edges is equivalent to finding a set I of n − c vertices being
incident to the minimum number of edges: Simply note that the edges incident
to I are exactly those to be deleted, and minimizing deletions means maximizing
the number of remaining edges. Since c is fixed, this also minimizes the number
of edge insertions needed to make C a clique. Due to [9], finding at least s vertices
that cover at most t edges, known as Minimum Partial Vertex Cover, is
W[1]-complete in parameter s, thus our assertion follows with s := n− c. ∩⊗

Note that Theorem 3 does not immediately imply NP-completeness of Clique
Editing with free size c, since the prescribed clique sizes c in the reduction
graphs may be different from c in optimal solutions to Clique Editing on these
graphs, and our problem might still be polynomial for the “right” c, albeit this is
hard to imagine. We conjecture that Clique Editing is NP-complete. Another
equivalent formulation of Clique Editing is: Given a graph G, find a subset C
of vertices that induces a subgraph that maximizes the number of edges minus
the number of non-edges. Denoting the number of edges by m(G), the objective
can be written asm(G[C])−m(Ḡ[C]). This becomes also interesting in a weighted
version. For a given real number w > 0, maximize m(G[C])−w ·m(Ḡ[C]). This
problem is trivial for w = 0 (the whole vertex set is an optimal C), and NP-
complete if w is part of the input (since a maximum clique is an optimal C
if w is large enough). What happens in between? For any constant w > 0? In
particular, for w = 1? We must leave this question open.

Next we propose an FPT algorithmClique Editingwhen k is the parameter.
It works if c is part of the input (cf. Theorem 3), and hence also for free c, by
trying all values. Membership in SUBEPT follows from Theorem 1, but as earlier
we are also interested in the dependency of the time bound on c. The following
algorithm that uses similar ideas as the earlier ones is omitted due to lack of
space.

Theorem 4. Clique Editing can be solved in 2log c·k/c time.

6 Some Hardness Results

All bag modification problems are trivially in NP. In this section we prove the
NP-completeness of bag modification problems for many target graphs H . We
give a general construction that “lifts” NP-completeness from some H to larger
graphs H ∗. To be specific, suppose that H-Bag Editing is already known to
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be NP-complete. We will reduce it in polynomial time to H ∗-Bag Editing, for
certain graphs H ∗ specified later on.

Let the graph G and parameter k be an instance of H-Bag Editing. Let
H ∗ be a graph that contains H as an induced subgraph. We choose a particular
subset S of vertices of H ∗ such that H ∗[S] is isomorphic to H . (Note that the
same graph may have several occurrences as induced subgraph, hence we must
fix some S.) Let S0 and S1 be some set of vertices of H ∗ − S being adjacent to
no vertices of S, and to all vertices of S, respectively. We construct a graph G∗

as follows, in polynomial time. We replace every vertex of S0 ∪ S1 with a bag
of size c > 2k. Two bags are joined by all possible edges (by no edges) if the
corresponding vertices of H ∗ are adjacent (not adjacent). Then we add G and
insert all possible edges between S1 and the vertices of G.

If G with parameter k is a yes-instance of H-Bag Editing, then we can
mimic the same, at most k, edits also in the subgraph G of G∗, which implies
that G∗ with parameter k is a yes-instance of H ∗-Bag Editing. Our aim in
the following is to show the converse, under some conditions on H and H ∗. The
equivalence will then establish the desired reduction. Specifically, suppose that
the following technically looking condition is fulfilled. Here, an embedding of a
graph into another graph means that edges are mapped to edges, and non-edges
are mapped to non-edges.

(*) Let J be any induced subgraph of H ∗ isomorphic to H ∗[S0∪S1]. Accordingly,
we embed J into any graph of H∗ and divide the vertex set of J in two sets U0

and U1, of those vertices coming from S0 and S1, respectively. For any such
embedding, let T be the set of vertices t such that N [t] contains all vertices of
U1 and no vertex of U0. Then the subgraph induced by T is always in H.

Note that there may exist many possible embeddings of J , and our condition
must hold for each of them. Also, T may contain some vertices of U1.

Now suppose that at most k edits of edges in G∗ have produced a graph in
H∗. Since k edits affect at most 2k vertices, but c > 2k, clearly every bag in the
edited graph corresponding to a vertex of S0 or S1 still has at least one unaffected
vertex. We select one from each bag and obtain a set U of unaffected vertices.
The subgraph induced by U is isomorphic to H ∗[S0 ∪ S1]. Let U0 and U1 be the
subset of vertices of U corresponding to vertices of S0 and S1, respectively. Then
we have U = U0∪U1, and all vertices of G are still adjacent (non-adjacent) to all
vertices of U1 (U0). Thus (*) implies that, after editing, the vertices of G form
a graph in H. Since at most k edits have been done in the whole graph, we get
that G with parameter k is a yes-instance of H-Bag Editing.

Condition (*) looks more complicated than it is, when it comes to specific
graphs H . In the following we give some examples. We refer to vertices in S0

and S1 as 0-vertices and 1-vertices, respectively, and we call any graph in H a
graph H of bags.

Theorem 5. H ∗-Bag Editing is NP-complete for, at least, the following graphs
H ∗: complete multipartite graphs with some partite set of at least 3 vertices; the
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complete multipartite graph with partite sets of exactly 2 vertices; K3-free graphs
with maximum degree at least 3.

Proof. H-Bag Editing for H = K̄p is p-Cluster Editing, which is known to
be NP-complete for every p → 2 [13]. We reduce the case H = K̄p for a suitable
p → 2 to the case H ∗.

In a complete multipartite graph H ∗, let b → 3 be the size of some largest
partite set. We choose p = b− 1 → 2. We let S1 be empty, and let S0 consist of a
single vertex in a partite set of size b. The vertices of H ∗ being non-adjacent to
this 0-vertex induce a K̄b−1 = K̄p. No matter where else we embed our 0-vertex
in a graph H ∗ of bags, the set T as defined in (*) forms a K̄b−1 of bags (note
that bags are allowed to be empty), hence (*) is satisfied.

Consider H ∗ = K2,2 = C4. We choose p = 2. We let S1 consist of two non-
adjacent vertices, while S0 is empty. Clearly, their common neighbors induce
H = K̄2. The only possible embedding of our two non-adjacent 1-vertices in a
C4 of bags is to put them in two non-adjacent bags, such that the set T forms
a graph H = K̄2 of bags, hence (*) is satisfied. For H ∗ = K2,...,2 we proceed
by induction on the number of partite sets. Let H = K2,...,2 with two vertices
less. Then the same choice of S1 and S0 and the same arguments establish the
induction step.

Let H ∗ be K3-free, v a vertex of maximum degree d → 3, and u some neighbor
of v. We choose p = d − 1, S1 = {v} and S0 = {u}. The vertices adjacent to v
and non-adjacent to u induce K̄d−1 = K̄p. For any embedding of an adjacent
pair of a 1-vertex and a 0-vertex into an H ∗ of bags, the set T forms a graph
H = K̄p of bags, since in H ∗ every vertex has at most d− 1 neighbors, and they
are pairwise non-adjacent. ∩⊗

The same construction also lifts NP-completeness results from H [0] to H ∗[0],
whenever we can choose S1 = ∞ and a suitable S0. Our construction also works
for H ∗-Bag Deletion and H ∗-Bag Insertion, however, note that we need an
NP-complete case to start with. For edge deletions we can use K̄p with p → 3.
Remember that K̄p-Bag Insertion is polynomial [13] for every p. However, we
can start from P3 instead:

Theorem 6. H ∗-Bag Insertion is NP-complete for, at least, the graphs H ∗ =
P3, and H ∗ = Pp and H ∗ = Cp for each p → 6.

Proof. P3-Bag Insertion in G means to delete in Ḡ a minimum number of
edges so as to reach a complete bipartite graph (biclique) and isolated vertices.
This is equivalent to finding a biclique with maximum number of edges. The
latter problem is NP-complete (even in bipartite graphs and hence in general
graphs) due to [11]. We reduce P3-Bag Insertion to Pn-Bag Insertion for
each n → 6 by setting S1 = ∞ and S0 isomorphic to Pn−4. Similarly, we reduce
P3-Bag Insertion to Cn-Bag Insertion for each n → 6 by setting S1 = ∞
and S0 isomorphic to Pn−5. It is easy to verify condition (*) in the equivalence
proofs of the reductions. ∩⊗
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These Theorems are only illustrations of a few cases. The conditions on H ∗

can be weakened, and even more cases H ∗ proved to be NP-complete, however
we want to avoid a tedious list of applications of one particular technique. On
the negative side, the current construction fails for other graphs. The “smallest”
open cases are K1[0]-Bag Editing and P3-Bag Editing. We also remark that
P3-Bag Deletion is polynomial: consider the complement graph and proceed
similarly as in [13].
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Abstract. The inversion is one of the important operations in bio se-
quence analysis and the sequence alignment problem is well-studied for
efficient bio sequence comparisons. Based on inversion operations, we
introduce the alignment with non-overlapping inversion problem: Given
two strings x and y, does there exist an alignment with non-overlapping
inversions for x and y. We, in particular, consider the alignment problem
when non-overlapping inversions are allowed for both x and y. We design
an efficient algorithm that determines the existence of non-overlapping
inversions and present another efficient algorithm that retrieves such an
alignment, if exists.

1 Introduction

In modern biology, it is important to determine exact orders of DNA se-
quences, retrieve relevant information of DNA sequences and align these se-
quences [1, 7, 12, 13]. For a DNA sequence, a chromosomal translocation is to
relocate a piece of the DNA sequence from one place to another and, thus, re-
arrange the sequence [9]. The chromosomal translocation is a crucial operation
in DNAs since it alters a DNA sequence and often causes genetic diseases [10].
A chromosomal inversion occurs when a single chromosome undergoes break-
age and rearrangement within itself [11]. Based on the important biological
events such as translocation and inversion, there is a well-defined string match-
ing problem: given two strings and translocation or inversion, the string match-
ing problem is finding all matched strings allowing translocations or inversions.
Moreover, people proposed an alignment with translocation or inversion prob-
lem, which is closely related to find similarity between two given strings; that is
to obtain minimal occurrences of translocation or inversion that transform one
to the other. Many researchers investigated efficient algorithms for this prob-
lem [1–4, 6, 8, 13, 14].

The inversions, which are one of the important biological operations, are not
automatically detected by the traditional alignment algorithms [14]. Schöniger
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S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 261–272, 2014.
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and Waterman [13] introduced the alignment problem with non-overlapping in-
versions, defined a simplification hypothesis that all regions will not be allowed
to overlap, and showed an O(n6) algorithm that computes local alignments with
inversions between two strings of length n and m based on the dynamic pro-
gramming, where n ≥ m. Vellozo et al. [14] presented an O(n2m) algorithm,
which improved the previous algorithm by Schöniger and Waterman. They built
a matrix for one string and partially inverted string using table filling method
with regard to the extended edit graph. Recently, Cantone et al. [1] introduced
an O(nm) algorithm using O(m2) space for the string matching problem, which
is to find all locations of a pattern of length m with respect to a text of length n
based on non-overlapping inversions.

Many diseases are often caused by genetic mutations, which can be inherited
through generations and can result in new sequences from a normal gene [5]. In
other words, we may have two different sequences from a normal gene by different
mutations. This motivates us to examine the problem of deciding whether or not
two gene sequences are mutated from the same gene sequence. In particular, we
consider an inversion mutation. See Fig. 1 for an example.

A G G G T

T T

TT

A A

A A

A

C C

G T C C

CC

G GC

A

C

G

x(n−1,n)

y(n−3,n−1)

· · ·C G

C G

G C

T G

C A

C G

· · ·

· · ·

x(1,2) x(5,7) x(9,9)

y(2,6) y(7,8)

x

y

Θ(x) = Θ(y)AΘ(x) =

Fig. 1. An example of non-overlapping inversions on both strings x and y, where Θx =
(1, 2)(3, 3)→(4, 4)→(5, 7)(8, 8)→(9, 9) · · · (n− 1, n) and Θy = (1, 1)→(2, 6)(7, 8)(9, 9)→ · · · (n−
3, n − 1)(n, n)→. Note that (i, i)→ denotes the alignment at position i without comple-
menting x[i].

Note that this problem is different from the previous problem [13, 14], where
a non-overlapping inversion occurs only in one string and transforms the string
to the other string; namely Θ(x) = y for a set Θ of non-overlapping inversions.
On the other hand, we consider more general case where inversions can occur
in both x and y simultaneously. The problem is also equivalent to the string
alignment problem allowing the inversions occurring at most two times at the
same positions.

2 Preliminaries

Let A[a1][a2] · · · [an] be an n-dimensional array, where the size of each dimen-
sion is ai for 1 ⇒ i ⇒ n. Let A[i1][i2] · · · [in] be the element of A with in-
dices (i1, i2, . . . , in). Given a finite setΣ of character and a string s overΣ, we use
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|s| to denote the length of s and s[i] to denote the symbol of s at position i. We use
s(i,j) to denote a substring s[i]s[i+1] · · · s[j], where 1 ⇒ i ⇒ j ⇒ |s|. We consider
biological operation inversion θ and denote by θ(s) the reverse and complement
of a string s. For example, θ(A) = T and θ(AGG) = θ(G)θ(G)θ(A) = CCT . We
define an inversion operation θ(i,j) for a given range i, j as follows:

θ(i,j)(s) = θ(s(i,j)).

For simplicity, we use (i, j) instead of θ(i,j) if the notation is clear in the

context. We say that i+j
2 is the center of the inversion for (i, j). We define a

set Θ of non-overlapping inversion to be

Θ = {(i, j) | 1 ⇒ i ⇒ j and for ∪(i≤, j≤) →= (i, j) ∃ Θ, j < i≤ or j≤ < i}.

Then, for a set Θ of non-overlapping inversions and a string s, we have Θ(s) = s≤,
where

s≤[i] =

{
θ(s[j + k − i]) if (j, k) ∃ Θ and j ⇒ i ⇒ k

s[i] otherwise.

For example, given Θ = {(1, 1), (2, 3)} and s = AGCC, we have Θ(s) =
θ(A)θ(GC)C = TGCC. From now on, we use a set of inversions instead of a
set of non-overlapping inversions since we only consider sets of non-overlapping
inversions.

Definition 1. We define a new alignment problem with non-overlapping inver-
sions on two strings as follows: Given two strings x and y of the same length,
can we determine whether or not there exist two sets Θx and Θy of inversions
such that Θx(x) = Θy(y)?

3 The Algorithm

We use x = AGCT and y = CGAA as our example strings for explaining the
algorithm. Remark that θ(AG)Cθ(T ) = CTCA = Cθ(GA)A and, thus, we have
two sets Θx = {(1, 2), (4, 4)} and Θy = {(2, 3)}.

We start from building a table in which each cell contains a pair of a range
and a character. We define an array Tx[n][n+ 1] for x as follows:

Tx[i][j] =


⎪⎧

⎪⎨

((j, i), θ(x[j])) if j < i,

((i, i)≤, x[i]) if j = i,

((i, j − 1), θ(x[j − 1])) if j > i.

We call all elements in Tx inversion fragments of x. For an inversion frag-
ment F = ((p, q), σ) or ((p, p)≤, σ), we say that F yields the character σ and p+q

2
is the center of the inversion fragment. For a sequence of inversion fragments
F1, . . . ,Fn, where Fi yields σi, we say that the sequence yields a string σ1 · · ·σn.
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Inversion fragments become useful to compute a substring created by any inver-
sion because of the following property of the inversion operation:

θ(i−1,j+1)(x) = θ(x[j + 1])θ(i,j)(x)θ(x[i − 1]).

From a string x and its table Tx, we make the following observation:

Observation 1. For a string x and its Tx,

(1) θ(i,j)(x) = θ(x[j])θ(x[j − 1]) · · · θ(x[i + 1])θ(x[i]),
(2) ((i, j), θ(x[j])),((i + 1, j − 1), θ(x[j − 1])),. . . ,((i + 1, j − 1), θ(x[i +

1])),((i, j), θ(x[i])) are all inversion fragments in the ith, i+1th, . . ., j−1th,
jth columns of Tx and have the same center.

It is easy to verify from the construction that we can construct Tx in O(n2)
time and the size of Tx is O(n2), where |x| = n. See Fig. 2 for an example. We
also construct Ty for y.

Tx

1

2

3

4

5

4

((1, 4), T )

((2, 4), C)

((3, 4), G)

((4, 4)≤, T )

((4, 4), A)

3

((1, 3), T )

((2, 3), C)

((3, 3)≤, C)

((3, 3), G)

((3, 4), A)

2

((1, 2), T )

((2, 2)≤, G)

((2, 2), C)

((2, 3), G)

((2, 4), A)

1

((1, 1)≤, A)

((1, 1), T )

((1, 2), C)

((1, 3), G)

((1, 4), A)

Fig. 2. An example table Tx for x = AGCT . In this example, Tx[3][3] = ((3, 3)→, C)
means that we put C instead of θ(C) = G since the range is (3, 3)→. On the other hand,
we have Tx[3][4] = ((3, 3), G) because the range is (3, 3). Shaded cells denote inversion
fragments that represent the inversion θ(1,3).

Given a pair (((p1, p2), σ1), ((q1, q2), σ2)) of two inversion fragments, we say
that the pair is an agreed pair if q1 = p2 +1 or p1 + p2 = q1 + q2. Otherwise, we
call it a disagreed pair. Then, for two agreed pairs (((p1, p2), σ1), ((q1, q2), σ2))
and (((q1, q2), σ2), ((r1, r2), σ3)), we say that two pairs are connected by
((q1, q2), σ2). We define an agreed sequence S to be a sequence of inver-
sion fragments ((ai, bi), σi) for 1 ⇒ i ⇒ n, where a1 = 1, bn = n and
(((ai, bi), σi), ((ai+1, bi+1), σi+1)) is an agreed pair for 1 ⇒ i ⇒ n− 1.

Given an agreed sequence S, we define a set FΘ(S) of inversions from S as
follows:

FΘ(S) = {(p, q) | ∩S[p] such that S[p] = ((p, q), σ)}.
Given a set Θ of inversions, we can return an agreed sequence S from Θ as

follows: (namely, S = FS(Θ).)

S[i]=


⎪⎧

⎪⎨

((i, j + k − i), θ(x[j + k − i])) if ∩(j, k) ∃ Θ s.t. j ⇒ i ⇒ k and i < j+k
2 ,

((j + k − i, i), θ(x[j + k − i])) if ∩(j, k) ∃ Θ s.t. j ⇒ i ⇒ k and i ≥ j+k
2 ,

((i, i)≤, x[i]) otherwise.
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Observation 2. Given a string x and its set Θx of non-overlapping inversions,
FS(Θx) yields Θx(x).

Note that an agreed pair of two inversion fragments with the same center
represents the same inversion in Θ. We define an agreed sequence Sx (Sy, re-
spectively) to be legal if there exist Θx and Θy such that Θx(x) = Θy(y) and
FΘ(Sx) = Θx (FΘ(Sy) = Θy, respectively). Then, our problem is to determine
whether or not there exist legal sequences Sx and Sy for two strings x and y.

The main idea of our algorithm is to keep tracking of all possible agreed pairs
for adjacent indices and check if there exist two connected pairs Px and Py for x
and y, that generate a common substring of x and y; namely, we check if there
exist a common substring σ1σ2σ3 and Px = (F1,F2), (F2,F3) for x and Py for
y such that Fj yields σj . For instance, for x = AGCT and y = CGAA, there
exists a common substring CTC from index 1 to 3 such that

Px = (((1, 2), C), ((1, 2), T )), (((1, 2), T ), ((3, 3)≤, C))

and

Py = (((1, 1)≤, C), ((2, 3), T )), (((2, 3), T ), ((2, 3), C)).

Next, we define the following four sets for each index i:

Definition 2. For a string x, its Tx and an index i, we define four sets as
follows:

(1) AHi
x = {((p, i), σ) = Tx[i][p] | 1 ⇒ p ⇒ i ⇒ n− 1} ⊗ {((i, i)≤, x[i])}, which is

a set of all inversion fragments that end at i.

(2) AT i
x = {((i+1, q), σ) = Tx[i+1][q+1] | i < q ⇒ n}⊗{((i+1, i+1)≤, x[i+1])},

which is a set of all inversion fragments that start from i+ 1.

(3) BHi
x = {((p, q), σ) = Tx[i][j] | p > 1, 1 ⇒ j ⇒ n}, which is a set of all

inversion fragments that start before or from i.

(4) BT i
x = {((p, q), σ) = Tx[i + 1][j] | q < n, 1 ⇒ j ⇒ n}, which is a set of all

inversion fragments that end after or at i+ 1.

From these four sets, we establish the following observations:

Observation 3. Given a string x and its four sets AHi
x, AT

i
x, BHi

x and BT i
x,

the following statements hold: For two inversion fragments F1,F2, if (F1,F2) is
an agreed pair, then

(1) F1 ∃ AHi
x and F2 ∃ AT i

x, or

(2) F1 ∃ BHi
x and F2 ∃ BT i

x.

Based on Observation 3, it is possible to create all agreed pairs for an index i by
comparing AHi

x and AT i
x, and BHi

x and BT i
x. If we can connect pairs through all

indices, then we are able to generate all agreed sequences, which are essentially
all sets of non-overlapping inversions.
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We need additional tables Ci
x[|Σ|][|Σ|][|Σ|] and Ci

y[|Σ|][|Σ|][|Σ|] to record a
sequence of three characters generated by connected pairs. For an index i,

Ci
x[σ1][σ2][σ3] =

{
true if ∩Sx such that Sx[i− 1]Sx[i]Sx[i+ 1] yields σ1σ2σ3,

false otherwise.

We also define Si
x[2][n + 1] and Si

y[2][n + 1] as follows. For an index i and

1 ⇒ j ⇒ 2, 1 ⇒ k ⇒ n + 1, we say that Si
x[j][k] ≈ (t, σ1σ2σ3) if there exists

Sx such that

• Tx[i+ j − 1][k] = Sx[i+ j − 1] = ((p1, p2), σ3),
• t ⇒ i+ j − 1,
• Sx[t] = ((t, p1 + p2 − t), ω) for some ω.

In other words, an element (t, σ1σ2σ3) in the first column (second column, re-
spectively) of Si

x for an index i represents that there exists an agreed sequence Sx,
where inversion (t, s) (or the identity function at index t) creates a suffix of the
string yielded by the sequence.

We design an algorithm that computes Si
x and Si

y for each index and checks
whether or not Sn−1

x and Sn−1
y are empty. If Tx[1][j] yields σ, then we set

S1
x[1][j] = {(1, AAσ)} as initial data. We also set S1

y similarly. Note that each

cell in Si
x and Si

y has O(n) elements. Now we execute the following steps from
index 1 to n − 1 for x and y. We only illustrate the case for x. (The case for y
is similar.)

STEP-1:We check all inversion fragments in the ith column of Tx. For Tx[i][j] =
((j, i), σ2) (or ((i, i)

≤, σ2)), if (j, σ0σ1σ2) ∃ Si
x[1][j], then we add ((j, i), σ1σ2) (or

((i, i)≤, σ1σ2)) to a set AHi
x. Namely, AHi

x contains every inversion fragment that
can be the ith element in a legal sequence and ends at i. We need to check i+1
inversion fragments for this step, and for each inversion fragment, we need to
examine O(n) elements. Therefore, we need O(n2) time for the step.

STEP-2: We check all inversion fragments in the i+1th column of Tx. For
Tx[i + 1][i + 1] = ((i + 1, i + 1),≤ σ3), we add ((i + 1, i + 1)≤, σ3) to a set AT i

x.
Moreover, for each Tx[i+1][j] = ((i+1, j−1), σ3), we add ((i+1, j−1), σ3) to a
set AT i

x. In other words, AT i
x contains every inversion fragment that can be the

i+1th element in a legal sequence and starts from i+1. Note that AT i
x has n−i

inversion fragments. Therefore, the total process takes O(n2) time and requires
O(n) space for storing all inversion fragments.

Once we have two set AHi
x and AT i

x, we can calculate all agreed pairs gener-
ated from AHi

x and AT i
x.

STEP-3: Based on Observation 3(1), for every ((p1, i), σ1σ2) (or ((i, i)
≤, σ1σ2))

in AHi
x and ((i+1, p2), σ3) (or ((i+1, i+1)≤, σ3)) in AT i

x, we set C
i
x[σ1][σ2][σ3] =

true. We also add (i+ 1, σ1σ2σ3) to Si
x[2][p2]. Since |AHi

x| ⇒ i+ 1 and |AT i
x| =

n − i, we repeat this step at most (i + 1)(n − i) = O(n2) times. Thus, we can
update Ci

x and Si
x in O(n2) time.
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1

1

2

3

4

5

((1, 1)≤, A)

((1, 1), T )

((1, 2), C)

((1, 3), G)

((1, 4), A)

(1, AAA)

1 2S1
x

1

2

3

4

5

(1, AAC)

2

((1, 2), T )

((2, 2)≤, G)

((2, 2), C)

((2, 3), G)

((2, 4), A)

Tx

(1, AAT )

(1, AAG)

(1, AAA)

(2, AAG), (2, ATG)

(2, AAC), (2, ATC)

(2, AAG), (2, ATG)

(2, AAA), (2, ATA)

Fig. 3. An example for S1
x after STEP-3. Shaded cells in the first column of Tx are

AH1
x and shaded cells in the second column of Tx are AT 1

x .

We have calculated all agreed pairs generated from AHi
x and AT i

x in STEP-3,
and the other case of generating agreed pairs for an index i is to use the inver-
sion fragments with the same center from BHi

x and BT i
x. Note that inversion

fragments with the same center means the same inversion by Observation 1.

STEP-4: Based on Observation 3(2), for two elements ((p1, p2), σ2) = Tx[i][j]
and ((q1, q2), σ3) = Tx[i+1][k], where p1 + p2 = q1 + q2 and i →= j and i+1 →= k,
if (t, σ0σ1σ2) ∃ Si

x[1][j] and t ⇒ p1, then we set Ci
x[σ1][σ2][σ3] = true and add

(t, σ1σ2σ3) to Si
x[2][k]. For an inversion fragment in the ith column of Tx, we

can find the inversion fragment in the i+1th column with the same center in the
constant time. Since there are O(n) inversion fragments in ith column of Tx and
for each inversion fragment we need to examine O(n) elements in Si

x, the whole
process takes O(n2) time.

1

1

2

3

4

5

((1, 1)≤, A)

((1, 1), T )

((1, 2), C)

((1, 3), G)

((1, 4), A)

(1, AAA)

1 2S1
x

1

2

3

4

5

(1, AAC)

2

((1, 2), T )

((2, 2)≤, G)

((2, 2), C)

((2, 3), G)

((2, 4), A)

Tx

(1, AAT )

(1, AAG)

(1, AAA)

(2, AAG), (2, ATG)

(2, AAC), (2, ATC), (1, AGC)

(2, AAG), (2, ATG), (1, AAG)

(2, AAA), (2, ATA)

(1, ACT )

Fig. 4. An example for S1
x after STEP-4. Shaded cells in Tx generates elements for

S1
x.

STEP-5: For all three letter strings σ1σ2σ3 over Σ,

Ci
x[σ1][σ2][σ3] =

{
true if Ci

x[σ1][σ2][σ3] = true and Ci
y[σ1][σ2][σ3] = true,

false otherwise.

Once we recompute Ci
x, for each (p, σ1σ2σ3) in Sx, we remove (p, σ1σ2σ3)

from Si
x if Ci

x[σ1][σ2][σ3] = false. The process ensures that Si
x and Si

y produce

the same sequence of characters by connected pairs. Since the size of Si
x is O(n2)

and the size of Ci
x is constant, this step takes O(n2) time.



268 D.-J. Cho, Y.-S. Han, and H. Kim

Algorithm 1

Input: Strings x and y
Output: Boolean (whether or not there exist Θx and Θy s.t. Θx(x) = Θy(y).)
/* time complexity: O(n3), space complexity: O(n2) */

1 make Tx and Ty.
2 initialize S1

x and S1
y .

3 for i ∗ 1 to n− 1 do
4 for strings x and y do
5 for j ∗ 1 to i+ 1 do // STEP-1

6 σ2 is yielded from Tx[i][j]

7 if (j, σ0σ1σ2) ← Si
x[1][j] then ((j, i), σ1σ2) ← AHi

x

8 for j ∗ i+ 1 to n+ 1 do // STEP-2

9 Tx[i][j] ← AT i
x

10 for each ((p1, i), σ1σ2) ← AHi
x and ((i+ 1, p2), σ3) ← AT i

x do // STEP-3

11 Ci
x[σ1][σ2][σ3] = true

12 (i+ 1, σ1σ2σ3) ← Si
x[2][p2]

13 for j ∗ 1 to n+ 1 except min(i+ 1, 1), i do // STEP-4

14 if j = i+ 1 ∞ j = i+ 2 then
15 k ∗ j − 2

16 else
17 k ∗ j − 1

18 ((p1, p2), σ2) ∗ Tx[i][j], ((q1, q2), σ3) ∗ Tx[i+ 1][k]

19 if (t, σ0σ1σ2) ← Si
x[1][j] ◦ t ↓ p1 then

20 Ci
x[σ1][σ2][σ3] = true

21 (r, σ1σ2σ3) ← Si
x[2][k]

22 Ci
x, C

i
y ∗ Ci

x ◦ Ci
y // STEP-5

23 for strings x and y do
24 for each (p, σ1σ2σ3) ← Si

x do
25 if Ci

x[σ1][σ2][σ3] = false then remove (p, σ1σ2σ3) from Si
x

26 copy the second columns of Si
x and Si

y to the first column of Si+1
x and Si+1

y .

27 if the second columns of Sn−1
x and Sn−1

y are not empty then
28 return true

29 else
30 return false

We are now ready to present the whole procedure of our algorithm. See Al-
gorithm 1 that is a pseudo description of the proposed algorithm.

Once we finish calculating Si
x and Si

y using STEPS-1,2,3,4 and 5 from index
1 to n − 1, we check whether or not the second columns in Sn−1

x and Sn−1
y are

empty. If they are not empty, then there exist agreed sequences for x and y that
generate the same string, which are legal sequences. On the other hand, if they
are empty, then there are no legal sequences for x and y.
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1

1

2

3

4

5

((1, 1)≤, A)

((1, 1), T )

((1, 2), C)

((1, 3), G)

((1, 4), A)

(1, AAA)

1 2S1
x

1

2

3

4

5

(1, AAC)

2

((1, 2), T )

((2, 2)≤, G)

((2, 2), C)

((2, 3), G)

((2, 4), A)

Tx

(1, AAT )

(1, AAG)

(1, AAA)

(2, ATC), (1, AGC)

(1, ACT )

1

1

2

3

4

5

((1, 1)≤, C)

((1, 1), G)

((1, 2), C)

((1, 3), T )

((1, 4), T )

(1, AAC)

1 2S1
y

1

2

3

4

5

(1, AAC)

2

((1, 2), G)

((2, 2)≤, G)

((2, 2), C)

((2, 3), T )

((2, 4), T )

Ty

(1, AAG)

(1, AAT )

(1, AAT )

(2, AGC), (1, ATC)

(2, ACT )

(2, ACT )

Fig. 5. An example for S1
x and S1

y after STEP-5. Note that the second column of S1
x

and S1
y generate same substrings, ACT , ATC and AGC.

Tx

1

2

3

4

5

1 2S3
x

1

2

3

4

5

4

((1, 4), T )

((2, 4), C)

((3, 4), G)

((4, 4)≤, T )

((4, 4), A)

(3, TCG)

(1, GCT )

3

((1, 3), T )

((2, 3), C)

((3, 3)≤, C)

((3, 3), G)

((3, 4), A)

(3, CTC)

(4, CTT ), (4, TCT ), (4, CGT )

(4, CTA), (4, TCA), (4, CGA)

Fig. 6. An example for S3
x after STEP-5. Since the second column of S3

x (and S3
y) is

not empty, the algorithm returns true.

Theorem 4. The proposed algorithm runs in O(n3) time using O(n2) space,
where n = |x| = |y|.

Lemmas 1 and 2 guarantee the correctness of our algorithm.

Lemma 1. If (t, σ1σ2σ3) ∃ Si
x[2][j] after completing STEP-5, then there exists

(t≤, σ0σ1σ2) ∃ Si−1
x [2][k] after completing STEP-5.

Lemma 2. If there exists a string s = σ0σ1 · · ·σn such that Si
x[2][ji] =

(ti, σi−1σiσi+1), then there exists a sequence S of inversion fragments whose
ith element S[i] is

S[i] = Tx[i][k],where


⎪⎧

⎪⎨

k ∃ {1, 2} and Tx[1][k] yields σ1 if i = 1 and t1 = 2,

Tx[i][k] = ((1, p+ q − 1), σ1) if i = 1 and t1 = 1,

k = ji otherwise.

Then, S is an agreed sequence.
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Theorem 5. We can solve the alignment with non-overlapping inversion prob-
lem in O(n3) time using O(n2) space, where n is the size of input strings.

Algorithm 2

Input: Strings x and s of length n
Output: Agreed sequence Sx for x such that Sx yields s

1 t ∗ 1 // t is the length of the comparing substrings

2 for i ∗ 1 to n do
// comparing substrings created from identity function

3 if t = 1 ◦ θ(x)[n+ 1− i] = θ(s[i]) then
4 add ((i, i)→, s[i]) to Sx

// comparing substrings created from inversion

5 else if θ(x)(n+1−i,n+t−i) = s(i−t+1,i) then
6 for j ∗ 1 to �t/2� do
7 add ((i− t+ j, i+ 1− j), s[i− t+ j]) to Sx

8 for j ∗ 	t/2
 to t do
9 add ((i+ 1− j, i− t+ j), s[i− t+ j]) to Sx

10 t ∗ 1

11 else
12 t ∗ t+ 1

13 return Sx

Next, we consider the problem of retrieving an alignment when we know that
there exist two non-overlapping inversions for x and y. Note that Algorithm 1
determines the existence of Θx and Θy .

Definition 3. We define the alignment finding problem with non-overlapping
inversions on two strings as follows: Given two strings x and y of the same
length, find two sets Θx and Θy of inversions such that Θx(x) = Θy(y).

We tackle the problem in Definition 3 by retrieving the common string s such
that s = Θx(x) = Θy(y). After completing STEP-5 for each i, we store every
σ1σ2σ3 to a set F i, where Ci

x[σ1][σ2][σ3] = true.

Observation 6. For such sets F i’s, we have the following two observations:

1. The space requirement for F i’s is O(n),
2. For any string s, where s(i−2,i) ∃ F i, for 3 ⇒ i ⇒ n, there exist Θx and Θy

such that s = Θx(x) = Θy(y).

Due to Observation 6, the problem becomes to find Θx for x and s such that
Θx(x) = s (and Θy for y). Algorithm 2 retrieves Sx equivalent to Θx from x
and s. The idea of the algorithm is that every substring generated by an inversion
on x is a substring of θ(x), and substrings do not overlap with each other on
θ(x) if inversions do not overlap. Fig. 7 illustrates this idea.
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θ(x) =

s = T G G A C C T

C T G G A C T

θ(x) =

s = T G G A C C T

C T G G A C T

θ(x) =

s = T G G A C C T

C T G G A C T

θ(x) =

s = T G G A C C T

C T G G A C T

...

i = 1

i = 2

i = 3

i = 4

t = 1

t = 1

t = 1

t = 2

Fig. 7. An example of comparing θ(x) and s, where x = AGTCCAG and s =
TGGACCT . Dotted boxes are compared substrings in each i. In θ(x), substrings
matched by inversions are same as substrings in s, and substrings matched by identity
functions are complements of substrings in s. When i = 3, since A �= G and C, t is
increased and the algorithm compares GA and GA when i = 4.

Theorem 7. Once we solve the alignment with non-overlapping inversion prob-
lem, we can solve the alignment finding problem in O(n2) using additional O(n)
space.

4 Conclusions

The inversion is an important operation for bio sequences such as DNA or RNA
and is closely related to mutations. We have, in particular, considered non-
overlapping inversions on both sequences, which is important to find the original
common sequence from two mutated sequences. We have proposed a new prob-
lem, alignment with non-overlapping inversions on two strings, and presented
a polynomial algorithm for the problem. Given two strings x and y, based on
the inversion properties, our algorithm decides whether or not there exist two
sets Θx and Θy of inversions for x and y such that Θx(x) = Θy(y) in O(n3)
time using O(n2) space, where n = |x| = |y|. Once we know the existence of Θx

and Θy , we can retrieve Θx and Θy in O(n2) time using additional O(n) space.
One future work is to improve the current running time O(n3). As far as we are
aware, this algorithm is the first try to find an alignment with non-overlapping
inversions on both strings. The proposed problem is about the sequence align-
ment and can be extended to approximate pattern matching or edit distance
problem.
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Abstract. We provide a uniform framework for proving the collapse of the hier-
archy NC1(C) for an exact arithmetic class C of polynomial degree. These hierar-
chies collapse all the way down to the third level of the AC0-hierarchy, AC0

3(C).
Our main collapsing exhibits are the classes

C ∈ {C=NC
1,C=L,C=SAC

1,C=P}.
NC1(C=L) and NC1(C=P) are already known to collapse [1,19,20].

We reiterate that our contribution is a framework that works for all these hi-
erarchies. Our proof generalizes a proof from [9] where it is used to prove the
collapse of the AC0(C=NC

1) hierarchy. It is essentially based on a polynomial
degree characterization of each of the base classes.

1 Introduction

Collapsing hierarchies has been an important activity for structural complexity theorists
through the years [13,22,15,24,19,18,5,12]. We provide a uniform framework for prov-
ing the collapse of the NC1 hierarchy over an exact arithmetic class. Using our method,
such a hierarchy collapses all the way down to the AC0

3 closure of the class.
Our main collapsing exhibits are the NC1 hierarchies over the classes C=NC

1, C=L,
C=SAC

1, C=P. Two of these hierarchies, viz. NC1(C=L),NC
1(C=P), are already

known to collapse ([1,20,19]) while a weaker collapse is known for a third one viz.
that of AC0(C=NC

1). We reiterate that our contribution is a simple proof that works
for all these hierarchies. Our proof is a generalization of a proof from [9] who used it
to prove the collapse of the C=NC

1 hierarchy and is essentially based on a polynomial
degree characterization of each of the corresponding arithmetic classes.

The most well known amongst the exact arithmetic circuit hierarchy collapses is the
collapse of the NC1 hierarchy over C=L. This was proved by using the linear algebraic
properties of C=L an elegant and non-trivial argument by Allender, Beals, and Ogihara
[1]. We find it remarkable that our proof does not use any linear algebra (apart from the
characterization of GapL functions as being exactly the functions computed by weakly
skew circuits [25], which involves a certain amount of linear algebra) to prove the col-
lapse to AC0

3(C=L).
The collapse of the NC1 hierarchy over C=P to a constant level of the AC0 hierarchy

follows easily from the results by Ogihara from [20,19]. Our proof is quite orthogonal
to the proofs there.

We would like to point out a notational quirk that we carry over from [9] by consis-
tently calling the finite level of AC0 circuit to which we collapse the various classes as

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 273–285, 2014.
c© Springer International Publishing Switzerland 2014
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AC0
3 where we actually mean two layers of Boolean gates i.e ≥,⇒. The reason for the

subscript 3 being that we include negation gates while counting the depth contrary to
popular usage.

1.1 Historical Perspective

Counting classes have been studied from the early days of complexity theory. Gill and
Simon [11,23] were the first to introduce the class PP(Probabilistic polynomial time)
which consists of all languages decidable by a nondeterministic Turing machine in poly-
nomial time in which at least half of the computation paths lead to acceptance. This class
gained importance due to Toda’s theorem (which states that a polynomial time machine
with access to a PP oracle is at least as powerful as the entire polynomial hierarchy)
and Beigel, Reingold and Spielman [4] who proved that it is closed under intersection.

C=P is the humbler cousin of PP though it happens to be one of our main protago-
nists. It was introduced by Simon [23] and consists of languages where the acceptance
and rejection probability is the same.

Fenner, Fortnow and Kurtz[10] introduced the notion of Gap to aid the study of struc-
tural complexity of these counting classes. For a class C, captured by nondeterministic
Turing machines, denote by GapC the class of functions expressible as the difference
between the number of accepting and rejecting computations of some nondeterminis-
tic Turing machine. Then C=P is just those languages which have a zero gap (with an
NP-machine).

The class C=L and the NC1,AC0 hierarchies over it have also received attention in
literature [1,21,14]. In [1] it was first proved that the NC1 hierarchy over C=L collapses
all the way down to the first level of the hierarchy, LC=L. Further collapse to C=L is not
known because this class is not known to be closed under complement.

The class C=NC
1 was probably mentioned explicitly for the first time in [7] where

it is shown that (a uniform version of) it is contained in Logspace. Various hierarchies
over this class including the Boolean, AC0, and the arithmetic hierarchy were studied
in [9].

To the extent of our knowledge, the only previous known occurence of the class
C=SAC

1 is in the context of deciding the properties of monomials computed by arith-
metic circuits[17]. The classes SAC1 and its arithmetic analogs #SAC1,GapSAC1 have
been actively investigated in literature [28,2,16].

1.2 Our Results

In this paper, we extend and generalize the framework used in [9] to prove that the
NC1(C=K) for a NC1-well-behaved class1 K collapses to AC0

3(C=K). As a result, we
obtain several results as corollaries:

1. AC0(C=NC
1) = NC1(C=NC

1) = AC0
3(C=NC

1), improving on [9].
2. AC0(C=L) = NC1(C=L) = AC0

3(C=L), which gives an alternative proof of [1]

1 See Definitions 4, 8.
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3. AC0(C=SAC
1) = NC1(C=SAC

1) = AC0
3(C=SAC

1).
4. AC0(C=P) = NC1(C=P) = AC0

3(C=P), which gives an alternative proof of [19]

We prove that such a collapse can be made DLOGTIME-uniform. Note that we
need to prove this strict uniformity of our collapse in order to exploit Venkateswaran’s
characterization of NP as exactly those languages that are decidable by DLOGTIME-
uniform semi-unbounded circuit families of exponential size.

1.3 Proof Idea

The unifying feature of the aforementioned classes(C=NC
1, C=L, C=P, C=SAC

1) is
that roughly speaking, they can be viewed as languages accepted by the C=-version of
an arithmetic circuit family of polynomial degree. Thus if we consider arithmetic for-
mulas, arithmetic weakly skew circuits, arithmetic circuits of polynomial size and arith-
metic circuits of exponential size respectively, then imposing the polynomial degree
bound gives us exactly the classes GapNC1,GapL,GapSAC1 and GapP [7,25,26,27].
Applying the C= operator to these arithmetic classes yields our candidate exact arith-
metic classes. We also tacitly use that the class of circuits are closed under composition
with formulas.

The other important point to notice is that the [9] proof which just shows the col-
lapse of the AC0(C=NC

1) hierarchy to the third level can be extended to a collapse of
NC1(C=NC

1). This follows by observing that the level by level collapse outlined in
[9] does not blow up the degree to more than a polynomial value even though we need
to perform it logarithmically many times. This is because of the Cook-Wilson rela-
tivization, which can be interpreted as saying that if the oracle circuits have polynomial
degree, so is the final circuit. This idea can then be generalized to any circuit family of
polynomial degree.

A simple but crucial observation makes it possible to extend the results from bounded
fan-in circuits in [9] to circuits where this restriction does not hold e.g. in the cases
of C=SAC

1 and C=P. This observation concerning Vandermonde Determinants is de-
scribed in Proposition 1 and used in the proof of Lemma 1.

1.4 Organization of the Paper

We present preliminaries in Section 2. In Section 3, we state our main result and list
some immediate corollaries of our result. We discuss possible future directions to our
work in Section 5.

2 Preliminaries

We mention the standard complexity classes that we will use. For definitions and im-
portant results regarding these classes, we refer the reader to a standard text like [29].

An arithmetic circuit is a directed acyclic graph(DAG) with nodes labelled by
{×,+} ∪ X ∪ {−1}, where X is the set of input variables. Note that −1 is the only
constant necessary, and we can use it to generate 1 = (−1)× (−1), 0 = (−1)+ 1, and
use −1, 0, 1 to generate any integer.
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Given an arithmetic circuit C, the formal degree of the circuit is defined inductively
as follows: Every input variable and the constant −1 have degree2 1. If C1 and C2 are
two subcircuits of degree d1 and d2 fed in to a × gate (respectively + gate), then the
degree of the × gate (+ gate) is d1 + d2 (respectively max (d1, d2)).

An (m×m) Vandermonde matrix V is one where the (i, j)-th entry of V , Vij = ij .

Fact 1. The absolute value of determinant of V is equal to
∏

i<j;i,j∩m(j − i) =∏m
k=1 k!

It is important to note that the determinant of an (m×m)-Vandermonde matrix(with
entries that are indeterminates) can be computed by an arithmetic circuit of degree
m. But since we start out with just the constant −1, we will have to construct these
numbers 1, . . . ,m and use them to find the the entries of the matrix, which can be
done via repeated squaring and addition with a circuit of size at most O(m2), depth
O(logm) and degree O(m2 logm), for every entry of the matrix. Also, the value of
this determinant is at most

∏m
k=1 k! → (m!)m → mm2

which can be computed by an
arithmetic circuit of size at most O(

(
m
2

⎪
m2) = O(m4), depth O(logm) and degree

O(m4 logm).
We start with the usual definitions of AC0 and NC1 hierarchies over Boolean com-

plexity classes.

Definition 1. Let C be a Boolean complexity class. AC0(C) is the class of languages
recognized by AC0 circuits with additional oracle gates(of unbounded fan-in) for C.

Defining the NC1 hierarchy naively as above will yield a circuit where there could be
O(log n) many oracle gates on any path, which will stand in contrast to the definition
of NC1 as that of circuits with bounded fan-in gates. The definition due to Cook and
Wilson[8,30] gives a reasonable model, which avoids these problems:

Definition 2. (Cook-Wilson) Let C be a Boolean complexity class. NC1(C) is the class
of languages recognized by NC1 circuits with additional oracle gates for C, where an
oracle gate of fan-in k is charged log k towards the depth of the circuit.

We note that the small blob chains property defined in [9] is essentially modelled
by the Cook-Wilson relativization for NC1 as given in Definition 2. An easy inclu-
sion follows from the definitions above: For any boolean complexity class C, we have
AC0(C) ∃ NC1(C). Next, we abstract the classes of base circuits over which we will
consider various hierarchies:

Definition 3. Let K be a class of arithmetic circuits. Then C=K is the class of lan-
guages recognized by the circuits from the class K with an additional gate at the top
that compares the output to zero to produce a Boolean output.

We will abuse notation to identify C=K with the class of circuits recognizing the class
of represented languages.

2 Note the non-standard convention to account for the degree of a constant. We do this so as to
account for the size and degree contribution of the Vandermonde matrices, which we will use
extensively in our results.
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Definition 4. Let K1,K2 be classes of circuits. Then K1 ∩ K2 is the class consisting of
circuits with a circuit from K1 at the top, all of whose inputs are circuits from K2. We
say that the class K2 is closed under composition with K1 if K2 ∩ K1 ∃ K2.

Definition 5. (Cook-Wilson for Arithmetic Classes) Let K be an arithmetic complex-
ity class of polynomial formal degree. A special case when K is composed with itself
O(log n) many times is denoted by,

K(l) =

O(log n) times
⎧ ⎨⎩ ⎫
K ∩ K . . . ∩ K

where along any path in the K(l) circuit, the product of the degrees of K circuits is
bounded by a polynomial in the number of input variables to the K(l) circuit.

Throughout the paper, we use a very specific type of AC0 circuit, namely, an AC0
3

circuit which is essentially a boolean circuit of depth 3 consisting of an ⇒ gate at the
root, followed by a layer of ≥ gates, which are fed by C=K or coC=K oracle gates. We
will refer to such circuits as AC0

3(C=K) circuits.

Definition 6 (Toda[25]). A gate in a circuit is said to be weakly skew if for any mul-
tiplication gate Π with children σ and φ,one of the two sub-circuits Cβ or Cγ is only
connected to the rest of the circuit by the wire going to Π. A weakly skew circuit is one
where all the multiplication gates are weakly skew.

A simple consequence of this definition is that every formula is a weakly skew circuit.

3 Exact Arithmetic Hierarchies

Definition 7. Some examples of natural arithmetic circuit classes are as follows:

– Kform are formulas of polynomial size
– Kwskew are weakly skew circuits of polynomial size
– Kpoly are circuits of polynomial degree and polynomial size

– Kexp are circuits of polynomial degree and exponential (= 2n
O(1)

) size

Throughout this paper, we will be interested in uniform versions of the classes
above. Unless mentioned otherwise, all the arithmetic circuit families we mention are
DLOGTIME-uniform.

Proposition 1. We prove the following for the aforementioned circuit classes:

1. C=Kform = C=NC
1

2. C=Kwskew = C=L
3. C=Kpoly = C=SAC

1

4. C=Kexp = C=P
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Proof. Some of the above follow from well-known results:

1. Follows from the simulation of formulas by arithmetic straight-line programs due
to Ben-Or and Cleve [6].

2. Follows from Toda’s characterization of determinant using weakly skew
circuits[25].

3. Follows from Venkateswaran’s uniform circuit characterization of SAC1 as con-
sisting of languages recognized by circuit families having polynomial degree and
polynomial size[27,26].

4. Follows from Venkateswaran’s uniform circuit characterization of NP as consisting
of languages recognized by circuit families having polynomial degree and exponen-
tial size.[27]

⊗≈

Notice that skew circuits which yield the usual definition of GapL are not closed under
composition with formulas (because formulas are not necessarily skew circuits). Thus
we have to use the alternative(and equivalent) definition of GapL in terms of weakly
skew circuits and in this case all formulas are indeed weakly skew. One of the key
requirements in our collapse is the ability to compose two different circuit families.

Definition 8. Given an arithmetic class K, consider the following:

(i) Kform ∃ K
(ii) K ∃ Kexp.

(iii) K ∩ K ∃ K
(iv) K(l) ∃ K.

We call K, AC0-well-behaved if it satisfies (i), (ii), (iii) and NC1-well-behaved if it
satisfies (i), (ii), (iv).

It is easy to see that every NC1-well-behaved class of circuits K is also AC0-well-
behaved. Theorem 1 below already entails a collapse of AC0(C=K) by the observation
that NC1-well-behaved implies AC0-well-behaved. We show that if one is interested in
the collapse of AC0(C=K) then it is sufficient for K to be AC0-well-behaved, which is
a weaker notion.

Our main goal in this paper is to study the AC0 and NC1 reducibilities to C=K.
AC0(C=K)(respectively NC1(C=K)) is the class consisting of languages which can
be decided by constant depth(respectively O(log n)-depth), polynomial size circuits
consisting of ≥, ⇒, ¬ and C=K gates. Our main theorem is the following:

Theorem 1. For every NC1-well-behaved class K the exact hierarchy NC1(C=K) col-
lapses to AC0

3(C=K).

Proof. First we recall some terminology from [9]. Let C be a circuit from NC1(C=K).
Then a blob consists of the subcircuit rooted at some equality gate g in the circuit where
the equality gates in the sub-circuit are replaced by new formal variables. In other words
it consists of a single oracle gate. A blob chain consists of a root to leaf path in the NC1

circuit and includes all the equality gates (aka oracle gates) along the path.
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We need a generalization of a lemma from [9] which shows that a circuit of two blob
layers i.e. a blob with its input blobs can be replaced by a shallow Boolean circuit (AC0

3)
with a single layer of blobs below it. In this “flattening” process the degree and the size
of the circuit increase by an extent we explicate in the lemma.

In [9] this lemma was proved in the context of C=NC
1 but can be generalized to

any C=K since the only property of GapNC1 used in its proof was that it was a class
of arithmetic circuits closed under composition with logarithmic depth polynomial size
formulas; and this is true for all well-behaved K by definition.

Lemma 1. (Rephrased from [9]) Let C0(x), C1(y), . . ., Cm(y) be m+1 circuits from
C=K. Let f : y ∧∞ C0(C(y)) be the function computed by feeding in the circuits Ci for
i > 0 as inputs of C0. Then, f is also computed by the following AC0

3(C=K) circuit:

m⎬

i=1

zi(y) =

m⎬

i=1

[Si,0(C
≤(y)) ≥ Si,1(C

≤(y)) ≥Bi(C
≤(y))]

Notice that, we have used abbreviations, x = (x1, . . . , xm),y = (y1, . . . , yn), and
similarly C,C≤ to simplify notation. More importantly, C≤

i are functions in K, Si,0 is a
C=K circuit, Si,1 is a C∈=K circuit, and Bi from C∈=K. Further, the size and the degree
of the entire circuit is bounded by O(ms0) +O(m8s) and O(m9d+ d0d) respectively.
Here s0 is the size of C0, s is the sum of sizes of the Ci’s (for i > 0), d0 is the degree of
C0 and d is the sum of degrees of Ci’s for i > 0.

Emulating [9] we can use Lemma 1 (We present a complete proof of the lemma in
[3]) to collapse two levels of blobs into one with an AC0

3 circuit at the top. The AC0
3

circuit can be converted to an element of Kform (the proof of the lemma shows that the
AC0

3 circuit is an unambiguous formula and straightaway arithmetization will preserve
the value). Assuming we start with a AC0

k(C=K) circuit, then the closure of K under
composition with Kform allows us to convert the circuit to the form AC0

k−1(C=K) i.e.
with depth one lesser than earlier. Since we need to repeat this operation k times the
size remains bounded by nO(k) times the size of the original circuit and the degree
by the degree of the original circuit raised to a power which is O(k). Notice that this
seems to work only for AC0 relativizations because the naı̈ve upper bounds on the size
and degree become quasipolynomial when we repeat the collapse logarithmically many
times as necessitated by NC1 relativizations. We show in Lemma 3 that this not the
case.

Now we show how to do a careful analysis of the collapse in case of NC1 relativiza-
tions which allows us to conclude that the size and degree do not become too large. The
key is to use basic counting along with Cook-Wilson condition on NC1-relativization
which allows us to conclude the following:

Proposition 2. Consider an NC1(C=K) circuit C with size, height and number of in-
puts s(C), h(C) and n(C) respectively. Then,

– the number of distinct maximal blob chains is upper bounded by s(C).
– the product of the fan-ins of the oracle gates along a blob-chain is upper bounded

by (n(C))c1 for some constant c1 depending on the circuit family;(a consequence
of the Cook-Wilson property)
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Next we bound the total size of the flattened circuit. Lemma 2 shows that, for the
K(l) circuits obtained as a result of the collapse, indeed K(l) = K.

Lemma 2. The size of the flattened circuit is upper bounded by: ncs2, where s is the
sum of sizes of the circuits corresponding to oracle gates and c is a constant depending
on the family of circuits (and n is the number of inputs to the original circuit).

Proof. We use the recurrence:

S(g) = 3f9
g

⎭

h:parent(h)=g

S(h) + sgfg (1)

→ 3f9
g

⎭

h:parent(h)=g

S(h) + s2g (Since fg → sg) (2)

Here S(g) is the total size of the sub-circuit below gate g after flattening, sg is the
original size of the K-circuit for just the gate g and fg is the fan-in of g. Let us further
denote by hg the height of g. Then the recurrence has the solution:

S(g) = 3hg

⎭

g′:g′ is a descendant of g

⎛

⎝

⎛

⎝
∏

h∗B(g,g′)

f9
h

⎞

⎠ s2g′

⎞

⎠

where B(g, g≤) denotes the blob-chain between g and g≤.
Let g0 be the root of the circuit. From Proposition 2, the products of the fan-ins in

the sum above is upper bounded by nc1 , where n = n(C) is the number of inputs of the
circuit. Also, hg0 is bounded by c≤2 logn for some constant c≤2, since the reduction is an
NC1 reduction. Hence, S(g0) → nc

∑
g sg

2. ⊗≈
Finally we bound the degree of the flattened circuit, which is crucial to proving our

collapse:

Lemma 3. The degree of the flattened circuit is bounded by nc′ where c≤ is a constant
depending on the original circuit family.

Proof. The degree of a well-behaved circuit on t inputs is at most tc
′
1 for some constant

c≤1 depending on the circuit family (since a circuit family is a subclass of Kexp circuits
which have a polynomial degree. Now, we have the recurrence:

D(g) = f9
g dg

⎭

h:parent(h)=g

D(h)

where we define D(g) to be the degree of the flattened circuit at g and dg its original
degree as a circuit in K. This has the solution:

D(g) =
⎭

B:B is a maximal blob-chain rooted at g

(
∏

h:h∗B

(f9
hf

c′1
h )

)

Thus, D(g0) → s(C)n(c′1+1)c1 → nc′ , using the bounds from Proposition 2 for the
first inequality and observing that the fan-in of any oracle gate and the size of the NC1

circuit is bounded by n. ⊗≈
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Hence we have proved that for each equality gate in the final circuit, the degree remains
polynomial via composition with formulas which means the circuit rooted at the equal-
ity gate is in C=K, and the overall circuit in AC0

3(C=K). This completes the proof of
the theorem. ⊗≈

We now document some consequences of Theorem 1:

Corollary 1. NC1(C=NC
1) = AC0

3(C=NC
1)

Proof. Formulas are AC0-well-behaved since they are clearly closed under composition
with formulas and have polynomial degree. The fact that they are NC1-well-behaved
follows from Definition 5, namely the arithmetic Cook-Wilson property. ⊗≈

Corollary 2. NC1(C=L) = AC0
3(C=L)

Proof. Weakly skew circuits are closed under composition with Kform since Kform

circuits are weakly skew(by [25]). Also, the polynomials computable by weakly skew
circuits of polynomial size are also computable by determinants of polynomial sized
matrices by [25]. Hence the former have polynomial degrees. Thus weakly skew circuits
are AC0-well-behaved. To prove that weakly skew circuits are NC1-well-behaved, it is
sufficient to note that, weakly skew circuits composed with themselves O(log n)-many
times, remain weakly skew due to the arithmetic Cook-Wilson in Definition 5. ⊗≈

Corollary 3. NC1(C=SAC
1) = AC0

3(C=SAC
1)

Proof. Formulas of polynomial size have polynomial degree, thus polynomial degree
circuits of polynomial size are closed under composition with them completing the
proof that they are AC0-well-behaved. Similarly, polynomial degree circuits composed
with themselves O(log n)-many times still have polynomial formal degree, and hence
are NC1-well-behaved. ⊗≈

Corollary 4. NC1(C=P) = AC0
3(C=P)

Proof. This also follows exactly from the same reasoning as the one for C=SAC
1

circuits. ⊗≈

4 Uniformity

We have proved that NC1(C=K) collapses to AC0
3(C=K). In this section we show that

such an AC0
3(C=K) family is DLOGTIME-uniform, when the original NC1(C=K) cir-

cuit family is DLOGTIME-uniform.
Following [29], we call our AC0

3 circuit uniform, if the following language can be
decided in O(log n) time by a deterministic turing machine (random access to its tape)
: LDC = {∨y, g, p, b∀}, where

– |y| = n
– g is the number of a gate v in Cn
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C3 C2

C=K

C=K
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∧
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C∗=K

C=K
...
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∨
S1,0

S1,1

B1
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∧
Sm,0

Sm,1

Bm

∨

...
C1

...

A B

Fig. 1. (A) A circuit of the form C1 ◦ C2 ◦C3 = C=K ◦ C=K ◦ C=K (B) The collapsed circuit
obtained from the circuit C1 ◦ C2 ◦C3 above of the form C1 ◦C→

2 ◦C→
3 = C=K ◦ ∨ ◦ ∧ ◦C=K

– p ← {0, 1}∗ such that if p = ρ, then b encodes the type of the gate from the basis of
the circuit family and if p is the binary representation of k, then b is the number of
the k-th predecessor gate to v wrt to a fixed ordering on the gates in the circuit.

We encode every gate g in the given circuit NC1(C=K) C by a concatenation of two
labels (ge, gi). ge is an external encoding which assigns labels lexicographically to ev-
ery C=K gate in C. gi is an internal encoding which assigns labels to the +,×,= gates
which constitute the C=K gates. More precisely, given ∨y, g, p, b∀, we have y = 1n,
g = (ge, gi). ge is a O(log n) length string (since the underlying circuit is a NC1

circuit the total number of bits needed to uniquely address a gate in the circuit is
O(log n) + maxπ

∑
g∗π log fanin(g) = O(log n), where the maximum is taken over

all paths ε in the circuit) by the definition of oracle circuits in the Cook-Wilson model).
gi is of length O(log n)(since each of the C=K gates is poly-sized)3.

We will analyze a typical scenario in our collapse - Given a circuit of the form C =
C1∩C2∩C3 (see Figure 1A), whereC1, C2 andC3 areC=K circuits, we collapseC2 and
C3 to obtain a circuit C≤ = C1∩C≤

2∩C≤
3 (see Figure 1B). Here C≤

2 is a circuit of the form
⇒ ∩ ≥ and C≤

3 is a layer of C=K circuits. We prove that the collapse of C to C≤ can be
made DLOGTIME-uniform and then show that under the Cook-Wilson property, such
collapses can be combined to make the collapse of NC1(C=K), DLOGTIME-uniform.

Claim. For every NC1-well-behaved class K, DLOGTIME-uniform C=K ∩ C=K ∩
C=K = DLOGTIME-uniform AC0

3(C=K).

Proof. Assuming the DLOGTIME-uniformity and the aforementioned labelling
scheme of C, we will now see how to decide the connection language of C≤ when
we have access to the connection language of C. First we explain how we label C≤ from
C: The labels of C1 carry over from C to C≤. For the ⇒ ∩ ≥ circuit C≤

2 we give new
set of external and internal labels similar to C. This takes O(log n) many bits. There

3 Note that from [27] C=P is exactly characterized by DLOGTIME-uniform semi-unbounded

circuits of 2n
O(1)

size and logarithmic depth and in this case the labels of the gate themselves
will be strings of length nO(1)
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are two kinds of circuits in C≤
3: circuits computing the symmetric functions, which are

built via interpolation by symmetric polynomials, using the Vandermonde matrix and
circuits of the form C=K ∩ K (see Lemma 1). From Fact 1, it is clear that the entries
of this matrix can be computed by circuits of polynomial size, which are labelled using
O(log n) bits. The circuit of the form C=K ∩ K in C≤

3 is essentially C2 to which the
inputs are symmetric functions of C3. Even here we assign a concatenation of external
and internal encoding of the circuits from C2 and C3 respectively, which are O(log n)
bits long.

In each of C1, C
≤
2, C

≤
3, we identify three kinds of gates which we call Π0, Πcon, Πmid.

Π0 gates are either the output gate or the input gates of C≤. Πcon are gates which connect
Ci to Ci+1 for i ← {1, 2}. For example, the root gate of C1, the ⇒ gate in C≤

2 and the =
gate in C≤

3 are Πcon type gates - their parents and children are not of type Πcon. Πmid

gates are those whose parents and children are both Πmid or Πcon. The internal gates of
C1 and C3 are gates of type Πmid. Note that all the gates in C≤ belong to one of these
three categories.

So now we are ready to describe the label of a gate in C≤. It is of the form ∨y, g, p, b∀
as above where g is now the concatenation of the external labels of the path to the
nearest = ancestor to the gate and the internal label of the gate in C. For example, the
label of a gate in C≤

3 would consist of the concatenation of external labels of C1, C
≤
2, and

the internal label of the gate in C≤
3. If p is ρ, then b is the type of the gate, which could

be ≥,⇒,C=K. Else the binary number encoded by the string p points to the position of
the gate according to our fixed ordering. Note that at the end of one collapse, the label
lengths increase by atmost O(log n) bits(namely the bits required to internally label the
⇒∩≥ system arising out of the collapse. With the above labelling convention, now there
are two tasks to be accomplished:

1. Given a label of a gate g in C≤, we have to verify if it is indeed a valid label.
2. Given labels of gates g, h is g a parent/child of h?

The validity of a label is easily checked: One has to check if the concatenation of
labels leads to a valid external and internal encoding by querying the DLOGTIME ma-
chine for the original circuit C and check if it is a Π0, Πmid or Πcon gate. For example,
given two gates, deciding if one is the parent/child of the other can be done by checking
if the label of one of them is a prefix of the other, and if yes, verifying if the gate types of
the parent and child is valid according to the relation between Πs specified above. ⊗≈

Now we prove that such a labelling convention leads to easily checking the validity of
a label and connections in the collapse from Theorem 1.

Claim. For every NC1-well-behaved class K, DLOGTIME-uniform NC1(C=K) =
DLOGTIME-uniform AC0

3(C=K).

Proof. To label the final AC0(C=K) circuit, we concatenate the labels of the interme-
diate collapses. This might seem like it requires labels of length O(log2 n) since the
circuit we started out with had labels of length O(log n) and the NC1(C=K) circuit
requires O(log n) collapses to reduce it to an AC0(C=K) circuit. But just as in the
proof of Theorem 1, the Cook-Wilson property ensures that the length of the labels is
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O(log n). This is because, even though we do the collapse as many as O(log n) times,
the increase in label lengths is only due to the ⇒ ∩ ≥ block. Recall that the number
of ≥ gates created in 1 is exactly equal to the fan-in of the oracle gate above, and the
Cook-Wilson relativization model bounds the product of fan-ins along any path to a
polynomial in the number of inputs. This also bounds the number of new gates created,
and hence they can be labelled by O(log n)-many bits. ⊗≈

5 Conclusion and Open Problems

We provide sufficient conditions on arithmetic circuits under which the NC1 hierarchy
over the corresponding exact arithmetic class collapses. Natural extensions can include
proving similar results for more powerful reducibilities like Boolean Formula reduc-
tions or even Logarithmic Boolean Formula reductions (which do not satisfy the “small-
blob-chains” property or equivalently do not follow Cook-Wilson relativization). An
appropriately defined notion of SAC1-reductions is another intriguing possibility.

It may also be an interesting idea to give similar uniform proofs for the NC1 hier-
archies over the better known classes PNC1,PL,PSAC1,PP where we already know
collapses for the second[18] and the last [5] hierarchies and also of the AC0(PNC1)-
hierarchy [9].
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Abstract. We investigate the computational complexity of Disjoint
Π-Vertex Deletion. Here, given an input graph G = (V, E) and a
vertex set S ⊆ V , called a solution set, whose removal results in a graph
satisfying a non-trivial, hereditary property Π , we are asked to find a so-
lution set S′ with |S′| < |S| and S′∩S = ∅. This problem is partially mo-
tivated by the “compression task” occurring in the iterative compression
technique. The complexity of this problem has already been studied, with
the restriction that Π is satisfied by a graph G iff Π is satisfied by each
connected component of G [7]. In this work, we remove this restriction
and show that, except for few cases which are polynomial-time solvable,
almost all other cases of Disjoint Π-Vertex Deletion are NP-hard.

1 Introduction

A graph property Π can be considered as a set of graphs. We say that a graph
G satisfies Π if G ∈ Π . The classical Π-Vertex Deletion problem is defined as
follows:

Π-Vertex Deletion (Π-VD)
Input: An undirected graph G = (V, E) and a non-negative integer k.
Question: Is there a set S of at most k vertices whose removal results in a

graph G′ with G′ ∈ Π?

Many prominent problems are special cases of Π-VD. For example, Vertex
Cover is the case of Π being “edgeless”. Lewis and Yannakakis [16] showed that
Π-VD is NP-complete for any non-trivial, hereditary property Π that can be
verified in polynomial time. A graph property Π is hereditary, if it is closed
under vertex deletion, and non-trivial if it is satisfied by infinitely many graphs
and it is not satisfied by infinitely many graphs.

In the last 20 years, this NP-completeness result motivated various research
directions on Π-VD, for instance, approximation algorithms [1], its complexity
on special input graphs [10], and the edge deletion counterpart [17]. One of the
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recently most remarkable approaches to cope with the NP-completeness of Π-
VD is the parameterized algorithms [18,6]. Π-VD carries with its definition a
natural parameter, the solution size k.

In 2004, Reed et al. [19] introduced the iterative compression technique [14,18]
which turned out to be particularly useful for achieving parameterized algo-
rithms for Π-VD, for instance, Undirected/Directed Feedback Vertex
Set where Π is “acyclic” [4,13,2,3] and Cluster Vertex Deletion where Π
be “disjoint union of cliques” [15]. This technique builds on two separate rou-
tines, namely, the iterative routine and the compression routine. In the former,
we build the instance step by step from an empty instance, while in the latter
we are given an instance and a solution, and we endeavor to search for a better
solution for the given instance. The compression routines of iterative compres-
sion algorithms for Π-VD basically deal with a disjoint version of Π-VD which
can be defined as follows:

Disjoint Π-Vertex Deletion (D-Π-VD) [7]
Input: An undirected graph G = (V, E) and a vertex set X ⊆ V such that G[V \

X ] ∈ Π .
Question: Is there a vertex subset X ′ ⊆ V with |X ′| < |X | and X ≥ X ′ = ∅

such that G[V \ X ′] satisfies Π?

Fellows et al. [7] initialized the study of D-Π-VD and gave a complexity di-
chotomy of this problem for the case that the non-trivial, hereditary property Π
is determined by components. A graph property Π is determined by components,
if a graph G satisfy Π iff each of G’s connected components satisfies Π . Since
every hereditary graph property Π can be characterized by a set H of forbidden
induced subgraphs, the dichotomy achieved in [7] holds for D-Π-VD, where Π
corresponds to a forbidden subgraph set H that contains only connected graphs.
Fellows et al. [7] proved that as long as the forbidden set H does not contain a
star with at most two leaves, the corresponding D-Π-VD problem is NP-hard;
otherwise, it is polynomial-time solvable.

In this paper, we generalize the results of Fellows et al. to the case that the for-
bidden set H allows to contain disconnected graphs. Note that many important
graph properties can be characterized by forbidden sets H containing discon-
nected graphs, for instance, chain graphs with H containing two independent
edges and threshold graphs with H containing 4-vertex path, 4-vertex cycle and
two independent edges. Recently, parameterized algorithms based on the itera-
tive compression technique for Π-VD have been derived for Π corresponding to
disconnected forbidden subgraph characterizations [12,11].

Our Results. Let H be the set of forbidden subgraphs corresponding to a graph
property Π . Note that, if H or the set H̃ of the complement graphs of the
graphs in H contains only connected graphs, the dichotomy in [7] applies. Thus,
we only consider the case when both H and H̃ contain disconnected graphs.
Our results can be summarized in the following: If H contain no star with at
most two leaves and no disconnected graph whose connected components are
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all stars with at most two leaves, then D-Π-VD is NP-complete. Then, for the
case that H contains a star of two leaves, we prove polynomial-time solvability
of D-Π-VD. For H containing disconnected forbidden subgraphs with stars of
at most two leaves as connected components, we achieve NP-hardness as well
as polynomial-time solvability results. Further, few cases are left open.

Preliminaries. For a graph G = (V, E), let E(G) and V (G) denote the set of
edges and vertices of G, respectively. Unless specifically mentioned, we follow
the graph theoretic notations and definitions from [5]. If we delete a vertex v or
a subgraph S from graph G, we denote the resulting graph as G−{v} and G−S,
respectively. A complement or inverse of a graph G is a graph G̃ such that G̃ is
on the same vertices as G and two vertices of G̃ are adjacent if and only if they
are not adjacent in G. For a set H of graphs, let H̃ be the set containing the
complements of all graphs in H.

A P4 is a path on four vertices. A star Sl is a star with l leaves, while a S≤l has
at most l leaves. We call a graph a non-star if it does not satisfy the condition
for stars. For a disconnected graph G, if each of its connected components is a
star, we call G an all-star. A (≥ i)-all star is an all-star containing a star Sl with
l ≥ i. An (i)-all star is an all-star containing a star Sl with l = i. A (≤ i)-all
star is an all-star which consists only of stars S≤i as its connected components.
Clearly, a (< 1)-all star is an edgeless graph. A (P4, 3)-all star is a disconnected
graph which consists only of P4’s and stars as its connected components, among
which the largest star being S3. A (P4,≤ 2)-all star is a disconnected graph
which consists only of P4’s and stars Sl with l ≤ 2 as its connected components.

Given a set H of graphs, let Hc and Hd be the sets which contain all connected
and disconnected graphs of H, respectively. Each graph hdi ∈ Hd can be viewed
as a set of connected components, denoted as hdi(1), hdi(2), · · · , hdi(t). We say
that hdi(j) has a number of occurrence x in hdi if there exist x many connected
components in hdi which are isomorphic to hdi(j). Due to lack of space, some
definitions and proofs are deferred to the full version of the paper.

2 No Stars with at Most Two Leaves

We prove here that, if H contain neither a star with at most two leaves nor an
(≤ 2)-all-star, then D-Π-VD is NP-hard. To this end, we distinguish two cases
based on the number of leaves: First, we adapt the reduction in [7] to deal with
the case that H contains no S≤3 and no (≤ 3)-all stars. Then, a new reduction
is given for the three leaf star case.

Lewis and Yannakakis [16] devised a framework, to prove that Π-VD for
a non-trivial hereditary property Π is NP-complete. Later, Fellows et al. [7]
modified this framework for the NP-hardness proofs of D-Π-VD with connected
forbidden subgraphs when H contains no star with at most three leaves. They
reduced from Vertex Cover on triangle-free graphs, where they picked the
subgraph H in H, that has the lexicographically smallest α-sequence1, to build
1 For the definition of α-sequences, see [16].
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the vertex and edge gadgets [7]. We can further extend this adaptation to deal
with disconnected forbidden subgraphs for the above case. However, the selection
of the subgraph H for the vertex and edge gadgets is more tricky. Here, we
have to consider the connected components of each disconnected subgraphs. If
a connected component C of a disconnected subgraph H has lexicographically
smallest α-sequence among all connected subgraphs in Hc and all connected
components of disconnected subgraphs in Hd, then we use C to build the vertex
and edge gadgets. Further constructions are also needed for other components
of H . In particular, we prove the following theorem and lemma.

Lemma 1. If Hc does not contain S≤3 or (≤ 3)-all star, then D-Π-VD is NP-
hard.

In the following, we consider the case that is, H contains S3 or 3-all stars. Here,
we distinguish two cases and derive completely different reductions compared to
[7]. In particular, we prove the following theorem:

Lemma 2. If there exists a star S3 in Hc or an 3-all-star in Hd and there exists
no S≤2 or (≤ 2)-all star in H, then D-Π-VD is NP-hard.

Proof. Here, we distinguish two cases: 1) H contains neither P4 nor (P4,≤ 2)-all
star, and 2) H contains P4 or (P4,≤ 2)-all star. We show in the following only 1).
The proof for another case is in the full version of the paper.

Assume that there exists a S3 in Hc or a 3-all star in Hd. Moreover, P4

and (P4,≤ 2)-all star are not present in H. If there exists a S3 in Hc, we set
H as S3; otherwise, among the 3-all stars and (P4, 3)-all stars in Hd, we choose
the one with the minimum number of occurrence of S3 as H . Let this minimum
number of occurrence be x. We can observe that all other graphs in Hd have
either at least x occurrence of S3 or it contains at least one connected component
with a higher α-sequence than the one of S3.

The reduction is from the NP-complete 3SAT-2l problem [9], which is de-
fined as follows:

3SAT-2l
Input: A 3-CNF boolean formula F where each literal appears at most twice

in the clauses.
Output: A satisfying assignment for F .

We assume without loss of generality that each variable appears in each clause
at most once. Let F = c1 ∧ · · · ∧ cq be a 3SAT-2l formula over a variable
set Y = {y1, · · · , yp}. We denote the k-th literal in clause cj by lkj , for 1 ≤ k ≤ 3.
Starting with an empty graph G and X := ∅, construct an instance (G, X) for
D-Π-VD as follows. An example of the construction is given in Fig 1. For each
variable yi, introduce a star Yi with three leaves (variable gadget), add one leaf
and the center vertex of Yi to X and label the remaining leaves of Yi with “+”
and “−”, respectively. For each clause cj , add a star Cj with three leaves (clause
gadget) and add its center vertex to X . Add a degree-1 neighbor to each vertex
of Cj and this degree-1 vertex is added to X . Each of the three leaves of Cj
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C1

Y1 Y2 Y3
+ − + − + −

y1 ¬y2 ¬y1 ¬y2

y3 ¬y3

Fig. 1. Example for the reduction in the proof of Theorem 2 from the 3SAT-2l instance
with formula (y1 ∧ ¬y2 ∧ y3) ∨ (¬y1 ∧ ¬y2 ∧ ¬y3) to Disjoint Π-Vertex Deletion
with the given solution X (black vertices). For illustration the the clause gadget C1

and variable gadget Y1 are labelled.

corresponds to a literal in cj , and each leaf is connected to a variable gadget as
follows. Suppose that lkj is a literal of variable yi, and let ak be the leaf of Cj

corresponding to lkj . Add an edge (connection gadget) between ak and the “+”-
leaf of the corresponding Yi, if lkj = yi; otherwise, to the “−”-leaf of Yi. Finally,
if H is a disconnected graph, we create a satellite gadget S(G) isomorphic to
H − S3, that is, the subgraph of H with one S3 removed. Moreover, we add all
vertices of this satellite gadget to X .

Obviously, G[V \ X ] only contains disjoint stars with at most two leaves. We
note here that, since each literal can occur in at most two clauses, these two
leaf stars can only be centered at “+” or “−” labelled vertices of Yi. Hence,
G[V \ X ] ∈ Π . We now show that formula F has a satisfying truth assignment
if and only if there exists a size-(p+ 2q) set X ′ with X ′ ≥X = ∅, that obstructs
all forbidden induced subgraphs in G. Clearly, |X | > p + 2q.

(⇒) Assume that a satisfying truth assignment for F is given. Based on this
truth assignment, we construct the disjoint solution X ′, beginning with X ′ := ∅,
as follows. For each variable yi, 1 ≤ i ≤ p, if yi = TRUE, then add the vertex
labelled “+” in Yi to X ′; otherwise, add the vertex labelled “−” to X ′. This
ensures that from each variable gadget, exactly one vertex will be in X ′. Next,
for each clause cj we have at least one literal set TRUE, say lij . Then, we add the
two leaves of Cj which do not correspond to lij to X ′. This procedure obstructs
the stars with three or more leaves at the clause gadgets by totally 2q vertices.
Then, |X ′| = p + 2q. The connected components of G[V \ (X ′ ∪ V (S(G)))] are
either isolated vertices, isolated edges, or P4’s. Hence, G[V \ X ′] ∈ Π .

(⇐) Let X ′ with X ′ ≥ X = ∅ be a size-(p + 2q) vertex set that obstructs all
forbidden induced subgraphs in G. Due to the satellite gadget S(G), X ′ must
obstruct all S3’s in G[V \ V (S(G))]. Since there exists a S3 in each variable
gadget, at least one vertex from each variable gadget must be in X ′, which
requires in total p vertices. This means that we can construct an assignment
for F : From a variable gadget Yi, if the vertex labelled “+“ is in X ′, we assign
TRUE to yi; otherwise, we assign false to yi. The other 2q vertices of X ′ must be
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used for obstructing the stars with three or more leaves at clause gadgets, which
implies that for each clause gadget cj , exactly one leaf remains in G[V \X ′]. The
constructed assignment has to satisfy the formula F , since for each connection
gadget, there exist some S3’s, each consisting of this connection gadget and a
vertex in X and thus, from each connection gadget at least one vertex is in X ′.

�

Combining Lemmas 1 and 2, we arrive at the following theorem:

Theorem 1. D-Π-VD is NP-complete, unless H contains a star S≤2 or a (≤
2)-all star.

3 Stars with Two Leaves

We examine now the cases that H contains S≤2 or (≤ 2)-all star. Here, we achieve
NP-completeness as well as polynomial-time solvability results. First we show
that the case with S≤2 ∈ H is solvable in polynomial time.

3.1 Forbidden Stars with Two Leaves

Fellows et al. proved that in the case of connected forbidden subgraphs, if H
contains S≤2, then D-Π-VD is polynomial-time solvable. We extend this result
to the disconnected case.

Theorem 2. D-Π-VD can be solved in polynomial time when H contains a
star S≤2.

This theorem applies to the graph properties Π whose sets of minimal forbid-
den induced subgraphs H contain K1 (a single vertex), P2 (a single edge) or P3

(a path on three vertices). D-Π-VD with K1 being forbidden is not non-trivial,
as Π is an empty set, and hence solvable in polynomial time. If H contains P2,
then other minimal forbidden subgraphs in H can only be sets of independent
vertices; otherwise, these forbidden subgraphs are not minimal. If H consists of
only P2, then the compression routine in the iterative compression algorithm for
Vertex Cover given in [18] directly gives a polynomial-time algorithm for the
corresponding D-Π-VD problem. If H contains in addition to P2, an indepen-
dent set of size s, then Π is not non-trivial. Now, we give a polynomial-time
algorithm for D-Π-VD when H contains P3.

Note that a graph is called a cluster graph if it contains no induced P3. A
cluster graph is a disjoint set of cliques. Since H is a set of minimal forbidden
induced subgraphs and P3 ∈ H, all other forbidden subgraphs in H must also be
cluster graphs. Let H1, H2, . . . , Hl be the minimal cluster graphs present in H.
Now, for each forbidden cluster graph Hi, let H1

i , H2
i , . . . , Hc

i be its connected
components arranged in non-ascending order of their sizes. Let (G = (V, E), X)
be the input instance of D-Π-VD with |V | = n. Since X is a solution set, G[X ]
is a collection of cliques and it induces no forbidden cluster graphs from H.
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We describe an algorithm that finds a minimum-size vertex set X ′ such that
X ≥ X ′ = ∅ and G[V \ X ′] ∈ Π , or returns “no-instance”. The algorithm is
similar to the compression routine of the iterative compression algorithm for
Cluster Vertex Deletion [15], but additionally takes into account the for-
bidden cluster graphs in H. In first step, the instance is simplified by two simple
data reduction rules, whose correctness is easy to see [15]:

1. Delete all vertices in R := V \ X that are adjacent to more than one clique
in G[X ].

2. Delete all vertices in R that are adjacent to some, but not all vertices of a
clique in G[X ].

After these data reduction rules have been exhaustively applied, the instance
has the following property. In each clique of G[R], we can divide the vertices into
equivalence classes according to their neighborhoods in X , where each class then
contains vertices either adjacent to all vertices of a particular clique in G[X ], or
adjacent to no vertex in X . This classification is useful because of the following:

Lemma 3. [14] If there exists a solution for D-Π-VD, then in the cluster graph
resulting by this solution, for each clique in G[R] the vertices of at most one
equivalence class are present.

Due to Lemma 3, the remaining task for solving D-Π-VD is to assign each clique
in G[R] to one of its equivalence classes in such a way that the forbidden cluster
graphs in H are also obstructed. Hence, in our algorithm we will enumerate all
the possiblities which will not induce any forbidden cluster graph and choose
the one with the minimum number of vertex deletions. However, we cannot do
this independently for each clique in G[R]. The reason is that we cannot choose
two classes from different cliques in G[R] that are adjacent to the same clique
in G[X ], since this would create an induced P3. This assignment problem can
be modelled as a weighted bipartite matching problem in an auxiliary graph
J = (V ′, E′) where each edge corresponds to a possible choice of a clique. Let
|E′| = m. Moreover, for each edge e ∈ E′, we set two weights w1(e) and w2(e)
which will be instrumental while enumerating the possibilities. We delete a set
X ′

1 of vertices while eumerating the possibilities and create another set X ′
2 by

the weighted bipartite matching procedure which will be explained later. Among
all the resulting graphs which satisfy Π , we choose the one with the minimum
cardinality of X ′ = X ′

1 ∪ X ′
2. The graph J is constructed as follows. See Fig 2

for an illustration.

1. For every clique in G[R] which has at least one neighbour in G[X ], add a
vertex (white vertex) in J .

2. For every clique CX in G[X ] which has at least one neighbour in G[R], add
a vertex v (black vertex in X) in J . Moreover, add a new degree-1 vertex u
(white vertex in X) and an edge {u, v}. Set the weights w1 and w2 of this
edge {u, v} to be the size of CX . This edge corresponds to choosing CX and
removing all vertices adjacent to CX from G[R].
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a)

X

R

b)

X

R

w1=w2=2

w1=4
w2=2

w1=4
w2=2

w1=3
w2=3

w1=5
w2=2

w1=2
w2=2

w1=w2=2 w1=w2=5

w1=w2=3

Fig. 2. a): Data reduction in the algorithm for D-Π-VD when P3 is present in H. The
grey vertices are deleted by the data reduction rules. The black vertices correspond
to the minimal solution X ′

2 determined by the solution of weighted bipartite match-
ing problem. b) The graph represents the corresponding weighted bipartite matching
instance with the edge weights represented by integers next to the edges. The dashed
edges represent the cliques that are added into X ′

2 while the black edges represent the
remaining cluster graph.

3. For a clique CX in G[X ] and a clique CR in G[R], add an edge e between the
vertex for CX and the vertex for CR if there is an equivalence class in CR

adjacent to CX . This edge corresponds to choosing this class for CR and is
assigned two different weights, w1(e) is assigned the total number of vertices
in the corresponding class of CR and in CX and w2(e) is assigned the total
number of vertices in CR.

4. Add a vertex for the class in a clique CR that is not adjacent to any clique
in G[X ] (black vertices outside X), and connect it to the vertex representing
CR. Again, this edge corresponds to choosing this class for CR and both its
weights w1 and w2 are assigned the total number of vertices in this class.

5. For each clique CR in G[R] which is non-adjacent to any vertex in G[X ], add
an edge e between two new grey vertices and its weights w1(e) and w2(e) are
set to the total number of vertices in CR.

6. For each clique CX in G[X ] which is non-adjacent to any vertex in G[R], add
an edge e between two new grey vertices and its weights w1(e) and w2(e) are
equal to the total number of vertices in CX . We denote the set of these edges
by T .
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Since, we only added edges between black and white vertices and isolated edges
between two grey vertices, J is bipartite. The task is now to find a maximum-
weight bipartite matching on J with edge weights w2, that is a set of edges of
maximum weight where no two edges have an endpoint in common. However,
before that we must take care that the collection of cliques resulting from the
matchings does not induce any forbidden cluster graph in H. To this end, we
enumerate all matchings in graph G[V \ X ′] which do not induce any forbidden
cluster graphs from H with the help of the edge weights w1.

We use cluster configurations and the corresponding cluster configuration di-
agrams for enumerating all such matchings. An example is illustrated in Fig 3
for the case that H consists of P3 and a cluster graph h1 with four cliques h1

1,
h2
1, h3

1 and h4
1 of size s1 ≥ s2 ≥ s3 ≥ s4, respectively. The cluster configuration

diagram is a table in which columns represent the size intervals of the allowable
cliques. For example, in Fig 3, the column between h1

1 and h2
1 represents the size

interval of [s2, s1). Each row depicts a feasible configuration. Here, “↑” represents
a clique in the corresponding interval and “�” ’s position represents the upper
bound on the size of the remaining cliques.

Case 1:

Case 2:

h1
1

h2
1

h3
1

h4
1

↑ �

↑ ↑ ↑ �

Fig. 3. Cluster configuration diagram when the corresponding forbidden subgraphs in
H consists of a P3 and a cluster graph h1 with four cliques as connected components

Lemma 4. The number of different feasible clique configurations of G[V \ X ′]
in the case that H consists of P3 and cluster graphs, is polynomial in the size of
G.

Proof. Let the number of forbidden cluster graphs in H be d. Let b be the number
of disjoint cliques in the forbidden cluster graph in H, which has the maximum
number of disjoint cliques among all cluster graphs in H. Then, in the cluster
configuration diagram there will be at most bd+1 intervals, since the number of
distinct-sized cliques, which are connected components of cluster graphs in H,
is at most bd. Furthermore, we observe that for any fixed position of “�”, say s,
there can be at most b−1 cliques represented by entries with “↑” to the left of s.
Since each forbidden cluster graph in H has at most b components, any cluster
configuration Y with more than b−1 cliques to the left of s will be handled by a
different cluster configuration Z, such that Z is formend from Y by removing the
rightmost “↑”and “�” is moved to the beginning of the interval containing the
removed “↑”. Hence, for each fixed position s for “�”, from all possible cliques
with size at least s, we need to pick at most b − 1 entries to add the “↑” ’s to
the left of s. The number of the different ways of arranging b − 1 ↑’s in bd + 1
intervals is bounded by (b − 1)(bd+1). Now, for each such arrangement, we can
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pick each ↑ from the edges in the reduced graph J . We note here that every edge
with weight w1 that does not fit into a particular interval can be trimmed down
by adding some vertices of the corresponding clique to X ′

1. This ends up with
m(b−1)(bd+1)

possibilities. Let c = (b− 1)(bd+1). Now, since for each fixed Π , H is
fixed, hence, b and d are constants, i.e., c is a constant. Since there are at most
(bd+ 1) positions to fix “�”, the total number of configurations is a polynomial
function of m, i.e., O(mc). �


From all cluster configurations, we choose only those configurations which are
feasible for a set of forbidden subgraphs H, which can be done in polynomial
time. Any feasible configuration places the cliques in G[X ] with sizes greater
than the position of “�” at the positions set by “↑”. Moreover, in any feasible
configuration, if any edge from J is selected to fill the position for “↑”, none of
its adjacent edges can be picked to fill the positions of other “↑” in the same
configuration. Moreover, it also places all cliques represented by edges in T in
their corresponding intervals. Next, for each feasible configuration we do the
following:

1. We remove the vertices at the end-points of the edges corresponding to the
chosen cliques denoted by “↑”.

2. In the remaining graph J , we maintain an upper-bound corresponding to the
position of “�” on the weights w1 of the remaining edges. Let the position of
the “�” be s. For each edge c corresponding to clique C with w1(c) ≥ s, add
|V (C)| − s arbitrary vertices from V (C) ≥ R to X ′

1 and reduce the weights
w1(c) and w2(c) by w1(c)− s.

3. Now, we run the algorithm for maximum weighted bipartite matching on
the remaining graph with weights w2. Since the weight of each edge in J
is bounded by n, the size of the given instance, we get a running time of
O(m4

√
n logn) [8].

The set X ′
2 can be directly constructed from a maximum matching returned

in Step 3; it contains all vertices in the equivalence classes in G[R] that corre-
spond to the edges not chosen by the matching. Hence, our disjoint solution is
X ′ = X ′

1 ∪ X ′
2. Clearly, both X ′

1 and X ′
2 can be computed in polynomial time.

Combined with the polynomial number of configurations we have an overall
polynomial-time algorithm.

3.2 All-Stars Containing Stars of at Most Two Leaves

For this case, we cannot give a complete dichotomy of the complexity of D-Π-
VD. However, we can present some NP-hard and polynomial cases. For example,
we have the following result for 2-all star. See full version of the paper for other
NP-hard cases with (≤ 2)-all stars.

Lemma 5. If there exists 2-all star in Hd, each of which contains at least two
occurrence of star S2 as their connected components, and H is free from the
following graphs, then D-Π-VD is NP-hard:
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1. A star S≤2.
2. A (≤ 2)-all star with only one occurrence of S2 as its connected component.
3. A (< 2)-all star.
4. A subgraph which is an induced subgraph of a graph G′ = (V ′, E′) with the

following properties:
i. There exists a set M ⊂ V ′ which induces a clique.
ii. For each vertex v ∈ M , there exists an edge {x, y}, such that either

{x, v} ∈ E′ or {y, v} ∈ E′ and N(x) ∪ N(y) = {x, y, v}. Let N ⊂ V ′ be
the set which contains all such vertices {x, y} for each v ∈ V ′.

iii. J := V ′ \ (M ∪N) induces an independent set in G′ such that for every
v ∈ J , N(v) ⊆ M .

5. A disconnected forbidden graph which consists of graphs in (1-4) as its con-
nected components.

Finally, we present a polynomial-time solvable case of D-Π-VD with H con-
taining (≤ 1)-all star; this case generalizes the result for Disjoint Split Ver-
tex Deletion, implicitly shown in [11]. We call a graph pseudo-split if the
forbidden subgraph set H is equal to {2K2, C4}. Here C4 is a cycle on four
vertices.

Lemma 6. D-Π-VD when Π being pseudo-split graphs can be solved in poly-
nomial time.

4 Open Problems

First, the computational complexity of D-Π-VD for the case, when (≤ 1)-all
stars are present in H, is partially resolved, for instance, for Π being threshold
graphs. Here, the set H consists of 2K2, C4 and P4. It would also be interesting
to study the computational complexity of D-Π-VD in directed graphs and the
variant of D-Π-VD where the solution comprises of edges to be deleted instead
of vertices.
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Abstract. A mixed graph has both directed and undirected edges. We study how
to compute a crossing-free drawing of a planar embedded mixed graph, such that
it is upward “as much as possible”. Roughly speaking, in an upward drawing
of a mixed graph all edges are monotone in the vertical direction and directed
edges flow monotonically from bottom to top according to their orientation. We
study quasi-upward drawings of mixed graphs, that is, upward drawings where
edges can break the vertical monotonicity in a finite number of edge points, called
bends. We describe both efficient heuristics and exact methods for computing
quasi-upward planar drawings of planar embedded mixed graphs with few bends,
and we extensively compare them experimentally: the results show the effective-
ness of our algorithms in many cases.

1 Introduction

An upward drawing of a directed graph (digraph) G = (V,E) is a geometric represen-
tation of G such that each vertex v ≥ V is drawn as a distinct point pv of the plane
and each edge (u, v) ≥ E is drawn as a simple curve with monotonously increasing
y-coordinates from pu to pv. The problem of computing upward drawings of digraphs
has a long tradition in Graph Drawing. In particular, lots of papers study crossing-free
upward drawings of planar digraphs, called upward planar drawings (see Fig. 1(a)).

Deciding whether a planar digraph admits an upward planar drawing is NP-complete
in the general case [28]. This problem is polynomial-time solvable for few subfami-
lies of planar digraphs [6,21,30,33] or when the planar embedding of the digraph is
fixed [5]; a (di)graph with a fixed planar embedding is called an embedded planar
(di)graph. Exponential-time upward planarity testing algorithms have been also de-
scribed [4,12,15,21,29]; among them, the one in [15] works for general planar digraphs
and it turns out to be efficient in practice for digraphs with few hundreds of vertices. Ex-
tensions of upward planarity to different surfaces are studied in [1,2]. See also [7,16,19]
for additional references on upward planar drawings.

For planar digraphs that do not admit upward planar drawings, different approaches
have been proposed to compute a drawing that is upward planar “as much as possible”
according to some criteria. One approach is based on allowing edge crossings while
guaranteeing that each edge is drawn upward; in this case the goal is minimizing the
number of edge crossings [13,14,24]. Another approach is to remove from the digraph

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 298–309, 2014.
© Springer International Publishing Switzerland 2014
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Fig. 1. (a) An upward planar drawing of a digraph. (b) A quasi-upward planar drawing of a di-
graph with 2 bends on edge (6, 4); the bends are the tangent points between the dashed horizontal
segments and the edge. (c) A strong quasi-upward planar drawing of a mixed graph with 4 bends;
(d) A weak quasi-upward planar drawing of the same mixed graph with 3 bends.

a minimum number of edges so that the resulting digraph can be drawn upward pla-
nar [9]. A third approach is to allow edge bends while guaranteeing planarity and while
guaranteeing that each edge (u, v) leaves u from above and enters v from below; such
a drawing is called a quasi-upward planar drawing and the goal is minimizing the
number of bends [4]. Namely, a bend of a quasi-upward planar drawing corresponds
to a point in which an edge inverts its vertical direction; if the edge is represented as a
smoothed curve, each bend corresponds to a point with horizontal tangent for the edge
(see Fig. 1(b)). Thus, a quasi-upward planar drawing with zero bends is an upward
planar drawing.

The concept of upward drawing has been recently extended to mixed graphs [8], i.e.,
graphs with both directed and undirected edges. Mixed graphs arise in many applica-
tion domains, and have received considerable attention in the scientific literature (see,
e.g., [3,11,25,32]). An upward drawing of a mixed graph is such that each directed
edge (u, v) is drawn upward from u to v while an undirected edge {u, v} is just drawn
with monotonically increasing y-coordinates, moving either from u to v or from v to u.
Deciding whether a planar embedded mixed graph G has an embedding preserving up-
ward planar drawing is equivalent to finding an orientation of the undirected edges of G
such that the resulting embedded digraph has an upward planar drawing. Although the
complexity of this problem is still unknown, a testing and drawing algorithm is given
in [8]; it is based on integer linear programming (ILP) and it is fast in practice even for
graphs with several hundreds of vertices. Also, in [26] it is proven that the problem is
polynomially-time solvable for restricted classes of planar embedded mixed graphs.

In this paper we study quasi-upward planar drawings of mixed graphs, an extension
of the paradigm proposed in [4] for digraphs, where edges can bend. As for digraphs,
in a quasi-upward planar drawing of a mixed graph each directed edge (u, v) leaves u
from above and enters v from below. Instead, for the geometric representation of the
undirected edges e = {u, v} two alternative properties can be required: (1) e enters one
of its end-vertices from below and leaves the other end-vertex from above, or (2) e is in-
cident to u (resp. to v) either from below or from above. Notice that property (1) is more
restrictive than (2). A drawing that satisfies (1) is called a strong quasi-upward planar
drawing; a drawing that satisfies (2) is called a weak quasi-upward planar drawing. See
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Fig. 1(c) and Fig. 1(d) for an illustration. Observe that property (2) just requires that
each undirected edge is not incident to an end-vertex horizontally. Strong quasi-upward
planar drawings have been studied in [10], where it is proven that deciding whether a
planar embedded mixed graph admits such a drawing is NP-complete.

Contribution. Here, we focus on weak quasi-upward planar drawings, which are much
less restrictive than strong drawings and we address the new following optimization
problem: Given a planar embedded mixed graph G, compute an embedding preserv-
ing weak quasi-upward planar drawing of G with the minimum number of bends. Our
contribution is as follows:

(i) We provide efficient heuristics for computing weak quasi-upward planar drawings of
planar embedded mixed graphs with few edge bends. Examples of drawings computed
with our algorithms are in Fig. 4.
(ii) We describe an ILP model for solving the above optimization problem in an exact
way. With few additional constraints, this model can be also used for finding a strong
quasi-upward planar drawing with the minimum number of bends, if such a drawing
exists.
(iii) We discuss the results of an extensive experimental analysis that compares the
performance of our different algorithms on a large set of randomly generated instances.

The paper is structured as follows. Section 2 recalls basic notions and results about
upward and quasi-upward planar drawings of digraphs. Section 3 presents a characteri-
zation of the planar digraphs that admit weak quasi-upward planar drawings. Heuristics
and exact methods for computing weak quasi-upward planar drawings with minimum
number of bends are in Section 4 and Section 5, respectively. Section 6 describes the
experimental analysis. Conclusions and open problems are in Section 7.

2 Preliminaries

We assume familiarity with basic concepts of graph drawing and planarity [19]. Let
G be an embedded planar digraph (i.e., a digraph with a given planar embedding). A
source vertex (resp. a sink vertex) of G is a vertex with only outgoing edges (resp.
incoming edges). A source vertex or a sink vertex of G is also called a switch vertex of
G. A vertex v of G is bimodal if the circular list of its incident edges can be split into
two linear lists, one consisting of all its incoming edges and the other consisting of all
its outgoing edges. Digraph G and its embedding are bimodal if every vertex of G is
bimodal.

The concepts of upward and quasi-upward planar drawings of a planar digraph have
been already given in the introduction. The following theorem holds.

Theorem 1. [4] An embedded planar digraphG admits an embedding preserving quasi-
upward planar drawing if and only if G is bimodal.

Bertolazzi et al. [4] also describe a flow network based polynomial-time algorithm
that computes a quasi-upward planar drawing of a planar bimodal embedded digraph G
with minimum number of bends.
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3 Quasi-Upward Planar Drawings of Mixed Graphs

Let G = (V,E) be a mixed graph: Ed and Eu denote the subset of directed and undi-
rected edges of G, respectively (E = Ed ⇒ Eu). If an edge e ≥ Ed is oriented from a
vertex u to a vertex v, we write e = (u, v); to denote an undirected edge e ≥ Eu with
end-vertices u and v, we write e = {u, v} (or equivalently e = {v, u}).

The concepts of strong and weak quasi-upward planar drawings of planar mixed
graphs have been already given in the introduction. Clearly, each strong quasi-upward
planar drawing is also a weak quasi-upward planar drawing, but not vice-versa. Each
edge of a strong quasi-upward planar drawing has always an even number of bends
(possibly zero bends). In a weak quasi-upward planar drawing this property is still true
for directed edges; instead, the number of bends of an undirected edge e = {u, v} is
odd if e is incident both to u and to v from above or both to u and to v from below,
while it is even otherwise. The following result holds.

Theorem 2. A planar embedded mixed drawing G = (V,Ed ⇒ Eu) admits a weak
quasi-upward planar drawing if and only if Gd = (V,Ed) is bimodal.

Proof. If G = (V,Ed ⇒ Eu) has a weak quasi-upward planar drawing Γ , then the
subdrawing of Gd in Γ is quasi-upward planar, and hence Gd is bimodal by Theorem 1.
Conversely, if Gd is bimodal, then by Theorem 1, Gd has an embedding preserving
quasi-upward planar drawing Γd. A weak quasi-upward planar drawing Γ of G can
be constructed from Γd by adding the edges of Eu one by one, while preserving the
planar embedding of G. Namely, each time a new edge e = {u, v} of G is added to
the current planar drawing, u and v belong to the same face (since we maintain the
planar embedding); hence, it is possible to draw e as a simple curve such that the planar
embedding of G is still preserved and e is neither incident to u nor to v horizontally. ∪→

In the remainder of the paper we address the new following optimization problem:

Problem MINBENDWEAKQUASIUPWARD: Given a planar embedded mixed graph
G = (V,Ed ⇒ Eu) such that Gd is bimodal, compute a weak quasi-upward planar
drawing of G with the minimum number of bends.

Problem MINBENDWEAKQUASIUPWARD is at least as difficult as deciding whether
G admits an upward planar drawing, i.e., a weak quasi-upward planar drawing with no
bend. This decision problem is still of unknown complexity: a fast ILP approach is
described in [8] and polynomial-time testing algorithms are known only for restrictive
classes of plane graphs [26]. For the MINBENDWEAKQUASIUPWARD problem, we
first describe efficient heuristics (Section 4) and then devise an ILP exact approach,
which extends the model given in [8] (Section 5).

4 Heuristics

Let G = (V,Ed ⇒ Eu) be a planar embedded mixed graph such that Gd is bimodal.
Theorem 2 implies that a weak quasi-upward planar drawing of G exists. We give a first
heuristic, called HEURQUASIUPWARDMIXED, that computes a weak quasi-upward
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planar drawing with few edge bends. It exploits Theorem 1 and works in two steps
(see Fig. 2 for an illustration):

STEP 1: It computes a bimodal digraph G∩ obtained from G by possibly subdividing
some edges of Eu and suitably orienting all the undirected edges (G∩ maintains the same
embedding as G for the common vertices). Namely, the edges of Eu are considered one
by one; each time an edge e = {u, v} ≥ Eu is considered, the algorithm applies the
following operations, in this order: (i) it orients e either from u to v or from v to u if one
of these two orientations does not violate the bimodality of u and v for their incident
directed edges; (ii) else, it subdivides e with a dummy vertexw, and then orients {u,w}
and {w, v} such that they are both outgoingw or both incoming w, depending on which
of the two choices guarantees bimodality (again looking at the directed edges only).

STEP 2: It computes a quasi-upward planar drawing Γ ∩ of digraph G∩, with the mini-
mum number of bends within the planar embedding of G∩. This is done by applying the
algorithm given in [4]. The final drawing Γ is computed from Γ ∩ by: (i) removing the
orientation of the edges incident to dummy vertices and of the edges of Eu that were not
subdivided in the previous step; (ii) replacing each dummy vertex with a bend point.
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Fig. 2. Illustration of heuristic HEURQUASIUPWARDMIXED: (a) input: a planar embedded mixed
graph G such that Gd is bimodal. (b) output of STEP 1: a bimodal directed graph G′ with a
dummy vertex w that subdivides edge {1, 8}. (c) output of STEP 2: an embedding preserving
weak quasi-upward planar drawing Γ of G with five bends.

Theorem 3. Let G = (V,Ed ⇒ Eu) be a planar embedded mixed graph such that Gd

is bimodal, and let F be the number of faces of G. Algorithm HEURQUASIUPWARD-
MIXED computes an embedding preserving weak quasi-upward planar drawing of G
with at most 2(|V |+ |Eu|)|F |+ |Eu| = O(|V |2) bends in O(|V |2) time.

Proof. Denoting by V ∩ the vertex set of the bimodal digraph G∩ computed in STEP 1,
we have that |V ∩| ∃ |V | + |Eu|. Also, the number of faces of G∩ equals |F |. The
algorithm applied in STEP 2, which computes a quasi-upward planar drawing Γ ∩ of G∩

with minimum number of bends, generates at most 2|V ∩||F | bends in the drawing [4].
The number of bends of Γ equals that of Γ ∩ plus |Eu| (each dummy vertex subdividing
an edge of Eu is a bend point in the final drawing). Hence, the number of bends of Γ is
at most 2(|V |+ |Eu|)|F |+ |Eu| = O(|V |2), because O(|Eu|) = O(|F |) = O(|V |).
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About the time complexity, STEP 1 takes O(
∑

{u,v}≤Eu
(deg(u) + deg(v))) =

O(|V |2), because for each edge {u, v} ≥ Eu we need to scan the edges incident to
u and to v to check bimodality for the four possible orientations. The drawing algo-
rithm applied in STEP 2 is based on a minimum-cost flow network formulation, which
can be solved in time O(|V ∩|3/2) with the algorithm in [17], and then on a compaction
technique that is linear in the number of vertices and bends. Since O(|V ∩|) = O(|V |)
and the number of bends is O(|V |2), the whole algorithm takes O(|V |2) time. ∪→

We observe that HEURQUASIUPWARDMIXED may create several directed cycles
in G∩, and each of these cycles gives rise to at least two bends in the final drawing
(see, e.g., cycles {5, 1, 4}, {5, 4, 8} in Fig. 2(b) and the final drawing in Fig. 2(c)). See
also [4]. In order to mitigate this problem, we also propose a variant of HEURQUA-
SIUPWARDMIXED, which we call HEURQUASIUPWARDMIXEDREFINED. It tries to
orient the edges of Eu such that they flow in a common direction as much as possible.
To this aim, it executes the following additional operations:

OPERATION 1: It is a pre-processing step that assigns to each vertex v of G a distinct
integer number l(v) ≥ {1, . . . , |V |}, while trying to minimize the number of edges
(u, v) ≥ Ed such that l(u) > l(v); these edges are called downward edges. This min-
imization problem is equivalent to finding a minimum feedback arc set in Gd. This
problem is NP-complete [27] for general digraphs, but it is known to be polynomial-
time solvable for planar digraph [31]. However, the result in [31] leads to a polynomial-
time algorithm with high time complexity and difficult to implement (see, e.g., [34]).
To compute a minimal solution, we use an effective linear-time greedy heuristic that
guarantees at most |Ed|/2− |V |/6 downward edges [23].

OPERATION 2: It modifies STEP 1 in two ways: (i) Each edge e = {u, v} ≥ Eu gets a
priority i that is equal to the number of the orientations of e (with possible subdivision)
that do not violate bimodality (this number varies from 1 to 4): at each iteration, the
edge with minimum priority is considered, and once it has been processed the priorities
of its adjacent edges are updated; hence, the algorithm considers first the edges with
the smallest number of admissible orientations. (ii) When an edge e = {u, v} ≥ Eu

is considered, assuming l(u) < l(v), the algorithm orients e from u to v if this choice
preserves bimodality, otherwise it checks the other possibilities.

Once all the edges have been oriented, HEURQUASIUPWARDMIXEDREFINED ap-
plies STEP 2 as for HEURQUASIUPWARDMIXED (see also Fig. 3(a) and 3(b)).

The time complexity of HEURQUASIUPWARDMIXEDREFINED is still O(|V |2); in-
deed, if we handle the edge priorities with a binary heap (which allows to insert an
element in logarithmic time and to extract the minimum key in constant time), the cost
of the algorithm is still dominated by checking bimodality when an edge is considered.

We remark that, as it will be shown in Section 6, we experimentally observed that
the actual number of bends generated by each of our heuristics is always much smaller
than the theoretical worst case bound. Also, we will see that HEURQUASIUPWARD-
MIXEDREFINED usually computes drawings with significantly less bends than those
computed by HEURQUASIUPWARDMIXED, while the running time of the two heuris-
tics is very similar.
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Fig. 3. (a) Output of STEP 1 of HEURQUASIUPWARDMIXEDREFINED for the graph G in
Fig 2(a). (b) Output of STEP 2 of HEURQUASIUPWARDMIXEDREFINED: a weak-quasi upward
planar drawing Γ of G with two bends. (c) An embedding preserving weak quasi-upward planar
drawing Γopt of G with minimum number of bends; it has only one bend.

5 Integer Linear Programming Model

In order to deal with weak quasi-upward planar drawings of embedded mixed graphs,
we extend the ILP model in [8] by adding suitable variables and constraints. For space
reasons, we only sketch the idea behind our extension. Let Γ be a weak quasi-upward
planar drawing of a planar embedded mixed graph G. Denote by Γ ∩ the drawing ob-
tained from Γ by replacing each bend point with a dummy vertex, and let G∩ be the
planar embedded mixed graph represented by Γ ∩. Clearly, Γ ∩ is an upward planar draw-
ing of G∩. Using this observation, and denoting by k an upper bound on the number
of bends of a bend-minimum weak quasi-upward planar drawing of G, our idea is the
following:

(i) Each edge ofG is subdivided with a sequence {d1, d2, . . . , dk} of k dummy vertices.
Namely, an undirected edge {u, v} is split into a path {u, d1}, {d1, d2}, . . . , {dk, v},
while a directed edge (u, v) is split into a path (u, d1), {d1, d2}, . . . , {dk−1, dk}, (dk, v).
Call G∩ the resulting planar embedded mixed graph.

(ii) We enhance the ILP formulation in [8] to find an upward planar drawing Γ ∩ of
G∩ such that the number of bends in the weak quasi-upward planar drawing Γ of G is
minimized. To this aim, we associate each dummy vertex di with a binary variable: if di
is such that its two incident edges will be both leaving di from above or both entering
di from below in Γ ∩, then di will correspond to a bend in Γ and the associated variable
will be set to 1; else, it will be set to 0. Also, since each directed edge of G must have
an even number of bends in Γ (possibly zero), we add to the ILP model new constraints
that guarantee this property. The objective function is defined as the minimum number
of dummy vertices that will correspond to bend points in the final drawing.

Concerning k, we set its value as the number of bends of a drawing computed by
HEURQUASIUPWARDMIXEDREFINED. It is clearly an upper bound to the number of
bends of an optimal solution, which guarantees that the number of dummy vertices
allocated for each edge e suffices to host all bends along e in an optimal drawing.
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(a) HEURQUASIUPWARDMIXED

(b) HEURQUASIUPWARDMIXEDREFINED

(c) Exact algorithm

Fig. 4. Three drawings of the same embedded mixed graph computed with our algorithms (dashed
lines are the tangents to the bend points): (a) a drawing with 8 bends; (b) a drawing with 4 bends;
(c) a drawing with 1 bend. The graph has 20 vertices and 32 edges, out of which 16 undirected.

We finally remark that our model can be also adapted to compute a strong quasi-
upward planar drawing with the minimum number of bends, if such a drawing exists.
This is done by constraining the undirected edges to have an even number of bends, as
for the directed edges, and suitably redefining the bound k.



306 C. Binucci and W. Didimo

6 Experimental Analysis

We implemented algorithms HEURQUASIUPWARDMIXED and HEURQUASIUPWARD-
MIXEDREFINED in C++, using the GDToolkit library [18]. For solving our ILP model
we used CPLEX with its default setting (http://www.cplex.com/). We ran the algorithms
on a large test suite of 7, 420 random planar embedded mixed graphs. All computations
ran on a common laptop, with an Intel Core i7 - 2.2GHz processor and 6 GB RAM.
Examples of drawings computed with our implemented algorithms are shown in Fig. 4.

Test suite. We generated our instances with the same approach used in previous ex-
periments concerned with upward planarity of mixed graphs [8]. Namely, denoting by
n and m the desired number of vertices and edges, and denoting by p the desired per-
centage of undirected edges, an upward planar embedded digraph with n vertices and
m edges is first generated with the algorithm described in [20]. Then a percentage p
of edges is randomly removed from this digraph (with uniform probability distribution)
and then the same number of undirected edges is reinserted, each time selecting at ran-
dom its two end-vertices; if there already exists in the graph an edge connecting the two
selected vertices, we discard the choice and repeat the selection; this avoids multiple
edges while keeping uniform the random probability distribution, but of course it might
cause a long generation time, especially for high values of p and small values of density
m/n. This algorithm gives rise to planar embedded mixed graphs G = (V,Ed ⇒ Eu)
such that |V | = n, |Ed ⇒Eu| = m, |Eu| = p×m

100 , and Gd = (V,Ed) is bimodal.
For each pair ∩n, p⊗, wheren ≥ {10, 20, 30, . . . , 100, 200, 300} and p ≥ {20, 50, 80},

we tried to generate 210 different graphs with n vertices, p% of undirected edges, and
densities ranging from 1.2 to 2.0. All graphs were successfully generated, except those
with 200 or 300 vertices, p = 80, and density 1.2; for these instances, the generation
algorithm failed to produce a graph within four hours, thus we stopped it after this time.

Goals. We ran the experiments with two main goals in mind: (i) Comparing the number
of bends of the drawings computed by the two heuristics with the optimum solutions;
(ii) Evaluating the running time required by our different algorithmic approaches.

Results. Fig. 5 reports the charts that compare the number of bends generated by the
three algorithms. For each pair ∩n, p⊗, the reported values are averaged over all graphs
with n vertices and p% of undirected edges. Charts (a),(c), and (e) show the ratio be-
tween the number of bends generated by the two heuristics and the optimum solutions,
for the different values of p, and for those instances on which the optimum is not zero.
It can be seen that HEURQUASIUPWARDMIXEDREFINED outperforms HEURQUASI-
UPWARDMIXED: It generates about 40% of bends less for p ∃ 50, and about 33%
of bends less for p = 80. Also, for p = 20 and for p = 50 HEURQUASIUPWARD-
MIXEDREFINED exhibits a relatively good approximation factor of the optimum value.
Charts (b), (d), and (f) report the number of solutions with zero bends computed by the
three algorithms, where Opt denotes the ILP based algorithm. HEURQUASIUPWARD-
MIXEDREFINED still behaves much better than HEURQUASIUPWARDMIXED; also,
it achieves the optimum value (i.e., zero bends) on most instances when p = 20; for
p ≥ {50, 80}, the number of solutions with zero bends is strongly reduced.

Concerning the CPU time, the two heuristics behaved similarly (the two curves over-
lap) and ran quite fast. They took in the average 1 second on the instances with 300
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Results on the number of bends for the three values of p (average values). (a),(c),(e): ratio
between the number of bends generated by the heuristics and the optimum value, for the instances
where the optimum is greater than zero. (b),(d),(f): number of solutions with zero bends computed
by the three algorithms, where Opt denotes the ILP based algorithm.

vertices, and their time performance is not affected by the number of undirected edges.
Conversely, the ILP based algorithm has a time that increases significantly for growing
values of p, because for these instances there are many more possible orientations that
must be explored by the algorithm in order to find the optimum. In particular, in addi-
tion to the charts, we report that the exact algorithm failed to compute the optimum on
many instances with 80% of undirected edges, namely 47 instances with 200 vertices
and 89 instances with 300 vertices. Finally, in order to better understand how the two
heuristics scale with the size of the graph, we ran them on three instances with 3,000
vertices, more than 5,000 edges, and p = 50. They took in the average 39 seconds
to compute a drawing, and again the number of bends generated by HEURQUASIUP-
WARDMIXEDREFINED (370 in the average) was much smaller than that generated by
HEURQUASIUPWARDMIXED (558 in the average).
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7 Conclusions and Open Problems

We addressed the new problem of computing quasi-upward planar drawings of embed-
ded mixed graphs, with the minimum number of bends. We provided fast heuristics and
an exact technique based on ILP. The experiments showed that one of our heuristics has
good performance in terms of number of bends when applied to mixed graphs having
up to 50% of undirected edges. Also, the presented heuristics scale well with the size
of the graph (they take less than 40 seconds on graphs with 3,000 vertices and 5,000
edges); the ILP based technique successfully found a solution on all instances with up
to 100 vertices, but was unable to find a solution in reasonable time and space for some
graphs with 200 and 300 vertices; this further motivates the use of heuristics.

Several research directions related to computing quasi-upward planar drawings of
mixed graphs are still open. Among them: (i) Devising more effective heuristics, which
provide good approximations of the optimum even for mixed graphs that have most of
the edges undirected, and investigate the existence of approximation algorithms. (ii)
Studying the problem in the variable embedding setting. (iii) Studying the problem
when edge crossings are allowed.
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Abstract. A spanning tree of an unweighted graph is a minimum aver-
age stretch spanning tree if it minimizes the ratio of sum of the distances
in the tree between the end vertices of the graph edges and the num-
ber of graph edges. We consider the problem of computing a minimum
average stretch spanning tree in polygonal 2-trees, a super class of 2-
connected outerplanar graphs. For a polygonal 2-tree on n vertices, we
present an algorithm to compute a minimum average stretch spanning
tree in O(n log n) time. This also finds a minimum fundamental cycle
basis in polygonal 2-trees.

1 Introduction

Average stretch is a parameter used to measure the quality of a spanning tree
in terms of distance preservation, and finding a spanning tree with minimum
average stretch is a classical problem in network design. Let G = (V (G), E(G))
be an unweighted graph and T be a spanning tree of G. For an edge (u, v) ≥
E(G), dT (u, v) denotes the distance between u and v in T . The average stretch
of T is defined as

AvgStr(T ) =
1

|E(G)|
∑

(u,v)∩E(G)

dT (u, v) (1)

A minimum average stretch spanning tree of G is a spanning tree that minimizes
the average stretch. Given an unweighted graph G, the minimum average stretch
spanning tree (MAST) problem is to find a minimum average stretch spanning
tree of G. Due to the unified notation for tree spanners, the MAST problem is
equivalent to the problem, MFCB, of finding a minimum fundamental cycle basis
in unweighted graphs [16]. Minimum average stretch spanning trees are used
to solve symmetric diagonally dominant linear systems [16]. Further, minimum
fundamental cycle bases have various applications including determining the
isomorphism of graphs, frequency analysis of computer programs, and generation
of minimal perfect hash functions (See [4,11] and the references there in]). Due to
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these vast applications, finding a minimum average stretch spanning tree is useful
in theory and practice. The MAST problem was studied in a graph theoretic game
in the context of the k-server problem by Alon et al. [1]. The MFCB problem was
introduced by Hubika and Syslo in 1975 [12]. The MFCB problem was proved to
be NP-complete by Deo et al. [4] and APX-hard by Galbiati et al. [11]. Another
closely related problem is the problem of probabilistically embedding a graph
into its spanning trees. A graph G is said to be probabilistically embedded into
its spanning trees with distortion t, if there is a probability distribution D of
spanning trees of G, such that for any two vertices the expected stretch of the
spanning trees in D is at most t. The problem of probabilistically embedding
a graph into its spanning trees with low distortion has interesting connections
with low average stretch spanning trees.

In the literature, spanning trees with low average stretch has received sig-
nificant attention in special graph classes such as k-outerplanar graphs and
series-parallel graphs. In case of planar graphs, Kavitha et al. remarked that
the complexity of MFCB is unknown and there is no O(log n) approximation
algorithm [13]. For k-outerplanar graphs, the technique of peeling-an-onion de-
composition is employed to obtain a spanning tree whose average stretch is at
most ck, where c is a constant [7]. In case of series-parallel graphs, a spanning
tree with average stretch at most O(log n) can be obtained in polynomial time
(See Section 5 in [8]). The bounds on the size of a minimum fundamental cycle
basis is studied in graph classes such as planar, outerplanar and grid graphs [13].
The study of probabilistic embeddings of graphs is discussed in [7,8]. To the best
of our knowledge, there is no published work to compute a minimum average
stretch spanning tree and minimum fundamental cycle basis in any subclass of
planar graphs.

We consider polygonal 2-trees in this work, which are also referred to as
polygonal-trees. They have a rich structure that make them very natural models
for biochemical compounds, and provide an appealing framework for solving
associated enumeration problems.

Definition 1 ([14]). A graph is a polygonal 2-tree if it can be obtained by edge-
gluing a set of cycles successively.

Edge gluing on two graphs G1 and G2 results in a graph G such that
V (G) = V (G1) ⇒ V (G2), E(G) = E(G1) ⇒ E(G2), |V (G1) ∪ V (G2)| = 2 and
|E(G1) ∪ E(G2)| = 1. A graph is a k-gonal tree, if it can be obtained by edge-
gluing a set of cycles of length k successively [14]. For example, a 2-tree is a
3-gonal tree. The class of polygonal 2-trees is a subclass of planar graphs and
it includes 2-connected outerplanar graphs and k-gonal trees. 2-trees, in other
words 3-gonal trees, are extensively studied in the literature. In particular, pre-
vious work on various flavours of counting and enumeration problems on 2-trees
is compiled in [10]. Formulas for the number of labeled and unlabeled k-gonal
trees with r polygons (induced cycles) are computed in [15]. The family of k-
gonal trees with same number of vertices is claimed as a chromatic equivalence
class by Chao and Li, and the claim has been proved by Wakelin and Woodal
[14]. The class of polygonal 2-trees is shown to be a chromatic equivalence class
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by Xu [14]. Further, various subclasses of generalized polygonal 2-trees have
been considered, and it has been shown that they also form a chromatic equiv-
alence class [14,17,18]. The enumeration of outerplanar k-gonal trees is studied
by Harary, Palmer and Read to solve a variant of the cell growth problem [6].
Molecular expansion of the species of outerplanar k-gonal trees is shown in [6].
Also outerplanar k-gonal trees are of interest in combinatorial chemistry, as the
structure of chemical compounds like catacondensed benzenoid hydrocarbons
forms an outerplanar k-gonal tree.

1.1 Our Results

We state our main theorem.

Theorem 2. Given a polygonal 2-tree G on n vertices, a minimum average
stretch spanning tree of G can be obtained in O(n log n) time.

A quick overview of our approach to solve MAST is presented in Algorithm 1
below. The detailed implementation is given in Section 4.

Algorithm 1. An algorithm to find an MAST of a polygonal 2-tree G

1 A → ∃;
2 for each edge e ≥ E(G) do c[e] → 0;
3 while G−A has a cycle do
4 Choose an edge e from G−A, such that e belongs to exactly one

induced cycle in G−A and c[e] is minimum ;
5 Let C be the induced cycle containing e in G−A ;
6 for each ê ≥ E(C) \ {e} do c[ê] → c[ê] + c[e] + 1;
7 A → A ⇒ {e} ;

8 Return G−A;

Due to the equivalence of MAST and MFCB (shown in Lemma 5), our result
implies the following corollary. For a set B of cycles in G, the size of B, denoted
by size(B), is the number of edges in B counted according to their multiplicity.

Corollary 3. Given a polygonal 2-tree G on n vertices, a minimum fundamental
cycle basis B of G can be obtained in O(n logn+ size(B)) time.

We characterize polygonal 2-trees using a kind of ear decomposition and present
the structural properties of polygonal 2-trees that are useful in finding a mini-
mum average stretch spanning tree (In Section 2). We then identify a set of edges
in a polygonal 2-tree, called safe edges, whose removal results in a minimum av-
erage stretch spanning tree (In Section 3). Finally, we present an algorithm with
necessary data-structures to identify the safe set of edges efficiently and compute
a minimum average stretch spanning tree in sub-quadratic time (In Section 4).
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A graph G can be probabilistically embedded into its spanning trees with dis-
tortion t if and only if the multigraph obtained from G by replicating its edges
has a spanning tree with average stretch at most t (See [1]). It is easy to observe
that, a spanning tree T of G is a minimum average stretch spanning tree for G
if and only if T is a minimum average stretch spanning tree for a multigraph of
G. As a consequence of our result, we have the following corollary.

Corollary 4. For a polygonal 2-tree G, let t be the average stretch of a minimum
average stretch spanning tree of G. Then G can be probabilistically embedded into
its spanning trees with distortion t.

1.2 Graph Preliminaries

We consider simple, connected, unweighted and undirected graphs. We use stan-
dard graph terminology from [20]. Let G = (V (G), E(G)) be a graph, where
V (G) and E(G) denote the set of vertices and edges, respectively in G. We de-
note |V (G)| by n and |E(G)| by m. The union of graphs G1 and G2 is defined
as a graph with vertex set V (G1) ⇒ V (G2) and edge set E(G1) ⇒ E(G2) and is
denoted by G1 ⇒ G2. The intersection of graphs G1 and G2 written as G1 ∪G2

is a graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The
removal of a set X of edges from G is denoted by G −X . For a set X ∩ V (G),
G[X ] denotes the induced graph on X . An edge e ≥ E(G) is a cut-edge (bridge)
if G − e is disconnected. A graph is 2-connected if it can not be disconnected
by removing less than two vertices. A 2-connected component of G is a maximal
2-connected subgraph of G.

Let T be a spanning tree of G. An edge e ≥ E(G) \ E(T ) is a non-tree edge
of T . For a non-tree edge (u, v) of T , a cycle formed by the edge (u, v) and the
unique path between u and v in T is referred to as a fundamental cycle. For an
edge (u, v) ≥ E(G), stretch of (u, v) is the distance between u and v in T . The
total stretch of T is defined as the sum of the stretches of all the edges in G.
We remark that there are slightly different definitions exit in the literature to
refer the average stretch of a spanning tree. We use the definition in Equation
1, presented by Emek and Peleg in [8], to refer the average stretch of a spanning
tree. By Proposition 14 in [16], T is a minimum total stretch spanning tree of
G if and only if the set of fundamental cycles of T is a minimum fundamental
cycle basis of G. Then, we can have the following lemma.

Lemma 5. Let G be an unweighted graph and T be a spanning tree of G. T is a
minimum average stretch spanning tree of G if and only if the set of fundamental
cycles of T is a minimum fundamental cycle basis of G.

We use the following notation crucially. A path is a connected graph in which
two vertices have degree one and the rest of vertices have degree two. An edge
can be considered as a connected graph consisting of single edge.
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Lemma 6. Let G∈ be a 2-connected component in an arbitrary graph G and T
be a subgraph of G.

(a) If T is a spanning tree of G, then T ∪G∈ is a spanning tree of G∈.
(b) If T is a path in G, then T ∪G∈ is a path.

Special Graph Classes. A partial 2-tree is a subgraph of a 2-tree. A graph
is a series-parallel graph, if it can be obtained from an edge, by repeatedly
duplicating an edge or replacing an edge by a path. An alternative equivalent
definition for series-parallel graphs is given in [9].

2 Structural Properties of Polygonal 2-Trees

In this section, we present our key structural result in Lemma 11, which presents
crucial structural properties of polygonal 2-trees. This Lemma will be used signif-
icantly in proving the correctness of our algorithm. Another major result in this
section is Lemma 12, which computes a kind of ear decomposition for polygonal
2-trees. This helps in obtaining an efficient algorithm to solve MAST. The notion
of open ear decomposition is well known to characterize 2-connected graphs. An
open ear decomposition of G is a partition of E(G) into a sequence (P0, . . . , Pk)
of edge disjoint graphs called as ears such that,

1. For each i ⊗ 0, Pi is a path.
2. For each i ⊗ 1, end vertices of Pi are distinct and the internal vertices of Pi

are not in P0 ⇒ . . . ⇒ Pi−1.

Further, a restricted version of open ear decomposition called nested ear de-
composition is used to characterize series-parallel graphs [9]. An open ear de-
composition (P0, . . . , Pk) of G is said to be nested if it satisfies the following
properties:

1. For each i ⊗ 1, there exists j < i, such that the end vertices of path Pi are
in Pj .

2. Let the end vertices of Pi and Pi′ are in Pj , where 0 ≈ j < i, i∈ ≈ k and
i ∧= i∈. Let Qi ∞ Pj be the path between the end vertices of Pi and Qi′ ∞
Pj be the path between the end vertices of Pi′ . Then E(Qi) ∞ E(Qi′) or
E(Qi′) ∞ E(Qi) or E(Qi) ∪ E(Qi′) = ∃.

We define nice ear decomposition to characterize polygonal 2-trees and we show
how it helps in efficiently computing the induced cycles. A nested ear decompo-
sition (P0, . . . , Pk) is said to be nice if it has the following property: P0 is an
edge and for each i ⊗ 1, if xi and yi are the end vertices of Pi, then there is
some j < i, such that (xi, yi) is an edge in Pj . Definition 1 naturally gives a nice
ear decomposition for polygonal 2-trees. Further, a unique polygonal 2-tree can
be constructed easily from a nice ear decomposition. Thus we have the following
observation.
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Observation 7. A graph G is a polygonal 2-tree if and only if G has a nice ear
decomposition.

In the following lemmas, we present results from the literature that establish
polygonal 2-trees as a subclass of 2-connected partial 2-trees, which we formalize
in Lemma 11.

Lemma 8 (Theorem 42 in [2]). A graph G is a partial 2-tree if and only if
every 2-connected component of G is a series-parallel graph.

According to Lemma 8, 2-connected series-parallel graphs and 2-connected par-
tial 2-trees are essentially same.

Lemma 9 (Lemma 1, Lemma 7 and Theorem 1 in [9]). A graph G is
2-connected if and only if G has a open ear decomposition in which the first
ear is an edge. Further, for a 2-connected series-parallel graph, every open ear
decomposition is nested. A graph is series-parallel if and only if it has a nested
ear decomposition.

The above lemma implies that every 2-connected partial 2-tree has a nested ear
decomposition starting with an edge (first ear is an edge) and vice versa. We
strengthen the first part of this result in the following lemma.

Lemma 10. Let G be a 2-connected partial 2-tree. Then there exists a nested
ear decomposition (P0, . . . , Pk) of G, such that P0 is an edge and for each i ⊗ 1,
|E(Pi)| ⊗ 2.

We show in Lemma 12 that a nested ear decomposition as in Lemma 10 is a nice
ear decomposition for polygonal 2-trees. From Propositions 1.7.2 and 12.4.2 in
[5], partial 2-trees do not contain a K4-subdivision (as a subgraph).

Lemma 11. Let G be a polygonal 2-tree. Then,
(a) G is a 2-connected partial 2-tree and G does not contain a K4-subdivision.
(b) Any two induced cycles in G share at most one edge and at most two vertices.
(c) For u, v ≥ V (G) such that (u, v) /≥ E(G), G − {u, v} has at most two com-
ponents.

Our algorithm will perform several computations on the induced cycles of a
polygonal 2-tree. It is therefore important to obtain the set of induced cycles in
a polygonal 2-tree in linear time. We prove this in the following lemma. This is
based on a linear-time algorithm for obtaining an open ear decomposition [19].

Lemma 12. Let G be a polygonal 2-tree on n vertices. Let D be a nested ear
decomposition of G as in Lemma 10 and B be the set of induced cycles in G.
Then D is a nice ear decomposition. Further, D and B can be computed in linear
time and size(B) is O(n).

We now present a sufficient condition for a graph to be a polygonal 2-tree.

Lemma 13. If G is a 2-connected partial 2-tree and every two induced cycles
in G share at most one edge, then G is a polygonal 2-tree.
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3 Structural Properties of MAST in Polygonal 2-Trees

For the rest of the paper, G denotes a polygonal 2-tree. In this section we design
an iterative procedure to delete a subset of edges from a polygonal 2-tree, so
that the graph on the remaining edges is a minimum average stretch spanning
tree. This result is shown in Theorem 18.
Important Definitions: We introduce some necessary definitions on polygonal 2-
trees. Two induced cycles in G are adjacent if they share an edge. An edge in G
is internal if it is part of at least two induced cycles; otherwise it is external. An
induced cycle in G is external if it has an external edge; otherwise it is internal.
A fundamental cycle of a spanning tree, created by a non-tree edge is said to
be external if the associated non-tree edge is external. For a cycle C in G, the
enclosure of C is defined as G[V (C)] and is denoted by Enc(C). A set A ∞ E(G)
consisting of k (⊗ 0) edges is said to be an iterative set for G if the edges in
A can be ordered as e1, . . . , ek such that e1 is external and not a bridge in G,
and for each 2 ≈ i ≈ k, ei is external and not a bridge in G − {e1, . . . , ei−1}.
Let A be an iterative set of edges in G. For every edge (u, v) ≥ A, both u
and v are not present in the same 2-connected component in G− A. We define
bound(A,G) to be the set of external edges in G − A that are not bridges. For
an edge e ≥ bound(A,G), Ge denotes a 2-connected component in G − A that
has e.

Definition 14. Let e ≥ bound(A,G). The support of e is defined as {(u, v) ≥ A |
there is a path P joining u and v in G−A such that P ∪Ge = e} and is denoted
by Support(e). The cost(e) is defined as | Support(e)|.
In the following lemmas we present a result on the structure of paths connecting
the end points of edges in an iterative set A. This is useful in setting up the
iterative approach for computing a minimum average stretch spanning tree. We
apply the necessary properties of polygonal 2-trees (cf. Lemma 11) and sufficient
condition for a graph to be a polygonal 2-tree (cf. Lemma 13) in the proofs of
the following lemmas.

Lemma 15. Let A be an iterative set of edges for G and (u, v) ≥ A, P be a path
joining u and v in G−A, G∈ be a 2-connected component in G−A that has at
least two vertices from P , and let P ∈ = P ∪G∈ be a path with end vertices x and
y. Then the following are true:
(a) (x, y) ≥ E(G∈).
(b) If P is a shortest path, then P ∈ is an edge.
(c) Every 2-connected component in G−A is a polygonal 2-tree.

Lemma 16. Let A be an iterative set of edges for G. (u, v) ≥ Support(e) if and
only if there is a shortest path P joining u and v in G−A and P has e.

Lemma 17. Let T be a spanning tree of G and e be an external edge in G such
that e ≥ E(T ). For the spanning tree T , let Cmin be the smallest fundamental
cycle containing e and let Cmax be a largest fundamental cycle containing e. Let
e∈ and e∈∈ be the non-tree edges associated with Cmin and Cmax, respectively.
Then, (a) e∈∈ is an external edge (b) Enc(Cmin) ∞ Enc(Cmax).
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A set A of edges in G is referred to as a safe set for G, if A is an iterative set of
edges for G and a minimum average stretch spanning tree of G is in G−A.

Theorem 18. Let A be a safe set of edges for G such that bound(A,G) ∧= ∃.
Let e be an edge in bound(A,G) for which cost(e) is minimum. Then A⇒ {e} is
a safe set for G.

Proof. For a safe set A, let T ∗ be a minimum average stretch spanning tree of
G; that is, T ∗ ∩ G − A as bound(A,G) ∧= ∃. If e /≥ E(T ∗), then we are done.
Assume that e ≥ E(T ∗). Clearly, A ⇒ {e} is an iterative set for G. To show that
A ⇒ {e} is a safe set for G, we use the technique of cut-and-paste to obtain a
spanning tree T ∈ (by deleting the edge e from T ∗ and adding an appropriately
chosen edge e∈) and show that AvgStr(T ∈) ≈ AvgStr(T ∗).

Let Ge be a 2-connected component in G − A containing e and G1, . . . , Gk

be the 2-connected components in G − A. For clarity, Ge ≥ {G1, . . . , Gk}.
From Lemma 15.(c), Ge is a polygonal 2-tree. For 1 ≈ i ≈ k, by Lemma 6.(a),
Ti = T ∗ ∪ Gi is a spanning tree of Gi. For the spanning tree T ∗, let Cmin be
the smallest fundamental cycle containing e in Ge and let Cmax be a largest
fundamental cycle containing e in Ge. Let e∈, e∈∈ ≥ E(Ge) be the non-tree
edges associated with Cmin and Cmax, respectively. From Lemma 17, e∈∈ is
an external edge in Ge and Enc(Cmin) ∞ Enc(Cmax). Let e∈ = (xmin, ymin),
e∈∈ = (xmax, ymax). For a non-tree edge (u, v) in T ∗, we use Puv to denote the
path between u and v in T ∗ and Cuv to denote the fundamental cycle of T ∗

formed by (u, v). Let X = {(u, v) ≥ E(G) \E(T ∗) | e ≥ E(Puv), e
∈ /≥ Enc(Cuv)},

Y = {(u, v) ≥ E(G) \ E(T ∗) | e ≥ E(Puv), e
∈ ≥ Enc(Cuv), (u, v) ∧= e∈},

Z = {(u, v) ≥ E(G) \ E(T ∗) | e /≥ E(Puv)}. The set of non-tree edges in T ∗

is X ∨ Y ∨ {e∈} ∨ Z. Let T ∈ = T ∗ + e∈ − e. The set of non-tree edges in T ∈ is
X ∨ Y ∨ Z ∨ {e}. To prove the theorem, we prove the following claims.

Claim 1: X ∞ A.
Claim 2: Support(e) ∞ X .
Claim 3: Support(e∈∈) ∞ Y .
Claim 4: X ∞ Support(e).
Claim 5: For every (u, v) ≥ Z, the path between u and v in T ∗ is in T ∈.

Assuming that the above five claims are true, we complete the proof of the theo-
rem. We know that cost(e) ≈ cost(e∈∈). As e and e∈∈ are in Ge, from the definition
of Support, we further know that Support(e)∪Support(e∈∈) = ∃. Therefore, from
Claims 2, 3 and 4, it follows that |X | ≈ |Y |. Since e∈, e ≥ E(Cmin), e ≥ E(T ∗)
and e∈ /≥ E(T ∗), the stretch of e∈ in T ∗ is equal to the stretch of e in T ∈. From
Claim 5, stretch do not change for the edges in Z. For all the edges in X , stretch
increases by |Cmin| − 2. Further, for all the edges in Y , stretch decreases by
|Cmin| − 2. Therefore, AvgStr(T ∈) ≈ AvgStr(T ∗). Since T ∗ is a minimum aver-
age stretch spanning tree, T ∈ is also a minimum average stretch spanning tree.
Clearly, T ∈ is in G− (A ⇒ {e}). Hence A ⇒ {e} is a safe set for G.
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We now prove the five claims.

Proof of Claim 1: On the contrary, assume that (u, v) ≥ X and (u, v) /≥ A.
To arrive at a contradiction, we show that e is an internal edge. Since (u, v) ≥
X , there is a fundamental cycle Cuv of T ∗ formed by the non-tree edge (u, v)
containing e. As (u, v) /≥ A, clearly (u, v) is in G−A. Further, Puv is in G−A,
because T ∗ ∩ G−A. So we know that Cuv is in G−A. If Cuv is not in Ge, then
Ge ⇒ Cuv becomes a 2-connected component in G−A, because Ge is in G−A,
Cuv is in G−A, and e is both in Ge and Cuv . But, we know that Ge is a maximal
2-connected subgraph (2-connected component), thereby Cuv is in Ge. Clearly,
Cuv and Cmin are not edge disjoint cycles. If Enc(Cmin) ∞ Enc(Cuv), then
either (u, v) ≥ Y or (u, v) = e∈, which contradicts the fact that (u, v) ≥ X . Also,
Enc(Cuv) is not contained in Enc(Cmin), because Cmin is a minimum length
induced cycle containing e. Therefore, both Cmin and Cuv are not contained in
each other. Thus, e is an internal edge in G − A. This is a contradiction, as we
know that e is external.

Proof of Claim 2: Let (u, v) ≥ Support(e). In order to prove that (u, v) ≥ X ,
we show the following: (a) (u, v) /≥ E(T ∗), (b) Puv has e and (c) e∈ is not in
Enc(Cuv).

By the definition of Support(e), (u, v) ≥ A. As T ∗ ∩ G − A, it follows that
(u, v) /≥ E(T ∗). By Lemma 16, there is a shortest path P joining u and v in G−A
and P has e. Let G∈

1, . . . , G
∈
r be the 2-connected components in G−A containing

at least two vertices from P . Due to Lemma 15.(b), for each 1 ≈ i ≈ r, P ∪G∈
i is

an edge, say (xi, yi). Thus P ∪ Ge is e. Further, P contains at most one vertex
from e∈, because e∈ ≥ E(Ge). The set of edges in P that are cut-edges in G−A
are present in T ∗. Due to Lemma 6.(a), replacing every edge (xi, yi) in P by the
path between xi and yi in T ∗, Puv is obtained. Since P ∪Ge is e and e is in T ∗,
it implies that Puv has e. Thus Puv has e, and e∈ is not in Enc(Cuv).

Proof of Claim 3: Let (u, v) ≥ Support(e∈∈). In order to prove that (u, v) ≥ Y ,
we show the following: (a) (u, v) /≥ E(T ∗), (b) Puv has e and (c) e∈ is in Enc(Cuv).

Because (u, v) ≥ A and T ∗ ∩ G−A, we have (u, v) /≥ E(T ∗). As e, e∈∈ ≥ E(Ge),
due to Lemma 16, there is a shortest path P joining u and v in G−A and P has
e∈∈. Let G∈

1, . . . , G
∈
r be the 2-connected components in G−A such that for each

1 ≈ i ≈ r, P ∪G∈
i is an edge, say (xi, yi), due to Lemma 15.(b). By Lemma 6.(a),

we replace every edge (xi, yi) in P by the path between xi and yi in T ∗ and
obtain the tree path Puv. Note that P ∪Ge is e∈∈, e∈∈ = (xmax, ymax), and e∈∈ in
P got replaced with the path between xmax and ymax in T ∗. Also, we know that
the path between xmax and ymax in T ∗ has e. Further by Lemma 17.(b), e∈ is
in Enc(Cmax). These observations imply that Puv has e and Enc(Cuv) contains
e∈.

Proof of Claim 4: Let (u, v) ≥ X . By Claim 1, clearly (u, v) ≥ A. Lemma
6.(b) implies that Puv ∪ Ge is a path. Let P ∈ = Puv ∪ Ge be a path and let
x and y be the end vertices of P ∈. If P ∈ is an edge, then the claim holds.
On the contrary assume that P ∈ has at least two edges. By Lemma 15.(a),
(x, y) ≥ E(G). Further, (x, y) /≥ E(T ∗) as it would then form a cycle in the
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tree. The path P ∈ is strictly contained in the path joining the vertices xmin and
ymin in T ∗, because e∈ /≥ Enc(Cuv). Then the fundamental cycle of T formed by
(x, y) is of lesser length than the length of Cmin; a contradiction because Cmin

is a minimum length fundamental cycle in Ge containing e. Therefore, Puv ∪Ge

is e. Thus (u, v) ≥ Support(e).

Proof of Claim 5: Let (u, v) ≥ Z. By the definition of Z, clearly e /≥ E(Puv). It
implies that e∈ /≥ Enc(Cuv) as the path between the end vertices of e∈ in T ∗ has
e. Therefore Puv has at most one end vertex from e and e∈. Since the symmetric
difference of E(T ∗) and E(T ∈) is {e, e∈}, the path Puv in T ∗ remains same in T ∈.
Hence the theorem. ∀←

We now show the termination condition for applying Theorem 18.

Lemma 19. Let A be a safe set of edges for G such that bound(A,G) = ∃.
Then G−A is a minimum average stretch spanning tree of G.

4 Computing MAST in Polygonal 2-Trees

In order to obtain a minimum average stretch spanning tree efficiently, we need
to efficiently find an edge in bound(A,G) with minimum cost in every iteration,
where A is a safe set for G. In this section, we present necessary data-structures,
so that a minimum average stretch spanning tree in polygonal 2-trees on n
vertices can be computed in O(n log n) time. This is shown in Algorithm 2.
For each edge e ≥ bound(A,G), we show in Lemma 20, how to compute cost(e)
efficiently.

Notation. Let Q be a min-heap that supports the following operations:
Q.insert(x) inserts an arbitrary element x into Q, Q.extract-min() extracts the
minimum element from Q, Q.decrease-key(x, k) decreases the key value of x to
k in Q, Q.delete(x) deletes an arbitrary element x from Q. Q.delete(x) can be
implemented by calling Q.decrease-key(x,−∞) followed by Q.extract-min()
[3]. For a set A of safe edges for G, an induced cycle in G is said to be processed
if it is not in G−A; otherwise it is said to be unprocessed. For an edge e ≥ E(G),
we use the sets Cycles[e] and pCycles[e] to store the set of induced cycles and
processed induced cycles, respectively containing e; unpCount[e] is used to store
the number of unprocessed induced cycles containing e. For an edge e ≥ E(G),
we use c[e] to store some intermediate values while computing cost(e); whenever
e becomes an edge in bound(A,G), then we make sure that c[e] is cost(e).

Initialization. Given a polygonal 2-tree G, we first compute the set of induced
cycles in G. For each induced cycle C in G and for each edge e ≥ E(C), we insert
the cycle C in the set Cycles[e]. For each e ≥ E(G), we perform unpCount[e] →
|Cycles[e]|, pCycles[e] → ∃, c[e] → 0. We further initialize the set A of safe edges
with ∃. Later, we construct a min-heap Q with the edges e in bound(A,G) i.e.,
external edges that are not bridges in G, based on c[e].

The Algorithm 2 maintains the following loop invariants:
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Algorithm 2. An algorithm to find an MAST of a polygonal 2-tree G

1 Perform the steps described in Initialization ;
2 while Q ∧= ∃ do
3 e → Q.extract-min() ;
4 A → A ⇒ {e} ;
5 C → Cycles[e] \ pCycles[e] ;
6 for each edge ê ≥ E(C) \ {e} do
7 c[ê] → c[ê] + c[e] + 1 ;
8 pCycles[ê] → pCycles[ê] ⇒C ;
9 unpCount[ê] → unpCount[ê]− 1 ;

10 if unpCount[ê] = 1 then Q.insert(ê, c[ê]) ;
11 if unpCount[ê] = 0 then Q.delete(ê) ;

12 Return G−A;

L1. The min heap Q only consists of, the set of edges in bound(A,G).
L2. For an edge e ≥ E(G), pCycles[e] is the set of processed induced cycles

containing e and unpCount[e] is equal to the number of unprocessed induced
cycles containing e.

L3. For every edge e ≥ bound(A,G), Cycles[e]\pCycles[e] is the unique external
induced cycle in G−A containing e.

L4. A is a safe set for G. (cf. Theorem 18)
L5. For every edge e ≥ bound(A,G), c[e] = cost(e). (cf. Lemma 20)

Let Ai ∩ E(G) denote the set of safe edges in G at the end of ith iteration. Let
e be an edge extracted from the heap Q in ith iteration and C be the unique
induced cycle containing e in G−Ai−1. That is, C is a cycle in G−Ai−1 and C
is not a cycle in G−Ai as e is added to A in iteration i. Then we say that C is
processed in iteration i and e is the destructive edge for C.

Lemma 20. Let e ≥ bound(Aj , G). Let C be the unique external induced cycle
in G−Aj containing e and C1, . . . , Ck be the other induced cycles in G containing
e. For 1 ≈ i ≈ k, let ei be the destructive edge of Ci. Then Support(e) =
Support(e1) ∨ . . . ∨ Support(ek) ∨ {e1, . . . , ek}.

The algorithm terminates when Q becomes ∃, that is, bound(A,G) = ∃. Then
by Lemma 19, G−A is a minimum average stretch spanning tree of G.

Lemma 21. For a polygonal 2-tree G on n vertices, Algorithm 2 takes
O(n log n) time.

Proof. The set of induced cycles in G can be obtained in linear time (cf. Lemma
12), thereby line 1 takes linear time. As the size of induced cycles in G is O(n)
(Lemma 12), line 5 and lines 7-9 contribute O(n) towards the run time of the
algorithm. Also every edge in G gets inserted into the heap Q and gets deleted
from Q only once and |E(G)| ≈ 2n− 3. It takes O(log n) time for the operations
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insert(),delete() and extract-min() [3]. Thus Algorithm 2 takes O(n log n)
time. ∀←

This concludes the presentation of our main result, namely Theorem 2.
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Abstract. A graph G = (V,E) is said to be triangulated if it has no
chordless cycles of length 4 or more. Such a graph is said to be rigid if,
for a valid assignment of edge lengths, it has a unique linear layout and
non-rigid otherwise. Damaschke [7] showed how to compute all linear
layouts of a triangulated graph, for a valid assignment of lengths to the
edges of G. In this paper, we extend this result to weakly triangulated
graphs, resolving an open problem. A weakly triangulated graph can be
constructively characterized by a peripheral ordering of its edges. The
main contribution of this paper is to exploit such an edge order to identify
the rigid and non-rigid components of G. We first show that a weakly
triangulated graph without articulation points has at most 2nq different
linear layouts, where nq is the number of quadrilaterals (4-cycles) in
G. When G has articulation points, the number of linear layouts is at
most 2nb−1+nq , where nb is the number of nodes in the block tree of G
and nq is the total number of quadrilaterals over all the blocks. Finally,
we propose an algorithm for computing a peripheral edge order of G
by exploiting an interesting connection between this problem and the
problem of identifying a two-pair in G. Using an O(n ·m) time solution
for the latter problem when G has n vertices and m edges, we propose
an O(n2 ·m) time algorithm for computing its peripheral edge order. For
sparse graphs, the time-complexity can be improved to O(m2), using the
concept of handles proposed in [1].

1 Introduction

The problem we study in this paper is a restricted version of the point placement
problem for which we seek to determine the locations of a set of distinct points on
a line, uniquely up to translation and reflection, by making the fewest pairwise
distance queries [2]. In the linear layout problem, we are given a set of pairwise
distances (in the form of a graph) and the problem is to determine all possible
placements of the vertices of the graph on a line or their linear layouts. The
linear layout problem, in turn, is a special case of the graph embedding problem.
Given a weighted graph G = (V,E) and a positive integer k, an embedding of
G in a k-dimensional Euclidean space, Ek, is a mapping, f , of V into Ek such
that the weight of an edge e = {u, v} in G is equal to the Euclidean distance

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 322–336, 2014.
c∩ Springer International Publishing Switzerland 2014
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between f(u) and f(v). For k = 1, such an embedding corresponds to a linear
layout. Saxe [3] showed that the problem of embedding a weighted (incomplete)
graph G = (V,E) in Euclidean k-space is strongly NP -complete. Indeed, it
remains so even when k = 1 and the edge weights are restricted to the values
{1, 2}. Barvinok [4] showed that if G is k-embeddable for some k then it is
k-embeddable for k = ≥

√
(8|E|+ 1)− 1)/2⇒, while Alfakih and Wolkowicz [5]

gave an algorithm for constructing such a k-embedding. Hastad et al. [6] studied
the approximability of the matrix-to-line problem, which is in essence the 1-
embeddability problem.

Despite the strongly negative result of Saxe, it is possible to solve this problem
in polynomial time for special classes of graphs with well-defined assignment of
weights to their edges as we show below.

A graph G = (V,E) is said to be triangulated (also called chordal) if it has
no chordless cycle of length 4 or more. Damaschke [7] described an algorithm
for generating all linear layouts of a triangulated graph given a valid assignment
of lengths, l, to the edges of the graph. An assignment of lengths to the edges
of G is said to be valid if the distances between the adjacent vertices in a linear
placement is consistent with the lengths assigned to the edges of G. We indicate
this by writing (G, l). It was left as an open problem to extend this algorithm to
other classes of graphs with weaker chordality properties. In this paper, we show
how to enumerate linear layouts for weakly triangulated (or weakly chordal)
graphs.

A graph G = (V,E) is weakly triangulated if neither G nor its complement G
contains a chordless cycle of 5 or more vertices. A hole in G is an induced cycle
on 5 or more vertices and an anti-hole is the complement of a hole. Alternatively,
G is weakly triangulated if it does not contain a hole or an anti-hole. Fig. 1(a)
shows a weakly triangulated graph; however, the graph in Fig. 1(b) is not a
weakly triangulated one as the outer boundary is a chordless 8-cycle. The class
of weakly triangulated graphs includes the class of triangulated graphs as well
as their complements.

2 Preliminaries

Let G = (V,E) be an undirected graph. A component of G is a maximally con-
nected subgraph. A biconnected component is a 2-connected component. When
G is connected, it decomposes into a tree of biconnected components called the
block tree of the graph. The blocks are joined to each other at shared vertices
called cut vertices or articulation points. The following constructive characteri-
zation, analogous to the perfect elimination ordering of a triangulated graph, is
central to our approach.

Theorem 1. [8] A graph is weakly triangulated iff it can be generated in the
following manner:

1. Start with an empty graph G0.
2. Repeatedly add an edge ej to the graph Gj−1 to create the graph Gj such that

ej is not the middle edge of any P4 (a chordless path of 4 vertices) of Gj.
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(a)
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c
d

f

g
h

e

(b)

Fig. 1. Some example graphs: (a) A weakly trian-
gulated graph and (b) A graph that is not weakly
triangulated

An edge of a graph is pe-
ripheral if it is not the middle
edge of any P4. A total order
of the m edges {e1, e2, ..., em}
of the graph G is a peripheral
edge order if for 1 ∪ j ∪ m,
ej is peripheral in the graph
Gj = (V,Ej), where Ej =
{e1, e2, ..., ej}. Thus the follow-
ing theorem is equivalent to
Theorem 1 [8]:

Theorem 2. A graph is weakly
triangulated iff it admits a pe-

ripheral edge order.

The graph of Fig. 1(b), for example, does not admit a peripheral edge order.
For a peripheral edge order to exist, the last edge added must be an edge on its
outer boundary. Such an edge, when added to the graph, is clearly the middle
edge of a P4.

(a) K3 (b) K2,3 (c) Jewel (d) K−
4

Fig. 2. Some examples of line rigid graphs

Let l be a valid assign-
ment of lengths to the
edges of G. This means
that there is a placement
of the nodes V on a line
such that the distance
between adjacent nodes is consistent with l. We express this by the notation
(G, l). By definition (G, l) is said to be line rigid if there is a unique placement
up to translation and reflection, while G is said to be line rigid if (G, l) is line
rigid for every valid l.

Some examples of line rigid graphs are shown in Fig. 2. Except for what is
known as the jewel graph (Fig. 2(c)), the rest are also weakly triangulated.

A quadrilateral is not line rigid as an assignment l that makes it a parallelo-
gram has two different layouts (Fig. 3).

a bd c a bd ca b

d c

Fig. 3. Two different placements of a parallelogram abcd

A graph G
is minimally
line rigid if it
has no proper
induced sub-
graph that is
line rigid. For
example, the
weakly trian-

gulated graphs K2,3 and K3 are minimally line rigid. A subgraph of a graph G
is maximally line rigid if it has no proper induced supergraph that is line rigid.
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u v

(a) (b)

(c)

Fig. 4. Hinge edge {u, v}: (a) Weakly triangulated graph, (b) Graph after deleting u
and v, and (c) Hinge Components

An edge {u, v} of G is a hinge edge if removal of the vertices u and v and the
edges incident on these disconnects G into three or more disjoint components.
The edge {u, v} in Fig. 4(a) is a hinge edge. Hinge components hanging from
the hinge edge {u, v} are shown in Fig. 4(c).

3 Rigidity Structure

We assume that G is weakly triangulated graph without articulation points or
hinge edges and has a valid assignment of edge lengths. Also, we freely use
geometric terminology like line segments, triangles and quadrilaterals in lieu of
edges, 3-cycles and 4-cycles. Given a peripheral edge order of G, we reconstruct
G by adding back the edges in reverse peripheral order. During this process, we
identity the formation of new rigid and non-rigid components, and the conversion
of non-rigid components into rigid ones.
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eu ev eu ev eu ev eu ev

ui vi vi ui vi ui vi

ei
ui

eiei ei

Fig. 5. Connectivity of edges eu and ev

Let Gi be the graph
obtained by adding to
Gi−1 the i-th peripheral
edge ei = {ui, vi}. The
edge ei does not change
the rigidity structure of
the graph if it is added to

a maximally rigid subgraph of Gi−1. Otherwise, it changes the rigidity structure
of Gi−1 by way of forming a new rigid or non-rigid component or by changing a
non-rigid component to a rigid one.

ei

ui

vi

(a)

ui

ei

vi

(b)

ui vi

ei

(c)

Fig. 6. Different length paths between ui and
vi: (a) Triples and pairs of paths of length two
combining into a K2,3 and a rigid triangulated
quadrilateral, (b) Pair of paths of length three
makes the configuration rigid before adding ei,
and (c) Pair of paths of length three with a
common edge forms K2,3 with ei

If only ui is incident to Gi−1,
then ei is a dangling edge. Other-
wise, ei joins two vertices of Gi−1,
creating some new cycles. To deter-
mine what these are, consider the
set of edges Eu and Ev incident
respectively on ui and vi. If eu is
an edge in Eu and ev an edge in
Ev then as ei is a peripheral edge,
either the edges eu and ev share
a common end point or there is a
chord between their end-points as
in Fig. 5.

Thus the addition of ei generates
new triangles and quadrilaterals. If there are more than two paths of length two
between ui and vi, excluding the chord ei, each set of three paths group to form
a rigid subgraph, K2,3 (see Fig. 6(a)). If no two paths are left, ei gets added to a
maximally rigid subgraph and no new rigid or non-rigid components are formed.
Otherwise, new rigid or non-rigid components may be formed with the residual
set at most two paths of length two between ui and vi.

Let us examine the collection of quadrilaterals generated, each quadrilateral
corresponding to a path of length three between ui and vi, bounded by ei. In
order that pairs of such paths, with no common edge, keep the graph weakly
triangulated, there must be chords between two pair of vertices as shown in
Fig. 6(b). These give rise to two rigid subgraphs K2,3, which makes the config-
uration rigid before adding ei. Fig. 6(c) shows that if these two paths share an
edge, then the addition of ei creates a K2,3. This implies, more rigid or non-rigid
components may be formed if there is at most one unpaired path of length 3.
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ei

(a) Case 1

ei

(b) Case 2

ei

(c) Case 3

ei

(d) Case 4

ei
(e) Case 5

Fig. 7. All combinations of paths of lengths two and three

Combined with the previous step in which we have at most two residual paths
of length two, we distinguish among the following 5 cases (see Fig. 7).

Case 1 (zero path of length two and one path of length three): In this case, in
conjunction with ei, we generate a quadrilateral.

Case 2 (one path of length two and one path of length three): In this case
to maintain the weak triangulation property, there must exist a chord be-
tween a pair of vertices as shown in Fig. 7(b) and the addition of ei to this
configuration gives rise to a rigid graph - a K2,3 with an additional edge.

Case 3 (two paths of length two and one path of length three): In this case each
path of length two together with the path of length three creates a 5-cycle
which must be chorded to preserve the weak triangulation property. Since
each 5-cycle can be triangulated in four different ways, 16 cases arise (see
Fig. 8); of these, two have the configuration shown in Fig. 7(c); the configura-
tions of the remaining 14 cases (marked by ×) are rigid prior to the addition
of ei. The former two configurations cannot arise as the complement graph
has a chordless 6-cycle. Thus in this case ei is added to a rigid component.

××××××××

××××××

Fig. 8. Sixteen different triangulations of two 5-cycles

Case 4 (two paths of length two and zero path of length three): In this case the
addition of edge ei triangulates a quadrilateral, generating a rigid graph.

Case 5 (one path of length two and zero path of length three): In conjunction
with ei we have a triangle, a rigid graph.
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Fig. 9. Non-rigid quadrilateral remains non-rigid: (a) rigid com-
ponents Ci and Cj are adjacent to a non-rigid quadrilateral, (b)
unique layouts of Ci and Cj are shown as vertical segments, and
(c) and (d) are two different layouts of the quadrilateral abcd

Thus in all cases
we generate the
rigid components:
triangles, triangu-
lated quadrilater-
als, K2,3’s or a
single non-rigid
component, viz., a
quadrilateral.

Note that a non-
rigid quadrilateral
remains non-rigid
even if all its ver-
tices are parts of
maximally rigid
components as

shown in Fig. 9. This is true even if there are four different rigid components
adjacent to a non-rigid quadrilateral, one on each side.

(a)

C1 C2

C4

C7

C5

C6
C3

(b)

4
5

1 2

3
6

7

(c)

Fig. 10. (a) Weakly triangulated graph G, (b) Components of G, and (c) Rigidity tree
of G
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4 Rigidity Tree

By the discussion of the previous section, the only minimally line rigid subgraphs
of a weakly triangulated graphs without articulation points and hinge edges are
K2,3 and K3 and the only non rigid subgraph is a quadrilateral. We use these
facts to determine the relationship between maximal rigid components and non-
rigid components of a weakly triangulated graphs without articulation points
and/or hinge edges. The interesting question is whether these can be found as
we construct a weakly triangulated graph in an edge peripheral order.

Cj

c

a

Cj

b

d

b

c

a

Ci

d

Ci

Fig. 11. Interaction between a maxi-
mally rigid component Ci and a non-
rigid component Cj

Let C = {C1, C2, . . . , Cl} be the set
of components of G, where each Ci, for
1 ∪ i ∪ l, is either a quadrilateral or a
maximal rigid component of G. The rigid-
ity graph RG = (VG, EG) is a graph whose
nodes are the components of G and there
is an edge connecting two nodes if the
corresponding components share an edge.
The set of rigid components and rigidity
graph of the weakly triangulated graph of

Fig. 10(a) are shown in Fig. 10(b) and Fig. 10(c) respectively. We show that
RG is a tree by explaining the interaction between non-rigid components and
maximally rigid components.

Lemma 1. No edge is common to more than two rigid components.

Proof. This follows from the assumption that G has no hinge edges.

Lemma 2. Two quadrilaterals can share at most one edge.

Proof. If two distinct quadrilaterals Ci and Cj share two edges then they form
a K2,3. This implies that Ci → Cj must be a subgraph of a maximally rigid
component, which is a contradiction. If three edges are common then the distinct
edges of Ci and Cj are parallel. This proves the lemma.

Lemma 3. No edge is common to two maximally rigid components.

Proof. There cannot be an edge common to two maximally line rigid subgraphs
because both have a linear layout on a supporting line of the common edge,
fixing the placements of all the vertices. This contradicts the definition of the
maximality of the rigid components.

Lemma 4. A quadrilateral and a maximal rigid component can share at most
an edge.

Proof. If more than one edge is common between a maximal rigid component Ci

and a quadrilateral Cj (see Fig. 11), then Ci and Cj must be part of the same
maximal rigid component. This contradicts the definition of maximality of the
rigid component Ci.
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Lemma 5. There is no cycle of length two in RG.

Proof. A cycle of length two in RG between Ci and Cj implies that Ci and
Cj have two common edges, which is not possible because of the lemmas 2,
3, and 4.

b

d

e

c

a

C1

C5 C2

C3

C4

Fig. 12. Five components forming
cycle

Indeed, we show that there is no cycle of
any length in RG.

Theorem 3. The rigidity graph RG of a
weakly triangulated graph without articula-
tion points and hinge edges is a tree.

Proof. Assume there is a 5-cycle in RG. It
contains at most two maximally rigid com-
ponents and at least three non-rigid compo-
nents, since there is no common edge between
any two maximally rigid components. A 5-
cycle formed by two maximally rigid com-
ponents and three quadrilaterals is shown in

Fig. 12. This contradicts the definition of a weakly triangulated graph, since

there is a cycle {a, b}, ∅{b, c}, {c, d}, {̂d, e}, {e, a} with at least five edges, where

the notation ∅{b, c} denotes a chordless path between b and c. This argument
extends to all cycles of length ∃ 5 formed with different types of components.

The nonexistence of 3-cycles and 4-cycles in RG can be proved by enumerating
all possible cycles with different types of components.

All three different types of 3-cycles possible in RG are shown in Fig. 13. All
these 3-cycles violate the definition of a weakly triangulated graph. The case
Fig. 13(a) cannot happen because it contains a chordless 6-cycle {a, b}, {b, c},
{c, d}, {d, e}, {e, f}, {f, a} in G. The case Fig. 13(b) cannot happen because
its complement {a, e}, {e, c}, {c, d}, {d, b}, {b, f}, {f, a} is a 6-cycle in G. Fi-
nally, the case of Fig. 13(c) cannot happen because it contains a chordless cycle

{a, b}, {b, c}, {c, d}, {d, e}, {̂e, a} in G, of length at least five.
All three different types of 4-cycles possible with non-rigid components are

shown in Fig. 14. The graph of Fig. 14(a) contains a chordless 8-cycle {a, b}, {b, c},
{c, d}, {d, e}, {e, f}, {f, g}, {g, h}, {h, a} in G, and the graphs of Figs. 14(b) and
14(c) contain a chordless 6-cycle {a, b}, {b, f}, {f, g}, {g, h}, {h, d}, {d, a} The
proofs for 4-cycles in RG formed with non-rigid and maximally rigid compo-
nents are similar.

The edges are processed in peripheral edge order to generate the graph and
maintain in parallel the rigidity tree of the graph constructed so far. The vertices
of the rigidity tree are labeled as either rigid or non-rigid. An event occurs when
the peripheral edge forms a triangle, quadrilateral,K2,3, or splits a quadrilateral.
We update the rigidity tree at these events. In all other cases, a dangling edge
is formed or joins a pair of vertices of the same rigid component; no update is
required for this event.
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If the event is a triangle or a quadrilateral formation, insert a new node in the
rigidity tree, label the node appropriately, and add the edge to its neighbor (see
Fig. 15). For the event K2,3 formation or quadrilateral split, change the label of
the node to rigid, since the resulting component is rigid (see Fig. 16).

a

b

cd

e

f

C1C2

C3

(a)

d

b

a

c
f C1

C2

C3
e

(b)

a

b

cd

e
C1C2

C3

(c)

Fig. 13. Three components cycles: (a) Three non-rigid com-
ponents cycle with a 6-cycle. (b) Three non-rigid components
cycle whose complement is a 6-cycle. (c) Two non-rigid and
a maximally rigid component with a minimum cycle length
of five.

Whenever a rigid
component is formed,
merge it with its rigid
neighbors, if any. All
neighbors of merged
nodes are the neigh-
bors of the newly
created rigid node.
In Figs. 15(b), 16(b),
16(d), and 16(f) the
rigid components
formed are, in each
case, the neighbor of
another rigid compo-
nent.

The number of linear layouts of a weakly triangulated graph without artic-
ulation points and hinge edges is 2nq , since each non-rigid quadrilateral has at
most two distinct layouts, where nq is number of non-rigid quadrilaterals in the
rigidity tree. Moreover, all the linear layouts of the graph can be generated using
depth-first or breadth-first traversal of the rigidity tree.

b

a

c
d

f

g
h

e

C1

C3

C2

C4

(a)

e

fg

h C1

C3

C4

c b

ad

C2

(b)

e

fg

h C1

C3

c b

ad

C2C4

(c)

Fig. 14. Four non-rigid components cycles. (a) Contains an 8-cycle. (b) Contains a
6-cycle. (c) Contains a 6-cycle.

(a) (b) (c) (d)

Fig. 15. Two different ways of triangle and non-rigid quadrilateral formations are
depicted in (a) and (b), and (c) and (d) respectively
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(a) (b) (c) (d) (e) (f)

(g)

Fig. 16. Four different ways of K2,3 formation and three different ways of quadrilateral
split are depicted in (a) to (d) and (e) to (g) respectively

B1 B2 B3

B5B4

(a)

B1 B2 B3

B4 B5

(b)

Fig. 17. Three different ways of quadrilateral split

When G has ar-
ticulation points, con-
sider the block tree,
T , of the graph G. If
G has nb blocks then
the number of dif-
ferent layouts of the

blocks is 2nb−1 as each articulation point permits two different placements of
a block in a linear layout. Fig. 17(a) shows a graph G with three articulation
points and five blocks; Fig. 17(b) shows the corresponding block tree. Fix a
placement of the block B2, then relative to it the remaining four blocks each has
two different placements and thus 16 different placements.

Divide each block Bi into hinge components if it contains hinge edges as
shown in Fig. 4(c). For each hinge components and blocks without hinge edge,
construct the rigidity tree from their respective peripheral edge order.

We have already shown that the presence of q quadrilaterals within each block
allow for 2q different layouts. Hence we have at most 2nb−1+nq linear layouts
where nq is the total number of quadrilaterals over all the blocks.

5 Computing a Peripheral Edge Order

Vertices {x, y} of G is said to be a two-pair, if all chordless paths between u and v
are of length two. It was shown in [8] that {x, y} is a two-pair in the complement
graph G if xy is a peripheral edge in G; furthermore, (e1, e2, e3 . . . , em) is a
peripheral edge order of G if and only if (e1, e2, e3 . . . , em) is a two-pair non-
edge order (end points of ei are a two-pairs) of G. By Theorem 2 stated earlier,
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we also know that such a peripheral edge order exists for a weakly triangulated
graph. The algorithms that we propose will generate the peripheral edge order
in reverse; that is, if the output of the algorithm is (em, em−1, . . . e1), then the
peripheral edge order is (e1, e2, . . . em).

H1 Hk

v
Ni(v)

N(v)

H2 Hi
. . . . . .

Fig. 18. The Arikati-Rangan algorithm
in a nutshell

A brute-force approach to obtain the
reverse peripheral edge order of G goes
thus. We first obtain a two-pair in the
complement graph G and output the
edge joining the corresponding vertices
in G as the first peripheral edge. Next,
remove this edge from G and insert it
into G. Repeat these two steps for the
updated graphs until G is a complete

graph, or correspondingly G becomes empty. Then the peripheral edge order is
the reverse of the output order of the edges.

To compute a two-pair, we use the O(n ·m) algorithm proposed in [9]. As we
shall be referring to some of its details in the subsequent paragraphs, we digress
to give a brief description below.

Let N(v) be the neighborhood of a vertex v of G. Let H1, H2, . . . , Hk be a
decomposition of H = G−{v}−N(v) into connected components. The label of
a vertex u ∩ H , label(u), is i if it belongs to Hi. Let N1(v), N2(v), . . . , Nk(v) be
a decomposition of N(v) such that Ni(v) = {u|u ∩ N(v) and u is adjacent to
some vertex in Hi} (see Fig. 18).

For u ∩ H , define NV (u) = {w|w is adjacent to u and in N(v)}. Then {u, v}
is a two-pair if NV (u) = Nlabel(u)(v).
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Fig. 19. Iteration 1: (a) Graph
G, (b) its complement

To continue, since the input graph is G, the
time-complexity for a two-pair computation is in
O(n3). As G reduces to an empty graph over m
iterations, the time complexity of the brute-force
algorithm is in O(m · n3).

The above brute-force algorithm makes a lot of
redundant computations by running the Arikati-
Rangan algorithm ab initio in each iteration. To
pin down the redundancy precisely, consider a
small graph and its complement (Fig. 19).
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Fig. 20. Iteration 2: (a) Graph
G, (b) its complement

After a first round of the Arikati-Rangan algo-
rithm, if the two-pair returned is {c, d}, then the
updated graphsG and its complement for the next
round are shown in Fig. 20. During the first-round
(or the i-th round, in general) of computations, we
need to store the intermediate results of the algo-
rithm so that these can be used in the next round.
For example, when we are considering the node c
in the complement graph G, we need to store the
components Hk that are produced after removing
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nodes c and its neighbors (i.e. a and e) from the complement graph, so that
these can be used in the next round. In this way, all the intermediate results are
stored.

It is clear from Fig. 20 that the prinicipal way in which the current round
of the two-pair algorithm differs from the previous lies in how we deal with the
nodes c and d and the ones adjacent to these. We elaborate on this below.

v
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u
Hk

(a)

v
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u

Hk1

Hk2

Hk3

(b)

Fig. 21. Components Hk of the graph G:
(a) iteration i and (b) iteration i+ 1

Consider the i-th round of our
incremental version of the Arikati-
Rangan algorithm. Assume that the
edge uv was returned by the previous
round. The two-pair algorithm con-
siders each node, and computes the
neighborhood-deleted components of
that node. Depending on the node be-
ing processed in the present round,
three cases arise:

Case 1. (Node u or v is being processed): In this case, node u (v respectively) has
a new neighbor because of the newly-added edge uv. Also, the components Hk

can change (see Fig. 21). For this case, we will just redo the two-pair algorithm
for the respective nodes u and v.

Case 2. (Node u and v are not neighbors of the node s being processed): In
this case, the new edge could not have modified the neighbor set of the node
being considered. The only change it could have wrought is to join at most two
components Hi and Hj . If a disjoint set data structure is used, then the union
of two sets can be done in O(n) time. We will also need to modify the set Ni(v)
for these two sets Hi and Hj , while the neighborhood of all other Hk’s remain
the same. This takes O(n) time since the values of NV (p) remain the same for
all nodes p.

Case 3. (Node u or v is a neighbor of the node s being processed:) In this case,
the new edge could not have modified the neighbor set of the node being consid-
ered. Neither could it modify the components Hk’s because when we remove the
node and its neighbors, we will get the exact same subgraphs as was considered
in the previous iteration. The only change will be in the set Ni(s). Therefore, if
the node u is a neighbor of s, then the component Hi which contains the node v
will now also have u in its set Ni(v). Also, the set NV (v) will now also include
the node u. Both of these operations can be done in O(n) time.
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If both the nodes u and v are neighbors of s, it is easy to see that there will
be no change in any of the components or sets. We consolidate all of the above
discussion and other details into a formal algorithm described below.

Algorithm 1: Peripheral-Edge-Ordering

Data: A graph G = (V,E), and adjacency lists denoted by Adj(v), v ∩ V .
Result: A peripheral edge order of the graph, if it exists.
(1) Compute the adjacency matrix of the graph G = Adj(G) and the complement graph =

Adj(G).
(2) Initialize the list that will contain the peripheral edge order as PE = ∅

(3) Run the two-pair algorithm on the complement graph G, let it return the pair uv.
Also, while running the algorithm store all intermediate values.
(in particular, for each node v, store the corresponding components Hk’s, NV (u), Ni(u) and
label(u) for all nodes u ⊗= v).

(4) Add the edge uv to the list PE
(5) Remove the edge uv from the graph G.
(6) While G contains some edge do

(6.1) Update the adjacency matrix of the complement graph G denoted by Adj(G)
(6.2) for i = 1 to n do

(6.2.1) if node i belongs to Case 1 then
Run the two-pair algorithm for this node and update the various components
Hk, NV (u), Ni(u) and label(u).

(6.2.2) if node i belongs to Case 2 then
Get the two components in which u and v belong.
Obtain the set Ni(v) which is the union of these two sets.
Also make a new set Hk which is a union of these sets.

(6.2.3) if node i belongs to Case 3 then
Update the value of Ni(v) and NV (u) for that component in which a new
incident edge got added.

(6.2.4) for all u ∩ H do
if |Nlabel(u)(v)| = |NV (u)| then declare (u, v) is a two-pair and STOP;

(6.3) Append the edge uv to the list PE.
(6.4) Remove the edge uv from the graph G

5.1 Time Complexity

Steps 2, 4, and 5 takeO(1) time if we are given the adjacency matrix. Step 1 takes
O(n2) time to compute, and Step 3 takesO(n3) time to compute (remember that
the complement graph can have as many as O(n2) edges).

Each of the if conditions in Step 6.2.2 and Step 6.2.3 for case 2 and case 3
take at most O(n) time. But the if condition for case 1 in Step 6.2.1 takes O(n2)
time (note that we are only executing one iteration of the two-pair algorithm).
Also the for loop in Step 6.2.4 is executed for each node, i.e. n times. The total
time that Step 6.2 takes is O(n2) though since case 1 occurs for only two nodes
(the ones in which the edge was added), and for the remaining n − 2 nodes, it
will be O(n) time. Thus, in total we spend only O(n2) time for each iteration.
Also, the while loop in Step 6 is executed m times, since after each iteration
one edge is removed from the graph G. Therefore, the time complexity of our
algorithm is in O(n2 ·m).

Hayward et al. [1] proposed an algorithm that employs the interesting concept
of handles for recognizing weakly triangulated that runs in O(m2) time. We can
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obtain a peripheral edge order in the same time. When G is sparse, we can use
this result to obtain a more efficient algorithm.

6 Conclusions

In this paper we have brought together an interesting mix of techniques to solve
the problem of generating all linear layouts of weakly triangulated graphs. It
would be interesting to explore if these extend to other classes of graphs. Another
interesting direction is to consider generating two-dimensional layouts of graphs.
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Abstract. Let G be a planar graph such that each vertex of G is colored
by either red or blue color. Assume that there are nr red vertices and nb

blue vertices in G. Let S be a set of fixed points in the plane such that
|S| = nr+nb where nr points in S are colored by red color and nb points
in S are colored by blue color. A bichromatic point-set embedding of G
on S is a crossing free drawing of G such that each red vertex of G is
mapped to a red point in S, each blue vertex of G is mapped to a blue
point in S, and each edge is drawn as a polygonal curve. In this paper,
we study the problem of computing bichromatic point-set embeddings
of trees on two restricted point-sets which we call “ordered point-set”
and “properly-colored point-set”. We show that trees have bichromatic
point-set embeddings on these two special types of point-sets with at
most one bend per edge and such embeddings can be found in linear
time.

Keywords: Trees, Bichromatic point-set embedding, Bend, Ordered
point-set, Properly-colored point-set.

1 Introduction

Let G = (V,E) be a planar graph where V and E are the set of vertices and
edges, respectively. Let Vr and Vb be a partition of V such that the vertices
in Vr are colored red and the vertices in Vb are colored blue. Let S be a set
of points in the plane such that |S| = |V | and S contains |Vr| red points and
|Vb| blue points. A bichromatic point-set embedding of G on S is a crossing
free drawing of G such that each red vertex vr ≥ Vr is mapped to a red point
pr ≥ S, each blue vertex vb ≥ Vb is mapped to a blue point pb ≥ S, and each
edge of G is drawn as a polygonal curve. The general version of the problem of
computing bichromatic point-set embeddings is known as the k-chromatic point-
set embedding problem where the input graphG and input point-set S are colored
using k different colors for 1 ⇒ k ⇒ |V |. For k = 1, Cabello [1] has shown that the
problem of determining whether a planar graph G has a monochromatic point-
set embedding without bends is NP -complete. Hence, researchers have focused

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 337–348, 2014.
c∩ Springer International Publishing Switzerland 2014
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on finding k-chromatic point-set embeddings by allowing bends on the edges
and consequently, determining the maximum number of bends per edge that is
required to compute such drawings. For k = n, where n denotes the number of
vertices in the given graph, Pach and Wenger [7] have shown that O(n) bends per
edge are required for n-chromatic point-set embeddings of planar graphs; hence,
the number of bends per edge increases linearly with the number of vertices
of G for the maximum value of k. On the other hand, for k = 1, Kaufmann
and Wiese [6] have shown that any planar graph has a monochromatic point-set
embedding with at most two bends per edge. Surprisingly, for the immediate
next value of k, i.e., k = 2, Di Giacomo et al. [3] have shown that there exists
instances of planar graphs that require linear number of bends per edge for
bichromatic point-set embeddings. However, there are smaller classes of planar
graphs that admit bichromatic point-set embeddings with constant number of
bends per edge. Di Giacomo et al. [3] have presented algorithms to compute
bichromatic point-set embeddings of paths and cycles with at most one bend
per edge and of caterpillars with at most two bends per edge. A more general
result by Di Giacomo et al. [2] has shown that every outerplanar graph has a
bichromatic point-set embedding with at most 5 bends per edge. Interestingly, it
is also possible to find bichromatic point-set embeddings with constant number
of bends per edge by working on restricted configurations of point-sets as Di
Giacomo et al. [4] have shown that every planar graph has k-chromatic point-set
embeddings with at most 3k + 7 bends per edge on ordered point-sets.

Motivated by these results, we have studied the problem of computing bichro-
matic point-set embeddings of trees, a larger class of planar graphs than cater-
pillars, with at most one bend per edge on some special types of point-sets.
Let the given point set S be such that no two points in S have the same x-
coordinate. Assume, an ordering x-ord of the points in S by increasing x-values.
S is called an ordered point-set when all the points of the same color appear con-
secutively in x-ord. S is called a properly-colored point-set when no two points of
the same color appear consecutively in x-ord. In this paper, we prove that trees
admit bichromatic point-set embeddings on every ordered point-set and every
properly-colored point-set with at most one bend per edge and such drawings
can be computed in linear time.

The rest of the paper is organized as follows. Section 2 describes some defini-
tions. In Section 3, we prove that trees admit bichromatic point-set embeddings
on ordered point-sets with at most one bend per edge. Then we prove the exis-
tence of bichromatic point-set embeddings of trees on properly-colored point-sets
with at most one bend per edge in Section 4. Finally, Section 5 gives the con-
clusion and direction for future works.

2 Preliminaries

We assume familiarities with basic graph drawing terminology and present only
those definitions and known results that are used in the rest of this paper.

Let G = (V,E) be a planar graph. We say G is 2-colored if vertices of G are
colored either red or blue. Let Vr and Vb be the set of red vertices and blue vertices
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of G, respectively. Similarly, we call a set of fixed points S in the Euclidian plane
2-colored if points in S are colored either red or blue. Let Sr and Sb be the set
of red points and blue points of S, respectively. We say that S is compatible with
G if |Vb| = |Sb| and |Vr | = |Sr|. We use c(.) to denote the color of a vertex or a
point.

In the rest of the paper, we assume that for any given point-set S, no two
points of S have the same x-coordinates (if this is not the case for some point-set
S, we can rotate the plane to achieve distinct x-coordinates for all the points
in S). This gives an ordering x-ord of the points in S by increasing x-values.
We call S an ordered point-set when all the points of the same color appear
consecutively in x-ord. It is easy to observe that in an ordered point-set red
points can be separated from blue points by a line. We call S a properly-colored
point-set when no two consecutive points in x-ord have the same color.

We call a 2-colored point-set σ an RB-sequence when all the points of S are
collinear. We call the line l that passes through the points of σ, the spine of σ.
We assume l is always parallel to x-axis. For a point p of σ, we use next(p) to
denote the point next to the right of p on the spine l of σ. A spine defines 2 half
planes (called pages) sharing line l; the top (bottom) half plane is called the top
page (resp. bottom page).

Let Γ be a bichromatic point-set embedding of a 2-colored tree G on an RB-
sequence σ. We say a point p on the spline of σ is accessible from top (bottom)
page in Γ if there is no edge e in Γ such that e is drawn through the top (resp.
bottom) page and p lies between the endpoints of e on l. Two points that are
accessible from the same page, can be connected with a polygonal chain of at
most one bend and without any edge crossing; the proof can be found in [3].

Let P and Q be two 2-colored point-sets. We say P is chromatic equivalent to
Q if the following two conditions hold: (i) |P | = |Q|(= n), and (ii) c(pi) = c(qi)
for 0 ⇒ i ⇒ n− 1 where p0, p1, . . . , pn−1 and q0, q1, . . . , qn−1 denote the points
in P and Q, respectively in the order of increasing x-coordinate values.

We have the following lemma that relates bichromatic point-set embeddings
on two chromatic equivalent point-sets.

Lemma 1. Let S and σ be two chromatic equivalent point-sets. Then, an 1-bend
bichromatic point-set embedding of a 2-colored tree G on S can be computed in
linear time from an 1-bend bichromatic point-set embedding of G on σ.

The proof of this lemma is omitted in this extended abstract.

3 Embedding Trees on Ordered Point-Sets

In this section we prove the following theorem.

Theorem 1. Let G = (V,E) be a 2-colored tree. Let S be a 2-colored ordered
point-set compatible with G. Then G has a bichromatic point-set embedding Γ
on S with at most one bend per edge. Furthermore, Γ can be computed in linear
time.
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We give a constructive proof of Theorem 1. Let σ be 2-colored RB-sequence
chromatic equivalent to S. Then σ is also an ordered point-set and compatible
with G. If G has a bichromatic point-set embedding on σ with at most one bend
per edge, then by Lemma 1, G has an embedding on S with at most one bend
per edge. We thus describe, in the rest of this section, an algorithm that finds a
bichromatic point-set embedding of G on σ. We call this algorithm

Ordered-Sequence-Embedding
Without loss of generality, we assume that the leftmost point in σ is red. We
assume any red vertex of G as its root and denote it by v0.

We find a bichromatic point-set embedding of G on σ by mapping vertices
of G on points of σ in an incremental way as follows. We first embed the root
v0. Then at each subsequent step, we embed a new vertex of G on a point in
σ in such a way that the resulting drawing maintains some invariants. These
invariants ensure that the next vertex can be mapped in the next step without
any edge crossings and with at most one bend per edge.

Before proceeding further we need some definitions. Let γk denote the drawing
after some step k, k ∪ 0. For example, Fig. 1(b) shows the drawing γ4 of step 4
for the input graph in Fig. 1(a).
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Fig. 1. (a) A 2-colored tree G;G4 is shown as the shaded subgraph, and (b) the drawing
γ4 and the sets Lr

4 and Lb
4

We denote by Gk the subgraph of G that has been drawn in γk. We call
any vertex v in V (G)\V (Gk) an unmapped vertex and vertices of Gk mapped
vertices. A mapped vertex v of Gk is a live vertex if it has at least one unmapped
neighbor; v is called a R-live (B-live) vertex if v has at least one unmapped red
(resp. blue) neighbor. Thus a vertex can be both a R-live and B-live vertex if it
has unmapped red and blue neighbors.

Let σk → σ denote the set of points representing the vertices of Gk in γk.
We use p(v) to denote the point of σ that represents a vertex v of G; if v is a
R-live (B-live vertex), p(v) is called an R-live (B-live) point. The set of R-live
and B-live points of σk will be denoted by Lr

k and Lb
k, respectively. We use αk

and βk to denote the leftmost and the rightmost points of σk, respectively. We
say any point p of σ\σk is a free point; thus a free point does not represent any
vertex of G. The set of free red and blue points of σ\σk will be denoted by F r

k

and F b
k , respectively. For an illustration of the given definitions, see Fig. 1(b).

We call γk, 0⇒ k < n, a feasible drawing of Gk if γk satisfies the following
invariants.
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(1) Gk is connected and γk represents a bichromatic point-set embedding of
Gk on σk with at most one bend per edge.

(2) All points in F r
k are to the left of αk and all points in F b

k are to the right
of βk.

(3) All points in Lr
k are accessible from the bottom page and all points in Lb

k

are accessible from the top page.
We now describe Algorithm Ordered-Sequence-Embedding.
At step k = 0, the root vertex v0 where c(v0) is red, is mapped to the rightmost

free red point fr of σ. At any step k >0, we have the following two cases to
consider.

Case 1: There is at least one R-live point in σk−1. Let v be the vertex of Gk−1

which is mapped to the leftmost R-live point lr of σk−1. We take any unmapped
red neighbor u of vertex v and map vertex u to the rightmost free red point fr.
Then we add the edge (u, v) connecting the points lr and fr through the bottom
page. As an example, consider Fig. 2(b) which represents the drawing γk−1, at
some step k > 0, for the graph in Fig. 2(a); the shaded subgraph is the graph
Gk−1. Note that, in Fig. 2(b), p(v3) is the leftmost R-live point and fr is the
rightmost free red point. Vertex v7 is an unmapped red neighbor of vertex v3 in
Gk−1 as can be seen from Fig. 2(a). Hence, we map v7 on fr and draw the edge
(v3, v7) as shown in Fig. 2(c).
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Fig. 2. Illustrations of different cases of step k of Algorithm Ordered-Sequence-
Embedding. (a), (d): A 2-colored tree G; Gk−1 is shown as the shaded subgraph. (b),
(e): The drawing γk−1. (c), (f): The drawing γk.

Case 2: There is no R-live point in σk−1. In this case, there must be at least
one B-live point in σk−1; otherwise the drawing process is complete. Let v be
the vertex of Gk−1 which is mapped to the rightmost B-live point lb of σk−1.
We take any unmapped blue neighbor u of vertex v and map vertex u to the
leftmost free blue point fb. Then we add the edge (u, v) connecting points lb and
fb through the top page. See Figs. 2(d), 2(e) and 2(f) for an example.
This completes the description of the drawing algorithm. We now prove the
following lemma.

Lemma 2. γk is a feasible drawing of Gk, for 0⇒ k < n.
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Proof. We give an inductive proof.
Base Case (k =0): Since the drawing γ0 has only one vertex, i.e., the root v0
and no edge, it immediately follows that γ0 satisfies Invariants (1)-(3). Hence,
γ0 is a feasible drawing of G0.
Induction (k >0): By induction hypothesis, the drawing γk−1 is a feasible draw-
ing of the graph Gk−1. We now show that the drawing γk satisfies the given
Invariants (1)-(3).

γk satisfies Invariant (1): First consider Case 1. According to the operation
specified, V (Gk) = V (Gk−1)

⋃
{u}. Since vertex u is a neighbor of vertex v in

V (Gk−1) and we draw the edge (u, v) in γk, it follows that Gk is connected.
To prove that γk represents a bichromatic point-set embedding of Gk on σk, we
need to show that the edge (u, v) does not create any edge crossing and contains
at most one bend. Since lr ≥ Lr

k−1, by Invariant (2), it is accessible from bottom
page in γk−1. The point fr ≥ F r

k−1 is to the left of the leftmost point of σk−1 (by
Invariant (1)); hence, fr is accessible from both the pages in γk−1. Therefore, fr
and lr can be connected with a polygonal chain through the bottom page that
contains at most one bend and does not cross any other edge in γk−1.

Now consider Case 2. Using similar arguments as used for Case 1, it can be
shown that Invariant (1) holds for Case 2 also.

γk satisfies Invariant (2): First consider Case 1. By induction hypothesis,
points in F r

k−1 are to the left of αk−1. Since fr is the rightmost point in F r
k−1,

it follows that fr = αk and F r
k = F r

k−1\{fr}; therefore, points in F r
k are to the

left of αk. On the other hand, βk−1 = βk and F b
k−1 = F b

k . It follows that points

in F b
k are to the right of βk.

Now consider Case 2. Using similar arguments as used for Case 1, it can be
shown that Invariant (2) holds for Case 2 also.

γk satisfies Invariant (3): Consider Case 1. We first show that points in Lr
k

are accessible from the bottom page. Consider a point p ≥ Lr
k such that p is not

accessible from the bottom page in γk. Let vp be the vertex of G represented by
p. Hence, vp is a R-live vertex in Gk. Since fr is the leftmost point in σk, fr is
accessible from both the pages in γk. It follows that p ∃= fr. Since u is mapped
on fr, vp ∃= u. Then vp must be a R-live vertex of Gk−1. It follows that p is a
R-live point of σk−1. Therefore, by Invariant (2) of induction hypothesis, p is
accessible from bottom page in γk−1. Consequently, it must be the addition of
the edge (u, v) that makes p inaccessible from bottom page in γk. The endpoints
of the edge (u, v) are the points fr and lr; hence, p must lie between fr and
lr. Since fr is the leftmost point of σk, fr is to the left of p. Now consider the
other endpoint lr; either lr = p or lr is to the left of p since both lr and p are in
Lr
k−1 and lr is the leftmost point of Lr

k−1. In either case, it follows that p does
not lie between fr and lr, thus the edge (u, v) cannot make p inaccessible from
bottom page in γk. Therefore, no point such as p exists. Hence, all points in Lr

k

are accessible from the bottom page.
Next, we show that points in Lb

k are accessible from the top page. Consider
any point p ≥ Lb

k; either p = fr or p ≥ Lb
k1
. Since fr is the leftmost point in σk,

fr is accessible from both the pages in γk. If p ≥ Lb
k1
, then p is accessible from
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top page in γk−1 by Invariant (2). Since we draw the edge (u, v) through the
bottom page, p remains accessible from top page in γk. Thus, all points in Lb

k

are accessible from the top page.
Now consider Case 2. Using similar arguments as used for Case 1, it can be

shown that Invariant (3) holds for Case 2 also. ∩⊗

Lemma 2 proves the correctness of Algorithm Ordered-Sequence-
Embedding to find a bichromatic point-set embedding of G on an ordered
RB-sequence σ compatible with G. Thus, to prove Theorem 1, it remains to
show that Algorithm Ordered-Sequence-Embedding runs in linear time. We
omit the proof in this extended abstract.

4 Embedding Trees on Properly-Colored Point-Sets

In this section we prove the following theorem.

Theorem 2. Let G = (V,E) be a 2-colored tree. Let S be a 2-colored point-set
such that S is properly-colored and compatible with G. Then G has a bichromatic
point-set embedding on S with at most one bend per edge. Moreover, such a
drawing can be computed in linear time.

We give a constructive proof of Theorem 2. Let Γ be a drawing of G with
at most one bend per edge. Let σ be the set of points representing the vertices
of G in Γ . If σ is chromatic equivalent to S, then by Lemma 1, G has an
embedding on S with at most one bend per edge. Therefore, we present an
algorithm which computes a drawing of G where each edge of G contains at
most one bend and the set of points in the drawing is chromatic equivalent to
S. We call this algorithm Proper-Sequence-Embedding. In the rest of this
section, we describe Algorithm Proper-Sequence-Embedding.

It is implicitly assumed that either there are equal number of red and blue
vertices of G or the numbers differ by at most one; otherwise there can be no
properly-colored point-set S compatible with G. We choose any vertex v0 of G
as its root where v0 and the leftmost point of S are of the same color.

The outline of the algorithm is as follows. We start with a point-set σ0, which
contains a single point p0 where c(p0) = c(v0) and map v0 on p0. In subsequent
steps, we add new points to the existing point-set and map vertices of G which
have not yet been drawn on those points in such a way that the resulting drawing
at the end of the each step k (k > 0), satisfies the following two conditions. (i)
The set of points σk is a properly-colored RB-sequence, and (ii) the drawing
γk represents a bichromatic point-set embedding of a connected subgraph Gk

of G with at most one bend per edge on a subset of the points in σk; at an
intermediate step there may be some points in σk which do not represent any
vertex of G in γk; however our algorithm ensures that no such point exists when
the drawing procedure completes. For example, Fig. 3(b) shows the drawing γ5
and point-set σ5 after some intermediate step k = 5 for the input 2-colored tree
G in Fig. 3(a); the shaded graph in Fig. 3(a) is the subgraph G5.
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Fig. 3. (a) A 2-colored tree G. (b) The drawing γ5 after step 5 and the sets Lr
5, L

b
5,

Hb
5 . (c) Drawing obtained after the horizontal flip of the drawing in (b). (d) Drawing

obtained after the vertical flip of the drawing in (b). (e) Resulting graph after the
inversion of the graph in (a). (f) Resulting drawing after the inversion of the drawing
in (b).

For our illustration, we will use the same definitions and notations for un-
mapped/mapped vertex, R-live/B-live vertex/point as described in Section 3.
Additionally, we use the following definitions and notations. We call any point
of σk that does not represent a vertex of G as a hole; a hole can be either red or
blue. The set of blue holes and red holes in σk will be denoted by Hb

k and Hr
k ,

respectively. Hence, σk\{Hb
k

⋃
Hr

k} denotes the set of points in σk that represent
the vertices of Gk. We call rotation of γk by an angle of 180 degree with respect
to any line perpendicular to the spine of σk a horizontal flip. As an example,
Fig. 3(c) shows the drawing obtained after horizontal flip of the drawing in Fig.
3(b). Likewise, we call rotation of γk by an angle of 180 degree with respect to
the spine of σk as a vertical flip. Fig. 3(d) illustrates vertical flip of the drawing
γk in Fig. 3(b).

We define inversion of any 2-colored graph G as changing the color of each of
the vertices of G such that each blue vertex of G becomes a red vertex and each
red vertex becomes a blue vertex. Similarly inversion of any 2-colored point-set
σ is defined as changing color of each blue point to red and each red point to
blue. One can observe that the point-set obtained after inverting a properly-
colored RB-sequence is also a properly-colored RB-sequence. For example, Fig.
3(e) shows the graph obtained after inversion of the graph in Fig. 3(a) and Fig.
3(f) shows the drawing obtained after inversion of the point-set in Fig. 3(b).

We call γk, 0⇒ k < n, a feasible drawing of Gk if γk satisfies the following
invariants.

(1) All the R-live points, i.e., points in Lr
k are accessible from the bottom

page.
(2) All the B-live points, i.e., points in Lb

k are accessible from the top page.
(3) All blue holes, i.e., points in Hb

k are accessible from the top page.
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(4) σk is a properly-colored RB-sequence that satisfies the following condi-
tions. (i) There is no red hole in σk, i.e., H

r
k = φ; (ii) if the rightmost point of

σk is blue then there is no blue hole in σk, and (iii) there is no B-live point to
the left of any blue hole in σk.

(5) Gk is connected and γk represents a bichromatic point-set embedding of
Gk on σk\Hb

k with at most one bend per edge. Moreover, the root v0 of the input
graph G is represented by the leftmost point of σk.

For an illustration of the invariants described above, see Fig. 3(b) that shows
a feasible drawing γk, k =5, of the shaded subgraph Gk in Fig. 3(a).

We now specify the drawing operations performed by Algorithm Proper-
Sequence-Embedding which ensures that at any step k, γk is a feasible draw-
ing of Gk.

At step k = 0, we take any point p0 on the plane such that c(p0) = c(v0) and
map the root v0 on p0. The drawing γ0 thus obtained has only one vertex v0 and
no edge.

At any step k >0, we have the following cases to consider.
Case 1: The rightmost point of σk−1 is red, σk−1 contains at least one B-live

point and does not contain any blue hole. We add a blue point pb to the right
of βk−1 on the spine of σk−1. Let v be the vertex of Gk−1 which is mapped to
the rightmost B-live point lb of σk−1. We take any unmapped blue neighbor u of
vertex v and map u on pb. Then we draw the edge (v, u) connecting the points lb
and pb through the top page. As an example, consider Fig. 4(b) which represents
the drawing γk−1 at some step k for the graph in Fig. 4(a), the shaded subgraph
is the graph Gk−1. Note that, in Fig. 4(b), the rightmost point p(v7) is red and
p(v1) is the rightmost B-live point. v4 is an unmapped blue neighbor of v1 as
can be seen from Fig. 4(a). Hence, we add a blue point pb to the right of p(v7),
map v4 on pb and draw the edge (v1, v4) to obtain the drawing γk as shown in
Fig. 4(c).

Case 2: The rightmost point of σk−1 is blue and σk−1 contains at least one
R-live point. We add a red point pr to the right of βk−1 on the spine of σk−1.
Let v be the vertex of Gk−1 which is mapped to the rightmost R-live point lr
of σk−1. We take any unmapped red neighbor u of vertex v and map u on pr.
Then we draw the edge (v, u) connecting points lr and pr through the bottom
page. See Figs. 4(d), (e) and (f) for an example.

Case 3: The rightmost point of σk−1 is red, σk−1 does not contain any B-live
point but contains at least one R-live point. We add a blue point pb and then a
red point pr to the right of βk−1 on the spine of σk−1. Let v be the vertex of
Gk−1 which is mapped to the rightmost R-live point lr of σk−1. We take any
unmapped red neighbor u of vertex v and map u on pr. Then we draw the edge
(v, u) connecting points lr and pr through the bottom page. See Figs. 4(g), (h)
and (i) for an example.

Case 4: The rightmost point of σk−1 is red, σk−1 contains at least one B-
live point and also contains at least one blue hole. Let v be the vertex mapped
to the leftmost B-live point lb of σk−1. Consider any unmapped red neighbor
u of vertex v. We now apply the drawing procedure separately on the subtree
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rooted at vertex u of G. In the rest of this paper, we will refer to such recursive
application of the drawing procedure as subtree-embed. Let γu be the drawing
obtained from such a subtree-embed and Gu be the subgraph of G represented
by γu. Note that there may be two cases for Gu: (i) Gu contains all the vertices
of the subtree rooted at u of G if subtree-embed terminates as in Case 6, (ii) Gu

is a subgraph of the subtree rooted at u of G when subtree-embed terminates as
in Case 5.

We now merge the drawing γu with the drawing γk−1. First, we flip γu hor-
izontally. Let σu denote the point-set in the drawing after the horizontal flip
operation. We will prove later that the rightmost point βu of σu will always
represent the vertex u. Let hb be the rightmost point in Hb

k−1. We insert the
drawing γu between the points hb and next(hb) of σk−1. Then, if the leftmost
point of σu is blue, we remove the point hb from the resulting drawing. Finally,
we add the edge (u, v) connecting the points lb and βu through the top page.

For an illustrative example, see Figs. 4(j), (k), (l), (m),(n) and (o). In this
example, Gu contains all the vertices of the subtree rooted at u. For another
example where Gu is a subgraph of the subtree rooted at u of G, see Figs. 4(p),
(q), (r), (s),(t) and (u).

Case 5: The rightmost point of σk−1 is blue and σk−1 does not contain any R-
live point but contains at least one B-live point. Here we distinguish two subcases
based on whether the drawing algorithm is applied on a subgraph of G or not.
Note that, as part of the drawing algorithm on the input graph G, when at some
intermediate step the resulting drawing matches Case 4, we apply the same
algorithm on an unmapped subgraph of G as described in operations for Case
4; we used the term subtree embed to denote such recursive step. Thus, the two
subcases for Case 5 are as follows.

Case 5.1: In subtree-embed ; if the drawing γk−1 is in this state then the
drawing process terminates and γk−1 is returned as output.

Case 5.2: Not in subtree-embed ; since there are only B-live points in σk−1 and
the rightmost point of σk−1 is blue, it is not possible to map the next unmapped
vertex (which is a neighbor of an already mapped vertex) without creating a red
hole if we want to maintain that the resulting point-set remains properly-colored.
But to maintain Invariant (4), we must ensure that there exists no red hole in
the drawing at any intermediate step. Hence, to maintain the desired properties
of the drawing, we perform the following operations. First, we invert both G and
σk−1 and then we flip the drawing γk−1 vertically to obtain the drawing γk. For
an illustrative example, see Figs. 4(v), (w), (x), (y) and (z).

Case 6: There are no live points in σk−1. Since there is no unmapped vertex
to embed, therefore, this case indicates the end of drawing operation.

This completes the description of the Algorithm Proper-Sequence-
Embedding. To prove Theorem 2, we need to show that Algorithm Proper-
Sequence-Embedding is correct and runs in linear time. We omit the proof
in this extended abstract.
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5 Conclusion

In this paper, we have shown that trees admit bichromatic point-set embeddings
on two special types of point-sets, namely, “ordered”point-sets and “properly-
colored” point-sets with at most one bend per edge. It should be mentioned that
these results are based on the first author’s thesis work [8], and we have noticed
that an independent proof of Theorem 1 has appeared in [5] recently.

These results naturally raise some other open problems such as finding other
larger classes of outerplanar graphs as well as special configurations of point-sets
that admit bichromatic point-set embeddings with at most one bend per edge
and exploring 3-chromatic point-set embedding problem with constant number
of bends per edge for outerplanar graphs.

Acknowledgement. This work is based on an M. Sc. Engineering thesis work
[8] done in Bangladesh University of Engineering and Technology (BUET). We
thank BUET for its facilities and support.
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Abstract. The Δ1-embedding problem of a graph is the problem to find
a map from its vertex set to R

d such that the length of the shortest path
between any two vertices is equal to the Δ1-distance between the mapping
of the two vertices in R

d. The Δ1-embedding problem partially contains
the shortest path problem since an Δ1-embedding provides the all-pairs
shortest paths. While Höfting and Wanke showed that the shortest path
problem is NP-hard, Chepoi, Deza, and Grishukhin showed a polynomial-
time algorithm for the Δ1-embedding of planar 2-dimensional periodic
graphs. In this paper, we study the Δ1-embedding problem on Δ1-rigid 2-
dimensional periodic graphs, for which there are finite representations of
the Δ1-embedding. The periodic graphs form a strictly larger class than
planar Δ1-embeddable 2-dimensional periodic graphs. Using the theory
of geodesic fiber, which was originally proposed by Eon as an invariant
of a periodic graph, we show an exponential-time algorithm for the Δ1-
embedding of Δ1-rigid 2-dimensional periodic graphs, including the non-
planar ones. Through Höfting and Wanke’s formulation of the shortest
path problem as an integer program, our algorithm also provides an
algorithm for solving a special class of parametric integer programming.

1 Introduction

The Π1-embedding problem of a graph is the problem to find a map from its
vertex set to R

d such that the length of the shortest path between any two
vertices is equal to the Π1-distance between the mapping of the two vertices in
R

d. An n-periodic graph is an infinite graph which has Zn as a subgroup of its
automorphism. Although periodic graphs are infinite, every periodic graph can
be represented by a finite data structure called a static graph, which is formed
based on the extraction of a single period. Periodic graphs are used in research
to model such things as the structure of crystals [4], very-large-scale integration
(VLSI) circuits [11], and systems of uniform recurrence equations [13].

The fundamental problems on periodic graphs have been widely investigated,
such as connectivity by Cohen and Megiddo [3] and, planarity by Iwano and
Steiglitz [12]. As for the Π1-embedding problem, motivated by applications in
chemistry, Deza, Shtogrin, and Grishukhin [5] computed the Π1-embedding of the
planar 2-periodic graphs in the catalog of tilings made by Chavey [1]. They used

S.P. Pal and K. Sadakane (Eds.): WALCOM 2014, LNCS 8344, pp. 349–360, 2014.
c∩ Springer International Publishing Switzerland 2014
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the algorithm for the Π1-embedding of a (possibly infinite) planar graph proposed
by Chepoi, Deza, and Grishukhin [2]. By exploiting the planarity, the algorithm
efficiently enumerates all the convex cuts on a planar graph, and constructs
the Π1-embedding using them. The theory of the planarity of periodic graphs
developed by Iwano and Steiglitz [12] implies that their algorithm runs in a
polynomial time on planar 2-periodic graphs.

It is shown by Höfting and Wanke [10] that the shortest path problem is NP-
hard even for 2-periodic graphs including non-planar ones. As Π1-embedding can
provide the shortest paths between all pairs of vertices, we can imply from the
result that solving Π1-embedding problem could also be hard. It is not trivial
even to show that the problem is computable, since the graph is infinite.

In this paper, we consider the Π1-embedding problem of an Π1-rigid 2-periodic
graph,which is a 2-periodic graph that admits an essentially unique Π1-embedding.
The problem generalizes the one considered in [2], since the class of Π1-rigid 2-
periodic graph is strictly larger than the class of planar Π1-embeddable 2-periodic
graphs. It is shown that all planar Π1-embeddable 2-periodic graphs are Π1-rigid [2],
and it is easy to construct a non-planar Π1-rigid 2-periodic graph. We propose
an exponential-time algorithm to solve that problem. The key tools are geodesic
fibers, which were originally proposed by Eon [7] as topological invariants on peri-
odic graphs. Geodesic fibers are the most fundamental periodic subgraphs of a pe-
riodic graphwith its vertex set convex.Using the theory of geodesic fibers, we show
that convex cuts on Π1-rigid 2-periodic graphs can be represented as the union of
the geodesic fibers. Using this result, we also show an algorithm to enumerate all
the convex cuts on an Π1-rigid 2-periodic graph. This leads to an O(2|E|D(|V|+2))-
time algorithm for the Π1-embedding of the periodic graphs, where |V| (resp. |E|)
is the number of the vertices (resp. the edges) and D is the maximum degree in
the static graph.

We note the relationship between the Π1-embedding of a periodic graph and
parametric integer programming, which is an important problem which has appli-
cations in compiler optimization. Various algorithms for this problem have been
proposed [8,14]. However, it seems that an explicit upper bound for the time
complexity of the algorithms has not yet been determined. Through Höfting and
Wanke’s formulation of the shortest path problem as an integer program [10], the
Π1-embedding problem can be interpreted as a special class of parametric integer
programming. The computational complexity of the Π1-embedding problem is
left open, but an upper bound for the time complexity is derived.

2 Preliminaries

We begin with the definition of periodic graphs.

Definition 1. Let V be a finite set. A locally finite infinite graph G = (V×Z
n, E)

with E ≥ (V × Z
n)2 is an n-periodic graph if, for any edge ((u,y), (v, z)) ⇒ E

and any vector x ⇒ Z
n, ((u,y + x), (v, z + x)) ⇒ E.

In this paper, we consider only connected periodic graphs. Every periodic
graph has a finite representation called a static graph.
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Definition 2. For a periodic graph G = (V ×Z
n, E), the static graph G of G is

the finite graph with the vertex set V constructed in the following manner: For
each edge e ⇒ E connecting (u,y) and (v, z) on G, add a directed edge from u
to v with the label z− y.

Conversely, from a given static graph, we can construct the corresponding
periodic graph; we say that a static graph G generates a periodic graph G. See
Fig. 1 (a) and (b) for an example.

Next we briefly review the theory of the Π1-embedding of graphs. For given
vertices v1 and v2 of a graph G, by dG(v1, v2), we denote the number of the
edges in a shortest path between v1 and v2.

Definition 3. A (possibly infinite) graph G = (V,E) is Π1-embeddable if there
exist d ⇒ N and a map σ : V ∪ R

d such that dG(v1, v2) = →σ(v1) − σ(v2)→Δ1 =∑d
k=1 |σk(v1)− σk(v2)| with vi ⇒ V , σ(vi) = (σ1(vi), . . . , σd(vi)) (i = 1, 2).

We call σ an Π1-embedding of G. Note that the set Zd is naturally endowed with
a d-dimensional square lattice, whose path-metric corresponds to the Π1-distance.
The Π1-embedding of graphs has a deep relationship with cuts in graphs.

Definition 4. The cut semimetric with respect to a vertex set S on a graph,
denoted by φ(S), is the semimetric defined as follows: for two arbitrary vertices
u and v, φ(S)(u, v) = 1 if |S ∃ {u, v}| = 1 and φ(S)(u, v) = 0 otherwise.

Proposition 1 (Proposition 4.2.2, [6]). A finite graph G is Π1-embeddable if
and only if there is a set S of cuts and a set of non-negative reals {ρS}(S,S̄)≤S
such that for any two vertices v1 and v2 of G,

dG(v1, v2) =
∑

(S,S̄)≤S
ρSφ(S)(v1, v2).

The decomposition dG =
∑

(S,S̄)≤S ρSφ(S) of dG into a non-negative combi-
nation of cut semimetrics is called an Π1-decomposition of G.

Definition 5. An Π1-embeddable (possibly infinite) graph is Π1-rigid if it admits
a unique Π1-decomposition.

In the proof of Proposition 1, an Π1-embedding is constructed from a given
Π1-decomposition. Proposition 1 can be naturally extended to countably infinite
graphs, and the same statement holds for them. A subgraph F of a graph G
is geodesically complete in G if, for any pair of its vertices, F contains all the
shortest paths between them in G. A vertex set is convex if the subgraph induced
by it is geodesically complete. A cut (S, S̄) of a graph G is convex if both S and
S̄ are convex on G. For Π1-embeddable (countably infinite) graphs, every cut
with a non-zero coefficient in the Π1-decomposition is shown to be convex [6].
Thus, by enumerating all the convex cuts, an Π1-embedding can be constructed.

A geodesic fiber, which was proposed by Eon [7] as an invariant of a periodic
graph, is one of the most fundamental geodesically complete subgraphs of a
periodic graph. We finish this section by reviewing the theory of geodesic fibers,
which we will use in this paper.



352 N. Fu

Definition 6 ([7]). A pair (F, t) of a subgraph F of a periodic graph G and
a vector t is a geodesic fiber if (a) for any edge ((u,y), (v, z)) of F , ((u,y +
t), (v, z+ t)) is also an edge of F , (b) for any vertex (u,y) of F and any vector
s which is not parallel to t, (u,y+ s) is not in F , (c) F is geodesically complete
in G, and (d) F is minimal with respect to the conditions of (a), (b) and (c).

By definition, a geodesic fiber is also a 1-periodic graph. Eon [7] showed that
a geodesic fiber of a periodic graph G has a static graph which is a subgraph of
a static graph of G. See Fig. 1 for an example.

(-1, 0) (1, 0)

(0, 1)

(0, -1)

(0, 0)

(a)

(-1, 0)

(1, 0)

(0, 1) (0, -1)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(b)

(-1, 0) (1, 0)

(0, 1)

(0, -1)

(0, 0)

(c)

(0, 1) (0, -1)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(d)

Fig. 1. Periodic graph (a) generated by a static graph (b). The bold black lines in (c)
indicate a geodesic fiber in the periodic graph. The subgraph (d) of the static graph
generates the geodesic fiber indicated by black bold lines in (c).

Eon also proposed an exponential-time algorithm to compute the static graph
of a given geodesic fiber. We now give a brief explanation of his algorithm. By
the definition of periodic graphs, there is a one-to-one correspondence between
directed walks on a static graph and directed walks on the periodic graph gener-
ated by it. Given a closed walk W on a static graph, by repeating W an infinite
number of times, W lifts to a doubly infinite path on the periodic graph. Such a
doubly infinite path is called a geodesic if any subpath of it is a shortest path. For
a closed walk W traversing the vertices (v1, z1), (v2, z2), . . . , (vk, zk) on a static

graph, we call the sum
∑k−1

i=1 (zi+1 − zi), denoted by tran(W), the transit vector
of W . Clearly, a geodesic fiber (F, t) containing the vertex (u,y) contains all the
geodesics lifted from a closed walk W , starting at u and with tran(W) = t.

For a vector t ⇒ Z
2, by Ext(t) we denote the set of all vectors parallel to

t in Z
2. Obviously, for any t ⇒ Z

2, there exists a vector prim(t) such that
Ext(t) = {a ·prim(t) : a ⇒ Z}. The reduced length of a closed walk W is the ratio
|W|/|k|, where |W| is the number of edges in W and k is an integer such that
k ·prim(tran(W)) = tran(W). A closed walk W starting at u lifts to a geodesic if
and only if it is a cycle, i.e. it does not pass through the same vertex twice, and
it has the shortest reduced length among the closed walks that start at u. We
note that for a vertex u of a static graph, there does not always exist a closed
walk that has the shortest reduced length among the closed walks starting at u.
The Kagomé lattice, which is not Π1-embeddable [5], is a good example of this.

Following Eon’s terminology [7], we say that the geodesic fiber (F, t) runs
along the direction s for a vector s parallel to t. Basically, for a given vertex
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u of a static graph and a vector t, Eon’s algorithm computes a static graph of
a geodesic fiber running along the direction t by combining all the cycles that
start at u, with their transit vectors parallel to t and with the shortest length.
If a closed directed walk W starting at u consists of more than one cycle with
transit vectors not parallel to tran(W), then a geodesically complete subgraph
of G containing the vertices {(u,y + at) : a ⇒ Z} must contain the 2-periodic
graph generated by the cycles. Thus, in such a case, there is no geodesic fiber
running along the direction t with its static graph containing u.

Finally, we introduce some terminology and results for geodesic fibers.

Proposition 2 ([7]). An n-periodic graph admits at least n geodesic fibers in
n independent directions.

Two geodesic fibers (F1, t1) and (F2, t2) are parallel if t1 and t2 are parallel.
If a geodesic lifted from a cycle C is interrupted by a vertex, then we call each
subgraph a half-geodesic. If, when following the orientation induced by C, we
find that a half-geodesic runs outward from the terminal vertex (resp. towards
the terminal vertex), then it is called a plus (resp. a minus) half-geodesic.

Lemma 1 ([7]). Given an infinite geodesically complete subgraph H of a peri-
odic graph G, any infinite sequence (v, z1), (v, z2), . . . of vertices of H induces
at least one half-geodesic with its vertex set contained in H.

Lemma 2 ([7]). Let C1, C2 be cycles on a static graph such that tran(C1) and
tran(C2) are parallel. Any geodesically complete subgraph of a periodic graph
containing a plus half-geodesic lifted from C1 and a minus half-geodesic lifted
from C2 also contains the geodesics lifted from C1 and C2.

3 Convex Cuts on an �1-Embeddable Periodic Graph

In this section, we show a periodic structure of convex cuts of periodic graphs.
Throughout the rest of this paper, we sill take G to be an arbitrary connected
2-periodic graph generated by the static graph G = (V , E), and we sill take S to
be a set of vertices of G.

First, we show several properties of convex cuts that hold on all 2-periodic
graphs. For a vertex set U of G and a vector t ⇒ Z

2, denote the vertex set
{(v, z + t) : (v, z) ⇒ U} by tU . If a set U of vertices in a geodesic fiber (F, t)
satisfies the following three conditions, then the subgraph of F induced by U is
called a plus half-geodesic fiber (resp. a minus half-geodesic fiber) of (F, t): (i)
atU ≥ U (resp. −atU) for all a ⇒ N, (ii) the subgraph of F induced by U does
not contain a geodesic, and (iii) for any vertex v of G, U contains at least one
vertex corresponding to v. For a set U of vertices of G and a subgraph H of G,
if the vertex set of H is contained in U , then we say that U contains H .

Lemma 3. Let (F, t) be an arbitrary geodesic fiber on G. If S and S̄ are both
convex, then one of S or S̄ contains a plus half-geodesic fiber or a minus half-
geodesic fiber of (F, t).
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Proof. Let U be a finite set of vertices in F such that for every vertex u of the
static graph F of (F, t), U contains a vertex corresponding to u. Since F is a
subgraph of G, for the edges ((u,y), (v, z)) of F , y − z is bounded. Thus, for a

sufficiently large k ⇒ N, the graph obtained by removing the vertex set
⋃k

i=0 itU

from (F, t) has two connected components. Assume that at(
⋃k

i=0 itU) is con-
tained by S for some a ⇒ Z. Let F1 and F2 be the two connected components of
the graph obtained by removing at(

⋃k
i=0 itU) from (F, t). Since the intersection

of two geodesically complete graphs is again geodesically complete, the subgraph
of (F, t) induced by the vertices in S̄ cannot contain the vertices both from F1

and from F2. Thus, S contains one of F1 and F2, and thus it also contains either
a plus half-geodesic or a minus half-geodesic in (F, t). The same argument holds

for the case where at(
⋃k

i=0 itU) ≥ S̄.

Assume that at(
⋃k

i=0 itU) is not contained by S or S̄ for any a ⇒ Z. Let l
be the number of cycles that have a transit vector in Ext(t) in F , and let L be
the maximum length of the cycles.There exist vertices (v, z) and (v, z∈) of (F, t)
such that dG((v, z), (v, z

∈)) > lL and both of them are contained in one of S
or S̄. Without loss of generality, assume (v, z), (v, z∈) ⇒ S. Since the subgraph
FS of (F, t) induced by S is geodesically complete and dG((v, z), (v, z

∈)) > L,
FS contains all the shortest paths between (v, z) and (v, z∈), including the one
lifted from a directed closed walk C(0) in F . For each vertex u ⇒ C(0), there
exist two vertices (u,y), (u,y∈) contained in the shortest path lifted from C(0)

with dG((u,y), (u,y
∈)) > (l − 1)L. Again since FS is geodesically complete and

dG((u,y), (u,y
∈)) > L, FS contains all the shortest paths lifted from the cycles

C
(1)
1 , . . . , C

(1)

l(1)
which intersect C(0) and are contained in F . By recursively enu-

merating in this way the directed closed walks which lift to the shortest paths
contained in FS , we finally obtain a set of directed closed walks. Since FS is
geodesically complete, it also contains all the directed closed walks with zero
transit vectors, which provide short cuts. By combining these directed closed
walks, we obtain a static graph of a geodesic fiber (F ∈, s) with s ⇒ Ext(s). By as-
sumption, F ∈ is properly contained by F , contradicting the minimality of (F, t).

∩⊗

The next lemma follows immediately from Lemma 2.

Lemma 4. Let (F (1), t) and (F (2), s) be two parallel geodesic fibers such that
for somea, b ⇒ N, at = bs, and let S be a convex vertex set of G. If the subgraph
of (F (1), t) induced by the intersection of S and the vertex set of (F (1), t) is
a plus half-geodesic fiber (resp. a minus half-geodesic fiber) of (F (1), t), then
the subgraph of (F (2), s) induced by the intersection of S and the vertex set of
(F (2), s) is also a plus half-geodesic fiber (resp. a minus half-geodesic fiber).

Lemma 5. If convex sets S and S̄ are not empty, then each of S and S̄ contains
at least one geodesic fiber.

Proof. Suppose to the contrary that S does not contain any geodesic fiber in
G. By Proposition 2, there is at least one geodesic fiber (F, t) in G. Let F be
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the set of all geodesic fibers parallel to (F, t). Without loss of generality, we can
assume by Lemma 3 and Lemma 4, that for any (F ∈, s) ⇒ F, the intersection
of the vertex set of F ∈ and S induces a plus half-geodesic fiber in (F ∈, s). Let
u be a vertex of the static graph G of G. For each geodesic fiber (F ∈, s) ⇒ F
containing a vertex corresponding to u, there exists a vertex (u, z) in (F ∈, s)
such that (u, z+ t) is not contained in S. By Lemma 1, these vertices induce at
least one half-geodesic lifted from a cycle C and with its vertex set C+ contained
in S. The vertex set C of the geodesic lifted from C is also contained in S, since
otherwise S̄ contains the vertex set C \ C+ and the vertex set tC+, but does
not contain C+. By Lemma 2, this contradicts the convexity of S̄. There does
not exist a geodesic fiber containing C, since otherwise by Eon’s algorithm for
geodesic fibers, S must contain a geodesic fiber in order to satisfy convexity.
Thus there exists a closed directed walk C∈ sharing a common vertex v with C
and consisting of cycles C1, . . . , Ck with the same reduced length as that of C,
such that not all of tran(C1), . . . , tran(Ck) are parallel to tran(C). By convexity,
S contains the 2-periodic graph H generated by C∈, and it also contains the
translations of C passing through the vertices of H corresponding to v. This
contradicts the assumption that for each geodesic fiber (F ∈, s) parallel to (F, t)
and containing vertices corresponding to u, there exists a vertex (u, z) contained
in (F ∈, s) such that (u, z+ t) ≈⇒ S. ∩⊗

Next, we show special properties of Π1-embeddable periodic graphs.

Lemma 6. If G is Π1-embeddable and there exists a closed walk W starting at
u with the minimum reduced length among all closed walks starting at u on G,
then for each vertex v of G, among the set of all the closed walks starting at v
with transit vectors parallel to tran(W), there exists a closed walk W ∈ with the
minimum reduced length. The reduced length of W equals that of W ∈.

Proof. Given two parallel integral vectors v and v∈, by LCM(v,v∈), we denote
the vector v∈∈ = kv = k∈v∈, where k and k∈ are relatively prime integers. Suppose
that for a vertex v, there does not exist a closed walk W ∈ starting at v that has
the minimum reduced length among all closed walks starting at v, or that the
reduced length ofW ∈ is not equal to that ofW . We show that there exists a vector
z ⇒ Z

d such that dG((u, az), (u, bz)) ≈= dG((v, az), (v, bz)) for all a, b ⇒ N with
a ≈= b. First, if such a closed walkW ∈ exists andW andW ∈ have different reduced
lengths, then by taking LCM(tran(W), tran(W ∈)) as z, the above inequality holds
for all a, b ⇒ N with a ≈= b. Next, suppose that such a closed walk W ∈ does not
exist and for some a, b ⇒ N, dG((u, a · tran(W), (u, b · tran(W)))) = dG((v, a ·
tran(W), (v, b · tran(W)))). Then there exists a closed walk W ∈∈ starting at v
with tran(W ∈∈) parallel to tran(W) and with the reduced length shorter than
the reduced length of W . By taking LCM(tran(W), tran(W ∈∈)) as z, the above
inequality holds for all a, b ⇒ N with a ≈= b.

Thus, if σ : V×Z
2 ∪ Z

d is an Π1-embedding, then for all a, b ⇒ Z, σ((u, az))−
σ((v, az)) ≈= σ((u, bz)) − σ((v, bz)) since, if the equality holds for some a, b ⇒ Z,
then dG((v, az), (v, bz)) = →σ((v, az))−σ((v, bz))→Δ1 = →σ((u, az))−σ((u, bz))→Δ1
= dG((u, az), (u, bz)). On the other hand, since dG((u, az), (v, az)) = dG((u, bz),
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(v, bz)) for all a, b ⇒ Z by the periodicity of G, and dG((u, az), (v, az)) is finite,
σ((u, a∈z)) − σ((v, a∈z)) = σ((u, b∈z)) − σ((v, b∈z)) for some a∈, b∈ ⇒ Z. This is a
contradiction. ∩⊗

The property shown to hold on an Π1-embeddable periodic graph in Lemma 6
is called the weak coherence. It is not difficult to construct an exponential-time
algorithm to determine if a periodic graph is weakly coherent.

Lemma 7. If G is weakly coherent and a geodesic fiber (F, t) is in G, then each
vertex in G is contained in some geodesic fiber parallel to (F, t).

Proof. Let (u,y) be a vertex of G contained in (F, t). There is a directed closed
walk C beginning at u with tran(C) ⇒ Ext(t) and with a length equal to the
shortest reduced length among all directed closed walks starting at u on G.
By Eon’s algorithm for geodesic fibers, if there is no geodesic fiber parallel to
(F, t) containing a vertex (v, z) in G, then one of the following holds for G:
(a) there is no directed closed walk with the minimum reduced length among
the closed directed walks starting at v with the transit vector in Ext(t); or (b)
there is such a directed closed walk C∈ and C∈ consists of cycles C∈

1, . . . , C∈
k in

which the individual transit vectors are not all in Ext(t). By Lemma 6, (a) does
not occur. Assume that (b) holds. Since C∈ has the minimum reduced length,
C∈
i has the minimum reduced length among the directed closed walks that have

transit vectors in Ext(tran(C∈
i)) and that share a vertex with C∈

i, for i = 1, . . . , k.
By Lemma 6, for i = 1, . . . , k, there exists a closed walk Ci starting at u with
its transit vector in Ext(tran(C∈

i)) and with the same reduced length as C∈
i. By

combining C1, . . . , Ck, we can construct a directed closed walk C∈∈ with its transit
vector in Ext(t) and with the same reduced length as C∈. Since, by Lemma 6, C∈

has the same reduced length as C, C∈∈ has the same reduced length as C. This
contradicts the existence of the geodesic fiber (F, t). ∩⊗

By Lemmas 3, 4, 5, and 7, the next theorem obviously holds.

Theorem 1. If G is weakly coherent and S and S̄ are both convex, then the
following two statements hold:

1. If S contains a geodesic fiber (F, t), then S and S̄ are the union of the vertex
sets of the geodesic fibers parallel to (F, t).

2. If S does not contain any geodesic fiber parallel to (F, t), then S is the union
of the plus half-geodesic fibers (or minus half-geodesic fibers) in (F ∈, s), where
(F ∈, s) runs in all geodesic fibers parallel to (F, t).

4 An Algorithm for �1-Embedding of an �1-Rigid Periodic
Graph

Let S be the collection of all convex cuts in an Π1-rigid periodic graph G, and
let dG =

∑
(S,S̄)≤S ρSφ(S) be an Π1-decomposition of G. By periodicity, for any

vector t ⇒ Z
2, if (S, S̄) ⇒ S then (tS, tS̄) ⇒ S. Furthermore, by definition, if
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G is Π1-rigid, then ρS = ρtS . Thus Π1-rigidity ensures a finite description of an
Π1-decomposition, and an Π1-embedding. In this section, we develop an algorithm
for the Π1-embedding of an Π1-rigid periodic graph, using the property of convex
cuts on periodic graphs, that was shown in the previous section.

First, we develop a method to represent a convex cut in a periodic graph with
a finite data structure, and we then give an algorithm to enumerate all of the
convex cuts. We assume that G is weakly coherent, since otherwise, by Lemma 6,
G is not Π1-embeddable.

Let qG be the natural projection that maps an edge of G to the corresponding
edge of G. For a cut (S, S̄), E(S, S̄) denotes the edge set {(u, v) : u ⇒ S, v ⇒ S̄}.
By G(S,S̄), we denote the periodic graph generated by the static graph G(S,S̄)

obtained by removing the set qG(E(S, S̄)) of edges from G. Then G(S,S̄) is dis-

connected, since otherwise removing the set E(S, S̄) of edges from G does not
yield a cut. By Lemma 7 and Theorem 1, it is not difficult to show that one
of the following statements holds: (a) all of the connected components of G(S,S̄)

are 2-periodic graphs, or (b) all of them are 1-periodic graphs. We call (S, S̄) a
2-periodic cut (resp. a 1-periodic cut) if (a) holds (resp. (b) holds).

Let oG be the projection that maps an edge of G to the set of all corresponding
edges of G. By Theorem 1, if (S, S̄) is a convex cut on G such that S contains
a geodesic fiber (F, t), then qG(E(S, S̄)) consists of edges which are not in a
static graph of a geodesic fiber parallel to (F, t). The next lemma shows that
any 2-periodic convex cut can be uniquely determined by a set of edges on G.
Lemma 8. If G is weakly coherent, then for any 2-periodic convex cut (S, S̄)
on G, E(S, S̄) = oG(qG(E(S, S̄))).

Proof. By definition, E(S, S̄) ≥ oG(qG(E(S, S̄))). We show oG(qG(E(S, S̄))) ≥
E(S, S̄). The subgraph GS (resp. GS̄) induced by S (resp. S̄) is also a connected
2-periodic graph. Thus, any edge e ⇒ oG(qG(E(S, S̄))) must also be in E(S, S̄),
since, otherwise, removing E(S, S̄) does not make G disconnected. ∩⊗

To represent a 1-periodic convex cut by a set of edges on G, we need the next.

Lemma 9. If (S, S̄) is a convex cut on a weakly coherent periodic graph G and
the connected components of G(S,S̄) are 1-periodic graphs, then the static graph
G(S,S̄) generates a connected 1-periodic graph.

Proof. Suppose that S and S̄ contain geodesic fibers running along the direction
t. By Theorem 1, there exists a vector s ⇒ Z

2 such that s ≈⇒ Ext(t) and the
subgraph GS∗sS̄ of G induced by S∃sS̄ is a 1-periodic graph which is generated
by a subgraph GS∗sS̄ of G with V as its vertex set. Since S and sS̄ are convex,
GS∗sS̄ is geodesically complete. Thus, GS∗sS̄ generates a connected 1-periodic
graph. No edge in qG(E(S, S̄)) is contained in GS∗sS̄, since, otherwise, GS∗sS̄

would generate a connected 2-periodic graph. Thus GS∗sS̄ is a subgraph of G(S,S̄),
and the lemma follows. ∩⊗

Lemma 9 means that the vertex set of every connected component of G(S,S̄)

contains a vertex corresponding to v for any vertex v on G. By Theorem 1, given
G(S,S̄), S and S̄ can be uniquely determined.
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Based on the above discussions, by enumerating all subsets of edges on G,
we can enumerate all candidates for the convex cuts on G within O(2|E|) time.
What remains to be done is to construct an algorithm to determine whether a
given cut is convex. The next lemma provides a key for it.

Lemma 10. Let G be an Π1-rigid periodic graph. Then there is an Π1-embedding
σ : V × Z

2 ∪ Z
d of G such that for all (u,y), (v, z) ⇒ V × Z

2, σ((v, z + y)) −
σ((v, z)) = σ((u,y)) − σ((u,0)).

Proof. Let S be the set of all convex cuts on G, and let ∧ be an equivalence
relation on S such that (S, S̄) ∧ (S∈, S̄∈) if there exists a vector t ⇒ Z

2 satisfying
S = tS∈ and S̄ = tS̄. In the set S/ ∧, there are at most a finite number of equiv-
alence classes S1, . . . ,Sd. Let dG =

∑
(S,S̄)≤S ρ(S,S̄)φ(S) be the Π1-decomposition

of G. Recall that by the definition of Π1-rigidity, ρ(S,S̄) takes the same value for

all convex cuts (S, S̄) ⇒ Si. Let σ : V ∪ Z
d, (v, z) ∞∪ (σ1((v, z)), . . . , σd((v, z)))

be the Π1-embedding constructed from the Π1-decomposition as in the proof of
Proposition 1. For a fixed i ⇒ {1, . . . , d}, each convex cut in Si consists of parallel
geodesic fibers that run along the direction t. By construction, it is not difficult
to show that, for any u ⇒ V and y,y∈ ⇒ Z

2, the value σi((u,y)) − σi((u,y
∈))

is a constant. Thus, for any (u,y) and (v, z), σi((v, z + y)) − σi((v, z)) =
σi((v,y)) − σi((v,0)) = σi((u,y)) − σi((u,0)), and the lemma follows. ∩⊗

Corollary 1. If G is Π1-rigid, then for any u, v ⇒ V and vectors y, z ⇒ Z
2,

dG((u,y), (u, z)) = dG((v,y), (v, z)).

The property shown in Corollary 1 has been defined as coherence on gen-
eral periodic graphs by Fu [9]. An O(|V7||E|T )-time algorithm, where T is the
maximum absolute value among the elements of the vectors on the edges, for
determining whether a given periodic graph is coherent is also shown by her [9].

Lemma 11. On a coherent periodic graph G, there is an algorithm to determine
if a given subgraph H of G is geodesically complete on G.

Proof. By G\H , we denote the graph obtained by removing the vertex set of H
from G. We show that H is geodesically complete on G if and only if for any two
vertices (u,y) and (v, z) in H (resp. in G \H) with dG((u,y), (v, z)) ∨ |V|+ 2,
any shortest path connecting (u,y) and (v, z) is contained in H (resp. in G\H).
The enumeration of such shortest paths can be completed in O(D|V|+2) time,
where D is the maximum degree in G.

Obviously, the latter condition holds whenH is geodesically complete. Assume
that the latter condition holds but that H is not geodesically complete. Then
there exist two vertices (u,y) and (v, z) in H , with dG((u,y), (v, z)) > |V| +
2, such that a shortest path P that is not contained in H and that connects
(u,y) and (v, z) on G. Without loss of generality, we can assume that P is the
concatenation of an edge e connecting a vertex in H and a vertex G \H , a path
P ∈ contained in G\H and an edge e∈ connecting a vertex in G\H and a vertex in
H . By the definition of periodic graphs, P ∈ corresponds to a walk P ∈ connecting
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u and v on G. The walk P ∈ decomposes into a (possibly empty) path Q and
cycles C1, . . . , Ck, where each of Q, C1, . . . , Ck has a length that is no more than
|V|. For each i = 1, . . . , k, let C∈

i be a directed closed walk on G corresponding to
a shortest path from (v, z) to (u, z+tran(Ci)). By Corollary 1, len(C∈

i) = len(Ci).
Thus, the concatenation of q(e),Q, q(e∈), C∈

1, . . . , C∈
k also corresponds to a shortest

path connecting (u,y) and (v, z). On the other hand, since the concatenation of
q(e),Q, q(e∈) corresponds to a path on G connecting two vertices of H and with
length no more than |V|+2, by assumption, this cannot be a shortest path. This
is a contradiction. ∩⊗

Now we can enumerate all the convex cuts on a coherent periodic graph G
in O(2|E|D|V|+2) time. Finally, we describe an algorithm to compute the Π1-
decomposition dG =

∑
(S,S̄)≤S ρSφ(S) of an Π1-rigid periodic graph G. Let E be

the enumerated subsets of E that represent convex cuts. Then we can write the
Π1-decomposition by

dG =
∑

E′≤E

∑

(S,S̄): the convex cut determined by E′
ρE′φ(S).

For each edge e = ((u,y), (v, z)) in G,
∑

E′≤E

∑

(S,S̄): the convex cut determined by E’ with e≤E(S,S̄)

ρE′ = 1.

In this summation, for an edge set E ∈ ⇒ E, ρE′ can appear more than one time
because for more than one convex cut (S, S̄) determined by E ∈, e ⇒ E(S, S̄) can
hold. The number of such convex cuts is equal to the absolute value of the integer
a where a is defined using a unit vector u(i) which is not parallel to the direction
of the geodesic fibers contained in S so that the vertex (u,y∈ + au(i)) is on the
geodesic fiber running along the direction t and containing (u,y). For two edges
e and e∈ on G, if q(e) = q(e∈) then these values coincide. For each edge e ⇒ E ,
we denote this value by μ(e). Thus, the Π1-decomposition can be constructed by
computing a solution {ρ∈

E}E′≤E to the linear system
{∑

E′≤E:e≤E′ μ(e)ρE′ = 1, ∀edge e of G
ρ∈
E ← 0.

By solving a linear program, the solution can be computed in polynomial time
with respect to |E| and |E|. Using the proof of Proposition 1, the Π1-embedding
can also be constructed. Thus, the next theorem holds.

Theorem 2. For a coherent periodic graph G generated by a static graph G =
(V , E) with maximum degree D, there is an O(2|E|D(|V|+2))-time algorithm that
can determine if G is Π1-embeddable, and if it is, it can construct an Π1-embedding.

5 Concluding Remarks

In this paper, we showed an exponential-time algorithm for the Π1-embedding of
an Π1-rigid periodic graph. The computational complexity of the Π1-embedding
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problem is left open. The characterization shown in this paper for the con-
vex cuts on an Π1-rigid periodic graph should be of help in investigating this
problem. Another interesting open problem is whether there is an Π1-embeddable
periodic graph which is not Π1-rigid. This questions if every Π1-embeddable pe-
riodic graph has a finite representation for its Π1-embedding, and thus if every
the Π1-embedding of a periodic graph is computable.
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