
Lecture Notes in Computer Science 6060
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Tapio Elomaa Heikki Mannila
Pekka Orponen (Eds.)

Algorithms
and Applications
Essays Dedicated to Esko Ukkonen
on the Occasion of His 60th Birthday

13

Volume Editors

Tapio Elomaa
Tampere University of Technology
Department of Software Systems
P. O. Box 553, 33101 Tampere, Finland
E-mail: elomaa@cs.tut.fi

Heikki Mannila
Aalto University School of Science and Technology
Department of Information and Computer Science
P.O. Box 17800, 00076 Aalto, Finland
E-mail: heikki.mannila@aaltouniversity.fi

Pekka Orponen
Aalto University School of Science and Technology
Department of Information and Computer Science
P.O. Box 15400, 00076 Aalto, Finland
E-mail: pekka.orponen@tkk.fi

Cover illustration:
Artwork by Jussi Ukkonen, Finland (2010)

Library of Congress Control Number: 2010924186

CR Subject Classification (1998): I.2, H.3, J.3, I.5, H.4-5, F.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-12475-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-12475-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Esko Ukkonen
(The photograph was taken by Joma Marstio 2010)

Preface

This Festschrift is dedicated to Esko Ukkonen on the occasion of his 60th birth-
day on January 26, 2010. It contains contributions by his former PhD stu-
dents and colleagues with whom he cooperated closely within his career. The
Festschrift was presented to Esko during a festive symposium organized at the
University of Helsinki to celebrate his birthday.

Esko Ukkonen has worked on many areas of computer science, including nu-
merical methods, complexity theory, theoretical aspects of compiler construction,
and logic programming. However, his main research interest over the years has
been algorithms, with applications. Esko’s style of work has been to collaborate
closely with scientists from other areas and to study their computational needs.
From an understanding of available data the work progresses to the formulation
of computational concepts, i.e., finding out what should be computed. The prop-
erties of the concepts are then analyzed, algorithms are designed, their behavior
is analyzed, the methods are implemented and taken to real applications. This
style of work has been very successful throughout his career: Esko has formulated
and analyzed many central concepts in computational data analysis. Combining
applications and algorithms is also the central theme in the Center of Excellence,
Algodan, directed by Esko.

Perhaps the most important scientific areas of Esko Ukkonen are computa-
tional pattern matching and string algorithms. He has contributed significantly
to the development of these overlapping fields and has helped them to find their
own identity. Most of the contributions in this volume concern computational
pattern matching or string algorithms.

Esko Ukkonen has had a major role in the development of Finnish computer
science. He was the key person in the development of the school of algorithmic
research in Finland, and he has had a major role in PhD education. The editors
of this volume are grateful to Esko for the insightful guidance that they received
from him when they were his PhD students.

January 2010 Tapio Elomaa
Heikki Mannila
Pekka Orponen

Acknowledgements

We would like to thank everybody who contributed to this Festschrift: the au-
thors for their interesting articles, the colleagues and PhD students who helped
proofread the contributions, Greger Lindén for technical assisstance, and Veli
Mäkinen for organizing the seminar to honor Esko’s birthday.

Table of Contents

String Rearrangement Metrics: A Survey . 1
Amihood Amir and Avivit Levy

Maximal Words in Sequence Comparisons Based on Subword
Composition . 34

Alberto Apostolico

Fast Intersection Algorithms for Sorted Sequences . 45
Ricardo Baeza-Yates and Alejandro Salinger

Indexing and Searching a Mass Spectrometry Database 62
Søren Besenbacher, Benno Schwikowski, and Jens Stoye

Extended Compact Web Graph Representations . 77
Francisco Claude and Gonzalo Navarro

A Parallel Algorithm for Fixed-Length Approximate String-Matching
with k-mismatches . 92

Maxime Crochemore, Costas S. Iliopoulos, and Solon P. Pissis

Covering Analysis of the Greedy Algorithm for Partial Cover 102
Tapio Elomaa and Jussi Kujala

From Nondeterministic Suffix Automaton to Lazy Suffix Tree 114
Kimmo Fredriksson

Clustering the Normalized Compression Distance for Influenza Virus
Data . 130

Kimihito Ito, Thomas Zeugmann, and Yu Zhu

An Evolutionary Model of DNA Substring Distribution 147
Meelis Kull, Konstantin Tretyakov, and Jaak Vilo

Indexing a Dictionary for Subset Matching Queries 158
Gad M. Landau, Dekel Tsur, and Oren Weimann

Transposition and Time-Scale Invariant Geometric Music Retrieval 170
Kjell Lemström

Unified View of Backward Backtracking in Short Read Mapping 182
Veli Mäkinen, Niko Välimäki, Antti Laaksonen, and Riku Katainen

Some Applications of String Algorithms in Human-Computer
Interaction . 196

Kari-Jouko Räihä

X Table of Contents

Approximate String Matching with Reduced Alphabet 210
Leena Salmela and Jorma Tarhio

ICT4D: A Computer Science Perspective . 221
Erkki Sutinen and Matti Tedre

Searching for Linear Dependencies between Heart Magnetic Resonance
Images and Lipid Profiles . 232

Marko Sysi-Aho, Juha Koikkalainen, Jyrki Lötjönen,
Tuulikki Seppänen-Laakso, Hans Söderlund,
Tiina Heliö, and Matej Orešič

The Support Vector Tree . 244
Antti Ukkonen

Author Index . 261

String Rearrangement Metrics:

A Survey

Amihood Amir1,2,� and Avivit Levy3,4

1 Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
amir@cs.biu.ac.il

2 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218
3 Shenkar College, Anna Frank 12, Ramat Gan 52526, Israel

avivitlevy@shenkar.ac.il
4 CRI, University of Haifa, Mount Carmel, Haifa 31905, Israel

Abstract. A basic assumption in traditional pattern matching is that
the order of the elements in the given input strings is correct, while
the description of the content, i.e. the description of the elements, may
be erroneous. Motivated by questions that arise in Text Editing, Com-
putational Biology, Bit Torrent and Video on Demand, and Computer
Architecture, a new pattern matching paradigm was recently proposed
by [2]. In this model, the pattern content remains intact, but the relative
positions may change. Several papers followed the initial definition of the
new paradigm. Each paper revealed new aspects in the world of string
rearrangement metrics. This new unified view has already proven itself
by enabling the solution of an open problem of the mathematician Cay-
ley from 1849. It also gave better insight to problems that were already
studied in different and limited situations, such as the behavior of differ-
ent cost functions, and enabled deriving results for cost functions that
were not yet sufficiently analyzed by previous research. At this stage, a
general understanding of this new model is beginning to coalesce. The
aim of this survey is to present an overview of this recent new direction
of research, the problems, the methodologies, and the state-of-the-art.

1 Introduction

1.1 Motivation

Consider a text T = t0 · · · tn−1 and pattern P = p0 · · · pm−1, both over an
alphabet Σ. Traditional pattern matching regards T and P as sequential strings,
provided and stored in sequence (e.g. from left to right). Therefore, implicit in
the conventional approximate pattern matching is the assumption that there
may indeed be errors in the content of the data, but the order of the data
is inviolate. However, some non-conforming problems have been gnawing at the
walls of this assumption. Selected examples are:

� Partly supported by NSF grant CCR-09-04581 and ISF grant 347/09.

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 1–33, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Amir and A. Levy

Text Editing: The swap error, motivated by the common typing error where
two adjacent symbols are exchanged [34,9], does not assume error in the
content of the data, but rather, in the order. The data content is, in fact,
assumed to be correct. The swap error seemed initially to be akin to the other
Levenshtein errors, in that it could be added to the other edit operations and
solved with the same dynamic programming [34]. However, when isolated, it
turned out to be surprisingly simple to handle [13]. This scarcely seems to
be the case for indels or mismatch errors.

Computational Biology: During the course of evolution areas of the genome
may be shifted from one location to another. Considering the genome as a
string over the alphabet of genes, these cases represent a situation where the
difference between the original string and resulting one is in the locations
rather than contents of the different elements. Several works have consid-
ered specific versions of this biological setting, primarily focusing on the
sorting problem (sorting by reversals [18,19], sorting by transpositions [15],
and sorting by block interchanges [21]).

Bit Torrent and Video on Demand: The inherently distributed nature of
the web is already causing the phenomenon of transmission of a stream of
data in tiny pieces from different sources. This creates the problem of putting
scrambled data back together again.

Computer Architecture: In computer architecture, it is by no means taken
for granted that when seeking a word from a given address, no errors will
occur in the address bits [28]. This problem is relevant even when reading a
buffer of consecutive words since these words are not necessarily consecutive
in the disk or in an interleaved cache1.

Motivated by these questions a new pattern matching paradigm – pattern match-
ing with address errors – was proposed by [2]. In this model, the pattern content
remains intact, but the relative positions (addresses) may change. The advan-
tages of suggesting and studying a unified general model for all the above exam-
ples are:

1. By providing a unified general framework, the relationships between the
different problems can be better understood.

2. General techniques can be developed, rather than ad-hoc solutions.
3. Future problems can be more readily analyzed.

Indeed, this unified view has already proven itself by enabling the solution of an
open problem of the mathematician Cayley from 1849. It also gave better insight
to problems that were already studied in different and limited situations, such
as the behavior of different cost functions, and enabled deriving results for cost
functions that were not yet sufficiently analyzed by previous research.

Several papers ([1,2,5,7,11,10,30]) followed the initial definition of the new
paradigm. Each paper revealed new aspects in the world of string rearrangement

1 Practically, these problems are solved by means of redundancy bits, checksum bits,
error detection and correction codes, and communication protocols.

String Rearrangement Metrics: A Survey 3

metrics. At this stage, a general understanding of this new model is beginning
to coalesce. The aim of this survey is to present an overview of this recent new
direction of research, the problems, the methodologies, and the state-of-the-art.

1.2 The String Rearrangement Model

The novel paradigm being considered, of errors in the location of the input
elements, rather than their contents, raises a plethora of new questions. To better
understand the nature of the research directions undertaken so far, as well as
to map the possible future paths open to further research, we identify three
different thrusts:

1. What caused the error? Different phenomena that occur in various diverse
applications, cause different types of errors. Interesting such types need to
be addressed in the context of approximate pattern matching. Examples of
different types of errors in the traditional pattern matching models are the
Hamming distance and the edit distance.

2. What is the error cost? Even for a given type of error, there can be different
error costs. As an example, consider the Hamming distance in the traditional
pattern matching model. It assigns the cost of “1” to every mismatch. Nev-
ertheless, different applications make different assignments. If one considers
typing errors, then the cost of mismatch in letters that appear in proximity
on the keyboard should be less than the cost of distant letters. In a black-
and-white image, mismatch in pixels with a close grey-scale level should
be less expensive that large distances. Interesting cost measures should be
identified and explored.

3. What set of tools is useful to solve problems in the model? Various areas
develop traditional techniques that lend themselves to cracking the mysteries
of the field. Using traditional pattern matching as an example once again,
one can point to automata methods, dueling, subword structures, the FFT,
or embeddings, as tools to be considered when a problem in the field is
addressed. Perusal of the work so far on the string rearrangements model,
reveals that these methods have generally not proven useful. Even at this
relatively early stage of research in the new model it is interesting to stop
and consider if any new methods or data structures seem to be developing.

Error Causes. Three types of causes can be identified from the literature for
rearrangement errors.

1. Independent Individual Moves. In this model every element can indepen-
dently be shifted and placed in every possible other location. This model is
capable of considering situations where elements are objects with indepen-
dent control. Unlike other models, the positions of the elements are fixed
and can be viewed like boxes that should be filled with elements2. Indeed it
has been studied in some of the early papers [2,5].

2 In external process models the positions are just the relative order, and therefore, a
change in the position of some elements may affect the positions of other elements.

4 A. Amir and A. Levy

2. External Process. The first papers in the literature that dealt with rearrange-
ment operators before the model has been formally identified and defined,
were motivated by applications where such rearrangements occur due to an
external process [15,18,22,17]. For example, the evolution or mutation pro-
cess causes genes to relocate, or reverse. The typing process causes adjacent
letters to be swapped. In each of these applications, the external process
defines the possible or “legal” operators that may cause a symbol to change
its location, and only those moves need to be considered for that application.

3. Internal Process. We have mentioned applications where the location of a
symbol is explicitly given as an address, for example in architecture or bit
torrent. In such cases, an internal error may cause the address to be corrupted
effecting a relocation of the symbol thus addressed. The types of relocation
in this case, then, are the ones that can be caused by “legal” kinds of errors
that can plague the address register. Such errors were addressed in [7,10].

Cost Models: Three types of cost models have been considered in the context
of rearrangement problems.

1. The Unit-cost model (UCM). In this model, each operation is given a unit
cost, and the problem is to transform S into T with a minimum number
of operations. In comparison to traditional pattern matching, this is akin to
Hamming distance, or edit distance, where every operation has a cost of “1”.

2. Length-cost model (LCM). Here, the cost of an operation depends on its
length characteristic. For example, moving an element a short distance may
cost less than moving an element far away. Such cost models have been
considered in other context, and it was noted that their behavior may be
different from the UCM [17,16].

3. Element Cost Model (ECM). It may be the case that some elements may
be “heavier” than other elements. In such cases, moving light elements is
preferable to moving heavy elements. In [25], Gupta and Kumar considered
the problem of sorting and selection in the comparison model for structured
costs. In their work, they assumed that every element has a weight and that
the cost of a comparison is defined by a function applied to the weight of
the elements that participate in the comparison. Recently, [14] addressed
the same problem of sorting and selection for random costs. It is natural to
consider rearrangement problems in the ECM [30].

Tools and Techniques. Traditional pattern matching is one of the earliest
areas of Computer Science, and thus has created a considerable tool kit. The
string rearrangement model has been explicitly researched for only half a decade,
and thus has not amassed a substantial set of new tools. However, its history does
suggest that some of the powerful techniques of traditional pattern matching
are inadequate. This is perhaps not surprising since these tools assume that
the elements don’t “move”. They do not perform well on a “moving target”.
Nevertheless, a trend is already being established, of the tools that have proven
successful.

String Rearrangement Metrics: A Survey 5

The papers dealing with rearrangements have made massive use of graph
theoretic techniques, results, and data structures. In turn, they have been able to
reciprocate by shedding new light on some venerable problems in Graph theory.
In particular, it has afforded an answer to a question posed by Cayley in 1849 [20]
by proving that finding a maximum cardinality decomposition of directed graph
into directed cycles is an NP-hard problem.

Another interesting tool seen for the first time in pattern matching, is the use
of other types of convolutions that the ubiquitous FFT over the complex field.
For example, in [10] use was made of the FFT over Z2.

1.3 Formal Model Definition

Notations. Let x be a m-long string over alphabet Σ. The i-th character of x is
denoted x[i]. If x has m distinct elements, it can be viewed as a permutation of
1, . . . ,m. In this case, it defines a function π : {1, . . . ,m} �→ {1, . . . ,m} in the
following way: π(i) = j if and only if x[j] = i. The function π is a permutation
of 1, . . . ,m. Thus, in the case that x has m distinct elements, we refer to the
permutation π as a string, and therefore use the notation π[i] for the i-th element
in π. Given a permutation π, we may also use the notation π−1 for the inverse
permutation, i.e., π−1(j) = i if and only if π(i) = j. If π is also viewed as a string
then π−1(i) is exactly π[i]. The notation of π−1 is only used when its meaning as
an inverse permutation is needed, for example, when we refer to a permutation
of the indices of a string with repeating symbols.

Problem Definition. Consider a set Σ and let x and y be two m-tuples over Σ.
We wish to formally define the process of converting x to y through a sequence
of rearrangement operations.

Definition 1. Let x, y ∈ Σm, we say that x can be converted to y if for each
σ ∈ Σ, the number of appearances of σ in x equals the number of appearances
of σ in y.

Definition 2. A rearrangement operator π is a function π : [0..m−1]→ [0..m−
1], with the meaning being that for each i, π moves the element currently at
location i to location π(i). Let s = (π1, π2, . . . , πk) be a sequence of rearrangement
operators, and let πs = π1 ◦ π2 ◦ · · · ◦ πk be the composition of the πj ’s. We say
that s converts x into y if for any i ∈ [0..m−1], xi = yπs(i). That is, y is obtained
from x by moving elements according to the designated sequence of rearrangement
operations.

Let Π be a set of rearrangement operators, we say that Π can convert x to
y, if there exists a sequence s of operators from Π that converts x to y. Given
a set Π of rearrangement operators, we associate a non-negative cost with each
sequence from Π, cost : Π∗ → R+. We call the pair (Π, cost) a rearrangement
system. For two vectors x, y ∈ Am and a rearrangement system R = (Π, cost),
we define the distance from x to y under R to be:

6 A. Amir and A. Levy

dR(x, y) = min{cost(s)|s ∈ Π∗ that converts x into y}

If there is no sequence in Π∗ that converts x to y then the distance is ∞.

If all elements in x are distinct, a unique bijection f : x → {1, . . . ,m} can
be defined such that f(xi) equals the position of the element xi in y. Thus
x can be represented by π = f(x1), f(x2), . . . , f(xm) and y by 1, . . . ,m. For
this case the term permutation string is used. The input string is then assumed
to be π, i.e, a permutation of 1, . . . ,m. Under this assumption the rearrange-
ment problem is simply a sorting problem, i.e. the distance is the minimum
cost for sorting π. Problems of sorting a permutation string have been studied
extensively(e.g. [15,18,19,21,26,27]). For the general case in which x may have
repetitions of elements, the term general string is used.

The String Matching Problem. Let R be a rearrangement system and let dR
be the induced distance function. Consider a text T = T [0], . . . , T [n − 1] and
pattern P = P [0], . . . , P [m− 1] (m ≤ n). For 0 ≤ i ≤ n−m denote by T (i) the
m-long substring of T starting at location i. Given a text T and pattern P , we
wish to find the index i such that dR(P, T (i)) is minimal.

Paper Organization. The rest of the paper is organized as follows. In Sect. 2 we
discuss rearrangement systems where the operators are independent individual
moves. In Sect. 3 we discuss rearrangement systems where the operator is defined
by an external process. Specifically, we discuss the interchange operator under
the various cost models: UCM, LCM and ECM, but we also mention other op-
erators. Finally, in Sect. 4 we discuss rearrangement systems where the operator
is defined by an internal process.

2 Independent Individual Moves

In this section we consider the independent individual move model, which allows
any element to be inserted at any other location. However, we now consider
various length-cost metrics.

Under the �1 Rearrangement System, the cost of such a rearrangement is the
sum of the distances the individual elements have been moved. Formally, let
x and y be strings of length m. A rearrangement under the �1 distance is a
permutation π : [0..m− 1]→ [0..m− 1], where the cost is cost(π) =

∑m−1
j=0 |j −

π(j)|. We call the resulting distance the �1 Rearrangement Distance.
In the �2 Rearrangement System we use the same set of operators, with the

cost being the sum of squares of the distances the individual elements have
moved.3 Formally, let x and y be strings of length m. A rearrangement under

3 For simplicity of exposition we omit the square root usually used in the �2 distance.
This does not change the complexity, since the square root operation is monotone,
and can be computed at the end.

String Rearrangement Metrics: A Survey 7

the �2 distance is a permutation π : [0..m − 1] → [0..m − 1], where the cost is
cost(π) =

∑m−1
j=0 |j−π(j)|2. We call the resulting distance the �2 Rearrangement

Distance.
In the �∞ Rearrangement System, the cost is the maximum of the distances the

individual elements have been moved. Formally, let x and y be strings of length
m. A rearrangement under the �∞ distance is a permutation π : [0..m − 1] →
[0..m − 1], where the cost is cost(π) = maxj∈{0,...,m−1} |j − π(j)|. We call the
resulting distance the �∞ Rearrangement Distance.

In the rest of the section we describe the basic solutions for the �1 and �2 rear-
rangement systems. We also briefly mention the results for the �∞ rearrangement
system.

2.1 The �1 Rearrangement Distance

Let x and y be strings of length m. Clearly, if x contains distinct elements then
only one permutation can convert x to y. However, there if x and y contains
elements that appear multiple times, then there can be several different permu-
tations that can convert x to y. Intuitively, of these permutations, the least cost
is obtained by the one that does not change the order among identical letters
(see Fig. 1). The following lemma proves that this is indeed the case.

Lemma 1. Let x, y ∈ Σm be two strings such that d�1(x, y) < ∞. Let πo be
the permutation that for each a ∈ Σ and each k, moves the k-th σ of x to the
location of the k-th σ of y. Then,

d�1(x, y) = cost(πo).

i.e. πo is a permutation of the least cost.

Proof. For a permutation π, and i < j such that x[i] = x[j], say that π reverses
i and j if π(i) > π(j). Note that πo is characterized by having no reversals. We
show that it has the least cost. Let τ be a permutation converting x to y of
minimal cost that has the minimal number of reversals. If there are no reversals

Fig. 1. The minimal cost pairing permutation πo

8 A. Amir and A. Levy

in τ , then there is nothing to prove, since it is exactly the permutation πo.
Otherwise, suppose τ reverses j and k (j < k). Let τ ′ be the permutation which
is identical to τ , except that τ ′(j) = τ(k) and τ ′(k) = τ(j). Then, clearly τ ′ also
converts x to y. We show that cost(τ ′) ≤ cost(τ). There are two cases:

Case 1: τ(j) ≥ k or τ(k) ≤ j. Consider the case τ(j) ≥ k. Then clearly τ(j) > j,
hence:
cost(τ) − cost(τ ′) =
= |τ(j)− j|+ |τ(k)− k| − |τ ′(j)− j| − |τ ′(k)− k|
= |τ(j)− j|+ |τ(k)− k| − |τ(k)− j| − |τ(j) − k|
= (τ(j) − j) + |τ(k) − k| − |τ(k) − j| − (τ(j) − k)
= τ(j)− j + |τ(k)− k| − |τ(k)− j| − (τ(j) − k)
= (k − j) + |τ(k) − k| − |τ(k) − j|
≥ |(k − j) + (τ(k) − k)| − |τ(k) − j| = 0.
The argument for τ(k) ≤ j is symmetrical.

Case 2: j < τ(k) < τ(j) < k. Then,
cost(τ) − cost(τ ′) =
= |τ(j)− j|+ |τ(k)− k| − |τ ′(j)− j| − |τ ′(k)− k|
= |τ(j)− j|+ |τ(k)− k| − |τ(k)− j| − |τ(j) − k|
= (τ(j) − j) + (k − τ(k)) − (τ(k) − j)− (k − τ(j))
= 2(τ(j)− τ(k)) > 0.

Thus, the cost of τ ′ is at most that of τ , and there is one reversal less in τ ′, in
contradiction. 	

Thus, in order to compute the �1 distance of x and y, we create for each symbol
a two lists, ψa(x) and ψa(y), the first being the list of locations of a in x, and the
other – the locations of a in y. Both lists are sorted. These lists can be created in
linear time4. Clearly, if there exists an a for which the lists are of different lengths
then d�1(x, y) = ∞. Otherwise, for each a, compute the �1 distance between the
corresponding lists, and sum over all a’s. This provides a linear time algorithm for
strings of identical lengths, and anO(m(n−m+1)) algorithm for the general case.

Theorem 1. [2] For T and P of sizes n and m respectively (m ≤ n), the �1
Rearrangement Distance can be computed in time O(m(n−m+1)). If all entries
of P are distinct, then the distance can be computed in time O(n).

The �1 rearrangement distance can be approximated efficiently with high prob-
ability.

Theorem 2. [5] For T and P of sizes n and m respectively (m ≤ n), then for
any ε > 0 and 0 < δ < 1 there exists a constant c = c(ε, δ) such that the �1
Rearrangement Distance can be approximated to ±ε in time O(n · c/ε2 log 1/δ)
with probability 1− δ.
4 Clearly, we can consider only the letters in P , and hence sorting can be completed in

linear time.

String Rearrangement Metrics: A Survey 9

2.2 The �2 Rearrangement Distance

Interestingly, the �2 distance can be computed much more efficiently.
Consider first the case of equal length sequences. Let x and y be strings of

length m. The following lemma, characterizing the minimal cost permutation
converting x to y, is the �2 analogue of Lemma 1. The proof is analogous to the
proof of Lemma 1.

Lemma 2. [2] Let x, y ∈ Σm be two strings such that d�2(x, y) <∞. Let πo be
the permutation that for all a and k, moves the k-th a in x to the location of the
k-th a in y. Then,

d�2(x, y) = cost(πo).

I.e. πo is a permutation of the least cost.

Now that we are guaranteed that πo provides the minimum distance, we need to
compute cost(πo). In the case that x and y are of the same length, the cost can be
computed in the following manner. Consider an element a ∈ Σ, and let occa(x) be
the number of occurrences of a in x. Note that if x can be converted to y then nec-
essarily occa(x) = occa(y). Let ψx(a) be the sorted sequence (of length occa(x))
of locations of a in x. Similarly ψa(y) is this sequence for y. Then,

cost(πo) =
∑
a∈x

occa(x)−1∑
j=0

(ψa(x)[j]− ψa(y)[j])2. (1)

Since
∑

a∈x occa(x) = m, the above sum can be computed in linear time.
Consider, now, a text T of length n and a pattern P of length m. We wish

to compute the �2 distance of P to each text substring T (i) (where T (i) is the
m-long substring of T starting at position i). First note that by simple counting
we can find all locations for which the distance is ∞, i.e. the locations for which
there is no way to convert the one string to the other. Thus, we need only
consider the substrings T (i) that are a permutation of P . For these substrings,
occa(P) = occa(T (i)) for all a ∈ P .

We can certainly compute the distances by repeatedly applying the algorithm
for equal lengths strings presented above, but the total time would be O(nm).
However, we can obtain a much faster algorithm as follows. Consider a symbol
a, and let ψa(P) and ψa(T) be the sorted lists of locations of a in P and T ,
respectively. Note that these two lists need not be of the same length. Similarly,
let ψa(T (i)) be the list of locations of a in T (i). Then, by Equation (1), for any
T (i) (which is a permutation of P):

d�2(P, T (i)) =
∑
a∈P

occa(P)−1∑
j=0

(ψa(P)[j]− ψa(T (i))[j])2 (2)

We now wish to express the above sum using ψa(T) instead of the individual
ψa(T (i))’s. Note that all the a’s referred to in ψa(T (i)) are also referred to in

10 A. Amir and A. Levy

ψa(T). However, ψa(T) gives the locations with respect to the beginning of T ,
whereas ψa(T (i)) gives the locations with respect to the beginning of T (i) – which
is i positions ahead.

For each i and a, let matcha(i) be the index of the smallest entry in ψa(T) with
value at least i. Then, matcha(i) is the first entry in ψa(T) also referenced by
ψa(T (i)) (assuming the a appears in T (i)). For any a, i and j ≤ occa(P), we have:

ψa(T (i))[j] = ψa(T)[matcha(i) + j]− i.

Thus, Equation (2) can be rewritten as:

d�2(P, T (i)) =
∑
a∈P

occa(P)−1∑
j=0

(ψa(P)[j]− (ψa(T)[matcha(i) + j]− i))2 (3)

We wish to compute this sum for all i. We do so by a combination of convolution
and polynomial interpolation, as follows.

The Values of matcha(i). We first show how to efficiently compute matcha(i)
for all a and i. Consider two consecutive locations i and i + 1. Let T [i] be the
symbol at the i-th location in T . Then,

matcha(i+ 1) =
{

matcha(i) + 1 a = T [i]
matcha(i) a�= T [i] (4)

Equation (4) allows us to incrementally compute matcha(i) for all i. That is, if
we know matcha(i) for all a, then we can also know matcha(i+ 1), for all a, in
O(1) steps.

The Functions Gx and Fx. Fix a number x, and suppose that instead of the
computing the sum in Equation (3), we want to compute the sum:

Gx(i) =
∑
a∈P

occa(P)−1∑
j=0

(ψa(P)[j]− (ψa(T)[matcha(i) + j]− x))2

This is the same sum as in Equation (3), but instead of subtracting i in the
parenthesis, we subtract the fixed x. The important difference is that now x is
independent of i. Note that by Equation (3) d�2(P, T (i)) = Gi(i).

For a, k let

Fx(a, k) =
occa(P)−1∑

j=0

(ψa(P)[j]− (ψa(T)[k + j]− x))2

Then,
Gx(i) =

∑
a∈P

Fx(a,matcha(i)) (5)

String Rearrangement Metrics: A Survey 11

Suppose that for a fixed x we have pre-computed Fx(a, k) for all a and k. We
show how to compute Gx(i) for all i (for the fixed x). We do so by induction.
For i = 0 we compute Gx(i) using Equation 5 in O(m) steps. Suppose we have
computed Gx(i) and now wish to compute Gx(i+ 1). Then,

Gx(i) =
∑
a∈P

Fx(a,matcha(i))

while
Gx(i+ 1) =

∑
a∈P

Fx(a,matcha(i+ 1))

However, by Equation (4), for most of the a’s matcha(i+ 1) = matcha(i) and
for a = T [i], matcha(i+ 1) = matcha(i) + 1. Thus,

Gx(i+ 1)−Gx(i) = −Fx(T [i],matchT i) + Fx(T [i],matchT i + 1)

Thus, assuming that Gx(i) is known, and that all Fx(a, k)’s have been pre-
computed, Gx(i + 1) can be computed in O(1) steps. (The values of matcha(i)
are incrementally computed as we advance from i to i+ 1.)

Computing Fx(a, k). We now show how to compute Fx(a, k) for all a and k. We
do so using the following general lemma:

Lemma 3. [3] Let Q and W be two sequences of real numbers, with lengths
|Q| and |W |, respectively (|Q| ≤ |W |). Let p(q, w) be a polynomial in two vari-
ables, and t an integer (t ≤ |Q|). For i = 0, . . . , |W | − |Q|, let PQ,W (i) =∑t−1

j=0 p(Q[j],W [i + j]). Then, PQ,W (i) can be computed for all i’s together, in
O(|W | log |Q|) steps.

Applying the lemma to our setting let p(q, w) = (q − w + x)2, t = occa(P),
Q = ψa(P) and W = ψa(T). Then, Fx(a, k) =

∑t−1
j=0 p(Q[j],W [k + j]). Thus,

Fx(a, k) can be computed for all k’s together in O(occa(T) log(occa(P))) steps.
Combining for all a’s, the computation takes:

∑
a∈P

O(occa(T) log(occa(P))) = O(n logm)

(since
∑

a∈P occa(T) ≤ n and
∑

a∈P occa(P) = m).

From Gx(i) to d�2(P, T (i)). We have so far seen that for any fixed x, we can
compute Gx(i) for all i in O(n logm) steps. Recall that d�2(P, T (i)) = Gi(i).
Thus, we wish to compute Gi(i) for all i. For any fixed i, considering x as a
variable, Gx(i) is a polynomial in x of degree ≤ 2. Thus, if we know the value
of Gx(i) for three different values of x, we can then compute its value for any
other x in a constant number of steps using polynomial interpolation. Thus, in
order to compute Gi(i) we need only know the value of Gx(i) for three arbitrary
values of x, say 0, 1 and 2. Accordingly, we first compute G0(i), G1(i) and G2(i),

12 A. Amir and A. Levy

for all i in O(n logm) time, as explained above. Then, using interpolation, we
compute Gi(i) for each i separately, in O(1) steps per i. The total complexity is
thus O(n logm).

We summarize:

Theorem 3. For T and P of sizes n and m respectively (m ≤ n) the �2 Rear-
rangement Distance can be computed in time O(n logm).

2.3 The �∞ Rearrangement Distance

The �∞ case, as the �1 case, has not yielded a deterministically efficient algo-
rithm. However, using the techniques developed for the computation of the �1
distance and a property of the �∞ distance that is similar to Lemma 1, we get
the following result.

Theorem 4. [5] For T and P of sizes n and m respectively (m ≤ n) the �∞
Rearrangement Distance can be computed in time O(m(n−m+1)). If all entries
of P are distinct then the �∞ Rearrangement Distance can be computed in time
O(n logm).

However, there is an efficient approximation algorithm. This approximation al-
gorithm utilizes a connection between the �∞ distance and a generalization of
the �2 distance. As a side effect it generalizes the technique use to compute the
�2 distance.

Theorem 5. [5] For T and P of sizes n and m respectively (m ≤ n), the
�∞ Rearrangement Distance can be approximated to a factor of 1 + ε in time
O(1

ε2n log3m).

2.4 Independent Individual Moves Rearrangements: Summary

Table 1 summarizes the results on independent individual moves rearrangement
systems as studied in [2,5]. The table refers to the string matching version of the
problem, where the text is assumed to be longer than the pattern. In the case
that the text and pattern are of equal size, computations of the �1, �2 and �∞
distances can be trivially done in linear time.

Table 1. Independent Individual Moves Rearrangement Systems: A Summary of Re-
sults

The System Patterns with General Patterns Approximation
Distinct Elements

�1 O(n) [2] O(nm) [2] O(n · c/ε2 log 1/δ) ±ε-approx. � [6]
�2 O(n) [3] O(n log m) [2] –
�∞ O(n log m) [6] O(nm) [6] O(1

ε2 n log3 m) 1 + ε-approx. [6]

� c = c(ε, δ) is a constant. The approximation is within the given range with probability
1− δ.

String Rearrangement Metrics: A Survey 13

3 External Process Rearrangement Systems

In this section we consider rearrangement systems where the rearrangement op-
erators are defined by an external process. Specifically, we discuss the inter-
change rearrangement problem under various cost models. We also discuss the
related parallel-interchange rearrangement system. The interchange rearrange-
ment problem is the following: Given two strings x, y over alphabet Σ such that
x, y have the same quantity of each symbol, the goal is to transform x (called
the input string) to y (called the target string) using a succession of interchange
operations. An interchange of two elements, a in position i and b in position j,
puts element a in position j and element b in position i. The interchange distance
problem is to find the minimum number of interchanges needed to transform the
input string x to the target string y.

The interchange distance problem defined by [2], is actually a classical problem
mentioned back in 1849 by Cayley [20]. Cayley mainly studied permutation
strings, in which all elements are distinct. In that case, strings can be viewed
as permutations of 1, . . . ,m, where m is the length of the string. This classical
setting was well studied (e.g., [20,29]). Cayley [20] gives a characteristic theorem
for the distance in this case, from which a simple linear time algorithm for
computing it on permutation strings can be immediately derived, as described
in [2]. However, these results do not apply for the general strings case, posed as
an open problem by Cayley. [11] studied a generalization of this classical and
well-studied problem on permutations by considering general strings as input
and examining various cost models.

Formal Definition of the Problem. In the sequel, we give some formal definitions,
including a formal definition of an interchange and the interchange distance
problem in w-cost model.

The interchange operator is a special rearrangement operator.

Definition 3. The interchange rearrangement operator is a function op : Σm×
{1, . . . ,m} × {1, . . . ,m} �→ Σm, such that

op(x, i, j) =

⎧⎨
⎩
x[1, . . . , i− 1] · x[j] · x[i+ 1, . . . , j − 1] · x[i] · x[j + 1, . . . ,m], if i < j;
x[1, . . . , j − 1] · x[i] · x[j + 1, . . . , i− 1] · x[j] · x[i+ 1, . . . ,m], if i > j;
x, if i = j.

Definition 4. Let w : N �→ R be a cost function such that w(0) = 0, x, y ∈ Σm

be two strings such that x can be converted to y, and let s = s1, . . . , sk be a
sequence of interchanges that converts x to y, where sj interchanges elements
in positions ij, i

′
j, then cost(s) =

∑
j w(|ij − i′j |). The interchange distance

problem in w cost model (or the w-interchange distance problem) is to com-
pute dWI(w)(x, y) = min{cost(s) | s converts x to y}5. The interchange distance
problem is simply the interchange distance problem in the unit cost model, i.e.,
w(�) = 1 for every � > 0.
5 If x cannot be converted to y, define dWI(w)(x, y) = ∞. In this paper, it is always

assumed that x can be converted to y, thus, dWI(w)(x, y) <∞.

14 A. Amir and A. Levy

A special case of the interchange distance problem is the sorting by interchanges
problem defined as follows.

Definition 5. Let w : N �→ R be a cost function. Let Σ be an alphabet and R
a total order defined on the elements of Σ. Let x be a string over alphabet Σ
and let s = s1, . . . , sk be a sequence of interchanges that sorts x according to R
(resulting in the string xR), where sj interchanges elements in positions ij , i′j,
then cost(s) =

∑
j w(|ij − i′j|). The sorting by interchanges problem in w cost

model is to compute dWI(w)(x, xR) = min{cost(s) | s sorts x according to R}.

3.1 The Unit Cost Model

We begin by discussing the interchange and parallel-interchange rearrangement
systems in the unit cost model.

The Interchange Distance Problem. We show that this problem is equiv-
alent to the problem of finding the cardinality of the maximum edge-disjoint
cycle decomposition of Eulerian directed graphs (denoted by maxDCD). The
later problem has been shown to be NP-hard [11].

Equivalence to maxDCD. Given two strings x, y ∈ Σm such that x can be con-
verted to y, it is possible to derive two permutations of 1, . . . ,m, as follows. Let
Sm be the set of all permutations of 1, . . . ,m. A labelling of an m-long string over
alphabet Σ is a function L : Σm �→ Sm. We now formally define a legal labelling
Lx,y for the strings x and y. Let I ∈ Sm be the identity permutation (i.e., the
string 1, . . . ,m). The target string y is labelled as the identity permutation, i.e.,
Lx,y(y) = I. For every σ ∈ Σ denote by Lσ

y the set {i ∈ {1, . . . ,m} | y[i] = σ}.
Similarly, Lσ

x = {i ∈ {1, . . . ,m} | x[i] = σ}. For the definition of a legal labelling
of the input string x, consider the sets Lσ

x and Lσ
y for each σ. Since x can be

converted to y, we have |Lσ
x | = |Lσ

y |. Let fσ be a bijection, fσ : Lσ
x �→ Lσ

y . Now,
a legal labelling of x is Lx,y(x) = fx1fx2 . . . fxm. Note that Lx,y(x)
is a permutation of 1, . . . ,m. A legal labelling can also be viewed as a pairing
between the positions of elements in the input string and the target string.

The distance of the permutation Lx,y(x) (from the identity permutation) is
characterized by Fact 6. Of course, different choices for bijections fσ yield a dif-
ferent permutation of 1, . . . ,m, Lx,y(x). The interchange distance of the strings
x and y is achieved by moving each misplaced element in the input string x
to one of the positions in the target string y where this element appear. It can,
therefore, be viewed as defining a legal labelling of the input string as a permuta-
tion of 1, . . . ,m. Observation 1 specifies the connection between the interchange
distance of a permutation resulting from a legal labelling and the interchange
distance of the original strings x and y.

Theorem 6. [Cayley] [20] The interchange distance of an m-length permutation
π is m− c(π), where c(π) is the number of permutation cycles in π.

Observation 1. There exists a legal labelling for which the interchange distance
between the resulting permutation of 1, . . . ,m is exactly the interchange distance

String Rearrangement Metrics: A Survey 15

between the given m-length strings. Moreover, the permutation resulting from this
labelling has the minimum interchange distance over every permutation resulting
from any other labelling.

Definition 6. maxDCD is the following problem: Given an Eulerian directed
graph G = (V,E), find maximum-cardinality edge-disjoint directed cycle decom-
position of G, i.e., partition of E into the maximum number of mutually edge-
disjoint directed cycles.

Lemma 4. The interchange distance problem and the maxDCD problem can be
transformed to each other in linear time.

Proof. We describe a linear-time transformation from the interchange distance
problem to maxDCD. Let x, y be two m-length strings over alphabet Σ, such
that |Σ| ≤ m, and x can be converted to y. We construct the directed graph
G = (V,E), where V = Σ and E = {ei = (a, b) | 1 ≤ i ≤ m,x[i] = b, y[i] = a}.
G is an Eulerian directed graph, since x can be converted to y, thus for ev-
ery vertex in G the in- and out-degree are equal. The maximum edge-disjoint
cycle decomposition of G includes only cycles with distinct vertices, since, if a
vertex appears twice in a cycle, break it into two different cycles: one for each
appearance of the repeating vertex (G is Eulerian). Thus, in the rest of the proof
we only consider cycles with distinct vertices. Every edge-disjoint cycle decom-
position of G into cycles with distinct vertices defines a labeling of the strings
symbols (with different labels to repeating symbols), resulting in permutations of
1, . . . ,m, where y defines the identity permutation. For the permutation derived
from x the graph cycles represent the permutation cycles. Denote the number of
permutation cycles in a decomposition DG by c(DG). By Fact 6 the interchange
distance between the permutations derived from x and y is exactly m− c(DG).
Finally, denote by |maxDCD(G)| the cardinality of the maximum cycle de-
composition of the directed graph G. Then, by Observation 1 the interchange
distance between x and y is exactly m− |maxDCD(G)|.

The inverse transformation from maxDCD to the interchange distance problem
for general strings is similar. Given an Eulerian directed graph G = (V,E), we
construct x, y, two m-length general strings of symbols from alphabet Σ, where
m = |E| and |Σ| = |V |, such that x can be converted to y. Let e1, e2, . . . , e|E| be
any order of the edges inG. For all 1 ≤ i ≤ m, define x[i] = b, y[i] = a if ei = (a, b).
Since this is the same transformation, only inversely built, we get as above that
the interchange distance between x and y is exactly m− |maxDCD(G)|. 	

In order to complete the NP-hardness proof we need the following theorem.

Theorem 7. [11] The maxDCD problem is NP-hard.

The Parallel-Interchanges Distance Problem. Next we consider a rear-
rangement system where multiple pairs can be interchanged in parallel, i.e. in
any given step any number of pairs can be interchanged but an element can par-
ticipate in at most one interchange. The cost of a sequence is the number of such

16 A. Amir and A. Levy

parallel steps. We call the resulting distance the parallel interchange distance,
denoted by dp-interchange(·, ·) . [2] prove:

Theorem 8. For any two strings x and y, either dp-interchange(x, y) = ∞ or
dp-interchange(x, y) ≤ 2.

This means that if it is altogether possible to convert x to y, then it is possible
to do so in at most two parallel steps of interchange operations!

With regards to computing the distance [2] prove:

Theorem 9. For T and P of sizes n and m respectively (m ≤ n), if there are
k distinct entries in P , then the parallel interchange distance can be computed
deterministically in time O(k2n logm).

Theorem 10. For T and P of sizes m and n respectively (m ≤ n), the parallel
interchange distance can be computed randomly in expected time O(n logm).

Below we describe how these results were obtained.

Bounding the Parallel Interchange Distance. Previously we saw that a cycle of
length � can be sorted by � − 1 interchanges. We now ask what is the minimal
number of parallel interchange steps required for this sorting. Surprisingly, the
next lemma shows that with a careful choice of the interchanges, we can always
sort with at most two parallel steps.

Lemma 5. Let σ be a cycle of length � > 2. It is possible to sort σ in two parallel
interchanges steps.

Proof. W.l.o.g. the string is (1, 2, 3, . . . , �−2, �−1, 0) and has to be converted to
(0, 1, . . . , �− 1). In the first parallel step we invert the segment (1, 2, . . . , �− 1),
namely perform the (�−1)/2 interchanges (1, �−1), (2, �−2), etc. The resulting
string is (� − 1, � − 2, � − 3, . . . , 3, 2, 1, 0), from which the sorted string can be
obtained in one additional parallel step (containing �/2 interchanges): (0, �− 1),
(1, �− 2), . . . (see Fig. 2). 	

Since different cycles can be sorted in parallel, we obtain Theorem 8.

Computing the Parallel Interchange Distance. By theorem 8 there are only four
different possibilities for the parallel-interchange distance between a pattern and
a text, namely: 0, 1, 2 or ∞. Thus, in order to compute the distance, we need
only check which of the four is the correct one. Distance 0 signifies an exact
match, and can be found in O(n) steps using standard techniques. Distance ∞
means that at each text location i, the strings P and T (i) either contain different
symbols, or with different multiplicity. This can again be computed in O(n) steps
by simple counting. Thus, it remains to be able distinguish between distances 1
and 2. We show how to check for distance 1.

We start by describing a deterministic algorithm. If two strings have distance
1, then we say that one is a parallel interchange of the other. For each i and pair

String Rearrangement Metrics: A Survey 17

Fig. 2. The structure of the parallel interchanges sorting a permutation cycle

of alphabet symbols (a, b), we count the number of times that a appears in the
pattern and b appears in the corresponding location in the text T (i). Then, P is a
parallel interchange of T (i) if and only if for all a, b, the count for (a, b) equals that
for (b, a). This count can be implemented by convolutions in the following manner.

Let S be a string over alphabet Σ and let a ∈ Σ. Denote by χa(S) the binary
string of length |S| where every occurrence of a is replaced by 1 and every
occurrence of any other symbol is replaced by 0. The dot product of χa(T (i))
with χb(P) gives precisely the number of times an a in T (i) is aligned with a b in
P . This number can be computed for all alignments of the pattern with the text
in time O(n logm) using convolutions [24]. Clearly, it is sufficient to consider
only symbols from ΣP . Thereby we obtain that the parallel interchange distance
can be computed deterministically in time O(|ΣP |2n logm) (Theorem 9).

For unbounded alphabets this is not very helpful. So, we seek a further
speedup via randomization. The idea is to view the symbols of the alphabet as
symbolic variables, and use the Schwartz-Zippel Lemma [35,37], as follows. For
variables a, b, let h(a, b) = a2b−b2a. Note that h(a, a) = 0 and h(a, b) = −h(b, a).
Given two strings x, y ∈ Am define the polynomial:

Hx,y =
m−1∑
j=0

h(xj , yj)

Then:

Lemma 6. [3] Given two strings x, y ∈ Am, Hx,y ≡ 0 (i.e. Hx,y is the all zeros
polynomial) iff x is a parallel interchange of y.

Thus, for each text location i, we wish to check if H
P,T (i) ≡ 0. We do so

by randomly assigning numeric values to the symbolic variables, and using the
Schwartz-Zippel Lemma. Specifically, each variable is assigned a random value
chosen uniformly and independently at random from the set {1, . . . , 3m}. Let

18 A. Amir and A. Levy

r be the random assignment. Then by the Schwartz-Zippel lemma, for any x

and y, Pr[Hx,y(r) = 0|Hx,y �≡ 0] ≤ deg(Hx,y)
3m = 1

m . Clearly, if Hx,y ≡ 0 then
Hx,y(r) = 0 for all r. Accordingly, given the random assignment r, we compute
the value of H

P,T (i)(r), for all i. If the value is different from 0 for all i, then
clearly there is no parallel interchange of the pattern in the text, and the dis-
tance cannot be 1. Otherwise, we check one by one each location i for which
H

P,T (i)(r) = 0. For each such i, we check if H
P,T (i) ≡ 0 (as a symbolic poly-

nomial). For each specific location i, this can be performed in time O(m). Once
the first location for which H

P,T (i) ≡ 0 is found, we conclude that the distance
is 1, and no further locations are checked.

It remains to explain how to compute H
P,T (i) , for all i. We do so using

convolutions. Specifically, from the string P , we create a string P ′ of length 2m,
by replacing each entry a, by the pair r(a)2, r(a) (where r(a) is the value given
to the symbolic variable a under the random assignment r). Similarly, from T
we create a string T ′ of length 2n, by replacing each b with the pair −r(b), r(b)2.
Then, if C is the convolution of T ′ and P ′, then for all i, C(2i) = H

P,T (i)(r).
We obtain:

Lemma 7. [2] The above algorithm determines if there is a parallel interchange
of P in T in expected time O(n logm).

Example: Consider the text T = abcbaabbc and pattern P = ccaababbb, and
suppose we assign a = 1, b = 2, c = 3. Then,

T ′ = 1,−1, 4,−2, 9,−3, 4,−2, 1,−1, 1,−1, 4,−2, 4,−2, 9,−3
P ′ = 3, 9, 3, 9, 1, 1, 1, 1, 2, 4, 1, 1, 2, 4, 2, 4, 2, 4

The convolution of T ′ and P ′ gives the sum of the following differences:

3− 9, 12− 18, 9− 3, 4− 2, 2− 4, 1− 1, 8− 8, 8− 8, 18− 12.

Note that match positions contribute 0 to the convolution sum and positions of
parallel interchanges cancel themselves. We thus have a randomized algorithm
that computes the parallel interchange distance in expected O(n logm) steps.

We may now be tempted to try and extend this method to obtain a more ef-
ficient deterministic algorithm, in the following method. Suppose that we could
find a small number of polynomials, H(1), H(2), . . . , H(k), such that for a given
assignment, computing their values at each text location i would provide a de-
terministic indication of a parallel interchange. For example, suppose we could
find a “good” set of polynomials such that for any assignment they vanish iff
there is a parallel interchange. Then, if we could compute their values using
convolutions, we could hope for an efficient algorithm. The next lemma, which
is based on communication complexity arguments, proves that such an approach
cannot provide better performance than Ω̃(nm). To this end we use the convo-
lution model, which is a specialized model of computation that solves a subset
of pattern matching problems, defined in [4] as follows:

String Rearrangement Metrics: A Survey 19

Definition 7. Given a pattern matching problem whose input is a text T and a
pattern P , a solution in the convolutions model has the following form. Let gi,
i = 1, . . . , h(n) be pattern preprocessing functions, and let fgi , i = 1, . . . , h(n)
be the corresponding local text preprocessing functions. Let b be a parameter for
size in bits.

1. Compute h(n) convolutions Ci ← fgi(T)⊗ gi(P), i = 1, . . . , h(n), with b-bit
inputs and outputs.

2. Compute the matches as follows. The decision of whether location j of the
text is a match is made by a computation whose inputs are a subset of
{Ci[j]|i = 1, . . . , h(n)}.

Lemma 8. [3] Any algorithm in the convolution model for determining if there
is a parallel interchange requires (m(n−m+ 1)) bit operations.

3.2 The Length Cost Model

The popular cost model used in the study of rearrangement distances is the unit
cost model. In this model, every rearrangement operation is given a unit cost. This
is the model used in the definition of the interchange distance problem [2]. Re-
cently, Bender et al. [16] initiated the study of length-weighted cost models for re-
arrangement operators. Their basic claim is that, there is no real reason to assume
that all operations always have equal cost. On the contrary, in some situations re-
arranging closer elements may be cheaper than rearranging distant elements. Ben-
der et al. also give biological justification for length-weighted cost models of the
reversal rearrangement operator. Following their basic observation, [11,12] stud-
ied the interchange rearrangement under a variety of length cost models.

A cost function of an interchange of elements in positions i, j where i < j,
can be viewed as a cost function on the segment [i, j]. Following Bender et al.,
this paper considers increasing monotone cost functions on the length of the
segment, i.e. |i− j|. Such cost functions seem more natural in situations where
the distance that objects are moved contributes to the cost. Cost functions w of
the form w(�) = �α for all α ≥ 0, where � = |i−j|, are specifically studied. These
cost functions are referred to as �α-cost functions. The study is also broadened
to include various cost functions (e.g. log(�)) classified by their characteristic
behavior with regards to the marginal cost. Two types of cost functions are
considered: the I-type and the D-type defined as follows.

Definition 8. Let w : N �→ R be a cost function. We say that:
• w ∈ I-type if for every a, b, c ∈ N such that a < b, w(a + c) − w(a) <
w(b+ c)−w(b). We call this property the law of increasing marginal cost.
• w ∈ D-type if for every a, b, c ∈ N such that a < b, w(a + c) − w(a) >
w(b+ c)−w(b). We call this property the law of decreasing marginal cost.

Though this study of length-weighted cost models may include many cost func-
tions that are hardly meaningful in practical situations, we prefer the generalized
perspective. A comparison with the results of Bender et al. [16], who studied the

20 A. Amir and A. Levy

Table 2. �α-interchange Distance Problem: A Summary of Results

α Value Binary Alphabet Permutations General Strings
α = 0 O(m) O(m) NP-hard

O(m log |Σ|) 1.5-approximation
0 < α ≤ 1

log m
O(m) � O(m) 2-approximation O(m log |Σ|) 3-approximation

1
log m

< α < 1 O(m) � O(m) 2-approximation O(m3) |Σ|-approximation
α = 1 O(m) O(m) O(m)

1 < α ≤ log 3 O(m) O(m) 2-approximation O(m) 2-approximation
α > log 3 O(m) O(m) O(m)

� Only for the sorting problem. For the general rearrangement problem it is O(m3).

reversal rearrangement operator on permutation strings in the �α-cost models
for different values of α, supports our approach. They showed that the sorting
by reversals problem, which is known to be NP-hard even on permutations, is
polynomial time computable for some length-weighted cost models. The results
of [11] and [16] together might indicate a general phenomenon about length-
weighted distances that should be further studied. Moreover, [11] proposed the
classification of cost functions by laws of increasing/decreasing marginal cost.
This classification gives insight to the behavior of the different cost functions
and enables deriving results for cost functions that were not yet sufficiently an-
alyzed by Bender et al. [16].

In Subsubsection 3.2, the �1-cost model is studied. A characterization of the
distance is given, and it is proven to be polynomial time computable. In [11],
the problems for I-type and D-type cost functions are studied, and optimal and
approximation algorithms for the problem under these cost models are given. The
results apply specifically to �α-interchange distance problem for every α > 1 and
0 < α < 1, but apply to other functions as well (e.g. log(�)). A summary of the
results of [11] for the �α-interchange distance problem is given in Table 2. The
table presents running times for finding the distance of m-length strings.

The �1-Cost Model. We now describe a characterization of the �1-interchange
distance (denoted by WI(�1)) and a polynomial time algorithm for the interchange
distance problem in the �1-cost model. We deal with permutations (strings with
distinct elements) first, and then show how to handle general strings.

Permutation Strings. Let x, y be two strings with the same m distinct symbols.
Since the rearrangement of x to y can be viewed as sorting x by assuming y
is the permutation 1, . . . ,m, while making the appropriate changes for symbols
names in x as explained in Subsection 3.1, in the sequel we assume that we sort
x to the identity permutation I = 1 . . .m. Let π be a permutation of 1, . . . ,m.
For an element i in π, define its critical segment to be [π(i), i] if π(i) < i or
[i, π(i)] if i < π(i). Lemma 9 is a first step in the characterization of the �1-
interchange distance for permutations. We will show the connection to the �1-
distance, defined in Section 2.

String Rearrangement Metrics: A Survey 21

Sort(π)
Begin

While there are unsorted pairs in π
Find a good pair i,j.
Interchange elements i and j.

End

Fig. 3. Algorithm Sort

Lemma 9. Let π be a permutation of 1, . . . ,m, and let I denote the identity

permutation. Then, dWI(�1)(π, I) ≥
d�1(π, I)

2 .

Proof. In order to be sorted, every element i must pass its critical segment. Note
that in the �1-cost model, the distance is not diminished if element i passes the
critical segment using more than one interchange in this segment. Thus, for every
element we must pay its critical segment in the �1-cost model. Therefore, the
best situation is where each interchange we perform sorts the two participating
elements, since in this case we pay for each interchange exactly the cost that
every element must pay. In this case, each interchange costs half the cost paid in
the �1 distance, since in the �1 distance each element is charged independently.
The lemma follows. 	

Given a permutation π of 1, . . . ,m, we provide a polynomial time algorithm
that sorts the permutation by interchanges (see Fig. 3). Our algorithm performs
only interchanges that advance both elements towards their final positions. The
following definition is a formalization of this requirement.

Definition 9. Let π be a permutation of 1, . . . ,m. A pair of elements i,j is a
good pair if j ≤ π(i) < π(j) ≤ i.
The next lemma states that it is possible to sort a permutation using only good
pairs.

Lemma 10. [11] Every non-identity permutation has a good pair.

Note that by interchanging good pairs, elements move along their critical seg-
ment only. Since the cost paid for this movement is its total length, and every
interchange cost can be divided between the two participating elements, the sum
of costs of good-pairs interchanges never exceeds d�1(π, I)/2, Lemma 11 follows.

Lemma 11. Let π be a permutation of 1, . . . ,m. Then, dWI(�1)(π, I)=
d�1(π, I)

2 .

Remark. Algorithm Sort requires O(m2) time. However, the WI(�1)-distance can
be computed in O(m) time, if an actual rearrangement sequence need not be
produced.

22 A. Amir and A. Levy

General Strings. The main difficulty in the case of general strings is that repeated
symbols have multiple choices for their desired destination. Let x and y be strings
of length m. Our goal is to pair the locations in x to destination locations in
y, so that repeating symbols can be labeled in x and y to get strings with the
same m distinct symbols (permutation strings). Such a labeling can be viewed
as a permutation of the indices of x. Clearly, if x contains distinct elements then
only one labeling permutation can convert x to y. However, there can be many
labeling permutations if x contains multiple occurrences of elements. Trying
all labeling permutations π and choosing the one that gives the minimal w-
interchange distance is impractical. Fortunately, Lemma 1 characterize a labeling
permutation of indices that gives the minimum �1-distance. This will be enough
to derive a polynomial time algorithm for the �1-interchange distance problem
in the general strings case as well.

Theorem 11. Let x and y be m-length strings. Then, dWI(�1)(x, y) =
d�1(x, y)

2 .
Moreover, dWI(�1)(x, y) is computable in O(m) time and the actual rearrange-
ment sequence is computable in O(m2) time.

Proof. An algorithm for finding an actual rearrangement sequence is the follow-
ing: transform x and y into permutation strings x′ and y′ by giving different
labels to repeating symbols in x and give the labels in y according to πo, i.e.
y′[πo(i)] = x′[i]. This transformation can be done in time O(m). Now, run the
Sort algorithm (see Fig. 3) for permutation strings on x′ and y′, and return its
result. The cost of the optimal algorithm can be viewed as the minimum over
all labelling permutations (pairing) π of the distances returned by the optimal
algorithm on the permutation strings xπ and yπ resulting from a labelling ac-

cording to π. By Lemma 11, for every π, dWI(�1)(xπ , yπ) =
d�1(xπ , yπ)

2 . Finally,
by Lemma 1, d�1(x′, y′) is minimal, so our algorithm provides the �1-interchange
distance of x and y. The overall time for computing the rearrangement sequence
is determined by the time of the Sort algorithm, which is O(m2). Computing
dWI(�1)(x, y) requires only the computation of d�1(x′, y′), which can be done in
O(m) time. 	

3.3 The Element Cost Model

[30] is the first paper that explicitly considered the ECM for dealing with re-
arrangement problems. A formal definition of this cost model is given below.

Definition 10. Let w : Σ → R
+ be a weight function, which assigns a non-

negative weight to every element in Σ. Let g : Σ × Σ → R
+ be a function

defining the interchange cost. The function g is called a general function if it
satisfies the following conditions:

1. ∀x, y ∈ Σ : g(x, y) = g(y, x).
2. ∀x, y, z ∈ Σ : w(y) ≤ w(z)⇔ g(x, y) ≤ g(x, z).

String Rearrangement Metrics: A Survey 23

edcbaT

decbaS

debcaS

bedcaS

10020020010010

edcba

UCM

(a)

edcbaT

eacbdS

aecbdS

becadS

beacdS

bedcaS

ECM

(b)

Fig. 4. In both (a) and (b), every row represents a stage in the rearrangement. The
elements marked with circles are the elements interchanged to establish the next stage.
In (a), the goal is to transform S into T with a minimum number of interchanges
(UCM). This is done by applying 3 interchanges. In (b), the ECM is used. Every
element has a weight and the cost of an interchange is the sum of the weights. The
sequence of interchanges applied in (a) costs 900, whereas the sequence of 5 interchanges
applied in (b) costs 850.

The summation function g(x, y) = w(x) + w(y) and the multiplication function
g(x, y) = w(x) · w(y) are two examples of intuitive general functions.

The technique used in the interchange rearrangement problem under the ECM
is different than the one used under the UCM. Consider the example shown in
Fig. 4. In this example, an optimal rearrangement is given when the UCM is
used - an input string S is transformed into a same length target string T over
the same alphabet Σ, using 3 interchanges (Fig. 4(a)). When the ECM is used,
the same sequence of interchanges costs 900, whereas the alternative sequence of
interchanges suggested performs 5 interchanges and costs only 850 (Fig. 4(b)).

The main results presented in [30] are:

1. O(m) time algorithm for the interchange rearrangement problem for permu-
tation strings for any general function.

2. NP-hardness for the interchange rearrangement problem for general strings :
(a) O(m) time 3-approximation algorithm for any general function.
(b) O(m ·lg |Σ|) time 1.72-approximation algorithm for the summation func-

tion.

For the interchange distance problem under the UCM, Cayley [20] showed that
given a permutation π, the minimum number of interchanges needed for sorting
π, is m−c(π). This is achieved by interchanging only elements that share a cycle
until there are no such elements (the permutation is sorted). When the ECM is
used, one might also be inclined to apply a minimum number of interchanges.
This inclination implies that one would be making interchanges only within
cycles. Any interchange between elements of different cycles would result in an

24 A. Amir and A. Levy

increase in the number of interchanges needed for sorting π and probably in the
total cost for sorting π. However, this inclination is incorrect. Moreover, there
might be cases in which the optimal solution would be to increase the number
of interchanges needed for sorting π in order to decrease the total cost.

[30] describe an algorithm for sorting a permutation string by interchanges
under ECM, and prove that it yields the optimal cost. The basic idea of this
algorithm is quite simple. In order to sort the permutation π at a minimum cost,
either the cheapest element in some cycle is used to sort all the other elements
including itself, or (if the cheapest element in the cycle is not cheap enough)
the cost for introducing the cycle to the cheapest element in π is “paid” by
interchanging it with the cheapest element of the cycle. Doing so unites the cycle
with the cycle of the minimum cost element of π. Then the cheapest element of π
can be used to sort all the other elements in the cycle. We call this algorithm “The
Cheapest Employee Algorithm” (CEA). This optimal algorithm for permutation
strings is then combined with suitable cycle decomposition heuristics on the
graph constructions in order to achieve the approximation results.

[31] broaden the study to include the single elements transposition rearrange-
ment problem (denoted se-transposition) under the ECM, UCM and the LCM
for general strings and permutation strings.

3.4 External Process Rearrangements: Summary

Table 3 summarizes the results on external process rearrangement systems as
studied in [2,11,30,31].

Table 3. External Process Rearrangement Systems: A Summary of Results

UCM ECM LCM �

Interchanges

Permutation Strings O(m) [20] O(m) O(m) [11]
(general function) [30]

General Strings NP-hard [11] NP-hard O(m) [11]
O(m · lg |Σ|) 1.5-approx. [11] O(m) 3-approx.

(general function) [30]
O(m · lg |Σ|) 1.72-approx.
(summation function) [30]

P-Interchanges

Permutation Strings O(m) [2] �� – –
General Strings O(|Σ|2n log m) [2] � � � – –

SE-Transpositions

Permutation Strings O(m lg m) [26] O(m lg m) [31] O(m lg m) [31]
General Strings O(m2) [31] O(m2) [31] O(m lg m) [31]

� The results for LCM presented in this table refer only to the �1 cost model of the
given operators.
�� Implicit from theorems proven in [2].
� � � For the string matching problem. The randomized algorithm has expected
O(n log m) time.

String Rearrangement Metrics: A Survey 25

The results for LCM presented in this table refer only to the �1cost model of
the given operators. This is the simplest of the LCMs. For a detailed examination
of other LCMs for the interchange operator see Table 2. The behavior of the other
operators under other LCMs was not studied and is open for future research. It
is important to note that even for the interchange operator that was extensively
studied under a variety of LCMs, the true complexity of some classes of LCMs is
still open. This can be seen from Table 2, as we give approximation algorithms
in cases that we have neither a polynomial time optimal algorithm nor an NP-
hardness proof. Note that the parallel-interchange operator was studied only for
UCM and its behavior under LCM or ECM is still an open question.

Another important note is that, except for the parallel-interchanges operator,
the string matching problem was generally not studied. The current state of the
art is basically to use algorithms for equal length text and pattern at each text
position. How to use information gathered in checked positions to accelerate the
string matching is still open for almost all the studied rearrangement operators.

4 Internal Process Rearrangement Systems

Another broad class of rearrangement systems inspired by computer architecture
was studied by [7]. They consider address errors which arise from a process of
flipping some or all of the bits in the binary representation of [1,m]. Such errors
represent situations where the text and the pattern are generated by two different
systems, which may use different naming conventions. The error processes are
inspired by address errors resulting from failures in the wires of the address bus,
the wires connecting the CPU and the memory which are used to transmit the
address of operands (see Fig. 5), or failure in the transmitted address bits.

4.1 The Bit Errors Definition

Consider a string S ∈ Σm. Using an alternative view of strings we write S =
{(σ, i) : i ∈ {0, 1}logm}. Four types of errors in the bits of the i entries were
considered in [7,10]:

Fig. 5. Failures in the address bus due to ’bad’ bits cause wrong addresses to be stored
in the address register

26 A. Amir and A. Levy

Flipped bits: There exists a subset of bit positions F ⊆ {0, . . . , logm − 1},
such that in each i, all bits in positions f ∈ F are flipped (i.e. 1 is turned
into a 0 and visa versa).

For example, for the string S=1234={(1, 00), (2, 01), (3, 10), (4, 11)} and
F = {1}, the resulting string is S′ = 3412 = {(1, 10), (2, 11), (3, 00), (4, 01)}.

Faulty bits: There exists a subset of bit positions F ⊆ {0, . . . , logm− 1}, such
that in each i, the bits in positions f ∈ F may be flipped, and may not.

For example, for the string S = 1234 = {(1, 00), (2, 01), (3, 10), (4, 11)}
and F = {1}, the resulting string may be S′ = {(1, 10), (2, 01), (3, 10), (4, 01)}
(the bit was flipped for 1 and 4 but not for 2 and 3).

Note that in this case the resulting set is actually a multi-set, and may
not represent a valid string, as some locations may appear multiple times,
while others not at all.

Stuck bits: There exists a subset of bit positions F ⊆ {0, . . . , logm− 1}, such
that in each i, all bits in positions f ∈ F are either always changed to zero
(i.e. 1 is turned into a 0 and 0 remains 0) or always changed to one (i.e. 0 is
turned into a 1 and 1 remains 1).

For example, for the string S = 1234 = {(1, 00), (2, 01), (3, 10), (4, 11)}
and F = {1}, a resulting string is S′ = {(1, 00), (2, 01), (3, 00), (4, 01)}.

Transient stuck bits: There exists a subset of bit positionsF ⊆ {0, . . . , logm−
1}, such that in each i, the bits in positions f ∈ F may remain unchanged,
or may be changed to a “1” (of course the original string changes only if the
intention was to output a “0”).

As an example, for the string S = 1234 = {(1, 00), (2, 01), (3, 10), (4, 11)}
and F = {1}, the resulting string may be S′ = {(1, 10), (2, 01), (3, 10), (4, 11)}
(the bit was changed to one for address 1 but not for address 2).

[7,10] consider approximate pattern matching problems associated with each of
the above types of errors. Specifically, given a pattern P and text T , the goal is
to find:

– the smallest set F such that if the bits of F are consistently flipped, then P
has a match in T . We call this problem the flipped bits problem.

– the smallest set F such that if the bits of F may be transiently flipped, then
P has a match in T . We call this problem the faulty bits problem.

– the smallest set F such that if the bits of F are consistently stuck, then P
has a match in T . We call this problem the stuck bits problem.

– the smallest set F such that if the bits of F may be transiently stuck, then
P has a match in T . We call this problem the transient stuck bits problem.

In [7] the following results were proved:

– For pattern and text of size m, the flipped bits problem can be solved in
O(m logm) steps.

– For pattern and text of size m, the faulty bits problem can be solved deter-
ministically in O(mlog2 3|Σ|) steps and randomly in O(m logm) steps.

– For pattern and text of size m, the faulty bits problem can be deterministi-
cally approximated to a constant c > 1 in O(|Σ| mlog 3

logc−1 m
).

String Rearrangement Metrics: A Survey 27

– For text and pattern of sizes n and m, respectively, m power of 2, the faulty
bits problem can be solved deterministically in O(|Σ|nmlogm) steps.

In addition, [10] show:

– An O(m logm) time algorithm for the stuck bits problem, which also reports
the stuck bits positions.

– A simple O(m2.5) time algorithm for the transient stuck bits problem, which
also reports the stuck bits positions. This algorithm is based on a reduction
to finding perfect matching in a bipartite graph.

– A flow-based O(m2.2156 log2m) time algorithm for the transient stuck bits
problem, which also reports the stuck bits positions.

In the rest of the section we will describe the solutions for the flipped bits and
faulty bits problems as appear in [8].

4.2 Flipped Bits Errors

In this section we consider the flipped bits problem. In this setting, one or more
of the bit positions may exhibit a faulty behavior whereby the bit at this position
is consistently flipped. Given two strings P, T ∈ Σm, the distance between the
two is the least number of flipped bits positions that can explain the differences
between the two, and ∞ if no such set of position can explain the difference.
Formally,

Definition 11. For an index k ∈ [0..m − 1],6 we view k as a binary string,
i.e. k = k[0] · · ·k[logm − 1] ∈ {0, 1}logm (w.l.o.g. m is a power of 2). Consider
F ⊆ [0.. logm − 1]. The bit flip transformation induced by F , denoted fF , is a
function fF : {0, 1}logm → {0, 1}logm, such that for any k and i

fF (k)[i] =
{

1− k[i] i ∈ F
k[i] i�∈ F

i.e. the value of fF (k) is flipped at bits of F and identical on other bits.
For strings P, T ∈ Σm we say that T is a F -flip-bits match of P if for all

k ∈ {0, 1}logm, T [k] = P [fF (k)]. The flip-bit distance between P and T is the
cardinality of the smallest F such that T is an F -flip-bits match of P . If no such
F exists, then the distance is ∞.

Note that there are 2log m possible faulty sets F . Checking each possibility sep-
arately takes O(m), so a naive algorithm takes time O(m2) per position. We
show how to reduce this to O(m logm). We begin with an efficient solution for
the case Σ = {0, 1}, and then use it to obtain an efficient solution for general
alphabets.

Let k, j ∈ {0, 1}logm, denote k ⊕ j to be the result of the bitwise XOR of the
two, i.e. for each i, (k ⊕ j)[i] = k[i] ⊕ j[i] (where ⊕ is the XOR operation, i.e.
6 For integers i, j, we denote by [i..j] the set of integers from i to j. Thus, [0..m − 1]

is the set {0, 1, . . . , m− 1}.

28 A. Amir and A. Levy

addition over Z2). For strings T, P ∈ Z
m, define the binary convolution of the

two to be a vector, also of size m, T ⊗ P ∈ Z
m, such that for all k ∈ {0, 1}log m:

(T ⊗ P)[k] =
∑

j∈{0,1}log m T [j] · P [k ⊕ j].

Lemma 12. For a set F ⊆ 0.. logm− 1, let χF ∈ {0, 1}logm be the charac-
teristic vector of F . Consider binary P and T , both of size m, and let αP be
the number of ones in P and αT be the number of ones in T . Then, T is an
F -flip-bits match of P iff αT = αP and (T ⊗ P)[χF] = αT .

Proof. For any index j, T [j] · P [χF ⊕ j] = 1 iff both T [j] = 1 and P [χF ⊕ j] =
P [fF (j)] = 1. Thus, (T⊗P)[χF] counts the number of ones in T that are mapped
to ones in P under the transformation fF . Since, (T ⊗ P)[χF] = αT , then all
ones in T are mapped to ones in P . But, αT = αP , so also all zeros in T are
mapped to zeros in P . 	

Thus, in order to find the flip-bit distance between P and T we compute the
entire vectors T ⊗ P . We then seek all locations k for which (T ⊗ P)[k] = αT ,
and among these k’s, find the one with the minimum weight (i.e. least number
of 1’s).

It thus remains to explain how to efficiently compute the binary convolution.
The convolution can easily be computed in O(m2) time. We explain how to
compute it in O(m logm) time.

For a vector v ∈ Z
t (t power of 2), define two vectors v+, v− ∈ Z

t/2, as follows.
For each k ∈ {0, 1}log t−1, v+[k] = v[0k] + v[1k] and v−[k] = v[0k]− v[1k]. The
key lemma for the computation is:

Lemma 13. [7] For any v, w ∈ {0, 1}t, and k ∈ {0, 1}log t−1:
(v ⊗ w)[0k] = (v+⊗w+)[k]+(v−⊗w−)[k]

2 , (v ⊗ w)[1k] = (v+⊗w+)[k]−(v−⊗w−)[k]
2 .

Thus, in order to compute T ⊗P , our algorithm recursively computes T+⊗P+

and T− ⊗ P−, and then uses Lemma 13 in order to compute the convolution
T ⊗ P . In each recursion level we need to compute O(m) values, each taking
O(1) time. Thus, we get a recursive recurrence time(m) = 2 · time(m/2) + cm,
for a total time(m) = O(m logm). We obtain:

Theorem 12. The flipped bit problem can be solved in O(m logm) time for
binary text and pattern of size m.

For a general alphabet, the same techniques as in [23] can be used to handle
with only one convolution. Hence,

Theorem 13. The flipped bit problem can be solved in O(m logm) time for text
and pattern of size m and alphabet Σ.

Remark. The above algorithm can also be viewed as a form of Fast Fourier
Transform over Z2 (rather than over the complexes). We omit the details.

String Rearrangement Metrics: A Survey 29

4.3 The Faulty Bits Problem

This section studies the faulty bits problem. In this model a faulty position
inconsistently produces errors. It may sometimes hold the correct value and
sometimes the wrong one. Given two strings, the objective is to find the least
number of faulty positions that explain the differences between the two. We
begin by formally defining the faulty bits distance problem.

Problem Definition. Let Σ be a finite alphabet. Let P, T ∈ Σm be two strings
of length m, such that P is the query string and T is the stored string. Denote
P = p[0]p[1] · · ·p[m − 1] and similarly for T . Consider F ⊆ {0, . . . , logm − 1},
and suppose that the address bits carrying bits in the set F are faulty. We now
formulate the criterion that determines if the stored string T matches the query
string P , assuming that the bits of F are faulty.

Consider an address k, and let k = k[0]k[1] · · ·k[logm − 1] be the binary
representation of k. Let [k]F be the set of all the addresses � such k[i] = �[i] for
all i�∈ F , i.e. k and � agree on all bits not in F . Note that [k]F is an equivalence
class, so [�]F = [k]F if � ∈ [k]F . Then, if the address bits in F are faulty, a value
intended to location k can end up in any location � ∈ [k]F . Thus, we obtain the
following criterion for a match of T to the query string P while using the faulty
bits of F :

Definition 12. For strings P and T and set F ⊆ {0, . . . , logm−1} we say that
T is an F -faulty-bit match of P if for each equivalence class [k]F and for each
σ ∈ Σ

|{� : � ∈ [k]F , P [�] = σ}| = |{� : � ∈ [k]F , T [�] = σ}|

The Optimization Problem. Given any of the above match conditions and strings
P and T , we wish to find the set F of minimal cardinality such that T is an
F -faulty-bit match of P . We call this the faulty-bits problem.

A Deterministic Algorithm. For each equivalence class [k]F and σ ∈ Σ let

bucket(P, [k]F , σ) = {� : � ∈ [k]F , P [k] = σ}

the elements of P with locations in [k]F that have value σ. Similarly,

bucket(T, [k]F , σ) = {� : � ∈ [k]F , T [�] = σ}

the elements of T with locations in [k]F that have value σ. The criteria for an
F -faulty-bit match is that for all k :

|bucket(P, [k]F , σ)| = |bucket(T, [k]F , σ)|

for all σ. Thus, it remains to explain how to compute the sizes of the buckets.
For any fixed F , all buckets can be computed in a total of O(m) steps, with

a single pass over the strings T and P . Thus, for a given F , the condition
can be tested in O(m) steps. There are 2log m = m different possible sets F ,

30 A. Amir and A. Levy

which provides a naive O(m2) algorithm. We now show how to reduce this to
O(mlog 3|Σ|).

For an address k and index i ∈ {0, . . . , logm − 1}, let k(i) be the address
which has the same representation as k except for the i-th bit which is flipped.
Then, it is easy to see that for any i, σ and X ∈ {T, P}, bucket(X, [k]F , σ) =
bucket(X, [k]F−{i}, σ) ∪ bucket(X, [k(i)]F−{i}, σ). That is, the bucket with
faults at F can be obtained as the union of buckets with one less fault, and
fixing the two possible values for this bits. In particular,

|bucket(X, [k]F , σ)| = |bucket(X, [k]F−{i}, σ)|+ |bucket(X, [k(i)]F−{i}, σ)|
(6)

Note that for F = ∅,

|bucket(X, [k]F , σ)| =
{

1 X [k] = σ
0 X [k]�= σ

(7)

Thus, combining (7) and (6), we obtain that for any σ all sizes of all buckets can
be computed in an inductive fashion, with O(1) steps per bucket.

For a given σ, the overall total number of buckets – for all fault patterns F , is
the overall total number of equivalence classes [k]F for all F . Each equivalence
class can be identified with a string w ∈ {0, 1, ∗}logm such that w[i] = ∗ denotes
a bit in F and the other w[i]’s are fixed as in k. Thus, the number of equivalence
classes is: |{w ∈ {0, 1, ∗}logm}| = 3log m = mlog 3. We thus obtain:

Theorem 14. The faulty-bits problem can be solved in O(|Σ|mlog 3) time.

Other Results on the Faulty Bits Problem. In order to achieve faster algo-
rithms for the faulty bits problem two alternative methods were used in [7]. The
first alternative is to settle for an inexact computation of the buckets counters
enabling to compute buckets together. In this direction there was a use of for-
mal polynomials and the Schwartz-Zippel Lemma [35,37]. The result is a much
faster randomized algorithm. The other alternative is to compute buckets coun-
ters exactly but to avoid the computation of all the buckets. This direction is
based on the observation that the containment structure of the buckets enables
to approximate the bucket of the minimum size from a special designed scheme
of sparse subset of buckets to be computed. [7] prove that a deterministic such
scheme exists and can be explicitly constructed. Another variant of the problem
that was considered is the pattern matching version, i.e., where the text is longer
than the pattern. The way to improve over the naive use of the algorithm for
strings with the same length on each text location is to use special new varia-
tions of the KMR algorithm [32]. However, this method only works for pattern
of length a power of 2. Standard techniques that employ the KMR algorithm
for patterns of unlimited size do not apply here. This is another example of the
need for different and special techniques adequate for handling rearrangements.

4.4 Internal Process Rearrangements: Summary

Table 4 summarizes the results on internal process rearrangement systems as
studied in [7,8,10]. Note that in internal process rearrangement systems, as we

String Rearrangement Metrics: A Survey 31

Table 4. Internal Process Rearrangement Systems: A Summary of Results

The Problem Equal Length strings String Matching
Flipped Bits O(m log m) [7] O(nm) �

Faulty Bits O(mlog2 3|Σ|) [7] �� O(nmlog2 3|Σ|) � � �

Stuck Bits O(m log m) [10] O(nm log m) � � �

Transient Stuck Bits O(m2.2156 log2 m) [10] O(nm2.2156 log2 m) � � �

� Implicit from [7] via m activations of Knuth-Morris-Prat algorithm [33].
�� The randomized algorithm has O(m log m) time and returns the correct answer with
high probability.
� � � Via a naive use of the algorithms for text and pattern of equal size on each text
position.

saw for external process rearrangement systems, the current state of the art
in almost all operators does not offer good solutions for the string matching
problem. This is a called for challenge for future research.

References

1. Amir, A.: Asynchronous pattern matching. In: Lewenstein, M., Valiente, G. (eds.)
CPM 2006. LNCS, vol. 4009, pp. 1–10. Springer, Heidelberg (2006) (invited Talk)

2. Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S.,
Vishne, U.: Pattern matching with address errors: Rearrangement distances. In:
Proc. 17th SODA, pp. 1221–1229 (2006)

3. Amir, A., Aumann, Y., Benson, G., Levy, A., Lipsky, O., Porat, E., Skiena, S.,
Vishne, U.: Pattern matching with address errors: Rearrangement distances. Jour-
nal of Computer and System Sciences 75(6) (2009)

4. Amir, A., Aumann, Y., Cole, R., Lewenstein, M., Porat, E.: Function matching:
Algorithms, applications, and a lower bound. In: Baeten, J.C.M., Lenstra, J.K.,
Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 929–942.
Springer, Heidelberg (2003)

5. Amir, A., Aumann, Y., Indyk, P., Levy, A., Porat, E.: Efficient computations of
�1 and �∞ rearrangement distances. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE
2007. LNCS, vol. 4726, pp. 39–49. Springer, Heidelberg (2007)

6. Amir, A., Aumann, Y., Indyk, P., Levy, A., Porat, E.: Efficient computations of
�1 and �∞ rearrangement distances. Theoretical Computer Science 410(43), 4382–
4390 (2009)

7. Amir, A., Aumann, Y., Kapah, O., Levy, A., Porat, E.: Approximate string match-
ing with address bit errors. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008.
LNCS, vol. 5029, pp. 118–129. Springer, Heidelberg (2008)

8. Amir, A., Aumann, Y., Kapah, O., Levy, A., Porat, E.: Approximate string match-
ing with address bit errors. Theoretical Computer Science 410(51) (2009); Special
Issue of CPM 2008 Best Papers

9. Amir, A., Cole, R., Hariharan, R., Lewenstein, M., Porat, E.: Overlap matching.
Information and Computation 181(1), 57–74 (2003)

10. Amir, A., Eisenberg, E., Keller, O., Levy, A., Porat, E.: Approximate string match-
ing with stuck address bits (manuscript)

32 A. Amir and A. Levy

11. Amir, A., Hartman, T., Kapah, O., Levy, A., Porat, E.: On the cost of interchange
rearrangement in strings. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 99–110. Springer, Heidelberg (2007)

12. Amir, A., Hartman, T., Kapah, O., Levy, A., Porat, E.: On the cost of interchange
rearrangement in strings. SIAM Journal on Computing 39(4), 1444–1461 (2009)

13. Amir, A., Lewenstein, M., Porat, E.: Approximate swapped matching. Information
Processing Letters 83(1), 33–39 (2002)

14. Angelov, S., Kunal, K., McGregor, A.: Sorting and selection with random costs.
In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS,
vol. 4957, pp. 48–59. Springer, Heidelberg (2008)

15. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM Journal on Discrete
Mathematics 11, 221–240 (1998)

16. Bender, M.A., Ge, D., He, S., Hu, H., Pinter, R.Y., Skiena, S., Swidan, F.: Improved
bounds on sorting with length-weighted reversals. In: Proc. 15th SODA, pp. 912–
921 (2004)

17. Bender, M.A., Ge, D., He, S., Hu, H., Pinter, R.Y., Swidan, F.: Sorting by length-
weighted reversals: Dealing with signs and circularity. In: Sahinalp, S.C., Muthukr-
ishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 32–46. Springer,
Heidelberg (2004)

18. Berman, P., Hannenhalli, S.: Fast sorting by reversal. In: Hirschberg, D.S., Meyers,
G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 168–185. Springer, Heidelberg (1996)

19. Carpara, A.: Sorting by reversals is difficult. In: Proc. 1st Annual Intl. Conf. on
Research in Computational Biology (RECOMB), pp. 75–83. ACM Press, New York
(1997)

20. Cayley, A.: Note on the theory of permutations. Philosophical Magazine (34), 527–
529 (1849)

21. Christie, D.A.: Sorting by block-interchanges. Information Processing Letters 60,
165–169 (1996)

22. Christie, D.A., Irving, R.W.: Sorting strings by reversals and by transpositions.
SIAM Journal Discrete Math 14, 193–206 (2001)

23. Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard match-
ing. In: Proc. 34st Annual Symposium on the Theory of Computing (STOC), pp.
592–601 (2002)

24. Fischer, M.J., Paterson, M.S.: String matching and other products. In: Karp, R.M.
(ed.) SIAM-AMS Proceedings, Complexity of Computation, vol. 7, pp. 113–125
(1974)

25. Gupta, A., Kumar, A.: Sorting and selection with structured costs. In: Proc. 42nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 416–
425 (2001)

26. Heath, L.S., Vergara, J.P.C.: Sorting by bounded block-moves. Discrete Applied
Mathematics 88(1-3), 181–206 (1998)

27. Heath, L.S., Vergara, P.C.: Sorting by short swaps. Journal of Computational Bi-
ology 10(5), 775–789 (2003)

28. Hennessy, J.L., Patterson, D.A.: Computer architecture: A quantitative approach,
3rd edn. Morgan Kauffmann, San Francisco (2002)

29. Jerrum, M.R.: The complexity of finding minimum-length generator sequences.
Theoretical Computer Science 36, 265–289 (1985)

30. Kapah, O., Landau, G.M., Levy, A., Oz, N.: Interchange rearrangement: The
element-cost model. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS,
vol. 5280, pp. 224–235. Springer, Heidelberg (2008)

String Rearrangement Metrics: A Survey 33

31. Kapah, O., Landau, G.M., Levy, A., Oz, N.: Interchange rearrangement: The
element-cost model. Theoretical Computer Science 410(43), 4315–4326 (2009)

32. Karp, R., Miller, R., Rosenberg, A.: Rapid identification of repeated patterns in
strings, arrays and trees. In: Symposium on the Theory of Computing, vol. 4, pp.
125–136 (1972)

33. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comp. 6, 323–350 (1977)

34. Lowrance, R., Wagner, R.A.: An extension of the string-to-string correction prob-
lem. J. of the ACM, 177–183 (1975)

35. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. of the ACM 27, 701–717 (1980)

36. Yao, A.C.C.: Some complexity questions related to distributed computing. In: Proc.
11th Annual Symposium on the Theory of Computing (STOC), pp. 209–213 (1979)

37. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.)
EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidel-
berg (1979)

Maximal Words in Sequence Comparisons Based

on Subword Composition

Alberto Apostolico�

Georgia Institute of Technology & Università di Padova

Abstract. Measures of sequence similarity and distance based more or
less explicitly on subword composition are attracting an increasing in-
terest driven by intensive applications such as massive document classi-
fication and genome-wide molecular taxonomy. A uniform character of
such measures is in some underlying notion of relative compressibility,
whereby two similar sequences are expected to share a larger number of
common substrings than two distant ones. This paper reviews some of
the approaches to sequence comparison based on subword composition
and suggests that their common denominator may ultimately reside in
special classes of subwords, the nature of which resonates in interesting
ways with the structure of popular subword trees and graphs.

1 Structure, Similarity and Distance

The problem of comparing, classifying and indexing long textual files from large
collections is becoming increasingly severe as web applications, digital libraries
and genomic studies expand to an unprecedented scale. Established techniques
of the past rarely work in these contexts. In computational molecular biology, for
instance, edit distances become both computationally unbearable and scarcely
significant when they are applied to entire genomes, and are being supplanted
by global similarity measures that refer, implicitly or explicitly, to the subword
composition of sequences (see, e.g., [4, 9, 10, 13, 14, 15, 16, 23, 24, 25, 30, 31, 33]).

Measures of density and dispersion over datasets are sometime classified as
distributive, algebraic and holistic (refer, e.g., to [11]). Distributivity pertains
to situations in which the measure can be applied to sub-aggregates and then
combined as in, e.g., sum, max, min. A typical algebraic measure is average,
which can be obtained by algebraic combination of distributive functions. The
opposite of algebraic is holistic, which applies to measures that are impossible to
compute by divide and conquer. E.g., knowing the rank of an element in a subset
does not tell anything about the rank in the whole set, whence rank, median,
mode, and the likes are holistic measures.
� College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, At-

lanta, GA 30318, USA, and Dipartimento di Ingegneria dell’ Informazione, Uni-
versità di Padova, Padova, Italy axa@cc.gatech.edu Work Supported in part by
the Italian Ministry of University and Research under the Bi-National Project FIRB
RBIN04BYZ7, by United States - Israel Binational Science Foundation (BSF) Grant
No. 2008217, and by the Research Program of Georgia Tech.

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 34–44, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Maximal Words in Sequence Comparisons Based on Subword Composition 35

Here we will be concerned with algebraic measures of similarity among se-
quences, to be further adapted to the derivation of corresponding distances. In
loose terms, one would like to base such measures on some notion of information
content of sequences, but this has proved an elusive goal since von Mises’ pio-
neering pursuit of the essence of randomness [32] and probably reaches well into
the future [18]. Classical formalizations of such a notion include Shannon’s in-
formation theory [8], Brillouin’s adoption of Shannon’s redundancy [6], and Kol-
mogorov’s approach to information [20] which Lempel and Ziv specialized [21]
to effective and elegant data compression methods.

In Shannon’s formulation, a finite scheme is given comprising n events, where
event Ei occurs with probability pi, i = 1, 2, , n. If pi is very small and yet Ei

happens we will experience a very big surprise. At the other extreme, if pi = 1
and Ei occurs then there is no surprise. Therefore, we can use a monotonically
decreasing function as a measure of the surprise caused by Ei. Specifically, we
take log pi, which satisfies also the important additivity condition, that the sur-
prise of joint events is the sum of the individual surprises. Now, Ei is expected
to occur with probability pi , whence the notion of expected surprise (sic), which
is called the entropy. This is minimum (0) if one event has probability 1, maxi-
mum (log n) if the pi s are equal. In this setting, information corresponds to the
decrease of a-priori ignorance. By virtue of the important

Theorem 1. (Gibbs Theorem) For any two distributions pi and qi on the events
Ei’s

−
∑

pi log pi ≤ −
∑

pi log qi

one has that ∑
pi log(

pi

pj
)

is always positive.
Considered as a measure of the information content of a sequence, Shannon’s

formalization was not immune from controversy. Brillouin [6] preferred to equate
entropy with chaos and to assign the role of information to redundancy or ne-
gentropy. A possible explanation for such a radical divergence may reside with
the fact that Shannon was concerned with information in transmission, whereas
the one Brillouin wanted to capture was stored information, a notion more akin
to organization and structure.

An important alternative was proposed by Kolmogorov [20]. According to it,
the information content (alternatively, conditional information) or Kolmogorov
complexity K(x) of a string x is the length of a shortest program in binary by
which a universal Turing machine produces one string from scratch (alternatively,
from another string). It is not hard to see that such a minimal description of a
string cannot be too much larger than the string itself.

Theorem 2. There is a constant c such that K(x) ≤ |x|+ c.

Unfortunately, there is no program that produces the integerK(x) from an input
string x.

36 A. Apostolico

Theorem 3. K is not a computable function.

This is established by exhibiting an absurd program that would generate a string
that could only be generated by a longer program. Nevertheless, it is easy to
find an upper bound for K(x): simply compress the string x by one of the
available methods, concatenate the compressed string to its suitably encoded
decompressor, and measure the resulting length. A string x is compressible if
K(x) ≤ |x| − c for some constant c, otherwise x is incompressible by c. One sees
by a pigeonhole argument that incompressible strings are unavoidable. In fact,
the programs of length less than k are at most:

λ, 0, 1, 00, 01, 10, 11, ..., ..., 11...1 (or k “1”)

but the number of strings with a program of length less than k is

1 + 2 + ...+ 4 + 2k−1 = 2k − 1 < 2k.

This suggests that, in the limit, a great many sequences of sufficiently large
length are seen to be incompressible and hence will appear as random.

Any attempt at classifying sequences presupposes some measure of similarity
or distance, i.e., a function D(x, y) that assigns a real number to every pair of
strings x and y such that the more x is similar to y the smaller is the value
of D(x, y). It seems especially desirable for a measure of similarity to enjoy the
property of symmetry. As is well known, a metric distance must satisfy the three
properties of:

1. non-negativity (D(x, y) ≥ 0 and D(x, y) = 0 iff x = y) ;
2. symmetry (D(x, y) = D(y, x));
3. triangle inequality (D(x, y) +D(y, z) ≥ D(x, z)).

With sequences, it is generally hard to secure all or even only some of these
properties. I will briefly review the notion of similarity under various models.

Shannon’s notion of information invokes germane ones of conditional and mu-
tual information, upon which it seems natural to articulate measures of similarity
in terms of some kind of relative compressibility [8]. Considering the transition
from one source to another, one immediate way to express gain in information
is the difference between their two distributions, i.e.,

−
∑
x∈X

p(x) log p(x) +
∑
x∈X

q(x) log q(x).

This measure is global and can be either positive or negative. A better measure
is the Kullback-Leibler divergence between the two distributions [8]

KL(p|q) = −
∑
x∈X

p(x) log
p(x)
q(x)

,

further generalized by Alfred Renyi [26], which relies on Gibbs theorem above
and is thus always positive. The KL divergence tells the expected cost, in terms

Maximal Words in Sequence Comparisons Based on Subword Composition 37

of extra bits, needed to identify a value x drawn from X , if a code is used that
is tailored to the probability distribution Q, rather than the “true” distribution
P . The “second term” of KL

D(p|q) = −
∑
x∈X

p(x) log q(x) = −Ep(log q(X)),

may be interpreted as the asymptotic cost of compressing one string produced by
an i.i.d. probability distribution p(x) using the optimum dictionary developed for
an i.i.d. distribution q(x). This extends to markovian probability distributions as

D(p|q) = limn→∞ − 1
n

∑
xn∈Xn

p(xn) log q(xn) = −Ep(log q(Xn)).

One can see that D(p|q) �= D(q|p) whence D is not a metric. One way to in-
troduce symmetry (though not the triangle inequality) is through the Jensen-
Shannon divergence as adopted in [27], which consists of

JS(p, q) =
1
2
KL(p|r) +

1
2
KL(q|r)

where the distribution r(x) = p(x) + q(x). However, the fact that D(p|q) is
a natural distance between markovian distributions gives a theoretical basis for
using the average longest substring as a distance [30]. If x and y are generated by
markovian distributions of respective densities p and q, then as the length of the
string goes to infinity −Ep log q(X) is approximated by the length of the average
common substring (ACS for short) [30], a measure somewhat reminiscent of one
used in [28] for approximate string matching. ACS(x, y) is computed by taking,
for every position i of x, the length �(i) of the longest substring of y that can
be copied starting at that position and averaging over all n positions of x to
get ACS(x, y) =

∑
i �(i)/n. One then takes ACS(x, y)/ logm to normalize with

respect to the length m of y.
Early compositional similarities based on relative abundance of k-mers are

credited to Blaisdell [4] who used them in a euclidean distance between transition
matrices. Karlin and Burge [19] found that some genomic signatures could be
derived from the distribution of dinucleotides. Extensions were derived in [25],
where each organism is represented by a composition vector the components of
which correspond to the numbers of various (overlapping) k-peptides, for a fixed
k, in all the translated amino acid sequences from an organism’s genome. The
numbers are modified by subtracting a statistical background to highlight the
role of selective evolution. The subtraction procedure is based on a (k-2)-th order
Markov prediction and therefore the minimum k is 3.

Let x be a sequence of length n and consider, for each word w[1..k] of a given
length k in x, the expression [25]:

a(w) =

⎧⎨
⎩

p(w[1..k])−po(w[1..k])
po(w[1..k]) for po(w[1..k]) �= 0

0 otherwise
(1)

38 A. Apostolico

where p(w[1..k]) is the observed ratio f(w)/(L − |w| + 1) between the count
(possibly, zero) and the number of possible occurrences of the word w in x, and
po(w[1..k]) is the markovian estimate of the probability p defined as

po(w[1..k]) =
p(w[1..k − 1])p(w[2..k])

p(w[2..k − 1])
.

This expression may be arrived at in multiple ways. For instance [12], begin by
counting the occurrences f(w)/(n − |w| + 1) of w[1..k]. Now, express the cor-
responding probability as p(w[1..k]) = p(wk|(w[1..k − 1])p(w[1..k − 1]), where
the conditional probability is unknown. The weak assumption that the farthest
character can be neglected yields the estimate po(w[1..k]) = p(wk|(w[2..k −
1])p(w[1..k − 1]) . Writing now one more exact expression for p(w[2..k − 1]) =
p(wk|w[2..k − 1])p(w[2...k − 1]), and eliminating the unknown probability leads
to the above expression for po.

With easy passages a(w) can be rewritten as

a(w) =

⎧⎨
⎩
Λk × f(w[1..k])f(w[2..k−1])

f(w[1..k−1])f(w[2..k]) − 1 for
f(w[1..k − 1]) ≥ 1 and f(w[2..k]) ≥ 1

0 otherwise
(2)

where

Λk =
(n− k + 2)2

(n− k + 1)(n− k + 3)
,

so that the difference between the empirical probability of w and its Markov-
based prediction, divided by the latter is represented by Expression 2 as well. For
a given collection of words (e.g., the set of all k-mers for a fixed k), all a-values
are stored , in some suitable order in a vector, called the composition vector.

For two composition vectors A and B, the similarity between the correspond-
ing strings is measured by the cosine of the angle between the corresponding
vectors in multidimensional space.

c(A,B) =
∑
aibi

(
∑
a2

i ×
∑
b2i)

1/2
(3)

where the ai’s and bi’s are computed by applying Expression 2 respectively to
A and B.

The conditional Kolmogorov complexity K(x|y) of x given y is the length of
the shortest program to compute x from input string y. This is different from
the joint complexity K(x, y), which is the length of the shortest program which
outputs the concatenation of x and y. The relation between the conditional and
joint complexities is K(x|y) = K(x, y)−K(y). When y contains no information
about x, then K(x|y) = K(x) and K(x, y) = K(x)+K(y). Since the function K
is not computable, it is approximated in practice by some standard compressor
such as, e.g., those falling in the family of Lempel-Ziv [21,34]. As is well known,
the classical paradigm proceeds as follows:

Maximal Words in Sequence Comparisons Based on Subword Composition 39

1. initialize a dictionary to contain all characters of the alphabet Σ;
2. assume to have encoded x[1, ..., i]; let s be the longest prefix of x[i+ 1, ..., n]

that has an occurrence starting at some position j ≤ i, and let x[i+ |s| = a;
then append to the encoding the next phrase as the triplet (j, |s|, a);

3. repeat the process starting at x[i+ |s|+ 1].

As mentioned, KL is not a metric distance, since it does not obey symmetry,
and neither is JS. A distance may be based on ACS [30] by first taking the
inverse of the similarity measure ACS(x, y)/ logm and then subtracting a term
to guarantee the condition d(x, x) = 0. Specifically, this yields

d̃ = logm/ACS(x, y)− logn/ACS(x, x),

where the correction term

logn/ACS(x, x) = 2 logn/n

vanishes as n→∞. Following this, one compensates for symmetry by taking

d(x, y) = d̃(x, y) + d̃(y, x)
2

as the final distance.
A distance based on Kolmogorov theory can be defined as [22]:

d(x, y) = 1− K(x)−K(x|y)
K(xy)

.

The numerator may be interpreted as the amount of information that y knows
about x and, by a deep property of Kolmogorov complexity K(x) −K(x|y) ≈
K(y)−K(y|x), whereas the denominator serves as a normalizing factor, whence
d(x, y) ranges between 0 and 1. It s possible to prove that this d is a metric
distance if inequalities hold up to a logn factor. This can be further refined
in [23]:

d(x, y) =
max{K(y|x),K(x|y)}
max{K(x),K(y)} =

K(x, y)−min{K(y),K(x)}
max{K(x),K(y)} (4)

If a standard compressor such as the Lempel-Ziv one described above is used, it
is possible to adapt it by approximating K(x) by C(x), the compressed version
of x and to compute C(x|y) or C(y|x) by concatenating the two strings and then
letting the recopying be confined to the first one. Expression 4 translates then into:

C(x, y)−min{C(x), C(y)}
max{C(x), C(y)}

It should be noted that under this approximation d(x, x) = 0 is not obeyed in
general by a real compressor, which defies the desirable conditionC(x, x) = C(x).

40 A. Apostolico

Finally, it is easy to build a distance measure on the cosine correlation of two
composition vectors A and B, by setting:

d(A,B) = 1/2

(
1−

∑
aibi

(
∑
a2

i ×
∑
b2i)

1/2

)
(5)

where the ai’s and bi’s are computed by applying Expression 2 respectively to
A and B.

2 The Ubiquitous Maximal Subwords and Related
Computations

The apparent success of approaches to molecular taxonomy based on relatively
short k-mer composition has been explained in more than one way. In [25],
for instance, it is argued that the primordial soup must have contained only a
small fraction of the about 64,000,000 possible 6-mers, which would then limit
the populace of 6-mers produced by growth, fusion and mutation. This seems
confirmed by the circumstance that the known existing proteins contain only
a fraction of the possible 6-mers. For instance, the circa 100,000 proteins in
SWISS-PROT feature less than 26% of the 6-mers [25]. At the same time, for
very short k one might expect to find all of the possible k-mers, a potential
bias that calls for preprocessing filters of the kind described in [27]. With a
random sequence, one expects in principle that for k up to ≈ logn all |Σ|k
k-mers occur, whence k-mers in this range grow exponentially with k. At the
same time, the number of k-mers in a sequence of n characters is only O(n)
for any fixed k, while the total number of distinct words of any length found
in that sequence can be at most Θ(n2). Many of the sequence distances based
on k-mer composition seem to indicate the existence of an optimum value of k.
To test this fact, an extension [2] of the measure of [25] was developed which
consists of a linear-time algorithm to compute composition vectors that include
all (possibly Θ(n2)) words in the input sequences up to any arbitrary maximum
length K. The experiments exhibited an increasing distortion in the resulting
classifications with growing value of K. This seems in contrast with the good
performance achieved on a variety of inputs by methods hinged on substrings of
unbounded length such as ACS or Kolmogorov-Ziv-Lempel compression which
use, implicitly or explicitly, subwords of unbounded lengths. In the remainder of
this section, I will focus on some special subsets of all substrings of a sequence
that seem to be implicated in this second class of methods. As it turns out,
when the unbounded-length composition vector distances in [2] are applied to
these subsets rather than to the entire set of subwords, this seems to lead to
convergence, instead of distortion, with increasing K.

It is well known (cf., e.g., [1, 5]), that a notable family of less than 2n words
exist that are maximal in the host sequence in the sense that it is impossible
to extend a word in this class by appending one or more characters to it with-
out losing some of its occurrences. More formally, one can actually define three

Maximal Words in Sequence Comparisons Based on Subword Composition 41

equivalence relations on the subwords in x, as follows. The first one puts in the
same equivalence class strings that have precisely the same set of starting posi-
tions. The second one symmetrically assigns to the same class strings with the
same ending positions. The third one is the transitive closure of the first two.
The natural representatives in each equivalence relation will be taken as the
words of maximum length in each class, which will be called here right-maximal,
left-maximal or just maximal, respectively. Close relatives of these strings were
called special factors in [7] and at any rate they all find a nice resonance in data
structures such as directed acyclic word graphs and subword trees [1,5]. One very
remarkable property of these partitions is the following [5]

Theorem 4. The index of each equivalence relation is linear in the length of
the host string.

It is easily checked that in the recopying process inherent the Lempel-Zv com-
pression paradigm in [21], every phrase is intrinsically a right-maximal word.
Therefore, the related practical implementations of Kolmogorov complexity im-
plicitly rely on such words. A subset of right-maximal words is involved in the
ACS distance measures [30]. The substrings involved in these approaches cor-
respond to branching nodes of some suitable suffix tree [1, 29], built on a single
string or on the concatenation of two strings. For example, imagine that for
two input sequences their respective tries are drawn each with a different color,
and then superimposed. Then the words considered in ACS correspond to the
longest substrings on each path from the root bearing both colors. If the termi-
nal characters of the two input strings are unique to either string then any such
path must end at a branching node, hence the corresponding words are some,
thought not all of the right-maximal words for the combined input.

It is interesting to revisit the extension to all values of k of the k-mer approach
of [25] from the perspective of the equivalence relations above. Clearly, the Λ
term in the expression of a(w) tends to 1 for n much larger than k, but it must be
accounted for in the exact computation of a(w) for all, virtually Θ(n2), k-mers.
If the computation of a(w) per Expression 2 is hinged on the term w[2..k − 1],
then one sees that when such a word is not right-maximal this makes

f(w[1..k])f(w[2..k − 1])
f(w[1..k − 1])f(w[2..k])

= 1,

whence a(w) = 0. In fact, it must be the case that f(w[2..k − 1]) = f(w[2..k])
whence also f(w[1..k−1]) = f(w[1..k]) (since any suffix of a right-maximal word
is right-maximal). Thus, the burden of computing a(w) for non-maximal words
is imposed solely by the Λ factor. In [2], it is shown that this computation can
still be carried out in overall linear time, but this entails some care in tallying
the contribution of the virtually Θ(n2) words that are not right-maximal. The
un-aesthetic presence of Λ in the expression of a(w) is dissolved by an elegant
setup devised by Andreas Dress and described in [3], which amounts to substitute
right-maximal words with maximal words tout court, and carefully defining the
probabilities at play.

42 A. Apostolico

As is customary, it simplifies the discussion to introduce the extended alphabet
Σ̂ = Σ ∪{$}, where this time $ will be both prefixed and appended to the input
string, that will be still referred to simply by x. For any substring w of x,
(w ∈ Σ∗), consider the relative frequencies of one-letter extensions of the form
wa, bw and bwa (a, b ∈ Σ̂). Since, for any w ∈ Σ+,

∑

a,b∈Σ̂

f(bwa) =
∑

a∈Σ̂

f(wa) =
∑

b∈Σ̂

f(bw) = f(w),

then, ∀a ∈ Σ̂

p(wa|w) =
f(wa)
f(w)

and p(aw|w) =
f(aw)
f(w)

are probability distributions on Σ̂, and ∀w ∈ Σ+

p(bwa|w) =
f(bwa)
f(w)

and po(bwa) = p(bw|w) p(wa|w)

are probability distributions on Σ̂ × Σ̂. The first two distributions can be em-
pirically derived, whereas the last two may be used to estimate.

We can now write for y = bwa an expression similar to Expression 1 and yet
thoroughly homogeneous in terms of relative probabilities, as:

â(y) =
p(y|w)− po(y|w)

po(y|w)

and, with the convention ln p(bwa|w)
po(bwa|w) = 0 for po(bwa|w) = 0, the Kullback-

Leibler distance

KL(p|po) =
∑

(a,b)∈Σ̂×Σ̂

p(bwa|w) log
p(bwa|w)
po(bwa|w)

.

For any w ∈ Σ+ and characters a, b ∈ Σ̂, we have p(bwa|w) = po(bwa|w) if and
only if f(bwa) f(w) = f(bw) f(wa). This is true when both f(bwa) = f(bw) and
f(w) = f(wa) and in fact, as already observed, as soon as f(w) = f(wa). Of
course the converse is not true, i.e., one might have f(bwa) = f(bw) and yet
f(w) �= f(wa) . The longest word y in a chain obeying f(bwa) = f(bw) is a
maximal word for the entire group of its substrings that occur only within the
context of y.

As is well known, we can find right-maximal words at the branching nodes of
a suffix tree, left-maximal words at the nodes of a Directed Acyclic Word Graph
(DAWG) [5]. Where do we look for maximal words? These words are found at
the intersection of the suffix trees and the DAWG for a string. In fact, it is
possible to produce a DAWG [5] as the result of a two-steps transformation of a
suffix tree. The first step consists of identifying and juxtaposing of all roots of

Maximal Words in Sequence Comparisons Based on Subword Composition 43

isomorphic subtrees. This produces a directed acyclic graph with one source and
one sink taking linear space for nodes and edges except for the edge labels, that
can charge quadratic space in the worst case. The second step further modifies
the structure thereby reducing the overall space to linear. It is enough for our
purposes to perform the first step and, interestingly enough, there is even no
need to resort to the general linear-time tree isomorphism test [17], by virtue of
the following, easy to prove

Theorem 5. Any two subtrees of a suffix tree are isomorphic if and only if
they have the same number of leaves and their roots are connected by a chain of
suffix links.

3 Conclusions

The variety of approaches to sequence distances based on subword similarity
invoke, implicitly or explicitly, some notion of maximal substrings. The intriguing
property underpinning this notion is the fact, that while a string of n characters
can host Θ(n2) distinct substrings, the number of substrings that are maximal
in any of the ways discussed here is only O(n). The natural habitat for this
phenomenon are data structures such as subword automata and trees for which
efficient and beautiful constructions have been set up over a period of now more
than three decades. In this author’s experience, this is also one remarkable case
where a subtle combinatorial property on strings chooses to incarnate into a
data structure.

References

1. Apostolico, A.: The myriad virtues of suffix trees. In: Apostolico, A., Galil, Z. (eds.)
Combinatorial Algorithms on Words, pp. 85–96. Springer, Berlin (1985)

2. Apostolico, A., Denas, O.: Fast algorithms for computing sequence distances by
exhaustive substring composition. Algorithms for Molecular Biology 3 (2008)

3. Apostolico, A., Denas, O., Dress, A.: Efficient tools for comparative substring anal-
ysis (submitted, 2009)

4. Blaidsell, B.: A measure of the similarity of sets of sequences not requiring sequence
alignment. Proceedings of the National Academy of Sciences, 5155–5159 (1986)

5. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.I.:
The smallest automaton recognizing the subwords of a text. Theor. Comput.
Sci. 40, 31–55 (1985)

6. Brillouin, L.: Science and Information Theory. Academic Press, London (1971)
7. Colosimo, A., de Luca, A.: Special factors in biological strings. J. Theor. Biol. 204,

29–47 (2000)
8. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience,

Hoboken (1991)
9. Edgar, R.: Local homology recognition and distance measures in linear time using

compressed amino-acid alphabets. Bioinformatics 32, 380–385 (2004)
10. Ferragina, P., Giancarlo, R., Greco, V., Manzini, G., Valiente, G.: Compression-

based classification of biological sequences and structures via the universal simi-
larity metric: experimental assessment. BMC Bioinformatics 8, 252–272 (2007)

11. Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann
Publishers Inc., San Francisco (2000)

44 A. Apostolico

12. Hao, B.: Personal communication (2008)
13. Hao, B., Qi, J.: Procaryote phylogeny without sequence alignment: from avoidance

singature to composition distance. Journal of Bioinformatics and Computational
Biology 2, 1–19 (2004)

14. Van Helden, J.: Metrics for comparing regulatory sequences on the basis of pattern
counts. Bioinformatics 20, 399–406 (2004)

15. Höhl, M., Ragan, M.A.: Is multiple-sequence alignment required for accurate in-
ference of phylogeny? Syst. Biol. 56(2), 206–221 (2007)

16. Höhl, M., Rigutsos, I., Ragan, M.A.: Pattern-based phylogenetic distance estima-
tion and tree recosntruction. Evolutionary Bioinformatics Online 2, 357–373 (2006)

17. Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs
(preliminary report). In: STOC, pp. 172–184 (1974)

18. Brooks Jr., F.P.: Three great challenges for half-century-old computer science. J.
ACM 50(1), 25–26 (2003)

19. Karlin, S., Burge, C.: Dinucleotide relative abundance extremes: a genomic signa-
ture. Trends in genetics: TIG 11(7), 283–290 (1995)

20. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.
Problemi Pederachi Inf. 1 (1965)

21. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on
Information Theory 22, 75–81 (1976)

22. Li, M., Badger, J.H., Chen, X., Kwong, S., Kearney, P.E., Zhang, H.: An
information-based sequence distance and its application to whole mitochondrial
genome phylogeny. Bioinformatics 17(1), 149–154 (2001)

23. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE
Transactions on Information Theory 50(12), 3250–3264 (2004)

24. Otu, H., Sayood, K.: A new sequence distance measure for phylogenetic tree re-
construction. Bioinformatics 19, 2122–2130 (2003)

25. Qi, J., Wang, B., Hao, B.: Whole proteome prokaryote phylogeny without se-
quence alignment: A k-string composition approach. Molecular Evolution 58(1),
1–11 (2004)

26. Rényi, A.: On measures of information and entropy. In: Proceedings of the 4th
Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547–561
(1960)

27. Sims, G.E., Jun, S.R., Wu, G.A., Kim, S.H.: Alignment-free genome comparison
with feature frequency profiles (ffp) and optimal resolutions. Proceedings of the
National Academy of Sciences 106(8), 2677–2682 (2009)

28. Ukkonen, E.: Approximate string matching with q-grams and maximal matches.
Theor. Comput. Sci. 92(1), 191–211 (1992)

29. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

30. Ulitsky, I., Burstein, D., Tuller, T., Chor, B.: The average common substring ap-
proach to phylogenetic reconstruction. Journal of Computational Biology 13(2),
336–350 (2006)

31. Vinga, S., Almeida, J.: Alignment-free sequence comparison – a review. Bioinfor-
matics 20, 206–215 (2004)

32. von Mises, R.: Probability, Statistics and Truth. MacMillan, Basingstoke (1939)
33. Wu, T.J., Bruke, J., Davison, D.: A measure of DNA dissimilarity based on the ma-

halanobis distance between frequencies of words. Biometrics 53, 1431–1439 (1997)
34. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory 23(3), 337–343 (1977)

Fast Intersection Algorithms for Sorted

Sequences

Ricardo Baeza-Yates1 and Alejandro Salinger2

1 Yahoo! Research, Barcelona, Spain & Santiago, Chile
2 Dept. of Computer Science, Univ. of Waterloo, Canada

Abstract. This paper presents and analyzes a simple intersection algo-
rithm for sorted sequences that is fast on average. It is related to the
multiple searching problem and to merging. We present the worst and
average case analysis, showing that in the former, the complexity nicely
adapts to the smallest list size. In the latter case, it performs less compar-
isons than the total number of elements on both inputs, n and m, when
n = αm (α > 1), achieving O(m log(n/m)) complexity. The algorithm is
motivated by its application to fast query processing in Web search en-
gines, where large intersections, or differences, must be performed fast.
In this case we experimentally show that the algorithm is faster than
previous solutions.

1 Introduction

Our problem is a particular case of a generic problem called multiple searching [2]
(see also [20], research problem 5, page 156). Given an n-element data multiset,
D, drawn from an ordered universe, search D for each element of an m-element
query multiset, Q, drawn from the same universe. An algorithm solving the
problem must report any elements in both multisets. The metric is the number
of three-way comparisons (<,=, >) between any pair of elements, worst case or
average case. Throughout this paper n ≥ m and logarithms are base two unless
explicitly stated otherwise.

Multiply search is directly related to computing the intersection of two sets. In
fact, the elements found is the intersection of both sets. Although in the general
case, D and Q are arbitrary, an important case is when D and Q are sets (and
not multisets) already ordered. In this case, multiply search can be solved by
merging both sets. However, this is not optimal for all possible cases. In fact, if
m is small (say if m = o(n/ lgn)), it is better to do m binary searches obtaining
an O(m lg n) algorithm. Can we have an adaptive algorithm that matches both
complexities depending on the value of m? We present an algorithm which on
average performs less than m+n comparisons when both sets are ordered under
some pessimistic assumptions. Fast average case algorithms are important for
large n and/or m.

This problem is motivated by Web search engines. Most search engines use
inverted indexes, where for each different word, we have a list of positions or
documents where it appears. In some settings those lists are ordered by position

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 45–61, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

46 R. Baeza-Yates and A. Salinger

or by a global precomputed ranking, to facilitate set operations between lists (de-
rived from Boolean query operations), which is equivalent to the ordered case.
In other settings, the lists of positions are sorted by frequency of occurrence
in a document, to facilitate ranking based on the vector model [1,3]. The same
happens with word positions in each file (full inversion to allow sentence search-
ing). Therefore, the complexity of this problem is interesting also for practical
reasons, as in search engines, partial lists can have hundreds of millions elements
for very frequent words.

In Section 2 we present related work. Section 3 presents our intersection al-
gorithm for two sequences as well as its analytical and experimental analysis.
We also extend the algorithm to multiple sequences. Section 4 presents several
hybrid algorithms tuned through experimental analysis. Section 5 presents the
motivation for our problem, Web search engines, and experimental results for
this case. We end with some concluding remarks and on-going work. This paper
is an extended and revised version of [6,7].

2 Related Work

If an algorithm determines whether any elements of a set of n+m elements are
equal, then, by the element uniqueness lower bound in algebraic-decision trees
(see [16]), the algorithm requires Ω((n+m) lg(n+m)) comparisons in the worst
case. However, this lower bound does not apply to the search problem because
a search algorithm does not need to determine the uniqueness of either D or Q;
it need only to determine whether D ∩ Q is empty. For example, an algorithm
for m = 1 must find whether some element of D equals the element in Q, not
whether any two elements of D are equal. Conversely, however, lower bounds on
the search problem (or, equivalently, the set intersection problem) apply to the
element uniqueness problem [15]. In fact, this idea was exploited by Demaine et
al. to define an adaptive multiple set intersection algorithm [13,14]. They also
defined the difficulty of a problem instance, which was refined later by Barbay
and Kenyon [8].

This adaptive algorithm [13,14] works as follows: we take one of the sets, and
we choose its first element, which we call x. We search x in the other set, making
exponential jumps, this is, looking at positions 1, 2, 4, . . . , 2i. If we overshoot, that
is, the element in the position 2i is larger than x, we binary search x between
positions 2i−1 and 2i. This is an application of what is called doubling search or
galloping search, which mimics binary search for unbounded sequences obtaining
the same O(log n) complexity, a classical result of Bentley and Yao [10]. If we
find x, we add it to the result. Then, we remember the position where x was
(or the position where it should have been) so we know that from that position
backwards we already processed the set. Now we set x as the smallest element of
the set that is greater than the former x and we exchange roles, making jumps
from the position that signals the processed part of the set. We finish when there
is no element greater than the one we are searching.

For the ordered case, lower bounds on set intersection are also lower bounds
for merging both sets. However, the converse is not true, as in set intersection

Fast Intersection Algorithms for Sorted Sequences 47

we do not need to find the actual position of each element in the union of both
sets, just if it is in D or not. Although there has been a lot of work on minimum
comparison merging in the worst case, almost no research has been done on the
average case because it does not make much of a difference. However, this is not
true for multiple search, and hence for set intersection [2].

In the case of merging, Fernandez de la Vega et al. [18] analyzed the average
case of a simplified version of Hwang-Lin’s binary merge [19] finding that if
α = n/m with α > 1 and not a power of 2, then the expected number of
comparisons is ⎛

⎜⎝r +
1

1−
(

α
α+1

)2r

⎞
⎟⎠ n

α
,

with r = �lg2 α�. When α is a power of 2, the result is more complicated, but
similar. Simplifying, the average complexity is O(m log(n/m)). Fernandez de
la Vega et al. [17] also designed a probabilistic algorithm that improved upon
Hwang-Lin’s algorithm on the worst case for 1.618m ≤ n ≤ 3m.

In the case of upper bounds, good algorithms for multiple search can be used
to compute the intersection of two sets, obtaining the same time complexity.
They can be also used to compute the union of two sets, by subtracting the
intersection of both sets to the set obtained by merging both sets. Similarly to
compute the difference of two sets.

As the most time-demanding operation on inverted indexes is the merging or
intersection of the lists of occurrences, it is important to optimize it. Consider
one pair of lists of sizes m and n respectively, that needs to be intersected. If m
is much smaller than n, it is better to do m binary searches in the larger list to
do the intersection, obtaining an O(m lg n) algorithm. Hence, if m is o(n/ lgn)),
this algorithm is better than the linear merging algorithm that has complexity
O(n+m). Notice that each binary search can be performed in what was left to
the right of the larger list in the previous binary search.

Later, Baeza-Yates’ [6] devised a double binary search algorithm that is very
fast if the intersection is trivially empty (O(log n)) and requires less than m +
n comparisons on average. The exact average complexity is O(m log(n/m)))
and although it is not shown explicitly in the original paper [13], the Adaptive
algorithm also has the same average complexity for two sequences. A recent paper
does a thorough performance comparison of these and other algorithms showing
that the best algorithm depends also in the data distribution [9]. However, two
other papers show that for compressed lists the best algorithms can be quite
different [21,12].

3 A Simple But Good Average Case Algorithm

Suppose that D is sorted. In this case, obviously, if Q is small, will be faster to
search every element of Q in D by using binary search. Can we do better if both
sets are sorted? In this case set intersection can be solved by merging. In the

48 R. Baeza-Yates and A. Salinger

Q

D

Binary Search

Solve both subproblems recursively

Median

Fig. 1. Divide and conquer step of double binary search

worst or average case, straight merging requiresm+n−1 comparisons. Can we do
better for set intersection? The following simple algorithm improves on average
under some pessimistic assumptions. We call it double binary search and can be
seen as a balanced version of Hwang and Lin’s [19] algorithm adapted to our
problem, although in the literature is also called the Baeza-Yates’ intersection
algorithm (see for example [21]).

3.1 Double Binary Search

We first binary search the median (middle element) of Q in D. If found, we add
that element to the result (a technical caveat is described later). Found or not,
we have divided the problem in searching the elements smaller than the median
of Q to the left of the position found on D, and the elements bigger than the
median to the right of that position. We then solve recursively both parts using
the same algorithm. If in any case, the size of the subset of Q to be considered
is larger than the subset of D, we exchange the roles of Q and D. Note that
set intersection is symmetric in this sense. If any of the subsets is empty, we do
nothing. Figure 1 shows this divide and conquer approach.

An important detail is that if we want to use this algorithm in a sequential
fashion, the output sequence should be sorted. For this, the comparison of the
median should be done in between the two recursive calls as in Quicksort. Figure
3.1 shows the algorithm in pseudo-code.

A simple way to improve this algorithm is to start comparing the smallest
elements of both sets with the largest elements in both sets. If both sets do not
overlap, we use just O(1) time. Otherwise, we search the smallest and largest
element of D in Q, to find the overlap, using just O(lgm) time. Then we apply
the previous algorithm just to the subsets that actually overlap. This improves
both, the worst and the average case. The dual case is also valid, but then finding
the overlap is O(lg n), which is not good for small m.

In the case of variable size lists, these algorithms can be applied in sequence
by following the lists in order, like in the merging algorithm.

Fast Intersection Algorithms for Sorted Sequences 49

Intersect(D, Q, minD, maxD, minQ, maxQ)
1. //if Q or D are empty, we finish the recursion
2. if minD > maxD bfor minQ > maxQ
3. return ∅
4. miqQ ← round((minQ + maxQ)/2)
5. midQval ← Q[midQ]
6. midD ← binsearch(midQval, D, minD, maxD)
7. if |D[minD..midD − 1]| > |Q[minQ..midQ − 1]| // subset(D) > subset(Q)
8. Result ← Result ∪ Intersect(D, Q, minD, midD − 1, minQ, midQ − 1)
9. else //we exchange the roles of D and Q
10. Result ← Result ∪ Intersect(Q, D, minQ, midQ − 1, minD, midD − 1)
11. if D[midD] == midQval
12. Result ← Result ∪ {midQval}
13. midD ← posModD − 1
14. if |D[midD + 1..maxD]| > |Q[midQ + 1..maxQ]|// subset(D) > subset(Q)
15. Result ← Result ∪ Iintersect(D, Q, midD, maxD, midQ + 1, maxQ)
16. else //we exchange the roles of D and Q
17. Result ← Result ∪ Intersect(Q, D, midQ + 1, maxQ, midD, maxD)
18. return Result

Fig. 2. Double binary search algorithm for intersecting two sorted sequences

3.2 Best and Worst Case Analysis

In the best case, the median element in each iteration always falls outside D
(that is, all the elements in Q are smaller or larger than all the elements in D).
Hence, the total number of comparisons is �lg(m + 1)��lg(n + 1)�, which for
m = O(n) is O(lg2 n). This shows that there is room for doing less work. The
worst case happens when the median is not found and divides D into two sets
of the same size (intuitively seems that the best and worst case are reversed).
Hence, if W (m,n) is the cost of the set intersection in the worst case, for m of
the form 2k − 1, we have

W (m,n) = �lg(n+ 1)�+W ((m− 1)/2, �n/2�) +W ((m− 1)/2, �n/2�) .
It is not difficult to show that

W (m,n) = 2(m+ 1) lg((n+ 1)/(m+ 1)) + 2m+O(lg n) .

That is, for small m the algorithm has O(m lg n) worst case, while for n =
αm it is O(n). In this case, the ratio between this algorithm and merging is
2(1+lg(α))/(1+α) asymptotically, being 1 when α = 1. The worst case is worse
than merging for 1 < α < 6.3197 having its maximum at α = 2.1596 where it is
1.336 times slower than merging (this is shown in Figure 5). Hence the worst case
of the algorithm matches the complexity of both, the merging and the multiple
binary search, approaches, adapting nicely to the size of m. Figure 3 shows these
two cases (top).

50 R. Baeza-Yates and A. Salinger

Q

D

Q

D

Best case Worst case
Q

D

i n − i

Fig. 3. Best and worst (top) as well as average (bottom) case analysis

3.3 Average Case Analysis

Let us consider now the average case. We use two assumptions: first, that we
never find the median ofQ and hence we assume that some elements never appear
in D; and second, that the median will divide D in sets of size i and n− i with
the same probability for all i (this is equivalent to consider every element on D
as random, like in the average case analysis of Quicksort). The first assumption
is pessimistic, while the second considers that overlaps are uniformly distributed,
which is also pessimistic regarding our practical motivation as we do not take
in account that word occurrences may and will have locality of reference. The
recurrence that we have to solve is

A(m,n) = �lg(n+ 1)�+A(�(m− 1)/2�, �n/2�) +A(�(m− 1)/2�, �n/2�) ,

with A(m,n) = A(n,m) if m > n and A(m, 0) = A(0, n) = 0, where A(m,n) is
the average number of comparisons to intersect two lists of size m and n. The
rationale for this formula is shown in Figure 3 (bottom). Figure 4 shows the
actual number of comparisons for n = 128 and all powers of 2 for m ≤ n, for all
the cases already mentioned.

To analyze the recurrence above, let us consider, without loss of generality,
the case for m of the form 2k − 1. Then we have

A(m,n) = �lg(n+ 1)�+ 1
n+ 1

n∑
i=0

(A((m− 1)/2, i) +A((m− 1)/2, n− i)) .

We now show that

A(m,n) = (m+ 1)(ln((n+ 1)/(m+ 1)) + 3− 1/ ln(2)) +O(lg n)

The recurrence equation can be simplified to

A(m,n) = �lg(n+ 1)�+ 2
n+ 1

n∑
i=0

A((m − 1)/2, i) .

Fast Intersection Algorithms for Sorted Sequences 51

Fig. 4. Number of comparisons in the best, worst and average case (with and without
swaps) for n = 128, as well as for merging (M)

As the algorithm is adaptive on the size of the lists, we have

A(m,n) = �lg(n+ 1)�+ 2
n+ 1

⎡
⎣

(m−1)/2∑
i=0

A

(
i,
m− 1

2

)
+

n∑
(m+1)/2

A

(
m− 1

2
, i

)⎤
⎦

by noticing that we switch the sets when m > n. However, solving this version of
the recurrence is too hard, so we do not include this improvement in the analysis.
Nevertheless, this does not affect the main order term. Notice that our analysis
allows any value for n.

Making the change of variable m = 2k − 1 and using k as sub-index we get

Ak(n) = �lg(n+ 1)�+ 2
n+ 1

n∑
i=0

Ak−1(i) .

Eliminating the sum, we obtain

(n+ 1)Ak(n) = nAk(n− 1) + 2Ak−1(n) + �lg(n+ 1)�+ nδ(n = 2j) ,

where δ(n = 2j) is 1 if n is a power of 2, or 0 otherwise. Let Tn(z) =
∑

k Ak(n)zk

be the generating function of A in the variable k. Hence

Tn(z) =
n

n+ 1− 2z
Tn−1(z) +

�lg(n+ 1)�+ nδ(n = 2j)
(n+ 1− 2z)(1− z) .

Unwinding the recurrence in the sub-index of the generating function, as T0(z) =
0, we get

Tn(z) =
n!

(1 − z)Γ (n+ 2− 2z)

n∑
i=1

Γ (i+ 1− 2z)
i!

(�lg(i+ 1)�+ iδ(i = 2j)) ,

52 R. Baeza-Yates and A. Salinger

where Γ (x) is the Gamma function (if x is a positive integer, then Γ (x) =
(x− 1)!). Let αi,j be �lg(i+ 1)�+ iδ(i = 2j). Simplifying, we have

Tn(z) =
1

(1− z)(n+ 1)

n∑
i=1

n+1∏
j=i+1

αi,j(
1− 2z

j

) .

Expanding we have

Tn(z) =

∑
r≥0 z

r

n+ 1

n∑
i=1

n+1∏
j=i+1

αi,j

∑
�≥0

(
2z
j

)�

.

Now, we have A(2k − 1, n) = [zk]Tn(z) where [zk]f(z) is the coefficient of zk in
f(z). As the coefficient of zr is 1, for r ≤ k we need to compute in the right side
the coefficient of zk−r. That is

A(2k − 1, n) =
1

n+ 1

k∑
r=0

n∑
i=1

[zk−r]
n+1∏

j=i+1

αi,j

∑
�≥0

(
2z
j

)�

.

Then

A(2k − 1, n) =
1

n+ 1

k∑
r=0

2k−r
n∑

i=1

∏
∑n+1

j=i+1 �j=k−r

αi,j

(
1
j�j

)�

.

With the help of the Maple symbolic algebra system, we obtain the main order
terms sought.

For n = αm, the ratio between this algorithm and merging is (ln(α) + 3 −
1/ ln(2))/(1+α) which is at most 0.7913 when α = 1.2637 and 0.7787 when α = 1.
This is also shown in figure 5, where we also include the average case analysis of
Hwang and Lin’s algorithm [18]. Recall that this analysis uses different assump-
tions, however shows the same behavior, improving over merging when α ≥ 2.

Fig. 5. Constant factor on n depending on the ratio α = n/m

Fast Intersection Algorithms for Sorted Sequences 53

3.4 Experimental Analysis

Now we compare the efficiency of the algorithm, which we call Intersect in this
section, with an intersection algorithm based on merging, and with an adapta-
tion of the Adaptive algorithm [13,14] for the intersection of two sequences. In
addition, we show the results obtained with the optimizations of the algorithm.

We used sequences of integer random numbers, uniformly distributed in the
range [1, 109]. We varied the length of one of the lists (n) from 1,000 to 22,000
with a step of 3,000. For each of these lengths we intersected those sequences
with sequences of four different lengths (m), from 100 to 400. We use twenty
random instances per case and ten thousand runs (to eliminate the variations
due to the operating system given the small resulting times).

The programs were implemented in C using the Gcc 3.3.3 compiler in a Linux
platform running an Intel(R) Xeon(TM) CPU 3.06GHz with 512 Kb cache and
2Gb RAM.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect v/s merge

intersect m=100
merge m=100

intersect m=200
merge m=200

intersect m=300
merge m=300

intersect m=400
merge m=400

Fig. 6. Experimental results for Intersect and Merge for different values of n and m

Figure 6 shows a comparison between Intersect and Merge. We can see that
Intersect is better than Merge when n increases and that the time increases for
larger values of m.

Figure 7 shows a comparison between the times of Intersect and Adaptive.
We can see that the times of both algorithms follow the same tendency and that
Intersect is marginally better than Adaptive.

Figure 8 shows the results obtained with the Intersect algorithm and the
optimization described at the end of the last section. For this comparison, we
also added the computation of the overlap of both sequences to Merge.

54 R. Baeza-Yates and A. Salinger

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect v/s adaptive

intersect m=100
adaptive m=100
intersect m=200
adaptive m=200
intersect m=300
adaptive m=300
intersect m=400
adaptive m=400

Fig. 7. Experimental results for Intersect and Adaptive, for different values of n and m

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect, Optimized Intersect, Merge

intersect m=200
intersectOpt m=200

merge m=200
intersect m=400

intersectOpt m=400
merge m=400

Fig. 8. Experimental results for Intersect, optimized Intersect and Merge, for different
values of n and m = 200 and m = 400

We can see that there is no big difference between the original and the opti-
mized algorithm, and moreover, the original algorithm was a bit faster than the
optimized one. The reason why the optimization did not result in an improve-
ment can be the uniform distribution of the test data. As the random numbers
are uniformly distributed, in most cases the overlap of both sets covers a big
part of Q. Then, the optimization does not produce any improvement and it
only results in a time overhead due to the overlap search.

Fast Intersection Algorithms for Sorted Sequences 55

3.5 Multiple Sequences

When there are more than two lists, there are several possible heuristics de-
pending on the list sizes. One possible algorithm is two process just pairs of
sequences. For three lists the best solution will be to intersect the two shortest
lists and then intersect the result with the longer list. For four lists or more the
heuristic will depend on the partial answers, and hence has to be adaptive. In
general, doing a balanced merging tree that avoids the long lists until the end
will perform well. On the other hand, in practice we will not have more than 6
to 8 lists. Hence, if intersecting the two shortest lists gives a very small answer,
might be better to intersect that to the next shortest list, and so on. In general
the optimal algorithm will depend in the partial answers and hence we would
need a dynamic programming algorithm to obtain it.

Other possibility is to extend our algorithm to the case of L lists. That is,
we search the median of the shortest list on the other L− 1 lists. If we find the
median in the L − 1 lists, we add that to the result. Next, we solve recursively
for all the elements that are less than the median and for all the elements that
are larger than the median. The complexity in this case is similar to the two
sequence case using m as the length of the shortest list and n as the length of
the rest of the lists.

4 Hybrid Algorithms

We can see from the experimental results obtained for the basic algorithm that
there is a section of values of n where Merge is better than Intersect. Hence, a
natural idea is to combine both algorithms in one hybrid algorithm that runs
each of them when convenient. However this will depend on the data, the imple-
mentation, and the actual hardware and software platform used. So the following
discussion is based on our context but can be replicated, possibly with different
results, for other cases.

In order to know where is the cutting point to use one algorithm instead of
the other, we measured for each value of n the time of both algorithms with
different values of m until we identified the value of m where Merge was faster
than Intersect. These values ofm form a straight line as a function of n, which we
can observe in Fig. 9. This straight line is approximated by m = 0.033n+8.884,
with a correlation of r2 = 0.999.

The hybrid algorithm works by running Merge whenever m > 0.033n+8.884,
and running Intersect otherwise. The condition is evaluated on each step of
the recursion.

When we modify the algorithm, the cutting point changes. We would like
to find the optimal hybrid algorithm. Using the same idea again, we found the
straight line that defines the values where Merge is better than the hybrid al-
gorithm. This straight line can be approximated by m = 0.028n + 32.5, with
r2 = 0.992. Hence, we define the algorithm Hybrid2, which runs Merge when-
ever m > 0.028n+32.5 and runs Intersect otherwise. Finally, we combined both

56 R. Baeza-Yates and A. Salinger

 0

 200

 400

 600

 800

 1000

 0 3000 6000 9000 12000 15000 18000 21000

m

n

Value of m where merge starts to be faster than intersect

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect, merge, hybrid 1, hybrid 2

intersect m=200
merge m=200

hybrid_1 m=200
hybrid_2 m=200
intersect m=400

merge m=400
hybrid_1 m=400
hybrid_2 m=400

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect, merge, hybrids 1, 2 and 3

intersect m=200
merge m=200

hybrid_1 m=200
hybrid_2 m=200
hybrid_3 m=200

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect, merge, hybrids 1, 2 and 3

intersect m=200
merge m=200

hybrid_1 m=200
hybrid_2 m=200
hybrid_3 m=200

Fig. 9. Up: on the left, value of m from which Merge is faster than Intersect. On the
right, a comparison between the original algorithm, Merge and the hybrids 1 and 2
for m = 200 and m = 400. Down: comparison between Intersect, Merge and the three
hybrids for m = 200. The plot on the right is a zoom of the one on the left.

hybrids, creating a third version where the cutting line between Merge and In-
tersect is the average between the lines of the hybrids 1 and 2. The resulting
straight line is m = 0.031n + 20.696. Figure 9 shows the cutting line between
the original algorithm and Merge, and the results obtained with the hybrid al-
gorithms. The optimal algorithm would be on theory the Hybrid.i when i tends
to infinity, as we are looking for a fixed point algorithm.

We can observe that the hybrid algorithms registered lower times than the
original algorithm in the section where the latter is slower than Merge. However,
in the other section the original algorithm is faster than the hybrids, due to the
fact that in practice we have to evaluate the cutting point in each step of the
recursion. Among the hybrid algorithms, we can see that the first one is slightly
faster than the second one, and that this one is faster than the third one. An
idea to reduce the time in the section that the original algorithm is faster than
the hybrids is to create a new hybrid algorithm that runs Merge when it is
convenient and that then runs the original algorithm, without evaluating the
relation between m and n in order to run Merge. This algorithm shows the
same times than Intersect in the section where the latter is better than Merge,
combining the advantages of both algorithms in the best way. Figure 10 show
the results obtained with this new hybrid algorithm.

Fast Intersection Algorithms for Sorted Sequences 57

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect, merge, hybrid 1, hybrid 4

intersect m=200
merge m=200
hybrid_1=200

hybrid_4 m=200

Fig. 10. Experimental results for Intersect, Merge and the hybrids 1 and 4 for different
values of n and for m = 200

5 Application to Query Processing in Inverted Indexes

5.1 Context

Inverted indexes are used in most text retrieval systems [3]. Logically, they are
a vocabulary (set of unique words found in the text) and a list of references
per word to its occurrences (typically a document identifier and a list of word
positions in each document). In simple systems (Boolean model), the lists are
sorted by document identifier, and there is no ranking (that is, there is no notion
of relevance of a document). In that setting, our basic algorithm applies directly
to compute Boolean operations on document identifiers: union is equivalent to
merging, intersection is the complement operation (we only keep the repeated
elements), and subtraction implies deleting the repeated elements. In practice,
long lists are not stored sequentially, but in blocks. Nevertheless, these blocks
are large, and the set operations can be performed in a block-by-block basis.

In complex systems ranking is used. Ranking is typically based in word statis-
tics (number of word occurrences per document and the inverse of the number of
documents having it). Both values can be precomputed and the reference lists are
then stored by decreasing intra-document word frequency order to have first the
most relevant documents. Lists are then processed by decreasing inverse extra-
document word frequency order (that is, we process the shorter lists first), to ob-
tain first the most relevant documents. However, in this case we cannot always
have a document identifier mapping such that lists are sorted by that order.

The previous scheme was used initially on the Web, but as the Web grew, the
ranking deteriorated because word statistics do not always represent the content
and quality of a Web page and also can be “spammed” by repeating and adding

58 R. Baeza-Yates and A. Salinger

(almost) invisible words. In 1998, Brin and Page [11] described a search engine
(which was the starting point of Google) that used links to rate the quality of
a page. This is called a global ranking based in popularity, and is independent
of the query posed. It is out of the scope of this paper to explain Pagerank,
but it models a random Web surfer and the ranking of a page is the probability
of the Web surfer visiting it. This probability induces a total order that can
be used as document identifier. Hence, in a pure link based search engine we
can use our intersection algorithm as before. However, nowadays hybrid ranking
schemes that combine link and word evidence are used. In spite of this, a link
based mapping still gives good results as approximates well the true ranking
(which can be corrected while is being computed).

Another important type of query is sentence search. In this case we use the
word position to know if a word follows or precedes a word. Hence, as usually
sentences are small, after we find the Web pages that have all of them, we can
process the first two words to find adjacent pairs and then those with the third
word and so on. This is like to compute a particular intersection where instead
of finding repeated elements we try to find correlative elements (i and i + 1),
and therefore we can use again our algorithm as word positions are sorted. The
same is true for proximity search. In this case, we can have a range k of possible
valid positions (that is i± k) or to use a different ranking weight depending on
the proximity.

Finally, in the context of the Web, our algorithm is in practice much faster
because the uniform distribution assumption is pessimistic. In the Web, the
distribution of word occurrences is quite biased. The same is true with query
frequencies. Both distributions follow a power law (a generalized Zipf distribu-
tion) [3,5]. However, the correlation of both distributions is very small [4]. That
implies that the average length of the lists involved in the query are not that
biased. That means that the average lengths of the lists, n and m, when sam-
pled, will satisfy n = Θ(m) (uniform), rather than n = m + O(1) (power law).
Nevertheless, in both cases our algorithm makes an improvement. Now we study
this case experimentally.

5.2 Sequence Lengths with Zipf’s Distribution

Now we study the behavior of the Intersect algorithm depending of the ratio
between the lengths of the two sequences when these lengths follow a Zipf dis-
tribution and the correlation between both sets is zero (ideal case). For this
experiment, we took two random numbers, a and b, uniformly distributed be-
tween 0 and 1,000. With these numbers we computed the lengths of the sequences
D and Q as n = K/aα and m = K/bα, respectively, with K = 109 and α = 1.8
(a typical value for word occurrence distribution in English), making sure that
n > m. We did 1,000 measurements, using 80 different sequences for each of
them, and repeating 1,000 times each run.

Figure 11 shows the times obtained with both algorithms as a function of
n/m, in normal scale and logarithmic scale.

Fast Intersection Algorithms for Sorted Sequences 59

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 3 6 9 12 15

m
ili

se
co

nd
s

n/m

Intersect v/s merge Zipf

intersect
merge

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 1 1.2 1.4 1.6 1.8 2

m
ili

se
co

nd
s

n/m

Intersect v/s merge Zipf

intersect
merge

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100

m
ili

se
co

nd
s

n/m

Intersect v/s merge Zipf (log)

intersect
merge

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 5 25

m
ili

se
co

nd
s

n/m

Intersect v/s merge Zipf (log)

intersect
merge

Fig. 11. Up: times for Intersect and Merge as a function of the ratio between the
lengths of the sequences when they follow a Zipf distribution. The plot on the right
is a zoom of the one on the left. Down: times for Intersect and Merge in logarithmic
scale. The plot on the right is a zoom of the one on the left.

We can see that the times of Intersect are lower than the times of Merge when
n is much greater than m. When we decrease the ratio between n and m, it is
not so clear anymore which of the algorithms is faster. When n/m < 2, in most
cases the times of Merge are better.

6 Concluding Remarks

We have presented a simple set intersection algorithm that performs quite well
in average and does not inspect all the elements involved. It can be seen as
a natural hybrid of binary search and merging. Our experiments show that the
algorithm is also faster than Merge in practice when one of the sequences is much
larger than the other one. This improvement is more evident when n increases.
In addition, our algorithm surpasses Adaptive [13,14] for every ratio between the
sizes of the sequences. The hybrid algorithm that combines our algorithm with
Merge according to the empiric information obtained, takes advantage of both
algorithms and became the most efficient one.

In practice, queries are short (on average 2 to 3 words [5]) so there is almost
no need to do multiset intersection and if so, they can be easily handled by
pairing the smaller sets firsts, which seems to be the most used algorithm [14].

60 R. Baeza-Yates and A. Salinger

In addition, we do not need to compute the complete result, as most people only
look at less than two result pages [5]. Moreover, computing the complete result
is too costly if one or more words occur several millions of times as happens
in the Web and that is why most search engines use an intersection query as
default. Hence, lazy evaluation strategies are used. If we use the straight classical
merging algorithm, this naturally obtains first the most relevant Web pages. For
our algorithm, it is not so simple, because although we have to process first the
left side of the recursive problem, the Web pages obtained do not necessarily
appear in the correct order. A simple solution is to process the smaller set from
left to right doing binary search in the larger set. However this variant is efficient
only for smallm, achieving a complexity of O(m lg n) comparisons. An optimistic
variant can use a prediction on the number of pages in the result and use an
intermediate adaptive scheme that divides the smaller sets in non-symmetric
parts with a bias to the left side. Hence, it is interesting to study the best way
to compute partial results efficiently.

As the correlation between both sets in practice is between 0.2 and 0.6, de-
pending on the Web text used (Zipf distribution with α between 1.6 and 2.0) and
the queries (Zipf distribution with a lower value of α, for example 1.4), we would
like to extend our experimental results to this case. However, we already saw that
in both extremes (correlation 0 or 1), the algorithm studied is competitive.

References

1. Baeza-Yates, R.A.: Efficient Text Searching. PhD thesis, Dept. of Computer Sci-
ence. University of Waterloo (May 1989); Also as Research Report CS-89-17

2. Baeza-Yates, R.A., Bradford, P.G., Culberson, J.C., Rawlins, G.J.E.: The Com-
plexity of Multiple Searching (1993) (unpublished manuscript)

3. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval, 513 pages.
ACM Press/Addison-Wesley, England (1999)

4. Baeza-Yates, R.A., Saint-Jean, F.: A three level search engine index based in query
log distribution. In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE
2003. LNCS, vol. 2857, pp. 56–65. Springer, Heidelberg (2003)

5. Baeza-Yates, R.A.: Query usage mining in search engines. In: Scime, A. (ed.) Web
Mining: Applications and Techniques. Idea Group, USA (2004)

6. Baeza-Yates, R.A.: A fast set intersection algorithm for sorted sequences. In: Sahi-
nalp, S.C., Muthukrishnan, S., Dogrusöz, U. (eds.) CPM 2004. LNCS, vol. 3109,
pp. 400–408. Springer, Heidelberg (2004)

7. Baeza-Yates, R.A., Salinge, A.: Experimental analysis of a fast intersection algo-
rithm for sorted sequences. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005.
LNCS, vol. 3772, pp. 13–24. Springer, Heidelberg (2005)

8. Barbay, J., Kenyon, C.: Adaptive Intersection and t-Threshold Problems. In: Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, San
Francisco, CA, January 2002, pp. 390–399 (2002)

9. Barbay, J., López-Ortiz, A., Lu, T., Salinger, A.: An experimental investigation of
set intersection algorithms for text searching. Journal of Experimental Algorithms
(JEA) 14(3), 7–24 (2009)

10. Bentley, J.L., Yao, A.C.-C.: An Almost Optimal Algorithm for Unbounded Search-
ing. Information Processing Letters 5, 82–87 (1976)

Fast Intersection Algorithms for Sorted Sequences 61

11. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
In: 7th WWW Conference, Brisbane, Australia (April 1998)

12. Culpepper, J., Moffat, A.: Compact set representation for information retrieval.
In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 137–148.
Springer, Heidelberg (2007)

13. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Adaptive set intersections, unions,
and differences. In: Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms, San Francisco, CA, January 2000, pp. 743–752 (2000)

14. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Experiments on adaptive set intersec-
tions for text retrieval systems. In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX
2001. LNCS, vol. 2153, pp. 91–104. Springer, Heidelberg (2001)

15. Dietz, P., Mehlhorn, K., Raman, R., Uhrig, C.: Lower Bounds for Set Intersection
Queries. In: Proceedings of the 4th Annual Symposium on Discrete Algorithms,
pp. 194–201 (1993)

16. Dobkin, D., Lipton, R.: On the Complexity of Computations Under Varying Sets
of Primitives. Journal of Computer and Systems Sciences 18, 86–91 (1979)

17. Fernandez de la Vega, W., Kannan, S., Santha, M.: Two probabilistic results on
merging. SIAM J. on Computing 22(2), 261–271 (1993)

18. Fernandez de la Vega, W., Frieze, A.M., Santha, M.: Average case analysis of the
merging algorithm of Hwang and Lin. Algorithmica 22(4), 483–489 (1998)

19. Hwang, F.K., Lin, S.: A Simple algorithm for merging two disjoint linearly ordered
lists. SIAM J. on Computing 1, 31–39 (1972)

20. Rawlins, G.J.E.: Compared to What?: An Introduction the the Analysis of Algo-
rithms. Computer Science Press/W.H. Freeman (1992)

21. Sanders, P., Transier, F.: Intersection in integer inverted indices. In: ALENEX
2007, pp. 71–83 (2007)

Indexing and Searching a Mass Spectrometry

Database

Søren Besenbacher1, Benno Schwikowski2, and Jens Stoye3

1 deCODE Genetics, Reykjavik, Iceland
sorenb@decode.is

2 Systems Biology Group, Institut Pasteur, Paris, France
benno@pasteur.fr

3 Technische Fakultät, Universität Bielefeld, Germany
stoye@techfak.uni-bielefeld.de

Abstract. Database preprocessing in order to create an index often per-
mits considerable speedup in search compared to the iterated query of
an unprocessed database. In this paper we apply index-based database
lookup to a range search problem that arises in mass spectrometry-based
proteomics: given a large collection of sparse integer sets and a sparse
query set, find all the sets from the collection that have at least k integers
in common with the query set. This problem arises when searching for a
mass spectrum in a database of theoretical mass spectra using the shared
peaks count as similarity measure. The algorithms can easily be modi-
fied to use the more advanced shared peaks intensity measure instead of
the shared peaks count. We introduce three different algorithms solving
these problems. We conclude by presenting some experiments using the
algorithms on realistic data showing the advantages and disadvantages
of the algorithms.

1 Background

Large-scale protein identification methods play a critical role for systems biology
approaches [1]. In peptide mass fingerprinting and tandem mass spectrometry,
an experimental spectrum is compared to large databases of theoretical spectra
in time-consuming linear sweeps [13]. While sequence databases have already
been growing exponentially [17], there are a number of recent developments that
indicate even stronger growth in the databases of theoretical spectra that need
to be searched in unbiased proteomics approaches. These developments include
significant increases in the capacity of high-throughput sequencing [11], and
the realization that cells abundantly employ post-transcriptional modifications,
such as alternative splicing [7], and single-residue modifications [9]. Besides the
increase in the size of the search databases itself, ongoing efforts attempt to
improve the quality of the scoring functions used to compare an experimental
spectrum to a single theoretical spectrum. Typically this comes at the cost of
increasing the time of a comparison. Examples of improvements are the predic-
tion of peak intensities in theoretical spectra [3,5] or the explicit consideration

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 62–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Indexing and Searching a Mass Spectrometry Database 63

of peptide modifications in tandem mass spectrometry. As a consequence of the
above, many large-scale proteomics efforts currently face the problem that the
database searching takes much longer time than the experimental generation of
data, making unbiased database search a bottleneck or impossibility in current
proteomics pipelines, and interfering with the application of new, sophisticated
scoring schemes.

One popular approach to speeding up database searching is to first employ a
simple scoring function to filter away spectra that do not score high enough to
be considered as true matches. As this step typically allows to quickly exclude
most candidate spectra, more sophisticated scoring functions can be applied on
the remaining, small, set of spectra. Other approaches attempt to avoid the
linear sweep through the database altogether. One such approach is based on
a standard method (MVP-tree) for accelerating k-nearest neighbor search in
metric spaces [14]. However, the high dimensionality of the spectra significantly
limits how much speedup can be achieved by this type of approach. Another
approach is based on local sensitivity hashing to obtain fast search times despite
the high dimensionality [2]. A drawback of local sensitivity hashing is a non-zero
probability that some spectra might be overlooked even though they are within
the chosen threshold range of the query spectrum. A third, heuristic approach is
based on sequence tags, short sequences of consecutive peaks, and filtering away
all spectra that do not fit these tags [4,10].

The approach presented here is based on the identification of high-scoring
spectra according to the simple similarity measures shared peaks count (SPC)
and its extension shared peaks intensity (SPI). Since the same database of the-
oretical spectra is typically used for many searches, the database can be pre-
processed and stored in a data structure that enables faster searching. While in
bioinformatics, index-based search has extensively been studied in the context
of string pattern matching [12,15,16], we are not aware of any such approaches
in the context of searching a mass spectrometry database.

In Section 2 we give a formal definition of the search problem, called SPC
Range Search Problem, which we consider throughout most of this paper. In
Sections 3, 4 and 5 we introduce three algorithms. Section 6 discusses extensions
of the basic problem and how our algorithms can be adapted. In Section 7 we
present empirical tests of the algorithms on realistic peptide mass fingerprinting
data. Section 8 concludes.

2 Problem Definition

In the following, a mass spectrum is represented as a set of integer m/z values
in the range {1, . . . , N}. A simple similarity measure between two spectra is the
shared peaks count (SPC), the number of m/z values that two spectra have in
common.

Problem 1 (SPC Range Search Problem). Given a set D = {T1, . . . , Tn} of the-
oretical spectra Ti ⊆ {1, . . . , N} and a query spectrum Q ⊆ {1, . . . , N}, find all
the spectra in D that have at least k peaks in common with Q, i.e. identify the

64 S. Besenbacher, B. Schwikowski, and J. Stoye

set {i : SPC(Ti, Q) ≥ k} where SPC(S,Q) := |S ∩Q| is the shared peaks count
of sets S and Q.

Let m denote the total number of peaks in all the spectra in the database, i.e.
m =

∑n
i=1 |Ti|. If we assume that D and Q are given as sorted lists, then a

straightforward algorithm for solving this problem would take O(
∑n

i=1(|Ti| +
|Q|)) = O(m + n · |Q|) time. However, if we are allowed to build more complex
data structures storing D, faster query times are possible. In the following we
disregard the preprocessing time needed to build the data structure, as long as
it is polynomial, and mainly consider the query times that can be achieved once
the data structure is built.

The above formal problem can be applied to the approaches of peptide mass
fingerprinting and tandem mass spectrometry. In practice, N is determined by
the limited m/z range and the resolution of the instrument used.

3 Lookup Algorithm

A simple data structure for speeding up the query time is an array, A, that maps
each integer in the range {1, . . . , N} to a list of the spectra in D that contains
the integer in question. While considering the elements of Q one after the other,
another array, B, of length n can be used to accumulate the shared peaks count
for each of the n spectra. Algorithm 1 shows pseudocode for this algorithm.

3.1 Analysis of Lookup Algorithm

The lookup algorithm assumes its worst case running time if all the peaks of Q
occur in all the spectra in the database. In this case the running time is O(n ·
|Q|). In order to give a better time analysis than this, we have to include some
knowledge about the distribution of masses in the spectra in the database so that
we know that not all the spectra in the database are expected to be in the result
set. Counting the number of times each of the spectra occurs when we look up all

Algorithm 1. (Lookup SPC)
Input: array A where A[x] = {i | x ∈ Ti} for all x ∈ {1, . . . , N},

array B where B[i] = 0 for all i ∈ {1, . . . , n}
Output: set of indices I = {i : |Ti ∩Q| ≥ k}
1: I ← ∅
2: for all x ∈ Q do
3: for all y ∈ A[x] do
4: B[y]← B[y] + 1
5: if B[y] = k then
6: I.add(y)
7: end if
8: end for
9: end for

Indexing and Searching a Mass Spectrometry Database 65

the peaks in the query spectrum means that we will never look at the spectra that
have no peaks in common with the query spectrum. This should give a substantial
speed-up since we expect |Q| to be much smaller than N . If we assume that none
of the N possible peaks is contained in more than P ·n spectra, the running time
becomesO(P ·n·|Q|) which is sub-linear in n since P is a fraction between zero and
one. The best case would occur if the peaks in the spectra are uniformly distributed
over the range {1, . . . , N}. Then the expected value of P would be m

N ·n , but that
is not realistic since we expect to see more small masses than large masses in a
spectrum. In experiments with a realistic peptide mass fingerprinting database
constructed from a list of all human proteins (see also Section 7) we have measured
the value of P to be 0.06 if we only look at masses over 500 Da and use a mass
accuracy of 1 Da, see Fig. 1.

1000 2000 3000 4000 5000

0.
00

0.
05

0.
10

0.
15

m/z

fr
eq

u
en

cy

●

●
●
●

●

●

●
●
●●

●●

●

●

●

●

●

●
●
●

●●●●

●●

●

●

●

●
●

●●
●●●●●
●●

●

●

●

●

●

●●

●●
●

●
●

●●

●●

●

●

●

●

●

●

●

●
●
●

●
●

●
●
●

●●

●

●

●

●

●
●●
●
●

●
●●
●●

●●

●

●

●

●

●
●
●
●

●
●
●
●●
●
●
●

●
●
●
●●
●

●●
●

●
●

●●●
●●●●
●
●

●●

●
●
●

●
●

●
●●●●
●●

●●
●
●
●

●
●

●
●
●●●
●●

●●
●
●
●

●
●

●●
●

●

●

●●
●●
●●●
●●

●
●

●

●

●
●●
●
●●●●●●

●
●

●
●
●
●●●

●●
●●●
●
●
●
●●
●
●●
●
●●
●●●●●
●●●
●
●
●
●
●●

●
●●
●●
●●●●●●●
●
●
●●●
●
●
●●●●●●●●
●
●●●
●●
●
●

●
●●●●●
●●
●●
●●
●
●
●
●●●●
●
●
●●●●●●
●●●
●●●●
●●
●●●●
●●
●●●
●●●
●●
●●●
●
●●●●●●●●
●●
●●●●●●●●●●●●
●
●●
●●
●●●●
●●●●●●
●●
●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●
●●●●
●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●
●●●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●
●●

●●
●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●

Fig. 1. Distribution of masses in theoretical tryptic digested spectra. Only masses
above 500 Da are shown, bin-width is 1 Da. The horizontal line shows the value of P ,
the maximal frequency of any of the bins.

4 Folding Algorithm

Our second algorithm uses a mapping of the range of masses {1, . . . , N} into
N ′ � N bins. The mapping should be defined so that the probability that a
spectrum contains a peak belonging to a certain bin should be approximately
the same for all bins. One simple possibility that probably satisfies this property
is by mapping mass i to bin H(i) := i mod N ′.

In the following, let VS be a vector of length N ′ so that VS [i] is the number of
peaks in S that fall in the ith bin, VS [i] := |{s ∈ S | H(s) = i}|. Given two spectra
S and Q, an element i ∈ S \ Q contributes to VS [i], but not to VQ[i]. Similarly,
an element i ∈ Q \ S contributes to VQ[i], but not to VS [i]. Together, these form
the symmetric difference of S and Q, S�Q := (S \Q) ∪ (Q \ S). Summing over
all these elements, we observe that the overall number of element-wise differences

66 S. Besenbacher, B. Schwikowski, and J. Stoye

Algorithm 2. (Folding SPC)
Input: D = {T1, . . . , Tn}, and VT for all T ∈ D
Output: set of indices I = {i : |Ti ∩Q| ≥ k}
1: calculate VQ

2: for i = 1 to n do
3: if U(Ti, Q) ≥ k then
4: if SPC(Ti, Q) ≥ k then
5: I.add(i)
6: end if
7: end if
8: end for

in all bins,
∑N ′−1

i=0 |VS [i]− VQ[i]|, is upper-bounded by the cardinality of S �Q,
|S�Q| = |S|+ |Q| − 2SPC(S,Q). Thus, from the two vectors VS and VQ we can
calculate an upper bound U(S,Q) on the shared peaks count of these two spectra:

U(S,Q) :=
|S|+ |Q| −∑N ′−1

i=0 |VS [i]− VQ[i]|
2

≥ SPC(S,Q).

The idea of the folding algorithm is to preprocess the database by storing for each
spectrum Ti ∈ D the corresponding vector VTi . Then, for a given query spectrum
Q, the upper bounds U(Ti, Q) are computed and subsequently the exact shared
peaks count is computed only for those database entries Ti whose bound was
larger than k. Algorithm 2 shows pseudocode for this algorithm. A speed-up is
achieved if U can be computed faster than SPC and only few computations of
the actual shared peaks count are necessary.

4.1 Analysis of Folding Algorithm

Calculating all the upper bounds takes time O(nN ′), but on top of that we need
to calculate the actual shared peaks count of those spectra where the upper
bounds were larger than k. To calculate the actual shared peaks count we just
use the trivial algorithm for finding the intersection of two sorted lists which
takes time proportional to the lengths of the two lists. The number of spectra
for which we need to calculate the actual shared peaks count depends on k, N ′

and Q. In the worst case we would need to calculate the shared peaks count of
all the spectra, in which case the running time would be equal to the running
time of the straightforward algorithm.

5 Clustering Algorithm

The third algorithm solves the SPC Range Search Problem by dividing the spectra
(sets) in D into disjoint subsets C1, . . . , C�. The main idea is to perform a type
of group testing: if the query set Q has less than k peaks in common with the
union of the sets in a cluster Ci, then none of the spectra in the cluster is in the

Indexing and Searching a Mass Spectrometry Database 67

Algorithm 3. (Clustering SPC)
Input: clustering C = {C1, . . . , C�}
Output: set of indices I = {i : |Ti ∩Q| ≥ k}
1: I ← ∅
2: for i = 1 to � do
3: peaks← ∅
4: for all x ∈ Q do
5: if x ∈ ⋃

j∈Ci
Tj then

6: peaks.add(x)
7: end if
8: end for
9: if peaks.size() ≥ k then

10: for all j ∈ Ci do
11: count← 0
12: for all x ∈ peaks do
13: if x ∈ Tj then
14: count← count + 1
15: end if
16: end for
17: if count ≥ k then
18: I.add(j)
19: end if
20: end for
21: end if
22: end for

solution. If however the intersection betweenQ and the union of the spectra in the
cluster is larger than or equal to k, then we need to compare all the spectra in the
cluster with the intersection Ii := Q∩(

⋃
T∈Ci

T) in order to obtain SPC(T,Q) =
|T ∩Q| = |T ∩ Ii|. Algorithm 3 shows pseudocode for this algorithm.

The performance of the clustering strategy will depend on how good the
clustering is. The number of spectra that end up in clusters that share k peaks
with the query spectrum Q should be as small as possible, but at the same time
we want there to be as few clusters as possible. The difficulty in making the
clustering algorithm effective is in finding a good trade-off between the number
of clusters and the probability of the query spectrum having many peaks in
common with a cluster.

The probability of a peak from Q belonging to the union of the sets in a
cluster should be about the same for all clusters. If we assume that the peaks
are uniformly distributed, then this means that the size of a cluster should be
some constant factor of the number of possible peaks, i.e. |⋃T∈Ci

T | ≈ δN for
all i. Finding a clustering of D that satisfies this constraint using as few clusters
as possible is an NP-hard problem known as the Set-Bin-Packing Problem [6].
For this reason we do not try to find such an optimal clustering but use a
heuristic to create the clustering. Algorithm 4 shows pseudocode for an O(nm)
greedy heuristic for finding a clustering. The first spectrum in a cluster is picked

68 S. Besenbacher, B. Schwikowski, and J. Stoye

Algorithm 4. (Clustering Heuristic)
Input: D = {T1, . . . , Tn}, δ, N
Output: clustering C = {C1, . . . , C�} of D
1: i← 1
2: while D is not empty do
3: Ci ← ∅
4: unioni ← ∅
5: T ← D.pop()
6: Ci.add(T)
7: for all x ∈ T do
8: unioni.add(x)
9: end for

10: newsize← |unioni|
11: while newsize ≤ δN do
12: best← D.first()
13: newsize← |unioni ∪ best|
14: for all T ∈ D do
15: if |unioni ∪ T | < newsize or (|unioni ∪ T | = newsize and |T | > |best|)

then
16: best← T
17: newsize← |unioni ∪ best|
18: end if
19: end for
20: if newsize ≤ δN then
21: Ci.add(best)
22: for all x ∈ best do
23: unioni.add(x)
24: end for
25: D.remove(best)
26: end if
27: end while
28: i← i + 1
29: end while

at random, and afterward we repeatedly add to the cluster the spectrum that
increases the union of the number of different peaks in the cluster the least, until
the union reaches the limit. If several spectra increase the number of peaks in the
cluster by the same amount we add the largest of these to the cluster. Spectra
whose size exceeds the limit become singleton clusters.

5.1 Analysis of Clustering Algorithm

For each cluster Ci it takes O(|Q|) time to calculate the intersection Ii if we store
the peaks in the clusters in a bitvector so that looking up whether a peak is in
the union of a cluster takes constant time. If the size of Ii is k or larger, then
we need to use additional time O(|Ii| · |Ci|). This gives us an expected running
time of O(� · |Q| + ∑�

i=1 Pr(|Ii| ≥ k) · |Ii| · |Ci|). Since we are looking at the

Indexing and Searching a Mass Spectrometry Database 69

expected running time, we can use the expected value n
� instead of |Ci| and in

view of |Q| ≥ |Ii| we can write the expected running time as O(� · |Q|+Pr(|Ii| ≥
k) · |Q| · n), because we expect Pr(|Ii| ≥ k) to be the same no matter what
the value of i is. This is always better than the straightforward algorithm since
� < n.

The value of Pr(|Ii| ≥ k) depends very much on the value of k. If k is large,
the probability will be small and the running time will be dominated by the
factor � · |Q|. If on the other hand k is small, then Pr(|Ii| ≥ k) will be large and
Pr(|Ii| ≥ k) · |Q| · n will dominate the running time.

There is a trade-off between the value of � and Pr(|Ii| ≥ k), since making �
larger would make the clusters and thus Pr(|Ii| ≥ k) smaller. The actual corre-
spondence between Pr(|Ii| ≥ k) and � is difficult to calculate since it requires
knowledge about the distribution of peaks in the spectra in the database and
the query spectrum.

5.2 Recursive Clustering

The clustering idea can be applied recursively to yield a hierarchical clustering.
The probability of a peak belonging to a cluster should be the same for all of
the clusters on the same level, but it should be smaller for lower levels than
for higher levels. We can still use Algorithm 4 to make the clustering, now we
just need to apply it recursively to the clusters with a smaller value of δ. The
recursive clustering stops when we reach a certain level or if the clusters contain
only a few peaks. For a cluster that is a sub-cluster of another cluster we do
not need to remember which of all N possible peaks are in the cluster, but only
which of the peaks in the super-cluster are in the cluster. This allows us to save
some space. For a cluster C let C.subclusters be a list of subclusters of C and
let C.rank[i] be x if the ith peak of the super-cluster is in the cluster and there
are x − 1 peaks in the cluster that have got smaller masses. If the ith peak of
the super-cluster is not in the cluster then C.rank[i] should be −1. Algorithm 5
shows pseudocode for a recursive algorithm to search a hierarchical clustering.

6 Extensions

6.1 Shared Peaks Intensities

Apart from their m/z value, peaks in a mass spectrum also have an intensity.
Since there is a higher risk that a peak with small intensity does not come from
an actual protein fragment, but is just due to random noise, the high intensity
peaks should be trusted more than the low intensity peaks. One way of giving
more value to high intensity peaks is by using the shared peaks intensity (SPI)
as similarity measure. The shared peaks intensity of two spectra is the sum of
the intensities of all the peaks they have in common. The shared peaks count
problem of the previous sections can be seen as a special case of the shared peaks
intensity problem where all peaks have intensity one.

70 S. Besenbacher, B. Schwikowski, and J. Stoye

Algorithm 5. (Recursive Clustering SPC)
Input: cluster C, list of peaks peaks
Output: I = {i : |Ti ∩Q| ≥ k}
1: I ← ∅
2: newPeaks← ∅
3: for all x ∈ peaks do
4: if C.rank[x] 	= −1 then
5: newPeaks.append(C.rank[x])
6: end if
7: end for
8: if newPeaks.size() ≥ k then
9: if C contains only a single spectrum Tj then

10: I.add(j)
11: else
12: for all y ∈ C.subclusters do
13: make recursive call with y and newPeaks
14: end for
15: end if
16: end if

Problem 2 (SPI Range Search Problem). Given a set D = {T1, . . . , Tn} of the-
oretical spectra Ti ⊆ {1, . . . , N} and a query spectrum Q = {q1, . . . , qw} ⊆
{1, . . . , N} and their corresponding intensities I(q1), . . . , I(qw), find all the spec-
tra in D where the sum of the intensities of the peaks they have in common
with Q is at least a fraction p of the total intensity of Q, i.e. identify the set
{i : SPI(Ti, Q) ≥ p} where SPI(S,Q) :=

∑
q∈S∩Q I(q)/

∑
q∈Q I(q) is the shared

peaks intensity of sets S and Q.

The lookup and clustering algorithms of the previous sections can easily be
extended to address this problem instead of the SPC problem. The only change
is that instead of counting we now need to sum the intensities.

6.2 Mapping Peaks to Integers

Our algorithms assume that the m/z values are integers even though the values
actually produced by the mass spectrometer are not integers. For this reason
we need to map the real values to integers. A mass spectrometer will have an
associated accuracy stating how much deviation between the real mass and the
measured mass can be expected. If we know that there is only a small risk that
the measured value deviates more than ε from the real value we can map the
value x to an integer by first dividing by a value larger than 2ε and then rounding
down: x → � x

rε� where r > 2. This, however, means that two values less than ε
apart can be mapped to different integers. One way of addressing this problem
is by mapping the spectra in the database as described above, but mapping the
query spectrum so that if there are two integer values that are within 1

r of x
rε ,

then both of these integers are in the query set. Making the integer conversion
this way means that one might get a higher shared peaks count than one would

Indexing and Searching a Mass Spectrometry Database 71

get using a more precise alignment between spectra. This is, however, not a big
problem since we intend to use our method as a fast filtering where a reasonable
number of false positives is acceptable, but false negatives are not. The mapping
described above might double the size of the query spectrum which of course
affects the running times, but it ensures that there will be no false negatives.

6.3 Tandem Mass Spectrometry

The algorithms could also be used on tandem mass spectrometry data. In tandem
mass spectrometry, the query spectra come from fragmented “parent” peptides,
whose mass is usually known. This additional information means that, in the case
of tandem mass spectrometry, the database does not need to be preprocessed as
a whole, but independent index structures can be made for all different parent
masses (the masses are rounded to integers). Even though this means that the
spectra in the databases are distributed on many separate data structures, it
does not mean that the data structures are necessarily small.

In tandem mass spectrometry one often wants to consider not just one spec-
trum for each peptide but also take into account the possibility that a peptide
could have been modified by, for example, phosphorylation. The so called virtual
database solution of searching for peptide modifications means that, for each
possible position of all interesting modifications, a new spectrum is added to the
database, resulting in a large increase of the database size. Hopefully the algo-
rithms presented here help making this virtual database approach more feasible.

7 Experiments

We have implemented the following four algorithms in C++ in order to evaluate
their search times in a comparative setting:

Simple: The straightforward algorithm that scans the database linearly for each
query spectrum.

Lookup: The algorithm that stores for each mass a list of the spectra that
contain this mass (Algorithm 1).

Folding: The algorithm that maps the mass range {1, . . . , N} into N ′ � N
bins (Algorithm 2).

Cluster: The algorithm that divides the spectra into disjoint subsets and then
searches these subsets recursively (Algorithms 3–5).

In order to test the running times on realistic peptide mass fingerprint (PMF)
data, we created a PMF database from a list of all human proteins obtained
from The International Protein Index [8]. From each protein we generated a
theoretical spectrum by simulating a tryptic digest of the protein. Trypsin is an
enzyme that cleaves the protein after each occurrence of the amino acids lysine
or arginine, except if the next amino acid is proline. So for the generation of
theoretical spectra we first split the proteins into substrings based on the just
mentioned rule and then calculated the masses of these substrings by summing
the masses of their amino acids and then converting them to integer values.

72 S. Besenbacher, B. Schwikowski, and J. Stoye

10 15 20 25 30 35

0
50

10
0

15
0

20
0

Minimum shared peaks count, k

T
im

e
in

 s
ec

o
n

d
s

● ● ● ● ● ●

● Simple
Lookup
Cluster
folding

Fig. 2. Experimental results on simulated PMF data. The vertical axis shows the time
in seconds it took to perform 1000 queries. The horizontal axis shows different values of
the minimum shared peaks count k. The clustering algorithm used a recursive clustering
with three levels where the δ parameters for the three levels were 0.05, 0.02 and 0.01.

We have simulated query spectra by randomly drawing a specific number of
different peaks between 400 and 5000 Da using the distribution of peaks that
we observed in the database. Figure 2 shows query times for searching 1000
different query spectra with 50 peaks each for different values of the threshold
parameter k. It can be seen that while the time usage of the simple algorithm
and the lookup algorithm is almost unaffected by changes in k, the time usage
of the cluster algorithm does depend on this parameter. The lookup algorithm
is always faster than the simple algorithm and for small values of k it also beats
the clustering algorithm, but for larger values of k the clustering algorithm is
the fastest.

Figure 3 compares the time usage for the clustering algorithm using clus-
terings built with different values of δ and a version with recursive clustering
(parameters are given in the figure caption). The results show that for a given k
the recursive clustering algorithm is not much better than the best of the single
level clusterings, but the main effect of the recursive clustering is that the curve
is flatter so that the same data structure is good for more values of k.

The International Protein Index we used contains 69164 human proteins. To
see how the size of the database affects the running times of the algorithms we
also tried creating some smaller databases by only using a fraction of the 69164
proteins and some larger ones by including some extra spectra that were generated
by adding a small value to all the peaks of an existing spectrum. Figure 4 shows
running times for varying database sizes when searching for query spectra with 50
peaks and a threshold of k = 15. It is interesting to note that while the clustering

Indexing and Searching a Mass Spectrometry Database 73

10 15 20 25 30 35

0
50

10
0

15
0

20
0

Minimum shared peaks count, k

T
im

e
in

 s
ec

o
n

d
s

●

● ● ● ● ●

● delta = 0.02
delta = 0.04
delta = 0.06
recursive clustering

Fig. 3. Comparison of the clustering algorithm with different values of the δ parameter
on simulated PMF data. The vertical axis shows the time in seconds it took to perform
1000 queries. The recursive clustering had three levels and the δ parameters for the
three levels were 0.05, 0.02 and 0.01.

50000 100000 150000 200000

0
10

0
20

0
30

0
40

0
50

0

Database size

T
im

e
in

 s
ec

o
n

d
s

●

●

●

●

●

●

● Simple
Lookup
Cluster
folding

Fig. 4. Experimental results of SPC algorithms on simulated PMF data with varying
database size. The vertical axis shows the time in seconds it took to perform 1000
queries.

algorithm takes twice the time of the lookup algorithm for n = 25000 it only takes
half the time for n = 200000. This means that the clustering algorithm scales
better with database size than the lookup algorithm does.

74 S. Besenbacher, B. Schwikowski, and J. Stoye

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
50

10
0

15
0

20
0

Minimum shared peaks intensity, p

T
im

e
in

 s
ec

o
n

d
s

●
● ● ● ● ● ● ●

● Simple
Lookup
Cluster

Fig. 5. Experimental results of SPI algorithms on simulated PMF data. The vertical
axis shows the time in seconds it took to perform 1000 queries.

We have also tested the algorithms on the shared peaks intensity measure by
giving the peaks in the query spectra intensities picked randomly between 0 and
1 from a uniform distribution. The results can be seen in Fig. 5. They are similar
to the corresponding results for SPC.

8 Conclusion

We have developed three algorithms for searching in an indexed mass spectrom-
etry database using the simple shared peaks count and shared peaks intensity
similarity measures. The algorithms can be used to filter potential candidates in
a database before ranking them using a more sophisticated scoring thus reduc-
ing the overall time of the search. Speeding up database searching is becoming
increasingly important due to growing databases and faster data generation.

It is hard to make a good general analysis of the presented algorithms since
the running times depend on the distribution of peaks in the spectra in the
database and in the query spectrum, and these differ between different databases
and different mass spectrometry equipment. So we can not give solid theoretical
evidence that our algorithms will always be much faster than the trivial algo-
rithm, but our experiments show that on realistic data our algorithms do give a
significant speed-up.

A direction to be explored in the future might be the combination of differ-
ent of our algorithms. In particular, the folding algorithm and the clustering
algorithm are somewhat complementary, such that a hybrid might provide an
additional speed-up.

Indexing and Searching a Mass Spectrometry Database 75

References

1. Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422(6928),
198–207 (2003)

2. Dutta, D., Chen, T.: Speeding up tandem mass spectrometry database search:
metric embeddings and fast near neighbor search. Bioinformatics 23(5), 612–618
(2007)

3. Elias, J.E., Gibbons, F.D., King, O.D., Roth, F.P., Gygi, S.P.: Intensity-based
protein identification by machine learning from a library of tandem mass spectra.
Nat. Biotechnol. 22(2), 214–219 (2004)

4. Frank, A., Tanner, S., Pevzner, P.A.: Peptide sequence tags for fast database search
in mass-spectrometry. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner,
P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 326–341.
Springer, Heidelberg (2005)

5. Havilio, M., Haddad, Y., Smilansky, Z.: Intensity-based statistical scorer for tan-
dem mass spectrometry. Anal. Chem. 75(3), 435–444 (2003)

6. Izumi, T., Yokomaru, T., Takahashi, A., Kajitani, Y.: Computational complex-
ity analysis of set-bin-packing problem. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences E81-A(5), 842–849 (1998)

7. Johnson, J.M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P.M., Armour,
C.D., Santos, R., Schadt, E.E., Stoughton, R., Shoemaker, D.D.: Genome-wide
survey of human alternative pre-mRNA splicing with exon junction microarrays.
Science 302(5653), 2141–2144 (2003)

8. Kersey, P.J., Duarte, J., Williams, A., Karavidopoulou, Y., Birney, E., Apweiler,
R.: The international protein index: An integrated database for proteomics exper-
iments. proteomics 4(7), 1985–1988 (2004)

9. Mann, M., Jensen, O.N.: Proteomic analysis of post-translational modifications.
Nature Biotechnol. 21(3), 255–261 (2003)

10. Mann, M., Wilm, M.: Error-tolerant identification of peptides in sequence
databases by peptide sequence tags. Anal. Chem. 66(24), 4390–4399 (1994)

11. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A.,
Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., Dewell, S.B., Du, L., Fierro,
J.M., Gomes, X.V., Godwin, B.C., He, W., Helgesen, S., Ho, C.H., Irzyk, G.P.,
Jando, S.C., Alenquer, M.L., Jarvie, T.P., Jirage, K.B., Kim, J.B., Knight, J.R.,
Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu,
H., Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E.,
Nobile, J.R., Plant, R., Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons,
J.F., Simpson, J.W., Srinivasan, M., Tartaro, K.R., Tomasz, A., Vogt, K.A., Volk-
mer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley, R.F., Rothberg,
J.M.: Genome sequencing in microfabricated high-density picolitre reactors. Na-
ture 437(7057), 376–380 (2005)

12. McCreight, E.M.: A space-economical suffix tree construction algorithm. J.
ACM 23(2), 262–272 (1976)

13. Palagi, P.M., Hernandez, P., Walther, D., Appel, R.D.: Proteome informatics I:
Bioinformatics tools for processing experimental data. Proteomics 6(20), 5435–
5444 (2006)

14. Ramakrishnan, S.R., Mao, R., Nakorchevskiy, A.A., Prince, J.T., Willard, W.S.,
Xu, W., Marcotte, E.M., Miranker, D.P.: A fast coarse filtering method for peptide
identification by mass spectrometry. Bioinformatics 22(12), 1524–1531 (2006)

76 S. Besenbacher, B. Schwikowski, and J. Stoye

15. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

16. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th Annual
IEEE Symposium on Switching and Automata Theory, pp. 1–11. IEEE Press, Los
Alamitos (1973)

17. Whitfield, E.J., Pruess, M., Apweiler, R.: Bioinformatics database infrastructure
for biotechnology research. J. Biotechnol. 124(4), 629–639 (2006)

Extended Compact Web Graph Representations

Francisco Claude1,� and Gonzalo Navarro2,��

1 David R. Cheriton School of Computer Science, University of Waterloo
fclaude@cs.uwaterloo.ca

2 Department of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

Abstract. Many relevant Web mining tasks translate into classical al-
gorithms on the Web graph. Compact Web graph representations allow
running these tasks on larger graphs within main memory. These repre-
sentations at least provide fast navigation (to the neighbors of a node),
yet more sophisticated operations are desirable for several Web analyses.

We present a compact Web graph representation that, in addition,
supports reverse navigation (to the nodes pointing to the given one).
The standard approach to achieve this is to represent the graph and
its transpose, which basically doubles the space requirement. Our struc-
ture, instead, represents the adjacency list using a compact sequence
representation that allows finding the positions where a given node v is
mentioned, and answers reverse navigation using that primitive. This is
combined with a previous proposal based on grammar compression of the
adjacency list. The combination yields interesting algorithmic problems.
As a result, we achieve the smallest graph representation reported in the
literature that supports direct and reverse navigation, and also obtain
other variants that occupy relevant niches in the space/time tradeoff.

1 Introduction and Related Work

The Web can be modeled as a directed graph: every page corresponds to a node
and every link between two pages is represented as a directed edge between the
corresponding nodes. This so-called “Web graph” contains an enormous amount
of useful information, which is used for a wealth of purposes, from technical (such
as improving search engines) to economic (such as detecting potential customers)
to scientific (such as carrying out sociological studies).

Methods to discover Web communities, Web spam, Web structure, hubs and
authorities, and many others, rely on classical graph algorithms. Donato et
al. [16] show how several common Web mining techniques used to discover the
structure and evolution of the Web graph build on classical graph algorithms
such as depth- and breadth-first-search, reachability, and weakly and strongly
connected components. Saito et al. [28] presents a technique for Web spam de-
tection that boils down to algorithms for finding strongly connected components,
� Funded by NSERC of Canada and Go-Bell Scholarships Program.

�� Funded in part by Fondecyt Grant 1-080019, and by Millennium Institute for Cell
Dynamics and Biotechnology, Grant ICM P05-001-F, Mideplan, Chile.

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 77–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

78 F. Claude and G. Navarro

for clique enumeration, and for minimum cuts. A simple representation that al-
lows direct navigation (to the nodes pointed from the current one) suffices for
these purposes. Yet, there are other important applications where efficient re-
verse navigation (to the nodes pointing to the current one) is also necessary. The
HITS algorithm [23] to find hubs and authorities on the Web starts by select-
ing random pages and finding the induced subgraphs, which are the pages that
point to or are pointed from the selected pages [22]. Uniform sampling meth-
ods [27] also require direct and reverse navigation, and are usually replaced by
suboptimal alternatives due to the difficulty of implementing the latter.

An important limitation when processing this kind of graphs is their size.
Many of the graph algorithms we mentioned are not disk-friendly, and thus the
sizes of the graphs that can be analyzed by the Web mining applications, and
consequently the quality of their results, is limited by the main memory size.
Much effort has been spent in representing Web graphs in compressed form, so
that the direct neighbors of a node can be efficiently retrieved [10,1,30,8,13].
Boldi and Vigna [8] achieve currently the least space combined with efficient
navigation. In later work [13,14] we introduced the use of grammar compression
of the adjacency lists (more precisely, Re-Pair [24]). This required more space
than the best achievable by Boldi and Vigna, but when both methods used the
same space, ours was faster. Other techniques [4], instead, achieve even less space
than Boldi and Vigna, yet with much higher access times.

By essentially doubling the space of these solutions, one can represent the
graph and its transpose, thus providing reverse navigation as well. Needless to
say, adding such an amount of redundancy is against the goal of providing a
compact representation. The only approach we know of where direct and reverse
navigation is supported [9], the k2-tree, is based on representing the adjacency
matrix in a way that takes advantage of its sparseness. They achieve similar
times for direct and reverse queries.

In this work we introduce an alternative way of supporting direct and reverse
navigation. Let G = (V,E) be our graph, where n = |V | and m = |E|. We resort
to previous work by regarding G as a binary relation on V ×V , and then use the
techniques of Barbay et al. [5], where forward and reverse traversal operations
can be solved in time O(log log n) per node delivered. A more recent followup
[6] retains those times and reduces the space to the worst-case entropy of the
binary relation, that is, log

(
n2

m

)
(our logarithms are in base 2).

This worst-case compression, however, is poor for Web graphs, as these are
far from random in the Erdõs-Rényi sense [17]. To illustrate this, we downloaded
four Web crawls from the WebGraph project1, which will be used for the ex-
periments along the article. Table 1 shows their main characteristics. The third
column shows the size (in bits per edge, bpe) required by a plain adjacency
list representation using 4-byte integers. The fourth column shows the space
required for a plain representation of the graph plus its transpose. The fifth col-
umn shows the lower bound given by the worst-case entropy, and the last column

1 http://law.dsi.unimi.it

Extended Compact Web Graph Representations 79

Table 1. Some characteristics of the four crawls used in our experiments, as well as
expected space usage (in bpe) with some known methods

Crawl Nodes Edges Plain 2×Plain Bin.Rel. Re-Pair
EU 862,664 19,235,140 20.81 41.62 15.25 7.65
Indochina 7,414,866 194,109,311 23.73 47.46 17.95 4.54
UK (2002) 18,520,486 298,113,762 25.89 51.78 20.13 7.50
Arabic 22,744,080 639,999,458 25.51 51.02 19.66 5.53

the space actually achieved by the best method based on Re-Pair compression
[13] for the direct plus the transposed graph. This shows that the worst-case
entropy measure is a poor estimation of the compression that can be achieved.

In this article we combine our previous technique based on Re-Pair [13], which
has been successful to compress Web graphs while supporting direct navigation,
with the binary relation idea [5]. The latter boils down to representing the ad-
jacency lists using a sequence representation that allows finding the occurrences
of a symbol (that is, the places where a given node v is mentioned in some list),
and then find the reverse neighbors using this primitive. The combination with
grammar compression poses some interesting algorithmic problems, however, be-
cause the compressed text is a sequence of terminals and nonterminals and thus
the technique cannot be directly applied. The result achieves forward and reverse
navigation within competitive times, and significantly less space, than represent-
ing the direct plus the transposed graph using previous techniques. Depending on
the compact data structure we use to represent the sequence, we obtain, on one
hand, the smallest reported space for a structure that supports bidirectional nav-
igation (indeed, within O(log n) time per delivered neighbor); and on the other, a
faster (O(log logn) time) and larger data structure that occupies a relevant niche
in the space/time tradeoff of the current state of the art.

2 Basic Concepts

2.1 Compact Data Structures for Sequences

A compact data structure aims at representing the same data as its classical
counterpart in little space, while still supporting interesting queries without ex-
panding the whole data structure. Sometimes compact data structures require
more time per query in theory, but since they use less space, they can fit in
smaller and faster memories. This important advantage allows them to outper-
form their classical counterparts, especially if we consider the scenario where the
classical version of the data structure has to resort to disk, while the compact
data structure fits in main memory.

A basic tool used in many compact data structures is the bitmap with rank
and select capabilities [25]. Consider a binary string B[1, n] We support the
following queries:

80 F. Claude and G. Navarro

– rankB(b, i): counts how many times the bit b appears in the prefix B[1, i].
– selectB(b, j): returns the position of the j-th occurrence of bit b in B.
– accessB(i): retrieves B[i].

Clark [12] proposed a solution that achieves constant time for the queries and
requires n + o(n) bits. This was later improved by Raman, Raman and Rao
(RRR) [26]. They achieved constant time for the queries while using nH0(B) +
o(n) bits, where H0 represents the zero-order entropy. The zero-order (empirical)
entropy of a sequence S, drawn from an alphabet Σ of size σ, is defined as
H0(S) = −∑

c∈Σ pc log pc ≤ log σ, where pc = nc/n and nc is the number of
occurrences of character c in S.

Rank/select/access queries naturally extend to sequences, where b ∈ Σ. A
sequence representation supporting these primitives is the wavelet tree [20,25],
which achieves O(log σ) time per query and requires n logσ+o(n) log σ bits. The
wavelet tree stores a number of bitmaps, which can be compressed using RRR,
in which case the space requirement drops to nH0(S) + o(n) log σ bits.

Golynski, Munro, and Rao (GMR) [18] presented another representation that
achieves time O(log log σ) for rank and access , and O(1) for select . Alterna-
tively, they can achieve O(1) time for access , O(log log σ) for select , and O
(log log σ log log log σ) for rank . The structure requires n log σ + n o(log σ) bits.

Note both structures replace the sequence. Claude and Navarro [15] carried
out a practical evaluation of rank/select/access capable bitmap and sequence
representations. They included a simplified version of GMR for the case n ≈ σ,
which we call chunk. The chunk proved to be very fast for large alphabets, while
requiring little extra space on top of n log σ. Wavelet trees, on the other hand,
not only supported the three queries, but also were shown to be an interesting
alternative for compressing sequences over large alphabets, where classical meth-
ods like Huffman fail due to the alphabet representation overhead. The paper
also showed how to omit the pointers of the wavelet tree while preserving its
time performance, which saves much space overhead on large alphabets.

2.2 Re-Pair Compression of Web Graphs

Re-Pair [24] is a grammar-based compression algorithm consisting of repeatedly
finding the most frequent pair of symbols in a sequence of integers and replacing
it with a new symbol, until no more replacements are convenient. Re-Pair works
as follows over a sequence L: (1) It identifies the most frequent pair ab in L. (2)
It adds the rule s→ ab to a dictionary R, where s is a new symbol not appearing
in L. (3) It replaces every occurrence of ab in L by s. (4) It iterates until the
replacements do not compensate for the increase of R.

We call C the sequence resulting from L after compression. Every symbol in
C represents a phrase (a substring of L), which is of length 1 if it is an original
symbol (called a terminal) or longer if it is an introduced one (a nonterminal).
Any phrase can be recursively expanded in optimal time (that is, proportional
to its length), even if C is stored on secondary memory (as long as the dictionary
of rules R is kept in RAM).

Extended Compact Web Graph Representations 81

a a c d b a c d c d e d c d e e

a a f b a f c

a g b g c

d e d f e e

d e d f e e

g g d e f e

a b c d e

Rule f −> cd

Rule g −> af

T(G)

Pointers

Fig. 1. A small example graph, its T (G) representation, the Re-Pair compression of it,
and the final replacement of the v̄is by pointers

Re-Pair can be implemented in linear time [24]. However, this requires sev-
eral data structures to track the pairs that must be replaced. This is problem-
atic when applying it to large sequences. We developed an approximate version
[13,14] that requires little space on top of the sequence.

In our proposal [13] to represent a Web graph G, each node v has a special
identifier v̄ to mark the beginning of its adjacency list. The representation of the
graph, T (G), is the concatenation of the representations of all the adjacency lists,
defined as T (vi) = v̄ivk1vk2 . . . vkr where vkj , 1 ≤ j ≤ r, are the nodes pointed
from vi. Now T (G) is compressed using Re-Pair. Since symbols v̄i are unique,
they stay as terminals in C. Therefore adjacency lists correspond to substrings in
C, and thus can be decompressed in optimal time. The values v̄i are afterwards
removed from the sequence, and instead n pointers to the beginning in C of the
list of each node is stored (in about the same space gained with the removal of the
v̄is). This allows direct navigation in optimal time, but not reverse navigation.
Later [14], we proposed several variations achieving better space/time. Figure 1
illustrates the process for a small graph.

2.3 Representing the Re-Pair Rules

The dictionary R can be represented as an array of pairs of integers, or in
some compact form. We use a representation [19] that reduces it to about 50%
while retaining efficient access to R. The set of rules can be seen as a directed
acyclic graph of outdegree 2 where internal nodes are nonterminals and leaves
are terminals. This is converted into a forest of binary trees, where nonterminal
leaves signal shared subtrees. The forest is represented as a sequence RS of leaf
values and a bitmap RB that defines the tree shape. Nonterminals are identified
with the starting position of the (sub)tree that defines them in RB. In RB, the
trees are described by a preorder traversal where a 1 represents an internal node
(with 2 children) and a 0 represents a leaf. The (terminal or nonterminal) leaf
value corresponding to RB [i] = 0 can be found at RS [rankRB (0, i)].

For example, the set of rules c → ab, d → cb, e → ac, f → ed and g → ae,
over terminals {a, b}, can be represented as shown in Figure 2. We have RB =
110011000100 and RS = a6abba2, where the ‘6’ represents the nonterminal ‘c’,
whose tree is at position 6 in RB ; similarly ‘2’ represents ‘e’.

82 F. Claude and G. Navarro

f

e

a c

d

c

a b

b

g

a e

Position 1 2 3 4 5 6 7 8 9 10 11 12
RB = 1 1 0 0 1 1 0 0 0 1 0 0
RS = a 6 a b b a 2

f

e

a

d

c

a b

b

g

a

Fig. 2. Example of our representation of Re-Pair rules. Top left: the initial DAG. Top
right: the forest representation. Bottom: Encoding with RB and RS .

To expand a given nonterminal at position i in RB, we scan RB [i . . .] until we
have seen more 0s than 1s, and then collect all the consecutive leaf values. Leaf
values corresponding to nonterminals must be recursively expanded.

3 A Simple Representation Based on Binary Relations

We note that sequence T (G) (without Re-Pair compression), armed with symbol
rank and select operations, is already able of handling an extended set of queries
that includes reverse navigation, using an approach similar to Barbay et al.’s [5].
Assume we store a bitmapB marking the positions of T (G) where each adjacency
list starts, more precisely, of the positions of the v̄is: start(vi) = selectT (G)(v̄i, 1).
We will also use operation pred(i) = selectB(1, rankB(1, i)) that finds the last 1
up to position i in B. We can support the following queries. Note |T (G)| = n+m.

– outdegree of vi: it is start(vi+1)− start(vi)− 1.
– the k-th direct neighbor of vi: it is T [start(vi) + k].
– indegree of vi: it is rankT (G)(vi,m+n), the number of times vi is mentioned

in some adjacency list.
– the k-th reverse neighbor: T [pred(selectT (G)(vi, k))] gives the corresponding

identifier v̄ of the k-th reverse neighbor.
– edge (vi, vj) exists: if rankT (G)(vj , start(vi+1))−rankT (G)(vj , start(vi)) = 1.

In practice we remove the v̄is from T (G) and set n pointers S[vi] to the be-
ginning of each list, so that start(vi) = S[vi] and the k-th reverse neighbor
becomes rankB(selectT (G)(vi, k)),2 and the slow-in-practice [15] selectB opera-
tion is totally avoided. Array S requires n logm bits of space. Bitmap B requires
2 Nodes with zero outdegree must be handled somehow so that they do not interfere

with rankB , for example by marking them in another bitmap, or renumbering them
after all the other nodes.

Extended Compact Web Graph Representations 83

Table 2. Size required by our simple representation, using wavelet trees without point-
ers and RRR for the bitmaps [15], measured in bpe. The last column adds up the
Re-Pair representations for the original and transposed graph.

Crawl Wavelet Tree Plain Bin.Rel. Re-Pair
EU 13.67 20.81 15.25 7.65
Indochina 14.16 23.73 17.95 4.54
UK 15.05 25.89 20.13 7.50
Arabic 15.30 25.51 19.66 5.53

at most mH0(B)+ o(m) = n log m
n +O(n)+ o(m) bits using RRR (Section 2.1).

The remaining T (G) can be represented using GMR (Section 2.1), requiring
m logn+mo(logn) bits. The total space used ism logn+O(n logm)+o(m log n)
bits. This is basically the space of a plain adjacency list representation, yet we
have the extended functionality. On the other hand, the upper bound is higher
than the log

(
n2

m

)
= m log n2

m + O(m) worst-case entropy of the graph. Opera-
tions outdegree, indegree, and reverse neighbors are carried out in constant time
per delivered datum3, whereas checking existance of edges and retrieving direct
neighbors cost O(log logn).

With a wavelet tree representation, instead, every delivered direct or reverse
neighbor (and checking edge existance) takes O(log n) time, but T (G) can be
compressed to mH0(T (G)) + o(m) logn bits. Let ni be the indegree of node vi,
thus vi appears ni times in T (G). Then mH0(T (G)) =

∑
ni log m

ni
. Web graphs

are known to have varying indegrees: a Zipf-distribution with parameter θ = 2.1
has been observed [2,10]. Under this distribution we obtain mH0(T (G)) = c ·
m logn + O(m), with c = ((θ − 1)

∑
i≥1 i

−θ)−1 ≈ 0.58. On the other hand,

m/n is around 15–30 on Web graphs, so the worst-case entropy is log
(
n2

m

)
=

m logn− O(m). Table 2 shows that this representation takes less space than a
plain adjacency list (which does not answer reverse queries) on our four Web
crawls, by a factor remarkably close to 0.58 (except on the smaller EU, where
it is 0.65). It also takes less space than the worst-case graph entropy. Still, the
last column reminds us that it is still far from the state of the art. In the next
section we will combine this idea with Re-Pair compression.

4 Combining Re-Pair with Binary Relations

The result of the previous section makes it clear that we cannot go too far with
zero-order compression of T (G) or the graph binary relation. Re-Pair is much
more successful. In fact, Re-Pair compression on graphs can be regarded as (and
attribute its success to) the decomposition of the graph binary relation into two:

– Nodes are related to the Re-Pair symbols that conform their (compressed)
adjacency list.

– Re-Pair symbols are related to the graph nodes they expand to.

3 For indegree one needs to use other n log m bits, otherwise it costs O(log log n).

84 F. Claude and G. Navarro

The regularities exposed by this factorization go well beyond those captured by
the worst-case entropy of the original binary relation or zero-order entropy of
its sequence representation. In very broad terms, we attempt at representing the
graph as the composition of these two binary relations. Using the technique of
Barbay et al. [5], each direct neighbor would be retrieved in time O(log logn),
by finding all the Re-Pair symbols that conform its adjacency list (first relation)
and then the graph nodes each such symbol expands to (second relation).

Finding the reverse neighbors of node v, on the other hand, is harder. We
should first find all the Re-Pair symbols (nonterminals) that expand to v (second
relation), and then, for each such symbol, all the nodes in which adjacency list
the symbol participates (first relation). The problem is that many nonterminals
exist in the dictionary for the sake of structuring the grammar but do not appear
in C, and thus we can carry out much work that does not lead to any result.

A further challenge is that representing the second binary relation as such,
with the rules in fully expanded form, could require space ω(|R|). Thus we must
use the representation of Section 2.3 for the second binary relation, and this
complicates the operations we must carry out on it. We describe now our solution.

4.1 Representation

We apply our simple sequence representation of Section 3 on top of the Re-
Pair compressed T (G), instead of on the plain sequence. We compress T (G)
and represent sequences C and RS not in plain form, but instead using a
rank/select/access capable representation (see Section 2.1). This can be either:

– The GMR representation. It does not compress C or RS any further, but it
provides access and symbol rank in time O(log logn) (yet typically constant),
and symbol select in constant time.

– A wavelet tree. The operations are carried out in O(log n) time, but the
representation compresses further T (G) up to its zero-order entropy. Albeit
significantly slower, this achieves unprecedented space results, as we see later.

Extraction of the direct neighbors is done exactly as in previous work [13], using
access on the sequences C and RS to expand the list of the desired node.

4.2 Extracting Reverse Neighbors

As explained, to find reverse neighbors of v we must consider that v may appear
not only explicitly in C, but also implicitly, in the form of a nonterminal that
expands to v. Given our representation of the rules R, we must look for v in RS

and, for each occurrence, collect all of its ancestors in RB, and look for each of
them in C. Because each such ancestor might appear in RS again (due to the
conversion of the DAG into a forest) and have further ancestors, the process has
to be repeated recursively for every ancestor found.

The occurrences of vi (or, recursively, any other nonterminal) in RS are ob-
tained using selectRS (vi, k). In order to extract the ancestors, we can use an al-
ternative representation for RB called LOUDS [21]. LOUDS represents each leaf

Extended Compact Web Graph Representations 85

rev-adj(v)
1. For k ← 1 to rankC(v, |C|) Do
2. occ ← selectC(v, k)
3. report rankB(1, occ)
4. For k ← 1 to rankRS

(v, |RS |) Do
5. occ ← selectRS

(v, k)
6. For each s ancestor of RS[occ] in RS Do
7. rev-adj(s)

Fig. 3. Obtaining the reverse adjacency list

with a 0 and has been shown to be very effective when only parent/child traver-
sals are required [3], which makes it ideal for our purpose. We adapt LOUDS to
binary forests as follows. Let f be the number of trees in the dictionary forest.
The forest is traversed level-wise and left-to-right within each level, and for each
node found we write a 1 if the node has (two) children and a 0 if not. In Figure 2,
f = 2 and RB = 111100001000. Each node is identified with its corresponding
bit position i ≥ 1. Now, LOUDS formulas become as follows:

– childleft/right(i) = f − 1 + 2 · rankRB (i, 1) + 0/1,
– parent(i) = selectRB (�(i− f + 1)/2�) (i is a root if i ≤ f).

We call this solution GMR LOUDS*. Although constant-time in theory, this solution
resorts to select on bitmaps, which is not that fast in practice [15]. An alternative,
less sophisticated, solution is to mark the beginning of the top-level trees of RB

in another bitmap. Then we unroll the whole tree containing the occurrence in
RS and spot the ancestors. We call this second solution GMR.

Figure 3 shows the algorithm for retrieving the reverse neighbors. We use the
bitmap B that marks the beginning of each adjacency list in C. This bitmap is
included in the original structure [14], so it does not add any more space and
allows us to determine to which list a position in C belongs.

No reverse neighbor is reported twice: Even if we find several times the same
position of C along the process, it will be for different occurrences within C.

On the other hand, we are not providing any time guarantee for the process,
because as explained we might do sterile work for ancestors in RB which do not
appear in C. For the others we obtain at least one occurrence per access to the
sequences. We address this problem next.

5 Guaranteeing Reverse Neighbor Retrieval Time

A way to alleviate the problem in practice is to include a bitmap, parallel to
RB, which indicates, for each internal node, whether or not it appears in C or in
RS . This can be combined either with the LOUDS or the basic representation of
RB. Each time we find an ancestor, the parallel bitmap indicates immediately
whether it is worth paying the effort of looking for it in C and RS . Indeed, given
the negligible cost of such a bitmap, we opt for storing two of them: one referring

86 F. Claude and G. Navarro

to C and the other to RS . This helps us limiting further unnecessary searches,
although we still pay a constant-time cost to process useless nodes. We will test
these bitmaps in combination with binary-tree LOUDS (GMR LOUDS* M), with
general LOUDS (GMR LOUDS M, just to test it loses to the previous one), and
with the basic representation (GMR M).

An alternative to achieve a logarithmic-time guarantee per retrieved neighbor
is to use balanced Re-Pair [29], which enforces logarithmic rule heights. Since
the roots of the DAG must appear in C, in the worst case we pay O(1) time to
discard (using the bitmaps introduced above) each element of an upward path
(of length now limited to O(logm)), except the root. As the root yields at least
one neighbor, we can charge this O(logm) time to that result.

A solution that guarantees a constant number of operations on the sequences
per reverse neighbor delivered is to effectively remove from the forest those nodes
that do not appear in C nor in RS . The children of the removed node become
children of their former grandparent. This can be done precisely because those
nodes will not be accessed from elsewhere. The result is not anymore binary, but
a general tree that is represented with the original LOUDS format [21,3]. Now
we can prove our result.

Lemma 1. Using the reduced tree, we pay O(1) operations on the sequences per
reverse neighbor delivered.

Proof. Consider the original DAG with the useless nodes removed. Then each
node either (a) is a root, (b) appears in C, or (c) has at least two parents (i.e.,
appears again in RS). The algorithm in Figure 3 is equivalent to starting from
some arbitrary node and traversing the DAG upwards, so that a constant number
of operations on RS , RB and C are carried out (i) per DAG node considered
and (ii) per result retrieved. We focus on (i). Nodes of type (a) and (b) yield at
least one result, so their cost can be absorbed by (ii). For nodes of type (c), they
have at least two parents, and thus each unit of work invested on them increases
at least by 1 the number of results to report. 	

Therefore, combined with GMR representation, we recover the constant time per
reverse neighbor we had in Section 3. This representation is called GMR LOUDS in
the experiments.

6 Experimental Results

The experiments were run on a 2GHz Intel Xeon (8 cores) with 16 GB RAM,
running Ubuntu GNU/Linux with kernel 2.6.22-14 SMP (64 bits). The code was
compiled with g++ using the -O9 directive.

From the several Re-Pair based versions studied in previous work [14], we
chose “Reord CDict NoPtrs”. For the wavelet trees we used the version without
pointers [15]. For the GMR structure we used the simpler and faster chunk
variant [15], as the grown alphabet after running Re-Pair on T (G) (originally n)
and the reduced length (originally m) become sufficiently similar.

Extended Compact Web Graph Representations 87

Table 3. Space consumption (in bpe) of the Re-Pair based compressed representations
of the adjacency lists, and previous work

Crawl Re-Pair Re-Pair Re-Pair k2-tree WebGraph Asano
WT GMR (dir+rev) (dir+rev) ×2

EU 3.93 5.86 7.65 5.20 7.20 5.56
Indochina 2.30 3.65 4.54 2.82 2.94
UK 3.98 6.22 7.50 4.20 4.34
Arabic 2.72 4.15 5.53 3.25

We first focus on achieving minimum space usage, while still retrieving direct
and reverse neighbors within reasonable time, that is, much faster than decom-
pressing the whole graph. Later we focus on the faster alternatives. The space
we report does not include special bitmaps for computing in/outdegrees.

Table 3 shows the space required for the four crawls. The first two columns
are our contributions. In column Re-Pair WT we represent C and RS using
a compressed wavelet tree with sample value 64 [15] (space decreases by about
0.20 bpe more with larger sample values, but retrieval times degrade). In column
Re-Pair GMR we show the representation that combines Re-Pair with a GMR
chunk. Next columns are previous alternatives. Column Re-Pair shows the space
needed by Re-Pair compression (variant “Diffs CDict NoPtrs”) of the graph plus
its transpose (so as to support direct and reverse queries) [13]. Column k2-tree
gives the smallest space achieved by that technique [9] (the space for the largest
graph, Arabic, is not reported in there, and we could not build it either).

Column WebGraph gives the space achieved by the WebGraph technique [7],
version 2.4.2, using variant strictHostByHostGray, which gave the best results.
We add up the space for the direct and the transposed graph. We account only
the space the structure requires on disk, even if the process requires much more
memory to run. On the other hand, we account for their “offset” structure,
which is the one providing direct access to the neighbors (without the offsets,
the structure degenerates into a pure compression scheme). For this experiment
we set the parameters so as to largely favor compression over speed (window size
10, maximum reference unlimited). With this compression they retrieve direct
neighbors in about 100 microseconds.

Finally, column Asano×2 shows the space achieved by Asano et al. [4] on
the EU graph (which is the largest graph they report). We double the space to
account for the transposed graph. The time they report is over 1 millisecond per
neighbor retrieved, whereas typical times (as shown next) are a few microseconds.
Doubling the space is a bit pessimistic, as the transposed graph compresses
slightly better, but still the difference with Re-Pair WT is significant, and this
was the only reasonable way we found to try including them in the comparison.

We observe that our techniques require less space than adding up direct and
reverse Re-Pair compressed graphs, while achieving good performance, as we
see soon. By combining with a wavelet tree, on the other hand, we achieve
the smallest space reported in the literature while supporting direct and reverse
neighbors in reasonable time: around 35 microseconds/edge for direct and 55 for

88 F. Claude and G. Navarro

 0

 1

 2

 3

 4

 5

 5.6 5.8 6 6.2 6.4 6.6 6.8 7

t
i
m
e

(
m
i
c
r
o
s
e
c
/
e
d
g
e
)

space (bits/edge)

EU

GMR
GMR Rev
GMR M

GMR M Rev
GMR LOUDS*

GMR LOUDS* Rev
GMR LOUDS* M

GMR LOUDS* M Rev
GMR LOUDS M

GMR LOUDS M Rev
GMR GLOUDS

GMR GLOUDS Rev

 0

 2

 4

 6

 8

 10

 12

 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8

t
i
m
e

(
m
i
c
r
o
s
e
c
/
e
d
g
e
)

space (bits/edge)

UK

GMR
GMR Rev
GMR M

GMR M Rev
GMR LOUDS*

GMR LOUDS* Rev
GMR LOUDS* M

GMR LOUDS* M Rev
GMR LOUDS M

GMR LOUDS M Rev
GMR GLOUDS

GMR GLOUDS Rev

Fig. 4. Space/time tradeoffs of the different dictionary representations

reverse neighbors. The next experiments show that, using more space, one can
reduce these times by an order of magnitude. However, no alternative scheme
can operate within tens of microseconds and achieve the space of Re-Pair WT.

Figure 4 shows direct and reverse neighbor retrieval times on two crawls, for
the different alternatives studied in Sections 4.2 and 5. Reverse retrieval times
are marked Rev. As it can be seen, the general LOUDS versions (without modifier
“*”) lose to the simpler ones, and also the idea of marking nodes (suffix “M”)
does not pay off. The space/time map is dominated by GMR and GMR LOUDS*.
We use GMR for the rest of the experiments.

Figure 5 shows retrieval times obtained for the four crawls, for both forward
and reverse neighbors. We include only the techniques that are most competitive
in time: WebGraph (storing both direct and reverse graphs), Re-Pair (storing
both direct and reverse graphs), Re-Pair GMR (ours), and k2-trees (variants
called Hybrid5 and Hybrid37, which give the best space/time tradeoffs [9]). We
also include a variant of Re-Pair GMR labeled “(2)”, where we use the variant
of GMR that solves access in O(1) time and select in time O(log logn). Thus,
while Re-Pair GMR is faster for reverse neighbors (using constant-time select),
Re-Pair GMR (2) is faster on direct neighbors (using constant-time access)4.
When times are not constant, an internal sampling used to compute an inverse
permutation produces the observed space/time tradeoff.

Re-Pair GMR is not as fast as Re-Pair (at best, 3 times slower), but it requires
significantly less space (about 25%). The k2-tree (with variant Hybrid5) can
achieve about 13% less space than the second point of Re-Pair GMR (recall that
k2-tree used much more space than Re-Pair WT, but it is much faster than it).
Yet, when using that space, it is either 4–7 times slower for direct neighbors and
1.0–1.5 times faster for reverse neighbors (if using our variant (2)), or about 3–5
times slower for reverse neighbors and similar for direct neighbors (if using our

4 Alternatively, we could have used the original structure and index the transposed
graph, but this turned out not to be a good idea: compression of the reverse graph
generates many more dictionary symbols and deeper dictionary trees, and thus both
queries are slower than on Re-Pair GMR (2).

Extended Compact Web Graph Representations 89

 0

 1

 2

 3

 4

 5

 4 5 6 7 8 9 10 11 12 13

t
i
m
e

(
m
i
c
r
o
s
e
c
/
e
d
g
e
)

space (bits/edge)

EU

Re-Pair Direct
Re-Pair Reverse

Re-Pair GMR Direct
Re-Pair GMR Reverse

Re-Pair GMR Direct (2)
Re-Pair GMR Reverse (2)

Hybrid5 Direct
Hybrid5 Reverse
Hybrid37 Direct

Hybrid37 Reverse
WebGraph

WebGraph Reverse

 0

 1

 2

 3

 4

 5

 6

 3 3.5 4 4.5 5

t
i
m
e

(
m
i
c
r
o
s
e
c
/
e
d
g
e
)

space (bits/edge)

Indochina

Re-Pair Direct
Re-Pair Reverse

Re-Pair GMR Direct
Re-Pair GMR Reverse

Re-Pair GMR Direct (2)
Re-Pair GMR Reverse (2)

Hybrid5 Direct
Hybrid5 Reverse
Hybrid37 Direct

Hybrid37 Reverse
WebGraph

WebGraph Reverse

 0

 5

 10

 15

 20

 4 4.5 5 5.5 6 6.5 7 7.5 8

t
i
m
e

(
m
i
c
r
o
s
e
c
/
e
d
g
e
)

space (bits/edge)

UK

Re-Pair Direct
Re-Pair Reverse

Re-Pair GMR Direct
Re-Pair GMR Reverse

Re-Pair GMR Direct (2)
Re-Pair GMR Reverse (2)

Hybrid5 Direct
Hybrid5 Reverse
Hybrid37 Direct

Hybrid37 Reverse
WebGraph

WebGraph Reverse

 0

 1

 2

 3

 4

 5

 6

 7

 3 4 5 6 7 8

t
i
m
e

(
m
i
c
r
o
s
e
c
/
e
d
g
e
)

space (bits/edge)

Arabic

Re-Pair Direct
Re-Pair Reverse

Re-Pair GMR Direct
Re-Pair GMR Reverse

Re-Pair GMR Direct (2)
Re-Pair GMR Reverse (2)

WebGraph
WebGraph Reverse

Fig. 5. Space/time tradeoffs of the most competitive variants

first variant). A nice point in k2-tree is that it is symmetric (in technique and
time) to obtain forward or reverse neighbors. A nice point in our structure is
that, if one is interested mainly in direct or reverse neighbors, one can choose one
of the two alternatives and be much faster on those queries, while still supporting
the others in reasonable time. Adding up both times, we see that our alternative
would be very close to Hybrid37, in space and time, if both direct and reverse
neighbors had to be obtained. (An exception is graph UK, where k2-tree is 35%
smaller than Re-Pair GMR, but siginificantly slower in all aspects.)

For WebGraph we show the curves reaching as much as possible to the left;
using less space yields a sudden increase in time. The comparison with our
technique is mixed. On EU and Arabic, WebGraph cannot approach the space we
use (while maintaining reasonable retrieval performance). On Indochina, both
achieve comparable results. On UK, instead, WebGraph dominates.

7 Conclusions

We introduced a technique to represent Web graphs in compressed form so that
not only fast access to the (direct) neighbors is supported, but also to the re-
verse neighbors (that is, nodes pointing to a given one). This has many applica-
tions to several Web analysis and mining tasks, where the memory limitations
pose serious obstacles to analyzing massive graphs. Our representation com-
bines grammar-based compression with compact data structures for sequences

90 F. Claude and G. Navarro

that represent the compressed adjacency lists relations, and for trees that repre-
sent the grammar DAG. We provide several solutions, which support direct and
reverse neighbor retrieval within a time that ranges from constant to logarithmic.

We achieve several relevant space/time tradeoffs. On one hand, we achieve
the most compact functional Web graph representation reported up to date. On
a sample of Web crawls, it required 2.3–4.0 bits per edge (bpe) while supporting
direct and reverse navigation within a few tens of microseconds per neighbor.
The best alternatives require 2.8–5.2 bpe for the same functionality. Compared
to a 2 × 32-bit plain representation of the graph plus its transpose, we allow
handling graphs 15–30 times larger within the same main memory.

If slightly more space is available, our faster representation requiring 3.6–6.5
bpe is of interest. It supports direct and reverse navigation within 1–3 microsec-
onds per neighbor, occupying a relevant niche among alternative representations.

It would be of interest to extend this research to the compression of other
types of networks with similar characteristics. For example, compression of social
networks is starting to receive attention [11]. These share some characteristics
with Web graphs, yet they have other unique ones such as reciprocity in links
and presence of relatively large cliques or bicliques. In particular, many social
networks are undirected. With current techniques, the representation of an undi-
rected graph forces either to duplicate each edge {u, v} as (u, v) and (v, u), or
to choose arbitrarily from both, but then the (undirected) neighbors of v will
be the union of its direct and reverse neighbors under this representation. Data
structures like ours ours are ideal for this scenario.

References

1. Adler, M., Mitzenmacher, M.: Towards compressing Web graphs. In: Proc. 11th
DCC, pp. 203–212 (2001)

2. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: Proc.
32th STOC, pp. 171–180 (2000)

3. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Proc. 11th ALENEX, pp. 84–97 (2010)

4. Asano, Y., Miyawaki, Y., Nishizeki, T.: Efficient compression of Web graphs. In:
Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 1–11. Springer,
Heidelberg (2008)

5. Barbay, J., Golynski, A., Munro, I., Rao, S.S.: Adaptive searching in succinctly
encoded binary relations and tree-structured documents. In: Proc. 17th CPM, pp.
24–35 (2006)

6. Barbay, J., He, M., Munro, I., Rao, S.S.: Succinct indexes for strings, binary rela-
tions and multi-labeled trees. In: Proc. 18th SODA, pp. 680–689 (2007)

7. Boldi, P., Santini, M., Vigna, S.: Permuting web graphs. In: Avrachenkov, K.E.,
Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 116–126. Springer,
Heidelberg (2009)

8. Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In: Proc.
13th WWW, pp. 595–602 (2004)

9. Brisaboa, N.R., Ladra, S., Navarro, G.: k2-trees for compact web graph represen-
tation. In: Hyyro, H. (ed.) SPIRE 2009. LNCS, vol. 5721, pp. 18–30. Springer,
Heidelberg (2009)

Extended Compact Web Graph Representations 91

10. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the Web. Journal of Computer Net-
works 33(1-6), 309–320 (2000)

11. Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., Ragha-
van, P.: On compressing social networks. In: Proc. 15th KDD, pp. 219–228 (2009)

12. Clark, D.: Compact Pat Trees. Ph.D. thesis, University of Waterloo (1996)
13. Claude, F., Navarro, G.: A fast and compact Web graph representation. In: Ziviani,

N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 105–116. Springer,
Heidelberg (2007)

14. Claude, F., Navarro, G.: Fast and compact Web graph representations. Tech. Rep.
TR/DCC-2008-3, Dept. of Comp. Sci., Univ. of Chile (2008)

15. Claude, F., Navarro, G.: Practical rank/select queries over arbitrary sequences. In:
Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 176–187.
Springer, Heidelberg (2008)

16. Donato, D., Laura, L., Leonardi, S., Meyer, U., Millozzi, S., Sibeyn, J.: Algorithms
and experiments for the Web graph. Journal of Graph Algorithms and Applica-
tions 10(2), 219–236 (2006)

17. Erdõs, P., Rényi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297
(1959)

18. Golynski, A., Munro, I., Rao, S.: Rank/select operations on large alphabets: a tool
for text indexing. In: Proc. 17th SODA, pp. 368–373 (2006)

19. González, R., Navarro, G.: Compressed text indexes with fast locate. In: Ma, B.,
Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 216–227. Springer, Heidelberg
(2007)

20. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th SODA, pp. 841–850 (2003)

21. Jacobson, G.: Succinct Static Data Structures. Ph.D. thesis, Carnegie Mellon Uni-
versity (1989)

22. Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The Web
as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee,
D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp.
1–17. Springer, Heidelberg (1999)

23. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM 46(5), 604–632 (1999)

24. Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proc. IEEE 88(11),
1722–1732 (2000)

25. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), article 2 (2007)

26. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proc. 13th SODA, pp. 233–242 (2002)

27. Rusmevichientong, P., Pennock, D., Lawrence, S., Giles, C.L.: Methods for sam-
pling pages uniformly from the World Wide Web. In: Proc. AAAI Fall Symposium
on Using Uncertainty Within Computation, pp. 121–128 (2001)

28. Saito, H., Toyoda, M., Kitsuregawa, M., Aihara, K.: A large-scale study of link
spam detection by graph algorithms. In: Proc. 3rd AIRWeb (2007)

29. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. Journal of Discrete Algorithms 3(2-4), 416–430 (2005)

30. Suel, T., Yuan, J.: Compressing the graph structure of the Web. In: Proc. 11th
DCC, pp. 213–222 (2001)

A Parallel Algorithm for Fixed-Length

Approximate String-Matching with
k-mismatches

Maxime Crochemore1,2, Costas S. Iliopoulos1,3, and Solon P. Pissis1

1 Dept. of Computer Science, King’s College London, London WC2R 2LS, UK
2 Institut Gaspard-Monge, Université Paris-Est, 77454 Marne-la-Vallée, France

3 Digital Ecosystems & Business Intelligence Institute, Curtin University
GPO Box U1987 Perth WA 6845, Australia

{mac,csi,pississo}@dcs.kcl.ac.uk

Abstract. This paper deals with the approximate string-matching prob-
lem with Hamming distance. The approximate string-matching with
k-mismatches problem is to find all locations at which a query of length
m matches a factor of a text of length n with k or fewer mismatches. The
approximate string-matching algorithms have both pleasing theoretical
features, as well as direct applications, especially in computational
biology. We consider a generalisation of this problem, the fixed-length ap-
proximate string-matching with k-mismatches problem: given a text t, a
pattern x and an integer �, search for all the occurrences in t of all factors
of x of length � with k or fewer mismatches with a factor of t. We present
a practical parallel algorithm of comparable simplicity that requires only
O(nm��/w�

p
) time, where w is the word size of the machine (e.g. 32 or 64

in practice) and p the number of processors. Thus the algorithm’s perfor-
mance is independent of k and the alphabet size |Σ|. The proposed parallel
algorithm makes use of message-passing parallelism model, and word-level
parallelism for efficient approximate string-matching.

Keywords: string algorithms, parallel algorithms, approximate string-
matching.

1 Introduction

The problem of finding factors of a text similar to a given pattern has been
intensively studied over the last thirty years and it is a central problem in a wide
range of applications, including file comparison, spelling correction, information
retrieval, and searching for similarities among biosequences.

One of the most common variants of the approximate string-matching problem
is that of finding factors that match the pattern with at most k-differences. The
first algorithm addressing exactly this problem is attributable to Sellers [15]. Sell-
ers algorithm requires O(mn) time, where m is the length of the query and n is
the length of the text. One of the first intensive study on the question is by Ukko-
nen [16]. A thread of practice-oriented results exploited the hardware word-level

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 92–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Parallel Algorithm for Fixed-Length Approximate String-Matching 93

parallelism of bit-vector operations. Wu and Manber in [18] showed anO(knm/w)
algorithm for the k-differences problem, wherew is the number of bits in a machine
word. Baeza-Yates and Navarro in [1] have shown a O(knm/w) variation on the
Wu-Manber algorithm, implying O(n) performance when km = O(w). Another
general solution based on existing algorithms can be found in [3].

In this paper, we consider the following versions of the sequence comparison
problem: given a solution for the comparison of A and B = bB̂, can one in-
crementally compute a solution for A versus B̂? and given a solution for the
comparison of A and B̂, can one incrementally compute a solution for A versus
B̂c? Here b and c are additional symbols. By solution we mean some encoding of
a relevant portion of the traditional dynamic programming matrix D computed
for comparing A and B.

Landau, Myers and Schmidt in [8] demonstrated the power of efficient algo-
rithms answering the above questions, with a variety of applications to computa-
tional problems such as “the longest common subsequence problem”,“the longest
prefix approximate match problem”, “approximate overlaps in the fragment as-
sembly problem”, “cyclic string comparison” and “text screen updating”.

The above ideas are the bases of the fixed-length approximate string-matching
problem: given a text t of length n, a pattern x of length m and an integer �,
compute the optimal alignment of all factors of x of length � with factors of t.
Iliopoulos, Mouchard and Pinzon in [7] presented the Max-Shift algorithm, a
bit-vector algorithm that requires O(nm��/w�) time and its performance is inde-
pendent of k. As such, it can be used to compute blocks of dynamic programming
matrix as the 4-Russians algorithm (see [19]).

In this paper, we consider the fixed-length approximate string-matching with
k-mismatches problem: given a text t, a pattern x and an integer �, search for
all the occurrences in t with k or fewer mismatches of all factors of x of length �.
There has been ample work in the literature for devising parallel algorithms for
different models and platforms, for the approximate string-matching problem [2],
[4], [6], [10], [13]. We design and analyse a practical parallel algorithm for address-
ing the fixed-length approximate string-matching problem with k-mismatches in
O(nm��/w�

p) time. Thus the algorithm’s performance is independent of k and
the alphabet size |Σ| (provided that a letter fits in a computer word). The pro-
posed algorithm makes use of message-passing parallelism model, and word-level
parallelism for efficient approximate string matching.

The rest of the paper is structured as follows. In Section 2, the basic definitions
that are used throughout the paper are presented. In Section 3, we formally
define the problem solved in this paper. In Sections 4 and 5, we present the
sequential and the parallel algorithm, respectively. In Section 6, we present the
experimental results of the proposed algorithm. Finally, we briefly conclude in
Section 7.

2 Basic Definitions

A string or sequence is a succession of zero or more symbols from an alphabet
Σ of cardinality s ; the string with zero symbols is denoted by ε. The set of

94 M. Crochemore, C.S. Iliopoulos, and S.P. Pissis

all strings over the alphabet Σ is denoted by Σ∗. A string x of length m is
represented by x[1 . .m], where x[i] ∈ Σ for 1 ≤ i ≤ m. The length of a string
x is denoted by |x|. We say that Σ is bounded when s is a constant, unbounded
otherwise. A string w is a factor of x if x = uwv for u, v ∈ Σ∗.

Consider the sequences x and y with x[i], y[i] ∈ Σ∪{ε}. If x[i] �= y[i], then we
say that x[i] differs from y[i]. We distinguish among the following three types of
differences:

1. A symbol of the first sequence corresponds to a different symbol of the second
one, then we say that we have a mismatch between the two characters, i.e.,
x[i] �= y[i].

2. A symbol of the first sequence corresponds to “no symbol” of the second
sequence, that is x[i] �= ε and y[i] = ε. This type of difference is called a
deletion.

3. A symbol of the second sequence corresponds to “no symbol” of the first
sequence, that is x[i] = ε and y[i] �= ε. This type of difference is called an
insertion.

As an example of the types of differences, see Figure 1.

1 2 3 4 5 6 7 8

String x: B A D F E ε C A
| | | | |

String y: B C D ε E B C A

Fig. 1. Types of differences: mismatch in position 2 (A, C), deletion in position 4 (F, ε),
insertion in position 6 (ε, B)

Another way of seeing this difference is that one can transform the x sequence
to y by performing operations. The edit distance, δE(x, y), between strings x and
y, is the minimum number of operations required to transform x into y. These
operations are Replacement of a mismatched symbol, a Deletion or an Insertion
of a symbol. The edit distance is symmetrical, and it holds 0 ≤ δE(x, y) ≤
max(|x|, |y|).

Let t = t[1 . . n] and x = x[1 . .m] with m ≤ n. We say that x occurs at
position q of t with at most k-differences (or equivalently, a local alignment of
x and t at position q with at most k-differences), if t[q] . . . t[r], for some r > q,
can be transformed into x by performing at most k of the following operations:
inserting, deleting or replacing a symbol.

The Hamming distance δH is defined only for strings of the same length. For
two strings x and y, δH(x, y) is the number of places in which the two strings
differ, i.e. have different characters. Formally

δH(x, y) =
|x|∑
i=1

1x[i]�=y[i] ,where 1x[i]�=y[i] =
{

1, if x[i] �= y[i]
0, otherwise (1)

The Hamming distance is symmetrical, and it holds 0 ≤ δH(x, y) ≤ |x|.

A Parallel Algorithm for Fixed-Length Approximate String-Matching 95

3 Problem Definition

The focus is on computing matrix M , which contains the number of mismatches
of all factors of pattern x of length � and any contiguous factor of the text t of
length �.

Example. Let the text t=x=GGGTCTA and �=3. Table 1 shows the matrixM .

Table 1. Matrix M for t = x = GGGTCTA and � = 3
0 1 2 3 4 5 6 7

ε G G G T C T A

0 ε 0 0 0 0 0 0 0 0
1 G 1 0 0 0 1 1 1 1
2 G 2 1 0 0 1 2 2 2
3 G 3 2 1 0 1 2 3 3
4 T 3 3 2 1 0 2 2 3
5 C 3 3 3 2 2 0 3 2
6 T 3 3 3 3 2 3 0 3
7 A 3 3 3 3 3 2 3 0

Example. Let the text t = GTGAACT , x = GTCACGT and � = 3. Table 2
shows the matrix M .

Table 2. Matrix M for t = GTGAACT , x = GTCACGT and � = 3
0 1 2 3 4 5 6 7

ε G T G A A C T

0 ε 0 0 0 0 0 0 0 0
1 G 1 0 1 0 1 1 1 1
2 T 2 2 0 2 1 2 2 1
3 C 3 3 3 1 3 2 2 3
4 A 3 3 3 3 1 2 3 2
5 C 3 3 3 3 3 2 1 3
6 G 3 2 3 2 3 3 2 1
7 T 3 3 1 3 2 3 3 2

The fixed-length approximate string-matching with at most k-mismatches prob-
lem can be formally defined as follows.

Problem 1. Given a text t of length n, a pattern x of length m and an integer
�, find all factors of x of length � that match any contiguous factor of t of length
� with at most k-mismatches.

96 M. Crochemore, C.S. Iliopoulos, and S.P. Pissis

4 The Bit-Vector-Mismatches Algorithm

Iliopoulos, Mouchard and Pinzon in [7] presented the Max-Shift algorithm, a
bit-vector algorithm that solves the fixed-length approximate string-matching
problem: given a text t of length n, a pattern x of length m and an integer �,
compute the optimal alignment of all factors of x of length � and a factor of
t. The focus of the Max-Shift algorithm is on computing matrix D′, which
contains the best scores of the alignments of all factors of pattern x of length �
and any contiguous factor of the text t.

The Max-Shift algorithm makes use of word-level parallelism in order to
compute matrix D′ efficiently, similar to the manner used by Myers in [12]. The
algorithm is based on the O(1) time computation of each D′[i, j] by using bit-
vector operations, under the assumption that � ≤ w, where w is the number
of bits in a machine word or O(�/w)-time for the general case. The algorithm
maintains a bit-vector matrix B[0 . .m, 0 . . n], where the bit integer B[i, j], holds
the binary encoding of the path in D′ to obtain the optimal alignment at i, j
with the differences occurring as leftmost as possible.

Here the key idea is to devise a bit-vector algorithm for the fixed-length ap-
proximate string-matching with at most k-mismatches problem. We maintain
the bit-vector B[i, j] = b� . . b1, where bλ = 1, 1 ≤ λ ≤ �, if there is a mismatch
of a contiguous factor of the text t[i − � + 1 . . i] and x[j − � + 1 . . j] in the λth

position. Otherwise we set bλ = 0.
Given the restraint that the integer � is less than the length of the computer

word w, then the bit-vector operations allow to update each entry of the ma-
trix B in constant time (using “shift”-type of operation on the bit-vector). The
maintenance of the bit-vector is done via operations defined as follows:

1. shiftc(x): shifts and truncates the leftmost bit of x.
2. δH(x, y): returns the minimum number of replacements required to transform
x into y

The Bit-Vector-Mismatches algorithm for computing the bit-vector matrix
B and matrix M is outlined in Figure 2.

Example. Let the text t = x = GGGTCTA and � = 3. Table 3 shows the bit-
vector matrix B. Consider the case when i = 7 and j = 5. Cell B[7, 5] = 101
denotes that factors t[3 . . 5] = CTA and t[5 . . 7] = GTC have a mismatch in
position 1, a match in position 2, and a mismatch in position 3, resulting in a
total of two mismatches, as shown in cell M [7, 5] (see Table 1).

Assume that the bit-vector matrix B[0 . .m, 0 . . n] is given. We can use the
function ones(v), which returns the number of 1’s (bits set on) in the bit-vector
v, to compute matrix M (see Figure 2, line 11).

Theorem 1. Given the text t = t[1 . . n], the pattern x = x[1 . .m], the motif
length �, and the size w of the computer word, the Bit-Vector-Mismatches
algorithm correctly computes the matrix M in O(nm��/w�) units of time.

A Parallel Algorithm for Fixed-Length Approximate String-Matching 97

Bit-Vector-Mismatches
�Input: t, n, x, m, �
�Output: B, M

1 begin

2 � Initialisation
3 for i ← 0 until n do

4 B[0, i] ← 0; M [0, i] ← 0
5 for i ← 0 until m do

6 B[i, 0] ← min(i, �) 1’s; M [i, 0] ← min(i, �)
7 � Matrix B and Matrix M computation
8 for i ← 1 until m do

9 for j ← 1 until n do

10 B[i, j] ← shiftc(B[i − 1, j − 1]) or δH(x[i], t[j])
11 M [i, j] ← ones(B[i, j])
12 end

Fig. 2. TheBit-Vector-Mismatchesalgorithm for computingmatrix B andmatrix M

Table 3. The bit-vector matrix B for t = x = GGGTCTA and � = 3
0 1 2 3 4 5 6 7

ε G G G T C T A

0 ε 0 0 0 0 0 0 0 0
1 G 1 0 0 0 1 1 1 1
2 G 11 10 00 00 01 11 11 11
3 G 111 110 100 000 001 011 111 111
4 T 111 111 101 001 000 011 110 111
5 C 111 111 111 011 011 000 111 101
6 T 111 111 111 111 110 111 000 111
7 A 111 111 111 111 111 101 111 000

Proof. Without loss of generality, assume that we want to compute cell M [i, j],
where

M [i, j] = δH(x[i− �+ 1 . . i], t[j − � + 1 . . j]) (2)

It is not difficult to see that,

δH(x[i−�+1 . . i], t[j−�+1 . . j]) = δH(x[i−�+1 . . i−1], t[j−�+1 . . j−1])+δH(x[i], t[j])

(3)

Let last(b[�] . . b[1]) be an operation that returns the leftmost bit of the bit-vector
b. It follows that,

δH(x[i−�+1 . . i−1], t[j−�+1 . . j−1]) = M [i−1, j−1]−last(B[i−1, j−1]) (4)

98 M. Crochemore, C.S. Iliopoulos, and S.P. Pissis

From Equations 2, 3 and 4,

M [i, j] = M [i− 1, j − 1]− last(B[i− 1, j − 1]) + δH(x[i], t[j]) (5)

Equation 5 is equivalent to line 10 of the Bit-Vector-Mismatches algorithm.
�	

Hence, this algorithm runs in O(nm) under the assumption that � ≤ w and its
space complexity is reduced to O(n) by noting that each row of B depends only
on its immediately preceding row.

5 The Parallel-Bit-Vector-Mismatches Algorithm

The next proposed parallel algorithm makes use of the message-passing paral-
lelism model by using p processors. The following assumptions for the model
of communications in the parallel computer are made. The parallel computer
comprises a number of nodes. Each node comprises one or several identical pro-
cessors interconnected by a switched communication network. The time taken to
send a message of size n between any two nodes is independent of the distance
between nodes and can be modelled as tcomm = ts +ntw, where ts is the latency
or start-up time of the message, and tw is the transfer time per data. The links
between two nodes are full-duplex and single-ported: a message can be trans-
ferred in both directions by the link at the same time, and only one message can
be sent and one message can be received at the same time.

We will use the functional decomposition, in which the initial focus is on the
computation that is to be performed rather than on the data manipulated by
the computation. We assume that both text t and pattern x are stored locally
on each processor. This can be done by using a one-to-all broadcast operation in
(ts + tw(n+m)) log p communication time, which is asymptotically O(n log p).

The key idea behind parallelising the Bit-Vector-Mismatches algorithm,
is that cell B[i, j] can be computed only in terms of B[i − 1, j − 1]. Based on
this, if we partition the problem of computing matrix B (and M) into a set of
diagonal vectors Δ0, Δ1, . . , Δn+m, as shown in Equation 6, the computation of
each one of these would be independent, and hence parallelisable.

Δν [x] =

⎧⎨
⎩
B[ν − x, x] : 0 ≤ x ≤ ν, (a)
B[m− x, ν −m+ x] : 0 ≤ x < m+ 1, (b)
B[m− x, ν −m+ x] : 0 ≤ x < n+m− ν + 1, (c)

(6)

where,
(a) if 0 ≤ ν < m
(b) if m ≤ ν < n
(c) if n ≤ ν < n+m+ 1

It is possible that in a certain diagonal Δν , ν > 0, a processor will need a cell or
a pair of cells, which were not computed on its local memory in diagonal Δν−1.
We need a communication pattern in each diagonal Δν , for all 0 ≤ ν < n+m,
which minimises the data exchange between the processors. It is obvious, that

A Parallel Algorithm for Fixed-Length Approximate String-Matching 99

in each diagonal, each processor needs only to communicate with its neighbours.
In particular, in each diagonal, each processor needs to swap the boundary cells
with its left and right neighbour processor.

An outline of the Parallel-Bit-Vector-Mismatches algorithm in each
diagonal Δν , for all 0 ≤ ν < n+m+ 1, is as follows:

Step 1. Each processor is assigned with |Δν |/p cells (without loss of generality).
Step 2. Each processor computes each allocated cell using the Bit-Vector-
Mismatches algorithm.
Step 3. Processors communication involving point-to-point boundary cells swaps.

Theorem 2. Given the text t = t[1 . . n], the pattern x = x[1 . .m], the mo-
tif length �, the size w of the computer word, and the number of processors p,
the Parallel-Bit-Vector-Mismatches algorithm computes the matrix M

in O(nm��/w�
p) units of time.

Proof. We partition the problem of computing matrix B into a set of n+m+ 1
diagonal vectors, thus O(n) supersteps. In step 1, the allocation procedure runs
in O(1) time. In step 2, the cells computation requires O(m��/w�

p) time. In step 3,
the data exchange between the processors involves O(1) point-to-point message
transfers. Hence, asymptotically, the overall time is O(nm��/w�

p). �	
Hence, the parallel algorithm runs in O(nm

p) under the assumption that � ≤ w,
and its space complexity is reduced to O(n) by noting that each diagonal vector
Δν of matrix B, for all 2 ≤ ν ≤ n+m, depends only on Δν−2.

6 Experimental Results

In order to evaluate the parallel efficiency of our algorithm, we implemented
the Bit-Vector-Mismatches algorithm in ANSI C language and parallelised
it with the use of the MPI library. Both implementations, the sequential and
the parallel algorithm, are available at a website1, which has been set up for
maintaining the source code and the documentation.

Experimental tests were run on 1 up to 16 processing nodes (2.6 GHz AMD
Opteron) of a cluster architecture. As an input, DNA sequences of the mouse
chromosome X were used, retrieved from the Ensembl genome database. Exper-
imental results regarding the execution time and measured speed-up are illus-
trated in Figures 3 and 4, respectively. The speed-up is calculated as the ratio
of elapsed time with p processors to elapsed time with one processor.

The presented experimental results demonstrate a good scaling of the code.
The proposed algorithm scales well even for small problem sizes. As expected
in some cases, when increasing the problem size, the algorithm achieves a lin-
ear speed-up, confirming our theoretical results. Further tests were conducted
for different values of fixed-length �, with no difference observed, regarding the
execution time.
1 http://www.dcs.kcl.ac.uk/pg/pississo/

100 M. Crochemore, C.S. Iliopoulos, and S.P. Pissis

 10

 100

 1000

 10000

 50000 100000 200000 400000

T
im

e
(lo

g
s)

DNA sequence length

p=1
p=2
p=4
p=8

p=16

Fig. 3. Execution time for t = x and � = 20

 1

 10

 50000 100000 200000 400000

S
pe

ed
-u

p
(lo

g)

DNA sequence length

p=1
p=2
p=4
p=8

p=16

Fig. 4. Measured speed-up for t = x and � = 20

7 Conclusion

We have presented a practical parallel algorithm that solves a generalisation of
the approximate string-matching problem. In particular, the proposed parallel al-
gorithm solves the fixed-length approximate string matching with k-mismatches
problem in O(nm��/w�

p) time, which is O(nm
p), in practical terms. It is consider-

ably simple and elegant, it achieves a theoretical and practical linear speed-up,
it does not require text preprocessing, it does not use/store look up tables and
it does not depend on the number of differences k and the alphabet size |Σ|.

A Parallel Algorithm for Fixed-Length Approximate String-Matching 101

References

1. Baeza-Yates, R.A., Navarro, G.: A faster algorithm for approximate string match-
ing. In: Hirschberg, D., Myers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 1–23.
Springer, Heidelberg (1996)

2. Bertossi, A.A., Luccio, F., Pagli, L., Lodi, E.: A parallel solution to the approximate
string-matching problem. The Computer Journal 35(5), 524–526 (1992)

3. Crochemore, M., Iliopoulos, C.S., Pinzon, Y.J.: Speeding up Hirschberg and Hunt-
Szymanski LCS algorithms. Fundamenta Informaticae 56(1,2), 89–103 (2002)

4. Galper, A.R., Brutlag, D.R.: Parallel similarity search and alignment with the
dynamic programming method. Technical Report KSL 90–74. Stanford University,
p. 14 (1990)

5. Hall, N.: Advanced sequencing technologies and their wider impact in microbiology.
J. Exp. Biol. 210(pt 9), 1518–1525 (2007)

6. Huang, X.: A space-efficient parallel sequence comparison algorithm for a Message-
Passing Multiprocessor. International Journal of Parallel Programming 18(3), 223–
239 (1990)

7. Iliopoulos, C.S., Mouchard, L., Pinzon, Y.J.: The Max-Shift algorithm for approx-
imate string matching. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A.
(eds.) WAE 2001. LNCS, vol. 2141, pp. 13–25. Springer, Heidelberg (2001)

8. Landau, G., Myers, G., Schmidt, J.P., Schmidt, P.: Incremental String Comparison.
SIAM Journal on Computing 27, 557–582 (1995)

9. Landau, G.M., Vishkin, U.: Fast string matching with k differences. Journal of
Computer and Systems Sciences 37(1), 63–78 (1988)

10. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching.
Journal of Algorithms 10(2), 157–169 (1989)

11. Margulies, E.H., Birney, E.: Approaches to comparative sequence analysis: towards
a functional view of vertebrate genomes. Nat. Rev. Genet. 9(4), 303–313 (2008)

12. Myers, E.W.: A Fast Bit-Vector Algorithm for Approximate String Matching Based
on Dynamic Programming. Journal of the ACM 46, 395–415 (1999)

13. dos Reis, C.C.T.: Approximate string-matching algorithm using parallel methods
for molecular sequence comparisons. In: Portuguese conference on Artificial intel-
ligence. EPIA 2005, pp. 140–143 (2005)

14. Schuster, S.C.: Next-generation sequencing transforms today’s biology. Nature
Methods 5(1), 16–18 (2007)

15. Seller, P.H.: The theory and computation of evolutionary distances: Pattern recog-
nition. Journal of Algorithms 1(4), 359–373 (1980)

16. Ukkonen, E.: Finding approximate patterns in strings. J. of Algorithms 6(1), 132–
137 (1985)

17. Wold, B., Myers, R.: Sequence consensus methods for functional genomics. Nature
Methods 5(1), 19–21 (2007)

18. Wu, S., Manber, U.: Fast text searching allowing errors. CACM 35(10), 83–91
(1992)

19. Wu, S., Manber, U., Myers, G.: A subquadratic algorithm for approximate limited
expression matching. Algorithmica 15(1), 50–67 (1996)

Covering Analysis of the Greedy Algorithm

for Partial Cover

Tapio Elomaa and Jussi Kujala

Department of Software Systems
Tampere University of Technology

P.O. Box 553, FI-33101 Tampere, Finland
elomaa@cs.tut.fi, jussi.kujala@iki.fi

Abstract. The greedy algorithm is known to have a guaranteed ap-
proximation performance in many variations of the well-known minimum
set cover problem. We analyze the number of elements covered by the
greedy algorithm for the minimum set cover problem, when executed for
k rounds. This analysis quite easily yields in the p-partial cover problem
over a ground set of m elements the harmonic approximation guarantee
H(�pm�) for the number of required covering sets. Thus, we tie together
the coverage analysis of the greedy algorithm for minimum set cover and
its dual problem partial cover.

1 Introduction

Minimum Set Cover is a fundamental combinatorial optimization problem
with many practical applications. It is one of the oldest problems known to be
NP-complete [1,2]. The goal in Minimum Set Cover is to cover all elements
of the ground set by using as few subsets as possible from a given collection.

What also makes this problem very interesting is the fact that it can be
approximated efficiently within guaranteed performance by the straightforward
greedy algorithm [3,4,5]. Greedy approximation of Minimum Set Cover under-
lies approximation algorithms in many application fields; e.g., in machine learn-
ing [6,7], combinatorial pattern matching [8,9], and bioinformatics [10,11,12].
Thus, Minimum Set Cover has received a lot of analytical attention over the
years. The endmost approximation possibilities of the problem and the perfor-
mance of the greedy algorithm are well understood topics today.

Partial Cover [6] is a generalization of Minimum Set Cover in which one
asks how many subsets are required to cover at least a fraction p, 0 < p ≤ 1, of the
elements of the ground set. The greedy algorithm can be used also to approximate
this problem, but it has to be changed in order to cope with Partial Cover.
The required modifications, though, are small.

In this paper we draw a connection that has not been explicit before. We show
that directly by analyzing the element covering performance of the greedy algo-
rithm for Minimum Set Cover during its execution, one can obtain reasonably
tight performance bounds for the p-Partial Cover problem. The bound that
we obtain for a ground set of m elements is the harmonic bound H(�pm�), which

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 102–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Covering Analysis of the Greedy Algorithm for Partial Cover 103

is the best known performance guarantee for the weighted Partial Cover prob-
lem [13]. A somewhat tighter bound is known to hold for the unweighted version
of the problem [14].

Our analysis asks how large portion of the elements in the ground set can be
covered by using at most k subsets. We analyze the relation between the number
of covered elements when the subsets are selected greedily and that when the
subsets are chosen optimally. We then apply this relationship to the Partial
Cover problem to obtain the harmonic bound.

The remainder of this paper is organized as follows. In Section 2 we briefly
review work on Minimum Set Cover together with its variants and recapitulate
the greedy algorithm for Partial Cover. The element covering analysis for the
greedy algorithm is presented in Section 3 and its application to partial covers is
the topic of Section 4. We consider possibilities to extend this approach further
in Section 5. A brief survey of related work is given in Section 6 before concluding
this paper in Section 7.

2 Minimum Set Cover and the Greedy Algorithm

A collection S = {S1, . . . , Sn } of subsets of some finite set U is a cover of U if⋃n
i=1 Si = U . Moreover, S′ ⊆ S is a subcover of U if S′ itself is a cover of U . In

the classical Minimum Set Cover problem one is given as an instance a finite
set U and a cover S = {S1, . . . , Sn } of U and is requested to find a subcover
S′ ⊆ S of U of minimum cardinality. To put this more exactly, in terms of the
approximation setting Minimum Set Cover problem is as follows:

Instance: A cover S = {S1, . . . , Sn } of U .
Solution: A subcover S′ ⊆ S of U .
Measure: Cardinality of the subcover, |S′|.
In the decision version of this problem one asks whether there exists a subcover
of cardinality at most K. This problem was shown to be NP-complete by Karp
[1] through a polynomial-time reduction from the Vertex Cover problem.
Throughout this paper we denote the cardinality of the ground set U by m.

The greedy algorithm for the set cover problem is one of the best-known
polynomial-time approximation algorithms. It chooses at each step the unused
set which covers the largest number of remaining elements. This algorithm was
shown by Johnson [3] and Lovász [4] to have approximation ratio no worse
than H(m), where H(m) = 1 + 1/2 + · · · + 1/m is the mth harmonic number.
Recall that lnm < H(m) ≤ lnm+ 1. Chvátal [5] extended the harmonic perfor-
mance ratio also to the weighted version of Minimum Set Cover. This time the
greedy selection picks at each step the covering set with the minimum cost per
remaining element.

Feige [15] proved— using interactive proof techniques— that no polynomial
time algorithm can approximate Minimum Set Cover within (1 − ε) lnm for
any ε > 0, unless NP ⊆ DTIME(nlog log n). Hence, under this plausible structural
complexity assumption, the performance ratio of any polynomial time algorithm

104 T. Elomaa and J. Kujala

can improve on the harmonic bound of the greedy algorithm by at most o(lnm).
The analysis of the greedy algorithm for Minimum Set Cover was essentially
completed by Slav́ık [14,16] who proved a performance ratio of exactly lnm −
ln lnm+Θ(1) for the algorithm. More precisely

lnm− ln lnm− 0.31 < |G|/|0| < lnm− ln lnm+ 0.78,

where G is the cover selected by the greedy algorithm and O is the optimal cover.
The proof technique of Slav́ık was to recursively define the “greedy numbers”

N(k, l), which correspond to the size of the smallest ground set U for which it
is possible to have a cover of U with the optimal cardinality l and greedy cover
of size k. The same technique can be adapted to also apply for fractional [4,17]
and partial covers [6].

Two natural variations of Minimum Set Cover are its weighted version and
d-Set Cover, where all members of the cover S have cardinality of at most d. In
the weighted Minimum Set Cover all elements of S have a positive cost asso-
ciated with them and the goal is to find a subcover of minimum total cost. Both
variations, naturally, are NP-complete, since they contain the original problem
as a special case. The greedy algorithm also approximates these problems within
the harmonic bound in polynomial time [3,4,5].

A somewhat more general NP-hard set covering problem is Partial Cover
[6]. We say that S′ ⊆ S is a p-partial cover of U if

∣∣∣∣∣∣
⋃

Sj∈S′
Sj

∣∣∣∣∣∣
≥ pm.

An instance of the Partial Cover problem consists of a finite set U , a finite
cover S = {S1, . . . , Sn } of U , and a real p, 0 < p ≤ 1. The goal is to find a
p-partial cover S′ ⊆ S of U of minimum cardinality:

Instance: A cover S = {S1, . . . , Sn } of U and a number p, 0 < p ≤ 1.
Solution: A p-partial cover S′ ⊆ S of U .
Measure: Cardinality of the p-partial cover, |S′|.

Table 1 shows the greedy algorithm for the weighted Partial Cover prob-
lem. In it one searches at each step for the unused subset that covers as many
elements as possible— though, not excessive elements— with as low average
cost per element as possible. When the required fraction of elements covered has
been reached, the algorithm halts. Observe that in Step 5 of the algorithm the
elements of the newly chosen covering subset are removed from the remaining
subsets. Here it has to be done to keep the average cost per element of remain-
ing subsets an informative measure. However, the same cleaning of remaining
subsets can be carried out in the unweighted case as well without any harm.
In the following we assume that such a cleaning operation is part of the greedy
algorithm. The algorithm of Table 1 is very similar to the greedy algorithm for
the weighted Minimum Set Cover problem [5,6].

Covering Analysis of the Greedy Algorithm for Partial Cover 105

Table 1. The greedy algorithm for the weighted Partial Cover

Input: A cover S = {S1, . . . , Sn } of a finite set U , positive costs c = { c1, . . . , cn } of
the covering sets, and a number p.

Output: A p-partial cover S′ ⊂ S of U .

1. S′ ← ∅.
2. Find out the number r of elements of U that still need to be covered in order to

obtain a p-partial cover:

r ← �pm� −
∣∣∣∣∣∣

⋃
Sj∈S′

Sj

∣∣∣∣∣∣
.

3. If r ≤ 0, then return S′.
4. Find Si ∈ S \ S′, Si 	= ∅, that minimizes the quotient

ci

min(r, |Si|) .

5. S′ ← S′ ∪ Si.
For each Sj ∈ S \ S′: Sj ← Sj \ Si.
Go to step 2.

The straightforward analysis of the greedy method for Partial Cover be-
comes quite complicated because the optimal solution may cover a different set
of elements than those chosen by the greedy algorithm. Thus, the methods used
by Johnson [3], Lovász [4], and Chvátal [5] to establish the harmonic bound in
case of complete covers do not generalize directly to this problem.

Nevertheless, Kearns [6] managed to prove the weak harmonic performance
guarantee of 2H(m) + 3 for the greedy algorithm by bounding separately the
weights of those elements that are covered by the greedy algorithm but do not
belong to the optimal cover, and those that are members of both solutions. Using
a completely different approach Slav́ık [13] proved that for the weighted p-partial
cover problem a bound similar to the classical one holds: The performance ratio
of the greedy algorithm for this problem is no worse than H(�pm�). One can con-
struct an example to show that this bound is also tight [13]. The bound contains,
as special cases, the classical harmonic bounds for Minimum Set Cover.

This time the proof technique of Slav́ık was to contrast directly the weights
of the optimal and greedy cover from iteration to iteration in the execution of
the greedy algorithm. Slav́ık’s [14] exact analysis of the Minimum Set Cover
problem also holds for Partial Cover when the subsets are unweighted. Thus,
unweighted Partial Cover can be approximated using the greedy algorithm
with ratio ln�pm� − ln ln�pm�+Θ(1).

Subsequent Minimum Set Cover approximation approaches— aiming to
improve additive constants, which is the most one can hope for after Feige’s
[15] proof— include Srinivasan’s [17] application of the randomized rounding

106 T. Elomaa and J. Kujala

technique [18] to obtain improved performance ratio in special cases. Another line
of research has been the work of Halldórsson [19,20] who applied a local improve-
ments modification to the greedy algorithm to obtain an improved upper bound
of H(m)−0.43. In this approach one applies optimization techniques to the sub-
sets that are small enough. This approach was taken further by Duh and Fürer
[21] in their semi-local optimization approach. This leads to the polynomial-
time approximation algorithm with the best worst-case performance guarantee
of H(m)− 1/2.

Slav́ık’s [13] proof of the harmonic bound is based on an analysis of the cost
per remaining relevant element of a subset chosen to the greedy partial cover.
Unfortunately, this does not lead to an intuitive proof. In the following we show
that the harmonic performance guarantee can be obtained directly through an
analysis of the greedy algorithm for Minimum Set Cover.

The greedy algorithm works in rounds choosing the subsets to the evolving
cover one by one. Hence, it is natural to consider how many elements are covered
by the greedy algorithm after r rounds and compare it to the optimal covering in
k rounds. Viewing the greedy algorithm as gradually covering more and more el-
ements gives a concrete connection between its performance in the two problems.
The analysis easily yields the harmonic bound for Partial Cover. This sim-
plified proof is of interest because of the importance and wide use of Minimum
Set Cover and its generalization.

3 Covering Analysis of the Greedy Algorithm

Let us analyze the greedy set covering algorithm from the point of view of
its covering performance. We show that the number of elements covered by r
greedily chosen subsets is not much less than the total number of elements in
k, k ≤ r, optimally chosen sets of S. Here the r greedily or k optimally chosen
subsets do not have to constitute a cover for the whole of U . However, setting r
and k large enough, will eventually yield a full cover of U .

Let gi denote the size of the subset chosen by the greedy algorithm on the ith
round and let Gr =

∑r
i=1 gi. The maximum number of elements covered by k

optimally chosen subsets is denoted by Ok.

Lemma 1. For r ≥ k ≥ 1 the following holds

Gr ≥
(

1−
(

1− 1
k

)r)
Ok.

Proof. By the pigeonhole principle the largest subset g1, which is chosen by the
greedy algorithm on the first round, must contain at least as many elements as
there on average are in the k maximally-covering sets, for any k; i.e., g1 ≥ Ok/k.
The pigeonhole principle applies also on the second and subsequent rounds.
However, g2 can only be guaranteed to have size (Ok−g1)/k. In general, on round
n + 1, n ≥ 1, one must reduce the number of elements in the subsets already

Covering Analysis of the Greedy Algorithm for Partial Cover 107

chosen by the greedy algorithm on previous rounds, Gn, from the maximum
number of elements covered by k subsets and we have

gn+1 ≥ Ok −Gn

k
. (1)

Let us, thus, consider the sequence{
x1 = Ok/k;
xn+1 = xn − (xn/k) = (1− 1/k)xn,

for which it holds

xn =
(

1− 1
k

)n−1
Ok

k
. (2)

By induction we can show that Gn ≥
∑n

i=1 xi. The base case was already stated
above. Let us, then, assume that the claim holds for values less than n. Now, by
inequality (1), the inductive hypothesis, and the definition of the sequence, we get

Gn+1 = Gn + gn+1

≥ Gn +
Ok −Gn

k

=
Ok

k
+

(
1− 1

k

)
Gn

≥ Ok

k
+

(
1− 1

k

) n∑
i=1

xi

=
Ok

k
+

n∑
i=1

(
1− 1

k

)
xi

=
Ok

k
+

n∑
i=1

xi+1

= x1 +
n+1∑
i=2

xi

=
n+1∑
i=1

xi.

Combining this with equality (2) gives the lower bound for Gr:

Gr ≥
r∑

i=1

xi

=
r∑

i=1

(
1− 1

k

)i−1
Ok

k

=
(

1−
(

1− 1
k

)r)
Ok,

where the last equality is by the value of a geometric series.

108 T. Elomaa and J. Kujala

Particularly interesting special case is r = k, which corresponds to asking what
is the performance guarantee of the greedy algorithm with respect to the number
of covered elements. This question has independently been studied by Hochbaum
and Pahtria [22,23], who also obtained the following results.

By the above result, for example, two greedily chosen subsets are guaranteed
to cover at least 3/4 of the largest number of elements that can, on the whole,
be covered by two subsets. Asymptotically the lower bound behaves as follows
when r = k. One can simplify the above result by recalling that for all x

lim
n→∞

(
1 +

x

n

)n

= ex

and observing that (1−(1−1/k)k) is decreasing, which gives the greedy algorithm
the following approximation guarantee in the number of elements covered:

Gk ≥
(

1− 1
e

)
Ok.

4 Application of the Analysis to Partial Cover

Let app now denote the number of subsets chosen by the greedy algorithm
in order to cover at least a fraction p of the m elements in the ground set.
Respectively, opt is the minimum number of subsets required to cover at least
proportion �pm� of the elements.

Theorem 1. app/opt ≤ H(�pm�).
Proof. Without loss of generality, we can assume that Oopt = �pm�. This can be
accomplished by removing some of the elements from the sets belonging to the
optimal solution. The remaining elements still constitute a p-partial cover of U
and, therefore, the value of the optimal solution does not change. On the other
hand, this modification cannot improve the solution of the greedy algorithm.

Observe that the case opt = 1 is not interesting, because the greedy algorithm
will also output the one subset that covers a fraction p of U . Hence, in this case
app = opt. In the following we consider only partial covers for which opt ≥ 2.

Let us consider the least r such that Gr ≥ Oopt−c for some constant c. Thus,
by Lemma 1, we want to solve

(
1−

(
1− 1

opt

)r)
Oopt = Oopt − c⇔

−
(

1− 1
opt

)r

= − c

Oopt
.

Taking natural logarithms of both sides gives

−r ln
(

1− 1
opt

)
= lnOopt − ln c. (3)

Covering Analysis of the Greedy Algorithm for Partial Cover 109

Recalling that for x > −1 : ln(1 + x) ≤ x, where equality holds only for x = 0,
leads to

r

opt
< lnOopt − ln c. (4)

The r greedily selected subsets now cover Oopt − c elements. Thus, at most
c further subsets are needed to cover in total at least Oopt elements. Hence,
app ≤ �r�+ c ≤ r + 1 + c, and by inequality (4) we have

app

opt
≤ r + c+ 1

opt

< lnOopt − ln c+
c+ 1
opt

.

The right-hand side obtains its minimum value when c = opt, which further
yields

app

opt
≤ lnOopt − lnopt + 1 +

1
opt

.

Finally, because lnn > 1 + 1/n for all integers n ≥ 4, we only need to check
separately the cases opt = 3 and opt = 2 by substituting them and c = 1 to
equation (3), to obtain the desired result

app

opt
≤ lnOopt < H(Oopt) = H(�pm�).

The above derived harmonic bound H(�pm�) is the tight bound for weighted
Partial Cover [13], but Slav́ık’s [14] greedy numbers technique yields the
tight bound lnm − ln lnm + Θ(1) for the unweighted problem. He obtains the
tighter bound through a detailed analysis of the involved functions.

5 Further Application of the Analysis

Above we were eager to approximate the additive terms away in order to reach
the harmonic bound for Partial Cover. Let us briefly consider what happens
if they are not abstracted away.

Let

d = ln
(

1− 1
opt

)−opt

and substitute it to equation (3) to obtain

rd

opt
= lnOopt − ln c.

Recalling that app ≤ r + c+ 1 yields

app

opt
≤ r + c+ 1

opt

=
lnOopt − ln c

d
+
c+ 1
opt

.

110 T. Elomaa and J. Kujala

The right-hand side of this inequality will obtain its minimum value when c =
opt/d. Thus,

app

opt
≤ lnOopt

d
+

1 + ln d− lnopt

d
. (5)

This bound has the unfortunate property of not being independent of the value
of opt. Let us, thus, denote by dopt the value of d depending on the value of
opt. For instance, d2 = ln 4 ≈ 1.386 and asymptotically d∞ = 1.

How does the bound (5) behave in comparison to the harmonic one derived
above? Assuming that lnOopt is large, for small values of opt bound (5) will
be tighter than the harmonic one. However, dopt approaches one as the value
of opt increases and, thus, this bound eventually loses its advantage over the
harmonic bound. Moreover, as the value of opt is unknown, this performance
guarantee is not a very practical one.

6 Related Work

The covering analysis of the greedy set covering algorithm (Lemma 1) has been
settled in case r = k by Hochbaum [22,23,24]. The result is relatively well known
as Max Cover. The derivation of this result does not differ significantly from
that given in this paper.

Slav́ık was not the first author to show the tight harmonic approximation
bound for partial cover. This result is already contained in the more general
result of Wolsey from 1982 [25], although it is not a widespread fact.

The direct link between the covering analysis of the greedy set covering algo-
rithm and its performance for partial cover (Theorem 1) is, to the best of our
knowledge, an original contribution.

The cover of Minimum Set Cover S = {S1, . . . , Sn } can be seen as a
hypergraph over the vertices from the ground set U . Its dual problem is Minimum
Vertex Cover (VC) over the dual of this hypergraph, which inverts the roles of
hyperedges and vertices. The greedy approach and other algorithms for different
variations of the partial VC problem have been studied extensively in recent
years [26,27,28,29].

Several new variants of the Minimum Set Cover problem have been pro-
posed and analyzed lately. Let us just mention a few of them. In the red-blue
set cover [30] the ground set U contains red and blue elements and the aim is
to cover all of the blue elements and as few as possible of the red elements.
This is a strongly inapproximable problem [31]. A generalization of the red-blue
set cover, positive-negative partial set cover was introduced by Miettinen [32].
In multicover problems the requirement is to cover each element a prescribed
number of times. Also in this extension of Minimum Set Cover the greedy
algorithm and its variants yield good approximation results [33,34,35].

7 Conclusion

We have shown that covering analysis of the greedy algorithm for the Minimum
Set Cover problem quite easily yields the harmonic bound H(�pm�) for the

Covering Analysis of the Greedy Algorithm for Partial Cover 111

p-Partial Cover. This makes the connection between the classical problem and
its generalization explicit. The obtained bound is not the tightest one known to
hold for the unweighted problem. Nevertheless, it is clearly better than the one
that comes out of the analysis that bounds the sizes of the resulting sets.

As future work we leave studying whether the tighter performance guarantee
for the unweighted Partial Cover could be reached by means of covering
analysis. Also, the potential of this line of analysis for the weighted Partial
Cover was not explored in this work.

Acknowledgements

This work has been supported by the Academy of Finland.

References

1. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New
York (1972)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co, New York (1979)

3. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9(3), 256–278 (1974)

4. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math-
ematics 13, 383–390 (1975)

5. Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Op-
erations Research 4(3), 233–235 (1979)

6. Kearns, M.J.: The Computational Complexity of Machine Learning. MIT Press,
Cambridge (1990)

7. Kivinen, J., Mannila, H., Ukkonen, E.: Learning hierarchical rule sets. In: Proceed-
ings of the Fifth Annual ACM Conference on Computational Learning Theory, pp.
37–44. ACM Press, New York (1992)

8. Brazma, A., Jonassen, I., Ukkonen, E., Vilo, J.: Discovering patterns and subfam-
ilies in biosequences. In: States, D.J., Agarwal, P., Gaasterland, T., Hunter, L.,
Smith, R. (eds.) Proceedings of the Fourth International Conference on Intelligent
Systems for Molecular Biology, pp. 34–43. AAAI Press, Menlo Park (1996)

9. Brazma, A., Ukkonen, E., Vilo, J.: Discovering unbounded unions of regular pattern
languages from positive examples. In: Nagamochi, H., Suri, S., Igarashi, Y., Miyano,
S., Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 95–104. Springer, Heidelberg
(1996)

10. Li, M.: Towards a DNA sequencing theory. In: Proceedings of the Thirty-First An-
nual Symposium on Foundations of Computer Science, pp. 125–134. IEEE Com-
puter Society, Los Alamitos (1990)

11. Kivioja, T., Arvas, M., Saloheimo, M., Penttilä, M., Ukkonen, E.: Optimization
of cDNA-AFLP experiments using genomic sequence data. Bioinformatics 21(11),
2573–2579 (2005)

12. Rantanen, A., Mielikäinen, T., Rousu, J., Maaheimo, H., Ukkonen, E.: Planning op-
timal measurements of isotopomer distributions for estimation of metabolic fluxes.
Bioinformatics 22(10), 1198–1206 (2006)

112 T. Elomaa and J. Kujala

13. Slav́ık, P.: Improved performance of the greedy algorithm for partial cover. Infor-
mation Processing Letters 64(5), 251–254 (1997)

14. Slav́ık, P.: A tight analysis of the greedy algorithm for set cover. Journal of Algo-
rithms 25(2), 237–254 (1997)

15. Feige, U.: A threshold of ln n for approximating set cover. Journal of the
ACM 45(4), 634–652 (1998)

16. Slav́ık, P.: Approximation algorithms for set cover and related problems. PhD
thesis, State University of New York at Buffalo, Department of Computer Science,
Buffalo, NY (April 1998)

17. Srinivasan, A.: Improved approximation of packing and covering problems. In:
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Com-
puting, pp. 268–276. ACM Press, New York (1995)

18. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

19. Halldórsson, M.M.: Approximating set cover via local search. Technical Report
IS-RR-95-0002F, Japan Advanced Institute of Science and Technology (1995)

20. Halldórsson, M.M.: Approximating discrete collections via local improvements. In:
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 160–169. ACM Press, New York (1995)

21. Duh, R., Fürer, M.: Approximation of k-set cover by semi-local optimization. In:
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Comput-
ing, pp. 256–264. ACM Press, New York (1997)

22. Hochbaum, D.S.: Approximating covering and packing problems: set cover, vertex
cover, independent set, and related problems. In: Hochbaum, D.S. (ed.) Approx-
imation Algorithms for NP-hard Problems, pp. 94–143. PSW Publishing, Boston
(1997)

23. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach of maximum k-
coverage. Naval Research Quarterly 45, 615–627 (1998)

24. Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover
problems. SIAM Journal on Computing 11(3), 555–556 (1982)

25. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2(4), 385–393 (1982)

26. Hochbaum, D.S.: The t-vertex cover problem: Extending the half integrality frame-
work with budget constraints. In: Jansen, K., Hochbaum, D.S. (eds.) APPROX
1998. LNCS, vol. 1444, pp. 111–122. Springer, Heidelberg (1998)

27. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover
problem. Journal of Algorithms 39(2), 137–144 (2001)

28. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial cov-
ering problems. Journal of Algorithms 53(1), 55–84 (2004)

29. Sümer, Ö.: Partial covering of hypergraphs. In: Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 572–585. SIAM,
Philadelphia (2005)

30. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.V.: On the red-blue set cover
problem. In: Proceedings of the Eleventh ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 345–353. SIAM, Philadelphia (2000)

31. Peleg, D.: Approximation algorithms for the label-covermax and red-blue set cover
problems. J. Discrete Algorithms 5(1), 55–64 (2007)

Covering Analysis of the Greedy Algorithm for Partial Cover 113

32. Miettinen, P.: On the positive-negative partial set cover problem. Information Pro-
cessing Letters 108(4), 219–221 (2008)

33. Fujito, T., Kurahashi, H.: A better-than-greedy algorithm for k-set multicover.
In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 176–189.
Springer, Heidelberg (2005)

34. Berman, P., DasGupta, B., Sontag, E.D.: Randomized approximation algorithms
for set multicover problems with applications to reverse engineering of protein and
gene networks. Discrete Applied Mathematics 155(6-7), 733–749 (2007)

35. Chekuri, C., Clarkson, K.L., Har-Peled, S.: On the set multi-cover problem in
geometric settings. In: Hershberger, J., Fogel, E. (eds.) Proceedings of the 25th
ACM Symposium on Computational Geometry, pp. 341–350. ACM, New York
(2009)

From Nondeterministic Suffix Automaton
to Lazy Suffix Tree

Kimmo Fredriksson

Department of Computer Science, University of Eastern Finland,
P.O. Box 1627, 70211 Kuopio, Finland

kimmo.fredriksson@uef.fi

Abstract. Given two strings, a pattern P of length m and a text T of
length n over some alphabet Σ of size σ, we consider the exact string
matching problem, i.e. we want to report all occurrences of P in T .
The well-known Backward-Nondeterministic-DAWG-Matching (BNDM)
algorithm is one of the most efficient algorithm for short to moderate
length patterns. In this paper – as a prelude – we take the underlying
nondeterministic suffix automaton and apply it to the text instead of to
the pattern. The resulting algorithm is surprisingly simple, and efficient
for relatively short patterns and small alphabet sizes in practice. We then
show how the algorithm can be easily adapted to construct the suffix tree
of T in a lazy manner. Both of the algorithms are efficient if the text
is static but the patterns are given on-line (without possibility to batch
the queries). We discuss various variants of the algorithms, and conclude
with some experimental results.

1 Introduction

We address the well studied exact string matching problem. The problem is
to search the occurrences of the pattern P = p0p1p2 . . . pm−1 from the text
T = t0t1t2 . . . tn−1, where the symbols of P and T are taken from some finite
alphabet Σ of size σ. Numerous efficient algorithms solving the problem have
been obtained. The first O(n) time algorithm was given in [23], and the first
sublinear expected time algorithm in [6]. The sublinearity is obtained by skipping
some characters of the input text by shifting the pattern over some text positions
by using the information obtained by matching only a few characters of the
pattern. An average optimal O(n logσ(m)/m) time algorithm (BDM) is obtained
e.g. in [9]. It is also possible to obtain slightly sublinear worst case time [5].

Bit-parallelism has been shown to lead to the most efficient algorithms for
relatively short patterns, in practice. The first algorithm in this class was Shift-
Or [4,35], which runs in time O(n�m/w�) time, where w is the number of bits in
computer word. Currently one of the fastest algorithms in practice (for m ≤ w)
is BNDM [27] and its many variants (see e.g. [25,29]). BNDM is bit-parallel
version of BDM, and shares its optimal O(n logσ(m)/m) average case, as well
as O(nm) worst case time. This is possible to improve to O(n) in a number of
ways [8,2,27,19]. For more references see e.g. [28,10].

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 114–129, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

From Nondeterministic Suffix Automaton to Lazy Suffix Tree 115

Another line of work is indexing. In this case the text is available for prepro-
cessing, so that the subsequent queries for one or more patterns can be executed
efficiently. One such data structure is a suffix tree. Suffix tree for the text can
be built in O(n) time [34,24,33,12], and then the queries take O(m+ occ) worst
case time each, where occ denotes the number of occurrences. However, the O(n)
building (and space) cost is in practice so high that it does not amortize [16]
for searching a moderate number of patterns (in such a case e.g. Aho-Corasick
automaton [1] is usually a better alternative). One method to alleviate this is to
use lazy suffix trees [16], so that the suffix tree is (partially) built as needed.

There are also several succinct full text indexes that take space close to the
information theoretical minimum. However, the construction can be intricate
and have high cost in practice. Various query costs are also higher than for
a suffix tree, both in theory and practice. We do not go into the details, the
interested reader is referred to [26].

Suffix trees have a myriad of other applications as well [3], e.g. the text book
[18] has about 70 pages devoted to the suffix tree applications only.

Model of Computation. We assume word RAM model of computation. In
this model addressing a memory location and standard arithmetic and bit-wise
operations on O(log(n)) bit integers take O(1) time, where n is the input size.
Hence the theoretical model imposes that the word length is w = Ω(log(n))
bits. The practical view is that w = 32 or w = 64 in current typical CPU
architectures, and growing: e.g. the multimedia extensions, such as the widely
available SSE instruction set introduced in 1999 with Intel Pentium III have word
size of w = 128, and the Intel’s upcoming AVX extensions will at first double
this. Thus it is expected that bit-parallelism will become even more competitive
approach in the future. We note also that graphics processing units (GPUs)
can offer even higher (bit-)parallelism. Standard desktop computers can contain
GPUs having hundreds of processing units (with w = 32), and these can be used
to get considerable speed-ups for bit-parallel string matching algorithms [11].

We note that the wide word assumption occurs more and more often in algo-
rithmics (outside of string matching) [31,32,22]. This model is called broad word
computation by D. Knuth [22].

Our Contributions in Context. Nondeterministic suffix automaton can be
used to recognize all suffixes (and factors, substrings) of the string it is built
on [27]. The automaton for a string of length m can be simulated in O(�m/w�)
time per input character, by using bit-parallelism. Each state is represented as
one bit, and w states can be updated in one shot. Using this to replace the suffix
automaton in the BDM algorithm results in a very simple and in practice very
efficient BNDM algorithm [27]. The algorithm runs in O(�m/w�n logσ(m)/m)
average time, which is optimal for short patterns (�m/w� = O(1)).

In this work we build the nondeterministic suffix automaton for the text, and
derive two new string matching algorithms. However, applying it to the text
one cannot no longer assume that n = O(w), and hence “indexing” the text in
this manner does not seem to be a good idea. However, this is only true if one

116 K. Fredriksson

compares the resulting algorithm against indexing; comparing it against on-line
string matching yields a different conclusion.

The first of our algorithms basically just uses the nondeterministic suffix au-
tomaton for the text and feeds the pattern to it. We show how this can be
simulated efficiently by maintaining only the active states of the automaton.
The preprocessing time per a given text is O(min(σ,m)�n/w� + n) and the
search for each subsequent pattern then takes O(�n/w� logσ(w)+m+ occ) aver-
age and O(�n/w�m) worst case time. We discuss various trade-offs between the
preprocessing and search times.

The second algorithm takes the first one a step further. As the patterns are
searched we save each of the search states, so that if another pattern with the
same prefix is searched later on, we just use the precomputed state. This process
can be viewed as a lazy evaluation of the suffix tree of T . Another point of view is
that the process determinizes (but does not minimize) a nondeterministic suffix
automaton (which in turn can be viewed as a “transposed” Shift-And algorithm
[4]). We take the suffix tree point of view, as that is what the end result is and
it is more useful to the analysis. The preprocessing and worst case search times
are as for the first algorithm, as well as the average time for searching the first
pattern. However, the average search time approaches O(m+occ) as the number
of queries grows, so that the construction is amortized over the queries.

Both of the algorithms are simple to implement and have simple main loops
that run efficiently in modern processors. Both also have �n/w� terms in their
complexities, which should be compared against the “standard” �m/w� terms in
most of the bit-parallel string matching algorithms. That is, for relatively short
patterns our algorithms parallelize more efficiently. Our experimental results
show that these traits together make the algorithms very competitive.

We note that there are other ways to save bits, e.g. for multiple string matching
by packing more patterns in a word [20], so that searching r patterns (of any
length) takes O(�r logσ(w)/w�n+ occ) average case time. When applicable, this
is superior to our approach (the first algorithm). Likewise, when searching a very
large pattern set e.g. plain Aho-Corasick achieves O(n + rm + occ) worst case
time, which is the same as if first building a suffix tree and then searching each
pattern separately. However, traditional suffix tree construction is complicated
and slow in practice, and as in [16] we consider the situation where the queries are
on-line, so that the searches cannot be batched for multiple matching algorithms.
In particular, our algorithms are very efficient for small alphabets and relatively
short patterns. Both of these conditions can be somewhat relaxed if enough
queries are executed.

2 Preliminaries

Let the pattern P = p0p1p2 . . . pm−1 and the text T = t0t1t2 . . . tn−1 be strings
over alphabet Σ = {0, 1, . . . , σ − 1}. The pattern has an occurrence in some
text position j, if pi = tj+i for i = 0 . . .m− 1. We want to report all such text
positions j. String p0...i is a prefix of P , string pi...m−1 is a suffix of P , and pi...j

From Nondeterministic Suffix Automaton to Lazy Suffix Tree 117

is a substring (factor) of P . Any of these can be also an empty string. We use
xy to denote the concatenation of strings x and y.

Let w denote the number of bits in computer word. We number the bits from
the least significant bit (0) to the most significant bit (w− 1). C–like notation is
used for the bit-wise operations of words; & is bit-wise and, | is or, ∼ negates
all bits, << is shift to left, and >> shift to right, both with zero padding. We
sometimes use the notation z[i] to denote the ith bit of the word z.

Suffix Trie, Tree and Automaton. A trie [13] is a tree storing a set of strings.
Each node of the tree corresponds to a prefix of the (sub)set of the strings. The
root node represents an empty string. If no string is a prefix of another string,
then each leaf corresponds to exactly one string in the set. Each node has (at
most) σ children, and the edges are labeled by symbols in Σ. Thus a path from
the root to some node spells out a prefix of a string in the set. Compacted trie
is a regular trie except that each unary path is compacted into a single edge,
labeled with a string obtained by concatenating all the symbols on the original
path. Fig. 1 illustrates both structures.

Suffix trie of a string T is then just a trie storing all the suffixes of T , and
suffix tree is compacted suffix trie. When building a suffix tree (trie) the string is
usually appended with some special symbol that does not occur anywhere else in
the string. This guarantees that no suffix is a prefix of another suffix. Hence each
leaf of the tree corresponds to exactly one suffix. The labels in suffix tree edges
are represented by pointers to the original text string, so that each edge takes
only O(1) space and the whole tree takes O(n) space. Finally, suffix automaton
(a.k.a. DAWG, Directed Acyclic Word Graph) is basically a trie interpreted as
a finite state automaton, and then minimized. DAWG can also be compacted to
form a CDAWG.

Given the suffix tree (or trie) for the text T , and a pattern P , clearly all
suffixes that have P as a prefix can be found in O(m + occ) time, where occ is
the number of matching suffixes. We note that the actual search cost, as well as
the building cost and space depend on how the nodes are stored. For constant
size alphabets one can use a table of size O(σ) in each node to represent the
pointers to children, so that each child can be found in O(1) time. On the other
hand, the space grows accordingly. Another solution is to use space only for the
children that actually exist, so that it does not depend on σ, but accessing a
child node takes O(log(σ)) time. Using perfect hashing addresses both problems,

h d a y

e

a

e
k

g

i r
d

t
b

c e
k

g

i r
d

t
b

c

a

e

h d a y

Fig. 1. Trie and compacted trie storing strings birthday, cake, bird and cage

118 K. Fredriksson

but the construction cost is multiplied by O(σ2) [30]. There are a lot of work to
reduce the space in practice, but even the best of them take about 10n bytes of
space, see e.g. [16] for a brief review.

Although the construction cost can be linear, in practice it is very high, and
the algorithms are intricate to implement. One possible solution to both prob-
lems is to build the tree in a lazy manner, so that only the parts of the tree
that are needed for the queries are built incrementally [16]. This approach is
experimentally shown to be superior to the other alternatives. We also take this
approach in Sec. 4.

BNDM. Backward DAWG Matching algorithm (BDM for short) [8] is an av-
erage optimal string matching algorithm. The algorithm needs a method to rec-
ognize all factors of the reverse pattern, such as a DAWG, or a suffix tree. The
algorithm is based on a sliding window ofm symbols over the text. The window is
scanned backwards with the automaton, recognizing the reverse pattern suffixes.
If a suffix of a length m is found, then an occurrence is found. The matching
pattern factors also give a powerful method for shifting the window, resulting
in O(n logσ(m)/m) average time, which is optimal [36]. BNDM [27] works ex-
actly as BDM, but the automaton is nondeterministic and is simulated using
bit-parallelism. This results in much simpler and more efficient implementation
in practice for short patterns. We do not go into the details of the algorithm.
The automaton simulation part (backward matching) is basically the same as
covered in detail in Sec. 3.

3 Basic Algorithm

We now take a different view of the problem. Assume that we had a suffix tree
(or suffix automaton) for the text T . Then searching pattern occurrences can be
done in O(m + occ) time. If the suffix tree is not available, it can be built in
O(n) time when needed, so that the total complexity is O(n + m + occ). This
method can also be implemented bit-parallely, which leads into an interesting
hybrid between on-line searching and indexing. That is, to search the pattern
occurrences, we first build a nondeterministic suffix automaton (or tree) for the
text, and then simulate the standard suffix tree traversal bit-parallely to search
the pattern occurrences.

The automaton is similar to that in BNDM. We have states q0 . . . qn, and
there is a transition from state qi to state qi+1 with the character ti, denoted
as qi

ti−→ qi+1. In addition, we have an initial state (‘R’, root) that has an ε-
transition to every other state. The state qn is the accepting state. Again, iff
the state qn is active, then some suffix of T is recognized (including an empty
string). Fig. 2 illustrates.

This automaton can be easily simulated with bit-parallelism if n ≤ w. This
assumption is obviously unreasonable, but we first make it to simplify the pre-
sentation, and then show the unrestricted version. The simulation is basically
as in standard Shift-And algorithm [4]. The preprocessing algorithm builds a

From Nondeterministic Suffix Automaton to Lazy Suffix Tree 119

2 3 4

R

10
ε

t0 t1 t2 t3 t4 tn−1
n

Fig. 2. Non-deterministic automaton recognizing the suffixes of the text

table B, having one bit-mask entry for each c ∈ Σ. For 0 ≤ i ≤ n− 1, the mask
B[c] has ith bit set to 1, iff ti = c, i.e. B[ti][i] ≡ qi

ti−→ qi+1. We also need a
bit-vector D of n bits for the states of the automaton: iff D[i] = 1 then the state
qi is active. Note that this does not include the state 0, which will be handled
implicitly. Initially each bit is set to 1 to simulate the ε-transitions from root
state R. The automaton is simulated in two steps as follows. For each subsequent
pattern symbol pi the vector is first updated by the formula

D ← D & B[pi].

The & operation leaves every 1 bit in D to 1 iff there was a corresponding
transition with character pi in the automaton. Thus for each surviving 1 bit
the next state should be activated, which can be simply done using the shift
operation:

D ← D << 1.

Hence we can simulate suffix tree traversal with the automaton, by executing
the simulation step for symbols p0 . . . pm−1, or until D runs out of 1 bits (active
states). If after the last step D is not all zeros, then each 1 bit in D indicates
a pattern occurrence. That is, iff D[i] = 1, then P occurs in T [i −m. . . i − 1].
Alg. 1 shows the complete pseudo code. This is much simpler than BNDM, and
in fact can be seen as a particular implementation of Shift-And algorithm.

3.1 The Real Algorithm

If n ≤ w, then the above algorithm runs in O(σ + n + m) worst case time. As
per usual, it is quite easy to simulate longer machine words by simply allocating
�n/w� words and doing the & and<< operations in �n/w� steps. The algorithm
then runs in O(σ�n/w�+n+�n/w�m) worst case time. This should be contrasted
to the O(n�m/w�) worst case time of BNDM1; i.e. if m
 w, then much of
the parallelism is effectively lost. However, the search complexity O(�n/w�m)
assumes that each w-bit piece of D is needed at each step. In practice most of
the pieces become all zeros after a few (we make this precise shortly) steps. To
this end, let us define an ordered set L:

Definition 1. L = {j | D[j]�= 0 or D[j − 1][w−1] �= 0}.
Here D[j] is the jth w-bit piece of the vector D. The set L thus contains the
indexes of the pieces that need to be updated in the next step of the simulation.
1 The “text-book” implementation actually runs in O(nm�m/w�) worst case time, but

this can be improved with little additional complicacy [27,19].

120 K. Fredriksson

The rationale is that if D[j] = 0, its value cannot change unless the highest bit
of D[j − 1] is set to 1, as the shift operation may bring that bit (if it survives
the & operation) into the lowest bit of D[j].

The preprocessing step initializes L to {0 . . . �n/w� − 1} in O(�n/w�) time.
Then in each simulation step the & and << operations update only the pieces
D[j] such that j ∈ L. The time is thus O(�) per step, where � = |L|. After the
simulation step, the set L must be updated, which is easy to do in O(�) time.
The code can be somewhat simplified by assuming that m ≤ w. As is shown
later, our algorithm is in any case competitive only for relatively short patterns.
Consider now an alternative definition for L:

Definition 2. L = {j | D[j]�= 0 or D[j − 1]�= 0}.
The assumption m ≤ w means that no 1-bit can be shifted more than w steps,
and together with the looser definition of the set L it follows that � can only
decrease during the simulation, which in turn allows (slightly) simpler and more
efficient set updating. The drawback is that now L may contain some j such that
D[j] cannot change in the next simulation step (but it is possible that it will
change in later steps). We will later denote the search state by the pair (Ls, Ds),
i.e. L and D after the prefix s of P has been processed. The initial state then
corresponds to (Lε, Dε). Alg. 5 shows the complete pseudo code implementing
everything described above. The worst case time is not affected.

3.2 Final Touches

Let us look at the preprocessing. Computing the table B costs O(σ�n/w� + n)
time. The first term comes from the need to clear σ bit-vectors. However, for
large alphabets many of these vectors may also remain all zeros, and hence need
not be explicitly represented. That is, the vectors need to be computed only
for alphabet symbols that actually occur in the pattern. If some text symbol c
does not occur in the pattern, we immediately know that B[c] is never accessed,
and thus need not to be initialized. This brings the preprocessing cost down to
O(min(σ,m)�n/w� + n + m). Another simple observation is that if we forget
that improvement, then the preprocessing does not depend on the pattern at
all, and thus the preprocessing needs to be done only once per given text, and
its possibly high cost is quickly amortized.

The linear O(n) term of the preprocessing comes from scanning the text once
and setting one bit to 1 in B for each text symbol. It is possible to parallelize
this work somewhat by manipulating the bit patterns of the symbols with some
bit trickery. This would give O(min(σ,m)�log(σ)n/w�) time, which can be faster
than the simple method for small alphabets. However, for constant size alphabets
both are asymptotically the same. We omit the details; similar technique can be
found in [14]. Yet another method is suggested in Sec. 4.2.

Interestingly, it is also possible to avoid the whole preprocessing. The trick
is (as already observed in [27]) to treat P and T as binary vectors of lengths
m�log2(σ)� and n�log2(σ)�, respectively. Hence we have reduced the alphabet

From Nondeterministic Suffix Automaton to Lazy Suffix Tree 121

size to σ = 2 by making P and T longer by a factor of �log2(σ)�. The real benefit
is that now by definition B[1] = T , and B[0] = ∼T , and thus we do not need any
preprocessing. In other words T (in binary form) implicitly represents its own
suffix automaton. The search algorithm is not affected, except that we accept
only well aligned matches, i.e. every real occurrence must start in bit position
of the form i�log2(σ)�.

3.3 Average Case Time

Consider now the average case time of Alg. 5. To this end, we assume uniformly
random text. This model is reasonably good e.g. for DNA and protein sequences.
For illustrative purposes we present the analysis by drawing parallels between a
suffix trie and the nondeterministic suffix automaton of the text. We relate the
search process in a suffix trie and nondeterministic suffix automaton by their
state: if we have matched a pattern prefix s, we have ended up in some node v
in the trie, such that the path from the root to v spells out s; likewise the suffix
automaton is in state (Ls, Ds). We make this connection more explicit in Sec. 4.

In the uniform model, (roughly) all strings of length ≤ h (or equivalently, all
nodes at depth ≤ h) exist in the suffix trie, for h = logσ(n). In other words,
the number of nodes at depth i in the trie is Θ(min(σi, n)). The root node of
the trie corresponds to all suffixes of the text, which in our nondeterministic
automaton means the search state (Lε, Dε), and |Lε| = �n/w�. The σ children
of the root node each correspond to approximately n/σ suffixes, their children to
n/σ2 suffixes, and so on, until depth h, where only one suffix remains. That is to
say that for a search state (L,D) = (Lp0...pi , Dp0...pi), D has Θ(n/σi) bits set to
1, assuming that i ≤ h. However, |L| is not always decreased even if the number
of set bits decrease, as zeroing a particular bit may not make the corresponding
word all zeros. The number of set bits per word of D decreases to O(1) after
O(logσ(w)) steps. The search complexity of the algorithm up to this is therefore
O(�n/w� logσ(w)). After this, |L| decreases exponentially, and summing up, the
rest of the search takes at most

O

⎛
⎝

logσ(n)∑
i=logσ(w)

�n/w� / σi−logσ(w)

⎞
⎠ = O(�n/w�).

time on average. To summarize, we have obtained:

Theorem 1. Alg. 5 takes O(σ�n/w�+n+r(�n/w� logσ(w)+m)+occ) expected
time to search r patterns.

4 Lazy Suffix Tree

As already mentioned in Sec. 3.2 we can obtain a rudimentary indexing algorithm
by noticing that the preprocessing is needed only once per a given text. However,

122 K. Fredriksson

Alg 1. NDIMa(T, n, P,m) � Assumes that n ≤ w
1 for i← 0 to σ − 1 do B[i]← 0
2 for i← 0 to n− 1 do B[ti]← B[ti] | (1 << i)
3 D← ∼0; i← 0
4 while i < m and D �= 0 do
5 D ← (D & B[pi]) << 1
6 i← i + 1
7 for i← 0 to n− 1 doif D & (1 << i) �= 0 then report occurrence at i−m

Alg 2. SparseAnd(D,B,L, �)
1 for i← 0 to �− 1 do D[L[i]] ← D[L[i]] & B[L[i]]

Alg 3. SparseShl(D,L, �)
1 if L[0] �= 0 then z ← 0; else z ← 1
2 for i← �− 1 downto z do D[L[i]] ← (D[L[i]] << 1) | (D[L[i] − 1] >> (w − 1))
3 if z = 1 then D[0]← D[0] << 1

Alg 4. UpdateList(D,L, �)
1 if D[L[0]] �= 0 then j ← 1 else j ← 0
2 for i← 1 to �− 1 doif (D[L[i]] | D[L[i] − 1]) �= 0 then {L[j]← L[i]; j ← j + 1}
3 �← j

Alg 5. NDIM(T, n, P,m)
1 if the text T is not seen yet then
2 for i← 0 to σ − 1 dofor j ← 0 to �n/w� − 1 do B[i][j]← 0
3 for i← 0 to n− 1 do B[ti][�i/w�]← B[ti][�i/w�] | (1 << (i mod w))
4 for j ← 0 to �n/w� − 1 do { D[j]← ∼0; L[j]← j }
5 i← 0; �← �n/w�
6 while i < m and � �= 0 do
7 SparseAnd(D, B[pi], L, �)
8 SparseShl(D, L, �)
9 UpdateList(D, L, �)
10 i← i + 1
11 for i← 0 to �− 1 do for each set bit in D[L[i]] report occurrence

Alg. 5 can be easily adapted to compute the suffix trie (or tree) of T , and we
do it lazyly, i.e. build only the nodes of the tree that are actually needed when
searching the patterns. The method was already hinted in Sec. 3.3. We describe
the method for building the suffix trie. Algorithm for suffix tree follows easily.

As the preprocessing step, we compute the (global) table B and initialize the
root node. Each node has one outgoing edge for each alphabet symbol, and these
are initialized to nil.

From Nondeterministic Suffix Automaton to Lazy Suffix Tree 123

Definition 3. A node v is found when we compute the edge u
c−→ v from an

already found node u. Root node is found. We call a found node u unevaluated,
if not all the edges to its children are not yet computed, and evaluated otherwise.

Each unevaluated node u (only) stores its state (Lu, Du), where u denotes the
string spelled by the path from the root to u. The root then stores (Lε, Dε).

The search goes as in any suffix trie, i.e. follows the edges corresponding to
the pattern symbols. In our case, when matching some symbol pi, we may run
into unevaluated node u, such that the edge u

pi−→ v is not computed. Such a
node stores (Lu, Du), and hence the state (Lv, Dv) for node v can be computed
simply as

Dv ← (Du & B[pi]) << 1,

and then computing Lv. Both steps can be done in O(|Lu|) time as detailed
in Sec. 3. If |Lv| > 0, then (Lv, Dv) is stored to the newly found node v. Ei-
ther case, (Lu, Du) can be discarded if u became evaluated. We can do this
only for pi (lazier = true in Alg. 11), or for all σ alphabet symbols at once
(lazier = false). The latter alternative requires O(σ|Lu|) time, but has the
benefit that u becomes evaluated in one shot, and hence (Lu, Du) can be imme-
diately discarded, reducing the space usage significantly. Note that it is possible
to use a hybrid approach too, e.g. to use the latter method near the root only.

As the (Lu, Du) pairs need to be stored to all found unevaluated nodes, some
care is needed to store them efficiently. In particular, the previous representation
stored all O(�n/w�) words of D even if most words were zeros. We fix this as
follows. Lu is defined as previously: Lu = {j | Du[j] �= 0 or Du[j − 1] �= 0}.
However, instead of storing Du, we store D′

u defined as:

D′
u[i] = Du[Lu[i]],

i.e. the non-zero words of Du stored consecutively. Mapping bits to suffixes is
still simple:

Lemma 1. If D′
u[i][j] = 1, then u = tk . . . tk+|u|−1, where k = Lu[i] ·w+ j−|u|.

With this arrangement, and assuming that lazier = false, the total space for
all (L,D′) pairs in any phase of the construction is at most O(n). Computing
the search state is still simple.

However, if lazier = true, the space can be O(�n/w�m). This can be easily
mitigated as follows. First the vector Dv is computed just as detailed above,
given Du and pi; then the state (Lu, Du) is updated by first computing

Du ← Du & ∼B[pi],

and then updating Lu accordingly. In other words, the suffixes recorded in the
found children of u are not duplicated in Du. I.e. node u and its found children
nodes together use at most as much space as the children of u would use when u
becomes fully evaluated. This increases the time only by a factor of two. W.l.o.g.,
for the sequel we assume that lazier = false unless otherwise stated.

124 K. Fredriksson

4.1 From Suffix Trie to Suffix Tree

The above described algorithm computes the suffix trie of T , that is, the unary
paths are not compacted. First note that handling the case where the unary
path leads to a leaf node is easy to handle. Assume that we just found a node
v (and the corresponding edge, u c−→ v), such that |Lv| = 1, and D′

v has exactly
one bit (let this be the jth bit) set to 1. This means that there is only one suffix
left (corresponding to node v), which in turn means that v is in fact a leaf in a
suffix tree (but not necessarily in suffix trie) and hence the edge u c−→ v can be
replaced by an edge u cs−→ v, where s = ti . . . tn−1, and i = Lv[0] · w + j − |v|.
The string cs can be represented in a standard way, i.e. buy using a pointer to
the text itself.

This technique alone makes the average space complexity O(n), under the
same assumptions as in Sec. 3.3. Furthermore, the leaves need not be explicitly
represented, and we can make the method even more lazier by just stopping
adding new children to any node u when |Lu| ≤ threshold, for some threshold =
O(1), as it is then possible (and simple) to use just the while-loop from Alg. 5
to compute them in O(1) time on the fly. Alg. 11 shows the pseudo code.

Consider now the unary paths that do not end up in a leaf node. These can
be also computed in a lazy way as follows. Assume that we have computed an
edge u s−→ v, for some string s. At first |s| = 1, and v is unevaluated. Assume
that the search has entered the node v, and that the next (pattern) symbol to
be matched is c. Thus one needs to compute the new search state given (Lv, Dv)
and c. We have two possibilities: (1) either we need to add a new edge v c−→ q
(unless it is there already); or (2) if c is in a unary path, we need to extend the
previous edge to u sc−→ v. This is easy to notice:

Lemma 2. Iff Dv = Dv & B[c], then the set of matching suffixes for v and vc
are the same, and c is in unary path.

This makes the space complexity O(n) in the worst case. The time complexity of
the lazy construction depends on the number of searches. The first search takes
the same time as Alg. 5 (possibly multiplied by O(σ), depending on the variant)
on average, but approaches O(m + occ) time in the worst case per search later
on. This bound is achieved when the whole tree is evaluated.

Finally, the algorithm can be easily converted to compute the whole suffix
tree of T in “eager” manner by pre-order depth-first traversal of the tree, in each
node computing all the σ children before entering any of them. For the eager
construction the time is O(n log n) on average, but in the worst case O(n�n/w�).

4.2 Sparse Suffix Trees

Sparse suffix trees can be used to reduce the space requirements. The algorithm
in [21] constructs evenly spaced sparse suffix tree, so that the tree stores only ev-
ery qth suffix. Their construction time remains O(n), but the space is reduced to
only O(n/q) (for the tree itself; the original text must be kept as well). This space
saving comes with a cost: the search becomes more complicated and slower. We

From Nondeterministic Suffix Automaton to Lazy Suffix Tree 125

Alg 6. SparseStAnd(D,B,L, �)
1 for i← 0 to �− 1 do D[i]← D[i] & B[L[i]]

Alg 7. SparseStShl(D,L, �)
1 for i← �− 1 downto 1 do
2 D[i]← D[i] << 1
3 if L[i]− 1 = L[i− 1] then D[i]← D[i] | (D[i− 1] >> (w − 1))
4 D[0]← D[0] << 1

Alg 8. UpdateStList(D,L, �)
1 if D[0] �= 0 then j ← 1 else j ← 0
2 for i← 1 to �− 1 doif D[i] �= 0 or (D[i− 1] �= 0 and L[i]− 1 = L[i− 1]) then
3 L[j]← L[i]; D[j]← D[i]; j ← j + 1
4 �← j

Alg 9. PartialEvalNode(ST , v, i)
1 v.c[i]← nil; D ← v.D; L← v.L; �← v.�
2 SparseStAnd(D,ST .B[i], L, �)
3 SparseStShl(D,L, �)
4 UpdateStList(D, L, �)
5 if � > 0 then
6 v.c[i]← NewStNode
7 v.c[i].L ← L; v.c[i].� ← �; v.c[i].D ← D
8 v.pevaluated[i]← true
9 if ∀c ∈ Σ : v.pevaluated[c] then
10 v.L← nil; v.D ← nil; v.evaluated← true

Alg 10. NewSt(T, n)
1 ST .root← NewStNode
2 ST .root.�← �n/w� − 1
3 for i← 0 to σ − 1 dofor j ← 0 to ST .root.� do ST .B[i][j]← 0
4 for i← 0 to n− 1 do ST .B[ti][�i/w�] ← ST .B[ti][�i/w�] | (1 << (i mod w))
5 for j ← 0 to ST .root.� do { ST .root.D[j]← ∼0; ST .root.L[j] ← j }

Alg 11. Lazy(ST, P,m, threshold, lazier)
1 v ← ST .root; i← 0
2 while i < m and v �= nil do
3 if v.� ≤ threshold then
4 continue as in Alg. 5 while-loop, using v.L and v.D
5 break
6 if not v.pevaluated[pi] then
7 if lazier then PartialEvalNode(ST , v, pi)
8 elsefor c← 0 to σ − 1 do PartialEvalNode(ST , v, c)
9 v ← v.c[pi]
10 i← i + 1
11 if v �= nil then report occurrences

126 K. Fredriksson

briefly sketch here another method that has the same space reduction factor, but
our construction cost is also reduced by the same factor. The search algorithm
becomes slower for a fully built suffix tree, but combined with the lazy evalua-
tion we can get significantly faster average search times as well, for a moderate
number of patterns. However, the method is applicable only if (m− q+1)/q ≥ 1
and useful only if m/q > c logσ(n) for some c > 1 and thus can be applied only
when the minimum m is known beforehand.

We borrow the idea from [15], used for on-line string matching. Conceptually,
we build the tree for the string T ′[i] = T [iq], i.e. T ′ is a subsequence of T ,
containing only every qth text symbol. (A somewhat similar idea was used in [7],
but their subsequence is based an sampling the alphabet, resulting in irregular
subsequences.) Thus |T ′| = n/q�. Note that this is different from [21]; their
suffixes still have O(n) length.

Consider now the search. As T ′ contains only every qth symbol of the original
text, we also use only every qth symbol of P . This means that a matching
subsequence must be verified, using the original P and T . However, this finds
only the matches that are correctly aligned with respect to q. Hence we must
generate all q possible alignments of P , and search each separately. That is, we
search patterns of the form P j [i] = P [iq+ j] for 0 ≤ j < q. The following is then
immediate:

Lemma 3. If P occurs at T [i . . . i + m − 1] then: (i) P j[h] = T [i + j + hq],
where j = i mod q; and (ii) P j occurs at T ′[�i/q� . . . �i/q�+ m/q� − 1], where
j = q − 1− (i+ q − 1) mod q.

As both the text and the pattern (pieces) are shorter than before, the lazy con-
struction will create less nodes, and the nodes are created faster. The result is
that doing q searches for patterns of length O(m/q), plus some verifications, is
faster than doing one search with a pattern of length m, provided that the suffix
tree is only partially built, and m/q is large enough. More precisely, the number
of verifications per search is on average (n/q)/σm/q, the average time per verifica-
tion is O(1), and we execute q searches. Thus we want to have q(n/q)/σm/q < 1,
i.e. q < m/ logσ(n). Note also that the combined length of the pieces is m, so
that for our q the search time tends to O(m+ occ).

The method obviously works for Alg. 5 as well. In this case the expected search
time is as stated in Theorem 1, when one just substitutes “n” with “n/q”, and
taking that q < m/ logσ(n):

Theorem 2. Alg. 5 can be made to run in O(σ�(n logσ(n)/m)/w�+n logσ(n)/m
+r(�n/w� logσ(w)+m)+occ) expected time to search r patterns, each of lengthm.

In other words, the preprocessing cost can be reduced while keeping the average
search cost the same.

5 Preliminary Experimental Results

We have implemented “quick-and-dirty” prototypes of the algorithms in C. We
ran the experiments in 3.0GHz Intel Core2 with 2GB RAM, 4MB L2 cache,

From Nondeterministic Suffix Automaton to Lazy Suffix Tree 127

Table 1. Left: the minimum number of patterns (r) for some m where Alg. 5 starts
to beat BNDM, using q = 1 and the optimal q. Right: (time for Alg. 11) / (time for
WOTD) × 100%, to search r patterns of length m. Both for 10MB DNA sequence.

m 2 4 8 16 32
(q = 1) r ≥ 1 2 3 7 21
(opt q) r ≥ 1 2 2 4 10

r = 10 r = 100 r = 1000 r = 10000 r = 100000
m = 8 26% 45% 77% 112% 149%
m = 16 21% 31% 47% 69% 145%
m = 32 17% 20% 27% 39% 100%

running GNU/Linux 2.6.23. We compared against BNDM [27] and WOTD [16]
(lazy suffix tree construction, their implementation). As for our algorithms, we
implemented the versions given in Alg. 5 and Alg. 11. In particular, we did not
implement the advanced preprocessing techniques, and we (effectively) compact
only the unary paths leading to the leaves in the suffix trie. On the other hand
we implemented the sparse tree technique from Sec. 4.2 (pseudo code not given).

We ran experiments on DNA, protein and English text. The patterns were ran-
domly picked from the text, so each pattern has at least one occurrence. Table 1
summarizes the results for DNA. In general Alg. 5 is more competitive for shorter
patterns; for long patterns the preprocessing can always be amortized by doing
many enough queries. On the other hand, Alg. 11 is more competitive for long
patterns. In general it is better than WOTD when r/m is not “too large”. Alg. 11
is never slower than Alg. 5. For proteins and English text Alg. 5 is not very at-
tractive, but Alg. 11 still is; the large alphabet makes the sparse tree technique of
Sec. 4.2 useful, and the node evaluation is still efficient if done only partially (pa-
rameter lazier in Alg. 11). Still it becomes relatively worse as the alphabet grows.
We leave a proper implementation and experiments for a future work.

6 Final Remarks

Our techniques can be applied to many (bit-parallel) approximate matching al-
gorithms as well. In fact, the approximate matching algorithm under Levenshtein
distance in [14] can be seen an example of this (albeit the method was not pre-
sented like this). Other possibilities include e.g. the Shift-Add algorithm [4] (or
its more efficient variant [17]) for Hamming distance. One could in principle even
build a “suffix tree” like structure with it, although the space complexity would
be very high, unless some cut-off threshold is used to limit the number of nodes.

Acknowledgments. We wish to thank Szymon Grabowski and the anonymous
reviewers for several useful comments.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Communications of the ACM 18(6), 333–340 (1975)

2. Allauzen, C., Raffinot, M.: Simple optimal string matching. J. of Algorithms 36,
102–116 (2000)

128 K. Fredriksson

3. Apostolico, A.: The myriad virtues of suffix trees. In: Apostolico, A., Galil, Z. (eds.)
Combinatorial Algorithms on Words. NATO Advanced Science Institutes, Series
F, vol. 12, pp. 85–96. Springer, Heidelberg (1985)

4. Baeza-Yates, R.A., Gonnet, G.H.: A new approach to text searching. Communica-
tions of the ACM 35(10), 74–82 (1992)

5. Bille, P.: Fast searching in packed strings. In: Kucherov, G., Ukkonen, E. (eds.)
CPM 2009. LNCS, vol. 5577, pp. 116–126. Springer, Heidelberg (2009)

6. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of the
ACM 20(10), 762–772 (1977)

7. Claude, F., Navarro, G., Peltola, H., Salmela, L., Tarhio, J.: Speeding up pattern
matching by text sampling. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE
2008. LNCS, vol. 5280, pp. 87–98. Springer, Heidelberg (2008)

8. Crochemore, M., Czumaj, A., Ga̧sieniec, L., Jarominek, S., Lecroq, T., Plandowski,
W., Rytter, W.: Speeding up two string matching algorithms. Algorith-
mica 12(4/5), 247–267 (1994)

9. Crochemore, M., Rytter, W.: Text algorithms. Oxford University Press, Oxford
(1994)

10. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific, Singapore
(2002)

11. Deorowicz, S.: Computing the longest common transposition-invariant subsequence
with GPU. In: Proceedings of Man-Machine Interactions, Advances in Intelligent
and Soft Computing, vol. 59, pp. 551–559. Springer, Heidelberg (2009)

12. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings
of FOCS 1997, pp. 137–143. IEEE, Los Alamitos (1997)

13. Fredkin, E.: Trie memory. Communications of the ACM 3(9), 490–499 (1960)
14. Fredriksson, K.: Row-wise tiling for the myers’ bit-parallel approximate string

matching algorithm. In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds.)
SPIRE 2003. LNCS, vol. 2857, pp. 66–79. Springer, Heidelberg (2003)

15. Fredriksson, K., Grabowski, S.: Average-optimal string matching. J. Discrete Al-
gorithms 7(4), 579–594 (2009)

16. Giegerich, R., Kurtz, S., Stoye, J.: Efficient implementation of lazy suffix trees.
Softw., Pract. Exper. 33(11), 1035–1049 (2003)

17. Grabowski, S., Fredriksson, K.: Bit-parallel string matching under Hamming dis-
tance in O(n�m/w�) worst case time. Information Processing Letters 105(5), 182–
187 (2008)

18. Gusfield, D.: Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge University Press, Cambridge (1997)

19. He, L., Fang, B.: Linear nondeterministic dawg string matching algorithm. In:
Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 70–71.
Springer, Heidelberg (2004)

20. Hyyrö, H., Fredriksson, K., Navarro, G.: Increased bit-parallelism for approximate
and multiple string matching. ACM J. of Experimental Algorithmics 10(2.6), 1–27
(2005)

21. Kärkkäinen, J., Ukkonen, E.: Sparse suffix trees. In: Cai, J.-Y., Wong, C.K. (eds.)
COCOON 1996. LNCS, vol. 1090, pp. 219–230. Springer, Heidelberg (1996)

22. Knuth, D.: The art of computer programming: Combinatorial algorithms. Pre-
fascicle 1a. Draft of section 7.1.3: Bitwise tricks and techniques (2008)

23. Knuth, D.E., Morris Jr, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6(1), 323–350 (1977)

24. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. Algo-
rithms 23(2), 262–272 (1976)

From Nondeterministic Suffix Automaton to Lazy Suffix Tree 129

25. Navarro, G.: NR-grep: a fast and flexible pattern matching tool. Softw. Pract.
Exp. 31, 1265–1312 (2001)

26. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), article 2 (2007)

27. Navarro, G., Raffinot, M.: Fast and flexible string matching by combining bit-
parallelism and suffix automata. ACM J. of Experimental Algorithmics 5(4) (2000)

28. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings – Practical on-line
search algorithms for texts and biological sequences. Cambridge University Press,
Cambridge (2002)

29. Peltola, H., Tarhio, J.: Alternative algorithms for bit-parallel string matching.
In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS,
vol. 2857, pp. 80–94. Springer, Heidelberg (2003)

30. Raman, R.: Priority queues: Small, monotone and trans-dichotomous. In: Dı́az, J.
(ed.) ESA 1996. LNCS, vol. 1136, pp. 121–137. Springer, Heidelberg (1996)

31. Thorup, M.: Combinatorial power in multimedia processors. SIGARCH Comput.
Archit. News 31(4), 5–11 (2003)

32. Thorup, M.: On AC0 implementations of fusion trees and atomic heaps. In: Pro-
ceedings of SODA 2003, pp. 699–707. SIAM, Philadelphia (2003)

33. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

34. Weiner, P.: Linear pattern matching algorithm. In: Proceedings of the 14th Annual
IEEE Symposium on Switching and Automata Theory, pp. 1–11 (1973)

35. Wu, S., Manber, U.: Fast text searching allowing errors. Communications of the
ACM 35(10), 83–91 (1992)

36. Yao, A.C.: The complexity of pattern matching for a random string. SIAM Journal
on Computing 8(3), 368–387 (1979)

Clustering the Normalized Compression

Distance for Influenza Virus Data

Kimihito Ito1, Thomas Zeugmann2,�, and Yu Zhu2

1 Research Center for Zoonosis Control
Hokkaido University, N-20, W-10 Kita-ku, Sapporo 001-0020, Japan

itok@czc.hokudai.ac.jp
2 Division of Computer Science

Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan
{thomas,yuar}@mx-alg.ist.hokudai.ac.jp

Abstract. The present paper analyzes the usefulness of the normalized
compression distance for the problem to cluster the hemagglutinin (HA)
sequences of influenza virus data for the HA gene in dependence on
the available compressors. Using the CompLearn Toolkit, the built-in
compressors zlib and bzip2 are compared.

Moreover, a comparison is made with respect to hierarchical and spec-
tral clustering. For the hierarchical clustering, hclust from the R pack-
age is used, and the spectral clustering is done via the kLine algorithm
proposed by Fischer and Poland (2004).

Our results are very promising and show that one can obtain an (al-
most) perfect clustering. It turned out that the zlib compressor allowed
for better results than the bzip2 compressor and, if all data are con-
cerned, then hierarchical clustering is a bit better than spectral clustering
via kLines.

1 Introduction

The similarity between objects is a fundamental notion in everyday life. It is
also fundamental to many data mining and machine learning algorithms, and, in
particular to clustering algorithms. Often the similarity between objects is mea-
sured by a domain-specific distance measure based on features of the objects. For
defining the right domain-specific distance measure one needs special knowledge
about the application domain for extracting the relevant features beforehand.
Such an approach does not only cause difficulties, but includes a certain danger
or risk of being biased.

If one is pursuing the approach to design data mining algorithms based on
domain knowledge, then the resulting algorithms tend to have many parameters.
By using these parameters, one can then control the algorithms’ sensitivity to
certain features. Determining how relevant particular features are is often diffi-
cult and may require a certain amount of guessing. Expressing this differently,
� Supported by MEXT Grand-in-Aid for Scientific Research on Priority Areas under

Grant No. 21013001.

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 130–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Clustering the Normalized Compression Distance 131

one has to tune the algorithms which is requiring domain knowledge and a larger
amount of experience. Furthermore, it may be expensive, error prune and time
consuming to arrive at a suitable tuning.

However, as a radically different approach, the paradigm of parameter-free
data mining has emerged (cf. Keogh et al. [11]). The main idea of parameter-
free data mining is the design of algorithms that have no parameters and that
are universally applicable in all areas.

The problem is whether or not such an approach can be realized at all. It
is only natural to ask how an algorithm can perform well if it is not based on
extracting the important features of the data and if we are not allowed to adjust
its parameters until it is doing the right thing. As expressed by Vitányi et al. [21],
if we a priori know the features, how to extract them, and how to combine them
into exactly the distance measure we want, we should do just that. For example,
if we have a list of cars with their color, motor rating, etc. and want to cluster
them by color, we can easily do that in a straightforward way.

So the approach of parameter-free data mining is aiming at scenarios where we
are not interested in a certain similarity measure but in the similarity between
the objects themselves.

The main goal of the present paper is to test the usefulness of this approach in
the domain of influenza viruses. Our data are gene sequences for the hemagglu-
tinin of influenza viruses. The hemagglutinin of influenza viruses is important,
since it is responsible for binding the virus to the cell it infects. So far, 16 subtypes
of influenza hemagglutinin are known. More details are given in Subsection 3.1.
The definite method used by biologists to determine the subtype of the influenza
hemagglutinin is based on the antiserum that prevent the docking of the virus.
So intuitively, the similarity between the gene sequences for the hemagglutinin
of influenza viruses should be large if they have the same subtype and small if
the have a different subtype. Therefore, it seems justified to test the paradigm
of parameter-free data mining in this domain.

The most promising approach to this paradigm uses Kolmogorov complexity
theory [13] as its basis. The key ingredient to this approach is the so-called nor-
malized information distance (NID) which was developed by various researchers
during the past decade in a series of steps (cf., e.g., [4, 12, 9]). The idea behind
it is quite intuitive. If two objects are similar then there should be a simple
description of how to transform each one of them into the other one. And con-
versely, if all descriptions for transforming each one of them into the other one
are complex, then the objects should be dissimilar.

More formally the normalized information distance between two strings x and
y is defined as

NID(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}
, (1)

where K(x|y) is the length of the shortest program that outputs x on input y,
and K(x) is the length of the shortest program that outputs x on the empty
input. It is beyond the scope of the present paper to discuss the technical details
of the definition of the NID. We refer the reader to Vitányi et al. [21].

132 K. Ito, T. Zeugmann, and Y. Zhu

The NID has nice theoretical properties, the most important of which is uni-
versality. The NID is called universal, since it accounts for the dominant dif-
ference between two objects (cf. Li et al. [12] and Vitányi et al. [21] and the
references therein).

In a sense, the NID captures all computational ways in which the features
needed in the traditional approach could be defined. Since its definition involves
the Kolmogorov complexity K(·), the NID cannot be computed. Therefore, to
apply this idea to real-world data mining tasks, standard compression algo-
rithms, such as gzip, bzip2, or PPMZ, have been used as approximations of the
Kolmogorov complexity. This yields the normalized compression distance (NCD)
as approximation of the NID (cf. Definition 1).

In a typical data mining scenario we are given some objects as input. The
pairwise NCDs for all objects in question form a distance matrix. This matrix can
be processed further until finally standard algorithms, e. g., clustering algorithms
can be applied. This has been done in a variety of typical data mining scenarios
with remarkable success. Works of literature and music have been clustered
according to genre or author; evolutionary trees of mammals have been derived
from their mitochondrial genome; language trees have been derived from several
linguistic corpora (cf., e.g., [9, 11, 6, 7, 3]).

As far as virus data are concerned, Cilibrasi and Vitányi [8] used the SARS
TOR2 draft genome assembly 120403 from Canada’s Michael Smith Genome
Sciences Centre and compared it to other viruses by using the NCD. They used
the bzip2 compressor and applied their quartet tree heuristic for hierarchical
clustering. The resulting ternary tree showed relations very similar to those
shown in the definitive tree based on medical-macrobiological genomics analysis
which was obtained later (see [8] for details).

In the present paper we aim at a detailed analysis of the general method
outlined above in the domain of influenza viruses. More specifically, we are in-
terested in learning whether or not specific gene data for the hemagglutinin of
influenza viruses are correctly classifiable by using the concept of the NCD. For
this purpose we have chosen a set of 106 gene sequences from the National Center
for Biotechnology Information for which the correct classification of the hemag-
glutinin is known. As explained in Section 3, there are 16 subtypes commonly
called H1, . . . , H16. For these 106 gene sequences (or subsets thereof) we then
compute the NCD by using the CompLearn Toolkit (cf. [5]) as done in [8].

This computation returns a symmetric matrix D such that dij is the NCD
between the data entries i and j (henceforth called distance matrix). Further-
more, we study the influence of the compressor chosen and restrict ourselves
here to the zlib and bzip2 compressors which are the standard two built-in
compressors for the CompLearn Toolkit.

The next step is the clustering. Here of course the variety of possible algorithms
is large. Note that the CompLearn Toolkit contains also an implementation of
quartet tree heuristic for hierarchical clustering. However, this heuristic is com-
putationally quite expensive and does currently not allow to handle a matrix of

Clustering the Normalized Compression Distance 133

dimension 106×106. Therefore, we have decided to try the hierarchical clustering
algorithm from the R package (called hclust) with the average option. In this way
we obtain a rooted tree showing the relations among the input data.

The second clustering algorithm used is spectral clustering via kLines (cf. Fis-
cher and Poland [10]). We have successfully applied this method before (cf. [19, 18])
in settings where the NID is approximated by the so-called Google distance or Web
distance. In such settings we are given non-literal objects, i.e., essentially names
and not the the literal objects themselves as in the present paper. The Web dis-
tance is then based on computing probabilities by determining the frequency of
web pages for the individual names and those containing simultaneously two of
the given names. We refer the reader to [21] for a comprehensive explanation.

It should be noted that spectral clustering generally requires the transfor-
mation of the distance matrix into an adjacency matrix of pairwise similarities
(henceforth called similarity matrix). The clustering is then done by analyzing
its spectrum.

The results obtained for our data are generally very promising. Since we know
the true subtype of the hemagglutinin from the description of the gene sequences
used, we could determine the quality of the clustering obtained. Quite often,
we arrived at a perfect clustering independently of the compressor and of the
clustering method used. On the other hand, when including all data or a rather
large subset thereof, the clustering obtained is not perfect but the number of
errors made is still sufficiently small to make the results interesting. Without
going into details here, it can be said that the zlib compressor seems more
suitable in this setting than the bzip2 compressor (see Subsection 3.2 for details).

2 Background and Theory

As explained in the Introduction, the theoretical basis for computing the distance
matrix is deeply based in Kolmogorov complexity theory. In the following we
assume the definition of the NID as shown in Equation (1). The definition of
the NID depends on the function K which is uncomputable. Thus, the NID is
uncomputable, too.

Using a real-word compressor, one can approximate the NID by the NCD (cf.
Definition 1). Again, we omit details and refer the reader to [21].

Definition 1. The normalized compression distance between two strings x and y

is defined as

NCD(x, y) =
C(xy) − min{C(x), C(y)}

max{C(x), C(y)}
,

where C is any given data compressor.

Common data compressors are gzip, bzip2, zlib, etc. Note that the compres-
sor C has to be computable and normal in order to make the NCD a useful
approximation. This can be stated as follows.

134 K. Ito, T. Zeugmann, and Y. Zhu

Definition 2 ([21]). A compressor C is said to be normal if it satisfies the
following axioms for all strings x, y, z and the empty string λ.

(1) C(xx) = C(x) and C(λ) = 0; (identity)
(2) C(xy) � C(x); (monotonicity)
(3) C(xy) = C(yx); (symmetry)
(4) C(xy) + C(z) � C(xz) + C(yz); (distributivity)

up to an additive O(log n) term, with n the maximal binary length of a string
involved in the (in)equality concerned.

These axioms are in various degrees satisfied by good real-world compressors
like bzip2, PPMZ and gzip, where the latter did not perform so well, as informal
experiments have shown (cf. [9]). Also note that in all cases the compressor-
specific window or block size determines the maximum usable length of the
arguments. As a matter of fact, for our data these axioms seem to be fulfilled.

For our investigations we used the built-in compressors bzip2 and zlib and
the ncd function from the CompLearn Toolkit (cf. [5]). After having done this
step, we have a distance matrix D =

(
dncd(x, y)

)
x,y∈X

, where X = (x1, . . . , xn) is
the relevant data list.

Next, we turn our attention to clustering. First, we shortly outline the hier-
archical clustering as provided by the R package, i.e., by the program hclust
(cf. [2]). Input is the (n×n) distance matrix D. The program uses a measure of
dissimilarity for the objects to be clustered. Initially, each object is assigned to
its own cluster and the program proceeds iteratively. In each iteration the two
most similar clusters are joint, and the process is repeated until only a single
cluster is left. Furthermore, in every iteration the distances between clusters are
recomputed by using the Lance–Williams dissimilarity update formula for the
particular method used.

The methods differ in the way in which the distances between clusters are re-
computed. Provided are the complete linkage method, the single linkage method,
and the average linkage clustering. In the first case, the distance between any
two clusters is equal to the greatest similarity from any member of one cluster to
any member of the other cluster. This method works well for compact clusters
but causes sensitivity to outliers. The second method pays attention solely to
the area where the two clusters come closest to one another. The more distant
parts of the clusters and the overall structure of the clusters is not taken into
account. If the total number of clusters is large, a messy clustering may result.

The average linkage clustering defines the distance between any two clusters
to be the average of distances between all pairs of objects from any member of
one cluster to any member of the other cluster. As a result, the average pairwise
distance within the newly formed cluster, is minimum.

Heuristically, the average linkage clustering should give the best results in our
setting, and thus we have chosen it (see also Manning et al. [14] for a thorough
exposition). Note that for hierarchical clustering the number k of clusters does
not to be known in advance.

Clustering the Normalized Compression Distance 135

Next, the spectral clustering algorithm used is shortly explained. Spectral
clustering is an increasingly popular method for analyzing and clustering data
by using only the matrix of pairwise similarities. It was invented more than 30
years ago for partitioning graphs (cf., e.g., Spielman and Teng [20] for a brief
history and Luxburg [22] for a tutorial). Formally, spectral clustering can be
related to approximating the normalized min-cut of the graph defined by the
adjacency matrix of pairwise similarities [24]. Finding the exactly minimizing
cut is an NP-hard problem.

The transformation of the distance matrix into a similarity matrix is done by
using a suitable kernel function. In our experiments we have used the Gaussian
kernel function, i.e.,

k(x, y) =
(
exp(−

1
2
d(x, y)2/(2 · σ2))

)
, (2)

where σ is the kernel width. As pointed out by Perona and Freeman [17], there
is nothing magical with this function. Moreover, it is most commonly used. An
advantage of using the Gaussian kernel function is that the resulting similarity
matrix is positive definite.

So, the remaining problem is a suitable choice for σ. Unfortunately, the per-
formance of spectral clustering heavily depends on this σ. In the experiments, we
compute the mean value of the entries of the distance matrix D and then set σ =
mean(D)/

√
2. In this way, the kernel is most sensitive around mean(D). Though

we are not aware of a theoretical result supporting this choice, it worked remark-
ably well and further studies are needed to explore the properties of this choice.

The final spectral clustering algorithm for a known number of clusters k is
stated below.

Algorithm: Spectral Clustering
Input : data list X = (x1, x2, . . . , xn), number of clusters k

Output : clustering c ∈ {1 . . .k}n

1. for x, y ∈ X, compute the distance matrix D =
(
dncd(x, y)

)
x,y∈X

2. compute σ = mean(D)/
√

2
3. compute the similarity matrix A =

(
exp(− 1

2d(x, y)2/(2 · σ2))
)

4. compute the Laplacian L = S− 1
2 AS− 1

2 , where Sii =
∑

j Aij and Sij = 0 for
i �= j

5. compute top k eigenvectors V ∈ R
n×k

6. cluster V using kLines [10]

3 Experiments and Results

In this section we describe the data used, the experiments performed and the
results obtained.

136 K. Ito, T. Zeugmann, and Y. Zhu

3.1 Influenza Viruses – The Data Set

We shortly describe the data set used. For any relevant background concerning
the biological aspects of the influenza viruses we refer the reader to Palese and
Shaw [16] and Wright et al. [23].

Influenza viruses were probably a major cause of morbidity and mortality
world wide. Large segments of the human population are affected every year.
The family of Orthomyxoviridae is defined by viruses that have a negative-sense,
single-stranded, and segmented RNA genome. There are five different genera in
the family of Orthomyxoviridae: the influenza viruses A, B and C; Thogotovirus ;
and Isavirus. Influenza A viruses have a complex structure and possess a lipid
membrane derived from the host cell (cf. Figure 1).

� �

� �

� �

� �

� � 	

� �

� 	

�

� �

Fig. 1. Influenza A virus

Biologists classify influenza A viruses primarily by their hemagglutinin (HA)
subtypes and neuraminidase (NA) subtypes. So far, 16 subtypes of HA are known
and commonly denoted by H1, . . . , H16. In addition to these HA types, biologists
distinguish 9 NA subtypes denoted by N1, . . . , N9.

Influenza A viruses of all 16 hemagglutinin (H1-H16) and 9 neuraminidase
(N1-N9) subtypes are maintained in their nature host, i.e., the duck. Of these
duck viruses, H1N1, H2N2 and H3N2 subtypes jumped into human population,
and caused three pandemics in the last century. Therefore, in the experiments
performed we have exclusively selected data of influenza viruses that have been
obtained from viruses hosted by the duck.

The complete genome of these influenza viruses has 8 segmented-genes. Of
these 8 genes, here we are only interested in their HA gene, since HA is the major
target of antibodies that neutralize viral infectivity, and responsible for binding
the virus to the cell it infects. The corresponding gene is found on segment 4.

Clustering the Normalized Compression Distance 137

Each datum consists of a sequence of roughly 1800 letters from the alphabet
{A, T , G, C}, e.g., looking such as

AAAAGCAGGGGAATTTCACAATTAAA . . . TGTATATAATTAGCAAA.

These gene sequences are publicly available from the National Center for
Biotechnology Information (NCBI) which has one of the largest collections of
such sequences (cf. [15]).

When analyzed by biologists the definite method to determine the correct HA
subtype is based on the antiserum that prevent the docking of the virus. Some-
times biologists also compare the actual sequence to already analyzed sequences
and produce a guess based on the Hamming distance of the new sequence to the
analyzed ones.

As explained in the Introduction, the primary goal of the investigations un-
dertaken is to cluster the sequences correctly with respect to their HA subtype.
In order to achieve this goal with collected from each subtype up to 8 examples.
The reason for choosing at most 8 sequences from each type has been caused by
their availability. While for some subtypes there are many sequences, there are
also subtypes for which only very few sequences are available. The extreme case
is the subtype H16 for which only one sequence is in the data base. Figure 2
shows the number of sequences chosen.

It should be noted that most of these sequences are marked as complete cds,
but some are also marked as partial cds by the NCBI. For a complete list of
the data description we refer the reader to

http://www-alg.ist.hokudai.ac.jp/106Data description.html .
For the ease of presentation, below we use the following abbreviation for the

data entries. Instead of giving the full description, e.g.,
>gi|113531192|gb|AB271117| /Avian/4 (HA)/H10N1/Hong Kong/1980/// In-
fluenza A virus (A/duck/Hong Kong/938/80(H10N1)) HA gene for hemagglu-
tinin, complete cds.

We refer to this datum as H10N1AB271117 for short.
Among the available files, there were two files containing only a very short

partial sequence of the gene, i.e., H7N1AM157391 and H10N4AM922160 (483
and 80 letters, respectively). So, we did not consider these two files, since they
do not seem to contain enough information.

3.2 Results

All experiments have been performed under SuSE Linux. As already mentioned,
for the hierarchical clustering we used the open source R package (cf. [2]).

The Algorithm Spectral Clustering from Section 2 has been realized by per-
forming Step 1 via the CompLearn function ncd (cf. [5]). Steps 2 through 6 have

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

8 8 8 8 8 8 8 7 8 8 8 8 2 4 4 1

Fig. 2. Number of sequences for each subtype

138 K. Ito, T. Zeugmann, and Y. Zhu

been implemented in GNU Octave, version 2.1.72 (cf. [1]). It should be noted
that ncd assigns 0.000000 to all elements on the main diagonal of the distance
matrix (Version 1.1.5).

By performing our experiments we aimed to answer the following questions.
First, does the NCD provide enough information to obtain a correct clustering
for the virus data? Second, does the rather large number of clusters (recall that
we 16 HA types) cause any problems? Third, do the answers to the first and
second question depend on the compressor and clustering, respectively, chosen?

To get started and for the sake of comparison, we used the subset containing
all data belonging to H1, H2, and H3, i.e., a total of 24 sequences (cf. Figure 2).

Using the maketree program from the CompLearn Toolkit, we get the follow-
ing clustering (cf. Figures 3 and 4). As Figures 3 and 4 show, the data are clearly
and correctly separated into three clusters. However, the intra-cluster dissimilar-
ities clearly differ from inter-cluster dissimilarities in Figure 3, i.e., for the zlib
compressor, while there is no such clear difference for the bzip2 compressor (cf.
Figure 4).

libcomplearn version 0.9.2
tree score S(T) = 0.998896

compressor: zlib
zliblevel: 9

Username: unknown

k0 H1N9CY035248

k4

k21

k1

H1N9CY017275

k20

k2

H1N5CY004498

H1N5CY014968

H1N6CY004458

k7

H1N1AF091309

H1N1D10477

H1N1U47310

k3k6

k13

H3N2D21171

k14

k12

H3N3AB292410

H3N2AB277754

H3N2CY006026

k8

k16k18

H3N2M73771

H3N3CY005936

H3N1CY005943

H3N2EU74652

k11

k15

k5

H2N2L11136

H2N3CY014710

H2N2L11128

k17

k10

k9

H2N4CY003984

H2N3L11138

H2N2L11137

k19
H2N1CY021125

H2N1CY017693

0.682

0.470

0.265

0.227
0.235

0.095

0.576

0.886
0.594

0.276

0.579

0.752

0.255

0.370 0.684

0.913

0.530

0.692

0.752

0.465

0.378

0.506

0.253

0.910

Fig. 3. Classification of HA sequences;
compr.: zlib

libcomplearn version 0.9.2
tree score S(T) = 0.994397

compressor: bzip
blocksize: 9

workfactor: 200
bzverbosity: 0

Username: unknown

k0
H3N2M73771

H3N3CY005936

k16

k9

H3N1CY005943

H3N2EU74652

k18

k14

k12

k4

k21

k8

k3

k2

H2N2L11136H2N3CY014710

H2N2L11128

k1

H2N4CY003984

k10

H2N3L11138

H2N2L11137

k6

H2N1CY017693

H2N1CY021125 H1N9CY035248

k13

k11

H1N9CY017275

k15

k7

k19

k17

H1N5CY004498

H1N5CY014968
H1N6CY004458

H1N1AF091309

H1N1D10477

H1N1U47310

H3N2D21171

k20

k5

H3N2AB277754

H3N3AB292410

H3N2CY006026

0.600

0.665

0.817

0.869

0.731

0.796

0.798

0.728

0.671

0.752

0.615

0.860

0.804

0.729

0.606

0.599

0.597

0.434

0.785

0.837

0.808

0.609

0.759

0.799

Fig. 4. Classification of HA sequences;
compr.: bzip2

Using hclust we obtained the trees shown in Figure 5 and 6 for the matrix D

computed for the compressor zlib and bzip2, respectively. As Figures 5 and 6
show, we obtained a correct clustering into three clusters independently of the
compressor used.

Next, we tried our algorithm Spectral Clustering for the same data set. After
having computed the matrix D, we get the following order of the data

Clustering the Normalized Compression Distance 139

H
1N

9C
Y

03
52

48
H

1N
1U

47
31

0
H

1N
9C

Y
01

72
75

H
1N

1A
F

09
13

09
H

1N
1D

10
47

7
H

1N
5C

Y
00

44
98

H
1N

5C
Y

01
49

68
H

1N
6C

Y
00

44
58

H
2N

1C
Y

01
76

93
H

2N
1C

Y
02

11
25

H
2N

4C
Y

00
39

84
H

2N
2L

11
13

7
H

2N
3L

11
13

8 H
2N

2L
11

12
8

H
2N

2L
11

13
6

H
2N

3C
Y

01
47

10
H

3N
2D

21
17

1
H

3N
2C

Y
00

60
26

H
3N

2A
B

27
77

54
H

3N
3A

B
29

24
10

H
3N

2E
U

74
65

2
H

3N
1C

Y
00

59
43

H
3N

2M
73

77
1

H
3N

3C
Y

00
59

36

0.
0

0.
5

1.
0

1.
5

2.
0

Cluster Dendrogram

hclust (*, "average")
dist(H1_2_3zlib)

H
ei

gh
t

Fig. 5. Clustering all HA sequences for H1
through H3 via hclust; compr.: zlib

H
1N

1U
47

31
0

H
1N

9C
Y

03
52

48
H

1N
9C

Y
01

72
75

H
1N

1A
F

09
13

09
H

1N
1D

10
47

7 H
1N

5C
Y

00
44

98
H

1N
5C

Y
01

49
68

H
1N

6C
Y

00
44

58
H

2N
1C

Y
01

76
93

H
2N

1C
Y

02
11

25
H

2N
4C

Y
00

39
84

H
2N

2L
11

13
7

H
2N

3L
11

13
8 H
2N

2L
11

12
8

H
2N

2L
11

13
6

H
2N

3C
Y

01
47

10
H

3N
2D

21
17

1
H

3N
2C

Y
00

60
26

H
3N

2A
B

27
77

54
H

3N
3A

B
29

24
10

H
3N

2E
U

74
65

2
H

3N
1C

Y
00

59
43

H
3N

2M
73

77
1

H
3N

3C
Y

00
59

36

0.
6

0.
8

1.
0

1.
2

Cluster Dendrogram

hclust (*, "average")
dist(H1_2_3bzip2)

H
ei

gh
t

Fig. 6. Clustering all HA sequences for H1
through H3 via hclust; compr.: bzip2

H2N4CY003984, H3N1CY005943, H3N2AB277754, H1N9CY017275,
H1N9CY035248, H3N3CY005936, H2N2L11128, H2N2L11136,
H2N2L11137, H2N1CY017693, H2N1CY021125, H2N3L11138,
H1N6CY004458, H1N1D10477, H2N3CY014710, H3N2EU74652,
H3N2CY006026, H1N1AF091309, H1N1U47310, H3N3AB292410,
H3N2D21171, H3N2M73771, H1N5CY004498, H1N5CY014968

Since spectral clustering is a hard clustering method, it has to return for each
data entry just one class label. Assigning canonically the clusters 1, 2, and 3 to
the HA subtypes H1N..., H2N..., and H3N..., respectively, we therefore should
get the sequence

2 3 3 1 1 3 2 2 2 2 2 2 1 1 2 3 3 1 1 3 3 3 1 1

which was indeed returned for both compressors. Note that σ = 0.56078 and
σ = 0.57329 for the zlib and bzip2 compressor, respectively.

Next, we tried all HA sequences for H1 through H8 and from H9 through
H16. The reason for this partition has been caused by the different number of
sequences available. Recall that there are only two sequences for H13 and only
one sequence for H16 (cf. Figure 2).

For H1 through H8 the hierarchical clustering was error free for the zlib
compressor but not for bzip2 compressor (1 error) (see Figures 8 and 9 in the
Appendix). Interestingly, for H9 through H16 the tree obtained for the zlib
compressor contains 4 errors, while the one obtained for bzip2 compressor has
only one error.

Our spectral clustering algorithm returned a perfect clustering for all HA se-
quences for H1 through H8 for both compressors. On the other hand, for all
sequences from H9 through H16 the results differed with respect to the com-
pressor used.

140 K. Ito, T. Zeugmann, and Y. Zhu

c0 = 7 7 14 2 11 12 12 3 7 10 10 5 9 9 9 3 1 1 9 11
sp = 7 7 14 2 11 12 12 3 7 10 10 5 9 9 9 3 1 1 9 11

c0 = 11 5 3 7 5 2 2 2 4 10 5 8 12 2 2 4 4 4 11 9
sp = 11 5 3 7 5 2 2 2 4 10 5 8 12 2 2 4 4 4 11 9

c0 = 10 2 6 6 6 5 1 1 4 10 7 4 8 15 2 9 9 16 10 14
sp = 10 2 13 13 6 5 1 1 4 10 7 4 8 15 2 9 9 3 10 14

c0 = 14 7 7 6 14 7 8 8 12 12 11 15 3 15 5 11 3 1 1 8
sp = 14 7 7 6 14 7 8 8 12 12 11 15 3 15 5 11 3 1 1 8

c0 = 4 3 3 6 12 10 4 5 3 6 13 13 12 1 1 11 12 8 11 10
sp = 4 3 3 6 12 10 4 5 3 6 13 13 12 1 1 11 12 8 11 10

c0 = 5 9 15 8 6 6
sp = 5 9 15 8 13 13

Fig. 7. Clustering all HA sequences via Spectral Clustering ; compr.: zlib

For the zlib compressor we obtained 5 errors and for the bzip2 compressor
the number of errors was 7 when using for σ the mean as described above.
However, it is well-known that spectral clustering is quite sensitive to the kernel
width σ. So, we also tried to vary it a bit around the mean by rounding it to two
decimal digits and then changing the second one. For zlib the mean was 0.60873
and after two variations we found σ = 0.59 which resulted in just one error, i.e.,
H16 was classified as H13. For the bzip2 compressor such an improvement could
not be obtained.

As a possible explanation we conjecture that one needs a certain minimum of
available sequences in order to arrive at a correct spectral clustering. Trying all
HA sequences for H1 through H12 kind of confirmed this conjecture, since we
again obtained a perfect spectral clustering for both compressors.

For the hierarchical clustering, the tree obtained for the zlib compressor is
correct, but the the one obtained for the bzip2 compressor has one error. These
trees are shown in the Appendix.

Finally, we tried all data. Again hierarchical clustering was best for the zlib
compressor and showed only 2 errors. For the bzip2 compressor, we obtained 3
errors (see the Appendix for details). On the other hand, the best result we could
obtain for spectral clustering had 5 errors (for both compressors). In Figure 7
we show the clustering obtained for the zlib compressor for σ = 0.63, where c0
is the desired classification and sp the one returned from the spectral clustering
algorithm (partitioned into six groups).

So, the errors occur at positions 43, 44, 58, 105, and 106 and affect H6 which
is four times assigned to H13 and one time H16 which got in the H3 cluster. We
omit further details due to the lack of space.

Note that one can also compute the sum square error (s.s.e.) of all eigenvalues
with respect to their means in order to determine quite reliably from the eigen-
values of the Laplacian the number k of clusters (cf. Poland and Zeugmann [19]
for details).

Clustering the Normalized Compression Distance 141

4 Conclusions

The usefulness of the normalized compression distance for clustering the HA
type of virus data for the HA gene for it (segment 4) has been demonstrated.
Though we just used the built-in compressors zlib and bzip2 the results are
(almost) correct when clustering the resulting distance matrix for the whole data
set with hclust or spectral clustering via kLines. What is also remarkable in
this context is the robustness with respect to the completeness of the data. As
mentioned above, some data contain only a partial cds but this did not influence
the quality of the clustering as the results, e.g., H1N1U47310 and H3N2D21171
have only 1000 letters.

We have not reported the running time here, since it is still in the range of
several seconds. Though the quartet tree algorithm by Cilibrasi and Vitányi [8]
returns a high quality classification, it lacks scalability, since it tries to optimize
a quality function, a task which is NP-hard. So, even for the small example
including the 24 data for H1, H2, and H3 resulting in (24×24) distance matrix, it
took hours to find the resulting (very good) clustering. In contrast, the clustering
algorithms used in this study scale nicely at least up to the amount of data for
which the distance matrix is efficiently computable, since they have almost the
same running time as the ncd algorithm.

References

[1] GNU Octave, http://www.gnu.org/software/octave/
[2] The R project for statistical computing, http://www.r-project.org/
[3] Benedetto, D., Caglioti, E., Loreto, V.: Language trees and zipping. Phys. Rev.

Lett. 88(4), 048702–1–048702–4 (2002)
[4] Bennett, C.H., Gács, P., Li, M., Vitányi, P.M.B., Zurek, W.H.: Information dis-

tance. IEEE Transactions on Information Theory 44(4), 1407–1423 (1998)
[5] Cilibrasi, R.: The CompLearn Toolkit (2003), http://www.complearn.org/
[6] Cilibrasi, R., Vitányi, P.M.B.: Automatic meaning discovery using Google. CWI,

Amsterdam (2006)
[7] Cilibrasi, R., Vitányi, P.M.B.: Similarity of objects and the meaning of words. In:

Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 21–45.
Springer, Heidelberg (2006)

[8] Cilibrasi, R., Vitányi, P.M.B.: A new quartet tree heuristic for hierarchical clus-
tering. In: Arnold, D.V., Jansen, T., Vose, M.D., Rowe, J.E. (eds.) Theory of
Evolutionary Algorithms. Dagstuhl Seminar Proceedings, Schloss Dagstuhl, Ger-
many. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
vol. (06061) (2006)

[9] Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Transactions on
Information Theory 51(4), 1523–1545 (2005)

[10] Fischer, I., Poland, J.: New methods for spectral clustering. Technical Report
IDSIA-12-04, IDSIA/USI-SUPSI, Manno, Switzerland (2004)

142 K. Ito, T. Zeugmann, and Y. Zhu

[11] Keogh, E., Lonardi, S., Ratanamahatana, C.A.: Towards parameter-free data min-
ing. In: KDD 2004: Proceedings of the tenth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pp. 206–215. ACM Press, New
York (2004)

[12] Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE
Transactions on Information Theory 50(12), 3250–3264 (2004)

[13] Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applica-
tions, 3rd edn. Springer, Heidelberg (2008)

[14] Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

[15] National Center for Biotechnology Information. Influenza Virus Resource, infor-
mation, search and analysis,
http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html

[16] Palese, P., Shaw, M.L.: Orthomyxoviridae: The viruses and their replication. In:
Knipe, D.M., Howley, P.M., et al. (eds.) Fields’ Virology, 5th edn., pp. 1647–1689.
Lippincott Williams & Wilkins, Philadelphia (2007)

[17] Perona, P., Freeman, W.: A factorization approach to grouping. In: Burkhardt,
H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 655–670. Springer,
Heidelberg (1998)

[18] Poland, J., Zeugmann, T.: Clustering pairwise distances with missing data: Max-
imum cuts versus normalized cuts. In: Todorovski, L., Lavrač, N., Jantke, K.P.
(eds.) DS 2006. LNCS (LNAI), vol. 4265, pp. 197–208. Springer, Heidelberg (2006)

[19] Poland, J., Zeugmann, T.: Clustering the google distance with eigenvectors and
semidefinite programming. In: Knowledge Media Technologies, First International
Core-to-Core Workshop. Diskussionsbeiträge, Institut für Medien und Kommu-
nikationswisschaft, vol. 21, pp. 61–69. Technische Universität Ilmenau (2006)

[20] Spielman, D.A., Teng, S.-H.: Spectral partitioning works: Planar graphs and finite
element meshes. In: Proceedings of the 37th Annual IEEE Conference on Foun-
dations of Computer Science, pp. 96–105. IEEE Computer Society, Los Alamitos
(1996)

[21] Vitányi, P.M.B., Balbach, F.J., Cilibrasi, R.L., Li, M.: Normalized information
distance. In: Information Theory and Statistical Learning, pp. 45–82. Springer,
New York (2008)

[22] von Luxburg, U.: A tutorial on spectral clustering. Statistics and Comput-
ing 17(4), 395–416 (2007)

[23] Wright, P.F., Neumann, G., Kawaoka, Y.: Orthomyxoviruses. In: Knipe, D.M.,
Howley, P.M., et al. (eds.) Fields Virology, 5th edn., pp. 1691–1740. Lippincott
Williams & Wilkins, Philadelphia (2007)

[24] Yu, S.X., Shi, J.: Multiclass spectral clustering. In: Proceedings of the Ninth
IEEE International Conference on Computer Vision, vol. 2, pp. 313–319. IEEE
Computer Society, Los Alamitos (2003)

Clustering the Normalized Compression Distance 143

Appendix

Here we show the results obtained for the remaining data.

H1N9CY035248
H1N1U47310

H1N9CY017275
H1N1AF091309

H1N1D10477
H1N5CY004498

H1N5CY014968
H1N6CY004458

H7N1DQ003216
H7N2AB302789

H7N2U20461
H7N1CY014612

H7N1CY021557
H7N1AB268557
H7N1AB473543
H7N1AB269694

H8N4AB450454
H8N4AF310987
H8N4AF310988

H8N2CY015173
H8N7AB450435

H8N4CY005970
H8N4EF061122

H6N4DQ021680
H6N1DQ376618

H6N2AJ410541
H6N2CY014616

H6N1EU743286
H6N4CY004086

H6N3CY004202
H6N3CY004234

H3N2D21171
H3N2CY006026

H3N2AB277754
H3N3AB292410

H3N2EU74652
H3N1CY005943

H3N2M73771
H3N3CY005936

H4N1AY633284
H4N1CY005968

H4N2CY005959
H4N2CY005953

H4N3AB450446
H4N1AB292404

H4N2CY006030
H4N3AB292408

H2N1CY017693
H2N1CY021125

H2N4CY003984
H2N2L11137
H2N3L11138

H2N2L11128
H2N2L11136

H2N3CY014710
H5N6AF082041
H5N3EF597247

H5N5EF607888
H5N2EU743293

H5N1U79453
H5N1AF082040

H5N3U79452
H5N2CY005918

0.0 0.5 1.0 1.5 2.0

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "a

v
e
ra

g
e
")

d
is

t(H
1
_
8
z
lib

)

Height

Fig. 8. Clustering of all HA sequences for H1 through H8 via hclust; compr.: zlib

144 K. Ito, T. Zeugmann, and Y. Zhu

H1N9CY035248
H1N9CY017275

H1N1AF091309
H1N1D10477

H1N5CY004498
H1N5CY014968
H1N6CY004458

H6N4DQ021680
H1N1U47310

H6N2AJ410541
H6N1DQ376618
H6N2CY014616

H6N1EU743286
H6N4CY004086

H6N3CY004202
H6N3CY004234

H7N2U20461
H7N2AB302789
H7N1DQ003216

H7N1CY014612
H7N1AB473543
H7N1AB269694

H7N1CY021557
H7N1AB268557

H3N2D21171
H3N2CY006026

H3N2AB277754
H3N3AB292410

H3N2EU74652
H3N1CY005943

H3N2M73771
H3N3CY005936

H4N1AY633284
H4N1CY005968

H4N2CY005959
H4N2CY005953

H4N3AB450446
H4N1AB292404

H4N2CY006030
H4N3AB292408

H8N4AB450454
H8N4AF310987
H8N4AF310988

H8N4CY005970
H8N4EF061122

H8N2CY015173
H8N7AB450435

H2N1CY017693
H2N1CY021125

H2N4CY003984
H2N2L11137
H2N3L11138

H2N2L11128
H2N2L11136

H2N3CY014710
H5N6AF082041
H5N3EF597247

H5N1U79453
H5N5EF607888

H5N2EU743293
H5N1AF082040

H5N3U79452
H5N2CY005918

0.6 0.8 1.0 1.2

C
lu

s
te

r
 D

e
n

d
ro

g
r
a
m

h
c
lu

s
t (*

, "a
v
e
ra

g
e
")

d
is

t(H
1
_
8
b
z
ip

2
)

Height

Fig. 9. Clustering of all HA sequences for H1 through H8 via hclust; compr.: bzip

Clustering the Normalized Compression Distance 145

H1N9CY017275
H1N1AF091309

H1N1D10477
H1N5CY004498

H1N5CY014968
H1N6CY004458

H1N9CY035248
H1N1U47310

H15N8AB295613
H15N2CY006032

H15N8CY006009
H15N8L43916

H14M35996
H14N5AB289335

H14N5CY014604
H14M35997

H7N1DQ003216
H7N2AB302789

H7N2U20461
H7N1CY014612

H7N1CY021557
H7N1AB268557
H7N1AB473543
H7N1AB269694

H11N1CY017765
H11N3CY018015

H11N2CY006003
H11N3CY006002

H11N1AB450451
H11N6AB288845

H11N6D90306
H11N6CY014679

H13N6AB285094
H13N6AB284988

H9N1AY633116
H9N1CY005919
H9N1CY004642

H9N2AY603067
H9N3EF541420
H9N3EF541419

H9N2AF523386
H9N2AF156382

H12N1AF310991
H12N1CY006006

H12N5D90307
H12N5AB288334
H12N5CY021301
H12N5CY021293

H8N4AB450454
H8N4AF310987
H8N4AF310988

H8N2CY015173
H8N7AB450435

H8N4CY005970
H8N4EF061122

H6N4DQ021680
H6N1DQ376618

H6N2AJ410541
H6N2CY014616

H6N1EU743286
H6N4CY004086

H6N3CY004202
H6N3CY004234

H3N2D21171
H3N2CY006026

H3N2AB277754
H3N3AB292410

H3N2EU74652
H3N1CY005943

H3N2M73771
H3N3CY005936

H4N1AY633284
H4N1CY005968

H4N2CY005959
H4N2CY005953

H4N3AB450446
H4N1AB292404

H4N2CY006030
H4N3AB292408

H10N4AB274041
H10N5AB450453

H10N2AB450443
H10N5AB450456

H10N3AB292412
H10N1AB271117

H12N2DQ787811
H12N5AB288843

H16N3EU148600
H10N1CY005997
H10N3CY005994

H2N1CY017693
H2N1CY021125

H2N4CY003984
H2N2L11137
H2N3L11138

H2N2L11128
H2N2L11136

H2N3CY014710
H5N6AF082041
H5N3EF597247

H5N5EF607888
H5N2EU743293

H5N1U79453
H5N1AF082040

H5N3U79452
H5N2CY005918

0.0 0.5 1.0 1.5 2.0

C
lu

s
te

r
 D

e
n

d
ro

g
r
a
m

h
c
lu

s
t (*

, "a
v
e
ra

g
e
")

d
is

t(c
o
m

p
le

te
z
lib

)

Height

Fig. 10. Clustering of all HA sequences via hclust; compr.: zlib

146 K. Ito, T. Zeugmann, and Y. Zhu

H15N8AB295613
H15N2CY006032

H15N8CY006009
H15N8L43916

H1N9CY035248
H1N9CY017275

H1N1AF091309
H1N1D10477

H1N5CY004498
H1N5CY014968
H1N6CY004458

H14M35996
H14N5AB289335

H14N5CY014604
H14M35997

H13N6AB285094
H13N6AB284988

H6N4CY004086
H6N3CY004202
H6N3CY004234

H9N1AY633116
H9N1CY005919
H9N1CY004642

H9N2AY603067
H9N3EF541420
H9N3EF541419

H9N2AF523386
H9N2AF156382

H11N1CY017765
H11N3CY018015

H11N2CY006003
H11N3CY006002

H11N1AB450451
H11N6D90306

H11N6AB288845
H11N6CY014679

H6N2AJ410541
H6N1DQ376618
H6N2CY014616

H6N4DQ021680
H1N1U47310

H10N1CY005997
H10N3CY005994

H10N4AB274041
H10N5AB450453

H10N2AB450443
H10N5AB450456

H10N3AB292412
H10N1AB271117

H7N2U20461
H7N2AB302789
H7N1DQ003216

H7N1CY014612
H7N1AB473543
H7N1AB269694

H7N1CY021557
H7N1AB268557

H8N4AB450454
H8N4AF310987
H8N4AF310988

H8N4CY005970
H8N4EF061122

H8N2CY015173
H8N7AB450435

H12N1AF310991
H12N1CY006006

H12N5CY021301
H12N5CY021293

H12N5D90307
H12N5AB288334

H2N1CY017693
H2N1CY021125

H2N4CY003984
H2N2L11137
H2N3L11138

H2N2L11128
H2N2L11136

H2N3CY014710
H5N6AF082041
H5N3EF597247

H5N1U79453
H5N5EF607888

H5N2EU743293
H5N1AF082040

H5N3U79452
H5N2CY005918

H12N2DQ787811
H12N5AB288843

H6N1EU743286
H16N3EU148600

H3N2D21171
H3N2CY006026

H3N2AB277754
H3N3AB292410

H3N2EU74652
H3N1CY005943

H3N2M73771
H3N3CY005936

H4N1AY633284
H4N1CY005968

H4N2CY005959
H4N2CY005953

H4N3AB450446
H4N1AB292404

H4N2CY006030
H4N3AB292408

0.4 0.6 0.8 1.0 1.2 1.4

C
lu

s
te

r
 D

e
n

d
ro

g
r
a

m

h
c
lu

s
t (*

, "a
v
e
ra

g
e
")

d
is

t(c
o
m

p
le

te
b
z
ip

2
)

Height

Fig. 11. Clustering of all HA sequences via hclust; compr.: bzip

An Evolutionary Model of DNA Substring

Distribution

Meelis Kull1,2, Konstantin Tretyakov1, and Jaak Vilo1,2

1 Institute of Computer Science, University of Tartu,
Liivi 2, 50409 Tartu, Estonia

2 Quretec Ltd. Ülikooli 6a, 51003 Tartu, Estonia
{meelis.kull,konstantin.tretjakov,jaak.vilo}@ut.ee

http://biit.cs.ut.ee/

Abstract. DNA sequence analysis methods, such as motif discovery,
gene detection or phylogeny reconstruction, can often provide important
input for biological studies. Many of such methods require a background
model, representing the expected distribution of short substrings in a
given DNA region. Most current techniques for modeling this distribu-
tion disregard the evolutionary processes underlying DNA formation.
We propose a novel approach for modeling DNA k-mer distribution that
is capable of taking the notions of evolution and natural selection into
account. We derive a computionally tractable approximation for esti-
mating k-mer probabilities at genetic equilibrium, given a description of
evolutionary processes in terms of fitness and mutation probabilities. We
assess the goodness of this approximation via numerical experiments. Be-
sides providing a generative model for DNA sequences, our method has
further applications in motif discovery.

1 Introduction

From the very early days of bioinformatics, the computational analysis of DNA
sequences has been one of its primary focuses. Genomic sequence is believed
to literally define most of the key aspects of each organism’s life and develop-
ment. However, the sheer size of genomic data makes a manual human analysis
practically impossible.

The information in the DNA can be viewed and analyzed at various levels of
abstraction, from the large modules such as chromosomes and genes correspond-
ing to perceivable phenotypic traits, down to short codes or motifs guiding the
low-level chemical processes. In this work we turn our attention to the latter,
and address the problem of modeling the distribution of short substrings (i.e.
k-mers) in the genomic regulatory regions.

Understanding and modeling the distribution of short substrings is often the
key element in the analysis of DNA regulatory regions, because it provides a
concise description of the most relevant “regulatory codes” exploited by the
organism. For example, some short substrings are generally known to directly
induce the expression of the nearby genes. Others act as repressors or indirect

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 147–157, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

148 M. Kull, K. Tretyakov, and J. Vilo

switches [1]. Therefore, the problem of modeling the low-level substring distri-
bution is an important step for further analysis, such as motif discovery and
phylogenetics. This problem is most commonly referred to as background mod-
eling and so far quite often overlooked in favor of rather simplistic approaches
limited to 1-mer (i.e. single-nucleotide) frequencies only.

So far most of the probabilistic k-mer models have been based on either purely
phenomenological ideas (i.e. HMMs), or loosely related to chemical binding en-
ergy models (i.e. PWMs) [2]. Despite the undoubted practical usefulness, the
abovementioned models are, however, incapable of incorporating the question of
how could such a distribution arise in the regulatory region in the first place.

In this work we present a novel modeling framework for relating the process
of evolution and natural selection to the k-mer distribution expected to arise
in the corresponding population as a result of this process. More precisely, we
examine the situation where the fitness, i.e. the expected number of offspring
of the individual with a given regulatory sequence is related to the features
present in the sequence, such as the counts of certain substrings. We then derive
a computationally tractable way of inferring the expected k-mer distribution for
the given fitness function and sequence mutation rates.

The corresponding model is reasonably general and can be used to incorporate
more complex evolutionary assumptions into various DNA analysis methods.
The reasons for including these assumptions are twofold. Firstly, introducing a
strong inductive bias into low-level models (background) can result in better
precision of the higher-level pattern analysis and motif discovery algorithms
[3]. Secondly, the background and higher-level patterns can be handled by a
single model as both are products of evolutionary processes. By matching the
model to data it is possible to learn something about these processes. Mustonen
and Lässig provide a cross-species model with transcription factor binding sites
under selection and background in neutral evolution [4]. Similar methods have
been used for analysing binding site turnover [5,6,7]. Our approach uses a single
species but allows for more complicated evolutionary models by defining the
fitness and mutation functions.

The incorporation of evolution, even in its most simple form, can lead to
computationally expensive procedures. We propose simplifications, which make
the computations tractable and yet still provide a close approximation when
tested numerically.

We believe our model provides a novel view on the problem of modeling
DNA substring distribution and has a potential for further development and
applications.

2 Methods

2.1 Evolutionary Model of DNA Regulatory Regions

It is known that the formation of DNA sequence is mainly driven by evolution.
Genomic sequence mutates from generation to generation, and the less successful
variants tend to stage out in favor of the more successful ones. We consider the

An Evolutionary Model of DNA Substring Distribution 149

influence of this process on a single regulatory region, e.g. a promoter of some
gene. We assume that the fitness of a given region (i.e., its expected number
of offspring) is largely determined by a number of certain functional elements
in the region. In this case the evolutionary process will necessarily impose some
nontrivial k-mer distribution on the corresponding DNA region in the whole
population. Our goal here is to compute this distribution from the information
about the important features and their influence on promoter’s fitness, taking
into account the sequence mutation rates.

Formally, let us fix a promoter region of length n. Suppose we know that the
expected average number of offspring for an individual with sequence s in this
promoter region is fs, for all s ∈ An, where A = {A,C,G,T}. We shall refer to f
as the fitness function. Suppose we also know the probability mt→s of sequence t
at this region mutating into a sequence s within one generation. Let the expected
proportion of individuals with promoter sequence s in a population be ps, for all
s ∈ An. We say that this population is in genetic equilibrium, if the expected
proportion of individuals with sequence s in the offspring population p′s is equal
to ps. Note that we assume reproduction to be performed before mutation. All
of the following results could also be proven for the opposite order, yet the
equilibrium probabilities would be different.

2.2 The Equilibrium Distribution

We shall now prove that the equilibrium of the promoter sequence distribution
exists and is uniquely determined under very general assumptions. To do that
we first derive a formula to calculate p′ from p. For a population of size i, the
expected number of individuals with sequence t is i · pt. The expected number
of offspring for these individuals is i · pt · ft. As any sequence t can mutate
into sequence s with probability mt→s, the expected number of offspring with
sequence s is

∑
t∈An

iptftmt→s. In order to get the expected proportion of sequence

s in the offspring population, we have to divide by the size of the new population:

p′s =

∑
t∈An

iptftmt→s

∑
u∈An

∑
t∈An

iptftmt→u
=

i
∑

t∈An

ptftmt→s

i
∑

t∈An

ptft

∑
u∈An

mt→u
=

∑
t∈An

ptftmt→s

∑
t∈An

ptft
,

where
∑

u∈An

mt→u = 1 because it is the probability of t mutating into any other

sequence, including itself. We can now prove the following theorem.

Theorem 1. Let n ∈ N, fs > 0 for all s ∈ An, and mt→s > 0 for all s, t ∈ An.
Then there exists a unique probability distribution pEQ = (pEQ

s)s∈An with pEQ
s > 0

for all s ∈ An, and
∑

u∈An

pEQ
u = 1, such that the equilibrium condition holds:

pEQ
s =

∑
t∈An

pEQ
t ftmt→s

∑
t∈An

pEQ
t ft

, (1)

150 M. Kull, K. Tretyakov, and J. Vilo

Proof. Let us convert the formula (1) to a matrix form. For that we define an
|An|× |An| matrix E = (est)s,t∈An with est = ft ·mt→s. Now (1) is equivalent to

λpEQ = EpEQ, (2)

where

λ =
∑

t∈An

pEQ
t ft. (3)

It remains to prove that the matrix E has a unique eigenvector pEQ with positive
components, having the sum of components equal to 1, and the corresponding
eigenvalue λ satisfies the constraint (3).

As all the elements of matrix E are positive, we can apply the Perron-
Frobenius theorem, stating that real matrices with positive entries have a unique
largest real eigenvalue and that the corresponding eigenvector has strictly posi-
tive components. Furthermore, it states that this eigenvector is the only eigen-
vector with strictly positive components. After scaling this eigenvector so that
its components would sum up to 1, we have obtained the required pEQ. It remains
to prove that the corresponding eigenvalue λ satisfies (3). This can be shown by
summing up the components of vectors on both sides of the equation (2). On
the left we get λ as the components of pEQ sum up to 1. On the right we get the
required expression:
∑

s∈An

∑
t∈An

estp
EQ
t =

∑
s∈An

∑
t∈An

pEQ
t ftmt→s =

∑
t∈An

pEQ
t ft

∑
s∈An

mt→s =
∑

t∈An

pEQ
t ft,

because
∑

s∈An

mt→s = 1. ��

The following theorem expresses pEQ in terms of the fitness function and muta-
tion probabilities.

Theorem 2. Let n ∈ N, fs > 0, ms→t > 0, p(0)
s ≥ 0 for all s, t ∈ An, and∑

u∈An

p
(0)
u = 1. Further, let p(i)

s be defined for each i ∈ N and s ∈ An as follows:

p(i)
s =

∑
t∈An

p
(i−1)
t ftmt→s

∑
t∈An

p
(i−1)
t ft

. (4)

Then the limit pEQ = lim
i→∞

p(i) exists and satisfies the equilibrium condition (1).

Proof. As in the proof of Theorem 1 we represent the equilibrium problem as the
eigenvector problem for matrix E. We have to prove that our iterative process
converges to the only positive eigenvector of E, which gives us the equilibrium
distribution according to Theorem 1. Since by Perron-Frobenius theorem the
positive eigenvector corresponds to the largest eigenvalue, we can apply the

An Evolutionary Model of DNA Substring Distribution 151

power iteration method to find vector pEQ. At step i the original power iteration
method divides the vector Ep(i) by its length, whereas in our iterative definition
(4) we divide it by the sum of its components to obtain a probability distribution.
Both methods are just different normalizations, and reach the same equilibrium
eigenvector, up to a multiplicative constant. Thus, the limit distribution pEQ

exists and satisfies the equilibrium condition (1). ��

2.3 Substring Distribution at Equilibrium

For studying the substring distribution we first introduce some notation. For
two strings a and b we denote their concatenation by a · b. For any sequence s let
sk

j denote its substring of length k starting at location j. We regard sequences
as cyclic, that is, the substring that reaches the end of the sequence wraps to
continue from the beginning. Further we define the shift operator “�”, such that
s � i denotes the sequence obtained from s by removing the last i nucleotides
and inserting these at the beginning.

In order to express the substring distribution in a usable form, we need to
make assumptions about the fitness function f and mutation probabilities m.
Namely, for f we assume shift invariance, that is fs = fs�i for all s ∈ An and
i ∈ N. This holds, for example, if fitness is measured by the number of occurences
of some substring in the sequence. For m we assume thatma·s→b·t = ma→b ·ms→t

for all 1 ≤ k ≤ n, a, b ∈ Ak and s, t ∈ An−k. In other words, we assume that
mutations at different parts of the sequence are independent. From this it follows
that m is also shift invariant. As the proportions in the equilibrium population
are computed directly from the fitness function and mutation probabilities, these
must also be shift invariant, that is, pEQ

s = pEQ
s�i.

Suppose we now pick a substring of length k from a random location in the se-
quence of a random individual from the equilibrium population. The probability
to get substring a can be calculated as follows:

Pr(a) =
∑

s∈An

pEQ
s

n∑
j=1

1
n
· [sk

j = a] =
∑

s∈An

1
n

n∑
j=1

pEQ
s · [sk

j = a],

where [sk
j = a] is defined as 1 if sk

j = a and 0 otherwise. Note that sk
j = a if

and only if s = (a · t)�j for some t ∈ An−k. The above equality can now be
rewritten:

Pr(a) =
∑

t∈An−k

1
n

n∑
j=1

pEQ
(a·t)�j =

∑
t∈An−k

1
n

n∑
j=1

pEQ
a·t =

∑
t∈An−k

pEQ
a·t.

In other words, the probability of k-mer a in the equilibrium substring distribu-
tion is equal to the total proportion of all sequences starting with a. Due to this
fact we introduce the following notation:

pEQ
a := Pr(a) =

∑
t∈An−k

pEQ
a·t. (5)

152 M. Kull, K. Tretyakov, and J. Vilo

Computing the equilibrium substring distribution directly from (4) and (5) is in-
tractable as the time complexity is exponential in n. Therefore, we propose an al-
ternative method for estimating this distribution. For each k-mer a, we can write:

pEQ
a

(5)
=

∑
s∈An−k

pEQ
a·s

(1)
=

∑
s∈An−k

∑
t∈An

pEQ
t ftmt→a·s
∑

t∈An

pEQ
t ft

(t=b·u)
=

∑
s∈An−k

∑
b∈Ak

∑
u∈An−k

pEQ
b·ufb·umb·u→a·s

∑
b∈Ak

∑
u∈An−k

pEQ
b·ufb·u

=

=

∑
s∈An−k

∑
b∈Ak

∑
u∈An−k

pEQ
b·ufb·umb→amu→s

∑
b∈Ak

∑
u∈An−k

pEQ
b·ufb·u

=

∑
b∈Ak

mb→a

∑
u∈An−k

pEQ
b·ufb·u

∑
s∈An−k

mu→s

∑
b∈Ak

∑
u∈An−k

pEQ
b·ufb·u

=

=

∑
b∈Ak

mb→a

∑
u∈An−k

pEQ
b·ufb·u

∑
b∈Ak

∑
u∈An−k

pEQ
b·ufb·u

.

We now approximate

∑
u∈An−k

pEQ
b·ufb·u ≈ pEQ

b

|An−k|
∑

u∈An−k

fb·u , (6)

which essentially means replacing all terms pEQ
b·u within the sum by their average

over u ∈ An−k. Although not strongly supported by theoretical considerations,
the numerical experiments indicate that this approximation is quite good. We
further denote fb := 1

|An−k|
∑

u∈An−k

fb·u, as this is the average fitness of all se-

quences starting with substring b. Note that this does not conflict with the
notation of the original fitness function, as for the full sequence s the sum on
the right has only one element, fs itself. The approximation (6) can now we be
written down as follows:

pEQ
a ≈

∑
b∈Ak

mb→ap
EQ
b fb

∑
b∈Ak

pEQ
b fb

.

which matches exactly the original equilibrium condition (1), yet now it is for
substrings of length k. According to Theorem 1 there exists a unique distribution
pEQk , which for any k-mer a satisfies the following condition:

pEQk
a =

∑
b∈Ak

pEQk

b · fbmb→a

∑
b∈Ak

pEQk

b fb

.

It is therefore natural to use pEQk
a as an approximation to pEQ

a .

An Evolutionary Model of DNA Substring Distribution 153

The practical calculation of pEQk can now be performed in two steps:

– estimating fb= 1
|An−k|

∑
u∈An−k

fb·u for all b ∈ Ak by random sampling over u;

– finding pEQk using Theorem 2, i.e. using power iteration on a |A|k × |A|k
matrix.

For the case of DNA sequences (|A| = 4) this calculation is realistic up to k = 8
or so.

3 Experiments

In order to check the applicability of our approximations we have performed
experiments to compare the distributions pEQ and pEQk . As calculating the exact
distribution pEQ is computationally very demanding, we restricted ourselves to
the alphabet of size 2, i.e. A = {A,C}, and to the promoters of length n =
8. At each site independently, the probability of a mutation from A to C or
from C to A was r, we tested values r = 10−0.4, 10−0.6, 10−0.8, . . . 10−3.0. As
explained later, smaller values of r lead to very similar results due to convergence
of the distribution. Because of independent point-mutations the probability of a
sequence s mutating into sequence t was ms→t = rΔ(s,t)(1 − r)n−Δ(s,t), where
Δ(s, t) is the number of positions where s and t have a different nucleotide. The
fitness of a sequence was dependent on the number of times a certain substring
q occurred in the sequence, we tested q = AC,AAC,AACA. Altogether we used
nine different measures f as for each of the substrings q we tested the following
three strategies:

(S1) sequences with i occurrences of q had fitness i+ 1;
(S2) sequences with 0 or 1 occurrences of q had fitness 1, others had fitness 2;
(S3) sequences with 0 occurrences of q had fitness 2, others had fitness 1.

For each mutation rate r (14 values), each fitness function f (9 values), and each
k = 1, 2, . . . , 6 we found the k-mer distribution for the exact equilibrium pEQ

and the approximation pEQk , altogether 14 · 9 · 6 = 756 pairs of distributions.
To evaluate the approximated distribution we found the Pearson correlation

coefficient with the exact distribution as well as the Kullback-Leibler divergence
per position (KLdpp) defined as follows:

KLdpp =
DKL(pEQ||pEQk)

k
=

1
k

∑
a∈Ak

pEQ
a log

pEQ
a

pEQk
a

.

The results did not show significant dependence of approximation error on the
choice of the fitness function and value k. The precision of approximation was
mainly dependent on the mutation probability r. Figure 1 plots the correlation
and KLdpp for all experiments for different values of r.

To get some idea about how the exact and approximate distributions change
with r we plotted the distributions for q = AAC, fitness strategy (S2), n = 8,

154 M. Kull, K. Tretyakov, and J. Vilo

Point−mutation probability

K
−

L
di

ve
rg

en
ce

 p
er

 p
os

iti
on

0.0

0.5

1.0

1.5

2.0

2.5

3.0

●●●●●●●●●●
●
●

●●●
●●

●●●●
●●●●●
●●●●
●
●●●
●●●●
●
●●●●
●

●●●●

●●
●
●

●●●●●●●●●●●
●●
●●●
●●
●●●●
●●●●
●●●
●●
●●●
●
●●●
●●
●●●●●

●●
●●

●●●
●

●●●●●●●●●●
●●●
●●●
●●
●●
●●●●
●●●●●
●●
●●●
●
●●●
●●
●●●●
●

●
●●●

●●●
●

●●●●●●●●●●
●●
●●●●
●●●●
●●●●●
●●●●
●●●
●●
●●●
●●●●
●●●
●

●
●●●

●●●
●

●●●●●●●●●
●●●
●●●●●●●●
●●●●●●
●●●●●
●●●
●●●●
●●●
●●●
●
●
●●
●
●●●
●

●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●
●●●
●●●●
●●
●●
●
●●●
●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●
●●
●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●
●●●●●
●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●

●●●
●●●●●●

●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

10−3 10−2.5 10−2 10−1.5 10−1 10−0.5

Point−mutation probability

P
ea

rs
on

 c
or

re
la

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

●●●
●●●
●
●●●
●●●●

●●●●
●●
●●
●
●●●●●●●●●
●

●

●●●●●●●●

●●●●●
●
●●●
●●●
●●

●●●●
●●
●●
●
●●●●●●●●●
●

●

●●●●●●●●

●●●●●
●
●●●●
●●●●

●●●●
●●
●●
●
●●●●●●●●●
●

●

●●●●●●●●

●●●●
●●●●
●●●
●●●

●●●
●●●●
●
●
●●●●●●●●
●●

●

●●●●●●●●

●●●●
●●●●
●●●●●

●
●●●
●●●
●●
●●●●●
●●●●●
●

●

●●●●●●●●

●●●
●●●●
●●●
●●

●
●●●
●●●●
●●●●●
●●●●●●●
●
●
●●●●●●●●

●●
●●●●
●●●●

●●

●●●
●●●●●
●●●
●●●●●●●●
●●
●
●●●●●●●●

●●
●●●●●
●
●
●

●
●●●●●
●●●●
●●●●●●●●
●●●●
●
●●
●●●●●●●

●●●●●●
●
●

●
●

●●●
●●●
●●●●●●●●
●●●●●●
●●●●●●●
●●●●●

●●
●

●●
●●
●

●●
●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●

●●
●
●
●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

10−3 10−2.5 10−2 10−1.5 10−1 10−0.5

Fig. 1. The effect of point-mutation rate r on the approximation quality measured
as Kullback-Leibler divergence per position and correlation between the exact and
approximated distributions. Each circle denotes an experiment with a different set of
parameters.

F
re

qu
en

cy

0.0

0.1

0.2

0.3

0.4

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

CCC CCA CAC CAA ACC ACA AAC AAA

Method

Exact

Approx

Mut. rate

● r=0.1

r=0.03

r=0.01

Fig. 2. The exact and approximate 3-mer distributions for point-mutation rates r =
0.1, 0.03, 0.01 where fitness is defined with strategy (S2) for substring q = AAC

k = 3, and r = 0.1, 0.03, 0.01 (see Figure 2). For mutation rate r = 0.1 the
approximation is almost perfect and is gradually becoming worse with decreasing
r. Still, the correlation between the exact and approximate distribution remains
quite high, which is confirmed in Figure 1 where all correlations are above 0.4.
High Kullback-Leibler divergence for small values of r is apparently caused by the
substrings with moderate true frequency but very low approximated frequency,
such as ACA in Figure 2.

Figure 2 also illustrates the convergence of the exact distributon with decreas-
ing r, as the distributions of r = 0.03 and r = 0.01 are highly similar. The same
holds for the approximated distributions, explaining why approximation errors
for r = 10−2.8 and r = 10−3 have extremely similar patterns in Figure 1.

An Evolutionary Model of DNA Substring Distribution 155

4 Discussion

In this work we presented a novel approach to modeling DNA substring distribu-
tion that is based on an evolutionary model. We have derived a computationally
tractable approximation for estimating the k-mer distribution from the descrip-
tion of the process, and verified that the approximation is fairly precise. This
allows to use the model in generative settings as well as for significance compu-
tations in motif discovery procedures.

The major merit of the approach lies in the fact that it provides a sound way of
incorporating evolutionary assumptions and prior knowledge into further analy-
ses. Introduction of such inductive bias opens up novel possibilities of application
for sequence analysis algorithms. To be more precise, consider the case of motif
discovery from promoter sequences. This task is often solved by searching given
DNA sequence data for short significantly overrepresented substrings [8]. Sig-
nificance here denotes a measure of deviation of observed substring frequencies
from a certain null-model – a presumed distribution of substrings, which could
be explained using prior knowledge only. For example, if we presume that a given
DNA region is inherently rich in CG-pairs, we shall not be surprised to find that
a substring CGCGCG is frequent. On the other hand, detecting a similarly frequent
substring ATATAT might be interpreted as a presence of something, which cannot
be explained using previous knowledge only, i.e. an overrepresented motif.

Many contemporary motif discovery methods are rather unsophisticated in the
way of modeling prior knowledge, using just the single- or di-nucleotide distribu-
tion for their background model [9]. This may result in spurious discoveries, such
as detecting multiple versions of a single motif or just some generic sequence fea-
tures. Other methods use the set of background sequences [10,11], or a higher-order
HMM [12,3] to model prior knowledge. The drawback of this approach is that it
requires many sequences “of the same kind” to estimate the model. Yet it is of-
ten not clear which regulatory sequences may be modeled as being from the same
kind. Therefore further assumptions, such as co-regulation or co-expression must
be made. In our method we essentially provide a set of evolutionary assumptions,
which may be used instead. Given these assumptions only, a background model of
k-mer distribution can be computed, incorporating the information about which
sequence features are already known to be significant.

Another natural way of regarding our method is just as a purely genera-
tive model for DNA sequences. Indeed, the marginal k-mer distribution can be
straightforwardly extended to a generator of arbitrary-length substrings satis-
fying this distribution [3]. The need for such generators of “random” DNA se-
quences arises often in connection with testing and analysis of various algorithms,
and a number of tools have already been developed for this purpose. Some of
these proceed by simulating evolution [13], some focus on simulating alignments
[14], and yet others propose ways of planting randomized motifs [15]. Our model
can account for motifs and evolutionary aspects simultanously through the fit-
ness and mutation functions. For modelling gene promoter regions our model can
in principle aggregate such information as the transcription factor binding motifs
and their combinations [1], nucleosome positioning code [16] and CpG mutation

156 M. Kull, K. Tretyakov, and J. Vilo

rates [17]. While defining the fitness function is mostly a biological endeavor, the
mutation function can require more mathematical effort, as exemplified in the
Experiments section.

The open problem which yet remains to be solved is the question of efficient
estimation of model parameters from data, as this could open new possibilities
and application areas both in sequence analysis as well as the study of DNA
evolution. Or in other words, what information can we extract from the sub-
string distributions, assuming genetic equilibrium? Another interesting question
is related to the possibility of improving the precision of the approximation
(6), especially for smaller mutation rates, perhaps by incorporating higher-order
terms, and yet still keeping the computations tractable.

References

1. Davidson, E.H.: The regulatory genome: gene regulatory networks in development
and evolution. Academic Press, San Diego (2006)

2. Stormo, G.D.: DNA binding sites: representation and discovery. Bioinformat-
ics 16(1), 16–23 (2000)

3. Thijs, G., Lescot, M., Marchal, K., Rombauts, S., Moor, B.D., Rouzé, P., Moreau,
Y.: A higher-order background model improves the detection of promoter regula-
tory elements by Gibbs sampling. Bioinformatics 17(12), 1113–1122 (2001)

4. Mustonen, V., Lässig, M.: Evolutionary population genetics of promoters: predict-
ing binding sites and functional phylogenies. Proc. Natl. Acad. Sci. USA 102(44),
15936–15941 (2005)

5. Moses, A.M., Pollard, D.A., Nix, D.A., Iyer, V.N., Li, X.Y., Biggin, M.D., Eisen,
M.B.: Large-scale turnover of functional transcription factor binding sites in
Drosophila. PLoS Comput. Biol. 2(10), e130 (2006)

6. Doniger, S.W., Fay, J.C.: Frequent gain and loss of functional transcription factor
binding sites. PLoS Comput. Biol. 3(5), e99 (2007)

7. Huang, W., Nevins, J.R., Ohler, U.: Phylogenetic simulation of promoter evolution:
estimation and modeling of binding site turnover events and assessment of their
impact on alignment tools. Genome. Biol. 8(10), R225 (2007)

8. Brazma, A., Jonassen, I., Vilo, J., Ukkonen, E.: Predicting gene regulatory elements
in silico on a genomic scale. Genome. Res. 8(11), 1202–1215 (1998)

9. Das, M.K., Dai, H.K.: A survey of DNA motif finding algorithms. BMC Bioinfor-
matics 8(Suppl. 7), S21 (2007)

10. Redhead, E., Bailey, T.: Discriminative motif discovery in DNA and protein se-
quences using the DEME algorithm. BMC Bioinformatics 8(1), 385 (2007)

11. Vilo, J.: Pattern discovery from biosequences. Thesis PhD (2002)
12. Wang, G., Yu, T., Zhang, W.: WordSpy: identifying transcription factor binding

motifs by building a dictionary and learning a grammar. Nucleic Acids Res. 33(Web
Server issue), W412–W416 (2005)

13. Cartwright, R.A.: DNA assembly with gaps (Dawg): simulating sequence evolution.
Bioinformatics 21(Suppl. 3), iii31–iii38 (2005)

14. Varadarajan, A., Bradley, R., Holmes, I.: Tools for simulating evolution of aligned
genomic regions with integrated parameter estimation. Genome. Biol. 9(10), R147
(2008)

An Evolutionary Model of DNA Substring Distribution 157

15. Rouchka, E.C., Hardin, C.T.: rMotifGen: random motif generator for DNA and
protein sequences. BMC Bioinformatics 8, 292 (2007)

16. Segal, E., Fondufe-Mittendorf, Y., Chen, L., Th̊aström, A., Field, Y., Moore,
I.K., Wang, J.P.Z., Widom, J.: A genomic code for nucleosome positioning. Na-
ture 442(7104), 772–778 (2006)

17. Saxonov, S., Berg, P., Brutlag, D.L.: A genome-wide analysis of CpG dinucleotides
in the human genome distinguishes two distinct classes of promoters. Proc. Natl.
Acad. Sci. USA 103(5), 1412–1417 (2006)

Indexing a Dictionary for Subset Matching

Queries

Gad M. Landau1,�, Dekel Tsur2, and Oren Weimann3

1 Department of Computer Science, University of Haifa, Haifa 31905, Israel
and

Department of Computer Science and Engineering, NYU-Poly,
Six MetroTech Center, Brooklyn, NY 11201-3840

landau@cs.haifa.ac.il
2 Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

dekelts@cs.bgu.ac.il
3 Faculty of Mathematics and Computer Science, Weizmann Institute of Science,

Rehovot, Israel
oren.weimann@weizmann.ac.il

Abstract. We consider a subset matching variant of the Dictionary
Query problem. Consider a dictionary D of n strings, where each string
location contains a set of characters drawn from some alphabet Σ =
{1, ..., |Σ|}. Our goal is to preprocess D so when given a query pattern p,
where each location in p contains a single character from Σ, we answer
if p matches to D. p is said to match to D if there is some s ∈ D where
|p| = |s| and p[i] ∈ s[i] for every 1 ≤ i ≤ |p|.

To achieve a query time of O(|p|), we construct a compressed trie of all
possible patterns that appear in D. Assuming that for every s ∈ D there
are at most k locations where |s[i]| > 1, we present two constructions of
the trie that yield a preprocessing time of O(nm+|Σ|kn log(min{n, m})),
where n is the number of strings in D and m is the maximum length
of a string in D. The first construction is based on divide and con-
quer and the second construction uses ideas introduced in [2] for text
fingerprinting. Furthermore, we show how to obtain O(nm + |Σ|kn +
|Σ|k/2n log(min{n, m})) preprocessing time and O(|p| log log |Σ|+
min{|p|, log(|Σ|kn)} log log(|Σ|kn)) query time by cutting the dictionary
strings and constructing two compressed tries.

Our problem is motivated by haplotype inference from a library of
genotypes [13, 16]. There, D is a known library of genotypes (|Σ| = 2),
and p is a haplotype. Indexing all possible haplotypes that can be inferred
from D as well as gathering statistical information about them can be
used to accelerate various haplotype inference algorithms.

1 Introduction

In the Dictionary Query problem, one is given a set D of strings s1, . . . , sn and
subsequent queries ask whether a given query pattern p appears in D. In [5],
� Partially supported by the National Science Foundation Award 0904 246, Israel

Science Foundation grants 35/05 and 347/09, the Israel-Korea Scientific Research
Cooperation, Yahoo, Grant No. 2008217 from the United States-Israel Binational
Science Foundation (BSF) and DFG.

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 158–169, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Indexing a Dictionary for Subset Matching Queries 159

this paradigm was broaden to allow a bounded number of mismatches, or allow
a bounded number of “don’t care” characters. We further extend dictionary
queries to support a restricted version of subset matching. In subset matching,
the characters are subsets of some alphabet Σ. A pattern p is said to match
a string s of the same length if p[i] ⊆ s[i] for every 1 ≤ i ≤ |p|. The subset
matching problem of finding all occurrences of a pattern string p in a text string
t was solved in O(N log2N) deterministic time [6] and (N logN) randomized
time [21], where N is the sum of sizes of the sets in p and t.

In this paper we consider the problem of indexing a dictionary for subset
matching queries. We focus on a relaxed version of subset matching requiring
that the query pattern is over single characters from Σ rather than subsets of Σ.
Formally, the problem we consider is defined as follows. We are given a dictionary
D of strings s1, . . . , sn where each string character is a subset of some alphabet
Σ. A query p is a string over the alphabet Σ, and we say that p matches to si if
|p| = |si| and p[j] ∈ si[j] for every 1 ≤ j ≤ |p|. Our goal is to preprocess D for
queries of the form “does p match to a string in D?”.

Let m denote the length of the longest string in D and let D′

be the set of all strings that match to a string in D. For exam-
ple, if D contains two strings, ab{c, d} and ab{c, d}g{a, b, c}ad, then
D′ = {abc, abd, abcgaad, abcgbad, abcgcad, abdgaad, abdgbad, abdgcad}. Notice
that |D′| is bounded by O(|Σ|kn). By storing the dictionary D′ in a trie we
can efficiently answer membership queries in O(|p|) time for a pattern p. A com-
pressed trie (i.e. a trie whose internal nodes all have more than one child and
whose edges correspond to strings rather than single characters) can be naively
constructed in O(|Σ|knm) time and O(|Σ||D′|) space, assuming every s ∈ D
has at most k locations in which |s[i]| > 1. The techniques of Cole et al. [5] can
be used to solve the problem with O(nm log(nm) + n logk n/k!) preprocessing
time, and O(m+logk n log logn) query time. For small |Σ|, this approach is less
efficient than the compressed trie approach.

In Sections 2 and 3 we present two faster constructions of the trie. The first
construction is based on divide and conquer and requires O(nm + |Σ|kn logn)
preprocessing time. The second construction uses ideas introduced in [2] for text
fingerprinting and requires O(nm+ |Σ|kn logm) preprocessing time. The space
complexity is O(|Σ||D′|), and it can be reduced to O(|D′|) by using suffix tray [7]
ideas. Intuitively, a suffix tray is a combination of a suffix tree and a suffix array
where in some suffix tree nodes we store and array of length |Σ| of children
pointers and in some nodes we store two pointers to appropriate intervals in the
suffix array. The save in space comes at the cost of O(|p|+log log |Σ|) query time.
In Section 4 we show that by cutting the dictionary strings and constructing two
tries we can obtain O(nm+ |Σ|kn+ |Σ|k/2n log(min{n,m})) preprocessing time
at the cost of O(|p| log log |Σ|+min{|p|, log |D′|} log log |D′|) = O(|p| log log |Σ|+
min{|p|, log(|Σ|kn)} log log(|Σ|kn)) query time.

An important feature of our first two trie constructions is that they can calculate
the number of appearances inD of each pattern inD′ (i.e., which is most common?

160 G.M. Landau, D. Tsur, and O. Weimann

which is least common? etc.). This feature is useful in the application of Haplotype
Inference that we next describe according to the presentation of Gusfield [12].

1.1 A Haplotype Trie from a Genotype Dictionary

In diploid organisms such as humans, there are two non-identical copies of each
chromosome (except for the sex chromosome). A description of the data from
a single copy is called a haplotype while a description of the conflated (mixed)
data on the two copies is called a genotype. The underlying data that forms
a haplotype is either the full DNA sequence in the region, or more commonly
the values of only DNA positions that are Single Nucleotide Polymorphisms
(SNP’s). A SNP is a position in the genome at which exactly two (of four)
nucleotides occur in a large percentage of the population. If we consider only the
SNP positions, each position can have one of two nucleotides and a haplotype
can thus be represented as a 0/1 vector. A genotype can be represented as a
0/1/2 vector, where 0 means that both copies contain the first nucleotide, 1
means that both copies contain the second nucleotide and 2 means that the
two copies contain different nucleotides (but we don’t know which copy contains
which nucleotide).

The next high-priority phase of human genomics will involve the development
and use of a full Haplotype Map of the human genome [20]. Unfortunately, it is
prohibitively expensive to directly determine the haplotypes of an individual. As
a result, almost all population data consists of genotypes and the haplotypes are
currently inferred from raw genotype data. The input to the haplotype inference
problem consists of n genotypes (0/1/2 vectors), each of length m. A solution to
the problem associates every genotype with a pair of haplotypes (binary vectors)
as follows. For any genotype g, the associated binary vectors v1, v2 must both
have value 0 (respectively 1) at any position where g has value 0 (respectively
1); but for any position where g has value 2, exactly one of v1, v2 must have
value 0, while the other has value 1. The haplotypes inference problem has been
studied extensively, e.g. [1, 4, 9, 10, 12, 15, 17, 19, 24, 26, 27, 32].

In our settings, the dictionary D corresponds to the library of genotypes,
where every genotype location that has the value 2 is replaced by the set {0, 1}.
This way, |Σ| = 2 and D′ consists of all the possible haplotypes that can be part
of a pair inferred fromD. Our trie stores all haplotypes inD′ and we can calculate
the number of appearances in D of each such haplotype while constructing the
trie. The trie can then be used to accelerate haplotype inference algorithms based
on the “pure parsimony criteria”, greedy heuristics such as “Clarks rule”, and
EM based algorithms.

2 An O(nm + |Σ|kn log n) Time Construction

In this section we present an O(nm + |Σ|kn logn) time construction for the
compressed trie of D′. To simplify the presentation, for the rest of the paper we
assume without loss of generality that all strings in D have the same length m.

Indexing a Dictionary for Subset Matching Queries 161

We say that string s is the longest common prefix (LCP) of strings x and y if s
is the longest string that is a prefix of both x and y.

We first describe an algorithm for merging two compressed tries T1 and T2.

1. If one of the tries T1 or T2 has a single vertex, then return a copy of the
other trie.

2. If both the roots of T1 and T2 have degree 1, and the labels of the edges
leaving the roots of T1 and T2 have a common first letter, then find the
longest common prefix (LCP) p of these labels. Remove the string p from
T1, that is, if the label of the edge e that leaves the root of T1 is equal to p,
remove the edge e and the root from T1, and otherwise remove p from the
label of e. Additionally, remove p from T2.

Next, recursively merge the two modified tries T1 and T2, and let T be
the result of the merge. Add a new root r to T and connect it by an edge to
the old root of T , where the label of the edge is p.

3. If the two cases above do not occur, then split the trie T1 as follows. For
every edge e = (r, v) that leaves the root r of T1, create a new trie that
contains r, v, and all the descendents of v in T1. This trie will be denoted
T a

1 , where a is the first letter in the label of e. Similarly, split the trie T2 and
create tries T a

2 .
For each letter a ∈ Σ, recursively merge the tries T a

1 and T a
2 if these two

tries exist. Finally, merge the roots of the merged tries.

If the LCP of two edge labels can be obtained in O(1) time, then the time
complexity of this algorithm is O(|T1|+ |T2|), where |T | denotes the number of
vertices in the compressed trie T . To perform such LCP queries in O(1) time,
we make use of generalized suffix tree.

Given a set X of n strings each of length bounded by m, a generalized suffix
tree is a compressed trie containing all O(nm) suffixes of the strings in X . strings
in X . A generalized suffix tree can be built in O(nm) time (e.g. [11,22,25,29,31]).
By building a lowest common ancestor data structure (such as [18]) on the
generalized suffix tree, we can support O(1)-time LCP queries between pairs of
suffixes in X .

We now present the algorithm for building a compressed trie of D′.

1. For every string in D, replace every character that is a set of size greater
than one with a new symbol φ.

2. Build a generalized suffix tree T̂ for D.
3. Build compressed tries T1, . . . , Tn, where Ti is a compressed trie containing

all the patterns that match si (recall that D = {s1, . . . , sn}).
4. Repeat �logn� times:

(a) Partition the compressed tries into pairs, except at most one trie.
(b) Merge each pair of tries into a single trie.

Constructing T̂ requires O(nm) time. Each edge label b in some trie that is built
during the algorithm, matches a substring si[j..j + |b| − 1] of some string si in
D. It is important to notice that |si[l]| = 1 for every j + 1 ≤ l ≤ j + |b| − 1.

162 G.M. Landau, D. Tsur, and O. Weimann

Using the generalized suffix tree T̂ , computing the LCP of two edge labels takes
O(1) time. Therefore, the merging of two compressed tries in the algorithm is
performed in linear time. In each iteration of line 4, the total work is linear in the
total sizes of the current tries, which is O(|D′|) = O(|Σ|kn). Thus, the overall
time complexity of the algorithm is O(nm + |Σ|kn logn).

3 An O(nm + |Σ|kn log m) Time Construction

In this section we present an O(nm + |Σ|kn logm) time construction for the
compressed trie of D′. Consider the lexicographical ordering of all the strings
in D′. Notice that if we knew this ordering and the length of the LCP of every
adjacent strings in this ordering, then we could construct the trie in O(|D′|) =
O(|Σ|kn) time by adding the strings in order. We next describe how to obtain
the required ordering and LCP information in O(nm+ |Σ|kn logm) time.

We assign a unique integer name to every string in D′ such that the names
preserve the lexicographical order of D′. The names are assigned using a finger-
printing technique [2, 8, 23]. The idea behind fingerprinting is that the name of
a string p can be computed fast from the name of a string q that differs from p
only in one location.

A naming table of a string p is a table of 1 + log |p| rows, where the i-th row
contains 2i−1 cells (without loss of generality |p| is a power of two, otherwise,
we can extend p until |p| is a power of two by concatenating to p a string of a
repeated new character). Each cell in the table is assigned a name. First, the
cells in the last row are named by the characters of p. Next, the cells of the
second last row are named. The name of a cell depends on the names a1 and
a2 assigned to the two cells below it. If there was other cell in the current row
such that the blocks below it were also named a1 and a2, then the name used
for that cell is also given for the current cell. Otherwise, a new name is used.
This process is continued with the other rows in the table. See Figure 1(a) for
an example.

25

9 17

1 2 3 1

a b c b b c a b

(a)

37

13 17

1 1 3 1

a b a b b c a b

(b)

Fig. 1. Figure (a) shows a possible naming table for the string p = abcbbcab. Note that
the first and last cell in the third row have the same name as the names of the cells
below these cells are the same (a and b). Figure (b) shows a possible naming table for
the string q = ababbcab that differs from p in one location. The cells of the naming
table of q that differ from the corresponding cells of the naming table of p are marked
in bold.

Indexing a Dictionary for Subset Matching Queries 163

The following property is what makes the naming technique appealing in our
settings. Consider two strings p and q that differ only in one location. Then, the
naming table of p differs from the naming table of q only in 1 + log |p| cells (see
Figure 1(b)).

Consider all the strings that match a specific string s ∈ D. It is possible to
enumerate these strings in an order s(1), s(2), . . . , s(r) in which two consecutive
strings differ in exactly one location. This means that one can compute names
for these strings in O(m+ r logm) time as follows. First build the naming table
of s(1) from bottom to top, using a two-dimensional table B to store the names
given so far. More precisely, B[a, b] is the name given for the pair (a, b), if the
pair (a, b) was named. Since checking whether a pair of names appeared before
takes constant time, the time it takes to build the naming table is linear in the
number of cells in the table, which is m+m/2 +m/4 + · · ·+ 1 = 2m− 1. Next,
we build the naming table of s(2) by updating 1+ logm cells in the table of s(1),
which takes O(logm) time. Then, we build the naming table of s(3) using the
naming table of s(2), and so on.

Applying the naming procedure to all strings in D takes O(nm+ |Σ|kn logm)
time. The space complexity is O((nm+ |Σ|kn logm)2) due to the table B. The
space complexity can be reduced to O(nm + |Σ|kn logm) as shown in [8]. The
algorithm of [8] uses a different order of filling the naming tables. In the first
step, the algorithm computes the names in the second row from the bottom of
the naming tables of all strings in D′. This is done by taking all pairs of names
encountered in the first row of each naming table, lexicographically sorting these
pairs, and then naming the pairs. In the second step, the algorithm computes
the names in the third row from the bottom of the naming tables of all strings
in D′, and so on.

After naming all strings in D′, we sort these strings according to their names.
As noted above, this gives the lexicographical ordering of D′. Furthermore, the
LCP of any two strings in D′ can be computed in O(logm) time by comparing
their naming tables top-down as noticed in [23]. Therefore, we can compute the
length of the LCP of every two consecutive strings in the lexicographic ordering
of D′ in O(|Σ|kn logm) time, and then construct the trie in O(|D′|) = O(|Σ|kn)
time by adding the strings in lexicographical order.

4 An O(nm + |Σ|kn + |Σ|k/2n log(min{n, m})) Time
Construction

In this section we present a different approach for solving the dictionary query
problem. Instead of building one trie, we build two tries. This reduces the con-
struction time, but gives a penalty in the query time.

Let S be a set of integers. For an integer x, the successor of x in S is the
minimal element y ∈ S such that y ≥ x. A successor data-structure for the set S
supports answering queries of the form “Given an integer x, what is the successor
of x in S?”. A successor data-structure for a set S ⊆ {1, . . . , U} can be built in
O(|S|) time and space such that successor queries are answered in O(log logU)

164 G.M. Landau, D. Tsur, and O. Weimann

time (such a construction is obtained, for example, by combining the van Emde
Boas data-structure [30] with the static dictionary of Hagerup et al. [14]).

In order to build a dictionary query data-structure, we split every string in
D into two parts. For each si ∈ D define s′i to be the longest prefix of si that
contains at most �k/2� sets of size greater than 1. Also, define s′′i to be the prefix
of sR

i (i.e. the string si reversed) of length m − |s′i|. For example, if k = 2 and
s1 = ab{c, d}g{a, b, c}ad then s′1 = ab{c, d}g and s′′1 = da{a, b, c}.

Let D1 = {s′1, . . . , s′n} and D2 = {s′′1 , . . . , s′′n}. For i = 1, 2, let D′
i be the

set of all strings that match to one of the strings in Di. We wish to reduce the
problem of matching a string p against the dictionary D to matching a prefix p′

of p against D1, and matching a prefix p′′ of pR against D2, with |p′′| = m−|p′|.
However, there are two issues that need to be addressed: (1) It is possible that
p′ matches a string s′i, while p′′ matches to a string s′′j with i�= j. This of course
does not imply that p matches to a string in D. (2) We do not know the length
of p′, so we need to check all prefixes of p that match to a string in D1.

Let T1 be a compressed trie for D′
1 and T2 be a compressed trie for D′

2. For
each vertex of T2 assign a name which is an integer from the set {1, . . . , |T2|}.
The name assigned to a vertex v is denoted name(v). For now we assume that
all the names are distinct.

The string that corresponds to a vertex v in a trie is the concatenation of
the edge labels in the path from the root to v. The depth of a vertex v in a
trie is the length of the strings that corresponds to v. We say that the vertices
v ∈ T1 and w ∈ T2 are paired if the sum of their depths is m. For a vertex v
in T1 (respectively T2) whose corresponding string is s, let Lv be the set of all
indices i such that s matches to s′i (respectively s′′i). For a vertex v ∈ T1, let
Sv = {name(w)|w ∈ T2 and Lv ∩ Lw �= ∅}. See Figure 2 for an example.

The data-structure for the dictionary query problem consists of the tries T1

and T2, and each vertex v ∈ T1 has a successor data-structure on the set Sv.
Answering a query is done as follows.

1. Find the longest path P1 in T1 that corresponds to a prefix of the query
pattern p, and the longest path P2 in T2 that corresponds to prefix of pR.

2. Find all paired vertices v ∈ P1, w ∈ P2 by traversing P1 from top to bottom,
while concurrently traversing P2 from bottom to top (note that a vertex
v ∈ P1 is paired with at most one vertex w ∈ P2).

3. Check whether name(w) ∈ Sv for some paired vertices v ∈ P1 and w ∈ P2

(by checking whether the successor of name(w) in Sv is equal to name(w)).

Answering a dictionary query requires at most |P1| ≤ m queries on the successor
data-structures, where each such query takes O(log log |D′|) time. Therefore, the
time to answer a query is O(m log log |D′|).

We now discuss the time complexity of building the tries. The triesT1 and T2 are
built using the algorithms in Sections 2 and 3 in O(nm+ |Σ|k/2n log(min(n,m)))
time. In order to build the sets Sv for all v, compute the intersections Lv ∩ Lw

for all v and w. This is done as follows. For each i from 1 to n, go over all ver-
tices v ∈ T1 such that i ∈ Lv. For each such v, go over all w ∈ T2 such that
i ∈ Lw, and add the pair (name(w), i) to a list Iv that is stored at v. Then, for each

Indexing a Dictionary for Subset Matching Queries 165

a b

a ba

a bb

a b

b c

(a)

a b

aa b

a b

c

(b)

v Lv Sv (1) Sv (2)
x1 ∅ ∅ ∅
x2 {1} {7, 8} {1, 2}
x3 {1} {7, 8} {1, 2}
x4 ∅ ∅ ∅
x5 {2} {5, 6} {3, 4}
x6 {2} {5, 6} {3, 4}
x7 {3} {2, 3} {1, 5}
x8 ∅ ∅ ∅
x9 {3} {2, 3} {1, 5}
x10 {4} {1} {1}
x11 {5} {1} {1}

(c)

v Lv

y1 {4, 5}
y2 {3}
y3 {3}
y4 ∅
y5 {2}
y6 {2}
y7 {1}
y8 {1}

(d)

Fig. 2. An example of the data-structure for the input strings s1 = {a, b}{a, b}aaa,
s2 = a{a, b}a{b, c}a, s3 = aa{a, b}b{a, b}, s4 = aaaab, and s5 = aaaac. The tries T1

and T2 are shown in Figures (a) and (b), respectively. The sets Lv for vertices of T1

and T2 are shown in Figures (c) and (d), respectively. Moreover, Figure (c) shows the
sets Sv for v ∈ T1, where the naming of the vertices is done according to two naming
schemes: (1) name(yi) = i (2) naming according to the heavy path decomposition
Q1 = [y1, y2, y4, y8], Q2 = [y7], Q3 = [y5], Q4 = [y6], and Q5 = [y3] of T2.

v ∈ T1, lexicographically sort the list Iv and obtain all the intersections involv-
ing v. Therefore, computing all the intersections and building the successor data-
structures takes O(|Σ|kn) time. The total preprocessing time is O(nm+ |Σ|kn+
|Σ|k/2n log(min{n,m})).

In order to speed up the query time, we use the technique of fractional cas-
cading [3]. Fractional cascading is a method for efficiently searching for the same
element in several successor data structures. Using a variant of this technique
that is described in the next section, we can preprocess T1 such that performing
a successor query x on all the successor data structures of the vertices of some
path P in T1 is done in O(|P | log log |Σ|+ log log |D′|) time. Recall that in order
to answer a query, we need to query for name(w) in the successor data-structures
of v for every paired vertices v ∈ P1 and w ∈ P2. In order to use the fractional
cascading speedup, we need to decrease the number of names assigned to the
vertices of P2. Note that we can assign the same name to several vertices of
T2 if their corresponding strings have different lengths. Thus, we partition the
vertices of T2 into paths Q1, . . . , Qr using a heavy path decomposition [18].

A heavy path decomposition T2 is as follows. For each node v define its size
to be the size of the subtree rooted at v. For every internal node v we pick a
child of maximum size and classify it as heavy. The remaining children are light.
An edge to a light child is a light edge. Removing the light edges we obtain the
decomposition of T2 into paths. This decomposition has the important property

166 G.M. Landau, D. Tsur, and O. Weimann

that a path from some vertex of T2 to the root passes through at most log |T2|
different paths in the decomposition.

We now assign names to the vertices of T2 according to the heavy path de-
composition: The name of a vertex w is the index i such that w ∈ Qi.

Now, answering a query is done as follows.

1. Find the longest path P1 in T1 that corresponds to a prefix of the query
pattern p, and the longest path P2 in T2 that corresponds to prefix of pR.

2. For i = 1, . . . , r, let vhigh
i (respectively vlow

i) be the highest (respectively
lowest) vertex in P1 that is paired with a vertex w ∈ P2 ∩Qi, if there is such
a vertex.

3. For every i such that vhigh
i is defined, let P1,i be the path from vhigh

i to vlow
i ,

4. For every path P1,i, perform a successor query with the integer i on the
successor data-structures of the vertices in P1,i using fractional cascading.

For example, consider the query p = aaaaa on the structure in Figure 2. We
have that P1 = [x1, x2, x4, x6, x8] and P2 = [y1, y2, y4, y7]. Moreover, vhigh

1 = x4,
vlow
1 = x6, and vhigh

2 = vlow
2 = x2, so P1,1 = [x4, x6, x8] and P1,2 = [x2].

We have that there are at most min{m, log |T2|} = O(min{m, log |D′|}) dif-
ferent names assigned to the vertices of P2. Therefore, the number of P1,i paths
is O(min{m, log |D′|}). Since the P1,i paths are disjoint, it follows that the time
to answer a dictionary query is O(m log log |Σ|+ min{m, log |D′|} log log |D′|).

4.1 Fractional Cascading

Let T be a rooted tree of maximum degree d. Each vertex v of T has a set
Cv ⊆ {1, . . . , U}. The goal is to preprocess T in order to answer the following
queries “given a connected subtree T ′ of T and an integer x, find the successor
of x in Cv for every v ∈ T ′”. The fractional cascading technique of [3] gives
search time of O(|T ′| log d + log logU), with linear time preprocessing. We now
present a variant of fractional cascading that gives O(|T ′| log log d + log logU)
search time (our construction is similar to the one in [28]).

The preprocessing of T is as follows. Traverse the vertices of T in postorder,
and for each vertex v of T construct a list Av whose elements are kept in a
non-decreasing order. For a leaf v, Av contains exactly the elements of Cv. For
an internal vertex v, Av contains all the elements of Cv. Additionally, for every
child w of v, Av contains every second element of Aw. Each element of Av stores
a pointer to its successor in the set Cv. An element of Av which came from a
set Aw keeps a pointer to its copy in Aw. This pointer is called a w-bridge. For
every vertex v, the elements of Av are stored in a successor data-structures.

Handling a query (T ′, x) is done by finding the successor of x in each set
Av for v ∈ T ′. Then, using the successor pointers, the successor of x in each
set Cv is obtained. Finding the successor of x in each set Av for v ∈ T ′ is
done by traversing the vertices of T ′ in postorder. For the root r of T ′, finding
the successor of x in Ar is done by making a successor query on the successor
structure of Ar. Suppose we have found the successor y of x in Av and we now
wish to find the successor of x in Aw, where w is a child of v. Let z be the

Indexing a Dictionary for Subset Matching Queries 167

first element that appears after y in Av that has a w-bridge, and let z′ be the
elements in Aw pointed to by the w-bridge of z. Then, the successor of x in Aw

is either z′ or the element preceding z′ in Aw.
In order to efficiently find the first w-bridge after some element of Av, perform

additional preprocessing as follows. Partition the elements of each list Av into
blocks B1

v , B
2
v , . . . , B

�|Av|/d�
v of d consecutive elements each (except perhaps the

last block). Let w1, . . . , wd′ be the children of v. For each block Bi
v build an array

Li
v, where Li

v[j] is the location of the first wj-bridge that appears in the blocks
Bi+1

v , Bi+2
v , . . . , B

�|Av |/d�
v . Moreover, for all j, build a successor data-structures

Si,j
v that contains the indices of the elements of the blockBi

v that have awj -bridge.
Find the first wj-bridge after some element of Av takes O(log log d) time.

Therefore, the time complexity of answering a successor query is O(|T ′| log log d+
log logU).

5 Conclusion and Open Problems

We have shown two solutions for the subset dictionary query problem: one based
on building a trie for D′ and one based on building two tries. We conjecture that
the trie of D′ can be built in O(nm+ |Σ|kn) time.

References

1. Abecasis, G.R., Martin, R., Lewitzky, S.: Estimation of haplotype frequencies from
diploid data. American Journal of Human Genetics, 69(4 Suppl. 1):114 (2001)

2. Amir, A., Apostolico, A., Landau, G.M., Satta, G.: Efficient text fingerprinting via
parikh mapping. J. of Discrete Algorithms 1(5-6), 409–421 (2003)

3. Chazelle, B., Guibas, L.J.: Fractional cascading: I. a data structuring technique.
Algorithmica 1(2), 133–162 (1986)

4. Clark, A.G.: Inference of haplotypes from PCR-amplified samples of diploid pop-
ulation. Molecular Biology and Evolution 7(2), 111–122 (1990)

5. Cole, R., Gottlieb, L., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proc. 36th ACM Symposium on Theory of Computing
(STOC), pp. 91–100 (2004)

6. Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard match-
ing. In: Proc. 34th ACM Symposium on Theory of Computing (STOC), pp. 592–
601 (2002)

7. Cole, R., Kopelowitz, T., Lewenstein, M.: Suffix trays and suffix trists: structures
for faster text indexing. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4051, pp. 358–369. Springer, Heidelberg (2006)

8. Didier, G., Schmidt, T., Stoye, J., Tsur, D.: Character sets of strings. J. of Discrete
Algorithms 5(2), 330–340 (2007)

9. Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype
frequencies in a diploid population. Molecular Biology and Evolution 12(5), 921–
927 (1995)

10. Fallin, D., Schork, N.J.: Accuracy of haplotype frequency estimation for biallelic
loci, via the expectation-maximization algorithm for unphased diploid genotype
data. American Journal of Human Genetics 67(4), 947–959 (2000)

168 G.M. Landau, D. Tsur, and O. Weimann

11. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-complexity of
suffix tree construction. J. of the ACM 47(6), 987–1011 (2000)

12. Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez,
E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer,
Heidelberg (2003)

13. Gusfield, D., Orzack, S.H.: Haplotype inference. In: Aluru, S. (ed.) CRC handbook
on bioinformatics (2005)

14. Hagerup, T., Miltersen, P.B., Pagh, R.: Deterministic dictionaries. J. of Algo-
rithms 41(1), 69–85 (2001)

15. Hajiaghayi, M.T., Jain, K., Konwar, K., Lau, L.C., Mandoiu, I.I., Vazirani, V.V.:
Minimum multicolored subgraph problem in multiplex PCR primer set selec-
tion and population haplotyping. In: Alexandrov, V.N., van Albada, G.D., Sloot,
P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 758–766. Springer,
Heidelberg (2006)

16. Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., Istrail, S.:
A survey of computational methods for determining haplotypes. In: Istrail, S.,
Waterman, M.S., Clark, A. (eds.) DIMACS/RECOMB Satellite Workshop 2002.
LNCS (LNBI), vol. 2983, pp. 26–47. Springer, Heidelberg (2002)

17. Halperin, E., Karp, R.M.: The minimum-entropy set cover problem. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
733–744. Springer, Heidelberg (2004)

18. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. on Computing 13(2), 338–355 (1984)

19. Hawley, M.E., Kidd, K.K.: Haplo: A program using the em algorithm to estimate
the frequencies of multi-site haplotypes. J. of Heredity 86, 409–411 (1995)

20. Helmuth, L.: Genome research: Map of human genome 3.0. Science 5530(293),
583–585 (2001)

21. Indyk, P.: Faster algorithms for string matching problems: Matching the convo-
lution bound. In: Proc. 39th Symposium on Foundations of Computer Science
(FOCS), pp. 166–173 (1998)

22. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. of the ACM 53(6), 918–936 (2006)

23. Kolpakov, R., Raffinot, M.: New algorithms for text fingerprinting. In: Lewenstein,
M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 342–353. Springer, Hei-
delberg (2006)

24. Long, J.C., Williams, R.C., Urbanek, M.: An E-M algorithm and testing strategy
for multiple-locus haplotypes. American Journal of Human Genetics 56(2), 799–810
(1995)

25. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. of the
ACM 23, 262–272 (1976)

26. Rastas, P., Koivisto, M., Mannila, H., Ukkonen, E.: A hidden markov technique
for haplotype reconstruction. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS
(LNBI), vol. 3692, pp. 140–151. Springer, Heidelberg (2005)

27. Rastas, P., Ukkonen, E.: Haplotype inference via hierarchical genotype parsing. In:
Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp.
85–97. Springer, Heidelberg (2007)

28. Shi, Q., JáJá, J.: Novel transformation techniques using Q-heaps with applications
to computational geometry. SIAM J. on Computing 34(6), 1471–1492 (2005)

Indexing a Dictionary for Subset Matching Queries 169

29. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 246–260
(1995)

30. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters 6(3), 80–82 (1977)

31. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th IEEE Symposium
on Switching and Automata Theory, pp. 1–11 (1973)

32. Zhang, P., Sheng, H., Morabia, A., Gilliam, T.C.: Optimal step length EM algo-
rithm (OSLEM) for the estimation of haplotype frequency and its application in
lipoprotein lipase genotyping. BMC Bioinformatics 4(3) (2003)

Transposition and Time-Scale Invariant

Geometric Music Retrieval

Kjell Lemström

University of Helsinki
Department of Computer Science

klemstro@cs.helsinki.fi

Abstract. This paper considers how to adapt geometric algorithms, de-
veloped for content-based music retrieval of symbolically encoded music,
to be robust against time deformations required by real-world applica-
tions. In this setting, music is represented by sets of points in plane. A
matching, pertinent to the application, involves two such sets of points
and invariances under translations and time scalings. We give an algo-
rithm for finding exact occurrences, under such a setting, of a given query
point set, of size m, within a database point set, of size n, with running
time O(mn2 log n); partial occurrences are found in O(m2n2 log n) time.
The algorithms resemble the sweepline algorithm introduced in [1].

1 Introduction

Query-by-humming is a problem that has fascinated researchers working in the
music-retrieval area for over fifteen years. First, the music under investigation
was assumed to be monophonic (see Fig. 1) [2], later the term has been used with
a wider meaning addressing problems where the task is to search for excerpts
of music, resembling a given query pattern, in a large database. Moreover, both
the query pattern and the database may be polyphonic, and the query pattern
constitutes only a subset of instruments appearing in the database representing
possibly a full orchestration of a musical work. Although current audio-based
methods can be applied to rudimentary cases where queries are directed to clearly
separable melodies, the general setting requires methods based on symbolic rep-
resentation that are truly capable of dealing with polyphonic subset matching.

To this end, several authors have recently used geometric-based modeling of
music [1,3,4,5]. Geometric representations usually also take into account another
feature intrinsic to the problem: the matching process ignores extra intervening
notes in the database that do not appear in the query pattern. Such extra notes
are always present because of the polyphony, various noise sources and musical
decorations. There is, however, a notable downside of the current geometric
methods: they do not allow distortions in tempo (except for individual outliers
that are not even discovered) that are inevitable in the application. Even if the
query could be given exactly on tempo, the occurrences in the database would be
time-scaled versions of the query (requiring time-scale invariance). If the query

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 170–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Transposition and Time-Scale Invariant Geometric Music Retrieval 171

��� 4
3

�����
��� ��

4
5

� �� � � 				 ��

Fig. 1. An excerpt of a well-known melody in common music notation. Let us have a
closer look at the last bar with a change in key and time signature: The first note is
associated with pitch value ”Es” (or E flat). It is followed by a c-clef, which looks like
a letter ”k” to this author. Note also the resemblance of the last note to the letter ”o”.

is to be given in a live performance, more or less local jittering will inevitably
take place and a stronger invariance, namely the time-warping invariance [6],
would be a desired property for the matching process.

In this paper, new time-scale invariant geometric algorithms that deal with
symbolically encoded, polyphonic music will be introduced. We use the pitch-
against-time representation of note-on information, as suggested in [5] (see Fig 2).
The musical works in a database are concatenated in a single geometrically
represented file, denoted by T ; T = t0, t1, . . . , tn−1, where tj ∈ R

2 for 0 ≤ j ≤
n − 1. In a typical retrieval case the query pattern P , P = p0, p1, . . . , pm−1;
pi ∈ R

2 for 0 ≤ i ≤ m − 1, to be searched for is often monophonic and much
shorter than the database T to be searched, that is m � n. It is assumed that
P and T are given in the lexicographic order. If this is not the case, the sets can
be sorted in m logm and n logn times, respectively.

The problems under consideration are modified versions of two problems orig-
inally represented in [1]. The following list gives both the original problems and
the modifications under consideration; for the partial matches in P2 and S2, one
may either use a threshold α to limit the minimum size of an accepted match,
or to search for maximally sized matches only.

(P1) Find translations of P such that each point in P matches with a point in
T .

(P2) Find translations of P that give a partial match of the points in P with
the points in T .

(S1) Find time-scaled translations of P such that each point in P matches with
a point in T .

(S2) Find time-scaled translations of P that give a partial match of the points
in P with the points in T .

Ukkonen et al introduced online algorithms PI and PII solving the original
problems P1 and P2 in O(mn) and O(mn logm) worst case times, respectively,
in O(m) space [1]. Lemström et al [7] showed that the practical performance can
be improved at least by an order of magnitude by combining sparse indexing
and filtering. P2 is known to belong to a problem family for which o(mn) so-
lutions are conjectured not to exist, there is, however, an online approximation
algorithm for it running in time O(n log n). [8]. Romming and Selfridge-Field [9]

172 K. Lemström

2 3 4

pitch

time

PT

Fig. 2. A polyphonic music score, to the left, is represented by a pointset T , in the
middle, in the geometric representation. Pointset P , to the right, corresponds to the
first two and a half bars of the melody line (the highest staff of the score) but the fifth
point has been delayed somewhat. The depicted trans-set vectors correspond to the
translation f that gives the largest partial match of P within T .

gave a geometric hashing-based algorithm for S2, which works in O(n3) space
and O(n2m3) time.

This paper studies another way to solve S1 and S2. As stated above, in this
case, the timing (rhythm) of the music is distorted by a uniform scaling factor;
methods ignoring such distortions are called time-scale invariant [6]. The novel
time-scale invariant algorithms to be introduced resemble Ukkonen et al’s PI
and PII algorithms. The new algorithm for S1 runs in time O(mn2 logn); the
algorithm for S2 in O(m2n2logn) time.

2 Related Work

Let us denote by α a similarity threshold for P2, and let p0, p1, . . . , pm−1 and
t0, t1, . . . , tn−1 be the pattern and database points, respectively, lexicographically
sorted according to their co-ordinate values: pi < pi+1 iff pi.x < pi+1.x or (pi.x =
pi+1.x and pi.y < pi+1.y), and tj < tj+1 iff tj .x < tj+1.x or (tj .x = tj+1.x and
tj .y < tj+1.y). In our application the elapsing time runs along the horisontal
axes, represented by x, the perceived height, the pitch, is represented by y. A
translation of P by vector f is denoted as P + f : P + f = p0 + f, . . . , pm−1 +
f . Using this notation, problem P1 is expressible as the search for a subset I
of T and some f such that P + f = I. Note that decomposing translation f
into horisontal and vertical components f.x and f.y, respectively, captures two
musically distinct phenomena: f.x corresponds to aligning the pattern time-wise,
f.y to transposing the musical excerpt to a lower or higher key (see Fig. 2). Note
also that a musical time-scaling σ, σ ∈ R

+, has an effect only on the horisontal
translation, the vertical translation stays intact.

Example 1. Let p = (1, 1), f = (2, 2) and σ = 3. Then p+ σf = (7, 3).

A straight-forward algorithm solves P1 and P2 in O(mn log(mn)) time. The
algorithm first collects exhaustively all the translations mapping a point in P to

Transposition and Time-Scale Invariant Geometric Music Retrieval 173

another point in T . The set of the collected translation vectors are then sorted
in lexicographic order. In the case of P1, a translation f that has been used m
times corresponds to an occurrence; in the case of P2, any translation f that
has been used at least α times would account for an occurrence. Thoughtful
implementations of the involved scanning (sorting) of the translation vectors,
will yield an O(mn) (O(mn logm)) time algorithm for P1 (P2) [1].

Indeed, the above O(mn logm) time algorithm is the fastest online algorithm
known for P2. Moreover, any significant improvement in the asymptotic running
time, exceeding the removal of the logarithmic factor, cannot be seen to exist,
for P2 is known to be a 3SUM-hard problem [8]. It is still possible that P2 is also a
Sorting X+Y -hard problem, in which case Ukkonen et al’s PII algorithm would
already be an optimal solution. In [8], Clifford et al introduced an O(n log n)
time approximation algorithm for P2.

To make the queries more efficient, several indexing schemes have been sug-
gested. The first indexing method using geometric music representation was sug-
gested by Clausen et al. [3]. Their sublinear query times were achieved by using
inverted files, adopted from textual information retrieval. The performance was
achieved with a lossy feature extraction process, which makes the approach non-
applicable to problems P1 and P2. Typke et al. [4] proposed the use of metric
indexes that works under robust geometric similarity measures. The approach
lacks flexibility on features pertinent to the application: it is very difficult to
adopt it to support translations and partial matching at the same time. Lem-
ström et al’s approach [7] combines sparse indexing and (practically) lossless
filtering. Their index is used to speed up a filtering phase that charts all the
promising areas in the database where real occurrences could reside. Once a
query has been received, the filtering phase works in time O(gf (m) logn + n)
where function gf(m) is specific to the applied filter f . The last phase in-
volves checking the found cf (cf ≤ n) candidate positions using Ukkonen et
al’s PI or PII algorithm executable in worst-case time O(cfm) or O(cfm logm),
respectively.

A brute-force solution for S2 would work in time O(m3n3) and space O(mn):
First all translation vectors are calculated, exhaustively, in lexicographic order.
This gives m increasing sequences of vectors (pairs of real values) each of length
n. Then, each possible time-scaling value is selected by choosing two vectors from
two distinct sequences; there are O(m2n2) possibilities in this choice. For each
time-scaling value, the maximum co-occurrence between pattern and database
needs to be determined. This can be done by checking whether each of the
remaining m−2 sequences (each containing n vectors) includes a vector that ac-
cords with the chosen scaling vector. This is feasible in time O(mn). Candidates
thus found are to be verified by checking that the pitch intervals also match.
The only non-brute-force method for S2 is by Romming and Selfridge-Field [9].
It is based on geometric hashing and works in O(n3) space and O(n2m3) time.
By applying a window on the database such that w is the maximum number

174 K. Lemström

of events that occur in any window, the above complexities can be restated as
O(w2n) and O(wnm3), respectively.

3 Matching Algorithms

Our matching algorithms for the time-scale invariant problems S1 and S2 re-
semble somewhat Ukkonen et al’s original PI and PII algorithms in that they
all use a priority queue as the focal structure. Ukkonen et al’s PI and PII work
on trans-set translations, or trans-set vectors, f = t − p (see Fig. 2), where p
and t are points in a given query pattern, of length m, and in the underlying
database, of length n, respectively. Let us assume (without loss of generality)
that all the points, both in the pattern and in the database, are unique. The
number of trans-set vectors is within the range [n+m− 1, nm]. In order to be
able to build an index on the database in an offline phase, Lemström et al’s
method [7] is based on intra-set vectors. For instance, translation vector f is
an intra-pattern vector, if there are two points p and p′ (p, p′ ∈ P) such that
p+f = p′. Intra-database vectors are defined accordingly. Naturally, the number
of intra-pattern and intra-database vectors are O(m2) and O(n2), respectively.
Lemström et al study several heuristics, relevant to the application, to keep the
index structure of a linear O(n) size.

The set of positive intra-pattern vectors include translations pi′ − pi where
in the case of S1: 0 ≤ i < m and i′ = i + 1, and in the case of S2: 0 ≤ i <
i′ ≤ m. The set of positive intra-database vectors include translations tk′ − tk
where, independently of the case, 0 ≤ k < k′ ≤ n. For the convenience of
the algorithms, we pretend that there are an extra element pm in the pattern
and another extra element tn in the database. The matching algorithms take
as input intra-set vectors, stored in tables K[i], 0 ≤ i < m. Table K[i] stores
intra-database translations that may match 1 the positive intra-pattern vectors
pi′ −pi, i.e., translation vectors starting at point pi. See Fig. 3 for an illustration
on tables K[i].

The entries in our main data structures will be sorted in a lexicographic order.
We will specify the underlying order by an ordered set ℵ. ℵ is formed by mem-
bers of {a, b, s}, where a, b and s correspond to the accordingly named columns
in tables K[i]. For instance, lexicographic order 〈a, s〉 is firstly based on the val-
ues on column a (the starting point of the associated intra-database vector),
secondly on the values on column s (the associated scaling value). A main loop
that goes exhaustively through all the possibilities of positive intra-pattern and
positive intra-database vectors to initialise the tables K[i] is needed. To this
end, let a positive intra-database vector g = tk′ − tk be such that there is a
positive intra-pattern vector f = pi′ − pi for which g.y = f.y (ie. the pitch
intervals of the two vectors match). Because g may be part of an occurrence,

1 Please note the distinction between an occurrence and a match. An occurrence in-
volves as many matching pairs of intra-database and intra-pattern vectors as is re-
quired by the problem specification.

Transposition and Time-Scale Invariant Geometric Music Retrieval 175

LEGEND

i

i’

ii’ = # of matches found for p − p
h: running index on the associated table
a: id of the point in T associated with p

w: cumulative weight; the length of the occurrence thus far

z: running number (id) of an associated occurrence

b: id of the point in T associated with p

y: backward link to be able to construct the match

s: scaling factor of the associated vector
c: i’

0

1

s

K[m]

K[1]

h

K[0]
Σp1

Σp1

a b c yw z

1K[0] .b

Fig. 3. Illustration of the main data structure. Each K[i] stores intra-database vectors
tk′ − tk, 0 ≤ k < k′ ≤ m− 1 that matches with an intra-patter vector pi′ − pi (where,
in the case of S1: 0 ≤ i < m−1 and i′ = i+1, and in the case of S2 0 ≤ i < i′ ≤ m−1)
with any positive time-scaling σ ∈ R

+.

a new row, let it be the hth, in K[i] is allocated and the following updates are
conducted:

K[i]h.a← k; K[i]h.b← k′; (1)

K[i]h.s← tk′ .x− tk.x
pi′ .x− pi.x

; (2)

K[i]h.y ← nil; K[i]h.w ← 1; (3)
K[i]h.c← i′; K[i]h.z ← 0. (4)

Above, in (1), the associated starting and ending points of the matching intra-
database vector are stored in K[i]j.a and K[i]j.b, respectively. The required time
scaling for the intra-vectors to match is stored in K[i]j.s (2); here extra careful-
ness is needed in order to avoid dividing by zero: If both the numerator and the
denominator equal zero, we set K[i]h.s = 1. If only one of them equals zero, the
whole row is deleted from the table altogether (it would represent for an impos-
sible time scaling). The columns y and w, initialised in (3), are used for back-
tracking a found occurrence and storing the length of a candidate occurrence,
respectively. The last columns, initialised in (4), will be needed when searching
for partial occurrences (in Section 3.2): column c stores the ending point of the
associated intra-pattern vector, z is used for identifying an occurrence.

Denoting by Σpi the number of rows generated above for table K[i], 0 ≤ i <
m, for the aforementioned extra elements (for the convenience of the algorithms)
we set:

K[i]Σpi
.a← K[i]Σpi

.b←∞; K[i]Σpi
.s← K[i]Σpi

.w ← 0; K[i]Σpi
.c← i+ 1

As each iteration of the main loop takes a constant time, this exhaustive
initialisation process runs in O(n2m2) time. Finally, the columns in K[i] are

176 K. Lemström

sorted in lexicographic order 〈a, s〉. The matching algorithms have an associated
priority queue Qi for each table K[i], 0 < i ≤ m 2. For Qi, a lexicographic order
〈b, s〉 is used. As a reminder, the order is given in the superscript of a priority
queue (e.g. Q〈b,s〉

i).

3.1 S1: Quest for Time Scaled Exact Occurrences

Once the tables K[i] have been initialised and their columns have been sorted
in lexicographic order 〈a, s〉, the transposition-invariant time-scaled exact occur-
rences can be found using the matching algorithm given in Fig. 4. The algorithm
works by observing piecewise matches between positive intra-database and intra-
pattern vectors

tki′ − tki = σi(pi+1 − pi) (5)

that are stored in the associated K[i]. Above σi ∈ R
+ is the time-scaling fac-

tor (recall Example 1). The piecewise matches may form a chain Tτ0...τm−1 =
tτ0 , tτ1 , . . . , tτm−1 , where τ0, τ1, . . . , τm−1 is an increasing sequence of indices in
T ; tτi+1 − tτi = σ(pi+1 − pi) for 0 ≤ i < m − 1 and σ ∈ R

+ is a time-scaling
factor common to all the piecewise matches in the chain. Naturally, such a chain
would constitute a transposition-invariant, time-scaled exact occurrence. A chain
Tτ0...τm′ m

′ < m − 1, is called a prefix occurrence (of length m′); Tτm′−1,τm′ is
the final suffix of the prefix occurrence Tτ0...τm′ .

Let tτi+1 − tτi (that, by definition, equals σ(pi+1 − pi)) be the final suffix
of a prefix occurrence Tτ1...τm′ . The prefix occurrence is extensible if there is a
piecewise match tk′

i+1
− tki+1 = σ(pi+2 − pi+1) such that

tτi+1 = tki+1 (6)

and scaling factor σ is the one that was used in forming Tτ1...τm′ . The binding
in Equation 6 is called the binding of extension, tτi+1 − tτi the antecedent and
tk′

i+1
− tki+1 the postcedent of the binding.

Lemma 1. If a prefix occurrence is extensible, its final suffix is also extensible.

Proof. Immediate.
�
To be more efficient, at point i+1, the algorithm actually considers any piecewise
match tk′

i
−tki = σi(pi+1−pi) as an antecedent to the binding and tries to extend

it. Because in this case the piecewise matches in an occurrence chain have to
be consecutive in P , the antecedents of the binding are all found in K[i] and
their possible extensions, postcedents, in K[i+ 1]. To process all the bindings of
extension at point i + 1, therefore, involves going through all the entries both
in K[i] and in K[i+ 1]. To make this process efficient, no entry of either of the
tables should be observed more than once for one iteration. In order for this to
be possible, both sides of the binding of extension (associated with antecedents
2 A single priority queue would suffice, but the algorithm would become more compli-

cated.

Transposition and Time-Scale Invariant Geometric Music Retrieval 177

TimeScaledExactOccurrence(K[i])
(1) for j ← 0, . . . , Σp0 do

(2) Q
〈b,s〉
1 ← push(&K[0]j)

(3) for i← 1, . . . , m− 1 do

(4) q ← pop(Q〈b,s〉
i)

(5) for j ← 0, . . . , Σpi−1 do
(6) while [q.b, q.s] < [K[i]j .a, K[i]j .s] do

(7) q ← pop(Q〈b,s〉
i)

(8) if [q.b, q.s] = [K[i]j .a, K[i]j .s] then
(9) K[i]j .w← q.w + 1
(10) K[i]j .y ← q

(11) Q
〈b,s〉
i+1 ← push(&K[i]j)

(12) q ← pop(Q〈b,s〉
i)

(13) K[i]Σpi
.s←∞

(14) Q
〈b,s〉
i+1 ← push(&K[i]Σpi

)
(15) if K[m− 1]j .w = m for some 0 ≤ j ≤ Σpm−1 then report an occurrence

Fig. 4. Online algorithm for finding transposition-invariant time-scaled exact occur-
rences

and postcedents) should be enumerated in the same (increasing) order. However,
the lefthand side of the binding involves end points of the intra-database vectors
in K[i] and the righthand side the start points of the intra-database vectors in
K[i + 1]. Therefore, we use a priority queue Q〈b,s〉

i+1 whose entries are addresses
to rows associated with the antecedents of the binding at i+ 1. In this way, the
binding of extension at i+ 1 can be done efficiently by enumerating the entries
in Qi+1 and K[i+ 1]. Note that the set of piecewise matches extended this way
also includes all the final suffixes, and therefore, according to Lemma 1, also all
the prefix occurrences.

The binding of extension takes place in line (8) of the algorithm. If a piecewise
match is extensible, its length is updated (line 9) and a backtracking link is stored
(line 10). The latter becomes useful if any of the extended piecewise matches
extends into a proper occurrence, and the whole occurrence is to be revealed
(instead of just reporting it).

Correctness. Let there be an occurrence tτ0 , tτ1 , . . . , tτm−1 , such that tτi+1−tτi =
σ(pi+1− pi) for 0 ≤ i < m− 1 with some σ ∈ R

+. It is obvious from the way the
tables are constructed that every element tτi+1 − tτi, associated with a piecewise
match, is stored in the corresponding table K[i]. Clearly the first antecedent
tτ1 − tτ0 is treated correctly: It is inserted in the priority queue Q1 in line (2);
being part of a proper occurrence, the binding of extension can be done with a
correct time-scaling factor and, therefore, the equation condition in line (8) is
satisfied. The length of this prefix occurrence is set to 2 (line (9)), and the address
of this newly found final suffix is stored in Qi+1 (line (11)) to be considered as
an antecedent for a binding of extension at iteration 2. Let us now assume that

178 K. Lemström

everything is done correctly up to point i, 2 < i < m − 1 and we are dealing
with the element tτi+1 − tτi . It is pushed in the priority queue Qi+1 in line (12)
just before the iteration i + 1 of the loop in line (3) starts. Then again, being
part of a proper occurrence, the antecedent tτi+1 − tτi , found in Qi+1, and the
postcedent tτi+2− tτi+1 , found in K[i+1], can be bound: the extension condition
is met and the prefix occurrence is increased to i+2, and the address of the new
final suffix is passed to further iterations. So, by induction, the algorithm finds
the existing occurrences.

That the algorithm does not wrongly increase the length of a piecewise match
(causing reports of spurious occurrences or occurrences of lengths exceeding m)
is down to the binding of extension, i.e., the condition in line (8). Remember that
we assume points in T and in P to be unique. Let us make a counter assumption
that a piecewise match may be unintentionally extended. To that end, at some
iteration j of the inner loop (starting at line (5)) there has to be at least two
antecedents in Qi that can be bound with a postcedent stored in K[i]j (line (8)).
Let q and q′ be entries in Qi that are antecedents for a postcedent in K[i]j, where
K[i]j.a = tl, and let q correspond to a piecewise match tl − tk = σ(pi − pi−1)
and q′ to tl − tk′ = σ(pi − pi−1). But this is impossible unless tk = tk′ which
contradicts our assumption of points being unique in T .
�

Analysis. Let us denote by |Qi| and |K[j]| the number of entries in Qi and K[j],
respectively. Clearly, in this case, |Qi| ≤ |K[i − 1]| for 1 ≤ i ≤ m. Moreover,
let Σ = maxm

i=1(|Qi|, |K[i − 1]|). The outer loop (line (3)) is iterated m times.
Within the inner loop (line (5)), all the entries in Qi and in K[i] are processed
exactly once, resulting in O(Σ) entry processing steps. The only operation taking
more than a constant time is the updating of the priority queue; it takes at most
O(logΣ) time. Thus, the algorithm runs in time O(mΣ logΣ). Moreover, the
tables K[i] and priority queues Qi require O(mΣ) space.

In this case Σ = O(n2), because each table K[i] contains the piecewise
matches for the positive intra-pattern vector pi+1 − pi, and there are O(n2)
possibilities to this end.
�

3.2 S2: Quest for Time Scaled Partial Occurrences

In order to be able to find transposition-invariant time-scaled partial occurrences,
we need the two extra columns c and z, that were initialised in Equation 4, for
tables K[i]. Recall that K[i]h.c stores the ending point i′ for an intra-pattern
vector pi′−pi that is found to match an intra-database vector tk′ − tk with some
scaling factor σi. Column z is used for storing a running number that is used
as an id, for a found partial occurrence. Furthermore, we use an extra table,
denoted by κ, for storing all the found occurrences.

The structure of the algorithm, given in Fig. 5, is similar to the previous algo-
rithm. Again, at point i, the antecedents in Qi are to be extended by postcedents
found in K[i]. However, as we are looking for partial occurrences this time, we

Transposition and Time-Scale Invariant Geometric Music Retrieval 179

TimeScaledPartialOccurrence(K[i])
(0) �← 0
(1) for j ← 0, . . . , Σp0

(2) Q
〈b,s〉
K[0]j.c ← push(&K[0]j)

(3) for i← 1, . . . , m− 1 do

(4) q ← pop(Q〈b,s〉
i)

(5) for j ← 0, . . . , Σpi−1 do
(6) while [q.b, q.s] < [K[i]j .a, K[i]j .s] do

(7) q ← pop(Q〈b,s〉
i)

(8) if [q.b, q.s] = [K[i]j .a, K[i]j .s] then

(9) while min(Q〈b,s〉
i) = [q.b, q.s] do

(10) r ← pop(Q〈b,s〉
i)

(11) if r.w > q.w then q ← r
(12) K[i]j .w← q.w + 1
(13) K[i]j .y ← q
(14) if K[i]j .w = α then
(15) �← � + 1
(16) K[i]j .z = �
(17) κ[�]← &K[i]j
(18) if K[i]j .w > α then
(19) K[i]j .z = q.z
(20) κ[q.z]← &K[i]j
(21) Q

〈b,s〉
K[i]j.c ← push(&K[i]j)

(22) q ← pop(Q〈b,s〉
i)

(23) K[i]Σpi
.s←∞

(24) Q
〈b,s〉
i+1 ← push(&K[i]Σpi

)
(25) ReportOccurrences(κ)

Fig. 5. Online algorithm for finding transposition-invariant time-scaled partial occur-
rences

cannot rely on piecewise matches that are consecutive in P but any piecewise
match associated with a positive intra-pattern vector

tki′ − tki = σi(pi′ − pi) (7)

has to be considered. Here 0 ≤ ki < ki′ ≤ n−1; 0 ≤ i < i′ ≤ m−1 and σi ∈ R
+.

Given a threshold α, a chain Tτ0...τβ−1 , such that tτj − tτj−1 = σ(pπj −pπj−1), for
0 < j ≤ β, β ≥ α, where τ0 . . . τβ−1 and π0 . . . πβ−1 are increasing sequences of
indices in T and P , respectively, would constitute for a transposition-invariant
time-scaled partial occurrence (of length β).

That piecewise matches can now be between any two points in the pattern
makes the problem somewhat more challenging. This has the effect that, at point
i, pushing a reference to a priority queue (lines (2) and (21) of the algorithm)
may involve any future priority queue, from Qi+1 to Qm, not just the successive
one as in the previous case; the correct priority queue is the one that is stored in

180 K. Lemström

K[i]j.c (recall that it stores the end point of the intra-pattern vector associated
with the piecewise match). Conversely, the antecedents at point i (stored in Qi)
may include references to any past tables, from K[0] to K[i− 1], expanding the
size of the priority queue Qi.

The two remaining differences to the algorithm above, are in lines (11) and
(14-20). In line (11), the algorithm chooses to extend the piecewise match that is
associated with the longest prefix occurrence. This is a necessary step, once again,
because we are no more dealing with piecewise matches that are consecutive in
P . In lines (14-20) the algorithm deals with a found occurrence. Lines (14-17)
deal with a new occurrence: generate a new running number, 	, for it (that is
used as its id) and store a link to the found occurrence to the table of occurrences
κ. Lines (18-20) deal with extending a previously found occurrence.

Correctness and Analysis. Denoting by Σ = maxm
i=1(|Qi|, |K[i − 1]|), with an

analogous reasoning to that of the previous analysis, we arrive at similar com-
plexities: the algorithm runs in O(mΣ logΣ) time and O(mΣ) space. Let us now
analyse the order of Σ in this case. Still it holds that for a positive intra-pattern
vector, pi′ − pi, there are O(n2) possible piecewise matches. However, the table
K[i] may contain entries associated with piecewise matches with any positive
intra-pattern vector ending at point i′. Thus, maxm

i=1(|K[i− 1]|) = O(mn2). As
|Qi| ≤ |K[i− 1]| for 0 < i ≤ m and m = O(n), we conclude that the algorithm
has an O(m2n2 logn) running time and works in a space O(m2n2).

The proof of the correctness of this algorithm is left for an interested reader.

�

4 Conclusions

In this paper we suggested novel content-based music retrieval algorithms for
polyphonic, geometrically represented music. The algorithms are both trans-
position and time-scale invariant. Given a (polyphonic) query pattern P =
p0, . . . , pm−1 to be searched for in a polyphonic music database T = t0, . . . , tn−1,
the algorithms run in O(mΣ logΣ) time and O(mΣ) space, where Σ = O(n2)
when searching for exact occurrences under such a setting, and Σ = O(n2m)
when searching for partial occurrences. Whether this is an improvement in prac-
tice over the existing algorithm by Romming and Selfridge-Field [9], working in
space O(n3) and time O(n2m3), is left for future experiments on real data.

However, the new approach seems to be very flexible: at the present the au-
thor is adopting the approach to a more complex case, where an uneven time
deformation is known just to preserve the order of the notes; there are no known
solutions for this time-warping invariant problem [6]. Moreover, it seems that
with slight modifications to the data structures and ideas presented by Lem-
ström, Mikkilä and Mäkinen in [7], it would be possible to adopt the idea of
using a three-phase searching process (indexing, filtering and checking) with a
smaller search space and a better running time to those presented here.

Transposition and Time-Scale Invariant Geometric Music Retrieval 181

Acknowledgement

The work was supported by the Academy of Finland, grants #108547 and
#218156.

References

1. Ukkonen, E., Lemström, K., Mäkinen, V.: Sweepline the music! In: Klein, R., Six,
H.-W., Wegner, L. (eds.) Computer Science in Perspective. LNCS, vol. 2598, pp.
330–342. Springer, Heidelberg (2003)

2. Ghias, A., Logan, J., Chamberlin, D., Smith, B.: Query by humming - musical
information retrieval in an audio database. In: ACM Multimedia 1995 Proceedings,
San Francisco, CA, pp. 231–236 (1995)

3. Clausen, M., Engelbrecht, R., Meyer, D., Schmitz, J.: Proms: A web-based tool for
searching in polyphonic music. In: Proceedings of the International Symposium on
Music Information Retrieval (ISMIR 2000), Plymouth, MA (October 2000)

4. Typke, R.: Music Retrieval based on Melodic Similarity. PhD thesis, Utrecht Uni-
versity, Netherlands (2007)

5. Wiggins, G., Lemström, K., Meredith, D.: SIA(M)ESE: An algorithm for transposi-
tion invariant, polyphonic content-based music retrieval. In: Proceedings of the In-
ternational Conference on Music Information Retrieval (ISMIR 2002), Paris, France,
October 2002, pp. 283–284 (2002)

6. Lemström, K., Wiggins, G.: Formalizing invariances for content-based music re-
trieval. In: Proceedings of the 10th International Conference on Music Information
Retrieval (ISMIR 2009), Kobe, October 2009, pp. 591–596 (2009)

7. Lemström, K., Mikkilä, N., Mäkinen, V.: Filtering methods for content-based re-
trieval on indexed symbolic music databases. Journal of Information Retrieval 13(1),
pp. 1–21 (2010)

8. Clifford, R., Christodoulakis, M., Crawford, T., Meredith, D., Wiggins, G.: A fast,
randomised, maximal subset matching algorithm for document-level music retrieval.
In: Proceedings of the 7th International Conference on Music Information Retrieval,
Victoria, BC, Canada, October 2006, pp. 150–155 (2006)

9. Romming, C., Selfridge-Field, E.: Algorithms for polyphonic music retrieval: The
hausdorff metric and geometric hashing. In: Proceedings of the 8th International
Conference on Music Information Retrieval (ISMIR 2007), Vienna, Austria, Septem-
ber 2007, pp. 457–462 (2007)

Unified View of Backward Backtracking in

Short Read Mapping

Veli Mäkinen�, Niko Välimäki��, Antti Laaksonen� � �, and Riku Katainen

Department of Computer Science, University of Helsinki, Finland
{vmakinen,nvalimak,ahslaaks,rkataine}@cs.helsinki.fi

Abstract. Mapping short DNA reads to the reference genome is
the core task in the recent high-throughput technologies to study
e.g. protein-DNA interactions (ChIP-seq) and alternative splicing
(RNA-seq). Several tools for the task (bowtie, bwa, SOAP2, TopHat)
have been developed that exploit Burrows-Wheeler transform and the
backward backtracking technique on it, to map the reads to their
best approximate occurrences in the genome. These tools use different
tailored mechanisms for small error-levels to prune the search phase
significantly. We propose a new pruning mechanism that can be seen a
generalization of the tailored mechanisms used so far. It uses a novel
idea of storing all cyclic rotations of fixed length substrings of the
reference sequence with a compressed index that is able to exploit the
repetitions created to level out the growth of the input set. For RNA-seq
we propose a new method that combines dynamic programming with
backtracking to map efficiently and correctly all reads that span two
exons. Same mechanism can also be used for mapping mate-pair reads.

Keywords: Personal genomics, full-text indexing, compressed data
structures.

1 Introduction

High-throughput short read sequencing is revolutionizing the way molecular bi-
ology is researched. For example, the routine task of measuring gene expression
by microarrays is now being replaced by a technology called RNA-seq [21,26];
the transcriptome is shotgun sequenced so that one is left with a set of short
reads (typically e.g. of length 36 basepairs) whose sequence is known but it is
not known from which parts of the genome they were transcribed. The process is
hence reversed by mapping the short reads back to the genome (assuming that
the reference genome sequence is known). After the mapping is produced (i.e.
after matching each short read sequence to its best exact/approximate occur-
rence in the genome) one should see clear clusters of occurrences indicating the

� Funded by the Academy of Finland under grant 119815.
�� Funded by the Helsinki Graduate School in Computer Science and Engineering.

� � � Funded by the Finnish Centre of Excellence for Algorithmic Data Analysis Re-
search.

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 182–195, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Unified View of Backward Backtracking in Short Read Mapping 183

expression of the genes residing in the clustered areas. Also alternative splicing
can be studied when analyzing the result of the mapping.

Analogous short read mapping tasks are part of protein-DNA interactions
studies by ChIP-seq [8,9] and population studies by targeted resequencing [7].

Measurement errors, genomic variation between individuals, and exon/intron
boundaries (in RNA-seq) make these mapping tasks non-trivial. Yet, the map-
ping task can be formulated as a multiple approximate string matching problem
[23] by using a proper distance/similarity measure capturing the different error
types. Luckily the short reads have very good quality, so not too many mea-
surement errors need to be allowed. Also typical genomic variations are single-
nucleotide polymorphisms (SNPs), making a simple k-mismatches search [23] a
sufficient choice on most reads. For finding more rare indels (or allowing such
measurement errors) one can apply k-errors search [23] instead.

A practical bottleneck in short read mapping is that one experiment produces
millions of reads and the mapping should hence be done as fast as possible. Since
the genome is static, it makes sense to preprocess it into an index structure to
speed up queries againts the reads. Suffix trees [27,20,25] and suffix arrays [19]
are typical examples of such full-text index structures, and are the basis of the
best theoretical results [2] on this indexed approximate matching problem.

Classical full-text indexes take however too much space on genome-scale se-
quences, so the widely used tools for short read mapping like MaQ [13], SOAP
[15], and ELAND (the mapper in Illumina Solexa sequencing pipeline) use instead
substring hashing techniques as a basis. Recently, many new software packages
have come out building on the Burrows-Wheeler transform (BWT) [1] and on
the FM-index [4] concept. The FM-index provides a way to index a sequence
within space of compressed sequence exploiting BWT. This index provides so-
called backward search principle that enables very fast exact string matching
on the indexed sequence. Lam et al. [11] extended backward search to simulate
backtracking on suffix tree, i.e., to simulate dynamic programming on all rele-
vant paths of suffix tree; their tool BWT-SW provides an efficient way to do local
alignment without the heuristics used in many common bioinformatics tools.
The same idea of bacward backtracking is exploited in the tools tailored for
short read mapping: bowtie [12], bwa [14], SOAP2 [16].

In this paper, we study the different pruning heuristics used in the BWT-
based short read mapping tools. We compare these heuristics againts the best
filtering algorithms proposed for approximate string matching: A filtering algo-
rithm tries to find fast some candidate positions that are then checked for real
occurrences. Many such index-based filters have been proposed in the literature,
and the current state-of-the-art is the suffix filter [10]. Our experiments indicate
a perhaps surprising result that one of the backtracking pruning heuristics – the
case analysis pruning used in bowtie – is in fact slightly superior to suffix filter.

We then propose a hybrid pruning heuristic – rotation pruning – that
combines suffix filter and case analysis pruning. Our experiments show that
this new pruning method is clearly superior in speed to any of the competitors.

184 V. Mäkinen et al.

The downsides are that rotation pruning needs a separate index for each pattern
length and that each index takes significantly more space (typically 40-times)
than the other pruning / filtering mechanisms.

The new index supporting rotation pruning uses a novel idea that may be of
independent interest likely to have many other uses outside the current applica-
tion: We first blow up the data by generating all cyclic rotations of all substrings
of the length of the pattern and then use a compressed index [18] that is able
to exploit the repetitions created. This has the effect that the index actually
represent a virtually large data, but its space requirement remains reasonable.
We show an expected case bound of O(n logn logm) bits for the index, where n
is the length of the sequence indexed and m is the pattern length.

The methods above are limited to simple DNA reads. We also study RNA-seq
mapping and mapping with mate-pair reads. The former has the extra difficulty
of a possible intron splitting the read and the latter the additional advantage
that the reads come by pairs with the approximate in-between distance known.
For RNA-seq mapping the typical mechanism used e.g. in TopHat [24] is to map
first all the reads that map without allowing introns to split, then analyze the
occurrence clusters to detect exon boundaries, merge prefixes and suffixes of
nearby exons, and match the substrings in merged prefix-suffix pairs to rest of
the reads. The way to handle mate-pairs in all the current tools is to map each
end separately and pair those occurrences that are within the allowed limits.

We propose a direct way to map RNA-seq and mate-pair reads: We couple the
dynamic programming with Cartesian trees [6] to be able to allow one long gap
(intron or mate-pair distance) without slowing down the dynamic programming
computation. Our experiments show that we are able to obtain the same speed
and accuracy as TopHat. Our method is also robust to indels, unlike TopHat.

1.1 Background

A string S = S1,n = s1s2 · · · sn is a sequence of symbols (a.k.a. characters or
letters). Each symbol is an element of an alphabet Σ = {1, 2, . . . , σ}. A substring
of S is written Si,j = sisi+1 . . . sj . A prefix of S is a substring of the form S1,j ,
and a suffix is a substring of the form Si,n. If i > j then Si,j = ε, the empty string
of length |ε| = 0. A text string T = T1,n is a string terminated by the special
symbol tn = $ �∈ Σ, smaller than any other symbol in Σ. The lexicographical
order “<” among strings is defined in the obvious way.

Burrows-Wheeler Transform. The methods to be studied are derivatives
of the Burrows-Wheeler transform (BWT) [1]. The transform produces a
permutation of T , denoted by T bwt, as follows: (i) Build the suffix array [19]
SA[1, n] of T , that is an array of pointers to all the suffixes of T in the lexico-
graphic order; (ii) The transformed text is T bwt = L, where L[i] = T [SA[i]− 1],
taking T [0] = T [n]. The BWT is reversible, that is, given T bwt = L we can obtain

Unified View of Backward Backtracking in Short Read Mapping 185

T as follows [1]: (a) Compute the array C[1, σ] storing in C[c] the number of oc-
currences of characters {$, 1, . . . , c−1} in the text T ; (b) Define the LF mapping
as follows: LF (i) = C[L[i]] + rankL[i](L, i), where rankc(L, i) is the number of
occurrences of character c in the prefix L[1, i]; (c) Reconstruct T backwards as
follows: set s = 1, for each i← n− 1, . . . , 1 do ti ← L[s] and s← LF [s]. Finally
put the end marker tn ← $.

Backward Search. The FM-index [4] is a self-index based on the BWT. It is
able to locate the interval SA[sp, ep] that contains the occurrences of P without
having SA stored. The FM-index uses the array C and function rankc(L, i)
in the so-called backward search algorithm, calling function rankc(L, i) O(|P |)
times. Its pseudocode is given below.

Algorithm. Count(P [1 . . . m],L[1 . . . n])
(1) i← m;
(2) sp← 1; ep← n;
(3) while (sp ≤ ep) and (i ≥ 1) do
(4) s← P [i];
(5) sp← C[s] + ranks(L, sp− 1)+1;
(6) ep← C[s] + ranks(L, ep);
(7) i← i− 1;
(8) if (ep < sp) then return “not found”

else return “found (ep− sp + 1) occurrences”.

The correctness of the above algorithm is easy to see by induction: At each
phase i, [sp, ep] gives the maximal interval of suffix array SA pointing to suffixes
prefixed by P [i . . .m].

To report the occurrence positions SA[i] for sp ≤ i ≤ ep, a common approach
is to sample SA values and then use the LF -mapping to derive the unsampled
values from the sampled ones. Many variants of the FM-index have been derived
that differ mainly in the way the rankc(L, i)-queries are solved [22]. For exam-
ple, on small alphabets, it is possible to achieve nHk + o(n log σ) bits of space,
for moderate k, with constant time support for rankc(L, i) [5]. Here Hk is the
standard k-th order entropy, i.e., the minimum number of bits to code a symbol
once its k-symbol context is seen. There holds Hk ≤ log σ.

Backward Backtracking. The backward search can be extended to backtrack-
ing to allow the search for approximate occurrences of the pattern [11]. To get
an idea of this general approach, let us first concentrate on the k-mismatches
problem, where pattern P [1 . . .m] approximately matches a substring X [1 . . .m]
of the text T , if there are at most k indices i such that P [i] �= X [i]. The
following pseudocode finds the k-mismatch occurrences, and is analogous to
the schemes used in [13,12,14]. The first call to the recursive procedure is
kmismatches(P,L, k,m, 1, n).

186 V. Mäkinen et al.

Algorithm. kmismatches(P, L, k, j, sp, ep)
(1) if (sp > ep) return ;
(2) if (j = 0) then
(3) Report occurrences SA[sp], . . . , SA[ep]; return ;
(4) for each s ∈ Σ do
(5) sp′ ← C[s] + ranks(L, sp− 1)+1;
(6) ep′ ← C[s] + ranks(L, ep);
(7) if (P [j] �= s) then k′ ← k − 1; else k′ ← k;
(8) if (k′ ≥ 0) kmismatches(P, L, k′, j − 1, sp′, ep′);

The difference to the exact search is that the recursion considers incremen-
tally from right to left all different ways to alter the pattern with at most k-
substitutions. Simultaneously, the recursion maintains the suffix array interval
SA[sp . . . ep] where suffixes match the current modified suffix of the pattern. It
is easy to extend the algorithm to find all k-errors occurrences [14], where also
insertions and deletions can be applied to the pattern.

Pruning Search Space. The worst case complexity of backward backtracking
is O(|Σ|kmk+1), assuming the text is long enough to contain nearly all pattern
occurrences with k-mismatches. There are some recent practical proposals to
prune the search space [12,14]; both share the idea of building the FM-index
also for the reverse text T r = tntn−1 · · · t1. Let us call forward FM-index and
reverse FM-index the FM-index of T and FM-index of T r, respectively.

In [14] the reverse FM-index is used for precomputing for each prefix α of
the pattern, its splitting to minimum number of pieces such that each piece
occurs at least once in the text. Let us denote the minimum number of splits
κ(α). The computation of κ(α) for all prefixes α is analogous to the backward
search algorithm (applied to reverse pattern on reverse FM-index), and hence
works in linear number of steps in the pattern length [14]. The computation is
also possible to do with forward FM-index alone by simulating the suffix array
binary search (with roughly logarithmic slowdown to the linear preprocessing).

Value κ(α) works as a lower bound for the number of errors that must be
allowed in any approximate match for the prefix α. This estimate can be used to
prune the search space of backward backtracking as follows. Each search state
knows the number of errors, say η(β, sp, ep), between a suffix β of the pattern
and the longest common prefix of suffixes SA[sp . . . ep]; if κ(α)+η(β, sp, ep) > k,
the branch can be ignored. Let us call this strategy prefix pruning.

In [12] they extend the standard filtering technique of splitting pattern into
k + 1 pieces [23]: The original idea of pattern splitting is to be able to search
each piece exactly, since k-errors/-mismatches cannot affect all pieces simulta-
neosly. Then the surrounding of each exact occurrence of each piece is checked
for possible k-errors/-mismatches match. This filter is trivial to implement using
exact search in FM-index, but for large error levels too many candidate matches
need to be checked.

The extension proposed in [12] is to consider separately all cases how k mis-
matches can be distributed in the k + 1 pieces, and perform backtracking for

Unified View of Backward Backtracking in Short Read Mapping 187

the whole pattern for each case either from forward or from reverse FM-index,
depending on which one is likely to prune better the search space. Let us call
this strategy case analysis pruning. Too see how it works, let us consider the
simplest case k = 1 first. Pattern P is split into two pieces P = αβ. One error
can be either (a) in α or (b) in β. In case (a), it is preferable to search for
P = αβ using backward backtracking on the forward FM-index, since β must
appear exactly and branching is only needed after reading the |β| first symbols.
In case (b), it is affordable to search for P r = βrαr using backward backtracking
on the reverse FM-index, since αr must appear exactly and branching is only
needed after reading the |α| first symbols. For obvious reasons |α| ≈ |β| is a good
choice for pruning efficiency. Let us then consider k = 2 to see the limitations
of the approach. The different ways to distribute two errors into three pieces
are (a) 002, (b) 020, (c) 200, (d) 011, (e) 101, and (f) 110. Obviously in cases
(a) and (d) it makes sense to use backtracking on the reverse FM-index and in
cases (c) and (f) backtracking on the forward FM-index. For cases (b) and (e)
either choice is as good or bad. Obviously for any k, there is always the bad case
where both ends have at least k/2 errors. Hence, there is no strategy to start
the backtracking with 0 errors, other than in case k = 1.

In the sequel, we study backward backtracking in more detail and propose a
general mechanism to minimize the backtracking effort.

2 New Pruning Mechanism

We build on the suffix filter of [10] that is another extension of the pattern
splitting strategy. Instead of splitting the pattern into pieces to be searched for
exactly, the suffixes starting from the start positions of the pieces are considered.
More concretely, let pattern P be partitioned into pieces P = α1α2 · · ·αk+1, then
the set of suffixes considered is S = {α1α2 · · ·αk+1, α2α3 · · ·αk+1, . . . , αk+1}.
Then each S ∈ S is searched for from the text so that zero errors are allowed
before reaching the end if first piece in S, one error is allowed before reaching
the end of second piece of S, and so on. Obviously this search can be done e.g.
using backtracking on FM-index (to be precise, backward backtacking on reverse
FM-index in order to backtrack on suffixes).

The reason why suffix filter misses no real occurrences can be seen as fol-
lows (see [10] for the original proof; we give a new one to introduce some
concepts useful in the sequel). Let us limit to k-mismatches case. Assume
that instead of the suffix set S the filter would be searching for all rota-
tions of the pattern starting from the start positions of the pieces. Namely,
set R = {α1α2 · · ·αk+1#, α2α3 · · ·αk+1#α1, . . . , αk+1#α1α2 · · ·αk} would be
searched for with the suffix filter stategy. Here the comparison to candidate text
substring needs to be done cyclically according to the rotation of the pattern
(marked by special symbol # /∈ Σ not part of the comparison).

It is then possible to see that all combinations to distribute errors to the pieces
are covered by this rotation pruning. The following proof is by induction. Let
m(αi) be the number of mismatches in αi and

∑k+1
i=1 m(αi) = k. We show that

188 V. Mäkinen et al.

there is a rotation P ′ = α′
1α

′
2 · · ·α′

k+1 of P such that
∑p

i=1m(α′
i) ≤ p − 1 for

1 ≤ p ≤ k + 1. If k = 0, the statement is obviously true. If k > 0, we can rotate
P into Q = α′′

1α
′′
2 · · ·α′′

k+1 such that m(α′′
1) = 0 and m(α′′

2) > 0. Then we set
B = β1 · · ·βk = α′′

2 · · ·α′′
k+1 and allow m(β1) = m(α′′

2)−1 and m(βi) = m(α′′
i+1)

for i > 1. Now there is, by induction, a rotation β′
1β

′
2 · · ·β′

k of B such that∑p
i=1m(β′

i) ≤ p− 1 when 1 ≤ p ≤ k. This gives us the desired rotation of P : if
the desired rotation of B begins at βr, then the desired rotation of P is P ′ = Q,
if r = 1, otherwise it is P ′ = α′′

r+1 · · ·α′′
k+1α

′′
1 · · ·α′′

r .
Rotation pruning finds hence directly all k-mismatch occurrences without

needing to resort to verification. Since suffixes are prefixes of rotations, suffix
filter finds all the real occurrences as rotation pruning but in addition some that
will be filtered out in a verification step.

It is now wortwhile to compare suffix filter with the case analysis pruning
mechanism that was considered in the previous section. For k = 1, pattern is
split into P = αβ and the case analysis pruning searches P in both directions
so that first |α| (|β|) symbols match exactly before branching. Suffix filter can
only exploit one of the directions, since it searches suffix β exactly. Therefore
it needs to resort to expensive verification step on that part. For larger k, the
comparison is difficult since although suffix filter can always start the search
with zero errors, it may end up doing lot of verification, whereas case analysis
pruning always has cases where errors need to be allowed in the beginning but
alltogether no verification is required afterwards.

Rotation pruning was introduced here as a tool for showing correctness of
suffix filter, but the interesting question is whether it could be applied directly.
This is a desirable goal, as rotation pruning shares the good properties of both
suffix filter (starting the search with zero errors) and the case analysis pruning
(no verification step needed). Applying rotation pruning is indeed possible, with
some limitations: Assume we know pattern length m beforehand. Then we can
slide a windows of length m over the text T and produce a set of repetitions of
the windows

W = {t1t2 · · · tm#t1t2 · · · tm,
t2t3 · · · tm+1#t2t3 · · · tm+1,

. . . ,

tn−m+1tn−m+2 · · · tn#tn−m+1tn−m+2 · · · tn}
where we have added a special symbol # /∈ Σ to mark the rotation positions.
Now consider a reverse FM-index for W or more precicely, a FM-index for a
concatenation of strings {W r | W ∈ W} with another special symbol $ added
between two strings. Backward backtracking on each Sr such that S ∈ R with
the suffix filter strategy (growing number of errors in the backtracking path) and
with forcing symbols # match, implements correctly rotation pruning.

The shortcoming of rotation pruning (in addition to a fixed pattern length)
is that the space grows to mn logσ(1 + o(1)) bits. However, the repetitions cre-
ated into W are amenable for compression: It is shown in [18] that on repet-
itive collections like W the Burrows-Wheeler transform contains long runs of

Unified View of Backward Backtracking in Short Read Mapping 189

symbols. This can be stated formally on collections created from a random
string T . The idea is that for a random string T the longest repeating sub-
string is of length L = O(logσ n). The corollary is that the position of each
symbol in Burrows-Wheeler is decided at most by its L-length context. If you
create a Burrows-Wheeler transform for a collection of substrings of T , then
even if you modify the end of the substrings, the mapping of symbols to
Burrows-Wheeler transform that are further away than L positions from the
end of the substring will be unaffected. Namely, a symbol ti that is copied
to many substrings and at distance larger than L from the end of each of
the substrings, will be mapped to a run of ti’s in the Burrows-Wheeler trans-
form of the collection. Following the analysis of [18] (almost verbatim, associ-
ating rotation positions and end of substrings with mutations) one can con-
lude that the Burrows-Wheeler transform of W on random text T contains
R = min(mn,O(n logσ n)) runs on average. Using the RLFM+ index [18] in place
of FM-index, one obtains an index cabable for rotation pruning that occupies
(R log σ+2R log mn

R)(1+o(1))+O(R log log mn
R)+n logn+O(nm log(nm)/d) bits,

where d is a given parameter affecting the running time O(d(log σ+(log logn)2))
of computing SA[i]. A simplified upper bound for the space is O(n log n logm)
by setting d = m/ logm. Each backtracking step (LF-mapping) is reasonably
fast with the approach: O(log σ + (log logn)2).

3 Dynamic Programming and Backtracking

Dynamic programming is a standard technique for searching for approximate
occurrences of a pattern in a text. The most common criterion for a match is
the Levenshtein distance: the number of substitutions, insertions and deletions
needed for matching the pattern. Dynamic programming can be applied to back-
ward backtracking by building one column of the dynamic programming table
on each recursive step. The following pseudocode illustrates the idea:

Algorithm. kerrors(sp, ep, count, oldcol)
(1) if (sp > ep) return ;
(2) if (oldcol[patlen] ≤ klimit) then
(3) Report occurrences SA[sp], . . . , SA[ep]; return ;
(4) for each s ∈ Σ do
(5) sp′ ← C[s] + ranks(L, sp− 1)+1;
(6) ep′ ← C[s] + ranks(L, ep);
(7) curcol[0]← count; minval← count;
(8) for i = 1 to count do
(9) if (P [patlen− count + 1] = s) then diag ← 0; else diag ← 1;
(10) curcol[i]← min(oldcol[i] + 1, curcol[i− 1] + 1, oldcol[i− 1] + diag);
(11) if (curcol[i] < minval) then minval ← curcol[i];
(12) if (minval ≤ klimit) kerrors(sp′, ep′, count + 1, curcol);

This procedure is called kerrors(1, n, 1, f irstcol) where firstcol[i] = i. The ar-
rays oldcol and curcol contain values of two consecutive columns of the dynamic
programming table. The minimum value of the current column (minval) is calcu-
lated to terminate the search if no further matches are possible.

190 V. Mäkinen et al.

Dynamic programming can also be used when there can be gaps in the pattern.
This is the case when RNA-seq reads have to be located in the DNA. Now,
when building the dynamic programming table, one has to consider all previous
columns where a gap could have begun and select the minimum value among
them. This can be accomplished more efficiently by creating a Cartesian tree
[6] for each row in the table as proposed in [17]: Cartesian tree is defined on a
sequence of numbers so that its root is the minimum element, left child of root is
the minimum element from left side of to the root, and right child is the minimum
element from right side of the root. Then the whole tree is defined recursively
in the same fashion splitting the sequence to left and right parts in each node.
It can be constructed incrementally in linear time [6], amortized constant time
per step. The construction can easily be modified to maintain minimum at the
root when sliding a window through the sequence of numbers, and also in the
case when the window slides back and forth in the sequence (although then the
amortized running time analysis needs to be revised, see below).

This latter case is exactly the algorithm that we can use in the above dynamic
programming through backtracking -approach; Cartesian tree of a sliding win-
dow (of length maximum intron length) for each dynamic programming row is
maintained during the backtracking search that goes back and forth the virtual
suffix tree paths. For this to work, we need to store all the columns from root
to the maximal depth (maximum intron length plus read length plus k). The
sliding window does not need to start from the current position in the matrix,
but one can adjust it to disallow too short introns. It is also possible to make
it contain only values from plausible exon boundaries (obeying the dinucleotide
markers in intron ends).

The worst case running time of the approach is however no better than with
the naive algorithm; one can amortize the back and forth steps of maintaining
the Cartesian tree of a sliding window only on the total length of paths from
root to nodes v ∈ V such that V is the set of nodes where backtracking ends.
This can be worse than the size of the sliding window, which bounds the running
time of one step in the naive algorithm and which also gives another bound for
the running time of one step in the the Cartesian tree approach. The best case
running time of the Cartesian tree approach is still constant per step. In our
experiments, the average number of updates in Cartesian tree was 1.91 per step.

Another important feature affecting the practical running time is that back-
tracking needs to enter all paths from a point where a gap is allowed. To alleviate
this bottleneck, we can exploit the forward and reverse FM-indexes. Then we
can restrict the long gap to start only after the midpoint so that the search space
has been pruned enough to make the full branching feasible.

The same idea can be used for mapping mate-pair reads. Consider the search
pattern to be concatenation of the two mate-pair ends. Then the search can
be done as with RNA-seq reads except that now the long gap position can be
limited to only one place. Again it is possible to do the search in both directions
with forward and reverse FM-indexes and continue with gap only in the one
having smaller search space left.

Unified View of Backward Backtracking in Short Read Mapping 191

4 Experiments

We implemented the different pruning techniques described in Sect. 1.1 and 3,
and also the suffix filter [10] and the standard pattern partitioning filter [23].

For both filters we implemented a preprocessing step that finds an optimal
partitioning by dynamic programming such that the total work is minimized.
For pattern partitioning filter this can be computed accurately, since one can
compute the exact number of occurrences for each substring of the pattern by
backward search. Then it is an easy task to find an optimal partitioning such that
total number of occurrences (candidates to be checked) is minimized. For suffix
filter we used the exact substring occurrences as a start point to estimate how
many pattern suffix occurrences there are in expectation. Optimal partitioning
in this case gives the minimum number of candidates to be checked using the
exact occurrences of the pieces in partitioning as a prior. This should also reflect
to the amount backtracking needed although that is not directly optimized.

For prefix pruning our implementation uses only the forward FM-index; the
use of reverse FM-index would speed up its preprocessing step, but does not
affect the assymptotic behaviour on our test setup (fixed pattern length).

Our implementation was built on top of succinct data structures from the
libcds library1. We have implemented most of the features explained before under
the k-mismatches model. We are currently extending the implementation to k-
errors model by plugging in fast bit-parallel dynamic programming routines.
Once these are ready, we will set our implementation publicly available2.

The following subsections give the results of our experiments on ChIP-seq and
RNA-seq data. The results on ChIP-seq show that rotation pruning is superior
to other methods in terms of time, and also the only method that is practical on
high mismatch-rates. The results on RNA-seq show that our method is on par
with TopHat.

The experiments were ran on Intel Xeon E5440 CPU with 32 GB of memory
and 64 bit Linux OS.

4.1 ChIP-seq

For the first experiments, we used a set of 10 000 ChIP-seq reads of length
36 bp taken from [3]. The reads were aligned against GRCh37 version of the
human genome with k-mismatch and varying values of k. For the second set
of experiments, we used a shorter base sequence and included results also for
rotation pruning.

Figure 1 gives the average search time per one read when retrieving all oc-
currences with k-mismatches. The left graph contains results for counting all
approximate occurrences. In the right graph, all occurrences are also located.
Both filtering methods can locate occurrences without extra cost while checking
the candidate matches. Other methods have to look for a sampled suffix position

1 http://code.google.com/p/libcds/
2 http://www.cs.helsinki.fi/group/suds/

192 V. Mäkinen et al.

0 1 2 3 4

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Max. number of mismatches

T
im

e
(m

s)

basic
prefix pruning
case pruning
suffix filter
partitioning filter

0 1 2 3 4

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Max. number of mismatches

basic
prefix pruning
case pruning
suffix filter
partitioning filter

Fig. 1. Average search time per read when counting (left) or locating (right) all occur-
rences. Averages of 10 000 reads aligned against the human genome.

via LF-mapping, thus, their time complexity depends on the sampling density.
In this case, every 32nd suffix was sampled.

Figure 2 gives the average search time per one read when only the best oc-
currences are retrieved. The best occurrence is defined as the first occurrence
found with the least number of mismatches. For genome scale data, there are
two distinct observations: The partitioning filter does not perform well because
the number of candidate occurrences grows substantially fast. The prefix prun-
ing includes a large overhead from the preprocessing making it faster than the
basic backtracking only at higher values of k. These two effects vanish if reads
are matched against a shorter base sequence.

0 1 2 3 4 5

0
10

20
30

40
50

60
70

Max. number of mismatches

T
im

e
(m

s)

basic
prefix pruning
case pruning
suffix filter
partitioning filter

Fig. 2. Average search time per read when counting only the best occurrences. Averages
of 10 000 reads aligned against the human genome.

Unified View of Backward Backtracking in Short Read Mapping 193

2 3 4 5 6 7

0
50

10
0

15
0

20
0

Max. number of mismatches

T
im

e
(m

s)

basic
prefix pruning
case pruning
suffix filter
partitioning filter
rotation pruning

2 3 4 5 6 7

0
10

20
30

40
50

60
70

Max. number of mismatches
T

im
e

(m
s)

basic
prefix pruning
case pruning
suffix filter
partitioning filter
rotation pruning

Fig. 3. Average search time per read when counting all occurrences (left) or only the
best occurrences (right). Averages of 10 000 reads aligned into a 40MB DNA sequence.

Figure 3 contains average search times against a 40 MB DNA sequence taken
from human chromosome 1. For the shorter base sequence, we took a set of 10
000 reads that all align with at most 6 mismatches. The results in the left graph
give average times for counting all occurrences with k-mismatches. In the right
graph, only the best occurrences are counted for. Both graphs also include the
rotation pruning which clearly outperforms other methods for k ≥ 4 mismatches.

Table 1 summarizes memory consumption of different methods for the 40 MB
DNA sequence. Case analysis pruning uses twice as much memory compared to
other pruning methods and filters. The rotation index was built on run-length
encoded indexes, namely RLWT and RLCSA [18], to prevent the index size
from doubling when the read length is doubled. Although the results reported
in Figure 3 did not use a run-length encoded index, RLCSA have been shown
to be competitive in terms of time to the techniques used [18].

As a sanity test, we compared our case analysis pruning against bowtie 0.11.3
[12]. We took a set of million reads from [3] and matched them against the
whole human genome using the default settings of bowtie. We also tested bowtie
with the option -v 2 and options -n 2 -l 36 but their effect was negligible. For
bowtie, it takes about a minute to align the given reads on default settings. Our
implementation, with similar settings, was about 11 times slower. This shows

Table 1. Memory usage of different indexes for a 40 MB DNA sequence. Read length
has only a subtle effect on the index size for rotation pruning.

Read length 36 bp 72 bp
Rotation pruning, RLWT 1 598 MB 1 694 MB
Rotation pruning, RLCSA 1 071 MB 1 143 MB
Case analysis pruning 56 MB
All other methods 28 MB

194 V. Mäkinen et al.

the effect of other more subtle heuristics and code-level optimizations in bowtie.
Because bowtie is optimized for small number of mismatches, say for k ≤ 3 mis-
matches, we did not compare it against the rotation pruning. By extrapolating
from the results in Figure 3, we can estimate that rotation pruning could align
one million high-quality reads per hour with any k ≤ 7. The rotation pruning
index for human genome would easily fit in 64 GB of main memory.

4.2 RNA-seq

We ran a test on simulated RNA-seq data that contained no errors at all. We
chose one protein coding gene3 that spans over 8 exons. Its exon and intron
lengths vary from 75 to 805, and from 558 to 18 143 base-pairs, respectively. We
generated 1 469 reads of length 36 bp from the gene’s cDNA sequence, that is,
one read from each suffix of the original sequence. We did not induce errors to
the reads since it is non-trivial to simulate real-world sequencing errors.

Both our method, described in Sect. 3, and TopHat were able to align the
given reads within a few minutes. While our method was about three times
faster, doubling the number of reads did not seem to affect TopHat’s running
time as much as ours. Both methods aligned about 95% of reads correctly. Our
method recognized all introns correctly but had problems aligning reads that
span over the intron close to the very beginning or end of the read — a situation
that is difficult to improve on. TopHat had similar problems, but more notably,
TopHat managed to find all but one intron. TopHat did not recognize the second
intron nor any of the reads that span over it, not even by doubling the coverage
of input reads.

References

1. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

2. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proceedings of the Thirty Sixth Annual Symposium on
the Theory of Computing, pp. 91–100 (2004)

3. Tuupanen, et al.: The common colorectal cancer predisposition snp rs6983267 at
chromosome 8q24 confers potential to enhanced wnt signaling. Nature Genetics 41,
885–890 (2009)

4. Ferragina, P., Manzini, G.: Indexing compressed texts. Journal of the ACM 52(4),
552–581 (2005)

5. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms (TALG) 3(2),
article 20 (2007)

6. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: Proc. 16th ACM Symposium on Theory of Computing (STOC
1984), pp. 135–143 (1984)

3 Gene CD53-001 and its transcript ENST00000271324.

Unified View of Backward Backtracking in Short Read Mapping 195

7. Harismendy, O., Ng, P.C., Strausberg, R.L., Wang, X., Stockwell, T.B., Beeson,
K.Y., Schork, N.J., Murray, S.S., Topol, E.J., Levy, S., Frazer, K.A.: Evaluation of
next generation sequencing platforms for population targeted sequencing studies.
Genome Biology 10(R10) (2009)

8. Johnson, D.S., Mortazavi, A., Myers, R.M., Wold, B.: Genome-wide mapping of in
vivo protein-dna interactions. Science 316(5830), 1497–1502 (2007)

9. Jothi, R., Cuddapah, S., Barski, A., Cui, K., Zhao, K.: Genome-wide identification
of in vivo protein-dna binding sites from chip-seq data. Nucl. Acids Res. 36(16),
5221–5231 (2008)

10. Kärkkäinen, J., Na, J.C.: Faster filters for approximate string matching. In: Proc.
9th Workshop on Algorithm Engineering and Experiments (ALENEX 2007), pp.
84–90. SIAM, Philadelphia (2007)

11. Lam, T.W., Sung, W.K., Tam, S.L., Wong, C.K., Yiu, S.M.: Compressed indexing
and local alignment of dna. Bioinformatics 24(6), 791–797 (2008)

12. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short dna sequences to the human genome. Genome Biology 10(3),
R25 (2009)

13. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Research 18, 1851–1858 (2008)

14. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics (2009) (Advance access)

15. Li, R., Li, Y., Kristiansen, K., Wang, J.: Soap: short oligonucleotide alignment
program. Bioinformatics 24(5), 713–714 (2008)

16. Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., Wang, J.: Soap2.
Bioinformatics 25(15), 1966–1967 (2009)

17. Mäkinen, V.: Parameterized Approximate String Matching and Local-Similarity-
Based Point-Pattern Matching. PhD thesis, University of Helsinki (2003)

18. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of individ-
ual genomes. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 121–137.
Springer, Heidelberg (2009)

19. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

20. McCreight, E.: A space-economical suffix tree construction algorithm. Journal of
the ACM 23(2), 262–272 (1976)

21. Morin, R.D., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T.J., Mc-
Donald, H., Varhol, R., Jones, S.J.M., Marra, M.A.: Profiling the hela s3 transcrip-
tome using randomly primed cdna and massively parallel short-read sequencing.
BioTechniques 45, 81–94 (2008)

22. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), article 2 (2007)

23. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Sur-
veys 33(1), 31–88 (2001)

24. Trapnell, C., Pachter, L., Salzberg, S.L.: Tophat: discovering splice junctions with
Rna-seq. Bioinformatics 25(9), 1105–1111 (2009)

25. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

26. Wang, Z., Gerstein, M., Snyder, M.: Rna-seq: a revolutionary tool for transcrip-
tomics. Nature Reviews Genetics 10(1), 57–63 (2009)

27. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th Annual IEEE Sym-
posium on Switching and Automata Theory, pp. 1–11 (1973)

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 196–209, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Some Applications of String Algorithms
in Human-Computer Interaction

Kari-Jouko Räihä

Unit for Computer-Human Interaction (TAUCHI),
Department of Computer Sciences

FIN-33014 University of Tampere, Finland
kari-jouko.raiha@cs.uta.fi

Abstract. Two applications of string algorithms in human-computer interaction
are reviewed: one for comparing error rates of text entry techniques, another for
abstracting collections of scan paths (paths of eye movements). For both
applications, the classic string edit distance algorithm proves useful. For the
latter application shortest common supersequences provide one option for
further development. Applying them as such could be misleading, but a suitable
approximation could provide a useful representation of a set of scan paths.

Keywords: text entry, edit distance, Levenshtein distance, minimum string
distance, gaze input, usability evaluation, scan path comparison, shortest common
supersequence.

1 Introduction

String algorithms have a huge number of applications in probably all fields of science.
In human-computer interaction, there are applications (such as efficient information
retrieval) that critically depend on efficient string algorithms. Here I focus on the use
of string algorithms in analyzing interaction techniques and interaction activities. Two
areas are considered: text entry techniques and interaction with graphical user
interfaces, analyzed with the help of eye tracking. Well-known string edit distance
algorithms prove useful for both, and shortest common supersequences offer some
promise for the latter, which still calls for definite, broadly accepted solutions. I review
both established approaches and discuss some possibilities for further research.

2 Text Entry and Minimum String Distance

Written communication has a long history, going back thousands of years to the
Sumerians. Technological innovations like the printing press, typewriters, and
computers have increased the ease and speed of producing written text. The basic
principle has, however, remained much the same: the resulting text is composed a
character at a time, be it using the movable type of a printing press or keypresses on
the typewriter or computer keyboard. Silfverberg [31] provides an excellent overview
of the historical development of text entry technologies.

 Some Applications of String Algorithms in Human-Computer Interaction 197

The proliferation of mobile devices (mobile phones and palmtop computers) in the
last two decades has opened a Pandora’s box in text entry research and development.
The challenge, of course, is the small size of the device: it can no more incorporate a
full-size keyboard, causing the need for radically new ways of entering text. The
multi-tap technique used in mobile phones, whereby each key of the keypad can be
used to select a character among several alternatives by pressing it repeatedly, is
widespread. But there are a number of other techniques, including predictive
techniques such as T9 [9], marks that resemble handwritten characters such as Graffiti
[7], continuous techniques like Dasher [38] (a radical departure from traditional
discrete, hunt and peck techniques), and even a technique that requires just one key
[16]. As stated by MacKenzie and Tanaka-Ishii in their recent compendium on text
entry systems, “Text entry has never been as important as it is today, because of the
huge success of mobile computing and text messaging on mobile phones and other
small devices like the PDA and hand-held PC.” [17].

2.1 Metrics for Evaluating Text Entry Techniques

The increase in the variety of techniques available for text entry has brought along a
need for their systematic evaluation. In early days, the main comparisons were
between the various layouts of the keys on the keyboard. The design of the standard
layout today, the so-called QWERTY keyboard, was driven by constraints of the
technology: keys were placed in locations that would minimize the chance of two
consecutive key presses jamming the corresponding levers. Technology advanced and
this design criterion lost its importance, and later studies found that some other
layouts, notably the so-called Dvorak layout [3], would be better for human motor
performance and, consequently, text entry speed. Nevertheless, the QWERTY layout
had by then reached a status where switching to another layout was no more feasible,
given the fairly small improvements (10−20 %) in entry speed that could be expected
after a long training period [31, p. 10].

Today the situation with new mobile devices and text entry techniques is different.
New techniques are invented frequently, and they can be evaluated, analyzed, and
refined before it is too late in the sense that a de-facto standard would prevent better
techniques from getting adopted.

What, then, are the appropriate metrics that should be used in the evaluation and
comparison? Obviously, text entry rate, or the speed of producing the written text, is a
key metric. This can be evaluated using established methods by asking test participants
to produce text, either at will (“composition”) or by copying existing text presented to
them in a suitable way (“transcription”). The latter, of course, allows more objective
comparisons. Expert typists can achieve a rate of more than 100 words per minute
(WPM), while the world record according to the Guinness Book of World Records
[23] is more than 200 WPM (obtained using the Dvorak layout). Here the “word” in
the “words per minute” has been normalized to equal five characters, to accommodate
the variation in word lengths. Thus, “Esko Ukkonen” would count as 2.4 words.

This, however, is not the only important metric. Wobbrock [41] and MacKenzie
[14] provide surveys on the various metrics and evaluation methods that can and have
been used with text entry systems. In addition to entry rate, another important metric
is the expected error rate of a technique: the usefulness of a fast technique is greatly

198 K.-J. Räihä

undermined if it is highly error prone, that is, if users frequently produce incorrect
characters in the text.

Here we come across the first classical string algorithm: the one used for
computing the Levenshtein distance, or edit distance, or (as it is customarily called in
text entry research), minimum string distance. Let S be a source string over an
alphabet and T the target string over the same alphabet (that is, S is the model to be
copied, and T is the text produced by the typist). Then MSD(S, T) is the minimum
number of edit operations needed to transform S into T. Here the edit operations are
deleting a character, inserting a character, or changing a character into another
character. In text entry research, it is customarily assumed that all operations are
equally costly, i.e., the minimum string distance is computed using the unit cost
model. As noted by Ukkonen [37], the algorithm for computing the minimum string
distance has been reinvented several times in various contexts, and text entry research
adds to the long list.

The minimum string distance can then be used to define a metric for the error rate: the
“MSD error rate” for strings S and T, MSDerror(S, T), is defined as MSD(S, T) divided by
the maximum of the lengths of S and T [32]. In other words, we obtain a normalized
metric based on MSD by taking into account the lengths of the strings S and T. This will
allow its robust application over text entry tasks for strings of varying length.

The MSD error rate works well for evaluating the correctness of the output of the
text entry task, but it still does not tell the whole story. The result may be perfectly
correct if it is obtained by meticulously correcting all errors produced during the text
entry task. This would obviously compromise text entry speed at the expense of
correctness of output. For this reason the use of a third metric is customary to support
a comprehensive view of the performance of the techniques. Keystrokes per character
(KSPC) is defined as the ratio of number of key presses and the number of characters
in the resulting text. This is a useful metric for evaluating the performance during a
single text entry task. The same principle can also be applied more generally using the
so-called KSPC characteristic measure [15]: it provides a metric for comparing the
best-case performance of text entry techniques. For a typewriter and for text that only
consists of lower case letters, the KSPC characteristic measure equals 1. Introducing
capital letters in the text, and thereby making the use of the shift key necessary,
increases KSPC. With the multi-tap method of mobile phones, where several key
presses are needed for many characters, the KSPC characteristic measure is more than
2. MacKenzie [15] and Wobbrock [41] give more details.

This combination of metrics: WPM, MSDerror, and KSPC, allows a balanced
comparison of the merits of text entry techniques. KSPC, in particular, allows the
evaluation of a technique both before it has even been implemented (using the KSPC
characteristic measure) and in actual use (using the KSPC performance measure).

2.2 Text Entry by Eye Gaze

The development of devices is not the only change that is taking place in the world of
text entry. New modalities are brought to use as well. In particular, text entry by eye
gaze has attracted increased attention [22, 19], because it may be the only available
form of communication for a select user group, such as those suffering from a stroke
or advanced stages of ALS. Here, too, techniques based on keyboards have been
dominant, but a number of new techniques have emerged.

 Some Applications of String Algorithms in Human-Computer Interaction 199

When eye gaze is used to enter text with a keyboard, the keyboard is displayed on
the computer screen. Instead of a physical key press, a key is activated by eye gaze by
looking at it for long enough, longer than a threshold set in the system. This threshold
is called the dwell time needed for key activation.

Such a technique has been used with success for some decades now, although the
reported text entry rates have remained rather low, between 7 and 12 WPM [4, 21].
This is natural, as the dwell time sets an upper limit for the maximum obtainable
speed, and the single input channel does not allow parallel activities, like the use of
the ten fingers on the traditional keyboard.

It is no wonder, then, that the introduction of Dasher in the turn of the century
[38, 39] attracted a lot of attention both in the research community and in the press.
The basic mode of operation of Dasher is shown in Figure 1. It makes use of text
prediction, allocating space to the characters in proportion to their likelihood based on
the prefix of the word entered thus far. Moreover, it is a dynamic system: the
characters grow and move to the left, towards the user’s cursor. This rate can be
controlled by the user by moving the cursor further to the right (to increase the speed)
or to the left (to slow down).

Dasher is a technique that learns as it is being used. It updates the language model
that is used for prediction by adding in the corpus the text entered by the user. In
addition, it also adapts its basic rate of moving the characters towards the cursor: as
the user becomes more skilled and pushes forward with faster rate, Dasher also
increases the baseline rate, thereby allowing the user to achieve a speed that is
personalized to the skill and preferences of each individual user.

Another remarkable property of Dasher is that it can be controlled by a variety of
input devices, including a mouse, trackball, stylus, and eye tracker. The technique looks
bewildering when looked from the side for the first time, but it feels very different to the

Fig. 1. Dasher in its initial state (on the left) and in the middle of entering the word “name”.
Note how the letters that can follow “n” (already entered by virtue of having moved to the left
beyond the center line) occupy varying amounts of space, with “a” being the most likely letter
to follow “n”, and “name” being the most likely word to start with “n”. [22]

200 K.-J. Räihä

person using the system: the experience is similar to steering a car through traffic,
which, too, may look scarier to someone not personally in control of the vehicle.

Dasher does not have the intrinsic limitation of text entry rate caused by the dwell
time. In 2002 Ward and MacKay reported [39] an entry rate of 25 WPM after just an
hour of practice, and a top rate of 34 WPM for an expert user. These were striking
numbers compared to the rates achieved previously, and Dasher has since been
considered as the fastest way of entering text by eye gaze.

The rates reported by Ward and MacKay were obtained with just a few
participants, and with the experts being the developers themselves. In particular, it can
be expected that Dasher takes some time to learn, given that it is radically different
from keyboard-based techniques. We therefore carried out a longitudinal study to
investigate the learning curve and to verify the previous results with a somewhat
larger group of users [35, 19].

The study involved 11 users, of which one was a clear outlier and left out of the
following numbers. All users typed text for 15 minutes a day in 10 consecutive days.
For details of the setup, see [35, 19]. Table 1 summarizes the results. BS is the number
of backspace operations, which were entered by moving the cursor left, beyond the
center line, causing the letters to detract. This metric is included in lieu of KSPC, which
is not applicable in the context of Dasher, since it does not have distinct keystrokes.

Table 1. Performance metrics for Dasher controlled by eye gaze. Data for 10 users from 10
trials of 15 minutes each. BS is the number of backspace operations.

Trial Average WPM Average MSDerror Average BS

First 2.49 10.72 % 0.26
Last 17.26 0.57 % 0.13

Table 1 shows that considerable learning has taken place. In fact, the learning

curve [35, 19] is quite exceptional; it does not show signs of leveling off even after
2.5 hours of practice. Thus it can be expected that the participants could have reached
similar performance as reported previously [39], albeit with some more practice. The
best entry rate achieved by any participant in this experiment was 23.11 WPM. The
language model, which was based on a much bigger corpus in the original study done
in English, surely had an effect on the lower rates achieved in the longitudinal study
carried out with the Finnish language model.

In addition to being a fundamentally different technique for entering text, Dasher
has another difference to the way the dwell-based methods have been used in previous
studies. Dasher not only adjusts its speed by observing the user, but also lets the user
set the speed manually through a selection box in the interface. The latter is not
common in dwell-based techniques, but there is no reason why it could not be done.
The question then naturally arises: how much were the previous poor results on text
entry rate using dwell-based keyboards due to a dwell time threshold that prevented
the users from achieving the best rate they would have been capable of?

To study this question, a similar longitudinal study as with Dasher was carried out
using a dwell-time adjustable soft keyboard [20, 19]. A simple lever was added to the
standard soft keyboard, and two buttons allowed the user to control the dwell time
threshold. Table 2 summarizes the results.

 Some Applications of String Algorithms in Human-Computer Interaction 201

Table 2. Performance metrics for a soft keyboard with adjustable dwell time controlled by eye
gaze. Data for 9 users from 10 trials of 15 minutes each.

Trial Average WPM Average MSDerror KSPC

First 6.90 1.28 % 1.09
Last 19.89 0.36 % 1.18

The results are in striking contrast with what had been the common belief before

the experiment. Text entry by dwell time is not inherently slow, provided that users
are given tools to adjust the interface to their liking. The only aspect where the figures
are not favorable to the technique is the increase in KSPC, but this is not surprising.
The speed-accuracy tradeoff is a familiar phenomenon, and the best text entry rates in
Table 2 were achieved with really low dwell times between 200 and 400 ms. Thus an
increase in the need of corrective actions is understandable.

In the case of the dwell-based technique the learning curve had started to level off,
as opposed to the situation with Dasher. An even longer longitudinal study would be
needed to find out the real expert performance with the techniques. Most importantly,
the metrics show that both techniques are usable, and can perform with satisfactory
efficiency after a reasonable practice time.

The minimum string distance does a good job in indicating the errors remaining in
the resulting text, and it has become a standard tool in text entry research.
Nevertheless, there might be room for some variations. In particular, it can be
questioned whether the unit cost model is the best in the comparisons. For instance, if
the source text has a capital letter and the user enters the correct letter but in lower
case, should this be counted as equally costly as entering an entirely different letter?
Or is entering a wrong punctuation mark as bad as omitting the punctuation mark
completely? Exploring such alternatives could have marginal interest, but most likely
they would not change the big picture in any significant way. They could be more
useful in finding out the kind of errors that are typically made using each technique,
an area that is still largely unexplored.

3 Scan Paths and Shortest Common Supersequences

In the previous section I discussed examples of how eye gaze can be used for
controlling computers. The recent boom in the use of eye trackers has, however, been
in collecting information about how users view the computer screen, without it having
an effect on the interaction. This has proven a good source of information on, for
instance, the effectiveness of web page layout, and on the learnability of graphical
user interfaces.

In a typical web usability study, users are asked to study a web page, either freely
or to find an answer to a specific question or solution to a problem. While they are
carrying out this task, their eye movements are recorded. The gaze points collected by
the eye tracker are automatically categorized into fixations, gaze points that are close
together and used to perceive information, and saccades, quick movements between
fixations. For analysis, the result can be overlaid on top of the screen image to show
how the user’s gaze has moved.

202 K.-J. Räihä

Figure 2a shows the data for one participant studying a web page produced by
Google for the search on “shortest common supersequence”. The user was checking
the results to see whether there were any links that would be relevant for
approximating the supersequence. The customary coding of eye movement data is
that fixations are depicted as circles, with the diameter of the circle indicating the
duration of the fixation, i.e., how long the eye gaze stayed fixated in the same spot.
Saccades are depicted as lines connecting the fixations. The fixations can be
numbered to indicate the order in which they took place. The resulting directed graph
is called a scan path.

The visualization in Figure 2a is reasonably readable, although there is some
clutter that prevents the full path from being seen clearly in a single picture. However,
usability studies are not carried out with a single user, but with several users, usually
in the tens or even hundreds. It becomes tedious and uninformative to study each
resulting scan path separately. There is a need for a good visualization showing
several scan paths at the same time.

Figure 2b uses the same technique as Figure 2a, but now for four scan paths (for
four test participants, each visualized in different color) in the same picture. Already
with such a small number of paths the visualization becomes almost useless. Better
techniques are clearly needed. An obvious solution is to reduce the amount of
information and find suitable abstractions.

The most popular approach today is to ignore the order of the fixations completely
and to simply base the analysis on how long the gaze has been fixated on different
areas of the screen. By suitable smoothing algorithms, the level of attention attracted
by the different areas can be visualized in an easily perceived form using different
levels of shading or colors, in the style familiar from maps. Such visualizations have
been called “attentional landscapes” [25] and “fixation maps” [42]. Nowadays
“heatmaps” is the most common term used for this concept.

Heatmaps serve well many purposes, especially those where the order of visiting
the different areas of the screen is not important. With some stretching of imagination,

Fig. 2. Scan paths of users scanning hits produced by Google for a search on “shortest common
supersequence”. Data for (a) one user on the left and for (b) four users in the middle. On the
right (c), the same data as in the middle but visualized as a heatmap.

 Some Applications of String Algorithms in Human-Computer Interaction 203

one can see in Figure 2c an “F-shape”, which has been claimed to be common
browsing and reading behavior for a variety of web pages [24]. Heatmaps can show if
some areas have been viewed rarely and for a short time, and also which are the areas
attracting the most attention. If these do not match the intention of the page designers,
the heatmap is convincing evidence that redesign is in order.

For other tasks, however, heatmaps abstract away too much of the information.
Suppose the researcher is interested in how the page of hits produced by Google is
used. Do users typically read it in its entirety, or do they optimistically browse further
once a first potentially useful link is found? The heatmaps are of limited use for such
a research question. Another abstraction that turned out useful for this particular
question is to abstract away some of the information concerning the locations of the
fixations: here the main interest is in whether an item has been browsed at all, not in
how the entry has been read. Omitting the x-coordinate from the visualization frees
this dimension for visualizing time, so that the y-coordinate shows the vertical
position of a fixation, but the x-coordinate shows the order of fixations. Such a time
plot [26] was useful in detecting essentially two different types of browsing behavior
of the result page [1].

Result pages of search engines are, however, a special case. Researchers have for
some time been in the hunt for a more general visualization that would allow the
comparison of scan paths in a general case, without losing the order information. The
first step commonly applied in the proposals is omitting the duration information of
the fixations. Each scan path then becomes an ordered sequence of nodes—already
hinting at the possible usefulness of string algorithms in their comparison.

A critical question is what the nodes in such strings are. We cannot really take the
center points of the fixations as nodes, because two users (or one user on several
trials) rarely look at exactly the same point on the screen even when perceiving the
same information. The common solution is to divide the screen into so-called areas of
interest (AOIs) and lump together all fixations in the same area. Then the scan path
with the AOIs as nodes shows the order of visitation of the AOIs. Typical AOIs could
be the page heading, navigation menu, login field, images, and text blocks. If we label
the AOIs with, say, letters, then the similarity of two scan paths can be (again!)
computed using the minimum string distance between such strings.

There is a caveat for such an approach, though. Eye trackers are not accurate; the
spatial accuracy of modern devices is in the order of 0.5 degrees. On top of this, the
human eye is able to perceive accurately an area of 1−2 degrees of visual angle.
Taken together, these two factors have the effect that the eye tracker may think that
the user is perceiving, say, the right edge of one area, when in fact the content really
perceived is in the left edge of the neighboring area on the right. In other words, the
mapping of gaze points collected by an eye tracker to the AOIs may be incorrect.

The situation can be somewhat improved by using clustering algorithms, i.e, not
using predefined areas of interest, but letting the mapping algorithm find the areas
automatically, based on where the gaze points are clustered. Several such algorithms
exist [29, 33] and they work well when the information presented is mainly pictorial.
For textual information, however, they are of less use, since reading consists of
sequences of short fixations, not fixations clustered in the same spot. A hybrid method
that combines predefined AOIs and dynamic clustering would probably do a better
job than either technique alone.

204 K.-J. Räihä

If the minimum string distance is used to compare two scan paths, the use of the unit
cost algorithm is even less likely to be appropriate than in the case of comparing text
entry techniques. All areas on the screen are not of equal importance, but the importance
cannot be determined universally; it depends on the task. The effects of the task on eye
movement data have been known for decades [43]. In the context of usability research,
for someone studying the effect of advertisements these areas are the most important,
whereas for someone else studying the interaction with the active interface content the
advertisements can perhaps be completely ignored. Moreover, the order of visiting the
areas can sometimes be important, sometimes meaningless, as long as certain areas are
visited in some order. Such differences can best be accommodated by assigning
different costs to the string editing operations based on the task.

In specific cases, the importance of visiting the various areas in certain order can
be determined objectively. A case in point is a study done on the usability of an
interactive tool for exploring parallel coordinate visualizations. Parallel coordinates
[11] are an unusual way for visualizing multidimensional spaces. Instead of trying to
present the points in a traditional coordinate system, the coordinates are laid out
beside each other. In effect, a point in the traditional 2- or 3-dimensional space
becomes a line in the parallel coordinate visualization. There is no limit on how many
dimensions can be handled.

Because the representation differs so much from the traditional way of thinking, it
has been questioned whether parallel coordinates are usable, or whether they require a
long learning curve. We used eye tracking to study these questions [30]. The
participants performed several tasks on a car database visualized using parallel
coordinates (Figure 3).

Solving a query using parallel coordinates requires viewing areas in the visualization
in certain order. For instance, to solve one of the questions in the experimental task

Fig. 3. Parallel coordinate visualization of a car database, with areas of interest indicated for
eye movement analysis. The interactive query has selected cars with 6 cylinders for
inspection. [30].

 Some Applications of String Algorithms in Human-Computer Interaction 205

(“What is the most common number of cylinders for cars manufactured in 1973?”),
the user has to select the year 1973 from the YEAR.2 area, brush the cylinder number
from the CYL.2 area, and read the result from the MENU area. The number of
fixations spent in other areas of interest can be taken as a confusion metric: the more
fixations focused on other areas, the less clear it was to the participant how to solve
the task or where to find the information needed for solving it. Essentially we have a
model scan path for optimal performance that can be easily compared to those
recorded for the participants.

Returning to the general case: suppose we have a set of scan paths, represented as
strings over an alphabet. How can we find a representation for them all? Here, finally,
the shortest common supersequences (SCSs) enter the picture. Given two sequences
S1 and S2, a sequence T is a common supersequence of S1 and S2 if both S1 and S2 can
be obtained from T by deleting zero or more characters. The shortest common
supersequence of a set of sequences {S1, S2, …, Sn} is a sequence T of minimal length
such that T is a supersequence of each Si.

From purely a technical point of view, an SCS would be the optimal representation
for the entire set of scan paths. Computing an SCS is NP-hard, but the sequences
representing scan paths are typically not prohibitively long, and the problem is
solvable in practice.

Unfortunately, this straightforward technique does not necessarily produce natural
results. The SCS might not be a good approximation of any of the sequences that it
represents. For instance, if AB and BA are scan paths for two users, an SCS for AB
and BA would be ABA, indicating that the user’s gaze would jump back and forth
between the two areas, which is not the case for either user. In general, for a set of
otherwise identical paths which differ in only one position, such as {ABCA, ABDA,
ABEA, ABFA}, one of many similar shortest common supersequences would be
ABCDEFA. Intuitively, such a long representation does not convey the essence of the
component scan paths.

To remedy such potential problems with SCSs, it has been suggested that an
“average” scan path should be used to represent a set of paths [10]. Unfortunately, no
details on how such an average representation could be computed were given in [10];
some algorithms have later been suggested by Torstling [34]. In terms of SCSs, an
approximate shortest common supersequence [13] could be a step in the same
direction. However, it would suffer from the same problems as MSDs for comparing
two paths: the sequences should not be treated uniformly. Some changes and
omissions are more important than others, and this should be taken into account in
building a representation of the whole.

Finally, it has also been suggested that similar scan paths could be clustered
together, to find subsets of paths with similarities [40]. The problem is similar to that
of clustering partial rankings [36], since each scan path is in essence a ranking of a
subset of the AOIs. In this respect, scan path analysis is akin to clickstream analysis.
There is evidence that such techniques work adequately, but the final step still calls
for a solution: how to represent each cluster, that is, what is it that makes the paths in
the cluster similar? Having a good representation for similar paths would be a big step
forward in communicating typical scan paths to designers and also in allowing
researchers to explore various scanning strategies. The aggregation, comparison, and
representation of scan paths remains an active area of research [2, 5, 6, 8, 12].

206 K.-J. Räihä

4 Personal Reminescenses

String algorithms and human-computer interaction are both vast research fields, and so
is their intersection. The few examples discussed in this essay have been chosen because
they remind me of joint history with Esko Ukkonen, whom this Festschrift honors.

String edit distance is an example of a classic concept that can be computed by a
dynamic programming algorithm. When we studied together at the University of
Helsinki in the 1970ies, computer science was a young discipline and there was not a
large number of courses available. While studying for a Master’s degree we at some
point shared an office and took some courses together. I particularly remember the
course on Sorting and Searching, which often led to continued discussions in our
office room after getting back from a lab session. It was one of the motivators for
continued study of algorithms in a small study group that met weekly and went
through some classic works in algorithms and formal languages, without formal
supervision. The algorithm for computing the string edit distance was undoubtedly
among those studied in the group. Many members of that group have since gone on to
become professors of computer science in a number of Finnish universities.

Some years later we had started to pursue our own research interests, with Esko
focusing on data structures, parsing theory, and numerical algorithms, and my interest
being at the time in compiler-compilers in general and attribute grammars in
particular. We had our own offices next to each other, and daily conversations were
still frequent. Esko had defended his PhD thesis in computer science as one of the
first in Finland, while I was still struggling with mine.

They were days of limited computing power, and much effort went into developing
techniques that could be implemented to run efficiently. The particular technique I
was working on was the evaluation of attribute grammars in passes. Attribute
grammars are a declarative language, and to populate one parse tree with attribute
values according to the declarative specification, the tree can be traversed several
times consecutively either from left to right or right to left, with a set of attributes
being evaluated on each pass. The optimization problem (somewhat academic even
by the standards of that time) was to find the best possible ordering for the passes, i.e.,
decide which passes should go in which direction, and which attributes to evaluate
during each pass, in order to minimize the number of passes needed.

After tedious work with trying to solve the problem I had managed to reduce it to a
problem that was NP-complete, the shortest common supersequence problem. So it
seemed I was done—almost; the catch was that the problem was known to be NP-
complete for alphabets of size 5 or more [18]. In my case, the alphabet consisted of
just two characters, corresponding to the two possible evaluation directions. After
being stuck at this point with no progress, I explained the problem to Esko. I believe
he did his usual disappearance act—grabbed a large bottle of Coca-Cola and a box of
raisins, and hid in one of the empty classrooms of the department not to be disturbed.
After some hours he would emerge with a solution. I would like to think that in this
case it was at least some days instead of some hours, since it took me a good amount
of time just to verify his construction. It worked, of course, and was eventually
published [28], as was the application to the problem of attribute evaluation [27].

I keep these joint experiences in high regard and consider them important
contributors to my education in computer science.

 Some Applications of String Algorithms in Human-Computer Interaction 207

Acknowledgments. I thank Päivi Majaranta and Saila Ovaska for their comments on
the manuscript. This work was supported by the Academy of Finland grant 1130044.
The paper was written while the author was visiting the University of Canterbury in
Christchurch, New Zealand.

References

1. Aula, A., Majaranta, P., Räihä, K.-J.: Eye-Tracking Reveals the Personal Styles for Search
Result Evaluation. In: Costabile, M.F., Paternò, F. (eds.) INTERACT 2005. LNCS,
vol. 3585, pp. 1058–1061. Springer, Heidelberg (2005)

2. Duchowski, A.T., Driver, J., Robbins, A., Ramey, B.N.: Scanpath Comparison Revisited.
In: Proc. Symposium on Eye Tracking Research & Applications (ETRA). ACM Press,
New York (in press, 2010)

3. Dvorak, A., Merrick, N., Dealey, W., Ford, G.: Typewriting Behavior: Psychology Applied
to Teaching and Learning Typewriting. American Book Company, New York (1936)

4. Frey, L.A., White Jr., K.P., Hutchinson, T.E.: Eye-Gaze Word Processing. IEEE
Transactions on Systems, Man, and Cybernetics 20, 944–950 (1990)

5. Goldberg, J.H., Helfman, J.I.: Scanpath Clustering and Aggregation. In: Proc. Symposium
on Eye Tracking Research & Applications (ETRA). ACM Press, New York (in press,
2010)

6. Goldberg, J.H., Helfman, J.I.: Visual Scanpath Representation. In: Proc. Symposium on
Eye Tracking Research & Applications (ETRA). ACM Press, New York (in press, 2010)

7. Graffiti, http://en.wikipedia.org/wiki/Graffiti_Palm_OS
8. Grindinger, T., Duchowski, A.T., Sawyer, M.: Group-Wise Similarity and Classification of

Aggregate Scanpaths. In: Proc. Symposium on Eye Tracking Research & Applications
(ETRA). ACM Press, New York (in press, 2010)

9. Grover, D.L., King, M.T., Kushler, C.A.: Reduced Keyboard Disambiguating Computer.
U.S. Patent 5818437 (1998)

10. Hembrooke, H., Feusner, M., Gay, G.: Averaging Scan Patterns and What They Can Tell
Us. In: Proc. Symposium on Eye Tracking Research & Applications (ETRA), p. 41. ACM
Press, New York (2006)

11. Inselberg, A.: The Plane with Parallel Coordinates. The Visual Computer 1, 69–91 (1985)
12. Jarodzka, H., Holmqvist, K., Nyström, M.: A Vector-based, Multidimensional Scanpath

Similarity Measure. In: Proc. Symposium on Eye Tracking Research & Applications
(ETRA). ACM Press, New York (in press, 2010)

13. Jiang, T., Li, M.: On the Approximation of Shortest Common Supersequences and Longest
Common Subsequences. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820,
pp. 191–202. Springer, Heidelberg (1994)

14. MacKenzie, I.S.: Evaluation of Text Entry Techniques. In: [17], ch. 4, pp. 75–101 (2007)
15. MacKenzie, I.S.: KSPC (Keystrokes Per Character) as a Characteristic of Text Entry

Techniques. In: Paternó, F. (ed.) Mobile HCI 2002. LNCS, vol. 2411, pp. 195–210.
Springer, Heidelberg (2002)

16. MacKenzie, I.S.: The One-Key Challenge: Searching for a Fast One-Key Text Entry
Method. In: Proc. ACM Conference on Computers and Accessibility (ASSETS), pp. 91–98.
ACM Press, New York (2009)

17. MacKenzie, I.S., Tanaka-Ishii, K. (eds.): Text Entry Systems: Mobility, Accessibility,
Universality. Morgan Kaufmann, San Francisco (2007)

208 K.-J. Räihä

18. Maier, D.: The Complexity of Some Problems on Subsequences and Supersequences.
Journal of the ACM 25, 322–336 (1978)

19. Majaranta, P.: Text Entry by Eye Gaze. PhD Thesis, Dissertations in Interactive Technology,
Number 11, Department of Computer Sciences. University of Tampere (2009)

20. Majaranta, P., Ahola, U.-K., Špakov, O.: Fast Gaze Typing with an Adjustable Dwell
Time. In: Proc. 27th International Conference on Human Factors in Computing Systems
(CHI), pp. 357–360. ACM Press, New York (2009)

21. Majaranta, P., MacKenzie, I.S., Aula, A., Räihä, K.-J.: Effects of Feedback and Dwell
Time on Eye Typing Speed and Accuracy. Universal Access in the Information Society 5,
199–208 (2006)

22. Majaranta, P., Räihä, K.-J.: Text Entry by Gaze: Utilizing Eye Tracking. In: [17], ch. 9, pp.
175–187 (2007)

23. McWhirter, N. (ed.): The Guinness Book of World Records, 23rd US edn. Sterling, New
York (1985)

24. Nielsen, J.: F-Shaped Pattern for Reading Web Content. Alertbox (2006),
 http://www.useit.com/alertbox/reading_pattern.html

25. Pomplun, M., Ritter, H., Velichkovsky, B.M.: Disambiguating Complex Visual
Information: Towards Communication of Personal Views of a Scene. Perception 25, 931–
948 (1996)

26. Räihä, K.-J., Aula, A., Majaranta, P., Rantala, H., Koivunen, K.: Static Visualization of
Temporal Eye-Tracking Data. In: Costabile, M.F., Paternò, F. (eds.) INTERACT 2005.
LNCS, vol. 3585, pp. 946–949. Springer, Heidelberg (2005)

27. Räihä, K.-J., Ukkonen, E.: Minimizing the Number of Evaluation Passes for Attribute
Grammars. SIAM Journal on Computing 10, 772–786 (1981)

28. Räihä, K.-J., Ukkonen, E.: The Shortest Common Supersequence Problem over Binary
Alphabet is NP-complete. Theoretical Computer Science 16, 187–198 (1981)

29. Santella, A., DeCarlo, D.: Robust Clustering of Eye Movement Recordings for
Quantification of Visual Interest. In: Proc. Symposium on Eye Tracking Research &
Applications (ETRA), pp. 27–34. ACM Press, New York (2004)

30. Siirtola, H., Laivo, T., Heimonen, T., Räihä, K.-J.: Visual Perception of Parallel
Coordinate Visualizations. In: Proc. 13th International Conference on Information
Visualisation (IV), pp. 3–9. IEEE Press, New York (2009)

31. Silfverberg, M.: Historical Overview of Consumer Text Entry Technologies. In: [17],
ch. 1, pp. 3–25 (2007)

32. Soukoreff, R.W., MacKenzie, I.S.: Measuring Errors in Text Entry Tasks: An Application
of the Levenshtein String Distance Statistic. In: Extended Abstracts of the ACM
Conference on Human Factors in Computing System (CHI), pp. 319–320. ACM Press,
New York (2001)

33. Špakov, O.: iComponent − Device-Independent Platform for Analyzing Eye Movement
Data and Developing Eye-Based Applications. PhD Thesis, Dissertations in Interactive
Technology, Number 9, Department of Computer Sciences, University of Tampere (2008)

34. Torstling, A.: The Mean Gaze Path: Information Reduction and Non-Intrusive Attention
Detection for Eye Tracking. M.Sc. thesis, Report XR-EE-SB 2007:008, The Royal
Institute of Technology, Stockholm (2007)

35. Tuisku, O., Majaranta, P., Isokoski, P., Räihä, K.-J.: Now Dasher! Dash Away! Longitudinal
Study of Fast Text Entry by Eye Gaze. In: Proc. Symposium on Eye Tracking Research &
Applications (ETRA), pp. 19–26. ACM Press, New York (2008)

 Some Applications of String Algorithms in Human-Computer Interaction 209

36. Ukkonen, A.: Visualizing Sets of Partial Rankings. In: Berthold, M.R., Shawe-Taylor, J.,
Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 240–251. Springer, Heidelberg (2007)

37. Ukkonen, E.: Algorithms for Approximate String Matching. Information and Control 64,
100–118 (1985)

38. Ward, D.J., Blackwell, A.F., MacKay, D.J.C.: Dasher: A Data Entry Interface Using
Continuous Gestures and Language Models. In: Proc. ACM Symposium on User Interface
Software and Technology (UIST), pp. 129–137. ACM Press, New York (2000)

39. Ward, D.J., MacKay, D.J.C.: Fast Hands-Free Writing by Gaze Direction. Nature 418, 838
(2002)

40. West, J.M., Haake, A.R., Rozanski, E.P., Karn, K.S.: eyePatterns: Software for Identifying
Patterns and Similarities Across Fixation Sequences. In: Proc. Symposium on Eye
Tracking Research & Applications (ETRA), pp. 149–154. ACM Press, New York (2006)

41. Wobbrock, J.O.: Measures of Text Entry Performance. In: [17], ch. 3, pp. 47–74 (2007)
42. Wooding, D.S.: Fixation Maps: Quantifying Eye-Movement Traces. In: Proc. Symposium

on Eye Tracking Research & Applications (ETRA), pp. 31–36. ACM Press, New York
(2002)

43. Yarbus, A.L.: Eye Movements and Vision. Plenum Press, New York (1967)

Approximate String Matching

with Reduced Alphabet�

Leena Salmela1 and Jorma Tarhio2

1 University of Helsinki, Department of Computer Science
leena.salmela@cs.helsinki.fi

2 Aalto University
Deptartment of Computer Science and Engineering

jorma.tarhio@tkk.fi

Abstract. We present a method to speed up approximate string match-
ing by mapping the factual alphabet to a smaller alphabet. We apply the
alphabet reduction scheme to a tuned version of the approximate Boyer–
Moore algorithm utilizing the Four-Russians technique. Our experiments
show that the alphabet reduction makes the algorithm faster. Especially
in the k-mismatch case, the new variation is faster than earlier algorithms
for English data with small values of k.

1 Introduction

The approximate string matching problem is defined as follows. We have a pat-
tern P [1...m] of m characters drawn from an alphabet Σ of size σ, a text T [1...n]
of n characters over the same alphabet, and an integer k. We need to find all
such positions i of the text that the distance between the pattern and a sub-
string of the text ending at that position is at most k. In the k-difference problem
the distance between two strings is the standard edit distance where substitu-
tions, deletions, and insertions are allowed. The k-mismatch problem is a more
restricted one using the Hamming distance where only substitutions are allowed.

Among the most cited papers on approximate string matching are the classical
articles [1,2] by Esko Ukkonen. Besides them he has studied this topic extensively
[3,4,5,6,7,8,9,10,11]. In this paper we present a practical improvement for Esko
Ukkonen’s approximate Boyer–Moore algorithm (ABM) [7] developed together
with J. Tarhio. The ABM algorithm is based on Horspool’s variation [12] of the
Boyer–Moore algorithm [13]. ABM has variations both for the k-difference prob-
lem and for the k-mismatch problem. The k-difference variation is a filtration
method. Recently Salmela et al. [14] introduced a tuned version of ABM for small
alphabets. Here we consider an alphabet reduction technique which makes the
tuned ABM more practical in the case of large alphabets. Our approach reduces
the preprocessing time and the space usage of the algorithm. Our experiments
show that the new variation is faster than the original ABM. Moreover, the new

� Supported by Academy of Finland grants 118653 (ALGODAN) and 134287.

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 210–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Approximate String Matching with Reduced Alphabet 211

variation is faster than earlier mismatch algorithms for English data with small
values of k.

The rest of the paper is organized as follows. We start with a short review
on alphabet transformations in string matching. After that we review earlier
versions of ABM. Then we explain our alphabet transformations in detail. Before
conclusions we review results of our experiments.

2 Alphabet Transformations in String Matching

Alphabet transformation is a widely used method to increase the efficiency of
string matching. There are several types of alphabet transformations. One of the
most common transformations is hashing [15]. One can check in a hash table,
whether a window of the text possibly equals the pattern. By selecting a suitable
hash function, one can control the probability of false matches [15]. In case of
multiple patterns, one can apply binary search [16] or two-level hashing [17] for
checking candidate matches.

In algorithms of Boyer–Moore type it is common to use q-grams, i.e. substrings
of q characters, instead of single characters in shift calculation. This technique
was already mentioned in the classical paper by Boyer and Moore [13]. The aim
is to increase the size of effective alphabet, which leads to longer shifts especially
in the case of small alphabets. The approach extends to multidimensional [18,19]
and parameterized matching [20]. In many algorithms [21,22], q-grams and hash-
ing occur together in shift calculation.

It is common to use q-grams instead of single characters also for other purposes
than shifting. The aim is to increase practical scanning speed [23,24,25] or to
improve selectivity [3,4,26]. Grams are not always continuous, but they may be
gapped [27] or equidistant [28].

Still another type is relaxed preprocessing with a reduced alphabet [29,30]. In
approximate string matching this extends the applicability of the Four-Russians
technique [31,32], which is used to precompute edit distances between arbitrary
q-grams and the q-grams of a pattern. With a reduced alphabet one can apply
a larger q without extra space and preprocessing time. In Section 4, we will
consider an application of transformations of this type in detail.

3 Tuned Version of ABM

In this section we will describe a tuned version of the ABM algorithm [7]. In the
next section we will then use this algorithm to illustrate how to apply an alphabet
reduction technique to speed up an approximate string matching algorithm that
uses q-grams.

As preprocessing the ABM algorithm computes the shifts for each character of
the alphabet as in the Boyer–Moore–Horspool algorithm [12]. During searching
the shift is then computed by considering last k + 1 characters of the current
window. The shift is the minimum of the precomputed shifts for each of those
k + 1 characters. After shifting, at least one of these characters will be aligned

212 L. Salmela and J. Tarhio

Algorithm 1. Search for P [1...m] in T [1...n] with at most k errors
1: Preprocessing:
2: for all G ∈ Σq do
3: for i← 1 to m do

4: D[i]← the minimum number of errors for aligning G with P [1...i] when
deletions in the beginning of either G or P [1...i] are free

5: M [G]← D[m]
6: Ds[G]← m−max{i | i < m and D[i] ≤ k}
7: Searching:
8: j ← m− k {j ← m for the mismatch version of the algorithm}
9: while j ≤ n do

10: G← T [j − q + 1...j]
11: if M [G] ≤ k then
12: verify the potential match
13: j ← j + Ds[G]

correctly with the pattern or the pattern is shifted past the first one of these
characters.

Liu et al. [33] tuned the k-mismatch version of ABM for smaller alphabets.
Their algorithm, called FAAST, uses a stronger shift function based on a vari-
ation of the Four-Russians technique [31,32] to speed up the search. Instead of
minimizing k + 1 shifts during search, it uses a precomputed shift table for a
q-gram aligned with the end of the pattern, where q ≥ k + 1 is a parameter of
the algorithm. (The original paper used the notation (k + x)-gram.) The shift
table is calculated so that after the shift at least q − k characters are aligned
correctly or the window is shifted past the last q-gram of the previous window.

Salmela et al. [14] further refined the FAAST algorithm and adapted it also
to the k-difference problem. Their algorithm stores the number of substitutions
or differences for aligning each q-gram with the end of the pattern and uses this
precomputed value in the searching phase instead of recomputing it. We will use
Algorithms 1 and 2 from [14] as a basis for our algorithm with alphabet reduction.
The first one is an algorithm for the k-mismatch problem and the second one
solves the k-difference problem. The pseudo code of these algorithms is shown as
Algorithm 1. The preprocessing of these algorithms takes O(mσq) time1 and the
average complexity of searching is O(n(logσ m+k)/m) when q = Θ(logσ m+k).
In the average complexity of searching and when computing the value of q, σ
should be replaced by 1/p, where p is the probability of two random characters
matching, if the alphabet is not uniform. The space complexities of the mismatch
version and the difference version of the algorithm are O(mσq +mq) = O(mσq)
and O(mσq + mq + m2) = O(mσq), respectively. We see now that the naive
approach of using an alphabet of size 256 for English text is not feasible as
the space (and preprocessing) requirement of the algorithm grows exponentially
when q is increased. Even if we map each character to a unique integer, the
alphabet size is too large to be practical for larger values of q.

1 See [14] for details on how to implement the preprocessing phase to reach this bound.

Approximate String Matching with Reduced Alphabet 213

4 Algorithm with Alphabet Reduction

We are now ready to present an alphabet reduction scheme for approximate
string matching. The scheme can be applied to any algorithm using q-grams. As
an example, we apply it to the tuned version of the ABM algorithm presented in
the previous section. A similar alphabet reduction scheme has been earlier pre-
sented by Fredriksson and Navarro [30], but their alphabet mapping is different
from ours.

We will first present the algorithm with alphabet reduction assuming we have
a mapping function g : Σ �→ Σ̂ which maps each character of the alphabet to
a character in the reduced alphabet Σ̂ of size σ̂. We first note that if a pattern
has an (approximate) occurrence in a text, then the pattern that is mapped to
the reduced alphabet has the same (approximate) occurrence in a text that is
also mapped to the reduced alphabet. However, the mapped pattern might also
have additional (approximate) occurrences in the mapped text.

Instead of mapping the whole text to the reduced alphabet, we will use the
following method which only maps the needed q-grams of the text to the reduced
alphabet. The preprocessing phase will now operate with the reduced alphabet.
That is, we map each character of the pattern to the reduced alphabet and
compute the arrays M and Ds for all q-grams in the reduced alphabet. The
searching phase uses the same mapping of the q-grams of the text when accessing
the arrays M and Ds but the verification of a potential match is performed with
the original alphabet. The time complexity of the preprocessing phase is reduced
to O(mσ̂q) and the average complexity of searching becomes O(n(logσ̂ m+k)/m)
when q = Θ(logσ̂ m+ k). The space complexities of the mismatch and difference
versions of the algorithm are also reduced to O(mσ̂q + mq) = O(mσ̂q) and
O(mσ̂q + mq + m2) = O(mσ̂q), respectively. We now see that if we map the
English alphabet for example to a reduced alphabet of size 8, using much larger
values of q becomes feasible.

We notice that the average complexity of searching in the reduced alphabet
scheme is theoretically larger than in the plain algorithm. However, our experi-
ments show that in practise searching is faster in the reduced alphabet scheme.
First we note that if the alphabet is nonuniform, some characters may be very
rare and without alphabet reduction these characters increase the q-gram space
unnecessarily as they are rarely accessed and thus do not improve filtering notice-
ably. Another issue is that q must be an integer and therefore we might have to
make compromises when choosing the value of q as the optimal q is c(logσ m+k)
for some constant c and this optimal q might not be an integer. This problem is
emphasized when the alphabet is large as there are fewer feasible choices for the
value of q. Furthermore if k is large, even choosing q = k+ 1, which is the mini-
mum possible value for q in the algorithm, might be infeasible with the original
alphabet and then reducing the alphabet size can make it feasible to use a large
enough q.

The remaining problem is to find the mapping function g given the size of the
reduced alphabet. The mapping function should minimize the probability that
two random characters match. This probability is minimized by a mapping that

214 L. Salmela and J. Tarhio

produces the most uniform reduced alphabet [30]. Fredriksson and Navarro [30]2

have earlier used the following method to find this mapping. They first sort the
characters in ascending order of frequency. The i:th character in this order is
then mapped to the (i mod σ̂):th character in the reduced alphabet.

The problem of finding the mapping is defined formally as follows. We are
given the frequency fc of each character c ∈ Σ and an integer σ̂ that defines the
size of the reduced alphabet. Our task is now to partition the characters in Σ
into σ̂ subsets Si such that the following objective function is minimized:

max
i∈[1,σ̂]

{∑
c∈Si

fc

}
− min

i∈[1,σ̂]

{∑
c∈Si

fc

}
.

Each of the subsets Si is then mapped to a unique character in Σ̂. This formu-
lation is equivalent to the σ̂-way number partitioning problem.

The number partitioning problem has been shown to be NP-complete [34] and
thus we resort to the following well known greedy algorithm to find the mapping
function. We first sort the characters in decreasing order of frequency. Starting
from the most frequent character we map that character to the least frequent
character of the reduced alphabet.

We considered the following schemes for reducing the alphabet:

Pattern Alphabet. The reduced alphabet consists of all characters that occur
in the pattern and one extra character [29]. All characters that do not occur
in the pattern are mapped to this extra character.

Reduced Alphabet. We compute the reduced alphabet using the greedy al-
gorithm outlined above.

Reduced Pattern Alphabet. We combine the two above methods. We first
form an alphabet consisting of the characters occurring in the pattern and an
extra character as in the pattern alphabet method. Then we use the reduced
alphabet method to reduce this alphabet.

We also tried first classifying the characters into separators and letters or sep-
arators, vowels, and consonants, and then applying alphabet reduction to these
groups separately but this approach was not competitive.

5 Experimental Results

Experiments were run on an Intel 3.16 GHz dual core CPU with 3.7 GB of
memory and 32 kB L1 cache and 6144 kB L2 cache. The computer was run-
ning Linux 2.6.27. The algorithms were written in C and compiled with the gcc
4.3.2 compiler producing 32-bit code. We used the 50 MB English text from the
PizzaChili site, http://pizzachili.dcc.uchile.cl. Each pattern set consists
of 200 different patterns of the same length. The patterns are randomly chosen
2 This method is not outlined in the paper but can be found in the corresponding

code.

Approximate String Matching with Reduced Alphabet 215

from the text and a substitution, insertion, or deletion is introduced at every
position with probability 0.05. As an example, the 200 patterns of length 20 have
261 total matches when searching allowing one substitution and a total of 680
matches when allowing one substitution, deletion, or insertion.

5.1 Comparison of Alphabet Reduction Techniques

The value of q was varied from 2 to 7, and we tried reduced alphabet sizes of 4, 8,
16, and 32. We show the results for the best observed values of these parameters.
Figure 1 shows the searching times excluding the preprocessing time for the k-
mismatch and k-difference problems for k = 1 and k = 2. Table 1 shows the best
parameter values for each of the methods. As can be seen, the best method in
all cases is the reduced pattern alphabet method.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 15 20 25 30

S
ea

rc
h

tim
e

(s
)

m

reduced alphabet (k=2)
pattern alphabet (k=2)

reduced pattern alphabet (k=2)
reduced alphabet (k=1)
pattern alphabet (k=1)

reduced pattern alphabet (k=1)

(a) k-mismatch problem

 0

 20

 40

 60

 80

 100

 120

 10 15 20 25 30

S
ea

rc
h

tim
e

(s
)

m

reduced alphabet (k=2)
pattern alphabet (k=2)

reduced pattern alphabet (k=2)
reduced alphabet (k=1)
pattern alphabet (k=1)

reduced pattern alphabet (k=1)

(b) k-difference problem

Fig. 1. Search times

Figure 2 shows the combined preprocessing and search times. Again we see
that the reduced pattern alphabet method is the best. Furthermore, comparing
Figures 1(a) and 2(a) we note that in the k-mismatch problem the preprocess-
ing time is much smaller than the searching time. In the k-difference problem,
especially the pattern alphabet method has a high preprocessing cost but also
the other methods have a moderately high preprocessing cost when k = 2.

The increase in the preprocessing time is due to using a larger value of q to
speed up searching. Figure 3 shows how the preprocessing time grows when q is
increased in the k-difference algorithms when m = 10 and k = 1.

We also ran similar experiments with the 50 MB protein text from the
PizzaChili site, http://pizzachili.dcc.uchile.cl. The results with protein
data were very similar to our results with English text.

216 L. Salmela and J. Tarhio

Table 1. The parameters yielding the best search time for each of the methods and the
corresponding number of different q-grams in the reduced alphabet. If different values
were best for different pattern lengths, the alternative values are shown on subsequent
rows. To compute the number of different q-grams in the pattern alphabet method, we
use the average reduced alphabet size for pattern length 30 which was 17.21. Note that
the reduced pattern alphabet method is equivalent to the pattern alphabet method for
the 1-mismatch problem because the size of the reduced alphabet is larger than the
length of the pattern.

Algorithm 1-mismatch 2-mismatch 1-difference 2-difference

Param. σ̂q Param. σ̂q Param. σ̂q Param. σ̂q

Pattern Alphabet q = 3 < 213 q = 4 < 217 q = 5 < 221 q = 6 < 225

q = 5 < 221

Reduced Alphabet σ̂ = 16, q = 3 212 σ̂ = 4, q = 6 212 σ̂ = 8, q = 6 218 σ̂ = 8, q = 7 221

σ̂ = 8, q = 4 212 σ̂ = 8, q = 5 215 σ̂ = 4, q = 8 216

Reduced Pattern σ̂ = 32, q = 3 215 σ̂ = 8, q = 4 212 σ̂ = 8, q = 6 218 σ̂ = 8, q = 7 221

Alphabet σ̂ = 8, q = 5 215

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 15 20 25 30

P
re

pr
oc

es
si

ng
 +

 s
ea

rc
h

(s
)

m

reduced alphabet (k=2)
pattern alphabet (k=2)

reduced pattern alphabet (k=2)
reduced alphabet (k=1)
pattern alphabet (k=1)

reduced pattern alphabet (k=1)

(a) k-mismatch problem

 0

 20

 40

 60

 80

 100

 120

 10 15 20 25 30

P
re

pr
oc

es
si

ng
 +

 s
ea

rc
h

(s
)

m

reduced alphabet (k=2)
pattern alphabet (k=2)

reduced pattern alphabet (k=2)
reduced alphabet (k=1)
pattern alphabet (k=1)

reduced pattern alphabet (k=1)

(b) k-difference problem

Fig. 2. Combined preprocessing and search times for a text of length 50 MB

5.2 Comparison with Other Algorithms

We compared the performance of the best alphabet reduction scheme, reduced
pattern alphabet, with the following algorithms:

– ABM: The original ABM algorithm.
– BYP: The algorithm by Baeza-Yates and Perleberg [35] divides the pattern

into smaller pieces so that if the pattern occurs at some position, at least one
of the pieces must have an exact occurrence at that position. The algorithm
then searches for exact matches of the pieces and verifies the occurrences
found by the exact search.

Approximate String Matching with Reduced Alphabet 217

 0.01

 0.1

 1

 10

 100

 1000

 3 4 5 6 7

P
re

pr
oc

es
si

ng
 (

s)

q

reduced alphabet
pattern alphabet

reduced pattern alphabet

Fig. 3. Preprocessing time of the k-difference algorithm for varying values of q when
m = 10 and k = 1. Reduced alphabet and reduced pattern alphabet methods use
reduced alphabet size 8.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30

S
ea

rc
h

tim
e

(s
)

m

ABM (k=2)
ABM (k=1)

FN (k=2)
FN (k=1)

BYP (k=2)
BYP (k=1)

reduced pattern alphabet (k=2)
reduced pattern alphabet (k=1)

(a) k-mismatch problem

 0

 20

 40

 60

 80

 100

 120

 140

 10 15 20 25 30

S
ea

rc
h

tim
e

(s
)

m

ABM (k=2)
ABM (k=1)

FN (k=2)
FN (k=1)

BYP (k=2)
BYP (k=1)

reduced pattern alphabet (k=2)
reduced pattern alphabet (k=1)

(b) k-difference problem

Fig. 4. Comparison of the best alphabet reduction scheme, reduced pattern alphabet,
ABM, BYP, and FN

– FN: The algorithm by Fredriksson and Navarro [30] reads non-overlapping
q-grams (�-grams in the original paper) in an alignment and with the help
of preprocessed tables determines the minimum number of substitutions or
differences for aligning the q-grams with the pattern in some way. When
the minimum number of substitutions or differences exceeds k, the pattern
is shifted so that the first of these q-grams is no longer aligned with the
pattern. The potential matches must be verified. To make the comparison

218 L. Salmela and J. Tarhio

fair, we modified their algorithm so that it uses the reduced pattern alphabet
method, which improved its performance although the improvement was not
as clear as in our algorithm.

Figure 4 shows the searching times of the algorithms. As can be seen, the al-
phabet reduction technique combined with the use of q-grams makes the new
algorithm significantly faster than the plain ABM algorithm. In the k-mismatch
case, our new algorithm is the fastest, BYP being the second fastest, FN third,
and ABM clearly the slowest. In the k-difference case BYP takes the lead which
was also the case in the experiments by Fredriksson and Navarro [30]. Overall
FN is the second best although our algorithm is faster for short patterns which
are important in practise. Again ABM is clearly the slowest.

6 Conclusions

We have presented an alphabet reduction technique to speed up algorithms for
approximate string matching. We applied the technique to a Boyer–Moore style
algorithm which uses the Four-Russians technique to compute shifts with small
alphabets. When improved with alphabet reduction, the algorithm performs sur-
prisingly well on large alphabets too. The space usage of the Four-Russians ap-
proach used in the algorithm is not feasible if the whole large alphabet is used
but becomes practical with alphabet reduction. Our experiments on English data
show that the algorithm with alphabet reduction is the fastest algorithm in the
k-mismatch problem for small values of k.

Acknowledgements. We thank the referee, who helped us to improve this
paper.

References

1. Ukkonen, E.: Algorithms for approximate string matching. Information and Con-
trol 64(1-3), 100–118 (1985)

2. Ukkonen, E.: Finding approximate patterns in strings. J. Algorithms 6(1), 132–137
(1985)

3. Jokinen, P., Ukkonen, E.: Two algorithms for approximate string matching in static
texts. In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 240–248. Springer,
Heidelberg (1991)

4. Ukkonen, E.: Approximate string matching with q-grams and maximal matches.
Theor. Comput. Sci. 92(1), 191–211 (1992)

5. Ukkonen, E.: Approximate string-matching over suffix trees. In: Apostolico, A.,
Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 228–
242. Springer, Heidelberg (1993)

6. Ukkonen, E., Wood, D.: Approximate string matching with suffix automata. Algo-
rithmica 10(5), 353–364 (1993)

7. Tarhio, J., Ukkonen, E.: Approximate Boyer–Moore string matching. SIAM J.
Comput. 22(2), 243–260 (1993)

Approximate String Matching with Reduced Alphabet 219

8. Jokinen, P., Tarhio, J., Ukkonen, E.: A comparison of approximate string matching
algorithms. Software–Pract. Exp. 26(12), 1439–1458 (1996)

9. Fredriksson, K., Navarro, G., Ukkonen, E.: Optimal exact and fast approximate
two dimensional pattern matching allowing rotations. In: Apostolico, A., Takeda,
M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 235–248. Springer, Heidelberg (2002)

10. Kärkkäinen, J., Navarro, G., Ukkonen, E.: Approximate string matching on Ziv–
Lempel compressed text. J. Discrete Algorithms 1(3-4), 313–338 (2003)

11. Mäkinen, V., Ukkonen, E., Navarro, G.: Approximate matching of run-length com-
pressed strings. Algorithmica 35(4), 347–369 (2003)

12. Horspool, R.N.: Practical fast searching in strings. Software–Pract. Exp. 10(6),
501–506 (1980)

13. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977)

14. Salmela, L., Tarhio, J., Kalsi, P.: Approximate Boyer–Moore string matching for
small alphabets. Algorithmica (in press)

15. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Research and Development 31(2), 249–260 (1987)

16. Zhu, R., Takaoka, T.: A technique for two-dimensional pattern matching. Commun.
ACM 32(9), 1110–1120 (1989)

17. Muth, R., Manber, U.: Approximate multiple strings search. In: Hirschberg, D.S.,
Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 75–86. Springer, Heidelberg
(1996)

18. Kärkkäinen, J., Ukkonen, E.: Two- and higher-dimensional pattern matching in
optimal expected time. SIAM J. Comput. 29(2), 571–589 (1999)

19. Tarhio, J.: A sublinear algorithm for two-dimensional string matching. Pattern
Recogn. Lett. 17(8), 833–838 (1996)

20. Salmela, L., Tarhio, J.: Fast parameterized matching with q-grams. J. Discrete
Algorithms 6(3), 408–419 (2008)

21. Lecroq, T.: Fast exact string matching algorithms. Inf. Process. Lett. 102(6), 229–
235 (2007)

22. Wu, S., Manber, U.: A fast algorithm for multi-pattern searching. Technical report,
Dept. of Computer Science, U. of Arizona (1994)

23. Kim, S.: A new string-pattern matching algorithm using partitioning and hashing
efficiently. J. Exp. Algorithmics 4(2) (1999)

24. Fredriksson, K.: Shift-or string matching with super-alphabets. Inf. Process.
Lett. 87(4), 201–204 (2003)

25. Ďurian, B., Holub, J., Peltola, H., Tarhio, J.: Tuning BNDM with q-grams. In:
Proc. ALENEX 2009, pp. 29–37. SIAM, Philadelphia (2009)

26. Salmela, L., Tarhio, J., Kytöjoki, J.: Multipattern string matching with q-grams.
J. Exp. Algorithmics 11 (2006)

27. Fontaine, M., Burkhardt, S., Kärkkäinen, J.: BDD-based analysis of gapped q-gram
filters. Int. J. Found. Comput. Sci. 16(6), 1121–1134 (2005)

28. Fredriksson, K., Grabowski, S.: Practical and optimal string matching. In: Consens,
M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 376–387. Springer,
Heidelberg (2005)

29. Berry, T., Ravindran, S.: Tuning the Zhu–Takaoka string matching algorithm and
experimental results. Kybernetika 38(1), 67–80 (2002)

30. Fredriksson, K., Navarro, G.: Average-optimal single and multiple approximate
string matching. J. Exp. Algorithmics 9 (2004)

220 L. Salmela and J. Tarhio

31. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economic con-
struction of the transitive closure of a directed graph. Doklady Academi Nauk
SSSR 194, 487–488 (in Russian); English translation in Soviet Mathematics Dok-
lady 11, 1209–1210 (1970)

32. Masek, W.J., Paterson, M.S.: A faster algorithm for computing string edit dis-
tances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)

33. Liu, Z., Chen, X., Borneman, J., Jiang, T.: A fast algorithm for approximate string
matching on gene sequences. In: Apostolico, A., Crochemore, M., Park, K. (eds.)
CPM 2005. LNCS, vol. 3537, pp. 79–90. Springer, Heidelberg (2005)

34. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

35. Baeza-Yates, R., Perleberg, C.: Fast and practical approximate string matching.
Inf. Process. Lett. 59(1), 21–27 (1996)

ICT4D: A Computer Science Perspective

Erkki Sutinen and Matti Tedre

University of Eastern Finland
P.O. Box 111, 80101 Joensuu
firstname.lastname@uef.fi

Abstract. The term ICT4D refers to the opportunities of Information
and Communication Technology (ICT) as an agent of development. Re-
search in that field is often focused on evaluating the feasibility of ex-
isting technologies, mostly of Western or Far East Asian origin, in the
context of developing regions. A computer science perspective is com-
plementary to that agenda. The computer science perspective focuses on
exploring the resources, or inputs, of a particular context and on basing
the design of a technical intervention on the available resources, so that
the output makes a difference in the development context. The modus
operandi of computer science, construction, interacts with evaluation and
exploration practices. An analysis of a contextualized information tech-
nology curriculum of Tumaini University in southern Tanzania shows the
potential of the computer science perspective for designing meaningful
information and communication technology for a developing region.

Keywords: ICT4D, ICT, Computer Science, Information Technology,
Developing Countries.

1 Introduction

Computer science as a discipline emphasizes construction as a major research
approach. For example, in algorithm research, even though a formal analysis
of a computational method is important for understanding the behavior and
competitiveness of the method, the key invention lies in the design of the method.
This, naturally, requires a meaningful representation of the problem. In addition
to theoretical computer science, the constructive approach is common in other
branches of the computing discipline, too, including programming languages,
data management, and parallel computing. Also in the human-oriented research
areas of computing, such as human-centered design, the constructive tradition
calls for designing novel gadgets for intuitive human-computer interaction.

The emphasis of construction in computer science is not surprising, taken into
account the disciplinary forefathers of computer science: mathematics, engineer-
ing, and natural (or empirical) sciences [19]. From the viewpoint of mathemat-
ics, George Pólya in his classic book “How to Solve It?” [13] emphasized the
experimental approach in a mathematical theory building process. From the en-
gineering viewpoint, the constructive interest is the cornerstone of engineering

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 221–231, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

222 E. Sutinen and M. Tedre

disciplines [23], [4]. From the science viewpoint, the constructive nature of natu-
ral sciences is evident in the fact that more often than not, advances in modern
natural science are tied to advances in instruments. For instance, development
of particle physics is tied to development of particle detectors [12] and the de-
velopment of astronomy relies heavily on development of telescopes and other
instruments. For any human construction—be it abstract logico-mathematical
construction, tangible construction of tools, or co-construction of experiment and
theory—experimentation and improvisation are natural parts of the process.

In the construction process of many of its key terms and concepts, computer
science has successfully exploited cultural patterns of the surrounding society. El-
ementary data structures use vocabulary and ideas from society, life, and nature.
Take, for instance, concepts such as parents, relatives, agents, viruses; worms
and bugs; as well as sleeping, killing, living, and dying (processes). Numerous
algorithms and approaches are named after common human strategies. Take,
for instance, divide and conquer, greedy algorithm, Trojan horse, and backdoor.
Even the core ideas of several classic computational problems are easily acces-
sible to most people living in a Western society—take, for instance, the dining
philosophers’ problem and the traveling salesman’s problem. In fact, the his-
tory of the whole discipline can be understood from a socio-cultural perspective
[14]. In his book “African Fractals” Ron Eglash has analyzed the artistic and
architectural patterns of West African cultures and shown the relation of those
patterns to self-iterative or recursive computation [8].

ICT4D, short for information and communication technology for development,
is an established term that denotes a novel interdisciplinary research field, which
explores the impact of ICT in various development challenges. The term develop-
ment has been used in a wide variety of meanings, but often, as in this chapter,
the term development is used as a normative term that refers loosely to improve-
ment of people’s situations in developing countries or regions. Similarly, the term
context is a broad and ambiguous term, but we use the term context to refer to
a particular situation in its geographical and socio-economic surroundings, like
a Tanzanian village, a remote eco-tourism farm in North-Eastern Finland, or a
South African township school. Any developing context has a set of challenges;
a challenge refers to a possibly complex and hard-to-define combination of prob-
lems, needs, and resources. For example, a management challenge of a primary
school in Soweto might consist of problems (such as too large classes and too
few teachers), unfulfilled needs that students and teachers perceive (such as a
need for textbooks and electricity), and resources (such as knowledge-hungry
students). It is easy to get convinced that conventional European school man-
agement software is not an effective tool to address this particular management
challenge.

ICT4D has not attracted the interest of the mainstream of computer science
research. In that regard it shares a marginal disciplinary position with several
other application areas of computer science, such as educational technology. The
reasons might be twofold. On one hand, ICT4D research has been considered to
belong to the area of social sciences, and included under, for instance, human

ICT4D: A Computer Science Perspective 223

geography. This has led ICT4D researchers to evaluate existing technologies
rather than design new ones. On the other hand, from the first sight the prob-
lems of using ICT in a developing context do not seem computationally challeng-
ing to attract a constructive computer scientist. Pictures from a South African
township with masses of young children chatting with each other on their mod-
est mobile phones do not easily raise the imagination or curiosity of a serious
computer scientist. However, the research institutes of ICT industry have been
more active; examples include, for instance, Nokia Research Africa.

2 Traditional ICT4D: Social Sciences Perspective for
Evaluating ICT in Developing Contexts

ICT4D is a rich and diverse, multidisciplinary undertaking with multiple research
aims (e.g.,[5], [21]), but for the purposes of our analysis we divide ICT4D research
into four categories, according to whether the development challenge at hand is
well-defined or well known, and according to whether technical solutions for the
problem exist readily or not. We acknowledge that this rough division ignores var-
ious types of ICT4D research, such as diffusion research (see, e.g., [7]). We also
acknowledge the fact that for many development challenges the most effective so-
lutions are not technical solutions, and that we are often better off without new
technological interventions. But for demonstrating the need for a computer sci-
ence perspective in ICT4D research, our division is well suited. The two divisions
above dissect ICT4D to four categories as follows (see also Table 1):

1. There is a body of ICT4D research that focuses on pinpointing and under-
standing social or economic needs or issues, and that attempts to match
an existing technical solution—preferably an affordable one—with a specific
need or issue. The inverse variant of this research type, though rarely explic-
itly acknowledged, is when researchers have a tool or innovation and they
focus on finding a problem that their tool can solve. The matching-type of
research, which is a sort of puzzle-solving activity, is largely aimed at seeking
problems that current mainstream technical solutions can solve.

2. There is also a body of ICT4D research that focuses on evaluating to what
extent an existing technical solution meets some certain, well-known needs,
or how well an existing technical solution solves some specific socio-economic
challenge. On a more general level, evaluative research explores and measures
the changes that introduction of new tools bring forth. That type of evalu-
ative research is usually aimed at understanding the dynamics, restrictions,
and ramifications of existing technical tools in context of one specific issue
(e.g., [11]). Often the outcomes of this type of research are qualitative and
quantitative reports of uses of technology.

3. There is some exploratory research on possibilities of technology in develop-
ing countries, where the problem space is not well known and where one of
the goals is to explore the problem space in order to delimit the boundaries
of problems and open up new areas for investigation. This type of research
often works as groundwork for further research of the two previous types.

224 E. Sutinen and M. Tedre

4. Finally, there is some research on ICT4D topics where the need, problem,
or even potential resources are well known but there does not yet exist a
technology to meet the need, solve the problem, or release the potential.
Often it is also unknown whether technology can contribute to the situation
at all. In this type of research, the issue may be well known and even well
understood, but there are no suitable technical tools available for the job, so
the task of the researcher is to construct (define, design, implement, and test)
a tool for tackling the issue at hand. This is the home ground for computer
science oriented ICT4D research.

Table 1. Division of research approaches in ICT4D

ICT: Existing ICT: Not Existing

Development challenge:
Not known

1) Matching a tool and
a problem

3) Exploratory research

Development challenge:
Known

2) Evaluation research 4) Constructive research

Many larger research studies involve several categories of Table 1; for instance,
finding an existing tool to solve an issue is often followed by an evaluation of
the solution. The categories of Table 1 are not specific to any academic disci-
pline, although certain disciplines may emphasize some types of research over
others. For instance, exploratory research is not only a part of social studies and
humanities, but also of computer science in general. Peter Fletcher argued that
much of research in computing is not of the sort “[seek] the best solution to a
previously specified problem” [9]. He wrote that often computer scientists work
with problems that are poorly understood, and with which one major goal is
to understand the problem and delimit it more precisely. Fletcher argued that,
“Computer science could not consist entirely of [solving precisely specified prob-
lems], since someone has to think up the precisely specified problems in the first
place and convince us that they are worth pursuing.”

3 ICT4D Reborn: Computer Science Perspective for
Designing Meaningful ICT

In spite of opposite impressions, evaluation-oriented research in ICT4D (e.g.,
[11]) can be considered to be technology-driven, for that type of research is
driven by the technical tools at hand. Evaluative research is often technology-
dependent in a sense that in many cases those research studies take technical
equipment as constant, unchangeable givens. Insofar as some ICT4D researchers,
whose backgrounds are in social sciences or humanities, might not be deeply
aware of the opportunities of technology, those researchers can only use existing
tools for tackling development issues. Largely, this dynamics leads to a “one size

ICT4D: A Computer Science Perspective 225

fits all” kind of technology-dependence in many contemporary ICT4D research
and development projects.

However, research and design of technology that supports development in a
particular context does not need to follow the methodological agenda or method-
ological dogmas of social sciences and humanities. The constructive interest of
computer science provides the ICT4D research area with a complementary con-
tribution: design of new technical innovations. This leads away from technology-
dependence towards technology independence, or at least technological agnos-
ticism. Technology independence refers to an atelier type of approach where a
computer scientist, like an artist in a working room, works as a master of a
variety of tools for the best possible artifact.

Thus, a technical or constructive orientation towards ICT4D does not need to
follow a technocratic orientation where the design team or project team follows
a predefined technical plan with an equally pre-given set of tools to implement
a specific task. Quite the contrary: a computer science orientation is needed for
curbing too much technoenthusiasm. If anyone, it is computer scientists who
know the limits of automatic computing and ICT. In the same vein, computer
scientists also know the possibilities of modern information and communication
technology.

3.1 The Art of Assembling Artifacts Using Contextual Inputs

Computer scientists are expected to have the ability to understand, analyze and
conceptualize a technical challenge; to identify the inputs that need to be used to
address the challenge; to design a method that gives a computational solution for
given inputs; and to evaluate the overall solution based on some context-specific
criteria. In the area of ICT4D, this might be conceptualized as an inputs-driven
approach. For this approach, we have identified four stages that are involved in
the process of constructing ICT4D:

1. analyze the given context and pay attention to its potential resources that
call for their realization or empowerment through technology (contextualiza-
tion);

2. represent the resources as inputs for a computational artifact (conceptual-
ization);

3. design and build an artifact that contributes to a holistic solution to the
development challenge (concretization); and

4. evaluate the difference that the artifact makes, in terms of the challenge, for
the local context (consideration and contemplation).

To give an example of the driven-by-inputs process, let us consider the need
for health information systems—a vastly complex system if there ever was one.
Those systems have multiple users of various kinds, they involve exceedingly
complicated data structures (some of which are necessary in some cases but
optional in others), they require various kinds of interfaces for different uses, they
entail a range of computational requirements as well as types of output data,

226 E. Sutinen and M. Tedre

they involve intricate communication and synchronization systems, and they
are irrevocably intertwined with larger, very complex socioeconomic systems.
Some of the challenges above are reducible to classical computational problems,
whereas others are highly contextual and require new unorthodox approaches.
Some challenges are puzzle-like well-constrained intellectual exercises, whereas
others require a holistic understanding and analysis of the multidimensional
sociotechnical system. That is, the system construction is driven by inputs and
resources.

3.2 Towards a Functional ICT4D Design

The main aim of a computer science oriented ICT4D initiative, whether of an
explorative type or a constructive type, is to come up with functional technology
that contributes to changing conditions within a given context. The attribute
functional refers to a situation where technology in a self-evident or intuitive
and aesthetically appropriate way helps its user to realize a task of personal
importance at hand, and gives him or her a functional user experience. Thus,
functional is more than usable or useful; it is easy to come up with tools that are
useable or useful but not functional. A functional artifact needs to promote both
access and ownership. Access refers to values such as usefulness and usability;
whereas ownership is based on contextual, cultural, and individual priorities.
Thus, access can be measured by objective criteria, while ownership is always a
more subjective issue.

Figure 1 illustrates two alternative design processes that start from an existing
example, model, or theory, and that aim at a functional ICT artifact. The lower
curve demonstrates a generalize-first process, which is motivated from an access
perspective and, hence, generalizes an existing solution to meet the needs of the
masses. Only after generalization the solution will be personalized, adapted, or
tuned to match an identified user group. The problem of this process is that
the generalization stage might result in an artifact that is too stripped-off to
accommodate the particularities of a given context.

The upper curve in Figure 1 describes a concretize-first design process, which
gives priority to the inputs of the particular context. Therefore, the first steps
enrich rather than prune out features of the solution. It is also important to ob-
serve that the initial design phase aims at concretization rather than abstraction
that is usually the result of any generalization step. Interestingly, with regard
to abstract models of computability, due to his fascination with machinery Alan
Turing came up with a nearly tangible, machine-like model of computability [20]
whereas Church’s theorization of computability was a more traditional, mathe-
matical one [6] (see also Turing’s biography [10]).

Both the generalize-first and concretize-first processes feature the explorative
and constructive interests of computer science-based ICT4D research. How-
ever, explorative aspects dominate in the concretize-first approach, whereas the
generalize-first agenda, due to its emphasis on access at the beginning of the
process, favors construction as a solution to an at least partly known, generic
development challenge.

ICT4D: A Computer Science Perspective 227

Fig. 1. Two alternative paths towards a functional ICT artifact

To characterize the two processes in above-mentioned terms Contextualize,
Conceptualize, Concretize, and Consider, the processes differ from each other by
the order in which the four C:s are applied. The generalize-first process starts
from Conceptualize to guarantee the accessibility of the design for an unspecified,
but broad target group. This requires also the Consider aspect as the basis
for a feedback mechanism. The Concretize and Contextualize aspects follow in,
largely, this order.

The concretize-first process proceeds through the Contextualize, Conceptual-
ize and Concretize stages, in this order. The re-contextualization stage requires
the Consider aspect.

In Figure 1, steps taken along the positive Access axis emphasize the product-
oriented, needs/theory-based, deductive, or top-down aspects of the process.
Steps along the positive Ownership axis represent creative, strength-based, em-
pirical, inductive, and bottom-up perspectives.

4 Interplay of Computer Science and ICT4D

Development challenges offer a new thread to the formation process of computer
science as a discipline. Since most of the contexts of development challenges are

228 E. Sutinen and M. Tedre

outside the social, cultural, and economic boundaries of the traditional realm
of ICT applications, the challenges call computer science to a cross-fertilization
process. The process, if successful, can transform and renew computer science.

The contextual specifics of developing regions call for exciting new application
areas of computer science. For instance, the rich legacy of storytelling can be a
platform for novel ways to represent text. The importance of the social structures
and belongingness in many parts of Africa can serve as a foundation for new
types of social media. Conflicts in extremely heterogeneous environments call for
technical assets to their resolution; they require not only understanding of a text
but various connotations thereof. Indigenous knowledge systems can provide new
ideas for knowledge management, or even data structures [1]. Ancient games still
played offer new ideas for digital entertainment [8]. Various resource allocation
or logistical systems are exceedingly complex due to exceptions, improvisations,
varying weather and other nature conditions, and differences of communication
habits among the multiple ethnic groups, or of literacy among the users of one
system.

Table 2 summarizes the aspects of a computer science perspective to ICT4D
when compared to that of other forms of scientific inquiry in the field of ICT4D.
The aspects in the right column strongly indicate that the computer science
approach promotes change in a given context. For example, effectiveness as a
key quality focus requires that a designed ICT artifact not only improves cur-
rent practices—by making them more efficient than before—but qualitatively
changes them to extend beyond the earlier expectations, best practices, or qual-
ity assurance metrics. For example, educational challenges in Africa are so dire
that streamlining primary schools with whatever connectivity for improved In-
ternet access will change only little, because of the low ICT literacy of teachers.
Instead, a flexible and mobile notebook with an adaptive reading interface—
supporting a large variety of knowledge representations—might be helpful, if
designed together with intended users.

Besides making clear the contribution of computer science to ICT4D, Table 2
illustrates the opportunities of ICT4D challenges to change computer science as
a discipline. For example, the expectations that developing contexts set for ICT
are an important reminder of the ethical task of computer science.

Table 2. ICT4D challenges to computer science

ICT4D Computer Science

Research interest Matching and evaluation Exploration and construc-
tion

Role of technology Technology-dependent Technologically agnostic
Expectations from ICT Conservation, replication,

and increase of efficiency
Agent of change

Quality focus Efficiency Effectiveness
Driving motivations Outputs, unsatisfied needs Inputs, available resources
User experience Useful, usable Functional

ICT4D: A Computer Science Perspective 229

4.1 ICT4D as an Agent of Change in Computer Science Education

For example, at Tumaini University–Iringa University College, our Tanzanian
colleagues and we have worked together to develop an IT curriculum that re-
sponds to the severe and manifold development issues in Iringa region in Tan-
zania (e.g., [3]). We started from the standard ACM/IEEE curricula and have
over the years developed Tumaini’s IT curriculum to resonate with the local
needs, problems, and possibilities, as well as with local materials, resources, and
competences [15]. The development process of the contextualized IT curriculum
can be explained through the artifact creation model explained in Figure 1.

The environment—natural, social, economic, and technical environment—of
developing countries brings about issues that require special attention in curricu-
lum design. We have had to accommodate the generic ACM/IEEE “prototype”
curricula of computing heavily to the Iringan context, where inadequate elec-
trical and communications infrastructure cause hardware to malfunction, wear
out, and break; a hostile natural environment causes problems with equipment
and eventually destroys it; quirks of local manufacturing and procurement com-
plicate acquisitions; counterfeit products, inexistent customer care, and lack of
warranty make purchases risky; excessively complex customs and shipping pro-
cedures make foreign acquisitions painful; widespread problems with corruption
make accounting tricky; and lack of qualified staff is a systemic problem [15].
None of the above issues can be found in computer science textbooks or IT
textbooks, but they still pose a very real challenge for IT professionals in Tanza-
nia. Without the ability to cope with issues such as the above, IT professionals’
professionalism is compromised.

The IT profession in industrialized countries, such as in Finland, relies on
scores of specialists who can tackle narrowly bounded topics well, and who in
their work focus only on that topic. However, specialization-oriented systems rely
on the availability of an army of specialists: there must be someone to fill each
specialization area. In developing countries narrow specialization is not usually
feasible, for a common situation is that there is not a single IT professional
available within a fifty-kilometer radius.

In developing Tumaini University’s B.Sc. Program in IT, our process has fol-
lowed the concretize-first approach, where we first have taken general curricula
and contextualized it so that it responds to the actual challenges of the environ-
ment. From there we have proceeded to conceptualize both the curriculum as
well as the process that led to it (e.g., [15], [22]). For several years now, our joint
work has been concretized in an accredited contextualized IT program in rural
Tanzania. The program’s further development is based on constant consideration
of the program’s successes and challenges (e.g., [15], [16], [17], [18]).

Constructive interest has driven the process from the very beginning. The
contextualized IT program at Iringa, Tanzania, has not only offered a meaningful
IT program for the needs of Iringa region, but by pushing beyond the limits
of standard IT curricula, the program also challenges some orthodox views on
computer science education, too [15].

230 E. Sutinen and M. Tedre

5 Conclusions

In this chapter, we have—to our knowledge, for the first time in literature—
outlined the computer science perspective to ICT4D research. A computer sci-
ence approach is necessary for exploring and constructing functional information
and communication technology for making a positive change in a given devel-
opment context. Probably due to a lack of awareness of ICT4D challenges, of
which many can be understood or abstracted as computational, very few com-
puter science research groups have addressed ICT4D issues. However, the interest
of computer science community is waking up, hand in hand with the increasing
markets, for ICT in emerging economies. For instance, cross-cultural design has
gained a stable foothold during the past decade (e.g., [2]).

The computer science approaches to ICT4D research can be classified based on
how well a particular development challenge is understood or known in a given
context. At the other end of the spectrum, a research team with a computer
science background needs to devote time to exploring the inputs of the context.
At the opposite end, the team can start their design process on a given set
of inputs, which specify the situation. In these cases, a somewhat generalized
solution can be later adapted to various contexts.

The contribution of computer science is direly needed in the state-of-the-art
ICT4D research. In fact, computer science researchers are able to get back to the
days of the emerging discipline, but in another societal context. While the current
models of computation originated in Europe between the two World Wars and
during WW2, and while research in relational databases and the theory of data
management are indebted to half-empty commercial planes, the new problems
in the world’s developing areas call for computer scientists for new exploration.

Acknowledgments. Our research was funded by the Academy of Finland
grants #128577 (Sutinen) and #132572 (Tedre).

References

1. Ascher, M., Ascher, R.: Mathematics of the Incas: Code of the Quipu. Dover Pub-
lications, New York (1981)

2. Aykin, N. (ed.): Usability and Internationalization of Information Technology.
Lawrence Erlbaum, New York (2005)

3. Bangu, N., Haapakorpi, R., Lund, H.H., Myller, N., Ngumbuke, F., Sutinen, E.,
Vesisenaho, M.: Information Technology Degree Curriculum in Tanzanian Context.
In: Proceedings of the IST-Africa 2007 Conference, Maputo, Mozambique, May 9-
11, CDROM (2007)

4. Brooks Jr., F.P.: The Computer Scientist as Toolsmith II. Comm. ACM 39(3),
61–68 (1996)

5. Burrell, J., Toyama, K.: What Constitutes Good ICTD Research? Information
Technologies and International Development 5(3), 82–94 (2009)

6. Church, A.: An Unsolvable Problem of Elementary Number Theory. Am. J. of
Mathematics 58, 354–363 (1936)

7. Donner, J.: Research Approaches to Mobile Use in the Developing World: A Review
of the Literature. The Information Society 24, 140–159 (2008)

ICT4D: A Computer Science Perspective 231

8. Eglash, R.: African Fractals: Modern Computing and Indigenous Design. Rutgers
University Press, New Jersey (1999)

9. Fletcher, P.: The Role of Experiments in Computer Science. Journal of Systems
and Software 30(1-2), 161–163 (1995)

10. Hodges, A.: Alan Turing: the Enigma. Vintage, London (1992)
11. Jensen, R.: The Digital Provide: Information (Technology), Market Performance,

and Welfare in the South Indian Fisheries sector. The Quarterly Journal of Eco-
nomics 122(3), 879–924 (2007)

12. Pickering, A.: The Mangle of Practice: Time, Agency, and Science. The University
of Chicago Press, Chicago (1995)

13. Pólya, G.: How to Solve It, 2nd edn. Penguin Books Ltd., London (1957)
14. Tedre, M.: The Development of Computer Science: A Sociocultural Perspective.

University of Joensuu Press, Joensuu (2006)
15. Tedre, M., Bangu, N., Nyagava, S.I.: Contextualized IT Education in Tanzania:

Beyond Standard IT Curricula. Journal of Information Technology Education 8(1),
101–124 (2009)

16. Tedre, M., Kamppuri, M.: Students’ Perspectives on Challenges of IT Education in
Rural Tanzania. In: Proceedings of IST-Africa 2009 conference, Kampala, Uganda,
May 6-8, CD-ROM (2009)

17. Tedre, M., Ngumbuke, F.D., Bangu, N., Sutinen, E.: Implementing a Contextual-
ized IT Curriculum: Ambitions and Ambiguities. In: Proceedings of the 8th Koli
Calling International Conference on Computing Education Research, Lieksa, Fin-
land, November 13-16, pp. 51–61 (2009)

18. Tedre, M., Chachage, B., Faida, J.: Integrating Environmental Issues in IT Educa-
tion in Tanzania. In: Proceedings of the 39th ASEE/IEEE Frontiers in Education
Conference, San Antonio, TX, USA, October 18-21 (2009)

19. Tedre, M., Sutinen, E.: Crossing the Newton-Maxwell Gap: Convergences and Con-
tingencies. Spontaneous Generations: A Journal for the History and Philosophy of
Science 3(1) (2009)

20. Turing, A.M.: On Computable Numbers, With an Application to the Entschei-
dungsproblem. Proc. of London Math. Soc., Series 2, 42, 230–265 (1936)

21. Unwin, T. (ed.): ICT4D. Cambridge University Press, Cambridge (2009)
22. Vesisenaho, M., Kemppainen, J., Islas Sedano, C., Tedre, M., Sutinen, E.: Contex-

tualizing ICT in Africa: The Development of the CATI Model in Tanzanian Higher
Education. African Journal of Information and Communication Technology 2(2),
88–109 (2006)

23. Wegner, P.: Research Paradigms in Computer Science. In: Proceedings of the 2nd
International Conference on Software Engineering, San Francisco, California, USA,
October 13-15, pp. 322–330 (1976)

Searching for Linear Dependencies between

Heart Magnetic Resonance Images and Lipid
Profiles

Marko Sysi-Aho1,�, Juha Koikkalainen2, Jyrki Lötjönen2,
Tuulikki Seppänen-Laakso1, Hans Söderlund1,

Tiina Heliö3, and Matej Orešič1

1 VTT Technical Research Centre of Finland, Tietotie 2, 02044 Espoo, Finland
Tel.: +358 40 5316949

marko.sysi-aho@vtt.fi
2 VTT Technical Research Centre of Finland, Tampere, Finland

3 HYKS Helsinki District Hospital, Helsinki, Finland

Abstract. Information derived from “omics” data in life science re-
search are frequently limited by specific spatial or temporal scales these
data describe. As a case study of integrating physiological and molecular
data in human, here we study associations between the heart magnetic
resonance images and serum lipidomic profiles. In the best case, such as-
sociations could help infer the physiologic state of the heart from a blood
serum sample without need to use expensive imaging techniques. Strong
marginal and partial correlations are found between the lipid profiles
and parameters derived from the heart images. Regression analyses are
applied to study these dependencies in more detail. This study demon-
strates the feasibility of mapping lipid profiles to heart images, and thus
combining information from two very different scales, small molecules
and macroscopic physiologic features. Such mappings could be general-
ized to other “omics” data as well to complete our picture of the holistic
function of a living organism.

1 Introduction

During the last decade the maturation of “omics” technologies such as genomics,
transcriptomics, proteomics and metabolomics has resulted in overwhelming
amounts of data [1,2,3]. There is an ever increasing need to develop methods
for extracting information not only from datasets reflecting a specific organis-
mal level such as metabolome, but also on how the parts of the organism interact
with each other. The area of systems biology has emerged as a scientific disci-
pline which aims to study such interactions at multiple spatial and temporal
scales in living systems [4,5]. One of the first steps in building knowledge onto
the “omics” data is to establish a connection between measurements of these
data and the more traditional phenotype characteristics such as disease status,

� Corresponding author.

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 232–243, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Searching for Linear Dependencies 233

blood count or outlook of body organs. Such connections provide the basic in-
formation on which to build more comprehensive and detailed understanding of
the whole system function. Here, we search for dependencies between lipidomics
data [6] and magnetic resonance image data (MRI) [7] which are obtained from
the same human subjects [8].

Analyses of lipidomics and MRI data pose several computational challenges.
The first one is due to high dimensionality of feature space as compared to
the number of samples: MR images contain tens of thousands of pixels and
hundreds of lipids are identified from blood serum samples analyzed by the ul-
tra performance liquid chromatograph mass spectrometer (LC/MS) [9]. Second
main challenge concerns the extraction of physiologically relevant features from
the 3D MR images, which make the images easier to interpret and considerably
reduce their dimension. A method applied for the feature detection should be
computationally efficient, reliably align the images across different subjects and
be insensitive to changes in orientation and sizes of the images [10]. Third chal-
lenge is related to the profiling of the lipids, which is complicated due to the
complex nature of the biologic matrix and global nature of the profiling method.
In global profiling the lipids are not a priori restricted to known species which
makes their quantification and identification more difficult.

2 Methods

2.1 Study Population

The total number of subjects in the study was 22. All subjects were of Finnish
origin, of which N = 14 were female. The age range was 34± 11 years. As here
we are not focusing on associations with health outcomes, no clinical phenotype
data are discussed in this paper. An outline of the study and summary of the
clinical characteristics of the subjects are shown in Figure 1.

2.2 Imaging

The imaging was done as described previously [8]. In short, patients were eval-
uated by personal and family history, physical examination, 12-lead ECG, and
transthoracic echocardiography (M-mode, two-dimensional and Doppler, Vivid
7, GE Medical). The echocardiographic examinations were carried out by ex-
perienced cardiologists. Cine MRI was performed with a 1.5 T system (Sonata,
Siemens Medical Solution) and a body array coil. A retrospectively ECG-gated
segmented Steady State Free Precession imaging was used with following pa-
rameters: echo time 1.6 ms, repetition time 3.0 ms, matrix 256 256, field of view
240 340 mm, flip angle 52 degree. Short-axis cine stack and a long-axis cine slice
of both ventricles were obtained with a section thickness 6 mm, intersection gap
20%, and temporal resolution 42-49 ms. The images were mapped to a common
coordinate system using a surface model for the heart.

234 M. Sysi-Aho et al.

Fig. 1. a) Study outline. Blood serum samples and heart MR images were obtained
from 22 subjects. The MR images were mapped to a heart surface model (3328 points)
consisting of sub-models for the epicardium (906 points) and for the left (906 points)
and right (1516 points) ventricles using the method previously described in Ref. [8]. 86
physiologically relevant parameters were extracted from the mapped heart MR images.
Blood serum samples were analyzed using UPLC/MS instrument and altogether 294
lipid species were identified. Dependencies between the lipid profiles and the MR image
parameters were searched for by analysing correlations and by applying regression
models. b) Summary of clinical characteristics of the subjects involved into the study.
The reported values are averages and standard deviations (in parenthesis) over the 22
subjects.

2.3 Image Analysis

The left and right ventricles and epicardium were semi-automatically segmented
by a technician together with a radiologist from each time frame of the cine
MRI series with a software tool developed for this purpose [11]. The automatic
segmentation took 1-2 minutes. To reach the optimal segmentation accuracy the
time used for the manual refinement was not limited and it took approximately
30 minutes. In the tool, an a priori heart model, consisting of triangulated
surfaces of the ventricles and epicardium, was deformed to fit both short- and
long-axis MRI data. Because the same a priori model was used for each sub-
ject, the number of the surface points was identical in each case (906 points for

Searching for Linear Dependencies 235

left ventricle, 1516 for right ventricle, and 906 for epicardium), and the point-
correspondence existed between all the subjects and time frames. The surfaces
were rigidly aligned in the same coordinate system to remove the position and
orientation variations from the data. This enabled point-wise comparison of the
cardiac motion in the study population.

The shape and motion of the heart was modelled using point distribution mod-
els (PDM) [12]. A 4D extension of PDMs, a statistical motion model (SMM) [13],
was constructed from the triangulated surfaces with the point correspondence.
In a 3D PDM the x-, y-, and z- coordinates of the nodes of a surface are cate-
nated as a single shape vector, whereas in a 4D SMM the x-, y-, z-, coordinates
from each time frame are catenated in a single vector, for which the PCA is
applied to. In this study, only end-diastolic and end-systolic frames were used to
make the analysis simpler.Only end-diastolic and end-systolic frames were used
to make the analysis simpler.

In SMM, the principal component analysis is applied to the variations in the
data, which gives a set of modes of variation describing the typical shape and
motion patterns in the data. In practice, the point coordinates of a triangulated
surface are concatenated into one vector xi, and the covariance matrix of the
data is computed as:

∑
=

1
N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T , (1)

where x̄ is the mean model of the heart, and N is the total number of subjects.
The eigenvectors of the covariance matrix are the modes of variation, and the
corresponding eigenvalues give the amount of variance the eigenvectors explains.
In other words, the larger the eigenvalue the more important is the correspond-
ing eigenvector in describing the variability of the shape and motion of the heart.
The number of eigenvectors is limited by the total number of study population
subjects minus one. However, the eigenvectors with small eigenvalues are sup-
posed to model only noise and therefore they are discarded from the analysis.
In this study, the first n eigenvectors that explained 95% of the total variance
were used and rest of the rest were considered representing noise.

The obtained eigenvectors and -values can be used to approximate the study
population shape using a linear model

x = x̄+ Φb, (2)

where Φ is a matrix consisting of the eigenvectors and b is a weight vector.
Because the eigenvectors are orthogonal, the weights of ith study population
subject can be computed from

bi = ΦT (xi − x̄). (3)

In this study, these weights bi were used to parameterize the shape and motion
of the heart. The SSM was performed for each structure separately and also
simultaneously for all the structures. SSM was selected as the parameterization

236 M. Sysi-Aho et al.

as it provides a compact and easily understandable parameterization of the shape
and motion of the heart.

2.4 Lipid Profiling

The lipidome was analyzed as described previously [14]. In brief, serum samples
(10 μl) diluted with 0.15 M NaCl (10 μl) and spiked with a standard mixture
containing 10 lipid species were extracted with a mixture of chloroform and
methanol 2:1 (100 μl). The extraction time was 0.5 h and the lower organic
phase was separated by centrifuging at 10 000 r.p.m. for 3 min. Another stan-
dard mixture containing three labeled lipid species was added to the extracts
and the lipids were analyzed on a Waters Q-Tof Premier mass spectrometer
combined with an Acquity Ultra Performance LCTM (UPLC). The column, kept
at 50◦C, was an Acquity UPLCTM BEH C18 1 × 50 mm with 1.7 μm par-
ticles. The solvent system included water (1% 1 M ammonium acetate, 0.1%
HCOOH) and a mixture of acetonitrile and 2-propanol (5:2, 1% 1 M NH4Ac,
0.1% HCOOH). The flow rate was 0.2 ml/min and the total run time including
column re-equilibration was 18 min. Data were processed using MZmine2 soft-
ware (http://mzmine.sourceforge.net). Lipids were identified using the internal
spectral library and lipid notation follows the conventions recommended by the
LIPID MAPS consortium [15].

Calibration was performed as follows: all monoacyl lipids except cholesterol
esters, such as monoacylglycerols and monoacyl-glycerophospholipids, were cal-
ibrated with lysophosphatidylcholine GPCho(17:0/0:0) (Avanti Polar Lipids,
Alabaster, AL) as an internal standard. All diacyl lipids except phosphatidyl-
ethanolamines were calibrated with phosphatidylcholine GPCho(17:0/17:0)
(Avanti Polar Lipids), the phosphatidylethanolamines with GPEtn(17:0/17:0)
(Avanti Polar Lipids) and the triacylglycerols and cholesterol esters with tria-
cylglycerol TG(17:0/17:0/17:0) (Larodan Fine Chemicals, Malmö, Sweden).

2.5 Summary of Data Sets

The two main data sets of this study that are obtained by processing the MR
images and LC/MS spectra as described above are:

– The MRI parameter data, a 22×86 matrix of continuous valued variables
derived from the MRI surface mapped data.

– The lipid data, a 22×294 matrix of continuous valued variables describing
the concentration estimates of the identified lipids.

3 Results

3.1 Correlations between Lipid Data and MRI Parameter Data

For simplicity and in particular for the number of variables being much larger
than the number of samples, p � n, both in the MR image parameter data

Searching for Linear Dependencies 237

Fig. 2. Correlations between lipid profiles and MR image parameters. a) Heatmap of
correlations between the lipid profiles and the MR image parameters shows that both
positive and negative correlations between certain lipid classes and image parameters
exist. b) Partial correlation graph. Squares correspond to lipid variables and circles
to MRI parameter variables. An edge denotes partial correlation between the nodes it
connects and colour coding is the same as that used in the heatmap. Width of an edge
is proportional to the inverse of the non-rejection rate [16], which indicates trust on
the existence of the edge. A threshold of 0.55 was used for the non-rejection rate and
all edges with higher values were omitted from the graph.

(p = 86) and in the lipid data (p = 294) we confine ourselves to linear depen-
dencies between the two data sets. The marginal correlations between image
parameters and lipid profiles were assessed by calculating the Pearson’s corre-
lation coefficients and they were visualized using the heatmap function of the
R statistical software (R) (www.r-project.org). In order to take the interactions
among the lipid profiles and MRI parameters into account, partial correlations
were estimated using the R package qpgraph [16]. The estimated partial corre-
lations were visualized as a network using Cytoscape (www.cytoscape.org) and
yEd (www.yworks.com) graphical editors.

Both marginal and partial correlations reveal that there are linear dependen-
cies between the serum lipid profiles and the MR images. These dependencies
are illustrated in Figure 2. The correlation values are colour coded such that
positive/negative correlations correspond to red/blue colours. White colour de-
notes no correlation. In Figure 2 a) lipids are on the horizontal axis and MRI
parameters on the vertical axis. One can see areas dominated by the red and
blue colours indicating that specific lipid classes are consistently correlated with
the same heart image features. Figure 2 b) is a reduced presentation of the par-
tial correlations between the lipid profiles (squares) and the MRI parameters

238 M. Sysi-Aho et al.

(circles). Colour of an edge denotes the partial correlation between the nodes it
connects and the coding is the same as that used in the heatmap of Figure 2
a). Width of an edge is proportional to the inverse of the non-rejection rate
[16], which indicates trust on the existence of the edge. A threshold of 0.55 was
used for the non-rejection rate and all edges with higher values were omitted
from the graph. It is noteworthy that lipids tend to show stronger correlations
between themselves than the MRI parameters do. This is expected as the MRI
parameters are derived to give moderate number of physiologically relevant vari-
ables that describe the heart, whereas the lipids are linked through their reaction
pathways. It is also interesting that only a small subset of the lipids are linked to
the MRI parameters and thus their role in explaining changes in the physiology
of the heart may be crucial.

3.2 Regression of Lipid Profiles on MRI Parameters

In addition to correlation based analysis, regression methods were applied to
elucidate dependencies between the MR image parameters and the lipid profiles
in more detail. Due to the p� n the regression must be regularized and we chose
to apply the elasticnet regression method [17] as implemented in the elasticnet
package of R. Elasticnet is convenient for our current application because the L1

and L2 penalties on the regression coefficients can be flexibly tuned by changing
u1 and u2 respectively in Eq. 4, which allows exploration of solutions ranging
from simple models with no lipids at all to more complex ones that are either
sparse, containing non-correlated lipids, or non-sparse with several correlated
lipids included. Elasticnet solution is obtained by minimizing

L(u1, u2, b) = ‖y −Xb‖2 + u1‖b‖21 + u2‖b‖22, (4)

where u1 and u2 are tuning parameters, y is the response variable and X a
matrix containing the explanatory variables. In this study, each of the image
parameters were separately explained by the whole lipid profile data and the
tuning parameters were selected by minimizing the mean cross-validation error
(see Figure 3 a):

e = 1/n
n∑

i=1

ei,

ei = e(p(i), u1, u2, y,X) = ‖yp(i) −X−p(i)b−p(i)‖22, i = 1, . . . , n. (5)

Above p = (p(1), . . . , p(n)) is partition of the samples into n blocks and −p(i)
refers to all samples but those that belong to the ith block (which belong to
p(i)). Here we randomly assigned the samples into n = 5 blocks for 100 times
and calculated the average errors.

The cross-validation errors were also used to assess whether the lipid profiles
in general explained an image parameter. The criterion was defined as follows:

Searching for Linear Dependencies 239

emin + sd(ei,min) < econs (6)

⇒ The image parameter in question can be explained with the lipid profiles.

Above emin is the minimum average cross-validation error, ei,min is the standard
deviation of the cross-validation errors over the n blocks for the model that gives
the minimum average error and econs is the average cross-validation error of the
constant model. In other words, if the minimum mean cross-validation error plus
one standard deviation of the error at minimum was lower than the mean cross-
validation error of the constant model, i.e., a model that contained no lipids,
then the image parameter was interpreted to be dependent on the lipid profiles.
The final model for each image parameter was estimated using all samples and
the pair of tuning parameters that corresponded to the minimum average cross
validation error. Due to the small number of samples (n = 22) statements on the
dependencies are qualitative rather than quantitative. For example, lipids that
correspond to non-zero coefficients in the regression model are merely considered
being influential and answers to more detailed questions, for example, on the
strength of the influence are open to various interpretations.

Fig. 3. Associations between the MRI parameters and lipid profiles were studied using
the elasticnet regression model [17]. Elasticnet has two tuning parameters that control
the L1 and L2 penalties on the regression coefficients. a) An average cross-validation
error for a selected MRI parameter as explained by the lipid profiles. The horizontal
axis (step) corresponds to the L1 tuning parameter with the leftmost point (step =
0) equalling the error of the constant model, that is, the model containing no lipids.
Optimal tuning parameters were searched for by exploring a grid of pre-selected L1×
L2 values. The pair that gave smallest average cross-validation error (vertical axis) was
selected for the final regression. Here, for demonstration purposes, curves for only two
different L2 parameters are shown. The black curve has smaller minimum error (at
step 9) than the red curve (at step 11), which corresponds to larger L2 penalty. b) In
order to estimate the degree by which an MRI parameter can be explained with the
lipid profiles a cross-validated R2 statistics was calculated between the cross-validated
predictions and the actual measurements for the selected regression model.

240 M. Sysi-Aho et al.

3.3 Regression of Lipid Profiles on the Heart Surface Model

The sensitivity of heart images to changes in selected lipid profiles was also
studied. The heart MR images were decomposed into their principal components,
which in turn were explained by the lipid profiles using ridge regression [18]. The
regression model was fitted using all the mapped heart MR images and lipid
profiles. The averaged lipid profiles were then entered into the fitted regression
model in order to obtain a mean heart model. Then the concentration of a
selected lipid was changed by plus two times the standard deviation of the lipid
value in the study population and a new heart model was computed using the
regression model. The change in heart model was visually evaluated for the end-
diastolic shape and the deformation from end-diastole to end-systole using colour
maps overlaid on the heart model. The changes and deformations were projected
on the surface normal of the mean heart model to regularize the results.

Sensitivity of the heart model to lipid concentration changes is demonstrated
in Figure 4 for one particular lipid. Figure 4 a) shows in red the surface model of
the heart as obtained from the average lipid profiles. The blue colour shows the
surface after changing the concentration of the selected lipid by two standard
deviations. Figure 4 b) shows the shape change along the surface normal when
the lipid value was changed by two standard deviations with reddish colours
corresponding to outward deviations and bluish colours to inward deformations.
Figure 4 c) shows the end-diastole to end-systole motion along surface normal for
the mean heart model (red = inward deformation, blue = outward deformation),
and Figure 4 d) the end-diastole to end-systole motion along surface normal when
the lipid value was changed by two standard deviations.

3.4 Discussion

In this study we demonstrated the feasibility of mapping lipidomic profiles to
various physiologic features reflecting the function of the heart. Due to the high
dimensionality of both the MRI parameter and lipid profile data sets only linear
dependencies were considered. Positive and negative marginal and partial cor-
relations existed between specific lipid species and the heart MRI parameters.
Regression analyses gave further information on these dependencies, shedding
the light on which lipids most accurately describe specific features of the heart.

Over-fitting of the statistical models is always a risk when the data dimensions
are high and the number of subjects is small, as in our study. For this reason we
prefer qualitative rather than quantitative conclusions. For example, associations
determined from cross-validation errors of the elasticnet regression models are
robust in the sense that variability from the data and separate model fits are
controlled. Thus, making a statement that a specific MR image parameter is
linked to the lipid profiles is quite safe but more quantitative statements, for
example, on the strength of the contribution of each lipid are still vague. The
same applies to the heart image changes when the lipid concentrations are varied.
Here we demonstrated the feasibility of constructing such mappings, rather than
using them to interpret the exact effects of the lipids. Reconstructing the heart

Searching for Linear Dependencies 241

Fig. 4. Sensitivity of the heart model on lipid concentration changes. The MRI was
decomposed to principal components which were explained by the lipid profiles (see
Figure 1). a) Red: original heart, blue: surface after changing the lipid value by two
standard deviations. b) The shape change along the surface normal when the lipid value
was changed by two standard deviations (red = outward, blue = inward deformation).
c) End-diastole to end-systole motion along surface normal for mean model (red = in-
ward deformation, blue = outward deformation). d) End-diastole to end-systole motion
along surface normal when the lipid value was changed by two standard deviations.

image from the principal components explained by the lipid profiles via the
regression models does not reveal local associations. For revealing these, the
heart images should first be partitioned into small enough regional units and
mappings between these units and the lipid profiles should be explored. The
methodology presented here can be straight applied to such studies.

In order to assess the ultimate power of the approach presented in this paper,
a large scale study containing thousands of samples would be needed. However,
already with the current small sample set the concept has proven feasible. We
thus believe that research efforts on integrating data which describe various
scales of a living organism, such as “omics” data and images, will be emphasized
in the future and importantly complement our picture of the holistic function of
the organism.

3.5 Conflict of Interest

The authors declare no conflict of interest.

242 M. Sysi-Aho et al.

References

1. Fan, J.-B., Chee, M.S., Gunderson, K.L.: Highly parallel genomic assays. Nature
Reviews Genetics 7(8), 632–644 (2006)

2. Tan, K., Ipcho, S.V.S., Trengove, R.D., Oliver, R.P., Solomon, P.S.: Assessing the
impact of transcriptomics, proteomics and metabolomics on fungal phytopathology.
Molecular Plant Pathology 10(5), 703–715 (2009)

3. Sreekumar, A., Poisson, L.M., Rajendiran, T.M., Khan, A.P., Cao, Q., Yu, J.,
Laxman, B., Mehra, R., Lonigro, R.J., Li, Y., Nyati, M.K., Ahsan, A., Kalyana-
Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G.S., Ghosh, D., Pennathur,
S., Alexander, D.C.: Metabolomic profiles delineate potential role for sarcosine in
prostate cancer progression. Nature 457(7231), 910–914 (2009)

4. Newman, J.R., Weissman, J.S.: Systems biology: many things from one. Na-
ture 444(7119), 561–562 (2006)

5. Nicholson, J.K., Lindon, J.C.: Systems biology: Metabonomics. Nature 455(7216),
1054–1056 (2008)

6. Watson, A.D.: Thematic review series: systems biology approaches to metabolic
and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in
biological systems. J. Lipid Res. 47(10), 2101–2111 (2006)

7. Karamitsos, T.D., Francis, J.M., Myerson, S., Selvanayagam, J.B., Neubauer, S.:
The role of cardiovascular magnetic resonance imaging in heart failure. J. Am.
Coll. Cardiol. 54(15), 1407–1424 (2009)

8. Koikkalainen, J.R., Antila, M., Lotjonen, J.M., Helio, T., Lauerma, K., Kivisto,
S.M., Sipola, P., Kaartinen, M.A., Karkkainen, S.T., Reissell, E., Kuusisto, J.,
Laakso, M., Oresic, M., Nieminen, M.S., Peuhkurinen, K.J.: Early familial dilated
cardiomyopathy: identification with determination of disease state parameter from
cine MR image data. Radiology 249(1), 88–96 (2008)

9. Sun, J., Schnackenberg, L.K., Holland, R.D., Schmitt, T.C., Cantor, G.H., Dragan,
Y.P., Beger, R.D.: Metabonomics evaluation of urine from rats given acute and
chronic doses of acetaminophen using NMR and UPLC/MS. J. Chromatogr. B
Analyt. Technol. Biomed. Life Sci. 871(2), 328–340 (2008)

10. Lotjonen, J.M., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen,
H., Rueckert, D.: The Alzheimer’s Disease Neuroimaging Initiative: Fast and robust
multi-atlas segmentation of brain magnetic resonance images. Neuroimage (2009)

11. Lotjonen, J., Kivisto, S., Koikkalainen, J., Smutek, D., Lauerma, K.: Statistical
shape model of atria, ventricles and epicardium from short- and long-axis MR
images. Med. Image Anal. 8(3), 371–386 (2004)

12. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-Their
training and Application. Comput. Vis. Image Underst. 61, 38–59 (1995)

13. Perperidis, D., Mohiaddin, R., Rueckert, D.: Construction of a 4D statistical atlas
of the cardiac anatomy and its use in classification. In: Int. Conf. Med. Image
Comput. Comput. Assist. Interv., vol. 8(Pt 2), pp. 402–410 (2005)

14. Laaksonen, R., Katajamaa, M., Paiva, H., Sysi-Aho, M., Saarinen, L., Junni, P.,
Lutjohann, D., Smet, J., Van Coster, R., Seppanen-Laakso, T., Lehtimaki, T.,
Soini, J., Oresic, M.: A systems biology strategy reveals biological pathways and
plasma biomarker candidates for potentially toxic statin-induced changes in muscle.
PLoS One 1, e97 (2006)

15. Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., Raetz, C.R., Shimizu,
T., Spener, F., van Meer, G., Wakelam, M.J., Dennis, E.A.: Update of the LIPID
MAPS comprehensive classification system for lipids. J. Lipid Res. 50(Suppl. S9-14)
(2009)

Searching for Linear Dependencies 243

16. Castelo, R., Roverato, A.: Reverse engineering molecular regulatory networks from
microarray data with qp-graphs. J. Comput. Biol. 16(2), 213–227 (2009)

17. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R
Statist. Soc. B 67(2), 901–920 (2005)

18. Jain, R.K.: Ridge regression and its application to medical data. Comput. Biomed.
Res. 18(4), 363–368 (1985)

The Support Vector Tree

Antti Ukkonen

HIIT, Helsinki University of Technology�

antti.ukkonen@hiit.fi

Abstract. Kernel based methods, such as nonlinear support vector ma-
chines, have a high classification accuracy in many applications. But
classification using these methods can be slow if the kernel function is
complex and if it has to be evaluated many times. Existing solutions to
this problem try to find a representation of the decision surface in terms
of only a few basis vectors, so that only a small number of kernel evalua-
tions is needed. However, in all of these methods the set of basis vectors
used is independent of the example to be classified. In this paper we pro-
pose to adaptively select a small number of basis vectors given an unseen
example. The set of basis vectors is thus not fixed, but it depends on the
input to the classifier. Our approach is to first learn a non-sparse kernel
machine using some existing techique, and then using training data to
find a function that maps unseen examples to subsets of the basis vectors
used by theis kernel machine. We propose to represent this function as a
binary tree, called a support vector tree, and devise a greedy algorithm
for finding good trees. In the experiments we observe that the proposed
approach outperforms existing techniques in a number of cases.

1 Introduction

Classification is a fundamental problem in machine learning. Typical research
on classification methods concentrates on improving either the scalability of
the learning algorithm, or accuracy of the resulting classifier, or both. These
properties are important problems in most, if not all applications. However, in
some cases the running time of the classifier itself can be of importance. Speech
recognition and packet classification in IP networks are classical examples of ap-
plications where it is crucial that classification can be carried out in “real time”.
Another example are information retrieval systems that use machine learning al-
gorithms to classify documents to relevant and non-relevant ones. If the classifier
is applied to every document that match a given query, a single evaluation of the
classifier has to be very fast, as there can be tens of thousands of such documents.
In such cases it is thus necessary to resort to relatively simple classifiers.

However, we might obtain a better classification accuracy with kernel or en-
semble based methods that are computationally slower. In this paper we study

� The work was conducted while the author was visiting Universitat Pompeu Fabra /
Yahoo Research Barcelona.

T. Elomaa et al. (Eds.): Ukkonen Festschrift, LNCS 6060, pp. 244–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Support Vector Tree 245

the problem of speeding up classification using kernel machines. We use the non-
linear support vector machine (SVM) [23] as an example, but our approach is
applicable to any classifier that uses a similar decision rule. In particular, we can
consider any algorithm where the decision is based on the following sum:

class(x) = sign
(∑

(sj ,aj)∈S

ajg(sj,x) + θ
)
. (1)

The set S together with the function g represent the classifier. Evaluating this
sum can be slow if the set S is large, and if the function g is computationally
complex. One solution is to explicitly restrict the size of S when learning the
classifier. This is a common approach, as it can also result in faster learning
algorithms. The idea we propose in this paper is rather different. Instead of
computing the sum in Equation 1 over the entire set S, we compute it over the
set f(x) ⊂ S that depends on the example x we are classifying.

We consider the following approach: First we find the set S representing a
kernel based classifier, such as an SVM. This can be done using any standard
algorithm. Given S we learn a function f that maps any given example x to
a subset f(x) ⊂ S. This function can be learned either with the same training
data that were used to find the set S, or using a different set of examples. When
classifying x, we compute the sum in Equation 1 only over the basis vectors
in f(x). To represent the function f , we propose a binary tree that induces a
disjoint partition of the feature space. Examples belonging to the same region
are mapped to the same subset of S. We call this tree the support vector tree.

The rest of this paper is structured as follows: This section concludes with
a discussion of related work and the detailed contributions of this article. In
Section 2 we give a general definition of the problem, while the support vector
trees are described in Section 3. Finding an optimal tree is likely to be hard,
and in Section 4 we propose a greedy heuristic with polynomial running time
that finds good trees in practice. In the experiments (Section 5) we compare our
method with recent related work, and Section 6 is a short conclusion.

1.1 Related Work

Kernel machines and in particular SVMs [23] have been studied considerably
for the past fifteen years. A complete review of this work is obviously beyond
the scope of this paper. However, we try to mention most articles that are rele-
vant considering the main objective of this paper: speeding up classification with
SVMs. Also, for the basics of SVM learning we recommend the excellent tutorial
by Burges [4], as we do not discuss these here.

Finding sparse SVMs is an old and well studied problem. For interesting initial
work on the topic we refer the reader to [5,3]. Burges and Schölkopf [5] devise a
post-processing algorithm for finding a reduced set of basis vector given the S
of support vectors. Most of the approaches that followed differ from [5] and our
paper by formulating a version of the SVM learning problem that attempts to
directly find a sparse solution. Examples of older work on this kind of techniques

246 A. Ukkonen

include [20], [11], [22], and [19]. More recently, in [24] Wu et. al. discuss another
direct method for building sparse kernel machines. They report experimental
results where the accuracy of the full SVM is in some cases achieved using only
a very small fraction (5%) of the original support vectors. Unlike other related
work [8] proposes an ensemble-like method.

A recent paper that studies the problem of sparse SVM learning is [16]. While
the main motivation for [16] seems to be making SVM training more scalable,
the proposed algorithm also has the property of giving solutions that can have a
considerably smaller number of support vectors without a significant decrease in
accuracy. In the experiments of [16] it is shown that the number of basis vectors
can be reduced by two orders of magnitude without affecting the accuracy of
the resulting classifier. This is similar to the results in [24]. Another interesting
property of [16] is that the set S may contain vectors outside the training data.
We compare our method against the algorithm proposed in [16].

Most of the methods for sparse SVM learning let the learning algorithm au-
tomatically determine the number of support vectors. However, in some appli-
cations it is useful to be able to set the desired number of support vectors in
advance. An algorithm that admits this is proposed in [10]. Also the method we
describe here allows the “budget” to be specified in advance, as do the methods
of [24] and [16].

1.2 Contributions of This Paper

– We propose a method to speed up classification using kernel machines by
using only a subset of support vectors. This subset is a function of the
example to be classified.

– We propose a method called the support vector tree to efficiently select the
support vectors given an unseen example. The method resembles a decision
tree but differs on a number of important aspects.

– We propose a greedy algorithm for learning a support vector tree given
training data. An analysis based on the Master theorem [9] shows that the
running time of this algorithm is at least of order O(n3) where n is the size
of the training data.

– We describe experiments where the support vector tree is compared with a
classical nonlinear SVM and a state-of-the art algorithm for learning sparse
SVMs on a number of benchmark data sets.

2 Problem Definition

We continue with some formal definitions. Let Ω be a universe of objects. Usually
we let Ω = R

n, but the proposed method is to a large extent oblivious to the
type of input examples. Let S ⊂ Ω × R be a set of objects from Ω together
with a weight associated with each object. That is, we have S = {(sj, aj)}mi=1.
Moreover, denote by g : Ω × Ω → R a function mapping pairs of objects from
Ω to the set of reals. We can think that the set S represents for example a

The Support Vector Tree 247

nonlinear SVM. The function g is the kernel function, and the (sj , aj) pairs are
the support vectors and their weights. We consider classifiers where an example
x ∈ Ω is assigned to the class +1 or −1 depending on the sign of the sum in
Equation 1.

Using this sum to classify a new example x requires m evaluations of the
function g. This may be a problem in some applications if the set S is large
and computing g is slow. This can happen if g is e.g. a string kernel [18,21].
As a remedy, most previous approaches to speed up classification with kernel
machines look for sparse solutions to the learning problem. Roughly put, the
idea is to find a set S′, so that |S′| � |S|, and

∑
(s′j ,bj)∈S′

bjg(s′j ,x) ≈
∑

(sj ,aj)∈S

ajg(sj,x).

A common property of the previous approaches is thus that all input instances
are classified using the same set S′. However, it is easy to imagine that if S′ is
selected separately for each unseen example x, we may obtain a better approx-
imation, and possibly need a smaller number of evaluations of the function g.
More precisely, instead of computing the sum over a fixed set S′ when classifying
x, we compute it over a set S′ that depends on the input x. We express this idea
more formally in the rest of this section.

Let S and g be as defined above, and let D ⊂ Ω be a set of input examples.
The examples in D can be labeled or unlabeled. Furthermore, let Φ be a family
of functions that map objects from the set Ω to subsets of the set S. The general
formulation of our problem is as follows:

Problem 1. Given the dataD={x1, . . . ,xn}, the set S={(s1, a1), . . . , (sm, am)},
the function g, and the family of functions Φ, find the function f ∈ Φ that
minimizes the cost

∑
xi∈D

(∑
(sj ,aj)∈f(xi)

ajg(sj,xi) −
∑

(sj ,aj)∈S

ajg(sj ,xi)
)2

︸ ︷︷ ︸
c(xi)

. (2)

Note that we are approximating the sum instead of only its’ sign. There are
two reasons for this. First, we expect this to better retain the generalization
ability of the resulting classifier. Second, in some applications we are not only
interested in the sign, but also the exact value of the sum. This is the case for
instance if the kernel machine is to be used for ranking [13].

Clearly Problem 1 is under-constrained in the sense that if the family Φ is
not chosen carefully, we may end up with a trivial solution that simply maps
every x ∈ Ω to the set S. This is not meaningful considering that we want to
reduce the number of evaluations of the function g. Therefore, the problem is
interesting only if we restrict the kinds of functions Φ may contain.

From a practical standpoint we are interested in functions f such that |f(x)| ≤
k for all x for some fixed k. To solve Problem 1, we can consider each xi ∈ D

248 A. Ukkonen

separately, and for each find a subset S′ of S, |S′| ≤ k, that minimizes c(xi).
This can be seen as a variant of the NP-complete subset-sum problem, where
the question is to find a subset of a given set A of numbers that sum up to a
given number B [12]. In our case we have A = {ajg(sj) | (aj , xj) ∈ S} and
B =

∑
a∈A a. (subset-sum is usually defined for integers. We can scale and

subsequently round the values in XD,S so that the input is integer valued.)
Finding an optimal f(xi) is thus unlikely to be easy. And even if we could find
the optimal subset for each instance in the training data, we still need to be
able to use the function f with unseen examples. One solution would be to store
all of D together with the f(xi)s, and for an example x �∈ D let f(x) = f(x∗)
where x∗ = argminxi∈D dist(xi,x). This means, however, that we have to solve
a nearest neighbor query when evaluating f(x).

The proposed method can be of practical interest only if computing f(x) is
considerably faster than evaluating the function g a number of times. Therefore,
we must restrict ourselves to functions that can be computed very efficiently.
The family of functions we consider in this paper is discussed next.

3 Tree Based Partitioning of the Input Space

In this paper we consider functions f that can be represented as binary trees.
These trees partition the feature space to disjoint subsets, and provide an efficient
means to locate an unseen example x in the subset it belongs to. Each subset of
the feature space uses a different set of support vectors. The concept is somewhat
similar to the decision tree classifier, but it’s implementation and use are quite
different.

3.1 Basic Definitions

Let T be a binary tree, and denote by N a node of T . With every node N is
associated a pair (a, s) ∈ S. The node score of N given by aNg(x, sN), where
aN ∈ R and sN ∈ Ω are the values associated with N , and g is e.g. a kernel
function. The set f(x) is found by following a path from the root of T to a leaf
node. Based on the value of the node score at a node N we enter either the
left or right subtree of N until a leaf node is reached. When this happens, we
sum the node scores on the path from the root to the leaf, and use this as an
approximation of the sum in Equation 1. There are some aspects to this that
should be emphasized:

1. Unlike with decision and regression trees, branching is not based on the value
of a feature, but on the node score aNg(x, sN). This means the partition of
the feature space induced by the tree is not in general the disjoint union of
axis-aligned (hyper)rectangles.

2. The value computed by the tree is the sum of the node scores on the path
from the root to a leaf node. This is in contrast to regression trees where the
output is simply a value stored at each leaf. A consequence of this is that
two examples, x1,x2 ∈ Ω, that both follow the same path and hence end up
at the same leaf, may still produce considerably different output values.

The Support Vector Tree 249

We continue with the definition of the support vector tree T .

Definition 1. A support vector tree T is the tuple (N , R, l, r), where N is a set
of nodes, R ∈ N is the root node of the tree, and l and r are functions mapping
the set N onto {N ∪ ∅}. Given a node N ∈ N , l(N) and r(N) are the root
nodes of the left and right subtrees of N , respectively. To each node N ∈ N is
associated three values: tN ∈ R, aN ∈ R, and sN ∈ Ω.

Using T we find the set f(x) by collecting all (s, a) pairs that are associated with
nodes on a path from the root of T to a leaf node. At every node N the path
goes either in the left or right subtree depending on the value aNg(x, sN). If
this value is less or equal to the node-specific threshold tN the path continues to
the left subtree, otherwise it continues to the right subtree. Note that instead of
computing the set f(x), it is more convenient to evaluate the sum in Equation 2
directly over the tree T . We define the following:

Definition 2. Let g : Ω × Ω → R be a function, denote by T = (N , R, l, r) a
support vector tree as defined above, and let x ∈ Ω. Denote by scoreN (x) the
node score of x at node N ∈ N . We let scoreN (x) = aNg(x, sN). Denote by
valueN (x) the value of x in the subtree of T rooted at node N ∈ N . We let

valueN (x) =

⎧⎨
⎩

0 if N = ∅,
scoreN (x) + valuel(N)(x) if scoreN (x) ≤ tN ,
scoreN (x) + valuer(N)(x) if scoreN (x) > tN .

Finally, denote by T (x) the value of x in the entire tree T . We let T (x) =
valueR(x), where R is the root node of T .

Definition 1 does not restrict the size of T in any way. To reduce the number of
evaluations of the function g, we must constrain the height of the tree. Denote
by Φh

T the set of trees where the length of the longest path from the root to a
leaf is at most h. The general problem we discuss in the remaining of this paper
is the following.

Problem 2. Given the training data D ⊂ Ω, the set S ⊂ Ω×R, and the function
g, find the tree T ∈ Φh

T s.t.,

∑
x∈D

(T (x) −
∑

(sj ,aj)∈S

ajg(sj,x)
)2 (3)

is minimized.

Note that if D = {x}, i.e., D contains only one example x, the solution to
Problem 2 is a path. Clearly no branching is needed for a single input instance.
As discussed above, this problem is related to subset-sum, and hence it is
unlikely that efficient solutions exist for Problem 2. In this paper we consider a
greedy heuristic that leads to well performing trees in practice.

250 A. Ukkonen

3.2 A Simple Exact Algorithm for Balanced Trees

Before presenting the main algorithm of this paper, we briefly describe and
analyze the trivial algorithm for solving Problem 2 exactly in the special case
where the set Φh

T is further restricted to contain only balanced trees, meaning
that the number of training examples belonging to the left subtree of a node
is the same as the number belonging to the right subtree. For the remaining
discussion it is convenient to consider the following matrix:

Definition 3. Given the data D = {x1, . . . ,xn}, the set S = {(s1, a1), . . . ,
(sm, am)}, and the function g, denote by XD,S the n×m matrix with

XD,S
ij = ajg(xi, sj).

The ith row of XD,S is denoted by XD,S
i· , and the jth column of XD,S is denoted

by XD,S
·j . Moreover, given the sets I and J of integers, denote by XD,S

I,J the
sub-matrix of XD,S containing the rows specified by I and columns specified
by J .

Let rD,S be the vector of row sums of XD,S , and denote by rD,S
i the ith com-

ponent of rD,S . That is, we have rD,S
i =

∑
j XD,S

ij . In the following we write
simply X and r if D and S are clear from the context or otherwise irrelevant.
Clearly for the ith item in D the second sum in Equation 3 is precisely ri.

Expressed in terms of the matrix X, the learning task of Problem 2 is to
approximate the vector r with appropriate subsets of the columns. It is useful
to think that to every node N of T is associated the matrix XI,·, where I is
a subset of the row indices of X. To learn T we must find an optimal split for
the rows of XI,· at each node N . Since the jth column of XD,S corresponds to
the pair (aj , sj) ∈ S, we can parameterize this optimization problem with two
parameters per node N : the threshold tN and column jN . These define a split
of XI,· at node N .

Define the sets LI(tN , jN) andRI(tN , jN) so that LI(tN , jN)={i ∈ I | XijN ≤
tN} and RI(tN , jN) = {i ∈ I | XijN > tN}. Moreover, let P (N) denote the set
of nodes on the path from the root of a tree to the parent of node N . Using this,
we let

σ(N)i =
∑

N ′∈P (N)

XijN′ .

That is, σ(N)i is the value we use to approximate the ith row sum at the parent
node of N . The cost of an optimal tree rooted at node N that is associated with
the matrix XI,· is given by the following equation:

c(N, I) =

⎧⎨
⎩

mint,j

{
c
(
l(N), LI(t, j)

)
+ c
(
r(N), RI(t, j)

)}
if XI· should be spilt,

minj

{∑
i∈I

(
σ(N)i + Xij − ri

)2} otherwise.
(4)

The cost of the tree T is c(R, {1, . . . , n}), where R is the root of T and n the
number of rows in X. A node N should not be split if |P (N)|+ 1 = h, but also

The Support Vector Tree 251

in the case where the cost of splitting is larger than not splitting. The latter
condition implies, that even after we have split the node N we should check if a
solution where N is not split has a lower cost.

The optimal tree for a given matrix X is thus found by considering all possible
splits (defined by t and j), and finding the optimal trees for the sub-matrices
XLI(t,j) and XRI(t,j). If we require that the tree is balanced at node N , we only
have to optimize over j, because t is implicitly given by the requirement that
|LI(t, j)| = |RI(t, j)|. A rough outline for an exact algorithm for solving this
restricted variant of the problem is shown in Algorithm 1.

Algorithm 1. exact-balanced-tree
Input: set of integers I

1: if I should not be split then
2: return “cost of I”
3: end if
4: for j = 1 to number of columns in X do
5: t← median of column XI,j

6: cj ← exact-balanced-tree(LI(t, j)) + exact-balanced-tree(RI(t, j))
7: end for
8: return min{c}

Assuming that |I| = n, and that X hasm columns, we can express the running
time of Algorithm 1 with the recurrence

T (n) ≤ 2mT (
n

2
) + cmn. (5)

This holds since we make 2m recursive calls to exact-balanced-tree with inputs
of size n/2, and we must find the median (an O(n) operation) m times. Using
the Master method [9] it is easy to show that the running time of Algorithm 1
(in terms of n) is of order O(nlog n). This makes exact-tree a quasi-polynomial
time algorithm. It is slower than polynomial, but not exponential. Also note that
the exact solution with unbalanced trees is even harder, because we also have
to optimize over t. Of course this simple analysis does not rule out the existence
of efficient solutions for Equation 4, but it suggests that they are not trivial to
devise. Therefore, our aim in this paper is not to find trees that are optimal in
terms of Equation 4, but instead we propose a heuristic for finding good trees
using a greedy algorithm.

4 An Inexact Greedy Algorithm

In this section we present a greedy algorithm for learning a tree T given the
matrix XD,S . The algorithm contains parts of which it is not straightforward
to analyze the running time, but we will argue in Section 4.2 that if the splits
made by the algorithm are not very imbalanced (that is, the sizes of LI(t, j) and
RI(t, j) are not very different), it’s running time is of order O(n3).

252 A. Ukkonen

Algorithm 2. build-sv-tree
Input: matrix X, vector r, column index j
Output: the triple (N, Tl, Tr)
1: if stopping-condition-met(X, r) then
2: return ((j,−1), ∅, ∅)
3: end if
4: (t, jl, jr)← find-optimal-split(X, r, j)
5: L← {i : Xij ≤ t}
6: R← {i : Xij > t}
7: Tl ← build-sv-tree(XL·, (rL −XLjl), jl)
8: Tr ← build-sv-tree(XR·, (rR −XLjr), jr)
9: return ((j, t), Tl, Tr)

4.1 Algorithm Description

On a high level the greedy algorithm is similar to the exact one discussed above.
Each call to the algorithm finds a split of X that is in some sense optimal,
and then recursively processes the two resulting sub-matrices. However, now we
consider a somewhat different notion of optimality of a split induced by t and
j. With the exact algorithm an optimal split is defined in terms of the optimal
costs of the resulting sub-matrices, as can be seen in Equation 4. In particular,
Alg. 1 computes the optimal subtrees rooted at a node N to evaluate the cost
of splitting X along the jth column. The greedy algorithm takes a “myopic”
approach. It only considers subtrees of size 1, meaning that they consist of only
one leaf node each. In other words, we compute the cost of a split at node N
under the restriction that l(N) and r(N) will not be split further, even if these
actually are split later.

For any vector x, we have ||x|| = xTx. Let LI(t, j) and RI(t, j) be defined as
above, and suppose for a moment that we are given the column j. We define the
cost of a “greedy split” as

c(t, jl, jr) = ||XLI(t,j),jl
− rLI(t,j)||+ ||XRI (t,j),jr

− rRI(t,j)||, (6)

where jl and jr are the columns that are associated with the left and right leafs,
respectively. This is almost the same as Equation 5 if we assume that the child
nodes of the current node are not split further. Another difference is that we
are only optimizing over t, this time the parameter j was assumed to be given
a priori. This may seem strange at first, but it is in fact quite natural: When
splitting a node N using the cost in Equation 6, we must find the parameters
jl and jr. These are used as the splitting-column when processing l(N) and
r(N). The parameter jN is thus already found when splitting the parent node
of N . Pseudo-code of the greedy heuristic incorporating this principle is shown
in Algorithm 2.

To find the optimal split, we must thus find the threshold t, and the column
indices jl and jr. In theory there are O(nm2) different combinations for an input
matrix X of size n × m. Iterating over all of these is obviously not scalable.

The Support Vector Tree 253

Algorithm 3. find-optimal-split
Input: matrix X, vector r, column index j
Output: the triple (t, jl, jr)
1: t← random element of X·j
2: c←∞
3: while cost c is decreasing do
4: (jl, jr, c)← optimize-columns(X, r, j, t)
5: (t, c)← optimize-threshold(X, r, j, jl, jr)
6: end while
7: return (t, jl, jr)

Algorithm 4. optimize-columns
Input: matrix X, vector r, column index j, threshold t
Output: triple (jl, jr, c)
1: L← {i : Xij ≤ t}
2: R← {i : Xij > t}
3: jl ← argminj′ ||XLj′ − rL||2
4: jr ← argminj′ ||XRj′ − rR||2
5: c← ||XLjl − rL||+ ||XRjr − rR||
6: return (jl, jr, c)

However, we can resort to a local optimization technique, that resembles the
EM-algorithm and is of considerably lower, albeit unknown, complexity. Note
that finding jl and jr is easy if we are given the value of t. In that case we
simply have to try out the O(m) different alternatives. Likewise, given jl and jr
it is easy to find an optimal value for t by checking all n possible choices. We
can thus alternatively solve for jl and jr given t, then solve for t given jl and
jr, and continue this until convergence. The method is outlined in Algorithm 3.
Algorithms 4 and 5 show the pseudo-code for the two subroutines in find-optimal-
split.

4.2 Analysis of the Greedy Algorithm

To analyze the complexity of build-sv-tree, we resort again to the Master theo-
rem [9]. This time the recurrence is

T (n) ≤ 2T (
n

b
) + ch(n,m)(m+ 1)n︸ ︷︷ ︸

q(n)

,

where h(n,m) is a function that bounds the number of iterations of the loop on
lines 3–5 in Algorithm 3. The optimize-columns algorithm (Alg. 4) runs in time
O(nm), while optimize-threshold (Alg. 5) can be implemented to run in time
O(n). Since we are not enforcing the split to be balanced, we use the parameter
b in the analysis. Also, we assume that m = n, which corresponds to the case
where all training examples end up as support vectors and the same data is

254 A. Ukkonen

Algorithm 5. optimize-threshold
Input: matrix X, vector r, column indices j, jl, jr

Output: pair (t∗, c∗)
1: t∗ ← −1, c∗ ←∞
2: for h = 1 to number of rows in X do
3: t← Xhj

4: L← {i : Xij ≤ t}
5: R← {i : Xij > t}
6: c← ||XLjl − rL||+ ||XRjr − rR||
7: if c < c∗ then
8: c∗ ← c, t∗ ← t
9: end if

10: end for
11: return (t∗, c∗)

used to find T . This way q(n) is of order n2+γ , where γ is dependant on the
complexity of the function h. That is, if h was of order O(n) we would have
γ = 1, for example.

To use the Master theorem we must compare q(n) with the function nlogb 2+ε.
There are three cases based on the value of ε that result in different running
times for the algorithm. More precisely, we study for what values of b, γ, and ε
it holds that n2+γ = nlogb 2+ε. Solving this for ε gives

ε =
(2 + γ) log2 b− 1

log2 b
. (7)

Now we consider three possible cases for ε, that is, ε < 0, ε = 0, and ε > 0. By
setting Equation 7 equal to zero and simplifying we obtain log2 b = (2 + γ)−1,
or b = 2

1
(2+γ) . This gives us a relationship between b and γ that we can use to

distinguish the different cases of the Master theorem:

– Case 1: ε < 0⇔ b < 2
1

(2+γ) , which implies T (n) = Θ(nlogb 2).
– Case 2: ε = 0⇔ b = 2

1
(2+γ) , which implies T (n) = Θ(nlogb 2 log2 n).

– Case 3: ε > 0 ⇔ b > 2
1

(2+γ) , which implies T (n) = Θ(q(n)) if the regularity
condition holds as well.

There is thus a threshold for b, the value of which will depend on γ. Of course
the actual value of b will vary, as different inputs lead to different splits. Some
of these will be more balanced (b close to 2) than others (b close to 1). The
value of γ depends on the convergence of the optimization in Algorithm 3. We
do not know the exact rate of convergence in terms of n and m. However, based
on empirical observations it is realistic to assume that for most inputs we have
0 < γ ≤ 1. I.e., h(n,m) is at most linear in n, but possibly sublinear.

Letting γ = 1 gives us the threshold 21/3 ≈ 1.26. This corresponds to an
unbalanced split where roughly 80 percent of the input end up in the same
subtree. Case 1 of the Master theorem concerns the case where the split is

The Support Vector Tree 255

even more unbalanced, while Case 3 covers more balanced splits. To analyze
the deviation of b from the threshold 21/3, we introduce a parameter β and let
b = 21/3+β , so that β < 0, β = 0, and β > 0 correspond to the cases 1, 2, and
3, respectively. Note that for the degree of the polynomial in cases 1 and 2 we
obtain logb 2 = (1

3 + β)−1.
In Case 2 (β = 0) the running time of Alg. 2 is therefore simply Θ(n3 log2 n).

For Case 1 (β < 0) we obtain a running time of Θ(n
1

(1/3+β)), which is already
Θ(n6) if we let β = − 1

6 . This makes sense as very unbalanced splits are bound to
slow down the algorithm considerably. And even with balanced splits represented
by Case 3 (β > 0), the running time is bounded by Θ(q(n))1, where q(n) is a
polynomial of degree 3. That is, given that we assumed γ = 1, this type of
analysis results in a cubic running time of Algorithm 2 even in the “best” case.
However, it is still a considerable improvement over the quasi-polynomial exact
algorithm discussed in Section 3.2.

4.3 Scaling the Columns of XD,S

We can make a small modification to the algorithm that should improve it’s
performance. Instead of approximating rD,S directly with the contents of XD,S ,
we can scale the values on the columns to minimize the difference to rD,S . More
precisely, consider the lines 3 and 4 in Algorithm 4. The optimal columns jl and
jr are found by minimizing the error ||X·j−r|| subject to j. We add an additional
parameter c, so that the new optimization problem becomes minj,c ||cX·j − r||.

Moreover, for a given j it is easy to find the optimal c. To see this, recall that
we have ||cX·j − r|| = (cX·j − r)T(cX·j − r). Setting the 1st derivative of this
with respect to c to zero gives

c =
XT

·jr
XT

·jX·j
.

This obviously also introduces a new parameter, cN , to each node N of T ,
and the score of node N for an unseen example x ∈ Ω is now computed as
scoreN (x) = cNaNg(x, sN). The algorithm we use in the experiments makes use
of this additional heuristic.

5 Empirical Evaluation

We continue with empirical results. Recall that our main motivation is to speed
up classification. Hence we are mostly interested in cases where the support
vector tree outperforms either a linear SVM or a sparse SVM.

More precisely, we use five methods in our experiments: a linear SVM, a
nonlinear SVM using the RBF kernel, a support vector tree based on the non-
linear SVM, and two variants of the Cutting Plane Subspace Pursuit (cpsp)
1 The regularity condition required by the theorem is also trivially satisfied for b >

21/3.

256 A. Ukkonen

Table 1. Accuracies and number of support vectors of the various methods on dif-
ferent benchmark data sets. The best performing algorithm in the set {l-svm, sv-tree,
cpsp(tr)} is indicated in bold.

dataset dummy l-svm svm sv-tree cpsp cpsp(tr)
heart 0.56 0.82 0.82 0.75 0.84 0.84

60 8.2 9 9
thyroid 0.71 0.89 0.96 0.92 0.92 0.90

13 9.3 10 10
breastcancer 0.70 0.70 0.71 0.70 0.73 0.73

120 9.1 10 10
waveform 0.67 0.87 0.90 0.86 0.90 0.88

229 9.5 10 10
german 0.70 0.76 0.75 0.70 0.76 0.76

373 10.9 11 11
image 0.57 0.85 0.97 0.89 0.89 0.87

213 11.9 12 12
diabetis 0.65 0.77 0.77 0.73 0.77 0.77

249 10.0 11 11
ringnorm 0.50 0.75 0.98 0.95 0.84 0.74

152 10.5 11 11
splice 0.51 0.83 0.89 0.68 0.86 0.77

588 11.4 12 12
twonorm 0.50 0.97 0.98 0.91 0.98 0.97

263 9.5 10 10
banana 0.54 0.55 0.89 0.88 0.86 0.88

151 9.2 10 10

algorithm [16]. The first cpsp variant may use arbitrary basis vectors in the set
S, while the second one is restricted to choose these from the training data in the
style of a classical SVM. As in [16], we denote the 2nd variant by cpsp(tr). To
learn the linear and nonlinear SVM we use LibSVM [7], while the cpsp algorithm
is implemented in the svm-perf package [14,15,16]. To compare the methods we
use standard benchmark data sets that are publicly available2. All cases are
binary classification problems.

We consider the cpsp(tr) a more interesting comparison as cpsp, since our trees
are also restricted to use only examples from the training data. It is obvious
from the experiments in [16] and those shown here that the use of arbitrary
basis vectors is in many cases beneficial. However, efficient implementations of
this approach seem to be rather nontrivial to implement for arbitrary kernel
functions as cpsp requires solving the pre-image problem [17]. While it is true
that pre-images can be found even for structured objects such as strings [1] and
graphs [2], the sv-tree can be seen as a more powerful approach as it is oblivious
to the representation of the input examples given any suitable kernel function.
For instance, svm-perf can only use RBF kernels with the cpsp algorithm. Hence

2 http://ida.first.fraunhofer.de/projects/bench/

The Support Vector Tree 257

it is more interesting to see if the sv-tree can beat the linear SVM, and achieve
at least the performance of the cpsp(tr) algorithm.

Instead of explicitly giving a maximum height for the support vector tree, we
use a stopping criteria that is based on the size of the input. The call to stopping-
condition-met on line 1 in Algorithm 2 returns true if the number of rows in X is
less or equal to five. We could just as well use a stopping condition based on the
height of the tree. However, considering the size of a node has the advantage that
we do not split matrices with only a couple of rows, and conversely allow a node
to split when there is still enough data to work with. With both SVMs and cpsp
we use a grid-search to find good values for the regularization parameter C and
the parameter γ used by the RBF kernel. Furthermore, to have an interesting
comparison with the cpsp method, we set it’s budget equal to the average number
of kernel evaluations needed by the tree to classify a given test set.

Results for the accuracies and sizes of the model are given in Table 1. The
reported numbers are averages over 20 disjoint training-test splits. The 2nd
column shows the accuracy of a dummy classifier that simply assigns everything
in the test data to the class that was more common in the training data. Of the
studied algorithms the linear SVM is the simplest, and is the preferred choice
if classification speed is an issue. Indeed, in a few cases the accuracy of l-svm
is comparable with that of svm. When compared with the nonlinear SVM, the
sv-tree has a lower accuracy with all data sets, which is to be expected. With
the ’heart’ and ’splice’ data sets the sv-tree seems to especially have problems.
But the sv-tree in fact outperforms l-svm and cpsp(tr) a number of times. This
is the case with the ’thyroid’, ’image’, ’ringnorm’, and ’banana’ data sets. Also
note that in many cases where cpsp(tr) outperforms sv-tree, the linear SVM
outperforms cpsp(tr), and would hence be the method of choice to speed up
classification. With the chosen stopping condition for the sv-tree, the number of
kernel evaluations is with these data sets reduced by one order of magnitude.

6 Conclusion

We have presented an approach to speed up classification with kernel machines
based on adaptive selection of basis vectors given the example to be classified.
Despite the large body of existing literature on kernel machines this idea seems
to be, to the best of our knowledge, novel. To quickly find the subset of basis
vectors to be used in the decision rule, we propose the use of a binary tree,
the support vector tree, that induces a disjoint partition of the feature space.
To learn this tree we propose a greedy heuristic that can result in suboptimal
trees but runs in polynomial time. Our experiments suggest that the support
vector tree can in some cases outperform existing state-of-the-art algorithms for
learning sparse SVMs.

It must be noted that the idea proposed here is not specific to kernel machines.
The same approach can be employed also in case of ensemble classifiers. Even
though the weak learners (or base classifiers) in general are fast to compute, there
can be several hundreds of them. This can become a bottleneck for e.g. ensemble

258 A. Ukkonen

method based document ranking functions. For instance in [6] the evaluation of
the ensemble is interrupted when it becomes unlikely that the outputs of the
remaining weak learners would significantly change the already computed score
of the document being ranked. Our method could be applied as such in this
setting by replacing kernel computations with evaluations of the weak learners.

Obvious future research concerns improved algorithms for finding trees with
better accuracy. Alternatively we can consider other representations of the func-
tion f . One problem with the current approach is that we must first learn a
kernel machine using some legacy algorithm. Instead of a post-processing algo-
rithm, we can also devise algorithms that find a tree directly based on training
data. Finally, a more detailed experimental evaluation of the current algorithm
using large real world data sets is also of interest.

References

1. Bakir, G., Weston, J., Schölkopf, B.: Learning to find pre-images. In: Advances in
Neural Information Processing Systems (NIPS 2003), vol. 16 (2003)

2. Bakir, G., Zien, A., Tsuda, K.: Learning to find graph pre-images. In: Pattern
Recognition, 26th DAGM Symposium, pp. 253–261 (2004)

3. Burges, C.: Simplified support vector decision rules. In: Machine Learning, Pro-
ceedings of the Thirteenth International Conference (ICML 1996), pp. 71–77 (1996)

4. Burges, C.: A tutorial on support vector machines for pattern recognition. Knowl-
edge Discovery and Data Minnig 2(2), 121–167 (1998)

5. Burges, C., Schölkopf, B.: Improving the accuracy and speed of support vector
machines. In: Advances in Neural Information Processing Systems, NIPS, vol. 9,
pp. 375–381 (1996)

6. Cambazoglu, B., Zaragoza, H., Chapelle, O.: Early exit optimizations for addi-
tive machine learned ranking systems. In: Proceedings of the Third International
Conference on Web Search and Web Data Mining, WSDM 2010 (to appear, 2010)

7. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001),
http://www.csie.ntu.edu.tw/~cjlin/libsvm

8. Chen, J.-H., Chen, C.-S.: Reducing SVM classification time using multiple mir-
ror classifiers. IEEE Transactions on Systems, Man, and Cybernetics – Part B:
Cybernetics 34(2), 1173–1183 (2004)

9. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd
edn. The MIT Press, Cambridge (2001)

10. Dekel, O., Singer, Y.: Support vector machines on a budget. In: Advances in Neural
Information Processing Systems, Proceedings of the Twentieth Annual Conference
on Neural Information Processing Systems, vol. 19, pp. 345–352 (2006)

11. Downs, T., Gates, K.E., Masters, A.: Exact simplification of support vector solu-
tions. Journal of Machine Learning Research 2, 293–297 (2001)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability – A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

13. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 133–142 (2002)

14. Joachims, T.: A support vector method for multivariate performance measures.
In: Proceedings of the International Conference on Machine Learning (ICML), pp.
377–384 (2005)

The Support Vector Tree 259

15. Joachims, T.: Training linear svms in linear time. In: Proceedings of the ACM
Conference on Knowledge Discovery and Data Mining (KDD), pp. 217–226 (2006)

16. Joachims, T., Yu, C.-N.J.: Sparse kernel svms via cutting-plane training. Machine
Learning 76, 179–193 (2009)

17. Kwok, J.T., Tsang, I.W.: The pre-image problem in kernel methods. IEEE Trans-
actions on Neural Networks 15(6), 1517–1525 (2004)

18. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-
sification using string kernels. Journal of Machine Learning Research 2, 419–444
(2002)

19. Nair, P.B., Choudhury, A., Keane, A.J.: Some greedy learning algorithms for sparse
regression and classification with mercer kernels. Journal of Machine Learning Re-
search 3, 781–801 (2002)

20. Osuna, E., Girosi, F.: Reducing the run-time complexity in support vector ma-
chines. In: Advances in Kernel Methods: Support Sector Learning. MIT Press,
Cambridge (1999)

21. Teo, C.H., Vishwanathan, S.: Fast and space efficient string kernels using suffix
arrays. In: Proceedings of 23rd International Conference on Machine Learning, pp.
929–936 (2006)

22. Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. Journal
of Machine Learning Research 1, 211–244 (2001)

23. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
24. Wu, M., Schölkopf, B., Bakir, G.: A direct method for building sparse kernel learn-

ing algorithms. Journal of Machine Learning Research 7, 603–624 (2006)

Author Index

Amir, Amihood 1
Apostolico, Alberto 34

Baeza-Yates, Ricardo 45
Besenbacher, Søren 62

Claude, Francisco 77
Crochemore, Maxime 92

Elomaa, Tapio 102

Fredriksson, Kimmo 114

Heliö, Tiina 232

Iliopoulos, Costas S. 92
Ito, Kimihito 130

Katainen, Riku 182
Koikkalainen, Juha 232
Kujala, Jussi 102
Kull, Meelis 147

Laaksonen, Antti 182
Landau, Gad M. 158
Lemström, Kjell 170
Levy, Avivit 1
Lötjönen, Jyrki 232

Mäkinen, Veli 182

Navarro, Gonzalo 77

Orešič, Matej 232

Pissis, Solon P. 92

Räihä, Kari-Jouko 196

Salinger, Alejandro 45
Salmela, Leena 210
Schwikowski, Benno 62
Seppänen-Laakso, Tuulikki 232
Söderlund, Hans 232
Stoye, Jens 62
Sutinen, Erkki 221
Sysi-Aho, Marko 232

Tarhio, Jorma 210
Tedre, Matti 221
Tretyakov, Konstantin 147
Tsur, Dekel 158

Ukkonen, Antti 244

Välimäki, Niko 182
Vilo, Jaak 147

Weimann, Oren 158

Zeugmann, Thomas 130
Zhu, Yu 130

	Front matter
	Chapter 1
	String Rearrangement Metrics: A Survey
	Introduction
	Motivation
	The String Rearrangement Model
	Formal Model Definition

	Independent Individual Moves
	The l_1 Rearrangement Distance
	The l_2 Rearrangement Distance
	The l_∞ Rearrangement Distance
	Independent Individual Moves Rearrangements: Summary

	External Process Rearrangement Systems
	The Unit Cost Model
	The Length Cost Model
	The Element Cost Model
	External Process Rearrangements: Summary

	Internal Process Rearrangement Systems
	The Bit Errors Definition
	Flipped Bits Errors
	The Faulty Bits Problem
	Internal Process Rearrangements: Summary

	Chapter 2
	Maximal Words in Sequence Comparisons Based on Subword Composition
	Structure, Similarity and Distance
	The Ubiquitous Maximal Subwords and Related Computations
	Conclusions

	Chapter 3
	Fast Intersection Algorithms for Sorted Sequences
	Introduction
	Related Work
	A Simple But Good Average Case Algorithm
	Double Binary Search
	Best and Worst Case Analysis
	Average Case Analysis
	Experimental Analysis
	Multiple Sequences

	Hybrid Algorithms
	Application to Query Processing in Inverted Indexes
	Context
	Sequence Lengths with Zipf's Distribution

	Concluding Remarks

	Chapter 4
	Indexing and Searching a Mass Spectrometry Database
	Background
	Problem Definition
	Lookup Algorithm
	Analysis of Lookup Algorithm

	Folding Algorithm
	Analysis of Folding Algorithm

	Clustering Algorithm
	Analysis of Clustering Algorithm
	Recursive Clustering

	Extensions
	Shared Peaks Intensities
	Mapping Peaks to Integers
	Tandem Mass Spectrometry

	Experiments
	Conclusion

	Chapter 5
	Extended Compact Web Graph Representations
	Introduction and Related Work
	Basic Concepts
	Compact Data Structures for Sequences
	Re-Pair Compression of Web Graphs
	Representing the Re-Pair Rules

	A Simple Representation Based on Binary Relations
	Combining Re-Pair with Binary Relations
	Representation
	Extracting Reverse Neighbors

	Guaranteeing Reverse Neighbor Retrieval Time
	Experimental Results
	Conclusions

	Chapter 6
	A Parallel Algorithm for Fixed-Length Approximate String-Matching with k-mismatches
	Introduction
	Basic Definitions
	Problem Definition
	The Bit-Vector-Mismatches Algorithm
	The Parallel-Bit-Vector-Mismatches Algorithm
	Experimental Results
	Conclusion

	Chapter 7
	Covering Analysis of the Greedy Algorithm for Partial Cover
	Introduction
	Minimum Set Cover and the Greedy Algorithm
	Covering Analysis of the Greedy Algorithm
	Application of the Analysis to Partial Cover
	Further Application of the Analysis
	Related Work
	Conclusion

	Chapter 8
	From nondeterministic suffix automaton to lazy suffix tree
	Introduction
	Preliminaries
	Basic Algorithm
	The Real Algorithm
	Final Touches
	Average Case Time

	Lazy Suffix Tree
	From Suffix Trie to Suffix Tree
	Sparse Suffix Trees

	Preliminary Experimental Results
	Final Remarks

	Chapter 9
	Clustering the Normalized Compression Distance for Influenza Virus Data
	Introduction
	Background and Theory
	Experiments and Results
	Influenza Viruses – The Data Set
	Results

	Conclusions

	Chapter 10
	An Evolutionary Model of DNA Substring Distribution
	Introduction
	Methods
	Evolutionary Model of DNA Regulatory Regions
	The Equilibrium Distribution
	Substring Distribution at Equilibrium

	Experiments
	Discussion

	Chapter 11
	Indexing a Dictionary for Subset Matching Queries
	Introduction
	A Haplotype Trie from a Genotype Dictionary

	An $O(nm+|\Sigma|^k n\log n)$ Time Construction
	An $O(nm+|\Sigma|^k n\log m)$ Time Construction
	An $O(nm+|\Sigma|^k n +|\Sigma|^{k/2} n\log (\min\{n,m\}))$ Time Construction
	Fractional Cascading

	Conclusion and Open Problems

	Chapter 12
	Transposition and Time-Scale Invariant Geometric Music Retrieval
	Introduction
	Related Work
	Matching Algorithms
	S1: Quest for Time Scaled Exact Occurrences
	S2: Quest for Time Scaled Partial Occurrences

	Conclusions

	Chapter 13
	Unified View of Backward Backtracking in Short Read Mapping
	Introduction
	Background

	New Pruning Mechanism
	Dynamic Programming and Backtracking
	Experiments
	ChIP-seq
	RNA-seq

	Chapter 14
	Some Applications of String Algorithms in Human-Computer Interaction
	Introduction
	Text Entry and Minimum String Distance
	Metrics for Evaluating Text Entry Techniques
	Text Entry by Eye Gaze

	Scan Paths and Shortest Common Supersequences
	Personal Reminescenses
	References

	Chapter 15
	Approximate String Matchingwith Reduced Alphabet
	Introduction
	Alphabet Transformations in String Matching
	Tuned Version of ABM
	Algorithm with Alphabet Reduction
	Experimental Results
	Comparison of Alphabet Reduction Techniques
	Comparison with Other Algorithms

	Conclusions

	Chapter 16
	ICT4D: A Computer Science Perspective
	Introduction
	Traditional ICT4D: Social Sciences Perspective for Evaluating ICT in Developing Contexts
	ICT4D Reborn: Computer Science Perspective for Designing Meaningful ICT
	The Art of Assembling Artifacts Using Contextual Inputs
	Towards a Functional ICT4D Design

	Interplay of Computer Science and ICT4D
	ICT4D as an Agent of Change in Computer Science Education

	Conclusions

	Chapter 17
	Searching for Linear Dependencies between Heart Magnetic Resonance Images and Lipid Profiles
	Introduction
	Methods
	Study Population
	Imaging
	Image Analysis
	Lipid Profiling
	Summary of Data Sets

	Results
	Correlations between Lipid Data and MRI Parameter Data
	Regression of Lipid Profiles on MRI Parameters
	Regression of Lipid Profiles on the Heart Surface Model
	Discussion
	Conflict of Interest

	Chapter 18
	The Support Vector Tree
	Introduction
	Related Work
	Contributions of This Paper

	Problem Definition
	Tree Based Partitioning of the Input Space
	Basic Definitions
	A Simple Exact Algorithm for Balanced Trees

	An Inexact Greedy Algorithm
	Algorithm Description
	Analysis of the Greedy Algorithm
	Scaling the Columns of XD,S

	Empirical Evaluation
	Conclusion

	Back matter

