
Lecture Notes in Computer Science 5971
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Matthias Müller-Hannemann
Stefan Schirra (Eds.)

Algorithm
Engineering
Bridging the Gap
between Algorithm Theory and Practice

13

Volume Editors

Matthias Müller-Hannemann
Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik
Von-Seckendorff-Platz 1, 06120 Halle, Germany
E-mail: muellerh@informatik.uni-halle.de

Stefan Schirra
Otto-von-Guericke Universität Magdeburg, Fakultät für Informatik
Universitätsplatz 2, 39106 Magdeburg, Germany
E-mail: stschirr@ovgu.de

Library of Congress Control Number: 2010931447

CR Subject Classification (1998): F.2, D.2, G.1-2, G.4, E.1, I.3.5, I.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-14865-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14865-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The systematic development of efficient algorithms has become a key technology
for all kinds of ambitious and innovative computer applications. With major
parts of algorithmic theory and algorithmic practice developing in different di-
rections since the 1970s a group of leading researchers in the field started about
15 years ago to coin the new paradigm “Algorithm Engineering”. Its major goal
is to bridge the gap between theory and practice.

This book is a collection of survey articles on different aspects of Algo-
rithm Engineering, written by participants of a GI-Dagstuhl seminar held during
September 3-8, 2006. Dorothea Wagner and Peter Sanders came up with the idea
for the seminar, and approached us to organize it. In general, the concept of the
GI-Dagstuhl seminars is to provide young researchers (mostly PhD students)
with the opportunity to be introduced into a new emerging field of computer
science. Based on a list of topics collected by the organizers, the participants pre-
pared overview lectures they presented and discussed with other participants at
the research seminar in Dagstuhl. Each contribution was elaborated afterwards
and carefully cross-reviewed by all participants.

Chapter 1 gives an introduction into the emerging field of Algorithm Engi-
neering and describes its main ingredients. It also serves as an overview for the
remaining chapters of the book.

The editing process took much longer than expected, partially due to the
fact that several aspects of Algorithm Engineering have never been written up
before, which gave rise to lengthy internal discussions. But for the major part
of the delay, the editors take their responsibility. Since the field of Algorithm
Engineering has developed rapidly since the seminar took place, we made an
effort to keep the contents up to date. Ideally, our book will be used as an
introduction to the field. Although it has not been written as a textbook, it may
well serve as accompanying material and as a reference in class.

As this book project now comes to an end, we are indebted to many people and
institutions. First of all, we would like to thank the Gesellschaft für Informatik
e.V. (GI) for their generous support of the GI-Dagstuhl seminar, funding the stay
of all participants at Schloss Dagstuhl. We thank the Schloss Dagstuhl Leibniz-
Zentrum für Informatik GmbH for their excellent workshop facilities and its
hospitality, which provided the basis for a successful seminar. Alfred Hofmann
and his team made it possible to smoothly publish this volume in the LNCS series
of Springer. Special thanks go to Annabell Berger, Holger Blaar, and Kathleen
Kletsch for their help in the editing process.

March 2010 Matthias Müller-Hannemann
Stefan Schirra

List of Contributors

Editors

Matthias Müller-Hannemann
Martin-Luther-Universität
Halle-Wittenberg
Institut für Informatik
Von-Seckendorff-Platz 1
06120 Halle, Germany
muellerh@informatik.uni-halle.de

Stefan Schirra
Otto-von-Guericke Universität
Magdeburg
Fakultät für Informatik
Universitätsplatz 2
39106 Magdeburg, Germany
stschirr@ovgu.de

Authors

Heiner Ackermann
Fraunhofer Institute for
Industrial Mathematics
Fraunhofer-Platz 1
67663 Kaiserslautern, Germany
heiner.ackermann@itwm.fraunhofer.de

Deepak Ajwani
Aarhus University
MADALGO - Center for Massive
Data Algorithmics
IT-parken, Aabogade 34
8200 Aarhus N, Denmark
ajwani@cs.au.dk

Eric Berberich
Max-Planck-Institut für Informatik
Algorithms and Complexity
Campus E1 4
66123 Saarbrücken, Germany
eric@mpi-inf.mpg.de

Daniel Delling
Microsoft Research Silicon Valley
1065 La Avenida
Montain View, CA 94043, USA
dadellin@microsoft.com

Roman Dementiev
Universität Karlsruhe (TH)
Department of Computer Science,
Algorithmics II
Am Fasanengarten 5
76131 Karlsruhe, Germany
dementiev@ira.uka.de

Markus Geyer
Universität Tübingen
Wilhelm-Schickard-Institut für
Informatik, Paralleles Rechnen
Sand 14
72076 Tübingen, Germany
geyer@informatik.uni-tuebingen.de

VIII List of Contributors

Matthias Hagen
Bauhaus Universität Weimar
Faculty of Media, Web Technology
and Information Systems Group
Bauhausstr. 11
99423 Weimar, Germany
matthias.hagen@uni-weimar.de

Sabine Helwig
Universität Erlangen-Nürnberg
Department of Computer Science
Hardware-Software-Co-Design
Am Weichselgarten 3
91058 Erlangen, Germany
helwig@cs.fau.de

Benjamin Hiller
Konrad-Zuse-Zentrum für
Informationstechnik Berlin (ZIB)
Department Optimization
Takustr. 7
14195 Berlin-Dahlem, Germany
hiller@zib.de

Roberto Hoffmann
Martin-Luther-Universität
Halle-Wittenberg
Institut für Informatik
Von-Seckendorff-Platz 1
06120 Halle, Germany
hoffmaro@informatik.uni-halle.de

Falk Hüffner
Humboldt-Universität zu Berlin
Institut für Informatik
Rudower Chaussee 25
12489 Berlin, Germany
hueffner@informatik.hu-berlin.de

Maria Kandyba
Technische Universität Dortmund
Fakultät für Informatik
Lehrstuhl für Algorithm Engineering
Otto-Hahn-Str. 14
44227 Dortmund, Germany
maria.kandyba@cs.uni-dortmund.de

Sascha Meinert
Karlsruhe Institute of Technology
(KIT)
Institute of Theoretical Informatics,
Algorithmics I
Am Fasanengarten 5
76131 Karlsruhe, Germany
meinert@kit.edu

Henning Meyerhenke
Universität Paderborn
Department of Computer Science
Fürstenallee 11
33102 Paderborn, Germany
henningm@upb.de

Marc Mörig
Otto-von-Guericke Universität
Magdeburg
Fakultät für Informatik
Universitätsplatz 2
39106 Magdeburg, Germany
marc@moerig.com

Hannes Moser
Friedrich-Schiller-Universität Jena
Institut für Informatik
Ernst-Abbe-Platz 2
07743 Jena, Germany
hannes.moser@uni-jena.de

List of Contributors IX

Matthias Müller-Hannemann
Martin-Luther-Universität
Halle-Wittenberg
Institut für Informatik
Von-Seckendorff-Platz 1
06120 Halle, Germany
muellerh@informatik.uni-halle.de

Heiko Röglin
Maastricht University
Department of Quantitative
Economics
6200 MD Maastricht, The Netherlands
heiko@roeglin.org

Ivo Rössling
Otto-von-Guericke Universität
Magdeburg
Fakultät für Informatik
Universitätsplatz 2
39106 Magdeburg, Germany
ivo.roessling@ovgu.de

Ulf Schellbach
Technische Universität Ilmenau
Institut für Theoretische Informatik
Helmholtzplatz 1
98684 Ilmenau, Germany
ulf.schellbach@tu-ilmenau.de

Stefan Schirra
Otto-von-Guericke Universität
Magdeburg
Fakultät für Informatik
Universitätsplatz 2
39106 Magdeburg, Germany
stschirr@ovgu.de

Sven Scholz
Freie Universität Berlin
Institut für Informatik
Takustr. 9
14195 Berlin, Germany
scholz@inf.fu-berlin.de

Anna Schulze
Universität zu Köln
Zentrum für Angewandte Informatik
(ZAIK)
Gyrhofstr. 8c
50931 Köln, Germany
schulze@zpr.uni-koeln.de

Nils Schweer
Technische Universität Braunschweig
Institute of Operating Systems
and Computer Networks
Mühlenpfordtstr. 23
38106 Braunschweig, Germany
n.schweer@tu-bs.de

Johannes Singler
Universität Karlsruhe (TH)
Department of Computer Science,
Algorithmics II
Am Fasanengarten 5
76131 Karlsruhe, Germany
singler@ira.uka.de

Tobias Tscheuschner
Universität Paderborn
Department of Computer Science
Fürstenallee 11
33102 Paderborn, Germany
chessy@upb.de

Maik Weinard
Johann Wolfgang Goethe-Universität
Frankfurt am Main
Theoretische Informatik
Robert-Mayer-Str. 11-15
60325 Frankfurt am Main, Germany
weinard@thi.informatik.uni-frankfurt.de

Contents

Chapter 1. Foundations of Algorithm Engineering
M. Müller-Hannemann, S. Schirra . 1

1.1 Introduction . 1
1.1.1 Classical Algorithmics . 1
1.1.2 The New Paradigm: Algorithm Engineering 2
1.1.3 Towards a Definition of Algorithm Engineering 4
1.1.4 Methodology . 5
1.1.5 Visibility of Algorithm Engineering . 6

1.2 Building Blocks of Algorithm Engineering . 7
1.2.1 Modeling of Problems . 8
1.2.2 Algorithm Design . 9
1.2.3 Analysis . 9
1.2.4 Realistic Computer Models . 10
1.2.5 Implementation . 11
1.2.6 Libraries . 12
1.2.7 Experiments . 12
1.2.8 Success Stories of Algorithm Engineering 13
1.2.9 Challenges . 15
1.2.10 Further Topics — Not Covered in This Book 15

Chapter 2. Modeling
M. Geyer, B. Hiller, S. Meinert . 16

2.1 Introduction . 16
2.2 Modeling Fundamentals . 19

2.2.1 Fundamentals . 19
2.2.2 Problem Analysis . 21
2.2.3 Problem Specification: Examples . 23
2.2.4 Modeling a Solution Approach . 26
2.2.5 Model Assessment . 28
2.2.6 Inherent Difficulties within the Modeling Process 28

2.3 Modeling Frameworks . 30
2.3.1 Graph-Based Models . 31
2.3.2 Mixed Integer Programming . 35
2.3.3 Constraint Programming . 43
2.3.4 Algebraic Modeling Languages . 49
2.3.5 Summary on Modeling Frameworks . 53

2.4 Further Issues . 53
2.4.1 Specific Input Characteristics . 55
2.4.2 Problem Decomposition for Complex Applications 55

2.5 Conclusion . 56

XII Contents

Chapter 3. Selected Design Issues
S. Helwig, F. Hüffner, I. Rössling, M. Weinard . 58

3.1 Introduction . 58
3.2 Simplicity . 60

3.2.1 Advantages for Implementation . 61
3.2.2 How to Achieve Simplicity? . 61
3.2.3 Effects on Analysis . 65

3.3 Scalability . 67
3.3.1 Towards a Definition of Scalability . 68
3.3.2 Scalability in Parallel Computing . 70
3.3.3 Basic Techniques for Designing Scalable Algorithms 73
3.3.4 Scalability in Grid Computing and Peer-to-Peer Networks . . . 76

3.4 Time-Space Trade-Offs . 80
3.4.1 Formal Methods . 82
3.4.2 Reuse and Lookup Tables . 84
3.4.3 Time-Space Trade-Offs in Storing Data 89
3.4.4 Preprocessing . 92
3.4.5 Brute Force Support . 93

3.5 Robustness . 95
3.5.1 Software Engineering Aspects . 96
3.5.2 Numerical Robustness Issues . 108
3.5.3 Robustness in Computational Geometry 113

Chapter 4. Analysis of Algorithms
H. Ackermann, H. Röglin, U. Schellbach, N. Schweer 127

4.1 Introduction and Motivation . 127
4.2 Worst-Case and Average-Case Analysis . 130

4.2.1 Worst-Case Analysis . 131
4.2.2 Average-Case Analysis . 132

4.3 Amortized Analysis . 134
4.3.1 Aggregate Analysis . 136
4.3.2 The Accounting Method. 136
4.3.3 The Potential Method . 136
4.3.4 Online Algorithms and Data Structures 138

4.4 Smoothed Analysis . 140
4.4.1 Smoothed Analysis of Binary Optimization Problems 141
4.4.2 Smoothed Analysis of the Simplex Algorithm 151
4.4.3 Conclusions and Open Questions . 158

4.5 Realistic Input Models . 159
4.5.1 Computational Geometry . 160
4.5.2 Definitions and Notations . 162
4.5.3 Geometric Input Models . 162
4.5.4 Relationships between the Models . 163
4.5.5 Applications . 164

4.6 Computational Testing . 168
4.7 Representative Operation Counts . 169

Contents XIII

4.7.1 Identifying Representative Operations . 170
4.7.2 Applications of Representative Operation Counts 171

4.8 Experimental Study of Asymptotic Performance 173
4.8.1 Performance Analysis Inspired by the Scientific Method 175
4.8.2 Empirical Curve Bounding Rules . 178
4.8.3 Conclusions on the Experimental Study of Asymptotic

Performance . 191
4.9 Conclusions . 192

Chapter 5. Realistic Computer Models
D. Ajwani, H. Meyerhenke . 194

5.1 Introduction . 194
5.1.1 Large Data Sets . 194
5.1.2 RAM Model . 196
5.1.3 Real Architecture . 196
5.1.4 Disadvantages of the RAM Model . 198
5.1.5 Future Trends . 199
5.1.6 Realistic Computer Models . 199

5.2 Exploiting the Memory Hierarchy . 200
5.2.1 Memory Hierarchy Models . 200
5.2.2 Fundamental Techniques . 203
5.2.3 External Memory Data Structures . 206
5.2.4 Cache-Aware Optimization . 209
5.2.5 Cache-Oblivious Algorithms . 214
5.2.6 Cache-Oblivious Data Structures . 217

5.3 Parallel Computing Models . 218
5.3.1 PRAM . 219
5.3.2 Network Models . 220
5.3.3 Bridging Models . 220
5.3.4 Recent Work . 223
5.3.5 Application and Comparison . 225

5.4 Simulating Parallel Algorithms for I/O-Efficiency 229
5.4.1 PRAM Simulation . 229
5.4.2 Coarse-Grained Parallel Simulation Results 230

5.5 Success Stories of Algorithms for Memory Hierarchies 233
5.5.1 Cache-Oblivious Sorting . 233
5.5.2 External Memory BFS . 233
5.5.3 External Suffix Array Construction . 234
5.5.4 External A*-Search . 234

5.6 Parallel Bridging Model Libraries . 235
5.7 Conclusion . 235

XIV Contents

Chapter 6. Implementation Aspects
M. Mörig, S. Scholz, T. Tscheuschner, E. Berberich 237

6.1 Introduction . 237
6.2 Correctness . 239

6.2.1 Motivation and Description . 239
6.2.2 Testing . 239
6.2.3 Checking . 242
6.2.4 Verification . 245
6.2.5 Debugging . 246

6.3 Efficiency . 248
6.3.1 Implementation Tricks – Tuning the Algorithms 250
6.3.2 Implementation Tricks – Tuning the Code 254
6.3.3 Code Generation . 259

6.4 Flexibility . 262
6.4.1 Achieving Flexibility . 263

6.5 Ease of Use . 267
6.5.1 Interface Design . 267
6.5.2 Documentation and Readability . 268
6.5.3 Literate Programming . 271

6.6 Implementing Efficiently . 273
6.6.1 Reuse . 273
6.6.2 Programming Language . 273
6.6.3 Development Environment . 275
6.6.4 Avoiding Errors . 275
6.6.5 Versioning . 276

6.7 Geometric Algorithms . 276
6.7.1 Correctness: Exact Number Types . 278
6.7.2 Efficiency: Floating-Point Filters and Other Techniques 280
6.7.3 Easy to Use: The Number Types CORE::Expr and

leda::real . 286

Chapter 7. Libraries
R. Dementiev, J. Singler . 290

7.1 Introduction . 290
7.2 Library Overview . 292
7.3 Libraries as Building Blocks . 297
7.4 Basic Design Goals and Paradigms of Combinatorial and

Geometric Libraries . 299
7.5 Fundamental Operations . 302

7.5.1 Memory Management . 302
7.5.2 Iterators versus Items . 303
7.5.3 Parameterization of Data Types . 304
7.5.4 Callbacks and Functors . 305

7.6 Advanced Number Types . 306
7.7 Basic Data Structures and Algorithms . 309

7.7.1 Data Structures . 309

Contents XV

7.7.2 Algorithms . 310
7.7.3 Summary and Comparison . 314

7.8 Graph Data Structures and Algorithms . 314
7.8.1 Data Structures . 314
7.8.2 Node and Edge Data . 315
7.8.3 Algorithms . 316
7.8.4 Summary and Comparison . 318

7.9 Computational Geometry . 319
7.9.1 Kernels and Exact Number Types . 319
7.9.2 Low-Level Issues in Geometric Kernels . 321
7.9.3 Functionality . 322
7.9.4 Performance . 323

7.10 Conclusion . 324

Chapter 8. Experiments
E. Berberich, M. Hagen, B. Hiller, H. Moser . 325

8.1 Introduction . 325
8.1.1 Example Scenarios . 325
8.1.2 The Importance of Experiments . 327
8.1.3 The Experimentation Process . 329

8.2 Planning Experiments . 331
8.2.1 Introduction . 332
8.2.2 Measures . 333
8.2.3 Factors and Sampling Points . 335
8.2.4 Advanced Techniques . 337

8.3 Test Data Generation . 339
8.3.1 Properties to Have in Mind . 339
8.3.2 Three Types of Test Instances . 342
8.3.3 What Instances to Use . 346

8.4 Test Data Libraries . 347
8.4.1 Properties of a Perfect Library . 347
8.4.2 The Creation of a Library . 349
8.4.3 Maintenance and Update of a Library . 350
8.4.4 Examples of Existing Libraries . 351

8.5 Setting-Up and Running the Experiment . 353
8.5.1 Setup-Phase . 354
8.5.2 Running-Phase . 360
8.5.3 Supplementary Advice . 364

8.6 Evaluating Your Data . 367
8.6.1 Graphical Analysis . 368
8.6.2 Statistical Analysis . 375
8.6.3 Pitfalls for Data Analysis . 381

8.7 Reporting Your Results . 382
8.7.1 Principles for Reporting . 382
8.7.2 Presenting Data in Diagrams and Tables 386

XVI Contents

Chapter 9. Case Studies
D. Delling, R. Hoffmann, M. Kandyba, A. Schulze 389

9.1 Introduction . 389
9.2 Shortest Paths . 390

9.2.1 Phase I: “Theory” (1959 – 1999) . 392
9.2.2 Phase II: Speed-Up Techniques for P2P (1999 – 2005) 394
9.2.3 Phase III: Road Networks (2005 – 2008) 398
9.2.4 Phase IV: New Challenges on P2P (Since 2008) 403
9.2.5 Conclusions . 407

9.3 Steiner Trees . 407
9.3.1 Progress with Exact Algorithms . 410
9.3.2 Approximation Algorithms and Heuristics 422
9.3.3 Conclusions . 426

9.4 Voronoi Diagrams . 427
9.4.1 Nearest Neighbor Regions . 428
9.4.2 Applications . 430
9.4.3 Algorithms . 431
9.4.4 The Implementation Quest . 434
9.4.5 The Exact Geometric Computation Paradigm for the

Computation of Voronoi diagrams . 434
9.4.6 Topology-Oriented Inexact Approaches . 438
9.4.7 Available Implementations . 440
9.4.8 Conclusions . 444

Chapter 10. Challenges in Algorithm Engineering
M. Müller-Hannemann, S. Schirra . 446

10.1 Challenges for the Algorithm Engineering Discipline 446
10.1.1 Realistic Hardware Models . 447
10.1.2 Challenges in the Application Modeling and Design Phase . . . 448
10.1.3 Challenges in the Analysis Phase . 449
10.1.4 Challenges in the Implementation Phase 449
10.1.5 Challenges in the Experimentation Phase 450
10.1.6 Increase the Community! . 452

10.2 Epilogue . 453

References . 454

Subject Index . 497

Chapter 1. Foundations of Algorithm Engineering

Matthias Müller-Hannemann and Stefan Schirra

1.1 Introduction

Efficient algorithms are central components of almost every computer applica-
tion. Thus, they become increasingly important in all fields of economy, tech-
nology, science, and everyday life. Most prominent examples of fields where
efficient algorithms play a decisive role are bioinformatics, information retrieval,
communication networks, cryptography, geographic information systems, image
processing, logistics, just to name a few.

Algorithmics—the systematic development of efficient algorithms—is there-
fore a key technology for all kinds of ambitious and innovative computer ap-
plications. Unfortunately, over the last decades there has been a growing gap
between algorithm theory on one side and practical needs on the other. As a
consequence, only a small fraction of the research done in Algorithmics is ac-
tually used. To understand the reasons for this gap, let us briefly explain how
research in Algorithmics has been done traditionally.

1.1.1 Classical Algorithmics

The focus of algorithm theory are simple and abstract problems. For these prob-
lems algorithms are designed and analyzed under the assumption of some ab-
stract machine model like the “real RAM”. The main contributions are provable
worst-case performance guarantees on the running time with respect to the used
model or on the quality of the computed solutions. In theoretical computer sci-
ence, efficiency usually means polynomial time solvability.

Working with abstract problems and abstract machine models has several
advantages in theory:

– Algorithms designed for such problems can be adapted to many concrete
applications in different fields.

– Since most (classical) machine models are equivalent under polynomial time
transformations, efficient algorithms are timeless.

– Worst-case performance guarantees imply efficiency also for problem in-
stances of a kind which have not been expected at design time.

– It allows for a machine-independent comparison of worst-case performance
without a need for an implementation.

From the point of view of algorithm theory, the implementation of algorithms
is part of application development. As a consequence, also the evaluation of algo-
rithms by experiments is only done by practitioners in the application domain.
However, we should note that for many pioneers in the early days of Algorith-
mics, like Knuth, Floyd and others, implementing every algorithm they designed

M. Müller-Hannemann and S. Schirra (Eds.): Algorithm Engineering, LNCS 5971, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 M. Müller-Hannemann and S. Schirra

was standard practice. This changed significantly the more progress in the design
of algorithms was made, and the more complicated the advanced data structures
and algorithms became. Many people realized that the separation of design and
analysis from implementations and experiments has caused the growing gap be-
tween theory and practice. Since about fifteen years, a group of researchers in
Algorithmics started initiatives to overcome this separation.

1.1.2 The New Paradigm: Algorithm Engineering

In a much broader view of Algorithmics, implementation and experiments are of
equal importance with design and analysis. This view has led to the new term
Algorithm Engineering.

Is Algorithm Engineering just a new and fancy buzzword? Only a new name
for a concept which has been used for many years? Here we argue that the
departure from classical Algorithmics is fundamental: Algorithm Engineering
represents a new paradigm. Thomas Kuhn [502] analyzed the structure of scien-
tific revolutions and used the notion paradigm to describe a “coherent tradition
of scientific research”. According to Kuhn a paradigm shift takes place when a
paradigm is in crisis and cannot explain compelling new facts.

What are the facts which require a new paradigm? Here we mention just a
few examples, many more will be given in the following chapters of this book.

– The classical von-Neumann machine model has become more and more unre-
alistic, due to instruction parallelism, pipelining, branch prediction, caching
and memory hierarchies, multi-threading, processor hierarchies, and parallel
and distributed computing models.

– Design of algorithms focused on improving the asymptotical worst-case run-
ning time or the performance guarantee of approximation algorithms as the
primary goals. This has led to many algorithms and to the design of data
structures which contain some brilliant new ideas but are inherently imprac-
tical. Sometimes it is not clear that these algorithms are not implementable,
however, their implementation seems to be so challenging that nobody ever
tried to realize them.

The disadvantage of studying asymptotical running times is that they may
easily hide huge constant factors. Similarly, often huge memory requirements
are simply ignored as long as they are polynomially bounded.

As concrete examples we may cite some of the masterpieces in classical
Algorithmics:
1. Many (if not most) polynomial time approximation schemes (PTAS) like

Arora’s [48] or Mitchell’s [577] for the traveling salesman problem (TSP)
and related problems suffer from gigantic constant factors.

2. Robins and Zelikovsky [677,678] presented a family of algorithms which
approximates the Steiner tree problem in graphs with a running time of
O(n2k+1 log n), where k is a parameter which influences the performance
guarantee. For large k, their algorithm achieves the currently best known
approximation guarantee of 1.55. To improve upon the previously best

1. Foundations of Algorithm Engineering 3

approximation guarantee of 1.598 by Hougardy and Prömel [414], it is
necessary to choose k > 217. Moreover, an instance is required to have
also more than 217 terminals. Thus also n must be at least in this order.

3. The question whether a simple polygon can be triangulated in linear time
was one of the main open problems in computational geometry for many
years. In 1990 this problem was finally settled by Chazelle [163,164] who
gave a quite complicated deterministic linear time algorithm. To the best
of our knowledge this algorithm has never been implemented.

4. A geometric construction, known as an ε-cutting, provides a space par-
titioning technique for any finite dimension which has countless appli-
cations in computational geometry [165]. However, algorithms based on
ε-cuttings seem to provide a challenge for implementation.

In practice constant factors matter a lot: in applications like computer as-
sisted surgery, information retrieval by search engines, vehicle guidance, and
many others, solutions have to be computed in almost real time. In other ap-
plications, the productivity of the user of a software tool is closely positively
related to the tool’s performance. Here any constant factor improvement is
worth its investment. Thus, constant factor improvements often make the
difference whether a tool is applied or not.

– The notion of efficiency as polynomial time solvability is often inappropriate.
Even running times with small, but superlinear, polynomial degree may be
too slow. Realistic applications in VLSI design, bioinformatics, or spatial
data sets require to handle huge data sets. In such cases we usually can afford
at most linear running time and space, often we need even sublinear time
algorithms. In fact, the study of sublinear algorithms has recently emerged
as a new field of research. Sublinear algorithms either look only at a small
random sample of the input or process data as it arrives, and then extract a
small summary.

– As stated above, the primary goal of algorithm design by theoreticians is
efficiency. This has stimulated the development of highly sophisticated data
structures—for many of them it is questionable or at least unclear whether
they are implementable in a reasonable way.

However, in practice, other design goals than efficiency are of similar,
sometimes even higher importance: flexibility, ease of use, maintainability,
... In practice, simpler data structures and algorithms are preferred over very
complex ones.

– Theoretical work on algorithms usually gives only a high-level presentation.
The necessary details to start with an implementation are left to the reader.
The transformation from a high-level description to a detailed design is far
from trivial.

– The easiest start to study and to develop new algorithmic ideas is from
problems which can be stated in a simple way. However, hand in hand with
general progress in Computer Science and the availability of increased com-
putational power, the applications themselves become more and more com-
plex. Such applications require a careful modeling. It is often questionable

4 M. Müller-Hannemann and S. Schirra

whether insights gained for simplistic models carry over to more complex
ones.

– Real-world input data has typically not the structure of the worst-case in-
stances used in the theoretical analysis. Hence chances are high that the
predicted performance is overly pessimistic.

– Good experimental work requires a substantial effort (time, manpower, pro-
gramming skills, experience, ...).

In many experimental setups, one performs experiments with randomly
generated instances only. This can be strongly misleading. For example, ran-
dom graphs have some nice structural properties which make them very
different from real-world graphs. Another example arises in computational
geometry: a uniformly sampled set of points will almost surely be in arbi-
trary position. In practice, however, instance are very likely not to fulfill this
assumption.

Unfortunately, working with real-world input data also has its problems:
Such data may be unavailable for researchers or it may be proprietary. It is
often extremely tedious to prepare such data for use in experiments.

In order to bridge the gap between theory and practice, Algorithm Engineering
requires a broader methodology. However, Algorithm Engineering will have to
keep the advantages of theoretical treatment:

– generality,
– reliability, and
– predictability from performance guarantees.

A central goal of Algorithm Engineering, or of good experimental algorithmic
work, is to tease out the trade-offs, parameters and special cases that govern
which algorithm is the right one for a specific setting. The hope is that Algorithm
Engineering will increase its impact on other fields significantly. It will do so if
the transfer to applications is accelerated.

1.1.3 Towards a Definition of Algorithm Engineering

Some of the spirit of Algorithm Engineering has already been present in the
DIMACS Implementation Challenges (http://dimacs.rutgers.edu/Challenges/):

“The DIMACS Implementation Challenges address questions of deter-
mining realistic algorithm performance where worst case analysis is overly
pessimistic and probabilistic models are too unrealistic: experimentation
can provide guides to realistic algorithm performance where analysis
fails. Experimentation also brings algorithmic questions closer to the
original problems that motivated theoretical work. It also tests many
assumptions about implementation methods and data structures. It pro-
vides an opportunity to develop and test problem instances, instance
generators, and other methods of testing and comparing performance of
algorithms. And it is a step in technology transfer by providing leading
edge implementations of algorithms for others to adapt.”

1. Foundations of Algorithm Engineering 5

Since 1990, where the First Challenge started with network flows and match-
ing [438], a total of nine implementation challenges have been conducted. The
term Algorithm Engineering was first1 used with specificity and considerable
impact in 1997, with the organization of the first Workshop on Algorithm En-
gineering (WAE’97) [56]. A couple of years ago, David Bader, Bernard Moret,
and Peter Sanders define in [56]:

“Algorithm Engineering refers to the process required to transform a
pencil-and-paper algorithm into a robust, efficient, well tested, and easily
usable implementation. Thus it encompasses a number of topics, from
modeling cache behavior to the principles of good software engineering;
its main focus, however, is experimentation.”

We agree that all mentioned topics are important parts of Algorithm Engi-
neering, but prefer a much broader view. A more general definition already ap-
peared in the announcement of the ALCOM-FT Summer School on Algorithm
Engineering in 2001:

“Algorithm Engineering is concerned with the design, theoretical and ex-
perimental analysis, engineering and tuning of algorithms, and is gain-
ing increasing interest in the algorithmic community. This emerging dis-
cipline addresses issues of realistic algorithm performance by carefully
combining traditional theoretical methods together with thorough ex-
perimental investigations.”

(posted in DMANET on May 17, 2001 by Guiseppe Italiano)

1.1.4 Methodology

The scientific method has its origin in the natural sciences. It views science as a
cycle between theory and experimentation. Theory can inductively2 and partially
deductively—by means of a theory which is based on specific assumptions—
build experimentally falsifiable hypotheses which are tested with experiments.
The outcome of the experiments in turn may lead to new or refined hypotheses
or theories, and so forth.

Just like software engineering, Algorithm Engineering is not a straight line
process. Ideally, one would design an algorithm, implement it, and use it. How-
ever, the ultimate algorithm, i.e., the best algorithm for the task to be solved in
an application, and the ultimate implementation are not known in advance. In
Algorithm Engineering, a theoretical proof of suitability for a particular purpose
is replaced by an experimental evaluation. For instance, such an experimental
1 Peter Sanders [694] recently pointed out that the term Algorithm Engineering has

already been used by Thomas Beth, in particular in the title of [98], but without a
discussion.

2 Inductive reasoning draws general conclusions from specific data, whereas deductive
reasoning draws specific conclusions from general statements.

6 M. Müller-Hannemann and S. Schirra

part checks whether the code produced is sufficiently efficient or in the case of
approximation algorithms, sufficiently effective. Usually, the results of the ex-
perimental evaluation ask for a revision of design and implementation. Thus, as
stated in the call for the DFG Priority Program 1307 [556]:

“The core of Algorithm Engineering is a cycle driven by falsifiable hy-
potheses.” [www.algorithm-engineering.de]

Often, analysis is considered a part of this cycle, resulting in a cycle that consist
of design, analysis, implementation and experimental evaluation of practicable
algorithms. However, since the results of the analysis of the design will imme-
diately give feedback to the designer and not go through implementation and
experimentation first, it seems more appropriate to let the analysis phase be part
of a cycle of its own together with the algorithm design. Thus, in Fig. 1.1, the
core cycle in the center consists of design, implementation, and experimentation
only.

Algorithm Engineering is always driven by real-world applications. The ap-
plication scenario determines the hardware which has to be modeled most re-
alistically. In a first phase of Algorithm Engineering not only a good machine
model has to be chosen, but also the problem itself has to be modeled appro-
priately, a task, that is usually excluded from algorithm design. The results of
an experimentation phase might then later on ask for a revision of the modeling
phase, because the chosen models are not well suited. Sometimes an analysis of
the chosen model can already reveal its inadequacy. This gives rise to another
cycle consisting of applications, modeling, and analysis. The applications also
provide real-world data for experimental evaluation and the experimental evalu-
ation might reveal a need for particular type of data to further investigate certain
aspects. Reliable components from software libraries can significantly ease the
implementation task. Having said that, well engineered code that is sufficiently
generic and reusable should be provided in a software library for future projects.
For this purpose designing and implementing for reuse is important right from
the beginning. Obviously, this is another cyclic dependency in Algorithm Engi-
neering. We close our discussion with another quote from the call for the DFG
Priority Program 1307:

“Realistic models for both computers and applications, as well as algo-
rithm libraries and collections of real input data allow a close coupling
to applications.” [www.algorithm-engineering.de]

1.1.5 Visibility of Algorithm Engineering

Several conferences invite papers on Algorithm Engineering, but most of them
only as one topic among many others. The first refereed workshop which was
explicitly and exclusively devoted to Algorithm Engineering was the Workshop
on Algorithm Engineering (WAE) held in Venice (Italy) on September 11-13,
1997. It was the start of a yearly conference series. At the 5th WAE in Aarhus,

1. Foundations of Algorithm Engineering 7

Implementation
Analysis

Applications

Libraries

Experimentation

models
realistic computer

Modelling with

Algorithm
Design

Fig. 1.1. The Algorithm Engineering process

Denmark, 2001 it was decided to become part of the leading European confer-
ence on algorithms ESA. Since then, the former WAE has been established as
track B, the “Engineering and Applications” track. Only slightly after the WAE,
the ALENEX (Algorithm Engineering and Experiments) conference series has
been established. The ALENEX takes place every year, and is colocated with
SODA, the annual ACM-SIAM Symposium on Discrete Algorithms. A relatively
new conference devoted to Algorithm Engineering is SEA, the International Sym-
posium on Efficient and Experimental Algorithms, until 2009 known as WEA
(Workshop on Experimental Algorithms).

The primary journal for the field is the ACM Journal of Experimental Algo-
rithmics (JEA) founded in 1996. The INFORMS Journal on Computing pub-
lishes papers with a connection to Operations Research, while more specialized
journals like the Journal of Graph Algorithms and Applications invite papers
with experiences (animations, implementations, experimentations) with graph
algorithms. In 2009, the new journal Mathematical Programming Computation
has been launched which is devoted to research articles covering computational
issues in Mathematical Programming in a broad sense.

1.2 Building Blocks of Algorithm Engineering

This section is intended to provide a brief overview on the chapters of this book.

8 M. Müller-Hannemann and S. Schirra

1.2.1 Modeling of Problems

Traditionally theoretical work on algorithms starts with a problem statement
like this: “Given a set of points in the plane in arbitrary position, compute some
structure X”, where the structure X might be the convex hull, the Delaunay
triangulation, the Steiner minimum tree, or the like.

Practitioners, however, work on problems of a very different kind: They typ-
ically face very complex problems. In many cases it is not clear which features
of the application are really relevant or which can be abstracted away without
sacrificing the solution. Often relevant side constraints are not formalized or may
be difficult to formalize rigorously. Thus, given problems may be ill-posed. More-
over, quite often several objectives are present which are usually conflicting. In
such cases we have to define what kind of trade-off between these goals we are
looking for.

Hence, before the algorithm design process can start, a careful requirement
analysis and formalization of the problem is needed. For complex applications,
this modeling phase is a non-trivial and highly demanding task. In contrast
to Algorithmics, its sister disciplines Operations Research and Mathematical
Programming have a long tradition in careful modeling of complex problems.
Finding or selecting an appropriate model can be crucial for the overall success
of the algorithmic approach. Sometimes the borderline between polynomial time
solvability and NP–hard problems is hidden in a small innocent-looking detail.
The presence or non-presence of a single side constraint may lead to a switch in
the complexity status. This, in turn, heavily influences the kind of algorithmic
approaches you are considering in the design phase.

The question which side constraints should be incorporated into a model are
sometimes more subtle than you may think. Let us give a concrete example from
our own experience. Several years ago, the first author was faced with the prob-
lem of generating finite element meshes. Given a coarse surface mesh described
by a set of triangular and quadrilateral patches the task was to create a refined
all-quadrilateral mesh of a certain mesh density. Our cooperation partners—
experienced engineers—advised us to use certain patterns (templates) for the
refinement of the given original patches. We developed a model for this problem
and realized quite soon that it turned out to be strongly NP–hard [581]. It took
us a couple of years until we realized that the problem can be modeled in a much
more elegant way if we drop the restrictions imposed by using templates. These
side constraints only became part of the problem formulation because the en-
gineers thought that they would help in solving the problem. After making this
observation, we changed our model, and got nicer theoretical as well as improved
practical results [596, 580].

Chapter 2 is intended to discuss which aspects have to be considered within
the problem modeling process. It gives some general guidelines on how to model
a complex problem, but also describes some inherent difficulties in the modeling
process.

Modeling goes beyond a formalization of the problem at hand. Two models
may be equivalent in their solution sets, but can behave very differently when

1. Foundations of Algorithm Engineering 9

we try to solve them. For example, this is a quite typical observation for integer
linear programming problems. Which model performs best, also often depend on
the algorithmic approach. Thus a model should be formulated (or reformulated)
so that it best fits to the intended approach in the algorithm design phase.
Here, modeling and design have to interact closely. Moreover, insights into the
structure of the problem and its solution space may be required.

The art of modeling includes reformulation in a special framework like (mixed)
integer linear programming, convex programming, constraint programming, or
in the language of graph models. Algebraic modeling languages are helpful tools
to formalize problems from practice.

1.2.2 Algorithm Design

Chapter 3 discusses some aspects of algorithm design, more precisely, simplicity,
scalability, time-space trade-offs, and robustness issues. The chapter does not
cover classical algorithm design paradigms as these are discussed in virtually
every textbook on algorithms and data structures, at least implicitly. Among
the many textbooks we recommend, for example, [191, 475,562].

Simplicity of an algorithm has positive impact on its applicability. The section
on simplicity describes several techniques how to achieve this goal. In view of
the fact that we have to deal in many areas with rapidly growing data sets and
instance sizes, scalability is another important feature. The corresponding section
therefore presents fundamental techniques for developing scalable algorithms.

Time and space efficiency allow quite often for a trade-off, which can be ex-
ploited in Algorithm Engineering if it is possible to sacrifice one of these key per-
formance parameters moderately in favor of the other. You invest a bit extra space
and gain a nice speed-up. General techniques like lookup tables or preprocessing
are typical applications of this idea. The tremendous power of preprocessing will
also become visible in a case study on point-to-point shortest paths in Chapter 9.

The development of algorithms is usually based on abstraction and simplifying
assumptions with respect to the model of computation and specific properties of
the input. To make sure that an implemented algorithm works in practice, one
has to take care on robustness issues. The section on robustness includes numer-
ical robustness and related non-robustness issues in computational geometry. A
discussion of such aspects is continued in Chapter 6 on Implementation.

1.2.3 Analysis

The purpose of algorithm analysis is to predict the resources that the algorithm
requires. Chapter 4 briefly reviews and discusses the standard tools of algo-
rithm analysis which one can find in any textbook on algorithms: worst-case
and average-case analysis, as well as amortized analysis. Unfortunately, all these
techniques have their drawbacks. Worst-case analysis is often too pessimistic
with respect to instances occurring in practice, while average-case analysis as-
sumes a certain probability distribution on the set of inputs which is difficult to
choose so that it reflects typical instances.

10 M. Müller-Hannemann and S. Schirra

Algorithm Engineering is interested in the analysis of algorithms for more
realistic input models. If we allow arbitrary input, our analysis proves for many
algorithms a poor worst-case performance. However, in practice some of these
algorithms may perform pretty well while others confirm our poor predictions.
To narrow the gap between theoretical prediction and practical observation, it
is often helpful to study the structure of the input more carefully.

A possible compromise between worst and average case analysis is formulated
in semi-random models, where an adversary is allowed to specify an arbitrary
input which is then slightly perturbed at random. This has led to the develop-
ment of so-called smoothed analysis. Chapter 4 gives a detailed exposition of this
recent technique.

Another thread of research concerning realistic input models is to restrict the
input by additional constraints. These constraints, motivated by insight into the
nature of the application, then often lead to tighter predictions of the perfor-
mance. It may also show that even with restricted input we have to expect a
poor algorithmic worst-case performance.

The restriction of the input may also be parameterized. A parameter specifies
by which extent a certain property is fulfilled. The analysis then depends also on
such a structural parameter and not only on the size of an instance. Chapter 4
explains this idea for several applications in Computational Geometry.

The last part of the chapter on analysis is concerned with the analysis of
experimental performance data (all other issues of experiments are postponed to
Chapter 8). If we are interested in improving the performance of an algorithm,
we should try to identify those operations which dominate the running time.
Knowing the bottleneck operations will then guide us how we should redesign our
algorithm. The concept of representative operation counts is one such technique
to identify bottleneck operations through experiments.

Finally, Chapter 4 discusses how finite experiments can be used to study
asymptotic performance in cases where a complete theoretical analysis remains
elusive.

1.2.4 Realistic Computer Models

The RAM model has been a very successful computer model in algorithm theory.
Many efficient methods have been designed using this model. While the RAM
model was a reasonable abstraction of existing computers it is not a good model
for modern computers anymore in many cases. The RAM model is basically a
single processor machine with unlimited random access memory with constant
access cost. Modern computers do not have a single memory type with uniform
access cost anymore, but memory hierarchies with very different access costs.
Nowadays data sets are often so huge that they do not fit in main memory of a
computer.

Research on efficient algorithms gave rise to new models that allow for better
designing and predicting practical efficiency of algorithms that exploit mem-
ory hierarchies or work with data sets requiring external memory usage. Disad-
vantages of the RAM with respect to modern computer architectures and new

1. Foundations of Algorithm Engineering 11

better, more realistic computer models and related algorithmic issues are dis-
cussed in Chapter 5. Especially, the chapter discusses models for external mem-
ory algorithms, I/O-efficiency, external memory data structures, and models for
and algorithms exploiting caches.

Furthermore, modern computer architectures are not single processor ma-
chines anymore. Consequently, Chapter 5 also treats parallel computing mod-
els, less realistic ones like the PRAM as well as more realistic ones. We also
look at simulating parallel algorithms for designing efficient external memory
algorithms.

The models presented all address certain deficiencies of the RAM model and
are more realistic models for modern computers. However, the models still do
not allow for perfect prediction of the behavior of algorithms designed for those
models in practice and thus can not render experiments unnecessary. Chapter 5
closes with highlighting some relevant success stories.

1.2.5 Implementation

Implementation is the lowest level and usually visited several times in the Al-
gorithm Engineering process. It concerns coding the outcome of the algorithm
design phase in the chosen programming language. Chapter 6 addresses correct-
ness and efficiency as implementation aspects.

Of course, when we start with the implementation phase we assume that the
algorithm we designed is correct, unless we aim for experiments that give us
more insight into the correctness of a method. Thus Chapter 6 discusses pre-
serving correctness in the implementation phase by program testing, debugging,
checking, and verification. Especially program checking has proven to be very
useful in Algorithm Engineering. However, it is not a pure implementation de-
tail, but affects the algorithm design as well. As for numerical and geometric
computing, preserving correctness is challenging because algorithm design often
assumes exact real arithmetic whereas actual development environments only
offer inherently imprecise floating-point arithmetic as a substitute. Therefore,
a section of its own is devoted to exact geometric computation. Alternatively,
one could design the algorithm such that it can deal with the imprecision of
floating-point arithmetic, but this is not an implementation issue, but must be
taken into account in the algorithm design phase already.

Efficiency in the implementation phase is treated in different ways. On one
hand Chapter 6 considers the efficiency of the code produced, on the other we
consider the efficiency of the coding process itself. While the first aspect is ba-
sically related to implementation tricks and issues regarding code generation by
the compiler, implementing efficiently involves issues like programming environ-
ment and code reuse. Code reuse is two-sided. First, it means reusing existing
code, especially using components of existing libraries, and second, it means im-
plementing for reuse. The latter embraces flexibility, interface design, ease of use,
and documentation and maintenance. The role of software libraries in Algorithm
Engineering is discussed in the next chapter.

12 M. Müller-Hannemann and S. Schirra

1.2.6 Libraries

Software libraries are both a very useful tool and a subject of its own in Al-
gorithm Engineering. Good libraries provide well-tested, correct and efficient,
well-engineered software for reuse in your projects and thus ease your imple-
mentation task. On the other hand, designing and engineering good software
libraries is a primary goal of Algorithm Engineering. Software libraries have
the potential to enhance the technology transfer from classical Algorithmics to
practical programming as they provide algorithmic intelligence. Algorithm En-
gineering for software libraries is more difficult since you do not a priori know
the application context of your software and hence can not tailor it towards this
context. Therefore, flexibility and adaptability are important design goals for
software libraries.

There are software libraries for various programming levels, from I/O libraries
via libraries providing basic algorithms and data structures to algorithm libraries
for special tasks. The former lower level libraries are often shipped with the
compiler or are part of the development platform. Libraries also come in various
shapes. Sometimes, collections of software devoted to related tasks is already
called a library. However, a loose collection of programs does not make an easy-
to-use, coherent and extendible library. Usually, in order to call a software col-
lection a library you at least require that its components also seamlessly work
together. Chapter 7 presents selected software libraries in the light of Algorithm
Engineering, in particular the STL, the Boost Libraries, CGAL and LEDA. Of
course, providing a comprehensive overview of the functionality provided by
these libraries is way beyond the scope of this chapter. Besides a quick overview
on the areas addressed by these libraries, e. g., data structures, graph algorithms,
and geometry, the role of Algorithm Engineering in the design of the libraries is
discussed. Let us exemplify the latter for LEDA.

Initially, the designers of LEDA did not think that the development of the
library would involve any additional research in Algorithmics. However, soon
they learned that the gap between theory and practice is not that easy to close.
While their first implementation of geometric algorithms often failed because of
rounding errors, the present code implements exact geometric computation and
handles all kinds of degeneracies.

1.2.7 Experiments

As we have explained earlier, experiments have a key role in the Algorithm En-
gineering cycle. The design and planning of insightful experiments, the running
of experiments and their evaluation are challenging tasks which contain many
pitfalls.

Jon Bentley has pointed out at several occasions3 that sometimes already little
experiments can uncover surprising insights. In general, however, experimenta-
tion requires some careful planning and systematics. The first step is to define

3 For example, at an invited talk of WEA 2006.

1. Foundations of Algorithm Engineering 13

the goals of an experiment to find out what type of experiment is needed, what
to measure and which factors shall be explored. Usually, our implementation has
to be adapted slightly to report the information we are interested in (by adding
operations counts, timing operations or extra output messages).

The next step is to select suitable test instances. Since results of experiments
on random input data are often of very little relevance for real applications one
needs benchmark test sets of a wide variety. Thus, test data generation and the
set-up and maintenance of test data libraries are very important.

One crucial although all to often neglected issue when conducting experiments
in Computer Science is to ensure the reproducibility. At the very least this
means to document all factors which may have a direct or indirect influence on
the computation and to use version control to store the whole computational
environment (including not only programming source code but also the compiler
and external software libraries).

The final important step in the experimentation process is to analyze the
collected data, to draw conclusions by statistical methods and to report the
findings. Chapter 8 is devoted to all these issues.

In contrast to the natural sciences and to neighboring fields like Mathematical
Programming and Operations Research, Computer Science has no long-standing
tradition of doing experiments. Although much cheaper than in natural sciences,
experimentation is a very time consuming process which is often underestimated.
In fact, a systematic treatment of the issues discussed in Chapter 8 is usually
not contained in the curriculum for students in Computer Science. Thus, it is
no surprise that also many research papers that report on experimental results
do not follow the state-of-the-art. With new courses on Algorithm Engineering
this will hopefully change in the future.

1.2.8 Success Stories of Algorithm Engineering

By now, there are already many well-known, highly competitive companies like
Google Inc., Akamai Technologies, Inc., and Celera Genomics Group which owe
their strong position in the market to a large extent also from Algorithm Engi-
neering.

One of the most impressive examples for steady progress over the years—
due to Algorithm Engineering methodology—is Linear Programming and the
simplex algorithm. Let us briefly review some milestones of our ability to solve
Linear Programs [103]. In 1949, when George B. Dantzig invented the simplex
algorithm, it took 120 man days to compute by hand the optimal solution for a
problem instance with 9 constraints and 77 variables (a famous “diet problem”).
In 1952, one was able to solve a problem with 48 constraints and 71 variables in
18 hours at the National Bureau of Standards. About twenty years later, in 1970,
the record was to solve a linear program with about 4000 constraints and 15000
variables. For about additional twenty years, there was only marginal progress.

In 1987, Bob Bixby cofounded CPLEX Optimization, Inc., a software company
marketing algorithms for linear and mixed-integer programming and started to
work on CPLEX. Two years later, a famous problem from the netlib, degen4,

14 M. Müller-Hannemann and S. Schirra

with 4420 constraints and 6711 variables was not solved on a supercomputer of
that time, a CRAY, after 7 days by CPLEX 1.0. It is interesting to note that the
very same code can solve this problem on a current desktop in 1.5 days. But with
the following versions of CPLEX, a dramatic and steady improvement could be
achieved. Already in 1992, degen4 was solved in 12.0 seconds by CPLEX 2.2.
In 2000, a huge test model with 5,034,171 constraints and 7,365,337 variables
was solved in 1880.0 seconds by CPLEX 7.1. Bob Bixby reports speed-up due to
improvements of algorithms from CPLEX 1.0 to the CPLEX 10.0 by a factor of
> 2360 4. An additional speed-up by a factor of about 800 comes from improved
machine performance. This is not the end of the story. Similar achievements can
be reported as to the solution of Integer Linear Programs.

What have been the key factors of CPLEX’ success? Progress become possi-
ble by the integration of new mathematical insights (improvements of pricing,
ratio test, update, simplex phase I, numerical stability, and perturbation) and
cutting-edge preprocessing. Many ideas lay already around, but have first been
rigorously engineered. With continuous testing on benchmark libraries of test
instances, a large number of variants, heuristics and parameter settings have
been evaluated systematically. Of course, such progress is driven by individuals
and their enthusiasm for their work.

In Chapter 9 on Case Studies three other success stories are presented. Two of
them stem from combinatorial optimization (shortest paths and Steiner trees),
and one from computational geometry (Voronoi diagrams). Each case study
traces the “historical development”—what has been achieved since the begin-
ning of intensive study on some particular problem? The purpose of this chapter
is to illustrate all aspects of Algorithm Engineering and their mutual interaction.

Let us sketch these ideas for the geometric case study which is about Voronoi
diagrams, more precisely, about Voronoi diagrams for point sites and its dual,
the Delaunay diagram, and for Voronoi diagrams of line segments. In both cases
we consider standard Euclidean metric only. Since these diagrams have many
applications they have been the subject of many implementation efforts. As
discussed above in Chapters 3 and 6, precision caused robustness problems are
a major issue in the implementation of geometric algorithms. Voronoi diagrams
are among the few geometric problems where both main stream approaches to
handle the robustness problem have been applied successfully.

On one hand, we know by now how to compute Voronoi diagrams of points and
line segments exactly, handling all degenerate cases. Thanks to the Algorithm
Engineering in exact geometric computation techniques have been developed
that allow us to compute Voronoi diagrams of points efficiently. Such techniques
are used in the Voronoi code provided by software libraries CGAL and LEDA.
The computation of Voronoi diagrams of line segments involves non-linear ge-
ometric objects, and thus the slow down due to exact computation is more
noticeable. CGAL and a LEDA extension package provide code for the exact
computation of Voronoi diagrams of line segments.

4 Private communication.

1. Foundations of Algorithm Engineering 15

On the other hand, topological approaches have been successfully applied to
Voronoi diagrams, initially especially by Sugihara and its co-workers [765, 764,
619]. These topological approaches use fast floating-point arithmetic to compute
something meaningful, but not necessarily the topologically exact diagram for
the given input, in particular with respect to the numerical part of the output.
But they do guarantee certain properties of the combinatorial part of the output,
for example, the underlying graph of the computed diagram is always planar.
The approach has been applied to Voronoi diagrams of points at first and then
been extended to Voronoi diagrams of line segments. The algorithm engineering
work now culminates in Held’s VRONI software [385], which is a master piece
of algorithm engineering in the context of robust geometric software. However,
it does not compute the exact solution nor does it handle degenerate cases, but
whenever the guaranteed properties of the only approximately correct diagram
suffice, it is the matter of choice because of its efficiency.

1.2.9 Challenges

In view of the mentioned success stories of Algorithm Engineering there is no
doubt that this discipline has the potential to “shape the world”. However, since
Algorithm Engineering is still a relatively young, but evolving discipline, there
are many challenges: research problems on methodology that are worthy to invest
a significant effort. The last chapter of the book tries to point out some of them.
It discusses challenges for Algorithm Engineering as a new discipline as well as
challenges related to different phases of the Algorithm Engineering cycle.

1.2.10 Further Topics — Not Covered in This Book

A book like ours cannot cover every topic related to Algorithm Engineering
which deserves attention. We clearly had to make a choice to keep the size of
this book within reasonable limits.

Fortunately, several special topics have already been covered in a survey col-
lection on Experimental Algorithmics [288]. This made our decision easier to
leave out some of them. For parallel computing which is likely to have an in-
creasing importance in the coming years we refer to the survey by Bader, Moret
and Sanders [56]. Likewise, distributed computing has been surveyed by Spirakis
and Zaroliagis [750]. Further interesting topics in relation with Algorithm En-
gineering include randomized and online algorithms, sublinear algorithms, high
performance computing and the huge field of (meta-)heuristics.

Finally, we recommend the recent essays by Peter Sanders who presents the
general methodology of Algorithm Engineering and illustrates it by two striking
case studies on minimum spanning trees [694] and sorting [695].

Chapter 2. Modeling

Markus Geyer, Benjamin Hiller�, and Sascha Meinert

2.1 Introduction

The very first step in Algorithm Engineering is to get a thorough understand-
ing of the problem to be solved. This understanding can then be used to con-
struct a formal model of the problem, which is the starting point for further
investigations.

To get an idea of modeling in this context imagine three developers meeting
at the coffee machine and talking about their new tasks they have to complete.
In a brief version their tasks are as follows.

1. The first developer takes part in a Sudoku challenge, where different com-
panies present their software to solve this problem as fast as possible. The
Sudoku puzzle game consists of a 9-by-9 grid of cells, which is divided into
nine 3-by-3 subsquares. Some of the cells contain numbers from 1 to 9. The
task is now to complete the remaining cells such that each number occurs
exactly once in each row, column, and 3-by-3 subsquare. Figure 2.1 shows
an example of a Sudoku puzzle.

5 9 6 3
4 6 5 1 7 8

4 7
3 2 1 7 4 9

7 4 6 8 5 1
8 2

2 7 1 5 8 6
8 3 9 2

Fig. 2.1. An example of a Sudoku puzzle

2. The second developer works in a project whose aim is to plan printed circuit
board assembly. The software should optimize the time the robot arm needs
to put all electronic components on their specific place on the board.

� Supported by the DFG research group “Algorithms, Structure, Randomness” (Grant
number GR 883/10-3, GR 883/10-4).

M. Müller-Hannemann and S. Schirra (Eds.): Algorithm Engineering, LNCS 5971, pp. 16–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2. Modeling 17

3. The last developer works on a scheduling software for a company that runs
garages. This software should help the technicians of these garages, who
usually look at the cars waiting for repair in the morning and determine in
which order they are going to repair them. When the customers put their
cars in the garage, they are told the time when the repair of the car is
expected to be finished. The technician has to take these times into account
when making his plan, since he does not want to upset the customers.

By the time all three developers finished explaining their tasks to each other,
they had all drunk their fourth cup of coffee. But why did it take so long?
To explain his tasks each developer had to describe his respective application
and the algorithmic problem derived from it, namely, which data is available,
which requirements exist, how the problem was solved up to now, what should
be improved, and how this goal can be achieved. Furthermore, the explanation
of a task’s background and its description involve highly specific elements and
certain special cases, which all require a long while of explaining.

Now let us review the problems. All three tasks involve making decisions sub-
ject to problem-specific requirements in order to solve the problem. The goal is
to create models that capture these requirements but can be applied to a wider
range of situations. Thus, modeling is the procedure of abstracting from actual
problem instances at hand to problem classes that still contain the essential de-
tails of the problem structure. Hence, models should describe the given problem,
be an abstraction of the instances at hand, and contain no contradictions. Such
a model constitutes the input of the next phase in the process of Algorithm
Engineering, sparing others from unnecessary problem details.

The emphasis here is that the model should really be useful to actually solve
the underlying problem. In particular, this implies that important aspects of
the problem must not be abstracted away or oversimplified. Classical algorithm
theory tends to consider rather artificial problems and models which are more or
less contrived in order to get analytical results. One purpose of Algorithm Engi-
neering is to overcome this artificial gap and contribute to solving real problems.
On the other hand, building a model that takes into account every aspect in de-
tail may not be of help either, since it may be too complicated to design an
algorithm for. Therefore, modeling boils down to finding an appropriate level of
abstraction that captures the essential real structure and omits less important
aspects.

We see, modeling is in general a challenging task and strongly relies on experi-
ence. To have a common ground, modelers should be acquainted with some basic
modeling frameworks presented later in this chapter. Namely, these are graphs
(see Section 2.3.1), mixed integer programming (see Section 2.3.2), constraint
programming (see Section 2.3.3), and algebraic modeling languages (AML, see
Section 2.3.4).

Many books have been written concerning the design and the performance
analysis of algorithms. Unfortunately, classical algorithm literature assumes an
existing formal model. At best, modeling is taught by presenting a flood of

18 M. Geyer, B. Hiller, and S. Meinert

specific examples and case studies. Of course some experience is gained studying
these approaches. But in general they lack a description or discussion of

1. the model’s development process,
2. how appropriate a model is, according to a problem,
3. a rating of model selection, according to chosen algorithmic approaches.

As mentioned before, textbooks on algorithms usually assume that models al-
ready exist and omit a discussion of these points. For many specific models
solutions exist which are well analyzed and documented.

Advantages of models are generalization, faster explanation of problems to
others and possibly the availability of well analyzed solutions. Standard models
used in theoretical research often do not reflect properties which are inherent
to practical applications. Some reasons for this might be over-general modeling
and unrealistic assumptions. This has contributed to the gap between theory
and practice as described in Chapter 1.

Consequently, Algorithm Engineering places more emphasis on modeling. Be-
ing the first step in the Algorithm Engineering process, modeling needs to be
carried out carefully. It is crucial to follow some guidance and to avoid pitfalls.
Otherwise, if done in an ad hoc way, successive steps of the Algorithm Engi-
neering process may fail. Note that it is not possible to establish a sharp border
between modeling and designing. Depending on the problem instance the model
brings forward design decisions or at least strongly influences them. An example
where the border is blurred due to decisions made in modeling affecting design
is given in Section 2.4.1. The impact of modeling decisions on the design phase
can be estimated by looking at the example which we present in Section 2.4.2.

Before starting with the modeling process some fundamentals, that modelers
should be aware of, are presented in Section 2.2. The modeling process itself can
be subdivided into three phases.

First, the problem has to be understood and formalized. It is very important
to spend quite some time and effort on this topic as all following steps rely on this
first one. Thus, in Section 2.2.2 several ideas are collected as well as suggestions
on how to deal with common problems. Applying them, the problem can be
abstracted and a formal problem specification is gained.

Second, starting from the precise specification of the problem — the problem
model found in the first phase —, the problem is reformulated towards one or
more candidates of solution approaches which we simply call “solution approach
models”. A checklist of questions arising here is given in Section 2.2.4. To for-
mulate solution approaches knowledge about common modeling frameworks is
indispensable. Hence, Section 2.3 gives a brief introduction to four modeling
frameworks out of the many existing ones. They allow for the application of
many solution approaches or techniques that have already been developed. In
addition, discussing problems become easier when all participants are familiar
with modeling techniques.

Finally, the results have to be evaluated and verified (see Section 2.2.5). In
the case of unsatisfactory results, the procedure has to start over again with the
feedback gained up to then. In general, we can say modeling is the first step in

2. Modeling 19

the process of Algorithm Engineering, which is to understand the problem, get
a formalized version of it and create a model which allows the application of
solution approaches.

The process of modeling will be clarified by some examples, which are used
throughout this chapter. In particular, we will look at the well-known Sudoku
puzzle, the traveling salesman problem, a scheduling problem from [452] and a
car manufacturing problem described in [15].

Modeling is a process which cannot be done in a straight forward way. Hence,
Section 2.4 deals with some further issues one needs to be aware of. First, some
unrealistic assumptions often found in theoretical research are discussed. Next,
a problem decomposition approach is presented. If problems get too complex,
they are decomposed into easier ones which are still challenging. Furthermore,
we indicate the relationship to algorithm design and try to point out the border
between modeling and design, which is not always clear. Section 2.5 concludes
this chapter.

2.2 Modeling Fundamentals

Before solving a problem much work has to be done. There are essential steps
every algorithm engineer should be aware of. In modeling these are often a little
vague. Nevertheless, besides describing these steps, this section gives checklists
which should help modelers in fulfilling their tasks. To have a common ground,
the basic concepts used throughout this chapter are presented in Section 2.2.1.
Having read this part, we can start with the modeling process.

First, the problem has to be analyzed. Section 2.2.2 gives the modeler some
pointers for asking the right questions about the problems at hand. These ques-
tions should provide a basis for further examinations of the problem, until a sat-
isfactory understanding of the given application is achieved. With this knowledge
we specify the problem or the requirements and thus gain the problem model.
The next step is to model one or more solution approaches using the problem
model as a source. Hence, in Section 2.2.4 some fundamental guidelines for the
second modeling step are given. Additionally, some possible pitfalls for this stage
are shown. Often the modeling process itself will take some time to complete and
the resulting model should be appropriate for the given application. This verifi-
cation process is discussed in Section 2.2.5. Concluding with Section 2.2.6 some
inherent difficulties and pitfalls for the modeling process will be addressed. All
points in this section could be covered in more detail, but since this book is
not solely about modeling, we rather give the reader some overview of the used
techniques and refer to further literature at the appropriate places.

2.2.1 Fundamentals

As mentioned before, one property of a model is its abstraction from the for-
mer original application. Another property is the purpose of the model. Models
may either specify a problem, describe a solution approach, or both. Obviously,

20 M. Geyer, B. Hiller, and S. Meinert

a problem model has to specify the requirements of the application. For each
problem class, e. g., decision-, construction-, counting-, and optimization prob-
lems, the model has to specify what a valid solution looks like. In the case of
an optimization problem the objective function, which indicates the quality of
a solution, must be defined. A model can be specified using one of the following
three formalisms.

Informal specification is colloquial where no formal concept is used. Anyway,
it should be as precise as possible. In most cases, this is the first step in
practice, e. g., when talking with a customer.

Semi-formal specification is again colloquial but uses some formal concepts,
e. g., graphs or sets. This is the first step towards abstraction from the un-
derlying problem.

Formal specification uses mathematical concepts to describe requirements, valid
solutions, and objective functions.

Obviously, increasing the formalism leads to an increasing abstraction level.
When specifying a model we use the following concepts.

Variable is used to denote certain decision possibilities.
Parameter is a value or property of a problem instance, which is used as an

abstraction in the model.
Constraint is an abstract description of a given requirement.

For clarification consider the following example where two workers have to pro-
duce an item on a certain machine. Because they are differently skilled working
on these machines Bill needs 30 minutes to produce one item, whereas John
only needs 15 minutes. We now want to answer the question: How many items
can be produced in an eight hour shift by each worker? The number of items
that can be created is denoted by the variable x. The question was how many
items can be produced in one eight hour shift. We introduce a model parameter
w which stands for the working time needed to complete one item. Combining
these elements, we get the constraint

w · x = 8.

In this example, one worker corresponds to one instance. Putting them into the
model and caring about the minutes and hours we arrive at

Bill 0.5 · x = 8,

John 0.25 · x = 8.

Thus, we exactly modeled, what has been described as the problem earlier. But
in a certain way we abstracted from reality. We did not and maybe cannot
model everything. For example, we assumed an average working speed and do
not consider fluctuations in the worker’s productivity.

Now having introduced the concepts that are necessary to create a model, we
next want to discuss the problem analysis phase of the modeling process.

2. Modeling 21

2.2.2 Problem Analysis

One of the most important steps in the process of Algorithm Engineering is a
good comprehension of the problem. Each successive step builds upon the prior
ones. Faults, particularly during the first step, may pervade the whole modeling
process.

The following overview is inspired by Skiena’s book on Algorithm Design
[742]. It should be considered when facing a problem. Of course this list is not
exhaustive, but gives some good starting points. Some aspects of this section will
not be very important for the modeling of the problem itself, but they become
important in the design phase of the engineering process.

1. What exactly does the input consist of?
2. What exactly are the desired results or output?
3. Is it possible to divide constraints into hard and soft ones?

The difference is the following: Hard constraints have to be fulfilled, whereas
soft constraints should be fulfilled, i. e., they are goals. Often, soft constraints
can be formulated as part of the objective function.

In these first points the very basic structure of the problem is studied, and it is
quite clear that any omissions in this stage may render all following steps more
or less futile.

4. Can variables or parameters of the problem be divided into important and
unimportant ones?

This will serve two different goals. At first, the problem can be understood
more easily, which makes it more convenient to handle subsequent algorithm
engineering phases. Second, the correlation between input and output be-
comes more meaningful. Removing an important input will in most cases
result in an output that doesn’t correspond to a solution of the original
problem. Often tests and experiments have to be done to decide whether the
right parameters and variables were chosen or not.

5. Is the problem of a certain problem class, or does it imply a certain solution
approach?

Examples might be solving a numerical problem, graph algorithm prob-
lem, geometric problem, string problem, or set problem. Check if the problem
may be formulated in more than one way. If so, which formulation seems to
be the easiest one to actually solve the problem?

Answering all these questions will provide the essential aspects of a given prob-
lem. They will mostly impact how the problem is modeled, but might also suggest
solution approaches. Note that it is not necessarily clear how to obtain input and
output parameters or constraints. Thus, check whether a small input example
can be constructed, which is small enough to solve by hand, and analyze what
exactly happens when it is solved. Obviously, for complex problems, e. g., the
public railroad transportation problem (see Section 2.4.2), the large number of
choices and requirements related to the problem makes it difficult to distinguish
between important aspects and less important ones.

22 M. Geyer, B. Hiller, and S. Meinert

Another important aspect of the problem analysis is the imprecision of data. It
will impact the quality of any solution quite strongly. To highlight this aspect, we
will address two major cases where imprecision of data is likely to be encountered
in the modeling process. The first one is a discrepancy between the model of
computation which is being used in classical algorithm theory and the reality
of actual hardware and operating systems. In theory an arbitrary precision for
any kind of computation is assumed, while real computers can efficiently handle
only computations with fixed precision. This problem is covered in more detail
in Section 2.4.1 and in Chapter 5. But we should always be aware of the level of
precision we can guarantee.

The second scenario where imprecision matters comes into play when im-
perfect information in general affects the problem in question. This could be
the problem of imperfect input data, but also the problem of very imprecise
problem-settings has to be addressed. We will give some examples of the latter
in Section 2.4.1.

If we are dealing with real-world applications it can happen quite easily that
we have only imperfect input data or imperfect constraints. For example if the
input data is some kind of measured data it is almost certain to contain some
kind of error, depending on the measurement process, or more extreme, if certain
input data is just gained by a process like polling some customers, it is assured
that the resulting data is a little vague. Another important point is that in
real-world applications the parameters of the problems change quite fast over
time. For example the cost for some raw materials or insufficient availability of
employees due to ill health is not a fixed number, but changes over time. Often
these changes are very limited, but all such data has to be handled with care
and it should be ensured (or at least analyzed) that no small perturbation of
the input, regarding the imperfect data, should yield a huge difference in the
solution. This connection between input and output is analyzed in the field of
sensitivity analysis, which we will not cover in this section. For more information
on this topic we refer to a comprehensive book by Satelli et al. [689].

In order to handle vague and uncertain data in the model, there are several
approaches that could be taken. One could try to obtain new sharpened versions
of the vague and imperfect data. But, in general, this is either not possible or too
expensive to obtain. Additionally, dependencies between the relevant variables
are often only known approximately [122]. In reality, vague data or constraints
are often sharpened artificially. But such artificial sharpening can distort the
image of reality up to a complete loss of reality [384]. In such cases it is necessary
to integrate some kind of vagueness into the model formulation itself. But of
course we must guarantee a precise and mathematically sound processing for
sharp and vague information. The theory of fuzzy sets is very well suited for this
task, since it is possible to model and process not only sharp information, but also
not exactly measurable or vague information in a uniform way. The fundamental
approach is to provide the means to take into account vague, uncertain and sharp
data into a common decision basis, on which every decision in the solution of the
problem is founded. In fuzzy theory such a possibility is provided by using fuzzy

2. Modeling 23

approximate reasoning methods, like the fuzzy decision support system described
in [324]. For further details on this topic we refer the reader to some examples
for the application of this methods in [324] or [272]. More general information for
information modeling with fuzzy sets can be found in [271]. Finally, it should be
noted that by using vague information and avoiding highly detailed specifications
it is in some cases possible to actually reduce the complexity of certain problems
in comparison to the sharp version [384].

In modeling, the wheel does not need to be reinvented. Many problems are well
studied. Thus, the first task is to check similar problems for existing approaches
that might be applicable to the given problem. Therefore, it is important to know
classical and generic models that have been developed so far. A short overview
of popular types of models can be found in Section 2.3.

Hopefully, the above checklist and discussion helps in getting an understand-
ing of the structure and the requirements of the problem. After analysis is com-
pleted, a model for the problem needs to be specified.

2.2.3 Problem Specification: Examples

Let us come back to the developers’ problems presented in the introduction.
Namely, these are Sudoku, printed circuit (PC) board assembly and scheduling
a garage. In the following we present specification models for these problems in
order to give an impression on how a specification model might look like.

Before starting with the specification models, we introduce an additional prob-
lem that will be used for explaining various modeling frameworks in Section 2.3,
too. The problem arises in a car manufacturing company, which operates several
plants, each of which may produce some of the car models out of the company’s
product range. The plants need to organize their production such that they meet
the stock requirements of the retail centers to which the company is bound by
contract. The car company is also responsible for delivering the manufactured
cars to the retail centers. The management requires the production and delivery
to be as cost-efficient as possible.

In the following, these four problems are formalized into simple mathematical
models.

Sudoku. Let N := {1, . . . , 9} and N ′ := {1, . . . , 3}. An instance of a Sudoku
puzzle can be described by a set S of triples (i, j, n) ∈ N3, meaning that
the value n is prescribed at position (i, j). A solution can then be modeled
as a function f : N2 → N , which provides for each row-column pair the
value at this position. For instance, the requirement that all cells in row 1
have distinct values is equivalent to stipulating that the image of row 1 is
exactly N , i. e., f has to satisfy

{f(1, j) | j ∈ N} = N.

To express this requirement for the subsquares, we introduce the set Cij for
i, j ∈ N ′ that exactly contains the cells corresponding to subsquare (i, j)

Cij := {(3(i− 1) + i′, 3(j − 1) + j′) | (i′, j′) ∈ N ′ ×N ′}.

24 M. Geyer, B. Hiller, and S. Meinert

The model can then be written as

f(i, j) = n ∀(i, j, n) ∈ S,

{f(i, j) | j ∈ N} = N i ∈ N,

{f(i, j) | i ∈ N} = N j ∈ N,

f(Cij) = N (i, j) ∈ N ′ ×N ′.

The sets Cij will also show up in later models. Finally, note that the Sudoku
puzzle is a pure feasibility problem.

Traveling Salesman Problem (TSP) and Board Assembly. We consider
n cities, numbered from 1 to n. Every round trip through all cities can be
expressed as a permutation π : {1, . . . , n} → {1, . . . , n}. Naturally, the cost
for traveling between two cities can be put in a matrix C = (ci,j)1≤i,j≤n.
The cost c(π) for a round trip π is then given by

c(π) :=
n−1∑

i=1

cπ(i),π(i+1) + cπ(n),π(1).

The task is to find a permutation π with minimum cost. Note that through-
out this chapter we assume symmetric costs and thus a symmetric matrix.
When looking at the problem of printed circuit board assembly, we observe
that it can be interpreted as a TSP. The mounting holes are the “cities” to
be visited, the robot arm corresponds to the salesman, and the cost matrix
reflects the time needed for the robot arm to be moved between mounting
holes.

Scheduling (a garage). We first observe that although the company runs sev-
eral garages, they can be scheduled separately (assuming that jobs are not
transferred between different sites). The interesting objects here are the cars
that need to be repaired, so let us number them in some way and put them
into the set J . We will call each car to be repaired a job. Each job j can be
described by its (estimated) duration pj and the agreed due date dj , which
is the time the customer wants to fetch the repaired car. For simplicity, we
also assume that each garage can handle only one job at each point of time.
Then, the order of repair jobs can again be expressed as a permutation, and
we are looking for one that respects all due dates. Each permutation corre-
sponds to a sequence of starting times sj for each job.

However, it may not always be possible to come up with such a permu-
tation, and the fact that there is no feasible solution is of no help to the
technician. A way out of this problem is to allow the due dates to be vio-
lated if necessary but requiring them to be respected as much as possible.
This can be done by introducing a soft constraint, i. e., by penalizing the vio-
lation of each due date and trying to minimize overall violation. To this end,
we introduce the tardiness tj for each job j, which is exactly the violation of
its due date

tj := max(0, sj + pj − dj).

2. Modeling 25

We also introduce weights wj for each tardiness, allowing the technician to
express which customers are more important than others. All in all, we want
to minimize the following objective

∑

j∈J

wjtj .

Note that introducing the soft constraints converted the problem from a fea-
sibility problem to an optimization problem.

This problem is known as the single-machine weighted tardiness schedul-
ing problem.

Car manufacturing. Abstracting from the general description, we can identify
the following relevant entities:

– a set M of all car models that are build by the car company,
– a set of plants P ,
– for each plant p ∈ P a set of car models Mp ⊆ M that can be produced

at this plant,
– a set of retailers R,
– for each retailer r ∈ R a vector dr ∈ Z

|M| specifying the retailer’s demand
for each car model.

We look for
– a matrix X = (xp,m)p∈P,m∈M that prescribes the number of cars for

model m that are to be produced at plant p, and
– a matrix Y = (yp,m,r)p∈P,m∈M,r∈R, where yp,m,r indicates how many

cars of model m will go to retailer r from plant p.
The matrices X and Y have to satisfy the following requirements:
1. the demand of each retailer has to be met, and
2. the number of cars of model m leaving plant p must be exactly xp,m.

The goal is to fulfill the requirements of the retailers at minimum cost. But
what are the costs? Presumably the production of a car at a plant incurs
some cost, which may be different for each plant. Moreover, transportation
from a plant to a retailer will also incur some cost. Assuming that the cost
for producing a car at a plant is constant for each car model and that the
cost for transporting a car from the plant to the retailer is also fixed and
does not depend on the car model, we can model the total cost as follows.
Given

– a matrix A = (ap,m)p∈P,m∈M describing the cost for producing one unit
of car model m at plant p, and

– a matrix B = (bp,r)p∈P,r∈R providing the cost for transporting one car
from plant p to retailer r

we look for matrices X and Y that minimize the total cost c(X, Y) defined
by

c(X, Y) :=
∑

p∈P,m∈M

ap,mxp,m +
∑

m∈M

∑

p∈P,r∈R

bp,ryp,m,r.

Note that this model may be a drastic simplification of the original problem
which may feature much more complex constraints or possibilities. For in-
stance, there may be more than one way to transport cars from a plant to a

26 M. Geyer, B. Hiller, and S. Meinert

retailer, and each such way may have a limited capacity or a complex cost
structure.

These are the four problem specification models we will use as an input for
modeling solution approaches respectively. Note that no best way to model ex-
ists. These formulations strongly depend on the requirements someone has for
a specific problem. The same holds for modeling a solution approach. Neverthe-
less, the following subsection provides checkpoints, which should be considered
when advancing to the next step of modeling.

2.2.4 Modeling a Solution Approach

So far, the problem has been analyzed and it was specified using some formalisms.
The next step is to transform or use this problem model to gain a solution
approach model. Again we provide a checklist that should be processed carefully.
The points are bundled into three themes. First, constraints have to be identified.

1. What constraints have to be considered to solve the problem?
2. How do these constraints affect the solution of the problem?
3. Is it possible to apply some simple post-processing to take them into account

or do they change the solution space fundamentally?
4. Is the approach adequately chosen to formulate all necessary constraints with

reasonable certainty?

Answering these questions often implies a certain model depending on the
modeler’s knowledge on certain domains. Modelers tend to be focused on models
they are used to (see Section 2.3).

Second, the problem has to be analyzed again. Now the aim is to find proper-
ties a solution approach may possibly exploit. Often the same questions arise in
the design or even the implementation phase. However, as they sometimes have
an impact on the modeling phase too and modeling cannot be strictly separated
from designing, they should be considered anyway.

5. Can the problem be decomposed into subproblems?
Usually the decomposition of problems will be handled in the design phase
of the Algorithm Engineering process. But facing very complex problems,
it might be useful to split them early, if possible. These still challenging
subproblems need to be modeled separately (see Section 2.4.2).

6. How does accuracy impact the application? Is the exact or optimal answer
needed or would an approximation be satisfactory?
This point usually has to be taken into account in the design or even in the
implementation phase. There, an algorithm or approach will be selected for
solving the problem.

7. How important is efficiency for the application? Is the time frame in which
an instance of the problem should be solved one second, one minute, one
hour, or one day?

2. Modeling 27

8. How large are typical problem instances? Will it be working on 10 items,
1,000 items or 1,000,000 items?

9. How much time and effort can be invested in implementing an algorithm?
Will there be a limit of a few days such that only simple algorithms can
be coded? Or is the emphasis on finding sophisticated algorithms such that
experiments (see Chapter 8) could be done with a couple of approaches in
order to find the best one?

The last two items belong to the field of real-world constraints. Even if they
come into effect at a later phase in the Algorithm Engineering process, they will
impact the modeling process quite strongly.

Hence, in practice real-world constraints, like time constraints or budget con-
straints, have quite a great influence on the modeling process. In general, finding
a model quickly is a good thing. But finding a simple model that is easy to un-
derstand and appropriate, is much more important.

Thus, if more than one model has been requested and was built, the question
arises which models should be chosen that proceed to the designing phase. At
this point the introduction of several common types of models is deferred to
Section 2.3. For now, the following list contains points which help rating a given
model. Depending on this rating a decision has to be made about which models
to discard and which to work out. Taking common practice into account, some
points are derived which can usually be found in the field of software engineering.

Simplicity. The easier the structure of a model, the easier it might be to un-
derstand. Furthermore, deciding which methods to choose in the design step
might be accomplished more easily.

Existing solutions. It might be easier to use an existing algorithm or a library
rather than writing all things anew from scratch. There might be some well
analyzed algorithms that perform very good. Furthermore, libraries tend to
have less bugs. Nevertheless, they often do not perform as good as customized
solutions. The main reason is that libraries are usually general-purpose tools,
implying that they cannot exploit problem specific properties.

Complexity of implementation. The implementation of a model should not
be too complex. People might get deterred when seeing a very difficult spec-
ification. Another example are algorithms which perform well in theory but
are too complex to implement to achieve the theoretical performance.

Time line. How much time, according to project requirements, can be spent to
implement a model?

Costs. The costs of realizing a certain model should roughly be estimated.
Maybe certain models are too expensive to take a deeper look into them.
Overall project costs can be measured as a monetary budget, as the effort
in man months or years, or as the required know-how.

Patents. More and more countries impose laws concerning software patents. So
models need to be checked for an idea or rather an approach that is patent
covered. If so, licensing the idea and a solution might be a fast but expensive
idea. If not possible, the model has to be skipped.

28 M. Geyer, B. Hiller, and S. Meinert

2.2.5 Model Assessment

After a model has been developed it has to be verified and rated. Depending on
the outcome a decision has to be made, whether to continue with the next step
of Algorithm Engineering using the current models or to start over again and
improve them. There are several points to keep in mind at this stage:

1. Have all necessary aspects of the underlying problem been considered?
If not, the model fails in its field of application and may come up with useless
solutions.

2. Are all modelled aspects really necessary for the problem?
If not, removing unnecessary parts from the model might reduce solving
time. This does not hold in general. In the case of constraint programming
redundant constraints are added to improve running time significantly (see
Section 2.3.3).

3. Is the model consistent?

One important approach is to test the model with small instances if possible
or to use a standard solver if available. Another very difficult decision is to
determine the appropriate level of abstraction or degree of specification for the
model. Consider the following example which arises in throughput optimization
of assembly lines. A workpiece has to undergo different assembly phases. After
a phase is finished it advances to the next machine until it is completed. In this
example a robot arm picks up components and mounts them on a prescribed
position [775]. The problem is to minimize the total duration of all phases a
workpiece needs to be worked on. One way to model this problem at a high
detail is to solve the TSP on the lowest level. Unfortunately, TSP is a well
known NP-hard problem. In this example the cities would be the points where
components should be mounted on the workpiece. But the authors decided to
omit the TSP modeling. The goal was to develop a very fast algorithm, that
could be used as a substage in another algorithm using this part very frequently.
Finding the exact solution of the TSP with typically a few hundred cities could
not be done efficiently in the required time frame. Furthermore, the potential
gain in processing time did not seem to be very significant when compared to
the scale of potential gain of other variables and decisions in the problem.

The appropriate level of detail for any application is not measurable and often
hard to achieve. It depends to a very high degree on soft constraints given by the
environment of the application. As some concluding remark, a modeler should
always try to achieve a deep insight into the problem structure, such that he
will be able to tell how and to what extent the solution of the different aspects
of the task will influence the solution of the whole problem. Only then it will be
possible to reduce the level of detail by abstracting from such subproblems that
influence the solution least.

2.2.6 Inherent Difficulties within the Modeling Process

Even if we follow the guidelines and take the different points for a good model
into account, there will always be problems for which a fully satisfactory model

2. Modeling 29

cannot be found. Most of the difficulties we are facing here are caused by the in-
ability to formalize the criteria for assessing the quality of a solution. Sometimes
new insights in the field of the problem can help to overcome these difficul-
ties. But usually they cannot be solved in the modeling phase of the algorithm
engineering process.

The inability to come up with a correct and formal objective function for an
optimization problem is the most prominent difficulty. Even if all constraints are
modeled properly, we would not be able to come up with an optimal solution.
This is due to the fact that two given solutions can hardly be compared without
an optimization function. Hence, there is no possibility to reason the optimality
of the results. However, based on given constraints valid solutions can still be
generated. Such difficulties appeared in the following examples.

Consider a company whose aim is to build 3D CAD models of objects they
get delivered. These objects need to undergo a scan to get sampling points of the
surface. Afterwards the samples should serve as an input for building 3D models.
One approach is to build a mesh consisting of triangles which approximates the
surface. Hence, a good triangulation of the given samples has to be found. Note
that the quality of a triangulation is a vague concept. Depending on the applica-
tion the 3D model is needed for, triangulations have to be rated differently. For
instance, in visualization acute angles should be prevented and other esthetic
criteria preserved. If the application is in the field of mathematical analysis, for
instance solving partial differential equations on the model, numerical stability
and accuracy are very important. This can be achieved by letting each triangle
have angles much larger than 0 and much lower than 180 degrees, for instance
larger than 30 and lower than 150 degrees. Accuracy may be increased by shrink-
ing the space which triangles may occupy, thus increasing their total number.
Even being aware what a triangle should look like to be considered good, it is
unknown how a distribution of angles over the mesh should look like to get a
good overall rating. Most triangulation applications are faced with this prob-
lem [827]. Furthermore, another problem arises in the area of mesh generation.
Inputs of instances can hardly be checked in terms of whether they meet some
topological properties. For example, given sample points only, it is impossible to
check if the input surface is a closed 2-manifold. Even worse, if the surface may
contain borders or holes, then it is impossible to check the input for topological
correctness.

Another example can be found in the biological research field of proteins.
Proteins take part in almost every process occurring in cells. Thus it is very
important to analyze their functionality to help understanding how cells behave
and how potential drugs should work. Such proteins are arranged in chains of
amino acids. The number of elements in such a chain varies from two up to
30,000. These elements are taken from a set of 20 standard amino acids which
are encoded by the genetic code. Each amino acid is represented by a one-letter
code. Hence, any protein can be seen as a string over the alphabet of the amino
acids. These pieces of information are stored in databases open to researchers,
for example the protein database UniProt [788].

30 M. Geyer, B. Hiller, and S. Meinert

Researchers are mainly interested in relationships or similarities between pro-
teins. Thus, they have to search the databases and compare protein information
with each other. This is in fact a key application area of bioinformatics. To create
sequence alignments, two or more sequences are compared with each other and
a scoring function is applied that indicates the similarity.

One very simple comparison method is the edit distance. The edit distance is
used to measure the distance between two strings, given by the minimum number
of operations needed to transform one string into the other. Allowed operations
are deletion, substitution and insertion. Usually, the main application areas are
spell checkers, but it can be applied to sequence alignment, too. Consider the
following example where we want to transform ’RQGKLL’ into ’RCGGKL’.

1. RQGKLL (initial string)
2. RCGKLL (substitute Q with C)
3. RCGGKLL (insert G)
4. RCGGKL (delete L)

So the edit distance is at most three assuming every operation was assigned
uniform cost of 1. Note that this is not the only way to transform the sequences
with an edit distance of three.

Unfortunately, similarity has to be more differentiated. Proteins may have
structural, evolutionary or functional similarity. In most cases, applied meth-
ods only allow for the checking of structural similarities. Hence, evolutionary
and functional similarities should be derived. Regrettably, this deduction does
not always hold. Therefore, many methods and scoring functions were devel-
oped, each to be applied in its very specific field of research. Hence, no model
could be built to satisfy the request of finding similarities between proteins in
general.

So we see that each problem might have some ambiguities which the modeler
needs to be aware of. Special care should be exercised when dealing with meta-
heuristics, where such objective functions are an integral part of the selection
process.

2.3 Modeling Frameworks

Once the problem is understood and some intuition is gained about it, the next
step is to formalize the problem and to build a model that describes solutions
and their desired properties.

Various general frameworks for modeling and solving problems have been
developed. In this section we will give an overview on the most prominent ones,
namely graph-based models, linear and mixed integer programs (LPs/MIPs),
constraint programming (CP), and algebraic modeling languages (AMLs). As a
rule of thumb, these frameworks are becoming more general and powerful in this
order.

We will illustrate the frameworks using the example problems already intro-
duced, by providing models for them in the different frameworks. This allows us

2. Modeling 31

to highlight the special features of each framework and provides a comparison
of their modeling philosophies.

The focus will be on modeling for solving the problem, rather than only spec-
ifying it. We will highlight the properties of a good model in the sense that the
model can be solved quickly.

2.3.1 Graph-Based Models

Graph-based models are used for a very broad range of problems. Most promi-
nent are combinatorial problems, which can often be easily formulated as a
graph-based model.

A central point for modeling any problem as a graph problem is the formula-
tion of the underlying graph structure. Graphs are combinatorial structures that
can be used to model a set of objects together with pairwise relations between
these objects.

More formally, a graph G is an ordered pair G := (V, E) of a set V of vertices
and a set E ⊆

(
V
2

)
of edges, where

(
V
2

)
denotes the set of 2-element subsets of V .

An edge between two vertices indicates a relation between these vertices and is
interpreted in various ways, depending on the graph problem considered.

This is only the most basic notion of an undirected graph. There are many
variations and more advanced notions, for instance directed graphs, in which the
edges are ordered pairs of the vertices (called arcs) or multigraphs which may
possess more than one edge between two vertices. Often there will be additional
information assigned to the vertices or edges. For example, if the edges corre-
spond to connections between the objects (i. e., vertices), they can be weighted
by assigning distance values to them, so the graph becomes a weighted graph.
More formally, the additional information will be described by functions of the
type f : V → I or f : E → I where I is the set of information to be assigned.

For modeling, it is useful to be familiar with basic concepts from graph the-
ory, like paths, flows, matchings, stable sets and connectivity. These concepts
can be used to capture the problem structure in a graph-theoretic setting. There
are many textbooks on graph theory, which introduce these and other concepts,
graph problems, and algorithms, e. g., [242,116]. For a more algorithmic perspec-
tive, see [500, 15] or the chapters on graph algorithms in the book of Cormen
et al. [191].

Graph-based models have three main advantages: First, they are often quite
intuitive and thus easy to grasp. Second, due to their combinatorial struc-
ture they enable the design of direct and — in many cases — efficient algo-
rithms. Third, there is much theory that might help in modeling or designing
algorithms.

A graph-based description is also often at the heart of other, more sophisti-
cated models. Actually, graph formulations are used as a first model to further
investigate the problem and in a later step some LP/MIP formulation is chosen
to benefit from strong general-purpose solvers for LP/MIP formlations. Such a
decision is often made in the design phase. This is one example that it is of-
ten necessary to repeat some parts of the modeling phase. In such a reiteration

32 M. Geyer, B. Hiller, and S. Meinert

the model is improved to achieve a better performance or easier implementa-
tion. A first glance of such a possible translation of a graph problem into an LP
formulation is given in Section 2.3.2.

However, graph-based models often cannot cope with more complicated con-
straints which may be needed for modeling the problem accurately. Although it
may be possible to formulate these constraints in a model, existing algorithms
may not be adaptable to deal with the constraints. It should also be noted
that there is no formalism for specifying graph-based models as is the case for
LP/MIP, CP, and AML. This approach makes graph formulations more flexible,
but has the drawback that there can be no generic “graph solver”, which can
compute solutions for any graph problem. There are, however, many libraries of
graph algorithms available, see Section 7.8 in Chapter 7.

We will now model some of our problems based on graphs. All necessary
notions will be introduced as needed.

TSP. The TSP is one of the classical combinatorial optimization problems
which can be formulated as a graph problem. It is straightforward to model a
TSP instance as a weighted complete graph, where vertices of the graph repre-
sent the cities and the weights cij are the distances between the cities. If there is
no connection between cities i and j this can be modeled by a sufficiently large
weight cij . A solution is a cycle that visits all the vertices (known as Hamiltonian
cycle) and the cost of a cycle C = (v1, . . . , vn) is

c(C) :=
n−1∑

i=1

cvi,vi+1 + cvn,v1 .

Sudoku. Sudoku can be modeled as a graph problem in various ways, two of
which we will give here. Both ways use edges to represent conflicts, i. e., forbidden
assignments of numbers to the cells.

The first model is based on vertex coloring. Given a graph G = (V, E), a
vertex coloring is a function c : V → N that assigns vertices connected by an
edge different numbers (colors). Thus an edge indicates a conflict between the
vertices, requiring distinct colors at the vertices. The vertex coloring problem is
to find a vertex coloring that uses the minimum number of colors.

For Sudoku, the idea to make use of the vertex coloring problem is simple:
We use a set of 81 vertices, one for each square and the assignment of numbers
to the squares as a vertex coloring. The only thing we need to do is to insert
edges such that they reflect the rules of Sudoku. This is easy: We just connect
all vertices corresponding to a line, a row, and a subsquare, respectively. In this
way we express that they should be numbered differently. Figure 2.2(a) shows
the resulting graph for a smaller Sudoku of size 2.

Another way to model Sudoku is to create 9 vertices for each square, where
each vertex corresponds to assigning the square the number of the vertex. We
insert an edge between every pair of vertices belonging to the same square to
model that only one of these vertices can be selected. Similarly, we pairwise

2. Modeling 33

connect all vertices with number i in a row, column, and subsquare by an edge,
for each i ∈ N . Thus we manage to encode a solution as a stable set: A stable
set is a set S of vertices such that for any two vertices v1, v2 ∈ S there is no
edge {v1, v2} in E. The specific instance of Sudoku has a solution if and only
if there is a stable set of size 81 that contains the vertices corresponding to the
prescribed numbers. A subset of the graph is depicted in Figure 2.2(b), again
for a smaller Sudoku of size 2.

Car Manufacturing. It is quite natural to formulate the car manufacturing
problem as a network flow problem. Network flows are maybe the most important
and the most generally applicable graph problems, since a lot of transportation
and assignment problems, as well as performance problems in real-world net-
works can be modeled using this concept. We just recollect the basic definitions
for network flows and then formulate a model for the car manufacturing problem.

A good intuition for network flow problems is to think of water that needs to
flow from some sources to some sinks through a network of pipelines to satisfy
the demand at the sinks. Formally, a network N = (V, A) is a directed graph
with lower and upper bounds for the flow on each arc given by the functions
l : A → R≥0 and u : A → R≥0, respectively [15]. The demand and supply at the
vertices is specified by a function b : V → R. A vertex v with b(v) > 0 is called
source and one with b(v) < 0 sink, all others are transshipment vertices. A flow
is a function f : A→ R≥0 that respects the lower and upper bounds and satisfies
the demand and supplies specified by b at every vertex v, i. e., one that satisfies

∑

u : (u,v)∈A

f(v, u)−
∑

u : (v,u)∈A

f(u, v) = b(v) ∀v ∈ V.

Note that the first sum is the amount of flow that leaves vertex v (the outflow),
whereas the second sum gives the amount of flow entering it (the inflow).

There are many variants of network flow problems which impose further prop-
erties on the flow. The most important one is the minimum cost flow problem.
In this problem there is an additional cost function c : A→ R that gives the cost
per unit flow for each arc, i. e., the total cost of a flow is given by

∑

a∈A

c(a)f(a).

The task is then to find a flow with minimum cost.
We can model the car manufacturing problem as a minimum cost flow problem

as follows [15]. We introduce four types of vertices (confer Figure 2.3).

– A source vertex s represents the total production (i. e., total demand) over
all car models and provides a corresponding amount of flow, i. e., b(s) =∑

r∈R,m∈M dr,m.
– Plant vertices pi represent the various plants. These vertices are transship-

ment vertices.

34 M. Geyer, B. Hiller, and S. Meinert

(a) Sudoku as a vertex color-
ing problem.

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

(b) Sudoku as a stable set problem.

Fig. 2.2. Two different graph-based models for a Sudoku of size 2 (instead of 3)

2. Modeling 35

– Plant/model vertices pi/mj correspond to each car model built at a specific
plant. These vertices are transshipment vertices, too.

– Retailer/model vertices ri/mj correspond to each car model required by a
specific retailer. These vertices are sinks and have a demand corresponding to
the demand of the retailer for the specific car model, i. e., b(ri/mj) = −di,j .

Furthermore, our network will contain three different types of arcs.

– Total production arcs: These arcs go from the source vertex s to the plant
vertices and are used to decide how the total production is distributed among
the plants. The cost for these arcs is zero, the lower bound for the flow is
also 0. We will assume that the upper bound is infinite, but a different value
could be used to express overall capacity limitations at a plant.

– Production arcs: These arcs connect a plant node with the different plant/-
model vertices that represent the car models built at the given plant. The
costs assigned to these arcs are the production costs of the corresponding
car model at the plant. Furthermore, the upper bound for the flow on each
arc is the production capacity for the car model at the plant.

– Transportation arcs: These arcs connect plant/model vertices to the retail-
er/model vertices such that the corresponding car models of the source and
target vertices are equal. They describe which share of the retailers’ demand
for a car model is produced at the respective plants. The capacity of such an
arc could be given either by restrictions imposed by the used infrastructure
or by some contracts with local transportation firms.

Obviously, any feasible flow on this network corresponds one-to-one to a produc-
tion and transportation schedule for the manufacturer. Therefore, a minimum
cost flow corresponds to an optimal production and transportation schedule.
Figure 2.3 shows an example instance together with the network arising from
this construction.

For a much more detailed and exhaustive view on network flows and their
applications we recommend the book of Ahuja et al. [15].

2.3.2 Mixed Integer Programming

Mixed integer programs (MIPs) are a very successful tool in the field of decision
making and optimization, since it is possible to model and solve a broad range
of problems.

A MIP describes the set of feasible solutions by linear constraints, which
may be linear equations or inequalities. The objective is also a linear function
of the variables used to model the solutions. There are two kinds of variables that

36 M. Geyer, B. Hiller, and S. Meinert

Fig. 2.3. An example network for an instance of the car manufacturing problem. The
arc labels indicate the cost per unit flow. Lower and upper bounds for the flow are 0
and ∞ on all edges. For the sake of simplicity we did not consider capacity constraints
of the plants, which can be included in the network model by appropriately modifying
the upper bounds on the respective edges.

can be used for modeling: real variables and integer variables. Formally, a MIP
written in matrix notation looks as follows.

min cT

1x + cT

2 y

s. t. A11x + A12y = b1

A21x + A22y ≤ b2

x ∈ R
n1

y ∈ Z
n2

In this MIP, x denotes the n1 real variables and y the n2 integer variables.
Moreover, the entries of c1, c2, b1, b2, A11, A12, A21, and A22 are arbitrary real
numbers, which are the parameters of the model.

Depending on the type of the variables, one distinguishes several types of
special MIPs.

2. Modeling 37

Linear programs (LP) All variables are real variables.
Integer programs (IP) All variables are integer variables.
Binary integer programs (BIP) All variables are binary integer variables,

i. e., variables with range {0, 1}.

When constructing a MIP model for a problem, the task is to identify variables
that encode the decisions and that can be used to express both the problem’s
requirements and the objective. Sometimes it may be necessary to introduce
variables that do not reflect an actual decision (but rather decision consequences)
in order to model the problem.

From the computational viewpoint, LPs are the easiest MIPs. They are known
to be solvable in polynomial time [472, 463] and there are several efficient im-
plementations available. IPs and even BIPs on the other hand are known to be
NP-hard. However, there are several MIP solvers available that perform very well
in practice, e. g., the commercial ones ILOG CPLEX [422] and Dash Xpress [203]
and the open-source framework SCIP [5]. For our purposes it is sufficient to know
that they are based on a concept called LP relaxation, which amounts to omit-
ting the integrality constraints for obtaining lower bounds. We will highlight the
impact of this technique on modeling in the following examples.

Car Manufacturing. The minimum cost flow problem for the car manufac-
turing problem discussed in Section 2.3.1 can readily be formulated as a MIP
model. In fact, every minimum cost flow problem can easily be written as an
LP. Since the conditions a flow has to satisfy are linear and the cost function is
linear, too, we only need to model the function f : A→ R≥0 describing the flow
by real variables xa ≥ 0 to obtain an LP formulation of the general minimum
cost flow problem:

min
∑

a∈A

c(a)xa

s. t.
∑

u : (u,v)∈A

x(u,v) −
∑

u : (v,u)∈A

x(v,u) = b(v) ∀v ∈ V

la ≤ xa ≤ ua ∀a ∈ A

xa ∈ R ∀a ∈ A

It is well-known that this type of LPs has integral optimal solutions. This im-
plies that the car manufacturing problem can be solved by the simplex algorithm.
However, there are more efficient algorithms for solving the minimum cost flow
problem. In Section 2.3.4, we will come back to the minimum cost flow formula-
tion of the car manufacturing problem and also provide a more customized LP
model.

Sudoku. The initial mathematical model for Sudoku on page 23 used a func-
tion f : N2 → N with N := {1, . . . , 9} to model a solution to the puzzle. It is not

38 M. Geyer, B. Hiller, and S. Meinert

possible to translate the requirements for this function to IP constraints by just
replacing the function value f(i, j) by an integer variable xij ∈ N . The reason
is that we cannot express the condition that each number should appear exactly
once as we did for the mathematical model.

To resolve this issue, we use binary variables xijn with xijn = 1 meaning that
n is put in cell (i, j). We have to select exactly one number for cell (i, j), which
can be ensured by the constraints

∑

n∈N

xijn = 1 ∀i, j ∈ N.

The condition that the first row contains each value exactly once can similarly
be written as ∑

j∈N

x1jn = 1 ∀n ∈ N.

The entire IP reads

min 0
s. t. xijn = 1 ∀(i, j, n) ∈ S, (fixed)

∑

n∈N

xijn = 1 ∀i, j ∈ N, (nums)

∑

j∈N

xijn = 1 ∀i, n ∈ N, (rows)

∑

i∈N

xijn = 1 ∀j, n ∈ N, (columns)

∑

(i′,j′)∈Ci,j

xi′j′n = 1 ∀(i, j) ∈ N ′ ×N ′, ∀n ∈ N, (squares)

xijn ∈ {0, 1} ∀i, j, n ∈ N.

The model uses the sets Cij containing the indices for the cells in one subsquare,
as defined on page 23. Note that the objective can be taken as “0” since Sudoku
is a pure feasibility problem. Also notice the conceptual similarity to the graph-
based Sudoku model using stable sets.

Scheduling. In the scheduling problem, the task is to find an execution sequence
for the jobs which is described by the starting times sj and tardiness tj. We
defined the tardiness tj of a job j as

tj := max(0, sj + pj − dj),

where pj and dj are the job’s parameters. Obviously, this is a nonlinear relation
between sj and tj , which needs to be expressed as a linear one in order to get a
MIP model. This can be accomplished with the two inequalities

tj ≥ 0 and
tj ≥ sj + pj − dj .

2. Modeling 39

Of course, the same trick can be applied to model the maximum or minimum of
an arbitrary number of variables.

Given two jobs i and j, the essential decision is whether to process job i or
job j first. This decision can be modeled by binary variables xij which are 1 if
and only if job i is processed before job j. Of course, if xij = 1 then xji should
be 0 and vice versa. This kind of negation is modeled easily by xij = 1 − xji.
We also need to ensure transitivity: if xik = 1 and xkj = 1, then xij = 1. This
can be modeled by constraints of the form xij ≥ xik + xkj − 1.

We still need to cover the connection between the xij variables and the starting
times of the jobs. If job i is selected to be processed first, then the starting time sj

of job j is at least si + pi. Thus we need to express the following implication:

xij = 1 =⇒ sj ≥ si + pi.

Implications like this can be modeled using so-called big-M -formulations. The
idea is to use a large constant M to “disable” the constraint for one of the values
of a binary variable. In our case a big-M -formulation of the above implication is

sj ≥ si + pi −M(1− xij).

Clearly, if xij = 1 the inequality holds. For xij = 0 and M large enough, the
right hand side becomes negative and thus meaningless. We therefore succeeded
in modeling the implication. The full MIP model for the scheduling problem
then becomes

min
∑

j∈J

wjtj

s. t. tj ≥ sj + pj − dj ∀j ∈ J (tardiness.1)
tj ≥ 0 ∀j ∈ J (tardiness.2)
sj ≥ si + pi −M(1− xij) ∀i 	= j ∈ J (precedence)

xij = 1− xji ∀i > j ∈ J

xij ≥ xik + xkj − 1 ∀i, j, k ∈ J, i > j (transitivity)
xij ∈ {0, 1} ∀i 	= j ∈ J

sj , tj ∈ R ∀j ∈ J.

Using big-M -formulations to convert logic or non-convex constraints to binary
variables, as we do here, has some drawbacks. The first has to do with how MIPs
are solved. Recall that the integrality constraints are relaxed (i. e., ignored) to
get lower bounds. These lower bounds become worse as M gets larger. As an
example, consider the following constraints, which may be part of a scheduling
model as above:

sj ≥ si + 5−M(1− xij)
si ≥ sj + 3−Mxij

and suppose that sj = 7 and si = 5 are values which would be good for the
entire problem, i. e., gives a good objective value. If M is at least 8, it is possible

40 M. Geyer, B. Hiller, and S. Meinert

to achieve sj = 7 and si = 5 by choosing xij = 5/M . Since these starting times
cannot be realized in any integer solution, this means that the LP relaxation has
not much to do with the original MIP model, which is bad for standard MIP
solvers. In particular, there may be no integer solution with a similar objective
value, which means that the lower bound is weak. The effect gets worse for larger
M , since the range of values realizing these starting times increases.

Another drawback of using big-M -formulations is that they may lead to
numerical instability. The advice to cope with both issues is to avoid big-M -
formulations if possible. If they need to be used, always choose the value of M
as small as possible and individually for each constraint. However, as the size of
the problem increases the values required for M usually grow, too. Therefore,
big-M -formulations are most attractive for small instance sizes.

Further Modeling Aspects. Since many formulations modeling the same
problem may exist, the models have to be compared with each other. One might
think that minimizing the number of constraints or variables yields a better
model. This is because inexperienced modelers expect solvers to perform better
if they have to cope with less variables or constraints.

Consider the following facility location problem [611] where we are given a
set of C := {1, . . . , m} customers and W := {1, . . . , n} possible locations of
warehouses. We need to decide at which of the possible locations to build a
warehouse and which warehouse serves each customer. To this end, we introduce
binary variables xij and set xij = 1 to denote that customer j is assigned to
warehouse i, and set binary variables yi = 1 to indicate that warehouse i is
available. The cost for actually building warehouse i are fi. If customer j is
assigned to warehouse i the costs incurred are cij . Warehouses should be opened
in such a way that the total cost is minimized.

This leads to the following formulation

min
∑

i∈W,j∈C

cijxij +
∑

i∈W

fiyi

s. t.
∑

i∈W

xij = 1 j ∈ C

xij ≤ yi i ∈W, j ∈ C (single)
xij , yi ∈ {0, 1} i ∈ W, j ∈ C.

Another, very similar formulation is as follows

min
∑

i∈W,j∈C

cijxij +
∑

i∈W

fiyi

s. t.
∑

i∈W

xij = 1 j ∈ C

∑

j∈C

xij ≤ myi i ∈ W (agg)

xij , yi ∈ {0, 1} i ∈ W, j ∈ C.

2. Modeling 41

x1

x2

2.5 3.9

1.4

3.9

x1 ≤ 2.5

x2 ≤ 1.4

x1 + x2 ≤ 3.9

Fig. 2.4. Illustration of the tightness of an LP relaxation

In fact, the only difference is that the inequalities (single) of the first formulation
have been aggregated by summing over all customers to obtain inequalities (agg)
in the second formulation.

Obviously, inequality (single) generates many more constraints than inequal-
ity (agg). One is tempted to prefer the second model. Unfortunately, this would
not be a good decision and the reason is again the LP relaxation which is much
tighter for the first formulation. This means that a fractional solution of the LP
relaxation for the first relaxation is closer to an integral solution (which is a so-
lution to the IP) than a solution of the LP relaxation for the second formulation.
Formally, the reason is that the set {xij , yi ∈ [0, 1] | xij ≤ yi, i ∈ W, j ∈ C} is
contained in the set {xij , yi ∈ [0, 1] |

∑
j∈C xij ≤ myi, i ∈ W}. An illustration

of this relation is given in Figure 2.4 where a lose formulation corresponds to
the triangular region defined by x1, x2 ≥ 0 and x1 + x2 ≤ 3.9, and the tighter
relaxation with additional constraints x1 ≤ 2.5 and x2 ≤ 1.4 to the dark grey
region.

In Mixed Integer Programming there are even more extreme cases where a
large number of constraints or variables does not indicate a bad model. On the
contrary, such a model may be a suitable one since there are special techniques
for dealing with them, in particular techniques like cutting planes and column
generation [612, 531].

A famous example for the application of cutting planes is the symmetric TSP,
i.e., a version of the traveling salesman problem where the distance between any
two cities is independent of the direction. The symmetric TSP can be modeled
by introducing binary variables xij that indicate whether or not the edge between
city i and j belongs to the tour or not. Thinking in terms of graphs, this means
that edge ij is selected to be in the cycle visiting all the vertices. Note that we

42 M. Geyer, B. Hiller, and S. Meinert

need only variables xij for j > i, since the direction of an edge does not matter.
It is clear that every city i has exactly two neighbors, giving the constraints

∑

j<i

xji +
∑

j>i

xij = 2 for 1 ≤ i ≤ n.

However, there are integer solutions that satisfy these constraints and that do not
correspond to tours. Instead, they consist of several subtours. For instance, the
following picture for n cities shows values for the variables xij that are feasible
w. r. t. to the constraints above.

1

2

3

4

5

6

x
1,2 =

1
x2,6 = 1

x1,6 = 1

x3,5 = 1
x
4,5 = 1 x3,4 = 1

To avoid these subtours, one can use the following subtour elimination con-
straints, see e. g., [611]:

∑

i,j∈S,i�=j

xij ≤ |S| − 1 ∀S ⊆ {1, . . . , n}, 2 ≤ |S| ≤ n− 1.

In order to get an intuition for the subtour elimination constraints, look at the
set S = {1, 2, 6} in the picture. Since

x1,2 + x2,6 + x1,6 = 3 > |S| − 1 = 2,

the above situation cannot occur anymore.
Although there are exponentially many constraints, this formulation can be

used within a cutting plane framework. The basic idea is to start the solution
process with a subset of all constraints. If an optimal solution to the reduced
constraint set yields an overall feasible solution, one is done. Otherwise, the task
is to identify one or more violated constraints (the name-giving cutting planes)
and to add them to the active constraints. Searching for cutting planes is called
separation. The drawback of this approach is that such models cannot be solved
using an MIP solver out-of-the-box, but require customized algorithms. Indeed,
to make this approach work in practice, a number of sophisticated enhancements
is necessary. For the TSP this is nicely illustrated in the recommendable book
by Applegate et al. [33].

Many available MIP solvers support further so-called “modeling objects”,
which are special kinds of variables, e. g., semi-continuous variables and spe-
cially ordered sets (SOS). These may be used to obtain simpler models and are
mostly targeted towards the needs of business users.

2. Modeling 43

Another aspect of modeling are the presolving capabilities of existing MIP
solvers. Presolving is a process that aims at converting the model to an equivalent
one that is better suited for the subsequent solution process. The fact that the
solvers employ presolving techniques like variable substitution can be exploited
by the modeler to obtain models that are easier to write down. For instance,
in our scheduling problem it would have been possible to introduce completion
time variables cj by the constraint

cj = sj + pj

and to use cj instead of the right hand side in the remaining constraints. The
presolver converts this model to the one given before.

There are many more useful MIP modeling tricks and techniques that can be
found in e. g., [611] and [840].

2.3.3 Constraint Programming

Constraint programming (CP) is a declarative modeling formalism similar to
mixed integer programs. A survey on CP related research and its applications is
given in [680]. For deeper insights and a reasonably complete coverage of all lines
of work in the field of constraint programming take a look into the Handbook of
Constraint Programming [682].

A constraint programming model basically consists of

1. a set of variables X = {x1, . . . , xn},
2. for each variable xi, a (potentially infinite) set Di of possible values called

its domain,
3. and a set of constraints restricting the values variables can take simultane-

ously. For a set of variables {xi1 , . . . , xik
}, a constraint is an arbitrary subset

of Di1 × · · · ×Dik
.

A solution is an assignment of values to the variables, such that

– the value of a variable is from the variable’s domain, and
– every constraint is satisfied by the assignment.

Such an assignment is called labeling.
Notice that a CP model is very general. Variable domains can be chosen ar-

bitrarily, for instance intervals of real, integer or natural numbers. In contrast
to MIP models domains need not be intervals, but can contain holes. Further-
more, domains are not restricted to numbers, also enumeration types like colors
or names can be used. The same generality is possible for the constraints: They
can be any relation on the domain.

Clearly, the constraint set of a MIP model is also a CP model. However, due
to its generality CP is much more powerful regarding expressiveness, which is
useful for modeling. Of course, no solver can be implemented that deals with
arbitrary domains and arbitrary constraints. Modeling is therefore restricted

44 M. Geyer, B. Hiller, and S. Meinert

to those type of domains and constraints that are available in the solver. Usually,
these include equality, inequality, and comparison of numerical expressions (in
particular non-linear expressions) as well as logical expressions. Examples are

x2 + y 	= 5,

x + y ≥ 5 =⇒ z = 2,

x ≤ 2 ∨ x ≥ 4.

There are different approaches for solving CPs. An overview is given in [64].
Standard solvers like ILOG Solver [424] employ an enumeration scheme, which
makes use of backtracking to systematically search for solutions, by extending
a partial labeling towards a labeling of all variables. Many CP frameworks like
ECLiPSe [265] are based on or are implemented in Prolog exploiting the inherent
back-tracking of this programming language. The main point for our purposes
is that they use some kind of implicit enumeration.

This enumeration is, of course, an exponential algorithm. In order to get
acceptable running times it is therefore important to reduce the search space
and detect partial labelings that cannot be extended to feasible ones early, so
that they can be pruned. The idea is to use the structure of a constraint to delete
inconsistent values, i. e., values that cannot participate in any feasible labeling,
from the domains of the variables involved in the constraint. Such techniques
are known as consistency techniques or domain reduction. In order to allow for
efficient domain reduction, the constraints may not be arbitrary but have to be
of certain types.

The most basic technique builds up a constraint graph for unary and binary
constraints, i. e., constraints involving only one or two variables. It can be shown
that any arbitrary constraint can be transformed into a binary constraint using
dual encoding [211] or hidden variable encoding [681], so this can in principle
be done for all CPs. In the constraint graph a node represents a variable and an
edge represents a constraint. The resulting graph can be traversed and relying
on the constraints inconsistent values in the domains of the affected variables
can be deleted. This possibly reduces the search space significantly. However,
there still might be inconsistencies regarding longer paths in the graph. Surveys
on more advanced techniques can be found in [64, 34].

CP techniques can also be used to solve optimization problems. To this end,
the search for an optimal solution is modeled with additional constraints that
forbid solutions that are inferior to the currently best one. The goal is to reduce
the search space to find an optimal solution and not to search for all solutions
and then iterate to find the best one.

So far, we gave an overview on Constraint Programming. We will now turn to
real models for our example problems. We will use a notation that is similar to the
Mathematical Programming notation already used for mixed integer programs
in order to keep models compact and general. The syntax to implement these
models differs strongly from solver to solver.

In the remainder of this section, we will only consider problems with finite
domains. As discussed before, it is important to reduce the search space which

2. Modeling 45

has to be considered during modeling. Therefore, we will address this important
aspect of CP modeling in greater detail.

Sudoku. The Sudoku puzzle (recall the notation introduced on page 23) can be
cast into a CP model in very intuitive way. We use variables xij ∈ {1, . . . , 9} =: N
to represent the values in the corresponding cells. We still need to express that
all the values in a row, column, and subsquare are different. This can be done
by simply using pairwise inequality constraints xij 	= xkl as follows:

xij 	= xik ∀k 	= i, j ∈ N, (rows)
xij 	= xkj ∀k 	= i, j ∈ N, (columns)

xi1j1 	= xi2j2 ∀(i1, j1) 	= (i2, j2) ∈ Cij , ∀i, j ∈ N ′, (subsquares)
xij ∈ N ∀i, j ∈ N.

There is a more convenient and also more powerful formulation using the global
alldifferent constraint. A global constraint is a constraint capturing a relation
between an arbitrary number of variables.

For instance, the alldifferent(X) constraint imposes that all variables in
the variable set X take distinct values. Obviously, this constraint is very useful
for modeling Sudoku, since the above model can now be written as

alldifferent({xij | j ∈ N}) ∀i ∈ N, (rows)
alldifferent({xij | i ∈ N}) ∀j ∈ N, (columns)

alldifferent(Cij) ∀i, j ∈ N ′, (subsquares)
xij ∈ N ∀i, j ∈ N.

This model is not only more compact, but also gives better search-space pruning.
The reason is that, in general, domains of variables involved in an alldifferent
constraint can be reduced stronger than if a set of equivalent inequality con-
straints is used.

We illustrate this with the following example taken from [34]. Consider the
CPs

alldifferent(x1, x2, x3); x1, x2, x3 ∈ {1, 2}
and

x1 	= x2; x1 	= x3; x2 	= x3; x1, x2, x3 ∈ {1, 2},
which are obviously equivalent and cannot be satisfied. Domain reduction is
done by considering each constraint, reduce the domains of some variable if
possible and then considering other constraints that involve these variable in
order to propagate the reduction. For the inequality constraints, however, no
domain reduction can be performed, since the domains of both variables have
two elements. The alldifferent constraint for three variables implies that the
union of the domains of the variables has to contain at least three elements, so
we can directly conclude that there is no solution. This conclusion can also be
drawn in the inequality representation, but then we need to consider more than

46 M. Geyer, B. Hiller, and S. Meinert

one constraint at a time, which is more complicated. For a CP solver it is easier
to detect the group of inequality constraints and convert it to an equivalent
alldifferent constraint in a preprocessing step.

TSP. A solution of the TSP, i.e., a tour, can be interpreted as a permutation
of the cities. This view can be directly transformed to a CP model by using a
variable xi giving the number of the city at position i in the sequence, i. e., a
permutation. We can make use of the alldifferent constraint to ensure that the
variables indeed constitute a permutation. CP allows to use variables as indices
to other variables, which is known as variable indexing. This modeling technique
can be used to express the objective function just as we did for permutations.

min
n−1∑

i=1

cxi,xi+1 + cxn,x1

s. t. alldifferent({x1, . . . , xn}) ,

xi ∈ {1, . . . , n}.

Scheduling. The scheduling problem, the following CP models and their dis-
cussion are taken from [452].

The first model for the minimum weighted tardiness scheduling problem is
very similar to the MIP model introduced in Section 2.3.2. The main difference
is that we can model the disjunction

job j is processed before job i ∨ job i is processed before job j

directly, which is due to the greater generality of the CP approach. In the MIP
model, we had to use big-M -constraints to model this disjunction. The CP model
uses only the variables sj giving the start time and cj giving the completion time
of a job j. The completion time variables are used for convenience only.

min
∑

j∈J

wj max(0, cj − dj) (Sched1)

s. t. cj = sj + pj ∀j ∈ J,
(
si ≥ sj + pj

)
∨
(
sj ≥ si + pi

)
∀j ∈ J,

sj , cj ∈ {0, . . . ,
∑

j∈J pj}.

Note that we could also use the max-function directly in the objective function,
since there is no restriction to linear objective functions. Moreover, we used∑

j∈J pj as an upper bound for any completion and start time, to get finite
domains for the variables.

We now turn to another kind of model in order to discuss how modeling
can help to reduce the search space. The basic idea for this kind of model is
to use a permutation to encode the order of job processing similar as we did
for the TSP. The model uses variables xj giving the position of the job j in

2. Modeling 47

the sequence (this is just the other way around than in the TSP model) and
completion time variables cj . Now the question is how to relate the position
information to the completion time. The key to this is the realization that they
should define equivalent orderings of the jobs, i. e., if job j is processed after job i
then the completion time of job j is greater than the completion time of job i.
Making this more precise, we get the following model.

min
∑

j∈J

wj max(0, cj − dj) (Sched2)

s. t. alldifferent({xj | j ∈ J}),
xj > xi ⇐⇒ cj ≥ ci + pj ∀j 	= i ∈ J,

xj = 1 =⇒ cj = pj ∀j ∈ J,

cj ∈ {0, . . . ,
∑

j∈J pj} ∀j 	= i ∈ J,

xj ∈ J ∀j 	= i ∈ J.

The constraints xj = 1 =⇒ cj = pj are needed to ensure that the job processed
first has the correct completion time.

Model (Sched2) is correct in the sense that all solutions to this model are
in fact solutions to the scheduling problem. We now consider additional redun-
dant constraints, which may help to reduce the search space. A constraint is
redundant, if it is not necessary in order to guarantee a correct solution.

First we note that the constraint

xj > xi ⇐⇒ cj ≥ ci + pj ∀j 	= i ∈ J

can be strengthened in the case that xj = xi + 1. In this case job j is processed
immediately after job i, giving the constraints

xj = xi + 1 ⇐⇒ cj = ci + pj ∀j 	= i ∈ J, (successive)

using the fact that in an optimal schedule, the machine is never idle.
Another set of redundant constraints arises as follows. Suppose that the jobs

are ordered non-decreasingly according to their processing times. If job j is now
processed as the k-th job, the completion time of job j is at least the sum of the
processing times of the k shortest jobs. In the case that job j is not among the k
shortest ones, its completion time is at least the sum of pj and the k−1 shortest
jobs, which is somewhat stronger. To formalize these observations in the model,
let p̃l be the duration of the l-shortest job and let Jk denote the set of the k
shortest jobs.

xj = k =⇒ cj ≥
k∑

l=1

p̃l ∀j ∈ Jk ∀k ∈ J

xj = k =⇒ cj ≥ p̃j +
k−1∑

l=1

p̃l ∀j 	= Jk ∀k ∈ J .

(LB)

48 M. Geyer, B. Hiller, and S. Meinert

Table 2.1. Data of the scheduling instance used to compare the CP models. The data
for the first 7 jobs is taken from [452] and has been extended arbitrarily to obtain
11 jobs.

j 1 2 3 4 5 6 7 8 9 10 11
pj 3 3 2 1 5 4 4 3 2 5 5
dj 2 5 6 8 10 15 17 19 20 21 21
wj 1 3 4 1 2 3 1.5 1 1 2 2

Table 2.2. Comparison of search tree size and total running times for various versions
of the Constraint Programming model for minimum tardiness scheduling.

number of choice points / running time in seconds

#jobs (Sched1) (Sched2) (Sched2)
+ (successive)

(Sched2) + (LB)
+ (successive)

7 507 0.02 4.070 0.27 3.528 0.40 356 0.04
8 1.924 0.10 20.282 1.67 17.369 2.36 1.016 0.15
9 5.397 0.34 103.903 10.21 89.195 14.18 4.136 0.68

10 103.366 6.93 956.123 129.85 847.842 179.73 37.296 7.47
11 1.7× 106 113.83 12× 106 2128.28 11× 106 2934.80 433.887 92.64

Now let us look at how much these redundant constraints contribute to reduc-
ing the search space. To this end, we use an instance of 7 jobs which was used
for a similar comparison in [452] and has been extended for this small study to
11 jobs. The precise data of this instance is given in Table 2.1. Table 2.2 presents
measurements of four different CP models solved by ILOG Solver 6.3 [424]. The
four models considered are

1. Model 1: (Sched1)
2. Model 2: (Sched2)
3. Model 3: (Sched2) + (successive)
4. Model 4: (Sched2) + (successive) + (LB)

The first column for each model gives the number of choice points, which is
some measure for the search space size reported by ILOG Solver. Clearly, the
number of choice points decreases from Models 2 to 4, as more constraints are in
the model. The most effective constraints in this respect seem to be the lower-
bound constraints (LB). However, adding only constraints (successive) to the
model (Sched2) increases the running time, although it does decrease the num-
ber of choice points. The reason is that the search space reduction achieved by
the redundant constraints needs some computation time itself. It is therefore
worthwhile to investigate whether including certain redundant constraints pays
off in a reduced running time as well. Comparing Models 1 and 4 we see that it
does pay off to use the position-based model, if we include the constraints (LB).
Model 4 has both significantly fewer choice points than Model 1 and a compa-
rable or shorter running time. In particular, the running time is much shorter
for larger instances.

2. Modeling 49

The data of Table 2.2 seem to indicate that the running times for all four
models increase quite fast with instance size. In order to solve larger instance
using CP it is often necessary to use some problem-specific search strategy. This
is one reason why many CP solvers are no “model-and-run” solvers, but rather
some kind of framework for solving CP models that can be customized to the
problem at hand.

2.3.4 Algebraic Modeling Languages

So far we introduced many mixed integer programming and constraint program-
ming models. The question how to really use these models was not addressed.
Usually, one needs to create a program that generates the model in a solver or
framework-specific way, solves the model and interprets the solution. For MIP
models, there are also two quasi-standard file formats, the MPS file format [601]
and the CPLEX LP file format [423]. However, it is still quite laborious to gen-
erate models for larger instances by hand, or a custom generator program is still
needed.

Algebraic modeling languages (AML) aim to overcome these issues. They are
high-level languages that are quite close to the standard set-based notation used
in Mathematical Programming and thus provide quite compact input files and
are more or less solver-independent. These languages pose a powerful way to
convert a Mathematical Programming model into one that can be solved by a
solver program. Most Algebraic Modeling Languages support a subset of the
modeling formalisms linear programs, mixed integer programs, quadratic pro-
grams, non-linear programs, and constraint programs and thus cover a large
range of problems. Examples are the commercial AMLs GAMS [139, 542] and
AMPL [304] and the academic ZIMPL [487,488,486], which is also available as
open source. The real power of AMLs is due to the fact that they support rapid
Mathematical Programming [487], i. e., quick evaluation and comparison of dif-
ferent models, enabling the identification of a suitable model for the problem at
hand. They support an iterative process that is very similar to the Algorithm
Engineering cycle described in Chapter 1.

1. Collect data that defines one ore more specific problem instances.
2. Formulate a model, i. e., the abstract system of variables, constraints, and

objectives that represent the general form of the problem to be solved.
3. Instantiate the model for each problem instance, using the data and param-

eters specified for the problem instance.
4. Solve the model corresponding to a problem instance by running a suitable

solver to find optimal solutions.
5. Analyze the solutions, answering question such as “Does the solution corre-

spond to a feasible solution for the original problem?”, “Does the solution
exhibit some specific structure that all solutions should have?”, or “Does the
solution fulfill the goals specified in the problem?”.

6. Refine the model and the data as necessary and start over again at Step 1.
For instance, if the solution is not feasible w. r. t. the original problem, we
need to add further constraints that ensure feasibility.

50 M. Geyer, B. Hiller, and S. Meinert

AMLs allow to strictly separate the model from the data. Thus, the data
collected in Step 1 can be stored in one fixed format that is used by a variety
of models. To this end, AMLs provide methods for using this instance data to
instantiate the general model for the problem instance. Separating the model
and the data makes it easy to investigate various models and model variants.

Although AMLs are very powerful and in many cases sufficient to solve real-
world problems, they do have limitations. For instance, it is hard to exploit
special structure in the data or in the model. Therefore, a solution process based
on the use of an AML will not give the best performance, which might be im-
portant for large-scale problems. However, AMLs are a valuable tool to guide
the design and selection of promising solution approaches, which is their main
role in the Algorithm Engineering cycle.

As an example for the use of an AML, we will have a closer look at the
open-source AML ZIMPL [486,488], which has successfully been used in various
research projects [487] as well as in several university courses. In its stand-
alone version, ZIMPL takes an input file describing a MIP model and generates
a corresponding LP or MPS file, which in turn can be solved using any MIP
solver. More recently, ZIMPL has been integrated with the academic MIP solver
SCIP [5, 6] into the ZIB Optimization Suite [859]. Hence, models formulated in
ZIMPL can be solved directly.

Sudoku. The MIP model for the Sudoku puzzle introduced in Section 2.3.2 can
readily be coded as a ZIMPL program, see Figure 2.5. The ZIMPL language
is rather simple and allows to describe the model based on sets and numerical
parameters. Sets in ZIMPL are defined using the keyword set. They consist of
tuples that are delimited by < and >, which may be omitted for unary tuples.
Sets can be constructed using the usual set-theoretic operations like intersection,
union, cross product and so on. In the Sudoku program, we use an explicit
construction to set up the set S of fixed numbers and the cross product of
sets, e. g., when defining the variables. Variables are usually indexed by some
set and it is possible to specify lower and upper bounds, as well as the type
of variable (real, binary, integer). For the Sudoku model, we only need binary
variables.

Constraints are introduced by the keyword subto, followed by a name and a
colon. A subto statement can be used to generate a set of constraints by using
the forall expression similar to the mathematical notation used for MIPs. Sim-
ilarly, there is a syntax for summing variables over a set of indices, since sums
are very common in MIP models. The name provided for a class of constraints
can be helpful when debugging the model. Figure 2.6 shows the solution for the
Sudoku puzzle presented in Figure 2.1 computed using the ZIMPL program.

In our initial attempt at modeling the Sudoku puzzle using Mixed Integer
Programming, we did not include constraints ensuring that each cell contains
exactly one number, erroneously assuming that this would implied by the con-
straints for rows, columns, and subsquares. However, this is not the case and
such constraints are needed. We recognized this when looking at the solution to
the ZIMPL program produced by SCIP, which in fact set both x1,8,1 and x1,8,3

2. Modeling 51

1 # in s t a n c e data
2 s e t S:= { <1,2 ,5> , <1 ,4 ,9> , <1 ,6 ,6> , <1 ,8 ,3> ,
3 <2,1 ,4> , <2 ,2 ,6> , <2 ,4 ,5> , <2 ,6 ,1> , <2 ,8 ,7> , <2 ,9 ,8> ,
4 <3,4 ,4> , <3 ,6 ,7> ,
5 <4,1 ,3> , <4 ,2 ,2> , <4 ,3 ,1> , <4 ,7 ,7> , <4 ,8 ,4> , <4 ,9 ,9> ,
6 <6,1 ,7> , <6 ,2 ,4> , <6 ,3 ,6> , <6 ,7 ,8> , <6 ,8 ,5> , <6 ,9 ,1> ,
7 <7,4 ,8> , <7 ,6 ,2> ,
8 <8,1 ,2> , <8 ,2 ,7> , <8 ,4 ,1> , <8 ,6 ,5> , <8 ,8 ,8> , <8 ,9 ,6> ,
9 <9,2 ,8> , <9 ,4 ,3> , <9 ,6 ,9> , <9,8,2> } ;

11 # s e t s f o r mode l ing
12 s e t N := { 1 . . 9 } ;
13 s e t N2 := { 1 . . 3 } ;
14 s e t C [<i , j> i n N2∗N2] :=
15 { <i2 , j2> i n N2∗N2 : <3∗(i−1)+i2 , 3∗ (j−1)+j2> } ;

17 # v a r i a b l e s
18 va r x [N∗N∗N] b i n a r y ;

20 # the model
21 subto f i x e d :
22 f o r a l l <i , j , n> i n S do
23 x [i , j , n] == 1 ;

25 subto nums :
26 f o r a l l <i , j> i n N∗N do
27 sum <n> i n N: x [i , j , n] == 1 ;

29 subto rows :
30 f o r a l l <i , n> i n N∗N do
31 sum <j> i n N: x [i , j , n] == 1 ;

33 subto c o l s :
34 f o r a l l <j , n> i n N∗N do
35 sum <i> i n N: x [i , j , n] == 1 ;

37 subto s q u a r e s :
38 f o r a l l <i , j , n> i n N2∗N2∗N do
39 sum <i2 , j2> i n C [i , j] : x [i2 , j2 , n] == 1 ;

Fig. 2.5. A ZIMPL program corresponding to the MIP model for the Sudoku puzzle

52 M. Geyer, B. Hiller, and S. Meinert

1 5 7 9 8 6 4 3 2
4 6 2 5 3 1 9 7 8
9 3 8 4 2 7 6 1 5
3 2 1 6 5 8 7 4 9
8 9 5 7 1 4 2 6 3
7 4 6 2 9 3 8 5 1
6 1 3 8 7 2 5 9 4
2 7 9 1 4 5 3 8 6
5 8 4 3 6 9 2 2 7

Fig. 2.6. The solution to the example Sudoku puzzle from Figure 2.1 computed using
the ZIMPL program from Figure 2.5

to 1. This could easily be resolved by just adding the constraints, now leading
to a feasible solution. Once again this emphasizes the usefulness of AMLs in
developing models.

Car Manufacturing. As a last example, we shortly discuss a ZIMPL program
for the car manufacturing problem, see Figure 2.7. The goal is to solve the
instance given in Figure 2.3 on page 36. To do this, we first need a more concrete
version of the general MIP formulation for the minimum cost flow problem. We
use the following variables (confer Figure 2.3)

xp flow on arcs leaving the source vertex s and entering the plant
vertex p,

yp,p,m flow on arcs leaving the plant vertex p and entering the plant/-
model vertex p/m,

zp,m,r,m flow on arcs leaving the plant/model vertex p/m and entering
the retailer/model vertex r/m.

This gives the LP model

min
∑

p∈P,m∈M

Ap,myp,p,m +
∑

m∈M,p∈P,r∈R

Bp,rzp,m,r,m

s. t.
∑

p∈P

xp =
∑

r∈R,m∈M

dr,m (source)

∑

m∈M

yp,p,m = xp ∀p ∈ P (plant)

∑

r∈R

zp,m,r,m = yp,p,m ∀p ∈ P, m ∈M (plant/model)

∑

p∈P

zp,m,r,m = dr,m ∀r ∈ R, m ∈M (retailer/model)

xp, yp,p,m, zp,m,r,m ≥ 0 ∀p ∈ P, m ∈ M, r ∈ R.

2. Modeling 53

Constraint (source) “generates” the flow, i. e., production capacity, that is nec-
essary to satisfy the demand, whereas constraints (retailer/model) ensure that
the retailers’ demands are satisfied. The remaining constraints just distribute
the flow in the network.

In the ZIMPL program in Figure 2.7, we first specify the parameters defining
the instance to be solved. Note that the sets for plants, models, and retailers
actually consist of strings, i. e., symbolic names. The data specifying the demand
and the cost are given using ZIMPL’s parameter table syntax. The model that
follows these data declarations uses the information only in a very abstract way,
thus effectively separating the data from the model. This separation could be
enhanced by putting the input data in an external file.

In the Sudoku example, we did not need to give an objective function, since
Sudoku is just a feasibility problem. For the minimum cost flow formulation of
the car manufacturing problem, the cost is determined by the amount of flow
on each edge. The objective is introduced in ZIMPL by the keywords minimize
or maximize and otherwise similar to constraints.

2.3.5 Summary on Modeling Frameworks

In this section we gave an overview on the most common modeling frameworks.
We saw that all of these frameworks had their specific advantages and disadvan-
tages and are more or less suited for certain applications.

One main advantage of the MIP and CP approaches was that the models can
directly be solved by suitable solver programs. This holds especially for MIPs,
since all models have the same, fixed structure and very powerful solvers are
available. Being able to solve models directly is a huge benefit, since it may
sometimes be possible to get by without having to implement something. If
this is not possible, it helps to identify promising approaches to implement. In
particular, special-purpose implementations will be necessary when it comes to
solving large-scale instances.

In order to get a model solved reasonably fast, we had to model with the
way the solver works in mind. Hence, modelers need to be aware of different
techniques solvers may use and adapt their models accordingly.

2.4 Further Issues

Before concluding the modeling chapter and continuing with the design phase
of Algorithm Engineering we discuss by example some special situations where
the border between modeling and design is blurred. Furthermore, these situa-
tions also provide insights into some of the difficulties encountered in modeling.
The first example described in Section 2.4.1 deals with special modeling re-
quirements for the input of a problem. In Section 2.4.2, a setting is analyzed in
which a first decomposition of the problem already in the modeling phase seems
necessary.

54 M. Geyer, B. Hiller, and S. Meinert

1 # in s t a n c e data
2 s e t P:= { "A" , "B" } ;
3 s e t M:= { "a" , "b" , "c" } ;
4 s e t R:= { 1 , 2 } ;

6 param d [R∗M]:= | "a" , "b" , " c" |
7 | 1 | 3 , 1 , 0 |
8 | 2 | 1 , 1 , 3 | ;

10 param A[P∗M]:= | "a" , "b" , " c" |
11 | "A" | 10 , 15 , 30 |
12 | "B" | 8 , 13 , 33 | ;

14 param B[P∗R] := | 1 , 2 |
15 | "A" | 1 , 2 |
16 | "B" | 3 , 1 | ;

18 # v a r i a b l e s
19 va r x [P] r e a l >= 0 ;
20 va r y [P∗P∗M] r e a l >= 0 ;
21 va r z [P∗M ∗ R∗M] r e a l >= 0 ;

23 # a u x i l i a r y pa ramet e r s
24 param D:= sum <r ,m> i n R∗M: d [r ,m] ;

26 # the model
27 min imize co s t :
28 sum <p ,m> i n P∗M: A[p ,m] ∗ y [p , p ,m]
29 + sum <m, p , r> i n M∗P∗R : B[p , r] ∗ z [p ,m, r ,m] ;

31 subto f low_s :
32 sum <p> i n P : x [p] == D;

34 subto flow_p :
35 f o r a l l <p> i n P do
36 x [p] == sum <m> i n M: y [p , p ,m] ;

38 subto flow_pm :
39 f o r a l l <p ,m> i n P∗M do
40 y [p , p ,m] == sum <r> i n R: z [p ,m, r ,m] ;

42 subto flow_rm :
43 f o r a l l <r ,m> i n R∗M do
44 sum <p> i n P : z [p ,m, r ,m] == − d [r ,m] ;

Fig. 2.7. A ZIMPL program corresponding to the MIP model for the minimum cost
flow formulation of the car manufacturing problem. The data of the instance used here
is that given in Figure 2.3.

2. Modeling 55

2.4.1 Specific Input Characteristics

Some difficulties of the modeling process are caused by characteristics of the
given input. The problems we are referring to are based on some unrealistic input
requirements in specific models. Whenever the specific input characteristics of
the instances do not match the requirements of the theoretical model, or more
precisely of the algorithms within this model, the modeler has to ensure to give
a valid translation between these two worlds.

For example, many geometric algorithms assume in 2D the property that all
points are in general position. Hence, no three points of the input are lying on
a straight line. Obviously, this requirement is violated by real-world instances
quite often. Usually, it is possible to perturb the points of the input somewhat to
guarantee this requirement. But after doing this, the final output of the algorithm
only guarantees valid, or optimal respectively, solutions for the perturbed input.
It is up to the algorithm engineer to analyze if and how the solution is fitting to
the original non-perturbed input.

Another discrepancy between theoretical computation models and available
computers is the assumed computational precision of the model. As before, this
may lead to misused algorithms and eventually to faulty results. In most cases,
theory assumes full precision of its computations, while computers can only
use fixed precision if efficiency matters. An example where the input has to be
modeled in a special way to circumvent erroneous computations can be found in
the field of interval geometry. Here the standard geometric objects will simply
be replaced by so-called fat geometric objects. A fat point could be a disc, but it
can generally be any simply connected bounded region. A fat line could be any
region that is bounded by two infinite polygonal paths, with some additional
properties as well. Now, the basic operations are a lot more sophisticated and
have to be defined for this new geometry. But since all objects have some kind
of error tolerance for rounding, finite precision arithmetic can compute correct
solutions. This is done at the price of a more sophisticated algorithm design and
a significantly increased running time. This kind of discrepancy is covered in a
lot more detail in a later chapter in this book (Chapter 5).

2.4.2 Problem Decomposition for Complex Applications

Problem decomposition is one of the most central points in Algorithm Engineer-
ing and a meeting point between the modeling and the design aspect. Identifying
subproblems and exploring how they are linked up is a first important step in
the design phase of Algorithm Engineering. This may lead to a remodeling of
certain subproblems to ease handling. These decisions are usually done in the de-
sign phase. It is easy to see, that different choices of decompositions often yield
quite different algorithm performances. Nonetheless, situations occur where a
first decomposition is very helpful for modeling as well as for the following de-
sign phase. In the case of highly complex applications, it is often a good idea to
do a first top level decomposition. In most cases these subproblems are still chal-
lenging. Each of these problems has to be modeled on its own, before continuing
with the design part of Algorithm Engineering.

56 M. Geyer, B. Hiller, and S. Meinert

As an example we consider the highly complex field of public railway trans-
portation planning. Given the needs and demands of the passengers and the
requirements of a profitable company, the problem is to find an optimal solu-
tion for all these conflicting requirements. Obviously, the enormous size of this
problem recommends a division of the planning process into several steps. A hi-
erarchical approach to problem decomposition seems to be reasonable [527,145].
It consists of the following five main steps.

1. Analysis of passenger demand
2. Line Planning
3. Train Schedule Planning
4. Planning of Rolling Stock
5. Crew Management

In the first step, the demands of the customers have to be modeled. This is often
done with a so-called origin destination matrix. The second step poses the prob-
lem of choosing the lines through the railway network and how often each line
should be served. During step three the actual departure and arrival times for
each train on each line have to be computed, thereby fixing the train schedule
for this network. The last two steps address assignment problems. Scheduled
trips have to be performed by engines and wagons, scarce resources which must
provide the necessary capacity for the connection, and by some crew, like con-
ductors, drivers or cleaning staff.

Each of these subproblems is still a quite challenging problem on its own.
But in contrast to the original problem, each of these subproblems is now of
feasible size. The major drawback of this approach is that each solution is the
(unchangeable) input for the next step. Thus, it is unlikely that the optimal solu-
tion for the whole problem can be computed. Moreover, at a later step it might
be realized that some former decision is not only suboptimal, but is blocking
all feasible solution. Therefore, the previous steps might have to be repeated.
Nevertheless, with this approach a feasible solution can in fact be computed at
all. There are more possibilities to decompose such problems into manageable
parts and a lot more analysis comparing them. We refer the interested reader
to [527] for further details in this field.

2.5 Conclusion

This chapter gave an overview of steps necessary to arrive at a model formulation
of a given problem. In summary: modeling is not a skill, that can be grasped
quickly. Far from it! Modeling relies strongly on experience and discipline. Thus,
a good overview of standard techniques and formulations is as important as
acquirements of skill in the modeling process itself.

Modeling has always been an integral part of the sister disciplines Operations
Research and Mathematical Programming. In contrast, the modeling aspect of
algorithm design has been neglected in the classical algorithmic theory but plays
a crucial part then theory is transferred into practice.

2. Modeling 57

Following the modeling phase the next step in the Algorithm Engineering pro-
cess is the design phase. It includes decisions that are required for constructing
correct, fast and robust algorithms for already modeled problems. Nevertheless,
while advancing in the Algorithm Engineering process, one should keep in mind
that the process of modeling is not necessarily finished. It is common experience
that developments in the design phase, or even at a later step, make it necessary
to revisit the modeling phase.

Chapter 3. Selected Design Issues

Sabine Helwig, Falk Hüffner�, Ivo Rössling, and Maik Weinard

3.1 Introduction

In the cycle of Algorithm Engineering, the design phase opens after the modeling
phase. We may assume that the algorithmic task to be performed is well under-
stood, i. e., that the desired input-output relation is specified, and an agreement
has been reached as to what makes a solution to the problem a good solution.
These questions must be settled in cooperation with representatives from fields
of application.

Once the problem specification has been successfully translated into the lan-
guage of computer science, we must design an appropriate algorithm. We seek a
construction plan for the algorithm to be developed, starting with choices about
very fundamental algorithmic concepts and iteratively enhancing this picture,
until the plan is sufficiently convincing to move it forward to the implemen-
tation phase. If there are several alternatives and a theoretical analysis does
not reveal a clear winner, design decision should be based on an experimental
evaluation.

This chapter discusses selected aspects of the design phase. However, we do
not discuss classical algorithm design paradigms like divide & conquer, dynamic
programming, prune & search, or greedy approaches, because textbooks on al-
gorithms like [191, 742, 475, 14, 348, 520, 562] usually provide very instructive
examples on how to use and combine these design paradigms.

While classical algorithm design mainly considers asymptotic worst-case per-
formance in a certain model of computation, Algorithm Engineering now deals
with algorithms exposed to a real-world environment like real-world data, real-
world computers, and real-world requirements as to performance and reliability.
In Algorithm Engineering, an algorithm and an implementation is sought. Hence,
in the big picture of Algorithm Engineering the sublime task of algorithm design
is to bridge the gap from the first abstract algorithmic ideas to the implementa-
tion by anticipating questions that arise during the implementation phase and
providing sufficiently detailed answers to them.

A first important step in that direction is to recognize the inherent limitations
of the models used. Abstraction is and will remain one of the fundamental ap-
proaches to science and everything from the asymptotical O(·) notation to the
simplifying PRAM model has been developed for a good and justified reason.
However, awareness is advised. When designing an algorithm for real world ap-
plications, it is crucial to recognize the potential dangers, e. g., the imprecision
resulting from the finite representation of real numbers in a computer. Hence,
� Supported by DFG Emmy Noether research group PIAF (fixed-parameter algo-

rithms), NI 369/4.

M. Müller-Hannemann and S. Schirra (Eds.): Algorithm Engineering, LNCS 5971, pp. 58–126, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

3. Selected Design Issues 59

the task of algorithm design is being extended by a couple of important issues
arising from reasonable practical needs.

In order to complement standard textbooks on algorithms with respect to
Algorithm Engineering we concentrate on the following design issues, which have
turned out to be of quite practical importance:

Simplicity. We explain how simplicity of an algorithm is not just a nice feature,
but has wide-ranging effects on the applicability. We give several techniques
that can help in developing simple algorithms, among them randomization
and the use of general purpose modelers.

Scalability. Algorithm designers have to deal with rapidly growing data sets,
large input sizes, and huge networks, and hence, they have to develop algo-
rithms with good scalability properties. We will introduce some basic ideas,
ranging from the pure definition of scalability to scalability metrics used in
parallel algorithm design. Moreover, some fundamental techniques for im-
proving the scalability properties of an implementation are presented. Fi-
nally, we will discuss techniques for designing highly scalable systems such
as decentralization, content distribution in peer-to-peer networks, and self-
organization.

Time-space trade-offs. The time and space requirements of algorithms are
key parameters of an algorithms performance. How easily one measure of
quality can be improved by moderately sacrificing the other one is the central
question in the analysis of time-space trade-offs. We discuss formal methods
to analyze the capability to exchange time for space and vice versa. Typical
application of time-space trade-offs in the context of storing data or sup-
porting brute force methods are discussed, as well as general techniques like
lookup tables and preprocessing.

Robustness. Conventional algorithm design is a development process that is
often based on abstraction and simplifying assumptions – covering things
like the model of computation, specific properties of the input, correctness
of auxiliary algorithms, etc. Such assumptions allow the algorithm designer
to focus on the core problem. Yet, resulting implementations and runtime
environments are not generally able to meet all of these assumptions, at times
leading us to the sobering conclusion: In theory, the algorithm works provably
– in practice, the program fails demonstrably. The section on robustness
discusses the various aspects of this issue, points out focal problems and
explains how to consciously design for robustness, i. e., making algorithms
able to deal with and recover from unexpected abnormal situations.

Reusability is another design goal. The benefits of reuse are obvious: using
a building block that is already available saves implementation time and one
inherits the correctness of the existing implementation. This limits the chances
to introduce new bugs during the coding and everything that has been done in
terms of testing or proofs of correctness is of immediate use. Furthermore, if at
a later time a part of the required functionality needs changes or extensions, it
suffices to change the one building block every algorithm is using, rather than
making similar changes in similar codes.

60 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

The issue of reusability arises at two occasions during the algorithm design
stage. At an early stage it arises as an opportunity. It should be checked whether
the entire algorithm to be designed or algorithms performing subtasks of the
given problem are already available. Using a top down approach in designing
algorithms the designer will eventually arrive at building blocks that perform a
functionality that has been required before. Public software libraries should be
checked as well as components of previously completed projects.

At a later stage reusability arises as a strategic option. Newly developed al-
gorithms should be decomposed into building blocks performing functionalities
that are easy to grasp and document. The more thoroughly this decomposition
is performed and dependencies between the blocks are minimized, the higher is
the chance that some of them will come in handy at a later project.

Design for reusability is supported by functions, procedures and modules in
imperative programming languages or to a higher degree by objects and classes
in object oriented languages. The smaller the degree of interdependence be-
tween the building block, the higher the likelihood that a building block can be
reused.

3.2 Simplicity

Simplicity is a highly desirable property of an algorithm; a new algorithm that
achieves the same result as a known one, but in a simpler way, is often an
important progress. Although the simplicity of an algorithm seems to be an
intuitively clear concept, it probably cannot be defined rigorously. A reasonable
approximation is “concise to write down and to grasp”. However, this clearly
depends on “cultural” factors: for example, using sorting as a subroutine would
certainly not be considered to make an algorithm complicated nowadays, since
library functions and knowledge about their behavior are readily available. This
might have been different 50 years ago.

Also, much of the perceived simplicity of an algorithm lies in its presentation.
For example, Cormen et al. [191] define red-black trees (a dictionary data struc-
ture) based on five invariants, and need about 57 lines of code to implement the
insert function. In contrast, a presentation by Okasaki [620] uses two invariants
and requires 12 lines of code. The reason is that Okasaki focuses on simplicity
from the start, chooses a high-level programming language, and omits several
optimizations.

Because of these inherent difficulties, and to avoid getting tangled in semantic
snares, we will do without a formal definition of “simplicity” and rely on the
intuition of the concept.

Advantages of simplicity will be further discussed in Section 3.2.1. Section 3.2.2
shows some general design techniques that can help in keeping algorithms simple.
Finally, Section 3.2.3 examines the interplay between simplicity and analyzability
of algorithms.

3. Selected Design Issues 61

3.2.1 Advantages for Implementation

The most obvious reason to choose a simple algorithm for practical applications
is that it is quicker to implement: an algorithm that is more concise to describe
will take fewer lines of code, at least when using a sufficiently high-level language.
This means simple algorithms can be implemented more quickly. Moreover, since
the number of bugs is likely to increase with the number of lines of code, simple
algorithms mean fewer bugs. Also, the effort for testing the implementation is
reduced.

Another major factor is maintainability. A smaller and simpler code base
is easier to understand and debug. Also, if the specification changes, simple
methods are more likely to be adaptable without major efforts.

A third factor is employment in resource constrained environments, such
as embedded systems, in particular pure hardware implementations. An even
moderately complicated algorithm has no chance of being implemented in an
application-specific integrated circuit (ASIC) or a field-programmable gate ar-
ray (FPGA).

As an example for the importance of simplicity, the Advanced Encryption
Standard (AES) process, which aimed to find a replacement algorithm for the
aging DES block cipher, required “algorithm simplicity” as one of the three major
criteria for candidates [238].

Lack of simplicity in an algorithm may not only be a disadvantage, but even
make implementation infeasible. A famous example is the algorithm for four-
coloring planar graphs by Robertson, Sanders, Seymour, and Thomas [674]. The
algorithm works by finding one of 633 “configurations” (subgraphs), and then
applying one of 32 “discharging rules” to eliminate them. Even though this is the
only known efficient exact algorithm for four-coloring, it has to the best of our
knowledge never been implemented.

On the other hand, algorithms initially dismissed as too complicated some-
times still find uses; for example Fibonacci heaps, a priority queue data structure,
have been described as “predominantly of theoretical interest” [191], but have
still found their way into widely used applications such as the GNU Compiler
Collection (gcc) [754].

3.2.2 How to Achieve Simplicity?

Clearly, one cannot give a recipe that will reliably result in a simple algorithm.
However, several general principles are helpful in achieving this goal.

Top-Down Design. A standard way of simplifying things is to impose a hi-
erarchical, “top-down” structure. This means that a system is decomposed into
several parts with a narrow intersection, which can then independently designed
and understood, and be further subdivided. Possibly the most simple example
are algorithms that work in phases, each time applying a transformation to the
input, or enforcing certain invariants. For example, compilers are usually divided

62 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

x2

x1

feasible region

constraint

optimal solution

objective function

Fig. 3.1. Example Integer Linear Program (ILP)

into a lexing, a parsing, and a translation phase, even though in principle lexing
and parsing could be done at the same time. The translation phase is usually
broken down further; for example gcc chains more than 100 separate optimization
passes.

This concept is well-explored (although typically at the somewhat lower pro-
gramming language level) in software engineering, for example as modularity,
but can equally be applied in algorithm design, where one still thinks in terms
of pseudo-code. Another benefit of this approach is increased robustness, as ex-
plained in Section 3.5.1.

In addition to straightforward phases, there are several more standard al-
gorithm design schemes which can simplify algorithms by reducing them to
smaller steps. Examples are divide & conquer, dynamic programming, greedy,
and branch & bound. A particular advantage of choosing such a standard scheme
is that they are well-known and thus simpler to grasp, and much knowledge about
implementing and analyzing them has been accumulated.

General-Purpose Modelers. Often, it is possible to cast a problem in terms
of a general problem model. Particularly successful models are linear programs
(LPs) and integer linear programs (ILPs) [710,191], constraint satisfaction prob-
lems (CSPs) [34], and boolean satisfiability problems (SAT) [522,191]. The chap-
ter on modeling, Section 2.3, gives an extended introduction to this topic; we
here focus on an example that demonstrates the simplicity of the approach.

LP solvers optimize a linear function of a real vector under linear constraints.
ILPs add the possibility of requiring variables to be integral (see Figure 3.1).
This allows to express nonlinear constraints, as will be seen in an example be-
low. CSPs consists of variables that can take a small number of discrete values
and constraints on these variables, where a constraint forbids certain variable
allocations. This generalizes a large number of problems, for example graph col-
oring. Finally, SAT solvers find assignments to boolean variables that satisfy a
boolean expression that contains only AND, OR, and NOT.

3. Selected Design Issues 63

Fig. 3.2. Example Graph Bipartization instance (left) and optimal solution by delet-
ing two vertices (right)

As an example, consider the NP-hard Graph Bipartization, which asks for
a minimum set of vertices to delete from a graph to make it bipartite. Given a
graph G = (V, E), this problem can be formulated as an ILP with little effort:

c1, . . . , cn : binary variables (ci ∈ {0, 1}) (deletion set)
s1, . . . , sn : binary variables (si ∈ {0, 1}) (side)

minimize
n∑

i=1

ci

s. t. ∀{v, w} ∈ E : (sv 	= sw) ∨ cv ∨ cw

which can be expressed as an ILP constraint as

s. t. ∀{v, w} ∈ E : sv + sw + (cv + cw) ≥ 1
∀{v, w} ∈ E : sv + sw − (cv + cw) ≤ 1.

Here, cv = 1 models that v is part of the deletion set, and the variables sv model
the side of the bipartite graph that remains after deleting the vertices from the
deletion set. The solution space then has 2n dimensions (in contrast, the example
in Figure 3.1 has only 2 dimensions).

To actually solve an instance, it takes little more than a script containing the
above description in a solver-specific syntax. In this way, problem instances could
be solved much faster than with a problem-specific branch&bound-algorithm
that consists of several thousand lines of code [417], and the size of instance that
could be solved within reasonable time was doubled to about 60 vertices.

The power of this approach comes from the many years of Algorithm Engi-
neering that went into the solvers. These solvers are readily available, e. g., GNU
GLPK [536] for LPs and ILPs, MINION [326] for CSPs, or MiniSat [270] for
SAT, as well several commercial solvers.

When it is possible to formulate a problem in one of these general models
without too much overhead, this is usually the quickest way to obtain a solution,

64 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Fig. 3.3. Example for the Monte Carlo algorithm for Min-Cut. In the last step, the
top option displayed yields the optimum minimum cut.

and often performance is surprisingly good. Even if it is not satisfactory, there
are ways to tune performance and amend the solving process with problem-
specific tricks, such as branch&cut for ILPs [185]. Therefore, it is recommendable
to try this approach first, if applicable, before thinking about any problem-
specific algorithms. An exception are very simple problems that are expected to
be solvable in a very good polynomial time bound, since the transformation of
the problem representation incurs a noticeable linear-time overhead.

Trade-Off Guaranteed Performance. Sometimes, bad worst-case perfor-
mance of an algorithm comes from corner case inputs, which would have to be
specifically designed by an adversary to thwart the usually good performance of
the algorithm. For example, consider quicksort, a sorting algorithm that works
by selecting an element as pivot, dividing the elements into those smaller than
the pivot and those larger than the pivot, and then recursively sorting these
subsets. It usually performs very well, except when the choice of the pivot re-
peatedly divides the subsequence into parts of very unequal size, resulting in
a Θ(n2) runtime. Even elaborate pivot choice schemes like “median-of-three”
cannot eliminate this problem. A very simple solution to this problem is to
choose a random pivot. In a sense, this thwarts any attempt of an adversary to
prepare a particularly adverse input sequence, since the exact behavior of the
algorithm cannot be predicted in advance. More formally, one can analyze the
expected runtime of this algorithm to be Θ(n log n). The disadvantage of the
approach is that with a small probability, the algorithm takes much longer than
expected. An algorithm employing randomness that always produces a correct
result, but carries a small probability of using more resources than expected, is
called a Las Vegas algorithm [589].

A disadvantage of Las Vegas algorithms is that they are often hard to analyze.
Still, it is often a good idea to employ randomness to avoid excessive resource
usage on corner case inputs, while retaining simplicity.

Trade-Off Guaranteed Correctness. While Las Vegas algorithms gamble
with the resources required to solve a problem, Monte Carlo algorithms gam-
ble with the quality of the result, that is, they carry some small chance that
a solution will not be correct or optimal [589]. Consider for example the Min-

Cut problem: given a graph G, find a min-cut in G, that is, a minimum size
set of edges whose removal results in G being broken into two or more com-
ponents. We consider the following algorithm: pick a random edge and merge

3. Selected Design Issues 65

its two endpoints. Remove all self-loops (but not multiple edges between two
vertices) and repeat until only two vertices remain. The edges between these
vertices then form a candidate min-cut (see Figure 3.3). The whole process is
repeated, and the best min-cut candidate is returned. With some effort, one
can calculate how often the procedure has to be repeated to meet any desired
error probability. This algorithm is much simpler than deterministic algorithms
for Min-Cut, which are mostly based on network flow. In addition, a variant
has an expected running time that is significantly smaller than that of the best
known deterministic algorithms [589].

Another classical example is the Miller–Rabin primality test [574, 656]. In
particular in public-key crypto systems, it is an important task to decide whether
an integer is prime. Only recently a deterministic polynomial-time algorithm
has been found for this problem [13]. This method is quite complicated and
will probably never be implemented except for educational reasons; moreover,
it has a runtime bound of about Õ(g7.5), where g is the number of digits of
the input [243]. The Miller–Rabin primality test, on the other hand, is quite
practical and routinely used in many software packages such as GNU Privacy
Guard (GnuPG) [492]. To test a number n for primality, n− 1 is first rewritten
as 2s · d by factoring out 2 repeatedly. One then tries to find a witness a for
the compositeness of n. With comparably simple math one can show that if for
some a ∈ Z/nZ

a2rd 	≡ −1 (mod n) for all 0 ≤ r ≤ s− 1

holds, then n is not prime. By trying many random a’s, the probability of fail-
ing to detect compositeness can be made arbitrarily small. This algorithm is
very simple, can be implemented efficiently, and is the method of choice in
practice.

3.2.3 Effects on Analysis

Intuitively, a simpler algorithm should be easier to analyze for performance mea-
sures such as worst-case runtime, memory use, or solution quality. As an example,
consider the NP-complete Vertex Cover problem: given a graph, find a subset
of its vertices such that every edge has at least one endpoint in the subset. This
is one of the most well-known NP-complete problems, and it has found many
applications, for example in computational biology. A simple greedy algorithm
repeatedly chooses some edge, takes both endpoints into the cover, and then
deletes them from the graph. Clearly, this gives an approximation factor of 2,
that is, the solution is always at most twice the size of an optimal solution. The
currently best approximation for Vertex Cover [456] is based on semidefinite
programming and achieves a factor of 2−Θ(1/

√
log n), where n is the number of

vertices in the graph. This algorithm is quite complicated, and requires advanced
concepts to be analyzed.

However, in fact sometimes simplicity and analyzability seem to be excluding
properties, and more complicated algorithms are developed to make them more
amenable to analysis tools.

66 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

This is illustrated by the NP-complete Shortest Common Superstring

problem: given a set S = {S1, . . . , Sn} of strings, find the shortest string that
contains each element of S as a contiguous substring. This problem has impor-
tant applications in computational biology and in data compression. The stan-
dard approach is a simple greedy algorithm that repeatedly merges two strings
with the largest overlap, until only one string remains. Here, the overlap of two
strings A and B is the longest string that is both a suffix of A and a prefix of B.
For example:

TCAGAGGC GGCAGAAG AAGTTCAG AAGTTGGG
AAGTTCAGAGGC GGCAGAAG AAGTTGGG
AAGTTCAGAGGC GGCAGAAG AAGTTGGG
GGCAGAAGTTCAGAGGC AAGTTGGG
GGCAGAAGTTCAGAGGC AAGTTGGG
AAGTTGGGCAGAAGTTCAGAGGC

In the first line, the largest overlap is “TCAG”, found at the start of the first string
and the end of the third string. Therefore, these strings are merged (second line).
After this, the largest overlap is “AAG” (third line), and so on.

One can find an example where the resulting superstring is twice as long as
an optimal one, but no worse example is known. This has lead to the conjecture
that a factor of 2 is indeed the worst case [828], which is supported by recent
smoothed analysis results [532]. However, despite considerable effort, only an
upper bound of 3.5 has been proven yet [455].

The currently “best” algorithm for Shortest Common Superstring [769]
provides a factor-2.5-approximation. In contrast to the 3-line greedy algorithm,
it takes several pages to describe it, and, to the best of our knowledge, has never
been implemented. However, its design and features allow to derive the better
bound.

Another example for the interplay of simplicity and analysis are recent results
on exponential-time algorithms for NP-hard problems. As an example, the Ver-

tex Cover problem can be solved in O(2kn) time, where n is the number of
vertices in the input graph, and k is the size of the cover. For this, one considers
an arbitrary edge and branches into two possibilities: the one endpoint is in the
cover, or the other is. In a long series of papers, the runtime of this algorithm
has been improved to O(1.274kn) [166]. Most progress was based on an ever in-
creasing number of case distinctions: a list of possible graph substructures, and
a corresponding list on how to branch, should they occur. Similar studies were
undertaken for other NP-complete problems. The process of finding and verifying
such algorithms became somewhat tedious; eventually computer programs were
written to automate the task of designing case distinctions [354]. Also, experi-
ments have shown that the numerous distinguished cases do often not lead to a
speedup, but in fact to a slowdown, due to the overhead of distinction. Better
methods of analyzing the recurrences involved were designed by Eppstein [274].
Using these methods, it was shown that many simple algorithms perform in fact

3. Selected Design Issues 67

much better than previously proved; for example, an algorithm for Dominating

Set runs in O(20.598n) on n-vertices graphs instead of O(20.850n) [292].
These examples seed the doubt that some “improvements” to algorithm per-

formance in fact may actually be only improvements to their analyzability. There
are several ways how this situation could be ameliorated:

– Experimental results can shed some light on the relative performance. For
example, one could generate random Shortest Common Superstring

instances and see whether the 2.5-approximation fares better than the 3.5-
approximation. However, these tests will always be biased by the choice of
instances and can never prove superiority of an algorithm.

– Proving lower bounds on the performance of algorithms can give hints on
the quality of an upper bound. However, proving good lower bounds can
be difficult, and often there remains a large gap between lower and upper
bounds. Also, instances used to show the lower bounds are often “artificial”
or could easily be handled as special cases in actual implementations.

– Improving the algorithm analysis tool chest. This is clearly the most valuable
contribution, as illustrated by the effects of Eppstein’s paper [274].

These steps can help to avoid that designers give up simplicity without an actual
gain in implementations.

3.3 Scalability

Due to rapid technological advances, system developers have to deal with huge
and growing data sets, very large input and output sizes, and vast computer net-
works. A typical Internet search engine has to find relevant data out of billions
of web pages. These large data sets can only be processed by very sophisticated
text-matching techniques and ranking algorithms [626]. Car navigation systems
have to find shortest paths in graphs with several billions of nodes, ideally with
taking traffic jams and road works into account. The graphs used for North
America or Western Europe have already about 20,000,000 nodes each [697]. Al-
though the shortest path problem can be solved with the well-known Dijkstra’s
algorithm [244] in time O(n2) (where n is the number of nodes), for large road
graphs and on mobile hardware with memory constraints, the original Dijkstra
algorithm is much too slow. Here, we need new, more specialized, algorithms
which can successfully handle real world problems, not only today but also to-
morrow, i. e., taking growing data sets into consideration.

Simulation and measurement results of, e. g., car crash tests or computed
tomography, produce gigabytes of data which have to be evaluated, analyzed, or
visualized. In the “Visible Human Project”, the data set representing a human’s
body is about 40 GB [7]. We certainly expect these data sets to grow larger and
larger due to technological progress which allows better and better resolutions
of, e. g., computed tomography scans. An algorithm designer must be aware of
increasing data sets and larger input and output sizes when approaching a real
world problem.

68 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Moreover, not only data sets, but also computer networks are growing. The
Internet connects billions of computers which are often sharing the same re-
sources, for instance, a certain web service. The world wide web introduces a lot
of new challenges for algorithm designers: Load variations and denial of service
attacks must be handled by, e. g., using redundancy and data distribution [247].
The Internet allows its users to share any kind of resources such as data or
computational power. Grid computing projects like SETI@home [726] use the
idle times of ordinary computers to perform large computational tasks. Coor-
dination between the participants is strongly required in order to solve huge
problems jointly in networks whose structure changes permanently. In computer
networks, it can be advantageous to spread data over the network in order to
decrease space requirements. Distributed data storage has recently become an
important research area, and new protocols for efficient data storage and access
in large, unreliable, and ever-changing networks have to be invented. The Chord
protocol from Stoica et al. [757] proposes a very efficient protocol for distributed
data storage.

Summarizing, we have seen that an algorithm designer who wants his or her
algorithm to also be used in a few years has to anticipate growing data sets, in-
creasing input and output sizes, and large, permanently changing networks. Such
algorithms are said to “scale well”. Countless papers propose a “new scalable al-
gorithm” for a certain problem, which suggests that scalability is an important
feature of an algorithm. But what is the exact meaning of the term “scalabil-
ity”? When can we claim our algorithm to “scale well”? The term scalability is
used in many different application areas such as data mining, computer graph-
ics, and distributed computing. Thus, giving an overall definition seems to be
rather difficult. Nevertheless, in 2006, Duboc et al. [260] presented a “scalabil-
ity framework”, which is a first step towards a formal definition of “scalability”.
This framework will be presented in Section 3.3.1. In parallel computing, how-
ever, the term “scalability” already is widely-used and there exist metrics for
evaluating the scalability of a parallel system. Unfortunately, these metrics are
too specific to be applied elsewhere. Nevertheless, they give deeper insight into
the whole topic, and they might be helpful when an algorithm designer wants
to prove his or her system to scale well. Thus, we will show two of these met-
rics in Section 3.3.2. Afterwards, some basic techniques for designing algorithms
with good scaling properties will be presented in Section 3.3.3. Finally, state-
of-art strategies for creating highly scalable computer networks such as using
decentralization or hierarchies, distributed hash tables, and self-organization,
are discussed in Section 3.3.4.

3.3.1 Towards a Definition of Scalability

The term scalability is used in many different application areas in order to de-
scribe technical systems or algorithms. There exists a variety of different scala-
bility aspects, for example:

– An algorithm should be designed such that it can deal with small and large
input sizes.

3. Selected Design Issues 69

– A database system should be designed such that queries can be answered on
small and large data sets.

– The running time of a parallel algorithm should decrease in relation to the
number of processing elements.

– Peer-to-peer networks should be able to deal with a small and large number
of users.

Usually, a system is said to scale well if it can react to modifications (mostly
enlargement) of the application or the hardware properties in a way which is
acceptable for the system developer as well as for its users. Due to the many as-
pects of scalability, it is difficult to develop evaluation methods suitable for broad
application. But in some research areas the use of specific scalability metrics is
well-established, e.g., as already mentioned, in parallel computing. Although the
concept of scalability is hard to define, many systems are claimed by their de-
velopers to scale well. In 1990, Mark Hill [394] considered the question “What is
Scalability?” and concluded with “I encourage the technical community to either
rigorously define scalability or stop using it to describe systems.” Few studies
have been published since then providing more general definitions [368,117], but
most of them correspond to the intuitive definition mentioned above. In a recent
study, Duboc et al. [260] still argue:

Most uses of the term scalability in scientific papers imply a desired
goal or completed achievement, whose precise nature is never defined but
rather left to the readers’ imagination.

Duboc et al. provide a first step towards expressing scalability more generally.
They claim that scalability is about the relationship between cause and effect,
i. e., how a system reacts to changes in the environment. Based on this defini-
tion, the framework presented in Figure 3.4 has been derived. The application
domain and the machine domain are called independent variables whereas system
requirements such as performance, economics, physical size, security, or reliabil-
ity are called dependent variables. When investigating the scalability properties
of a system, single parts of the independent variables, e. g., input size, num-
ber of users, size of a database system, or number of processing elements, are
changed, and the effects on the dependent variables are considered. Accordingly,
scalability should never be regarded on its own, but always together with one or
more independent and one or more dependent variables. For example, a devel-
oper could claim his or her system to scale well in the input size regarding the
system’s performance. Of course, more precise statements are also possible, e. g.,
by showing that a parallel system scales well up to 50 processors, but poorly
for more than 50 processors. Ideally, the relationship between cause and effect is
expressed as a function, but most researchers only present experimental results
in order to demonstrate the scalability of their system.

Sometimes, well-scaling systems can be achieved by sacrificing one or more
rather unimportant dependent variables for the benefit of one or more other qual-
ities. For example, in many applications it is possible to get faster algorithms
by using more space, and vice versa. These so-called time-space trade-offs are

70 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Scalability
framework

Application
domain

Machine

Critical
qualities

Flexible
qualitiesdomain

Independent Dependent
variables variables

Fig. 3.4. A first step towards a general definition of scalability: the scalability frame-
work [260]

extensively discussed in Section 3.4. Duboc et al. have integrated trade-offs into
their framework by dividing the dependent variables into critical qualities and
flexible qualities. Critical qualities are those qualities which are assumed to be
very important whereas flexible qualities can be sacrificed. If, for example, per-
formance and quality are critical qualities, and space is a flexible one, we can
try to find a time-space trade-off. If performance and space are assumed to be
critical qualities, but quality is rather flexible, we might design an approximation
algorithm.

Although this framework does not include any concrete scalability metrics, it
provides a useful general definition. However, parallel algorithm designers have
developed methods for evaluating the scalability of a system. Two of these met-
rics will be presented in the next section.

3.3.2 Scalability in Parallel Computing

Parallelization can be used to improve the performance of a computer program,
and is discussed in detail in Chapter 5. Here, we focus on scalability metrics for
parallel systems. The running time of a parallel algorithm does not only depend
on the input size, but also on the number of processing elements that are used.
Ideally, we would expect a program to run ten times faster if ten processing
elements are used instead of a single one. However, for most parallel algorithms,
this is not the case due to the following overheads which might occur through
parallelization [352]:

Communication overhead. In most parallel systems, the processing elements
have to interact with each other to spread intermediate results or to share
information.

Idle times. A processing element becomes idle when it must wait for another
processor in order to perform a synchronization step, or due to load
imbalance.

3. Selected Design Issues 71

Poor parallel algorithm. It might be impossible to parallelize the best known
sequential algorithm for a given problem. Thus, it might be necessary to use
a poorer algorithm, resulting in inherent performance loss.

In the context of parallel algorithm design, scalability is defined as the ability
of an algorithm to scale with the number of processing elements, i. e., if more
processors are used, the running time should decrease in proportion to the num-
ber of the additional processing elements. It is a measure for how efficiently
additional processing elements can be used.

There are some broadly applicable techniques to achieve scalability in parallel
systems: As communication often is one of the main sources of parallelization
overhead, Skiena recommends to design parallel algorithms such that the original
problem is split into tasks which can be executed completely independently from
each other, and to just collect and put together the results in the end [742]. This
strategy is successfully applied in grid computing projects like SETI@home [726].
If communication is necessary for performing the task, Dehne et al. [216] suggest
to partition the problem such that only a constant number of global communi-
cation steps are required. They show the practicability of this approach on a
number of geometric problems such as 2D-nearest neighbor search on a point
set, or the calculation of the area of the union of rectangles.

The most challenging part in parallelization is to divide the given problem
into appropriate subproblems. Grama et al. [352] identified four decomposition
techniques which can serve as a starting point for designing a parallel algorithm:

Recursive decomposition. Problems that can be solved by using a divide-
and-conquer strategy are qualified for recursive decomposition. The problem
is divided into a set of independent subproblems, whose results are then
combined to the overall solution. For each of the subproblems, the same
algorithm is applied, until they are small enough to be solved efficiently on
a single processing element.

Data decomposition. There are several ways for data decomposition: Each
processor can compute a single element of the output, if the computation of
each output element only depends on the input. Sometimes, the input can be
split using a kind of divide-and-conquer strategy: For example, let us assume
that the sum of a sequence of numbers has to be computed. It is possible to
split the task into summing up the numbers of subsequences and to finally
combine the results. If the algorithm is structured such that the output of
one step is the input of another, it might be possible to partition the input
or the output of one or more such intermediate steps.

Exploratory decomposition. If, for example, the solution of a combinatorial
problem is searched for, we might give the problem to an arbitrary number
of processors, letting each one apply another search strategy, and finish if a
solution has been found.

Speculative decomposition. Some applications are hard to parallelize because
a long sequential computation must be performed in order to decide what
should be done next. If this is the case, all possible next computation steps

72 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

can be executed in parallel, and needless computations will be discarded af-
terwards.

Evaluating the Scalability of a Parallel Algorithm. Until now, we have
defined scalability as a measure for a parallel system’s capability to utilize addi-
tional processing elements efficiently. Grama et al. [352] described the following
model for parallel programs which allows a formal definition of a parallel system’s
scalability.

When analyzing a parallel algorithm, its performance is usually compared
with a sequential algorithm which solves the same problem, and has execution
time TS . To provide fair comparison, a parallel algorithm designer should always
use the best known sequential algorithm for the analysis and not, if existing, the
sequential algorithm which has been the basis of his or her parallel algorithm.

The execution time TP of a parallel algorithm is the time elapsed between the
beginning of the computation until the last processor has finished.

The overhead of a parallel program which is executed on p processing elements
is defined as

TO = pTP − TS

which is the time that would have been required in addition to the sequential
running time if the parallel algorithm was processed sequentially.

Speed-up is defined as the ratio of the time required to solve a given problem
sequentially to the time required to solve the same problem on p processing
elements:

S =
TS

TP
.

Theoretically, this assures that S ≤ p is always true, but in practice, speedups
greater than p have also been observed, referred to as superlinear speed-up. This
can be due to, for example, cache effects: If the data is too large to fit in the cache
of a single processing element, partitioned for parallel computation it might fit.
We need two more definitions to complete the model:

– The efficiency metric tells us how efficiently the processing elements are
used:

E =
S

p
=

TS

pTP
.

– The problem size W is the number of computation steps that is required by
the best known sequential algorithm for solving the problem. For example,
for matrix addition, the problem size is Θ(n2). The problem size is a function
of the input size.

With the previous definitions in mind, scalability is now defined as a parallel
system’s ability to increase speed-up in proportion to the number of processing
elements.

3. Selected Design Issues 73

Looking at scalability from another point of view (but based on the same def-
inition), a parallel system is called scalable, if the efficiency can be kept constant
as the number of processing elements as well as the input size is increased. If we
assume that the problem size W is equal to the sequential running time TS , we
can evaluate W to [352]:

W = KTO(W, p) , (1)

where TO is the overhead, which depends on the problem size W and on the
number of processing elements p, and K = E/(1− E) is a constant, as we keep
the efficiency constant.

Equation (1) is called the isoefficiency function of a parallel system. The
isoefficiency function is a measure for the scalability of a system: It specifies the
growth rate of the problem size (which is a function of the input size) required to
keep the efficiency fixed when adding more processing elements. If its asymptotic
growth is slow, additional processing elements can be utilized efficiently. For
unscalable parallel systems, the isoefficiency function does not exist, since it is
impossible to keep the efficiency fixed when p increases.

3.3.3 Basic Techniques for Designing Scalable Algorithms

After having presented the scalability framework and shown some metrics which
can be applied in parallel computing, we will now approach scalability from a
more general point of view. In this section, we will present some fundamental
techniques for designing algorithms with good scaling properties.

In Algorithm Engineering we are supposed to solve a concrete real world prob-
lem. Designing algorithms with good asymptotic worst case running times is of
great theoretical interest and leads to valuable insights for practical applications.
However, when regarding Algorithm Design in the context of Algorithm Engi-
neering, we have to extend our view and consider the specific application. An
algorithm with a bad worst case behavior might be a good choice if the worst
case seldom or never happens. Consider the simplex algorithm as an example:
It has exponential worst case running time, but it is nevertheless a very popular
and successful technique for solving linear programming problems.

One of the most-used methods to achieve scalability in a software system
is to apply problem-specific heuristics which have proven to scale well in prac-
tice. Since Algorithm Engineering means cycling between design, analysis, imple-
mentation and experimentation until an appropriate solution is found, heuristic
approaches are very common. Their quality can be checked, e. g., in the exper-
imentation step, and further improvements are possible in the next cycle. The
major drawback of applying heuristics is that most of the times, only subopti-
mal outputs are generated, and often, an analysis of the expected output quality
does not exist.

When approaching a concrete problem, we first analyze the problem and make
assumptions on the expected inputs and system properties. In order to design
an algorithm with good scaling properties, we have to decide which concrete

74 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

scaling properties we want to realize. Certainly, if we have to develop a program
for a mobile phone, it is not important for us whether our algorithm scales in
the number of processors, because we will not use thousands of them in a single
mobile phone. Thus, the expected application domain (e. g., input size, number
of users) and the system properties (e. g., number of processing elements, mem-
ory size) have to be bounded appropriately. Then, we concentrate on designing
algorithms which are efficient within the given restrictions, and thus scale well
in their application areas. We are not searching for algorithms with good asymp-
totic behavior because our concrete problems are bounded. A typical example
of bound dependent design is the choice of an appropriate data structure which
will be explained in the following subsection, and is also discussed in the context
of time-space trade-off in Section 3.4.4.

Using Appropriate Data Structures. The choice of the most efficient data
structure for a given application depends on the number of elements which have
to be stored as well as on the operations which are expected to be most commonly
applied to them. Using appropriate data structures can improve an application’s
performance significantly.

Dictionaries. One of the most important data structure needed in computer
science is dictionaries, which can store data identifiable by one or more keys and
provide methods for inserting, deleting, and searching for objects. There exists
a variety of different dictionaries such as simple arrays, hash tables, and trees.
The following dictionary types are widely used (see, e. g., Skiena [742]):

Unsorted arrays. For very small data sets, i. e., less than 20 records, a simple
array is most appropriate. A variant which has been proven to be very effi-
cient in practice is a self-organizing list : Whenever an element is accessed, it
is inserted at the front of the list in order to provide faster access the next
time.

Sorted arrays. In a sorted array, elements can be accessed in logarithmic time
by performing binary search. However, they only perform well if there are
only very few insertions or deletions.

Hash tables. Often, a hash table with bucketing is good choice, when many
elements have to be stored. The keys are transformed to integers between
0 and m − 1 via a hash function, and then the objects are stored at the
respective position of an array of length m. If two or more elements have
been mapped to the same position, they can for example be organized as a
linked list. The array size m and the hash function have great impact on the
performance of a hash table, and should therefore be chosen carefully.

Binary search trees. Binary search trees provide fast insertions, deletions,
and access. There are balanced and unbalanced versions. For most applica-
tions, balanced trees such as red-black trees or splay trees are more efficient
since an unbalanced tree might degenerate to a linked list, which performs
very poorly.

3. Selected Design Issues 75

For large data sets which do not fit in main memory, using a B-tree might
be appropriate. In a B-tree, several levels of a binary tree are moved into
one node in order to process them sequentially before requiring another disk
access.

Space Partitioning Trees. In many applications, such as computer graphics,
statistics, data compression, pattern recognition, and database systems, many
objects in low- or high-dimensional spaces have to be stored. Typical questions to
such systems are “which object is closest to another given object” (nearest neigh-
bor search), “which region contains the following object” (point localization) or
“which objects lie within a given region” (range search).

The nearest neighbor problem is defined as follows: A set S of n elements in k
dimensions is given, and we are searching for the closest element in S to a query
object q. Obviously, this query can be answered in linear time by comparing
all objects with the given one. This simple approach performs very well for a
small number (less than 100) of objects. However, for hundreds or thousands of
objects, there are better approaches, based on space partitioning trees. The idea
is to arrange the objects into a tree structure so that the time for answering
queries depends on the height of the tree, which ideally is log n. The most-used
space partitioning trees are kd-trees [91, 307]: The space is recursively divided
into two parts according to a splitting strategy, e. g., such that each subregion
contains equally many elements. The recursion stops if the number of elements in
a region is below a given threshold [590]. These elements can be processed more
efficiently using the simple linear time approach. Of course, it is also possible
to divide a region not only along one dimension but along every dimension in
every split, resulting in quadtrees for two-dimensional data sets and octtrees for
three dimensions [690]. Figure 3.5 shows a kd-tree and a quadtree. The kd-tree
should only be used for less than 20 dimensions since it performs very poorly in
higher-dimensional spaces. For such applications, searching for an approximate
solution of the given problem might be a good approach [49].

Fig. 3.5. An example of a kd-tree (left) and of a quadtree (right)

76 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

The process of analyzing, transforming, and/or reducing data before applying
an algorithm is called preprocessing, and is discussed in more detail in Sec-
tion 3.4.4, concentrating on time-space trade-offs. Usually, creating a kd-tree is
not a space-critical procedure, but a time-consuming task, and therefore only
pays off for large input sizes, or if we expect a large number of queries.

Algorithm Selection. If it is impossible to make any assumptions on the
expected application domain, we can design more than one algorithm for a given
problem and choose the appropriate one during runtime, when more information
is available.

For small input sizes, an algorithm with good asymptotic running time might
not be the best choice due to overhead produced by, for example, applying com-
plicated transformations on the input data before solving the problem. These
computations (preprocessing operations) are hidden in the O-notation, and might
significantly slow down an algorithm for small input sizes. When solving larger
problems, however, it pays off to create additional data structures or to do pre-
calculations, since the additional running time is mostly negligible compared to
the overall execution time.

An example for algorithm selection is the introspective sorting algorithm de-
scribed by Musser [602]. The median-of-three quicksort algorithm has an aver-
age computing time O(n log n) and is considered to be faster than many other
algorithms with equally good asymptotic behavior. However, there are input
sequences which lead to quadratic running time. In these cases, a better per-
formance can be achieved by heapsort, with average and worst case running
time O(n log n), but which on average is slower than quicksort. The introspective
sorting algorithm uses quicksort on most inputs, but switches to heapsort if the
partitioning of quicksort has reached a certain depth. The result is an algorithm
which works almost exactly like quicksort on most inputs and is thus equally
fast, but has a O(n log n) worst case running time by using heapsort for the
critical cases.

After having introduced some fundamental strategies for achieving algorithms
with good scaling properties, we will now present some examples of advanced,
more modern design techniques.

3.3.4 Scalability in Grid Computing and Peer-to-Peer Networks

In grid computing projects, large computational tasks are performed by using
many processing elements which can be located geographically far away from
each other. Often, they are connected via existing communication infrastruc-
tures, mostly the Internet, and try to solve computational problems together by
sharing their resources. The number of processing elements can be significantly
larger than in traditional parallel applications, while communication can be much
slower, and thus, scalability is an important concern here. Special types of grid
computing are desktop grids. They have become popular through projects like
SETI@home [726], which try to use the idle times of ordinary desktop computers
to perform large computations.

3. Selected Design Issues 77

Peer-to-peer is a concept which differs from the traditional client-server-
approach: Every participant, also called peer, acts as both client and server,
which means that it provides resources for other peers, but also uses resources
of the others. Peer-to-peer networks have become well-known through file shar-
ing, but more generally, each kind of resource can be shared. In peer-to-peer
networks, two communicating participants usually establish a direct connection
to each other. The scalability question which arises here is whether new partic-
ipants can be integrated without decreasing the performance of the whole net.
For further reading, an overview on peer-to-peer networks and grid computing
can be found in [31], and a comparative study has been published by Foster and
Iamnitchi [303].

When designing distributed algorithms for grid or peer-to-peer computing,
we have to consider two main scalability issues: The system should be able to
deal with a large number of participants, and it should use available resources
efficiently, even if they are not known beforehand. There exist some techniques
to achieve these goals, namely decentralization, making use of hierarchies, and
utilizing distributed hash tables, which have been proven to work very well in
practice. These techniques will be explained below, in the context of information
sharing and content distribution.

Decentralization. Using a central instance which coordinates the whole com-
putation can easily become the bottleneck of a distributed application since the
performance of the whole network depends on the performance of this central
node. Consider the information sharing application Napster (see, e. g., [31, p.
344ff]): Data is stored in a decentralized manner on the peers, but a central server
knows where to find which piece of data. If a peer is searching for something
it must ask the central server where to find it. Afterwards, a direct connection
to a peer owning the desired information is established. Although data storage
takes place decentralized, the existence of a central server slows down the whole
application significantly the more users participate.

Gnutella [443] is completely decentralized: A central server does not exist,
instead, each peer helps other peers to find information by forwarding incom-
ing requests to its neighbors. The bottleneck caused by centralization vanishes,
but Gnutella has another problem, resulting in bad scalability properties: Each
request is published randomly in the net, and thus the unintelligent searching
strategy can become the bottleneck of this application when too many messages
are spread and single nodes become overloaded.

Making Use of Hierarchies. The problem caused by broadcasting requests
has been solved by the developers of Kazaa, which is, like Gnutella, fully decen-
tralized, but divides its participants into super nodes and ordinary nodes. This
way, Kazaa exploits the heterogeneity of the peers as they can strongly differ in
up time, bandwidth connectivity, and CPU power [525]. Each ordinary node is
assigned to a super node. Super nodes are fully informed about which informa-
tion is provided by their children. If a participant searches for data, it asks its

78 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

super node where to find it. The super node first checks whether another child
node has the desired information, otherwise forwards the request to its adjacent
super nodes. If an appropriate node has been found, a direct connection between
the peers is established for transferring the data.

Besides Kazaa, there exist many other algorithms which exploit the inherent
heterogeneity of a problem in order to achieve better scalability. For example, in
car navigation systems, the inherent hierarchical structure of road networks can
be used in order to develop extremely efficient, problem-specific solutions [224].
Shortest path algorithms are discussed in detail in Chapter 9. Another example
is an algorithm for rendering objects in computer graphics, namely level of de-
tail [275]: Objects, which are near the viewer are rendered with high resolution
whereas objects which are far away are shown less detailed.

Intelligent Data Distribution. Although Kazaa has helped to eliminate some
of the bottlenecks of earlier protocols, it has two main disadvantages: The first
one is the lookup strategy. Each request is broadcasted in the net, but after pass-
ing a specified number of nodes, it is deleted in order to avoid that unanswered
requests are rotating in the network forever. This means that it might happen
that a data request is removed even if the data is available. Hence, accessibility
of data can not be guaranteed. The second disadvantage is the inhomogeneity of
the nodes, although helpful to achieve scalability, this property causes larger vul-
nerability as, for example, the failure of a super node may cause serious problems
for the whole net.

More recent protocols like CAN [664], Chord [757], Pastry [683], Tapastry [391],
Viceroy [537], Distance Halving [610], and Koorde [445] overcome these two
drawbacks by using distributed hash tables (DHT), which have been introduced
as consistent hashing in 1997 by Karger et al. [460]. All these protocols assume
that data does no longer belong to a certain peer, but can be distributed arbi-
trarily in the net. This is done by hashing data as well as peers into a predefined
space. In order to illustrate this principle, Chord will now be presented in more
detail.

Here, each piece of data is represented by a unique key which is hashed to an
m-bit identifier. The participating nodes also get an m-bit identifier by hashing,
for example, their IP address. Thus, every piece of data and every node has
an ID in the interval [0 . . . 2m − 1]. The nodes are arranged into a logical ring
structure, sorted by their IDs. Each piece of data is now assigned to the first
node whose ID is equal to or follows the data’s ID. Figure 3.6 shows a Chord
ring with N = 3 nodes and m = 3, i. e., all IDs are in the interval [0 . . . 7]. Let
us assume that our nodes have IDs 0, 1, and 3. Data is always stored in its
succeeding node, which means that, in our example, in the node with ID 0 all
data with ID 0, 4, 5, 6, and 7, is stored, and in the node with ID 3 all data with
ID 2 and 3 is stored. This strategy allows efficient leaving and entering of nodes.
If a node leaves the net, all its data is transfered to its successor, while when a
node is joining, it might get data from its successor.

3. Selected Design Issues 79

2
3

0
4
5
6
7

1

1, 3, (0)
Finger table

Finger table
3, (3), 0

Finger table
0, (0, 0) 3

0

1

Node

IDs (hash values) of data

Node ID

which would be stored here

Fig. 3.6. A Chord ring with 3 nodes with IDs 0, 1, and 3. Data is always stored in the
node whose ID follows the data’s ID, and thus, data with ID 0, 4, 5, 6, 7 is stored in
node with ID 0, and data with ID 2 or 3 is stored in node with ID 3.

In order to locate data, each node must have information about other nodes. A
Chord node only maintains a very small amount of such routing information; this
is the main reason why it scales well in the number of nodes. The routing table
of a Chord node, also called finger table, consists of at most m entries, which
is in O(log N) where N is the number of nodes. The i-th entry of the finger
table of node n contains the ID and the IP address of the first node following
n + 2i−1 mod 2m, for i = 1 . . .m. The finger tables of the nodes in our example
are also shown in Figure 3.6. The construction of the finger table assures that
each node has more information about the nodes following it than about those
located further away in the ring structure, but also has some information about
more distant nodes.

If a node wants to look up a piece of data with ID k, it searches its finger
table for the node whose ID most closely precedes k and asks this node for more
information. By repeating this procedure, the data with ID k will finally be
found. Stoica et al. [757] show that with high probability or in steady state, each
data can be located using only O(log N) communication steps. Also with high
probability, entering and leaving of nodes only cost O(log2 N) messages.

80 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Using Self-Organization as Algorithm Design Strategy. Many biologi-
cal systems have very good scaling properties, whereby scaling in this context
means that the system works well no matter how many individuals are involved.
Consider, for example, a fish swarm. There are swarms with only very few fish,
but there are also swarms with millions of them. The behavior remains the same
which indicates good scalability properties. Reynolds [670] succeeded in visual-
izing fish swarms by assigning a small set of rules to each fish:

1. Collision Avoidance: Avoid collisions with neighboring fish.
2. Velocity Matching: Try to have the same speed and direction as the neigh-

boring fish.
3. Centering: Try to move towards the center of the swarm, i. e., try to be

surrounded by other swarm members.

The reason that this algorithm scales well is that every fish only makes local
decisions, and knowledge about the whole swarm is not required.

This is similar to decentralization, but goes one step further: The rules de-
scribed above are very simple, but nevertheless, complex structures can re-
sult [149]. There have been attempts to imitate biological systems in order
to develop systems which are simple, scalable, robust, and adaptable, such as
ant colony optimization, and genetic algorithms. Only few approaches use self-
organization without a concrete natural basis, among them the organic grid of
Chakravarti et al. [154]. In grid computing, a large number of computers are
working together in order to perform expensive calculations. Often, a central
instance distributes the tasks among the clients. In the organic grid, however,
everyone should be able to use the resources of the whole system by spread-
ing its task over the net. As already mentioned, centralization often becomes
the bottleneck of such an application, and thus, Chakravarti et al. developed a
fully decentralized system by using self-organized agents which carry the tasks
from one node to another. They did not use any biological system as their basis.
Instead, they developed their system by first defining the desired goals and by
then thinking about the rules each agent must obey in order to achieve these
goals. The resulting rules are simple, but provide complex behavior. Thus, they
showed that using self-organization as an algorithm design strategy might lead
to simple, well-scaling, and robust algorithms.

3.4 Time-Space Trade-Offs

Introductory textbooks about algorithm design usually focus on the time com-
plexity of algorithms and problems, the space requirements are mostly just
mentioned in passing. For teaching purposes on an elementary level there is
an easy justification for this apparently one-sided approach: using the funda-
mental model of a Turing machine, it is obvious that an algorithm running
for f(n) steps cannot use more than f(n) cells of the working tape. Hence,
DTIME(f) ⊆ DSPACE(f) follows and an analysis of time complexity suffices
to establish the term of an efficient algorithm.

3. Selected Design Issues 81

Space constraints may arise out of system requirements. As nowadays only a
vanishing portion of the produced computers are in the shape of multi-purpose
computers (e. g., personal computers or laptops) and the major part is embedded
in systems as miscellaneous as cell phones, cars, watches or artificial pacemak-
ers, the space requirements of algorithms and problems will likely increase in
significance. Technological improvements making it possible to store more and
more data at the same cost are usually met by an ever-growing wish to store
more and more data creating a permanent shortness.

To pick the most space efficient algorithm among algorithms of the same
running time is a first step to include space analysis into algorithm design. When
designing algorithms minimizing time and minimizing space may easily be two
conflicting goals. Hence, a variety of different algorithmic solutions to one and
the same problem may be optimal for different time and space requirements.

The problem of choosing the right algorithm remains relatively simple if one of
the resources time or space is by far more crucial than the other one, in a given
setting: in an artificial pacemaker, one might be willing to sacrifice orders of
magnitude in calculation time to gain a constant factor in space. For a high-end
chess computer providing immense extra storing capacities might be acceptable if
this enables the system to evaluate 5% more configurations in the time available
for a move, because it is able to recognize more configurations which were already
evaluated.

The degree to which minimization of time and space are in conflict is the
central issue in the discussion of time-space trade-offs. These trade-offs differ
immensely in scope: For some problems, the set of time-optimal algorithms and
the set of space-optimal algorithms may intersect while in other cases, time-
optimality can only be reached by accepting severe space requirements and vice
versa. Apart from the scope of the trade-offs also their shape is of interest: For
some problems the trade-off between time and space is smooth which means
that an increase in time by a factor of f(x) results in a reduction of space by a
factor of g(x) with f and g not too different in growth or, in the best case, even
asymptotically equivalent. In other cases, the trade-off is rather abrupt which
means there is a certain bound of one resource so that even a relatively small
step below this bound can only be made by sacrificing the other resource to an
extreme extent. We will see examples of these cases in the following discussions.

Time-space trade-offs do not only arise in the comparison of different algorith-
mic approaches, but may also arise within one algorithm that can be adapted,
e. g., by tuning parameters appropriately. A search algorithm can be run with
very restricted memory resulting in revisiting the same places over and over
again, or it can store its entire search and avoid redundancy completely.

Such an adaption can even be made at runtime if the algorithm itself evaluates
parameters like the current processor idle time or the amount of main memory
available. The SETI@home [726] project may serve as an example for this line of
thought: the system is allowed to use resources (space and time) of participants
willing to contribute but it must be ready to clear the resources at all times,
should the user require his resources for other purposes.

82 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

1,1 2,2 3,3 4,4 5,5

4,53,42,31,2

2,41,3 3,5

2,5

1,5

1,4

n/3 2n/3

2n/3

n/3

Fig. 3.7. Left: A dependency graph with G = (V, E), V = {(i, j)|1 ≤ i ≤ j ≤ n}
and E = {((a, b), (a, d))|b < d} ∪ {((a, b), (c, b))|a < c} shown for n = 5. Middle: An
illustration for results no longer needed at a certain point. Right: An illustration for
the counting argument.

Beyond the application driven motifs to consider time-space trade-offs, there
is also a structural insight into the nature of the problem in question and its
algorithmic solutions that should not be underestimated. Theory has provided
means to establish lower bounds for time-space products and to analyze the im-
portant question whether a time-space trade-off for a given algorithm is smooth
or abrupt. (See for example [700] for an introduction.)

3.4.1 Formal Methods

Theoretical studies break down into the analysis of straight line programs and the
analysis of data-dependent programs. The latter class is more powerful. In straight
line programs, the input does not effect the course of computation – loops (with
variable number of executions) and branches are forbidden. Hence, straight line
programs for a given input size n may be written as a fixed sequence of input
and output steps and operations on previously computed values. A naive bubble
sort is a straight line algorithm (it looses this property if a test is added to make
the algorithm stop should the array be sorted after some iteration). Prominent
straight line algorithms are the Fast Fourier Transformation, computation of
convolutions or matrix multiplications.

The dependencies between the different steps of an algorithm can naturally
be modeled as a directed acyclic graph. The vertices are the different steps of
the algorithm and an edge (u, v) is inserted, if the result of step u is called for
in the computation of step v. Input steps have indegree 0, output steps have
outdegree 0. Consider for example the dependency graph of Figure 3.7 that we
will revisit when discussing dynamic programming in the next section.

The Pebble Game. A fundamental approach to formally studying time-space
trade-offs is the so-called pebble game, played on these dependency graphs. Peb-
bles are placed on the vertices and moved from vertex to vertex according to

3. Selected Design Issues 83

certain rules. A pebble on a vertex indicates that the result of this node is cur-
rently stored by the algorithm. The rules follow naturally:

1. A pebble may be placed on an input vertex at any time.
2. A pebble may be placed on an inner vertex, if there is a pebble on every

predecessor of the node. (It is allowed that the pebble placed on the node is
one of the pebbles of the predecessors.)

3. A pebble can be removed at any time.
4. If all nodes have once carried a pebble, the game is won.

As every move represents an operation or a reading of an input component, the
number of moves needed to win the game corresponds to the running time of the
algorithm. The maximum number of pebbles that has been in use at the same
time is the algorithm’s space requirement. (If a distinction between input space
and working space is required, input vertices never carry pebbles and an inner
node may be pebbled if all its preceding inner nodes carry a pebble.)

In our example we could just pebble the graph row-wise from top to bottom
and within each row from left to right. This results in Θ(n2) for time and space.
Clearly Ω(n2) is a lower bound for time, as every node must be pebbled at least
once. But what about space? The center part of Figure 3.7 shows that nodes arise
that are no longer needed when computing in this order. If the dot resembles the
node currently being pebbled, every result in the shaded area will not be needed
again. Hence, we could save pebbles by using them over. It turns out however,
that the number of pebbles needed remains Θ(n2).

The next approach would be to modify the order in which the nodes are peb-
bled. This freedom cannot be exploited to yield a lower space requirement: Let
(a1, b1) and (a2, b2) with 1 ≤ ai ≤ bi ≤ n be two nodes and let X(a1, b1, a2, b2)
be an indicator that is 1 iff the result for node a2, b2 is stored at the time the re-
sult for node (a1, b1) is computed, 0 otherwise. Then

∑
(a2,b2) X(a1, b1, a2, b2) is

the space in use at the time (a1, b1) is evaluated. Due to an averaging argument
it suffices to verify that

∑
a1,b1

∑
a2,b2

Xa1,b1,a2,b2 = Θ(n4) in order to establish
a Ω(n2) space bound.

Define Span((a1, b1), (a2, b2)) := (min{a1, a2}, max{b1, b2}). Now note that if
Span((a1, b1), (a2, b2)) /∈ {(a1, b1), (a2, b2)}, both (a1, b1) and (a2, b2) are prede-
cessors of the span and hence they are both stored when the node of their span
is computed. Consequently, X(a1, b1, a2, b2) = 1 or X(a2, b2, a1, b1) = 1 as we
do not delete results until we know that they will not be called for again. A
counting argument completes the proof: Pick (a1, b1) from the pale shaded area
in the right diagram of Figure 3.7 and (a2, b2) from the dark shaded area. The
span of these combinations is below the lowest dashed line and hence all these
Θ(n4) combinations contribute a 1 in the above sum.

Hence, we cannot save space (asymptotically) without sacrificing time. If we
allow results to be computed, deleted and later recomputed, we are actually
able to win the game with 2n−1 pebbles. The price turns out to be exponential
running time: We inductively verify that a node in the i-th layer (counting top-
down starting with layer 1) can be pebbled with 2i−1 pebbles. This is obviously

84 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

true for level 1. For a node in level i, proceed from k = i−1 down to 1 and pebble
its two predecessors recursively. This can be done by the induction hypothesis.
At the end of each recursive call remove all pebbles placed during this call except
the final one. When all the predecessors are pebbled, the node in level i can be
pebbled. For the running time, we obtain the recursion T (n) = 2

∑n−1
i=1 T (i) with

T (1) = 1 which solves to T (n) = 2 · 3n−2.
The time-space trade-offs of other graphs can be much smoother. Several

graph classes like binary trees, pyramids, lattices and butterflies have been stud-
ied. Hence, an algorithm designer even if he does not want to establish trade-
off bounds by analyzing pebble games himself, should at least check whether
the specific pattern of dependencies in his task is a prominent one and already
analyzed.

The total independence between input and course of computation in straight
line programs appears to be a rather severe restriction. However, in algorithms
that are mostly straight line the same formal methods may still give a hint on
time-space trade-offs even though they lose the formal assurance of a mathemat-
ical proof. We revisit the above graph and this line of thought when discussing
dynamic programming.

3.4.2 Reuse and Lookup Tables

On the conceptual level, an important way to save time is avoiding doing the
same things over and over again. Storing and reusing results that have been
obtained from a time consuming process is an obvious solution requiring space.
Some simple examples:

– In a lookup table values previously obtained by a lengthy calculation are
stored for later use.

– In caching, a certain amount of pages is kept in main memory to minimize
slow hard disk accesses.

– In distributed databases an object may be stored in more than one location
in order to keep the communication time small.

An important question in a given application is to what degree the access pat-
tern to data can be predicted. If the designer is dependent on working with
probabilities or relying on heuristics, a more redundant storing must be used to
obtain the same performance.

Dynamic Programming. In dynamic programming it is known in advance
which previously computed result is needed at a given stage of the algorithm.
Hence, the necessary space can be figured out in advance and can be made
the subject of a minimization process. A graph, like the one to demonstrate
the pebble game, modeling the dependencies between the different subproblems,
comes in handy.

Consider the following two basic problems, firstly the problem to decide
whether a word w of length n is in a language of a context free grammar

3. Selected Design Issues 85

Fig. 3.8. The dependency graph for the longest common subsequence problem

G = (V, T, P, S) given in Chomsky normal form, where V denotes the set of
variables, T the set of terminals, P the production rules, and S the start symbol.
The well-known Cocke-Younger-Kasami (CYK) method solves n·(n+1)

2 problems
corresponding to all subwords of w. In fact, the dependency graph in Figure 3.7
is exactly the dependency graph of the subproblems in the CYK-algorithm. Node
(i, j) represents the computation of Vi,j , the set of variables that can produce
the subword xi, . . . , xj . The dependencies are due to the rule

Vi,j = {A ∈ V |∃i≤k<j∃B,C∈V (A→ BC) ∈ P, B ∈ Vi,k, C ∈ Vk+1,j}

for j > i.
The second problem we discuss is to find the longest common subsequence of

two sequences x and y of length n. A standard dynamic programming algorithm
computes the longest common subsequences Maxi,j of every pair of prefixes
x1, . . . , xi and y1, . . . , yj including the empty prefix ε for i = 0 or j = 0. Hence,
(n+1)2 subproblems are solved. The dependency graph (Figure 3.8) reflects the
rule

Maxi+1,j+1 = max{Maxi,j+1, Maxj+1,i, Maxi,j + 1xi+1=yi+1}

for i, j ≥ 0.
While the common subsequence problem computes roughly twice as many

subproblems, a smart implementation only requires storing Θ(n) solutions at a
time. A glance at the structure of the dependency graph of this algorithm reveals
this. If the subproblems are solved in a top-down and left to right manner, the
algorithm does only need the results of the last n + 1 computations. The older
ones may be overwritten. We thus have a case where space improvement can be
obtained without a loss in computation time.

Observe that our proof for the CYK-algorithm graph needing Ω(n2) pebbles
when time is constrained to O(n2), only proves the necessity of storing Θ(n2)
subsolutions for CYK, provided the task of computing one table entry is not
interrupted and no partial solutions are stored. We may conclude however, that
if we intend to break the Ω(n2) space bound, we must do exactly that. Hence,

86 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

there is no easy way to break this bound, i.e., the bound cannot be broken simply
by optimizing the order in which subproblems are solved.

An aspect of dynamic programming that deserves special attention are the
two different versions of optimization problems. In many problems which are
approached with dynamic programming there is a value version and a construc-
tion version. The value version just asks for the value of the solution, while the
construction version also requires producing the solution itself. This solution
consists of information gathered during the computation.

In the above example of the longest common subsequence the computation
of an internal node consists of picking the maximum among three candidates
provided by the predecessors. A constructive solution does not just require the
length of the longest common subsequence, but also the sequence itself. This is
easily solved by storing after every computation the identity of the predecessor
that delivered the maximum value. Then, after the value of the optimal solu-
tion is found, one traces these predecessor information back to the origin. This
requires storing the whole table even if it is redundant for the value version. In
the dependency graph the shift from value- to construction version is reflected
in further edges: in the constructive case every internal node has an incoming
edge from every node located to its upper left. We loose a factor of n just by
switching from the value version to the constructive version.

This problem is addressed in [114] for a variety of interesting cases. It is shown
that in the cases they describe, a construction version may be computed with
asymptotically the same space as the value version if a slowdown of a logarithmic
factor is acceptable. In the cases covered, subproblems are organized in bags and
the dependencies are reflected by a constant degree tree with the bags as nodes.
A simple case would be the one where the tree is a simply linked list. We can
obtain this structure by organizing the different columns of the subsequence
graph as a bag. (See Fig. 3.9.)

Bodlaender and Telle point out that this setup arises for many NP-hard prob-
lems on graphs that can be solved efficiently, provided the path decomposition
or the tree decomposition of the graphs is bounded by a constant. We will only
describe the algorithmic idea for the case where the bags constitute a simply
linked list. The more general case follows similar ideas.

Assume a sequence of n bags is to be solved. Each subproblem in bag i + 1
can be solved using only the results of bag i. Furthermore, assume that for every
subproblem a single predecessor delivers the optimal solution, hence the con-
structive solution is a path through the dependency graph. (This assumption is
met in the subsequence problem, as we only need to remember which predecessor
constituted the maximum. The assumption is not met in the CYK graph, as we
need to store a pair of predecessors.)

In a first iteration (Fig. 3.9 top) the optimal value as well as a pointer to the
subproblem in the first bag, where the path of the optimal solution starts, are
computed. Afterwards the algorithm works recursively on problems Pl,r with
l < r, starting with P (1, n). It is assumed that we know which result in bag

3. Selected Design Issues 87

l m r

0

l m r

0

l m r

0

Fig. 3.9. Finding the middle of an optimal path. A method to reconstruct the optimal
path in short time, without storing the entire table.

l and which result in bag r is part of the optimal path. We seek to determine
which result from bag m = � l+r

2
� is on the optimal path.

This is achieved as follows. Assuming a maximization problem, we set the
value of the starting point of the optimal path in bag l to 0 and all the other
entries of bag l to −∞. That way the optimal path does not change and we
do not need to know the real values of bag l. With these fictitious starting
values we rerun the dynamic program up to bag m (Fig. 3.9 middle). In the
second half of the run from bag m to r we maintain a set of pointers indicating
which result in bag m is on the path leading to a specific result. When bag r is
reached we follow the pointer from the optimal result to its predecessor in bag m
(Fig. 3.9 bottom). The recursion than continues independently for P (l, m) and
P (m, r).

We never store more than two bags at a time and have asymptotically the
same space requirement as the value version. The time is described by T (n) =
2T (n

2) + n yielding T (n) = Θ(n log n).

Online Scenarios. In an online scenario the input and therefore the requests
for stored data are revealed at runtime. A web server, for example, has no way
of knowing which page a user might request next. The theory of online computa-
tion [125] provides formal frameworks for performance guarantees on worst case
inputs. We say an approximation algorithm A is c–competitive for a minimization

88 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

problem, if for every legal instance I the inequality A(I) ≤ c · opt(I) holds.
The paging heuristic Least-Recently-Used for example is k-competitive if k is
the number of pages which fit into main memory. It is optimal among all deter-
ministic strategies in the worst case analysis [744]. A marking algorithm using
random bits is O(log k)-competitive for oblivious input (i. e., if the sequence of
page requests is independent of the behavior of the paging algorithm) [4, 286]
and optimal in this sense.

However, for real world applications, the idea of an adversary generating the
input with the intent to hurt the system as bad as possible is overly pessimistic
(denial of service attacks being an exception to this rule). A stochastic analysis,
assuming every page being requested with the same probability, is equally little
appealing. More advanced methods have turned out to resemble experiments
with real world data pretty well. The idea is to model legal sequences of requests
either deterministically in an access graph or more generally allowing randomness
in a Markov chain [461]. By the last one it is assumed that a request for page
a is followed by a request for page b with a probability pa,b. The sparser the
Markov chain, the better it can be exploited to figure out a tailor-made paging
strategy for the given application. The probability values themselves may arise
out of experimental studies.

In online scenarios we usually have a smooth trade-off: the more space we are
able and willing to provide in main memory, the more seldomly page misses will
occur.

Interpolation. For arithmetic functions, lookup tables may be used in yet a
different manner. Assume a complicated function f(x) is to be evaluated many
times throughout an algorithm with the x-values neither being known in ad-
vance nor sufficiently predictable. Hence, we are facing an online scenario. But
if the function is defined over real-valued variables – even given the usually fi-
nite representation of a real value in a computer – the odds of luckily having
a requested value in store is negligible. Assuming a certain smoothness of the
function however, it might be acceptable to work with interpolation: if function
f is called for a specific value x the algorithm determines the biggest x-value
smaller than x and the smallest x-value greater than x in the lookup table. The
result for x is then obtained for example by linear interpolation or, if the first
k derivates of f are also stored, by a more advanced method. In this scenario,
building a lookup table for interpolation is also an example of a preprocessing
phase yielding a time-space trade-off.

In this case of arithmetic functions the time-space trade-off is a conceptual
decision and is not smooth. The lookup table is only constructed if the decision
is made to totally ban exact evaluations of f from the computation. Once a table
is established, the time saved does not increase with the size of the table, but of
course, we do have a clear space precision trade-off.

3. Selected Design Issues 89

3.4.3 Time-Space Trade-Offs in Storing Data

Crucial properties of data structures are their space requirement and their
ability to execute specific operations in a given time. Hence, for data structures
the time-space trade-off is the measure of performance.

An obvious example are B-trees. They are specifically designed to organize
data that does not fit into main memory and the space requirements are only
measured in the number of hard disk accesses as the operations in main memory
are by orders of magnitudes faster. A B-tree is specified by a parameter t ≥ 2.
Every node except for the root contains at least t− 1 and at most 2t− 1 keys.
Every inner node containing the keys x1 < x2 < . . . < xr has exactly r + 1
children that correspond to the intervals

[−∞, x1], [x1, x2], . . . , [xr−1, xr], [xr ,∞].

Furthermore, every leaf of a B-tree has the same depth. Insertions and deletions
are arranged so that they maintain these invariants.

For reasonably high values of t almost every key will be stored in a leaf.
Hence, every unsuccessful and almost every successful search requires d hard
disk accesses if d is the depth of the tree. The depth d of a B-tree with n keys
is bounded by d ≤ �logt n�. Therefore t should be picked as large as possible,
that is, t should reflect the amount of main memory one is able and willing
to provide for the search. This example also reminds that different measures of
time (main memory operation or external memory access) and space must be
used properly in order to achieve a useful performance description. Here the O(·)
notation poses a specific danger.

As data structures are designed to support specific operations efficiently while
keeping space small, an exhaustive discussion of time-space trade-offs in data
structures would actually be an exhaustive discussion about data structures,
well beyond the scope of this chapter. We thus restrict ourselves to three aspects
that are of specific interest in Algorithm Engineering. First, using the example of
resizing in hashing schemes, we describe how a scheme with good amortized per-
formance bounds can be enriched to yield good worst-case performance bounds.
We then point out that advanced data structures usually use sub-data structures
that need to be well chosen. Hence, both observations deal with bridging the gap
from theoretical analyzes to practical necessities. We finish with some remarks
about data compression.

Hashing. Hashing is almost a scientific field on its own. The more data is
stored in a hash table of a given size, the more often collisions will occur. These
collisions either result in longer linked lists in the case of hashing with chaining
or in multiple hash table accesses when a form of open addressing is used. Hence,
densely filled hash tables require less space per item stored but the price is longer
lookup times.

Every concept of hashing provides a system of resizing the hash table. Once a
certain load factor is exceeded, a larger hash table is created and the data is re-
hashed. Should a table become too sparse due to deletions, the table is shrunken.

90 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

As the hash function will involve the table size, it becomes necessary to recom-
pute the hash values of every key already stored, whenever a resize measure is
undertaken. Usually the change in size of the hash tables will be by a multi-
plicative factor, as then amortized analysis using the simple accounting method
shows constant amortized cost per operation. Hence, even if a single operation,
namely the one causing the resizing measure, may take time Θ(n) where n is the
number of elements currently stored, the cost per operation remains constant in
the long run.

However, if for a given time crucial operation we cannot afford operations
which take linear time in rare peak situations, and therefore an amortized con-
stant time per operation is not good enough, further space can be invested to
obtain this goal. One possibility is to setup a new larger hash table in the case
of overflow, but to also keep the old one. Lookups are performed on both tables
resulting in an increase of a factor 2 in lookup time. Deletions are treated simi-
larly. Whenever a new element is inserted, it is inserted into the larger table and
c further elements from the small table are removed from there and hashed into
the larger one. The constant c needs to be picked in a manner such that the time
needed to rehash c elements is still acceptable. As soon as the old hash table is
empty, it can be discarded. The density bounds for enlarging or shrinking tables
are picked such that never more than two tables are in use at the same time.
Hence, by doubling the space needed, the worst case time of an operation has
been reduced from Θ(n) to constant. So in this case space is used to take the
peaks out of the runtime.

Sub-Data Structures. More advanced data structures often include elemen-
tary ones as substructures. Here knowledge about the context in which the data
structure is to be used, comes in handy. Consider for example a suffix tree [367].

A suffix tree T for an m-character string S is a rooted directed tree with
exactly m leaves numbered 1 to m. Each internal node, other than the root,
has at least two children and each edge is labeled with a nonempty substring
of S. No two edges out of a node can have edge-labels beginning with the same
character. The key feature of a suffix tree is that for any leaf i, the concatenation
of the edge-labels on the path from the root to leaf i exactly spells out the suffix
of S that starts at position i. That is, it spells out S[i . . .m].

Figure 3.10 shows an example of a suffix tree for the word MISSISSIPPI$. (The
unique stop symbol “$” is used as otherwise there are strings with no suffix trees.)
We will briefly describe the use of suffix trees when discussing preprocessing in
the next section.

Constructing a suffix tree speeds up algorithms that make use of their struc-
ture. However, they clearly require significantly more space than the string itself.
Hence, finding a space efficient representation is worth a thought. How should the
children of an internal node be represented? In bioinformatics, where the strings
are DNA sequences consisting of the four nucleotide bases A, C, G and T, an
array providing room for pointers to each of the four possible children makes
sense. Every child can be addressed in constant time and the space blowup is
acceptable. If in principle the entire ASCII code could be the first character of

3. Selected Design Issues 91

1

4 7

10

11

$

12
9

8

SSI

2 5 36

SSIPPI$

MISSISSIPPI$

S

SII

PPI$
PPI$

SSIPPIPPISSIPPI$

PPI$ $

I

P

PII

Fig. 3.10. An example suffix tree

an edge label, we will clearly not afford an array of 256 cells for every internal
node. Possible alternatives are linked lists (space efficient, slows down lookup),
binary trees (more space consuming than linked lists but faster in lookup times)
or hash tables.

In fact, practical implementations use a mixture of these schemes. In a suffix
tree internal nodes, that are higher in the tree, usually have more children than
the ones located closer to the leafs. Hence, one might start with arrays for the
first levels and then switch to simple lists further down.

Data Compression. The field of data compression finds ways to save space
by investing calculation time. Classical algorithms make only use of statistical
properties of the text to be compressed. They rely on redundancies within the
text to be compressed and find ways to exploit them. Such redundancies appear
in different scope depending on the nature of the compressed file: a text in a
natural language has redundancy simply because letters appear with different
frequency and e. g., only a small portion of all combinations of 5 letters will ever
appear in a text. Is the original file a picture, redundancy arises for example
from larger areas having the same color. A random binary string can hardly
be compressed as it has by definition no structure, and information theoretic
bounds prevent lossless compression of arbitrary input.

Usually the compression is performed to save space when the file in question
is currently not used, e.g., the photos on the memory card of a digital camera
should take as few space as possible, since one wants to store as many photos as
possible and has no problem whatsoever with the time needed to compress and
decompress the picture. A new branch of research (e.g. [738]) is dealing with
compression methods that allow to execute specific tasks on the compressed
file directly, hence making it superfluous to decompress and re-compress it af-
terwards. First methods of this kind were reported for string problems. Lately,
also graph-theoretic questions have been dealt with on compressed representa-
tions [107].

92 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

3.4.4 Preprocessing

Preprocessing or input enhancement is the process of adding an additional struc-
ture to the input, such that the task can then exploit that structure to obtain a
better running time. Preprocessing requires anticipating the kind of tasks that
are to be performed with the stored data. Quite often the preprocessing will
compute partial solutions hoping they will turn out to be useful when the real
computation begins. In this case space must be invested.

What constitutes a good preprocessing, obviously depends on the task to be
performed. A hint that time-space trade-offs might be obtainable by means of
preprocessing is that in a given task the input breaks down into different layers,
where the input components of one layer change much more frequently than the
components of other layers.

An illustration is a navigation system for cars. The input consists of the graph
letting us know which streets exist and at what speed we can expect to drive
on them. Furthermore, the input consists of the requests, namely origin and
destination between which the fastest route is to be found. In a middle layer the
input could also include information about current traffic jams, road blocks and
so on. As a change in the first layer – the graph – requires building, expanding or
redirecting roads in reality, it seldomly appears. More often, traffic jams evolve
or vanish, road blocks are established or lifted. Still much more frequently, a new
query consisting of origin and destination is brought forward.

It would obviously be unwise if the system reacted to every query as if it had
never seen the graph before, hence handling every part of the input equally. A
system should at first work on the graph and enrich it with additional structures
and information like e. g., the fastest connection between large cities. When a
query appears, the system can then first find the closest larger cities to the origin
and the destination and use the connection between these cities as a basis for
its solution. If a middle layer with current traffic information is used, the sys-
tem might store additional alternative connections on the graph level, such that
if an anticipated scenario of traffic jams occurs, the already developed backup
plan is immediately available. Chapter 9 has a section devoted to preprocessing
techniques for shortest path queries.

It is well possible, that for one and the same problem different preprocessing
steps may be useful depending on the context. Let us consider the problem of
simple pattern matching: given a text T of length n and a pattern P of length
m, find every occurrence of P in T . Clearly Ω(n + m) is a lower time bound
as every algorithm must at least read pattern and text completely. This bound
is met by several algorithms. It is possible to preprocess the pattern in time
O(m), such that every search for that pattern in a string of length n runs in
time O(n). Hence, searching this pattern in r texts of size n each is possible in
time O(rn + m) [367].

This approach is advisable if the pattern seldomly changes. For example in
bioinformatics a certain sequence of nucleotides in a DNA string may constitute
a defect and a lot of DNA samples are to checked for this defect.

3. Selected Design Issues 93

Using suffix trees [333] it is even possible to preprocess the text in time O(n)
such that after the preprocessing every request for patterns of length m runs in
time O(m). Hence, a sequence of r calls with patterns of length m runs in time
O(n + rm).

This setup for example applies to web search engines that store huge databases
of web pages. These web pages are comparably seldomly updated. More fre-
quently, requests for web pages containing a certain word are made, and in a
preprocessed web page the check for the presence of every search-phrase can
be done in time linear in the size of the phrase (which is usually short) and
independent of the size of the web page.

These preprocessing steps, again, require additional space. For preprocessing
the text, a suffix tree of the text must be constructed. That suffix tree may require
Ω(n2) space. Hence, it should be made sure, that the number of searches to be
expected before the next update of the text justifies the factor of n compared to
the naive representation of the string.

Let us stick to the Internet search engine a little longer to illustrate another
implicit time-space trade-off. The designers of the search engine may choose to
store several web pages in one suffix tree. (This roughly corresponds to creating
a suffix tree for the concatenation of the pages and deriving the page with the
occurrence from the position in the concatenation). Hence, a query now delivers
the results of several searches which may (depending on the degree of similarity
between the pages) be faster than iterating independent searches in every single
text. However the combined suffix tree may need more space than the sum of
the individual ones, as fewer edge label compressions may be possible.

3.4.5 Brute Force Support

Brute force methods are mostly applied when efficient algorithms for a problem
do not exist or are not acceptable even though they formally count as efficient.
The recognition of a problem’s NP-completeness for example does not change
anything about the presence of the problem and its relevance in certain applica-
tions. If efficient approximation algorithms are not available or ruled to produce
results of insufficient qualities, brute force methods may be an option.

Optimization Problems. The A∗ algorithm [382] is an optimization algorithm
which finds on a weighted graph G = (V, E) the shortest path from a source
s ∈ V to a destination t ∈ V (see also the case study in Chapter 9.2). Of course,
this problem can be solved with Dijkstra’s algorithm running for |V | iterations in
the worst case. The A∗ algorithm is capable of exploiting a heuristic h : V → R

that delivers a lower bound for the lengths of the paths from a certain node to
the destination. If this heuristic is weak, A∗ will not perform any better than
Dijkstra’s algorithm. If the lower bound reflects the real distance rather well, a
lot of unpromising paths do not have to be examined.

A∗ maintains a set S of paths. Initially, the set consists of only the path [s]. In
each iteration, the path p with minimum priority is removed from S. The priority

94 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

of a path p = [v1, . . . , vi] is
∑i−1

j=1 w(vj , vj+1), the sum of the weight of the edges
of the path plus h(vi), the lower bound for the remaining path connecting vi and
t. Hence, A∗ is best understood as a most promising first search. The possible
extensions of p are included into S and it is made sure that further paths in S
that end with vi are ignored.

An obvious example is the computation of shortest routes in traffic guidance
systems. The direct line distance between two points (clearly a lower bound for
their road distance) serves as heuristic h. Unless the roads of the area in question
are heavily distorted, the algorithm will find the fastest route without visiting
the entire graph.

The A∗ algorithm is not restricted to applications in which the vertices resem-
ble distributed points in space. Another prominent example are solitaire games
like the Rubik’s cube or the tile game. In the n× n tile game a set of n(n− 1)
square shaped tiles numbered 1 to n2 − 1 is arranged in a square frame of side
length n, leaving one empty space. Now tiles adjacent to the empty space can
be moved into the empty space. The goal is to bring the tiles into a specific
order. Here the sum of the distances of each tile to its destination may serve
as a heuristic. As every move involves only one tile, the game cannot be won
with fewer moves. More moves however may be necessary, as the tiles cannot be
moved independently.

Usually the space requirement of the A∗ algorithm is severe as A∗ quickly
proceeds into uncharted areas of the graph creating a huge set of vertices, that
the algorithms has seen but not yet visited. Several approaches have been used
to deal with this problem. One is to search simultaneously starting from the start
vertex and from the goal vertex. This turns out to be helpful, if the heuristics
typically is more accurate at a long distance from the goal. The straight line
distance for navigation systems is clearly of that type. If one is far away from his
destination, the straight line gives a good idea about the actual distance. When
approaching the destination and being exposed to small labyrinthine alleys and
one-way streets the straight line distances value decreases severely.

The concept to iterate A∗ is also often used in order to reduce the space
requirements at the cost of time. Every run of A∗ is executed with a certain
bound. Vertices with priorities beyond that bound are ignored and not stored.
If a run of A∗ fails to reach the goal, the bound is raised and A∗ starts all
over. This leads to an increase in calculation time, as results are recomputed
in every run. This approach is driven to the extreme, if a run of A∗ saves the
smallest priority above the current bound that it has seen to use this value as
the bound for the next run. In this case there is not even a need for a priority
queue anymore, as only vertices with minimum priority are considered. This
iterated deepening A∗ approach is called IDA∗. If the length of paths from the
source to the goal is extremely small in comparison to the number of vertices,
this will be a preferable approach. For the Rubik’s cube for example the number
of configurations is greater than 4.3 · 1019 but no configuration is further than
26 moves away from the solution.

3. Selected Design Issues 95

Non-Optimization Problems. There is also a variety of applications where
a search is not for an optimal solution with respect to a given function but just
for a solution with a certain property. The attack of cryptographic systems is an
example (meet in the middle attack or rainbow tables).

In these cases the approach can be abstracted as follows: A universe U is to
be searched for an element x having a property A(x). The designer decomposes
the universe U to U1 × U2, so the search is now for x1 ∈ U1 and x2 ∈ U2. If one
is able to find a domain U ′ and a function f : U1 → U ′ as well as a relation
A′ ⊂ U ′×U2 such that A′(f(x1), x2)→ A(x1, x2), one can speed up the process
of searching the universe naively by computing as many values f(x1) as possible
and storing them.

Let us demonstrate this setup with the example of the Baby Step Giant Step
Algorithm to determine discrete logarithms. Let p be prime and 1 ≤ a, b ≤ p−1.
We want to find x so that ax = b mod p. Many cryptographic schemes are
based on the hardness of constructing discrete logarithms. The Baby Step Giant
Step Algorithm can be used to attack such a cryptographic system or, from the
designers perspective, to reveal the systems vulnerability.

A naive algorithm checks every value from 1 to p− 1 and hence needs expo-
nential time in the number of bits of p. The idea is to split x into two components
x = x2 ·m + x1 with x1 < m. A good selection for parameter m is �√p�. We get
U2 = {0, 1, . . . , �p−1

m �} and U1 = {0, 1, . . . , m− 1}.
The function f : U1 → U ′ in this case is f(x1) = ax1 mod p for x1 ∈ U1.

We compute these values and store them. Now x2 ∈ U2 matches x1 ∈ U1 if they
combine to the solution we seek. Hence they must fulfil ax2·m+x1 = b mod p
which we can write as f(x1) = b

ax2·m mod p. So this is the relation A′ of the
general description.

Using the extended Euclid algorithm we compute a−m mod p and set β := b.
For 0 ≤ x2 ≤ m − 1 we do the following: If β is stored in our table of results
(say as ax1 mod p) we have x = x2 ·m + x1 and are done. Otherwise, we set
β := β ·a−m mod p and continue. Hence, by iteratively dividing the target value
β by powers of am we search for a x2 that, paired with one of the f(x1) in store,
constitutes the solution.

Choosing m := �√p� we gain a factor of √p in time as we first calculate
�√p� values of the function f and later divide β by am at most �√p� times. We
assume that the values of f(U1) are stored in a data structure that allows quick
lookup. On the other hand we invest the space necessary to store �√p� values
of the function f . The naive algorithm only needs constant space.

The search scenarios described in this section allow smooth time-space tran-
sitions, as every register available for storing a value in principal shortens the
search time. Every register saved for other purposes increases the runtime.

3.5 Robustness

Depending on the subject of discourse, the term robustness is assigned quite differ-
ent meanings in pertinent literature. At the bottom line, these various denotations

96 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

may be subsumed as the degree to which some system shows insusceptible to ab-
normal conditions in its operational environment.

In computer science, these systems of interest are algorithmic components,
the defining units of computational processes. Robustness here is usually de-
fined with respect to a given specification of the desired behavior. Still, even
in this restricted field concepts are varying and sometimes rather vague. In the
following we will employ the terminology due to Meyer [568, p. 5]. He defines
correctness as the ability of a software component to perform according to its
specification, whereas robustness denotes its ability to react appropriately to
abnormal conditions not covered by this specification. Following this definition,
it must be stressed that correctness and robustness are both relative notions. A
software component may thus neither called (in)correct nor (non)robust per se,
but always only with respect to a given specification.

Note that the above definition has been still uncommitted as to what the
precise meaning of reacting appropriately would be. Yet, this is just consequen-
tial, as any precise definition of some concrete behavior for certain conditions
would ultimately become part of the specification. Robustness in turn by inten-
tion concerns those conditions for which the concrete behavior is not specified
after all. Informally, the overall objective is to maintain the component’s useful-
ness despite possible adverse situations; no condition shall make the algorithm
crash, run infinitely or return absolute garbage. In other words, we seek for the
algorithm in any case to behave reasonable and compute something meaningful.

Throughout this section we want to provide a survey on most relevant non-
robustness issues as well as techniques and tools to deal with them. The follow-
ing subsection discusses robustness from a more software engineering point of
view. Sections 3.5.2 and 3.5.3 in turn address robustness issues that arise due
to numerical inaccuracy during computation. There, the term meaningful will
be re-rendered with regard to numerical, respectively combinatorial properties
of computed solutions.

3.5.1 Software Engineering Aspects

Abnormal situations do not just appear from nowhere. Instead, they can gener-
ally be traced back to a single or more often a combination of several factors.
Henceforth, we will call any such cause a fault. Note though that this term may
be used quite differently in the literature.

The policy of robustness is twofold: anticipate the faults, the causes of abnor-
mal conditions, or limit their adverse consequences. We will soon go into detail
on these two notions, called fault avoidance and fault acceptance. But first let
us have a closer look on the adverse momenta themselves.

Fault Types. Depending on the primary causer, faults may be grouped into
two classes: interaction faults and design faults. The following passage is meant
to provide a brief overview on most common faults for each category. The list will
certainly be incomplete and the faults mentioned may not always be classified
unambiguously.

3. Selected Design Issues 97

Interaction faults originate from interaction with other systems, which in turn
can be the user, some hardware resource or yet another software component. In
case of the user, we can identify accidental interaction faults, such as operator
mistakes or invalid inputs, and intentionally malicious interaction faults like
penetration attempts or crashing aimed attacks.

As far as hardware is concerned, we have to deal with service deliverance
faults in the first line. Typical representatives of this kind are that a given
resource is not available at all, still busy in serving further requests or it has
reached other limits like memory or storage capacity, for example. The second
category are data flaws, which may arise in (at least) three different scenarios:
the hardware serving for data generation, data storage/transmission, or data
processing. To name just one example of each kind, imagine a 3d laser scanner
producing extremely noise-polluted measured data, an ill-functioning hard disk
or network connection causing data corruptions, or a GPU inducing artifacts in
a crucial (e. g., medical) visualization.

The same two subcategories can be observed for the software component do-
main. In this scope, a service deliverance fault can be a communication to another
software resource that could not be established, a service that terminated un-
expectedly, or a software component that failed to provide time-critical results
duly. Concrete examples are a database connection that cannot be established,
a shared library that fails being loaded dynamically, or a tardy nested computa-
tion in a real-time application. As before, the second category of issues are again
data flaws. In fact, any interaction with another software component bears the
risk of adverse data to be transferred in one of both directions. Such a fault
can usually be seen in two different ways. From the viewpoint of the component
receiving adverse input it may be considered an interaction fault. Yet, regarding
the component that produced adverse output despite actually benign input, one
may considered it a design fault.
Design faults are faults unintentionally caused by man during the modeling, the
design but also the implementation phase. In the modeling phase you try to
capture the core of the problem and derive a notion of the desired input-output
relation, thereby incorporating fundamental assumptions. Clearly, if one of these
assumptions is in actual fact unfounded, the formal or informal specification
obtained may not suit all problem instances, making the algorithm run into
trouble in case of their incidence.

However, in general the modeling phase very well manages to come up with
a proper specification. Instead, it more often happens to be the algorithm de-
signer not playing by the rules. For the sake of easing correctness proofs and
human understanding, simplifying assumptions are drawn and intricate details
are omitted. Not filling the voids at a later point in time, this policy ultimately
boils down to in an incomplete design at the very end. In the very same way also
hidden assumptions, unintentionally incorporated at some intermediate step, can
give rise to a design that does not fully meet the specification. Every so often
we can even encounter algorithms being published that, although a “correctness

98 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

proof” was provided, eventually turn out to be incorrect. Yet, it is sometimes
only thanks to the implementation that such a fact gets revealed [373].

Of course, also the implementer can be source of faults. His task is to put the
algorithm into practice, thereby filling up all details that have been left open
so far. This in particular covers things like dynamic management of runtime
resources (e. g., memory, (I/O-)streams, locks, sockets, devices and so on), each
of which imposing its very own potential for faults. Another problem zone arising
in this phase is the realization of dynamic data structures and their manipulation,
which needs to be crafted carefully to avoid runtime faults. On the other hand,
the implementer is given the freedom to locate and make reuse of already existing
implementations, e. g., as provided by libraries and frameworks. At this point,
however, it is imperative to verify their suitability and to know about their
possible restrictions. In both scenarios, own implementation and reuse, the pitfall
is to unintentionally impose a mismatch between the models and specifications
the design is based on, and their counterparts (re)used in the implementation.
It is certainly beyond the scope of the algorithm designer to avoid all these
potential faults – yet, it is not beyond his scope to treat some of them.

Fault acceptance regards the existence of faults as actually not completely
avoidable. It therefore focuses on the resolution of abnormal conditions in case
of their incidence, each time seeking for reestablishing some normal condition
again. We can distinguish three types of approaches: detection and recovery, fault
masking and fault containment.

Approach 1: Detection and recovery is the most common practice. As the term
suggests, it consists of an initial fault detection followed by a subsequent recovery
procedure. The detection of faults can be attained by the following mechanisms:

Design diversity relies on several alternative versions of a given component,
expected to be of dissimilar design. Derived independently from the same
specification, these so-called variants allow the detection of design faults
that cause the diversified copies to produce distinct results on the same given
input. The approach is based on the assumption that sufficiently dissimilar
designs may hardly suffer from the very same design fault. It is closely related
to the duplication and comparison technique in the field of fault-tolerant
hardware architectures, which makes use of two or more functional identical
(hardware) components as a means against physical faults.

Validity checks are used to test whether the given input, the requested op-
eration or the current internal state is actually valid, i. e., covered by the
component’s specification. They check for the presence of an observable ab-
normal condition, yet they do not confirm any correctness of the computation
performed so far.

Reasonableness checks assess the current internal state or some computed
(intermediate) result w. r. t. plausibility. As opposed to the previous scenario,
we do not only check for present abnormality. Instead, additional constraints

3. Selected Design Issues 99

intrinsic to the specification are exploited, rendering necessary or sufficient
conditions entities can be tested against.

Redundancy in representation is introduced to detect integrity faults in the
course of data manipulation or exchange. Most well-known realizations are
error detecting codes such as parities and checksums.

Timing and execution checks are used to detect timing faults or to moni-
tor some component’s activity. They are usually implemented by so-called
“watchdog” timers and facilitate a mechanism for interception of tasks which
fail to provide the result duly or are likely to suffer from an infinite loop.

Once a fault has been detected in the course of performing a requested task,
there are basically the following main strategies for a software component to
deal with that situation:

Backward recovery tries to return the component from the reached abnormal
state back to a previous one, known or supposed to be sane. Afterwards
normal service is resumed, proceeding with the next operation.

Forward recovery basically searches for a new state from which the compo-
nent will be able to resume or restart the requested task.

Graceful degradation can be regarded as a variant of forward recovery where
after finding the new state, only that single operation is performed at re-
duced capability, or the component permanently switches to some degraded
operating mode.

Omission of the moot operation is also generally worth considering. The idea is
to check first whether the operation would possibly lead to an abnormal state,
and simply skip it in that case. Clearly, this technique is only applicable for
faults that can actually be detected prior to the execution of the operation.
Moreover, omission must be feasible, i. e., we cannot skip operations that are
actually vital.

Fault compensation requires sufficient redundancy, either in terms of the in-
ternal state’s representation or by means of design diversity. Exploiting this
additional information provides means to transform the abnormal state into
a suitable (usually uniquely corresponding) sane state. It should be noted
that in fact more redundancy is required to compensate a fault than to just
detect one.

Fault propagation is a matter of releasing competence. The component de-
tects an abnormal condition which it is effectively unable to handle itself.
Using some fault notification mechanism, it informs a competent authority,
which can also be the calling component or the user, and temporarily or
permanently transfers control without conducting any further changes first.

Fail-safe return terminates the execution under control after detecting a fault
the component observes to being unable to handle. Based on the assumption
that no other component may be capable either, some local or global fail-safe
state is entered and possibly a dummy result is returned.

Increasing verbosity is no approach actually aimed for handling abnormal
situations, yet the minimum to accomplish when concerned about robustness

100 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

on the long run. The policy is to report or record any abnormality, at least
those that cannot be handled – the more severe, the more verbosely. The
basic aim is, if ever an abnormal condition occurs, then to be able to locate
its cause based on the recordings and to fix the design appropriately.

Approach 2: Fault masking can basically be circumscribed as “fault compensation
without prior detection”. It can take the following three forms:

Functional redundancy based masking relies on the design diversity prin-
ciple described above. The individual outcomes of a component’s different
variants are merged together, e. g., using some weighted or unweighted ma-
jority voting model, thereby obtaining a common result.

Representation redundancy based masking exploits the redundancy
incorporated into the internal state’s representation in an implicit way. That
is, the fault-induced abnormal fraction of the present state is inherently be-
ing superseded by the dominant redundant deal. Using an error correcting
code for the state representation, simply refreshing (i. e., decoding and en-
coding) the current state represented automatically removes the supported
number of bit errors – a common technique to enhancing integrity of data
exchange.

Normalization based masking is another way of returning abnormal states
or inputs back into normal domain. It usually involves a more or less simple
total mapping that maps every normal element to itself and and a deal of the
abnormal states to a corresponding normal element each. A trivial example
is, when expecting positive inputs, to accept whatever is passed and simply
turn it into its absolute value.

Note the way in which the role of redundancy differs between this fault mask-
ing and the previous detection and recovery scenario. Here, redundancy is used
to directly override possible faults without explicitly checking for inconsistency
first. In contrast, detection and recovery exploits redundancy to detect abnormal
situations first of all. Only in case of incidence action is taken, which may then
possibly but not necessarily involve recourse to redundancy again.

Approach 3: Fault containment basically neither tries to prevent faults a priori,
nor to recover from abnormal conditions. Instead, it aims at restraining the
evolution and propagation of abnormal conditions within a so-called containment
area. The overall objective is to prevent any further components to become
affected. Two obvious paradigms can be distinguished:

Self containment commits to the detection and containment of abnormal con-
ditions eventuating in the component’s internal context. In contrast to the
detection and recovery principle, we are not too much interested into main-
taining or re-establishing service. That is, even unplugging or shutting down
is considered tolerable in the border case, as long as a safe state was estab-
lished first.

3. Selected Design Issues 101

Defensive design follows the inverse idea. Every component shall be designed
in a way that it defends itself against its outside. By no means shall a fault
of external origin be able to infect the component, if there is any chance to
detect it beforehand. We will go into more detail on this strategy later.

Fault avoidance is aimed at designing algorithmic components with effectively
less fault potential. Faults shall in the best case never be introduced, or get
eliminated before the component or system goes into live operation.

Fault removal concentrates on reducing the number or severity of already exist-
ing faults. This clearly involves locating these present faults first in the currently
established design.

Inspection of the current design (or implementation) should be the most ob-
vious approach. The (pseudo-)code is being reviewed thoroughly by human
hand to verify the correspondence between design and specification, thereby
challenging once again any assumptions and conclusions made during the
design phase. Yet, this is just half of the picture, in that one would have
only checked for correctness then. Seeking for robustness in turn amounts to
additionally asking the “But what if ...? ” question over and over again, and
requires the algorithm designer to systematically think beyond the borders
of the specification.

Formal verification is the method of choice in fields of inevitably high-reliable
software construction like aviation, space flight and medicine. Specifications
are expressed by means of some description formalism with well-defined se-
mantic [777]. Based on these descriptions, formal methods allow to some
degree to verify correctness or other specifiable properties of a software
component. Apart from human-directed proofs, two (semi-)automatic ap-
proaches can be distinguished: Model checking, which basically consists of
an exhaustive exploration of the underlying mathematical model, and au-
tomated theorem proving, which based on a set of given axioms uses logic
inference to produce a formal proof from scratch. Some approaches directly
verify the code itself, instead of an abstract model. For functional program-
ming languages, verification is usually done by equational reasoning together
with induction. For imperative languages in turn, Hoare logic is used in gen-
eral. This so-called program verification will be discussed in Chapter 6.

Testing is the preferred approach applied in medium- and large-scale design
scenarios. It basically relies on a dual design strategy. Parallel to designing
the component itself, one develops appropriate test scenarios and documents
their expected I/O relation. These test scenarios are intended to capture
a representative set of normal and abnormal conditions, as well as border
cases. Black-box testing thereby only uses the given formal specification of the
component, whereas white-box testing additionally incorporates knowledge
on its design or implementation into the development of the test scenarios.
Binder [101] explains in detail how to design for testability, how to generate
suitable test patterns and how to finally do the tests. It should yet be noted

102 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

that, although software testing having proved to be quite successful, not
observing any abnormalities does not imply having no faults – this is the
curse of testing, as pointed out by Dijkstra [245].

Runtime fault detection should be used to report and/or record any abnor-
malities caused by faults that were still present as the component went into
live operation. The overall goal w. r. t. fault avoidance is that any fault that
becomes detected, can be located and removed by making suitable adjust-
ments. The detection should be as rigorous as possible and reporting as
verbose as necessary. Basically, the art is to design both fault detection and
reporting in a way that renders debugging superfluous.

Fault prevention is concerned about preventing the introduction of faults, or at
least limiting their occurrence, from the very beginning. This is usually achieved
by starting the design phase with some clear and preferably formal specification
of requirements, and by following proven design methodologies. The remaining
part of this section tries to give some suggestions on basic rules and methodolo-
gies one may follow to achieve empirically more robust designs. Yet, there will
certainly be no such thing as an “ultimate answer”.

The Role of Specification. The probably most essential ingredient to con-
structing a software component is a proper specification. This description of the
desired behavior is the starting point for any efforts of validation (“Am I build-
ing the right product?”) and verification (“Am I building the product right?”).
In fact, as pointed out by Meyer [568, p. 334]: Just writing the specification is a
precious first step towards ensuring that the software actually meets it.

As a specification builds the basis for all subsequent steps of software con-
struction, the resulting design is always as weak as its underlying specification.
It is obvious, that latter one should therefore be precise and unambiguous. To
achieve this, the best way to express a specification is to make use of some
formal systems like Abstract State Machines [366, 123], Hoare logic [397], the
B-method [2, 707] or Z-notation [3, 842]. The second of these formalisms will
be described into more detail in Section 6.2 of Chapter 6. For a more general
introduction on how to create specifications, see [777].

As mentioned before, a formal specification of a component is the basis of
its formal verification. At the same time, a specification draws the line between
normal and abnormal states. Everything that is not covered by the specification
definitely needs to be included into the considerations of how to attain robust-
ness. Moreover, this borderline has coining influence on the design of suitable
test scenarios. Last, but not least, specifications are the pivotal elements for
reuse. In fact, two designs or implementations can only be exchanged with each
other if their corresponding specifications match.

Expressing Expectations. The component’s specification is not the only thing
that asks for being documented for later purpose. In fact, any assumption and
expectation made during the design phase can become crucial at a later point

3. Selected Design Issues 103

of time. Therefore, it is also a task of the designer to express any such state-
ment in some formal or informal way. Opting for a formal representation has two
advantages: First, one clearly avoids ambiguity. And second, these formal state-
ments can later be turned into so-called assertions, or can already be designed
that way. Assertions are Boolean expressions defined over the values available
in the local context of the considered design fragment. They reflect assumptions
or expectations on which the fragment is based and are therefore intended to
be true. Assertions can be used to check these expectations at runtime. In fact,
if an assertion ever proves false, this indicates a possible fault in the overall
design.

However, as Meyer [568, p. 334] sums up, assertions convey even further rele-
vance: They force the designer to think more closely and in formal dimensions,
thus getting a much better understanding of the problem and its eventual solu-
tions. They provide a mechanism to equip the software, at the time you write
it, with the arguments showing its correctness. They document assumptions and
expectations drawn throughout the design phase, thus facilitating later under-
standing and inspection of the design. Finally, they provide a basis for runtime
fault detection and for systematic testing and debugging.

Decompose what is Decomposable. According to Meyer [568, p. 332], the
probably single biggest enemy of robustness is complexity. In fact, there is just
too much monolithic software construction nowadays [803]. The most obvious
way out of complexity is proper decomposition. First of all, decomposition usu-
ally leads to a much simpler design. And simplicity in general reduces potential
error sources considerably (cf. Section 3.2). Accordingly, Raymond [666, p. 13]
outlines the Rule of Robustness : Robustness is the child of transparency and
simplicity. Breaking the design down allows to focus on single parts at a time.
Thus, a top-down analysis of the problem followed by a bottom-up synthesis of
the algorithmic solution encourages the use of “building blocks”, which in turn
can much easier be handled (i. e., examined, tested, replaced, etc.).

Apart from the reduction of potential error sources itself, decomposition might
support robustness also from another point of view. If applied in a clever way,
the resulting design may pay off, in terms of the robustness of the whole software
component to be implied in a bottom-up-fashion by robustness of its building
blocks on the one hand and their interaction on the other.

But how do we guarantee, or at least increase, robustness in these two areas?
Are we back again at the same problem as before? Actually not, since firstly,
robustness for smaller components may certainly be assumed to be much easier
to achieve than for larger ones. And secondly, robustness of sub-components on
the one hand and of their interaction on the other may be treated separately
and independently.

Reuse what is Reusable. Another basic rule in modern software construction
is: Avoid to reinvent the wheel! The past decades gave raise to copious quantities
of algorithms and data structures, ranging from most fundamental to highly
specialized ones. So, instead of designing from scratch, try to (re)use building

104 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

blocks for which well-tested implementations already exist. In fact, it is certainly
not unwise to let the process of decomposition be guided to some extend by the
knowledge about such implementations.

Clearly, this might actually mean a trade-off to be weight out between the
risk of inventing faults when designing from scratch and the risk of importing
faults from these “well-tested” implementations. Apart from that, the principle of
reuse asks for more: Similarly to using what is already available, try to design for
reusability in the first place – you may want to reuse parts of the design and/or
the implementation once again later on, probably much earlier than expected.

However, it must be stressed that designing for simplicity and for reusabil-
ity is not straight forward. There is usually no such thing as a “best way of
decomposition”, and in particular reusability is difficult to achieve [803].

Generating Trust. One all too common backdoor for non-robustness to come
into play is too much confidence in computed solutions. In general, when request-
ing an external algorithm for performing some desired task, the returned output
is usually not checked for correctness, or at least plausibility [112]. Certainly,
such checks might be performed after receiving the result computed by some
external algorithm by treating it like unreliable input. Yet, from the external
algorithm’s point of view fairness dictates to either verify your results before
returning them – or to provide some mechanism that makes it relatively easy
for your clients to verify your output.

Regarding the former of both approaches, Weihe [826] suggests letting the
software component apply runtime checkers that test its (given) input and its
(self-produced) output for conformance with the specification. In case of a neg-
ative checking result, the component is obligated to handle the abnormal situa-
tion itself, instead of returning the adverse result. Depending on how restrictive
the runtime checker is, Weihe [826] distinguishes two types of robustness in his
own terminology: Complete robustness is achieved, when success of the runtime
checkers is both, necessary and sufficient for the computation to satisfy the spec-
ification. If computed results are just checked for necessary conditions, Weihe
speaks only of partial robustness. Certainly, the first of the two options should be
expected the better choice with regard to robustness. Unfortunately, complete
robustness checking may very well increase the expected asymptotic complexity
of the initial computation itself.

Of course, runtime checking may in the very same way also be used to verify
results obtained from any auxiliary software component invoked for perform-
ing some desired subtask. However, in general external results do not have to
pass any but at the most a simple plausibility check. First, complete robustness
checking can sometimes turn out to be quite expensive. Second, it can not al-
ways be achieved easily. But most of all, the task of verification actually appears
rather responsibility of the callee than of the caller. The second promising ap-
proach towards result verification is therefore concerned with the provision of a
mechanism for externally verifying the correctness of computed solutions. The
so-called certification policy dictates that an algorithm for solving an instance I

3. Selected Design Issues 105

of a problem P does not solely produce some output O, claiming that P(I) = O.
Instead, the algorithm additionally produces some certificate or witness C that
(a) is easy to be verified and (b) whose validity implies that indeed P(I) = O.

The topic of checking the correctness of computed solutions is discussed in
more detail in Section 6.2 of Chapter 6.

Defensive Design. The idea of defensive design is simple: Take precautions to
defend your software component against all external sources. On global program
level, such provisions can be for instance: Explicit checking of the values of input
parameters, overflow and underflow protection during numerical computations,
plausibility checks for intermediate results, or redirection of data transfers in
case of hardware breakdown.

However, defensive design calls for not only protecting the program as a whole
against the outside, but rather every single entity against any other. In its ex-
treme, there were no such thing as too much checking or precaution. Basically,
defensive design advocates the attitude of not trusting clients and demands for
the protection of any kind of interface – even internally. What you want is to
completely isolate failures from one module to the next, so that a failure in
module A cannot propagate and break a second module B [803]. Two examples
of this kind are information hiding, i. e., delimiting access to any internal data
solely to the use of access methods; and defensive copying, i. e., not sharing any
data with other (untrustable) modules, but instead creating copies, both when
receiving input as well as when returning output. Of course, this strategy will
often be in conflict with efficiency.

In their book, dedicated to teaching how to construct large programs, Liskov
and Guttag [529] emphasize the need to “program defensively”. A robust program,
so they conclude, is one that “continues to behave reasonably even in the presence
of errors”. After all, this is also (and maybe even in particular) a defense against
intentional failures, such as hacking.

Design by Contract. The central idea of this systematic approach, developed
by Bertrand Meyer [566], is the metaphor of a business contract. The way in
which modules interdepend and collaborate is viewed as a kind of a formal
agreement between a client and the supplier of a service, stating mutual rights
and obligations. By demanding both parties to go by the contract, the obligations
for one party make up the benefit for the other.

In the terminology of design by contract, the two most important elements in
a contract are preconditions, expressing constraints under which a routine will
function properly, and postconditions, expressing properties of the state resulting
from a routine’s execution [568, p. 340]. With a contract at hand, responsibil-
ities are firmly distributed. The client is responsible for fulfilling the suppliers
precondition. The supplier, in turn, is responsible for fulfilling its own postcon-
dition. However, the supplier is bound to the contract only inasmuch as the
precondition was being adhered. In fact, if the client (the caller) fails to observe

106 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

External objects Input and validation modules Internal Objects

Fig. 3.11. The principle of filter modules (following [568, p. 345 et seq.])

its part of the deal, the supplier (the routine) is left free to similarly do as it
pleases [568, p. 343].

Basically, design by contract even preaches a so-called non-redundancy prin-
ciple, stating that under no circumstances the routine’s body should ever test
its own precondition. This is contrary to what defensive design advocates, which
calls for modules to always check incoming messages and reject those violating
its precondition [101, p. 845]. Yet, the non-redundancy principle by no means
prohibits consistency checks within the body entirely. It rather postulates assign-
ing the enforcement of those conditions to solely one of the two partners. “Either
a requirement is part of the precondition and must be guaranteed by the client,
or it is not part of the precondition and must be handled by the supplier” [567].
In this regard, it is up to the designer to choose either for a demanding or a
tolerating type of contract.

Basically, this also answers the question of how to ensure a protection of
internal components from, e. g., invalid inputs. Note, that we certainly cannot
contract the user. To solve this and related problems, Meyer suggests the princi-
ple of filter modules. The idea is to let internal and external modules be separated
by a layer of specifically designed input and validation modules, featuring tol-
erant contracts with the external modules and strict contracts with the internal
modules (cf. Figure 3.11). It is the task of these filter modules to prohibit all ex-
ternal calls that do not fulfill the precondition of the respective internal module,
by handling them in an appropriate way.

Being placed as close to the source of the objects in question as possible,
such filter modules go in line with what Meyer calls the principle of modular
protection [568, p. 45]. A method satisfying modular protection ensures that
the effect of an abnormal condition in one module will remain confined to that
module, or at worst will only propagate to a few neighboring modules [568, p. 45].
Note that this principle differs from defensive design in two points: First, Meyer
does not ask for a maximum possible protection for each and every single module.
And second, modular protection is not aimed at necessarily letting the modules

3. Selected Design Issues 107

protect themselves against the outside, but leaves it open how to achieve the
desired protection.

Concerning the issue of (non)robustness, it is often claimed that this notion
of a contract is so powerful that many well-known failures would certainly have
never been caused if design by contract had been applied in the first place. In
particular, the Ariane-5 disaster is regularly quoted as an example [434].

Dealing with Adverse Input. There are a couple of reasons why input should
not be assumed to be generally good-natured. First, the user should not be ex-
pected to be aware of every single aspect that makes up the difference between
a valid and an invalid input, not to mention intentional malignity by means
of purposeful attacks. Also, the input may not be adverse due to the user’s
fault, but due to some other origin it results from. In fact, nowadays a multi-
tude of algorithms is actually designed for processing data known to originate
from measurements (e. g., in GIS, medicine or bio-science) or previous compu-
tations (e. g., in numerical computing, mechanical engineering or computational
geometry). Such data cannot be ruled out of being noise-prone, inaccurate, con-
tradictory or even corrupted. Finally, even if the input is in fact valid, it may
still be ill-conditioned due to other reasons, e. g., an exceeding complexity of the
data or the task requested.

Hence, the question arises, how to deal with an input or request that turns
out to be not handleable, based on the current design. To come to the point,
there are four obvious answers to this question: reject it, tolerate it, fix it or
simply handle it.

The first and probably easiest solution, of course, is to reject the request
by announcing to be incapable of handling the input data or performing the
requested task. Although this does not actually solve the user’s problem, it is
certainly still preferable to the alternative of a crash or garbage to be computed.
In fact, this measure reflects a basic principle: If you are not able to handle
it, then it is better to stop right away rather than continuing in spite of being
aware of the problem. Just a few years ago, Yap and Mehlhorn [849] as well as
Du et al. [259] still criticized the instability of modern CAD software, lacking
any robustness guarantees whatsoever and crashing even on suitable choices
of inputs. Nowadays, current CAD software still sometimes shows unable to
perform the user’s request on the given data. Yet, they do not crash anymore,
but simply notify the user if an operation could not be performed.

The second option is (trying) to be tolerant. One may, for instance, dynam-
ically decide to revert to a different variant of the algorithm that features less
strict prerequisites. Or, in particular, if the input is known beforehand to possi-
bly be subject to noise or inaccuracy, one may use a tolerance-based approach
from the very beginning. Such approaches will be discussed more extensively in
Section 3.5.3 in the context of geometric robustness issues.

If input turns out to be invalid, it might very well be possible to actually cor-
rect it by fixing the points of invalidity. This technique is sometimes employed

108 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

in the field of terrain modeling where meshes are checked for their adjacency and
incidence information not reflecting a regular mesh (e. g., being incomplete or
inconsistent), and are remeshed where necessary. Correcting input requires sub-
stantial knowledge about the domain of interest. Missing information demands
for being added and contradictory information needs to be replaced, both in a
way that guarantees consistency of the resulting patched version of the input. In
fact, the problem amounts to answering the two questions: First, which proper-
ties do constitute a “valid input” at all? And second, given some invalid input,
how exactly does a corrected version look like that, by some means, “corresponds”
to that input?

Last, but not least: If the algorithm is, due to its design or its implementation,
yet not capable of handling specific inputs or requests, then one can try to make
it capable of doing so. Although this may sound slightly absurd, it is not that
out of place actually. After all, the cause for the incapability may very well be
remediable. The Sections 3.5.2 and 3.5.3, as for instance, will discuss more closely
how to proceed in case numerical inaccuracy is the problem.

3.5.2 Numerical Robustness Issues

The previous section was concerned with robustness in a rather general sense
and discussed issues from a software-engineering point of view. The following
two sections are meant to complete the picture by considering non-robustness
arising due to numerical inaccuracy. In mathematics and in theoretical computer
science, one commonly assumes being able to compute exactly within the field of
all real numbers. It is this assumption based on which algorithms are generally
proven to be correct. In implementations however, this exact real arithmetic is
usually replaced by some fast but inherently imprecise hardware arithmetic, as
provided by the computing device.

This hardware arithmetic is generally based on some specific kind of finite
number system, intended to mimic its infinite counterpart as good as possible.
The finiteness of the co-domain of this mapping, however, inevitably results in an
approximation, which in turn involves two inconvenient side-effects: discretiza-
tion errors (round-offs) and range errors (overflows and underflows). They apply
to both, the input representation as well as the following computation. Such nu-
merical errors are basically fully expected and in general considered benign [848].
However, the consequence of using a finite number system is crucial: Basic math-
ematical laws just do not hold anymore in hardware arithmetic (cf. Chapter 6),
which in turn used to form the theoretical basis used for proving relevant al-
gorithm properties, like correctness, convergence, termination and other quality
guarantees. In fact, these formerly benign errors may turn into serious ones as
soon as one of the following two situations eventuates:

– the numerical error accumulates, causing the (numerical) result to be far off
from correct, or

– the numerical error, involved in the computation that determines a branch
in the control flow, entails a wrong decision with respect to the program
logic, thus leading to an inconsistent state of the algorithm.

3. Selected Design Issues 109

The remainder of this section will address the first issue, whereas Section 3.5.3
will discuss the second one in detail.

Numerical Problems and their Sensitivity to Inaccuracy. The influence
of numerical errors on the quality of computed solutions has been studied ex-
tensively in the field of numerical analysis for a couple of decades already. The
overriding concern thereby has been to minimize such errors by studying how
they propagate, to determine the sensitivity of problems to minor perturbations
in the input, and to prove rigorous error bounds on the computed solutions.

Thereby, two types of errors are generally distinguished. The absolute error
that results from using an approximation s∗ to represent some numerical data
s is given by e(s, s∗) := ‖s− s∗‖. Similarly, for s 	= 0 the relative error of this
approximation is given by ẽ(s, s∗) := ‖s− s∗‖ / ‖s‖ = e(s, s∗)/ ‖s‖. A numeric
problem type T may generally be expressed by some function T : X → Y from
an input space X ⊆ R

n to an output space Y ⊆ R
m. In this sense, a problem

(instance) P can be considered as a pair P = (T , x) of a problem type T and
a specific input x ∈ X . Solving this problem instance amounts to determining
y = T (x) ∈ Y .

Imagine now, the input x is subject to error such that (due to whatever
reason) only an approximation x∗ is at hand. This error in the input will imply
a corresponding error in the output, whose size depends on both, x and T . Let’s
say, someone may guarantee that the absolute error in the input will be definitely
less than δ, or that the relative error will be definitely less than ε. Then one may
be willing to ask, how much influence such an (absolute or relative) inaccuracy
might actually have on the result. This sensitivity to minor perturbations in
the input is generally referred to as the condition of a problem. We define, the
absolute δ-condition κδ(P) of a problem P = (T , x) as

κδ(P) := sup
e(x,x∗)≤δ

e(T (x), T (x∗))
e(x, x∗)

.

There are actually different ways to measure a problem’s sensitivity to minor per-
turbations in the input. In fact, Rice [671] and Geurts [330] as well as Trefethen
and Bau [783], choose for an asymptotic version. This asymptotic condition,
which is sometimes just referred to as the condition or the condition number,
represents the limit of the absolute δ-condition for δ approaching zero.

Historically, the term condition was first introduced by Turing [786] in the
context of systems of linear equations Ax = b. To quantify the benignity of
such a system, he defined the condition number of a matrix with respect to
inversion κ(A) := ‖A‖ ·

∥∥A−1
∥∥. Although Turing’s definition seems somewhat

different, Geurts [330] showed that, when choosing the matrix norm, κ actually
corresponds to the absolute (asymptotic) condition.

Let us briefly illustrate the meaning of condition. Assume, we want to solve
the following linear system of equations A · x = b

(
99 98

100 99

)(
x1

x2

)
=
(

197
199

)
(2)

110 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

X

Y

δ

x

T (x)

x∗

T (x∗)

e(
x
, x

∗

)
e(T

(x
), T

(x
∗))

Fig. 3.12. The δ-condition of a problem P = (T , x), based on the problem type T :
X → Y and a problem instance x ∈ X. It is the maximum of the ratio of e(x, x∗) to
e(T (x),T (x∗)) over all approximations x∗ of x within an absolute distance of δ to x.
As the δ-condition here is large, this problem is considered ill-conditioned.

This system features the solution x1 = x2 = 1, whereas the slightly perturbed
version A′ · x = b

(
98.99 98

100 99

)(
x1

x2

)
=
(

197
199

)
(3)

has the somewhat completely different solution x1 = 100, x2 = −99. The reason
is easily revealed: Applying Turing’s formula, we obtain

κ(A) : = ‖A‖ ·
∥∥A−1

∥∥ =
∥∥∥∥

99 98
100 99

∥∥∥∥ ·
∥∥∥∥

99 −98
−100 99

∥∥∥∥ = 199 · 199 ≈ 4 · 104

This condition number now tells us that if we were to be faced with some specific
minor error or variance in the input, we could not get around accepting a variance
in the output of up to four orders of magnitude times as much.

Indeed, the condition number for a problem can be seen as some kind of a
magnification factor stating the amplification or dilution of variances from the
input towards the output space. It is a measure for a given problem’s benignity,
i. e., a property that is inherent to that problem, imposing an inevitable vagueness
in computed solutions when dealing with (e. g., due to discretization) perturbed
input. A problem instance that exhibits a small condition is generally referred
to as well-conditioned, whereas a high condition number gives rise to the term
ill-conditioned. By extending this notion over the whole input space, we may
consequently call a problem (type) well-conditioned, if all valid input instances
are actually well-conditioned, and similarly ill-conditioned, if at least one input-
instance is ill-conditioned. In the above example, the problem instance given by
Equation (2) is obviously ill-conditioned. Hence, the general problem of solving
a system of linear equations or determining the inverse of a given matrix, should
be considered ill-conditioned.

3. Selected Design Issues 111

X

Y

x

T (x′) = T
∗(x)

T (x)

e(x
, x
′)

e(T
(x

), T
∗ (x

))
T

T

T
∗

T
−1(T ∗(x)) � x′

Fig. 3.13. Forward errors (right) and backward errors (left)

Algorithms and Numerical Stability. The quality of computed solutions
for a problem does not solely depend on its condition. In fact, it is addition-
ally impaired due to rounding errors that occur during computation. Even for
exactly represented input, these round-off errors therefore entail the effective
function induced by an algorithm for computing T to deviate from this ideal
function by means of an approximation T ∗. The error that is introduced due to
this approximation is usually measured in one of the two following ways. The
(absolute) forward error e−→(x) with respect to a given input x shall be defined as
e−→(x) = e−→(T , T ∗, x) := e(T (x), T ∗(x)). Assuming the existence of a preimage
of T (x) with regard to T ∗, the (absolute) backward error with respect to a given
input x shall be defined as e←−(x) = e←−(T , T ∗, x) := inf{x′|T (x′)=T ∗(x)} e(x, x′).
The corresponding relative notions are defined similarly by substituting ẽ for e.

Basically, the forward error tells us how close the computed solution is to
the exact solution, whereas the backward error tells us how well the computed
solution satisfies the problem to be solved — in other words, how close to the
initial problem x there is a similar problem x′ for which the exact solution is
equal to the computed result. The latter of the two notions allows us to introduce
a property for classifying algorithms with regard to their computational quality:
An algorithm is called (numerically) stable, if it guarantees the backward error to
be small for all feasible inputs x. Similarly, an algorithm is called (numerically)
unstable, if there is at least one feasible input x for which the backward error is
large. A (numerically) stable algorithm thus guarantees us that the computed
(approximate) solution for a given problem is at least equal to the true solution
of a nearby problem. For a more detailed introduction into numerical stability,
refer to Trefethen and Bau [783] who devote several chapters to this topic and
offer the most explicit definition of stability.

Unfortunately, having an algorithm at hand, the exact function T ∗ induced by
this algorithm is usually not easily determined. However, by viewing an algorithm
as a finite sequence of elementary operations, one can stepwise determine a bound

112 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

for the overall computation, if for each of the operations such a bound is known.
And indeed, depending on the underlying arithmetic, such bounds are at hand
– for fixed precision arithmetic in their absolute, for floating point arithmetic
in their relative notion. In fact, standards such as IEEE 754 [420], for instance,
dictate an upper bound on the relative forward error per elementary operation
in floating point arithmetic, usually referred to as machine epsilon, which can
be taken for granted in case the environment fully conforms to that standard.

Based on such guarantees, forward error analysis tries to bound the forward
error of the whole computation, whereas the backward error analysis tries to
bound the backward error. The analysis of round-off goes back to the work of
von Neumann and Goldstine [813, 346]. Historically, forward error analysis was
developed first, but regrettably led to quite pessimistic predictions regarding
how numerical algorithms would actually perform, once confronted with larger
problems. Backward error analysis is heavily to be credited to Wilkinson who did
pioneering work in this field (see [831,832], but also the classical books [833,834]).

Coping With Numerical Inaccuracy. As mentioned, the quality of the com-
puted solution basically depends on three parameters: The input error, reflecting
the initial quality of the input; the condition of the problem instance, reflect-
ing the severity inherent to the problem; and finally the numerical stability of
the algorithm, reflecting the additional deviation between the round-off error
affected implementation and its corresponding model, i. e., the problem type. In
fact, seeking for T (x), actually results in finally computing T ∗(x∗). However,
regarding the input, it is most common to assume it to be either error-free or
beyond our control; and the condition of the problem can even less be biased.
Hence, it remains to address the problem of inaccuracy of computer arithmetic,
with the objective of avoiding the overall round-off error to blow up.

Facing the fact, that naively implementing a numerical algorithm in a straight-
forward way based on standard hardware arithmetic may easily result in the
resulting program to be prone to numerical inaccuracy, the question arises how
to cope with this issue. There are two not necessarily mutually exclusive choices:
focus on minimizing or controlling the error, or adapt the underlying
arithmetic.

When choosing for sticking to the given arithmetic, the overriding challenge is
to get a grip on the round-off errors. This objective basically amounts to deter-
mining good bounds for numerical errors, locating numerically critical computa-
tions, and finding alternative ways for computing the same value that may show
less prone to round-off. (Note, however, that a better bound does not necessarily
impose a guarantee for better results.) Numerical analysis offers both static and
dynamic techniques. For example, given two equivalent one-line expressions, one
may statically assess bounds on the corresponding errors and choose for the more
accurate version for the implementation. However, only in rare cases it will be
possible to show that one way of computing a value will always yield a better
bound than any other known one. In most cases, it will be necessary to react
dynamically to the values of the arguments passed. Common strategies are, for

3. Selected Design Issues 113

instance, to reorder the data values, to consciously select the next out of a set
of permitted alternatives, to transform the data into a more pleasant equivalent,
or to choose between different equivalent implementations – always seeking for
the least maximum error for the given input.

For example, when computing the sum of a set of numbers, one may dynam-
ically re-order the sequence of values in a way such that cancellation effects will
be minimized. Another example can be found in the context of solving a set of
linear equations Ax = b via Gaussian elimination. In each step i the current ma-
trix An×n of coefficients is pivoted by one of the entries of the still unprocessed
submatrix A[i..n; i..n]. In theory, this choice does not make any difference on
the computed solution. In practice, however, it turns out that selecting a small
pivot may introduce large numerical errors. Simply choosing the first non-zero
coefficient in the current row as pivot (trivial pivoting) appears thus not advis-
able. In consequence, other pivoting strategies have been developed: In partial
pivoting one chooses the largest magnitude in the current column as pivot. Scaled
partial pivoting also chooses the largest magnitude in the current column, but
always relative to the maximum entry in its row. Finally, in total pivoting one
always chooses the absolutely largest coefficient in A[i..n; i..n]. Although out
of these three strategies total pivoting involves the best bound on the numer-
ical error, partial pivoting is usually applied in practice since it is much less
computationally expensive.

Apart from delimiting the negative effects of round-off by controlling the ac-
cumulation of numerical errors, numerical analysis also helps us in assessing
their actual magnitude at runtime. In doing so it allows us to check at runtime
whether computed solutions are reliable or not. This is an important part of the
basis of reliable computing and will be discussed in Chapter 6. Another question,
that chapter deals with, is how to get away from (fast, but) inaccurate hardware
arithmetic in those cases where it turns out insufficient.

For a detailed introduction into the field of error analysis, the reader is referred
to the classic books [833, 834]. Moreover, the topic of stability is extensively
treated in [783], devoting several chapters to this issue. Last, but not least,
when looking into the subject of floating-point programming, [819] and [343]
should be consulted.

3.5.3 Robustness in Computational Geometry

As mentioned in Section 3.5.2, numerical errors, initially considered benign, may
well turn into serious ones as soon as they start changing the control flow in a cru-
cial way. Conditional tests delivering the wrong result impose erring branches
the program runs through during computation. Whereas some algorithms are
actually immune against such wrong decisions, other algorithms may be highly
sensitive to them. This sensitivity in particular arises in the field of compu-
tational geometry, as we will see shortly. Afterwards, we will discuss different
approaches to cope with the problem of inaccuracy.

Problems that are considered to be of geometric nature generally have one
property in common. The given input and the desired output are supposed to

114 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

consist of a combinatorial and a numerical part each. A geometric algorithm
solves a given geometric problem if for any given input it computes the output
as specified by the problem definition. The algorithm involves so-called geomet-
ric primitives to progressively transform the given input into the desired output.
These fundamental operations are basically each of one of two kinds: Geometric
constructions create single basic geometric objects out of a constant number of
given defining basic objects. Geometric predicates in turn test a specific rela-
tionship between, again, a constant number of given basic geometric objects. In
doing so, they provide a mechanism for querying decisive properties in condi-
tional tests that direct the control flow in geometric algorithms.

Each geometric predicate can be considered to perform in its very last step a
comparison of two numbers, which in turn are determined based on the numerical
data of the involved geometric object and possibly additional constants. Without
loss of generality, one may assume that the second of both numbers is actually
zero, which means that a geometric predicate at the bottom line amounts to
determining the sign of the value of some arithmetic expression.

The crucial point now is the following. Geometric algorithms are usually de-
signed and proven to be correct in the context of a model that assumes exact
computation over the set of all real numbers. In implementations however, this
exact real arithmetic is mostly replaced by some fast but finite precision arith-
metic as provided by the hardware of the computing device. For some few types
of problems with restricted inputs this approach works out well. However, for
most of the geometric algorithms, if simply implemented this way, one would
have to face adverse effects caused by this finite approximation, which for some
critical input could finally result in catastrophic errors in practice.

The reason is that due to the lack of an exact arithmetic, the predicates do
not necessarily always deliver the correct answer, but may err if the computed
approximation happens to yield the wrong sign. In consequence, the algorithm
will branch incorrectly, which in the most lucky case may be masked by some
later computation. If not, the algorithm will in the best case compute some
combinatorially incorrect or even topologically impossible result. In the worst
case, however, an inconsistent state will be entered that causes the algorithm to
crash or loop forever.

A simple example of geometrically impossible situation can be observed in the
context of computing the intersection point p of two lines l1 and l2. Computing
p = l1 ∩ l2 and subsequently testing whether p lies on li, i = 1, 2, both with
limited precision floating-point arithmetic, will most of the times result in at least
one of the two tests to fail. Schirra [705] points out that even for obviously well-
conditioned constellations the intersection point only rarely verifies to actually
lie on both lines. Of course, one may argue that these failing tests may just result
from p not being exactly representable within the limited precision in most of
the cases. However, as it turns out, a direct floating point implementation even
fails to always determine correctly for each of the two defining lines, on which
side the computed point p actually lies w. r. t. line. Kettner et al. [471] explain in
detail, but so that it can be readily understood, how and why an erring sideness

3. Selected Design Issues 115

test may cause even the most simple convex hull algorithm to fail in various
ways.

Similar robustness problems apply for practically most of the algorithms in
Computational Geometry. They arise because the approximate substitute for
real number arithmetic used in practice just does not behave exactly like its
counterpart in theory, i. e., the real RAM model based on which algorithms and
data structures were initially designed and proven to be correct. However, not
all input data needs to be considered critical. For most of the configurations rep-
resentable in the available finite precision format, a direct implementation of a
geometric predicate will indeed deliver the correct sign. In fact, the approximate
arithmetic may fail to yield the correct sign basically only in those situations,
where the given configuration is somewhat close to a configuration for which
an exact evaluation of the predicate would report zero. The latter configura-
tions are commonly called degenerate. Hence, it is the true and near-degenerate
configurations that make up the critical inputs.

These scenarios are the ones that call for approaches to deal with numerical
inaccuracy. Recalling that the root of the whole issue was the assumption in
theory to being able to compute exactly, but the insufficiency of plain hardware
arithmetic to do so in practice, there are two obvious ways out: (a) adapt practice
to fit the theory, i. e., compute exactly in practice; or (b) adapt theory to fit the
practice, i. e., take imprecision into account during design.

Adapt Practice: The Exact Geometric Computation Paradigm. If we
are asked for some way to guarantee that our geometric algorithm in practice will
always deliver correct results, the most obvious solution would be to ensure that
any numerical computation ever performed is actually (numerically) exact. When
resorting for some kind of exact arithmetic, correct results are thus automatically
achieved. In fact, in such a case, robustness is actually a non-issue. Chapter 6
discusses such approaches in detail, how to compute exactly within the field of
rational numbers or algebraic numbers, respectively. However, it should be noted
that, in general, off-the-shelf use of exact arithmetic packages may become quite
expensive and should therefore be employed cautiously.

Now, in order to make the algorithm behave in practice just as in theory, we
do not necessarily need numerical exactness all the time. Instead, all we need
to assure is that the program flows are identical in both cases. In fact, this will
guarantee a correct combinatorial part of our output. To achieve this, we request
that any decision is always made in the same way as if it was done on a real
RAM. As mentioned above, the predicates that are evaluated during the branch-
ing steps of the algorithm may w. l. o. g. be assumed to deliver just the sign of
some arithmetic expression over the numerical values of the geometric objects
involved (and possibly additional constants). In effect, what it takes to always
guarantee correct decisions is to (a) have a suitable representation for any ob-
ject which is always sufficient to (b) compute the correct sign of the expression
for the inquired predicate. Since compliance with these two requirements enables

116 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

the geometric algorithm to always compute the correct geometric result, this
postulation is called the exact geometric computation paradigm.

The term suitable representation already suggests that we do not necessarily
seek for numerical exactness. So, (a) and (b) can be achieved in further ways,
other than exact arithmetic. The applicability of these approaches, however,
depends on the class of problem to be solved – more precisely, on the kind of
arithmetic operations that are required and the maximum depth of derivation
for any value that may occur during computation.

In short, a problem that can be solved by using solely the four basic arithmetic
operations +,−, ∗, / is called rational. Similarly, one that does not require more
than algebraic primitives is called algebraic. Moreover, following Yap [845], one
may inductively define the depth d of a value: given a set U of numbers, x is of
depth 0, if x ∈ U ; and x is of depth at most d+1 if it is obtained by applying one
of the rational operations to numbers of depth at most d, or by root extraction
from a degree k polynomial with coefficients of degree at most d − k + 1. An
algebraic problem now is said to be bounded-depth, if there exists an algorithm
that does not impose any value of more than some fixed depth d, otherwise it is
called unbounded-depth.

Unbounded-depth problems cannot reliably be solved without employing
exact arithmetic. However, such problems are rather rare in traditional Com-
putational Geometry [846]. One example of this kind is a solid polyhedral mod-
eler allowing us to perform rational transformations and Boolean operations on
solids. There, each such transformation and operation inherently may increase
the depth of derivation. But due to the lack of a well-defined input-output-
relation, this kind of problem is often not considered a “computational problem”
in algorithmics.

Problems that are bounded-depth but not rational may go beyond an off-
the-shelf use of standard (arbitrary precision) rational arithmetic. They require
techniques for determining the root of a polynomial of bounded degree, which
will be explained in Chapter 6. In contrast, rational bounded-depth problems,
in short RBD, can be solved without arbitrary precision arithmetic. In fact, for
any given RBD algorithm there is a constant D such that as long as the input
is known to involve only rational numbers of size (at most) s, all intermediate
computations involve only rational numbers of size at most D ·s+O(1). This fact
allows us to limit the needed precision in the context of specific applications if
the input precision is known in advance. And indeed, in most of the applications,
the input is given as either integers of fixed maximum length or in floating-point
format with fixed-precision. A few examples shall be given now.

Many geometric predicates used in prevalent geometric algorithms can be
expressed by computing the sign of some determinant. Common representatives
include the orientation test in two- or three-dimensional space, the in-circle test
in 2D as well as the in-sphere test in 3D, the intersection test of lines in 2D, etc.
Not surprisingly, a lot of effort has been done on computing the exact sign of
determinants.

3. Selected Design Issues 117

Concerning matrices with integral entries of bounded bit length, different
authors have proposed algorithms for computing the sign of a determinant. The
approaches vary from specializations for 2× 2 and 3× 3 matrices [52] to general
n×n matrices [177,137] and cover standard integer as well as modular arithmetic
[138]. In each case, a bound on the required bit length for the arithmetic is given.

Besides these algorithms for integral instances, further algorithms were sug-
gested for computing the exact sign of a determinant for a matrix given in
floating-point format. The ESSA algorithm (“exact sign of sum algorithm”) due
to Ratschek and Rokne [665] computes the sign of a finite sum for double pre-
cision floating-point values. Since the determinant of a 2D orientation test is
representable as a sum Σxkyl over the coordinates of the three points involved,
ESSA can compute the orientation of three points if their coordinates are given
in single-precision floating-point format (which simply guarantees that all xkyl

are exactly computable in double-precision). Shewchuk [731] offers a method
for adaptively computing exact signs of matrices of size up to 4 × 4 with en-
tries in double precision floating-point format, provided that neither overflow
nor underflow occurs.

Apart from the sign of a determinant, also its actual value may be of inter-
est sometimes. Whereas testing two lines in 2D for intersection only amounts
to determining just the sign of 3 × 3 determinants, computing the intersec-
tion itself amounts to determining their actual values. Hoffmann [401] shows
how to compute such an intersection point for two lines in parametric form
based on the exact inner product and derives a bound on the bit length of the
homogeneous coordinates of this point. Sugihara and Iri [763] introduced an
algorithm for exactly computing polyhedral intersections. In this method, geo-
metric elements are represented without redundancy, giving only the coefficients
of the parametric plane equations of the faces. The key property of Sugihara
and Iri’s method is that neither edges nor vertices are computed explicitly. In-
stead, all primitives are represented topologically. Vertices are represented as
intersections of three planes, edges by their two endpoints and finally faces by
delimiting edge loops. Two important observations shall not stay unmentioned:
First of all, the representable polyhedra are not restricted to convex polyhedra
only. And second, no digit proliferation takes place when intersecting the poly-
hedra, since the resulting polyhedron always inherits its surfaces from the two
input polyhedra. However, as noted by Hoffmann [401], Sugihara and Iri’s pro-
posed approach unfortunately lacks support for exactly representing rotations,
which is due to the fact that plane coefficients are not being exactly repre-
sentable anymore. However, Sugihara and Iri represent their polyhedra in a dual
form, based on a CSG (constructive solid geometry) tree of trihedral polyhe-
dra and a history recording the boundary structure for the Boolean operations.
Then, rotation of a complex polyhedron is performed by first rotating the trihe-
dral primitives and then reconstructing the rotated polyhedron from the CSG
representation.

Adapt Theory: Design for Inaccuracy. When having to rely on potentially
inaccurate computations, one has to resign from the assumption of getting exact

118 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

results to base the decisions on. However, an algorithm may still be quite suitable
as long as it guarantees to deliver the exact result for a problem that is (in
some sense) close to the original one. This motivates the following definition of
robustness which was omitted in this section until now, since in the scope of the
exact geometric computation paradigm, robustness was actually a non-issue.

Following Fortune [295], a geometric algorithm shall be called robust, if it
produces the correct result for some perturbation of the input. In close connec-
tion to Section 3.5.2, we want to call the algorithm stable if this perturbation is
small. Moreover, Shewchuk [731] suggests calling an algorithm quasi-robust if it
computes some useful information, even though not necessarily a correct output
for any perturbation of the input.

Interval Geometry. These approaches can be seen as the geometric counter-
part to interval arithmetic (cf. Chapter 6). Numerical inaccuracy is treated by
systematically thickening the geometry of processed objects, or by adjusting
the geometric meaning of the predicates. The tolerance-based approach due to
Segal and Sequin [720, 719] associates tolerance regions to geometric objects.
The challenge now is to always keep the data in a consistent state. To achieve
this consistency and to obtain correct predicates on these “toleranced objects”
they enforce a minimum feature separation. Features that are too close to each
other (i. e., have overlapping tolerance regions) must either be shrunken (by
re-computation with higher precision), merged or split. Each of these actions
might require backtracking if the new tolerance region of one object happens to
start or stop overlapping the tolerance region of an object that has already been
processed. In order to enable this kind of consistency checking, tolerance-based
approaches usually maintain additional neighborhood information.

Epsilon Geometry due to Guibas, Salesin and Stolfi [688] treats the problem
of uncertainty due to numerical inaccuracy from the other side, namely the
geometric predicates. An epsilon-predicate returns a real number ε that reflects,
how much the input satisfies the predicate. A non-positive outcome states that
the input could successfully be verified to satisfy the predicate and, moreover,
that the predicate would even be satisfied when perturbing the input by not more
than ε. A positive ε in turn states that the input could not be verified to satisfy
the predicate. However, ε is the size of the smallest perturbation that would
actually produce an input satisfying the predicate. Unfortunately, reasoning in
this framework seems to be difficult [704], and until now epsilon geometry has
been applied successfully only to a few basic geometric problems, cf. [688, 364].

Axiomatic Approach. Another quite tempting approach was proposed by Schorn
[708,709]. The key idea of what he calls the axiomatic approach is to determine
properties of primitive operations that are sufficient for performing a correctness
proof of an algorithm, and to find invariants that solely base on these properties.
Schorn applies his axiomatic approach to the problem of computing a closest
pair within a set of points in 2D, but also to the problem of finding pairs of
intersecting line segments.

3. Selected Design Issues 119

In the former case, he introduces some abstract functions d, dx, dy, d′y of type
(R2 ×R

2)→ R as substitutes for ‖p− q‖, px − qx, py − qy, and qy − py, respec-
tively. Then he lists some properties that these functions shall fulfill: First, d
is to be symmetric and furthermore an upper bound for each of the functions
dx, dy, d′y. And second, the functions dx, dy, d′y need to feature some monotonic-
ity properties. Schorn proves that based on these axioms his sweep algorithm
is guaranteed to compute mins,t∈P d(s, t) for the given point set P – no matter
what d, dx, dy, d′y are, as long as they satisfy the postulated axioms. He also shows
that floating-point implementations of the substituted exact distance functions
from above would yield a guaranteed relative forward error of at most 8ε, for ε
being the machine epsilon.

Consistency Approach. The consistency approach implements robustness by sim-
ply demanding that no decisions are contradictory. The requirement of correct
decisions is weakened towards consistent ones. In fact, as long as they are con-
sistent with all other decisions, also incorrect decisions are tolerable. Of course,
in the lucky case that an algorithm performs only tests that are completely in-
dependent of previous results, it would always deliver consistent results, even for
random outcomes for the predicates. Fortune [295] calls such algorithms parsi-
monious. He presumes that – in principle – many algorithms should be capable
of being made parsimonious.

An algorithm that is not parsimonious needs to assure consistency in another
way. The topology-oriented approach due to Sugihara and Iri [765] puts highest
priority on topology and combinatorial structure. Whenever a numerical compu-
tation would entail a decision violating the current topology, this decision is sub-
stituted by a consistent one that actually conforms to the topology. Degeneracies
are not treated explicitly. If the sign of a predicate evaluates to zero, it is re-
placed by a positive or negative one, whatever is consistent. Sugihara’s approach
ensures topological consistency throughout the whole computation, in particular
for the final result. However, there is no guarantee for obtaining topologically
correct results, and the numerical values computed may be noticeably far away
from correct. Usually it is argued at this point that computing with higher pre-
cision will make the output getting closer to the correct result – finally being
equal to it, once the precision is sufficient. Yet, this argument only holds as long
as no true degeneracies are involved. Irrespective thereof, the topology-oriented
approach has still proven capable of leading to amazingly robust algorithms. In
fact, Sugihara et al. presented several algorithms for polyhedral modeling prob-
lems (see p. 117, but also [762]), for computing Voronoi diagrams [764,619,765]
and for determining the convex hull in 3D [575]. The reader is also referred to
Chapter 9, devoting a whole section to Voronoi diagrams, including a topology
oriented implementation due to Held [385].

Milenkovic proposes an approach, called the hidden variable method [572],
which is based on two components: a structure with topological properties and
a finite approximation of the numerical values. The topological structure is cho-
sen in such a way that there exist infinite precision numerical values (close
to the given finite precision parameter values), for which the problem has the

120 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

chosen structure. The name hidden variable method derives from the fact that
the topology of the infinite precision version is known but not its numerical val-
ues. In [572], the approach is applied to the computation of line arrangements.

Adapting Input. Milenkovic [572] also proposes a second approach to deal with
numerical inaccuracy. His technique called data normalization modifies the in-
put in such a way that it will finally be able to be processed with approximate
arithmetic. It basically constitutes a preprocessing procedure, in which incidence
is enforced for features that are too close together and the subsequent algorithm
may not be able to tell apart. After eliminating any near coincidence this way, it
is guaranteed that all the finite precision operations performed by the algorithm
will yield correct results based on this normalized input. Milenkovic exemplifies
his approach on the problem of polygonal modeling, based on the two opera-
tions permitted to be performed on the input: vertex shifting, which merges two
vertices that are closer than ε, and edge cracking, which subdivides an edge into
a poly-edge at all vertices that are too close to that edge. Clearly, introduc-
ing incidences definitely changes the local topological structure of the input in
terms of connectivity. Yet, Milenkovic proves bounds on the maximum positional
displacement introduced by his method.

Controlled perturbation is another approach that adapts the input so as to
make it pleasant enough for being processed with approximate arithmetic. Again,
one concedes the problem at hand not necessarily to be solved for the given input
but for some nearby input. The basic procedure is yet somewhat different to the
data normalization technique. The idea is to run the algorithm in a supervised
manner, and to monitor if any of the predicate invocations is once not guaranteed
to deliver a reliable result. In the latter case, the current pass is interrupted, the
original input is perturbed and the algorithm is restarted again on the perturbed
input. This protection is achieved by augmenting each of the predicate calls with
a so-called guard. A guard GE for a geometric predicate E is a Boolean predicate
that, if evaluating to true in the given approximate arithmetic, guarantees E to
yield the correct sign when evaluated in the same arithmetic. By increasing the
size of the perturbation after each unsuccessful run, one increases the probability
that none of the guards evaluates to false. However, the larger the perturbation,
the less nearby is the finally solved input instance to the original one. Controlled
perturbation, as proposed by Halperin et al. [378], therefore calls for controlling
over the size of perturbation by means of choosing the perturbed input in a
careful manner. Halperin et al. use this technique to compute arrangements of
spheres [378], arrangements of polyhedral surfaces [654], and arrangements of
circles [376], each in floating point arithmetic. Klein [474] applies the paradigm
to the computation of Voronoi diagrams. Finally, Funke et al. [311] compute
Delaunay triangulations using controlled perturbation. In each case, the authors
derive a relation between the perturbation amount and the quality guarantee
of the approximate arithmetic, i. e., the precision of the floating point system
intended to be used.

Funke et al. point out that controlled perturbation (as opposed to data nor-
malization) is actually a general conversion strategy for idealistic algorithms

3. Selected Design Issues 121

designed for the real RAM model and some general position assumption. In ad-
dition to this original approach, Klein [474] and Funke et al. [311] also consider
so-called lazy controlled perturbations, which perturb only those sites that during
their incremental insertion caused one of the involved guards to fail. Unfortu-
nately, neither the perturbation bound nor the expected running time could be
shown to carry over from the standard scenario.

Representation and Model Approach. This approach is probably the most ab-
stract one to deal with numerical inaccuracy. Basically, an explicit distinction
is drawn between mathematical objects, the models, on the one hand and their
corresponding computer representations on the other. Based on this distinc-
tion, a geometric problem P is considered to define a mapping P : I → O
from a set I of input models into a set O of output models. In comparison,
a computer program A imposes a mapping A : Irep → Orep on correspond-
ing sets Irep ⊇ {repI(i)|i ∈ I} and Orep ⊇ {repO(o)|o ∈ O} of computer
representations.

A computer program A for a problem P will be called correct, if it holds that
repI ◦ A ◦ rep−1

O = P , i. e., if for any i ∈ I we have rep−1
O (A(repI(i)) = P(i).

Obviously, this requires repI and repO both to be bijections. In other words,
it would take a one-to-one correspondence between representations and models.
However, because of the infinite character of most mathematical models on the
one hand and the finite nature of computer representations on the other, the
correspondence between the two is normally not one-to-one.

Taking this issue into account, the term correctness is therefore replaced by
robustness as follows: A computer program A : Irep → Orep for a problem
P : I → O will be called robust, if for every computer representation irep ∈ Irep
there is a corresponding model i ∈ I such that P(i) ∈ O is among the models
corresponding to A(irep) ∈ Orep – or formally, if for any irep ∈ Irep we have
{P(i)|i ∈ I, repI(i) = irep} ∩ {o ∈ O|repO(o) = A(irep)} 	= ∅. So, in order to
prove that a given computer program is robust in this terminology, one basically
has to show that for any given representation there always exists a model for
which the computer program takes the correct decisions.

Admittedly, this definition of robustness allows a fairly generous interpretation
of the term “correspondence”. In particular, if we were to define only a single
input representation x and a single output representation y and let A simply
return y for the only possible input x, then A would be a robust algorithm for
any problem P , as all input models are mapped to x and all output models are
mapped to y. In fact, this definition of robustness basically rather reflects what
Shewchuk [731] suggests to be called quasi-robust.

Hoffmann, Hopcroft, and Karasick [402] introduced this formalization. They
also gave an algorithm for intersection of polygons and proved its robustness with
respect to their formalism. Hopcroft and Kahn [411] considered robust intersec-
tion of polyhedron with a half-space. However, in both cases the interpretation of
“correspondence” was actually quite generous, leading to fairly loose relationship
between computer representation and its “corresponding” model.

122 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Related Issues. In the remaining part of this subsection, we will look at three
issues that are actually closely related to precision-caused robustness problems
in computational geometry, namely: inaccurate data, degeneracies and geometric
rounding. Each of these issues shall be briefly discussed now in closing.

Inaccurate Data. Approximate arithmetic employed for computation is not the
only type of inaccuracy relevant in computational geometry. As Schirra [704]
points out, many geometric data arising in practice is actually known or supposed
to be inaccurate. Since both types of inaccuracy basically impose a similar kind
of uncertainty, there is actually not much of a difference between processing
geometric objects that result from inaccurate computations and processing real-
world data that is potentially inaccurate by nature.

Now, if we were to directly employ exact geometric computation on this kind
of input, we would implicitly treat inaccurate data as exact. This way we would
determine the correct result for some possibly inaccurately represented problem
instance. Yet, this procedure only works out as long as the given data are ac-
tually consistent. Otherwise, we were to face similar problems as discussed in
the course of this subsection: The algorithm may happen to enter a state that
it was never supposed to be confronted with. In fact, it got actually launched in
such a state already. This close relationship was a sufficient natural reason for
researchers to address both kinds of inconsistencies in a uniform way. An imme-
diate consequence however is, that any error in the output cannot be identified
whether to be caused by inaccuracy of input or during computation.

In order to finally achieve an error-free output, there are two ways to choose
between. When sticking to exact geometric computation, one will have to fix the
relevant deal of the data – either in advance or on the fly, if possible. Basically,
the input needs to be considered as non-benign and asks for being handled in
one of the ways discussed in Section 3.5.1. Geometric rounding, as discussed
shortly, may turn out one of these possible answers. The second way is to follow
one of the approaches of consciously designing for inaccuracy discussed earlier
in this section. In particular, tolerance-based and consistency-driven approaches
appear naturally promising in this respect.

Degeneracy. As already mentioned in the beginning of this subsection, precision-
caused non-robustness is closely related to degeneracy in computational geome-
try. The nearly degenerate and true degenerate instances are the critical scenarios
in computing with numerical inaccuracy. Roughly speaking, degeneracies may
be deemed to be points of discontinuity of the input-output-function induced
by an algorithm – usually configurations of the input data where one of the
predicates involved in the overall computation evaluates to zero, thus entailing
a switch-over in the algorithm’s control flow.

When designing a geometric algorithm it is common practice to assume the
absence of such degeneracies. In fact, in scientific publications authors on a
regular base tend to declare them as negligible details “left to the reader”. The
assumption is usually justified, for in most cases the details can indeed more or
less easily be filled up. Yet, the more the phase of implementation approaches,

3. Selected Design Issues 123

the less pleasant it becomes from the point of robustness to keep hold of any
such void in the algorithm’s specification.

Following Yap [848], an algorithm is called generic, if it is only guaranteed to
be correct on generic (i. e., non-degenerate) input. A general algorithm in turn is
one that works for all (legal) inputs. In order to avoid the final implementation
to crash due to degenerate input that could not be handled, it is desirable for the
implementer to being delivered a general algorithm. So, if the initial description
did not cover all degeneracies, then at one point in time a generic algorithm
asks for being turned into a general one. There are basically two (not mutually
exclusive) options for doing so: Adapting the algorithm or modifying the input.

Certainly, when following one of the approaches for computing with inac-
curacy discussed earlier in this section, true degeneracy is actually kind of a
non-issue. Since they cannot reliably determine true degeneracy anyway, these
approaches treat any nearly degenerate case like an untrustworthy outcome of
a predicate. For example, tolerance-based approaches simply adapt their toler-
ance information for any (true or) near degeneracy they hit upon. Consistency
approaches in turn do not treat degeneracies explicitly at all. If the sign of a
predicate evaluates to zero, it is replaced by a positive or negative one, what-
ever is consistent. In contrast, the controlled perturbation approach perturbs
the input until it does not entail any predicate anymore that evaluates too close
to zero. In general, approaches adapting the input (like also Milenkovic’s data
normalization technique) explicitly remove possible degeneracies.

In contrast to that, when applying exact geometric computation true degen-
eracy becomes an explicit issue. In fact, exact geometric computation guarantees
to always yield the correct sign for each of the involved geometric predicates.
However, it does not help us any further, once a predicate happens to correctly
evaluate to zero, but the algorithm by design doesn’t have an answer at hand how
to handle this degenerate situation. Again, one could adapt the algorithm, i. e.,
extend it in a way that allows for degeneracies to being handled. However, apart
from really treating them, there is again the second option, namely bypassing.

Edelsbrunner and Mücke [268] were the first ones to introduce the notion of
so-called symbolic perturbation schemes into the field of computational geometry.
The idea of this concept is to perturb the input in a symbolic way in order to
remove degeneracies, but at the same time to obtain a result as close as possible
to the real solution. In fact, perturbing only in a symbolic manner is the way to
ensure that the perturbation does not change the sign of any non-zero predicate
result. Edelsbrunner and Mücke [268] introduced a scheme, called Simulation
of Simplicity (SoS). This technique, that was already known in the context of
the simplex method, amounts to adding powers of some indeterminate ε to each
input parameter. Emiris and Canny [273] reduced the computational complexity
by applying linear perturbations only: to each input parameter xi they add a
perturbations πi · ε where πi ∈ Z and ε infinitesimal.

Yap [845] proposes a slightly more generalized concept called blackbox sign
evaluation schemes. In this approach, every call to a predicate is generally re-
placed by a call to a sign blackbox which (a) always returns a non-zero sign and

124 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

(b) guarantees to preserve any non-zero sign concluded by the original pred-
icate. Yap [845, 844] shows how to formulate a consistency property for the
blackbox and offers a whole family of admissible schemes applicable for polyno-
mial functions. This approach is in particular important, as SoS can be applied
to determinants only.

Finally, Seidel [722] proposes an approach, based on the following idea. Given
a problem P (x) and just a single non-degenerate input x∗, then every other input
x can be made non-degenerate by perturbing it in the direction of x∗, leaving
us with computing P (x + εx∗). He shows that the other perturbation schemes
mentioned above are each special cases of his general approach.

Geometric Rounding. Computing geometrically exact results is only worth as
much as the computed result can actually be successfully passed on to subse-
quent stages. In fact, it does not help much, for example, to determine the exact
solution of a geometric problem if the output format is yet not capable of repre-
senting it without information loss. There may also be a couple of other reasons
(e. g., the computational cost) that call for a reduction of the numerical and/or
structural complexity of geometric data.

The goal of geometric rounding now is to find a simplification of a given
geometric structure, i. e., a geometric structure of lower complexity that does
not deviate too much from its original with respect to some specific geometric or
topological criteria. Thereby, two different objectives may be the driving forces,
namely combinatorial versus precision simplification [848]. Whereas the former
one aims at reducing the number of primitives and their combinatorial relations,
the latter objective seeks for reducing the (bit-)complexity of the numerical
values themselves.

Greene and Yao [359] were the first authors to introduce the topic of geometric
rounding in the field of computational geometry. They considered the problem
of rounding line segments consistently to a regular grid. They suggested to break
the line segments into polygonal chains by moving any vertex of the subdivision
(i. e., every endpoint of a line segment or intersection point of two segments) to
its nearest grid point. Their approach moves edges only by a distance of at most
half a grid cell’s diameter. It may introduce new incidences, but no additional
crossings, which is the property that is meant by “consistently”. Unfortunately,
it may produce a large number of new vertices along the polygonal chains. Since
n segments may show Θ(n2) intersections, Greene/Yao rounding may end up
with quadratically many additional vertices, compared to initially O(n).

Snap rounding, usually attributed to Hobby [398] and Greene [358], overcomes
this issue. The general idea is based on the notion of a hot pixel, which also gave
raise to the name hot pixel rounding. A pixel of the grid is called hot, if it either
contains an endpoint of an original line segment, or an intersection point of two
original line segments. The rounding procedure consists of snapping all segments
intersecting a hot pixel to the pixel center. As with Greene/Yao rounding, snap
rounding guarantees that the resulting arrangement will be contained within the
Minkowski sum of the original arrangement and a unit grid cell centered at the
origin.

3. Selected Design Issues 125

However, Halperin and Packer [377] showed that a vertex of the output com-
puted that way may be very close to an actually non-incident edge. Since this
might induce new potential near-degeneracies, they proposed an augmented pro-
cedure, called iterated snap rounding, aimed to eliminate the undesirable prop-
erty. Their rounding basically consists of two stages. In a preprocessing stage
they compute hot pixels defined by the vertices of the arrangement. Addition-
ally, they prepare a segment intersection search structure that allows to query for
all hot pixels that a given segment s intersects. In a second stage they perform
a procedure the call reroute on each input segment. This recursive procedure
produces a polygonal chain s∗ as an approximation for a given segment s, such
that when s∗ passes through a hot pixel, it passes through its center. Halperin
and Packer show that their rounding procedure guarantees that any vertex is at
least half the width of a pixel away from any non-incident edge.

Milenkovic [573] proposes a scheme called shortest path rounding, which in-
troduces even fewer bends than snap rounding. He defines a deformation to be
a continuous mapping π : [0, 1]× R

2 → R
2 such that π(0, p) = p for all p ∈ R

2,
and for any fixed t ∈ [0, 1) the function πt(p) := π(t, p) is a bijection. (Note that
π1 not necessarily needs to be a bijection – distinct points may collapse at time
t = 1. However, π1 is clearly the limit of a series of bijections.) πt represents
the state of the deformation at time t ∈ [0, 1]. In comparison, γp(t) := π(t, p)
reflects the path that p travels through during the whole process of deformation,
starting at p and ending at the target position ρ(p) := π(1, p) = π1(p) = γp(1).
A geometric rounding of a straight line embedding G = (V, E) to a lattice S is
then a deformation of the plane such that the following two properties hold:

(a) For any v ∈ V , γv is completely contained in CELL(S, v), i. e., the defor-
mation path of any vertex v ∈ V always stays within the lattice cell corre-
sponding to v.

(b) Each (u, v) ∈ E is deformed into a polygonal chain having its vertices in
lattice points of vertices of V only.

Such a geometric rounding is called a shortest path rounding if every rounded
edge results in a polygonal chain with shortest possible paths among all (feasible)
roundings. Milenkovic shows that the result of a shortest path rounding is always
unique.

Apart from 2-dimensional arrangements and planar subdivisions, geometric
rounding has also been studied in 3D. As already mentioned in Section 3.5.3, Sug-
ihara and Iri [763] apply what may be called CSG rounding to a geometric object
by first rounding all involved CSG primitives and subsequently reconstructing
the tree. Fortune [296] in turn rounds geometric objects given in manifold repre-
sentation. This manifold rounding works by first rounding the equations or faces
and afterwards, in case the rounded solid is self-intersecting, retaining only the
“unburied” portion of the boundary.

In general, rounding geometric data is far more than just rounding numbers,
and doing it properly can be very difficult. In fact, the quest for reducing com-
plexity significantly while always keeping the numerical and combinatorial data
consistent may turn out highly complicated.

126 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Final Remarks. As we have seen in the second part of this section, computing
with inaccuracy obviously seems to impair problems for geometric algorithms. In
fact, as pointed out by Fortune [297], it is in general “notoriously difficult to ob-
tain a practical implementation of an abstractly described geometric algorithm”.
In effect, the number of problems that have been successfully attacked this way
is still small (see [524, 401, 704] for surveys on robustness issues in geometric
computation). In fact, these approaches entail two major disadvantages: First
of all, the respective techniques are highly specific to the considered problem
and do hardly generalize to other geometric problems. And second, they do not
permit off-the-shelf use of all the various geometric algorithms already available,
but require a redesign of practically every single algorithm intended to be used.
In short: They force us to redo Computational Geometry [141].

Chapter 4. Analysis of Algorithms

Heiner Ackermann, Heiko Röglin�, Ulf Schellbach, and Nils Schweer

4.1 Introduction and Motivation

Analyzing the properties of algorithms is fundamental for drawing conclusions
on their applicability, for the comparison of different algorithms, and for the de-
velopment of new ideas that help to improve existing algorithms. An algorithm
that solves a problem optimally while the time and space it consumes grow not
too fast is the ideal case. Unfortunately, such algorithms are not known to exist
for many optimization problems that occur frequently in industrial applications.
For these problems one can look for trade-offs between different properties like,
e. g., the quality of the solution and the running time of the algorithm. Another
possibility for coping with these problems is to relax the requirement that an
algorithm has to work well on all instances of the considered optimization prob-
lem. It is sufficient if the algorithm performs well on those instances that occur
typically in the considered application.

Consider, for example, the traveling salesman problem (TSP). In its general
form we are given a finite set of points and the cost of travel between each pair
of points. A tour visits each point exactly once and returns to its starting point.
The task is to find a tour of minimum cost. An approach may be to enumerate
all tours and to choose the shortest one. This procedure clearly finds an optimal
tour, but we have to evaluate (n−1)!

2 tours. If we assume that the computation
of a tour can be done in one nanosecond (1 second = 109 nanoseconds) it takes
approximately 2 years for a set of 20 points and approximately 177 centuries for
an instance with 23 points to find an optimal tour. If we relax the condition of
finding an optimal tour, i. e., if we are satisfied with a tour that is not optimal
but not “too long” and the travel costs satisfy the triangle inequality, then we
can for instance use Christofides heuristic [172] to find a tour that is at most
1.5 times longer than an optimal tour; this would take less than 1 second for
both instances in the above example. Hence, we can find a trade-off between
the quality of the solution and the running time in this case. If the travel costs
are not restricted to satisfy the triangle inequality, then even finding a constant
factor approximation of the optimal tour is NP-hard. Hence, one can also learn
from this example that analyzing and restricting the input space properly is
crucial for drawing conclusions about the complexity of a problem. Many TSP
instances that occur in industrial applications satisfy the triangle inequality and
considering them in the model with arbitrary travel costs leads to too pessimistic
conclusions.

We have seen that enumerating all solutions is in general not feasible because
too much time is needed. But when do we consider an algorithm to be efficient
� Supported by DFG grant Vo889/2.

M. Müller-Hannemann and S. Schirra (Eds.): Algorithm Engineering, LNCS 5971, pp. 127–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

128 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

for a given problem? Cobham, Edmonds and Rabin were one of the first who
suggested an answer to this question [655, 269, 178]. They called an algorithm
“efficient” if its running time grows polynomially in the input size for all input
instances. This definition coincides with what we observed for the TSP. The
idea of finding an upper bound on the running time of an algorithm over all
instances leads directly to the so-called worst-case analysis, which is still the
predominant type of analysis nowadays. An algorithm whose worst-case run-
ning time is polynomially bounded is the ideal case because the running time
of such an algorithm never exceeds the corresponding polynomial, regardless of
the instance the algorithm is applied to. Hence, this is also a very restrictive
requirement, and indeed there is a large class of problems for which such algo-
rithms are not believed to exist, namely the class of NP-hard problems. In their
pioneering works, Cook [184] and Levin [519] identified the first NP-hard prob-
lem. Based on these results Karp [464] showed the NP-hardness of many other
problems, including the TSP. It is not known whether NP-hard problems can be
solved in polynomial time, but the existence of a polynomial-time algorithm for
one of these problems would imply that all NP-hard problems can be solved in
polynomial time. However, most researchers believe that no efficient algorithms
for NP-hard optimization problems exist. Let us briefly remark that typically
there are three different versions of a problem, the decision version “Is there a
TSP tour of length at most b?”, the optimization version “What is the length of
the shortest TSP tour?”, and the construction version “What is the TSP tour
of minimum length?”. For most problems the three versions are equivalent in
the sense that an efficient algorithm for one of the versions also yields efficient
algorithms for the other versions.

One way of dealing with the lack of efficient algorithms for NP-hard prob-
lems that we have already discussed above is to relax the requirement of solving
the problems optimally. Another way is to give up the requirement that an
algorithm should be efficient on every input. For many problems heuristics ex-
ist which are known to perform poorly in the worst case but work amazingly
well on those inputs that occur in practical applications. For instance, the 2-
Opt heuristic for the TSP, a simple local search algorithm, which is known to
perform very poorly in the worst case with respect to both running time and
approximation ratio, runs efficiently on most instances that occur in practice
and yields tours whose lengths are typically worse than the optimal tour by only
a few percentage points. These observations motivate to study the average-case
behavior theoretically and to experimentally evaluate algorithms on a set of test
instances. A recently developed probabilistic tool that uses advantages of both
worst-case and average-case analysis is the so-called smoothed analysis. As this
type of analysis is relatively new and seems to be an approach towards closing
the gap between “pessimistic” worst-case analysis and sometimes too “optimistic”
average-case analysis we discuss the most prominent results in detail.

The reader should be aware of the fact that all these measures can lead to
completely different results, e. g., an algorithm can be efficient on average and
non-efficient in the worst case. The main purpose of this chapter is to present

4. Analysis of Algorithms 129

and to discuss the different measures. Depending on the situation one or another
of them may be more suitable. We try to point out where a measure is reasonable
and where not.

In the remainder of this chapter we mainly deal with both theoretical and ex-
perimental analysis of an algorithm’s running time, but of course there are also
other interesting properties of an algorithm that one can analyze, e. g., the space
consumption. Since computers contain a memory hierarchy consisting of a small
amount of fast memory and a large amount of slow memory, it is worthwhile to
analyze the space consumption of an algorithm and to utilize the memory hier-
archy properly (cf. Chapter 5). In particular in computational geometry stating
the space complexity, that is, the amount of space used while running an algo-
rithm, is very common. Nearly all these analyses consider the worst-case space
consumption, but of course, as for the running time, it is also possible and might
be useful to study the average or smoothed space consumption in order to obtain
more realistic results.

When dealing with distributed systems a fourth property (besides approxi-
mation ratio, time, and space), the so-called message complexity, is of special
interest. For example a sensor network, consisting of a set of small devices (sen-
sors) each equipped with a CPU, a radio interface, a battery, and a small memory,
is a distributed system. In order to execute an algorithm, the sensors have to
communicate. The number of messages necessary for the execution of an algo-
rithm is called the message complexity. The methods presented in this chapter
can also be used to analyze the message complexity; although we do not mention
this explicitly in every section.

Before we concretize the term running time we have to make some remarks on
the computational model we use. We call an operation elementary if the amount
of time spent for its execution is bounded by a constant, i. e., if it does not
depend on the size of the input. There are two common models for dealing with
arithmetic operations like addition, multiplication, division, and comparison.
The first one is the logarithmic model in which the costs for arithmetic operations
depend on the lengths of the representations of the involved numbers, that is, the
costs depend logarithmically on the involved numbers. This model is appropriate
for algorithms that deal with large numbers, as for instance number-theoretic
algorithms for primality testing. Algorithms that do not deal with large numbers
can also be considered in the simplified uniform model in which also arithmetic
operations are assumed to be elementary. In the remainder of this chapter we
restrict our discussion to algorithms which fall into the latter category. Thus we
use the uniform cost model in the following. We refer to elementary operations
also as (basic) steps.

When analyzing an algorithm, we are mainly interested in its behavior on large
problem instances. This is reasonable because for small instances often simple
enumeration techniques work well. If an algorithm needs at most 8n2 + 4n + 7
steps to solve an instance, where n is some input parameter, then for large n
the term 4n + 7 is rather small in comparison to 8n2. In a theoretical analysis
also the constant factors in the running time are not of great interest as they

130 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

heavily depend on the implementation of the algorithm and since some basic
steps can be executed faster than others. Hence, if we theoretically compare the
running times of algorithms it is reasonable in most cases just to consider the
dominant terms, in this case n2. However, let us point out that this only makes
sense if the constant factors are not too large. An algorithm whose running
time depends only linearly on n can still be infeasible in practice if the constant
factors in its running time are astronomically large. Of course, one is interested in
implementations of algorithms for which the constant factors in the running time
are as small as possible (cf. Chapter 6). But, since we consider the theoretical
analysis of algorithms and not the implementation, we compare running times
only based on the dominant terms in the remainder of this chapter. To make this
precise, we introduce next the set of asymptotic positive functions F⊕, and define
subsets O(g), Ω(g), Θ(g), o(g) and ω(g) of F⊕, whose elements are characterized
by some relative order of growth with respect to some function g.

Definition 1. Call f : N → R an asymptotic positive function, if there exists
a natural number n0 such that f(n) > 0 holds for all n ≥ n0. Let F⊕ denote
the set of asymptotic positive functions, and let f and g be in F⊕. Function f
belongs to O(g), read f is of growth order g, iff there exist positive constants
c and n0 such that f(n) ≤ c · g(n) holds for all n ≥ n0. Function f belongs to
Ω(g), iff g ∈ O(f). Defining Θ(g) as the set O(g) ∩Ω(g), f ∈ Θ(g) means that
f and g have the same order of growth. Function f is said to grow slower than
g, denoted by f ∈ o(g), iff limn→∞ f(n)/g(n) = 0. Accordingly, f grows faster
than g, iff f ∈ ω(g), or equivalently, limn→∞ f(n)/g(n) =∞.

Sometimes we will abbreviate a statement like f is in O(g) by f is O(g). Obvi-
ously, the running time of an algorithm can be described in terms of a function
f ∈ F⊕. If this running time is in O(p(n)) for some polynomial p(n), then we
say that the algorithm has a polynomial running time and we call the algorithm
a polynomial time algorithm.

In Section 4.2 we present the worst-case and the average-case analysis. In
Section 4.3 amortized analysis is introduced and an application to data structures
and online algorithms is presented. A detailed discussion of recent results on the
smoothed analysis of algorithms is contained in Section 4.4. In Section 4.5 we
discuss realistic!input models. Section 4.6 contains a discussion of computational
testing and in Section 4.7, the method of counting representative operations is
presented. Finally, the question of how and in how far experiments can be used to
study the asymptotic performance of an algorithm is posed and partly answered
in Section 4.8.

4.2 Worst-Case and Average-Case Analysis

The classical methods for analyzing the behavior of an algorithm are the worst-
case analysis and the average-case analysis. In Section 4.2.1 we present the worst-
case analysis and in Section 4.2.2 the average-case analysis. We discuss their
merits and drawbacks at the end of each section.

4. Analysis of Algorithms 131

4.2.1 Worst-Case Analysis

The worst-case analysis yields an upper bound on the running time of an algo-
rithm over all input instances. Suppose we are given an algorithm in pseudocode
or any programming language. This code consists of a finite number of lines
1, 2, . . . , k, and we assume that the worst-case performance is known for each
line. Note that we do not require each line having constant time complexity. In
particular a line can contain the call of a subroutine. In order to obtain the worst-
case running time we additionally need to know the maximum number of times
each line is executed over all valid instances. Consider, e. g., the minimum weight
spanning tree problem on a graph G = (V, E) with edges E = {e1, . . . , em}, n
vertices, and a weight function c : E �→ IR. We are looking for a connected
cycle-free subgraph of minimum total weight. Kruskal’s algorithm is stated in
Algorithm 1.

Algorithm 1. Kruskal’s algorithm
1: Sort the edges such that c(e1) ≤ c(e2) ≤ . . . ≤ c(em).
2: T ← (V, ∅)
3: for i← 1 to m do
4: if T + ei contains no cycle then
5: T ← T + ei

The first line is executed at most once, and sorting the edges according to
their weights can be done in O(m log m) using mergesort. The second line is
also called only once and can be performed in constant time. The third and the
fourth line are both executed m times; the fifth line at most n times. Proving the
nonexistence of a cycle (line 4) can, e. g., be done using the breadth first search
algorithm. Its running time is linear in the number of edges of the graph it is
applied to. In this case the graph has at most n edges; so the running time is
O(n). Thus, the worst-case running time of Kruskal’s algorithm is O(m log m +
1+m+m ·n+n) = O(mn). Let us mention that the implementation of Kruskal’s
algorithm can be improved by using special data structures, yielding a bound of
O(m log n) on the worst-case running time.

Next we formalize the concept of worst-case analysis. We denote by T (i), i =
1, . . . , k the running time of a single execution of line i multiplied with the
maximum number of times it is executed over all valid input instances. T (·)
is expressed in O-notation. Because there are only finitely many lines of code,
we only have to care about the lines that dominate the running time of the
algorithm.

Definition 2. A line i dominates a line j if T (i) > T (j). A line that is not
dominated by any other line is called a bottleneck.

132 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

Note, there may be lines where none dominates the other. This can in particular
happen if the size of a problem is described by more than one parameter. Suppose
the problem size is described by the two parameters s and t, and there is a line
i with T (i) = s2 and a line j with T (j) = t3. If there is no relationship between
s and t, then neither i dominates j nor j dominates i. Hence, the running time
of these two lines is O(s2 + t3). Following the discussion above we define the
worst-case running time as follows:

Definition 3. For fixed input parameters, we define the worst-case running time
of an algorithm A as the maximal number of steps that algorithm A can perform
on instances with the given parameters.

Corollary 1. Let S be the set of those lines of algorithm A that are not domi-
nated by other lines. Then the worst-case running time of A can be bounded by
O(
∑

i∈S T (i)).

In a worst-case analysis of Kruskal’s algorithm we obtain line 4 with T (4) =
O(mn) as a bottleneck, and this line is the only one that is not dominated by
any other line. Hence, the running time of Kruskal’s algorithm (in the naive
implementation described above) is O(mn).

An obvious disadvantage of the worst-case analysis is that if an algorithm
performs badly on a single instance this instance determines the worst-case run-
ning time. Although an algorithm usually does not run slow on a single instance
only, there are algorithms with exponential worst-case running time that are
often used in practical settings. Consider for example the well known simplex
algorithm. For almost every pivot rule there exists a polytope and an objective
function such that the worst-case running time cannot be bounded by a polyno-
mial. But the implementations of the simplex method (e. g., ILOG CPLEX) are
among the most commonly used programs for solving linear programs.

One advantage of the worst-case analysis is that it yields an upper bound on
the running time of an algorithm over all instances. If the worst-case bound is
a polynomial of small degree we know that the algorithm will solve instances of
moderate size in reasonable time.

A second advantage is that the worst-case analysis provides theoretical in-
sights to the behavior of an algorithm. In particular it helps to identify bottle-
neck operations. If we want to improve the running time of an algorithm it is
necessary to look at the operations that are not dominated by others. If one
can make these operations faster, e. g., by using another data structure without
making other operations slower this enhances the worst-case performance.

A third advantage is that a worst-case analysis can usually be performed easily
and fast. In comparison to the average-case analysis (compare Section 4.2.2)
or the smoothed analysis (compare Section 4.4) which both need probabilistic
techniques the worst-case analysis requires only the pseudocode of an algorithm.

4.2.2 Average-Case Analysis

The next method we describe is the average-case analysis. The basic idea of this
technique is to average the running time over all valid instances of the same

4. Analysis of Algorithms 133

size. The instances on which the algorithm performs badly may be rare in the
set of all instances or they may occur seldom in practical settings, and therefore
they should not determine the running time of the algorithm as they do in the
worst-case analysis.

Formally, this concept can be defined as follows: Let A be an algorithm, In

the set of all instances of length n, gA : In → IN a function that maps each
instance I ∈ In to the number of basic steps performed by algorithm A on I,
and fn : In → [0, 1] the density function of a probability distribution on In.
Then the average-case running time TAVG(n) on the set of instances of length n
can be defined as follows:

TAVG(n) =
∫

I∈In

f(I) · gA(I) dI .

Note that there are different ways of defining average-case running time and this
is only one of them; we present another one at the end of this section.

If In is finite, the density function is a discrete probability function pI . If we
further assume that all instances are equally likely, we get pI = 1

|In| . Then the
average running time is simply the mean value 1

|In|
∑

I∈In
gA(I).

The advantage of the average-case analysis is obvious; single instances do not
influence the running time by too much. A disadvantage is that one has to know
the probability distribution of the input instances. Assuming that all instances
occur with equal probability may be convenient from a theoretical point of view
but not from a practical one. In general the probability distribution is not known
and depends on the concrete application, and therefore a uniform distribution
is not a realistic assumption in most cases.

Another disadvantage of the definition of average-case analysis we use is that
it is not robust under changes of the computational model. If a worst-case anal-
ysis states a polynomial running time for an algorithm, then the algorithm has
also a polynomial running time if one replaces the machine model by another ma-
chine model that can simulate the former one in polynomial time. Average-case
analysis does not preserve polynomial running time when changing the model of
computation as the following example shows [820]: Consider the set In = {0, 1}n

of all instances of a fixed length n ∈ IN. We assume that all instances occur with
equal probability 1

2n . Let D ⊆ In with cardinality 2n(1− 2−0.1n). Suppose that
algorithm A runs in polynomial time p(n) on every instance from D and runs
in 20.09n time on all other instances. Then the average-case running time T 1

AVG

can be computed as follows:

T 1
AVG =

∑

I∈D

1
2n

p(n) +
∑

I∈In\D

1
2n

20.09n

=
1
2n

[
2np(n)− 20.9np(n) + 20.99n

]

= p(n)− 1
20.1n

p(n) +
1

20.01n
.

134 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

Note, T 1
AVG is bounded from above by a polynomial in n. Now consider a

quadratic increase in the running time of the algorithm, i. e., the algorithm needs
p2(n) and 20.18n time on instances from D and In \ D, respectively. Then the
average-case running time

T 2
AVG = p2(n)− 1

20.1n
p2(n) + 20.08n

is not polynomially anymore. Hence, an algorithm with average polynomial run-
ning time on one machine model can have an average exponential running time
on another machine model, even if the former can be simulated by the latter in
polynomial time.

Let us consider only the first part of the example. In this case A is efficient un-
der average-case analysis but non-efficient under the worst-case measure because
the running time is exponential on instances from In \ D. Thus, the distinction
between “applicable” and “non-applicable” depends also on the measure we use.

The last disadvantage we want to mention is that although an algorithm
may have small average-case running time it still can perform badly on some
instances. In particular, depending on the choice of the probability distribution
the algorithm can perform badly on those instances that occur in practical appli-
cations. So, what seems to be the average case analysis’s most obvious advantage
turns out to be a disadvantage in some cases.

Furthermore we want to mention briefly that there is another way of defining
polynomial average-case complexity, which overcomes the model dependency.

Definition 4. For n ∈ N let μn be a probability distribution on the set In of
instances of length n. Let A be an algorithm, let I denote the set of instances,
and let gA : I → IN denote a function that maps each instance I ∈ I to the
number of basic steps performed by algorithm A on instance I. Algorithm A has
average polynomial running time with respect to the sequence μ1, μ2, . . . if there
exists an ε > 0 such that

E
I

μn←In
[(gA(I))ε] = O(n) , (1)

where the left hand side of (1) denotes the expectation of (gA(I))ε with respect
to the density function μn for n ∈ IN.

The drawback of this definition is that average polynomial running time does not
imply expected polynomial running time. In order to obtain expected polynomial
running time, the exponent ε in (1) has to be placed outside instead of inside the
expectation. For further discussions of this definition and the theory of average-
case complexity we refer the reader to [115].

4.3 Amortized Analysis

Amortized analysis was proposed by Tarjan [773] and is, e. g., used for analyzing
online algorithms [287,87,850] and data structures [431,744]. Tarjan characterizes

4. Analysis of Algorithms 135

amortized analysis by “to average the running times of operations in a sequence
over the sequence”. That is, instead of considering only a single operation, one
always considers a sequence of operations, e. g., a sequence of paging requests
is analyzed. The idea is that even if a single operation is expensive the costs
averaged over the whole sequence may still be small.

Definition 5. The actual cost of an operation is the amount of time (number
of basic steps) actually consumed by this operation; it is denoted by ci. The total
actual cost of a sequence of m operations is

∑m
i=1 ci.

The basic idea of amortized analysis is to charge the ith operation amortized
cost ai which may be smaller or larger than the actual cost ci. If the amortized
cost of an operation j is larger than the actual cost, the difference is stored and
is used to pay for operations with ai < ci, i 	= j. We want the total actual cost of
a sequence to be bounded by the sum of the amortized costs of each operation in
the sequence. In other words, we require

∑m
i=1 ci ≤

∑m
i=1 ai. The latter is called

the total amortized cost. The amortized costs ai, i = 1, . . . , m, do not necessarily
have to be the same for every operation as we will see in Section 4.3.2. Amortized
analysis is often used if the operations in the sequence are related in some way.
To point this out: Amortized analysis gives a worst-case bound for a sequence
of operations and does not rely on any probability assumptions.

The following analysis [773] is an example where amortized analysis beats
classical worst-case analysis by using the relationship between two operations.
Consider the manipulation of a stack by the two operations POP and PUSH
each consuming one time unit. POP removes the top item on the stack if the
stack is not empty, and PUSH adds a new element to the top of the stack. Now
we define a new operation MULTI that consists of zero or more POP operations
and exactly one PUSH after all POPs. We consider a sequence of m operations
each being either a POP, a PUSH or a MULTI operation. We assume that they
are executed on an initially empty stack. The worst-case running time for a
single operation is bounded by m, and this bound is attained if the first m− 1
operations do not contain a POP, and the last operation removes m − 1 items
from the stack and pushes exactly one element onto the stack. This yields a
worst-case running time of O(m2). But in fact, the running time is bounded by
2m because the stack is initially empty, and there are at most m PUSHs and
therefore there can be at most m POPs.

This example gives a rough idea of amortization and how to use the re-
lationship between two operations but does not describe a general technique
for performing an amortized analysis. In the next sections three different tech-
niques are described, and each is applied to the example of stack manipulation.
Section 4.3.1 contains the aggregate analysis. Section 4.3.2 introduces the ac-
counting method or sometimes called the banker’s view [773]. The potential
method also referred to as the physicist’s view is described in Section 4.3.3. In
Section 4.3.4 an application of the potential method to online algorithms and
data structures is show.

136 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

4.3.1 Aggregate Analysis

The first method we present is the aggregate analysis. In this method the amor-
tized cost per operation is defined as the averaged cost ai = 1

m

∑m
j=1 cj for every

1 ≤ i ≤ m where
∑m

j=1 cj is the total actual cost, and m is the length of the
sequence. Note that the amortized costs are the same for every operation.

Next we apply the aggregate analysis to the example of stack manipulation.
The actual cost for POP and PUSH is 1, the actual cost of MULTI is min(s, k)+1
where s is the number of objects on the stack, and k is the number of POPs
in MULTI. Since there are at most m PUSHs in a sequence of length m there
can be at most m POPs, single POPs, or POPs contained in MULTI. Hence,
the total actual cost is bounded by 2m which is O(m), and the amortized cost
is O(1).

4.3.2 The Accounting Method

The accounting method also called the banker’s view is another technique for
performing an amortized analysis. In contrast to the aggregate analysis the ac-
counting method explicitly allows different amortized costs for different oper-
ations. Again, the amortized cost per operation can be larger or smaller than
the actual cost per operation. If the amortized cost exceeds the actual cost the
difference is stored and is used to pay for operations where the amortized cost
is less than the actual cost. We call this difference credit. The total credit of a
sequence of length k is

∑k
i=1 ai −

∑k
i=1 ci.

In order to bound the total actual cost by the total amortized cost we require
the total credit to be nonnegative. If we know the length of the analyzed sequence
in advance this condition is sufficient for obtaining a worst-case bound. If the
length of the sequence is not known the total credit has to be nonnegative after
every operation; that is

∑k
i=1 ci ≤

∑k
i=1 ai for every k ≥ 1.

However, the crucial step of the accounting method is the allocation of the
amortized costs. Next we show how this can be done for the example of stack
manipulation. We assign amortized cost of 2 to PUSH and amortized cost of 0 to
POP. This implies that the amortized cost of MULTI is 2. Note that the actual
cost of MULTI may depend on the length of the sequence, but the amortized
cost is constant.

Next we prove that
∑k

i=1 ci ≤
∑k

i=1 ai for every k ≥ 1 in this example. This is
trivial, because the stack is initially empty, and for every PUSH we can store one
unit of amortized cost. This credit can be used to pay for the POP operations.
Since there are at most as many POPs as PUSHs we can guarantee that the
total credit is nonnegative after every operation.

4.3.3 The Potential Method

The third technique and probably the one that has been used most often is the
potential method. In the literature this method is also referred to as physicist’s
view because of the use of potential functions [773]. Like the accounting method

4. Analysis of Algorithms 137

the potential method usually assigns different amortized costs to different oper-
ations. But this time the difference ci − ai (for the ith operation) is not stored
directly as a credit. Instead, it is reflected by the change in a potential func-
tion. The bound obtained by the potential method depends in particular on the
potential function. Therefore it has to be chosen carefully.

The potential method can be described as follows: Consider an object that is
modified by a sequence of m operations. One may think of a data structure (a
search tree, an unsorted list, etc.) that is modified by a sequence of insertions or
deletions.

We denote the initial configuration of the object by D0, its configuration after
the ith operation by Di for i = 1, . . .m, and the set of all configurations by D.
First, we have to choose the potential function Φ : D → IR which maps the
current configuration of the object to the real numbers. Then the amortized cost
(with respect to the potential function Φ) of the ith operation is defined as

ai = ci + Φ(Di)− Φ(Di−1) . (2)

Thus, the amortized cost is the actual cost plus the change in the potential
function. If the change in the potential function is positive the difference is
stored as “potential energy” in the function; otherwise the stored “energy” is
used to perform the operation. From equation (2) we get:

m∑

i=1

ai =
m∑

i=1

ci + Φ(Dm)− Φ(D0) .

Note that the terms Φ(Di) telescope. As we want the total amortized cost to
bound the total actual cost we have to make sure that Φ(Dm)−Φ(D0) is nonneg-
ative. If we do not know the length of the sequence in advance, we require this
property for every k ≥ 1. If the potential function is chosen such that Φ(D0) = 0,
then one has to prove that it is nonnegative for every other Di.

To make the potential method more concrete we apply it to the example
of stack manipulation. We define the potential function to be the number of
objects on the stack. Since we start with the empty stack, we get Φ(D0) = 0 and
Φ is clearly nonnegative for all other Dis. Hence the total amortized cost (with
respect to Φ) is an upper bound on the total actual cost.

Next we compute the amortized cost for each of the three operations. Let l be
the number of items on the stack before the ith operation. Then we can compute
the amortized cost if the ith operation is a POP or a PUSH:

POP: ai = ci + Φ(Di)− Φ(Di−1) = 1 + (l − 1)− l = 0
PUSH: ai = ci + Φ(Di)− Φ(Di−1) = 1 + (l + 1)− l = 2 .

If the ith operation is a MULTI operation that consists of s POPs (and one
PUSH), the following amortized cost is obtained:

MULTI: ai = ci + Φ(Di)− Φ(Di−1) = (s + 1) + (l − s + 1)− l = 2 .

138 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

Since ai ≤ 2 for all i ∈ {1, . . . , m} the total amortized cost is bounded by 2m,
and because the potential is nonnegative for arbitrary k ≥ 1, the total actual
cost is bounded by 2k for every sequence of length k.

4.3.4 Online Algorithms and Data Structures

Amortized analysis has been applied to more complex problems than stack ma-
nipulation [125]. In particular it has been used to analyze online algorithms and
data structures. Consider, e. g., the situation where a certain property of the
data structure has to be maintained while serving a sequence of requests. Usu-
ally future requests are not known, and the algorithm has to make its decisions
based on former requests. Well studied data structures are for instance different
kinds of search trees. The purpose is to keep the depth of the tree bounded by
log n where n is the number of nodes while maintaining an order in the tree such
that a new node can be inserted into the tree by only traversing one path in the
tree [772].

Another data structure that is often analyzed using amortization are lists
(see [287] for a survey). Exemplarily we present the problem of maintaining an
unsorted list of maximal length n under an intermixed sequence of m requests.
These requests are of the following kind:

- insert(i): Insert item i into the list.
- access(i): Locate item i in the list.
- delete(i): Delete item i from the list.

An insertion is performed by scanning the list from the beginning to the end to
make sure the item is not already in the list and to insert the item at the end
of the list. The cost of insert(i) is k + 1, where k is the length of the list before
the insertion. Locating item i in the list or deleting it from the list costs l if i is
at the lth position in the list. This is done by scanning the list from the front to
the end and stopping at the requested item.

We want to study the problem of how to serve a sequence of requests at
minimum cost. Different strategies for this problem arise from the fact that we
are allowed to rearrange the items. After every insert(i) or access(i) operation
the item i may be moved to any position closer to the front at no cost. These
exchanges are called free. Other exchanges are also allowed any time; but ex-
changing two neighbored items, where none was currently requested, costs 1; we
refer to them as paid exchanges.

Let i be the requested item. Then the most common strategies can be de-
scribed as follows:

- Move-To-Front: Move i to the first position of the list.
- Transpose: Flip the position of i and its predecessor in the list.
- Frequency-Count: A counter is maintained for every item i, and it is increased

by one if the item is accessed or inserted. The counter is set to zero if the
item is deleted. The items in the list are rearranged such that they appear in
non-increasing order (with respect to their frequency counters) after every
operation.

4. Analysis of Algorithms 139

The problem we just described belongs to the class of online problems, and
the strategies Move-To-Front, Transpose and Frequency-Count are online algo-
rithms. In general the analysis of online algorithms is different to the analysis of
offline algorithms. Since online algorithms do not know future requests, the se-
quence may always ask for the last element in the list. Such a sequence exists for
every strategy and therefore classical worst-case analysis yields the same lower
bound on the performance for every algorithm. To overcome this gap Sleator
and Tarjan [744] introduced the competitive analysis. The main idea of compet-
itive analysis is to consider the ratio between the algorithms’ behavior and the
behavior of an optimal offline algorithm on the same sequence.

Definition 6. Let Σ be the set of all legal input sequences for an algorithm A,
CA(σ) the cost of algorithm A for serving σ ∈ Σ, COPT (σ) the cost of an optimal
offline algorithm for σ, and d a constant. Then

inf{c ∈ IR : CA(σ) ≤ c · COPT(σ) + d , ∀ σ ∈ Σ}

is called the competitive ratio of algorithm A. An algorithm with finite compet-
itive ratio c is called c-competitive.

Sleator and Tarjan showed that the Move-To-Front algorithm is 2-competitive
using amortized analysis [744]. Their proof is a straight forward application of
the potential method. We restate the proof for the case that the sequence consists
of accesses only. The analysis of deletion and insertion can be done similarly.

Theorem 1. The Move-To-Front algorithm is 2-competitive.

Proof. Let σ = (σ1, σ2, . . . , σm) be a sequence of m requests consisting of ac-
cesses only. We denote by LOPT or LMTF the list maintained by the optimal
offline algorithm OPT or the Move-To-Front algorithm, respectively. We use the
potential function Φ(s) which counts the number of inversions in LMTF with
respect to LOPT after the sth request. An inversion is a pair of items i and j
such that i occurs before j in LMTF and after j in LOPT. We assume w. l. o. g.
that OPT and Move-To-Front start with the same initial list. We denote the
actual cost and amortized cost incurred by Move-To-Front for serving request σt

by cMTF(t) and aMTF(t), respectively, and define analogous notation for the cost
incurred by OPT. Now suppose item i is accessed. Let k denote the number of
items that precede i in LMTF and LOPT and l the number of items that precede
i in LMTF but follow i in LOPT. Note that k + l is the total number of items
preceding i in LMTF. Thus, cMTF(t) = k + l + 1 and cOPT(t) ≥ k + 1. After
serving the request, Move-To-Front changes i to the first position in the list.
Thereby l inversions are destroyed, and at most k new inversions are created.
Now we can bound the amortized cost aMTF(t) = cMTF(t) + Φ(t) − Φ(t − 1) of
request σt as follows:

cMTF(t) + Φ(t) − Φ(t− 1) ≤ cMTF(t) + k − l = 2k + 1 ≤ 2cOPT(t)− 1 .

Summing this expression for all t we obtain
∑m

i=1 cMTF(t) + Φ(m) − Φ(0) ≤∑m
i=1 2cOPT(t)−m, which implies

∑m
i=1 cMTF(t) ≤

∑m
i=1 2cOPT(t)−Φ(m)+Φ(0).

140 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

As Φ is initially zero (OPT and Move-to-Front start with the same list) and
clearly nonnegative at any time we get

∑m
i=1 cMTF(t) ≤ 2

∑m
i=1 cOPT(t). If OPT

makes a paid exchange, this can increase the potential function by 1, but OPT
also pays 1. The competitive ratio follows. ��

4.4 Smoothed Analysis

We already discussed that worst-case analyses are often too pessimistic because
for many algorithms with “bad” worst-case behavior “bad instances” occur in
practical applications very rarely. The most prominent example is the simplex
algorithm, which we consider in more detail in Section 4.4.2. Another well known
example is the knapsack problem, which we consider in Section 4.4.1. On the
other hand, average-case analyses are often problematic because it is not clear
how to choose the probability distribution on the input set. Many average-case
analyses assume a uniform distribution on the set of instances. However, for most
problems uniformly at random chosen instances do not reflect typical instances.
Consider for example a random graph in which each edge is created indepen-
dently of the other edges with some fixed probability. Such random graphs have
very special properties with high probability, e. g., concerning the number of
edges, the connectivity, and the chromatic number. In many applications these
properties are not satisfied and hence algorithms that have low average-case com-
plexity can still perform “badly” on typical inputs. That is, average-case analyses
tend to be too optimistic.

In order to capture the behavior of algorithms on practical inputs better than
it is possible by a worst-case or average-case analysis alone, Spielman and Teng
introduce a hybrid of these two models, the so-called smoothed analysis [749].
The input model in a smoothed analysis consists of two steps. In the first step,
an adversary specifies an arbitrary input. After that, in the second step, this
input is slightly perturbed at random. The magnitude of the perturbation is
parametrized by some value σ. For σ = 0, no perturbation occurs, and the
larger σ is chosen, the larger is the expected perturbation. The smoothed run-
ning time of an algorithm as defined in [749] is the worst expected running time
that the adversary can achieve. To make this more precise, let A denote an algo-
rithm, let I denote an input for A, and let CA(I) denote a complexity measure
of algorithm A on input I. Let In denote the set of inputs of length n. The
worst-case complexity for inputs of length n is defined by

Cworst
A (n) = max

I∈In

(CA(I)) .

Given a family of probability distributions μn on In, the average-case complexity
of A for inputs of length n is

Cave
A (n) = E

I
μn←In

[CA(I)] .

For an instance I and a magnitude parameter σ, let perσ(I) denote the random
variable that describes the instance obtained from I by a perturbation with

4. Analysis of Algorithms 141

Cave
A (n)

Csmooth
A (n, σ2)

Csmooth
A (n, σ1)

Cworst
A (n)

n

CA(I)

Fig. 4.1. Illustration of the different complexity measures. The horizontal axis ranges
over the set of inputs of length n, for some fixed n. It is assumed that σ1 < σ2, hence
Csmooth
A (n, σ1) > Csmooth

A (n, σ2).

magnitude σ. The smoothed complexity of algorithm A for inputs of length n
and magnitude parameter σ is defined as

Csmooth
A (n, σ) = max

I∈In

E [CA (perσ(I))] .

These definitions are illustrated in Figure 4.1. From the definition of smoothed
complexity, one can see that it is a hybrid between worst-case and average-
case analysis and that one can interpolate between these kinds of analyses by
adjusting the parameter σ. For σ → 0, the analysis becomes a worst-case analysis
since the input specified by the adversary is not perturbed anymore. For σ →∞,
the analysis becomes an average-case analysis since the perturbation is so large
that the initial input specified by the adversary is not important anymore.

Since the invention of smoothed analysis by Spielman and Teng in 2001, many
different results on the smoothed analysis of algorithms have been obtained,
including results on different algorithms for solving linear programs, various
discrete optimizations problems, and the competitive ratio of online algorithms.
In this section, we concentrate on two results. We present Spielman and Teng’s
result on the smoothed running time of the simplex algorithm and some related
results. Furthermore, we present a general result on the smoothed complexity of
discrete optimization problems due to Beier and Vöcking.

4.4.1 Smoothed Analysis of Binary Optimization Problems

Although smoothed analysis was introduced in Spielman and Teng’s seminal ar-
ticle on the simplex algorithm [749], we start our discussion with a result on the

142 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

smoothed complexity of binary optimization problems due to Beier and Vöck-
ing [86]. This result is proven by an elegant application of elementary probability
theory and in contrast to the analysis of the simplex algorithm, it is possible to
present the ideas and also most of the details of its proof in this exposition.

Beier and Vöcking consider optimization problems with randomly perturbed
constraints as well as optimization problems with randomly perturbed objective
functions. We postpone the discussion of their general result to the end of this
section and first present a simplified version for optimization problems in which
only the objective function is randomly perturbed.

Problems and Perturbation Model. We consider linear binary optimization
problems. An instance I of such an optimization problem Π consists of a set of
feasible solutions S ⊆ {0, 1}n and a linear objective function f : {0, 1}n → R

of the form maximize (or minimize) f(x) = cT x for some c ∈ R
n. Many well

known optimization problems can be formulated in this form, e. g., the problem
of finding a minimum spanning tree, the knapsack problem, and the traveling
salesman problem. Our goal is to study these problems in a probabilistic input
model in which the coefficients in the linear objective function are randomly
perturbed.

Since the input model which we consider combines adversarial and random
decisions, we call it a semi-random model. In the first step of this semi-random
input model, the coefficients in the objective function are chosen by an adver-
sary. The adversary is allowed to choose real valued coefficients from the interval
[−1, 1]. Observe that restricting the adversary to this interval is no severe restric-
tion because every objective function can be brought into this form by scaling.
In the second step, the numbers specified by the adversary are perturbed by
adding independent Gaussian random variables with mean 0 and standard devi-
ation σ to them. The smaller σ is chosen, the more concentrated are the random
variables and hence, the better worst-case instances can be approximated by
the adversary. Intuitively, σ can be seen as a measure specifying how close the
analysis is to a worst-case analysis.

Polynomial Smoothed Complexity. Now we define the term polynomial
smoothed complexity formally. Of course, one could base this definition on
Csmooth
A (n, σ) in the obvious way by defining that algorithm A has polynomial

smoothed complexity if Csmooth
A (n, σ) is polynomially bounded in n and 1/σ.

This definition, however, is not sufficiently robust as it depends on the machine
model. An algorithm with expected polynomial running time on one machine
model might have expected exponential running time on another machine model
even if the former can be simulated by the latter in polynomial time (cf. Sec-
tion 4.2.2). In contrast, the definition from [86], which we present below, yields
a notion of polynomial smoothed complexity that does not vary among classes
of machines admitting polynomial time simulations among each other.

Fix a linear binary optimization problem Π . We denote by IN the set of
unperturbed instances of length N . The definition of the input length N needs

4. Analysis of Algorithms 143

some clarification as the coefficients in the objective function are assumed to be
real numbers. We ignore the contributions of these numbers to the input length
and assume N ≥ n. The bits of these numbers can be accessed by asking an
oracle in time O(1) per bit. The bits after the binary point of each coefficient
are revealed one by one from the left to the right. The deterministic part of
the input can be encoded in an arbitrary fashion. For an instance I ∈ IN , let
perσ(I) denote the random instance that is obtained by a perturbation of I with
magnitude σ. We say that Π has polynomial smoothed complexity if and only if
it admits a polynomial P and a randomized algorithm A whose running time
CA satisfies

Pr
[
CA (perσ(I)) ≥ P

(
N,

1
σ

,
1
p

)]
≤ p , (3)

for every N ∈ N, σ ∈ (0, 1], p ∈ (0, 1], and I ∈ IN , where the probabil-
ity is taken over the random input and the random decisions of the algorithm.
That is, with probability at least 1 − p the running time of A is polynomi-
ally bounded in the input length N , the reciprocal of the standard deviation σ,
and the reciprocal of p. This definition of polynomial smoothed complexity fol-
lows more or less the way how polynomial complexity is defined in average-case
complexity theory. The drawback of this definition is, however, that polyno-
mial smoothed complexity does not imply polynomial expected running time. A
more detailed discussion of this definition can be found in [86], and for a more
detailed discussion of polynomial average-case complexity we refer the reader
to [115].

We prove the following theorem that characterizes the class of linear binary
optimization problems with polynomial smoothed complexity.

Theorem 2 (Beier, Vöcking [86]). A linear binary optimization problem
Π has polynomial smoothed complexity if and only if there exists a random-
ized algorithm for solving Π whose expected worst-case running time is pseudo-
polynomial1 with respect to the coefficients in the objective function.

For example, the knapsack problem, which can be solved by dynamic program-
ming in pseudo-polynomial time, has polynomial smoothed complexity even if
the weights are fixed and only the profits are randomly perturbed. Moreover, the
traveling salesman problem does not have polynomial smoothed complexity when
only the distances are randomly perturbed, unless P = NP, since a simple reduc-
tion from Hamiltonian cycle shows that it is strongly NP-hard. Let us point out
that these results are not only of theoretical interest but that they exactly match
the empirical observations. There exist many experimental studies showing that
the knapsack problem is easy to solve on typical and on random instances by
certain heuristics [638,85]. On the other hand, there are numerous experimental
studies on the TSP which suggest that solving the TSP to optimality is hard
1 An algorithm is said to have pseudo-polynomial running time if it runs in polynomial

time when the numbers in the input are encoded in unary or, equivalently, if its
running time is bounded polynomially in the input size and the largest number
occurring in the input.

144 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

Δ

x∗x∗∗

cT x

Fig. 4.2. Illustration of the definitions of the winner gap Δ, the winner x∗ and the
second best solution x∗∗. The horizontal axis ranges over all solutions from S .

even on real-world and on random instances [440]. These examples lead to the
conclusion that Theorem 2 yields a good characterization which problems can
be solved well in practice and which cannot.

How accurately do we need to calculate? In order to prove Theorem 2,
we first show how to transform a pseudo-polynomial time algorithm into an
algorithm with polynomial smoothed running time. Later we discuss the other
direction. A well-known approach that transforms a pseudo-polynomial time
algorithm into a fully polynomial time approximation schemes is to round the
coefficients in the objective function after a logarithmic number of bits and
to use the pseudo-polynomial time algorithm to compute an optimal solution
with respect to the rounded coefficients in polynomial time. In general, this
solution is not an optimal solution with respect to the original, non-rounded
coefficients since, in the worst case, even the smallest rounding can change the
optimal solution. However, we will show that instances which are obtained by our
probabilistic input model are robust against small roundings of the coefficients.
That is, rounding the coefficients slightly does not change the optimal solution
with high probability. The main tool for showing this is a surprising fact from
probability theory, the so-called Isolating Lemma.

Let an arbitrary perturbed instance perσ(I) of a linear binary optimization
problem be given. Let S ⊆ {0, 1}n denote the feasible region and assume that
the goal is to maximize the linear function cT x with respect to x ∈ S. The co-
efficients c1, . . . , cn are independent Gaussian random variables with standard
deviation σ whose means are specified by an adversary in the interval [−1, 1].
In this setting, the event that there exist two solutions with the same objective
value can be neglected as it has probability 0. Let x∗ ∈ S denote the opti-
mal solution, i. e., x∗ = argmax{cT x |x ∈ S}, and let x∗∗ denote the second best

4. Analysis of Algorithms 145

solution, i. e., x∗∗ = argmax{cT x |x ∈ S, x 	= x∗}. The winner gap Δ denotes
the difference of the objective values of x∗ and x∗∗, i. e., Δ = cT x∗ − cT x∗∗ (see
Figure 4.2). Intuitively, one might think that Δ is typically very small. Assume
for example that σ = 1/n and that S contains exponentially many solutions.
Then with high probability every coefficient ci lies in the interval [−2, 2] and there
are exponentially many solutions whose objective values lie all in the interval
[−2n, 2n]. Hence, if one sorts the solutions according to their objective values,
then the average distance between the objective values of neighboring solutions
is exponentially small. Surprisingly, for random coefficients the distance Δ is
nonetheless polynomially large with high probability. This was first observed by
Mulmuley, Vazirani, and Vazirani [599], who used this observation to design a
randomized parallel algorithm for finding maximum matchings.

Lemma 1 (Isolating Lemma). Let S ⊆ {0, 1}n denote an arbitrary feasible
region and let c1, . . . , cn be independent Gaussian random variables with standard
deviation σ and arbitrary means. Then for every ε ≥ 0,

Pr [Δ ≤ ε] <
nε

σ
.

Proof. In the following, we denote by [n], for n ∈ N, the set {1, . . . , n} of natural
numbers between 1 and n. If there is a variable xi that takes on the same value
in all feasible solutions, then this variable does not affect the winner gap and
can be ignored. Thus, without loss of generality, we can assume that for every
i ∈ [n], there exist two feasible solutions that differ in the i-th variable. Under
this assumption, we can define the winner gap Δi with respect to position i ∈ [n]
by

Δi = cT x∗ − cT y , (4)

where x∗ denotes the optimal solution, i. e., x∗ = argmax{cT x |x ∈ S}, and y
denotes the best solution differing from x∗ in the i-th position, that is, y =
argmax{cT x |x ∈ S, xi 	= x∗i }.

Clearly, the best solution x∗ and the second best solution x∗∗ differ in at least
one position, that is, there exists an i ∈ [n] with x∗i 	= x∗∗i . If x∗ and x∗∗ differ
in the i-th position, then Δ = Δi. Thus, Δ is guaranteed to take a value also
taken by at least one of the variables Δ1, . . . , Δn. In the following, we prove
Pr [Δi ≤ ε] ≤

√
2/π · ε/σ, for 1 ≤ i ≤ n, which implies

Pr [Δ ≤ ε] ≤ Pr [∃i ∈ [n] : Δi ≤ ε] ≤
∑

i∈[n]

Pr [Δi ≤ ε] ≤
√

2
π
· nε

σ
<

nε

σ
.

Let us fix an index i ∈ [n]. We partition the set S of feasible solutions into two
disjoint subsets S0 = {x ∈ S | xi = 0} and S1 = {x ∈ S | xi = 1}. Now
suppose that all random variables ck with k 	= i are fixed arbitrarily. Under this
assumption, we can identify an optimal solution among the solutions in S0 as
the objective values of the solutions in S0 do not depend on ci. Although the
objective values of the solutions in S1 are not fixed, we can nevertheless identify

146 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

x∗

Δ ≤ n2−b

≤ n2−b

cT x
[c]Tb x

x∗∗

Fig. 4.3. The gray bars depict the objective values of the solutions from S w. r. t. the
original coefficients c. The black bars depict the objective values of the solutions from
S w. r. t. the rounded coefficients [c]b.

an optimal solution in S1 because the unknown outcome of the random variable ci

does not affect the order among the solutions in S1. For j ∈ {0, 1}, let x(j) denote
an optimal solution among the solutions in Sj . We observe Δi = |cT x(1)−cT x(0)|
because the solutions x∗ and y as defined in (4) cannot be contained in the
same set Sj , j ∈ {0, 1}. We have shown Δi = |Z| for the random variable
Z = cT x(1) − cT x(0). Observe that the random variable ci appears as additive
term in Z. Hence, for fixed ck with k 	= i the density function of Z is a shifted
variant of the density function of ci. Since ci is a Gaussian random variable with
standard deviation σ, the suprema of the densities of ci and Z can be bounded by
1/(
√

2πσ). Hence, Pr [Δi ≤ ε] = Pr [Z ∈ [−ε, ε]] ≤
√

2/π · ε/σ. This completes
the proof of the Isolating Lemma. ��

Let �ci�b denote the coefficient ci rounded down after the b-th bit after the
binary point, let �ci�b denote ci rounded up after the b-th bit, and let [c]b denote
either �ci�b or �ci�b. We write �c�b and �c�b to denote the vectors obtained
from c by rounding each coefficient down and up after the b-th bit after the
binary point, respectively. We use [c]b to denote an arbitrary vector obtained
from c by rounding each coefficient either down or up after the b-th bit, where
different coefficients may be rounded differently. For every i ∈ [n], ci and [ci]b
differ by at most 2−b. Hence, for every x ∈ S and every vector [c]b, we have
|cT x− [c]Tb x| ∈ [0, n2−b]. If Δ > n2−b+1, then rounding every coefficient after its
b-th bit does not change the optimal solution because for x 	= x∗ we conclude
(see also Figure 4.3)

[c]Tb x∗ ≥ cT x∗ − n2−b ≥ cT x + Δ− n2−b > cT x + n2−b ≥ [c]Tb x .

This yields the following corollary.

4. Analysis of Algorithms 147

Corollary 2. Let an arbitrary instance of a linear binary optimization problem
with n variables be given and let σ denote the standard deviation of the pertur-
bation. For every p ∈ (0, 1] and every b > log(n2/(pσ)) + 1, the probability that
rounding every coefficient after its b-th bit after the binary point changes the
optimal solution is bounded from above by

Pr
[
Δ ≤ n2−b+1

]
<

n22−b+1

σ
≤ p .

Hence, for every p > 0, rounding each coefficient after a logarithmic number
of bits preserves the optimal solution with probability at least 1 − p. In other
words, if one rounds the coefficients after a logarithmic number of bits, then
the optimal solution x′ with respect to the rounded coefficients, which can be
computed by the pseudo-polynomial algorithm in polynomial time, is also the
optimal solution x∗ of the original instance with constant probability.

The Adaptive Rounding Procedure. We prove that the existence of a ran-
domized pseudo-polynomial time algorithm for a binary optimization problem
Π implies polynomial smoothed complexity for Π . We design an algorithm with
polynomial smoothed complexity calling the pseudo-polynomial algorithm with
higher and higher precision until the solution found is certified to be optimal.
We describe a verifier, that, based on the first b bits after the binary point of
each coefficient, either certifies optimality or reports Failure, stating that it
has not sufficient information to ensure optimality.

Certifying Optimality. Let x′ denote an optimal solution with respect to the
rounded coefficients �c�b. To check whether x′ is also optimal with respect to
the original coefficients c, we generate another rounded vector [c]b. This time
the rounding depends on the computed solution x′. For all i with x′i = 1, we
set [ci]b = �ci�b and for all i with x′i = 0, we set [ci]b = �ci�b. Observe that
the function δ(x) = cT x − [c]Tb x is maximal for x = x′. Next we compute an
optimal solution x′′ for the problem with the vector [c]b. If x′ = x′′, then x′

simultaneously maximizes δ(x) and [c]Tb x. Consequently, it maximizes the sum
δ(x) + [c]Tb x = cT x as well and, hence, x′ must be the true optimal solution x∗.
Thus, the algorithm outputs x′ as a certified optimal solution if x′ = x′′ and
reports Failure otherwise.

In the previous section we have seen that the optimal solution with respect
to coefficients that are rounded after the b-th bit can only deviate from x∗ if the
winner gap Δ does not exceed n2−b+1. Hence, if Δ > n2−b+1, then x′ can be
certified to be the optimal solution with respect to the non-rounded coefficients
because then x′ = x∗ and x′′ = x∗.

Analysis of the Adaptive Rounding Procedure. The Isolating Lemma can be
exploited to transform a pseudo-polynomial time algorithm into an algorithm
with polynomial smoothed complexity by an adaptive rounding approach: First
every coefficient is rounded down after one bit after the binary point. Then the

148 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

pseudo-polynomial time algorithm is used to compute an optimal solution x′

with respect to the rounded coefficients, and the verifier is called to check if
x′ is also optimal with respect to the original coefficients, i. e, if x′ = x∗. In
the affirmative case, the algorithm can output x′, otherwise the precision b is
increased by one, that is, one more bit of every coefficient is taken into account,
and the steps are repeated with the more accurately rounded coefficients until
x′ can be certified to be the optimal solution. We prove the following lemma on
the running time of this adaptive rounding procedure.

Lemma 2. The adaptive rounding procedure has polynomial smoothed running
time.

Proof. We show that a polynomial P with the same properties as in (3) exists.
Let A denote the randomized pseudo-polynomial time algorithm for the linear
binary optimization problem Π . If we consider only instances of Π in which all
coefficients in the objective function are integers, then the expected running time
of A is bounded by some polynomial P ′ in W and N ≥ n, where W denotes the
largest absolute value of any of the coefficients, N denotes the input size, and n
denotes the number of binary variables. For each precision b, algorithmA is called
twice in the adaptive rounding procedure; once to find a solution x′ with respect
to the coefficients �c�b and once by the verifier for finding the solution x′′ with
respect to the coefficients [c]b. Hence, the expected running time of each iteration
of the adaptive rounding is bounded by 2 · P ′(N, W) + poly(n) ≤ c1(NW)c2 for
sufficiently large constants c1 and c2.

To analyze the running time of the adaptive rounding, we need to estimate W ,
the largest absolute value of any integer coefficient that results from rounding
combined with the omission of the binary point. W is the product of two factors:
The first factor, W1 = 2b, is due to the scaling and depends on the number of
revealed bits after the binary point of each coefficient. The second factor W2

corresponds to the integer part of the largest absolute value of any coefficient.
This way, W = W1W2 = 2bW2. Let b0 denote the precision for which the verifier
concludes optimality. For given b0 and W2, we can estimate the expected running
time of the adaptive rounding by

E [CAR(perσ(I))] =
b0∑

b=1

c1(N2bW2)c2 ≤ c′1(N2b0W2)c′2 , (5)

for sufficiently large constants c′1 and c′2.
Hence, we have to estimate how large the values of b0 and W2 typically are.

The expected absolute value of every coefficient is at most 1. We can use Markov’s
inequality and a union bound to obtain Pr [W2 > 3n/p] ≤ p/3, for every p ∈
(0, 1]. In Corollary 2, we have seen that the probability that the certifier fails
after b bits after the binary point of each coefficient have been revealed can be
bounded by n22−b+1/σ. Thus Pr

[
b0 > log(3n2/(σp)) + 1

]
≤ p/3.

In (5), we substitute b0 by log(3n2/(σp)) + 1, W2 by 3n/p, and multiply the
resulting polynomial by 3/p. We denote the polynomial obtained this way by P .

4. Analysis of Algorithms 149

There are three reasons for which the running time of the adaptive rounding can
exceed the polynomial P : b0 can exceed log(3n2/(σp))+1, W2 can exceed 3n/p,
and the total running time TA of all executions of A can exceed its expected
value by a factor of 3/p. Hence, for all N ∈ N, σ ∈ (0, 1], p ∈ (0, 1], and for all
I ∈ IN we have

Pr
[
CAR(perσ(I)) ≥ P

(
N,

1
σ

,
1
p

)]

≤ Pr
[
b0 > log

(
3n2

σp

)
+ 1
]

+ Pr
[
W2 >

3n

p

]
+ Pr

[
TA >

3
p
E [TA]

]

≤ p

3
+

p

3
+

p

3
= p .

This shows that the polynomial P has the desired property. ��

From Polynomial Smoothed Complexity to Pseudo-Polynomial Run-
ning Time. In order to prove Theorem 2, it only remains to show how an
algorithm with polynomial smoothed running time can be transformed into a
randomized algorithm with expected pseudo-polynomial running time. Since we
are aiming for a pseudo-polynomial time algorithm, we can assume that all coef-
ficients in the objective function are integers. Let M denote the largest absolute
value of these numbers. The idea is to perturb all numbers only slightly such that
the perturbation changes the value of each coefficient by at most 1/(2n) and,
hence, the objective value of any solution by at most 1

2
with high probability. In

order to achieve this, the reciprocal of the standard deviation σ has to depend
polynomially on M and n. We then use an algorithm with polynomial smoothed
complexity to compute an optimal solution x∗ for the perturbed problem. We
bound the error that is due to the random perturbation and use this bound to
show that x∗ is also optimal for the original problem. For more details, we refer
the reader to [86].

Extensions. As mentioned above, Beier and Vöcking’s result is more general
than the one we presented. They consider linear binary optimization problems
in which also the set of feasible solutions is randomly perturbed. First of all,
observe that typical optimization problems have a combinatorial structure that
should not be touched by the randomization. Consider for example the traveling
salesman problem. In most applications it makes sense to assume that the dis-
tances are perturbed as they are subject to small random influences. However,
it does not make sense to perturb the combinatorial structure, i. e., the property
that every feasible solution is a Hamiltonian cycle in the graph. Hence, one has
to be careful when perturbing the set of feasible solutions. In [86] problems are
considered for which the set of feasible solutions is given as intersection of an
arbitrary fixed ground set S ⊆ {0, 1}n and sets of solutions x ∈ {0, 1}n that
satisfy linear constraints of the form wT x ≤ t or wT x ≥ t. To be more precise,
the set of feasible solutions is S ∩ B1 ∩ . . . ∩ Bk, where k denotes the number of

150 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

linear constraints and each Bi ⊆ {0, 1}n denotes the set of solutions satisfying
the i-th linear constraint. Consider for instance the constrained shortest path
problem in which a graph G = (V, E) with distances d : E → R≥0 and weights
w : E → R≥0 is given, and the goal is to find the shortest path from a given
source s to a given sink s′ whose weight does not exceed a given threshold t. This
problem is NP-hard, and it does not make sense to perturb the combinatorial
structure, i. e., the property that every feasible solution is a path from s to s′.
In many applications, one can argue, however, that the weights are subject to
random influences, and hence, it makes sense to assume that the weights are
perturbed numbers. In [86] it is shown that Theorem 2 also applies to linear
binary optimization problems with perturbed linear constraints. When a linear
binary optimization problem is given, one can decide which expressions shall be
perturbed (either only the objective function, or only the linear constraints, or
both) and one obtains the following result.

Theorem 3 (Beier, Vöcking [86]). A linear binary optimization problem Π
has polynomial smoothed complexity if and only if there exists a randomized algo-
rithm for solving Π whose expected worst-case running time is pseudo-polynomial
with respect to the perturbed coefficients.

The main idea for proving Theorem 3 is again an adaptive rounding procedure as
in the case of perturbed objective functions. In the proof of Theorem 2, we argued
that rounding the coefficients in the objective function after a logarithmic number
of bits does not change the optimal solution with high probability by exploiting
the winner gap. If we do not round the coefficients in the objective function but
the coefficients in the constraints, then it can happen that the optimal solution x∗

becomes infeasible due to the rounding or that an infeasible solution with higher
objective value than x∗ becomes feasible due to the rounding. Again, one needs to
show that solutions obtained by the semi-random input model are robust against
small roundings of the coefficients with high probability.

For the sake of simplicity assume that we have one perturbed constraint
wT x ≤ t. Two structural properties are defined, namely the loser gap and the
feasibility gap. The feasibility gap Γ measures the distance of the optimal solu-
tion x∗ to the threshold t, that is Γ = t−wT x∗. A solution x ∈ S is called a loser
if it has a higher objective value than the optimal solution x∗ but does not sat-
isfy the constraint wT x ≤ t. Let L ⊆ S denote the set of losers. The loser gap Λ
describes the distance of L to the threshold t, that is, Λ = minx∈LwT x−t. These
definitions are illustrated in Figure 4.4. If the feasibility gap is large enough, then
rounding the coefficients in the constraint cannot make the optimal solution in-
feasible. If the loser gap is large enough, then no solution with higher objective
value than x∗ can become feasible due to the rounding. Beier and Vöcking show
that, similar to the winner gap, also loser and feasibility gap are polynomially
large with high probability which implies, similar to the case of perturbed objec-
tive functions, that the adaptive rounding procedure has polynomial smoothed
running time.

Additionally, also the perturbation model considered in [86] is more general.
One drawback of the Gaussian model that we describe above is that one cannot

4. Analysis of Algorithms 151

wT x

Γ

Λ t

L

x∗ cT x

Fig. 4.4. Illustration of the definitions of L, loser gap Λ, and feasibility gap Γ . The
horizontal axis ranges over all solutions from S sorted by their objective values.

guarantee that after the perturbation all coefficients are positive, which is es-
sential to many problems. In the model in [86] the perturbation is not restricted
to the addition of Gaussian random variables. Basically, one can define for each
coefficient an arbitrary density function which is bounded by φ. Analogously to
the parameter σ, the supremum of the density φ can be seen as a measure for
the concentration of the random variables and hence as a measure how close the
analysis is to a worst-case analysis. Observe that for Gaussian random variables
φ ∼ 1/σ. In order to obtain a non-negative domain, one could, for example,
perturb the adversarial number by adding uniform random variables from the
interval [0, 1/φ].

In [679] Theorem 3 is generalized from binary optimization problems to integer
optimization problems in which the range of the integer variables is polynomially
bounded. The main difficulty of this generalization is to bound the sizes of loser
and feasibility gap in the case of integer variables.

4.4.2 Smoothed Analysis of the Simplex Algorithm

Linear programming is one of the most important problems in mathematical op-
timization and operations research. It is interesting from a theoretical point of
view because many problems are shown to be polynomial-time solvable by reduc-
ing them to a linear programming problem. Moreover, linear programming arises
in numerous industrial applications. The importance of linear programming in
industrial applications stems in part from the existence of fast and reliable al-
gorithms for finding optimal solutions. In this section, we survey recent results
on the smoothed complexity of the simplex algorithm for solving linear programs.

152 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

Since the probabilistic analyses of the simplex algorithm are quite complex, we
cannot present them in full detail here. We merely state the main results and
roughly outline the main ideas for proving them.

Algorithms for Linear Programming. In a linear programming problem,
one is asked to maximize or minimize a linear function over a polyhedral re-
gion. In the following, we assume that the goal is to maximize zT x subject to
the constraints Ax ≤ y with x, z ∈ R

d, A ∈ R
n×d and y ∈ R

n. The first
practical method for solving linear programs was proposed in the late 1940’s
by Dantzig [202]. Dantzig’s simplex algorithm walks along neighboring vertices
of the polyhedron that is defined by the set of linear inequalities Ax ≤ y. A
fundamental theorem states that if a linear program is neither infeasible nor
unbounded, then there exists a vertex of the polyhedron that maximizes the
objective function. Additionally, every vertex that is locally optimal in the sense
that there does not exist a neighboring vertex with larger objective value can be
shown to be also globally optimal. For a given initial vertex of the polyhedron,
the simplex algorithm picks in each step a neighboring vertex with better ob-
jective value until either a locally optimal solution is found or unboundedness is
detected. The initial feasible solution is found by the application of the simplex
method to a different linear program for which an initial vertex is known and
whose optimal solution corresponds either to a vertex of the original polyhedron
defined by Ax ≤ y or shows that the linear program is infeasible.

The simplex method as described above leaves open the question of which
step is made when there is more than one neighboring vertex on the polyhedron
with larger objective value. The policy according to which this decision is made is
called the pivot rule. For most deterministic pivot rules that have been suggested,
examples are known showing that in the worst case the simplex algorithm can
take an exponential number of steps (see, e. g., [27]). For some random pivot
rules, the complexity is still open. For example, the best known upper bound for
the random facet rule is nO(d) [449,541], whereas the best known lower bound is
only Ω

(
n2
)

[318]. Despite many attempts, it is still unclear whether there exists
a pivot rule with polynomial worst-case complexity.

Another related open question concerns the diameter of polytopes. The Hirsch
conjecture states that there should always be a walk of length at most n−d. Kalai
and Kleitman proved that there is always a path of length at most nlog2 d+2 [450].
This, however, does not imply that the simplex method will find this path.

The observations made in practice tell a different story. The simplex algorithm
is still one of the most competitive algorithms for solving linear programs that
occur in practical applications. It is fast and reliable even for large-scale instances
and for the pivot rules that have been shown to require an exponential number
of iterations in the worst case. Examples on which the simplex algorithm needs
many iterations occur only very rarely in practice.

The question whether optimal solutions of linear programs can be found in
polynomial time has been answered in 1979 by Khachian [472]. He applied
the ellipsoid method, originally developed for solving non-linear optimization

4. Analysis of Algorithms 153

problems, to linear programming and proved that it converges polynomial time
with respect to d, n, and L, where L denotes the number of bits needed to repre-
sent the linear program. Though from a theoretical point of view a breakthrough,
the ellipsoid method is drastically outperformed by the simplex algorithm in
practice.

The interior-point method, another method for solving linear programs with
polynomial worst-case complexity, was introduced in 1984 by Karmarkar [463].
In contrast to the ellipsoid method, the interior-point method is competitive
with and occasionally superior to the simplex algorithm in practice. However,
one advantage of the ellipsoid method is that it can be applied in a more gen-
eral setting. For applying the ellipsoid method one does not need to know the
constraints explicitly; it is enough to know a separation oracle, that is, an ef-
ficient algorithm that for a given point x ∈ R

d decides whether this point is
a feasible solution or not, and computes a separating hyperplane in the latter
case. A separating hyperplane is a hyperplane such that x lies on one side of
this hyperplane and the set of feasible solutions on the other side. Hence, the
ellipsoid method can also be used for solving linear programs with exponentially
many constraints in polynomial time if the constraints are described implicitly
by a separation oracle.

In order to narrow the gap between the observations made in practice and
the exponential lower bounds for many pivot rules, many average-case analyses
of the simplex algorithm have been performed. Borgwardt showed that the ex-
pected running time of the shadow vertex pivot rule, which we describe in detail
later, is polynomially bounded for linear programs in which the constraints are
drawn independently from spherically symmetric distributions [124]. Indepen-
dently, Smale proved bounds on the expected running time of Lemke’s self-dual
parametric simplex algorithm on linear programs from spherically symmetric
distributions [745]. His analysis was substantially improved by Megiddo [552].

Geometry of Linear Programs. In this section, we briefly review some facts
about the geometry of linear programs. The set P of feasible solutions of a linear
program is defined by a set of linear inequalities, i. e., P =

{
x ∈ R

d | Ax ≤ y
}
.

Let a1, . . . , an denote the rows of A, and let y1, . . . , yn denote the entries of the
vector y, the so-called right-hand sides. The set of points from R

d that satisfy a
linear equation aix = yi is called a hyperplane. It is a (d−1)-dimensional subspace
of R

d. The set of points from R
d that satisfy a linear inequality aix ≤ yi is called

a halfspace. Observe that the set of feasible solutions P is the intersection of n
halfspaces, a so-called polyhedron. LetHS be a halfspace defined by a hyperplane
H. If the intersection f = P ∩ HS is a subset of H, then f is called a face of
P . Intuitively this means that P and HS just touch each other and have no
common interior points. In the following, we use the term vertex to denote a
face of dimension zero, that is, a point, and we use the term edge to denote a
face of dimension one, that is, a line segment.

In the following, we assume that the linear programs we consider are non-
degenerate, that is, there do not exist d + 1 hyperplanes of the form aix = yi

154 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

that intersect in one point. This assumption is satisfied with probability 1 in
the probabilistic model that we introduce below. Under this assumption, every
vertex of the polyhedron of feasible solutions is the intersection of exactly d
hyperplanes aix = yi. Hence, every vertex can be described by specifying the d
constraints that are satisfied with equality.

Smoothed Linear Programs. The main point of criticism against the average-
case analyses of the simplex algorithm is that random linear programs do not
reflect typical linear programs that occur in practice. In order to bypass this
problem, Spielman and Teng invented the model of smoothed analysis [749].
Spielman and Teng consider linear programs of the form

maximize zT x

subject to (A + G)x ≤ (y + h) ,

where A ∈ R
n×d and y ∈ R

n are chosen arbitrarily by an adversary and the
entries of the matrix G ∈ R

n×d and the vector h ∈ R
n are independent Gaus-

sian random variables that represent the perturbation. These Gaussian random
variables have mean 0 and standard deviation σ · (maxi|(yi, ai)|), where the
vector (yi, ai) ∈ R

d+1 consists of the i-th component of y and the i-th row
of A and |·| denotes the Euclidean norm, that is, for a vector c = (c1, . . . , cl),
|c| =

√
c2
1 + · · ·+ c2

l . Without loss of generality, we can scale the linear pro-
gram specified by the adversary and assume that maxi|(yi, ai)| = 1. Then the
perturbation consists of adding an independent Gaussian random variable with
standard deviation σ to each entry of A and y. Observe that we can replace
this two-step model by a one-step model in which each entry is an independent
Gaussian random variable and an adversary is allowed to choose the means of
these random variables.

The Shadow Vertex Pivot Rule. Spielman and Teng analyze the smoothed
running time of the simplex algorithm using the shadow vertex pivot rule. This
pivot rule has been considered before by Borgwardt in his average-case anal-
ysis [124]. It has been proposed by Gass and Saaty [319] and it has a simple
and intuitive geometric description which makes probabilistic analyses feasible.
Let x0 denote the given initial vertex of the polyhedron P of feasible solu-
tions. Since x0 is a vertex of the polyhedron, there exists an objective function
tT x which is maximized by x0 subject to the constraint x ∈ P . In the first
step, the shadow vertex pivot rule computes an objective function tT x with this
property. Using standard arguments from analytic geometry, one can show that
such an objective function can be found efficiently. If x0 is not the optimal
solution of the linear program, then the vectors z and t are linearly indepen-
dent and span a plane. The shadow vertex method projects the polyhedron
P onto this plane. The shadow, that is, the projection, of P onto this plane is

4. Analysis of Algorithms 155

tT x zT x

x0

x∗

Fig. 4.5. The polyhedron is projected onto the two-dimensional plane spanned by the
vectors z and t

a possibly unbounded polygon (see Figure 4.5). This polygon has a few useful
properties:

– The vertex x0 is projected onto a vertex of the polygon.
– The optimal solution x∗ is projected onto a vertex of the polygon.
– Each vertex of the polygon is the image of a vertex of the polyhedron.
– Each edge of the polygon is the image of an edge between two adjacent

vertices of the polyhedron.

Observe that the simplex algorithm in dimension two is very easy; it just follows
the edges of the polygon. Due to the aforementioned properties, we can apply the
two-dimensional simplex algorithm to the polygon obtained by the projection,
and the walk along the edges of the polygon corresponds to a walk along the
edges of the original polyhedron. Furthermore, once the optimal solution on the
polygon is found, we can compute its pre-image on the polyhedron, which is an
optimal solution of the linear program.

The number of steps performed by the simplex algorithm with shadow vertex
pivot rule is upper bounded by the number of vertices of the two-dimensional
projection of the polyhedron. Hence, bounding the expected number of vertices
on the polygon is the crucial step for bounding the expected running time of
the simplex algorithm with shadow vertex pivot rule. Actually, all probabilistic
analyses make use of a dual interpretation of the shadow vertex pivot rule, which
we do not present here because it is not essential for understanding the results.
Spielman and Teng consider first the case that the polyhedron P is projected
onto a fixed plane specified by two fixed vectors z and t. They show the following
result on the expected shadow size, that is, the number of vertices of the polygon.

156 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

Theorem 4 (Spielman, Teng [749]). Let z ∈ R
d and t ∈ R

d be indepen-
dent vectors, and let a1, . . . , an ∈ R

d be independent Gaussian random vec-
tors of standard deviation σ centered at points each of norm at most 1. Let
P =

{
x ∈ R

d | ∀i ∈ [n] : aix ≤ 1
}

denote the polyhedron of feasible solutions.
The number of vertices of the polygon obtained by projecting P onto the plane
spanned by z and t is

O

(
nd3

min(σ, 1/
√

d ln n)6

)
.

Later this result was improved and the proof was substantially simplified by
Deshpande and Spielman.

Theorem 5 (Deshpande, Spielman [240]). Under the same assumptions as
in Theorem 4, the number of vertices of the polygon obtained by projecting P
onto the plane spanned by z and t is

O

(
n2d ln n

min(σ, 1/
√

d ln n)2

)
.

Two-Phase Simplex Method. Though the main ingredients of the analysis,
Theorems 4 and 5 alone do not yield a polynomial bound on the smoothed run-
ning time of the simplex algorithm. There are three main obstacles that one has
to overcome. First, we have not yet described how the initial feasible solution
is found. By a binary search approach one can show that testing feasibility of a
linear program and finding an arbitrary feasible solution are computationally as
hard as solving a linear program to optimality (see, e. g., [628]). Hence, the ques-
tion how the initial solution is found cannot be neglected. The last two problems
that have to be addressed concern the assumptions in Theorems 4 and 5. It is
assumed that the right-hand sides in the constraints are all 1 and furthermore,
it is assumed that the vector t is fixed independently of the constraints. Both
assumptions are not satisfied in the probabilistic model we consider but we will
later describe how Theorems 4 and 5 can be applied nevertheless.

As we have briefly mentioned above, the problem of finding an initial feasi-
ble solution can be solved by a two-phase simplex method. In the first phase,
a linear program with a known feasible solution is solved. The solution of this
linear program is then used as initial feasible solution of a second linear program
whose optimal solution corresponds to the optimal solution of the original linear
program. If one assumes that no degeneracies occur, which happens with proba-
bility 1 in the probabilistic input model, then for every vertex of the polyhedron
of feasible solutions exactly d constraints are satisfied with equality. Spielman
and Teng propose to choose a random subset I of the given constraints of size d
and to ensure that the intersection of these d constraints becomes a vertex xI of
the polyhedron by adapting the right-hand sides appropriately. This way a lin-
ear program LP ′ is obtained from the original linear program LP . The shadow
vertex simplex method can be used to find an optimal solution of LP ′, starting
at vertex xI , which is a vertex of the polyhedron due to the modified constraints.

4. Analysis of Algorithms 157

Then a linear program LP+ is defined that interpolates between LP ′ and LP .
Starting with the optimal solution of LP ′, which is a feasible solution of LP+,
the shadow vertex method finds an optimal solution of LP+, which corresponds
to an optimal solution of the original linear program LP .

It remains to show that for both phases of the above described simplex algo-
rithm the expected number of steps is polynomially bounded. Therefore, in the
analysis in [749], Theorem 4 is used as a black box. However, the analysis is not
immediate from this bound due to the aforementioned problems. The dominant
complication when analyzing the first phase is that the plane onto which the poly-
hedron is projected is not independent of the polyhedron. Very roughly stated,
the idea of how to resolve this issue is to consider the projection of the polyhe-
dron onto a plane that is fixed in a special way. For this fixed plane, one can apply
Theorem 4. Then it is shown that the expected number of shadow vertices on this
fixed plane is close to the expected number of shadow vertices on the plane we
are actually interested in. The main obstacle for analyzing the number of shadow
vertices in the second phase is that the right-hand sides of the constraints are
not 1. Instead, the constraints are of the form ai,1x1 + · · ·+ ai,dxd ≤ yi, where
the ai,j and yi are Gaussian random variables. The constraints can be brought
into the form (ai,1/yi)x1 + · · ·+(ai,d/yi)xd ≤ 1. The vector (ai,1/yi, . . . , ai,d/yi),
however, is no Gaussian random vector anymore. Spielman and Teng show that
typically a family of Gaussian random vectors can be constructed whose dis-
tributions are similar to the distribution of (ai,1/yi, . . . , ai,d/yi). Based on this
observation, they apply Theorem 4 to bound the expected number of shadow
vertices in the second phase. Altogether, the following theorem is proven.

Theorem 6 (Spielman, Teng [749]). Let z ∈ R
d be chosen arbitrarily, let

a1, . . . , an ∈ R
d be independent Gaussian random vectors centered at a1, . . . , an

and y1, . . . , yn be independent Gaussian random variables centered at y1, . . . , yn.
Furthermore, let the standard deviation of the Gaussian vectors and variables be
σ ·maxi|(yi, ai)|. Then there exists a polynomial P and a constant σ0 such that
for all σ < σ0, z ∈ R

d, a1, . . . , an ∈ R
d, and y ∈ R

n, the expected running time
of the two-phase shadow vertex simplex method on the linear program max zT x
subject to Ax ≤ y is at most P (n, d, 1/σ).

Beyond Hirsch Conjecture. Recently, the smoothed analysis of the simplex
algorithm was substantially improved by Vershynin [804]. His contributions are
twofold. On the one hand he proposes a different solution for finding an initial
vertex of the polyhedron of feasible solutions. On the other hand, he improves the
bound on the expected number of shadow vertices. In [749], the intersection of d
randomly chosen constraints becomes a vertex of the polyhedron by modifying
the right-hand sides. Vershynin suggests to add d constraints whose intersection
is a vertex of the polyhedron at random. He shows that with constant probability
adding the constraints does not change the optimal solution. Hence, in expecta-
tion after a constant number of independent trials, d constraints are found whose
addition to the linear program does not change the optimal solution. The advan-
tage of this method is that the initial vertex is now independent of the original

158 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

linear program and, hence, also the plane onto which the polyhedron is projected
is independent of the original polyhedron. Furthermore, Vershynin obtains the
following improved bound on the expected number of shadow vertices.

Theorem 7 (Vershynin [804]). Under the same assumptions as in Theo-
rem 4, the number of vertices of the polygon obtained by projecting P onto the
plane spanned by z and t is

O

(
d3

σ4

)
.

Combining both improvements yields the following remarkable result.

Theorem 8 (Vershynin [804]). Under the same assumptions as in Theo-
rem 6, the expected number of pivot steps in Vershynin’s two-phase shadow vertex
simplex method is at most

O
(
max
(
d5 log2 n, d9 log4 d, d3σ−4

))
.

Observe that the expected number of pivot steps is only polylogarithmic in the
number of constraints n while the previous bound was polynomial in n.

A Randomized Polynomial-Time Simplex Algorithm. In this section, we
briefly mention a recent result on the simplex algorithm. Kelner and Spielman
derived the first randomized variant of the simplex algorithm that provably runs
in expected polynomial time [469]. Though their algorithm uses a perturbation
and is based on ideas from the smoothed analysis in [749], the expectation is
only taken over the random decisions of the algorithm. In particular, even for
worst-case inputs the expected running time is polynomially bounded.

The proposed simplex variant does not walk along vertices of the polyhedron
of feasible solutions. The problem of finding an optimal solution is reduced to the
problem of testing boundedness of another linear program. Since boundedness
does not depend on the right-hand sides, they can be randomly perturbed. This
way a perturbed polyhedron is obtained. The shadow vertex method is then
run on the perturbed polyhedron for a polynomial number of steps. Either it
finds a certificate for boundedness or unboundedness or the distribution of the
perturbation is adjusted and the shadow vertex method is started again with
differently perturbed right-hand sides. The details of this approach are beyond
the scope of this exposition.

4.4.3 Conclusions and Open Questions

There is still a variety of open questions about the smoothed analysis of algo-
rithms. It would be of great interest to show that the simplex algorithm has
polynomial smoothed running time not only for the shadow vertex pivot rule
but also for other pivot rules that are commonly used in practice. In [749], Spiel-
man and Teng conjecture that the expected diameter of perturbed polytopes is

4. Analysis of Algorithms 159

polynomially bounded in n, d, and 1/σ. A proof of this conjecture or a coun-
terexample is still missing.

Furthermore, it would be interesting to study other perturbation models for
linear programs as well as for discrete problems. One drawback of the perturba-
tion models that have been analyzed so far is that the magnitude of the pertur-
bation depends on the largest number in the input. This means that the relative
perturbation of small numbers is quite large. In fact, after the perturbation the
largest quotient between different numbers is only polynomially large with high
probability which is much smaller than in typical worst-case instances. Hence,
for some problems it might be more realistic to study relative perturbations in-
stead, that is, perturbations where each number is perturbed with a magnitude
depending on its value. Another criticism of smoothed analysis is that it destroys
the zero-structure and replaces zeros with small values. Theorem 3 is still true
when zeros are not perturbed. Whether Theorem 6 still holds for zero-preserving
perturbations is not yet known.

Last but not least, let us discuss the relevance and the practicality of proba-
bilistic analyses for Algorithm Engineering. At first glance one might think that
the relevance is limited since probabilistic analyses tend to be more involved
than worst-case analyses and hence they are not suitable if one just wants to get
a brief impression on the performance of an algorithm. Moreover, the smoothed
analysis of the simplex algorithm did not (yet) help to improve the performance
of the simplex algorithm; it merely explained observations that have been made
in practical applications. Furthermore, the degree of the polynomial that ap-
peared in Spielman and Teng’s original analysis is quite large. However, their
result should be seen as a first step that initiated further studies like the one of
Vershynin who proved that the expected number of steps depends only polylog-
arithmically on the number of constraints, which is interesting from a practical
as well as from a theoretical point of view. An example for which probabilistic
analyses already led to algorithms with better performance on practical inputs
is the knapsack problem. Beier and Vöcking analyzed two different heuristics for
the knapsack problem [84,83]. Using observations obtained from their analyses,
they proposed a new heuristic for the knapsack problem that combines different
concepts of the previous heuristics and outperforms classical heuristics on typical
inputs [85]. Hence, we believe that probabilistic analyses can help to gain more
insights into problems and algorithms and can help to find better heuristics.

4.5 Realistic Input Models

Most of the problems studied in combinatorial optimization come from real world
applications. In order to study these real world applications, one has to find an
appropriate abstract model. The choice of this model is often crucial as it de-
termines whether theoretical results have meaningful consequences in practice.
Essentially, there are two reasons for which a model can fail to yield meaningful
consequences. If the model does not capture the complexity of the real world
application, then the theoretical results might be too optimistic. If, on the other

160 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

hand, the considered model is too general, then algorithms for solving the ab-
stract problem get needlessly complicated or the problem might even become
intractable, even though it might be tractable in practice. A model can be too
general because useful properties of real world inputs are not taken into account
during the process of abstraction.

A good example to illustrate the effects of a model that is too general is
the TSP. As we have already mentioned in the beginning of this section, a
very abstract model for the TSP is to assume that the input consists of an
arbitrary complete graph with a distance for each edge. In this case, it is NP-
hard to compute any constant factor approximation. However, TSP instances
that arise from real world applications often satisfy the triangle inequality. For
these instances a 3/2-approximation can be found in polynomial time. If the
distances satisfy not only the triangle inequality but are induced by points in
the Euclidean space, then even a PTAS exists. Hence, the most general model
for the TSP leads to complexity results that are too pessimistic for most real
world applications.

Other examples where additional assumptions on the inputs dramatically re-
duce the complexity of finding optimal solutions are problems that can be solved
in pseudo-polynomial time, like, e. g., the constrained shortest path problem
and the knapsack problem. Both problems are NP-hard but there exist pseudo-
polynomial time algorithms for solving them [383,419]. Thus, inputs which sat-
isfy the similarity assumption, that is, all numbers (like distances, weights, prof-
its, etc.) are polynomially bounded in the input size, can be solved in polynomial
time.

The examples presented so far show that models that are too general can lead
to wrong conclusions about the complexity of a problem. They also motivate
the search for properties that typical real world inputs satisfy in order to obtain
more realistic input models. In the following, we focus our discussion on geomet-
ric problems. For these problems there exist already several well studied input
models which are claimed to be realistic for different real world applications.
In the following sections, we present some of these models and discuss their re-
lationships. Finally, we consider the problem of finding binary space partitions
(BSP) and analyze how the different input models influence the complexity of
this problem.

4.5.1 Computational Geometry

We start the discussion of input models for geometric problems with an example.
Assume that we are given a set S of n triangles in the plane, and the goal is
to describe the shape of the union of these triangles by a set of straight line
segments. The number of line segments needed is called the union size of the
triangles. If we allow arbitrarily shaped triangles, one can easily generalize the
example in Figure 4.6 with eight triangles to an arbitrary number n of triangles
for which Ω(n2) line segments are needed.

However, in the canonical generalization of the example in Figure 4.6 for n
triangles, the acute angle of the triangles is Θ(1/n) and therefore becomes very

4. Analysis of Algorithms 161

Fig. 4.6. The union size of triangles: A bad example

small with increasing number of triangles. Matousěk et al. [540] show that such
worst-case examples do not exist if every angle is larger than a constant δ. To
be more precise, they show that O(n log log n) segments suffice to describe the
boundary of the union of such triangles.

Besides the aforementioned model in which the angles are bounded from below
there exist other restricted input models for geometric problems. These input
models are (1) fatness, (2) low density, (3) unclutteredness, and (4) small simple
cover complexity. Each of these models assigns one or two parameters to the
objects of a scene. In the following, we give some intuition about the models.
A scene is fat if all its objects are fat. An object is fat if it is not long and
skinny. A scene has low density if no ball B is intersected by many objects
whose minimum enclosing ball has a radius which is at least as large as the
radius of B. A scene is uncluttered if any hypercube that does not contain a
vertex of one of the bounding boxes of the objects is not intersected by many
objects. Finally, a scene has small simple cover complexity if the objects in the
scene can be covered with few balls such that each ball is intersected by only a
few objects.

De Berg et al. [207] investigate the relationships between these models and
raise the question whether the parameter(s) of a given scene with respect to one
of the above-mentioned models can be computed efficiently. This is of special
interest as there are data structures which require the values of the model’s
parameter(s) as input in order to work correctly. An example of such a data
structure is a range searching data structure developed by Overmars and van
der Stappen [623]. Examples of data structures that show better behavior for
inputs that belong to one of the above-mentioned input models than for general
inputs are data structures for point location and binary space partition.

The rest of this section is organized as follows. First we introduce some basic
definitions and notations. Then we introduce the aforementioned input models
formally, investigate their relationships, and shortly discuss algorithms for com-
puting the parameter(s) of the models for a given scene. Finally, we analyze
binary space partitions for uncluttered scenes.

162 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

Fig. 4.7. For computing the fatness, one has to measure the ratio of the size of the
shaded region and the area of the complete circle. (a) A fat object. (b) An object with
small fatness.

4.5.2 Definitions and Notations

We refer to the d-dimensional Euclidean space as E
d. A scene is a collection

of n constant complexity objects Oi ⊆ E
d. Sometimes we will assume that the

objects are non intersecting, that is, their interiors are pairwise disjoint. Given an
object O we refer to the radius of its minimum enclosing ball as radius(O), and
to its bounding box as bb(O). We will usually assume that bb(O) is axis-parallel
and that it is of minimum volume among all axis-parallel boxes that contain O.
Sometimes, we shall additionally require that bb(O) is not an arbitrary box but
a cube. We refer to this cube as mec(O), the minimum enclosing hypercube of O.
Finally, we refer to the bounding box of a scene as bb(S), and to its minimum
enclosing hypercube as mec(S).

4.5.3 Geometric Input Models

In this section we formally define the aforementioned geometric input models
and comment on algorithms for computing the parameter(s) of the models for a
given scene.

Definition 7 (Fatness). Let O ⊆ E
d be an object and let β be a constant with

0 ≤ β ≤ 1. Define U(O) as the set of balls centered inside O whose boundary
intersects O. We call the object O β-fat if for all balls B ∈ U(O): vol(O ∩B) ≥
β · vol(B). The fatness of O is defined as the maximal β for which O is β-fat.

Figure 4.7 illustrates the notion of fatness. The fatness of a scene is defined as
the maximal β for which every individual object is β-fat. Vleugels [812] shows
that the fatness of an object O equals vol(O)/(ωd · diam(O)2) if O is convex,
where diam(O) denotes the diameter of O and ωd denotes the volume of the
d-dimensional unit ball. Computing the fatness of a non-convex object is more
difficult; for deeper insights into this topic we refer the reader to [812].

Definition 8 (Low Density). Let S = {O1, . . . , On} be a d-dimensional scene,
and let λ ≥ 1 be a parameter. We call S a λ-low-density scene if for any ball B,
the number of objects Oi ∈ S with radius(Oi) > radius(B) that intersect B is at
most λ. The density of S is the smallest λ for which S is a λ-low-density scene.

4. Analysis of Algorithms 163

De Berg et al. [207] show how to compute the density of a planar scene S
consisting of n polygonal objects in time O(n log3 n + λn log2 n + λ2n), where λ
is the density of the scene.

Definition 9 (Clutteredness). Let S be a d-dimensional scene, and let κ ≥ 1
be a parameter. We call S κ-cluttered if any hypercube whose interior does not
contain a vertex of one of the bounding boxes of the objects in S intersects at
most κ objects in S. The clutter factor of a scene is the smallest κ for which it
is κ-cluttered. A scene is called uncluttered if its clutter factor is constant.

The clutter factor of a planar scene S consisting of n polygonal objects can be
computed in time O(n log n+nκ log κ), where κ is the clutter factor. Again, this
was shown by de Berg et al. [207].

In order to define the notion of simple cover complexity, we call a ball δ-simple
if it intersects at most δ objects in a given scene S.

Definition 10 (Simple Cover Complexity). Let S be a d-dimensional scene,
and let δ > 0 be a parameter. A δ-simple cover for S is a collection of δ-simple
balls whose union covers bb(S). We say that S has (σ, δ)-simple cover complexity
if there is a δ-simple cover for S of cardinality σn. The δ-simple cover complexity
of S is the smallest σ for which S has (σ, δ)-simple cover complexity.

The complexity of computing the δ-simple cover complexity of a given scene and
a given δ is still open. However, de Berg et al. [207] conjecture that this problem
is NP-hard.

4.5.4 Relationships between the Models

De Berg et al. [207] investigate relationships between the models. In this section
we summarize their results. The relationships between the models are depicted
in Figure 4.8. A directed arrow between two models M1 and M2 indicates that
every instance that satisfies the properties of M1 also satisfies the properties of
M2. Note that the reverse direction is not true.

Formally, the hierarchy is proven by the following theorem. For its proofs we
refer the reader to [207].

Theorem 9. 1. Any d-dimensional scene consisting of β-fat objects has den-
sity at most 2dβ.

2. For any parameters λ, β with λ ≥ 1 and β > 0, there is a two-dimensional
λ-low density scene that is not β-fat.

3. Any d-dimensional λ-low-density scene has a clutter factor of at most �
√

d�d ·
λ.

4. For any parameters κ, λ with κ ≥ 1 and λ ≥ 1, there is a two-dimensional
κ-cluttered scene that is not a λ-low density scene.

5. There are constants σ = O(24dd(
√

d)d−1) and c = O(10dκ) such that any
d-dimensional κ-cluttered scene has (σ, cκ)-simple cover complexity.

6. For any parameters σ, δ, κ with σ ≥ 2, δ ≥ 1 , and κ ≥ 1, there are scenes
with (σ, δ)-simple cover complexity that are not κ-cluttered.

164 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

small simple cover complexity

�
uncluttered

�
low density

�
fatness

Fig. 4.8. Relations between the models

4.5.5 Applications

In this section, we discuss several applications of the input models we introduced
in the previous sections. There are a lot of applications where the assumption
that the inputs come from one of the presented input models dramatically re-
duces the computational complexity.

Consider for instance the motion planning problem for a robot with f degrees
of freedom in a scene of n disjoint objects. The degree of freedom of a robot
corresponds to the number of its joints. In this case, one seeks for a collision-free
motion of the robot in the scene. Typically, this problem is transferred to the
problem of finding a continuous curve in the free-space. The free-space consists
of all placements of the robot in the scene such that the robot does not collide
with one of the obstacles. Van der Stappen [793] argues that the complexity of
this approach heavily depends on the complexity of the free-space which may be
as bad as Θ(nf). Furthermore, he shows that the complexity reduces to O(n) if
a constant complexity robot moves amidst constant complexity fat objects.

Another example comes from ray tracing. Given a scene and a query ray one
has to determine the first object in the scene that is hit by the query ray. In
many real world applications octrees perform very well. However, the worst-case
analysis of the query time does not predict this, as it is Ω(n).

Mitchell [578] considers the Euclidean TSP with neighborhoods (TSPN): We
are given a collection of regions (neighborhoods) in the plane, and the goal is
to find a shortest tour that visits each region. The problem is motivated by the
fact that a salesperson wants to visit potential buyers who are willing to meet
the salesperson within certain neighborhoods. If the regions are points, then we
have the standard Euclidean TSP which admits a PTAS. However, in the case of
arbitrarily shaped regions the problem is APX-hard. Mitchell introduces a weaker
notion of fatness in which it is only assumed that for every region the radius of
the smallest circumscribing circle to the radius of the largest inscribed circle is
bounded by some constant. Based on this definition, he shows that TSPN with
fat neighborhoods admits a PTAS.

4. Analysis of Algorithms 165

H0

H1

H2

H3 H4

H0

H1 H2

H3 H4

Fig. 4.9. An example of a binary space partition with its corresponding tree

In many geometric applications one likes to partition the space recursively
until a termination criterion is satisfied. One such approach are binary space
partitions BSPs. In the following, we introduce BSPs formally, discuss their ap-
plications, and finally analyze their size if an uncluttered scene is to be
partitioned.

Binary Space Partitions. Given a set of non-intersecting objects, some ge-
ometric problems can be solved using the following preprocessing steps: Re-
cursively partition the space by oriented hyperplanes into halfspaces until all
subspaces satisfy some termination condition. As the space partition may also
split objects we would like to choose the hyperplanes in such a way that the
fragmentation of the objects is small.

In this section we consider a special kind of space partitions namely binary
space partitions BSPs. Given a set of objects we want to partition the objects
by hyperplanes until all objects are separated from each other, that is, until
every subspace is either empty or contains only a fragment of a single object.
An example is depicted in Figure 4.9.

A natural representation for a BSP is a binary tree, where each internal node
corresponds to a division induced by a hyperplane. BSPs can be used to detect
objects that are hidden by other objects. Detecting such objects is important for
generating images from changing positions in a 3d-scene quickly. Therefore one
traverses the BSP tree in a symmetric order relative to the viewing point which
generates a correct priority order of (the fragments) of the objects. Paterson and
Yao [630] discuss other applications of BSPs and show how to construct a BSP

of size O(nd−1) for n non-intersecting objects in R
d and d ≥ 3, where the size

of a BSP is the number of leaves of the BSP tree. For d = 2 they show how to
construct BSPs of size O(n log n). Moreover, they show that their construction
is best possible, that is, they construct 3-dimensional scenes for which every
BSP has size Ω(n2). However, since these scenes are rather unrealistic and since

166 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

Fig. 4.10. (a) An octree split, (b) a kd-split

BSPs are efficient for many real world scenes, de Berg [205] considers BSPs in
the case of uncluttered scenes, that is, for scenes whose clutter factor is constant.
In this case, he shows how to construct BSPs of linear size.

In the following we will present and analyze this approach in detail: Given n
non-intersecting, polygonal objects in R

d with constant complexity we present
an algorithm that constructs a BSP tree of linear size. The algorithm has two
stages and can be implemented to run in time O(n log2 n). In the first stage
cubes are recursively split guided by the vertices of the bounding boxes of the
objects, whereas in the second stage the standard BSP approach is applied to
the cubes generated in first stage.

First Stage: We consider the set of bounding boxes of the scene’s objects of
the scene, and refer to the set of their vertices as V . Given an arbitrary cube C
we refer to the subset of all vertices of V lying in the interior of C as VC ⊆ V .

In the first stage only cubes with VC 	= ∅ are split recursively. Empty cubes
are not split. An octree split of a cube C splits C into 2d equally sized subcubes
C1, . . . , C2d . We call an octree split useless if all points of VC are in the interior
of one subcube. In this case we do not perform an octree split but a kd-split. To
define a kd-split, let Cj be the subcube containing all vertices of VC if we would
perform an octree split, and let v be a vertex of the cube C that is also a vertex
of Cj . Additionally, let C′j be the smallest cube with v as one of its vertices that
contains all points from VC in its closure. Now, C is split using planes through
the facets of the cube C′j . The notions of an octree and kd-split are depicted in
Figure 4.10.

Observe now that a kd-split does not necessarily produce cubes but arbitrary
cells. However, the only cell on which we recurse after performing a kd-split is the
cube C′j . Finally, we have to describe how the initial cube is chosen. We choose
the minimum enclosing cube of all objects of the scene as the initial cube.

In order to describe the second stage of the algorithm we have to prove the
following lemma.

Lemma 3. The first stage of the algorithm results in an intermediate BSP
consisting of O(n) cells that are boxes and do not contain a vertex from the set
V in their interior.

Proof. The second part of the lemma is clearly true, as the recursive construction
only terminates when a cell is empty. Thus, it remains to prove the first part.

4. Analysis of Algorithms 167

Observe that each split increases the number of cells by a constant. To be
precise, an octree split increases the number of cells by 2d − 1, a kd-split by d.
Furthermore, when a cell is split at least one point from the current subset VC lies
on the splitting planes, or VC is partitioned into at least two subsets. Now observe
that the first case can occur at most |V | times, and the second case at most |V |−1
times. Hence, the total number of cells is at most |V |(2d − 1) + (|V | − 1)d + 1 =
O(n). ��

Second Stage: The second stage of the algorithm is rather simple. We recur-
sively partition the cells of the intermediate partition until each cell in the final
BSP is intersected by only one object. We do this in the following way. For a
cell C let SC be the set of object fragments inside of C. We recursively partition
C by taking planes through the facets of the objects.

Now, in order to show that the final BSP has only linear size we prove the
following lemma.

Lemma 4. Let S be an uncluttered scene. Then any cell in the intermediate
partition is intersected by O(1) objects.

Proof. Consider a cell C of the intermediate partition. By construction, C does
not contain a vertex of one of the bounding boxes of the objects in its interior.
Thus, if C is a cube, the lemma follows immediately by our assumption that the
scene is uncluttered.

If C is not a cube, then it was created by a kd-split and does not contain
a vertex from one of the bounding boxes of the objects. Observe now that we
can cover the cell C with a constant number of cubes that are contained in the
union of all empty cells that are created by this kd-split. Again, since every such
cube does not contain a vertex of one of the bounding boxes and due to our
assumption that the scene is uncluttered every such cell is intersected by O(1)
objects. Thus, the lemma follows. ��

We are now ready to prove the following theorem.

Theorem 10 (de Berg [205]). Let S be an uncluttered scene in R
d consisting

of non-intersecting, polygonal objects. Then there exists a linear size binary space
partition for the objects in S.

Proof. The theorem follows due to Lemma 4 since in the intermediate BSP

every cell is intersected by O(1) objects. Thus the second stage is performed
on a constant number of objects in each recursive call and therefore does not
increase the asymptotic size of the final BSP. ��

Finally, we would like to comment on the running time to build the BSP and
on the assumption that the objects are polygonal. De Berg [205] shows how to
construct the data structure in time O(n log2 n). The main difficulty is how to
find the splitting planes of a cell efficiently. De Berg shows how to find them
efficiently with the help of a technique called tandem search technique which we
will not present here. The assumption that the objects are polygonal is important

168 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

in the second stage of the algorithm since in this stage hyperplanes through the
facets of the objects are chosen. In the case of curved objects one would need
a different approach. However, if every pair of objects could be separated by
a constant number of hyperplanes then the approach would still be applicable.
That is, for any uncluttered scene of convex objects BSPs of linear size exist.

4.6 Computational Testing

Many optimization problems arising from real-world applications (e. g., the
Steiner tree problem, the traveling salesman problem or different kinds of packing
problems) are known to be computationally hard; that is, no polynomial time
algorithms are known for them so far. Nevertheless, one is interested in solving
concrete instances optimally in “reasonable” time, e. g., within 1 hour or 1 day, as
this might be satisfactory in practical settings. And this can surely be possible
even though the algorithms in question may not have a polynomial worst-case
bound. Then, a worst-case analysis might be too pessimistic and might prevent
us from applying the developed algorithm, although it meets our demands.

Furthermore, if a problem admits a polynomial time algorithm, e. g., with
running time O(n3), this does not directly imply its practical usefulness. For
instance, large constants may be hidden by the O-notation or complex data
structures may be needed to reach the running-time bound.

Therefore, it is important to not only consider theoretical but also experimen-
tal measures of performance. Two such experimental measures and techniques
of analysis will be presented and discussed in Sections 4.6 and 4.7, respectively.
Finally, Section 4.8 deals with the question of how we can learn something about
the asymptotic performance of an algorithm, if solely experimental data is given.
All these techniques require an implementation as well as a carefully chosen set of
test instances. As Chapter 6 points out what has to be taken into consideration
when implementing an algorithm, and Chapter 8 gives hints on how a set of test
instances should be chosen, the following sections are based on the assumption
that these two phases have already been accomplished, i. e., an implementation
and a set of test instances exist.

An obvious experimental measure for the performance of an algorithm is the
time a computer needs to solve a set of test instances or a set of instances which
are required to be solved in practical settings. In the rest of this section we
formalize this concept and discuss its advantages and disadvantages.

Evaluating different algorithms under the criterion of computational running
time means to measure the CPU time each algorithm needs to solve a set of test
instances and to choose the fastest one. Modern operating systems can output
the consumed CPU time after solving an instance.

Definition 11. The CPU time a computer C needs to solve an instance I using
algorithm A is the actual time (measured by a stop clock) C needs to solve I if
100% of the CPU power can be used to run algorithm A.

4. Analysis of Algorithms 169

Usually some percentage of the CPU power is consumed by the operating system
or other programs. These effects are eliminated by the CPU time. To compare
two or more algorithms using the measure of CPU time the following three steps
have to be performed:

(1) Implementation of each algorithm using the same programming language.
(2) Creation of instances, e. g., using randomization.
(3) Running each algorithm (on the same computer) on the created instances

while measuring the CPU time.

In practical settings when dealing with concrete instances computational testing
clearly has respectable merits and is a reasonable way to analyze an algorithm –
as discussed above. But in particular when different researchers want to compare
their algorithms some problems arise naturally. The first problem is that the CPU
time depends greatly on the computational environment such as the computer
and the chosen programming language. Even though researchers may agree on
using the same programming language and the same computer the programming
skills and the programming style of the researcher still play an important role.
This can be overcome by distinguishing not only between the different algorithms
but also between the different implementations of them. Hence, an algorithm
can have different running times just because of its implementation. From a
theoretical point of view this extension may not seem to be convenient because
it is always assumed that the implementation is done best possible. But it would
emphasize the necessity of developing algorithms that are not only as fast as
possible from a theoretical point of view but also allow efficient implementations.
Especially in practical settings the last property should not be undervalued.

A disadvantage of computational testing is that it requires an implementation
of the algorithm which may cause a lot of work. For a theoretic analysis only the
pseudocode of an algorithm is needed. Therefore, if an algorithm seems to be
inferior to other algorithms after a theoretic analysis there is no need to apply
the method of computational testing additionally.

4.7 Representative Operation Counts

The idea of counting representative operations for measuring the performance of
an algorithm was, e. g., used in [92,598]. Ahuja and Orlin formalized the concept
in [17, 15] and applied it for instance to the network simplex algorithm. This
chapter uses in particular the description they give.

The main idea of this technique is to identify operations that dominate the
running time of an algorithm and to specify the amount of CPU time in O-
notation by only considering these operations. We refer to the dominating op-
erations also as bottleneck operations or simply bottlenecks. In contrast to the
worst-case analysis the method of counting representative operations does not
provide a theoretical upper bound on the number of executions of the bottle-
neck operations. Instead, it experimentally counts the number of executions of
the bottleneck operations for every instance that was solved by the algorithm.

170 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

In Section 4.7.1 we formalize and discuss the technique of counting repre-
sentative operations. In Section 4.7.2 further applications of this method are
presented. In particular we discuss the concept of virtual running time and how
to compare algorithms using representative operations.

4.7.1 Identifying Representative Operations

In this section we formalize the concept of counting representative operations.
Let A be the code of a computer program (the implementation of an algorithm).
Then A consists of a constant number of lines a1, . . . , aK of code. We assume
that the execution of any line consumes at least one and at most a constant
number of time units, i. e., the time for executing a line in A is assumed to be
Θ(1). We write αk(I), k = 1, . . . , K, to denote the number of times line ak is
executed while running A on instance I. Under the given assumptions the CPU
time CPU(I) algorithm A takes to solve instance I lies within a constant factor
of the number of times each line of code is executed.

Lemma 5.

CPU(I) = Θ

(
K∑

k=1

αk(I)

)
.

This implies that we have to keep track of αi for every line a1, . . . , aK . In the
program code of an algorithm there are usually lines which are executed if and
only if some other line is executed. Consider, for example, the following small
piece of code with n ∈ IN being a problem parameter:

Algorithm 2. Summation and Multiplication
1: sum← 0
2: prod← 1
3: i← 1
4: while i ≤ n do
5: sum← sum + i
6: prod← prod · i
7: i← i + 1

Instead of counting the number of executions for each of the lines from 4 to
7 it suffices to count the number of times line 5 is executed. In this case line 5
is called a representative operation. In fact, every other line from 4 to 7 can be
chosen as a representative line for the whole piece of code; but none of the lines
from 1 to 3 can. To formalize the concept of representative operations Ahuja
and Orlin introduced the following definition:

4. Analysis of Algorithms 171

Definition 12. Let S ⊆ {1, . . . , K} and aS = {ak : k ∈ S}. Then aS is called a
representative set of lines of a program code if there exists a c ∈ IR such that

αi(I) ≤ c ·
∑

k∈S

αk(I) .

for every instance I and for every line ai, i = 1, . . . , K.

Hence, the number of times line ai is executed is bounded or dominated up to
a constant factor by the number of times the lines from S are executed. The
following corollary of Lemma 5 relates the representative set aS to the CPU
time [17].

Corollary 3. Let as be a representative set of lines of a program code. Then

CPU(I) = Θ

(
∑

k∈S

αk(I)

)
.

4.7.2 Applications of Representative Operation Counts

The idea of identifying a representative set of operations can be used for further
analysis of an algorithm. It can be used to identify operations that asymptotically
have a strong influence on the running time of an algorithm. These operations are
called asymptotic bottleneck operations. Furthermore, representative operations
can be used to compare algorithms and to define virtual running time, a tool
for estimating the CPU time. We give a short overview of all these topics in
the next paragraphs and compare each concept with computational testing and
worst-case analysis.

Asymptotic Bottleneck Operations. Let aS be a set of representative operations
of some program code, and αS =

∑
k∈S αk. Then some of the representative

operations may consume more execution time than others do if the problem size
grows. For some operations the percentage of time they gain (from CPU(I) =
Θ(
∑

k∈S αk(I))) may even approach zero for an increasing problem size. This
leads to the following definition [17]:

Definition 13. An operation is called an asymptotic non-bottleneck operation
if its share in the computational time becomes smaller and approaches zero as
the problem size increases. Otherwise, the operation is called an asymptotic bot-
tleneck operation.

One way to find asymptotic bottleneck operations is to plot the curves αk

αS
for

all k ∈ S over increasing instance size. All fractions are bounded by 1 but some
of them may have a non-decreasing trend for growing problem sizes and these
are exactly the asymptotic bottleneck operations.

Asymptotic bottlenecks can give deeper insights into the behavior of an algo-
rithm, but the results have to be interpreted carefully. The first point we have to

172 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

take into consideration is that we assumed that each operation can be performed
in time Θ(1); therefore, constants are hidden in this analysis. In particular in
practical settings an improvement of a constant factor can make an algorithm
applicable.

Counting representative operations has its advantage in identifying bottleneck
operations. This is crucial for improving the running time of an algorithm; CPU
time hides bottlenecks. Furthermore, counting representative operations does
not provide a theoretical upper bound on the number of performed operations
as a worst-case analysis does.

Comparing Algorithms Using Representative Operations. Suppose we are given
two algorithms A1 and A2. Then representative operation counts can be used
to identify the one that asymptotically performs better using a quite intuitive
approach. Let aS1 and aS2 be a set of representative operations for algorithm
A1 and A2, respectively. We say that algorithm A1 is asymptotically superior to
algorithm A2 if and only if

lim
|I|→∞

∑
k∈S1

αk(I)
∑

k∈S2
αk(I)

= 0 .

This concept may be misleading since we do not care about the instances them-
selves but only about their size. As the comparison requires an implementation
of both algorithms as well as running them on many instances the same result
could be obtained using CPU time which would be less work.

Virtual Running Time. Virtual running time makes use of representative opera-
tion counts to estimate the actual CPU time. It is an approach towards a machine
independent measure just as worst-case and average-case running time are. The
virtual running time VA(I) of an algorithm A on instance I with representative
operations a1, . . . , aK is defined as

VA(I) = c1 · α1(I) + · · ·+ cK · αK(I) with c1, c2, . . . , cK ∈ R≥0 .

The constants c1, . . . , cK can be computed, for instance, using the least squares
method for the points (CPU(I), α1(I), . . . , αK(I)), where CPU(I) is the CPU
time of algorithm A on instance I. The least squares method minimizes the
function

∑
I∈I(CPU(I) −VA(I))2, for I being a set of instances.

Ahuja and Orlin computed the virtual running time for the network simplex
algorithm and obtained the following expression:

VA(I) =
α1(I) + 2α2(I) + α3(I)

69000
.

After computing the constants c1, c2, and c3 they compared the actual running
time for 25 instances with their estimation VA and found out that the error is
at most 7%.

Virtual running time as a performance measure has to be used carefully be-
cause the instances chosen for the linear regression may have special properties

4. Analysis of Algorithms 173

that can lead to an under- or overestimation. Furthermore, one has to take into
consideration that a misestimation is likely if the representative operations are
correlated.

An advantage of this concept is that it points out the percentage of the CPU
time a representative operation consumes; e. g., the representative operation a2

in the network simplex algorithm consumes twice as much running time as every
other representative operation does. Note that this does not identify the second
operation as an asymptotic bottleneck operation but as a bottleneck for the size
of the chosen instances.

Another advantage is that the virtual running time can easily be transferred
from one computer to another. Let Ī be the set of instances that were used to
compute the constants c1, . . . , cK for a computer C1 andH the set of all instances
evaluated on this computer. If the implementation is moved to another computer
C2 then only the instances from Ī have to be run again to obtain the cis for
C2. As all αk(I) for I ∈ H are known, the virtual running time can be obtained
without further evaluations.

Ahuja and Orlin [17] state the elimination of effects such as paging and caching
as a third advantage of virtual running time. These effects arise when an instance
does not fit completely in the fast memory of the computer. Then time is spent
on transferring data from the slower memory to the CPU. During that time no
operations are performed and therefore large instances may need significantly
more time. These effects can be eliminated if only instances that fit completely
into the fast memory are chosen for computing the cis. Modern operating systems
eliminate these effects also in the CPU time they output (compare Section 4.6).
In a worst-case analysis or an average-case analysis these effects are also not
considered.

Furthermore, virtual running time can even be used to detect paging and
caching effects by computing the cis for small instances and comparing the vir-
tual running time to the actual running time for large instances.

4.8 Experimental Study of Asymptotic Performance

This section deals with the question, how and in how far finite experiments can
or cannot support studies of asymptotic performance. We will discuss some so-
called curve bounding rules by means of which one hopes to derive asymptotic
trends of an algorithm’s (average case) performance from pure data analysis.
All approaches and techniques presented in this section have their origin in an
article by McGeoch et al. [551].

Asymptotic analysis of an algorithm’s performance, as discussed in the whole
chapter, is one of the main issues computer scientists—especially theoretical
computer scientists—are concerned with. To repeat it in a nutshell: The ultimate
goal in a performance analysis is in many cases to find a closed-form expression
for the running time with respect to some input parameters such as the input
size. Unfortunately, it is often far too difficult to derive a closed-form expression,
i. e., a formula that can be evaluated in a finite number of “standard operations”,

174 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

for the running time. In this case, one might try to find an asymptotic upper
and/or lower bound on either the worst case or the average case running time, or
both. But even the task of finding such bounds might eventually turn out to be
too complex to be done by means of a pure theoretical analysis—given that one
is not happy with trivial bounds, and with large gaps between the best known
upper and lower bound.

If a rigorous mathematical analysis of the asymptotic performance fails or is
incomplete, as a result of enormous mathematical difficulties to overcome, then it
can be helpful to perform problem specific experiments and to carefully analyze
their results, in order to find out the truth about the asymptotic performance.

This section describes and discusses two different approaches to experimental
analysis of asymptotic performance. The first approach is based on the so-called
scientific method, which is successfully applied in the natural sciences. The sec-
ond approach is a heuristic method which is based on so-called curve bounding
rules for the derivation of hopefully correct and close upper or lower bounds
from pure data analysis.

The idea behind the scientific method, which has been sketched in Chapter 1,
is a core idea with respect to Algorithm Engineering. Section 4.8.1 gives hints
on how this idea can be applied to performance analysis.

Section 4.8.2 presents and “justifies” different curve bounding rules. A pre-
liminary evaluation of each rule will be given with respect to the experimental
results that are described in [551]. But a detailed description of the experiments
containing all of the data will not be given.

Finally, Section 4.8.3 summarizes the main results of Section 4.8.2, and draws
some preliminary conclusions.

Difficulties with Experimentation. Asymptotic analysis via experimenta-
tion presents fundamental problems to the researcher:

Unbounded Input Size. In some sense asymptotic analysis via pure experimenta-
tion is inherent impossible. For the sake of seeing this clearly, recall the definition
of the asymptotic growth of functions (Definition 1), and consider the following.

Assume that we want to study the performance of an algorithm A on input
instances x of size |x| ∈ N, denoted by n. Furthermore, assume that we have
defined how to measure |x| and how to measure the running time of A on x in
a machine independent way. Then, an asymptotic performance analysis aims at
finding functions gl, gu ∈ F⊕ such that, e. g., the worst case or the average case
running time TA(n) ofA on inputs of size n can be classified as TA(n) ∈ O(gu(n))
(asymptotic upper bound) or as TA(n) ∈ Ω(gl(n)) (asymptotic lower bound).

As can be seen from Definition 1, TA(n) ∈ O(gu(n)) and TA(n) ∈ Ω(gl(n))
are statements about inputs x of all sizes n ∈ N. In contrast to this, experiments
can only test some inputs of finite sizes n < N for a given constant N ∈ N, as
any experiment—unless one is not interested in its outcome—must be limited in
time and space. Therefore, the outcome of an experiment can never be a proof
of an asymptotic bound.

4. Analysis of Algorithms 175

Too Many Inputs. Even if we bound the input size by some constant N ∈ N it is
most likely that only a relatively small fraction of the input instances of a given
size n < N can be tested in the course of an experiment, because in most cases
the number of distinct input instances of size n grows exponentially with n or is
infinite. This means that even for bounded input sizes, a worst case analysis via
pure experimentation will fail as a result of limited resources—unless we know
the worst case instances.

Fortunately, the worst-case performance of a given algorithm is not always the
most interesting measure of performance. We might be far more interested in its
average case performance. In such a case, experimentation combined with sta-
tistical knowledge and infallible power to interpret the outcome of experiments
enables us to find almost arbitrarily reliable hypotheses on the average-case per-
formance, by means of random sampling of input instances. The degree of the
hypotheses’ reliability—given the above-mentioned infallibility—depends upon
the relative number of random samples that we are willing and able to test for
each considered input size n. Similarly, experimentation can help us to find hy-
potheses on the expected performance of a randomized algorithm by building the
average of the results of repeated runs for each considered input x.

4.8.1 Performance Analysis Inspired by the Scientific Method

Experiments can be used to formulate hypotheses on the average case perfor-
mance TA(n) of an algorithm A on inputs of size n. Apart from this, it seems to
be intuitively clear that experimentation with algorithms can be used in a way
which is suggested by the scientific method.

In the following, some suggestions on how the scientific method can be applied
in the context of performance analysis will be made. But first, let us think about
some general difficulties that are faced, when we use experiments to formulate a
hypothesis on the performance of an algorithm.

O(·)’s are not Falsifiable. Not only can experiments never be used as a proof of
a theorem on the asymptotic performance of an algorithm, but also can we in no
way formulate a hypothesis on an algorithm’s asymptotic performance by means
of O-notation, because this would not be scientifically sound: A statement like
TA(n) ∈ O(n log n) cannot be falsified by a finite experiment, for even if someone
presents a set of data that clearly indicates a quadratic behavior of A, we can
always claim that this strange behavior will stop for large enough inputs.

So, one has to be careful when formulating hypotheses on the asymptotic
performance. In the given example, it would for instance be scientifically sound
to state that TA(n) ≤ 3n logn for n > 7—as this can be falsified experimentally
by presenting a constant input size n′ > 7 such that TA(n′) > 3n logn holds.

However, not every sound hypothesis is automatically a good hypothesis: The
statement TA(n) ≤ n logn for all n > 10999 may be scientifically sound, but
it is at least unfair, as from a practical viewpoint it can hardly be falsified
experimentally—due to natural resource limitations.

176 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

How to Find Good Hypotheses? Unless one roughly knows about the performance
of an algorithm in advance, it is almost impossible to guess a good hypothesis on
its performance from the analysis of experimental data alone. This is again partly
due to the fact that only bounded input sizes can be tested, as for relatively small
inputs, the influence of second order terms with large coefficients can prevent us
from finding a higher order term which bounds the performance asymptotically.
Another profound difficulty is faced, when we decide to measure running time
in terms of the machine’s actual execution time. Then, our interpretation of the
experimental results have to take a complex model of the underlying machine
into account. Therefore, if we are not explicitly interested in an algorithm’s
performance on a specific machine, then we might be better off deciding for
a machine independent performance measure, like the number of comparisons
between input elements for a comparison based sorting algorithm.

The curve bounding rules presented in Section 4.8.2 are intended to yield good
hypotheses on functions g(n) that bound sets of data derived from performance
measurements of algorithms. Not surprisingly, the curve bounding rules have a
tendency to fail in the above-mentioned scenario, where the true bound f(n)
of the data curve contains a second order term that has a strong influence for
“small” inputs.

The following paragraphs shed some light on how the scientific method can
be applied to performance analyses.

Building a Useful Hypothesis. Sometimes, the performance of an algorithm
that we are most interested in is too difficult to analyze theoretically for us.
Nevertheless, we might be able to learn something about its performance via
experimentation. This paragraph gives a detailed example, based on [696], of
how the scientific method can be applied for building a useful hypothesis on
the performance of such an algorithm A. The idea behind this example is as
follows: Even if we are not able to theoretically analyze A, this may not hold
for a simpler variant B of A, and it may be possible to draw a hypothetical
conclusion on A’s performance from the results of the theoretical analysis of B.
If so, then this hypothesis can be validated with experiments—hopefully in a
successful way.

Before describing a detailed example which uses the above-mentioned method-
ology, some notions have to be introduced.

Consider the following parallel disk model : A processor with M words of in-
ternal memory, M ∈ N large enough, is connected to D parallel disks (external
memory), D ∈ N. For each disk Di, i = 1, . . . , D, a queue Qi that buffers blocks
to be written onto Di resides in the internal memory. In one I/O step, every disk
potentially can read or write one block of B words.

Now, let W denote an upper bound for the tolerated total number of blocks
currently stored in all queues, and W ∈ O(D), let |Qi| denote the number of
blocks currently stored in queue Qi, and assume that whenever a set of new
blocks is appended to the queues Q1, . . . , QD, the destination queue is chosen
independently and uniformly at random for each of the blocks. Consider the fol-
lowing procedure write that uses a subroutine write-to-disks(Q1, . . . , QD)

4. Analysis of Algorithms 177

which writes one block of each non-empty queue Qi to the corresponding disk
Di concurrently:

1: procedure write((1 − ε)D blocks)
2: append blocks to Q1, . . . , QD

3: write-to-disks(Q1, . . . , QD)
4: while |Q1|+ · · ·+ |QD| > W do
5: write-to-disks(Q1, . . . , QD)

Now we have all prerequisites to describe algorithm B, which is called throttle

by the authors of [551], as being a sequence of N invocations of write((1 −
ε)D blocks) which starts with empty queues Qi and has fixed but arbitrary
parameters W, N ∈ N and ε ∈ (0, 1). For positive ε writing (1 − ε)D blocks is
a reduction of the theoretical peak bandwidth of D blocks per time step. This
may serve as an explanation of the name throttle.

Experimentation revealed to the authors of [696] that another algorithm A
(called eager by the authors of [551]), which admits D instead of only (1− ε)D
blocks in each invocation of write, has a better performance than throttle

with respect to average throughput per invocation of write. Thus, Sanders et
al. [696] were most interested in proving a theorem on the average throughput
of eager, but—they failed. Therefore, they decided to analyze throttle and
thereby hoped to learn something about eager too.

One of the results of this analysis is that—under the assumption of an ex-
tremely large (but still finite) threshold value W such that the while-loop is never
entered during an invocation of write—the expected sum of queue lengths |Q| at
any invocation of write((1−ε)D blocks) is bounded from above by D/(2ε) and
that the probability of |Q| exceeding qD for any q > 0 is less than exp(−Ω(D)).
Hence, setting W = c ·D/(2ε) for some constant c > 1 reduces the probability
of waiting steps between two subsequent invocations of write((1− ε)D blocks)
considerably (which implies that throttle may be a good choice for real time
applications). Furthermore, setting ε to D/(2W) yields an expected overall buffer
requirement of no more than W .

This inspiredSanders et al. [696] to formulate thehypothesis thateager (throt-

tle with ε = 0) has an average throughput of about (1 − D/2W) · D blocks per
time step. The hypothesiswas supported by the result of an experimentwhich mea-
sured the average throughput of eager with respect to different ratios W/D ∈
{0, 1, 2, 4, 6, 8, 10, 12} for two settings of D, namely D ∈ {8, 256}, respectively.

Validating a Theory. Instead of analyzing a simpler variant B of the algorithm
A we are interested in, and then using the results of this analysis to formulate a
hypothesis on A’s performance, it may as well be possible to turn the theoretical
analysis of A into a feasible task by making some simplifying assumption, like,
for instance, the assumption of independence of some random variables that are
obviously not independent from one another. The result of the analysis under
this assumption can be viewed as a theory in the sense of the scientific method.
Experimental validation of this theory is of course necessary.

178 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

Supporting the Improvement of a Theoretical Analysis. Our last sug-
gestion on how to apply the scientific method to performance analysis is perhaps
the most obvious one: Experimentation can be used to get a hint on whether
some theoretically proven asymptotic bound is sharp or is not sharp. In the latter
case one might be inspired to prove a better bound—and possibly succeed.

4.8.2 Empirical Curve Bounding Rules

In this main part of Section 4.8, the curve bounding rules which have been
introduced by [551] will be described and discussed. These rules are intended
to reveal asymptotic trends of an algorithm’s performance—given experimental
data alone. Recall that we can never prove an asymptotic bound by means of
the analysis of finite experimental data and that whatever trend we find is in no
way reliable. However, sometimes an unreliable trend is better than nothing.

Notations. The input size of an algorithm A will be denoted with x rather
than n to get some notational compatibility with related literature about data
analysis. The performance of A on inputs of size x—given some fixed and rea-
sonable performance measure—is denoted with a function f(x). In the following,
f measures the expected cost of A with respect to randomly chosen inputs, ac-
cording to a uniform distribution. In case of A being a randomized algorithm,
the expected cost f(x) also takes the random experiments of A into account.

We only consider experiments which are intended to reveal a trend of the
asymptotic performance of a given algorithm A, and produce a pair of vectors
(X, Y) such that X [i] ∈ N is an input size and Y [i] ∈ R

+ is a result of the
experiment’s performance measurements for inputs of size X [i], i = 1, . . . , k for
some k ∈ N. By convention, the vector X is assumed to contain pairwise distinct
values, arranged in increasing order.

Throughout the rest of this section, f(x) and f̄(x) will denote arbitrary func-
tions whereas g(x) and ḡ(x) will denote simple functions in the sense that they
are free from lower order terms which asymptotically have no influence on the
growth rate of a function. The bar notation denotes functions that are estimates.

Now assume that O(ḡ(x)) is an asymptotic upper bound estimate of a function
f(x). Then we say that O(ḡ(x)) is correct if in fact f(x) ∈ O(ḡ(x)). A correct
asymptotic upper bound estimate O(ḡ(x)) is called exact if there does not exist
a simple function g(x) 	= ḡ(x) such that f(x) ∈ O(g(x)) and O(g(x)) ⊂ O(ḡ(x))
holds. Analogous notations are defined for lower bound estimates.

Definition of the Curve Bounding Problem. Given an algorithm A and a
pair of vectors (X, Y) ∈ N×R

+ that results from experimental measurements of
A’s performance in the above-mentioned sense, determine an asymptotic trend of
f—the function which measures the true (and unknown) performance of A—by
purely analyzing the experimental data (X, Y).

4. Analysis of Algorithms 179

The word “trend” instead of “bound” is used consciously in order to indicate
that every asymptotic bound derived from pure data analysis is unreliable—as
long as we have no theoretical proof of this bound. So, whenever we will use the
term curve bounding in order to refer to solving the curve bounding problem,
this detail of the definition has to be kept in mind.

Note that curve bounding is by far not the same as curve fitting. For example,
a polynomial of degree three may exactly fit (interpolate) four data points, but
may at the same time define a quite bad bound of the data curve, if this curve
actually represents a linear behavior.

The Rules and Their Description. A curve bounding rule analyzes the
pair of vectors (X, Y) and then reports an estimator ḡ(x) of a complexity class
together with a bound type which is either upper, lower or close. Upper signifies
a claim that f(x) is in O(ḡ(x)), and lower signifies a claim that f(x) belongs to
Ω(ḡ(x)). A rule will report a bound type close if the class estimator ḡ(x) seems
to be too close to the data curve to call it an upper or a lower bound—according
to the criteria being used to distinguish between upper and lower bounds.

The five main strategies for bounding curves that are suggested by the authors
of [551] can be outlined as follows:

– The Guess-Ratio (GR) rule “guesses” a function f̄(x) and evaluates it ac-
cording to the apparent convergence of the sequence of ratios

(
Y [1]

f̄(X [1])
, . . . ,

Y [k]
f̄(X [k])

)
=:

Y

f̄(X)
.

– The Guess-Difference (GD) rule also guesses a function f̄(x), but evaluates
the sequence of differences

(f̄(X [1])− Y [1], . . . , f̄(X [k])− Y [k]) =: f̄(X)− Y

rather than the sequence of ratios.
– The Power (PW) rule combines log-log transformation of X and Y , linear

regression on the transformed data, and residual analysis.
– The Box Cox (BC) rule combines a parametric transformation of Y values

with linear regression and residual analysis.
– The Difference (DF) rule generalizes Newton’s divided difference method for

polynomial interpolation in such a way that it is defined and terminates for
any of the considered data sets (X, Y).

All these rules can be viewed either as interactive tools or as offline algorithms.
Therefore, it makes sense to describe them with a small set of simple oracle func-
tions. If a rule is used as an interactive tool, then a human provides the values
of the oracle functions. Otherwise, the oracles are implemented. The following
list contains these oracle functions together with suggestions for their implemen-
tation. In contrast to [551], our description of the oracles distinguishes clearly
between their pure functionality and suggestions for their implementation.

180 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

– The trend-oracle trend(X, Y) decides whether Y appears to be increasing
with X , decreasing or neither.

An implementation may take another input cr ∈ (0, 1) and compare the
sample correlation coefficient r, computed on X and Y , to a cutoff parameter
which is set to cr.

– The concavity-oracle concavity(X, Y) decides whether the data curve Y
appears to be convex, concave or neither.

An implementation may perform a linear regression on X and Y , fol-
lowed by an examination of the sequence S of the residual’s signs. The re-
turn value may be “convex” (or “concave upward”), if S obeys the regular
expression (+)+(−)+(+)+, “concave” (or “concave downward”), if S obeys
the expression (−)+(+)+(−)+, and “neither” in any other case. As outliers
may prevent the oracle from finding a given tendency of the data curve to
be convex or concave, it makes sense to apply some kind of smoothing to the
residuals before the sequence S is analyzed.

– The down-up-oracle down-up(X, Y) decides whether the sequence of Y -
values appears to be first decreasing and then increasing, which essentially is
the same as to decide whether the data curve Y appears to be convex. Any-
way, the down-up-oracle is used only to distinguish between convexity and
non convexity and thus does not have to be as powerful as the concavity-
oracle. An implementation may smooth the Y -values and then compute the
sequence

D := (Y [2]− Y [1], . . . , Y [k]− Y [k − 1])

of differences between successive smoothed Y -values. If the signs of D obey
the regular expression (−)+(+)+ then it may return true, otherwise false. In
order to adjust the smoothing operation, another input parameter s may be
taken and used in the same way as for an implementation of the concavity-
oracle suggested.

– The next-order- and the next-coef-oracle take a function f(x) = a · xb,
a flag bit d and a positive constant c as input, and then change the function’s
exponent b and coefficient a, respectively, according to the direction d (+ or
−) and to the step size c. For the sake of simplifying our description of the
curve bounding rules, we will assume that the step size c is set to a default
value, like 0.01, rather than being an input parameter.

In order to deal with the situation where a decrement of size c would yield
a negative coefficient a or a negative exponent b, an implementation of the
subroutines may reset c to c/10 as often as necessary for a decrementation
to yield a positive result.

The following five paragraphs will justify each of the above-mentioned rules by
respectively presenting a class of functions FR for which rule R is guaranteed to
report a correct asymptotic bound estimate O(ḡ(x)) or Ω(ḡ(x)). This guarantee
of correctness for a rule R and a given class FR of functions is defined as follows:

Definition 14. We say that a curve bounding rule R is guaranteed correct
for a class of functions FR, if there exists a k0 such that for all k ≥ k0, all

4. Analysis of Algorithms 181

k-dimensional vectors X of positive input sizes and all functions f ∈ FR the
following implication is true: If

Y = f(X) := (f(X [1]), . . . , f(X [k]))

holds, then the application of R on (X, Y) always yields a correct asymptotic
bound estimate for f(x).

The Guess Ratio Rule. The Guess Ratio rule (GR) iterates over guess func-
tions f̄(x) = xb, evaluating each one of them according to the apparent con-
vergence of the ratios Y/f̄(X), where the trend-oracle is used to determine
whether the current ratio appears to converge to zero. The following pseudocode
describes GR:
1: procedure guess-ratio(X, Y)
2: f̄(x) ← x0

3: trend ← trend(X, Y/f̄(X))
4: while trend is increasing do
5: ḡ(x) ← f̄(x)
6: next-order(f̄ , +)
7: trend ← trend(X, Y/f̄(X))
8: return (ḡ(x), lower)

Let Q
+ and N

+ denote the set of positive rational and positive natural numbers
respectively. Then, a class of functions which justifies the GR rule in the sense
of Definition 14 can be described as

FGR :=
{
f : N

+ → Q
+ | f(x) = a1x

b1 + · · ·+ atx
bt , t ∈ N

+
}

for a1, . . . , at ∈ Q
+ and b1, . . . , bt ∈ Q with b1 > 0 and b1 > · · · > bt ≥ 0.

In order to believe the guarantee of correctness of GR for any f ∈ FGR and
Y = f(X), consider an arbitrary guess function f̄(x) = xb that is generated
during the course of guess-ratio(X, Y). The following observation is crucial:

f(x) ∈ ω(f̄(x))
f∈FGR⇔ f/f̄ is asymptotically strictly increasing, i. e. there exists

an N ∈ N such that (f/f̄)(x) is strictly increasing for all x ≥ N .

For k ≥ 2 and trend(X, Y) always reporting an increasing trend if for some
i ∈ {1, . . . , k − 1} the values Y [i], . . . , Y [k] are strictly increasing, the guarantee
of correctness now follows inductively: As b1 > 0 holds, f/f̄ is strictly increasing
for the initial guess f̄(x) = x0 such that the while-loop is entered and the
estimate ḡ(x) is initialized correctly, i. e. f(x) ∈ Ω(ḡ(x)) holds. Assume that
the current asymptotic lower bound estimate ḡ(x) is correct and the while-loop
condition is tested for a new guess function f̄(x) derived from an invocation
of the next-order-oracle. If trend(X, Y/f̄(X)) returns increasing, the while-
loop is entered and ḡ(x) is set to f̄(x), which is correct by our observation
(see above). Otherwise, if trend(X, Y/f̄(X)) does not return increasing, then
guess-ratio(X, Y) simply returns the current estimate ḡ(x) together with the
bound type lower, which is correct by our assumption.

182 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

The Guess Difference Rule. The Guess Difference (GD) rule also iterates
over several guess functions f̄(x), but evaluates differences f̄(X)−Y rather than
ratios and reports a bound type upper rather than lower. The guess functions
are of the form f̄(x) = a · xb for a, b ∈ Q

+. The initial guess function has to
be defined by the user as well as a limit for the number of tolerated iterations
of an inner while-loop, which is used to find out, whether f(x) ∈ O(xb) for the
current guess function f̄(x) = axb:
1: procedure guess-difference((X, Y), a, b, limit)
2: f̄(x) ← axb

3: ḡ(x) ← xb

4: downup ← true
5: while downup do
6: downup ← down-up(X, f̄(X)− Y)
7: l ← 1
8: while not downup and l < limit do
9: next-coef(f̄ ,−)

10: downup ← down-up(X, f̄(X)− Y)
11: l ← l + 1
12: if downup then
13: ḡ(x) ← xb′ , where currently f̄(x) = a′xb′

14: f̄(x) ← axb′

15: next-order(f̄ ,−)
16: return (ḡ(x), upper)

Under the condition that the initial guess function f̄(x) = axb is a correct upper
bound estimate for f(x), the Guess Difference rule is guaranteed correct for all
functions f(x) of the class

FGD := {f : N
+ → Q

+ | f(x) = a1x
b1 + a2},

where a1, b1 and a2 are positive rationals. This is due to the following observation
for an arbitrary guess function f̄(x) = axb and f ∈ FGD, f(x) = a1x

b1 + a2:

(1) If f(x) ∈ o(f̄(x)) holds, then b > b1 follows and the difference f̄(x) − f(x)
must eventually—for “large” x—increase.

Investigation of the difference’s derivative reveals, that the difference has a
unique minimum at x0 = (a1b1/(ab))1/(b−b1) in R

+. Note that x0 is inversely
related to the guess function’s coefficient a. Therefore, f̄(x) − f(x) strictly
increases on N

+, if a is comparably large, whereas for small values of a, an
initial decrease can be observed on N

+. In the latter case, we say that f̄ − f
has the down-up property.

(2) Otherwise, if f(x) /∈ o(f̄(x)) holds, then b ≤ b1 follows and the difference
curve can never have the down-up property, which again is revealed by an
investigation of its derivative (distinguishing the two cases b = b1 and b < b1).

So, if for the given f̄(x) = axb and f(x) ∈ FGD the curve f̄ − f has the down-up
property, then we know that f(x) ∈ o(f̄(x)) holds. What GD actually does is

4. Analysis of Algorithms 183

adjusting the coefficient a of the guess function in a way which makes the position
x0 of the difference curve’s minimum—if existent—move to larger values. This
increases the chance to detect the down-up property. Now, let the dimension k of
the data vectors X and Y be at least 4, such that a down-up-oracle has a chance
to discover the down-up property for a suitably chosen vector X . Furthermore,
let f belong to FGD with f(x) = a1x

b1 +a2, let Y be equal to f(X), and assume
that the initial guess function f̄(x) = axb labels a correct asymptotic upper
bound estimate of f . Then, it can be shown inductively that GD is guaranteed
correct for FGD: The initial upper bound estimate ḡ(x) = xb is correct by our
precondition. Then, assume that the current estimate ḡ is correct and the outer
while-loop is entered for a new guess function f̄(x) = axb′ . Two cases have to be
distinguished:

(a) If the inner while-loop is left because the down-up-oracle has answered true,
then the difference curve has the down-up property—given that the oracle
does not fail. Hence, f(x) ∈ O(f̄ (x)) by our observation (see above) and the
subsequent assignment of xb′ to ḡ yields a correct upper bound estimate ḡ.

(b) Otherwise, if the down-up-oracle never answers true, then GD leaves the
outer while-loop without changing the current estimate ḡ and returns it—
which is correct by our assumption.

The Power Rule. The Power (PW) rule is based on a standard technique for
fitting curves to data, namely linear regression. A linear regression on a data set
(X, Y) computes the parameters of a linear function f̄(x) = m · x + b such that
the residual sum of squares (RSS) is minimized, i. e. m and b are chosen such
that

k∑

i=1

(Y [i]− f̄(X [i]))2 = min

{
k∑

i=1

(Y [i]− (m′ ·X [i] + b′))2 | m′, b′ ∈ Q

}

holds. Let linear-regression(X, Y) be a procedure that performs a linear
regression on (X, Y) and returns the slope m of the linear regression fit f̄ together
with the residuals vector R((X, Y), f̄) := (Y [1]− f̄(X [1]), . . . , Y [k] − f̄(X [k])).
Then, PW can be described in pseudocode as follows:
1: procedure power-rule(X, Y)
2: X ′ ← log X := (log X [1], . . . , log X [k])
3: Y ′ ← log Y
4: (m, R) ← linear-regression(X ′, Y ′)
5: ḡ(x) ← xm

6: residuals-curve ← concavity(X ′, R)
7: if residuals-curve is convex then
8: return (ḡ, lower)
9: else if residuals-curve is concave then

10: return (ḡ, upper)
11: else
12: return (ḡ, close)

184 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

The class of functions for which PW is guaranteed correct is

FPW := {f : N
+ → Q

+ | f(x) = bxm},

where b and m are arbitrary positive rationals: Let k be at least 3 (for smaller
values of k the application of the concavity -oracle does not make sense) and Y
be f(X) for any f(x) = bxm ∈ FPW . Application of the log-log transformation in
the first two lines of PW yields Y ′ = m ·X ′+log b which is a linear relationship.
Hence, the result of the linear regression on (X ′, Y ′) is (m, (0, . . . , 0)), and PW
returns ḡ(x) = xm together with the bound type close, as the residuals curve is
neither convex nor concave. Obviously, this result is correct.

You may wonder whether the PW can also be justified by a class of functions
that allows lower order terms like the class FGD, which contains functions f(x) =
bxm + c for positive rationals b, c and m. The answer is “no!”, as in this case the
log-log transformed data does not lie on a straight line. Up to now, two variations
of PW have been suggested in order to deal with lower order terms:

– The High-End Power Rule (PW3) applies PW only to the three highest data
points, i. e. to the data points that belong to the indices k − 2, k − 1 and k.
It can at least be motivated by FGD.

– The Power Rule with Differences (PWD) applies PW to differences of suc-
cessive Y -values rather than to pure Y -values and can be justified with FGD,
but—it only works if the X-values are chosen such that X [i] = Δ ·X [i− 1]
for a constant Δ > 1 and all i ∈ {2, . . . , k}.

The intuition behind PW3 is as follows: If Y is f(X) for some f ∈ FGD, f(x) =
bxm +c, then the log-log transformed data approaches a straight line for growing
input sizes Xi:

log(bxm + c) = m log x + log(b + c/xm) x→∞−→ m logx + log b = log(bxm)

Therefore, PW is the more likely to find the correct slope m of the data curve
f(X) the higher the data points are, to which it is applied.

In order to prove that PWD is guaranteed correct for the class FGD we first
describe it properly:

1: procedure pwd(X, Y)
2: X ′ ← (X [1], . . . , X [k − 1])
3: Y ′ ← (Y [2]− Y [1], . . . , Y [k]− Y [k − 1])
4: return power-rule(X ′, Y ′)

Let k be at least 4, let X [i] be equal to Δ ·X [i− 1] for a constant Δ > 1 and
all i ∈ {2, . . . , k}, and let Y be f(X) for any function f(x) = bxm + c ∈ FGD. It
suffices to show that Y ′ = c′(X ′)m holds for some positive rational c′, as we have

4. Analysis of Algorithms 185

already shown that in this case an invocation of power-rule(X ′, Y ′) yields the
correct result (xm, close). It is

Y ′[i] = f(X [i + 1])− f(X [i])
= bX [i + 1]m + c− bX [i]m − c

= b(ΔX [i])m − bX [i]m

= c′X ′[i]m

for the positive constant c′ = b(Δm − 1) and all i ∈ {1, . . . , k − 1}—as desired.

The Box Cox Rule. A generalization of PW would be to apply any transfor-
mation on X , or on Y or on both X and Y , that produces a straight line in the
transformed scale, and then to invert this transformation suitably in order to
obtain a bound estimate for the original data curve—if it was a transformation
on Y , or on both X and Y . For example, if Y = X2, then the transformation
Y ′ =

√
Y would yield a linear dependency of Y ′ on X , as well as the transforma-

tion X ′ = X2 would result in a linear connection between X ′ and Y . Obviously,
only in the former case an inversion of the transformation is necessary to get a
bound for Y .

Yet, the difficulty with this approach is that the quality of different transfor-
mations can hardly be compared in most cases, because every transformation
changes the scale of the data points such that the straightness (as our measure
of quality) of the transformed data curve has to be determined relative to the
change of the scale.

Nevertheless, the Box Cox (BC) rule does perform a transformation of the
data which is based on the Box Cox curve-fitting method (see [50] e. g.). This
method applies a transformation on Y that is parameterized by λ, λ ∈ R, and
defines a measure of straightness that does permit the comparison of transfor-
mations for different values of λ. The transformation on Y that depends upon λ
is defined as follows:

Y (λ) =

{
Y λ−1
λY λ−1

geo
if λ 	= 0

Ygeo ln (Y) if λ = 0

where all operations on vector Y are to be understood componentwise, and where
Ygeo denotes the geometric mean of the Y -values, i. e.

Ygeo =

(
k∏

i=1

Y [i]

)1/k

.

The quality or straightness of a transformation Y (λ) is defined as the residual
sum of squares (RSS) that results from a linear regression on X and Y (λ). Hence,
the Box-Cox curve-fitting method computes the inverse of a transformation Y (λ)

that minimizes the RSS.
Due to the high level of abstraction of [551] with respect to the description

of BC, we feel free to add some details that may not have been intended by the

186 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

authors of [551]—but appear to be reasonable to us. So, the following description
of BC is to be understood as our suggestion on a possible implementation:

Let bmin, bmax, and δ be in Q
+ with bmin ≤ bmax and δ ≤ bmax− bmin. The BC

iterates over guess functions xb, where the range [bmin, bmax] of b has to be defined
by the user. It can be implemented such that the guess function’s exponent b is
initialized with bmin and increased by the additive constant δ in each iteration—
until bmax is exceeded. (This is mainly what we added to the description of
BC by [551].) During each iteration, the transformation parameter λ is set to
1/b and the corresponding transformation Y (λ) is evaluated with the help of
a linear regression on X and Y (λ) which returns the RSS together with the
residuals vector. Finally, a guess function xb′ that produced the minimum RSS
is returned as bound estimate ḡ together with a bound type that is determined
with the help of the concavity-oracle applied to X and R′, where R′ may
denote the residuals vector that belongs to ḡ.

For the sake of precision, a description of BC in pseudocode follows:

1: procedure box-cox((X, Y), bmin, bmax)
2: b ← bmin

3: rss-min←∞
4: while b ≤ bmax do
5: λ← 1/b
6: (rss, R)← linear-regression(X, Y (λ))
7: if rss < rss-min then
8: rss-min← rss
9: R-min← R

10: b′ ← b
11: b ← b + δ

12: ḡ(x) ← xb′

13: residuals-curve ← concavity(X,R-min)
14: if residuals-curve is convex then
15: return (ḡ, lower)
16: else if residuals-curve is concave then
17: return (ḡ, upper)
18: else
19: return (ḡ, close)

Assume that Y = f(X) holds for some f(x) ∈ FPW , f(x) = axb. Then, Y (λ) is
a linear function of X if and only if λ is equal to 1/b. Therefore, if the guess
function xb is tested during the iteration of BC and k ≥ 3 holds (such that the
concavity-oracle is not fooled by its input), then BC is guaranteed to yield the
correct result (xb, close). In this very restricted sense, BC is guaranteed correct
for the class FPW .

The Difference Rule. The Difference Rule (DR) is based on Newton’s poly-
nomial interpolation formula: Let x0, . . . , xn, n ∈ N, be strictly increasing real
numbers and y0, . . . , yn ∈ R be the values of an unknown function f at x0, . . . , xn.

4. Analysis of Algorithms 187

Then the corresponding unique interpolation polynomial In of degree at most
n—a polynomial satisfying the interpolation constraints In(xi) = yi for i =
0, . . . , n—can be represented via the n + 1 Newton polynomials

N0(x) := 1, Ni(x) :=
i−1∏

j=0

(x− xj) (i = 1, . . . , n),

where Ni is a product of i linear factors and thus is of degree i, as follows:

In(x) =
n∑

i=0

ciNi(x)

The coefficients ci are the i-th divided differences [x0, . . . , xi] = [xi, . . . , x0] which
are defined recursively and induced by the interpolation constraints:

[xi] := yi for i = 0, . . . , n and [xj0 , . . . , xjl
] :=

[xj1 , . . . , xjl
]− [xj0 , . . . , xjl−1]

xjl
− xj0

for each sequence j0, . . . , jl of successive indices in {0, 1, . . . , n}.
Now, what DR actually does—given the data (X, Y)—is based on a well

known scheme for iteratively computing the coefficients of the corresponding
interpolation polynomial. In accordance to that scheme, DR iteratively com-
putes vectors Y0, Y1 . . . , Yk−1 of divided differences whose first component Yi[1],
respectively, is the i-th divided difference ci:

Y0 := Y, Yi := ([X [1], . . . , X [i + 1]], . . . , [X [k − i], . . . , X [k]]) (i = 1, . . . , k − 1),

where Yi, i = 1, . . . , k − 1, can be built efficiently from Yi−1 and X as follows:

Yi := (Yi[1], . . . , Yi[k − i]), Yi[j] :=
Yi−1[j + 1]− Yi−1[j]

X [j + i]−X [j]
(j = 1, . . . , k − i)

The following observation is crucial with respect to the idea behind DR: If
Y = f(X) for a polynomial f of degree d < k, then Ik−1 is equal to f , the
divided differences cd+1 = Yd+1[1], . . . , ck−1 = Yk−1[1] are equal to zero, and the
components of Yd must be equal. Furthermore, if f has nonnegative coefficients,
then the sequence of components of vector Y0, . . . , Yd−1 respectively must be
strictly increasing.

If DR knew in advance that Y is equal to f(X) for a polynomial f of degree
d < k, then it could stop on finding a first Yi whose components are all equal
and return (xi, close)—which would be a correct result. But—unfortunately—
DR does not know anything about f in advance, and therefore needs a heuristic
stopping criterion: It seems to be a reasonable heuristic to stop for the first
Yi that does not appear to be increasing and then to return the upper bound
estimate ḡ(x) = xi. We sum up the description of DR by means of pseudocode:

188 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

1: procedure difference-rule(X, Y)
2: i ← 0
3: Y0 ← Y
4: X0 ← X
5: trend← trend(X0, Y0)
6: while trend is increasing and i < k − 1 do
7: i ← i + 1
8: compute Yi from Yi−1 and X (see above)
9: Xi ← X [1..k − i] := (X [1], . . . , X [k − i])

10: trend← trend(Xi, Yi)
11: ḡ(x) ← xi

12: return (ḡ, upper)

Given that the trend-oracle does not fail, the preceding paragraphs directly
imply that DR is guaranteed correct for all polynomials with nonnegative coef-
ficients and degree less than k, i. e. for the class

FDF = {f : N
+ → Q

+ | f(x) = ak−1x
k−1 + · · ·+ a1x + a0},

where a0, a1, . . . , ak−1 ∈ Q
+
0 := Q

+ ∪ {0}.

Some Experimental Results. The authors of [551] performed several exper-
iments in order to validate the curve bounding rules. Without going too much
into detail (for details see the aforesaid paper), the main observations concerning
these experiments will be given in the following:

The first experiment used a small input vector X containing only powers of two
ranging from 16 to 128, i. e. X = (16, 32, 64, 128), and constructed measurement
vectors Y = f(X) (mainly) for parameterized functions f(x) = axb + cxd, where
the parameters and the small input sizes were chosen such that the rules got
“stressed” and the limits of their successful applicability could be found. In this
context, different combinations of b ∈ {0.2, 0.8, 1.2} and d ∈ {0, 0.2, b− 0.2}—
respecting the constraint b > d—as well as a = 3 and c ∈ {1,−1, 104}, where c
was always set to 104 in case of a constant second order term (d = 0), turned out
to be a good choice, as they shed some light on the rule’s behavior in situations
where large second order terms (c # a or b ≈ d) or even negative second order
terms (c = −1) dominate Y for small input sizes.

Generally, one could see that the rules do not work well on functions that
are decreasing or—to speak more clearly—decreasing for the tested input sizes.
This was most obvious for GR, which always failed on functions with negative
second order terms. A reason for this behavior may be, that a function f , with
a negative second order term, approaches its true asymptote g from below in
the sense that the ratio Y/f̄(X) still has a tendency to increase if f̄ is already
equal to g or if f̄ is only slightly larger than g. This fools the trend-oracle. As
an example, you may take f(x) = n2−n, its true asymptote g(x) = n2, and the
guess function f̄(x) = n2.01: If you plot the ratio f(x)/f̄(x) for n ∈ [1, 100], you
will observe an increasing trend although f(x) /∈ Ω(f̄(x)) holds.

4. Analysis of Algorithms 189

In contrast to GR, PW and its variations worked quite well on those functions
with negative second order terms. Furthermore (—but not surprisingly), PWD
and DF successfully managed to eliminate large constant second order terms,
whereas the opposite is true for BC. The latter may be due to an intrinsic
property of the λ transformations Y (λ) on which BC is based—as well as on the
way it may have been implemented and used: The authors of [551] report that
BC often produced a numerical error in those situations, because it happened
to try assigning 1/0 to λ. How could that have happened?—If Y contains the
values of a constant function or appears to contain the values of a constant
function, because of f containing a very large constant second order term, then
the constant estimate ḡ(x) = xb = x0 either is or falsely seems to be the true
asymptote g of f and the straightest λ transformation will be found for b ≈ 0.
Now, assume an implementation of BC that initializes b with bmax, produces
the next guess via a call to next-order(xb,−), and stops the iteration no
earlier than on finding a first transformation that does not decrease the current
minimal RSS value. Then, according to the implementation suggested by [551],
BC will iteratively decrease b by some constant δ until this would yield a negative
value, and then it will go on decreasing b by division through 10 in each step.
Clearly, this results in a numeric error for the computation of the transformation
parameter λ = 1/b.

However, our suggestion for the implementation of BC (see above) is not
likely to produce a numerical error, as it restricts b to values in [bmin, bmax],
where bmin > 0 holds. But, nevertheless, it may yield false bound estimates for
data that appears to be constant.

Obviously, second order terms—especially large or negative ones—have influ-
ence on the performance of the rules. But it is clear that their influence weakens
with increasing input sizes. Therefore, a second experiment repeated the first
one for larger input sizes, namely with X extended by another power of two:
X = (8, 16, 32, 64, 128, 256). The main observation concerning this experiment is
that the rules in general seem to be quite unresponsive with respect to changes
of the largest input size—except GD: Now, in contrast to the first experiment,
GD was much more often able to find an initial downup curve and thus to report
a bound that was tighter than the user supplied initial guess.

A third experiment added random noise to some of the functions that seemed
to be easy to bound for all rules during the first two experiments. To each of
these functions f(x) different random variates εi were added for i = 1, 2, 3. The
random variates εi were drawn independently from a normal distribution with
mean 0 and standard deviation set to the constants 1 (i = 1), 10 (i = 2), and
to the arithmetic mean of the function values f(X [j]), j = 1, . . . , k, (i = 3). For
each i, two independent trials were run, in order to check for spurious positive
and negative results.

Not surprisingly, the third experiment showed that the quality of the bounds
returned by any rule degrades as dramatically as random noise increases.

As a forth experiment, the rules were tested for algorithmic data sets derived
from experimental performance analyses that had been performed earlier and

190 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

whose data sets had not been intended to serve for testing the curve bounding
rules. The result of these tests seems to yield not much new insight in the per-
formance of the curve bounding rules: All rules managed to get at least within
a linear factor and sometimes within a

√
x factor of the true bound. But in

some cases, it was even hard to distinguish the quality of the bounds, as the
true bound was not known exactly. Of course, none of the rules will ever be able
to distinguish between logarithmic terms and low order exponents like x0.2, as
long as logarithmic factors are not produced by the next-order-oracle. But,
the authors of [551] report that even including logarithmic terms as guess func-
tions does not help the rules to find logarithmic terms as being part of the true
asymptotic bound with any reliability.

Some Remarks. One of the most direct approaches to the curve bounding
problem appears to be the application of some general (nonlinear) regression
method to the data, followed by a residuals analysis in order to determine the
bound type. Surprisingly, the authors of [551] report that an application of this
approach to a given data set led to contradictory results for different general
regression methods. The adaptability of this approach to the curve bounding
problem might be an interesting question for future research.

An approach based on Tukey’s [785] “ladder of transformation”, which seems
to be reasonable at first glance, was abandoned by the authors of [551], as it
turned out to yield contradictory bound claims like Ω(x2.2) and O(x1.8) for the
same data set depending on whether the transformations were applied to X or
to Y .

The fact that most of the rules fail in the presence of large second order
terms inspired the authors of [551] to design a hybrid method especially for
bounding functions f(x) = axb + cxd with rational exponents b > d ≥ 0 and
positive real coefficients a $ c. This rule incorporates an iterative diagnosis and
repair technique that combines the existing heuristics, and is designed to find
upper bounds on the input data. The result of an experimental validation of the
rule by the aforesaid authors was a complete success, with respect to functions
f(x) = axb + cxd with large second order terms. However, the behavior in all
other cases—e. g. for functions with negative second order terms—was either not
better or even worse than that of the existing rules described above.

The rules, as they are described above, cannot find exponential bounds, be-
cause of their guess functions f̄ and bound estimates ḡ being polynomials. But,
a simple modification turns each rule R ∈ {GR, GD, PW, PWD, BC, DF} that
is guaranteed correct for FR into a rule R′ that is “guaranteed correct” for
FR′ := aFR := {af | f ∈ FR}, where a is any constant greater than 1—in
the sense that the exponent f is bounded correctly: Let f be in one of the
above defined classes FR and Y = af(X). Then, a logarithmic transformation
Ŷ ← log Y yields Ŷ = f̂(X), for some member f̂ of FR which differs from f only
by a positive constant factor. Therefore, a subsequent application of R to (X, Ŷ)
will result in a correct bound for the exponent f .

4. Analysis of Algorithms 191

Furthermore, we can easily invent a rule that is guaranteed correct for all
exponential functions f(x) = ax, a > 1: Simply iterating over guess functions
f̄(x) = bx for a certain range of b > 1, choosing the guess function that min-
imizes, e. g., the RSS, and determining the bound type by means of residual
analysis, will do. But the performance of this rule for any data that represents
some non exponential behavior can be considered as highly unreliable.

4.8.3 Conclusions on the Experimental Study of Asymptotic
Performance

This section was dedicated to the question of how to use finite experiments in
order to study the asymptotic performance of algorithms. The content is thereby
mainly based on [551], i. e., all approaches and techniques presented here are
taken from the aforesaid paper. Our only contribution in this context may be
a new and sometimes perhaps a little more detailed description of the curve
bounding rules, as well as our own preliminary view on the general topic and on
some aspects of the presented techniques and approaches.

We have shown some of the difficulties that are faced when experiments are
used for studying asymptotic performance. In fact, experiments can never be
used to prove a theorem on the asymptotic performance, as they can only test
inputs of limited size. Nevertheless, they can be used to support asymptotic
analysis in a way that is suggested by the so-called scientific method which has
its origin in the natural sciences, where it is applied with utmost success. This
method views science as a cycle between theory and experimentation: Theory
can inductively and partially deductively (by means of theories that are based
on specific assumptions) formulate experimentally falsifiable hypotheses. These
hypotheses can be validated with experiments, which in turn may lead to new or
refined hypotheses and theories, and so on. In Section 4.8.1 we have presented
some suggestions on how to apply the scientific method to performance analysis
and have given a few hints on what difficulties have to be overcome.

The curve bounding rules presented in Section 4.8.2 are intended to yield
asymptotic trends by pure analysis of experimental data. Applying the termi-
nology of the scientific method, their results can be viewed as theories—based
on the assumption of guaranteed correctness. However, preliminary experimental
investigations revealed that this assumption is false in most cases. But let us be
more precise about the results of these experimental investigations: They showed
clearly that the rule’s performance depends strongly on the quality of the input
data (X, Y). The reliability of each rule’s output grows, if the range of tested
input sizes grows and if the amount of random noise in the data is reduced. For
the data that was tested, the rules could in most cases get within a linear factor
or even a

√
x factor of the true asymptotic bound. In situations where we do

not know anything about the true asymptotic performance bound of some algo-
rithm, this might help us to roughly know the true bound’s order of magnitude,
and inspire us to go for a proof of this bound. But if we are interested in fine
distinctions between performance bounds of no more than a logarithmic factor,
e. g. between O(n) and O(n log n), then the rules fail. The authors of [551] report

192 H. Ackermann, H. Röglin, U. Schellbach, and N. Schweer

that even including logarithmic terms as guess functions does not help the rules
to find logarithmic terms as being part of the true asymptotic bound with any
reliability.

We reach the conclusion that the scientific method is a promising approach to
performance analysis: It intends to combine theory and experimentation in a way
that leads to the best possible overall result. Our recommendation concerning
the curve bounding rules is to use them in a careful way: You should be aware of
their limited reliability. Up to now, it seems that the use of a curve bounding rule
R is most reasonable, if it is known in advance that the true bound of the data
curve belongs to the class FR of functions for which R is guaranteed correct in the
sense of Definition 14. From this viewpoint, it appears to be an intriguing task for
future research to find sophisticated curve bounding rules that are guaranteed
correct for classes of functions that differ considerably from FGR, FGD, FPW

and FDF . Furthermore, it may be worthwhile to find out whether there are
more classes of functions for which the existing rules are guaranteed correct or
not. Finally, there are many algorithms (e. g., graph algorithms) whose running
time depends on more than one input parameter (e. g., on the number of vertices
as well as on the number of edges), and it is not clear up to now how a curve
bounding rule that returns an asymptotic trend depending on more than one
input parameter might look like.

4.9 Conclusions

We have presented several techniques for analyzing the behavior of algorithms.
The most classical measure is to consider the behavior in the worst case. The
advantage of this kind of analysis is that it is robust and that it can give very
strong positive results. If the worst-case behavior of an algorithm is good, then
the algorithm performs well on every possible input. On the other hand, this is
a very restrictive requirement which is not met for many algorithms. Nonethe-
less, some of these algorithms perform very well on typical inputs that arise in
industrial applications.

In order to narrow the gap between the theoretical results and the observations
made in practice, one has to find a way of modeling typical inputs, rather than
just to consider the worst case. One possible solution might be to analyze the
behavior on random inputs. The main disadvantage of such an average-case anal-
ysis is that its outcome depends heavily on the chosen probability distribution
on the set of inputs. In most applications it is not clear how to choose a probabil-
ity distribution that reflects typical instances, and hence average-case analyses
are often of limited relevance for practical considerations. A more promising ap-
proach is to consider the behavior on semi-random inputs that have a certain
adversarial structure which is only slightly perturbed at random. Such a hy-
brid between worst-case and average-case analysis is formulated in the model of
smoothed analysis. This relatively new kind of analysis has already led to some
interesting insights into the behavior of certain algorithms and heuristics.

4. Analysis of Algorithms 193

Another possibility of modeling typical inputs is to consider the worst-case
behavior on a restricted set of inputs. Therefore, one has to identify and formalize
properties of typical inputs. In particular for geometric problems, there exists a
hierarchy of different natural properties and restrictions and there are numerous
problems whose complexity decreases significantly if one considers only inputs
that satisfy one of these properties.

There are, of course, also a lot of methods for evaluating the performance of an
algorithm experimentally. We presented the method of counting representative
operations which uses statistical methods to predict the running time of an
algorithm. One advantage of this method is that it can help to identify bottleneck
operations. The major disadvantage is that no theoretical bounds are obtained.
Anyhow, an experimental analysis may lead to the formulation of a falsifiable
hypothesis. As a means for obtaining a falsifiable hypothesis on the asymptotic
performance of an algorithm, given solely experimental data, we discussed some
so-called curve bounding rules.

Let us conclude that in our opinion analyzing the behavior of an algorithm is
essential for gaining new insights that lead to a better understanding and might
help to improve the algorithm. There are several different ways and techniques
how such an analysis can be performed, and we tried to point out the advantages
and disadvantages of each of these, but we cannot give a general advice which
technique and measure should be used. The “right” choice depends on many
different factors, like how much effort one is willing to invest and which goal is
to be achieved.

Chapter 5. Realistic Computer Models

Deepak Ajwani� and Henning Meyerhenke��

5.1 Introduction

Many real-world applications involve storing and processing large amounts of
data. These data sets need to be either stored over the memory hierarchy of one
computer or distributed and processed over many parallel computing devices or
both. In fact, in many such applications, choosing a realistic computation model
proves to be a critical factor in obtaining practically acceptable solutions. In
this chapter, we focus on realistic computation models that capture the running
time of algorithms involving large data sets on modern computers better than
the traditional RAM (and its parallel counterpart PRAM) model.

5.1.1 Large Data Sets

Large data sets arise naturally in many applications. We consider a few examples
here.

– GIS terrain data: Remote sensing [435] has made massive amounts of high
resolution terrain data readily available. NASA already measures the data
volumes from satellite images in petabytes (1015 bytes). With the emergence
of new terrain mapping technologies such as laser altimetry, this data is likely
to grow much further. Terrain analysis is central to a range of important
geographic information systems (GIS) applications concerned with the effects
of topography.

– Data warehouses of companies that keep track of every single transaction on
spatial/temporal databases. Typical examples include the financial sector
companies, telecommunication companies and online businesses. Many data
warehouse appliances already scale to one petabyte and beyond [428].

– The World Wide Web (WWW) can be looked upon as a massive graph
where each web-page is a node and the hyperlink from one page to another
is a directed edge between the nodes corresponding to those pages. As of
August 2008, it is estimated that the indexed web contains at least 27 billion
webpages [208].

Typical problems in the analysis (e.g., [129,509]) of WWW graphs include
computing the diameter of the graph, computing the diameter of the core

� Supported by German Science Foundation (DFG) grant ME 3250/1-1, DFG grant
ME 2088/1-3, and by MADALGO - Center for Massive Data Algorithmics, a Center
of the Danish National Research Foundation.

�� Partially supported by German Science Foundation (DFG) Research Training Group
GK-693 of the Paderborn Institute for Scientific Computation (PaSCo) and by DFG
Priority Programme 1307 Algorithm Engineering.

M. Müller-Hannemann and S. Schirra (Eds.): Algorithm Engineering, LNCS 5971, pp. 194–236, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

5. Realistic Computer Models 195

of the graph, computing connected and strongly connected components and
other structural properties such as computing the correct parameters for the
power law modeling of WWW graphs. There has also been a lot of work on
understanding the evolution of such graphs.

Internet search giants and portals work on very large datasets. For exam-
ple, Yahoo!, a major Internet portal, maintains (as of 2008) a database of
more than a petabyte [426].

– Social networks: Social networks provide yet another example of naturally
evolving massive graphs [55]. One application area is citation graphs, in
which nodes represent the papers and an edge from one paper to another
shows the citation. Other examples include networks of friends, where nodes
denote individuals and edges show the acquaintance, and telephone graphs,
where nodes represent phone numbers and edges represent phone call in
the last few days. Typical problems in social networks include finding local
communities, e. g., people working on similar problems in citation graphs.

– Artificial Intelligence and Robotics: In applications like single-agent search,
game playing and action planning, even if the input data is small, interme-
diate data can be huge. For instance, the state descriptors of explicit state
model checking softwares are often so large that main memory is not suffi-
cient for the lossless storage of reachable states during the exploration [267].

– Scientific modeling and simulation (e. g., particle physics, molecular dynam-
ics), engineering (e. g., CAD), medical computing, astronomy and numerical
computing.

– Network logs such as fault alarms, CPU usage at routers and flow logs.
Typical problems on network logs include finding the number of distinct IP
addresses using a given link to send their traffic or how much traffic in two
routers is common.

– Ad hoc network of sensors monitoring continuous physical observations –
temperature, pressure, EMG/ECG/EEG signals from humans, humidity etc.

– Weather prediction centers collect a massive amount of weather, hydrologi-
cal, radar, satellite and weather balloon data and integrate it into a variety
of computer models for improving the accuracy of weather forecasts.

– Genomics, where the sequence data can be as large as a few terabytes [111].

– Graphics and animations [281].

Note that the term “large” as used in this chapter is in comparison with the
memory capacity and it depends not only on the level of memory hierarchy but
also the computational device in use. For instance, road network of a small city
may fit in the main memory of modern computers, but still be considered “large”
for route planning applications involving a flash memory card on a small mobile
device like Pocket PC [342,699] or in the context of cache misses.

Next, we consider the traditional RAM model of computation and the reasons
for its inadequacy for applications involving large data sets.

196 D. Ajwani and H. Meyerhenke

5.1.2 RAM Model

The running time of an algorithm is traditionally analyzed by counting the
number of executed primitive operations or “instructions” as a function of the
input size n (cf. Chapter 4). The implicit underlying model of computation is the
one-processor, random-access machine (RAM) model. The RAM model or the
“von Neumann model of computation” consists of a computing device attached
to a storage device (or “memory”). The following are the key assumptions of this
model:

– Instructions are executed one after another, with no concurrent operations.
– Every instruction takes the same amount of time, at least up to small con-

stant factors.
– Unbounded amount of available memory.
– Memory stores words of size O(log n) bits where n is the input size.
– Any desired memory location can be accessed in unit time.
– For numerical and geometric algorithms, it is sometimes also assumed that

words can represent real numbers accurately.
– Exact arithmetic on arbitrary real numbers can be done in constant time.

The above assumptions greatly simplify the analysis of algorithms and allow for
expressive asymptotic analysis.

5.1.3 Real Architecture

Unfortunately, modern computer architecture is not as simple. Rather than hav-
ing an unbounded amount of unit-cost access memory, we have a hierarchy of
storage devices (Figure 5.1) with very different access times and storage capac-
ities. Modern computers have a microprocessor attached to a file of registers.
The first level (L1) cache is usually only a few kilobytes large and incurs a delay
of a few clock cycles. Often there are separate L1 caches for instructions and
data. Nowadays, typical second level (L2) cache has a size of about 32-512 KB
and access latencies around ten clock cycles. Some processors also have a rather
expensive third level (L3) cache of up to 256 MB made of fast static random
access memory cells. A cache consists of cache lines that each store a number of
memory words. If an accessed item is not in the cache, it and its neighbor entries
are fetched from the main memory and put into a cache line. These caches usu-
ally have limited associativity, i. e., an element brought from the main memory
can be placed only in a restricted set of cache lines. In a direct-mapped cache the
target cache line is fixed and only based on the memory address, whereas in a
full-associative cache the item can be placed anywhere. Since the former is too
restrictive and the latter is expensive to build and manage, a compromise often
used is a set-associative cache. There, the item’s memory address determines a
fixed set of cache lines into which the data can be mapped, though within each
set, any cache line can be used. The typical size of such a set of cache lines is
a power of 2 in the range from 2 to 16. For more details about the structure of
caches the interested reader is referred to [631] (in particular its Chapter 7).

5. Realistic Computer Models 197

SpeedSize

Caches

Main Memory

Hard Disk

Registers
< 1 KB

< 8 GB

10 ms

< 256 MB

1 ns

10 ns

5-70 ns

> 20 GB

Fig. 5.1. Memory hierarchy in modern computer architecture

The main memory is made of dynamic random access memory cells. These
cells store a bit of data as a charge in a capacitor rather than storing it as
the state of a flip-flop which is the case for most static random access memory
cells. It requires practically the same amount of time to access any piece of data
stored in the main memory, irrespective of its location, as there is no physical
movement (e. g., of a reading head) involved in the process of retrieving data.
Main memory is usually volatile, which means that it loses all data when the
computer is powered down. At the time of the writing, the main memory size of
a PC is usually between 512 MB and 32 GB and a typical RAM memory has an
access time of 5 to 70 nanoseconds.

Magnetic hard disks offer cheap non-volatile memory with an access time of
10 ms, which is 106 times slower than a register access. This is because it takes
very long to move the access head to a particular track of the disk and wait until
the disk rotates into the seeked position. However, once the head starts reading
or writing, data can be transferred at the rate of 35-125 MB/s. Hence, reading
or writing a contiguous block of hundreds of KB takes only about twice as long
as accessing a single byte, thereby making it imperative to process data in large
chunks.

Apart from the above mentioned levels of a memory hierarchy, there are in-
struction pipelines, an instruction cache, logical/physical pages, the translation

198 D. Ajwani and H. Meyerhenke

lookaside buffer (TLB), magnetic tapes, optical disks and the network, which
further complicate the architecture.

The reasons for such a memory hierarchy are mainly economical. The faster
memory technologies are costlier and, as a result, fast memories with large capac-
ities are economically prohibitive. The memory hierarchy emerges as a reasonable
compromise between the performance and the cost of a machine.

Microprocessors like Intel Xeon have multiple register sets and are able to
execute a corresponding number of threads of activity in parallel, even as they
share the same execution pipeline. The accumulated performance is higher, as
a thread can use the processor while another thread is waiting for a memory
access to finish.

Explicit parallel processing takes the computer architecture further away from
the RAM model. On parallel machines, some levels of the memory hierarchy may
be shared whereas others are distributed between the processors. The commu-
nication cost between different machines is often the bottleneck for algorithms
on parallel architectures.

5.1.4 Disadvantages of the RAM Model

The beauty of the RAM model lies in the fact that it hides all the ‘messy’
details of computer architecture from the algorithm designer. At the same time,
it encapsulates the comparative performance of algorithms remarkably well. It
strikes a fine balance by capturing the essential behavior of computers while
being simple to work with. The performance guarantees in the RAM model are
not architecture-specific and therefore robust. However, this is also the limiting
factor for the success of this model. In particular, it fails significantly when the
input data or the intermediate data structure is too large to reside completely
within the internal memory. This failure can be observed between any two levels
of the memory hierarchy.

For most problems on large data sets, the dominant part of the running time
of algorithms is not the number of “instructions”, but the time these algorithms
spend waiting for the data to be brought from the hard disk to internal memory.
The I/Os or the movement of data between the memory hierarchies (and in
particular between the main memory and the disk) are not captured by the
RAM model and hence, as shown in Figure 5.2, the predicted performance on
the RAM model increasingly deviates from the actual performance. As we will
see in Section 5.5.2, the running times of even elementary graph problems like
breadth-first search become I/O-dominant as the input graph is just twice as
large as the available internal memory. While the RAM model predicts running
time in minutes, it takes hours in practice.

Since the time required by algorithms for large data sets in the sequential
setting can be impractical, a larger number of processors are sometimes used
to compute the solution in parallel. On parallel architectures, one is often in-
terested in the parallel time, work, communication costs etc. of an algorithm.
These performance parameters are simply beyond the scope of the traditional
one-processor RAM model. Even the parallel extension of the RAM model, the

5. Realistic Computer Models 199

Input Size

real performance

predicted performance

Time

Fig. 5.2. Predicted performance of RAM model versus its real performance

PRAM model, fails to capture the running time of algorithms on real parallel
architectures as it ignores the communication cost between the processors.

5.1.5 Future Trends

The problem is likely to aggravate in the future. According to Moore’s law,
the number of transistors double every 18 months. As a result, the CPU speed
continued to improve at nearly the same pace until recently, i.e., an average per-
formance improvement of 1% per week. Meanwhile, due to heat problems caused
by even higher clock speeds, processor architects have passed into increasing the
number of computing entities (cores) per processor instead. The usage of paral-
lel processors and multi-cores makes the computations even faster. On the other
hand, random access memory speeds and hard drive seek times improve at best
a few percentages per year. Although the capacity of the random access memory
doubles about every two years, users double their data storage every 5 months.
Multimedia (pictures, music and movies) usage in digital form is growing and the
same holds true for the content in WWW. For example, the number of articles
in the online encyclopedia Wikipedia has been doubling every 339 days [830]
and the online photo sharing network Flickr that started in 2004 had more than
three billion pictures as of November 2008 [289] and claims that three to five
million photos are updated daily on its network. Consequently, the problem sizes
are increasing and the I/O-bottleneck is worsening.

5.1.6 Realistic Computer Models

Since the RAM model fails to capture the running time of algorithms for prob-
lems involving large data sets and the I/O bottleneck is likely to worsen in
future, there is clearly a need for realistic computer models – models taking

200 D. Ajwani and H. Meyerhenke

explicit care of memory hierarchy, parallelism or other aspects of modern ar-
chitectures. These models should be simple enough for algorithm design and
analysis, yet they should be able to capture the intricacies of the underlying ar-
chitecture. Their performance metric can be very different from the traditional
“counting the instructions” approach of the RAM model and algorithm design
on these models may need fundamentally different techniques. This chapter in-
troduces some of the popular realistic computation models – external memory
model, parallel disk model, cache-oblivious model, and parallel bridging mod-
els like BSP, LogP, CGM, QSM etc. – and provides the basic techniques for
designing algorithms on most of these models.

In Section 5.2, many techniques for exploiting the memory hierarchy are in-
troduced. This includes different memory hierarchy models, algorithm design
techniques and data structures as well as several optimization techniques spe-
cific to caches. After the introduction of various parallel computing models in
Section 5.3, Section 5.4 shows the relationship between the algorithms designed
in memory hierarchy and parallel models. In Section 5.5, we discuss success sto-
ries of Algorithm Engineering on large data sets using the introduced computer
models from various domains of computer science.

5.2 Exploiting the Memory Hierarchy

5.2.1 Memory Hierarchy Models

In this section, we introduce some of the memory hierarchy models that have
led to successful Algorithm Engineering on large data sets.

External Memory Model. The I/O model or the external memory (EM)
model (depicted in Figure 5.3) as introduced by Aggarwal and Vitter [11] as-
sumes a single central processing unit and two levels of memory hierarchy. The
internal memory is fast, but has a limited size of M words. In addition, we
have an external memory which can only be accessed using I/Os that move B
contiguous words between internal and external memory. For some problems,
the notation is slightly abused and we assume that the internal memory can
have up to M data items of a constant size (e. g., vertices/edges/characters/seg-
ments etc.) and in one I/O operation, B contiguous data items move between
the two memories. At any particular timestamp, the computation can only use
the data already present in the internal memory. The measure of performance
of an algorithm is the number of I/Os it performs. An algorithm A has lower
I/O-complexity than another algorithm A′ if A requires less I/Os than A′.

Although we mostly use the sequential variant of the external memory model,
it also has an option to express disk parallelism. There can be D parallel disks
and in one I/O, D arbitrary blocks can be accessed in parallel from the disks.
The usage of parallel disks helps us alleviate the I/O bottleneck.

5. Realistic Computer Models 201

D ·B

Memory M

CPU

Disk 1 Disk i Disk D

Fig. 5.3. The external memory model

Parallel Disk Model. The parallel disk model (depicted in Figure 5.4) by
Vitter and Shriver [810] is similar to the external memory model, except that it
adds a realistic restriction that only one block can be accessed per disk during
an I/O, rather than allowing D arbitrary blocks to be accessed in parallel. The
parallel disk model can also be extended to allow parallel processing by allowing
P parallel identical processors each with M/P internal memory and equipped
with D/P disks.

Sanders et al. [696] gave efficient randomized algorithms for emulating the
external memory model of Aggarwal and Vitter [11] on the parallel disk model.

Ideal Cache Model. In the external memory model we are free to choose any
two levels of the memory hierarchy as internal and external memory. For this
reason, external memory algorithms are sometimes also referred to as cache-
aware algorithms (“aware” as opposed to “oblivious”). There are two main prob-
lems with extending this model to caches: limited associativity and automated
replacement. As shown by Sen and Chatterjee [724], the problem of limited asso-
ciativity in caches can be circumvented at the cost of constant factors. Frigo et
al. [308] showed that a regular algorithm causes asymptotically the same num-
ber of cache misses with LRU (least recently used) or FIFO (first-in first-out)
replacement policy as with optimal off-line replacement strategy. Intuitively, an
algorithm is called regular if the number of incurred cache misses (with an op-
timal off-line replacement) increase by a constant factor when the cache size is
reduced to half.

202 D. Ajwani and H. Meyerhenke

Memory M

CPU

Disk 1 Disk i Disk D

BBBBB BBB

Fig. 5.4. The parallel disk model

Similar to the external memory model, the ideal cache model [308] assumes
a two level memory hierarchy, with the faster level having a capacity of storing
at most M elements and data transfers in chunks of B elements. In addition, it
also assumes that the memory is managed automatically by an optimal offline
cache-replacement strategy, and that the cache is fully associative.

Cache-Oblivious Model. In practice, the model parameters B and M need
to be finely tuned for an optimal performance. For different architectures and
memory hierarchies, these values can be very different. This fine-tuning can be
at times quite cumbersome. Besides, we can optimize only one memory hierarchy
level at a time. Ideally, we would like a model that would capture the essence
of the memory hierarchy without knowing its specifics, i. e., values of B and M ,
and at the same time is efficient on all hierarchy levels simultaneously. Yet, it
should be simple enough for a feasible algorithm analysis. The cache-oblivious
model introduced by Frigo et al. [308] promises all of the above. In fact, the
immense popularity of this model lies in its innate simplicity and its ability to
abstract away the hardware parameters.

The cache-oblivious model also assumes a two level memory hierarchy with
an internal memory of size M and block transfers of B elements in one I/O. The
performance measure is the number of I/Os incurred by the algorithm. How-
ever, the algorithm does not have any knowledge of the values of M and B.
Consequently, the guarantees on I/O-efficient algorithms in the cache-oblivious
model hold not only on any machine with multi-level memory hierarchy but
also on all levels of the memory hierarchy at the same time. In principle, these

5. Realistic Computer Models 203

algorithms are expected to perform well on different architectures without the
need of any machine-specific optimization.

The cache-oblivious model assumes full associativity and optimal replacement
policy. However, as we argued for the ideal cache model, these assumptions do
not affect the asymptotics on realistic caches.

However, note that cache-oblivious algorithms are usually more complicated
than their cache-aware I/O-efficient counterparts. As a result, the constant fac-
tors hidden in the complexity of cache-oblivious algorithms are usually higher
and on large external memory inputs, they are slower in practice.

Various Streaming Models. In the data stream model [603], input data can
only be accessed sequentially in the form of a data stream, and needs to be
processed using a working memory that is small compared to the length of the
stream. The main parameters of the model are the number p of sequential passes
over the data and the size s of the working memory (in bits). Since the classical
data stream model is too restrictive for graph algorithms and even the undirected
connectivity problem requires s×p = Ω(n) [387] (where n is the number of nodes
in a graph), less restrictive variants of streaming models have also been studied.
These include the stream-sort model [12] where sorting is also allowed, the W-
stream model [232] where one can use intermediate temporary streams, and the
semi-streaming model [284], where the available memory is O(n·polylog(n)) bits.

There are still a number of issues not addressed by these models that can be
critical for performance in practical settings, e. g., branch mispredictions [451],
TLB misses etc. For other models on memory hierarchies, we refer to [53, 658,
505,569].

5.2.2 Fundamental Techniques

The key principles in designing I/O-efficient algorithms are the exploitation of
locality and the batching of operations. In a general context, spatial locality
denotes that data close in address space to the currently accessed item is likely to
be accessed soon whereas temporal locality refers to the fact that an instruction
issued or a data item accessed during the current clock cycle is likely to be
issued/accessed in the near future as well. The third concept is batching, which
basically means to wait before issuing an operation until enough data needs to
be processed such that the operation’s cost is worthwhile. Let us see in more
detail what this means for the design of I/O-efficient algorithms.

– Exploiting spatial locality: Since the data transfer in the external mem-
ory model (as well as the cache-oblivious model) happens in terms of block
of elements rather than a single element at a time, the entire block when
accessed should contain as much useful information as possible. This concept
is referred to as “exploiting spatial locality”. The fan-out of B in a B-tree
exploiting the entire information accessible in one I/O to reduce the height
of the tree (and therefore the worst-case complexity of various operations)
is a typical example of “exploiting spatial locality”.

204 D. Ajwani and H. Meyerhenke

Spatial locality is sometimes also used to represent the fact that the likeli-
hood of referencing a resource is higher if a resource near it (with an appro-
priate measure of “nearness”) has just been referenced. Graph clustering and
partitioning techniques are examples for exploiting “nearness”.

– Exploiting temporal locality: The concept of using the data in the inter-
nal memory for as much useful work as possible before it is written back to
the external memory is called “exploiting temporal locality”. The divide and
conquer paradigm in the external memory can be considered as an example
of this principle. The data is divided into chunks small enough to fit into
the internal memory and then the subproblem fitting internally is solved
completely before reverting back to the original problem.

– Batching the operations: In many applications, performing one operation
is nearly as costly as performing multiple operations of the same kind. In
such scenarios, we can do lazy processing of operations, i. e., we first batch a
large number of operations to be done and then perform them “in parallel”
(altogether as one meta operation). A typical example of this approach is the
buffer tree data structure described in more detail in Section 5.2.3. Many
variants of external priority queue also do lazy processing of decrease-key
operations after collecting them in a batch.

The following tools using the above principles have been used extensively in
designing external memory algorithms:

Sorting and Scanning. Many external memory and cache-oblivious algorithms
can be assembled using two fundamental ingredients: scanning and sorting. For-
tunately, there are matching upper and lower bounds for the I/O complexity of
these operations [11]. The number of I/Os required for scanning n data items
is denoted by scan(n) = Θ(n/B) and the I/O complexity of sorting n elements
is sort(n) = Θ(n

B logM/B
n
B) I/Os. For all practical values of B, M and n on

large data sets, scan(n) < sort(n)$ n. Intuitively, this means that reading and
writing data in sequential order or sorting the data to obtain a requisite layout
on the disk is less expensive than accessing data at random.

The O(n/B) upper bound for scanning can easily be obtained by the following
simple modification: Instead of accessing one element at a time (incurring one
I/O for the access), bring B contiguous elements in internal memory using a
single I/O. Thus for the remaining B− 1 elements, one can do a simple memory
access, rather than an expensive disk I/O.

Although a large number of I/O-efficient sorting algorithms have been pro-
posed, we discuss two categories of existing algorithms - merge sort and distri-
bution sort. Algorithms based on the merging paradigm proceed in two phases:
In the run formation phase, the input data is partitioned into sorted sequences,
called “runs”. In the second phase, the merging phase, these runs are merged
until only one sorted run remains, where merging k runs S1, . . . , Sk means that
a single sorted run S′ is produced that contains all elements of runs S1, . . . , Sk.
In the external memory sorting algorithm of Aggarwal and Vitter [11], the first
phase produces sorted runs of M elements and the second phase does a M

B -way

5. Realistic Computer Models 205

merge, leading to O(n
B

logM/B
n
B

) I/Os. In the cache-oblivious setting, funnel-
sort [308] and lazy funnelsort [131], also based on the merging framework, lead
to sorting algorithms with a similar I/O complexity. Algorithms based on the
distribution paradigm compute a set of splitters x1 ≤ x2 ≤ . . . ≤ xk from the
given data set S in order to partition it into subsets S0, S1, . . . , Sk so that for all
0 ≤ i ≤ k and x ∈ Si, xi ≤ x ≤ xi+1, where x0 = −∞ and xk+1 =∞. Given this
partition, a sorted sequence of elements in S is produced by recursively sorting
the sets S0, . . . , Sk and concatenating the resulting sorted sequences. Examples
of this approach include BalanceSort [616], sorting using the buffer tree [35],
randomized online splitters [810], and algorithms obtained by simulating bulk-
synchronous parallel sorting algorithms [215].

Simulation of Parallel Algorithms. A large number of algorithms for parallel
computing models can be simulated to give I/O-efficient algorithms and some-
times even I/O-optimal algorithms. The relationship between the algorithms
designed in the two paradigms of parallel and external computing is discussed
in detail in Section 5.4.

Graph Decomposition and Clustering. A large number of external memory
graph algorithms involve decomposing the graphs into smaller subgraphs. Planar
graph separator [528] and its external memory algorithm [535] are a basis for
almost all I/O-efficient planar graph algorithms [45, 40, 46]. Similarly, the tree-
decomposition of a graph leads to external algorithms for bounded treewidth
graphs [534]. For general graphs, the I/O-efficient undirected BFS algorithm of
Mehlhorn and Meyer [555] relies on clustering of the input graph as an important
subroutine. These separators, decompositions and clusterings can be used to
divide the problem into smaller subproblems that fit into the internal memory
[46] or to improve the layout of the graph on the disk [555].

Time Forward Processing. Time forward processing [35] is an elegant tech-
nique for solving problems that can be expressed as a traversal of a directed
acyclic graph (DAG) from its sources to its sinks. Given the vertices of a DAG
G in topologically sorted order and a labelling φ on the nodes of G, the prob-
lem is to compute another labelling ψ on the nodes such that label ψ(v) for
a node v can be computed from labels φ(v) and the labels ψ(u1), . . . , ψ(uk) of
v’s in-neighbors u1, . . . , uk in O(sort(k)) I/Os. This problem can be solved in
O(sort(m)) I/Os, where m is the number of edges in the DAG. The idea [35] is
to process the nodes in G by increasing topological number and use an external
priority queue (Section 5.2.3) to realize the “sending” of information along the
edges of G. When a node ui wants to send its output ψ(ui) to another node v, it
inserts ψ(ui) into priority queue Q and gives it priority v. When the node v is be-
ing evaluated, it removes all entries with priority v from Q. As every in-neighbor
of v sends its output to v by queuing it with priority v, this provides v with the
required labels and it can then compute its new label ψ(v) in O(sort(k)) I/Os.

206 D. Ajwani and H. Meyerhenke

Many problems on undirected graphs can be expressed as evaluation prob-
lems of DAGs derived from these graphs. Applications of this technique for the
construction of I/O-efficient data structures are also known.

Distribution Sweeping. Goodrich et al. [349] introduced distribution sweep-
ing as a general approach for developing external memory algorithms for prob-
lems which in internal memory can be solved by a divide-and-conquer algorithm
based on a plane sweep. This method has been successfully used in developing
I/O-efficient algorithms for orthogonal line segment intersection reporting, all
nearest neighbors problem, the 3D maxima problem, computing the measure
(area) of a set of axis-parallel rectangles, computing the visibility of a set of line
segments from a point, batched orthogonal range queries, and reporting pair-
wise intersections of axis-parallel rectangles. Brodal et al. [131] generalized the
technique for the cache-oblivious model.

Full-Text Indexes. A full-text index is a data structure storing a text (a string
or a set of strings) and supporting string matching queries: Given a pattern
string P , find all occurrences of P in the text. Due to their fast construction
and the wealth of combinatorial information they reveal, full-text indexes are
often used in databases and genomics applications. The external memory suffix
tree and suffix array can serve as full-text indexes. For a text T , they can be
constructed in O(sort(n)) I/Os [280], where n is the number of characters in
T . Other external full text indexing schemes use a hierarchy of indexes [58],
compact Pat trees [176] and string B-trees [285].

There are many other tools for designing external memory algorithms. For
instance, list ranking [733, 168], batch filtering [349], Euler tour computation
[168], graph blocking techniques [10, 615] etc. Together with external memory
data structures, these tools and algorithms alleviate the I/O bottleneck of many
problems significantly.

5.2.3 External Memory Data Structures

In this section, we consider basic data structures used to design worst-case ef-
ficient algorithms in the external memory model. Most of these data structures
are simple enough to be of practical interest.

An I/O-efficient storage of a set of elements under updates and query opera-
tions is possible under the following circumstances:

– Updates and queries are localized. For instance, querying for the most re-
cently inserted element in case of a stack and least recently inserted element
in case of a queue.

– We can afford to wait for an answer of a query to arrive, i. e., we can batch
the queries (as in the case of a buffer tree).

5. Realistic Computer Models 207

– We can wait for the updates to take place, even if we want an online answer
for the query. Many priority queue applications in graph algorithms are
examples of this.

For online updates and queries on arbitrary locations, the B-tree is the most
popular data structure supporting insertion, deletion and query operations in
O(logB n) I/Os.

Stacks and Queues. Stacks and queues are two of the most basic data struc-
tures used in RAM model algorithms to represent dynamic sets of elements and
support deletion of elements in (last-in-first-out) LIFO and (first-in-first-out)
FIFO order, respectively. While in internal memory, we can implement these
data structures using an array of length n and a few pointers, it can lead to
one I/O per insert and delete in the worst case. For the case of a stack, we can
avoid this by keeping a buffer of 2B elements in the internal memory that at any
time contains k most recently added set elements, where k ≤ 2B. Removing an
element needs no I/Os, except for the case when the buffer is empty. In this case,
a single I/O is used to retrieve the block of B elements most recently written
to external memory. Similarly, inserting an element uses no I/Os, except when
the buffer runs full. In this case, a single I/O is used to write the B least recent
elements to a block in external memory. It is not difficult to see that for any
sequence of B insert or delete operations, we will need at most one I/O. Since at
most B elements can be read or written in one I/O, the amortized cost of 1/B
I/Os is the best one can hope for storing or retrieving a sequence of data items
much larger than internal memory.

Analogously, we keep two buffers for queues: a read buffer and a write buffer
of size B consisting of least and most recently inserted elements, respectively.
Remove operations work on the read buffer and delete the least recent element
without any I/O until the buffer is empty, in which case the appropriate external
memory block is read into it. Insertions are done to the write buffer which when
full is written to external memory. Similar to the case of stacks, we get an
amortized complexity of 1/B I/Os per operation.

Linked Lists. Linked lists provide an efficient implementation of ordered lists
of elements, supporting sequential search, deletion and insertion in arbitrary
locations of the list. Traversing a pointer based linked list implementation used
commonly in an internal memory algorithm may need to perform one I/O every
time a pointer is followed. For an I/O-efficient implementation of linked lists,
we keep the elements in blocks and maintain the invariant that there are more
than 2

3B elements in every pair of consecutive blocks. Inserting an element can
be done in a single I/O if the appropriate block is not full. If it is full but any
of its two neighbors has spare capacity, we can push an element to that block.
Otherwise, we split the block into two equally sized blocks. Similarly for deletion,
we check if the delete operation results in violating the invariant and if so, we
merge the two violating blocks. Split and merge can also be supported in O(1)
I/Os similarly.

208 D. Ajwani and H. Meyerhenke

To summarize, such an implementation of linked lists in external memory
supports O(1) I/O insert, delete, merge and split operations while supporting
O(i/B) I/O access to the ith element in the list.

B-tree. The B-tree [77, 182, 416] is a generalization of balanced binary search
trees to a balanced tree of degree Θ(B). Increasing the degree of the nodes helps
us exploit the information provided by one I/O block to guide the search better
and thereby reducing the height of the tree to O(logB n). This in turn allows
O(logB n) I/O insert, delete and search operations. In external memory, a search
tree like the B-tree or its variants can be used as the basis for a wide range of
efficient queries on sets.

The degree of a node in a B-tree is Θ(B) with the root possibly having smaller
degree. Normally, the n data items are stored in the Θ(n/B) leaves (in sorted
order) of a B-tree, with each leaf storing Θ(B) elements. All leaves are on the
same level and the tree has height O(logB n). Searching an element in a B-tree
can be done by traversing down the tree from the root to the appropriate leaf
in O(logB n) I/Os. One dimensional range queries can similarly be answered in
O(logB n + T/B) I/Os, where T is the output size. Insertion can be performed
by first searching the relevant leaf l and if it is not full, inserting the new element
there. If not, we split l into two leaves l′ and l′′ of approximately the same size
and insert the new element in the relevant leaf. The split of l results in the
insertion of a new routing element in the parent of l, and thus the need for a
split may propagate up the tree. A new root (of degree 2) is produced when
the root splits and the height of the tree grows by one. The total complexity of
inserting a new element is thus O(logB n) I/Os. Deletion is performed similarly
in O(logB n) I/Os by searching the appropriate leaf and removing the element
to be deleted. If this results in too few elements in the leaf, we can fuse it with
one of its siblings. Similar to the case of splits in insertion, fuse operations may
propagate up the tree and eventually result in the height of the tree decreasing
by one. The following are some of the important variants of a B-tree:

– Weight balanced B-tree [47]: Instead of a degree constraint (that the degree
of a node v should be Θ(B) in a normal B-tree), in this variant, we require
the weight of a node v to be Θ(Bh) if v is the root of a subtree of height
h. The weight of v is defined as the number of elements in the leaves of the
subtree rooted in v.

– Level balanced B-tree: Apart from the insert, delete and search operations,
we sometimes need to be able to perform divide and merge operations on
a B-tree. A divide operation at element x constructs two trees containing
all elements less than and greater than x, respectively. A merge operation
performs the inverse operation. This variant of B-tree supports both these
operations in O(logB n) I/Os.

– Partially persistent B-tree: This variant of the B-tree supports querying not
only on the current version, but also on the earlier versions of the data
structure. All elements are stored in a slightly modified B-tree where we also

5. Realistic Computer Models 209

associate a node existence interval with each node. Apart from the normal B-
tree constraint on the number of elements in a node, we also maintain that a
node contains Θ(B) alive elements in its existence interval. This means that
for a given time t, the nodes with existence intervals containing t make up
a B-tree on the elements alive at that time.

– String B-tree: Strings of characters can often be arbitrarily long and different
strings can be of different length. The string B-tree of Ferragina and Grossi
[285] uses a blind trie data structure to route a query string q. A blind trie
is a variant of the compacted trie [482, 588], which fits in one disk block. A
query can thus be answered in O(logB n + |q|/B) I/Os.

Cache-oblivious variants of B-trees will be discussed later in Section 5.2.6.

Buffer Tree. A buffer tree [35] is a data structure that supports an arbitrary
sequence of n operations (inserts, delete, query) in O(n

B log M
B

n
B) I/Os. It is simi-

lar to a B-tree, but has degree Θ(M/B) and each internal node has an associated
buffer which is a queue that contains a sequence of up to M updates and queries
to be performed in the subtree where the node is root. New update and query
operations are “lazily” written to the root buffer (whose write buffer is kept in
the internal memory), while non-root buffers reside entirely in external memory.
When the buffer gets full, these operations are flushed down to the subtree where
they need to be performed. When an operation reaches the appropriate node, it
is executed.

Priority Queue. The priority queue is an abstract data structure of fundamen-
tal importance in graph algorithms. It supports insert, delete-min and decrease-
key operations in O(1

B log M
B

n
B) I/Os amortized, while keeping the minimum

element in the internal memory. The key technique behind the priority queue is
again the buffering of operations. The following invariants added to the buffer
tree provide an implementation of the priority queue:

– The buffer of the root node is always kept in the internal memory.
– The O(M/B) leftmost leaves, i. e., the leaves of the leftmost internal node,

are also always kept in the internal memory.
– All buffers on the path from the root to the leftmost leaf are empty.

The decrease-key operation in external memory is usually implemented by in-
serting the element with the new key and “lazily” deleting the old key.

There are many other external memory data structures, like interval tree [47],
priority search tree, range tree, Bkd-tree [649], O-tree [453], PR-tree [42] etc.
For a survey on I/O-efficient data structures, refer to [808,37, 36, 809].

5.2.4 Cache-Aware Optimization

In this section we present some important techniques for an efficient use of
caches. Recall that caches are part of the memory hierarchy between processor

210 D. Ajwani and H. Meyerhenke

registers and the main memory. They can make up several levels themselves and
exploit the common observation that computations are local. If the code does
not respect the locality properties (temporal and spatial), a required data item
is likely to be not in the cache. Then, a cache miss occurs and several contiguous
data words have to be loaded from memory into the cache.

Some techniques to avoid these expensive cache misses are presented in this
section. Although these concepts are mainly designed for caches in the original
sense, some of them might also give insights for the optimization of any level of
the memory hierarchy. We consider two computationally intense areas, namely
numerical linear algebra and computer graphics. In particular for numerical ap-
plications it is well-known that on many machine types the theoretical peak per-
formance is rarely reached due to memory hierarchy related issues (e. g., [335]).
Typically, the codes in both fields perform most work in small computational
kernels based on loop nests. Therefore, while instruction cache misses are no
problem, the exploitation of locality for efficient reuse of already cached data
must be of concern in order to obtain satisfactory performance results.

Detecting Poor Cache Performance. The typical way in practice to analyze
the performance of a program, and in particular its performance bottlenecks, is
to use profiling tools. One freely available set of tools for profiling Linux or
Unix programs comprises gprof [351] and the Valgrind tool suite [613], which
includes the cache simulator cachegrind. While gprof determines how much CPU
time is spent in which program function, cachegrind performs simulations of
the L1 and L2 cache in order to determine the origins of cache misses in the
profiled code. These results can also be displayed graphically with kprof [498]
and kcachegrind [825], respectively.

Some tools provide access to certain registers of modern microprocessors
called performance counters. These accesses provide information about certain
performance-related events such as cache misses without affecting the program’s
execution time. Note that a variety of free and commercial profiling and perfor-
mance tuning tools exists. An extensive list of tools and techniques is outside the
scope of this work. The interested reader is referred to Kowarschik and Weiß [497]
and Goedecker and Hoisie [335] for more details and references.

Fundamental Cache-Aware Techniques. In general, it is only worthwhile
to optimize code portions that contribute significantly to the runtime because
improvements on small contributors have only a small speedup effect on the
whole program (cf. Amdahl’s law in Chapter 6, Section 6.3).

In cases where the profiling information shows that severe bottlenecks are
caused by frequent cache misses, one should analyze the reasons for this behavior
and try to identify the particular class of cache-miss responsible for the problem.
A cache miss can be categorized as cold miss (or compulsory miss), capacity
miss, or conflict miss [395]. While a cold miss occurs when an item is accessed
for the first time, a capacity miss happens when an item has been in the cache
before the current access, but has already been evicted due to the cache’s limited

5. Realistic Computer Models 211

size. Conflict misses arise when an accessed item has been replaced because
another one is mapped to its cache line. The following selection of basic and
simple-to-implement techniques can often help to reduce the number of these
misses and thus improve the program performance. They fall into the categories
data access and data layout optimizations. The former consists mostly of loop
transformations, the latter mainly of modifications in array layouts.

Loop Interchange and Array Transpose. Since data is fetched blockwise into
the cache, it is essential to access contiguous data consecutively, for example
multidimensional arrays. These arrays must be mapped onto a one-dimensional
memory index space, which is done in a row-major fashion in C, C++, and Java
and in a column-major fashion in Fortran. In the former the rightmost index
increases the fastest as one moves through consecutive memory locations, where
in the latter this holds for the leftmost index.

The access of data stored in a multidimensional array often occurs in a loop
nest with a fixed distance of indices (stride) between consecutive iterations. If
this data access does not respect the data layout, memory references are not
performed on contiguous data (those with stride 1), which usually leads to cache
misses. Therefore, whenever possible, the order in which the array is laid out in
memory should be the same as in the program execution, i. e., if i is the index
of the outer loop and j of the inner one, then the access A[i][j] is accordant
to row-major and A[j][i] to column-major layout. The correct access can be
accomplished by either exchanging the loop order (loop interchange) or the array
dimensions in the declaration (array transpose).

Loop Fusion and Array Merging. The loop fusion technique combines two loops
that are executed directly after another with the same iteration space into one
single loop. Roughly speaking, this transformation is legal unless there are de-
pendencies from the first loop to the second one (cf. [497] for more details). It
results in a higher instruction level parallelism, reduces the loop overhead, and
may also improve data locality. This locality improvement can be highlighted by
another technique, the array merging. Instead of declaring two arrays with the
same dimension and type (e. g., double a[n], b[n]), these arrays are combined
to one multidimensional array (double ab[n][2]) or as an array of a structure
comprised of a and b and length n. If the elements of a and b are typically
accessed together, this ensures the access of contiguous memory locations.

Array Padding. In direct-mapped caches or caches with small associativity the
entries at some index i of two different arrays might be mapped to the same
cache line. Alternating accesses to these elements therefore cause a large num-
ber of conflict misses. This can be avoided by inserting a pad, i. e., an allocated,
but unused array of suitable size to change the offset of the second array, be-
tween the two conflicting arrays (inter-array padding). The same idea applies
to multidimensional arrays, where the leading dimension (the one with stride-1
access) is padded with unused memory locations (intra-array padding) if two
elements of the same column are referenced shortly after another.

212 D. Ajwani and H. Meyerhenke

For additional cache-aware optimization techniques the interested reader is
again referred to Kowarschik and Weiß [497] and Goedecker and Hoisie [335].

Cache-Aware Numerical Linear Algebra. The need for computational ker-
nels in linear algebra that achieve a high cache performance is addressed for
instance by the freely available implementations of the library interfaces Basic
Linear Algebra Subprograms (BLAS) [105] and Linear Algebra Package (LA-
PACK) [30]. While BLAS provides basic vector and matrix operations of three
different categories (level 1: vector-vector, level 2: matrix-vector, level 3: matrix-
matrix), LAPACK uses these subroutines to provide algorithms such as solvers
for linear equations, linear least-square and eigenvalue problems, to name a few.
There are also vendor-specific implementations of these libraries, which are tuned
to specific hardware, and the freely available Automatically Tuned Linear Algebra
Software (ATLAS) library [829]. The latter determines the hardware parame-
ters during its installation and adapts its parameters accordingly to achieve a
high cache efficiency on a variety of platforms. In general it is advantageous
to use one of these highly-tuned implementations instead of implementing the
provided algorithms oneself, unless one is willing to carry out involved low-level
optimizations for a specific machine [829].

One very important technique that is used to improve the cache efficiency of
numerical algorithms is loop blocking, which is also known as loop tiling. The
way it can be applied to such algorithms is illustrated by an example after giv-
ing a very brief background on sparse iterative linear equation solvers. In many
numerical simulation problems in science and engineering one has to solve large
systems of linear equations Ax = b for x, where x and b are vectors of length
n and the matrix A ∈ R

n×n is sparse, i. e., it contains only O(n) non-zero en-
tries. These systems may stem from the discretization of a partial differential
equation. As these linear systems cannot be solved by direct methods due to
the large runtime and space consumption this would cause, iterative algorithms
that approximate the linear system solution are applied. They may range from
the basic splitting methods of Jacobi and Gauß-Seidel over their successive over-
relaxation counterparts to Krylov subspace and multigrid methods [686]. The
latter two are hard to optimize for cache data reuse [781] due to global opera-
tions in the first case and the traversal of a hierarchical data structure in the
second one.

Since Krylov subspace and multigrid methods are much more efficient in the
RAM model than the basic splitting algorithms, some work to address these
issues has been done. Three general concepts can be identified to overcome most
of the problems. The first aims at reducing the number of iterations by per-
forming more work per iteration to speed up convergence, the second concept
performs algebraic transformations to improve data reuse, and the third one re-
moves data dependencies, e. g., by avoiding global sums and inner products. See
Toledo’s survey [781] for more details and references.

For multigrid methods in particular, one can optimize the part responsible for
eliminating the high error frequencies. This smoothing is typically performed by
a small number of Jacobi or Gauß-Seidel iterations. If the variables of the matrix

5. Realistic Computer Models 213

Fig. 5.5. Rather than iterating over one complete matrix row (left), the loop blocking
techniques iterates over small submatrices that fit completely into the cache (right)

correspond to graph nodes and the non-zero off-diagonal entries to graph edges,
one can say that these algorithms update a node’s approximated solution value
by a certain edge-weighted combination of the approximated solution values at
neighboring nodes. More precisely, the iteration formula of Gauß-Seidel iterations
for computing a new approximation x(k+1) given an initial guess x(0) is

x
(k+1)
i = a−1

i,i

⎛

⎝bi −
∑

j<i

ai,jx
(k+1)
j −

∑

j>i

ai,jx
(k)
j

⎞

⎠ , 1 ≤ i ≤ n.

Some of the previously presented data layout and access optimizations can be ap-
plied to enhance the cache performance of the Gauß-Seidel algorithm [497]. Data
layout optimizations include array padding to reduce possible conflict misses and
array merging to improve the spatial locality of the entries in row i of A and
bi. As indicated above, a very effective and widely used technique for the im-
provement of data access and therefore temporal locality in loop nests is loop
blocking. This technique changes the way in which the elements of objects, in
our case this would be A and also the corresponding vector elements, are ac-
cessed. Rather than iterating over one row after the other, the matrix is divided
into small block matrices that fit into the cache. New inner loops that iter-
ate within the blocks are introduced into the original loop nest. The bounds of
the outer loops are then changed to access each such block after the other. An
example of this process assuming the traversal of a dense matrix is shown in
Figure 5.5.

For simple problems such as matrix transposition or multiplication this is
rather straightforward (a more advanced cache-oblivious blocking scheme for
matrix multiplication is described in Section 5.2.5). However, loop blocking and
performing several Gauß-Seidel steps one after another on the same block ap-
pears to be a little more complicated due to the data dependencies involved.
When iterating over blocks tailored to the cache, this results in the computation
of parts of x(k′), k′ > k + 1, before x(k+1) has been calculated completely. How-
ever, if these blocks have an overlap of size k′− (k + 1) and this number is small
(as is the case for multigrid smoothers), the overhead for ensuring that each
block has to be brought into the cache only once is small [723]. This blocking
scheme eliminates conflict misses and does not change the order of calculations

214 D. Ajwani and H. Meyerhenke

(and thus the numerical result of the calculation). Hence, it is used in other
iterative algorithms, too, where it is also called covering [781].

The case of unstructured grids, which is much more difficult in terms of cache
analysis and optimization, has also been addressed in the literature [254]. The
issues mainly arise here due to different local structures of the nodes (e. g.,
varying node degrees), which make indirect addressing necessary. In general,
indirect addressing deteriorates cache performance because the addresses stored
in two adjacent memory locations may be far away from each other. In order
to increase the cache performance of the smoother in this setting, one can use
graph partitioning methods to divide the grid into small blocks of nodes that
fit into the cache. Thus, after a reordering of the matrix and the operators, the
smoother can perform as much work as possible on such a small block, which
requires the simultaneous use of one cache block only.

The speedups achievable by codes using the presented optimization techniques
depend on the problem and on the actual machine characteristics. Kowarschik
and Weiß [497] summarize experimental results in the area of multigrid meth-
ods by stating that an optimized code can run up to five times faster than an
unoptimized one.

5.2.5 Cache-Oblivious Algorithms

As indicated above, cache-aware optimization methods can improve the run-
time of a program significantly. Yet, the portability of this performance speedup
from one machine to another is often difficult. That is why one is interested in
algorithms that do not require specific hardware parameters.

One algorithmic technique to derive such cache-oblivious algorithms is the use
of space-filling curves [687]. These bijective mappings from a line to a higher-
dimensional space date back to the end of the 19th century [635,390]. They have
been successfully applied in a variety of computer science fields, e. g., manage-
ment of multimedia databases and image processing as well as load balancing of
parallel computations (see Mokbel et al. [583]). When applied to objects with a
regular structure, for instance structured or semi-structured grids, space-filling
curves often produce high-quality solutions, e. g., partitionings of these graphs
with high locality [862]. Here we present how this concept can be used to derive
a cache-oblivious matrix multiplication algorithm. However, in case of unstruc-
tured grids or meshes that contain holes, space-filling curves usually work not as
well as other approaches. The way to deal with these issues is shown afterwards
by means of the cache-oblivious reordering of unstructured geometric meshes.

Matrix Multiplication. Multiplying two matrices is part of many numerical
applications. Since we use it as a reference algorithm throughout this chapter,
we define it formally.

Problem 1. Let A and B be two n × n matrices stored in the memory mainly
intended for the computational model. Compute the matrix product C := AB

5. Realistic Computer Models 215

Algorithm 3. Naive matrix multiplication
1: for i = 1 to n do
2: for j = 1 to n do
3: C[i, j] = 0.0;
4: for k = 1 to n do
5: C[i, j] = C[i, j] + A[i, k] ·B[k, j];

Fig. 5.6. Recursive construction of the Peano curve

and store it in the same type of memory using an algorithm resembling the naive
one (cf. Algorithm 3).

Algorithm 3 is called standard or naive1 and requires O(n3) operations. It
contains a loop nest where two arrays of length n are accessed at the same
time, one with stride 1, the other one with stride n. A loop interchange would
not change the stride-n issue, but by applying the loop blocking technique,
cached entries of all matrices can be reused. An automatic and therefore cache-
oblivious blocking of the main loop in matrix multiplication can be achieved
by recursive block building [369]. Several techniques have been suggested how
to guide this recursion by space-filling curves. A method based on the Peano
curve [635] (see Figure 5.6, courtesy of Wikipedia [634]) seems to be very promis-
ing, because it increases both spatial and temporal locality. We therefore il-
lustrate its main ideas, the complete presentation can be found in Bader and
Zenger [57].

Again, the key idea for a cache-efficient computation of C := AB is the
processing of matrix blocks. Each matrix is subdivided recursively into nx × ny

block matrices until all of them are small, e. g., some fraction of the cache size.
To simplify the presentation, we use nine recursive blocks (as in Figure 5.6) and
the recursion stops with submatrices that have three rows and three columns.
Note that, according to its authors [57], the algorithm works with any block

1 Naive refers to the fact that asymptotically faster, but more complicated algorithms
exist [758,186].

216 D. Ajwani and H. Meyerhenke

size nx × ny if nx and ny are odd. Each submatrix of size 3 × 3 is stored in a
Peano-like ordering, as indicated by the indices:

⎛

⎝
a0 a5 a6

a1 a4 a7

a2 a3 a8

⎞

⎠ ·

⎛

⎝
b0 b5 b6

b1 b4 b7

b2 b3 b8

⎞

⎠ =

⎛

⎝
c0 c5 c6

c1 c4 c7

c2 c3 c8

⎞

⎠

The multiplication of each block is done in the standard way, for example, c7 :=
a1b6 + a4b7 + a7b8. In general, an element cr can be written as the sum of three
products cr =

∑
(p,q)∈Ir

apbq, where Ir contains the three respective index pairs.
Hence, after initializing all cr to 0, one has to execute for all triples (r, p, q) the
instruction cr ← cr + apbq in an arbitrary order. To do this cache-efficiently,
jumps in the indices r, p, and q have to be avoided. It is in fact possible to find
such an operation order where two consecutive triples differ by no more than
1 in each element, so that optimal spatial and very good temporal locality is
obtained. The same holds for the outer iteration, because the blocks are also
accessed in the Peano order due to the recursive construction.

The analysis of this scheme for the 3 × 3 example in the ideal cache model
with cache size M shows that the spatial locality of the elements is at most a
factor of 3 away from the theoretical optimum. Moreover, the number of cache
line transfers T (n) for the whole algorithm with n a power of 3 is given by
the recursion T (n) = 27T (n/3). For blocks of size k × k each block admits
T (k) = 2 · �k2/B�, where B is the size of a cache line. Altogether this leads
to the transfer of O(n3/

√
M) data items (or O(n3/B

√
M) cache lines) into the

cache, which is asymptotically optimal [781] and improves the naive algorithm
by a factor of

√
M . The Peano curve ordering plays also a major role in a cache-

oblivious self-adaptive full multigrid method [553].

Mesh Layout. Large geometric meshes may contain hundreds of millions of ob-
jects. Their efficient processing for interactive visualization and geometric applica-
tions requires an optimized usage of the CPU, the GPU (graphics processing unit),
and their memory hierarchies. Considering the vast amount of different hardware
combinations possible, a cache-oblivious scheme seems most promising. Yoon and
Lindstrom [853] have developed metrics to predict the number of cache misses
during the processing of a given mesh layout, i. e., the order in which the mesh ob-
jects are laid out on disk or in memory. On this basis a heuristic is described which
computes a layout attempting to minimize the number of cache misses of typical
applications. Note that similar algorithmic approaches have been used previously
for unstructured multigrid (see Section 5.2.4) and for computing a linear ordering
in implicit graph partitioning called graph-filling curves [702].

For the heuristic one needs to specify a directed graph G = (V, E) that repre-
sents an anticipated runtime access pattern [853]. Each node vi ∈ V corresponds
to a mesh object (e. g., a vertex or a triangle) and a directed arc (vi, vj) is
inserted into E if it is likely that the object corresponding to vj is accessed di-
rectly after the object represented by vi at runtime. Given this graph and some
probability measures derived from random walk theory, the task is to find a

5. Realistic Computer Models 217

one-to-one mapping of nodes to layout indices, ϕ : V → {1, . . . , |V |}, that reduces
the expected number of cache misses. Assuming that the cache holds only a single
block whose size is a power of two, a cache-oblivious metric based on the arc
length lij = |ϕ(vi) − ϕ(vj)| is derived, which is proportional to the expected
number of cache misses:

COMg(ϕ) =
1
|E|

∑

(vi,vj)∈E

log(lij) = log

⎛

⎜⎝

⎛

⎝
∏

(vi,vj)∈E

lij

⎞

⎠

1
|E|
⎞

⎟⎠ ,

where the rightmost expression is the logarithm of the geometric mean of the
arc lengths. The proposed minimization algorithm for this metric is related to
multilevel graph partitioning [386], but the new algorithm’s refinement steps
proceed top-down rather than bottom-up. First, the original mesh is partitioned
into k (e. g., k = 4) sets using a graph partitioning tool like METIS [468], which
produces a low number of edges between nodes of different partitions. Then,
among the k! orders of these sets the one is chosen that minimizes COMg(ϕ).
This partitioning and ordering process is recursively continued on each set until
all sets contain only one vertex. Experiments show that the layout computed
that way (which can be further improved by cache-awareness) accelerates several
geometric applications significantly compared to other common layouts.

Other Cache-Oblivious Algorithms. Efficient cache-oblivious algorithms
are also known for many fundamental problems such as sorting [308], distri-
bution sweeping [131], BFS and shortest-paths [134], and 3D convex hulls [158].
For more details on cache-oblivious algorithms, the reader is referred to the
survey paper by Brodal [130].

5.2.6 Cache-Oblivious Data Structures

Many cache-oblivious data structures like static [650] and dynamic B-trees [90,
88,133], priority queue [132,38], kd-tree [9], with I/O complexity similar to their
I/O-efficient counterparts have been developed in recent years. A basic building
block of most cache-oblivious data structures (e. g., [9, 90, 88, 133, 657, 89]) is a
recursively defined layout called the van Emde Boas layout closely related to
the definition of a van Emde Boas tree [794]. For the sake of simplicity, we only
describe here the van Emde Boas layout of a complete binary tree T . If T has
only one node, it is simply laid out as a single node in memory. Otherwise, let h
be the height of T . We define the top tree T0 to be the subtree consisting of the
nodes in the topmost �h/2� levels of T , and the bottom trees T1, . . . , Tk to be
the 2h/2−1� subtrees of size 2�h/2� − 1 each, rooted in the nodes on level �h/2�
of T . The van Emde Boas layout of T consists of the van Emde Boas layout of
T0 followed by the van Emde Boas layouts of T1, . . . , Tk.

A binary tree with a van Emde Boas layout can be directly used as a static
cache-oblivious B-tree [650]. The number of I/Os needed to perform a search in

218 D. Ajwani and H. Meyerhenke

T , i. e., traversing a root-to-leaf path, can be analyzed by considering the first
recursive level of the van Emde Boas layout when the subtrees are smaller than
B. The size of such a base tree is between Θ(

√
B) and Θ(B) and therefore, the

height of a base tree is Ω(log B). By the definition of the layout, each base tree is
stored in O(B) contiguous memory locations and can thus be accessed in O(1)
I/Os. As the search path traverses O(log n/ logB) = O(logB n) different base
trees (where n is the number of elements in the B-tree), the I/O complexity of
a search operation is O(logB n) I/Os.

For more details on cache-oblivious data structures, the reader is referred to
a book chapter by Arge et al. [39].

5.3 Parallel Computing Models

So far, we have seen how the speed of computations can be optimized on a serial
computer by considering the presence of a memory hierarchy. In many fields,
however, typical problems are highly complex and may require the processing of
very large amounts of intermediate data in main memory. These problems often
arise in scientific modeling and simulation, engineering, geosciences, computa-
tional biology, and medical computing [108, 147, 388, 494, 660] for more applica-
tions). Usually, their solutions must be available within a given timeframe to
be of any value. Take for instance the weather forecast for the next three days:
If a sequential processor requires weeks for a sufficiently accurate computation,
its solution will obviously be worthless. A natural solution to this issue is the
division of the problem into several smaller subproblems that are solved con-
currently. This concurrent solution process is performed by a larger number of
processors which can communicate with each other to share intermediate results
where necessary. That way the two most important computing resources, com-
putational power and memory size, are increased so that larger problems can be
solved in shorter time.

Yet, a runtime reduction occurs only if the system software and the application
program are implemented for the efficient use of the given parallel computing
architecture, often measured by their speed-up and efficiency [503]. The absolute
speedup, i. e., the running time of the best sequential algorithm divided by the
running time of the parallel algorithm, measures how much faster the problem
can be solved by parallel processing. Efficiency is then defined as the absolute
speedup divided by the number of processors used.2 In contrast to its absolute
counterpart, relative speedup measures the inherent parallelism of the considered
algorithm. It is defined as the ratio of the parallel algorithm’s running times on
one processor and on p processors [767].

To obtain a high efficiency, the application programmer might not want to
concentrate on the specifics of one architecture, because it distracts from the
actual problem and also limits portability of both the code and its execution

2 On a more technical level efficiency can also be defined as the ratio of real program
performance and theoretical peak performance.

5. Realistic Computer Models 219

speed. Therefore, it is essential to devise an algorithm design model that ab-
stracts away unnecessary details, but simultaneously retains the characteristics
of the underlying hardware in order to predict algorithm performance realisti-
cally [379]. For sequential computing the random access machine (RAM) has
served as the widely accepted model of computation (if EM issues can be ne-
glected), promoting “consistency and coordination among algorithm developers,
computer architects and language experts” [533, p. 1]. Unfortunately, there has
been no equivalent with similar success in the area of parallel computing.

One reason for this issue is the diversity of parallel architectures. To name
only a few distinctions, which can also be found in Kumar et al. [503, Chapter 2],
parallel machines differ in the control mechanism (SIMD vs. MIMD), address-
space organization (message passing vs. shared memory), the interconnection
networks (dynamic vs. static with different topologies), and processor granularity
(computation-communication speed ratio). This granularity is referred to as fine-
grained for machines with a low computation-communication speed ratio and as
coarse-grained for machines with a high ratio. As a consequence of this diversity,
it is considered rather natural that a number of different parallel computing
models have emerged over time (cf. [379, 533,539,743]).

While shared-memory and network models, presented in Sections 5.3.1 and
5.3.2, dominated the design of parallel algorithms in the 1980’s [798, Chapters 17
and 18], their shortcomings regarding performance prediction or portability have
led to new developments. Valiant’s seminal work on bulk-synchronous parallel
processing [789], introduced in 1990, spawned a large number of works on parallel
models trying to bridge the gap between simplicity and realism. These bridging
models are explained in Section 5.3.3.

In Section 5.3.5 we present an algorithmic example and comparisons for the
most relevant models and argue why some of them are favored over others to-
day. Yet, considering recent works on different models, it is not totally clear
even today which model is the best one. In particular because the field of par-
allel computing experiences a dramatic change: Besides traditional dedicated
supercomputers with hundreds or thousands of processors, standard desktop
processors with multiple cores and specialized multicore accelerators play an
ever increasing role.

Note that this chapter focuses on parallel models rather than the complete
process of parallel Algorithm Engineering; for many important aspects of the
latter, the reader is referred to Bader et al. [56].

5.3.1 PRAM

The parallel random access machine (PRAM) was introduced in the late 1970s
and is a straightforward extension of the sequential RAM model [300]. It con-
sists of p processors that operate synchronously under the control of a common
clock. They have each a private memory unit, but also access to a single global
(or shared) memory for interprocessor communication (see [432, p. 9ff.]). Two
measures determine the quality of a PRAM algorithm, the time and the work.
Time denotes the number of parallel time steps an algorithm requires, work the

220 D. Ajwani and H. Meyerhenke

product of time and the number of processors employed. Alternatively, work can
be seen as the total number of operations executed by all processors. Three ba-
sic models are usually distinguished based on the shared memory access, more
precisely if a cell may be read or written by more than one processor within
the same timestep. Since there exist efficient simulations between these models,
concurrent access does not increase the algorithmic power of the corresponding
models dramatically [432, p. 496ff.].

The PRAM model enables the algorithm designer to identify the inherent
parallelism in a problem and therefore allows the development of architecture-
independent parallel algorithms [379]. However, it does not take the cost of in-
terprocessor communication into account. Since the model assumes that global
memory accesses are not more expensive than local ones, which is far from real-
ity, its speedup prediction is typically inconsistent with the speedups observed
on real parallel machines. This limitation has been addressed by tailor-made
hardware [632, 806] and a number of extensions (cf. [23, 533] and the references
therein). It can also be overcome by using models that reflect the underlying
hardware more accurately, which leads us to the so-called network models.

5.3.2 Network Models

In a network model the processors are represented by nodes of an undirected
graph whose edges stand for communication links between the processors. Since
each processor has its own local memory and no global shared memory is present,
these links are used to send communication messages between processors. During
each algorithm step every node can perform local computations and communica-
tion with its neighbor nodes. If the algorithm designer uses a network model with
the same topology as the actual machine architecture that is supposed to run
the algorithm, the performance inconsistencies of the PRAM can be removed.
However, porting an algorithm from one platform to another without a severe
performance loss is often not easy. This portability issue is the reason why the
use of network models is discouraged today for the development of parallel algo-
rithms (see, e. g., [198]). For more results on these models we refer the interested
reader to the textbooks of Akl [22] and Leighton [514], who present extensive
discussions and many algorithms for various representatives of networks, e. g.,
arrays, meshes, hypercubes, and butterflies.

5.3.3 Bridging Models

The issues mentioned before and the convergence in parallel computer architec-
tures towards commodity processors with large memory have led to the devel-
opment of bridging models [198,199]. They attempt to span the range between
algorithm design and parallel computer architecture [332] by addressing the is-
sues experienced with previous models, in particular by accounting for interpro-
cessor communication costs and by making only very general assumptions about

5. Realistic Computer Models 221

Fig. 5.7. Schematic view of a sequence of supersteps in a BSP computation

the underlying hardware. The presentation in this section is mainly in histor-
ical order, mentioning only the most relevant bridging models and important
variations.

Bulk-Synchronous Parallel Model and its Variants. The bulk-synchro-
nous parallel (BSP) model [789] consists of a number of sequential processors
with local memory, a network router that delivers messages directly between any
pair of processors for interprocessor communication, and a mechanism for global
synchronization at regular intervals. A BSP algorithm is divided into so-called
supersteps, each of which consists of local computations on already present data,
message transmissions and receptions. Between each superstep a synchronization
takes place, as illustrated in Figure 5.7. This decoupling of computation and
communication simplifies the algorithm design to reduce the likelihood of errors.

For the analysis of such an algorithm three parameters besides the input size n
are used: the number of processors p, the minimum superstep duration l arising
from communication latency and synchronization (compare [329]), and finally
the gap g, which denotes the ratio between computation and communication
speed of the whole system. The model assumes that delivering messages of max-
imum size h (so-called h-relations) within one superstep requires gh+ l machine
cycles. This accounts for the cost of communication by integrating memory speed
and bandwidth into the model. Hence, the cost of a superstep is w+gh+l, where
w denotes the maximum number of machine cycles over all processors required
for local computation in this superstep. The cost of the complete algorithm is
the sum of all supersteps’ costs. Another measure sometimes used is called slack-
ness or slack. It refers to the lower bound of n/p from which on the algorithm’s
runtime achieves an asymptotically optimal, i. e., linear, speedup.

On some parallel machines very small messages exhibit significant overhead
due to message startup costs and/or latency. This can lead to a severe misesti-
mation of an algorithm’s performance [444]. Therefore, one variation of Valiant’s
original model called BSP* [76] addresses the granularity of messages by

222 D. Ajwani and H. Meyerhenke

introducing a parameter B, the “optimum” message size to fully exploit the
bandwidth of the router. Messages smaller than B generate the same costs as
messages of size B, thus enforcing their algorithmic grouping to achieve higher
communication granularity.

Many parallel machines can be partitioned into smaller subsets of proces-
sors where communication within each subset is faster than between different
ones (consider, e. g., the BlueGene/L supercomputer architecture [778], a clus-
ter of symmetric multiprocessors, or grid computing with parallel machines at
different sites). This fact is incorporated in the decomposable BSP model [209],
abbreviated D-BSP. Here the set of processors can be recursively decomposed
into independent subsets. For each level i of this decomposition hierarchy, the
p processors are partitioned into 2i fixed and disjoint groups called i-clusters
(p = 2k, k ∈ N, 0 ≤ i ≤ log p). A D-BSP program proceeds then as a sequence
of labeled supersteps, where in an i-superstep, 0 ≤ i < log p, communication
and synchronization takes place only within the current i-clusters. Messages are
of constant size and each level i of the decomposition hierarchy has its own gap
gi, where it is natural to assume that the gap increases when one moves towards
level 0 of the hierarchy, thereby rewarding locality of computation. According
to Bilardi et al. [99], D-BSP models real parallel architectures more effectively
than BSP. As usual, this comes along with a more complicated model.

Coarse-Grained Multicomputer. Observed speedups of BSP algorithms may
be significantly lower than expected if the parameter g and the communication
overhead are high, which is true for many loosely-coupled systems like clusters.
This is mainly due to the impact of small messages and has led to the coarse-
grained multicomputer (CGM) model [216]. CGM enforces coarse-grained com-
munication by message grouping, a similar idea as in the BSP* model, but with-
out using an additional model parameter. It consists of p processors with O(n

p)
local memory each, which are connected by an arbitrary connection network
(even shared memory is allowed).

Analogous to BSP, an algorithm consists of supersteps that decouple computa-
tion and communication. The main difference is that during each communication
round every processor groups all the messages for one target into a single message
and sends and receives in total O(n

p) data items with high probability. Further-
more, communication calls can be seen as variations of global sorting operations
on the input data, which facilitates a simple estimation of communication costs.
Typically, the total running time is given as the sum of computation and com-
munication costs, where the number of communication rounds (and therefore
supersteps) is desired to be constant. Coarse-grained parallel algorithms based
on the CGM model have become quite popular, e. g., see two special issues of
Algorithmica on coarse-grained parallel computing [212,213].

QSM. The authors of the Queuing Shared Memory (QSM) model advocate a
shared-memory model enriched by some important architectural characteristics
such as bandwidth constraints [332]. Their main argument is that a shared-memory

5. Realistic Computer Models 223

model allows for a smooth transition from sequential algorithm design to symmet-
ric multiprocessors and, ultimately, massively parallel systems. Consequently, the
QSM model consists of a number of homogeneous processors with local
memory that communicate by reading from and writing to shared memory. Like
BSP this model assumes program execution in phases between which synchro-
nization is performed. Within each phase one is free to interleave the possible
operations shared-memory read, shared-memory write, and local computation ar-
bitrarily. The only parameters used are the number of processors p and the
computation-communication gap g.

Shared-memory accesses during a phase may access the same location either
reading or writing (but not both) and complete by the end of that phase. For the
cost analysis one determines the cost of a single phase, which is the maximum
of the costs for the three following operations: maximum number of local opera-
tions, gap g times the maximum number of shared-memory reads or writes, and
the maximum shared-memory contention. The cost of the complete algorithm is
again the sum of all phase costs.

5.3.4 Recent Work

Bridging Models. To cover follow-up research, we first turn our attention to
heterogeneous parallel computing, where one uses a heterogeneous multicom-
puter by combining different types of machines over different types of network.
This can be viewed as a precursor to grid computing. Hence, the two extensions
of CGM and BSP that incorporate heterogeneity, HCGM [587] and HBSP [836],
might be of interest there. Both models account for differing processor speeds,
but possible network differences are not distinguished. This issue and limited
success of heterogeneous high performance computing may prevent a wide ap-
plicability of these models without modifications.

A more recent bridging model is PRO [322], a restriction of BSP and CGM
whose main characteristic is the comparison of all metrics to a specific sequential
algorithm Aseq with time and space complexity T (n) and S(n), respectively.
Similar to CGM, the underlying machine consists of p processors having M =
O(S(n)/p) local memory each, where a coarseness of M ≥ p is assumed. The
execution proceeds in supersteps of separated computation and communication.
The latter is performed with grouped messages and costs one time unit per word
sent or received. Interestingly, the quality measure of PRO is not the time (which
is enforced to be in O(T (n)/p)), but the range of values for p that facilitate a
linear speedup w.r.t. Aseq. This measure is called Grain(n) and shown to be
in O(

√
S(n)) due to the coarseness assumed in the model. The better of two

PRO algorithms solving the same problem with the same underlying sequential
algorithm is therefore the one with higher grain.

As noted before, there are a large number of other parallel computing models,
mostly modifications of the presented ones, dealing with some of their issues. Yet,
since they have not gained considerable importance and an exhaustive presen-
tation of this vast topic is outside the scope of this work, we refer the interested

224 D. Ajwani and H. Meyerhenke

reader to the books [22,192,193,503,514,660], the surveys [190,379,465,533,539,
743], and [332,353,790].

Multicore Computing: Algorithmic Models and Programming Frame-
works. Most models that have been successful in the 1990s do not assume
shared memory but incorporate some form of explicit inter-processor communi-
cation. This is due to the widespread emergence of cluster computers and other
machines with distributed memory and message passing communication during
that time. Meanwhile nearly all standard CPUs built today are already parallel
processors because they contain multiple computing cores. The idiosyncracies
of this architectural change need to be reflected in the computational model if
algorithms are to be transformed into efficient programs for multicore processors
or parallel machines of a large number of multicore CPUs.

One particular issue, which combines the topics hierarchical memory and par-
allel computing, is the sharing of caches. In modern multicore processors it is
common that the smallest cache levels are private to a core. However, usually
the larger the cache level is, the more cores share the same cache. Savage and
Zubair [701] address cache sharing with the universal multicore model (UMM).
They introduce the Multicore Memory Hierarchy Game (MMHG), a pebbling
game on a DAG that models the computations. By means of the MMHG Savage
and Zubair derive general lower bounds on the communication complexity be-
tween different hierarchy levels and apply these bounds to scientific and financial
applications.

With the prevalence of multicore chips with shared memory the PRAM model
seems to experience a renaissance. While it is still regarded as hardly realistic,
it recently serves as a basis for more practical approaches. Dorrigiv et al. [253]
suggest the LoPRAM (low degree parallelism PRAM) model. Besides having
two different thread types, the model assumes that an algorithm with input size
n is executed on at most O(log n) processors – instead of O(n) as in the PRAM
model. Dorrigiv et al. show that for a wide range of divide-and-conquer algo-
rithms optimal speedup can be obtained. Vishkin et al. [806] propose a method-
ology for converting PRAM algorithms into explicit multi-threading (XMT) pro-
grams. The XMT framework includes a programming model that resembles the
PRAM, but relaxes the synchronous processing of individual steps. Moreover,
the framework includes a compiler of XMTC (an extension of the C language)
to a PRAM-on-chip hardware architecture. Recent studies suggest that XMT
allows for an easier implementation of parallel programs than MPI [399] and
that important parallel algorithms perform faster on the XMT PRAM-on-chip
processor than on a standard dual-core CPU [150].

Valiant extends his BSP model to hierarchical multicore machines [791]. This
extension is done by assuming d hierarchy levels with four BSP parameters
each, i. e., level i has parameters (pi, gi, Li, mi), where pi denotes the number
of subcomponents in level i, gi their bandwidth, Li the cost of synchronizing
them, and mi the memory/cache size of level i. For the problems of associa-
tive composition, matrix multiplication, fast Fourier transform, and sorting,

5. Realistic Computer Models 225

lower bounds on the communication and synchronization complexity are given.
Also, for the problems stated above, algorithms are described that are optimal
w. r. t. to communication and synchronization up to constant factors.

A more practical approach to map BSP algorithms to modern multicore hard-
ware is undertaken by Hou et al. [413]. They extend C by a few parallel con-
structs to obtain the new programming language BSGP. Programs written in
BSGP are compiled into GPU kernel programs that are executable by a wide
range of modern graphics processors.

The trend to general purpose computations on GPUs can be explained by
the much higher peak performance of these highly parallel systems compared
to standard CPUs. Govindaraju et al. [350] try to capture the most important
properties of GPU architectures in a cache-aware model. They then develop
cache-efficient scientific algorithms for the GPU. In experiments these new algo-
rithms clearly outperform their optimized CPU counterparts.

The technological change to multicore processors requires not only algorithmic
models for the design of theoretically efficient algorithms, but also suitable pro-
gramming frameworks that allow for an efficient implementation. Among these
frameworks are:

– OpenMP [161], Cilk++ [174], and Threading Building Blocks [667] are APIs
or runtime environments for which the programmer identifies independent
tasks. When the compiled application program is executed, the runtime en-
vironment takes care of technical details such as thread creation and deletion
and thus relieves the programmer from this burden.

– Chapel [155], Fortress [24], Unified Parallel C (UPC) [95], Sequoia [282],
and X10 [162] are parallel programming languages, whose breakthrough for
commercial purposes has yet to come.

– CUDA [617], Stream [8], and OpenCL [473] are intended for a simplified
programming of heterogeneous systems with CPUs and GPUs, in case of
OpenCL also with other accelerators instead of GPUs.

A further explanation of these works is outside the scope of this chapter since
their main objective is implementation rather than algorithm design.

5.3.5 Application and Comparison

In this section, we indicate how to develop and analyze parallel algorithms in
some of the models presented above. The naive matrix multiplication algorithm
serves here again as an example. Note that we do not intend to teach the de-
velopment of parallel algorithms in detail, for this we refer to the textbooks
stated in the previous section. Instead, we wish to use the insights gained from
the example problem as well as from other results to compare these models and
argue why some are more relevant than others for today’s parallel algorithm
engineering.

226 D. Ajwani and H. Meyerhenke

Algorithm 4. PRAM algorithm for standard matrix multiplication
The processors are labelled as P (i, j, k), 0 ≤ i, j, k < p1/3.
1: P (i, j, k) computes C′(i, j, k) = A(i, k) ·B(k, j)
2: for h := 1 to log n do
3: if (k ≤ n

2h) then
4: P (i, j, k) sets C′(i, j, k) := C′(i, j, 2k − 1) + C′(i, j, 2k)

5: if (k = 1) then
6: P (i, j, k) sets C(i, j) := C′(i, j, 1)

Algorithm 5. BSP algorithm for standard matrix multiplication
Let A and B be distributed uniformly, but arbitrarily, across the p processors denoted
by P (i, j, k), 0 ≤ i, j, k < p1/3. Moreover, let A[i, j] denote the s × s submatrix of A
with s := n/p1/3. Define B[i, j] and C[i, j] analogously.
1: P (i, j, k) acquires the elements of A[i, j] and B[j, k].
2: P (i, j, k) computes A[i, j] ·B[j, k] and sends each resulting value to the processor

responsible for computing the corresponding entry in C.
3: P (i, j, k) computes each of its final n2/p elements of C by adding the values received

for these elements.

Algorithm Design Example. Algorithm 4 [432, p. 15f.] performs matrix mul-
tiplication on a PRAM with concurrent read access to the shared memory. Here
and in the following two examples we assume that the algorithm (or program) is
run by all processors in parallel, which are distinguished by their unique label.
The algorithm’s idea is to perform all necessary multiplications in log n parallel
steps with n3/ logn processors (Step 1) and to compute the sums of these prod-
ucts in log n parallel steps (Steps 4 and 6). The latter can be done by means of
a binary tree-like algorithm which sums n numbers in the following way: Sum
the index pair 2i− 1 and 2i, 1 ≤ i ≤ n/2 in parallel to obtain n/2 numbers and
proceed recursively. Hence, for the second step O(n3) processors require O(log n)
steps. This would lead to a time complexity of O(log n) and a suboptimal work
complexity, because the processor-time product would be O(n3 log n). However,
it is not difficult to see that Step 4 can be scheduled such that O(n3/ log n)
processors suffice to finish the computation in O(log n) timesteps, resulting in
the optimal work complexity for this algorithm of O(n3).

This algorithm illustrates both the strength and the weakness of the PRAM
model. While it makes the inherent parallelism in the problem visible, the as-
sumption to have p = n3/ logn processors to solve a problem of size n × n is
totally unrealistic today. On the other hand we can use the idea of emulating
the algorithm with only p′ < p processors. If each of the p′ processors operates
on a block of the matrix instead of a single element, we already have an idea
how a coarse-grained algorithm might work.

Indeed, Algorithm 5, due to McColl and Valiant [543], performs matrix mul-
tiplication in the BSP model by working on matrix blocks. Its cost analysis

5. Realistic Computer Models 227

Algorithm 6. CGM and PRO algorithm for standard matrix multiplication
Let the matrices A and B be distributed onto the processors blockwise such that
processor P (i, j) stores A[i, j], the s × s (s = n/p1/2) submatrix of A, and B[i, j],
0 ≤ i, j < p1/2.
1: P (i, j) computes C[i, j] := A[i, j] ·B[i, j].
2: for superstep i := 1 to p1/2 do
3: P (i, j) sends the block of A processed in the previous step to P (i, (j + 1)

mod p1/2) and receives the new block from P (i, (j − 1) mod p1/2).
4: P (i, j) sends the block of B processed in the previous step to P ((i + 1)

mod p1/2, j) and receives the new block from P ((i− 1) mod p1/2, j).
5: P (i, j) determines the product of the current submatrices of A and B and adds

the result to C[i, j].

proceeds as follows: the first superstep requires the communication of n2/p2/3

values, resulting in O(g · n2/p2/3 + l) time steps. Computation and communica-
tion of Superstep 2 account together for O(n3/p+ g ·n2/p2/3 + l) time steps and
the final superstep requires costs of O(n2/p2/3 + l). This yields a total runtime
of O(n3/p+g ·n2/p2/3 + l), which is optimal in terms of communication costs for
any BSP implementation of standard matrix multiplication [543]. Algorithm 5 is
therefore best possible in the sense that it achieves all lower bounds for compu-
tation, communication, and synchronization costs. Note that the memory con-
sumption can be reduced at the expense of increased communication costs [544],
a basic variant of which is presented in the following paragraph.
Recall that the CGM model requires that communication is grouped and may

not to exceed O(n2/p) values per round (note that the input size of the considered
problem is n2 instead of n). Hence, the blocking and communication scheme of
the algorithm above has to be adapted. First, this is done by setting s := n/p1/2.
Then, using the definitions from Algorithm 5 and assuming for simplicity that
s and p1/2 are integers, we obtain Algorithm 6, which is briefly mentioned by
McColl [543].

It is easy to verify that the computation costs account for O(n3/p) and the
communication costs for O(n2/p1/2) cycles. Thus, it becomes a valid CGM algo-
rithm with O(p1/2) communication rounds and can also be used in the PRO
model with the desired speedup property. To compute the quality measure
Grain(n), observe that the communication within the loop must not be more
expensive than the computation. This is fulfilled whenever n3/p3/2 ≥ n2/p ⇔
p ≤ n2 and we obtain with the coarseness assumption the optimal grain of O(n).

The examples for the more realistic bridging models show that blocking and
grouping of data is not only essential in the external memory setting but also for
parallel algorithms. It is sometimes even better to perform more internal work
than necessary if thereby the communication volume can be reduced. Note that
this connection between the two computational models is no coincidence since
both aim at the minimization of communication. For the I/O model communi-
cation means data transfers to/from the external disk, for parallel models it refers

228 D. Ajwani and H. Meyerhenke

to inter-processor communication. Before we investigate this connection in more
detail in Section 5.4, the bridging models discussed above are compared.

Further Model Comparison. The reasons for discouraging the sole use of
PRAM and network models for parallel algorithm development have already
been discussed before. In this brief comparison we therefore focus on the major
bridging models.

The main aim of another bridging model, called LogP [198], is to capture
machine characteristics for appropriate performance prediction. This burdens
the algorithm designer with the issue of stalling due to network contention and
nondeterminism within the communication. Since it has been shown that stall-
free LogP programs can be efficiently emulated on a BSP machine (and vice
versa) [100], this has led to the conclusion that BSP offers basically the same
opportunities as LogP while being easier to deal with. Consequently, apart from
a number of basic algorithms for LogP, there seems to be little interest in further
results on design and analysis of LogP algorithms (compare [661] and [187]).

A similar argument applies to QSM, because it can also be emulated efficiently
on a BSP machine (and vice versa) [332, 661]. Although QSM can be used to
estimate the practical performance of PRAM algorithms and it requires only
two parameters, it seems that it has had only limited success compared to BSP
related models based on point-to-point messages. This might be due to the fact
that it does not reward large messages and that more focus was put on massively
parallel systems rather than shared-memory machines. It remains to be seen
if some QSM ideas might experience a revival with the ubiquity of multicore
CPUs.

One restriction of the coarse-grained models BSP, CGM (and also PRO, which
has yet to prove its broad applicability) is their disregard of actual communi-
cation patterns. Although some patterns are more expensive than others, this
is not incorporated into the models and can show large differences between es-
timated and actual performance [353, 444]. Nevertheless, for many algorithms
and applications these models and their extensions provide a reasonably accu-
rate performance and efficiency estimate. Their design capabilities capture the
most important aspects of parallel computers. Moreover, the analysis can be per-
formed with a small set of parameters for many parallel architectures that are in
use today and in the near future. Another reason for the wide acceptance of BSP
and CGM might be their support of message passing. This type of interprocessor
communication has been standardized by the Message Passing Interface Forum3

as the MPI library [747], whose implementations are now probably the most
widely used communication tools in distributed-memory parallel computers.

All this has led to the fact that BSP and CGM have been used more ex-
tensively than other models to design parallel algorithms in recent years [187].
Even libraries that allow for an easy implementation of BSP and CGM algo-
rithms have been developed. Their implementations are topics of a success story
on parallel computing models in Section 5.6.

3 See http://www.mpi-forum.org/

5. Realistic Computer Models 229

Given the convergence of parallel machines and networking hardware to com-
modity computing and the prevalence of multicore CPUs with shared mem-
ory and deep memory hierarchies, a model that combines these features in
a both realistic and simple way would certainly be valuable, as Cormen and
Goodrich already expressed in 1996 [190]. Recently, Arge et al. [43] have proposed
the Parallel External-Memory model as a natural parallel extension of the
external-memory model of Aggarwal and Vitter [11], to private-cache chip
multiprocessors.

On the other hand, the connection between parallel and external memory
algorithms has been investigated by stating efficient simulations of parallel algo-
rithms in external memory. These results are presented in the upcoming section.

5.4 Simulating Parallel Algorithms for I/O-Efficiency

Previously in this chapter we have presented several models and various tech-
niques for I/O-efficiency, cache optimization, and parallel computing. Generally
speaking, I/O-efficient algorithms are employed to deal with massive data sets in
the presence of a memory hierarchy, while parallel computing is more concerned
with the acceleration of the actual on-chip computations by dividing the work
between several processors. It might not be a surprise that there are some simi-
larities between the models and techniques. In cases where one needs to process
extremely large data sets with high computational power, methods from both
fields need to be combined. Unfortunately, there is no model that incorporates
all the necessary characteristics.

In this section we show the connection of the concepts presented previously
and indicate how to derive sequential and parallel external memory algorithms by
simulation. Generally speaking, simulations transform known parallel algorithms
for a given problem P into an external memory algorithm solving P . The key
idea is to model inter-processor communication as external memory accesses.
Since efficient parallel algorithms aim at the minimization of communication,
one can often derive I/O-efficient algorithms this way. Note, however, that the
simulation concept should be thought of as a guide for designing algorithms,
rather than for implementing them.

First, we explain a simulation of PRAM algorithms in Section 5.4.1. Since
there exists an obvious similarity between bulkwise inter-processor communica-
tion and blockwise access to external memory, one would also expect I/O-efficient
simulation results of coarse-grained parallel algorithms. Indeed, a number of such
simulations have been proposed; they are discussed in Section 5.4.2.

5.4.1 PRAM Simulation

The first simulation we describe obtains I/O-efficient algorithms from simulat-
ing PRAM algorithms [168]. Its value stems from the fact that it enables the

230 D. Ajwani and H. Meyerhenke

efficient transfer of the vast amount of PRAM algorithms into the external mem-
ory setting. The key idea is to show that a single step of a PRAM algorithm
processing n data items can be simulated in O(sort(n)) I/Os. For this con-
sider a PRAM algorithm A that utilizes n processors and O(n) space and runs
in time O(T (n)). Let each processor perform w. l. o. g. within a single PRAM
step O(1) shared-memory (SM) reads, followed by O(1) steps for local com-
putation and O(1) shared-memory writes. We now simulate A on an external
memory machine with one processor. For this assume that the state information
of the PRAM processors and the SM content are stored on disk in a suitable
format.

The desired transformation of an arbitrary single step of A starts by simulat-
ing the SM read accesses that provide the operands for the computation. This
requires a scan of the processor contexts to store the read accesses and their
memory locations. These values are then sorted according to the indices of the
SM locations. Then, this sorted list of read requests is scanned and the contents
of the corresponding SM locations are retrieved and stored with their requests.
These combined values are again sorted, this time according to the ID of the
processor performing the request. By scanning this sorted copy, the operands
can be transferred to the respective processor. After that, we perform the com-
putations on each simulated processor and write the results to disk. These results
are sorted according to the memory address to which the processors would store
them. The sorted list and a reserved copy of memory are finally scanned and
merged to obtain the previous order with the updated entries. This can all be
done with O(1) scans and O(1) sorts for n entries, so that simulating all steps
of A requires O(T (n) · sort(n)) I/Os in total.

This simulation has a noteworthy property in case of PRAM algorithms where
the number of active processors decreases geometrically with the number of steps.
By this, we mean that after a constant number of steps, the number of active
processors (those that actually perform operations instead of being idle) and
the number of memory cells used afterwards has decreased by a constant factor.
Typically, the work performed by these algorithms, i. e., their processor-time
product, is not optimal due to the high number of inactive processors. These
inactive processors, however, do not need to be simulated in the external memory
setting. One can therefore show that such a non-optimal PRAM algorithm leads
to the same simulation time of O(T (n) · sort(n)) I/Os as above, which means
that the non-optimal work property of the simulated algorithm does not transfer
to the algorithm obtained by simulation.

5.4.2 Coarse-Grained Parallel Simulation Results

The simulations of coarse-grained parallel algorithms shown in this section re-
semble the PRAM simulation. They also assume that the state information of
the simulated processors are stored on disk, and they simulate one superstep
after the other. This means that one reads the processor context (memory image
and message buffers) from disk first and then simulates incoming communica-
tion, computation, and outgoing communication, before the updated context is

5. Realistic Computer Models 231

written back to disk. However, the actual implementations need to consider the
idiosyncrasies of the different coarse-grained parallel models.

Note that the virtual processors of the parallel algorithm are simulated by a
possibly smaller number p of processors in the external memory model. Then,
the simulation starts with processors 0, . . . , p − 1, proceeds with the next p
processors, and so on. This serialization of the parallel program is valid due
to the independence of processors within the same superstep. Recall that M
denotes the size of the internal memory and B the block size in the EM model.

Single-processor Simulations. Since it is based on a simple framework, we pro-
ceed our explanation with the sequential simulation of BSP-like algorithms [734].
A BSP-like algorithm assumes the memory space to be partitioned into p blocks
of suitable size. It proceeds in discrete supersteps, is executed on a virtual
machine with p processors, and satisfies the following conditions (cmp. [734, Def-
inition 1]):

– In superstep s, s ≥ 1, processor pi, 0 ≤ i < p, operates only on the data in
block Bi and on the messages Mes(j, i, s), 0 ≤ j < p.

– In superstep s, s ≥ 1, processor pi, 0 ≤ i < p, generates messages Mes(i, j, s+
1) to be ‘sent’ to pj , 0 ≤ j < p. The size of each message is at most M/3p.
The initial messages of timestep 1 are void.

Then, the simulation can proceed for each superstep as described at the begin-
ning of this section. In each superstep processor pi, 0 ≤ i < p, fetches Bi and
its respective message buffers Mes(j, i, s), 0 ≤ j < p, from disk, simulates the
computations of the superstep, and stores the updated block Bi as well as new
message buffers to disk in suitable locations.

For these BSP-like algorithms new parameters P = �3 · n/M�, G, and L are
introduced to relate coarse-grained models to the EM model. The I/O transfer
gap G denotes the ratio of the number of local computation operations and the
number of words that can be transferred between memory and disks per unit
time, while L denotes the synchronization time of the simulation. They mea-
sure the quality of their simulation by the notion of c-optimality [329], which is
transferred to the I/O setting. An EM algorithm is called c-optimal if its exe-
cution time is at most c times larger than that of a sequential computer with
infinite memory. The main result states that if the BSP parameters (p, g, l) coin-
cide with the new parameters (P, G, L) and there is a c-optimal BSP algorithm
for the same problem, then the corresponding BSP-like algorithm in external
memory is also c-optimal [734, Theorem 3].

If one accepts that the external memory size is bounded from above by M2

(which is a reasonable assumption), the simulation of PRO algorithms in external
memory is another option [370]. It introduces the notion of RAM-awareness,
which provides a measure for the number of random memory accesses that might
correspond to page faults. If this measure of a PRO algorithm A on p = Grain(n)
processors does not exceed the sequential runtime of the underlying algorithm
and A requires T (n) time and S(n) space over all processors, A can be simulated

232 D. Ajwani and H. Meyerhenke

in O(T (n)) computation time with O(S(n)/ Grain(n) + Grain(n)) internal and
O(S(n)) external memory.

Multiple-processor Simulations. Dehne et al. [215, 214] show how to simulate
algorithms for the models BSP, BSP*, and CGM on sequential and parallel
machines with parallel disks. These combined models are then called EM-BSP,
EM-BSP*, and EM-CGM, respectively, and extend the parameter set of their
underlying parallel models by M (local memory size for each processor), D
(number of parallel disks connected to each processor), B (transfer block size),
and G (I/O transfer gap in terms of memory block transfer). More precisely,
the simulation costs are the same as for the simulated program plus the costs
induced by I/O, which is taken as the maximum over all processors.

As above, the simulation of the v virtual processors is performed in supersteps.
During each such superstep every simulating processor loads the context of the
virtual processors for which it is responsible from the disk. Whenever virtual
communication is replaced by parallel disk I/O, care is taken that irregular
routing schemes are mapped to disks in a balanced way to obtain optimal I/O
costs. Amongst others, this is done by setting the total communication amount
of each processor to Θ(n/v) and by fixing the message size to c · B for some
c ≥ 1, which resembles the idea of BSP*.

The c-optimality notion [329] is extended from local computation to cover
also communication and I/O. Using this, one can show that a work-optimal,
communication-efficient, and I/O-efficient algorithm can be simulated with a
small overhead by an algorithm that is also work-optimal, communication-effi-
cient, and I/O-efficient for a wide range of parameters by using the techniques
of Dehne et al. [215]. There, it is also shown that these methods have led to
improved parallel EM algorithms.

Cache-Oblivious Simulation of D-BSP. For the final topic of this section, our
simulation target is one level higher in the memory hierarchy. More precisely, we
simulate D-BSP programs to achieve sequential cache-oblivious algorithms [636].
(Related simulation results are also presented by Bilardi et al. [99].) The tech-
nique exploits that the D-BSP model assumes a hierarchical decomposition of a
BSP computer in processor groups to capture submachine locality. Recall that
the cache in the Ideal Cache Model (ICM) contains M words organized into
lines of B words each. It is fully associative and assumes the optimal offline
strategy for cache-line replacement. To simulate a D-BSP program in the ICM
in a cache-oblivious manner, the simulation algorithm for improving locality in
a multilevel memory hierarchy [279] is adapted. First of all, the slower memory
of the ICM hierarchy is divided into p blocks of size Θ(μ), where μ is the size
of one D-BSP processor context. Each block contains one processor context and
some extra space for bookkeeping purposes.

Recall that each processor group on level i of the D-BSP hierarchy is called an
i-cluster. Its processors collaborate with each other in an i-superstep. Therefore,
the simulation proceeds in rounds, where each round simulates one i-superstep
for a certain i-cluster in two phases (local computation and communication) and

5. Realistic Computer Models 233

determines the cluster for the next round. Message distribution for intra-cluster
communication is simulated by sorting the contexts of the processors involved,
similar to the method proposed by Fantozzi et al. [279]. In particular by simulat-
ing the same cluster in consecutive supersteps, this simulation strategy is able to
improve the locality of reference, because the necessary processor contexts are
already cached. If sorting the processors’ contexts for simulating communication
is done in a cache-oblivious manner, the whole algorithm is cache-oblivious since
it does not make use of the parameters M and B.

5.5 Success Stories of Algorithms for Memory Hierarchies

In this section we describe some implementations of algorithms for memory hi-
erarchies that have improved the running time on very large inputs considerably
in practice.

5.5.1 Cache-Oblivious Sorting

Brodal et al. [135] show that a careful implementation of a cache-oblivious lazy
funnelsort algorithm [131] outperforms several widely used library implemen-
tations of quicksort on uniformly distributed data. For the largest instances in
the RAM, this implementation outperforms its nearest rival std::sort from the
STL library included in GCC 3.2 by 10-40% on many different architectures like
Pentium III, Athlon and Itanium 2. Compared to cache-aware sorting implemen-
tations exploiting L1 and L2 caches, TLBs and registers [41, 504, 843, 782], the
cache-oblivious implementation is not only more robust – it exploits several lev-
els of memory hierarchy simultaneously – but also faster. Overall, the results of
Brodal et al. [135] show that for sorting, the overhead involved in being cache-
oblivious can be small enough in order to allow nice theoretical properties to
actually transfer into practical advantages.

5.5.2 External Memory BFS

The implementation of the external memory BFS algorithms [600,555] exploiting
disk parallelism on a low cost machine makes BFS viable for massive graphs [19,
20]. On many different classes of graphs, this implementation computes BFS
level decomposition of around billion-edge graphs in few hours which would
have taken the traditional RAM model BFS algorithm [191] several months. In
fact, the difference between the RAM model algorithm and the external memory
algorithms is clearly visible even when more than half of the graph fits in the
internal memory. As shown in Figure 5.8, the running time of the traditional BFS
algorithm significantly deviates from the predicted RAM performance taking
hours, rather than minutes for random graphs less than double the size of the
internal memory. On the other hand, the external BFS implementations referred
to as MR_BFS and MM_BFS in the plot, compute the BFS level decomposition
in a few minutes.

234 D. Ajwani and H. Meyerhenke

214

212

210

28

26

24

22

222221220219218

T
im

e
(in

 s
ec

)

n

IM BFS
MR BFS
MM BFS

Fig. 5.8. Running time of the RAM model BFS algorithm IM_BFS [191] and the
external memory BFS algorithms MR_BFS [600] and MM_BFS [555] with respect to
the number of nodes (n) of a random graph. The number of edges is always kept at 4n.

5.5.3 External Suffix Array Construction

The suffix array, a lexicographically sorted array of the suffixes of a string,
has received considerable attention lately because of its applications in string
matching, genome analysis and text compression. However, most known im-
plementations of suffix array construction could not handle inputs larger than
2 GB. Dementiev et al. [229] show that external memory computation of suffix
arrays is feasible. They provide a EM implementation that can process much
larger character strings in hours on low cost hardware. In fact, the running time
of their implementation is significantly faster than previous external memory
implementations.

5.5.4 External A*-Search

In many application domains like model checking and route planning, the state
space often grows beyond the available internal memory. Edelkamp et al. [267]
propose and implement an external version of A* to search in such state spaces.
Embedding their approach in the model checking software SPIN, they can detect
deadlocks in an optical telegraph protocol for 20 stations, with an intermediate
data requirement of 1.1 Terabytes on hard disk (with only 2.5 GB of available
main memory).

5. Realistic Computer Models 235

5.6 Parallel Bridging Model Libraries

The number of publications on parallel algorithms developed for one of the ma-
jor bridging models, in particular BSP and CGM, shows their success in the
academic world. Moreover, following the Algorithm Engineering paradigm and
for an easier use of these models in practice, library standards have been devel-
oped. The older one is the BSPlib standard [393], whose corresponding library
implementations shall provide methods for the direct transformation of BSP al-
gorithms into parallel applications. According to Bisseling [102], two efficient
implementations exist, the Oxford BSP toolset [625] and the Paderborn Uni-
versity BSP library (PUB) [119]. A more recent implementation [766] has been
developed, which facilitates the use of BSPlib on all platforms with the message-
passing interface MPI. Its objective is to provide BSPlib on top of MPI, making
the library portable to most parallel computers. CGMlib is a library following
the same ideas for the coarse-grained multicomputer model. So far, there exists
only one implementation known to the authors [157]. Although a widespread
use of these libraries outside the academic world is not apparent, their influence
should not be underestimated. They can, for instance, be used for a gentle in-
troduction to parallel programming [102] and as a basis for distributed web/grid
computing [344,118].

Note that there exist many more languages, libraries, and tools for parallel
programming, as well as applications, of course. Even an approximate description
of these works would be outside the scope of this chapter. Since they are also
not as close to the original models, we instead refer the interested reader to Fox
et al. [305] and various handbooks on parallel computing [108,147,388,494,660].
They cover many aspects of parallel computing from the late 1980s until today.

5.7 Conclusion

The simple models RAM and PRAM have been of great use to designers of both
sequential and parallel algorithms. However, they show severe deficiencies as well.
The RAM model fails to capture the idiosyncrasies of large data sets that do
not fit into main memory, the PRAM does not model the costs arising by inter-
processor communication. Since both, parallel computation and the processing
of very large data sets, have become more and more important in practice, this
has led to the development of more realistic models of computation. The external
memory (EM) model has proved to be quite successful in algorithm engineer-
ing on problems involving large data sets that do not fit in the main memory
and thus, reside on the hard disk. In the parallel setting the bulk-synchronous
approach (BSP) is very important, which models inter-processor communica-
tion explicitly. Several variants of both have been developed, e. g., to include the
specifics of caches (ICM) or of coarse-grained communication (CGM). Although
developed for different purposes, all these models have several strategies in com-
mon on how to avoid I/O transfer and communication, respectively, in particular
the exploitation of locality and the grouping of data before their transmission.

236 D. Ajwani and H. Meyerhenke

Fundamental techniques for an efficient use of the memory hierarchy or of
parallel computers have been illustrated by means of different external memory
data structures, cache-aware, cache-oblivious, and parallel algorithms. This has
been supplemented by a description of successful implementations of external
memory algorithms that facilitate the efficient processing of very large data
sets. Also, libraries for an easy implementation of parallel algorithms developed
in one of the models mentioned above have been presented. These examples
show the impact of realistic computational models on the design and practical
implementation of algorithms for these purposes. Moreover, one can say that
for very large data sets and complex parallel computations it is hardly possible
nowadays to obtain efficient programs without using the techniques and ideas of
the models presented in this chapter.

Despite these successes it should be noted that models necessarily have their
disadvantages because they are only abstractions and simplifications of the real
world. While the interest in new parallel models seemed to be decreasing until
the mid 2000s, the general breakthrough of multicore processors has produced
a number of new models and in particular practical programming frameworks
(parallel languages, runtime environments, etc.). A rather simple model com-
bining parallelism and memory hierarchy issues, in particular with automated
optimizations in a hardware-oblivious way, would certainly be a step forward
towards even more realistic performance prediction. The very recent proposals
on multicore models have yet to prove their suitability in this regard. From a
practical perspective it will be very interesting to see which developments in
languages and runtime environments will experience widespread adoption both
in academia and in industry. We believe that a mostly seamless transition from
a realistic model to the actual implementation – as previously in the sequential
case – will be the key to success.

Chapter 6. Implementation Aspects

Marc Mörig, Sven Scholz, Tobias Tscheuschner, and Eric Berberich

6.1 Introduction

The implementation of complex algorithms is a highly demanding task. There-
fore, best practice rules and principles from software engineering should be ap-
plied whenever possible. The interested reader is referred to the multitude of
textbooks in this field, for example [748,568]. In this chapter, we focus only on
selected issues which are particularly relevant to achieve the goals of Algorithm
Engineering.

Papers are written for human readers, not machines. The description of an
algorithm is typically written in a way that allows the reader to easily under-
stand the algorithm and its key properties. This is achieved by focusing on the
big picture, or in other words, omitting details, referencing to other papers for
subtasks, and describing algorithms in pseudocode or totally verbal. Sometimes
omitted details are highly nontrivial as in the case of geometric algorithms, where
the description and correctness proof of an algorithm usually assume the Real
RAM machine model. This model allows to store real numbers in O(1) space
and perform arithmetical operations in O(1) time with them. In other cases
the description contains errors. Mehlhorn and Mutzel [557] describe how an al-
gorithm for recognizing planar graphs [412] can be augmented to construct a
combinatorial planar embedding. They note that the original paper only stated
that this could be done and later attempts to describe the needed modifications
in detail contained errors. The authors found the errors only when trying to im-
plement the modifications. The task of the implementer is to fill in details and
“translate” the description into a programming language, until a variant of the
algorithm has been created that can be processed reasonably fast by a computer.
Experienced implementers essentially agree what constitutes a good implemen-
tation [561, Section 1.5], [278, 770, 246]. We have grouped these goals into four
groups: an implementation should be correct, efficient, flexible and easy to use.

Correctness. Implementations must be correct. Having an incorrect implemen-
tation that may compute garbage without the user noticing it, is unacceptable.
An implementation of an algorithm is correct if it performs according to the
algorithm’s specification. Correctness is therefore a matter of assuring that de-
scription and implementation coincide and may well be achieved by changing the
specification. Often algorithms are sophisticated enough to be hard to implement
correctly and programmers will make mistakes even in simple programs. Since
proving the correctness of an implementation has been found to be very hard,
techniques which increase our confidence in the correctness of an implementation
are important.

M. Müller-Hannemann and S. Schirra (Eds.): Algorithm Engineering, LNCS 5971, pp. 237–289, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

238 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

Efficiency. Implementations should be efficient. Efficiency will not only allow
the user to solve small problems fast, but will also enable him to solve large
problems in a reasonable time. In contrary to asymptotic running time, which is
the common theoretical efficiency measure, for an implementation what matters
is the running time for the input it is actually used for. This means that also
constant factors must be tuned. Tuning can be guided by analysis (Chapter 4)
and heuristic arguments, but mostly calls for experimentation (Chapter 8). Small
changes in a critical part of the algorithm may well have a large impact on the
running time. Efficiency and flexibility are competing goals. An algorithm in a
library cannot be expected to perform as well as an implementation specialized
for a certain application, but it should be more flexible and easy to use.

Flexibility. An implementation, especially in a library, should be flexible. Un-
der flexibility, we cover several goals: modularity, reusability, extensibility, and
adaptability. An implementation is modularized if it is separated into several
parts, called modules, which interact only through well specified interfaces.
Modularity supports correctness in the sense that the correctness of an imple-
mentation is reduced to the correctness of the modules and their interaction.
Reusability and extensibility mean that it should be possible to easily develop
further algorithms on top of the existing modules. All of the implemented func-
tionality should be made available through a well-structured and well-specified
interface. Adaptability asks for similar properties just from a different view-
point. It should be possible to easily exchange modules of the implementation
with modules from other implementations or libraries providing the same func-
tionality. Last not least, a library could provide several modules with the same
interface and identical or similar functionality. Flexibility, i. e., the ability to eas-
ily exchange data structures and subalgorithms and the availability of choices is
a central goal of Algorithm Engineering. It enables the user to provide his own
subalgorithms and data structures best fitting his problem, or choose the best
combination from the available choices.

Ease of Use. An implementation should be easy to use. It must enable a new
user to understand the interface and design quickly, so he can integrate the
provided code into his own code easily. The main points that must be consid-
ered when trying to reach good usability are interface design and documenta-
tion. The interfaces should exhibit the complete functionality, without being too
large. Common conventions for interfaces to different modules support usability
as well, as consistently chosen names. The implementation should be accompa-
nied by documentation that covers both the usage and the source code of the
implementation. We view maintenance of an algorithmic software library also
in connection with ease of use. Maintainability is supported by modularity and
good documentation.

These are important goals, and pursuing all of them is a hard task. Some of
them support each other but especially efficiency is hard to achieve while main-
taining the other properties. It is therefore desirable to keep the implementation
process itself efficient. There are tools and strategies supporting the implementer

6. Implementation Aspects 239

to this end. We have dedicated a section of this chapter to each of the central
goals and to the implementation process itself.

The last section is devoted to geometric algorithms. These algorithms are
described and proven to be correct under the assumption of exact real arith-
metic. First attempts to implement these algorithm using hardware floating-
point arithmetic failed. Straightforward implementations of exact number-types
are however much slower than hardware floating-point numbers. It is an achieve-
ment of Algorithm Engineering that convenient to use, general and moderately
efficient exact number-types are as well available as specialized highly efficient
solutions to the exactness problem. We describe approaches for these number-
types and answer the question, how geometric algorithms can be implemented
both correctly and efficiently.

6.2 Correctness

6.2.1 Motivation and Description

Programs are written by human beings. Human beings sometimes make mis-
takes. Thus, programs sometimes contain mistakes. This section addresses the
problem that programs might not always fulfill the job they are written for.

But what does it mean “(not) to fulfill the job?”

Definition 1. [112] Let f be a function, P be a deterministic program that
(seemingly) computes f and I be the set of all feasible inputs for f (resp. P).
For x ∈ I we call f(x) (resp. P (x)) the output of f (resp. P) on the input x. P
is called “correct” if P (x) = f(x) for all x ∈ I, otherwise P is called “buggy”.

We will look at several methods, namely “testing”, “checking”, and “verifying”
that detect — with different reliability — whether an implemented program
satisfies its specification, i. e., the program is correct. And finally we have a look
at methods that help us to debug the program if we found a bug: “Debugging”.

6.2.2 Testing

In order to achieve correctness one should try to design for testing right from the
beginning. Good programmers test early and often. Thinking about testing also
helps to avoid errors and to clarify interfaces. In order to ease testing one should
try to minimize dependencies. Checking assumptions and invariants helps a lot.
Design for testing is of course closely related to designing for program checking.

Program testing is the process of executing a given program P on a subset T
of I and verifying whether P (x) = f(x) for all x ∈ T . If P (x) 	= f(x) for any
element x ∈ T , then we know that P is buggy, but we do not know whether the
program is correct if P (x) = f(x) for all x ∈ T (except T = I). Thus, testing
is rather the process of finding errors than of increasing the reliability of the
program. Nevertheless, testing can provide some confidence in the correctness of
a program.

240 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

Because in general the set of feasible inputs is too large, the central job in
testing is to find a test set T for which it is likely to find an error. In the following,
we will have a look at two of the common methods [236].

Random Data Generation. This is perhaps the easiest and weakest way to
design test data. The data is randomly chosen from the set of possible inputs I.

A great advantage of this method is that it is applicable to all programs, and
therefore a random testing procedure is easily reused. Furthermore, this method
probably uncovers mistakes which occur in many instances. If, in addition, an
“actual probability distribution on the input sequences” is given or a sampling
procedure that reflects it, then one can estimate the “operational reliability” [264]
of the program.

If there is no such distribution given, the random process naturally ignores
possible structures in the input domain. Thus, important classes of test sets
(e. g., classes of inputs which are often used in the lifetime of the program) may
be left unexecuted. Moreover, independently from the question whether there
is a probability distribution given on the input, the random data generation
ignores any structure of the code itself (it is a so-called “black box method”).
The following technique does consider the code (it is a “white box method”).

Input Space Partitioning. As we have already seen, the main task of Program
Testing is to find test data that is likely to reveal errors. In fact, it is hard to
measure the probability of finding an error for a given test set.

The input space partitioning method — as the name says — partitions the
input space into classes and executes P on one or more representative elements of
each class. The goal is to identify classes for which the execution of elements leads
to similar errors. Therefore, the selection of representatives of many different such
classes should reveal many different errors.

For example the statement coverage demands on the test set that every state-
ment of the code is executed at least once. In this case, the different classes are
formed by the inputs that execute specific statements. It can easily be seen that
these classes are not necessarily disjoint. Thus, the partition of the input space is
not a partition in the common mathematical sense. Unfortunately the Statement
Coverage may ignore specific classes of mistakes as we will see soon. Hence there
are other input space partitioning methods, which we consider below. But first
we have to state a definition:

Definition 2. The control flow graph [331] is constructed from the code by
means of some exemplary basic programming structures in the following way
(see Fig. 6.1).

– Graph (a) represents an I/O, an assignment or a procedure call statement.
– (b) is an if-then-else statement,
– (c) is a while loop and
– (d) constitutes the graph of two sequential statements.

6. Implementation Aspects 241

�
�

�
�

�
�

�
�

�
�

��� ��� �	� �
�

Fig. 6.1. Constructing the control-flow graph from the code

If the code contains an if-then block (without an else-branch) the graph (b) is
taken whereby G2 is empty.

There are different approaches of generating test data on the basis of the control
flow graph. The edge coverage, for example, demands on a test set for which
each edge of the control flow graph is executed at least once. The number of
paths needed in this case is linear in the number of edges. Thus, this approach is
applicable if there are no non-reachable edges in the graph. Moreover the edge
coverage is finer than the statement coverage because a non-existing else branch
of an if-then statement is covered at least once by the edge coverage.

Another approach is the path coverage. It demands on the test set that each
possible path in the control graph is traversed at least once. This does obviously
fulfill the edge coverage condition, too. On the other hand the path coverage
may discover mistakes that are possibly overlooked by the edge coverage: There
may be errors in the code that only occur under specific preconditions of a
statement. If the statement is executed just once (like in an edge covering test
set), the preconditions may not be complied. Such mistakes are more likely to
be revealed by the path coverage. Hence, the path coverage reveals more errors
in general. Unfortunately, the control flow graph contains an infinite number of
different paths if there are while loops in the program code. But even if there are
no while loops in the code, the if-then-else statements let the number of different
paths increase exponentially in the number of statements. Thus, a coverage of
all possible paths cannot be guaranteed for all programs. Nevertheless, it may
be helpful to design test data that executes many paths.

242 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

Drawbacks of Testing. Testing only provides correctness statements for the
executed inputs. This may be a very small part of the set of all possible inputs.
Therefore the confidence in the correctness of the program may be small. Edsger
Dijkstra resumes [200]:

“Program testing can be used to show the presence of bugs,
but never to show their absence!”

But there is also another drawback of Program Testing. It concerns the question
how the correct output for a given input for the specified function f is main-
tained. Usually the programmer does not have a second program that provides
this information (and who knows whether this program isn’t buggy). Altogether,
the precondition for the application of Testing is the existence of an oracle that
provides certain information on the outcome of the desired inputs.

6.2.3 Checking

In the previous section we have seen that testing neither provides general math-
ematical statements for programs that pass a test nor a method is given that
generally states whether P (x) = f(x) or P (x) 	= f(x). Both characteristics are
supplied by program checkers.

The definition of program checkers was given in [112]. We will modify it for
our purposes.

Definition 3. A program checker Cf for a computational decision or search
problem f is defined as follows: CP

f (x) is a program that satisfies the follow-
ing conditions for any program P (supposedly for f) and all inputs x ∈ I (the
instances of the problem f):

1. If P is correct, then CP
f (x) = CORRECT (i. e., P (x) is correct)

2. If P (x) 	= f(x), then CP
f (x) = BUGGY (i. e., P is buggy)

The definition allows the checker to run the program P on any input of its
choice. If the checker outputs CORRECT, then it has verified that the program
works correctly on the given input. On the other hand, if the checker outputs
BUGGY, then the program is verified to contain a bug. Notice that the output
BUGGY does not necessarily mean that the program gives an incorrect answer
for the given input. If the program is faulty but gives a correct answer on the
given input, the checker may output CORRECT or BUGGY. This makes sense
especially in the following case: a program outputs the same answer on all inputs
and the answer is correct for the given input. In this case it is desirable that the
checker outputs BUGGY although the answer is correct for the given input.

Notice furthermore that the checker does not verify that the output of P
is correct for all inputs but just for the given input. In program verification
(see Section 6.2.4) it is proven that the program is correct for all inputs. Thus,

6. Implementation Aspects 243

checking is some kind of a mixture of testing and verification. It does not handle
all inputs (like testing), but the treated inputs are verified (like in program
verification). This unites two benefits: It is easier than program verification,
because a lower number of inputs is verified, and it is more often applicable than
testing, because no oracle is needed to check the correctness of a specific output
(in fact, the oracle is simulated by program checking).

Now we have a look at a simple checker introduced by [112] for the following
problem related to the greatest common divisor (gcd).

ExtendedGCD
Input: Positive integers a, b
Output: Positive integers d, s, t such that d = gcd(a, b)

and a · s + b · t = d

To check the output of this algorithm one must obviously verify that d | a
(d divides a without remainder), d | b and a · s + b · t = d. But this is also suf-
ficient, because this representation is unique: there cannot be an integer d′ < d
for which there are s′, t′ ∈ Z with a · s′ + b · t′ = d′: Because d|a and d|b we have
d|(a · s′ + b · t′) and thus d|d′ which is a contradiction. Hence, we have a deter-
ministic algorithm that checks the correctness of the ExtendedGCD algorithm
by performing two divisions, two multiplications and one addition.

Certifying Algorithms. Program checking uses a given program as a black
box, i. e., it gives the black box some inputs, checks whether the output is correct,
and then it makes a statement about the correctness of the program. Certify-
ing algorithms request extra services from the program code. It strengthens the
requirements made on the output of a program. The goal is to simplify the con-
struction of checkers. A certifying algorithm does not only compute the output
it is supposed to, it also computes a certificate that makes it easy for a checker
to prove that the computed answer is correct.

Consider the problem of deciding whether a given graph G = (V, E) is bipar-
tite, i. e., whether there are two disjoint subsets V0 and V1 of V with V0∪V1 = V
such that for all {u, v} ∈ E we have either u ∈ V0 and v ∈ V1 or reversely u ∈ V1

and v ∈ V0.
Let P be a program that supposedly decides this question. How can one check

whether a given answer YES or NO is correct? In most cases the bare answer does
not help very much. But what could be a useful answer? Mehlhorn et al. [560]
stated

“a program should justify (prove) its answer in a way
that is easily checked by the user of the program.”

In order to find the justification in our problem, we consider the following lemma.
For a proof see e. g., [851].

244 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

Lemma 1. A graph G = (V, E) is bipartite if and only if it contains no cycle
with odd length. ��

A certifying algorithm for our problem could provide the following extra infor-
mation assisting the binary answer. If the answer is YES, the program outputs
YES and two sets of nodes V0 and V1 that indicate the partitioning of V . This
output makes it easy to check the correctness of the answer. If the answer is
instead NO, then the algorithm outputs NO and a cycle of odd length. This
output is also easily checked. Hence, we know what a good certificate for our
problem could be. Now we have to construct it.

A certifying bipartiteness checker

(1) Find a spanning tree T in G. Put the vertices with even depth into V0

and the vertices with odd depth into V1.
(2) Check for all edges in G \ T whether the adjacent nodes are both in V0 or
both in V1.
(3) If there is such an edge (u, v), output NO and the path between u and v in
T together with the edge (u, v). If there is no such edge, output YES together
with V0 and V1.

Before we show the correctness we state the following lemma.

Lemma 2. In T , the length of a path connecting two vertices of V0 (resp. V1)
in T is even, and the length of a path connecting two vertices between V0 and V1

in T is odd. ��

According to Lemma 1, trees are bipartite, because they contain no cycles at
all. Thus, T is bipartite. If G itself is bipartite, then in step (2) no edge can
be found which fulfills the condition. Hence, the output is correct. Otherwise, if
G is not bipartite, then there is an odd cycle C in G. But T does not contain
cycles. Hence, an odd cycle must have at least one edge from G \ T . If there is
an edge in C \ T that connects vertices within V0 (resp. V1), we have a path of
even length between them, which is a contradiction to Lemma 2. If we do not
have a path of even length between them, then all edges in C connect vertices
between V0 and V1. This means that the cycle itself is bipartite, and therefore it
must have even length, because of Lemma 2. But this is a contradiction to the
assumption that C has odd length.

We summarize: There is a certifying algorithm for testing whether a given
graph is bipartite, and it is easy to find a checker that proves the correctness of
the output based on the witness provided by the certifying algorithm. In general,
constructing checkers is not an easy task. Therefore, the time needed to do this
may be greater than the expected gain of a greater confidence in the correctness
of the program.

On the other hand the checker itself may be buggy. One approach to tackle
this problem is to verify the checker. This may be easier than the verification of
the checked program (e. g., consider again the gcd-checker from [112]).

6. Implementation Aspects 245

A drawback of the concept of certifying algorithms is that for some problems
it may be difficult to say what a certificate could actually look like, and for
some problems it may be hard to compute a certificate according to a given
description. For example, let n be a given integer, an answer for the question
what a certificate for the statement “YES, n is prime” could look like is not
obvious (although an answer was given in [646]). On the other hand detecting a
certificate for the answer “NO, n is not prime”, i. e., finding a non-trivial factor of
n, is difficult in general. Thus, the task of designing certifying algorithms may be
tough and the time needed to do it may in some cases be too large. Nevertheless,
we heavily advise the reader to try it!

6.2.4 Verification

The strongest way of showing the correctness of a program is to verify it, i. e.,
to prove that the program fulfills the specification it was written for. The funda-
mental aid for the verification of programs was introduced by C.A.R. Hoare [397].

The calculus of Hoare is a formal logic system which provides a set of logical
rules that allow the derivation of statements. The central element of Hoare’s
logic is the Hoare triple

{P} S {Q},

which consists of the assertion P that is true before the program S is executed
and the assertion Q that is true after the completion of S.

Several axioms and rules form the logic: the assertion axiom, the rules of
consequence (if-then-else), the composition rule (considering the logical AND),
and the rule of iteration (while-loops). These axioms and rules handle the basic
elements of procedural programs. We will have an exemplary look at one of them,
the assertion axiom:

{P [E/x]} x := E {P}

The assertion {P [E/x]} arises from the assertion P by substituting E for all
occurrences of x, where x is a variable and E is an expression. A concrete example
for a triple described by the assertion axiom:

{x + 1 = 0} y := x + 1 {y = 0}

The Hoare logic as described in [397] is only suitable for the verification of partial
correctness. This is enough for our definition of programs because we assumed
that they halt on every input. If this is not guaranteed one might desire a proof
of total correctness. For this purpose the iteration rule of Hoare was extended
(see e. g., [777]).

An interesting aspect of verification is that several steps can be automated.
Hence, there are theorem prover tools. PVS [624], for example, was used to
validate the algorithms of an implementation of an exact arithmetic [518].

246 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

Proving the correctness of a program can be very hard and therefore infeasible
from a certain length of the program code on. Furthermore, the proofs them-
selves may contain mistakes as they are written by humans, too. Moreover, the
verification of a program does not enclose any statements concerning compiler
or hardware mistakes.

6.2.5 Debugging

In the sections above, we discussed methods how to find out, whether a program
contains an error or how to indicate the absence of errors. But what if we actually
found an error in the behavior of the program? In this section, we handle methods
of fixing such errors. The main reference for this section is Andreas Zeller’s
book “Why Programs Fail” [858], which we recommend to the reader for further
inspection.

Terms and Definitions. Assume that we found an instance x ∈ I for which
f(x) 	= P (x). This discrepancy we call a failure. The failure became apparent by
the execution of the program code. Thus, there must be a part of the code that is
responsible for the existence of the failure. This part of the code we call a defect.
The defect itself causes a state of the program execution that does not fit to the
specification. Such a state we call infected. An infected state may cause another
infected state, so that the infection propagates through the states. A state that
is not infected is called sane. A transition from a sane state to an infected state
we call an infection.

The definitions together with our interest in the infection define what debug-
ging in fact is: Debugging is a search problem. We are searching that part of the
code that is responsible for the infection.

Causes and Relevance. If our programs fail we usually ask ourselves “Why?”.
This question asks for a or maybe even for the cause of the failure. But what
precisely is a cause?

Definition 4. A cause of a failure is an event preceding the failure, without
which the failure would not occur.

This definition of a cause is necessary but not sufficient for a successful search of
the defect, because according to this definition the existence of the program itself
is also a cause of the failure. But this is a cause we are obviously not interested
in. Thus, we are not only searching a cause, but a cause with a specific property.
We are searching for a minimum cause.

Definition 5. A minimum cause is an event for which one cannot subtract any
non-empty subset of the circumstances of the event such that the failure still
occurs.

This definition finally describes what exactly we are searching for. Moreover it
describes what we have to do: we must separate the relevant from the irrelevant.

6. Implementation Aspects 247

Observation. At the beginning of the execution we have a sane state. At the
end of the execution we have an infected state. If we want to find out which
part of the code is responsible for the existence of the infected state at the end
we have to inspect the states in between and decide whether they are already
infected.

The problem with the observation of the states is that execution of the pro-
gram goes in a forward manner, but reasoning about the existence of an infected
state usually goes backward. For example, if you use a debugger and set a break-
point at a position in the program for which you are sure that the program state
is still sane, then you step forward, and step forward, . . . and then you’ve gone
too far. At this point you would like to go backward and see where the infected
state comes from. This feature was not supported by debuggers for a long time.

But there is a tool called “omniscient debugger ” [521] for Java, which simply
records all program states. In this tool, you have the feature of stepping backward
in time while observing the current state. Thus, you can begin at the failure and
step backward — or forward, if desirable — until you reach the infection.

The obvious drawback is that the set of data that must be recorded is very
large: about 100 MB per second. Furthermore, the program execution may slow
down by a factor of 10 or more. But there is an option of setting a point in
time from which the omniscient debugger begins the record. Moreover, one may
record just a specific subset of the system.

Although the omniscient debugger is very useful to observe the states, the
question for the cause of the values of certain variables is not answered auto-
matically. There may be a lot of dependencies between the values of the variables.
Thus, we still have to separate relevant from irrelevant to find the origin of a
value of a variable. For this purpose we introduce dynamic backward slices.

A dynamic backward slice for a writing operation to a variable v is the subset
of the program code that influenced the value of v for the given execution. The
dynamic backward slice is dynamic, because it only considers the actual execu-
tion instead of all possible executions as for a static slice. And it is backward,
because it does not consider parts of the code that are influenced by the value of
the given variable. These would be contained in a forward slice. We now describe
the dynamic backward slice more formally and concurrently give a method how
to compute it.

Definition 6. Let w be a writing operation to variable v, let ri be the variables
read in the statement of w, and assume that line(ri) returns the line of code in
which variable ri was written the last time. Then we define

DynBackSlice(w) :=
⋃

i

(DynBackSlice(ri) ∪ {line(ri)}).

The knowledge about the dynamic backward slices separates relevant from irrel-
evant. If you know that v has an incorrect value in a given state, you immediately
know which statements, respectively which other variables had influence on v in
the given execution and — sometimes also important — which not.

248 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

Another helpful possibility to automate the search for an infection is to de-
termine conditions, which are necessary for the sanity of a state. The check of
these conditions can be done by the program. Such extensions of the code are
called assertions and generally have the following structure.

if (condition) then printf(); and halt();

The condition usually determines whether the given state is still sane. If the state
is not sane, then an arbitrary part of the data may be printed and the program
is halted. At this point we want to refer to Section 6.2.3 where we discussed how
to check data invariants and preconditions respectively postconditions of parts
of the code. These methods may help to find the conditions of an assertion. As
you can see in this context: it is helpful to have attended on modularity in the
design phase (Section 3.5.1), because it is easier to check invariants for short
modules than for long functions.

As stated in the last subsection, debugging is a search problem, and we have
to separate relevant from irrelevant. Let us assume that we executed the code on
many inputs — some failing and some passing runs. Then there may be parts of
the code that were executed only in passing runs. These parts cannot contain the
defect. Parts that were executed in passing and in failing runs are ambiguous and
parts that were executed only in failing are highly suspect. The tool “Tarantula”
written in Java [442] highlights the code according to this differentiation. As
input, it takes arbitrary software system’s source code and the results of the
execution of a set of test inputs. It accelerates the searching process very much,
because you only have to look at the code and can easily identify those parts of
the code that contain the defect with a high probability.

The superficial effect of debugging tools is, of course, that the task of searching
the defects is supported. But on the other hand, a debugging tool that helps
searching the error very much, may also be counterproductive in the sense that
the programmer is seduced to trust on the debugger and neglect accuracy in the
design.

6.3 Efficiency

Next to correctness, efficiency is a major requirement for an algorithm to be ap-
plicable. An efficient implementation will enable the user to solve small problems
more quickly, solve more or larger problems in a fixed time frame and solve very
large problems at all. Textbooks [191, 742] stress the importance of asymptotic
running time and selecting an algorithm with a good asymptotic running time
is usually the first step towards an efficient implementation. But what really
matters is the actual running time when the implementation is being used. The
description of an algorithm in a textbook or paper usually does not tell you how
to implement it with small constant factors. When refining the description to an
implementation, the implementer therefore has to look carefully where he can
improve the running time.

6. Implementation Aspects 249

0

5

10

15

0 10 20 30 40 50

sp
ee

d
-u

p
s

optimization factor P

95%
90%
75%
50%

Fig. 6.2. Speed-ups by optimization for rp ∈ {95%, 90%, 75%, 50%}

However in almost all cases it is only worth the effort to optimize code por-
tions which contribute significantly to the runtime. Large improvements on small
contributors have only little effect as expressed by Amdahl’s law [26]. If rp (resp.
rs = 100% − rp) denotes the ratio of the program’s execution time spent in
optimized (resp. unoptimized) code portions and P the factor by which the op-
timized code is accelerated, then the total speedup s achieved by optimization
is given by

s =
1

rs + rp/P
.

Figure 6.2 shows the total speedup values for different rp, illustrating the fact
that s is rather limited whenever rp is not large. By understanding the bottle-
necks of the algorithm and profiling the first implementation, the implementer
can find out quickly which code sections contribute largely to the running time
and then concentrate on optimizing these parts. Fine-tuning the remaining parts
will probably take longer than the gain in running time is worth. Profiling can
be done by instrumenting the code with timers or using profiling tools such as
gprof [351]. Chapter 8 contains rules and hints how profiling and other experi-
ments should be performed.

Optimizing an algorithm for a library or for a special problem at hand is
a different task. For a library, the implementer does not know what kind of
input the user will provide. He must therefore provide an implementation that
is efficient on all possible inputs. In many cases, there will not be an optimal
solution. The implementer can then make several algorithms available to the user
or let the user take certain decisions. This is only possible through a flexible
design. When implementing for a certain problem, there is usually additional
information about the input available. The implementer should try to exploit
this information as much as possible to speed up the algorithm.

250 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

There is no such thing as a “theory of efficient implementations” and it is
hard to find programming language independent advice on how to create efficient
implementations in the literature, due to the nature of the problem. There are,
however, books, e. g., [93,570,571] full of speed-up tricks or examples of efficient
solutions for certain problems. We have tried to collect the more general tips in
the remainder of this section.

6.3.1 Implementation Tricks – Tuning the Algorithms

The description of many algorithms leaves open several parameters from which
the implementer can choose freely without destroying important properties of
the algorithm. These parameters can range from numerical parameters (e. g., the
size of some buffer) over data structures (balanced binary trees, priority queues)
and sub-algorithms (sorting) to the algorithm itself. While these parameters may
not affect the asymptotic running time, they will affect the actual running time
of the implementation. The task of the implementer is to carefully investigate
the possibilities and choose a solution best suiting his needs. This investigation
will be supported best by a flexible design allowing to exchange parts of the
implementation easily.

When implementing algorithms for efficiency, Mehlhorn and Näher [561] rec-
ommend to “concentrate on the best and average case after getting the worst case
‘right.’ ” They name algorithms for computing a maximum cardinality matching
in bipartite graphs as one of their best examples for tuning parameters. We like
to mention it as a good example of Algorithm Engineering: The authors form
hypotheses how various variants of the algorithm behave, based on heuristic ar-
guments and then perform experiments to confirm or disprove the hypotheses.
Their first algorithm for maximum cardinality matching in bipartite graphs is
due to Ford and Fulkerson [293]. Although it does not have an optimal worst
case running time, it is in the end competitive for some inputs. It proceeds as
follows:
1: procedure FordFulkerson(Graph G)
2: Matching M ← some matching in G
3: for all nodes v in G do
4: if there is an M -augmenting path p starting in v then
5: augment M by p

6: return M

Apart from using different data structures, the authors explore two parameters
in this algorithm, namely how to find the initial matching and how to compute
the augmenting path. For the first choice, the proposed possibilities are starting
from the empty matching or constructing a matching using a greedy heuristic.
They argue that the heuristic, while having a short running time, will already
match a large number of nodes in random graphs and confirm this by experi-
ments. They “recommend exploring the use of a heuristic always,” but also note
that the effects of a heuristic will be small for good algorithms. This is later con-
firmed when applying the heuristic to the best algorithm. To find an augmenting

6. Implementation Aspects 251

path, they propose using a breadth-first search (bfs) or a depth-first search (dfs).
The bfs will find the shortest augmenting path, while the dfs may explore the
entire graph although an augmenting path of length 1 exists. For this reason,
bfs performs better on average, which the authors again confirm by experiments.
From their implementation of the bfs and dfs the authors derive another princi-
ple. To implement the bfs and the dfs, certain nodes must be marked during the
algorithm. Clearing the marking for all nodes after each augmentation step takes
Θ(n) time, such that the runtime of the algorithm is Ω(n2). If each node when
being marked is also put on an additional stack, then after the augmentation
only the markings of nodes actually touched must be cleared. The authors call
this the principle of “paying only for what we actually have touched and not for
what we could have conceivably touched.” Elaborating further on this idea, they
achieve that n2 is no longer a lower bound for the asymptotic runtime of the
algorithm. Note that a lower bound only tells how bad an algorithm performs.
To claim that an algorithm performs good in the best case, a small upper bound
on the family of all lower bounds must be given. The authors show that each
lower bound of the algorithm is O(m), improving the best case.

In a divide-and-conquer algorithm A, one of the open parameters is the min-
imum size M at which a problem will still be divided into subproblems. No
matter how large or small M is chosen, as long as it is fixed and does not de-
pend on the input, the asymptotic running time of A will not change. Typically,
in the description of the algorithm, M is chosen such that the problem becomes
trivial. There may however exist another algorithm B solving the same problem
which has a worse running time on large instances but is faster in solving small
problems. The implementer can then determine at which problem size M algo-
rithm B is the better choice, stop dividing if the subproblem becomes smaller
than M and use B to solve it. This principle could be called stop dividing early.
Sedgewick [717] applied it to the quicksort algorithm, sorting sub-arrays of length
smaller M using insertion sort. Musser [602] proposed a different criterion to stop
dividing in a quicksort algorithm. If at some point in the algorithm the recursion
depth is larger than some bound in O(log n), the sub-array is not divided fur-
ther but sorted using heapsort. This results in an algorithm with running time
in O(n log n) but preserves the practical performance of quicksort for uniformly
distributed input.

Reference Counting. Reference counting is a technique that allows several equiv-
alent objects to share representations with automatic resource management. It
has been described frequently in various versions [561, 570, 759]. In reference
counting several handles point to a representation. The handles act as prox-
ies [313], interaction with the representation is only possible through the han-
dles. The representation to be reference counted contains a counter ref_count
knowing how many handles currently point to it. When a new handle points
to the representation, ref_count will be increased, when a handle is removed
ref_count will be decreased, allowing to automatically release the resources
used by the representation once no more handles point to it. Copying a refer-
ence counted object only creates a new handle. Changing an object will change

252 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

handle

handle representation
ref_count

Fig. 6.3. Invasive reference counting layout

the representation and therefore all objects it currently represents. Sometimes
this may be undesirable for the type being shared. Then a copy-on-write strat-
egy avoids changing other objects. Before the modification takes place an actual
copy of the representation is made and the handle through which the modifica-
tion takes place is redirected.

Whether to share representations of equivalent objects can be decided on the
type level, but also for individual objects. When the decision to share represen-
tations is made on the type level, it can be completely hidden from the user.
Strings are usually reference counted and feature a copy-on-write strategy. This
pays off since strings require dynamic memory, are copied often and modified
rarely. Another example where sharing representations can be useful is soft-
ware number types. Unlike the number types available from hardware, software
number types allow to compute with arbitrary precision, e. g., in the field of
rational numbers. Consider an algorithm which is generic in the number type it
uses. Passing function arguments by value will be inefficient for software number
types, while passing a pointer will be inefficient for the hardware number types.
If the software number type is however reference counted, passing by value will
only create a new handle at a moderate cost.

Sometimes one also has the ability to identify individual objects as being
equivalent. This allows to speed up a program by preventing that already known
results, like comparisons, are computed again. First equivalent objects must be
identified. This is most easily done when constructing them. Consider for exam-
ple the construction of two segments bounding a triangle, where a segment is
represented through its endpoints. These two segments will have a common end
point and thus may share this point in their representation. The sharing can for
example be implemented through simple pointers or by having the points refer-
ence counted. Sometimes objects are recognized to be equivalent somewhere in
the course of an algorithm. Then their representations may be unified by redi-
recting all references to the first representation to the second one and deleting
the first. If it is not required by the algorithm, it is rarely advisable to enforce
a single representation for equivalent objects but the chance for identification
should be taken whenever possible. Kettner [470] has designed and implemented
a reference counting scheme which allows to unify representations using a union-
find data structure, which allows to filter comparison tests very efficiently. First,
pointers to the representation can be checked to detect identity before another,
presumably less efficient, algorithm is run to compare the underlying represen-
tations. In case of equality, one representation can be discarded, while pointers
to it are moved to the remaining representation. Different policies are possible.

6. Implementation Aspects 253

Full details are given in Kettner’s paper. Furthermore, in the case of the two
segments, an affine transformation on the segments must be applied to only
three instead of four end points. Here actually care must be taken, not to ap-
ply the transformation twice to the shared endpoint. Sharing representations as
described here, will definitely increase the complexity of the implementation,
impairing readability and maintainability. It will have a positive impact on the
running time only, if the operations which are avoided by sharing representations
are more expensive than the overhead for managing shared representations.

Sentinels. Algorithms that are traversing some data structure usually need to
test whether they have reached the end of the data structure. These end-of-data-
structure tests can be removed from an algorithm using a so-called sentinel, e. g.,
in a linear search [93]. When searching in a list, the element searched for will
be placed as a sentinel right at the end of the list in a new node before the
search is performed. This assures that the element will be found before the end
of the list is reached. The element then is in the list if it was found in some node
before the sentinel node. Finally the sentinel must be removed again. This trades
the time for an end-of-list test within the search loop to time for inserting and
removing the sentinel node and an additional test after the search. In the case
of an array, this can only be done if the array has been allocated with additional
space to hold the sentinel. Here the sentinel should rather be swapped with the
element at the end of the array, to avoid overwriting data. The data structures
and algorithms in the C++ standard template library [727, 755] are generic in
the types on which they work. This makes the use of sentinels in the library
implementation unattractive as it would impose unnecessary restrictions on the
types that can be handled and therefore sentinels are completely avoided. The
user is however free to place his own sentinels inside the data structures.

Lazy Evaluation. From the perspective of efficiency, the best computations are
those never performed at all. This may sound a little bit strange, but in the
context of so-called lazy evaluation the statement perfectly makes sense. The
word “lazy” means that computations (or other operations) are not performed
before their result is really used. When dealing with matrices (of size n times n,
say) the statement:

matrix3 = matrix1 * matrix2;

usually means that after the assignment matrix3 holds all the n2 values of the
product that has been computed. If in an extremal case e. g., only the top left
entry is used afterwards, that means that all the n2 − 1 values have been com-
puted for nothing. If however the object matrix3 holds the information that it
has to behave like the product of matrix1 and matrix2, but no computation
and no copying takes place until the top left entry is requested, the extra com-
putations can be avoided. This only works as long as matrix1 and matrix2 are
not changed in the meantime, but we already learned about reference counting
and how to deal with such cases. Not only time consuming calculations may be

254 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

avoided, but also e. g., database operations. Why construct a large object from
a database completely when only few fields are read afterwards?

Over-Eager Evaluation. A concept that seems to be diametrically opposed is
over-eager evaluation: values are computed just in case they might be used
sometimes later. Consider for instance a class for linked lists. Computing the
length of such a list takes time linear in the number of list entries. On the other
hand such an object could also hold the redundant information about the length
in an extra field and whenever the length is requested, just return the content
of that field. There are mainly two ways of doing that: first, every time the
list is modified, the length is updated, or second, when the length is requested
for the first time, it is computed and cached for the next time. In both cases
time is saved whenever the length is requested more than once. Another type
of over-eager evaluation namely prefetching becomes interesting when one has
to consider different levels of memory. In terms of main memory, fetching data
from hard disc with random access is extremely slow: every time the head has
to be moved to the correct position before a block can be read. Normally such a
block contains more data that is actually demanded. According to the principle
of locality, data that is demanded shortly after is often saved nearby. So it is
a good idea not to forget the block that has just been read and to cache it.
Moreover, prefetching means that the neighboring blocks are also read (best in
a sequential manner instead of multiple random accesses) and cached since the
likelihood of needing data from some of these blocks is high. This example was
taken from the domain of hardware and most algorithm engineers might just
want to use hardware as a necessary means, but do not want to implement the
drivers. So let us have a look at another example: dynamic arrays. Almost every
implementation of dynamic arrays uses prefetching. The data is normally stored
in a fixed size array and if the size of that array is insufficient, a larger array has
to be allocated and the data has to be copied. If the size was always increased
by just the amount currently needed, a sequence of n append operations would
cause n such allocation and data copy procedures which implies an Θ(n2) time
bound for the n append operations. With prefetching on the other hand the effort
can be reduced to O(n) amortized time by doubling the size of the underlying
array every time it gets too small.

6.3.2 Implementation Tricks – Tuning the Code

Apart from such high level tricks, there are many ways to help a computer to run
a program faster. Most of them are specific to the hardware, to the operating
system, or to the programming language. There are way to many to know them
all (the AIX performance tuning guide [18] alone lists 63 system parameters
that can affect performance) and modern compilers do a lot of performance
optimization themselves, but keeping some of these low level reliefs in mind when
coding may help improving efficiency. Collections of recommendations that are
intended for, but not all limited to C++ can be found e. g., in [570,571].

6. Implementation Aspects 255

Temporary Objects. Using object oriented programming languages, many pro-
grammers are not aware of the huge number of objects that have to be created
and destroyed when their program runs. For Java programs an example that is
often mentioned in connection with object creations is the use of strings: Ev-
ery operation modifying an object of type String causes the creation of a new
String object. Moreover the concatenation via the += operator is realized by
using a temporary object of type StringBuffer. Writing string1 += string2
results in virtually the same code as writing

string1 = (new Stringbuffer(string1)).append(string2).toString().

For C++ programs one of the most obvious source of temporary objects being cre-
ated and destroyed shortly after, is the use of an object as return value of a func-
tion. The object is created inside the function and returning it means, that this
newly created object is copied and destroyed afterwards. There are several pos-
sibilities to avoid this behavior. First, returning pointers to objects created with
new instead of returning objects. But the price one has to pay for reducing the
number of object creations is, that the programmer has to take care of all these
pointers and has to assure that the objects are properly deleted to avoid memory
leaks. So this way should only be used in certain cases where the correct usage
can be assured. Second, one can use non-const references instead of returning
objects. A reference to the object that is to contain the result of some function is
passed to the function as a parameter. Inside the function the object is modified
and nothing has to be copied and returned. The third possibility is to make use of
the optimizations that modern compilers provide: Objects may be optimized out
of existence. But the programmer has to offer the chance of applying this opti-
mization to the compiler. In [570] an example is given, that nicely illustrates such
a situation. Imagine a class Rational that represents rational numbers and that
has a constructor which takes the numerator and the denominator as parameters.
Without optimization in a function call like the following

const Rational
operator * (const Rational& lhs, const Rational& rhs) {
return Rational(lhs.numerator() * rhs.numerator(),

lhs.denominator() * rhs.denominator());
}
...
Rational r1, r2, r3;
...
r3 = r1 * r2;

an object of type Rational would be created inside the function and copied to
r3. But compilers supporting so-called return value optimization can directly
write the values to r3 without creating a temporary object. The specification of
C++ makes it easier for compilers to optimize unnamed objects out of existence
than named objects [570]. Only some recent compilers do support the so called
named return value optimization (NRVO), but most do support the return value

256 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

optimization for unnamed objects. So when there is the choice, an unnamed
object should be preferred over a named object to help the compilers to produce
fast programs.

Built-In Data Types. Depending on the machine a program is running on, the
choice which built-in data types are used can also affect the running time. Be-
cause of the development of faster and faster hardware for floating-point op-
erations the old truism that using integers is faster than using floating-point
numbers has become less important. However there are still differences. The
AIX performance tuning guide [18] lists several examples for C++. Loading an
unsigned char into a register takes two instructions less than loading a signed
char and in most cases it takes less instructions to manipulate an int than a
char or short. Unless there are large arrays of these types, the increase of re-
quired storage space is more than annihilated by the decrease of the compiled
code’s size.

Conditional Branches. Modern processors gain speedup from not processing
instruction after instruction, instead via pipelining they begin to process oper-
ations before the preceding operations are totally completed. Due to that fact
every conditional branching may slow down the computation: Which operations
are to be loaded into the pipeline depends on the result of a preceding opera-
tion. Filling the pipeline could be suspended until the result is available or the
pipeline can be filled with the operations of one of the paths. In the latter case,
the pipeline has to be stopped, emptied and refilled if actually another path has
to be executed. Improvements such as branch prediction help to reduce the slow
down, but – unless the prediction is always perfect – can not avert it. Therefore,
avoiding conditional branches, especially inside loops, should always be worth a
thought. Imagine e. g., a routine counting the occurrences of upper case letters,
lower case letters and digits in an ASCII text string. A naive implementation of
the classification could look like this:

if ((character >= ’0’) and ((character <= ’9’)) {
characterType = DIGIT;

} else if ((character >= ’A’) and ((character <= ’Z’)) {
characterType = UPPERCASE;

} else if ((character >= ’a’) and ((character <= ’z’)) {
characterType = LOWERCASE;

} else {
characterType = OTHERS;

}
count[characterType]++;

This piece of code contains 6 comparisons and 3 conditional branches. If the
strings to process are sufficiently long, using an array that holds the type for
every of the 256 characters may drastically decrease the running time of the
classification, although the time complexity stays the same:

6. Implementation Aspects 257

characterType = typeTable[character];
count[characterType]++;

In this example avoiding the branches will probably yield the major speedup, but
there is still room for improvements. The code above uses two indirections. By
counting characters and collecting the numbers afterwards only one indirection
is needed in the main loop:

int count[256];
forall (character in word) {

count[character]++;
}

int digits = 0;
for (int i = ’0’; i <= ’9’; i++) digits += count[i];
...

In the last example the speedup was mainly gained for the price of increased
memory usage. Replacing short by int means that more memory is used to
store the data and storing precomputed values when using over-eager-evaluation
of course also increases memory usage. As long as memory is not the limiting
factor, this time-space trade-off seems to be not a problem, but one should always
be aware of it.

Memory Hierarchy. Modern computers not only consist of a CPU and main
memory, but also have one or more memory caches in between. Roughly speak-
ing, the cache contains copies of several regions of the main memory that were
recently accessed. Accessing an address that is currently cached is much faster
than accessing an address that is not currently cached. The latter case is called a
cache miss. Because of the existence of caches, the running time of an algorithm
is influenced by its memory access pattern. Cache aware techniques are modifica-
tions to the memory layout of a data structure or the way an algorithm accesses
memory, which try to minimize the number of cache misses but without giving a
performance guarantee. Section 5.2.4 has a collection of these techniques. Some
are performed by compilers, others must be done by the implementer.

Inlining. We would also like to mention function inlining as a possibility for
optimization. A function call incurs a certain overhead, that can be avoided by
inlining the function. This basically consists of copying the function body to the
place where the function is called. Many programming languages have support
for some kind of automatic inlining, e. g., through the inline keyword in C and
C++. Function inlining not only removes the overhead of the function call but
also allows the compiler to perform its optimizations over a larger part of code,
reducing the computation time further. Together with the template feature in
C++ automatic inlining allows to write code that is general and does not have
any or very little overhead compared to a special version. We will look at an
example in the next section. Too much inlining will however lead to an increased

258 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

compilation time and also to larger executables. It may then slow down the
computation because of more cache misses in the instruction cache.

Argument Passing to Functions. Objects can be passed to a function by value
or by reference, where in some programming languages, passing a pointer to an
object by value must be used to work around a missing call by reference mech-
anism. Passing by value involves copying. For all but very small objects this is
a source of inefficiency and should be avoided whenever possible. Imagine you
perform a binary search function where the sorted array is passed by value to re-
cursive calls. Argument passing is discussed in Section 6.4 of Leiss’ programmers
companion to algorithm analysis [515].

Often objects are passed by value in order to ensure that the calling function
does not modify them. Programming languages like C++, however, offer a better
alternative: const references. On an object passed by const reference the compiler
allows only for operations that claim not to modify the object, for example, func-
tions that use a const reference as well or member functions declared as const.
For the latter the compiler checks that they do not modify an object. Basically,
this constness mechanism ensures that objects passed by const reference are not
modified. Since it is a call by reference, they are not copied either, i.e., expensive
copying is saved. However, C++ allows you to sabotage the constness mechanism
by casting constness away. This is a relict from the pre-standard times of C++

when it was not possible to distinguish logical constness from physical constness.
The former allows for special changes in the internal representation of an object
as long as these changes do not affect the objects state and behavior as seen
from an outside perspective. Physical constness means changing the bits of the
actual representation of an object is not allowed. Nowadays, programmers can
declare members of a class to be mutable to permit modifications despite formal
constness. Sometimes, getting constness to work correctly is a fairly non-trivial
task.

Squeezing Space to Improve Locality. Often, reducing space complexity also re-
duces time complexity, simply because more smaller objects fit into faster mem-
ory, thereby making I/O transfer less likely. Often there is also an involved trade-
off between time and space. For example, packed data structures like bit vectors
or bit arrays use less space while accessing the individual elements becomes more
complicated and more expensive.

Sometimes, however, it is very easy to save space. In many programming
languages, especially C and C++, the order of member declarations in a class
definition can be crucial because of alignment restrictions. For example, usually
int must be aligned at a four byte boundary, while a short must be aligned on
a two byte boundary. Regarding char, there are usually no restrictions. So lets
assume we have to declare one short, two char, and three int in a class. If we
use declaration sequence char, int, char, int, short, int, the class will take
six bytes, while it takes only four bytes using the sequence char, char, short,
int, int, int. Thus, by such a simple rearrangement we save one third of the
space. Novice programmers are often not aware of this.

6. Implementation Aspects 259

Exploiting Algebraic Identities. For an arithmetic expression one might con-
sider replacing it with an algebraically equivalent expression that is cheaper to
evaluate [93]. Horner’s rule for polynomial evaluation is an illustrative exam-
ple. On some platforms, we might save time by replacing multiplications and
divisions by powers of two by left and right shift operations. However, there
is a caveat regarding floating-point operations. With floating-point arithmetic,
some algebraic identities do not hold anymore. While floating-point addition is
still commutative with IEEE 754, it is not associative due to rounding errors:
The results of the summation of more than two floating-point values might de-
pend on the summation order. Thus, when rearranging arithmetic expressions
for floating-point evaluation, one should keep rounding errors in mind. Fortu-
nately, exploiting algebraic identities sometimes both saves time and gives more
accurate results: Consider comparison of Euclidean distances. The Euclidean
distance of two points p and q is the square root of the sum of the absolute dif-
ferences of the Cartesian coordinates of p and q. However, in order to compare
two such distances it is not necessary to take square roots. Comparison of the
squared distances saves the square root operations and is more accurate.

Exploiting Word Parallelism. To evaluate certain expensive expressions, it can be
very helpful to use the full word width of the underlying computer architecture.
For example, using logical bitwise OR on two 64-bit sets, we are performing 64
operations in parallel. An instructive collection of bitwise tricks and techniques
can be found in Knuth’s Fascicle 1 of Volume 4 of The Art of Computer Pro-
gramming [483]. Broadword computing refers to efficient n-bit computations for
fairly large values of n. Some very recent studies have demonstrated the speed-up
potential of broadword computing [805,337].

6.3.3 Code Generation

Sometimes it is conceptually clear how the most efficient code will look like,
but writing it down may be tedious and hence will be error prone. Or the most
efficient code is undesirable from the readability and maintainability point of
view. In these cases, we may want some tool to generate the code for us. Some
programming languages come with features that allow to generate code in some
way, but most times the tool will be some external program. This has the negative
side effect that our software is now written in two languages, the input language
for our code generator and the programming language we are using.

A typical example is the implementation of mathematical operations on ob-
jects of fixed and small size, e. g., the inversion of a regular 4× 4 matrix. A nice
and clean way to do this would be to implement the Gauss-Jordan elimination
or Cramer’s rule for arbitrary n and use it with n = 4. Much more efficient
is it to write down an algorithm for n = 4, unroll all the loops and eliminate
common subexpressions. Modern compilers perform loop unrolling and common
subexpression elimination, however only to some extend. Loop unrolling may
be hindered by the growth in code size or when the compiler cannot determine
that n = 4 holds, common subexpressions will rarely be eliminated due to the

260 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

fact that certain algebraic identities of the real numbers do not hold for floating
point numbers. Computer algebra systems are environments which can handle
mathematical objects well, having various functions to manipulate them in cer-
tain ways. Major computer algebra systems have support for the generation of
code in various languages, either build in or as expansion package. Therefore,
they have long been and still are a natural choice to automatically perform the
optimizations described above and generate efficient code [797,201].

Fortune and van Wyk [298,299] developed a compiler for exact geometric pred-
icates on integers, called LN. It takes as input a multivariate polynomial whose
sign must be computed and bounds on the bit-length of each of the operands.
It uses this information to compute bounds on the bit-length of all intermediate
and output values, to compute an a priori error bound and to produce exact
evaluation code. In the generated code the expression is first evaluated using
floating-point arithmetic and only if the sign of the result cannot be verified by
the error bound, the exact evaluation is triggered. The exact evaluation code
stores large integers as tuples of floating-point numbers and each arithmetic op-
eration is tailored to the bit-length of its operands. The code generated by LN
is faster than code using arbitrary precision integer arithmetic due to the filter
and because the exact evaluation code avoids most of the overhead needed when
dealing with variable bit-length integers. The downside is, that code generated
by LN is inefficient for input of smaller bit-length, both in the error bound and
in the number of variables and operations it uses for the exact evaluation. Fur-
thermore, once generated, the code cannot reliably be used with input of larger
bit-length, limiting flexibility. Similar approaches to automatically generate effi-
cient exact predicates are due to Burnikel et al. [144] and Nanevski et al. [608].

The template feature of C++ is mostly used to implement generic data struc-
tures and algorithms, see Section 6.4.1. It can however also be used to write more
efficient code. Reis et al. [669] have used templates in their library SYNAPS to
implement efficient linear algebra operations. The technique is already presented
by Veldhuizen [109, 801, 802] and Stroustrup [759, Section 22.4.7]. Consider a
vector class Vector holding n numbers and having an operator[], allowing to
access the elements. The fastest way of getting the sum of three vectors x,y,z
into another vector sum would be the instruction

for(int i=0;i<n;i++) sum[i] = x[i] + y[i] + z[i];

For the sake of shortness and readability one would however like to write sum = x
+ y + z;. This requires the implementation of an operator+ and an operator=.
A naive implementation of these operators could look like

inline Vector operator+(const Vector& s,const Vector& t){
Vector tmp;
for(int i=0;i<n;i++) tmp[i] = s[i] + t[i];
return tmp;

}

6. Implementation Aspects 261

inline Vector& operator=(const Vector& s){
for(int i=0;i<size;i++) v[i] = s[i];
return *this;

}

The execution of sum = x + y + z; now will allocate two temporary vectors
tmp1 and tmp2 with tmp1 holding the result of y+z and tmp2 holding the result
of x+tmp1. This allocation is very time consuming and accounts for most of the
overhead in this solution. More overhead comes from the fact that the two addi-
tions and the assignment will be performed in separate loops. Using templates
and inlining and relying on the optimization of the compiler, more efficient code
can be generated. First it can be observed that no computation must be per-
formed until an assignment is done. The trick is now to let operator+ return a
proxy object of type Vsum which holds references to the addends and models the
addition.

template<class S,class T>
struct Vsum{
const S& s; const T& t;
Vsum(const S& ss,const T& tt):s(ss),t(tt){}
double inline operator[](const int i)const{return s[i]+t[i];}

};

template<class S,class T>
inline Vsum<S,T> operator+(const S& s,const T& t){
return Vsum<S,T>(s,t);

}

When more than one addition is performed, as in the case of sum = x + y +
z;, in the second addition one of the addends is no longer of type Vector but
of type Vsum<Vector,Vector>. Hence, the operator+ and Vsum are generic in
which kind of addends they accept, and the C++ compiler will automatically
generate the right code. In the operator+ above, there is almost no requirement
on the type of the addend. The assignment operator however only accepts types
which have an operator[] returning a number.

template<class S>
inline Vector& operator=(const S& s){
for(int i=0;i<n;i++) v[i] = s[i];
return *this;

}

This holds for other vectors as well as for Vsum<S,T> which now recursively
requires the same from S and T. The instruction s[i] will call the inline
operator[] of a Vsum object, which will recursively call other inline functions
until actually a value is reached. The compiler may now eliminate these function

262 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

calls, resulting in code equivalent to the first approach. But even if no optimiza-
tion is performed, the new approach may be faster because it only requires the
allocation of small objects of type Vsum instead of temporary vectors.

It is clear that this approach can be extended to further arithmetical opera-
tions by introducing operators and proxy classes which model these operations.
It allows to use vectors efficiently through a simple and clean interface. The
drawbacks are an increased compilation time and a larger executable due to
the inlining, slightly more complicated code on the implementation side and as
always with templates, very hard to decipher error messages. Reis et al. [669]
have not measured the runtime differences between the three versions of vector
arithmetic.

6.4 Flexibility

Flexibility of an implementation is the the ability to (re)use an algorithm or a
data structure in changing environments. The environment consists of the input
we have to handle, other software that interacts with our implementation and
the hardware our implementation is running on. Here are some examples:

– input: When computing the Delaunay triangulation of a set of points in the
plane, the input points may have hardware integer coordinates or bigfloat
coordinates. In both cases we want a correct and efficient solution. This
requires to replace the predicates or the number type used in the predicates
in the Delaunay triangulation algorithm.

– other software: We need containers for storing objects. A container should
not be rewritten for every type, instead it should be flexible in the type it can
hold. An algorithm for selecting a maximal object from a container should
work for types we do not know yet, stored in containers we do not know yet.

– hardware: The TwoProduct algorithm from Section 6.7.2 can be imple-
mented with only two floating-point operations on hardware with a fused-
multiply-add instruction. Thus we will want to replace the algorithm when
compiling for such hardware.

We can see that flexibility requires the ability to easily exchange subalgorithms
and data structures. This further requires, that modules performing equal or
similar tasks have identical interfaces. There are syntactical and semantical re-
quirements on modules that can be exchanged. A flexible sorting algorithm must
e. g., be supplied with code performing a comparison of two objects. A syntacti-
cal requirement is that this code exists and is supplied to the sorting algorithm.
A semantic requirement may be that the comparison code implements a total
order on the type that is to be sorted, as this may be needed by the correctness
proof of our sorting algorithm. Syntactical requirements can be checked by a
compiler, semantical requirements usually can not be checked automatically.

In Algorithm Engineering flexibility is not only desirable to ease reuse, but it
also allows to perform experiments more easily, cf. Chapter 8. Which of the many
implementations of an abstract data type is best in a certain algorithm applied to

6. Implementation Aspects 263

certain input can often only be decided by experiments. Two algorithms for the
same purpose and using equal subalgorithms can be compared more meaningful
if both use the same implementation of the subalgorithms. Performing such
experiments efficiently and without code duplication requires a flexible design.

Which part of an algorithm should be exchangeable must be decided by the
implementer. Sometimes suggestions are given in the description of an algorithm,
i. e., when an abstract data type is used. Then the implementer must not only
choose at least one specific implementation of the abstract data type, he can also
decide to make that part easily exchangeable. Aside from such obvious decisions
the implementer has to decide with the anticipated usage in mind. Flexibility
requirements may also only be discovered by going through the Algorithm En-
gineering cycle or when an actual reuse scenario arises. Then a refactorization
may be necessary.

6.4.1 Achieving Flexibility

Design patterns describe general, mostly simple and elegant solutions to soft-
ware engineering problems which arise time and again. To achieve flexibility, our
software prototype should be designed for change. To this end, design patterns
like Strategy, Visitor, Iterator, Abstract Factory, Observer, and several others are
helpful. For details we recommend the by now classic book on design patterns
by Gamma et al. [313].

First of all, we would like to have (sub)algorithms exchangeable. To decouple
algorithms and data structures, each algorithm should come with its own class.
Instead of implementing algorithms just for one specific data structure, they
should be designed to work for a whole bunch of data structures which have to
satisfy a minimal set of requirements.

Different variants of an algorithm can be made exchangeable using the Strat-
egy pattern. It declares an interface common to all supported algorithms. De-
pending on the context, this interface can be used to call the algorithm defined
by a concrete strategy. If the concrete strategy can be selected at compile-time
and does not have to be changed at run-time, C++ templates can be used to
configure a class with a strategy.

Let us exemplify some of these aspects using the problem of sorting. The
question arises which language features of C/C++ can be used to facilitate the
exchange. We shall now briefly discuss some of the language features and compare
their weaknesses and strengths. What parts in sorting should be exchangeable?
First of course the type to sort. Next comes the order on the type, represented by
some code comparing two objects. We want that order to be independent of the
type, i. e., we want to be able to sort ints non-increasing or non-decreasing or
we may want to sort some type according to its semantic or just by its address in
memory, when any order suffices. And finally we want the container that holds
the objects to be sorted to be exchangeable.

Our first solution is based on weak typing and function pointers. For a lack of
alternatives, this choice has been made in the quicksort implementation of the
C standard library. The qsort function is given a pointer to the first object, the

264 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

number of objects and the physical size of the objects to be sorted, it assumes
the objects are stored in a C style array. The last argument is a function pointer
to a function performing a comparison of two objects.

void qsort(void *buf,
size_t num,
size_t size,
int (*compare)(const void *, const void *));

Therefore, the qsort function is flexible in the type it can sort and the com-
parison operator for that type. Allowing both parameters to be exchangeable
and independent of each other requires to weaken type safety. The compiler will
accept the code even if size, compare and the type to sort do not match as
they should. An advantage of supplying functionality to an algorithm through a
function pointer is, that the algorithm must be compiled only once. Old code can
call new code, which is provided through the function pointer, without recom-
pilation. A disadvantage is, that one may need to weaken type safety to achieve
true flexibility, as in the qsort example above. Another issue is, that the call
to the function supplied as function pointer can not be inlined in the typical
scenario. When the function is called very often and has a short running time,
e. g., when sorting ints with qsort, the function call will be a serious run-time
overhead.

Another way to achieve flexibility is to use object-oriented programming tech-
niques, more precisely polymorphism. Here we present an example inspired by
a solution in the Java language. The syntactic requirements of the code to be
exchanged are captured in one or more base classes.

class Comparable{
public:
virtual bool lessThan(Comparable *C) = 0;

};

Any type that is to be sorted can now inherit from Comparable and is then
forced to implement the lessThan() function. When the lessThan() function
is called through a Comparable pointer, at runtime the actual type of the object
pointed to is determined and the corresponding lessThan() function is called.
This allows us to implement a sorting function that sorts a C style array of
Comparable pointers.

void sort(Comparable ** buf, size_t num);

The advantages of polymorphism are again the ability to let old code call new
code and the ability to establish type safety at runtime. The syntactical re-
quirements are visible in one place, namely the base class and the semantical
requirements can be documented next to it. Note that our solution here actu-
ally introduces an inflexibility, as the order given by the lessThan() function
is tied to the type, sorting with respect to a different order requires to create

6. Implementation Aspects 265

a new type. Polymorphism is however a good choice when a whole set of ac-
tually different types can be handled equally in our code. The major downside
of polymorphism is the cost of virtual function calls. They are quite expensive
compared to regular function calls, since first the function to be called must be
determined.

C++ provides the features of templates [800]. Using templates to achieve flex-
ibility is called generic programming, sometimes when a lot of computations are
deferred to compile time also template metaprogramming. A function (or class)
template is a regular function, parameterized by one or more types. The param-
eter may be used in the implementation of the function as if it was a real type
having the necessary functionality. To use the function template, the parameters
must be fixed, at compile time. This is called instantiating the template. Then
the compiler checks if all the functionality required from a parameter is actually
available. Here is an interface to the sort function from the C++ standard li-
brary. Note that the type to be sorted is not visible in the interface, instead two
arguments of a type parameterized as RandomAccessIterator must be given.
These arguments describe a range or sequence of the objects to be sorted.

template <class RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);

The implementation of sort assumes among other things, that the type inserted
for RandomAccessIterator has a dereference operator *, such that e. g., the
expression *first gives access to the first of the objects to be sorted. It is further
assumed that the type of these objects has a comparison operator < and some
other functionality. A type and associated types that fulfill all the requirements
imposed by the function template on the template parameter is called a model
for this parameter. An example for a model of the RandomAccessIterator is a
simple pointer to an int, so one can use sort to sort a simple C style array of
ints.

int intarr[5] = {1, 5, 3, 4, 2};
std::sort(intarr,intarr+5);

Note that sort is our first example, where the container storing the objects can
be exchanged, although in this interface again the order is tied to the type. The
syntactical requirements made by a function template are scattered throughout
its implementation. It is therefore considered good practice to collect the syn-
tactic requirements in a single place e. g., by providing a dummy model, and
furnish them with a documentation of the semantical requirements. Examples
for this are the famous documentation of SGI’s STL implementation [727] and
the CGAL manual [152].

The dependency of a template on a type parameter is resolved at compile time,
giving static type safety. Resolving this dependency early, allows functions used
in the template to be inlined at the place where they are called. In the sort
template an example for such a function would be the comparison operator,
there will be no function call overhead when comparing build in types and it

266 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

can be avoided for custom types. Even when no inlining occurs, using generic
programming to achieve flexibility incurs no runtime overhead compared to an
inflexible solution where the types are fixed a priori. When inlining occurs, not
only the function call overhead is removed, the compiler is also given the chance
to optimize over a larger section of code which may result in more efficient code.
In Section 6.3.3, we give an example where efficient linear algebra operations
with a nice call syntax are implemented. The technique relies on the ability of
the compiler to inline functions and then fold constant intermediate objects. In
case that a better implementation is possible if a template parameter is of a
certain type, i. e., a (any) pointer, or an int, specialization allows to specify a
different version of the template just for this type or value of the parameter.

The focus on runtime efficiency for templates comes at a price, which is code
duplication. For each instantiation of a template with different parameters, the
compiler will generate new code. This leads to larger executables and also longer
compile times. Since with most current compilers the definition of a template
must be completely visible at the point of instantiation, in projects which heav-
ily rely on templates, even a small change in the code my require to rebuild the
complete project. This aggravates the problem with long compile times and may
be a serious issue in the development process. Code duplication will occur even
when the parameter types are, if not identical, similar enough to share an imple-
mentation. Stroustrup [759, Section 13.5] shows how specialization can be used
to avoid code duplication for the std::vector template and other containers.
Using his technique, each instantiation of a std::vector with a pointer type
uses the same (compiled) code.

A template is not a type, only an instantiation of a template is. The name
of the type then consists of the name of the template and its parameters, i. e.,
std::vector<int>. As there may be multiple parameters and they themselves
may be template instances, type names tend to become large. Large type names
make code hard to write and hard to read. The typedef keyword allows to
introduce aliases for type names, reducing this problem a bit. We mentioned
already, that the syntactical requirements of a template on its parameters are
not easily visible. This problem is aggravated by the fact that error messages
from code involving templates are usually much harder to decipher than other
error messages.

Overall however, the good runtime performance and great flexibility achiev-
able with templates easily make up for the shortcomings. To let users take full
advantage of these benefits, it is however necessary to distribute the source code.
This may be an issue in commercial projects. In open source projects where this
is a non-issue by definition and in academic projects, generic programming has
been used widely and successfully ever since it has been supported adequately
by compilers.

Iterators are the mechanism that makes it possible to decouple algorithms
from containers. They should be used to access an aggregate object’s contents
without exposing its internal representation. A container class need only provide
a way to access its elements by iterators. This allows to implement a generic

6. Implementation Aspects 267

algorithm that can operate on many different kind of containers. In the standard
template library (STL) of C++, algorithms are templates, and are parameterized
by the type of iterator. Five different categories are defined for iterators: input,
output, forward, bidirectional, and random-access iterators.

The observer pattern can be used to separate the pure purpose of algorithms
from extensions. For example, in Algorithm Engineering operation counts are
very useful for the performance analysis but do not contribute to the functional-
ity. Likewise, visualization and animation of data structures and algorithms can
greatly help to understand the algorithm’s behavior.

6.5 Ease of Use

Ease of use for a software component means that a user can easily operate it
without having a steep learning curve. For a non-experienced user it should
be intuitive to work with the compiled program or the methods provided by a
library. As for products for the world-wide market, implementations in Algorithm
Engineering should address as much users as possible. Scientists in Algorithm
Engineering are encouraged to publish their software to increase comparability
and reproducibility of their work, so that additional users come up quite quickly
or others continue to develop this piece of software. These people reject to use
or develop software if they fail to install, execute, include, or understand it.
The ease of use of an implementation can mainly be increased by two goals: A
well-chosen interface and a well-written documentation.

6.5.1 Interface Design

“A user interface is well-designed when the program behaves exactly how the
user thought it would.” [752]. This implies that an implementer has to figure
out what is expected from his software. In Algorithm Engineering this means to
design an interface that is closely related to the algorithm, providing easy access
to it, while also maintaining handles to all the detailed options. This task is like
a tightrope walk. On the one hand the interface should be as easy as possible,
such that users can quickly start to use the software. Names should be intuitive,
while signatures of functions and command line options keep clear. On the other
hand, an advanced user wishes for a more powerful interface that offers all the
tools for more complex scenarios, which allows to have hands on very specific
parts of the algorithm (or data structures).

Note that the term of a well-designed interface applies to two ends of the
software development process: Compiled programs and software libraries: For
programs the command line options (the graphical user interface) require a basic
set of options that are easy to access, while more complex tasks can be hidden
in advanced options (or menus). In library development, the task is even more
critical. One often deals with a lot of objects that interact. Each single one aims
for a simple but powerful interface. On top of this, the communication between
entities is another task that needs to be designed to be simple without losing

268 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

functionality. It is best to support very simple methods with intuitive names.
More advanced accessing and modifying methods should also be implemented,
while declaring them in the documentation as (more) advanced. See Section 6.5.2
for further details.

A high “ease of use” often comes along with high modularity. In analogy to
the real world, an implementation should decompose the problem into entities of
smaller size, such that one has very basic building blocks. These can be combined
successfully to bigger items, while maintaining the invariant of simplicity for
each composed object, i. e., to keep the interface and perceivability as simple
as intended. The topmost layer is obviously expected to fulfill this condition,
too. This way the implementer also ensures the easy rearrangement of parts. For
more details, we refer to Section 6.4.

6.5.2 Documentation and Readability

Any code, software, or program only makes sense if one is able to understand
what it is good for. Documentation is the way to reach this goal. Note that
software always also addresses human beings, not only computers. Without doc-
umentation a user or developer quickly fails to use it and in the consequence
capitulates. Therefore, extensive documentation is encouraged, although it re-
quires a remarkable amount of time: Either one pays to create the documentation
in the beginning, or one pays a terrible price if one has no documentation at all.
Most programmers see the documentation task as a necessary evil, if they see it
at all. They simply do not believe that this work can be useful [629], i. e., that
documentation is the only way to report in a natural language what the soft-
ware is capable of and to serve as a knowledge base for future maintainers of the
code. A very desirable resolution is “to keep all program design documentation
complete, precise, and up to to date” [65].

Unfortunately, if done at all, most documentation is incomplete and inaccu-
rate. The main problems are of an organizational kind [629]:

– Documentation can be written as the documenter becomes conscious of facts,
or as the program executes parts. Both approaches lack an easy method
to find out what is missing and maintaining such documentation is also a
horrible task.

– Boring Prose: Too many words are used to describe a single feature, or same
things are repeated in different sections. Both leads to inattentive reading
and undiscovered errors. A solution is to document by concerns, i. e., at
some unique place that only covers a certain concern about the software and
nothing else.

– Confusing and Inconsistent Terminology: Documenters name same things
differently or similar things same. This results in a mixture of terms that no
one can ever understand.

– Involvement: Documentation is often written near the end of a project. All
people involved already know a lot about the software, but forget at the same
time to mention basic things within the documentation. This way, newcomers

6. Implementation Aspects 269

fail to enter the usage of the system. Advice: Give documentation for proof-
reading (understanding) to someone outside the project.

Is it important that readers feel natural to follow the documentation. It should
be as hierarchical as the modular design. Each new step is introduced with
general information while adding simple things first and concluding with the
more advanced stuff. This way, it is convenient to learn how to use or maintain
the unknown software.

Documentation can be distinguished with respect to the addressed readers
and its intended function. Several structures are possible. We refer to the one
given by [691, 16] which consists of three main parts.

User Documentation. This part addresses users of a software (component). Users
require different kinds of information and even different types of users must be
addressed. The success of a software depends highly on the quality of the doc-
umentation without additional assistance. In large software systems some parts
can be kept internal. It is an option whether to provide user documentation for
these parts, but it is encouraged to do so, since it also supports other developers
as reusers.

User documentation for a software, or a even single component, consists of up
to five parts, depending on its size [748]. The functional description introduces
provided services and requirements to present the global picture. It is followed by
an installation manual to advise system administrators with detailed informa-
tion how to install the system. An introductory manual (tutorial) leads novices
in an informal way through the main parts and the standard features. This way,
unexperienced users get in touch with the new piece of software [362]. The full
detailed description of all features and error messages is contained in the refer-
ence manual. These texts can be extended with a system administrator manual.
User documentation is also known as external documentation.

Concerning the reference manual, there are tools available that help to write
the corresponding documentation next to the implementation. Here we just name
two of them without going into detail what they accomplish in full finery.

– Doxygen [796] is a documentation system for C, C++, and IDL. It can gen-
erate an online class browser (in Html) and/or an off-line reference manual
(in LaTeX) from a set of documented source code files. Doxygen can also
be configured to extract the structure from undocumented source files. This
can be very useful for quickly finding your way in large source distributions.

– DOC++ [252] is a documentation system for C/C++ and Java generating
both LaTeX output for high quality hard-copies and Html output for so-
phisticated online browsing of your documentation. The documentation is
extracted directly from the C++ header or Java class files.

– Javadoc has been develop by Sun Microsystems to generate API documenta-
tion in Html for Java source code. It uses tags within a Java block comment
to collect appropriate data for classes and methods.

270 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

System Documentation. This part collects information that are relevant for the
development of a software. New developers should be lead into the internals of
the project. Maintainer must be enabled to apply later modification without
additional assistance. In particular, [748] speaks about the following parts. The
requirements define the contract between a user (end user or reuser) and the de-
veloper. The overall design and structure lists all available components and their
relations. Internal algorithmic details are explained in implementation details.

In addition, source documentation helps developers and maintainers to “read”
the code [861], which is more than analyzing, debugging, or developing it. Usually
several programmers work on the same program and have to read and understand
each others code. Even for a single programmer it is sometimes hard to read his
own code after a few weeks if some basic rules have been disregarded.

Note that each source code is possibly reused in the future and, with the
help of a detailed maintenance and documentation of source code, no one is
forced to choose one of the unacceptable methods: Making dangerous assump-
tions, scrutinizing the implementation or interrogating the author. Source code
conventions and documentation are therefore an irreplaceable necessity, as
well as an important discipline to increase development efficiency and qual-
ity [495].

Source code documentation mainly reflects the decisions that have been made
while writing the code ensures that the experiences that led to these decisions
do not have to be made once more. Users and maintainers will also be happy
if they read why a certain decision has not been taken [629]. Comments for
single lines or small blocks support the understanding why the implementer has
chosen this particular set of instructions. Even explaining the include statement
for a particular header file may make sense [861]. The overall goal is to find a
balance, describing all salient program features comprehensively but concisely.
The comments should cover all parts of the code, but a too exhaustive usage
might on the other hand reduce the readability of the code. The advice is to
document reasonably enough.

Forgetting to document the code itself should not be forgiven [854]. As we also
do not forgive coders when they forget to document the interface. But projects
often lack of time and omit to document the system sufficiently. Section 6.5.3
introduces literate programming that can improve the situation.

Finally, the system documentation may also contain information about test
plans and reports.

Process Documentation. User and system documentation describe the current
state of a software. Process documentation concentrates on the dynamics during
the development. It supports effective management and allows to control the
progress of the project and its quality in relation to the spent efforts. The process
documentation mainly comprises the following parts: The project plan defines
schedules and goals. The organization and resource plans describe personnel and
non-personnel allocations. The management might set up project standards that
all members must follow. Important technical details are collected in working
papers. In particular, developers use these documents to record certain design

6. Implementation Aspects 271

rationales. All these items should be extended by a log book to store inter-member
communications and also by reading aids, such as indices, or table of contents.

As one can see, documentation is a non-trivial very important task. The men-
tioned parts only give a brief overview of the key ingredients. There are much
more details that should be considered when documenting software, as for ex-
ample known bugs, upcoming support questions, limitations, or existing test
cases.

Coding Conventions. As already mentioned, software projects are strongly
encouraged to set up coding conventions, i. e., rules that are intended to improve
the readability of code. Such collections reflect the good practice gained from
many people over a long time. They cover subject areas such as naming, format-
ting, and also programming practices. Some of these rules are arbitrary fixings,
but complying with them makes the code consistent and thus more easy to read.

Different coding conventions may contradict each other, e. g., the usage of
the underscore ’_’ which is commonly used for composed_variable_names in C
code, vs. the “camel case” which is used for composedVariableNames in some
C++ libraries such as Qt and in Java. Which rule to apply depends on the
individual taste, and that question can usually not be definitely answered. But
again: sticking to a certain set of rules improves the readability conspicuously,
especially if several persons work on the same code. If the usage of capital letters
in names and the usage of white space is consistent within the whole code, it
is much easier to grasp the meaning of distinct parts. The rules concerning the
naming of identifiers do not only address syntactical issues. The meaning of an
identifier should be reflected by its name. Coders sticking to such conventions
will quickly experience the advantages of them. For example, it can be very
helpful to know from the notation whether an identifier represents a variable, a
method, a type, a class, a concept, or a constant. Let us mention, that bigger
software projects often setup their own coding conventions.

Sometimes the readability is improved by breaking a rule, which should be
allowed in some special cases. We give an example. For people that are familiar
with matrices it might be easier to detect the error in a fragment like this

m[0][0] = v00; m[0][1] = v01; m[0][2] = v02;
m[1][0] = v10; m[1][1] = v11; m[1][2] = v12;
m[1][0] = v20; m[1][1] = v21; m[1][2] = v22;

than if it was spread over 9 lines. So everybody should feel free to consider
to break the otherwise very helpful rule “Each line should contain at most one
statement ”.

6.5.3 Literate Programming

Literate programming [480] changes the view for system documentation, i.e., if
reusers benefit from documented internals of the system. In some settings it can
also be applied to document interface descriptions for reused components.

272 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

So far, the programmer’s primary goal was to produce source code that can
be read by a computer. Literate programming focuses on the humans reading
the programmer’s work. Source and documentation are contained in the same
file. Even more special: The source code is just the add-on to the textual de-
scription that the computer understands better. Special tools help to extract
the two ingredients efficiently. In contrast to embedded documentation tools like
Doxygen [796], literate programming is more powerful. It supports a full-fledged
typesetting tool like TEX. This allows the “programmer” to write the “program”
in a way that is best for human understanding. If you write for someone else,
you automatically care more about identifier names and the structure, for exam-
ple. The programmer even gets support by tools that enhance the programming
language to rearrange the chosen order when the code is processed by the com-
piler or interpreter. This enables to choose the order in a way that optimizes
exposition [799].

Programming under the literate programming paradigm should support other
intelligent beings with the meaning of the program instead of only convincing a
machine to act in a certain way [835]. It increases the quality of the result, since
software developers have to examine and explain the code block by block — in
a convenient manner. Literate programming helps to highlight subtleties of an
algorithm, since the documentation and the code are written next to each other.
In addition, the typesetting system out-of-the-box enables the programmer to
be more powerful. Literate programming systems allow to use tables, figures,
lists, special indentation. Code can be automatically emphasized — italic font
for identifiers or bold face for reserved words.

There is a big list of literate programming systems. We only collect a selected
set taken from [530]. Many other tools are available on the Internet.

– The original WEB system was developed by Knuth [479]. It combined Pascal
source code with TeX typesetting.

– The CWEB System of Structured Documentation [484] is a version of WEB
for documenting C, C++, and Java programs.

– FunnelWeb [835] is a powerful literate-programming macro preprocessor that
enables you to weave programs and documentation together. It is a produc-
tion quality tool that was specifically engineered for practical everyday use.

– noweb [662] is designed to meet the needs of literate programmers while
remaining as simple as possible. Its primary advantages are simplicity, ex-
tensibility, and language-independence. Noweb uses 5 control sequences in
comparison to WEB ’s 27. The noweb manual is only 3 pages long; an addi-
tional page explains how to customize its LaTeX output.

There are famous examples [481, 561, 792] using literate programming. On the
other hand Sametinger [691, 18.3] points out, that its widespread acceptance is
still lacking. Tool support and tool integration was missing in the past years.
A complex software system requires an informative and easy visualization of all
relation of its components. Integrated development tools that combine literate
programming and browsing software components have not been available. The
acceptance may increase if development environments include better literate

6. Implementation Aspects 273

programming support. Another reason might be that people think of literate
programming producing “monolithic” output, unlike to the well-known hyper-
linked documentation techniques.

6.6 Implementing Efficiently

6.6.1 Reuse

Probably the most powerful way to make implementing more efficiently is reuse:
If the program we aim for has been written before, we are done! Within the
scope of Algorithm Engineering the algorithms are usually new ones so it will be
quite unlikely to find an existing implementation of it. However the idea remains
important: “Do not re-reinvent the wheel all the time”! In most cases subalgo-
rithms, data structures or code fragments do exist. Reuse occurs on different
levels. Sometimes code fragments are reused in a different place of the same pro-
gram (copy and paste). Or, sometimes the code of complete methods or classes
is available (e. g., on the web) and is reused. There also exist libraries of data
structures and algorithms which allow systematic reuse (see Chapter 7).

But not only code, also knowledge can be reused when writing new code. In
the field of software engineering so called design patterns were devised [313].
These patterns give generic solutions to commonly occurring design and imple-
mentation problems (see Section 6.4). Applying these patterns does not imply
a reuse of existing code but a reuse of knowledge which also helps to obtain a
stable implementation in less time.

By using existing code and ideas, the effort is reduced because things do not
have to be done over and over again. In addition the quality is improved, because
the existing code is already reviewed and tested and the existing ideas have been
surveyed by many other programmers.

6.6.2 Programming Language

The question which programming language is the best cannot be generally an-
swered. Sometimes the problem that is to be solved encourages certain choices,
e. g., Fortran is considered to be specialized on numeric computations whereas
PERL concentrates on string manipulation.

There is also an interaction of the programming language and the reuse issue.
Sometimes the language determines which libraries can be used for a project. Of-
ten it is the other way around and the libraries or other existing code determines
which programming language is used.

If the programmer has the choice between several nearly equally appropriate
programming languages, his own abilities and preferences play also a major role.

The following paragraphs are not meant for ranking one language over the
other, but for denoting some issues that might be part of the responsibility of the
implementer and therefore may have influence on the choice of the appropriate
programming language for a particular project.

274 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

According to Zeller [858], some languages are more prone to certain kind of
bugs than others – in particular, languages, where undefined behavior is part of
the semantics, which means that for some constructs the semantics is deliberately
not specified. To name just two examples, Zeller specifically refers to the char
type whose value range is not explicitly specified in C and to the problems
stemming from uninitialized variables (or rather general: memory that is read
before written) in C++ and other languages. More recent languages, such as Java
and C#, feature almost every single aspect of the program execution to be well
defined, including forced initialization.

One quite powerful feature of the new generation languages is automatic mem-
ory management, coupled with a garbage collector. This frees the programmer
from performing manual memory management or reference counting. If this fea-
ture is not available in the chosen language, dynamic allocation and deallocation
of memory has to be carefully crafted and should, in the best case, already be
integrated into the design phase. In fact, it must be ensured for instance, that no
premature return statement may entail a manually allocated chunk of memory
to remain unreleased, as otherwise a memory leak would be the consequence.
Altogether, automatic memory management eliminates an entire category of ro-
bustness problems due to errors, such as circular references, dangling pointers,
and, as already mentioned, memory leaks.

However, premature returns may not only result in memory leaks. Instead,
there are a couple of resources that must explicitly be released when no longer
in use, e. g., (I/O-)streams, locks, sockets, devices and so on [858]. In opposite
to memory blocks, these resources are usually not audited by a special runtime
mechanism. However, Zeller notes that advanced compilers as well as external
tools are quite capable of detecting most of such “code smells” of resources poten-
tially not being released properly. Nevertheless, it seems to be most appropriate
not to rely too much on such tools, but consider the allocation and deallocation
of resources already in the course of designing the program flow based on the
control structures.

Last, but not least, the type-system of a language may support robustness. The
task of a type-system is to assign to a memory block a semantical meaning and,
in doing so, prevent certain forms of erroneous or undesirable program behavior
(called type errors). Depending on how strong this enforcement takes place, one
distinguishes between weakly typed and strongly typed languages. Weakly typed
languages permit to (more or less easily) change or re-interpret the meaning of
such an assigned memory block, usually on the basis of coercions (implicit con-
versions) and castings (explicit conversions). Strongly typed languages provide
an increased type-safety, i. e., only operations defined by the associated type can
be performed on an object. Type-safety eliminates an entire category of errors,
stemming from invalid casts, bad pointer arithmetic, and to some extend even
malicious code [255]. A lack of type-safety demands the implementer to add this
problem to his considerations.

Apart from the strength of a type-system, it may also play a role at which
point of time this enforcement takes place. Static typing requires the variables

6. Implementation Aspects 275

to be bound to types at compile time – either by explicitly declaring the binding
(declarative or manifest typing) or by letting it get inferred based on the con-
text (inferred typing). Dynamic typing enforces this binding at runtime. Static
and dynamic typing are not mutually exclusive – a combination of both is also
possible. Altogether, the benefit of static typing is that it allows (however not
implies) the types to be checked at compile-time, whereas dynamic typing al-
lows this check to be performed not earlier than at run time. In regard to this,
Bloch [110] argues that it is always beneficial to detect programming errors as
quickly as possible, in particular before the program is run. He concludes that
“to get the most robust programs, you want to do as much static type checking
as possible” [803]. In fact, if static type checking is not provided, it is strongly
advisable, not to say essential, to carefully design a mechanism for handling
exceptional situations of failing checks raising at runtime.

Note that several of these nice features of programming languages may be
partially in conflict with efficiency.

6.6.3 Development Environment

Depending on the programming language, there exists a variety of integrated
development environments (IDEs) that make programming easier and more ef-
ficient. They manage complete projects, help with compiling and debugging the
programs, and support the writing. Some of the features most IDEs have, are

Editor: An editor that is tailored to the specific programming language. It
marks special code fragments such as keywords, identifiers, or comments
(syntax highlighting) to improve the readability. It generates code fragments
and makes suggestions on how to finish a prefix (code completion) to avoid
slips and to quicken typing. It ensures formatting according to some coding
conventions. It marks syntactical errors as well as some semantical errors
such as unreachable code.

Compiler / Interpreter: The code can be compiled and/or executed directly
from within the IDE. The process of compiling, linking etc. is managed by
the IDE (build-automation).

Debugger: The code can be run step by step to be able to trace the states of
the program.

Class Browser: For object oriented languages the IDE’s offer the possibility to
browse the hierarchical class structure. Documentation automatically gen-
erated from the source code is displayed to enable orientation in complex
projects and the IDE finds declarations and references to identifiers.

Refactoring: Tools help the programmer to consistently rename identifiers, to
inline method invocations, or to change the structure of the code.

6.6.4 Avoiding Errors

Implementing does not mean to write code only. It involves also that the program
has to be executable and that obvious defects are fixed. There is no clear border

276 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

between writing code and fixing errors. Defects in the code can be detected by
running and debugging the program. The costs for the detection and the removal
varies but the cheapest errors are the ones never made. Some categories of errors
can easily be avoided.

– Slips can be reduced by using a better development environment. Syntax
errors due to mistakes in writing are avoided by choosing the correct identifier
from a list of all possible ones. If syntax errors that occurred never the less
are highlighted by the editor, they can easily be removed while writing.
Runtime errors due to uninitialized variables can also be avoided using an
appropriate development environment that checks for initialization.

– Apart from the slips which a programmer could detect on his own by reread-
ing his code, there are falsities the programmer would do repeatedly. That
may be errors only he would do or errors that would also happen to other
people. The programmer should note a defect and its correction if the search
for it took long, if the costs caused by it were high, and if it kept undiscov-
ered for a long time. By writing it down not only the search for subsequently
occurring defects becomes faster but the awareness of them also may help
to avoid similar errors in the future.

Since the old lore that a program either is trivial or it contains defects is corrob-
orated over and over again, the programmer should use all the help he can get.
There is a variety of tools that perform a static code analysis and report on code
fragments that possibly contain a defect or in some cases try to verify proper-
ties of the program. Probably one of the most commonly known is lint [441] for
C-code with its followers lclint and splint [751].

6.6.5 Versioning

Since programming is not a trivial process, usually decisions have to be amended
with hindsight. A versioning system helps the programmer to handle several ver-
sions of the code and to go back to a prior version. Although tools like cvs (Con-
current Versions System) and svn (SubVersioN) are mostly applied in projects
that several people work on, such a versioning system could also be applied in
single-programmer projects. Since the results of experiments performed have to
be reproducible, it is important to be able to associate the results to the version
of the program the results were produced with. Using a versioning system, a sin-
gle note (version number or date respectively) is sufficient to easily reconstruct
the corresponding program version.

6.7 Geometric Algorithms

Correctly implementing geometric algorithms is a special problem which arises
from the delicate interaction of combinatorial and numerical data. Geometric
algorithms are described using predicates. A predicate is a black box that an-
swers questions about certain geometric constellations, like “Is point p inside

6. Implementation Aspects 277

circle c?” or “Do two segments s1, s2 intersect?” How to implement these pred-
icates is rarely discussed in a paper describing a specific algorithm because a
correct implementation in the real RAM model is easy and takes constant time.
But the real RAM does not exist, so in practice one has to sacrifice either cor-
rectness or constant time. The classic approach has been to sacrifice correctness
and use hardware floating-point arithmetic in the implementation, believing that
the rounding error introduced by this will be small and will not affect the al-
gorithm. Experience has proven this to be wrong; any kind of conceivable error
may happen. Programs crash, loop forever or in the worst case compute garbage
without the user noticing. Several such errors have been reported in the litera-
ture, e. g., [731] and [561, Section 9.6]. Kettner et al. [471] describe simple cases
where an algorithm for computing the convex hull of a set of points in the plane
fails and examine the bizarre “geometry” of the planar floating-point orientation
predicate.

The planar orientation predicate, used in many geometric algorithms, deter-
mines for three points p = (px, py), q = (qx, qy) and r = (rx, ry) ∈ R

2 the position
of r to the oriented line through p and q. The predicate can be computed by
evaluating the sign of a determinant:

D =

∣∣∣∣∣∣

px py 1
qx qy 1
rx ry 1

∣∣∣∣∣∣
= (qx − px)(ry − py)− (qy − py)(rx − px) .

The point r is on the line, if D is zero and it is to the left (right) of the line,
if D is greater (smaller) than zero. Thus only the sign of D is of interest. In an
implementation, the mathematical operations +,−, ·, / may simply be replaced
by their floating-point counterparts ⊕,&,',(. We will continue to use this
notation for floating-point operations later on.

D = (qx & px)' (ry & py)& (qy & py)' (rx & px) .

Floating-point operations do not always deliver the mathematically correct re-
sult but the correct result rounded to a representable floating-point number.
Thus with floating-point arithmetic, only an approximation of D is computed
which may have the wrong sign in certain cases. In a plane sweep algorithm for
computing the convex hull of a set of points in the plane, points outside of the
current hull are added and the hull is updated appropriately. With a floating-
point predicate it will in certain cases happen, that the predicate reports that
the point is on the “outside” of all lines supporting convex hull edges. This is
however geometrically impossible and will most likely result in the algorithm
crashing or looping infinitely.

The problem with inexact arithmetic is that it makes decisions that are in-
consistent with each other or Euclidean geometry in general. To overcome this
problem, it may be possible to redesign an algorithm in a way that it can cope
with the inaccuracy, however this has been done successfully only for a small
number of problems. Section 3.5.3 contains more information on this approach.

278 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

The second possibility is to implement the predicates correctly using some ex-
act arithmetic. This principle emerged as the Exact Geometric Computation
Paradigm [846] and has been very successful because it does not require any
change in the algorithm. We will therefore first look at exact software number
types. As the usage of these types typically is much more expensive than hard-
ware floating-point arithmetic we will further look at techniques that reduce
the cost of exact arithmetic. A large part will be dedicated to the number type
leda::real which combines several techniques into a highly general, easy to use
and moderately efficient solution.

6.7.1 Correctness: Exact Number Types

We can assume that a predicate consists of computing a number from input
values using a given formula and then return true or false based on the sign of
the computed number. The requirements for a number type used in a geometric
algorithm are therefore clear. It must be possible to represent all input numbers
in the number type. The number type must support all needed arithmetical
operations and functions and finally it must be possible to compute the sign of
a number from its representation. We will now mention a few of the available
exact number types, roughly ordered by capabilities.

The simplest case for exact arithmetic arises when all the numerical input
data to an algorithm is integral and only the operations ±, · are used, i. e.,
all computations are in the ring Z. The binary representation of an integer is
finite; algorithms for adding and multiplying these representations are taught
in primary school. An integer α is represented as α = s ·

∑k−1
i=0 ai · 2i·b, where

k = ��log2 |α|�/b� and s ∈ {−1, 1}. The ai are unsigned integers with b bits,
called words, and all k of them are actually saved to memory. For example with
b = 3:

−117 = −11101012 = −1 · (0012 · 22·3 + 1102 · 23 + 1012) .

Implementations typically not only support the standard operations ±, ·, but
also div, mod giving the quotient and remainder of integer division and gcd for
computing the greatest common divisor. Assuming that all operands have at
most k words, addition can be done in O(k); multiplication algorithms range
from O(k2) to O(k · log k · log log k). Quotient and remainder can simultaneously
be computed in O(M(k)) time; computing the greatest common divisor of two
numbers takes O(M(k) log k) time, where M(k) is the time for one multiplica-
tion [814]. All other types of “high accuracy” arithmetic are somehow reduced
to arithmetic over integers.

Bigfloat software floating-point numbers are somewhere in between integer
and rational number types. A bigfloat α is represented by an integer mantissa m
and an integer exponent e with α = m·2e. In some implementations the exponent
is not arbitrary in size, but some hardware supported type with a limited range.
This is done because it is efficient and the exponent rarely becomes very large
or small, but it may lead to overflow or underflow. The mantissa is typically an
arbitrary precision integer. Then the operations ±, · can be performed exactly by

6. Implementation Aspects 279

adapting the length of the mantissa with each operation. Bigfloats are a superset
of hardware floating-point numbers and support the same set of operations. They
can also be used with a fixed mantissa length if the needed length for an operation
to be exact is known, or to compute approximations.

When the division operation / is needed as well, one has to switch to rational
arithmetic. A rational number α can be represented as α = a/b, where a and
b > 0 are relatively prime integers. All operations can be reduced to operations
over integers with an additional renormalization step to make the numerator and
denominator relatively prime again. The requirement of a and b being relatively
prime can be dropped to avoid an expensive renormalization step. This may
however lead to a and b becoming unnecessarily large in a cascaded computation.

Another operation one would like to have is β = k
√

α, where α ≥ 0 and β is
the unique non-negative real number with βk = α. The natural environment for
this operation is the field of real algebraic numbers A because it is closed under
the k

√
operation.

Definition 7 (Real Algebraic Number). A real number α is called algebraic
if there is a polynomial p =

∑n
i=0 aix

i ∈ Z[X] with p(α) = 0. If there is such a p
with an = 1, α is called an algebraic integer. The polynomial p is called a mini-
mal polynomial of α if its degree is minimal among all q ∈ Z[x] with q(α) = 0. It
is called the minimal polynomial if additionally an > 0 and gcd(an, . . . , a0) = 1.
The roots of the minimal polynomial p of α are called the conjugates of α and
the degree of α is the degree of p.

Real algebraic numbers are a superset of integer and rational numbers. It follows
directly from the definition that a real algebraic number α can be represented
as α = (p, [a1, a2]) where p ∈ Z[x] is a polynomial, a1, a2 ∈ Q and [a1, a2] is an
isolating interval for α, i. e., α is the only root of p in [a1, a2]. In some appli-
cations real algebraic numbers arise quite naturally in this representation [94].
Note that not all real algebraic numbers can be expressed using integers and the
operations ±, ·, /, k

√
. Still those and other operations, like taking a real root of

a polynomial with real algebraic coefficients, can be performed using the repre-
sentation as polynomial and isolating interval. It is further possible to compute
arbitrarily good rational or floating-point approximations and also the sign of
a number [576, 847]. Computing with algebraic numbers is however expensive
in comparison to other arbitrary precision number types. In Section 6.7.3 we
will have a closer look at an implementation of real algebraic numbers using a
different technique.

Beyond real algebraic numbers, not much is known. While Chang et al. [160]
show that a special geometric problem involving transcendental numbers can be
solved exactly, it is in general unknown whether the sign of a number can be
computed if the functions exp or log are admitted [672]. On the other hand,
for geometric algorithms it often suffices to increase the available precision just
a little. The techniques for computing with expansions do exactly this and de-
serve attention. We believe there is still room for improvement using these and
similar approaches. For example an algorithm equivalent to TwoProduct can
be implemented with only two floating-point operations on hardware with a

280 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

fused-multiply-add instruction. Most of the mentioned number types have been
implemented and are available in several libraries. An overview can be found in
Section 7.6.

6.7.2 Efficiency: Floating-Point Filters and Other Techniques

We have now seen some exact number types that allow us to correctly im-
plement predicates for geometric algorithms. The first experiments with this
approach showed that exact arithmetic is slower than hardware arithmetic by
several magnitudes. Karasick et al. [458] report a slowdown factor of up to 10000
when replacing hardware arithmetic with off-the-shelf arbitrary-precision ratio-
nal arithmetic in an algorithm for computing Delaunay triangulations. Fortune
and van Wyk [298, 299] report a slowdown of 40 to 140 when computing 2D
and 3D incircle tests with arbitrary precision integer arithmetic instead of hard-
ware arithmetic. In both cases the authors were able to significantly reduce this
slowdown.

Floating-point filters are the most common technique to reduce the cost of
exact arithmetic, by avoiding the use of exact arithmetic whenever possible. The
key observation is, that approximate computations with floating-point arithmetic
are fast and compute the correct result most of the time. Assume a predicate
depends on the sign of a number γ which has to be computed from some input
values. Using hardware floating-point arithmetic, an approximation γ̂ to γ and
an error eγ are computed, guaranteeing |γ− γ̂| ≤ eγ . Then the sign of γ is equal
to the sign of γ̂, if |γ̂| > eγ . This case is called a filter success, since the sign
of γ is known. The case |γ̂| ≤ eγ is called a filter failure, in this case something
else must be done to compute the sign of γ. If a bound on all input numbers is
known, the error bound eγ may be computed a priory, resulting in a so called
static filter. The requirement to know a bound on all input numbers is sometimes
impractical, therefore almost static filters update the error bound whenever new
data is added to the set of all input values. In case of a success, the overhead
of a static filter consists only of comparing the approximation with the error
bound. Since the error bound is however not based on the actual values used to
compute γ̂, static filters tend to fail often. A dynamic filter computes the error
bound along with the approximation. This gives a tight bound and therefore
fewer filter failures, but computing the bound is usually at least as expensive
as computing the approximation. Another way to implement a dynamic filter
is to compute γ using hardware floating-point interval arithmetic [136]. Interval
arithmetic is discussed below. With respect to the characteristics of different
filter types, efficient predicates typically cascade filters. That is, first a compu-
tationally inexpensive filter is used which may however have a high failure rate.
If it fails, the approximation or the error bound or both are improved, using a
more expensive filter with lower failure rate. This may be repeated several times,
with an exact evaluation at the last stage only.

Fortune and van Wyk [298] described one of the first floating-point filters. It
applies to integer input and the operations ±, ·. The LEDA book [561, section
9.7] discusses several aspects of floating-point filters and gives further references.

6. Implementation Aspects 281

input

filter

exact
arithmetic

filter
failure

success

correct signs

Fig. 6.4. Sign computation using cascaded floating-point filters

Burnikel et al. [144] describe a floating-point filter which applies to all numbers
and the operations ±, ·, /,

√
when performed in floating-point arithmetic with

a p-bit mantissa. Together with the approximation γ̂ of γ an upper bound γ̂sup
on the absolute value of γ̂ and an index indγ are computed, following Table 6.1.
The approximation then fulfills

|γ − γ̂| ≤ γ̂sup · indγ · 2−p

so the error is given by eγ = γ̂sup · indγ · 2−p. The filter by Burnikel et al. is
semi-static; for a predicate of fixed size the value indγ · 2−p is known a priory
while the value γ̂sup must be computed along with the approximation. If only
the operations ±, · are involved, the filter can be made static if an upper bound
on the absolute value of all input numbers is known. Using a floating-point filter
before resorting to exact arithmetic speeds up the easy cases, where the result
of the computation is far from zero, while slowing down the hard cases only
a little. Section 7.9 reports on a case study [703] that compares different ways
to implement the orientation predicate used in a convex hull algorithm. The
approaches using floating-point filters outperform all the approaches directly
using exact arithmetic, showing the advantage of using filtering.

Interval arithmetic is a generalization of real arithmetic from numbers to
intervals. Here a number x is represented by an interval [a, b] and the only
information known is x ∈ [a, b]. In the optimal case, x is represented by [x, x].
Let f : R

n → R be a continuous function and C = [a1, b1]× · · · × [an, bn]. Then
f is extended to intervals through f(C) = {f(x) | x ∈ C}. Since f is continuous,
f(C) is again an interval. The basic property of interval arithmetic holds:

c ∈ C ⇒ f(c) ∈ f(C). (1)

282 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

Table 6.1. Rules for computing parameters for the floating-point filter by Burnikel et
al. [144]. round gives the nearest floating-point value and sqrt is the floating-point
implementation of the square root.

expression γ approximation γ̂ supremum γ̂sup index indγ

p-bit γ γ |γ| 0

γ ∈ R round(γ) |γ̂| 1

α + β α̂⊕ β̂ α̂sup ⊕ β̂sup 1 + max{indα, indβ}
α− β α̂� β̂ α̂sup ⊕ β̂sup 1 + max{indα, indβ}
α · β α̂� β̂ α̂sup � β̂sup 1 + indα + indβ

α/β α̂ β̂
(|α̂|�|β̂|⊕α̂sup�β̂sup)�

(|β̂|�β̂sup�(indβ+1)·2−p)
1 + max{indα, indβ + 1}

√
α sqrt(α̂)

{sqrt(α̂sup)�2�p/2� if α̂=0

(α̂sup�α̂)�sqrt(α̂) if α̂>0
1 + indα

The problem in interval arithmetic is how to compute f(C) or some small interval
[a, b] that contains f(C). For the standard arithmetic operations optimal results
are:

[a, b] + [c, d] = [a + c, b + d]
[a, b]− [c, d] = [a− d, b − c]
[a, b] · [c, d] = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}]

[a, b]
[c, d]

= [min{a

c
,
a

d
,
b

c
,
b

d
}, max{a

c
,
a

d
,
b

c
,
b

d
}] for 0 	∈ [c, d]

k
√

[a, b] = [k
√

a,
k
√

b] for a ≥ 0.

(2)

Reducing an expression to these basic operations may however give pessimistic
results. Consider for example the function f : R → R, f(x) = x2. Then
f([−1, 2]) = {x2 | x ∈ [−1, 2]} = [0, 4]. Computing an interval containing
f([−1, 2]) using the rule for multiplication however gives [−1, 2]·[−1, 2] = [−2, 4],
which includes negative numbers as the result of a square. The endpoints of inter-
vals may be represented using e. g., hardware floating-point numbers or bigfloats.
When a newly computed endpoint cannot be represented in the number type
chosen, left endpoints must be rounded towards −∞ and right endpoints must
be rounded toward +∞ to ensure that Equation (1) still holds. The IEEE 754
floating-point standard [420] and most bigfloat implementations support the nec-
essary rounding modes. When it is known that a number x is in an interval [a, b]
then the sign of x is known if 0 	∈ [a, b]. Approximating x by interval arithmetic
may therefore reveal the sign if x is not close to 0.

When computing in the affine vector space R
d, the division operation / may

be avoided by using homogeneous coordinates. Each Cartesian point (x1, . . . , xd)
is mapped to the homogeneous point (h1, . . . , hd, hd+1), where xi = hi/hd+1.
Therefore, if the Cartesian points are rational, the hj can all be chosen to be
integral and relatively prime. The d+1 th coordinate in the homogeneous point

6. Implementation Aspects 283

acts as a common denominator to all the other coordinates, so homogeneous
coordinates are a generalization of the reduction of rational arithmetic to integer
arithmetic. Other geometric objects may also be translated to homogeneous
coordinates, e. g., the line aX + bY + c = 0 transforms to aX + bY + cZ =
0. Observe that the homogeneous variant of each point on the Cartesian line
is on the homogeneous line. When working with rational input data or on a
problem requiring division it is often much more efficient to use a homogeneous
representation.

The d-dimensional projective space consists of all homogeneous points h ∈
R

d+1\{0}, where two points g and h are considered to be equal if and only if
g = λ · h for some λ 	= 0. The d + 1 th coordinate does not have a special
role and hd+1 = 0 is explicitly allowed. In the projective space, objects are not
orientable any more, e. g., lines have only one side. For this reason care is required
when performing sideness tests using a homogeneous representation of Cartesian
coordinates, one way is to require hd+1 > 0. On the other hand, geometric
constellations that require special treatment in affine space, are handled easily
in projective space,e. g., parallel lines. The intersection point of the two lines
in projective space always exists. Even if this point does not have a Cartesian
preimage, it may be used in further computations and a result meaningful in
affine space may be computed from it. The projective space may therefore be
used to simplify code performing computations in the affine space.

Modular arithmetic [814] is an approach to integer arithmetic, hence it can be
used to implement predicates using the operations±, · for integer input [137,627].
It is based on the following theorem.

Theorem 1 (Chinese Remainder Theorem). Let m1, m2, . . . , mk be pair-
wise relatively prime and m = m1 ·m2 · . . . ·mk. Then

f : Z → Z/m1Z× Z/m2Z× . . .× Z/mkZ

f(α) = (α mod m1, α mod m2, . . . , αmod mk)

is a surjective ring homomorphism with kernel mZ. ��

If the result γ of a computation is known to be in the range −n < γ < n, one
chooses distinct prime numbers p1, . . . , pk such that p1 · . . . · pk > 2n, computes
γj = γ mod pj by performing the computation modulo each pj , and then re-
constructs γ. Here the reconstruction is the most expensive part. By Theorem 1
γ = 0 if and only if γj = 0 for all j. Modular arithmetic can therefore also be
used to filter if a result is zero. This is contrary to floating-point filters which
can only filter results far away from zero. One way to obtain a bound n would
be to approximate γ by γ̂ with an error of eγ . If |γ̂| > eγ the sign of γ is known.
Otherwise |γ| ≤ |γ̂| + eγ ≤ 2eγ gives a bound that can be used for modular
arithmetic. Choosing the pj smaller than, but close to half the biggest repre-
sentable integer on a machine allows the compute the γj and to reconstruct the
sign of γ with hardware arithmetic. The reconstruction of γ itself however may
require higher precision arithmetic. Using the prime number theorem it can be
shown, that there are sufficiently many primes of this size for any conceivable

284 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

task [814, exercise 18.19]. Modular arithmetic is particularly useful if intermedi-
ate numbers in the computation are known to be considerably larger than the
final result.

A way to account for the rounding error in hardware floating-point arithmetic
is to use so-called error-free transformations. Error-free transformations allow to
transform an expression involving floating-point numbers into a mathematically
equivalent expression more suited for a particular purpose, e. g., sign compu-
tation. We will give the details of three algorithms, FastTwoSum, TwoSum

and TwoProduct for transforming the sum and the product of two floating-
point numbers into the sum of two floating-point numbers. Paying attention to
the details is central to Algorithm Engineering and these error-free transforma-
tions are basic building blocks of many other algorithms. They work correctly
in IEEE 754 [420] arithmetic in the round-to-nearest rounding mode. Given two
floating-point numbers a and b, FastTwoSum and TwoSum compute floating-
point numbers x and y with a + b = x + y and a⊕ b = x, unless overflow occurs.
FastTwoSum requires that |a| ≥ |b|.

1: procedure FastTwoSum(a, b)
2: x← a⊕ b
3: bvirtual ← x& a
4: y ← b& bvirtual
5: return (x, y)

1: procedure TwoSum(a, b)
2: x ← a⊕ b
3: bvirtual ← x& a
4: avirtual ← x& bvirtual
5: broundoff ← b& bvirtual
6: aroundoff ← a& avirtual
7: y ← aroundoff ⊕ broundoff
8: return (x, y)

FastTwoSum is due to Dekker [217], TwoSum is due to Knuth [477]. Using
TwoSum, the exact rounding error y of a floating-point addition can be com-
puted at the cost of five additional floating-point operations. The cost reduces to
two operations if it is known in advance whether a or b has larger absolute value.
Shewchuk [731] notes that using TwoSum is “usually empirically faster” than
first comparing |a| and |b|, and then using FastTwoSum. This may be different
with other architectures and compilers and should be tested before selecting one
of the possibilities. Given two floating-point numbers a and b, TwoProduct

computes floating-point numbers x and y with ab = x + y and a' b = x, unless
overflow or underflow occurs.

1: procedure TwoProduct(a, b)
2: x← a' b
3: (ahi, alo) ← Split(a)
4: (bhi, blo)← Split(b)
5: e1 ← x& (ahi ' bhi)
6: e2 ← e1 & (alo ' bhi)
7: e3 ← e2 & (ahi ' blo)
8: y ← (alo ' blo)& e3

9: return (x, y)

1: procedure Split(a)
2: c ← (2�p/2� + 1)' a
3: abig ← c& a
4: ahi ← c& abig
5: alo ← a& ahi
6: return (ahi, alo)

6. Implementation Aspects 285

TwoProduct is due to Dekker [217] who attributes Split to Veltkamp. The
Split algorithm produces two non-overlapping floating-point values ahi and alo
such that |ahi| ≥ |alo| and a = ahi + alo. Furthermore for floating-point numbers
with a p-bit mantissa both ahi and alo will use at most �p/2� consecutive bits
of their mantissa. Therefore the products ahi ' bhi etc. in TwoProduct are
computed without rounding error. On an architecture with a fused-multiply-add
instruction an equivalent to TwoProduct may be implemented using only two
floating-point operations.

Other error-free transformations are known, e. g., for splitting floating-point
numbers, allowing to perform later computations exactly [684,685], or explicitly
accessing the mantissa and exponent of a floating-point number [665].

Many geometric predicates may be implemented as computing the sign of
a polynomial expression. Using TwoProduct any polynomial expression on
floating-point numbers may be transformed into a sum. Ratschek and Rokne
[665] present an algorithm, which they call ESSA for exact sign of a sum algo-
rithm, to compute the sign of the sum of floating-point numbers. ESSA itera-
tively performs error-free transformations on the largest positive and the smallest
negative number in the current sum, thereby decreasing the sum of the abso-
lute values of the summands. The iteration continues until the sum vanishes, or
the largest positive number clearly dominates the sum of negative ones, or vice
versa. The algorithm is not affected by overflow or underflow. Other algorithms
for summing up floating-point numbers, have appeared recently. They are also
based on error-free transformations [684, 685] or use a wider accumulator [237]
to compute approximations of the sum with a small relative error, allowing us
to conclude the sign of the sum.

Based on work by Priest [648], Shewchuk [731] developed techniques to achieve
exact arithmetic by extending hardware floating-point arithmetic. He calls two
floating-point numbers x and y with |x| < |y| non-overlapping if there are inte-
gers r, s with y = r2s and |x| < 2s. Less formally, x and y again with |x| < |y| are
non-overlapping if the least significant nonzero bit of y is more significant than
the most significant nonzero bit of x. For example −10.12 and 11002 are non-
overlapping while 1012 and 102 do overlap. A number is represented as the sum
of non-overlapping floating-point numbers, ordered by absolute value. Such a
sum is called an expansion. Clearly expansions are a superset of the floating-
point numbers they are based on. Note that the output of FastTwoSum,
TwoSum and TwoProduct is an expansion. Shewchuk further presents al-
gorithms to add and multiply expansions, again using the error-free transforma-
tions FastTwoSum, TwoSum and TwoProduct.

Then, based on expansions, Shewchuk [731] develops 2D and 3D orientation
and incircle tests. The sign of an expansion is the sign of the summand with
largest absolute value so it suffices to transform the polynomial expression of
the predicate into an expansion. Instead of doing this straightforwardly, he com-
putes several approximations and uses error bounds to check whether the ap-
proximation already suffices to decide the sign of the number to be computed.
A key feature of the predicates is, that when a filter fails, some intermediate

286 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

results are reused to compute better approximations until the exact result has
been reached. This is contrary to the usual application of floating-point filters,
where the approximation and error bound are thrown away when switching to
an exact arithmetic. Therefore his predicates are very efficient, their runtime
is only a small multiple of inexact evaluation, except for almost degenerate in-
put. They are considered state-of-the-art for robust predicates on floating-point
input. Shewchuk notes that neither overflow nor underflow will occur if the ex-
ponent of the input numbers is in the range [−142, 201], so for these numbers
the predicates are truly exact. An implementation of Shewchuks algorithms for
expansions and his predicates are available from [730].

6.7.3 Easy to Use: The Number Types CORE::Expr and
leda::real

One way to represent a number is to record its creation history. This approach
has been taken in the implementation of the number types CORE::Expr [457]
and leda::real [141]. A CORE::Expr or a leda::real may be created from
an integer, a bigfloat, a rational number or more generally as a real root of a
polynomial with integer coefficients. Therefore both number types span the set
of real algebraic numbers. Supported operations are ±, ·, /, k

√
and taking a real

root of a polynomial whose coefficients are itself a CORE::Expr or leda::real.
It is possible to compute an arbitrarily accurate rational or bigfloat approxi-
mations and to compute the sign of a CORE::Expr or leda::real. As with the
functionality, the implementations of both types are quite analogous. Here we
will concentrate on the leda::real number type. We will ignore the operation
of taking a root of a polynomial for simplicity reasons, instead we only discuss
creation from integers and the operations ±, ·, /, k

√
.

A leda::real is represented as a node in a directed acyclic graph (DAG), cf.
Figure 6.5. Each sink of this graph contains an integer, that it represents. An
intermediate node is labeled with an operation ◦ ∈ {±, ·, /, k

√ }. It represents
the number α resulting from the operation applied to the numbers represented
by its children. Further, each node contains an approximation α̂ of α and an error
eα ≥ 0 guaranteeing |α − α̂| ≤ eα. Both α̂ and eα are bigfloats. An arithmetic
operation γ = α◦β with this representation is simple. A new node corresponding
to γ is created, labeled with ◦ and having the nodes corresponding to α and β
as children. Approximation and error γ̂ and eγ are computed from α̂, eα, β̂, eβ

using for example bigfloat interval arithmetic.
Representing a number γ as a DAG allows to increase the accuracy of the

approximation γ̂ by increasing the mantissa length of the bigfloat numbers and
recomputing all approximations from the leaves upwards to the root. In this
approach the error is reported bottom-up. The approach does however not al-
low simple conclusions on how much the accuracy of γ̂ will increase before the
computation is started.

A different approach is the paradigm of precision driven arithmetic. Here
accuracy is requested top down. An approximation γ̂ of γ can be requested,

6. Implementation Aspects 287

2 35 6

√ √·

−

√

+

−

√

◦

2 35 6

2 26

11

4

6

8

3

u

1 11 1

2 21

1

2

1

1

2

d

Fig. 6.5. A DAG representing the expression
√

5− 2 ·
√

6+
√

2−
√

3. The parameters
u and d are used for the BFMSS separation bound, discussed later in this section.

where eγ is given in advance. This is possible for the leafs of a DAG since they
represent integers which are explicitly known. Let γ = α ◦ β, then eα, eβ and a
mantissa length L are determined such that the final γ̂ will have the requested
accuracy. Then α̂, β̂ are computed recursively, requesting an accuracy of eα, eβ .
Finally γ̂ = α̂ � β̂ is computed using bigfloat arithmetic with mantissa length
L. To illustrate this principle, let γ = α · β. It is requested that |γ̂ − γ| ≤ eγ .
Choose

eα ≤
eγ

4(|β̂|+ |eβ |)
,

using the current values of β̂ and eβ. Compute α̂ requesting an accuracy of eα.
Then choose

eβ ≤
eγ

4|α̂|

and compute β̂ requesting an accuracy of eβ. Finally choose

ε ≤ eγ

2M
where |γ̂| ≤M .

M can be computed as M = 2�log2 |α̂|�+�log2 |β̂|�. Set L = −�log2 ε� such that
the relative error in the bigfloat multiplication is at most ε. Compute γ̂ = α̂' β̂

288 M. Mörig, S. Scholz, T. Tscheuschner, and E. Berberich

using bigfloat arithmetic with mantissa length L. Then

|γ̂ − γ| = |γ̂ − α̂ · β̂ + α̂ · β̂ − α̂ · β + β · α̂− β · α|
≤ |γ̂ − α̂ · β̂|+ |α̂| · |β̂ − β|+ |β| · |α̂− α|
≤ |γ̂| · ε + |α̂| · eβ + |β| · eα

≤ |γ̂| · eγ

2M
+ |α̂| · eγ

4|α̂| + |β| · eγ

4(|β̂|+ |eβ|)

≤ |γ̂| · eγ

2|γ̂| +
eγ

4
+ |β| · eγ

4|β|
≤ eγ

2
+

eγ

4
+

eγ

4
= eγ .

Using separation bounds, which we will discuss next, precision driven arithmetic
allows to directly compute an approximation that is accurate enough to conclude
the sign of γ. Iteratively increasing the accuracy is however preferable because
often the sign can be concluded from an approximation with lower accuracy.
Precision driven arithmetic then allows to control how often an expression must
be reevaluated. In the implementation of leda::real the number of provably
correct binary digits in γ̂ doubles with each iteration.

A number γ that is actually zero can only be recognized to be zero from
an approximation when the approximation is error-free. This is, however, not
possible if some intermediate number in the computation does not have a finite
floating-point representation. In the presence of /, k

√
this is almost always the

case. Therefore, the need for separation bounds arises.

Definition 8 (Separation Bound). A number ζ > 0 is called a separation
bound for α if α 	= 0 implies |α| ≥ ζ.

The sign of α is known once the error of the approximation is smaller than 1
2ζ:

either |α̂| > eα or |α| ≤ |α̂|+eα ≤ 2eα < ζ and therefore α = 0. To be practical, a
separation bound should also be constructive i.e. easily computable. The bounds
which are used for algebraic numbers represented by a DAG, maintain for each
intermediate number, that is for each node in the DAG, a set of parameters from
which a separation bound for the number can be computed. The parameters for a
node are computed from the parameters of its children and further predecessors.
Here the so called BFMSS bound [142,143] will be described. The BFMSS bound
conceptually represents an algebraic number as γ = γu/γl, where γu and γl

are algebraic integers, and then maintains upper bounds u(γ) and l(γ) on the
absolute value of the conjugates of γu and γl as depicted in Table 6.2.

Theorem 2 (BFMSS Separation Bound). Let γ be given as a DAG and
u(γ), l(γ), D(γ) as given in Table 6.2. Then γ = 0 or |γ| ≥ u(γ)1−D(γ)l(γ)−1 > 0.

��
The parameters u and d are also attached to each node of the DAG in Figure 6.5
for γ =

√
5− 2 ·

√
6+
√

2−
√

3. Note that l = 1 for each node. We have D(γ) = 16
and u(γ) = 8, resulting in ζ = 8−15 = 2−45. Hence, it suffices to evaluate γ to
46 binary digits to conclude γ = 0.

6. Implementation Aspects 289

Table 6.2. Parameters for the BFMSS bound

γ u(γ) l(γ) d(γ)

γ ∈ Z |γ| 1 1

α± β u(α)l(β) + u(β)l(α) l(α)l(β) 1

α · β u(α)u(β) l(α)l(β) 1

α/β u(α)l(β) l(α)u(β) 1
k
√

α and u(α) ≥ l(α) k
√

u(α)l(α)k−1 l(α) k
k
√

α and u(α) < l(α) u(α) k
√

u(α)k−1l(α) k

D(γ) =
∏

d(α)
α∈DAG(γ)

A separation bound dominates another separation bound if it always gives
a better, i. e., higher bound. Among the currently known constructive separa-
tion bounds, the BFMSS bound, the Li-Yap bound and an improved degree-
measure bound are not dominated by other bounds. It has further been shown
that there are expressions where either the BFMSS or the Li-Yap bound is bet-
ter [142,143,523]. An orthogonal approach is that of p-ary bounds. It amounts to
factoring powers of a prime p out of the numbers, maintaining them separately.
The idea was successfully applied to the BFMSS and the degree-measure bound,
resulting in bounds dominating the original BFMSS and the degree-measure
bound [637].

Despite these sophisticated internals the two number types CORE::Expr and
leda::real are designed for ease of use. The internals are completely hidden
from the user. All supported operations are available to the user in the same
fashion they are available for, e. g., the C++ double type. The number types are
reference counted, so passing arguments by value does not incur overhead and
the memory management is done automatically. This allows to easily replace an
inexact number type in an existing program. To allow for a reasonable speed,
both number types have a built-in dynamic floating-point filter. CORE::Expr
and leda::real provide highly general, easy to use and reasonably efficient
number types. They are however inferior to solutions to the exactness problem
specifically tuned to an application. Designing and implementing such a solu-
tion will however take much more time from the implementer. A bottleneck in
the approach of CORE::Expr and leda::real are good separation bounds. Ex-
amination of the actual size of non-zero numbers and the computed separation
bound suggests that the currently known bounds are overly pessimistic. Finding
better bounds, especially bounds where the impact of the algebraic degree of a
number is small would result in a great speed-up.

Chapter 7. Libraries

Roman Dementiev and Johannes Singler

7.1 Introduction

There are many definitions for the term software library in computer science,
e. g., “a collection of program components that can be used in many programs”
by Plauger [640]. However, we should regard the term “component” here in a
most general way, without the special meanings it is associated with in software
engineering. Also, being a loose collection is not enough. The parts of the library
should seamlessly work together and complement each other in a reasonable way,
addressing related tasks. “Using a program element” is not necessarily limited
to calling a function or a method, it includes executing a whole program, for
example.

So, at first sight, it is related rather to Software Engineering than to Algorithm
Engineering. However, as we will show in this chapter, libraries, in particular
algorithm libraries, are a very useful concept in Algorithm Engineering as well.
Actually, developing them is a “major goal” of Algorithm Engineering [234].

From the highest abstraction level, we must discriminate software libraries
and software systems. Software systems also provide functionality that facilitates
developing software. There is a difference in level between the system and the
program that runs on the system, though. The software system might have
capabilities that are not directly accessible to the program. Examples for software
systems are computer algebra systems and numerical computation systems like
MATLAB. Programs running on a software system have only indirect access
to assets like the screen, computer memory and computing power. Having said
that, the contrary applies to software libraries. They are usually based on the
same foundation as the actual program. Both approaches share the fact that
they foster the reuse of already implemented functionality.

The definition that a software library helps in implementing software is not
sufficient, of course. Taking just some foreign source code that implements a
complex algorithm might help as well. The difference is that libraries are par-
ticularly built for the sole purpose of being used by other programs. Thus, they
usually provide better quality than “some already-written code”. This includes
features like ease of use, flexibility and extensibility, correctness and robustness,
not to forget efficiency.

Libraries for the most different kinds of applications exist. There are libraries
which are supposed to facilitate GUI programming, others simplify the access to
hardware or certain subsystems, yet others implement data structures and cor-
responding algorithms. The development of libraries was started in the numer-
ical algorithms community. Key players were the Numerical Algorithms Group
(NAG) and the Bell Research Laboratories [374]. The reason for this is that in
the beginning, computers were mainly used to solve numerical problems.

M. Müller-Hannemann and S. Schirra (Eds.): Algorithm Engineering, LNCS 5971, pp. 290–324, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

7. Libraries 291

There are numerous subtypes of software libraries, including function libraries,
class libraries and component libraries. This distinction comes from a Software
Engineering point of view, and is based on the programming paradigm the li-
brary is obeying. In Algorithm Engineering, we are of course most interested in
algorithm libraries, which is a distinction in terms of functionality. The program-
ming paradigm—as mentioned above—is subordinate.

Nevertheless, we describe some of the paradigms here. Function libraries of-
fer a number of ordinary function calls. Those might be grouped semantically,
i. e., a subset of them should be called in a certain order, with certain depen-
dent arguments, to achieve the desired result. No syntactic coherence is given,
though, except maybe naming conventions. In contrast to that, class libraries
provide encapsulation of functions that belong together by means of classes.
Instantiating objects avoids the necessity of holding global state in some back-
ground memory. Class invariants can be put up this way, which helps in cre-
ating correct programs and avoiding unwanted side-effects. Still, the number
of methods associated with a class is usually quite limited. This is why class
libraries are an example of “reuse at small scale” [59]. In contrast to this, a
component library provides items of greater functionality. Components are de-
signed to be both self-contained and easily interchangeable. They are usually
able to give information about themselves, both at development time and run-
time. They can still be implemented using classes, but the abstraction is on a
higher level.

After this discussion, we have to clarify that from our point of view, algorithm
libraries can include necessary data structures, of course, since data structures
and algorithms are always deeply intertwined.

Algorithm Engineering tangles software libraries from both sides. Utilizing
existing libraries simplifies the implementation of new or improved algorithms.
This is often accompanied by increased performance and stability, since the
building blocks taken are usually already well-tested and tuned. On the other
hand, library implementations of algorithms are developed by applying Algo-
rithm Engineering to given problems.

This leads us to the two major questions of this chapter:

– Why is library XY useful for us in Algorithm Engineering?
– What was the role of Algorithm Engineering in developing of library XY?

Organization of the Chapter. In Section 7.2, we will briefly introduce many
established libraries while Section 7.3 will give further motivation for the use
of libraries in Algorithm Engineering. Starting off with the design goals and
paradigms in Section 7.4, we will investigate more deeply the functionality and
Algorithm Engineering aspects of selected libraries, grouped by functionality
domain. Those five domains are fundamental operations (Section 7.5), advanced
number types (Section 7.6), basic data structures and algorithms (Section 7.7),
graphs (Section 7.8), and finally, computational geometry (Section 7.9). We will
conclude in Section 7.10.

292 R. Dementiev and J. Singler

7.2 Library Overview

In this section, we enumerate and briefly introduce many algorithm libraries,
coarsely grouped by functionality. Some libraries are very specific to an applica-
tion area, while others are of general use. It is well possible that a library relies
on other libraries. Usually, more specific libraries use more general ones, e. g.,
some library specialized on external memory computation might be based on
another that provides basic I/O-routines.

Of course, we cannot discuss all possible candidates of libraries here. We will
restrict ourselves to deeply investigate only libraries that are based on the C++
programming language [759]. This is because C++ is the most widely accepted
programming language in the Algorithm Engineering community [741,148], and
also widely used in industry. It offers both syntactic wealth and excellent per-
formance, and supports both the object-oriented and the generic programming
paradigm. C++ also obeys the so-called zero-overhead rule, i. e., if one does not
actually use some part of the functionality, one also does not have to pay for it
by a performance or space penalty. For example, the overhead for runtime poly-
morphism is only introduced when declaring functions explicitly virtual. Since
C++ is usually compiled to binary code, its execution speed is excellent. The user
has complete control over the data, since the memory management is explicit
and interchangeable. The use of platform-specific processors is possible with-
out overhead through intrinsics or embedded assembler code. Highly optimizing
compilers are available on most platforms. The ISO standardized C++ in 1998
and approved a technical corrigendum in [429], so there must be no patents or
copyrights restricting the use of this language. There are some drawbacks as well,
though. The representation of number types is not completely specified, so the
casting of types is dangerous. Those issues can usually be solved by providing
a small platform- and/or compiler-specific part. No self-inspection at runtime
of the interface is supported, i. e., enlisting the classes and their public methods
and properties offered by the library. This could be useful for dynamically choos-
ing and exchanging algorithms. Also, due to the lack of a binary intermediate
format without functional restrictions, much code must be compiled over and
over again, which can lead to lengthy compile times, in particular when using
generics extensively.

An extensive comparison of many modern programming languages can be
found in [647], whereby C# [266] is still missing there. Fortran might also be an
option, however, it is considered to be specialized on numeric computations by
most computer scientists. The most recent programming languages like Java and
C# concentrate on making programming easier and less error-prone for algorith-
mically simple applications, sacrificing other qualities for that. They are usually
not compiled to binary code, but to some intermediate language. A just-in-time-
compiler (JIT) transforms the intermediate code to a binary one just before
execution, sometimes after some part of the program has already been run. This
makes the code platform-independent and therefore easily portable. Due to time
constraints and because semantic information might have gone lost through the
intermediate representation, the JIT usually cannot optimize the code as well as

7. Libraries 293

Fig. 7.1. The functionality of selected libraries

a native compiler could. Also, both platforms count on automatic memory man-
agement based on garbage collection, which can introduce memory organization
phases of unpredictable length at unsuitable points in time. Hence, the resulting
programs usually run slower and use more memory, which is particularly bad in
Algorithm Engineering, since one wants to make the program performance the
best possible.

In the following paragraphs, we list libraries grouped by functionality. An
overview of the most important ones’ functionalities and the resulting overlap is
visualized in Figure 7.1.

Basic Algorithms and Data Structures. From an algorithmic point of view, the
most elementary libraries are those which provide basic data structures and
algorithms which in turn are part of many other algorithms. This functionality
usually includes container types like linked lists, stacks, queues, dictionaries and
priority queues. A container type keeps a (possibly huge) number of elements
of a certain type in a more structured way, e. g., arranged in one or multiple
dimensions, in a certain order. It is accompanied by suitable basic algorithms,
e. g., sorting, searching, and enumeration patterns like iterators. Of course, there
are many libraries that do not only provide this functionality, but offer much
more. Nevertheless, we include such libraries in our discussion.

294 R. Dementiev and J. Singler

Modern programming languages come as programming platforms with a li-
brary that is more or less part of the language specification. Most of these li-
braries also comprise the addressed basic data structures and algorithms. The
most renowned among them is probably the C++ standard library, in particular
its most essential part, the Standard Template Library (STL) [640]. The STL
has minimal functionality in the terms described here. In fact, it is a specifica-
tion only, not an implementation. Since its standardization already happened in
1998, many implementations are available today. Usually, they belong to a C++

compiler; in principle, they are interchangeable.
To collect valuable extensions to the STL in a common place, and also to

prepare the next version of the C++ standard [760], the Boost library [462, 120]
was launched in 1998. It is developed by an open source community project and
consists itself of many different sublibraries. As a small part, it adds to the basic
data structures and algorithms of the STL. Specialized variants are provided
for certain data structures, e. g., wrappers for multi-dimensional arrays. It is
not useful to employ Boost without the STL, since it assumes that the STL
will provide the underlying stuff. Actually, the correct term for the packages is
Boost libraries (plural), since each part is in turn called library. We will consider
all Boost libraries as a single library which is reasonable, although the Boost
libraries indeed have greater independence between each other.

A library that comes downright from the Algorithm Engineering community
is the Library of Efficient Data Structures and Algorithms (LEDA) [559, 513].
Its development was started in 1988 at the Max Planck Institut für Informatik
in Saarbrücken. Nowadays, it is distributed commercially, but there also exists a
free version with reduced functionality. LEDA1 offers very broad functionality,
naturally including basic data structures and algorithms. In contrast to the li-
braries mentioned so far, it usually provides multiple variants for abstract data
types. Users can choose the one fitting their needs best, e. g., in terms of space
and time complexity, tailored to the specific application. A lot of experience in
algorithm design and engineering has been incorporated into LEDA2, it forms a
prototype of an algorithmic library.

Graphs. The most natural extension to the basic data structures are graph data
structures and algorithms. Hence, the libraries mentioned in the last sections
are usual suspects for also supporting this functionality. This field is beyond
the scope of the STL, though. Boost must pitch in for this insufficiency with
the Boost Graph Library (BGL) [736], a major sublibrary of Boost. LEDA has
extensive graph support as well, as discussed later on. There also is a code
repository from Donald Knuth, called Stanford Graph Base (SGB). The author
1 There is some disagreement about grammar and library names. The names STL and

BGL are most often prefixed by the article “the”, while LEDA is not. We are not
aware of any grammatical rule that decides this, and stick to the tradition.

2 The term LEDA also names a queen of Sparta from Greek mythology. There is a
myth about “Leda and the swan”, which gives some background on the cover page
of the LEDA Book [561]. Also, do not mix up the library with the multi-paradigm
programming language of the same name.

7. Libraries 295

announced that the fourth volume of his famous series “The Art of Computer
Programming” will be largely based on this C code. The coherence is rather
loose, thus the code cannot be termed a library.

Geometry. Algorithms in Computational Geometry are notorious for being very
hard to implement [206, Chapter “Introduction”] [471]. Numerical instabilities
can lead to crashing programs while most algorithms are described for the the-
oretical general position assumption, i. e., no three points of the input lie on a
straight line, no four points lie on a circle, etc. LEDA is the pioneering library
that supports robust geometric computing for arbitrary inputs. It provides many
algorithm implementations for two-dimensional geometry and some implementa-
tions for three-dimensional case. d-dimensional geometry exists as an extension
package. Based on the LEDA experience, the Computational Geometry Algo-
rithms Library (CGAL) project [151] was started some years later by a large
academic consortium [278]. It has enjoyed the improved template support of
C++ compilers that had evolved in the meantime. CGAL follows the generic pro-
gramming paradigm to allow for great flexibility and modularity of its geometric
components. As LEDA, it supports 2-, 3- and d-dimensional robust geometry.
The EXACUS library [94, 276] aims for systematic support of non-linear ge-
ometry. The current version of EXACUS can compute exact arrangements of
curves and curve arcs of arbitrary algebraic degree in the plane and quadrics in
space, and perform Boolean operations on polygons bounded by such segments.
The computations are mathematically correct for arbitrary position input. In
the meantime, many packages of EXACUS have been integrated into CGAL.

Graph Drawing. Graph Drawing is a relatively new field in Computer Science.
Its goal is to develop algorithms that embed graphs into two or three dimensions.
Criteria are applied to measure the “prettiness” of the result. One tries to mini-
mize the number of crossing edges in non-planar graphs, for example. Since many
problems are computationally hard, and also, there are not always sharp criteria
for the quality of the drawing, heuristic methods are applied very often. Several
libraries have evolved from the academic community, e. g., the Open Graph Draw-
ing Framework (OGDF) [618], and Visone [807], specialized in visualizing social
networks. GraphViz [315,356] is a graph drawing application, its algorithms are
also available in a library. The field has many commercial applications, because
the programs can visualize complex facts for human analysis. Hence, two com-
mercial libraries are on the market: Tom Sawyer Visualization, and yFiles. In
addition to many graph drawing solutions, they include basic graph algorithms
as well. It stands out that both commercial libraries are available for both the
.NET and the Java platform, Tom Sawyer also for C++.

Numerics. The libraries mentioned so far are designed to work on instances
of encapsulated data types, i. e., they provide functionality to work on mostly
discrete, combinatorial objects, while numerical problems are continuous. Here,
trade-offs between accuracy and processing speed are of crucial importance. The
applied number types are usually quite simple. Rounding errors and approximate

296 R. Dementiev and J. Singler

results are tolerated. Still, a major goal of these libraries is to sustain numerical
precision to the furthest extent reasonable. We will not discuss them here in
detail, but mention some of them with references for further reading.

Numerical libraries usually provide functionality like basic linear algebra, ran-
dom numbers, statistics, and so on. The GNU Scientific Library [82,363] is writ-
ten in Fortran, also usable from other languages. Closely related to this library
is the package LAPACK [30, 507], supporting linear equations, least-square op-
timization, singular-value decomposition, and eigenvalue/eigenvector solution.
LAPACK is written in Fortran language and has been converted to the C package
CLAPACK [175]. Blitz++ [802,109] makes extensive use of generic programming
through C++ templates to achieve best computation performance. It offers dense
arrays and vectors, random number generators, and small vectors and matrices.
However, the GNU scientific library has a richer functionality than Blitz++. The
Matrix Template Library [737,593] actually uses template metaprogramming to
generate performance-critical code for linear algebra for a wide variety of matrix
formats. All libraries mentioned here are provided as open-source.

Advanced Number Types. Some applications require exactness in computations
involving numbers, for example geometric theorem proving (see also Sections 3.5
and 6.2). Libraries like the GNU Multiple Precision Arithmetic Library (GMP)
[355, 334], the Core library [457, 189], MPFR [592], LEDA and Boost provide
number types for such demands. They implement integers, rationals, algebraic
numbers and floating points numbers with arbitrary length/precision.

Particular Machine Models. There are lots of libraries which specialize in sup-
porting particular machine models, which are described in detail in Chapter 5.

The most common models are for parallel computation and external memory
computation. The specialization on such a model is in general orthogonal to the
functionality of the library. Most such libraries provide only basic equipment
since more complex algorithms can then be built on top of them. Sometimes,
an ordinary implementation can be recycled by just redirecting calls to low-level
functions to the library for the particular machine model.

For libraries concerned with parallel computation, one must distinguish two
aspects. A library can provide basic platform functionality only, which usually
includes communication, locking and maybe load-balancing. Examples are the
BSPlib [393,625] for the Bulk Synchronous Parallel model [789] and the CGM-
lib [156, 153] for the Coarse-Grained Multicomputer model. Some of them are
integrated into the language through the compiler, OpenMP [159] and Clus-
terOpenMP being examples. Concurrency libraries like the POSIX threads [146]
might be considered a part of the operating system. On the other hand, there
are libraries that provide algorithmic functionality like STAPL [29] with multiple
backends. The STL implementation of GCC, libstdc++, features a so-called par-
allel mode, based on the MCSTL [740] for shared-memory systems. The CGMlib
also includes basic algorithms, in particular with its counterpart CGMgraph for
graph algorithms. There also exists a parallelized version of the BGL [360, 633]

7. Libraries 297

for shared-memory systems. Gustedt et al. [371] present with parXXL an inte-
grated environment for scalable fine-grained development on large coarse-grained
platforms. SWARM (SoftWare and Algorithms for Running on Multi-core) is an-
other recent portable open-source parallel library of basic primitives that fully
exploit multicore processors [54]. The Intel Threading Building Blocks [427] are
somewhat a hybrid. It provides concurrent data structures and a parallelization
framework, and a sorter in addition.

The external memory model [811,569] makes the assumption that the data to
be processed does not fit into the main memory of the executing computer (also
see Chapter 5, Section 5.2.1). Many algorithms have already been developed for
this model in theory. Much less had been done for evaluating their practical
fitness. The problem here, as in other areas, was the large layer of non-existing
implementations of basic external memory (I/O-efficient) algorithms and data
structures. TPIE [44, 782] and LEDA-SM [195] (both discontinued) have been
started to reduce this gap. The Stxxl library [231, 761] implements interfaces
of the STL; its containers and data structures handle very large data sets I/O-
efficiently. Besides the compatibility with the STL, another aim of the Stxxl

is high performance: it supports parallel disks and optimally overlaps I/O and
computation. Recent versions [81] add support for parallel internal computation,
covering both the shared-memory parallel and the external memory model.

7.3 Libraries as Building Blocks

When a new problem in algorithmics arises, a first, simple algorithm is usually
given. Then, other researchers try to improve the quality of this algorithm, which
often results in a better, but more complicated one. It may use complex data
structures and algorithms which are already well-known, but not implemented.
Hence, although the proposed algorithm might look simple at first glance, intri-
cacies in the utilized parts may keep one from actually implementing and testing
it. This is why many algorithms never have been used in production systems,
although being more efficient than already available solutions. In this section, we
show how libraries can help in writing competitive implementations of sophis-
ticated algorithms, which is particularly important in Algorithm Engineering.
Thus, libraries can be seen as building blocks for complex algorithms.

Aiming this high, libraries in particular should strive for the goals described in
Chapters 3 and 6. The quality of robustness is very important. Also, the imple-
mentation aspects correctness, flexibility, and ease of use need to be considered
to the greatest extent possible. These demands are accompanied by the desire
for good efficiency and extensive functionality. The better these criteria are met,
the more benefit comes from using a library. In the following, we will illustrate
this in more detail.

Libraries are usually exactly specified and well-tested. Hence, the implementer
can concentrate on the parts of the algorithm that are actually new, which might
enable her to actually succeed in implementing the algorithm [234]. This avoids
errors in low-level parts which can be very hard to find. The authors of LEDA

298 R. Dementiev and J. Singler

argue that “Algorithm + LEDA = Program”. This means that all complex parts
in an algorithm description, e. g., complex data structure operations in a pseudo-
code, can be written down easily using LEDA.

Often, only some specified functionality and asymptotic bounds are required
for a data structure or an algorithm, no concrete implementation is requested.
For real-world performance, however, the constant factors are also important,
they can make a huge difference. Since algorithm libraries often provide multi-
ple versions of some functionality or data structure, the implementer can easily
exchange those components and compare their effects on running time and me-
mory footprint. Too much effort would have to be invested into those parts to
make them competitive, otherwise.

Also, a library implementation sets a benchmark on the performance for the
solution of a problem, because it is typically more general than any self-made
implementation. Often, comparison are done against library implementations,
e. g., in [283, 306]. Taking the advantages of robustness and generality of the
library implementation into account, another implementation must achieve much
better performance, to be taken into consideration.

Altogether, algorithms that are implemented as part of a library are used
more often by practitioners and therefore have more impact in the according
area. Non-experts in the algorithmic field can also directly benefit from the
developments in theory. Also, more feedback from users to the developers can
be expected. This helps to mitigate the often-cited “gap between theory and
practice”.

There is other functionality in libraries to improve an implementation besides
algorithms. Tools like the Boost Template Metaprogramming Library in fact
enhance the language the code is written in, C++ in this case. Through its use,
certain computations can be moved to compile time, which allows for a better
optimization by the compiler in many cases. Also, invariants and static post-/pre-
conditions can be verified at compile time to make an algorithm implementation
more robust. Also, data type traits [605] can be used for the selection of the best
algorithm to use. Another example of this kind is concept checking, which is
used in STL implementations, for example. The use of expression templates (see
Subsection 7.7.2) simplifies the customization of generic algorithms and therefore
fosters their utilization.

If libraries want to have great impact, they must be well-documented. This
does not only include the description of the functionality and the corresponding
API, but also the behavior and expected performance for different kinds of input.

We do not want to conceal here that using libraries might have disadvantages
in certain cases. For instance, libraries must usually make compromises in terms
of running time and memory usage. In principle, a tailor-made implementation
can always be as least as efficient as a library implementation. Often, it will be
more efficient. However, in most cases, this drawback incurs only small constant
factors and does not outweigh the additional time spent in developing and testing
the code thoroughly.

7. Libraries 299

Library code is supposed to be a “black box”. This is particularly true if the
source code is not available. This lack of insight might be a problem for analyzing
and debugging a program that uses a library.

Major problems can occur if the user employs multiple libraries that are in-
compatible with each other. This incompatibility most often stems from data
types contained in those libraries. The algorithms of one library can usually not
be applied to data that is held in another library’s data structures, specific com-
patibility layers being an exception. In general, the only solutions is to convert
from one data type to the other or to abandon some libraries completely.

Although libraries should be easy to use, they still demand some effort in
learning how to use them. And after all, many libraries are not gratuitous, which
also biases the consideration between library usage and proprietary development.

The last argument against the usage of libraries is that responsibility is given
to some “external force”. As recent history shows, this problem particularly arises
in the context of security holes. The whole program can be compromised if there
is a flaw in one of the used libraries. Legal issues might be touched in this case.

7.4 Basic Design Goals and Paradigms of Combinatorial
and Geometric Libraries

In this section, we introduce the design goals of the major libraries. This helps
to understand the decisions made in the development of those libraries which
are then documented in the following sections.

LEDA is supposed to provide “algorithmic intelligence” [561, Preface] to the
user. Its usefulness extends to a broad range of applications because it consists
of a huge collection of algorithms from very different parts of computer science.
One could term this the horizontal dimension. On the other hand, LEDA claims
to contain everything that is needed to develop an algorithmically challenging
application. Thus, it also contains very low-end input/output operations like file
stream, and provides GUI support as well. This could be characterized as the
vertical dimension of LEDA. In consequence, LEDA is probably the library with
the broadest functionality. The tall vertical range can partly be explained by the
lack of appropriate libraries that support the according functionality at the time
its development was started. This makes parts of the library platform-dependent,
in contrast to the other libraries, which only depend on the standardized lan-
guage features.

According to LEDA’s research leaders, Kurt Mehlhorn and Stefan Näher,
there were four principal design goals in the development of LEDA [561, Chap-
ter “Introduction”], in the order of importance: ease of use, extensibility, cor-
rectness, efficiency. It sounds surprising that efficiency is stated last, as it is
actually included in the name of the library. However, the authors claim that
efficiency is worthless without the remaining three goals fulfilled. This reminds
one of the famous phrase [478]: “Premature optimization is the root of all evil in
programming.” We will look at the experimental performance of LEDA in the
subsequent sections. Still, the library always promises best asymptotic running

300 R. Dementiev and J. Singler

time, at least with high probability. As already mentioned, it provides multi-
ple variants of many of its data types and algorithms, to match specific needs.
Therefore, it is very well suited for doing Algorithm Engineering by testing many
alternatives. Also, there is a lot of formalized documentation, including support
tools for generating different output format from in-source-code documentation.

Since 1995, there is a commercial version available, the freely available aca-
demic license was discontinued at version 4.2.1 in 2001. Unfortunately, this old
version is not quite usable any longer since most modern compilers are not com-
patible with its code any more. At least, there exists a free version with reduced
functionality. There are several LEDA extension packages available, e. g., a pack-
age for d-dimensional geometry, and one for dynamic graphs, which emphasizes
the extensibility.

Although being inferior in terms of functionality broadness, the Standard
Template Library came only later than LEDA. Its development started at the
Hewlett-Packard Labs before 1995, led by Alexander Stepanov and Meng Lee
[755]. In 1998, it was incorporated in the ISO C++ standard at a late stage. It
only specifies the functionality an implementation must provide. Hence, there is
not the one STL. This makes it hard to compare the practical efficiency of the
STL to other libraries. A very wide-spread implementation licensed under the
LGPL is the one by the GNU project [321]. It is based on the implementation
by SGI [727], which is particularly renowned for its documentation. In turn,
the SGI code is based on the exemplary implementation by Hewlett-Packard.
Another implementation is STLport [756], free and claimed to be highly portable.
Dinkumware [250] offers a commercial implementation which claims to be very
efficient.

The goal of the STL is to provide “a core of the most widely used facili-
ties” [640], not everything a programmer might need. To make this comparatively
small core applicable to all sorts of data, the generic programming paradigm is
used extensively. Actually, the library was designed for the Ada programming
language in the first place, since C++ had not yet supported genericity through
templates. Compared to LEDA, the STL exploits the language features of C++

to a much larger extent. Since it came later and was designed along with the
language standard, the compilers had already evolved to some kind of stability
and supported most features of the standard. In contrast, for example, LEDA
uses exceptions only little.

The Boost library was initiated to provide a collection of extensions to the
STL. While the STL only wants to provide a common core functionality, Boost’s
approach is to provide everything a reasonably large number of programmers
might like to use. Therefore, its functionality extends greatly beyond that of
the STL. Many new areas are touched, like graphs and parsers. A huge part
is devoted to extending the language with syntactic sugar, to name the lambda
expression library and the smart pointer library. A considerable part of the Boost
libraries has been accepted for inclusion into the upcoming C++ standard, the
current draft is called TR1. Thus, parts of Boost might be genuine parts of
the STL in a few years. Its general paradigms are similar to the ones of the

7. Libraries 301

STL: Provide robust and generally efficient implementations. There are rarely
multiple variants of a data type or an algorithm. Hence, each implementation
must remain a compromise between generality and optimization to a specific
application.

In contrast to this, LEDA has platform-specific parts. This is a negative con-
sequence of supporting features like file system access and graphics. Also, there
is some assembler for basic operations on number types integrated. Boost and
the STL only require a standard-compliant C++ compiler, and use its C library
for the backend.

The driving goal of the CGAL project stems from Algorithm Engineering: it
is to “make the large body of geometric algorithms developed in the field of com-
putational geometry available for industrial application” [278]. CGAL and EX-
ACUS strive for correctness, flexibility, efficiency and ease of use. The flexibility
is achieved by the generic programming paradigm in the style of STL. Another
goal is adaptability: e. g., library implementations must work with any existing
user code satisfying certain interface requirements. One of CGAL’s guideline is
a high degree of flexibility for experts; however, there is also a rule to provide
default shortcuts for novices who appreciate the ease of use in the first place.
CGAL always leaves the decision which underlying basic types (like number
types) and algorithms should be used, to the user, who can choose the most
efficient and sufficiently exact alternatives for her application. The library aims
for a good quality code with documentation following the style of LEDA man-
uals. A large distributed developer community reviews and tests new CGAL
submissions.

As we argued earlier, it is most important that algorithms supplied by a library
work correctly. None of the libraries mentioned here uses formal verification to
prove the correctness of its algorithms. They provide testing measures to give
some assurance, though. LEDA, in particular, includes many algorithms that
return a result which is easily checkable. For complex problems, this can include
additional information, such as witnesses, for a particular result. An example
case is the test of a graph for bipartiteness. When the algorithm gives a positive
result, it also returns the partition of the graph. The two sets of nodes can then
be checked for the absence of edges between nodes of the same set (see also
Section 6.2.3). The GCC implementation of the STL comes with a testsuite that
checks very many use cases. Most Boost libraries come with test cases, as does
CGAL.

There is also the aspect of licence fees. LEDA was started as an academic
project, and turned into a commercial product later. On one hand, this means
that the library is actively supported and maintained. On the other hand, one
must pay for a license, at least for full functionality.

The STL is standardized by the ISO, which means that there may be no
patents or copyrights associated with it. There are free implementations avail-
able, as listed before, so it should be available to everyone at no charge.

302 R. Dementiev and J. Singler

7.5 Fundamental Operations

Each program contains operations that programmers consider as atomic, fun-
damental parts of the programming language, but in fact, complex runtime
mechanisms are hidden behind those, which can influence running time and
memory footprint significantly. This includes memory management, access to
data structures, and calling subroutines. They are usually not mentioned in a
theoretical description of an algorithm, because they do not influence the asymp-
totic running time. However, the constant factors they introduce can be critical
in practice. Thus, there is a lot of potential to improve performance here.

7.5.1 Memory Management

Every C/C++ compiler comes with a built-in memory manager for dynamic me-
mory allocation. Memory is usually allocated from the operating system in large
chunks, and redistributed to the application in smaller blocks. This avoids the
overhead of calling the operating system every time. Thus, there is usually a
trade-off between time and space efficiency. There are many ways to get a good
compromise, this is a complex topic [837]. For example, free lists can save freed
memory blocks of a certain size for future use, but this space might be lost if
blocks of that size are not requested again. On the other hand, fragmenting the
memory might result in complex data structures for maintenance and thus slow
down execution.

The STL therefore allows the user to specify a custom memory manager for
containers, called an allocator. This is mainly an interface, nothing more than
an arbitrary default implementation is requested.

Boost comes with the Pool library, which provides efficient managing of blocks
of one certain size. In particular, it features bulk deallocation, if desired without
calling the destructor. LEDA provides its own memory manager [779], which
is mandatorily used for its own data types. Both memory managers provide
free lists, without inducing any space overhead. This allows for efficient reuse of
objects.

The types that benefit most from such a memory manager are small types
which are created and destroyed frequently. While the size of a type can be
determined at compile time, its number of (de)allocations cannot be predicted.
Thus, the choice which type in general, and which specific allocation is done by
which memory manager, must be left to the library user. With the STL, the
user can and must choose the type for every allocation (sequence) or container
instantiation. With LEDA, the user can choose per type, or allocate a number
of bytes manually. No parameterization of containers is possible, in this sense.
There might be a workaround through deriving differently allocated variants of
the element class from a base type, though. The developers of LEDA report great
speed improvement by using the LEDA memory manager for small types such
as graph nodes and edges. However, no comparison to recent implementations
of the memory allocators are given. The results obtained in [561, Chapter “On
the Implementation of LEDA”] might be outdated.

7. Libraries 303

This is an example that shows where gaps between theoretical algorithms and
a practical implementation can be wide. The difficulties of dynamic memory
allocation are mostly ignored by theoretical algorithms. Usually, it is assumed
that allocating memory costs only constant and actually negligible time. It is
an achievement of Algorithm Engineering to call attention to this important
functionality, and to optimize it. In this case, Algorithm Engineering was not
used for a particular algorithm, but rather something more fundamental.

7.5.2 Iterators versus Items

The possibility to address elements as members of a data structure can speedup
programs considerably. For example, searching a tree for an element and inserting
it, if not yet contained, only takes one tree search. The element can be inserted
just where the search had to stop. In case we cannot remember this location
between the two operations, two searches would have to be performed.

Another example is search for related elements. The program can help the
library in finding an element by giving some position close by that might have
been determined by an earlier search. This kind of searching is known as finger
search. Such operations often need to know about internal data organization
which goes beyond the plain specification of the abstract data type. This is
dangerous because of being prone to incompatibilities. However, some algorithms
from theory often need a pointer to a particle deep down in a data structure to
achieve good asymptotic complexity.

This functionality usually does not degrade performance, but greatly improves
it for some applications, a discovery made in experimental evaluation in the con-
text of Algorithm Engineering. There are different ways to achieve this function-
ality. The STL and Boost implement the iterator concept, while LEDA features
the item concept3. Both allow the access to an element in the context of the
container. However, there are fundamental differences.

The STL iterator concept is an implementation of the iterator design pattern
[313], which defines an iterator to “provide a way to access the elements of an
aggregate object sequentially without exposing its underlying representation”.
Thus, an iterator usually allow access to the “current element” in an iteration
over the sequence of elements. But there is additional functionality in the STL.
There exist iterators that also allow jumps to distant elements, deletion of the
element referenced by the iterator, and insertions before or after the referenced
element. This adds some kind of “location” property to the iterator.

Since the iterator concept implicates a linear order between the elements,
it is unclear how to apply the concept to data types like priority queues or
two-dimensional search data structures. In fact, the STL does not provide an
addressable priority queue.

An item is a pointer to an element contained in a data structure, thereby
giving explicitly a location in the structure. The only operation items can execute
3 Here, we refer to only what is called dependent item in [561]. Independent items

are not implicitly related to any container. Those rather resemble handles or smart
pointers, examples being points and segments in geometry.

304 R. Dementiev and J. Singler

self-contained is testing for equality to another item, testing for being nil, and
assignment. All other operations are methods of the container class. The iteration
pattern can be implemented using an item as the resulting reference to the
current element, but this item is not an iterator itself.

Iterators can be manipulated and dereferenced autonomically, as they implic-
itly know the associated container, while for accessing the information contained
in an item, a method of the container must be called. Therefore, iterators are
“heavier” than items.

Iterators are vulnerable to intermediate changes to the container, in some
cases, while items are usually not. A delete or insert instruction potentially
invalidates all iterators associated with the container, i. e., their behavior is un-
defined afterward. Of course, both iterators and items are invalidated when the
corresponding element is deleted.

An interesting hybrid approach is presented in [347], where the iterator con-
cept is split. A position allows one to access the element directly, but is invali-
dated when making a change to the container. In contrast to this, a locator adds
a level of indirection, but stays valid despite modifications.

7.5.3 Parameterization of Data Types

The most important decision in designing a library which provides container
types, is the following: How do we combine the meta data needed for each element
of the container type with the actual data type, to form an element type? That
is, how do we provide parameterized containers?

The best compromise has to be found considering compatibility (compilers),
efficiency (running time), and ease-of-use (compile time, code size). Therefore,
this is an Algorithm Engineering task.

There are two extreme solutions for the problem and hybrid variants of them.
The first solution is to generate a new type for each combination of container
type and data type, ideally using generic programming. The second solution is
to have only one element type for each container type, and to keep a weakly
typed reference to the actual data.

The STL and Boost employ the first solution, in this case supported by the
C++ template mechanism. LEDA uses a hybrid approach, called the “LEDA so-
lution” [517]. There is only one element type per container type, containing a
so-called generic pointer (GenPtr). This pointer establishes the connection to
the actual data. To avoid the necessity of excessive casting on the user’s side, a
shallow wrapper class is provided by means of generic programming. This wrap-
per just transcribes all method calls to the actual data structure class. Since
there is no real functionality, all calls can be inlined and therefore, no perfor-
mance penalty is incurred when using an optimizing compiler. However, there
is one more indirection in accessing the data. This implies two disadvantages:
Two objects instead of only one must be allocated and freed each time an item
is added or removed, respectively. In particular for small data types, the incurred

7. Libraries 305

overhead might not be negligible. Also, item and data object will probably lie
quite far apart in address space. Thus, the cache efficiency is at risk due to
worse locality. At least, there is an optimization for small data types. If the size
of the data type is less or equal the size of a GenPtr—nowadays usually 32 or
64 bits—the data will be stored directly instead of the GenPtr. This approach
avoids most disadvantages of the second solution, still wasting some memory if
the data type is actually smaller than a pointer. However, it will keep compilers
from applying advanced optimization and inlining [558] for complex types.

One advantage of using the second solution is that library code can be dis-
tributed in binary form and therefore be kept secret, while if using C++ templates
to the full extent, all source code must be provided. Also, code size and compile
time decrease when not using generics, because they can lead to code dupli-
cation. There are countermeasures for that supported by C++ templates, e. g.,
partial specialization. Instantiating a container for one pointer type suffices for
all pointer types since a pointer has usually the same size for all types pointed
to. There is no difference in treating it, either, inside the container functionality.
Precompiled header files can speed up compilation, since they avoid multiple
parsing of the same file. Actually, the export keyword described in the C++

standard should make it possible to distribute generic code in object files. How-
ever, no well-established compiler supports this feature so far, although having
been introduced years ago.

At the time when the LEDA development was started, the template support
of the compilers was admittedly quite limited. Thus, the decision to not fully
exploit generics was the right one. Nevertheless, the LEDA developers go astray
their paradigm with the latest innovation. The LEDA static graphs use generics
extensively to provide excellent performance.

7.5.4 Callbacks and Functors

Generic algorithms are only useful if they can be customized by the user to serve
a specialized purpose. Also, comparison and hash functions for user-defined types
are needed for certain containers. Algorithm Engineering requires to provide a
solution that is both time- and space-efficient as well as flexible.

The easiest solution to parameterize an algorithm is to pass some callback
function pointer, which is plain C style. However, this incurs a performance
penalty since a branch to a non-constant address usually cannot be predicted
by the processor. Also, no inlining of the function to be called can happen, in
general. There will be a branch, and therefore probably also an instruction cache
fault. The advantage of a function pointer is its flexibility at runtime, since one
can exchange the called function at runtime.

The STL introduced functor classes, i. e., classes which provide certain me-
thods to be called back. Since the functor is a template parameter of the algo-
rithm, the actual call is already known at compile time and the compiler is able
to generate specific code for this call. Thus, an optimizing compiler can inline
the call and achieve unimpaired performance. Another benefit is that both the
functionality and additional data can be passed in one parameter. This helps

306 R. Dementiev and J. Singler

Fig. 7.2. Different ways of parameterizing containers

to avoid complicated and type-unsafe casting from and to some pointer of type
void* which is usually the only additional information possible to pass. Boost
uses the same mechanism as the STL.

LEDA has to rely on virtual function calls, though. As mentioned above, only
the wrapper classes are parameterized. Inner functions which are compiled to a
binary library, must call user-defined functions. There is no other way to achieve
this than a virtual function call. In terms of performance, this corresponds to
a call of a function pointer. At least, LEDA contains some optimizations that
avoid this penalty for small and built-in data types. These were incorporated
after experiments showed that there was too much overhead in space and time,
in particular for those small types.

The different approaches in parameterizing containers are summarized in Fig-
ure 7.2. Section 7.7.2 concretizes the options described here, and gives code
examples and performance numbers.

7.6 Advanced Number Types

In this section we will overview the advanced number types available in libraries.
See Chapter 6 for their theoretical background and specific implementation de-
tails of these types.

Theoretical algorithms work in the real RAM model of computation with
precise numbers of unlimited accuracy. However, most programming languages,
including C++, do not provide a number type which meets all demands of the
mathematical abstraction. C++ models integer numbers by the types short, int,
long and long long with fixed precision of p bits, where p ≤ 64. Therefore,

7. Libraries 307

numbers, whose absolute value is greater or equal 2p, can not be represented,
and all arithmetic operations on C++ built-in integers are computed modulo
2p. Floating point numbers, as compatible with the IEEE floating-point stan-
dard [420], are implemented in all modern processors. They are represented by a
triple (s, m, e), where s is the sign bit of the number, m and e are the fixed-size
mantissa and exponent of the number, respectively. The value4 of the triple is of
the following form: (−1)s ·m ·2e. In many C++ compilers, the processor’s floating
point numbers are mapped to float and double types having single and double
accuracy. Since C++ built-in number types have only a limited accuracy, they
can only approximate the mathematical numbers.

Integer numbers. If a programmer neglects the limitations of C++ built-in number
types and operations on them, the implementations produce incorrect results
and may crash [471] [860, Chapter “Number types”]. To avoid these problems,
libraries provide special number types which have a higher degree of exactness.
LEDA’s type integer realizes the mathematical type integer using a dynamic
array of unsigned longs. This way the degree of precision is only limited by
the capacity of main memory. It supports all operations of ordinary C++ built-
in integers like +,-,*,/,%, ++, etc. Despite the fact that the implementation
of leda::integer is highly optimized, even using assembler for critical code
sections [561, Chapter “Numbers and Matrices”], the speed of these operations is
about 30-50 times slower than the speed of C++ ints [860]. The GNU Multiple
Precision Arithmetic Library (GMP) [355], written in C, has a similar type called
mpz_t. The library is highly optimized for speed: As the LEDA library it uses
sophisticated numerical algorithms. Most inner loops are written in assembler
language for a wealth of different processors. The simplicity and elegance in GMP
are sacrificed for the sake of performance. However, the user-friendliness of the
original C interface is improved in the C++ class interface of the GMP library
and third-party wrappers (e. g., CGAL::Gmpz). The C++ class interface applies
the expression template technique described in detail in Chapter 6 to avoid the
costs of constructing temporary number objects. For example, an expression
like a=b+c results in a single call to the underlying GMP C library that adds
numbers b and c, and assigns the result to a. Other tricks, contributing to the
low-level efficiency of GMP, can be found in [355]. A study in [703] showed
that leda::integer could be up to several times faster than the GMP mpz_t,
wrapped into CGAL::Gmpz, in convex hull algorithms for values of medium size.
However, since the library implementations have been revised since 1998 the
speedup factors are probably out-of-date. The BigInt number type of the Core
library [457] is a wrapper of the GMP’s mpz_t.

Rational Numbers. If an algorithm requires exact computation involving division
of two integers then the result cannot be represented as an integer without loss
of precision. For such a scenario, LEDA provides a rational type which keeps

4 According to the IEEE floating-point standard 754 [420], the actual value is com-
puted slightly differently and relies on a tricky encoding of the triple components.

308 R. Dementiev and J. Singler

the numerator and denominator as leda::integermembers. The mathematical
operations on leda::rationals are 30-100 times slower than the operations on
the built-in double [860]. GMP also has a rational type (mpq_t). The difference
between leda::rational and GMP mpq_t is that the former does not automat-
ically normalize the quotient in the arithmetic operations if the numerator and
denominator have a common factor, since this is an expensive operation. The
latter also requires that the operands of arithmetic operations are normalized
and the operation implementations normalize the result(s) as well. The Boost
type rational does not stick to a fixed type to represent the numerator and
denominator; instead, the user is free to choose the underlying type. This type
must obviously provide the basic arithmetic operations. The rational number
BigRat of the Core library is a wrapper of the GMP’s mpq_t. CGAL’s rational
type Quotient is similar to the leda::rational, but allows the user to choose
the underlying integer type.

Floating-Point Numbers. GMP provides a floating number type mpf_t, where
the number of bits to represent the mantissa are defined by the user, the ex-
ponent size depends on the size of the machine word. In calculations, GMP
uses fewer mantissa bits if it suffices to represent the number value. The mpf_t
type is not compatible to the IEEE standard: The results of computations may
differ on different computers. LEDA’s bigfloat type extends the built-in float-
ing point types. In contrast to GMP, it stores the mantissa and the exponent
as arbitrary precision leda::integers. In arithmetic operations, the mantissas
of leda::bigfloat are rounded to a value given by the user bit length. The
rounding mode is also chosen by the user. The software floating-point number
of the MPFR library [592] has similar features. The Core library implements a
floating point number type name BigFloat with the mantissa, represented as
the BigInt data type, and the exponent is stored as a C++ unsigned int. The
accuracy to be maintained in arithmetic operations is user-defined. Additionally,
the BigFloat tracks the error bound of the number’s value using the interval
arithmetic. The error intervals are automatically maintained when performing
arithmetic with BigFloats.

Interval Arithmetic. Interval arithmetic is ubiquitous in reliable scientific com-
puting, in particular, it is heavily used in computer graphics and computational
geometry. Interval arithmetic allows one to quantify the propagation of rounding
errors if one has to live with floating point numbers (e. g., for speed reasons).
LEDA contains an implementation of interval arithmetic using double as basic
type to represent the interval borders. MPFI [591] is an implementation of in-
terval arithmetic based on the MPFR’s floating point number. A generic type
that supports interval arithmetic is included in Boost. The user can choose the
basic type. It already works out-of-the-box for the built-in C++ types and can be
adapted to other base types if one provides functions that define rounding rules
and the handling of exceptional cases. The support library of boost::interval
helps to generate various commonly needed policies for user types.

7. Libraries 309

Algebraic Numbers. Many kinds of problems require exact computation involving
roots of a polynomial with rational coefficients also known as algebraic numbers.
To carry out computations with real algebraic numbers, LEDA provides the type
real, which supports exact computations with kth roots for an arbitrary inte-
ger k, the rational operators +,-,*, and /, and comparison operators [561, Chap-
ter “Numbers and Matrices”]. LEDA real is a sophisticated type: It stores the
complete expression as a directed acyclic graph (DAG) defining the value, i. e.,
every operation on reals adds a node to the graph and records the operation
to be performed at the node and the inputs to the node. When the sign of a
leda::real instance needs to be computed, the DAG is traversed computing the
required precision adaptively (see Section 6.2). In this case the computations are
performed using leda::bigfloats. The Core library offers an algebraic number
type, called Expr, too. Its internal architecture and functionality are very sim-
ilar to those of leda::reals. Algebraic number implementations also support
exact zero-testing. Despite of the internal complexity, the real algebraic types
are designed to be very easy to use and provide reasonable speed while being
the most general number type available.

7.7 Basic Data Structures and Algorithms

In the following section, we will describe the features of several libraries, re-
stricted to a certain functionality. This section is about elementary data struc-
tures and algorithms, supported by the STL, Boost and LEDA. Iterators and
basic algorithms provide access to the items in the containers in certain ways.
Again, we will treat Boost along the lines of STL, and will only mention whether
the functionality is an extension to the STL provided by Boost, or genuine.

7.7.1 Data Structures

STL and LEDA both offer linear lists, stacks, queues, and arrays of dynamic size
with constant amortized random access time, namely array and vector, respec-
tively. Additionally, LEDA provides more efficient variants for stacks and queues
of bounded size. Note that the latter is a small example of applied Algorithm
Engineering, since it allows for exploiting special cases for better performance.

Also, numerous variants of dictionary types are offered, i. e., (multi)maps and
(multi)sets. There are many little and intricate semantic differences between
LEDA and the STL.

Again, LEDA has specializations for sets of C++ built-in integers, for limited
or unlimited range. At least the latter one could also be integrated transparently
by template specialization into an STL implementation. LEDA and Boost offer
union-find data structures. They are particularly useful for graph algorithms
like minimum spanning tree, and collections of trees, which in turn is useful for
priority queue implementations.

Hash maps and hash sets are not included in the standardized version of
the STL; however, they usually come as vendor extensions. They are also sug-
gested for the upcoming C++ standard under the names unordered_map and

310 R. Dementiev and J. Singler

unordered_set, respectively. There is no implementation yet for this interface
in Boost, but there are hashed indices available as a part of the much more com-
plex sub-library MultiIndex. Also, the Hash sub-library provides hash functions
per se. LEDA supports hashes in several variants.

Priority queues are a very delicate ingredient and advanced versions are
quite difficult to implement. The STL only offers one parameterized data type
priority_queue, which is usually based on the heap operations provided by the
algorithm part. In contrast to this, LEDA offers five different implementations,
including Fibonacci heaps, pairing heaps, d–heaps, monotonic heaps, and Van
Emde-Boas trees, the latter for supporting C++ built-in integer keys only. For a
complete list including references, see the LEDA online documentation [512, “List
of data structures”].

The wide variety of implementation options is the greatest advantage of LEDA
when it comes to basic data structures. It allows the algorithm engineer to ex-
change semantically equivalent algorithms easily, by just changing one token and
recompiling. Also, it provides some advanced containers that allow one to sus-
tain a good asymptotic running time for special cases, e. g., containers designed
for C++ built-in integer elements.

A lot of Algorithm Engineering was done while developing the LEDA container
types. There is an extensive comparison about the performance of the different
implementations of priority queues [561, Chapter “Advanced Data Types”], for
example. Many combinations of algorithms, problem size, and input were ana-
lyzed for this problem. This helps the user to find the best-suiting implementa-
tion she needs without testing all of them herself. This comparison is limited to
the LEDA platform itself, with its intrinsic drawbacks mentioned above.

7.7.2 Algorithms

The algorithms provided by the STL are very basic. They are separated from
the data structures as far as possible, having a very thin interface only, namely
the different iterator types. The functionality includes mapping, i. e., executing
a function for each element of a sequence (see next subsection), finding elements
fulfilling a criterion, string search, partitioning a sequences, merging two sorted
sequences into one, sorting, and random shuffling. Boolean operations on sets are
supported as well rather numerical stuff like accumulation (also usually called
reduction) and prefix sum.

Many of these functions are one-liners, so they are probably considered “to
easy” by LEDA and thus not included, but sort of course is.

Parameterizing Enumeration. Enumerating a set of items is probably the
most basic and frequently used “algorithm.” For this task, the STL provides the
generic algorithm for_each and miscellaneous variants. Unfortunately, C++ does
yet not provide closures5, therefore a functor object is needed to perform the
work. A class must be defined, because the algorithm implementation cannot see
5 A closure is a function that refers to free variables in its lexical context.

7. Libraries 311

that class, otherwise. Hence, the code to be executed tends to be placed quite far
from the location it is called from. Also, the code does not have access to local
variables at the call spot. The advantage of being able to reuse those functors
easily usually does not make up for this. We illustrate this in Figure 7.3.

Luckily, Boost produces some relief in this case. The Boost Lambda library
and its expression templates allow the user to construct functors in place, by
applying usual function calls and operators to variable placeholders (e. g., _1).
However, adding a second variable to the output call could already complicate
the code a lot, since the template metaprogramming involved in the library is
kind of fragile.

In the upcoming C++ standard (C++ 0x), closures will be added to the language
syntax under the name lambda expressions. This simplifies parameterization a
lot, and also allows references to the lexical context.

LEDA solves this problem in yet another way. It provides C style macros to
assign each item, one after the other, to a local variable. This is very easy to
use, but not very flexible.

Performance. Sorting functionality is of course provided by both the STL and
LEDA. Particularly the LEDA sorting algorithms suffer from the slow callback
mechanism for custom comparators. Each time a comparison must be performed,
a virtual function call is needed. Again, there are optimizations for built-in types.
However, the performance is still bad when the items are large structures with
a simple key.

The most interesting question is on the practical performance of LEDA, com-
pared to both STL and Boost as well as to custom hand-tuned implementa-
tions. Unfortunately, there has not been any recent publication comparing their
performance.

A study in [230] measures the performance of different library search trees:
LEDA (a, b)-tree (with a = 2 and b = 16), STL map (red-black tree), and LEDA
van Emde Boas (vEB) tree. Up to certain input size STL map performs better
as it executes less CPU instructions. For larger inputs, not fitting into the cache,
cache-efficiency plays a greater role and (2, 16)-trees win. LEDA’s vEB tree is the
slowest, despite of a better asymptotic complexity for integer keys of bounded
range. A re-engineered vEB implementation presented in [230] outperforms all
considered library implementations. The experiments also confirm the impor-
tance of memory management in Algorithm Engineering: A specialized LEDA
allocator gives the best performance.

The authors of [306] develop cache-conscious STL-compatible lists. As a
byproduct they present results of a test that traverses a doubly-linked lists with
randomly shuffled elements, comparing GCC STL [321] and LEDA. LEDA’s run-
ning times are slightly better than the times of STL [306, Figure 5(d)], which
could be explained by the use of a customized memory allocator of LEDA that
uses a smaller number of memory chunks to allocate list items. Therefore, the
traversal incurs less cache faults.

312 R. Dementiev and J. Singler

STL (C++2003)

class print_int
{
public:
void operator()(const int& i)
{

std::cout << (i + 1);
}

};

void print_vector_stl_2003()
{
std::vector<int> v(10);
for_each(v.begin(), v.end(), print_int());

}

STL (C++0x)

void print_vector_stl_0x()
{
std::vector<int> v(10);
for_each(v.begin(), v.end(), [] (int i) { std::cout << (i + 1); });

}

Boost Lambda

using namespace boost::lambda;

void print_vector_boost()
{
std::vector<int> v(10);
for_each(v.begin(), v.end(), std::cout << (_1 + 1));

}

LEDA

void print_vector_leda()
{
leda::array<int> v(10);
int i;
forall(i, v)

std::cout << (i + 1);
}

Fig. 7.3. Calling an operation for each element of a container

7. Libraries 313

 0

 5

 10

 15

 20

 25

 30

 35

 40

100 1000 10000 105 106

T
im

e
[n

s]
 /

n
lo

g 2
 n

Problem Size

Sorting int

qsort >
qsort <
LEDA >
LEDA <
STL >
STL <

 0

 5

 10

 15

 20

 25

 30

 35

 40

100 1000 10000 105 106

T
im

e
[n

s]
 /

n
lo

g 2
 n

Problem Size

Sorting pair<long long, long long>

qsort >
qsort <
LEDA >
LEDA <
STL >
STL <

Fig. 7.4. A benchmark on sorting, comparing LEDA, the STL, and qsort

To support our predictions on performance basing to the different item access
costs, we ran a little benchmark on sorting, comparing LEDA 6.2, the STL, and
the qsort function (the two latter in the GCC implementation). The test ma-
chine was an AMD Athlon X2 with 2.0 GHz clock rate and 512 KB L2 cache, the
code was compiled using GCC 4.3.2 with full optimization. We sorted sequences
of 32-bit C++ integers, representing a small type, and pairs of 64-bit C++ inte-
gers, representing a larger, user-defined type. We sorted both in ascending and
descending order, where the latter requires to provide the sorting algorithm with
a user-defined comparator. The results are presented in Figure 7.4, the x-axis
is logarithmic, and the y-axis shows the time divided by n log2 n, i. e., by the
comparison-based lower bound for sorting.

LEDA performs exceptionally well for ascending order, beating the STL by
a factor of two for large inputs, but being very slow for small inputs. This
suggest that the library switches to integer sorting for this particular case. For
the pair case, this margin vanishes. Sorting descending makes passing a user-
defined comparator necessary, the default compare function cannot be used any
longer. In this case, LEDA is about half as fast as the STL, for a wide range of
input size. For the STL, ascending or descending makes hardly any difference,
as expected. The qsort function from the C library, using callback functions for
both comparators, performs much worse than both STL and LEDA, in all usual
cases.

In general, i. e., for user-defined item types and comparators, the STL seems
to be faster than LEDA, as expected. However, it is hard to generalize this
finding to other algorithms, since the algorithmic intelligence is usually greater
in most other cases, and low-level issues lose importance when compared to
careful algorithm design.

314 R. Dementiev and J. Singler

7.7.3 Summary and Comparison

LEDA has a greater algorithmic variety in the area of elementary data structures
than the STL and Boost. On the down hand side, there is a performance penalty
due to inefficiencies on a lower level. In cases, the algorithmic advantage may
outweigh this penalty.

7.8 Graph Data Structures and Algorithms

In this section, we compare the functionality and the Algorithm Engineering
aspects of LEDA and the Boost Graph Library (BGL) [736] when it comes to
graphs.

7.8.1 Data Structures

First of all, both LEDA and the BGL provide graph data structures. The algo-
rithms are then applied to those.

The BGL defines multiple graph concepts, i. e., requirements a graph data
structure must fulfill to be qualified for particular algorithms. Two classical ex-
emplary implementations for graph data structures, adjacency matrix and ad-
jacency list, are included. The latter can be parameterized on their part with
container types for the node sequence and for the edge sequences of each node.
This is the easiest possibility to customize such a graph data structure. Addition-
ally, the user is downright invited to implement custom graph data structures on
which the algorithms can be executed as well. This might be particularly useful
for graphs that are given implicitly, e. g., grid graphs, or for graphs with certain
restrictions, e. g., graphs with bounded or fixed degree. Static graphs are graphs
that do not change any more after having been constructed. They could also
be implemented more (space-)efficient on a custom basis, cooperating with the
BGL.

LEDA basically has two graph data structure families, dynamic graphs and
static graphs. All algorithms work on these two types only. It is not possible for
the user to come up with custom ones, she can only parameterize the existing
ones. For the dynamic case, there is only one underlying type that comes in
slight variations, leda::graph. There is a directed and an undirected version as
well as one specialized for planar maps, i. e., a graph with a planar geometric
embedding. However, the underlying type itself is already full-fledged and has a
“fat interface” [512, “Static Graphs”]. It is based on an adjacency list model and
supports both primal and dual combinatorial embeddings. Therefore, it has a
quite large overhead when not all of its functionality is actually used. Its space
requirement is 11n+12m machine words, where n denotes the number of nodes,
and m denotes the number of edges as usual. A machine word can be 64 bits on
a modern computer, so an edge takes up to 96 bytes, which is very much.

The static_graph type provided by LEDA is much more space efficient and
also faster than the regular graph type. It comes in different flavors, which differ

7. Libraries 315

in the interface they offer. Depending on the type, one can only iterate over
incoming and outgoing edges or over the outgoing edges of a node only, respec-
tively. Also, for a given edge, only source or target might be accessible by the
user. In the extreme case opposite_graph, one can only determine one end of
the edge if the other one is known. Common to all of the types is that the graph
must not be changed after the construction phase which is put off through a
specific method call. Also, the insertion of nodes and edges must follow a cer-
tain order. All variants use some kind of edge array which make iteration over
nodes and edges very fast, improved by higher cache-efficiency due to better
locality. The more restrictions are accepted on the functionality, the better the
performance is.

In both libraries, manipulations to nodes and edges are performed by means
of handles to those objects, called node item and edge item in LEDA, and node
descriptor and edge descriptor in the BGL. They are related to iterators, but
not quite the same. We will see later why.

7.8.2 Node and Edge Data

The major issue in the design of graph data structures is how to associate in-
formation with nodes and edges. Most graph algorithms need such additional
information like e. g., node color, visited-flags, or edge weights, either as input,
output, or as temporary values. The BGL terms this additional information prop-
erties. Of course, one could just add all needed fields to the node and edge record,
respectively. However, this can be inefficient in both time and space, in particu-
lar, if one wants to run a sequence of graph algorithms on a certain graph. One
algorithm might need other data fields for nodes and edges to hold its current
state than some other. Adding all those fields together is also a bad idea since
it takes all space, although not all fields are used at the same time. Some fields
may be used by many algorithms in the very same way, others might be used by
only one. Having too much slack between important data fields hurts the perfor-
mance due to less cache locality. The strongest argument against the integration
of the data fields right into the structure is that it might be just impossible
with language means, because the user has passed a graph data structure to the
algorithm that cannot be changed any more.

As a conclusion, there must be a way to add additional information dynami-
cally, after the graph data structure is already set up. Both LEDA and the BGL
provide many ways to achieve this, which differ in time and space efficiency.
Again, the Algorithm Engineer can choose and test the different variants, since
the syntax to access the data is usually the same.

For both LEDA graph families, one can reserve memory for additional data
beforehand, so-called slots. They will be used later on when a node_array or
an edge_array is associated with the graph. The assignment of arrays to slots
can be made statically or dynamically. If there is no empty slot, the appropriate
constructor will allocate new memory. Also, both graph families can be parame-
terized with additional node and edge data directly, accepting the disadvantages
mentioned above. However, this data cannot be used by algorithms from the

316 R. Dementiev and J. Singler

Fig. 7.5. All methods to associate data with nodes and edges combined. a) shows static
internal data. b) labels slots that can be filled dynamically. c) points to an exemplary
associated data structure.

library since they do not know the names of the variables. The most flexible,
but also slowest solution, is to use node_maps and edge_maps, respectively. They
associate data with the according node or edge handle, using a hash. Thus, they
allow the graph to change while still remaining valid. Figure 7.5 presents the
different possibilities in combination.

Boost supports a mechanism for integrating properties into the graph struc-
ture directly, with an interface that allows generic algorithms to access those
properties by tag names, e. g., vertex name and edge weight. This is termed
internal properties in BGL. External properties are also supported by BGL,
i. e., dynamically added information that cannot be accessed by name. No mat-
ter whether internal or external, the desired property map can be accessed by
a given name transparently. This is very convenient for implementing generic
algorithms.

Both libraries can be used together. Since the Boost graph type is easily
exchangeable, there is also one that wraps a LEDA graph. This should make
performance comparisons easier, which is good for Algorithm Engineering.

7.8.3 Algorithms

LEDA and the BGL provide the basic graph algorithms depth-first-search and
breadth-first-search. While the BGL allows the user to customize them widely
by a callback mechanism, the LEDA versions only return lists of the visited
nodes in the appropriate order. Later, we will see how to work-around that
problem in LEDA. Both libraries provide measures to generate random graphs of
different properties. The more advanced graph problems covered by both libraries
include topological sorting, shortest path in all important variants, minimum-
spanning trees, transitive closure, detection of (strongly/bi-connected) connected
components, maximum flow in a network, basic graph drawing algorithms (circle
layout, force-based, planar layout), and graph isomorphism.

7. Libraries 317

BGL

add_edge(A, B, g);

std::vector<vertex_t> topo_order(num_vertices(g));
topological_sort(g, topo_order.rbegin(), color_map);

LEDA

g.new_edge(A, B);

list<node> ts;
bool acyclic = TOPSORT(g, ts);

Fig. 7.6. Calling topological sorting using BGL and LEDA, respectively

The BGL also offers some very special algorithms like reverse Cuthill-McKee
ordering for matrix computations, smallest last vertex ordering, Sloan ordering,
and sequential vertex coloring. Presumably designed for implicit graphs is its A*
search implementation.

LEDA features other algorithms on graphs, namely minimum-cost flow, many
variants for the matching problem, and Euler tours. It also has algorithms for
embedding/embedded graphs, e. g., checking for planarity, planar layout, s-t-
numbering, triangulation, etc., which mostly belong to computational geometry
(see Section 7.9).

The short example in Figure 7.6 shows how those algorithms are called in each
respective library. The flexibility of Boost allows the user to come up with custom
graph data structures that only provide a minimalistic set of methods. On the
down side, this requires a syntax which sometimes is counter-intuitive, already
for simple operations like adding a node or an edge, which are not methods of
the graph class, but just functions in the namespace. The libraries converge to
the same kind of syntax when it comes to calling algorithms.

While the BGL only provides iterators on the sequences of all nodes or edges
in their canonical order, LEDA offers graph iterators which are actually backed
by graph algorithms, e. g., depth- or breadth-first-search. This is desperately
needed because the usual LEDA graph algorithms allow only for little param-
eterization in terms of functionality, as mentioned above. So, while the BGL
has the approach to supply customizable algorithms through callbacks at many
interesting points (visitor pattern [313]), LEDA provides iterators that keep the
state of the traversal and allow for the manipulation of the interesting objects
by means of a loop.

A good overview on the problem of decoupling algorithms from data structures
is given in [501]. The concept explained there uses an additional indirection,
anticipating the concept applied by the BGL. In fact, it augments the LEDA
library to introduce more flexibility to its graph algorithms.

318 R. Dementiev and J. Singler

The authors of [639] propose an extension to the C++ programming language
to support better flexibility in graph algorithms. Their main concern is the clas-
sification of graphs. Every algorithm works on graphs of a certain class, e. g.,
planar and/or directed. Because all possible combinations of properties lead to
an exponential explosion, a language extension is suggested to bypass this prob-
lem. Again, this is what the BGL does using template specialization.

A good example for Algorithm Engineering is the introduction of static graphs
into LEDA. They were passed to an already existing and unchanged version of
a maximum-flow algorithm [607]. In fact, the maximum-flow problem appears
to be an exemplary problem in Algorithm Engineering. There have been many
improvements over time [234]. The authors show that a more specialized, yet still
sufficiently general implementation of graphs yields much better performance
than a general one. The speedup is not due to an improvement of the asymptotic
worst case running time, but because of a reduction of the constant factors.
Since the memory consumption also drops, the result is a complete success. All
known implementations that are based on the same preflow-push algorithm by
Goldberg and Tarjan, are superseded. The one provided by the BGL is in fact
beaten by an order of magnitude. The result also shows a nice comparison in
performance between the different methods to associate node and edge data.
External storage is slower than using a dynamically assigned slot, which is in
turn slower than a statically assigned slot. Using hash maps for external data
is even slower, as was already stated in [561, Chapter “Graphs and their Data
Structures”].

Another class of graph algorithms is the detection of graph isomorphisms
[485,792] of different kinds. The VFlib [188, 291] specializes on this field. Boost
only provides very basic functionality, testing for an isomorphism and the con-
struction of a 1-to-1 mapping if existent. The LEDA implementation is much
more advanced. It also supports subgraph isomorphism and graph monomor-
phism, and can enumerate all possible mappings or at least calculate their num-
ber, in certain cases also for a combinatorial explosion of possible mappings. For
the actual isomorphism problem, there are two algorithms implemented, which
perform differently well depending on the graph structure. One of them is a
back-tracking algorithm which supports all three kinds of problems. It has been
implemented using advanced data structures [739] that allow for a running time
that is in average four times faster than the VFlib implementation, the maximum
speedup being around 20.

7.8.4 Summary and Comparison

When using LEDA, one must choose between two extremes. Either take the
standard LEDA graph type supporting every functionality, having much over-
head. Or take the LEDA static graph type which provides excellent performance,
restricting its interface to a very minimum. Restricting the algorithms to those
two types allows for a nice call syntax.

7. Libraries 319

On the other side, calling the BGL sometimes requires a weird syntax for
executing algorithms. The syntactical elegance is sacrificed for more extensibility
with respect to graph data structures.

7.9 Computational Geometry

In this section, we consider LEDA, CGAL and EXACUS with respect to Algo-
rithm Engineering in computational geometry. We will also mention the main
geometric functionality of these libraries briefly.

Geometric algorithms operate on primitive objects like points, segments, lines,
rays, planes, etc. Primitive functions on a few geometric objects returning a bit or
two bits of information, e. g. if two segments intersect, or the sign of the triangle
defined by three points, are called predicates. Another kind of primitive functions
construct and return new geometric objects: e. g., the intersection point of two
lines. The classes implementing the basic geometric objects and the primitive
functions operating on these geometric objects are usually encapsulated in a
separate software layer called geometric kernel. LEDA and CGAL offer geometric
kernels for 2D (plane), 3D (space) and higher dimensional geometry.

As it was mentioned before, robust geometric algorithms, coping with any
kind of inputs, are one of the primary goals of Algorithm Engineering in compu-
tational geometry (see Sections 3.5 and 6.2). Handling degenerate cases counts
on the implementation of the algorithms: The code must produce correct output
on all possible inputs. The problem of imprecise arithmetic can be both tackled
in the algorithm implementation and in the underlying geometric kernel. The
latter solution is much easier with respect to the implementation efforts: one
only has to use objects and functions from an exact kernel without changing the
implementation code. Many variants of kernels are offered by LEDA and CGAL,
having different degrees of accuracy and computational overhead.

7.9.1 Kernels and Exact Number Types

LEDA Kernels. The development of LEDA has outlived many pitfalls known in
geometric computing [561, Chapter “The Geometry Kernels”]. In 1991, the first
geometric LEDA implementations assumed non-degenerate inputs and relied on
a kernel based on the imprecise floating point arithmetic. As a consequence, pro-
grams delivered wrong results or even crashed. This experience drove the authors
of LEDA and other researchers to revise the foundations and develop theoretical
backgrounds of exact geometric computation. Three years later, LEDA had a new
rational kernel with exact predicates and constructions, and new robust imple-
mentations of many geometric algorithms without need for the non-degeneracy
assumption. This achievement can be considered as a success example of Al-
gorithm Engineering, where practical experience has pushed the developers to
revise the theory, fitting it to real-world requirements.

320 R. Dementiev and J. Singler

The Role of Advanced Number Types in Geometry Libraries. Exact kernels of
LEDA and CGAL rely on advanced number types implementing exact arith-
metic. The LEDA rational kernel uses integer homogeneous coordinates to
offer correctness. Another option would be to use Cartesian coordinates where
each component is represented by a LEDA rational, keeping the numerator
and denominator as integer members. Obviously, the solution with rationals
is less space efficient and also needs more arithmetic operations. Exact curved
geometry requires an even more advanced coordinate type. It must implement a
real algebraic number, i. e., a real number which is a root of a polynomial with
rational or integer coordinates.

Furthermore, LEDA has a real number kernel that allows one to make compu-
tations with objects having leda::real coordinates. As discussed in Chapter 6,
geometric computations with advanced number types can be very slow, therefore
the exact LEDA kernels use them only in a small number of cases, when it is
really needed for the exactness. One tries to compute the correct result using
plain floating point numbers, if this fails the exact arithmetic is used. This tech-
nique is called floating-point filtering and is used by the LEDA exact kernels by
default. EXACUS follows a similar filtering strategy for exact non-linear geome-
try, computing arrangements of curves and surfaces. For performance reasons, it
always employs the simplest possible number type, i. e., integers where possible,
rather than rationals, and algebraic numbers the last [94].

CGAL Kernels. The geometric kernels of CGAL are highly configurable. One
can choose the number type to represent coordinates and coefficients: The user
can provide any number type like the powerful LEDA real, the built-in C++ int
or a user type. The extent of CGAL’s requirements of a number type is small. A
type can be made compliant to CGAL very easily. The coordinate representation
is also up to the user: One can choose Cartesian or homogeneous representation,
however, the requirements on the underlying number type are slightly different.
CGAL is very flexible with respect to the floating filtering support, as well. Given
any Cartesian kernel K, one can easily construct a CGAL::Filtered_kernel<K>
with exact and fast predicates that employ filtering. The predicates will first
try to make exact decisions using a fast inexact kernel, based on floating point
arithmetic. Only if they fail in doing so, they call predicates from much slower
exact kernel. There are also other ways to achieve filtering in CGAL, see [152].

Floating-Point Kernels. One might ask why the floating-point kernels are still
useful at all: programs based on them may produce incorrect results or even
crash. However, their inimitable advantage is their speed, which is most critical
in applications like visualization and computer graphics working in real-time.
For algorithms which do not insert the constructed data into predicates, fast
kernels with exact filtered predicates and inexact constructions would suffice to
avoid crashes, since the control flow will be correct then. The CGAL::Exact_
predicates_inexact_constructions_kernel is an example of such a kernel.

7. Libraries 321

7.9.2 Low-Level Issues in Geometric Kernels

Both CGAL and LEDA define the geometric objects in the kernel non-modifiable.
For example, there is no method to set the Cartesian coordinates of a point. The
idea behind this decision is the following: Geometric implementations should not
assume anything about the representation of the primitive objects. In order to
translate a point by a vector, one has to call a method of the point that re-
turns a new point object representing the translated position. Such patterns of
use cause many copy and assignment operations, which might be expensive if a
“fat” underlying kernel number type is used, e. g., LEDA bigfloat. To reduce
copying overhead, some kernels can use reference counting techniques: kernel ob-
jects point to a shared representation using the reference counting technique (see
Chapter 6). All LEDA’s kernels are reference counted. The implementation of
reference counting is simplified in LEDA and CGAL, because the kernel objects
are immutable.

Originally, all CGAL kernels were reference counted only. However, after the
study [703] has shown that non-reference kernels can be faster, CGAL has inte-
grated 2D and 3D kernels in both variants, with reference counting and without.
The superiority of kernels without reference counting can be explained by the
fact that for simple and small number types like C++ int and double, the over-
head of reference counting will outweigh the costs of copying. This is one of
the examples of Algorithm Engineering’s impact on CGAL. The higher dimen-
sional CGAL kernels are reference counted, which is quite reasonable, because
one single Cartesian point must already hold at least 4 coordinate components.

Differences between LEDA and CGAL. We should underline some crucial differ-
ences between the LEDA and CGAL kernels. CGAL kernels can be instantiated
with any number type. LEDA has a set of predefined kernels based on floating
point, rational and real types. In CGAL, geometric algorithms are decoupled
from the kernels. The algorithm implementations can work with any given kernel;
the kernel is given as a template parameter. There are quite large requirements
on the kernel, however, algorithms in CGAL actually need only a few of them.
The flexibility of CGAL contributes to a better tuning of real applications. One
can configure a kernel that provides just the required degree of accuracy but
not more, keeping efficiency the best possible. For example, if only exact pred-
icates are needed, but no exact construction, then one chooses the predefined
CGAL::Exact_predicates_inexact_constructions_kernel based on floating
point filters. If one knows the input range values, and a certain knowledge of the
computations carried out is available, then one can find out that floating point
numbers with a high fixed precision will suffice for successful computation. In
this case, a CGAL kernel instantiated with a floating point number having the
given precision (e. g., LEDA bigfloat) will do the job.

Another powerful option, available only in CGAL, are user kernels. The user
can define her own implementation of geometric objects like points, providing
the point class itself and geometric primitives (predicates) on the objects. A

322 R. Dementiev and J. Singler

much easier way to define a custom kernel is to define only the predicates but
reuse the existing CGAL implementations of geometric objects.

Memory Management. As mentioned in Section 7.5, memory allocation issues
are important in Algorithm Engineering. Geometric algorithms have a specific
pattern of requests to the memory allocator. They usually ask for many small
objects of fixed size, i. e., points, segments, circles, etc., which is particularly
true for low-dimensional geometry. In particular, the speed of object alloca-
tion/deallocation plays a great role for CGAL and LEDA because the kernel
objects are non-modifiable and thus programs might create even more kernel
object instances. Therefore, LEDA and CGAL have optimized memory alloca-
tors which can satisfy such requests very quickly. For the allocation pattern of
geometric algorithms the free list allocator (Section 7.5) has good performance.
The allocator must maintain only a small number of lists of free chunks, each for
a certain kernel object type. This approach is concretely used by the so-called
Compact_container in CGAL. It consists of a list of blocks of linearly growing
size in combination with a free list. It features very fast (de-)allocation at moder-
ate space overhead, but does not support efficient enumeration of the contained
elements.

Polymorphism in CGAL. Virtual member functions can result in a noticeable
performance degradation (Section 7.5). Therefore, CGAL avoids the run-time
polymorphism based on virtual functions. However, some CGAL functions like
intersection of two segments need to return a polymorphic value: It could
be a point, a segment (e. g., in case the input segments overlap), or empty.
The standard solution would be to derive all geometric objects from one generic
object. This approach has a space penalty of storing a pointer to virtual function
table with each (potentially small) object. C++ compilers keep only a single
copy of a virtual function table per type. This implies another call indirection
that might cost additional running time. Instead, CGAL code uses the Runtime
Type Information (RTTI) mechanism of C++ in order to determine the type of
the returned object and to proceed accordingly. For compilers which do not yet
support RTTI, CGAL relies on its own methods which can check whether two
types match.

7.9.3 Functionality

LEDA and CGAL have a overwhelming wealth of high-level geometric data
structures. Among them are two- and higher-dimensional search data structures:
range, segment, and interval trees, as well as skip lists. Point set data structures,
based on dynamic Delaunay triangulations, exist in both libraries. They support
efficient update, search, closest point queries, and different types of range query
operations. Polygon and polyhedron structures are supported as well. LEDA
also offers polygons where some bounding edges can be circular arcs. LEDA and
CGAL own many geometric algorithm implementations: 2/3/dD convex hull al-
gorithms, Boolean operations on polygons and polyhedra, segment and curve

7. Libraries 323

intersection, computing arrangements, different kinds of triangulations, Voronoi
diagrams, etc. Many of the LEDA algorithm implementations exist both in the
form of a function call and as a dynamic data structure supporting on-line update
operations. Since for many problems there is no universally best algorithm for all
types of inputs, the libraries offer implementations of several algorithms. Geo-
metric algorithms of LEDA usually return a LEDA list of objects. CGAL follows
the approach of the STL and stores the result in a user output iterator given by a
template parameter. For a complete list of existing implementations of geometric
algorithms and data structures refer to the original manuals [152, 512]. Future
versions of CGAL are expected to exploit parallelism in the algorithms [69].

In 2D the EXACUS library can compute predicates on conics and cubic
curves and their intersections. Boolean operations on polygons with curve-seg-
ment edges can be performed using a generic implementation of a sweep-line
algorithm. Computing the arrangements of cubic curves in the plain is avail-
able as well. EXACUS offers computations with quadrics in space that includes
predicates on quadrics, their intersection curves and points, and arrangements
of quadrics.

All CGAL, EXACUS and LEDA implementations of geometric algorithms do
not assume that the input is in “general position”, i. e., they handle all degener-
ate cases. Both CGAL and LEDA implement the exact geometric computation
paradigm.

7.9.4 Performance

Performance of Geometric Libraries and Their Kernels. Apparently, a lot of
engineering effort was invested during the development of LEDA, CGAL and
EXACUS. It is very interesting to compare the performance of the library im-
plementations, since a great part of the functionality is common. Such compar-
isons would reveal advantages and disadvantages of decisions taken in the library
design. The study by Schirra [703] mentioned above presents many interesting
results concerning the performance comparison of libraries. According to the ex-
periments the template-based CGAL implementations have outperformed LEDA
implementations. Despite the fact that these were implementations of the same
algorithm and the predicates in both kernels are very similar, CGAL was faster.
The reason is that some of the predicates in LEDA are not inlined by the com-
piler. A Java-style kernel, with a design where all access member functions are
virtual, has been also tested against CGAL kernels. Because of the virtual func-
tion calls, the implementations with Java-style kernels are 4–6 times slower than
the corresponding CGAL kernel implementations. There exists a web page [606]
with results of some benchmarks comparing LEDA 4.4 and CGAL 2.4 imple-
mentations. The numbers show that Delaunay triangulation of LEDA (Dwyer
algorithm) is faster than the CGAL implementation, both for inexact and exact
computations. An explanation could be that the CGAL’s Delaunay triangulation
is only available as a dynamic data structure whereas LEDA’s solution is offline.
In a benchmark testing 2D convex hull algorithm implementations on floating

324 R. Dementiev and J. Singler

point kernels, CGAL and LEDA perform equally well. The tests also include 3D
convex hull algorithms with exact and inexact kernels, see [606] for details.

7.10 Conclusion

Algorithm libraries are an integral part of Algorithm Engineering. They absorb
the best practices and make the engineering achievements easily available for a
wide user base. The high availability of fast and robust implementations in soft-
ware libraries accelerates Algorithm Engineering itself since new computational
results can be obtained with less effort due to code reuse.

To be successful, libraries need to be robust, correct, flexible, extensible, and
easy to use. By obeying to these requirements, they set high standards on the
quality of other implementations.

Algorithm libraries fasten the transfer of theoretical results into industry ap-
plications. Implementing number types that work fast and correct for all in-
puts is an extremely difficult job. Fortunately, libraries can help by providing
unlimited length integers, floating-point numbers of arbitrary precision, inter-
val arithmetic, real algebraic numbers, etc. The successful LEDA, CGAL and
STL/Boost libraries are widely used in both commercial products and academia.
They provide well-engineered easy-to-use implementations of many very useful
algorithms and data structures for the most fundamental combinatorial and ge-
ometric problems. Robust geometrical implementations that can cope with any
possible input are highly demanded by industry. This wish is gradually coming
true thanks to LEDA, CGAL and EXACUS.

Chapter 8. Experiments

Eric Berberich, Matthias Hagen�, Benjamin Hiller��, and Hannes Moser� � �

8.1 Introduction

Experimentation plays an important role in the Algorithm Engineering cycle. It
is a powerful tool that amends the traditional and established theoretical me-
thods of algorithm research. Instead of just analyzing the theoretical properties,
experiments allow for estimating the practical performance of algorithms in more
realistic settings. In other fields related to Computer Science, like for instance
Mathematical Programming or Operations Research, experiments have been an
indispensable method from the very beginning. Moreover, the results of system-
atic experimentation may yield new theoretical insights that can be used as a
starting point for the next iteration of the whole Algorithm Engineering cycle.

Thereby, a successful experiment is based on extensive planning, an accurate
selection of test instances, a careful setup and execution of the experiment, and
finally a rigorous analysis and concise presentation of the results. We discuss
these issues in this chapter.

8.1.1 Example Scenarios

In the Algorithm Engineering cycle, experimentation is one of the four main
steps besides design, theoretical analysis, and implementation. There are many
reasons why experiments are that important. We give a few examples here.

1. The analysis shows a bad worst-case behavior, but the algorithm is much
better in practice: The worst-case behavior may be restricted to a small
subset of problem instances. Thus, the algorithm runs faster in (almost) all
practically relevant cases.

2. A theoretically good algorithm is practically irrelevant due to huge constants
hidden in the “big Oh” notation.

3. A promising analysis is invalidated by experiments that show that the the-
oretically good behavior does not apply to practically relevant problem in-
stances.

4. A specific algorithm is hard to analyze theoretically. Experimental analysis
might provide important insights into the structure and properties of the
algorithm.

� Supported in part by a Landesgraduiertenstipendium Thüringen.
�� Supported by the DFG research group “Algorithms, Structure, Randomness”

(Grant number GR 883/10-3, GR 883/10-4).
� � � Supported by the Deutsche Forschungsgemeinschaft, project ITKO (iterative com-

pression for solving hard network problems), NI 369/5.

M. Müller-Hannemann and S. Schirra (Eds.): Algorithm Engineering, LNCS 5971, pp. 325–388, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

326 E. Berberich, M. Hagen, B. Hiller, and H. Moser

5. Experiments lead to new insights that can be used in the next cycle of the
Algorithm Engineering process.

In the following, we discuss an example for each of these situations in more
detail.
Example 1: Quite often experimenters observe a considerably better running
time behavior of an algorithm than predicted by theory. Thus, the worst-case
behavior is restricted to a very small subset of problem instances. A classic
example is the simplex method for linear programming, whose running time is
exponential in the worst case. However, its practical running time is typically
bounded by a low-degree polynomial [15].
Example 2: In algorithm theory, an algorithm is called efficient if the asymptoti-
cal running time is small. However, in many cases there exists a hidden constant
factor that makes the algorithm practically useless. An extreme example in graph
theory is Robertson and Seymour’s algorithm for testing whether a given graph
is a minor of another [675, 676]. This algorithm runs in cubic time, however,
the hidden constant is in the order of 10150, making the algorithm completely
impractical. Another example of this kind is Bodlaender’s linear-time algorithm
which determines for a given graph and a fixed k whether the graph has treewidth
at most k [113]. Unfortunately, even for very small values of k, the implemented
algorithm would not run in reasonable time. The “big Oh” notation facilitates
the design of algorithms that will never get implemented, and the actual per-
formance of an algorithm is concealed. Moreover, algorithms often rely on other
algorithms in several layers, with the effect that an implementation would re-
quire an enormous effort. Thus, the “big Oh” is in some sense widening the gap
between theory and practice.
Example 3: Moret and Shapiro tested several algorithms for the minimum span-
ning tree problem (Minimum Spanning Tree) using advanced Algorithm En-
gineering methods [586]. They analyzed the following algorithms: Kruskal’s,
Prim’s, Cheriton and Tarjan’s, Fredman and Tarjan’s, and Gabow et al.’s. They
tried several different data structures (i. e., different kinds of heaps) and several
variants of each algorithm. Moret gives a concise survey of this work [584]. The
interesting result is that the simplest algorithm (Prim’s) was also the fastest in
their experiments, although it does not have the best running time in theory. The
other algorithms are more sophisticated and have better worst-case asymptotic
running time bounds. However, the sophistication does not pay off for reason-
able instance sizes. Moret also stresses the value of Algorithm Engineering: By
studying the details of data structures and algorithms one can refine the imple-
mentation up to the point of drawing entirely new conclusions, which is a key
aspect of Algorithm Engineering. With this methodology, Moret and Shapiro’s
fastest implementation of Prim’s algorithm got nearly ten times faster than their
first implementation.
Example 4: This example is about algorithms whose theoretical analysis is ex-
tremely difficult, like for instance Simulated Annealing, Genetic Algorithms, and
union-find with path compression. Both the analysis of the running time and of

8. Experiments 327

the solution quality is very difficult using existing methods. For instance, union-
find with path compression is relatively easy to describe and was known to yield
very efficient behavior. However, its exact characterization took many years till
Tarjan achieved a proof of tight bounds [771]. In such cases, experimental anal-
ysis can be a fruitful alternative that yields interesting results more efficiently.
Example 5: As a last example we want to mention the Traveling Salesman Prob-
lem. In an incremental process, the methods to solve that problem (exactly or
approximately) became more and more sophisticated over the years. Beginning
with a few hundred cities, researchers are now able to solve instances of more
than ten thousand cities [33]. In Section 8.6.1, the Traveling Salesman Problem
is also used as an example of how to analyze results of experiments graphically.

8.1.2 The Importance of Experiments

The examples of the last section showed the importance of experimentation in the
Algorithm Engineering cycle for just a few situations. This section is dedicated
to describe more generally the motivation to conduct experiments. It is based
mainly on several articles and surveys [408,437,548,584].

For the analysis step of the Algorithm Engineering process, there exist usu-
ally three different methods, namely worst-case analysis, average-case analy-
sis and experimental analysis. The theoretical methods are more sophisticated
than experimental analysis. Since the early days of Computer Science theoreti-
cal analysis and experiments have been used. Computing pioneers such as Floyd
and Knuth combined theoretical analysis and experiments. They used machine-
dependent fine-tuning to derive efficient algorithms that performed well both in
theory and practice. However, later on the focus has lain on theoretical analysis,
whereas experiments were mainly used in other fields. From the two ways of
analyzing algorithms, only theoretical analysis developed into a science. Since
there is still missing a well-established methodology for experimentation, the
quality of works in this discipline varies strongly, and the results are difficult to
compare and to reproduce. This disequilibrium has to be balanced by deliberate
experimental analysis.

Recently, the interest in experimental analysis has grown. There are various
reasons for this newly arisen interest. One might be that computer scientists
become aware that theoretical analysis cannot reveal all facets of algorithmic
behavior, especially when concerning real-world applications. Of course many
other reasons, for instance the fact that computational experiments are much
cheaper these days, might have helped too.

This newly arisen interest is also reflected in an increasing number of publi-
cations in the field. Some major contributors are:

– Jon Bentley’s Programming pearls columns in Communications of the ACM
and his Software Exploration columns in UNIX Review.

– David Johnson initiated the Annual ACM/SIAM Symposium on Discrete
Algorithms (SODA), which also invites a few experimental studies.

328 E. Berberich, M. Hagen, B. Hiller, and H. Moser

– The ACM Journal of Experimental Algorithmics (ACM JEA) was initi-
ated to give a proper outlet for publications in the field of computational
experiments.

– The Engineering and Applications Track at the European Symposium on
Algorithms (ESA), which was formerly known as Workshop on Algorithm
Engineering (WAE).

– The Workshop on Algorithm Engineering and Experiments (ALENEX).
– The International Symposium on Experimental Algorithms (SEA), which

was formerly known as Workshop on Experimental Algorithms (WEA).

Compared to theoretical analysis, experimentation in Computer Science is still
in the “fledgling stages.” In other (natural) sciences, like for instance physics,
theories are completely based on experiments. Scientists have developed mature
methods to derive meaningful results out of experimentation (mature in the
sense that they have been revised and approved many times). Computer science
lacks such well-established methods, which are generally accepted as a standard
for empirical studies by the community. Obviously, Computer Science differs in
many ways from other natural sciences. For instance, on the one hand in natural
science the results of theories are compared to a golden standard (the nature).
On the other hand, in Computer Science we just report results or compare them
with another experiment of the same type. Moreover, Computer Science is much
easier to understand: In principle, we could derive nearly any information about a
given program by profound analysis. In Computer Science, unlike other natural
sciences, we know — at least in principle — the underlying mechanisms, like
for instance source code, compilers, and computer architecture, that yield our
results. But unfortunately, the processes we observe are by far too complex to
be understood easily.

Therefore, like in other sciences, we need an empirical science of algorithms
to be able to invent evidence-based explanatory theories. Certainly, this does
not mean that theoretical Computer Science will become obsolete. There is ab-
solutely no reason to abandon theoretical analysis, as it has proved to serve
perfectly to draw many important conclusions, to gain a deeper insight into
problems and to help to design new data structures and algorithms. However,
theoretical analysis should be supplemented with experimentation, which is ex-
actly the goal of the whole cyclic process of Algorithm Engineering.

With this approach, we would hopefully narrow the big gap between theory
and practice, helping people to benefit more directly from the deep understand-
ing of problems and algorithms gained by theory. Since experimental work is
often considered not worthwhile and rejected by theorists, it is important to
stress that empirical science is not the opposite of theory (e. g., quantum elec-
trodynamics shows that an empirical science can be rather theoretical), at least
when it would be evolving to a real science. We think that mainly the deficiency
of unassailable and clean scientific experimental work and research principles are
the cause for the lack of major success of experiments in algorithmics. In this
chapter we give an overview of approaches that aim to resolve these problems.

8. Experiments 329

8.1.3 The Experimentation Process

The task of experimentation is to answer a formulated hypothesis or a question
using meaningful test data that has been obtained by some reproducible pro-
cess, the experiment. Reproducibility here means that the experiment can be
repeated, yielding qualitatively the same results and conclusions. A research ex-
periment should have a purpose, be stated and defined clearly prior to the actual
testing, and, of course, it is important to state the reason why experimentation
is required.

The experimenter has great latitude in selecting the problems and algorithms.
He has to decide how to implement the algorithm (see Chapter 6), to choose
the computing environment, to select the performance measures, and he has to
set the algorithm options. Furthermore, he is responsible for generating a good
report which presents the results in an appropriate way. These choices can have a
significant effect on the results, the quality, and the usefulness of the experiment
as a whole. Therefore, the experimenter has to plan his experiments with care.
He should document all decisions such that the experiment can be reproduced
at any time. In order to improve the quality of experiments, the planning should
be done following some systematics.

In the literature (i. e., [60,584]), experimentation is a process whose steps can
be described as follows.

1. Define the goals of the experiment (Section 8.2).
2. Choose the measures of performance and factors to explore (Section 8.2).
3. Choose a good set of test instances (Sections 8.3 and 8.4).
4. Implement and execute the experiment (Section 8.5).
5. Analyze the data and draw conclusions (Section 8.6, see also Chapter 4).
6. Report the experiment’s results (Section 8.7).

Note that this process is in almost every case an iterative process, meaning
that it might be necessary to go back to some earlier step to revise some of the
decisions made earlier. The process is often also incremental in the sense that the
results motivate further experiments to answer new questions. In the following
we shortly describe what an experimenter should consider in each step. Then,
each step will be described in more detail in the corresponding sections of this
chapter.

Define the goals of the experiment. There are manifold types of experi-
ments, having its seeds in different motivations. At first, the researcher has
to find out which type of experiment is needed. Depending on that type, the
experiment and the presentation of the results have to be adapted properly.
For that reason it is always helpful to define primary goals for the experiment.
These goals should always be kept in mind during the whole experimentation
process. Another important question in the first step is the newsworthiness
of the experiment, that is, whether the results are interesting and whether
they have the potential to lead to new valuable insights. We discuss these
issues briefly in Section 8.2.1, where we also shortly subsume literature we
consider worth reading.

330 E. Berberich, M. Hagen, B. Hiller, and H. Moser

Choose measures of performance and factors to explore. Depending on
the problem and the type of experiment, the experimenter has to select the
measures (e. g., running time) that are suited for a good understanding of
underlying processes of the algorithm and that describe its performance at its
best. We discuss how to find good measures, and we present some standard
measures as well as other important alternatives in Section 8.2.2. With the
measures we are also facing the task of obtaining their values. Several tech-
niques exist to improve data quality as well as the speed of the experiment,
which we discuss in Section 8.2.4.

Another important question of the second step is the choice of the fac-
tors, that is, choosing the properties of the experimental environment or
setup that influence the result of the experiment (e. g., the input size). Some
factors have a major influence on the measures, others are less important.
The experimenter’s task is to choose the factors that permit to analyze the
algorithm as good as possible. This task is described in Section 8.2.3.

Choose a good set of test instances. The test instances used in algorithmic
experiments directly affect the observed behavior of the tested algorithms.
After characterizing some fundamental properties that should influence the
choice of test instances in Section 8.3.1 we identify three different types of test
instances used in most experiments. We analyze their respective strengths
and weaknesses in Section 8.3.2 before giving some final suggestions on how
to choose good test instances in Section 8.3.3.

For many problems collections of test instances are already available
on the Internet. We call such collections test data libraries and describe
properties of a perfect library in Section 8.4.1. The issues arising in the
context of creating and maintaining a library are discussed in Sections 8.4.2
and 8.4.3. A brief compendium of existing libraries follows in Section 8.4.4.

Implement and execute the experiment. Executing the experiments seems
to be a trivial task, since the computer actually does the job. If done without
care, the obtained results are just useless.

Section 8.5.1 explains what to consider when setting-up the laboratory,
so that the experimenter can work in a nice and clean environment that
eliminates systematic errors. The actual work in experimentation is done by
the computer. It runs all experiments, but the human operator has also some
tasks. Section 8.5.2 gives advice on how to make the running phase simple
without losing information or introducing new errors.

Analyze the data and draw conclusions. The data generated by the exper-
iment needs to be analyzed carefully in order to draw sound conclusions. In
Section 8.6.1 we give advice on how to employ graphical methods to analyze
the data. The focus is on using diagrams to reveal information that might
not be obvious.

Section 8.6.2 complements this rather informal approach with an overview
on using statistical methods for data analysis. We start giving a brief overview
on the basic concept of a hypothesis test as a major statistical tool. Instead
of going into further details of statistical analysis, we rather try to capture
general ideas of using it in the context of algorithm analysis by describing

8. Experiments 331

studies and results found in the literature. The goal is to provide an overview
and to somehow give the flavor of the methods.

For the more general question of how to use experiments in order to
analyze the asymptotic running time of algorithms we refer to Chapter 4,
especially to Section 4.8. One general suggestion (made in Section 4.8.1) is
to make use of the scientific method (known from the natural sciences), that
is, to combine theoretical deductive reasoning and experimental analysis to
reach the best possible overall result. But apart from that, Section 4.8.2 de-
scribes and assesses a specific approach to finding hypotheses on the asymp-
totic running time of algorithms by pure analysis of experimental data.

Report the experiment’s results. Proper reporting of the results and the
details of the experiment is very important for a good experimental study.
Too many papers reporting experimental results have failed to achieve the
main requirement for a good experiment: Being reproducible for doing fur-
ther research. Section 8.7 deals with good practices for proper reporting and
mentions pitfalls and problems to watch out for. We also give some hints on
how to make the best out of diagrams and tables, in order to substantiate
the claims and findings of the experiment.

Here we give some publications we consider worth and important to read before
getting started.

Moret’s paper [584] is a good starting point. It generally describes existing ex-
perimental work and briefly sketches the whole experimentation process from the
planning to the presentation of the results. A more comprehensive work is John-
son’s paper, which principally addresses theorists [437]. It describes how to write
good papers on experiments, and it includes many recommendations, examples,
and common mistakes in the experimentation process. Another recommendable
paper from Hooker motivates experimentation in general [408]. It highlights the
advantages of experimentation, states with which kind of prejudice it is often
confronted. Furthermore, Hooker gives a nice comparison with natural sciences,
and he presents some examples where experimentation is successfully applied.
The paper by Barr et al. focuses on experiments with heuristic methods [60].
However, people from other areas might also find some interesting aspects and
observations in this paper. McGeoch’s paper [545] mainly concerns the questions
of how to obtain good data from experimentation and how to accelerate exper-
iments significantly. She proposes the use of variance reduction techniques and
simulation speed-ups.

Each of these publications describes experimental work from a slightly differ-
ent point of view, however, the authors basically agree in their description of the
experimentation process in general.

8.2 Planning Experiments

This section describes the test planning, what an experimenter should think
about before implementing the algorithm and starting to collect data. The plan-
ning of an experiment is a challenging process that takes a considerable amount

332 E. Berberich, M. Hagen, B. Hiller, and H. Moser

of time. However, a careful plan of the experiment prevents many types of severe
problems in later steps of the experiment. Planning is a necessary requirement
in order to do high quality experimental research.

8.2.1 Introduction

First of all, we have to think about the motivation to perform an experiment.
There are many reasons to conduct experimental research. In the literature we
can find many different types of experiments with diverse motivations [437,584,
60]. Depending on what an experimenter is trying to show, the corresponding
experiment and the report of its results have to be adapted properly. There is a
wide range of possible goals of an experiment, the following list states a few.

– Show the superiority of an algorithm compared with the existing ones.
– Show the relevance of an algorithm for a specific application.
– Compare the performance of competing algorithms.
– Improve existing algorithms.
– Show that an existing algorithm performs surprisingly bad.
– Analyze an algorithm/problem to better understand it (experimental

analysis).
– Support/reject/refine conjectures on problems and algorithms.
– Checking for correctness, quality, and robustness of an algorithm.
– Develop refined models and optimization criteria.

In the planning step we have to define a clear set of objectives, like questions we
are asking and statements we want to verify.

Another important part of that planning step is to verify the newsworthiness
of the experiment. That is, whether the experiment would actually give us inter-
esting new insights. One way to achieve newsworthiness is to answer interesting
questions on a sound basis, going beyond pure running time comparison. We
give a few examples:

– Does the performance of several algorithms for the same problem differ and
do some of the algorithms clearly dominate the others? (Statistics can help
here.)

– Does dominance hold for all instances or only for some subset? If so, what
are the structural properties of this subset?

– What are the reasons for dominance (e. g., structural properties of inputs,
comparison of operation counts for critical operations)?

– How much does each phase of the algorithm contribute to the running
time/performance of the algorithm?

These questions cannot be answered quickly. They have to be considered in the
whole experimentation process.

8. Experiments 333

8.2.2 Measures

By a measure of performance we generally mean quantities related to the algo-
rithm and obtained by the execution of the experiment. There are several widely
used measures that are quasi standard. However, each measure has its advan-
tages and disadvantages. Thus, the correct choice of an appropriate measure can
be crucial for a good understanding and analysis of the experiment.

In the first part of this section, we describe several well-known as well as some
more exotic measures that appeared in literature. Then, we briefly describe how
to generally find good measures.

Three measures are used in almost any publication about experimental
algorithms:

– running time,
– space consumption, and
– value/quality of the solution (heuristics and approximation algorithms).

Depending on the type of experiment, at least one of these measures is a must-
have. However, these popular measures should not be used solely. The first two
measures highly depend on the chosen programming language, compiler, and
computer (processor, cache, memory, . . .), and therefore the results are very
difficult to generalize and to compare. Furthermore, they depend on the imple-
mentation style and the skill of the programmer. Therefore, some investigators
therefore assure that all crucial parts are implemented by the same program-
mer, e. g., as described in [584]. Running times in particular are problematic
when they are very small. Because the system clock’s granularity cannot be cho-
sen arbitrarily, we get distorted results. However, this can be resolved by several
runs with the same input data set. The choice of the test instances, as described
in Section 8.3, also has a strong influence, especially on the value/quality of the
solution in the case of heuristics.

Most notably, it is very unlikely that a good understanding of the problem
and the algorithm emerges from these measures. They are aggregate measures
that do not reveal much about the algorithm’s behavior (for instance, we can-
not discover bottleneck operations, which are fundamental operations that are
performed repeatedly by the algorithm and influence the running time at most).

We need other measures in order to gain a deeper understanding of the al-
gorithms to test. Moret recommends to “always look beyond the obvious mea-
sures” [584]. In the following we describe some other measures that appear in
literature (see, e. g., [15, 60, 584]).

Extensions of running time. First of all, it is sometimes useful to extend the
notion of running time. For instance, in the case of heuristics, we might mea-
sure the time to find the best-found solution, that is, the time required to
find the solution that is used to analyze the quality of the heuristics. More-
over, there exists a difference between the time that is required to produce
the best-found solution and the total time of the run that produced it. In
the case of heuristics that are multi-phase or composite (i. e., initial solution,

334 E. Berberich, M. Hagen, B. Hiller, and H. Moser

improved solution, final solution), the time and the improvement of quality
in each phase [60] should be measured, too.

Structural measures. For a good understanding of the algorithm we need
structural measures of various kinds (e. g., number of iterations, number of
calls to a crucial subroutine, memory references, number of comparisons,
data moves, the number of nodes in a search tree). Several publications rec-
ommend the use of memory references (mems) as a structural substitute for
running time [15,481,584]. But other measures, like for instance the number
of comparisons, the number of data moves (e. g., for sorting algorithms), and
the number of assignments, should be considered as well, depending on the
algorithm to be analyzed.

Bottleneck operation counts. The idea of counting the number of calls to
a crucial subroutine, or to count the number of executions of a major sub-
task, leads to the general concept of asymptotic bottleneck operation. We
call an operation an asymptotic nonbottleneck operation if its fraction in the
computation time becomes smaller and approaches zero as the problem size
increases. Otherwise, we call the operation an asymptotic bottleneck opera-
tion. In general, there exists no formal method for determining asymptotic
bottleneck operations, since an algorithm might behave completely different
for small instances than for sufficiently large instances. However, it seems to
be a quite useful approach in practice [15]. Bottleneck Operation Counts are
also often used when comparing heuristic optimization algorithms. In this
case, the evaluation of the fitness function is often the bottleneck when run-
ning the algorithm on real-world problems. For a more detailed description
we refer to Chapter 4.

Virtual running time. Ahuja et al. [15] advocate the use of virtual running
time. The virtual running time is an estimate of the running time under
the assumption that the running time depends linearly on “representative
operations” (potential bottleneck operations). The loss of accuracy, that is,
the estimate of the running time compared with the actual running time, can
be remarkably small. Ahuja et al. present case studies with a difference of at
most 7%, in many cases below 3%. Virtual running time can be used to detect
asymptotic bottleneck operations, it is particularly well-suited for tests on
various systems, and it permits us to eliminate the effects of paging and
caching in determining the running times. We refer the reader to Chapter 4
for a more detailed description of this notion.

Finally, we want to describe some notions that are not measures in the strong
sense, but considered as such in some publications since their impact is generally
underestimated by many experimenters.

The first “measure” of this kind is robustness. If an algorithm performs well
or the computed solution has a good quality only for a few problem instances
it is evidently not very interesting in a general setting. Therefore, an algorithm
should perform well over a wide range of test instances. For instance, one could
measure the number of solved instances of a benchmark library of hard instances
in order to estimate the robustness of an algorithm. The second “measure” we

8. Experiments 335

want to mention is the ease of implementation. There are many examples of
algorithms that have been selected for use in practice just because they are easy
to implement and understand, although better (but more complicated) alterna-
tives exist. Not only the running time is important, but also the time needed
for the implementation of the algorithm. Especially if the running time is not a
crucial factor, the ease of implementation (e. g., expressed in lines of code, or by
estimating the man-months needed for an implementation) can be an important
argument in favor of some algorithm. Note that the ease of implementation de-
pends highly on the underlying programming language, programming tools, and
the style of the programmer, among many other influences. The third “measure”
to mention is scalability, which basically means that algorithms can deal with
small as well as large data sets. Obviously, these “measures” cannot be deter-
mined very exactly, but even a very rough estimate can help to better classify
the algorithm in question. However, it is important to stress that these “mea-
sures” are limited and therefore they should be applied with care. Note that
these “measures” are also presented as design goals in Chapter 3.

As stated before, good measures that help understanding an algorithm are
usually not the most obvious ones. Therefore, we briefly discuss how to find
such good measures in practice. Several authors give various hints on this is-
sue, for instance, Johnson states a nice list of questions to ask in order to find
the right measures [437]. At the beginning, it is recommended to do research
subsumed as exploratory experimentation. One of the first experiments could be
to observe how the running time of the algorithm is affected by implementa-
tion details, parameter settings, heuristics, data structure choices, instance size,
instance structure, and so forth. Furthermore, we might check if a correlation
between running time and the count of some operations exists. Then, we try to
find out the bottlenecks of the algorithm. It is also interesting to see how the
running time depends on the machine architecture (processor, cache, memory,
. . .), and how the algorithm performs compared with its competitors. Obvi-
ously, these experiments should be conducted with other (standard) measures
as well (e. g., replace “running time” with “space consumption” in the above
description). Profilers can and should be used to quickly find good structural
measures.

In general, a look should be taken at data representing differences as well as
ratios. Furthermore, one should use measures that have small variance within a
sampling point (which will be defined in the following section) as compared to
the variance observed between different sampling points [60].

8.2.3 Factors and Sampling Points

The factors of an experiment comprise every property of the experimental en-
vironment or setup that influences the result of the experiment (i. e., the mea-
sures) [60]. The most obvious factors are the parameters of the algorithm, but
we also consider other influences as, for instance, the computing environment.
The experimenter has to find out which factors have a major influence on the
measures. He has to define what to do with other factors that are not important

336 E. Berberich, M. Hagen, B. Hiller, and H. Moser

or cannot be controlled. Factors generally can be expressed by some value, for in-
stance the processor speed, the memory usage, or the value of some configuration
variable for an algorithm. We refer to such values as a level of a factor [60]. For
a run of an algorithm we have to define a sampling point, that is, we have to fix
the factors at some level. The experimenter has to define which sampling points
will be considered in the experiment, and how many runs should be performed
for each sampling point.

By applying some preliminary tests, we can find out which factors actually do
have a major influence, as for instance the input size, the number of iterations for
an approximation algorithm, threshold levels, algorithms to solve subproblems
(e. g., sorting and data structures), characteristics of the test instances, and the
machine architecture. Among these, the experimenter has to pick out the ones
he is interested in. These factors will possibly be altered during the experimental
analysis to set up new experiments. For such factors, we have to decide which
levels should be selected. This decision depends highly on the purpose of the
experiment and the questions that are asked. The levels are the specific types or
amounts that will be used in each run. For instance, if the factor is quantitative,
then we have to choose the values we consider and how they are spaced (e. g., the
selected levels of the factor “input size” could be 10, 102, 103, 104, . . .). Note that
qualitative factors make sense as well. For instance, to classify test instances as
small, medium size, or big, or to choose a certain type of data structure (e. g.,
binary tree, hash), or looking at boolean values (e. g., optimization on or off).

Other factors might not be interesting for the experimenter. In this case,
he has to fix them on a certain level for all runs. Obviously, a good reason for
choosing a certain level must exist. For instance, the factor “main memory” could
be fixed at 1024 MB, but this is only reasonable if there is evidence that the
memory usage of the tested algorithm will never even get close to that amount.

Finally, some factors might exist that are ignored, because we assume them
not to influence the outcome or having a sufficiently low influence. Of course,
there must be evidence for this assumption. For instance, if we measure the run-
ning time by looking at the processor time of the algorithm, and if one factor
is the “user load” of the machine on which we perform the experiment, then we
might ignore the user load because we trust in the operating system that the
measured processor time is computed correctly. Other factors that have to be
ignored out of necessity are factors that we do not understand or cannot control.
For instance, such a factor could be the total load of the machine where the ex-
periment is performed. Even if we assure that no other important processes are
running, the necessary operating system’s processes themselves cannot be con-
trolled that easily. Especially for such factors, it is recommended to randomize
them if possible, in order to keep an undesired influence as low as possible [547].
The process of finding good factors can take quite some time, and it is impor-
tant to document the whole process. The finding of good factors is also part
of the running phase of the experiment, which is described in more detail in
Section 8.5.2.

8. Experiments 337

For each run of the experiment a sampling point has to be chosen. With
the number of factors that have to be altered the number of possible sampling
points increases, since in theory we could try all possible combinations of factor
levels. In most settings, this number is by far too high in order to perform an
experiment for every possible sampling point. Therefore, the experimenter has
to select a reasonable number of sampling points that reflect the overall behavior
of the tested algorithm as good as possible. In order to decrease the variance of
the test data, the experimenter also has to consider that the experiment should
possibly be run several times for the same sampling point (see also Sections 8.2.4
and 8.6.2). With a good and elaborated prior selection of sampling points (by
always having the primary goals of the experiment in mind), the experimenter
can avoid many useless experiments that use up expensive resources. Further-
more, it can be avoided to have experiments run again in a later step, because
it became clear in the analysis that the used sampling points were not adequate
or sufficient.

Finally, we want to mention a comprehensive approach for experimental design
called DOE (Design Of Experiments), which especially deals with the careful
design of experiments and the choice of factors and sampling points in order to
allow a sound subsequent statistical analysis [60, p. 20]. For more information
about DOE we refer to Section 8.6.2.

8.2.4 Advanced Techniques

In this section we briefly explain advanced methods that should be considered
when planning an experiment, like for instance simulation [511,545,547,546,622],
simulation speedup as well as variance reduction techniques [545]. They have the
goal to improve the process of obtaining experimental data. In a nutshell, simula-
tion speed-up deals with the question of how to speed up the process of obtaining
data, i. e., how to make the test runs faster. With faster test runs, we can obtain
more data in less time, helping us to decrease the variance notably. However,
not only simulation speedup can reduce variance, but other more sophisticated
techniques for this purpose exist. Conversely, a reduced variance admits fewer
test runs, thus, speeding up the entire process of gathering data. Note that these
techniques are not a luxury additive in test design. Often, much improvement
may be needed for the data to be useful.

A common paradigm in simulation research is to differentiate between a real-
world process (e. g., an economic system, weather, public transport) and a math-
ematical model of such a process, to predict its future behavior in reality. For
the purposes of algorithm design, the real-world process is an application pro-
gram running in a particular computing environment, whereas the mathematical
model is the underlying algorithm. If the algorithm cannot be analyzed suffi-
ciently, then a simulation program is developed, which may be identical with
the application program. Not all researchers make this distinction, as well as we
did not mention it before this point. However, this point of view is useful to
explain the following techniques.

338 E. Berberich, M. Hagen, B. Hiller, and H. Moser

Usually, we have to deal with measures that are influenced by random noise.
Thus, we get different numerical values for each test run. In order to get a
reliable value for the measure, we repeat the test run several times and compute
the mean value over all test runs. However, for measures with high variance (or
“spread”), we need a high number of runs in order to get a reliable mean value
with low deviation. In the following we outline several known approaches to
reduce variance, where only the intuitive idea behind each technique is described.
More exact mathematical descriptions of these techniques can be found in the
literature (e. g., [545]).

Common Random Numbers. This technique should be considered when we
want to compare two algorithms on randomly generated instances and we
expect that the compared measure is positively related with respect to the
input instances. The idea is to use the same random instance for each test
run of the two algorithms, which is equivalent to generate the instance from
the same random numbers, hence the name. Since the measure is assumed
to be positively related, the variance of the difference of the measures of
the two test runs for each random instance is expected to be lower than the
variance of the measure of each algorithm separately. A positive side effect
of this technique is that we have to compute only half the number of test
instances compared to the situation where we generate a random instance
for each algorithm separately.

Control Variates. If there are two measures of the same algorithm that are
positively correlated, then we can make use of this technique to decrease
the variance of one such measure. Suppose that the running time and the
memory usage of an algorithm correlate positively, i. e., the algorithm needs
more memory if it is running for a longer time. For each test run, we compute
the difference between the mean value of the memory usage and the memory
usage observed in that run. Due to the positive correlation, we can use this
difference to “correct” the value of the running time for that test run. This
method provably reduces the variance of the running time values.

Antithetic Variates. The idea behind this technique is simple: If we have two
measures that have the same distribution, but are negatively correlated, then
the sum of these two measures has a lower variance. Namely, if the difference
between the first measure and its mean is positive, then the difference be-
tween the second measure and its mean is likely to be negative. Thus the sum
of both measures compensates the deviation of each measure, and therefore
the “sum measure” has a reduced variance.

Conditional Expectation. This technique is sometimes also called “Condi-
tional Monte Carlo” or “Conditional Mean”. Suppose we have two measures,
for which we know that the mean of the first measure is a function of the
mean of the second measure. For each test run, rather than obtaining the
first measure directly, we can also take the second measure and then compute
the corresponding value of the first using the known function. This method
works if the variance of the second measure is smaller than the variance of
the first measure.

8. Experiments 339

These were just four important techniques that are most likely to be generally
applicable. In literature, many other techniques of this type can be found.

Next, we address simulation speedup. Until now, the idea was to implement
an algorithm and then perform the tests directly on it. The key idea of simula-
tion speedup is to partially simulate the algorithm. Because sometimes it is not
necessary to implement it as a whole, we might skip parts of the implementation
and replace them by a simulation. This is more efficient due to knowledge which
the implemented algorithm would not have.

Variance reduction and simulation speed-up are closely related. With simu-
lation speed-up, we are automatically able to reduce variance, as the improved
efficiency permits us to take more trials within the same amount of time. Con-
versely, a smaller variance implies that less trials are needed. Thus, the overall
running time decreases. McGeoch [545] gives several examples of algorithms to
which these techniques have been successfully applied.

8.3 Test Data Generation

When evaluating algorithms experimentally, the experimenter usually runs the
algorithms on several test instances while measuring interesting values. Obvi-
ously, the used test instances may substantially affect the observed behavior of
the algorithms. Only a good choice of test instances can result in meaningful
conclusions drawn from the respective algorithmic experiment. Hence, the de-
cision what test instances to use is one of the crucial points in test design (cf.
Section 8.1.3). Due to its importance we address the problem in more detail here.

The outline of this section is as follows. Section 8.3.1 contains basic properties
that every experimenter should try to accomplish when choosing test instances.
We introduce three different types of test instances in Section 8.3.2 and ana-
lyze their respective strengths and weaknesses. Section 8.3.3 contains some final
suggestions for test data generation.

8.3.1 Properties to Have in Mind

There is a wide agreement in the literature that choosing test instances is a
difficult task since any choice of test instances allows for criticism. But there is
also a wide agreement on some basic, potentially overlapping, properties that
an experimenter should have in mind while selecting test instances. Note that
the properties are not only important for the test instance selection, but for the
whole experimental process in general. If the selection of test instances helps
to achieve the properties, the result is most likely a good set of test instances.
We compiled the following list using the corresponding discussions in several
articles [60, 196,197,375,408,409,430,437,526,546,584,585,663].

Comparability. The results of algorithmic experiments should be comparable
to other experiments. While this should be taken for granted, there are lots
of algorithmic experiments ignoring it.

340 E. Berberich, M. Hagen, B. Hiller, and H. Moser

If different tests in a paper use test instances with different characteristics,
it is mostly not valid to compare the measurements. There may be some
occasional exceptions, but more often the comparisons are meaningless and
cannot reveal anything. However, Comparability should not only hold in one
paper, it is also desirable for experiments from different authors.

Today, the standard solution to assure Comparability is to make the
instances or their generator programs available on the Internet. To ensure
that other researchers can use the instances it is advisable to use a widely
accepted format to store them. If the publicly available instances are included
in new experiments, they ensure comparability to already published studies
using the same instances. The potential abuse that other researchers might
optimize their algorithms exactly for these instances is made harder if the
experiments include lots of varied enough instances (cf. Quantity and Variety
below).

In the phase of test design, Comparability means to be aware of standard
test data libraries (cf. Section 8.4) and instances used in former experiments
on similar algorithms.

Measurability. For heuristics it is often tested how far from an optimal solution
the heuristic’s solution of a test instance is. Hence, it is desirable to be able
to measure the optimal solution in advance.

Unfortunately, nontrivial instances with known solutions are often very
small or too much effort must be spent on measuring an optimal solu-
tion, e. g., for NP-hard problems. However, problem generators can construct
artificial instances with a built-in optimal solution that is known in ad-
vance [499]. But one has to be aware that such a generation process may
yield quite unrealistic problem instances (cf. the discussion on artificial in-
stances in Section 8.3.2).

Furthermore, for NP-hard problems it is very unlikely to be able to effi-
ciently generate meaningful instances with known solutions [692].

Portability. In the early days of algorithmic experiments the large and bulky
data of some non-trivial examples caused Portability problems. Such in-
stances were too large to be published in journals. Researchers could only
obtain them by depending on the cooperation of others that had previously
used the same instances.

Today, with the availability of many instances on the Internet there are
two main sources of Portability problems. One arises when proprietary con-
siderations preclude the supply of the test instances. One should try to ex-
clude such proprietary test instances from experiments since they clearly
degrade the above mentioned Comparability. However, there are also circum-
stances, e. g., in VLSI-design, where it is impossible not to use proprietary
instances in the experiment.

Another possible source of Portability problems is the format in which the
instances are stored. Using a widely accepted or some standard format helps
to exchange instances with other researchers. The main reason is that such a
standard usually is well-documented and everyone knows how to decode it.
There already exist common standards for some areas, like the cnf-format

8. Experiments 341

for SAT-instances (cf. Section 8.4.4). These standards are mostly a special
ASCII or even binary encoding of the instances.

If there is no common format at hand, the experimenter has to choose one
considering some important points. First, the instances have to be stored in
a way such that everyone can convert them quite simply to another format.
This means that the format itself has to be documented by the inventor.
Furthermore, the format should avoid redundancies, it should be extensi-
ble, there should be an efficient decoding routine, and storing the instances
should not need too much memory. In some situations (cf. the CSPLib in
Section 8.4.4), even a human readable format may have advantages. Another
option is to use XML. But keep in mind that XML is not designed for the pur-
pose of storing test instances. Hence, usage of XML as an instance format is
really rare up to now.

Purpose. Some studies do not explicitly consider the Purpose of the experiment
when choosing test instances. An example would be to keep in mind whether
the experiment should show the potential of an algorithm (where lots of
different instances are needed) or just the practicality of an algorithm in
specific situations (where more restricted instances have to be chosen). The
used test instances should always match the Purpose of the experiment.

Quantity. The number of test instances to use depends on the goals of the ex-
periment. Preliminary testing to show feasibility requires only a small num-
ber of instances. However, the experiments we have in mind are of another
kind. To assess strengths and weaknesses of an algorithm or to compare it
against other approaches requires large-scale testing in terms of the number
of instances used. Choosing many instances helps to protect being fooled by
peculiar experiences with few instances and yields more informative studies.
Unfortunately, in many studies the set of test instances is too small com-
pared to the total range of potential instances. Hence, the drawn conclusions
tend to be meaningless.

Reproducibility. When experiments are reported, the test instances have to
be given in enough detail that another researcher could at least in principle
reproduce the results. If the instances were obtained by using a genera-
tor, it usually suffices to give the settings of the important parameters of
the generator and the seed of a potentially used random number generator.
Nevertheless, generated instances with unique properties that are difficult
to reproduce should be given as precise instances. This corresponds with
Comparability from above since making the instances publicly available also
supports Reproducibility.

Although Reproducibility is widely acknowledged to be important, a lot
of published experiments are not really reproducible. One of the main rea-
sons, besides the ignorance of some experimenters, might be the problem of
proprietary test instances not available to the public.

Significance. To ensure Significance of an experiment, instances from widely
accepted test data libraries should be included, which also corresponds to
Comparability. Of further interest are instances that test the limits of the
algorithm or even cause it to fail. Too easy instances reveal little on an

342 E. Berberich, M. Hagen, B. Hiller, and H. Moser

algorithms behavior on hard instances. Hence, one key to ensure Significance
is the Quantity and Variety of the test instances. However, it is a challenge to
generate meaningful test instances, especially for the assessment of heuristics.
The experimenter often has to trade off the need for the sample of instances
to be representative and the cost of obtaining the instances.

Unbiasedness. Unintended biases should not be introduced into the test in-
stances used. One such example would be to use only instances that the
tested algorithm can easily solve. The potential conclusion that the algo-
rithm solves all instances very fast is heavily biased by the choice of in-
stances. Hence, observance of Quantity, Significance and Variety helps to be
unbiased in the problem selection.

Another source of biases can be encountered in the generation process of
potentially used artificial instances (cf. Section 8.3.2).

Variety. The test instances used in an experiment should have different char-
acteristics to show how algorithmic performance is affected. But in many
studies the instances have been too simple and too limited in scope, e. g.,
when only few instances of small size are used to demonstrate sometimes
pathological algorithmic behavior. Instances that are too easy do not allow
for good conclusions. Large-scale testing, in terms of the range of the in-
stance sizes and the variety of instance properties, is required since this is
the only way to reflect the diversity of factors that could be encountered.
Demonstrating the potential and the usefulness of an algorithm also requires
a wide Variety of test instances since otherwise the strengths and weaknesses
cannot be assessed accordingly. However, if the scope is to show practical-
ity in specific situations, much more restrictive sets are allowed. Again, the
above mentioned Purpose of the experiment is crucial for the decision.

8.3.2 Three Types of Test Instances

Roughly, there are three different types of test instances an experimenter could
use. Namely, these are real-world instances, artificial instances, and perturbed
real-world instances. In this section we assess their respective strengths and
weaknesses according to the properties discussed in Section 8.3.1.

Real-World Instances. Real-world instances originate from real applications.
They therefore reflect the ultimate Purpose of any tested algorithm. Several
authors have already discussed the usage of real-world instances [60, 196, 197,
341, 400, 375, 430, 437, 584, 663]. In the following, we give a brief survey of their
observations.

The property of being representative for real-world behavior is one of the
main reasons that real-world instances should be used in algorithmic experi-
ments whenever possible. Very often, the goal of an algorithmic experiment is
to evaluate practical usefulness. Then, real-world instances cannot be excluded
from the experiment since they allow an accurate assessment of the practical
usefulness of any tested algorithm.

8. Experiments 343

However, in the early days of algorithmic experiments real-world instances
usually where handpicked. Hence, the collection and documentation was quite
expensive. Today these problems do not carry that much weight since most test
data libraries (cf. Section 8.4) already include real-world instances and are easily
available on the Internet. Real-world instances that are used in well-documented
experiments usually make their way into such a library. Nevertheless, real-world
instances may have a proprietary nature and thus may not be available for public
use. This causes Comparability problems.

Another more serious problem with the usage of real-world instances is that
it is often difficult or even impossible to obtain a sufficient number of large
enough instances. Small instances can be solved too fast on current machines
such that the running times shrink to negligibility. Hence, there often are troubles
in achieving Quantity and Variety just using real-world instances. But even if
real-world instances would be available in large enough Quantity and Variety
they usually to not allow to draw general conclusions about how an algorithm
operates. The main reason is that typically instance properties cannot be isolated
in real-world instances. However, this is necessary to show how changing several
properties affects the performance. Before we describe a possible way to overcome
these issues by using artificial instances, we close with a short summary of the
main advantages and disadvantages of real-world instances.

Advantages

– representative of real-world
behavior (Purpose)

– allow assessment of practi-
cal usefulness

Disadvantages

– only of bounded size (Variety)
– only few available (Quantity)
– sometimes proprietary (Comparability)
– lack of control of characteristics

Artificial Instances. Usually, artificial instances are randomly generated by
a generator program given a list of parameters. One of the earliest examples
is NETGEN which generates network problem instances [476]. Using artificial
instances is a possibility to overcome the main disadvantages of real-world in-
stances. Hence, they were already studied by other authors [60,196,197,357,375,
400, 409, 430, 437, 526, 584, 621, 663]. We compiled our following discussion from
these papers.

The usage of generator programs ensures the fast and cheap availability of
a very large Quantity of instances. If the generator program is well-written,
one key property is that it can provide arbitrarily large instances which assists
Variety. This allows the experimenter to determine the size of a biggest in-
stance that can be solved in reasonable time. If the generator program is written
for machine independence and the parameters affecting the generation process
are well-documented, they provide an effective means to ensure Reproducibility
and Comparability. Good generator code often becomes a standard and can be
found in existing test data libraries (cf. Section 8.4). Generators usually are not
proprietary.

344 E. Berberich, M. Hagen, B. Hiller, and H. Moser

A good generator program allows the experimenter to control instance charac-
teristics through adjusting parameters that affect the generation process. Thus,
instance properties can be isolated and their effect on the algorithm’s perfor-
mance can be estimated. However, generator programs may be biased in the way
that unintended correlations are built into the instances or that only instances
with particular characteristics are produced. Hall and Poser analyze existing gen-
eration processes for machine scheduling problems and state that some widely
used approaches actually are biased in such a way [375]. Further resources of
biases may be rounding problems in the generation process or the used random
number generator, e. g., when only the last bits are examined [325]. L’Ecuyer
gives some useful hints on the usage of random number generators [511].

When evaluating heuristics or approximation algorithms for intractable prob-
lems, an important value is the quality of the found solution (cf. Section 8.2.2).
It would be nice to know the value of an optimal solution in advance. Such a
feature is offered by some generators. They are able to produce instances with a
known optimal solution that is concealed from the tested algorithms. However,
restricting the tests only to instances with known solutions is likely to yield un-
convincing results. One reason is that instances with a built-in solution often
have a narrow and very artificial nature and thus are not representative. Fur-
thermore, instances with known solutions do not constitute the primary goal of
heuristics or approximation algorithms that are designed to handle cases where
an optimum is unknown and too hard to find.

Being not representative for real-world behavior is one of the main points
artificial instances are often criticized for. The argument is that artificial in-
stances can only be meaningful if there is some evidence that they can predict
the algorithm’s behavior on real-world instances. In fact, very often artificial
instances do not resemble real-world behavior and thus drawn conclusions may
not be valid for real-world instances. An example is the frequent assumption
of a uniform distribution to select artificial instances from an instance popula-
tion. Of course, there are studies where it can be well justified to generate the
instances uniformly at random, e. g., when comparing sorting algorithms on in-
teger sequences [504]. But in most cases real-world instances are not distributed
uniformly. Real-world instances include structure, and it is certainly true that
unstructured artificial instances tell us little about real-world performance. As
an example Johnson states that asymmetric TSP-instances, with independently
chosen distance matrix entries from small ranges, often are particularly easy
to solve [437]. Algorithms succeeding on them may dramatically fail on more
realistic instances. However, there are also examples where it seems impossible
to build realistic models. For example, McGeoch points out that network flow
problems occur in so many areas that it is very difficult to cover all of them in
a generator program [546].

Nevertheless, there are some definitive advantages when using artificial in-
stances. A careful design of the generator program can guarantee that at least
some properties of realistic instances are met. And very often this is the best one
can hope for since there is one main difficulty when trying to generate perfectly

8. Experiments 345

realistic artificial instances. It requires very sophisticated analyzes to identify
appropriate parameters and corresponding values that would lead to realistic
artificial instances. In fact, hardly any generator really can produce realistic
data. But the ability to control the instance characteristics should not be under-
estimated when considering the main advantages and disadvantages of artificial
instances.

Advantages

– arbitrary size available (Variety)
– arbitrary number available (Quantity)
– rarely proprietary (Comparability)
– ability to control characteristics

Disadvantages

– lack of realism (Purpose)
– difficult to assess real-world

performance (Purpose)
– susceptible to unintended

correlations and biases (Un-
biasedness)

Perturbed Real-World Instances. When comparing the lists of advantages
and disadvantages of real-world and artificial instances the observation is that
they are inversions of each other. Several researchers suggest a way to try to
combine the advantages of both real-world and artificial instances [357,400,621,
663,732]. The following discussion is based on these papers.

Starting from real-world instances, a controlled variation by a generator pro-
gram yields perturbed real-world instances. Such instances are a compromise of
real-world and artificial instances.

Due to the number of perturbed real-world instances that can be obtained
from one real-world instance, their available Quantity is better than for real-
world instances. However, the size of the perturbed instances may not differ
dramatically from the size of the original real-world instance, and the inherent
structure of the real-world instances nearly stays the same. Hence, perturbed
real-world instances cannot support Variety in the way artificial instances can.

Another problem is the ability to resemble real-world behavior. On the one
hand, perturbed real-world instances cannot be seen as actual real-world in-
stances due to the perturbation. But on the other hand, they retain much of
the inherent structure. This causes their degree of realism to fall somewhere in
between real-world and artificial instances.

However, the most serious problem with perturbed real-world instances is that
it is often very hard to identify interesting parameters that have to be changed
to obtain useful perturbed real-world instances from given real-world instances.
This difficulty cuts back the benefits perturbed real-world instances have. For
this reason, Shier suggests to use a meta-algorithm that, given an algorithm and
a test instance, would generate interesting perturbed instances [732]. But this
still seems to be dreams of the future.

We conclude with a short summary of the advantages and disadvantages of
perturbed real-world instances.

346 E. Berberich, M. Hagen, B. Hiller, and H. Moser

Advantages

– better Quantity than real-world
instances

– more realistic than artificial in-
stances

Disadvantages

– Variety comparable to real-
world instances

– less realistic than real-world in-
stances

– often hard to identify meaning-
ful perturbation

8.3.3 What Instances to Use

There is no proven right way for the choice of good test instances, and the debate
which instances to use continues. Since the choice of test instances usually is
limited by time and space restrictions, some tradeoff will always have to be
made. We can derive some helpful suggestions from our above discussion and
the references therein.

To ensure the Comparability with previous studies standard test sets and
generators should be used whenever possible. Proprietary instances should only
be used under special circumstances and with adequate justification. There may
be scenarios where it is impossible not to use proprietary instances, but in most
cases the lack of Comparability is too large compared to their usefulness.

We have seen that real-world instances and artificial instances are quite con-
trary in their advantages and disadvantages. The inclusion of real-world instances
enables the assessment of the practical usefulness of any tested algorithm. How-
ever, since another goal should be to test against a Variety of instances, the only
way is to additionally include artificial instances. They may rarely be realistic
enough to completely substitute the real-world instances, but their most impor-
tant advantages are their nearly infinite variety, and that the experimenter may
isolate special instance properties that directly affect performance. Very often
structures can be found in the artificial instances that allow a careful compari-
son to the real-world instances and thus enable the experimenter to evaluate the
predictive quality of the random results.

Very often instances are chosen on which the tested algorithm performs well
or it is easy to demonstrate improvement over previous algorithms. But addition-
ally, there should be always included test instances where the tested algorithm
is likely to perform poorly. This enables the judgment of potential weaknesses
which indicates Significance and Unbiasedness.

Altogether, our suggestion is to use at least real-world and artificial instances.
Finding meaningful perturbed real-world instances often is too hard compared
to their benefits. It mostly suffices to use artificial instances in addition to real-
world instances. Before choosing instances the experimenter should be aware of
the practice in the corresponding field to know which instances were used in past
experiments. However, the Purpose of the experiment should determine the final
choice of instances.

As a last remark, we point out that regardless which instances are used in
an experiment, they have to be conscientiously documented and made available

8. Experiments 347

to the public to ensure Comparability and Reproducibility. Furthermore, a good
talk on algorithmic experiments states what instances were used [550].

8.4 Test Data Libraries

In Section 8.3.1 we have seen that, in order to ensure Comparability and Repro-
ducibility of algorithmic experiments, it is essential to make the test instances
or their generator programs with the corresponding parameter settings publicly
available. A convenient way is the usage of test data libraries. These are col-
lections of test instances and generators focused more on a single problem, like
the library for the satisfiability problem (cf. Section 8.4.4), or on a set of re-
lated problems, like the libraries for constraint solving or theorem proving (cf.
Section 8.4.4).

The outline of this section is as follows. Section 8.4.1 contains properties of
a perfect library. In Section 8.4.2 we focus on issues relating to the creation
of a library, whereas Section 8.4.3 discusses challenges of an already established
library. Section 8.4.4 closes with a brief compendium of existing test data libraries
that again highlights some of the most important library issues.

8.4.1 Properties of a Perfect Library

Today, very often the test instances used in algorithmic experiments are ob-
tained from test data libraries. Thus, it is important to be able to identify good
libraries. We provide some properties that are characteristic for the quality of
test data libraries. Our following alphabetical list is based on discussions by
several authors [60, 341,357,327,328,409,375,410,668,768].

Accuracy. A library should be as error-free as possible. This applies to the con-
tained instances or generator programs and as well to their documentations
or any other included data. An example would be that the instances should
have unambiguous names in the library.

Any error found has to be corrected immediately and documented in a
kind of “history of changes”.

Availability. In the days before the Internet came up, the test data libraries
were books or available on magnetic tapes that had to be ordered from the
maintainers [290,668]. Nowadays, lots of libraries for nearly any problem are
freely available on the Internet. Thus, they are easy to find and accessible
for any experimenter.

Completeness. A library should be as comprehensive as possible. On the one
hand, this means that libraries should contain all test instances or generators
known for the respective problems. Ideally, an experimenter should not need
to look elsewhere to find appropriate test instances. Newly occurring test
instances should be included immediately.

But on the other hand, this also means that additional information on
the test instances should be included. Such further information might be the

348 E. Berberich, M. Hagen, B. Hiller, and H. Moser

best known solution, performance data of algorithms solving the instances,
references to studies where the instances were used, pointers to state-of-the-
art algorithms, or any useful statistic.

Coverage. A library should contain all meaningful instances of the respective
problems. Hence, it should be as large as possible. New instances have to be
included whenever available (cf. Extensibility). However, very large libraries
require a sophisticated design to guarantee the Ease of Use.

Difficulty. There should be contained neither just hard nor just easy problems
in a library. Practical problems often differ very much in their difficulty, and
this mix should be reflected in the library. Even very easy problems may
be useful for first expositions on a newly developed algorithm. For a new-
comer difficulty ratings for the instances would ease the choice of appropriate
instances.

Note that even for established libraries there may be doubts concerning
the Difficulty. For example, Holte showed that for the UCI Machine Learning
Repository the accuracy of some very simple classification rules compared
very favorably with much more complex rules [403]. However, the practical
significance of this result depends on whether or not the UCI instances are
representative for real-world instances. On the one hand, many UCI instances
were drawn from applications and thus should be representative. But on
the other hand, many of the instances were taken from studies of machine
learning algorithms. Hence, they might be biased since often experimenters
only include instances that their algorithms can solve. The conclusion is
that only a careful analysis and selection of instances ensures a wide range
of Difficulty in a library.

Diversity. The instances contained in a library should be as diverse as possible.
There should be real-world instances from applications, as well as artificial
instances that allow the evaluation of the influence of special instance prop-
erties on algorithmic performance.

Unfortunately, very often instances from certain applications are favored
while others are neglected. The instances in a library should represent in-
stances from all applications where the respective problem might occur.

The more diverse the instances in a library, the easier it is to choose a var-
ied set of instances. This helps to prevent an experimenter from over-fitting
algorithms, testing them only on a few instances with similar structure.

Ease of Use. A library should be easy to use. This includes obtaining instances
from the library but also reporting errors or suggesting new instances. Ideally,
there are software tools that might help to convert instances from the library
to another format or that support the submission of new instances.

Also the navigation in the library is a crucial point. An experimenter
should have no problems finding the instances that match his purpose or
realizing that such instances are not contained in the library.

Extensibility. Although desirable, it is very unlikely that a library contains all
meaningful instances of a problem (Completeness). Hence, a library should
be extensible, and the addition of new instances should be as easy as possible
(cf. Ease of Use).

8. Experiments 349

Another aspect of Extensibility is not only the inclusion of new instances
of the original problem but the addition of related problems, e. g., including
SAT-instances in a 3SAT-library.

Independence. A library should be as independent as possible from any al-
gorithm solving the corresponding problems. This means that the instances
included in the library should be chosen as unbiased as possible, not prefer-
ring only instances where solely one algorithm succeeds.

Furthermore, this means that the format in which the instances are rep-
resented in the library should not be proprietary to only a few algorithms.

Topicality. A library should be as up-to-date as possible. If, for example, the
best known solution to an instance or the rating of an instance changes due
to new studies, the respective information in the library has to be updated
to prevent duplication of results.

8.4.2 The Creation of a Library

The creation of a library involves very different aspects. First of all, a choice
of the data format to represent the instances has to be made. For the main
points considering the data format, we refer to the corresponding discussion in
the Portability part of Section 8.3.1.

Ideally, the decision what format to use in a library should not be done by a
single person, but rather by the research community. For example, the DIMACS
Implementation Challenges [248] have served to establish common data formats
for several problems, like the cnf-format for SAT-instances. Nevertheless, even
if there is already a commonly accepted format, there might be some arguments
for modifying it, e. g., if it does not allow for future extensions, like including new
properties. Hence, as early as in the choice of the data format, future Extensibility
can be assisted.

But Extensibility is not the only property from our above list (cf. Section 8.4.1)
that has to be considered already in the creation process. Another one is Com-
pleteness. Ideally, a new library should include all instances that are known to
the community so far. This often simultaneously supports Difficulty and Diver-
sity. But to collect all the known instances the support of the community is
essential. Hence, the library project should be advertised as soon as possible to
find lots of contributors that provide test instances. The resulting benefit for
the community is one single place where all instances can be found. This should
attract researchers to cooperate if they get to know the project through formal
and informal advertisements in mailing-lists, on conferences, or in journals. But
not only active researchers should be encouraged to provide instances. Also in-
dustry should be asked to support applications data—possibly breaking their
proprietary nature.

Through the collection of the known instances some problems might arise.
The library creator must ensure that the instances are as unbiased as possible.
Including only instances from published algorithmic studies might favor feasible
instances since most studies only include data that shows how well the studied
algorithm performs. Unfortunately, such instances that have already been solved

350 E. Berberich, M. Hagen, B. Hiller, and H. Moser

by some algorithm have a selective advantage in a couple of libraries. To protect
against such a narrow selection that would influence Independence, also existing
generator programs have to be included. They can provide lots of instances that
are new to almost every algorithm.

The collected instances have to be carefully transformed to the data format
of the library to prevent from errors (Accuracy). This could be the birth of a
tool that is able to convert the instances from one format to another. Such a
tool should be included in the library as well (Ease of Use).

And last but not least, the Availability of the finished library is a crucial point.
Today there is a very convenient solution—the Internet. Creating a website for
the library not only enables almost everyone to access the library, but also allows
to use the features of the Internet, like creating hyperlinks to papers that use
the instances from the library. A welcome page of the library could, for example,
contain links to the instance and generator program pages, links to descriptions
of the problems, and a link to a technical manual describing the library and
its data format. All the individual pages of the library should have a common
layout to support a consistent representation and the Ease of Use.

However, with using the Internet there might occur a problem when having
the library at only one server. As Johnson pointed out: “Never trust a website
to remain readable indefinitely” [437]. For the library creator, this means that
at least one mirror-site of the library on a different server should be created to
protect against unavailability.

8.4.3 Maintenance and Update of a Library

After the creation of a library the work is in no way finished. We might just as
well argue that it even has started.

Hardware and algorithms become faster, and thus instances might become
too easy. For future generations of hardware and algorithms, the typical and
demanding problem instances change. This means that a static library would
quickly become obsolete since it cannot represent such changes. But besides the
major changes, like including new useful instances (Extensibility) or revising the
data format, there are still other minor activities for a created library. Based
on our list of properties from Section 8.4.1, reported errors have to be corrected
(Accuracy) and new results for the library instances or pointers to new studies
should be included (Topicality). Hence, a good library has to be continuously
maintained and updated. A history of the changes to the library may support
the Ease of Use.

The responsibility for all that work should be shared by several persons. We
refer to them as maintainers of the library. Ideally, the maintainers themselves are
active researchers in the library’s field. This allows them to assess the significance
of submitted instances and to keep track of current trends in the community.
However, this also means that there has to be sufficient financial support enabling
the maintainers to spend part of their time on the library. Maintaining a library
should also be credited by the community, like being on the editorial board of a
journal.

8. Experiments 351

Table 8.1. Examples of established test data libraries

Library Short Description

CATS combinatorial optimization and discrete algorithms
CSPLib constraint satisfaction problems
FAP web frequency assignment problems
GraphDB exchange and archive system for graphs
MIPLIB real-world mixed integer programs
OR-Library operations research problems
PackLib2 packing problems
PSPLIB project scheduling problems
QAPLIB quadratic assignment problem
QBFLIB satisfiability of quantified Boolean formulas
SATLIB satisfiability of Boolean formulas
SNDlib survivable fixed telecommunication network design
SteinLib Steiner tree problems in graphs
TPTP thousands of problems for theorem provers
TSPLIB traveling salesman and related problems

Nevertheless, the work should not only be done by a few maintainers. The
community as a whole is asked to provide new useful instances, point to new
interesting results, and report errors. Contributing researchers should be ac-
knowledged for their suggestions in the library. If the support of the community
is missing, a library project might even fail. Lots of researchers should be en-
couraged to use the library. Thereby, they will most likely become active con-
tributors. This again emphasizes that the role of a broad advertisement of the
library cannot be overestimated.

Altogether, a library can be seen as kind of an ongoing open source software
project. New stable versions have to be provided in regular intervals by some
responsible maintainers, assisted by a community of volunteers.

8.4.4 Examples of Existing Libraries

There is a wide variety of existing test data libraries. Table 8.1 lists some of
them, but is by far not meant to be complete. All of these libraries may be easily
found on the Internet by using any search engine. We close our discussion of test
data libraries with a more detailed view on four example libraries. Thereby, we
summarize the most important issues from the previous sections.

CATS. The ambitious library CATS was announced in 1998 [341]. Different
pages, each devoted to a specific problem, with a unified layout should be
maintained by volunteers using contributions from researchers. Unfortunately,
it seems that the community did not use and support the CATS library as it
would have deserved. But as we pointed out in Sections 8.4.2 and 8.4.3, the
support of the community is crucial for the success of a library.

352 E. Berberich, M. Hagen, B. Hiller, and H. Moser

CSPLib. The first release of CSPLib stems from March 1999 [327, 328]. It
contained 14 problems in 5 overlapping areas. Today there are 46 problems from
7 areas. Hence, at first glance the library is not very large—although 46 is only
the problem not the instance count.

Since very often the solvability of a constraint satisfaction problem depends
on data representation, the library creators decided to be as unprescriptive as
possible. The only requirement is that the problems are described using natural
language. The main point is that no instances have to be given. Thus, the CSPLib
is rather a problem than an instance library, which somehow qualifies our above
remark on the library size. On the one hand, using natural language description
eases the input of new problems which might encourage researchers to contribute.
But on the other hand, the derivation of concrete instances from the specification
might be quite cumbersome. Both factors influence the Ease of Use, which is an
important property for every library.

SATLIB. It was established in June 1998 [410]. Different from the above de-
scribed CSP-situation, there is a widely used and accepted data format for SAT-
instances—the cnf format from the Second DIMACS Implementation Challenge.
As we pointed out in Section 8.4.2 such a widely accepted data format is the
basis for a wide usage of the library.

Unfortunately, the current stable version 1.4.4 of SATLIB is still from 2001.
The SATLIB-page announces an update since 2003, but as we pointed out in
Section 8.4.3 this includes lots of work. This is a downside of maintainers be-
ing active researchers. Since they also have to do non-library work, necessary
activities concerning the library may take a while. A possible way out might be
the engagement of some assistants, when major changes are due. But this would
require a broad financial support of the library.

TPTP. The library containing instances for evaluating automated theorem
provers started in 1993 [768]. It has become a nearly perfect library.

Again, different to the situation for constraint satisfaction problems, widely
accepted data formats exist, which are used to represent the instances. Over the
years, TPTP continuously grew from 2295 instances from 23 domains in release
v1.0.0 to currently 8894 instances from 35 domains in release v3.2.0. Instance
files include ratings denoting their difficulty.

The library not only includes many of the instances known to the community,
but also generator programs for artificial instances. Thus, it is as comprehensive
and diverse as it could be. Due to its Completeness and Diversity, TPTP served
as a basis for lots of CADE ATP System Competitions in the last years.

Concluding, we can state that TPTP is a highly successful and influential
library for the field of automated theorem proving. Such an impact should be
the main purpose of any library.

8. Experiments 353

8.5 Setting-Up and Running the Experiment

The setup of experiments and their execution require a precise plan that de-
scribes the steps to be taken, in every science. These phase is located between
the design idea, its implementation, and the evaluation of results together with
insights gained during one run through the cycle of Algorithm Engineering. First,
you have to think about what you want to report on, to find falsifiable hypothe-
ses that should be supported or rejected by experiments. Section 8.2 covers this
part. If not yet done, you should then implement the algorithm. For details see
Chapter 6. How to come up with a meaningful, big amount of input instances
has been discussed in Section 8.3. Before we can evaluate results in Section 8.6
it is needed to set up a well-suited test-bed and run the algorithms on the data, a
non-trivial task. This section focusses on the difficulties that arise in Algorithm
Engineering, that mainly consist of two areas of interest. First, experiments in
computer science have been ignored for quite a long time. Only in the recent
years, researchers rediscover their strength and possibilities. Some of the hints
given in this section address in general computer scientist and aim to encourage
them to run experiments. The goal is lead the community to good experimental
work, as it is the case in other sciences. Thus, the hints mainly adapt state-
of-the-art rules, applied in e. g., in natural sciences, and turns them towards
computer science. Second, the cycle of Algorithm Engineering naturally forces
experimenters to run similar experiments over and over again. Thus, further
remarks recommend how to ease this process, while still being accurate as an
experimental science demands. For the sake of better distinction, the setup-phase
is elaborated first in Section 8.5.1, followed by hints applicable in the running-
phase mentioned in Section 8.5.2. It is useful to learn about pitfalls of both
phases before running any experiment. Section 8.5.3 gives additional advice for
approximation algorithms and collaborative experiments.

Most pieces of advice originate from the recommended overview paper written
by Johnson [437] and a crisp collection of “DOs” and “DON’Ts” stated by Gent et
al. [325]. We extend them by hints presented in a paper of Moret [584]. Given
suggestions and motivations are also influenced by personal experiences. These
are gained by experimenting in the area of computational geometry done in the
past yeast and those planned for the future. Some analogies to natural sciences
are taken into account from personal communications.1 Most of the given hints
and suggestions are not problem-specific, since they can be applied to almost
any experiment one can think of. Otherwise, special cases are pointed out. This
section mainly collects an important set of high-level hints for an experimenter.
For problem-specific experiments, possibly proper and case-specific extensions
have to be done. Furthermore, as “DON’Ts” describe prohibitions all pieces of
advice are stated in a positive, constructive manner. Several ones might overlap
with others, which is due to the complexity of the whole area. Thus, the reader
should not be bothered, when reading some statements twice. In contrast, this
emphasizes the argument’s importance and points out existing correlations.

1 With Peter Leibenguth.

354 E. Berberich, M. Hagen, B. Hiller, and H. Moser

8.5.1 Setup-Phase

A well-organized laboratory is essential for a successful experiment in natural
sciences. Often, scientists, in these areas, have to deal with a lot of restrictions
or have to experiment outside of the laboratory. Unlike finding their laboratory
somewhere, algorithmic scientists have to use computers. The experimenter is
faced with the possibility to adjust a huge bunch of parameters. Algorithm Engi-
neering aims for a best choice. Experiments serve to support the chosen decisions
or falsify some considered hypothesis. Otherwise, if experiments are set up arbi-
trarily, their results may loose every meaning. In the following, we collect advice,
such that an experimenter can avoid some pitfalls that might occur during the
setup of an algorithm experiment.

Use available material! When reinventing the wheel, an experimenter may
loose huge amounts of his limited time to finish the experiment. Public reposi-
tories or selected requests to other researchers should help to save time. To use
available material is suggested. Two reasons exist to do so. First, experiments
should be finished as soon as possible, which does not mean to carelessly exe-
cute them. Second, results need to be related to exiting set-ups and experiments.
For the sake of reusability, the focus lies on available test instances and
implementations.

Test sets may be obtainable from internet repositories as presented in Sec-
tion 8.4 or from the authors’ homepages. Some journals support publishing of
additional material, so this is another place to look. If there is a standard library
of instances, you are always supposed to use this instance library. In case the
original test set is not available, but was generated artificially in some way, you
should regenerate instances with the same parameters as the original one. This
requires a detailed description of the generation process and the parameters used
in the original paper.

The same holds for the implementation. Sometimes the source code is publicly
available. In other cases the authors may be willing to provide it for further
experiments. If you do not have access to the source code, you should implement
the algorithm yourself, taking into account the implementation details that were
reported. A new implementation in your computing environment or recompiling
available source code is clearly preferable to make the old results comparable
to yours [60]. However, a new implementation may be infeasible, for instance,
because the algorithm is too complex or important details of it are unknown
(e. g., of an commercial implementation). In this case you have to stick to some
reasonably good implementation.

Once an implementation and the original or similar test sets are available, it
is a good idea to try to reproduce the original results qualitatively. In particular,
this is running the experiments on the test set, measuring the necessary quanti-
ties and checking whether the data is consistent with the claims in the original
publication. A discrepancy should be pursued, as it is usually indicating a flaw
in the implementation or test setup.

8. Experiments 355

To enable other researchers to participate in the process of Algorithm En-
gineering, is is recommended to publish as many details as possible to ensure
reproducibility. At its best, it is advised to provide source code and full data
sets.

Ensure you use reasonably efficient implementations! An efficient im-
plementation is the most fundamental part for the experimentation procedure.
Johnson [437] states three major advantages.

– Allow to support claims of practicality and competitiveness.
– Results of inefficient implementations are useless, since they most proba-

bly change the picture one would actually expect from implementation in
practice.

– Allow to perform experiments on more and respectively larger instances, or
to finish the study more quickly.

Chapter 6 already discusses the implementation task with all its aspects. A main
source of information how to reach efficient code is contained in Section 6.3.1
that describes tuning techniques. Often it is impossible to implement all known
speed-up techniques (it would take too many resources and too much time). But
then one has to be careful with claims such that the resulting implementation
equipped with these tricks would be competitive to the ones using speed-ups.
Such an argument lacks plausibility. It is completely unknown whether certain
tricks make sense for any other algorithm, and if so, in how far they actu-
ally improve the running time. Similar arguments hold for other performance
measures.

Compilation. In order to get efficient code, it is important to choose the right
combination given by the platform. Note that the programming language matters
as much as the compiler and its options. In general, you should take a compara-
ble environment. If you only benchmark your algorithm, then the programming
language is quite unimportant, but in case you compare with others, even if only
copying their running times, it is advised to use roughly the same technology for
the implementation. If existing experiments are implemented using C++, coding
your algorithm in Java will make a comparison very difficult.

To avoid unnecessary slowdowns, you should always run compiled code instead
of interpreted code. For sure, compiling code is a science in itself, but basic rules
can be stated here, too. When you compile code for experiments which include
timing, switch off all debugging and sanity checks in your code. A print-statement
usually takes a huge amount of time, and pre-, post- and assert-conditions also
only slow down the computation time. They only aim for the correctness of
your code during runtime, while especially for non-trivial routines, they might
influence the worst-case running time. Therefore, failures in these conditions
on your test data indicate bugs. Testing your code on the data with active
conditions is required, but for generating publishable performance measures and
also to distribute your software, remember to deactivate them. If now new errors

356 E. Berberich, M. Hagen, B. Hiller, and H. Moser

or crashes appear, you can be quite sure, that a sanity check contains a side-effect
which should be definitely avoided.

Deactivating debug code and compiling in optimized fashion also holds for sup-
porting libraries used in the implementation of your algorithm(s). Commonly,
these supporting libraries are used for subroutines or atomic functionality. Usu-
ally, they are called quite often and you have to ensure you select the right
implementation. An infamous example is using a Θ(n2) sorting routine. Espe-
cially when you use experiments to approximate the asymptotic running time of
a theoretically unanalyzed algorithm, such an influence is without doubt. Even
if it is the case that you have chosen the theoretical best-known algorithm for a
subroutine, big constant factors, that play an important role in implementations,
will influence the algorithms performances dramatically and may destroy com-
petitiveness of the implementation of your algorithm. Note that in experiments
we always compare implementations of algorithms only and not their theoretical
behavior.

Coding. Section 6.3 already suggests not to spent too much time for fine-tuning.
The bottom-line is to produce reasonable efficient code in a reasonable amount
of time. Code documentation as explained in Section 6.5 is also demanded. It
serves to remember details of the implementation and helps others to under-
stand your software, especially when published under an open source licence.
Published software enables other researchers to run your experiments on their
own machine, maybe slightly modified due to new algorithmic ideas. Further-
more, they possibly submit bugs to you.

Section 6.2 has covered techniques to avoid bugs. Some bugs should be fixed
when entering the experimental phase. Namely, the bugs that make the software
crash, and bugs that lead to a wrong output. But there are also bugs that neg-
atively influence the performance of the algorithm. To find such bugs bears out
as a non-trivial task and experiments seem to be the main technique to detect
such hidden errors. They will never show up voluntarily, you have to search for
them, which needs some indication. Otherwise, you just believe that the perfor-
mances are already optimal. The only chance to find them is some deviation in
the results. Profiling your code gives a very good overview which subroutines are
called very often, and which consume a lot of time. Unfortunately, some bugs
cannot be detected by a profiler, e. g., filter failures as mentioned in Section 6.3.1.
Either you design and prove theoretically the lack of such failures, or you have
to implement a testing layer in between the high-level parts of the algorithm and
its subroutines, to see whether equal objects are not identified. Both methods
are rather disappointing and success is not guaranteed. If you do not believe in
bugs that destroy the performance of an algorithm look at this example. Con-
sider an implementation of quicksort whose choice of the pivot element is not
random due to some wrong variable usage, e. g., by accident. Whenever your
algorithm needs to sort some structured containers, quicksort suddenly performs
at its worst-case running time of O(n2).

8. Experiments 357

Systematic Errors. It seems that systematic errors during experiments on algo-
rithms can be avoided from scratch, while, for example, physicists face uncertain-
ties in there measurement devices or are unable to measure at the actual point
of interest. Unfortunately, these appearances are deceptive. At a first glance,
nearly everything seems to be under control, but you have to make sure that
you have control of the right points. A wrong position of a timer, e. g., in the
innermost loop, changes the whole performance of an algorithm dramatically.
This example comes along with having too many timers in the code. You should
always scrutinize whether your decisions make sense in your setting and whether
your measuring methods keep the experiment free of bad influences.

Check your input data! Before running the actual experiments ensure you
use correct input data. In general, if your input data set covers a significant
part of the allowed input space for your algorithm, you are doing the right
thing. Section 8.3.1 discusses in detail what needs to be considered to find a set
of instances with enough variety, and Section 8.3.2 deals with advantages and
disadvantages of artificial and real-world data. A useful set of instances contains
a balanced mixture of both.

Your data sets might be corrupted or faulty generated. Real-world data are
often corrupted or need special preprocessing. Buggy generators may create arti-
ficial data that do not produce the desired sets. Careful experimentation checks
the appropriateness of such data before running time-consuming algorithms. As
explained in Section 8.3.2 non-random numbers might also bias the data gener-
ated sets. In general, each single data instance should be free of redundancies, for
example, the same points twice when computing the convex hull of points. Oth-
erwise, you only check the caching strategy rather than running the algorithm
on a bigger instance. Of course, it is useful to see whether an implementation
handles redundancies optimally, but better check this performance with its own
experiment.

Data sets might also be to simple. This mainly addresses input data that
are processed within a fraction of a second. Instances should be chosen in a way
that measurement’s noise does not affect the results. Hereby, noise denotes points
which affect running time in general independent of the specific algorithm which
should be tested. Today’s computers consists of several units, e. g., pipeline,
register, memory hierarchy. Hence, it takes some setup time until all operational
units of the computer fully work on executing an algorithm. This is denoted by
measurements noise, which barely can be ignored if your input instance runs
only for some milliseconds. On current machines, a good advice is to use input
data that run at least a second. The situation might be different, when aiming
for counts only or when dealing with real-time computations.

Use different platforms! The best implementation is only as good as the
supporting environment. This means that the environment plays an important
role in setting up an experiment. In computer science, the performance of an
implemented algorithm crucially depends on the used hard- and software. The

358 E. Berberich, M. Hagen, B. Hiller, and H. Moser

following questions need to be answered. Which processor is used? How much
memory is available? How is the memory hierarchy organized? How many reg-
isters are available? What is the underlying operating system? Which compiler
was used, additionally given chosen compiler options? Which supporting libraries
are utilized? Obviously, you cannot test your algorithm for all possible combi-
nations of hard- and software, but restricting yourself to implement it only in
one specific environment may change the picture. Beyond, it may lead to hy-
pothesizing non-existing conclusions of the data due to specific behavior in the
external environment, e. g., a special caching strategy of the operating system
which influences the movement of data.

It is strongly recommended to test algorithms at least on a small set of
different architectures and with different compilers. A good balance between
different environments and fine-tuning of code for each one should be found.
Running the same experiments on different platforms helps to avoid to draw the
wrong conclusions. Whenever these implementations show surprising differences
in their performance measure, it is a must to ask why and to find the answer.
These differences show whether the implementation in the environments are free
of dependencies to the setup and therefore allow to draw setup-independent
conclusions.

Aiming for comparability of experiments, the calibration of the machine(s)
is a lot more useful than just stating the architecture and the speed of your
processor. Architectures change within a couple of years dramatically, which
makes it difficult to relate new results to old ones then. Calibrating the machine
means to compile and run in your setup a small piece of code that is publicly
available and known as well as accepted in the community. Its output states
more about the problem-specific performance of the machine than the CPU

speed does. Future researchers can then adapt their machines the same way
which enables them to normalize the old results to their own new results. There
is a chance that this normalization fails. But in most cases it is much more
valuable than normalizing to the pure CPU speed and obviously better than
forgetting about it.

Use appropriate formats! Section 8.3.1 already discusses the need to carefully
select the format for input instances. On the output side of the algorithm we
will see a bunch of results, at least the measures selected during the design of
the experiment, e. g., running time. See Section 8.2.2 for more details. If we are
purely interested in the primary measure(s), we can just print this information
to the console. But thinking a little bit further, it can be seen that it is really
useful to have self-documenting programs. Consider a question of a reviewer
that comes months after you actually run the experiments or you want to do a
follow-up study. In both cases you have to remember most of the old results, and
expect that your personal memory might forget most of these things. Therefore,
it is strongly recommended to create some self-explaining output format for each
run that collects all relevant data, which, for example, consists of the following
list.

8. Experiments 359

– Main measures, like CPU time, solution quality, and memory usage.
– Algorithm data, like the name and version of the algorithm, its parameter

settings.
– Meta data, like the date, the name of the instance.
– Setup data describing the used machine, memory hierarchy, used compiler

and its flags.
– Supplemental measures that can be useful when evaluating the data in the

future, like intermediate values, operation times or simple counts of operation
calls.

Especially, when computing the additional data, one should avoid to harm the
overall performance of the algorithm. If an additional value can be stated without
extra costs, it would be careless to omit it, since otherwise, you need to rerun
the experiment to get its data, which would be really expensive. A sophisticated
design of the experiment that checks which data should be outputted before
starting the actual running phase is strongly advised.

The used output format should be of clear and effective syntax. Furthermore,
avoid using abbreviations, since every value that cannot be interpreted correctly
in the future is useless. XML might be a good candidate as format choice, but one
should definitively check whether it fits all needs while staying simple enough.

We want to go even further and enforce every setup to combine input in-
stances, implementations, and results into a common framework.

Do use version control! So far, we have learned that the setup for an em-
pirical study is far away from naively implementing some small environment.
In contrast, most experiments start with some initial setup and are constantly
evolving. They become larger and more complex, e. g., new algorithms are being
added, methods are changing, additional instances should be tested and bugs
will be fixed. In summary, this is a perfect setting for a version control system
like Concurrent Version System (cvs) or Subversion (svn) that have already been
recommended for the implementation of an algorithm in Section 6.6.5. A version
control system allows to store snapshots of the current system in a common
repository, which can be also accessed and fed by a group of developers.

Putting all changes of your setup constantly on a repository provides several
advantages:

– It allows you to go back in time by checking out old versions, it ensures
reproducibility. You are able to rerun all your experiments.

– It also provides tools to compare two versions, which offers the possibility to
check which changes result in better or worse algorithmic performance.

– Not using a version control system is a quick way to loose control over
different versions of your environment. You may store your files within time-
stamped directories. But then, fixing a bug in one version, while improving
a heuristic in another one will quite surely lead to a third version, which
contains the bug again. Version control cares for these changes. Thus, a
fixed bug cannot appear again in the future as it might happen when human
beings maintain different copies of a file.

360 E. Berberich, M. Hagen, B. Hiller, and H. Moser

– Storing subsidiary data close to the executables of the experiment is much
better than maintaining a bunch of files, or even to use your personal memory
that might be more forgetful than everyone hopes for.

Obviously, the version control on a central server only makes sense, when the
repository is under control of a reliable backup system. Otherwise, you may
lose your complete work which contradicts the aim of reproducibility. Assuming
that version control systems are error free may lead to useless experiments, too.
Although version control systems like cvs and svn are quite matured, having
an eye on its operation, e. g., whether diff works fine and versions are properly
stored, is good advice.

Use scripting! As we know, Algorithm Engineering, and especially experimen-
tation, consists of an iterative procedure to progress and to reach publishable
results. Several tasks have to be performed a repeated number of times or similar
jobs should be controlled over and over again. Instead of starting each single run
manually, it is advised to analyze the structure of the experimentation in detail.
Its evaluation will lead to a bunch of scripts and proper pipelining. At its best,
it suffices to only press the red button. In the end, processed data are collected
and may be already presented in figures which are a fundamental help in data
evaluation. Scripting and version control are fundamental partners. With such
a setup, the researcher can concentrate on developing algorithms and selecting
or generating instances while the actual experiments run automatically, maybe
scheduled at regular times on your machine or during night.

With ExpLab [389] a set of tools is provided that collect the mentioned parts
out-of-the-box. It offers scripts that allow to set up and run computational ex-
periments, while also automatically documenting the environment in which an
experiment is run. Assuming that the same environment is still available, it al-
lows to easily rerun the experiments and to have a more accurate comparison of
computational results. Finally, ExpLab provides text output processing tools that
help dramatically to eliminate some tasks needed for collecting and analyzing
the output. Its overall goal is to augment existing tools to reach a comfortable
experimentation environment. Unfortunately, its development has been stopped
and it is built on top of cvs instead of svn.

8.5.2 Running-Phase

Once the laboratory is prepared and set up, it is time to start the experiment.
During setup you tried to exclude all environmental errors for the experiment.
But obviously, while running an experiment further errors can be made. In a
natural science experiment, wrong timing may destroy the whole result. Fur-
thermore, forgetting to write down parameters disposes you of the possibility
to publish any valid result. In some way, these strict rules seem to be forgot-
ten when publishing experimental results in computer science, especially perfor-
mance measures of algorithms. In contrast, reviewers would be very happy to

8. Experiments 361

get informed about the main facts the experiment was run with. Therefore, ap-
plying adapted methodology from natural science to your experimental running
phase prevents you from having no answer to questions asked by colleagues or,
even worse, reviewers. It is recommended to check in how far the following hints
should already be considered during the setup, although they address directly
the running-phase.

Keep notes! Each experiment in natural sciences is only valid, if any other
similarly equipped laboratory can reproduce the same result. That requires a
detailed description of what you did and what you found out. In computer science
this should also apply.

During setup you already decided, which data will be collected and how to
store them. The claimed hypotheses also prompt you to combine algorithms with
data instances. A script lets them run and produces a vast amount of output.
Ensure that this output is also accessible in the future, which means to put them
under version control, too. In case you get asked you can present all details, or
you can also test other instances in the future and relate them quite accurately
to your original results.

Additionally, you should remember to write down and store all good and bad
conditions of your algorithm. You might rely on your personal memory, but
to be sure, it is a better idea to store them explicitly. Furthermore, consider
the possibility of handing over the laboratory to a colleague. He can only build
on the content stored in the repository since he has no direct access to your
memory.

Change of Factors! Some algorithms can be fine-tuned by one or several
external parameters, also known as factors as explained in Section 8.2.3. The
actual behavior of a heuristic or the overall algorithm can be influenced. For
an experimental setup it is necessary that the parameters are either completely
fixed and reported or they purely depend on the data given in the instances
to be computed. In the first case, reproducibility forces to assign some values.
Usually, it would be very interesting to know how the algorithm behaves with
other settings. If not fixing parameters, most people experiment with the settings
to find out which combination leads to the best algorithm’s performance. Due
to this fact, before determining the parameters, an algorithm is actually not
properly specified. Only by searching for the proper values experimentally, the
algorithm will be finally determined. But this may result in having different
algorithms for different instances. In contrast, we also want to encourage you to
experiment in certain boundaries with the parameters, since these might lead to
unexpectedly good performances.

To sum up, if you use different parameter settings, where each applies to a set
of different instances, the choices must be well-defined or should be determined
algorithmically from the instances. You also need to report and describe the
adjustments in all details, as well as the running times spent to find the optimal
parameter settings in your publication.

362 E. Berberich, M. Hagen, B. Hiller, and H. Moser

Change only one thing at a time! This advice is closely related to the
preceding one, as well to the planning phase of the experimental work. While the
first one deals with the parameter settings of an algorithm, the latter one must
be considered when testing different instances. Thus, to reach reliable results
it forbids to vary more than one parameter from one run to the next. In the
example of different instances this means that you either change the size of the
input, its complexity, or you chose another type of variation. If you need to
change parameters of your algorithm, also make sure that you only tune one
parameter at the same time.

This rule originates from natural sciences, where you also change, for instance,
either temperature or pressure, but never both at the same time. Obviously,
it forbids changing the type of the instance in combination with tuning some
parameters. Especially in this case you get performance values that never mark
valuable comparison results.

Run it often enough and with appropriate data sets! Once everything
is set up, relying on a single run may lead to conclusions without value. Each
proposed claim should be supported by a set of independent runs. You also need
a significant amount of runs to reduce the influence of external factors, i. e., to
average and probably get rid of the noise. Especially randomly generated data
might have a big variety, even when they originate from the same generator. If
you want to check the performance of several algorithms on randomly generated
data, it is a good choice to use the same set of instances for all algorithms instead
of generating them independently for each run.

It is recommended [437, 325] to look at as large instances as possible. First,
this gives a better indication of the asymptotic behavior of the running time
or the approximation gap of your algorithms. Second, important aspects and
effects may only occur at large instance sizes due to some boundary conditions,
e. g., cache effects. Looking at huge instance sizes also strengthens your claims,
especially when the instances are bigger than the ones you expect in practical
environments.

If you are using scripts or the tools proposed in Section 8.5.1 it should be easy
to set up a powerful and automatic schedule which can run during the night and
present you a list of results the next morning, depending on the algorithm(s)
and data sets.

Look at the results! This sounds like an obvious piece of advice, but it is a
crucial one. First of all, check whether the actual output, the result the algorithm
is implemented for, is correct. If not, you have to search for bugs. If the results
are correct, check whether the global picture is consistent. If you are in the
lucky position, that your scripts have produced some plots automatically, these
pictures help to find out whether the algorithm(s) on the checked instances
behave smoothly. Either you will see a picture, as you might have expected,
which then supports your claimed hypotheses, or, in contrast, some anomalies
occur, e. g., exceptional high or low running time for a specific instance or family

8. Experiments 363

of data sets. Have a closer look at them and explain why they behave differently.
An origin might be a bug. Or you will detect that this behavior is intrinsic to
the algorithm, because this certain family of data always forces the algorithm to
compute it that special way.

In Section 8.6 we explain how to evaluate the performance values in more
detail. The now following tools already have to be considered during the running
phase of the experiment.

– Be sure that all important and interesting subsidiary values are contained
in the output of every run. You may have identified them in advance. Now,
they help to understand the runs with more insight and maybe they give the
right hint why certain data forces the algorithm to work differently.

– Much more insight to the algorithmic operations can be gained from the
results of a profiler, a tool that collects run time information of a program,
i. e., it measures the frequency and duration of function calls. Well-known
profilers are gprof2 and more recently callgrind/KCachegrind.3 Analyzing
such gathered information presents quite exactly and itemized where run-
time is spent, how often functions are called, where the algorithm behaves
as expected and where not. In general it helps to optimize the code. Here,
the number of function calls define a very good picture on the topological
structure of the algorithm. In a sense, it gives a function to each called
subroutine in the input size. Computed ratios of used time and number of
function calls, i. e., normalization, show which subroutines take longer than
others. By having a close look at the profiled runs, you can also find out why
a worst-case algorithm of O(n2) behaves in most cases similar to O(n log n)
or why a quite complicated algorithm outperforms a simple one.

Unfortunately, it depends on the specific algorithm how to analyze all this
information and what can be derived from it. Note that you have to check
whether the output of the profiler really makes sense. In most combinations,
it is necessary that every involved code is compiled for profiling. Otherwise,
durations of subroutine calls, say of external libraries, are assigned uniformly
instead of assigning them to the actual calling functions. Let us consider
the example, where fast integer multiplication is provided by an external
library. The algorithm has two fine-tuned subroutines, one that needs to
multiply quite small integers (< 50 bits), another one is multiplying quite
long integers (> 200 bits). If both subroutines are roughly called the same
number of times, then a wrong configuration, where functions cannot be
profiled in detail, will present you that both roughly need the same amount
of time, since it just averages over all calls to integer multiplication. But
actually, the second routine takes much more time than the first one. The
bottom-line is to be careful when interpreting presented data of a profiler.

Do unusual things! At a first glance, this final suggestion sounds spooky. Do
not get it wrong. Obviously, you should avoid following futile ideas all the time.
2 http://www.gnu.org
3 http://kcachegrind.sourceforge.net

364 E. Berberich, M. Hagen, B. Hiller, and H. Moser

But in some situations, it might be helpful to vary an implementation a little
bit. In most cases, it will be only justified, that you bark up the wrong tree.
But maybe your algorithm turns out to behave better. An example can be a
randomized choice of pivot versus a deterministic choice. Bearing away can help
to understand better what your algorithm does. Sometimes, you should allow
yourself to open your mind to crazy ideas. It helps to be more creative. A lot
of serendipities in other sciences originate from doing crazy things rather than
following the rules, or, as you might know from famous examples, they happen
by accident. In software experiments this may relate to an implementation that
is actually buggy, but has a better performance.

8.5.3 Supplementary Advice

The last parts listed in detail how to setup the environment for good experi-
mentation and how to run them with care, based on the assumptions that you
know what you want to see. But experimentation is more than just executing
algorithms and evaluating the results that support or disprove some hypothe-
ses. Note that experimentation actually consists of more than the setup-phase
and a single round of the running-phase. Only a cycle of testing and refinement,
supported by profilers, measurement and evaluation of data, allows to identify
bottlenecks, to reduce the usage of the memory, or to find out, which interme-
diate values should be cached and many more. All these efforts may lead to a
speed-up in running time, sometimes by an order of magnitude, or even several
orders of magnitude.

In case you started with some open research questions, the first results of a
running-phase may quickly lead to new questions. It is a law by itself, that good
experiments constitute a rich source of new conjectures and hypotheses. Actually,
some exploratory experiments, without going too much into details, help to find
good initial questions. These may show whether an algorithm is competitive
or not. We propose, you spent the first half of your time to generate lots of
data and search for patterns and anomalies. Based on this, you can finalize the
implementation while you consider the advice mentioned before. Namely, design
the important questions and then, perform trustworthy experiments to support
your claims. Evaluation may already lead to newsworthy results, or you iterate.
Experimenting is a dynamic process, but ensure to fix a point where you stop it.

The end of this section covers two additional subjects. First, we give hints
when dealing with approximation algorithms, and second, we outline some
details, when jointly experimenting within a group of researchers and sites,
respectively.

Approximation or Heuristic Algorithms. Up to now, we mainly focused
on the running time as the main performance measure of an algorithm. In con-
trast, an approximation algorithm needs to be handled differently. Its main per-
formance measure consists of the solution quality. Approximation algorithms
usually deal with NP–hard problems, where one obviates handling the exponen-
tial number of possibilities, or in problem areas where running time is crucial,

8. Experiments 365

whereas the result does not need to be optimal. In most cases, approximation
algorithms compute better solutions the longer they run. So running time and ap-
proximation value may be related. However, researchers often choose the wrong
stopping criterion, since otherwise their algorithms would run very long.

Choose the right stopping criterion! There are two critical stopping crite-
ria for an approximation algorithm, namely running time and a known optimal
value. For the latter one there is an exception: When an algorithm can prove
the found solution to be optimal it is admissible to stop immediately. Unfor-
tunately, most algorithms fail to designate such a proof. But taking a known
optimal solution as an a-priori stopping value raises the question why to run
the approximation algorithm at all. In practical settings this criterion is purely
without any sense, since for any interesting input the optimal solution is surely
unknown. Usually, one seeks for near optimal performance values in relation to
some other quantity. For example, a good travelling salesman tour with respect
to low query times. But, tests with only these special data sets omit to reflect
performance in practice and fail to be reproducible. You will see dramatically
different running times for similar instances, depending on whether the optimal
solution is known or not.

Fixing a certain amount of time as the running time of an approximation algo-
rithms also contradicts the need of reproducibility. Note that “run-the-algorithm-
for-an-hour” is, in some sense, an undefined algorithm. Changes in the setup, e. g.,
all factors described in Section 8.2.3 that define the experiment like machine, op-
erating system, or implementation, lead easily to results of another quality. In
some settings this idea looks like the perfect choice to compare the quality of
algorithms, but if you run the same tests on a machine which is much faster, all
algorithms will, hopefully, perform better, which is less critical, while a change
in the relative ranking is more substantially.

Much better than time bounds are structural measures such as number of
branching steps, number of comparisons, or maximal depth of tree as introduced
in Section 8.2.2. Using such measures enables us to have a well-defined algorithm,
whose running time and quality of solution is expressible as a function of this
combinatorial count. At least the latter should be reproducible now. It is possible
to combine the solutions with the running time in relation to the combinatorial
count. Listings of these relation allows future researchers to compare their so-
lutions to yours and to detect the influences two different environments have.
When switching machines, one has to apply benchmarking and normalization as
explained in Section 8.5.1.

Another possibility of a stopping criterion may be a result that is close to
a bound. Such a bound must be easy to compute while close means to differ
from it only by a small factor, like 0.01. Consider, for example, a minimization
problem with an optimal value OPT for a certain instance and for which we
know a lower bound LB. The current approximation of a algorithm is given by
APP . If APP < 1.01LB we know that APP < 1.01OPT , since LB < OPT ,

366 E. Berberich, M. Hagen, B. Hiller, and H. Moser

and the algorithm decides to stop in this case. Note that this requires that the
approximation algorithm is able to improve its result with more invested time.

Joint Work. Especially when comparing different algorithms one might expect
that common work is undesired by competitors. Obviously, no one is interested
in losing a game. But at the same time, you might spent more time on other
tasks than on implementing someone else’s algorithm as enthusiastically as your
algorithm, with the goal of an efficient implementation.

What prevents researchers from working together more closely? It is not as
worse as it seems. Indeed first steps are already done, e. g., by maintaining com-
mon databases for instances. Of course, there are already collaborations when
running experiments, but too few at the large scale. If we assume for now, that
people of a community are willing to and decide to set up a common labora-
tory, then we have to check what else needs to be considered in addition to the
previous suggestion.

Split the work! As said, no one has the time to do the whole job. One solu-
tion is that everyone who wants to participate in the common laboratory has to
concentrate only on his small specific task. In terms of algorithmic experiments
this equals to provide an efficient implementation of an algorithm. Using version
control, it is quite easy to commit new software to a common repository that
is set up following the general rules mentioned earlier. Of course, a single site
or person has to install the environment, but compared to implementing several
efficient algorithms, this is quite an easy task. A discerning reader may come up
with the question of how to ensure the same quality for all implementations such
as using the same new speed-up tricks. This is indeed a problem, the community
has to deal with. We propose to publish the results on a website.4 Significant
changes in the performance values are immediately visible to everyone involved,
which results in asking questions and starting discussions, why some algorithm
performs much better than others. In general, implementing an algorithm needs
to follow some common guidelines to be constituted when starting the collabo-
ration. All questions related to this should be covered in Chapter 6.

Generating the actual results requires two following steps. First, one has to
select on which instance sets the algorithms should be tested. Second, one has
to run the experiments. Instances that should obviously use the same common
format, either come from an instance database, or researchers can put their own
generated data sets also under version control and then combine it with algo-
rithms. In some cases, the group may agree to have a committee to decide which
combinations make sense. For the second task, the group may rely on some
scripts to be written. Actually, the whole procedure especially makes sense when
running the experiments regularly, while algorithms, or at least their implemen-
tations, are still under development, which means that there are still untested
ideas.
4 The community has to decide whether the site is publicly available or closed to

members.

8. Experiments 367

Finally, everyone profits from the collaboration since progress in some algo-
rithm is visible to all, and people start to discuss and to improve their own
implementation based on this knowledge. Additionally, a regular execution of
the committed experiments makes it easy to check out, how a new heuristic
and algorithmic idea performs. Since the work assigned to an individual is quite
small, while constantly comparing with others, the idea of a common laboratory
as presented here, seems to be a fruitful environment for experimental research
in algorithmics, and we encourage communities to install corporate laboratories.

8.6 Evaluating Your Data

After you have run your experimental setup you are left with a bunch of data.
The next task is to figure out whether this data supports your working hypothesis
and what else may be deduced from it.

The first thing to keep in mind is to look at the data without being biased by
your working hypothesis. Of course, the working hypothesis provides a starting
point for the investigations.

In general, it is important to observe patterns in the data and to try to
explain them. This explanation step may involve a more detailed analysis and
also new experiments. For example, you might discover that a branch-and-bound
algorithm using your new pruning rule performs worse than using the old one.
The reason for this might be either poor pruning or too much time spent for
the pruning so that in total it does not pay off. To investigate this question you
would need to look at the number of nodes visited by the algorithm and the
fraction of the time spent for pruning. Depending on your experimental setup,
you may be able to derive this additional data from the results you already have.
Otherwise you would need to rerun your experiments.

It usually pays off to let your experimental setup generate “raw” data, i. e.,
instead of averages and maybe minimum and maximum record all values, as
well as related quantities which might be of interest. Although this may create
large amounts of data it saves you from running your probably time-consuming
experiments often. Nevertheless you should always think about whether the data
you have is really sufficient to provide support for your hypothesis. If this is not
the case you need to gather more data.

The significance of your findings is increased if you can provide explanations
or more detailed accounts. For instance, it is not only interesting which algo-
rithm runs faster, but also where the respective running times come from, i. e.,
which parts of the algorithm contribute to the running time. Sometimes it is
possible to look at more machine-independent running time measures, for ex-
ample nodes evaluated in a branch-and-bound algorithm, improvement steps
taken in a local search heuristic, or simply the number of iterations. It may be
worthwhile to investigate how these measures depend on instance size, since the
machine-independence of these measures gives better insights in the algorithm
rather than the computing environment.

368 E. Berberich, M. Hagen, B. Hiller, and H. Moser

So far we have only talked about the general evaluation philosophy. In the
following, we describe two ways of actually deriving something interesting from
your data. The first method is graphical analysis, which uses diagrams and plots
to discover patterns. Although this sounds simple, it is indeed a standard tool
of statisticians for arriving at good hypotheses. Graphical analysis provides key
insights and can also give some evidence for conclusions.

Then we give an overview of statistical analysis, which provides numerical me-
thods that can be used to check hypotheses, e. g., those obtained via graphical
analysis. Statistical analysis is a tool that is widely used in other experimen-
tal areas, but has rarely been applied to experiments on algorithms. However,
Barr et al. [60, p. 22] recommend to employ statistical analysis wherever possible.

A drawback of statistical analysis is that it assumes certain experimental
setups which sometimes cannot be achieved. In this case, statistical analysis is
not applicable; but graphical analysis always is.

8.6.1 Graphical Analysis

Pictures and diagrams can be of great help to realize what is going on, since they
can represent vast amounts of data in a succinct way, at least if done properly.
This makes it easy to spot patterns which otherwise would be lost in a pile of
numbers or in large tables. The main issue here is to find the “right” diagram
that reveals the things we are interested in. This diagram serves two purposes:
First, it gives you some insight you did not have before and thus guides your
investigations. On the other hand, it may be useful to communicate your results
to other people. Further hints on this use will be given in Section 8.7.2.

There are some guidelines on using diagrams for analyzing numerical data
in the statistics literature. Other sources of inspiration on how to employ di-
agrams can be found in the literature on experimental algorithms. The paper
of Sanders [693] gives extensive advice on how to use diagrams to report ex-
perimental results in algorithmics and has been a major source for this section.
Most of this advice is helpful for analysis too, so we present it here. As examples,
we will just name a few types of diagrams commonly used in the experimental
literature and highlight their uses.

The diagram type most often encountered in the experimental literature on
algorithms plots some metric (e. g., running time) as a function of some param-
eter (e. g., input size of instance). The usual interpretation is that the variable
on the x-axis is “independent”, whereas the variable on the y-axis is “dependent”,
i. e., there is a functional relation between the two. This relation is most often
interpreted to imply causality, so this diagram type is most suited for settings
where assuming this causality is reasonable. In the example, this causality is
given: an increase in input size causes an increase in running time. We will call
this diagram type functional plot.

Figure 8.1 gives an example of a functional plot, which is in fact a special
case, namely a time series, where time is shown on the x-axis. Time is not given
explicitly here, but the number of nodes explored so far is of course some sort
of time-scale. Time series are often used to show the convergence of algorithms.

8. Experiments 369

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 0 100 200 300 400 500 600 700 800 900

re
la

tiv
e

ga
p

to
 o

pt
im

al
 s

ol
ut

io
n

nodes of B&B tree explored

lower bound
optimal

upper bound

Fig. 8.1. A functional plot showing the typical behavior of branch-and-bound algo-
rithms. Displayed are the upper and lower bounds relative to the optimal value evolv-
ing with the number of nodes of the tree that have been explored so far. Every time an
improved solution is found, the upper bound drops and remains on this level for some
time. Note that an optimal solution has been found after about 370 nodes, but it takes
another 550 nodes to raise the lower bound such that optimality can be proven.

If functional plots are used to give average values, they should be augmented
to depict more information of the range of the data. One way to do this is
to provide error bars which indicate the standard deviation of the data. Even
more information is contained in box plots which characterize the underlying
distribution by five values and are explained in more detail later.

A diagram type often used to investigate the relationship of two variables is
the scatter plot. The graph of the scatter plot is just the set of points corre-
sponding to the measurements, see the example in Figure 8.2. It is adequate if
it is unclear which of the variables is “independent” or “dependent”. A scatter
plot can be applied if the data are not ordered quantities and thus cannot be
associated to points on the axes. For instance, it is not clear in which order to
put the instances you measured solution quality for in order to come up with
a suitable functional diagram. Instead, you can use use a scatter plot relating
instance size to solution quality. A scatter plot can also be used to compare
many different measurements, e. g., the performance of many TSP heuristics in
Figure 8.2.

Other famous diagram types are the bar chart and the histogram. The bar
chart consists of bars, whose heights represent numerical quantities and are
scaled proportionally. Thus they ease visual comparison and are appropriate
in situations where multiple quantities need to be compared. Figure 8.3 gives an
example of a bar chart used for assessing the usual tradeoff on a branch-and-
bound algorithm.

A special kind of a bar chart with a different purpose is the histogram. His-
tograms are used to analyze distributions of some quantity. To this end, the
range of the quantity is divided in so-called buckets, i. e., intervals of equal size,
and for each bucket the percentage of values lying in this interval gives the height

370 E. Berberich, M. Hagen, B. Hiller, and H. Moser

 0

 5

 10

 15

 20

 25

 30

 35

 0.01 0.1 1 10 100 1000 10000

pe
rc

en
ta

ge
 e

xc
es

s
ov

er
 H

el
d-

K
ar

p
bo

un
d

running time in seconds

Spacefill

Strip

Karp

NI
NN

CHCI

Greedy

FI

Savings CCA
AppChristo

Christo-S

GENI-10
2opt

3opt
LK-JM

TabuMLLK CLK Helsgaun

Fig. 8.2. A scatter plot showing the approximation ratio and the running time of
some heuristics for the symmetric TSP from the report of Johnson and McGeoch [439],
p. 382. The data represents averages over a set of 10,000-city random Euclidean in-
stances. Each heuristic’s label depicts its average excess over the Held-Karp lower
bound, which is a well-known and rather good lower bound for TSP problems. In this
special case of a scatter plot the data points are marked with the name of the heuristic
they arise from.

of the bar in a bar chart. Figure 8.4(a) shows a variant of a histogram known as
frequency polygon [506], where the data points of the histogram are connected by
lines instead of being represented by bars. This type of diagram is better suited
to comparing a set of distributions.

In statistics, distributions are often compared using the already mentioned box
plots, also known as box-and-whisker diagram. Box plots are based on quartiles,
which are special quantiles. The (empirical) p-quantile ap for 0 ≤ p ≤ 1 of a
sample of n numbers x1, . . . , xn is defined as

ap := x�pn�

i. e., ap is the smallest value such that at least pn values of the sample are less
than ap. The box plot uses quartiles, i. e., the quantiles a0, a0.25, a0.5, a0.75, a1.
Notice that a0 is the minimum, a0.5 the median and a1 the maximum of the
distribution. A box plot of a distribution consists of a line ranging from a0 to

8. Experiments 371

 0

 50

 100

 150

 200

 250

heuristic off,
lower bound 1

heuristic off,
lower bound 2

heuristic on,
lower bound 1

heuristic on,
lower bound 2

ru
nn

in
g

tim
e

in
 s

ec
on

ds

heuristic
lower bound
tree search

Fig. 8.3. A bar chart showing hypothetical data for a branch-and-bound algorithm.
The diagram shows running time data for four different settings used to solve the same
instance. An initial heuristic can be used or not and there is a choice between two kinds
of lower bounds. Lower bound 1 runs fast and gives weak lower bounds, whereas lower
bound 2 runs longer and gives stronger bounds.

Obviously, the better quality of the lower bounds provided by method 2 significantly
decreases the time spent for searching the tree, since fewer nodes need to be visited.
However, it only pays off to use lower bound 2 if the heuristic is not used, since the
total time is lowest if the heuristic and lower bound 1 are used.

a1, where the interval (a0.25, a0.75) is drawn as a larger box, which contains an
extra line indicating a0.5. See Figure 8.4(b) for an example that gives the same
data as the frequency polygon diagram in Figure 8.4(a).

Of course, sometimes these diagram types do not fit the purpose or the data
to analyze. In this case you should try to make up your own kind of visualization
for your data or look into one of the many sources on statistical graphics and
exploratory data analysis, e. g., [785, 784,277].

Apart from choosing a suitable type of diagram there is a lot to be gained by
using appropriate scales on the axes and focusing on the most interesting part
of the diagram. Most common are linear and logarithmic scales, where the first
is appropriate if the numbers are in a relatively small range whereas the latter is
useful if the numbers are of different orders of magnitude. For instance, if one is
interested in the asymptotic behavior of the running times of some algorithms as
a function of the instance size, instance sizes usually grow by a constant factor
in order to cover instances sizes of different magnitudes with few instances. In
that case, both axes should be logarithmic, since instance sizes grow exponen-
tially by setup, and running times are exponential too if they are at least linear
in the input size. Similarly, if instance sizes grow additively by a constant but the

372 E. Berberich, M. Hagen, B. Hiller, and H. Moser

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350

fr
ac

tio
n

in
 %

waiting time in minutes

ZIBDIP
2-OPT

BestInsert

(a) A frequency polygon plot of the waiting time distributions.

 0 50 100 150 200 250 300 350

waiting time in minutes

(b) A box plot of the waiting time distributions.

Fig. 8.4. Comparison of waiting time distributions achieved by some vehicle dispatch-
ing algorithms. The data is taken from a computational study that compares algorithms
for dispatching service vehicles, where the customers’ waiting times are the major
quality of service criterion [396]. BestInsert and 2-OPT are heuristics based on local
search, whereas ZIBDIP is an exact algorithm based on Integer Programming
techniques.

Both diagrams indicate that optimization algorithms achieve a much better waiting
time distribution than simple heuristics. In the frequency polygon plot the distribution
of ZIBDIP is the one that is farthest left, indicating short waiting times for many
customers. In the box plot, all quartiles of ZIBDIP’s distribution are smaller than the
respective quartiles of the heuristics’ distributions, giving the same conclusion.

8. Experiments 373

Table 8.2. Running time data of Johnson’s example [437]

instance size 100 316 1000 3162 10000 31623 100000 316227 1000000
Algorithm A 0.00 0.02 0.08 0.29 1.05 5.46 23.0 89.6 377
Algorithm B 0.00 0.03 0.11 0.35 1.38 6.50 30.6 173.3 669
Algorithm C 0.01 0.06 0.21 0.71 2.79 10.98 42.7 329.5 1253
Algorithm D 0.02 0.09 0.43 1.64 6.98 37.51 192.4 789.7 5465
Algorithm E 0.03 0.14 0.57 2.14 10.42 55.36 369.4 5775.0 33414

running times of the considered algorithms are known to be roughly exponential,
it is a good idea to use a logarithmic y-axis scale.

Sometimes the problem itself suggests a suitable unit for one of the axes,
which may even allow to get rid of one degree of freedom [693].

It may pay off to invest problem-specific knowledge to find an interesting
view on the data. Normalization, as suggested by Johnson [437], is an example.
Suppose you know a lower bound for a set of functions you want to compare, e. g.,
f1(n), f2(n) ∈ Ω(n). Then it may be helpful to look at f ′1(n) := f1(n)/n, f ′2(n) =
f2(n)/n instead of f1, f2, since the “common part” is factored out and thus
differences become more visible. Although you lose the possibility to directly
read off the values from the normalized diagram, it is still possible to get a good
intuition. As Sanders [693] points out it is usually possible to find intuitive names
for this new quantity.

A simpler “close-up” effect can be gained by adjusting the plotted range
[ymin, ymax] of the y-axis. However, this has the disadvantage that relative com-
parisons are no longer possible visually. The y-range can also be narrowed down
by clipping extreme values of clearly dominated algorithms.

To give an impression on what a good diagram can achieve, we cite the fol-
lowing example from Johnson [437, p. 26]. Consider the data in Table 8.2, which
gives running time in seconds for five different algorithms, depending on the
input size. From the way the data is arranged it is obvious that the running
times of different algorithms are ranked in a consistent way over all instance
sizes.

In order to learn more about the data we generate a diagram. The first shot
is diagram 8.5(a) in Figure 8.5, which depicts just the data as-is on a linear
scale. Algorithms E and D seem to be much worse than the other three on large
instances. However, there is no clear picture for smaller instances, since the plots
essentially coincide. Furthermore, almost all data points are in the left half of
the diagram. Changing to a logarithmic x-scale (diagram 8.5(b)) fixes this, but
still there is much coincidence of the plots. If both axes are logarithmic (di-
agram 8.5(c)), the consistent ranking of the running times becomes apparent.
Now all five plots seem to have approximately the same slope, which would in-
dicate the same asymptotic behavior. We know from the first diagram that this
is not quite true. Let us now put some more knowledge in the game. Johnson
states that there is a lower bound of Θ(n log n) for all algorithms. We can use this
to normalize the running time of the algorithms and still keep the logarithmic

374 E. Berberich, M. Hagen, B. Hiller, and H. Moser

n log n

Fig. 8.5. Effect of different choices for the scaling of the diagram. Clearly, the amount
of information discernible from the diagram increases: In diagrams 8.5(c) and 8.5(d) it is
evident that the ordering of the algorithms is consistent. However, only diagram 8.5(d)
reveals that the performance of algorithms D and E are asymptotically much worse
than the lower bound, a fact that cannot be seen directly from the table.

8. Experiments 375

x-axis to obtain diagram 8.5(d). This diagram is really revealing: It shows the
consistent ranking, brings out the asymptotically worse running times of algo-
rithms E and D, and indicates that the other three algorithms are asymptotically
optimal (up to a constant).

Some of the suggestions involved a lot of work, e. g., playing around with
different types of diagrams, transformation of the data, looking at different com-
binations of measures and so on. However, much of this work can be automated
using scripting languages, which even makes it fun to do these things. For exam-
ple, languages like Perl and Python can be used to extract exactly those numbers
you are currently interested in and to convert them in a format suitable for fur-
ther processing. This processing can be done by a spreadsheet application or a
graph-drawing scripting language such as gnuplot.

You should also keep in mind that your data has only a limited precision,
which is usually smaller than the number of digits available. This is especially
true for running times, which often vary much depending on factors you cannot
control. This variance can be reduced by producing multiple measurements and
using the average or more sophisticated variance reduction methods mentioned
in Section 8.2.4. The danger in pretending too much precision is to end up
analyzing the noise of the measurements.

8.6.2 Statistical Analysis

The purpose of this subsection is to give an impression of how statistical analysis
works and how it can be applied to analyzing data describing the performance
of algorithms. We will review the basic concepts and main ideas and give specific
examples from the literature.

Why should one be willing to use statistical analysis when the kind of ad-
hoc numerical data analysis used before seemed appropriate? One reason is that
statistical analysis, applied properly, can give much stronger support for claims
or indicate that claims are not justified by the data. It is a tool for assessing the
explanatory power and significance of your data. Moreover, you can gain a deeper
understanding of the data, for instance, it is possible to analyze the impact
of parameter choices on the performance of the algorithm and to distinguish
between significant and insignificant parameters. An example will be discussed
later in this section. Finally, a statistical analysis of your data may suggest
directions for further experiments.

A key ingredient for a proper and successful statistical analysis is a carefully
designed experiment. In fact, there is a whole branch in statistics concerned with
this, naturally it is called Design of Experiments (DOE). Barret al. [60, p. 20]
suggest that “all doctoral students of operations research should receive training
in DOE”. Even if you do not use its methods, knowing the methodology leads
to clearer thinking about experiments and their pitfalls.

DOE methodology is widely used in other experimental fields, such as psychol-
ogy, the social sciences or industrial product development. It provides methods
for designing experiments such that certain systematic errors can be eliminated
or at least reduced and the influence of nuisance factors can be controlled.

376 E. Berberich, M. Hagen, B. Hiller, and H. Moser

Furthermore, there are some well-established so-called experimental designs,
which describe how to carry out the experiment. For these designs, DOE pro-
vides analysis methods as well as methods to check the model assumptions a
posteriori.

The general tool to analyze the data is hypothesis testing. A statistical test
is characterized by a so-called null hypothesis, assumptions on the experiment,
i. e., how the data is generated, and a test statistic, which is a number computed
from the data. The purpose of the test is to check whether some data is consis-
tent with the null hypothesis or not. The null hypothesis is the converse of the
research hypothesis of the experimenter, and the research hypothesis makes up
the alternative hypothesis. If the null hypothesis is not consistent with the data,
it is rejected and there is some evidence that the research hypothesis is true.

Before doing the test, you need to choose a number 0 < α < 1, the significance
level, which is something like the confidence you want to achieve. For example,
α = 0.05 tells you that you are ready to accept 5% error, i. e., when doing the
test very often (of course with different data), the result may be wrong for 5%
of the trials. Then you just compute the test statistic for your data, compute or
look up the so-called p-value of the statistic. If the p-value is smaller than the
chosen significance level, the null hypothesis is rejected.

The formal background of hypothesis testing is the following. It is assumed
that the assumptions and the null hypothesis hold. One can then compute the
probability that the realization of the test statistic is obtained under these as-
sumptions; this is exactly the p-value. If this probability is very low, in particular
smaller than the confidence level, this result is rather unlikely and thus provides
evidence against the null hypothesis, leading to its rejection.

As an example, we will describe the famous sign test (see [735]). It works on
a sample (x1, . . . , xn) of n real numbers. The assumptions are that all the xi are
drawn independently from the same distribution. The null hypothesis is that 0
is the median of the distribution. To compute the test statistic S, remove all xi

that are 0 and decrease n accordingly. Now define S by

S := |{i | xi > 0}| .

Notice that only the sign of xi matters, hence the name of the test. If the null
hypothesis is true, the probability that xi is greater than zero is the same as that
it is smaller than zero, i. e., this probability is 1/2. Therefore, S is distributed
according to a binomial distribution with parameters 1/2 and n. Suppose the
observed value of S is k, w. l. o. g. k ≥ n/2. Now the p-value is easy to compute:
It is just the probability that S is at least k, that is 1/2n

∑n
i=k

(
n
i

)
. For example,

if n = 15 and k = 12 we get a p-value of 0.018, leading to a rejection of the null
hypothesis at a significance level of α = 0.05. Instead, we have some evidence
that the real median is greater than 0. Note that we could not conclude this if
we selected a significance level of α = 0.01.

A standard application of the sign test is to compare pairwise samples from
two different distributions. For comparing two algorithms, suppose there are two
samples (x1, . . . , xn) and (y1, . . . , yn) where xi and yi are performance measures

8. Experiments 377

of both algorithms on the same instance i. The question is: Is it true that the
first algorithm is better than the second? To answer this question, consider the
sequence of differences, given by di = yi−xi and do the sign test on this sample.
The null hypothesis is that the medians of the performance distribution are
equal, i. e., the performance of both algorithms is the same. If sufficiently many
di are positive, this null hypothesis is rejected and there is evidence that the first
algorithm is better. Notice, however, that the null hypothesis is also rejected if
there are too few positive di, which would indicate that the second algorithm is
better.

One final note about the assumptions of the sign test in this application.
These were that the differences are drawn independently and from the same
distribution. Clearly, the assumption “same distribution” is no problem, since we
look at the distribution of running times difference on all possible instances. If the
instances are generated independently at random, the independence assumption
is obviously fulfilled. However, this is not true if we look at selected (real-world)
instances. Applying the sign test in such a setting is only valid if we can be
sure that the selected instances are reasonably representative and diverse or we
restrict ourselves to instances that “look like these sample instances”.

Let us now turn to some example applications of statistical analysis from the
literature.

The Sign Test and Heuristics for the TSP. This example is taken from
Golden and Stewart [345], who compare a new heuristic for the Euclidean Travel-
ing Salesman Problem (TSP). They also give some introduction to the statistical
methods used.

Golden and Stewart introduce the new algorithm CCAO which combines four
techniques. It starts constructing a partial tour from the convex hull of the cities,
includes remaining cities via criterions known as cheapest insertion, angle se-
lection and finally improve this solution via a postprocessor known as Or-opt.
Other successful postprocessors are 2-opt and 3-opt, which try to find better
tours by exchanging 2 or 3 edges of the current tour until no further improve-
ment is possible. It is known that solutions produced by 3-opt are usually a bit
better than those of Or-opt, which in turn are much better than those of 2-opt.
Unluckily, the gain in solution quality comes at the price of substantially longer
running time.

The study is based on only eight instances, which seem to be among the
largest ones that have been published at that time (1985). It is not clear that this
selection of instances is representative as required for a good test set as explained
in Section 8.4. Moreover, usually a larger number of samples is required in order
to draw statistical significant conclusions. In fact, Design of Experiments theory
provides methods to compute in advance how many samples are necessary to
reach a given significance level. However, the main purpose of the paper is to
promote the use of statistical methods for assessing algorithms.

In a first experiment the authors compare CCAO to other heuristics. Apply-
ing the sign test to assess solution quality indicates that CCAO is better than

378 E. Berberich, M. Hagen, B. Hiller, and H. Moser

heuristics with a weak postprocessor, i. e., 2-opt. They also realize that CCAO
is as good as those with a strong postprocessor, i. e., Or-opt or 3-opt.

In their second experiment they evaluate the influence of accuracy and effi-
ciency of the postprocessor. This is done by combining the first three ingredients
of their algorithm (“CCA”) with each of the three postprocessor and the value
without postprocessing. Applying the sign test again, they are able to verify the
following:

– The running time of 2-opt is smaller than that of Or-opt which is smaller
than 3-opt on all 8 instances.

– The solution quality of 2-opt is worse than both Or-opt and 3-opt.
– The solution quality of Or-opt and 3-opt is statistically indistinguishable.

They also did further experiments to assess the contribution of the algorithm’s
ingredients.

There is an extension to the sign test, namely the Wilcoxon test, which takes
the value of the differences into account and allows stronger conclusions at the
price of stricter assumptions. Although applicable, Golden and Stewart did not
apply the Wilcoxon test for their worked-out analyzes, but encourage the reader
to do so.

Using Design of Experiments Methods to Assess Network Algorithms.
Amini and Barr [28] conducted an elaborate study regarding the performance
of network algorithms for reoptimization, as it often arises e. g., in branch-
and-bound algorithms. Their goal is to find out which of the three algorithms
PROPT, DROPT and KROPT is best suited for reoptimization.

To this end, they want to perform the following kind of experiment. Starting
from a base instance they generate a series of sub-instances, which are randomly
modified versions of the base instance, with only small changes between them.
This is typical for reoptimization-based algorithms.

Amini and Barr study the following five factors:

Factor Levels
class of network problem transportation, transshipment
problem size small, medium, large
type of change cost, bound, RHS
percentage change 5%, 20%
type of reoptimizer PROPT, DROPT, KROPT

Two other factors, the number of sub-instances per series and the number of
changes, are fixed to 200 and 20, respectively, after some pilot experiments
(which are evaluated by statistical analysis). All in all there are 108 experimental
conditions to be studied.

The analysis is based on a split plot design, which is an advanced design from
the theory of Design of Experiments, see e. g., [210]). A main feature of the split
plot design is that the influence of a subset of the factors is better estimated than
the influence of combinations of the remaining factors, which are called blocked

8. Experiments 379

factors. However, a split plot design enables good statements about the influence
of non-blocked factors for a fixed combination of the blocked factors. In this case,
the blocked factors are problem class and size. This means that the experiment
yields insight about how the non-blocked factors (type of change, percentage
change, and reoptimizer) should be combined for each problem class / problem
size combination, which is really interesting.

The actual experiment is run as follows: In advance, four base instances per
problem class and problem size combination have been fixed. Now one out of
the 108 conditions is selected at random, the base instance is chosen randomly
and 200 sub-instances according to the remaining parameters are generated ran-
domly. Finally, all three reoptimizers are run on them and the total CPU time
is recorded. All in all, 86,400 sub-instances are solved.

The authors report the following results obtained by using Tukey’s HSD (Hon-
estly Significant Difference) Test [729,210]. This test yielded detailed information
on the influence of combinations of factors. For example, considering the two fac-
tors type of change and reoptimizer, the HSD test indicates that it is best to
choose PROPT if cost coefficients have changed, whereas DROPT deals best
with changes to the bounds or the RHS. Looking at the four factors problem
class, type of change, problem size and reoptimizer, the TSD results were (cf.
Table 8.3):

– transportation problems:
• PROPT performs best for medium and large problems with cost changes
• DROPT performs best for bound changes on large problems and for RHS

changes on medium and large problems
• on all other combinations, PROPT and DROPT are indistinguishable,

but better than KROPT
– transshipment problems:

• PROPT performs again best for medium and large problems with cost
changes

• all three algorithms are indistinguishable for bound and cost changes on
small problems

• in the remaining cases, PROPT and DROPT are indistinguishable, but
better than KROPT

All of these results were obtained using a significance level of 5%.
It is important to note that the careful design of the experiment allowed the

application of HSD test, which in turn provided very detailed information on
when to choose which algorithm.

Linear Regression for Comparing Linear Programming (LP) Algo-
rithms. In their overview paper on statistical analysis of algorithms Coffin and
Saltzmann [181] propose a method for comparing algorithms they call head-to-
head comparison. They illustrate this method on data from the literature, which
evaluates the interior-point LP solver OB1 to the simplex-algorithm-based LP
solver MINOS.

380 E. Berberich, M. Hagen, B. Hiller, and H. Moser

Table 8.3. Dominance relations between PROPT, DROPT, and KROPT for the 4-
factor combination (problem class, problem size, type of change, reoptimizer) extracted
from the experimental data of Amini and Barr [28]. A “•” indicates that this algorithm
dominates the others, whereas a “◦” indicates algorithms that could not be distin-
guished from each other, but dominated the remaining algorithms. Finally, situations
in which no results could be obtained are marked “–”.

(a) Results for transportation problems
type of change problem size KROPT PROPT DROPT
cost small ◦ ◦

medium •
large •

bound small ◦ ◦
medium ◦ ◦
large •

RHS small ◦ ◦
medium •
large •

(b) Results for transshipment problems
type of change problem size KROPT PROPT DROPT
cost small ◦ ◦ ◦

medium •
large •

bound small ◦ ◦ ◦
medium ◦ ◦
large •

RHS small – – –
medium ◦ ◦
large ◦ ◦

The fundamental idea of head-to-head comparison is to express the running
time of one algorithm depending on the running of the other, allowing a direct
comparison. Coffin and Saltzmann propose the following dependence

y = β0x
β1ε,

where x and y denote the running time of MINOS and OB1, respectively, ε is
a (random) error and β0, β1 are unknown constants. This relation has interest-
ing desired properties. First, if the running time for MINOS is 0, the running
time for OB1 is 0, too. Second, assuming β0, β1 > 0 we have that if the run-
ning of MINOS increases, those of OB1 does also. Notice that this need not
hold for particular instances (differences there go in the error ε), but describes a
general trend. Finally, β1 = 1 indicates that the running times are proportional.
A drawback of this model is that as the running time of MINOS increases, so does

8. Experiments 381

the variance of OB1’s running time, which is undesired since it hinders using
tests and regression methods.

This drawback can be alleviated if using a log-transformation, yielding

log y = log β0 + β1 log x + log ε.

This transformation has two positive aspects. Once, it reduces variance. Second,
we now have essentially a linear model. Thus linear regression can be used, giving
β0 = 1.18 and β1 = 0.7198 as estimates. Furthermore, a hypothesis test for the
null hypothesis β1 = 1 can be done, yielding to reject this hypothesis at a p-value
of 10−4. Thus it is reasonable to assume that OB1 is asymptotically faster than
MINOS.

Apart from this case study, Coffin and Saltzmann give many more case stud-
ies and lots of hints for statistical analysis of experiments on algorithms. The
examples presented here are supposed to give a flavor of how statistical analy-
sis can be applied to experimental analysis of algorithms. It has to be stressed,
however, that the methods of statistical analysis have to be applied with great
care to get meaningful results. We will say a little bit more on this in the next
section.

8.6.3 Pitfalls for Data Analysis

So far we introduced some methods to analyze experimental data. We want to
conclude this section by mentioning common pitfalls to watch out for.

Graphical Analysis. As mentioned in the section on graphical analysis, on the
one hand a good diagram can greatly contribute to the analysis. On the other
hand, using a bad diagram can be misleading. Therefore it is important to use a
diagram type that is suitable for the type of analysis done. For instance, it may
happen that due to a logarithmic scale a small absolute difference seems to be
substantial and thus leads to wrong conclusions.

As Bast and Weber [68] point out, one has to be careful when dealing with
averages, especially if different performance measures are involved. In particular,
if algorithm A is better on average than algorithm B with respect to one per-
formance measure, this does not say anything about the relation with respect
to another performance measure, even if there is a monotone transformation
between the performance measures. To see this, just suppose that algorithm A
is good on average for the first performance measure, but is very bad on some
instances, whereas algorithm B is not as good, but never very bad. If the other
performance measure now penalizes bad behavior more strongly, algorithm B
may become better than algorithm A. Bast and Weber emphasize that even
if the standard deviation intervals that are usually indicated by error bars are
disjoint, it is possible that the order of the averages reverses.

The solution to this issue is of course to evaluate each performance measure on
the raw data and only average afterwards. This is another reason for collecting
raw data instead of averaged or aggregated data.

382 E. Berberich, M. Hagen, B. Hiller, and H. Moser

Statistical Analysis. Every statistical test requires some assumptions on the
stochastic nature of the data. A statistical test is invalid if these assumptions
are violated and therefore conclusions drawn from them may not be trustworthy.
Therefore, it has to be checked and possibly discussed whether the assumptions
are reasonable. If some of them are not, it is often possible to resort to some
weaker test. Furthermore, some tests are more robust than others. The literature
on non-parametric statistics usually contains hints on the robustness of tests and
the assumptions required, see e. g., [753, 183,735].

A similar problem may arise when analyzing data from a designed experiment.
One usually uses some kind of probabilistic model for the data. For any analysis
to make sense, the model should be appropriate in the sense that it “fits” the
data (or vice versa). There are some ways to test the “fit” and the fulfillment of
the assumptions which are discussed in the DOE literature ([210]). These tests
should always be done before any analysis is carried out. Furthermore, the type
of analysis done has to be applicable to the design and model used.

8.7 Reporting Your Results

When reporting your results you usually want to convince the reader of the
scientific merit of the work. An important requirement for this is that you raise
and answer interesting questions. However, for experimental work it is equally
important that the results are reproducible. When talking about reproducibility,
we do not mean that an experiment can be redone exactly as it was, since this
is unachievable, given the rapid development of computing equipment. Instead,
we think of a weaker form of reproducibility: An experiment is reproducible, if a
very similar experiment can be set up which gives the same quantitative results
and conclusions.

These requirements lead to some principles for reporting which are considered
to be good practice [437, 60]) and will be discussed in detail here. Finally, we
provide hints on good use of tables and diagrams for reporting experimental data
and conclusions from it.

8.7.1 Principles for Reporting

This section is organized around the following principles for good reporting,
which are slightly adapted from the list of principles given in Johnson [437].

– Ensure newsworthiness of results.
– Indicate relation to earlier work.
– Ensure reproducibility and comparability,
– Report the full story.
– Draw well-justified conclusions and look for explanations.
– Present your data in informative ways.

8. Experiments 383

Ensure Newsworthiness of Results. This principle directly relates to the scientific
merit of your experimental work. Clearly, it is necessary to deal with interest-
ing questions on a sound basis, regarding your experimental methodology. As
mentioned earlier, it is often more appealing to go beyond pure running time
comparison. These questions were explained in more detail in Section 8.2 and
others.

A good report states clearly the motivation for the work and describes the
context of it, explaining the specific contribution of this work. The motivation
may come from e. g., questions raised in earlier experimental papers, assessing
the “practical” performance of algorithms studied only theoretically, and from
real-world applications.

Indicate Relation to Earlier Work. Of course, you should have read the relevant
literature to know what already has been done.

You should compare your results to those from the literature. This comparison
can be a hard task for a number of reasons. First of all, you will most likely
be using different computing hardware and software. Since running times are
influenced by many factors, e. g., machine speed and architecture, compiler, and
sophistication of implementation, a direct comparison is not very meaningful.
Another obstacle is that earlier publications may not focus on aspects you are
interested in, use other performance measures and so on.

A part of this difficulty can be overcome if it is possible to use the test set
and the implementation of the original work. If available, you should use these.
How to proceed when they are not available has been discussed in Section 8.5.1.
The main benefit of using the original implementation is that you get the best
comparability possible, since you can run the original algorithm and your new
one on the same equipment.

A fall-back method to make running times of earlier papers roughly compara-
ble to your measurements is to estimate the relative speed difference of the ma-
chines. This can be done using benchmark values obtainable for both machines.
Sometimes problem-specific benchmarks are available. For instance, the DI-
MACS Implementation Challenge on the Traveling Salesman Problem [439,249]
employed a benchmark implementation to normalize the running times across
a wide range of different platforms. To this end, every participant had to run
this benchmark implementation on his machine and to report the running time,
which in turn was used for normalization. Johnson and McGeoch [439] report
that accuracy was about a factor of 2, which was sufficient for the running time
differences that occurred.

In any case you should clearly report on how you tried to make these values
comparable.

Ensuring Reproducibility and Comparability. This principle is in some sense the
counterpart of the preceding one. The goal is to make life of future researchers
who want to build on your work easier, which essentially means providing enough
detail to allow qualitative reproduction of your results.

384 E. Berberich, M. Hagen, B. Hiller, and H. Moser

To this end, you should give a detailed description of the experimental setup.
This encompasses information such as machine type, processor number and pro-
cessor speed, operating system, implementation language and compiler used, but
also experimental conditions like run time or space limits. If you used a generator
to create test instances you need to describe the generator and the parameters
used for test set creation, too.

Of course it is necessary to describe the implementation of your algorithm
detailed enough to facilitate reproduction. This implies that you mention and
describe all non-straightforward implementation details which have a significant
impact on your results. For complex heuristics, this includes the stopping rule
used (if the heuristic has no natural way to terminate) and the values of potential
parameters used to achieve your results. These parameters must not be set on
a per-instance basis, since this is not generalizable. However, you may use some
kind of rule to determine parameters from instance parameters which then needs
to be described as well.

The best way to ensure reproducibility is to publish both the instances used
for the experiment and the source code of your implementation. Some journals
already support and even encourage this. For example, the ACM Journal on Ex-
perimental Algorithmics (JEA) invites submitters to also publish supplementary
files, which can be source code or data files. Publishing the source code requires
a certain level of documentation to make it useful for other people. You also have
to make sure that the data you publish is actually consistent with the source
code, i. e., binaries will produce essentially this data.

Instances should be made available in a machine-readable, well-known and
well-documented format, cf. Section 8.4. If there is already an instance library
for this specific problem, it may be possible to extend the library by some of
your instances, since instance libraries are often maintained to reflect progress.
Although it would suffice to publish the instance generator used, it is usually
better to make the actually used instances available.

It is a good idea to archive the raw data of your experiments (not just the
“processed” data used and given in the report) at a safe place so you can later
access it. This can be useful if you or somebody else is interested in doing further
research. Again, version control systems can be useful here.

Report the Full Story. It is good scientific practice to report results (i. e., data) as
they are. This also implies that anomalous results contradicting your conclusions
must not be omitted. Instead, it is worthwhile to investigate their origin and, if
no explanation can be found, to state this clearly. Any anomalies in the data,
e. g., those contradicting your or other’s results, should be noted in the paper.
It is then clear that their occurrence is not due to typographical or other error.

When reporting running times for heuristics without stopping criterion (such
as local search) do report the total running time used by the heuristic, not
just the time until the best solution was found. As Johnson [437] points out,
considering only the time for the best solutions essentially means pretending
clairvoyance of the heuristic, since it has no way to decide that no better solution
will be found. The running time should also include time spent for preprocessing

8. Experiments 385

and setup, which should be given separately. Reporting the total running time
of the heuristic gives a clear indication of the effort needed to get this solution
and allows better comparison to competing methods.

For similar reasons, it is also desirable to report the total running time invested
in your computational study, since omitting this time can give a distorted picture.
For instance, if it took some time to find the parameters that make a heuristic
perform well the real effort to get good solutions with this heuristic is much
larger than just running the heuristic once with those parameters. A similar
effort might be necessary to suit the heuristic to differently structured instances.
It is also interesting to know how much you gained by tuning the parameters,
i. e., you should indicate the typical solution quality before and after tuning.
You should try to look at more machine-independent running time measures, as
suggested in Section 8.6 and account on these findings in detail.

When evaluating heuristics it is important to assess the quality of solutions,
since this allows quantifying the time / quality tradeoff when using this heuristic.
Preferably, you should compare the heuristic to exact solution values. If exact
solutions turn out to be too expensive to compute, you may resort to good
lower bounds which can be obtained by e. g., Linear Programming or Lagrangian
relaxations. As a last resort, you can compare solution values to best-known ones
or to those of other heuristics.

The purpose of heuristics is to produce hopefully good solutions in much
shorter time than exact methods can. Complex heuristics may produce a se-
quence of improving best solutions. For these you should indicate how solution
quality evolves in time. This can be done using diagrams, showing solution qual-
ity as a time series. Another possibility suggested by Barr et al. [60] is to use
derived descriptive measures. They suggest the ratio

r0.05 =
time to within 5% of best

time to best found
,

which measures how fast the heuristic converges to its best attainable value.
This metric is not suitable for comparing different algorithms, since the value of
the best solution found may differ significantly.

Another interesting point to investigate is how solution quality changes with
growing instance size. In fact, this is just a special case of robustness, which
is discussed in Section 3.5: An algorithm should perform well on a large set
of instances. Similarly, if the behavior of a heuristic depends on some param-
eters, its solution quality should not deteriorate with small changes of “good”
parameter settings. The robustness of an algorithm should be addressed and
reported, for example by giving standard deviations for the quality in a quality-
time graph [60], indicating the spread of quality after a fixed computation time
for the whole instance set studied.

To get a better understanding of a complex algorithm and its specific features,
the contribution of each strategy or phase should be assessed and reported on.

It is also worthwhile to mention unsuccessful algorithmic ideas that you tried.
This may save other researchers from spending further effort on them. For

386 E. Berberich, M. Hagen, B. Hiller, and H. Moser

instance, if your heuristic was not able to find a feasible solution on a certain
class of instances, this is something to report.

Draw Well-justified Conclusions and Look for Explanations. Reporting on an
experimental study requires interpreting the data. It is clearly not sufficient
to just describe the algorithm and to give a table of numbers. The data you
provide in your report needs to be explained in a convincing and consistent way
by suitable claims. Be sure to support your claims with convincing diagrams and
tables. These must not hide any contradicting data; instead, you need to argue
why they can be neglected for your claims. Of course your claims need to be
supported by the data.

In order to support or challenge your claims, it may be worthwhile to employ
statistical analysis (see Section 8.6.2). This can provide additional evidence and
confidence or rejection for your claims.

As mentioned several times before and recommended in the literature [437,
325], you should look at and report on as large instances as possible. Looking at
huge instance sizes provides stronger support for claims, especially on asymptotic
behavior. Moreover, the reader gets an impression on how the algorithms scale
with problem size.

Present Data in Informative Ways. Large amounts of numbers are usually con-
sidered to be rather dull and boring. This need not be the case, however, it is
necessary to present the data in interesting and revealing ways. Using appropri-
ate diagrams and clearly-structured tables can help a lot here. See Section 8.7.2
for more detailed hints.

Statistical methods to support your claims are best used for general conclu-
sions, such as recovering trends and correlations between variables. Usually, it
is not interesting to do lots of experimental runs just to get tight confidence
intervals, since these apply only to the specific setting.

You should also avoid reporting too much data (within the paper!). If you
generated much data for many instances you should try to cluster similar in-
stances and report representative results for each cluster. It is also possible to
report averages and similar summary statistics (e. g., minimum and maximum,
medians, quartiles) to get an impression of the results. The full data could be
put into the appendix or made available electronically via the Internet. You can
safely omit the results for dominated algorithms, but you should indicate in the
paper that they are dominated and therefore dropped.

8.7.2 Presenting Data in Diagrams and Tables

Experimental studies usually yield large amounts of data which are in a sense
the result of the study and thus need to be reported on in some sensible way.
There are two ways to present that data: pictures (i. e., diagrams) and tables.
Both have their advantages and drawbacks which will be discussed here. We also
give advice on how to make best use out of them.

8. Experiments 387

Diagrams are useful for recognizing patterns, trends, etc.; their use for ana-
lyzing data has already been discussed. They give a quick impression and quick
overview and can make vast amounts of data comprehensible and ease com-
parison of different data sets. However, they tend to hide details (which is an
advantage, too) and make it hard to figure out exact values. Tables, on the other
hand, reporting the data as it is, although this might be hard to interpret.

The natural conclusion is to use tables for small amounts of data. Tufte [784,
p. 56] recommends using tables for sets of 20 numbers or less. Tables may also
be useful to report exact values for larger data sets in addition to some diagram.
Larger tables are particularly out of place at oral presentations [550].

Tables. When using tables (especially larger ones) it is important to structure
them in order to highlight important information and aspects of the data [437].
Tables can often be made more accessible by choosing a sensible ordering of rows
and columns. The sorting should reflect properties of the data. For instance, the
rows in Table 8.2 on page 373 have been ordered according to the running time
of the algorithms, which makes the the consistent ranking of the algorithms
apparent. Similarly, it is better to sort instances by their size than their names.

Tables should not only give the data as measured, but also provide interesting
related information contributing to the interpretation of the data. The obvious
example is when you give a solution value and a lower bound, then you should
include a column indicating the resulting optimality gap.

Of course, tables and the reported data need to be labeled properly. This
encompasses stating the exact meaning of the rows and the columns and the units
of quantities as well as further details important for interpretation. If you include
numbers from different sources, try to make them comparable and indicate their
origin.

Diagrams. Most fundamental things for creating good diagrams have already
been discussed in Section 8.6.1 since they are useful both for data analysis and
presentation. We therefore focus on more detailed hints which become more
important for reporting.

The general advice is to avoid too much information in one diagram. Although
you as the expert for your experimental setup and analysis can probably cope
with more information in one diagram, this same diagram may be too compli-
cated for your audience. One issue might be too many data sets in a diagram,
e. g., too many curves. The number of curves which can be displayed in a rea-
sonable way depends on their overall complexity or information density. If the
curves lie close together or you cannot tell on first sight which is above or below
these are indications that you should think about improving the diagram.

The following hints on how to cope with too many curves have been collected
by Sanders [693]. A first possibility is to consider different scaling of the axes
as explained in Section 8.6.1 in order to find a better view on the data. It may
be possible to remove dominated curves and to indicate that removal. In some
cases, similar curves can be combined to a single one. For example, to show that
an algorithm is always better than some other ones it suffices to plot the best

388 E. Berberich, M. Hagen, B. Hiller, and H. Moser

result of all the other algorithms. Finally, you should consider decomposing a
diagram into different ones with differing y-scales, both showing only a subset
of the original plots.

Consistency in the diagram is important, since inconsistency is confusing and
tends to distract the reader’s attention to resolving that discrepancy. Consis-
tency is reflected in many details. For example, if results for one algorithm are
presented in several diagrams, be sure to use the same line and point styles and
color for plots of that algorithm. Similarly, algorithm labels for corresponding
plots should be in the top-down order of the plots.

The design of the diagram should be as clean as possible. You should use
marks for data points which are clearly distinguishable, but not too large. Data
points belonging to the same data set can be connected to better indicate that
they belong together. However, as Johnson [437] points out, such lines implicitly
suggest a trend and/or that interpolation between the data points is possible
or sensible. Connecting the points should therefore be avoided if possible. If
necessary, you should use unobtrusive (e. g., thin gray) straight lines to do this
– splines are a no-no since they amplify the implicit “interpolation” claim.

There are some books on diagram design, e. g., the book of Tufte [784]. He
introduces the principle of data-ink maximization which essentially requires to
make best use of the ink used to draw the diagram. For example, he suggests
to avoid grids since they usually interfere too much with the data drawn. He
also gives hints and examples on how to improve existing diagrams as well as
inspiration to design new ones.

Finally, your diagrams need to be labelled clearly and completely. Ideally, they
are understandable on their own, without having to read the corresponding text
passages. To achieve this, you should try to succinctly provide all information
needed for interpretation. At the least, you should explain or mention unusual
axis scales (e. g., log, normalized), what has been measured and is displayed. You
should highlight important features and any specialty of your diagram.

Chapter 9. Case Studies

Daniel Delling, Roberto Hoffmann, Maria Kandyba, and Anna Schulze

9.1 Introduction

In this chapter we outline success stories of Algorithm Engineering on three well-
known problems: Shortest paths, Steiner trees, and the construction of Voronoi
diagrams. All these topics have real-world applications of particular importance,
and therefore received a lot of attention by various research groups in the last
decades.

The analysis of these three problems and the design of first algorithms date
back already to the middle of the 20th century. While for the shortest paths
problem and Voronoi diagrams polynomial algorithms were found quite early,
the Steiner tree problem was shown to be NP-hard. For this problem, exact
algorithms, which have exponential worst-case running times, and fast approx-
imation methods were proposed. The first exact approaches for Steiner trees
could not deal with the instances, coming up from the real-world applications.
Therefore, more efficient methods and implementations which fit much better to
the requirements stemming from practice were required. In the last ten years,
a significant progress was achieved. Thereby, not only approximation methods,
but also exact exponential algorithms for NP-hard problems were tuned and
optimized, making some of them praxis-relevant for the first time.

The research on these problems gives a deeper insight into the current me-
thods and ideas of Algorithm Engineering. Each of them has its own history of
development which we now briefly outline.

The shortest path problem is one of the fundamental and therefore well-
studied problems of combinatorial network optimization. Given two vertices in
a network, it looks for a shortest path between these vertices in the network
(provided that the vertices are connected). Without additional constraints it is
solvable in polynomial time and there exist various long-known classical efficient
algorithms. However, for huge problem instances stemming from real-world ap-
plications these algorithms are too slow in practice. Therefore, to obtain quick
answers to their problems, many practitioners preferred fast heuristics over exact
methods. Since 1999, a great amount of research has been done to develop exact
shortest path algorithms which base on the traditional ones, but are much more
efficient when applied to large real-world datasets.

The Steiner tree problem comes in different versions. In a geometric setting, we
are given a set of points in the plane and look for a shortest interconnection which
spans all given points. In a more abstract setting, we are given an undirected
graph G = (V, E) and a subset of its vertices T ⊆ V and look for a connected
subgraph of G spanning all vertices in T .

The problem has also many important applications ranging from VLSI-design
to the study of phylogenetic trees. With the first exact algorithms one could

M. Müller-Hannemann and S. Schirra (Eds.): Algorithm Engineering, LNCS 5971, pp. 389–445, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

390 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

only solve very small instances of the Steiner tree problem to optimality. For
quite some time no significant improvements have been achieved. The situation
changed quite dramatically when several research groups started to exploit a
couple of new structural insights into the problem. With these improvements
the benchmark instances from SteinLib [491] can now be solved to optimality
within admissible computation times. Indeed, only recently it has become possi-
ble to compute optimal solutions for many of these benchmark problems at all.
Beside exact approaches several powerful heuristics exist which can be used to
solve even huge instances of about 100,000 given points within few percent of
optimality. Theoretical research has also led to the development of approxima-
tion algorithms. Those approximation algorithms which provide the best proven
approximation guarantees, however, turn out to be rather impractical and have
never been implemented.

The last section of this chapter deals with the computation of Voronoi dia-
grams, which deliver the partition of space into regions by given sites in a way,
that the region for a site contains all points that are closer to this site than to
any other. We introduce the Voronoi diagrams and present their applications to
different areas of science (e. g., geographical information services, convex hull cal-
culation, for preventing moving robots from hit-and-run) as well as the challenge
of their computation and different algorithmic approaches.

For all these problems, we are not concerned with describing all recently pro-
posed algorithms in detail, nor will we give proofs of their correctness. We focus
on the main ideas motivating these algorithms and showcase the successful ap-
plication of Algorithm Engineering principles.

9.2 Shortest Paths

In this section, we first introduce the shortest path problem and outline the
traditional approaches that have been used to solve it. We then discuss the
engineering of tailored route planning algorithms in transportation networks. It
turns out that this development splits into four phases, in which we explain most
of the techniques developed within the last 50 years.

Shortest Path Problems. An instance of a shortest path problem is a graph G =
(V, E) and a length function on the edges l : E → R. Additionally, there may be
a source s ∈ V and a sink t ∈ V , collectively called terminal nodes. Let n := |V |
and m := |E|.

The point-to-point shortest path problem (P2P) consists of connecting s and t
in G in a shortest possible way, e.g. finding a path P with s and t as start and
end points respectively, so that the length l(P) =

∑
e∈P l(e) is minimized. Such

a path P is then called a shortest (s, t)-path. An extension of this problem is the
single-source shortest path problem (SSSP), in which the shortest paths from s
to all other nodes v ∈ V \ {s} has to be computed. If we ask for shortest paths
between all possible pairs of nodes, the problem is called all-pairs shortest paths
(APSP).

9. Case Studies 391

These problems have been extensively studied in the past. The algorithms for
SSSP turned out to be fundamental for the solution of other variants of shortest
path problems. In the following, we will discuss the solution methods for SSSP

and their application for P2P. For APSP see, e.g., [235].
The mainly used algorithms for the SSSP problem are labeling algorithms,

which can be classified into the two groups of label-setting and label-correcting
methods. These algorithms iteratively assign distance labels to each node, such
that after the final iteration a distance label at node v represents the length
of a shortest (s, v)-path, which we denote as dist(s, v). Label-setting methods
determine an exact (permanent) distance label of one node per iteration. Unfor-
tunately, they can handle only a restricted set of instances, for example, acyclic
graphs with arbitrary edge lengths or arbitrary graphs with nonnegative edge
lengths. The label-correcting methods are more flexible and, in general, do not
have such restrictions regarding its input. Such an algorithm may change all
distance labels multiple times and only after the final step they all become per-
manent. However, the label-correcting algorithms are in general less efficient
with respect to worst-case running time compared to label-setting ones. A good
overview and discussion on both groups of labeling algorithms can be found
in [15].

Dijkstra’s Algorithm. In general, a labeling method for SSSP stores label dis-
tances d(v), parent nodes p(v) and a status σ(v) ∈ {unreached, labeled, settled}
for every node v. Initially, the only labeled node is s with d(s) = 0. All other
nodes v are unreached with d(v) =∞. In each iteration, one of the labeled nodes
u will become settled and all of its unreached neighbors become labeled. For a
neighbor v of u, the distance label d(v) and the parent node p(v) are updated if
d(u) + l(u, v) < d(v). We call this relaxing the edge (u, v). The method termi-
nates when no labeled nodes exist. Finally, the resulting shortest paths can be
reconstructed using the parent nodes.

The main question in developing or engineering an efficient SSSP algorithm
is how to store and manage the set of labeled nodes and the order in which they
are processed. E.g., the Bellman-Ford-Moore algorithm uses a FIFO queue to
process the labeled nodes. This algorithm is label-correcting and runs in O(nm)
time. Even though this is the best known worst-case bound for general graphs,
experiments show that this algorithm is often slower than other methods in prac-
tice. One of the reasons is that most SSSP instances do have nonnegative edge
functions; for this special case, Dijkstra [244] suggested a label-setting algorithm
in 1959, on which most algorithms discussed in this paper are based.

Dijkstra’s algorithm (cf. Algorithm 7) uses a priority queue to hold the labeled
nodes. In each iteration, it selects a node which has the smallest distance label.
It can be easily shown that if the length function is nonnegative, this algorithm
settles each node exactly once; otherwise the number of settles may be expo-
nential. Once a node u gets settled, its label distance – and hence the currently
shortest (s, u)-path – will never be changed again. Hence, the running time of
Algorithm 7 is given be Equation (1).

392 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Algorithm 7. Dijkstra’s algorithm using a priority queue Q.
1: for all u ∈ V do d(u) =∞
 initializing distance labels
2: Q.insert(s, 0)
3: d(s) = 0
4: while !Q.empty() do
5: u = Q.deleteMin()
 settling u
6: for all (u, v) ∈ E do
 relaxing edges
7: if d(u) + l(u, v) < d(v) then
8: d(v) = d(u) + l(u, v)
 found shorter path to v
9: if v �∈ Q then

10: Q.insert(v, d(v))
11: else
12: Q.decreaseKey(v, d(v))

TDijkstra = Tinit + n · TdeleteMin + m · TdecreaseKey + n · Tinsert (1)

So, the running time of this algorithm depends on the implementation of the
priority queue, in particular, on the choice of its corresponding data structure.

The output of Dijkstra’s algorithm is a shortest path tree rooted at s. However,
Dijkstra’s algorithm can easily be adapted to solve the P2P problem with non-
negative length function for given terminal nodes s and t: the algorithm starts
computing the shortest path tree for s and terminates as soon as t is settled.

Speed-Up Techniques. After its publication in 1959, several approaches on im-
proving the running time of Dijkstra’s algorithm have been proposed. On the
one hand, researches tried to reduce the worst-case running time by introducing
different types of priority queues or gave better bounds for specific graph classes.
On the other hand, researches introduced speed-up techniques for specific inputs,
in particular for transportation networks. Roughly speaking, Dijkstra computes
the distance to all possible locations in the network being closer than the tar-
get we are interested in. Clearly, it does not make sense to compute all these
distances if we are only interested in the path between two points. Moreover,
transportation networks hardly change between two queries. Starting from this
observation, speed-up techniques split the work into two parts. During an offline
phase, called preprocessing, additional data is computed that accelerates point-
to-point queries during the online phase. In the following, we explain most of
those techniques developed since 1959. It turns out that the research splits into
four phases which we explain in the following.

9.2.1 Phase I: “Theory” (1959 – 1999)

The first phase starts directly after Dijkstra’s publication in 1959 and reached
a time window of about 40 years. Most of the research during these years con-
centrated on improving the theoretical worst-case running time by introducing
better data structures. Note that within these years several approaches have

9. Case Studies 393

been proposed which we only scratch here. Some basic speed-up techniques, i.e.,
A∗ and bidirectional search, have been introduced in this phase as well. Since
later techniques use them as ingredients, we present them in more detail.

Priority Queues. In its original form [244], Dijkstra uses a list to maintain
the distance labels. This results in a O(1) running time for each insert and
decreaseKey operation, while deleteMin takes O(n) time in the worst case.
This yields an overall running time of O(n2). This bound has been improved
several times by using more sophisticated priority queues. For example, a binary
heap yields a running time of O(m log n). The best bound for general (positive)
edge weights is O(m + n log n) and is achieved by applying a Fibonacci heap.
If edge weights are given by integers, a bound of O(m + n log log n) is given
in [780]. Dial [241] achieves a worst-case bound of O(m +nC) if the integers are
in a range from 0 to C. This bound can be improved to O(m log log C) [795],
O(+n

√
log C) [16], and O(m+n log log C) [780]. Note that improving the worst-

case running time still is focus of theoretical research on shortest paths. An
extensive computational study on different variants of Dijkstra’s algorithm (as
well as several label-correcting algorithms) has been conducted by Cherkassky,
Goldberg, and Radzig [167]. Their work (with first drafts appearing in 1993) can
now be classified as pioneering for Algorithm Engineering. They demonstrated
how fruitful the interaction between experimental evaluation of algorithm be-
havior and the theoretical analysis of algorithm performance can be.

Bidirectional Search. The idea of bidirectional search is to accelerate P2P-
queries by starting a second simultaneous search from the target t. The so-called
backward search operates on the reverse graph, where the direction of each edge is
reversed. Such an idea arose already in the 60’s [202], offering the advantage that
no implicit information on the given graph is required. Using some alternation
strategy between forward and backward search, one can define a bidirectional
search algorithm: it maintains the sets of forward and reverse distance labels (df

and dr, respectively) as well as an upper bound μ, i. e., the shortest (s, t)-path
seen so far. This upper bound is computed in the following way: whenever one
of the search directions (w. l. o. g. the forward search) relaxes an edge (v, w) and
w has already been settled by the opposite direction, df (v) + l(v, w) + dr(w) is
computed. The first time such a situation occurs, this bound is stored and will
be updated when necessary. Note that the edge (v, w) must be stored as well if
the path realizing μ shall be reconstructed. The algorithm terminates as soon as
kf + kr ≥ μ, where kf depicts the minimum key of the forward priority queue,
and kr the one of the backward queue.

Euclidean A∗-search [382]. The main idea of the goal-directed version of
Dijkstra’s algorithm, called A∗, is to manipulate the settling order of labeled
nodes by redefining the given length function. By this, the sink t is settled
earlier than it would be settled by traditional Dijkstra.

394 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Suppose that the shortest path distance π∗t (v) to the sink is known for ev-
ery v. Then the priorities in the queue can be change in a beneficial way, based
on the following idea: instead of distance label d(v), the value k(v) = d(v)+π∗t (v)
is used as the priority for any labeled node v. Note that as v is to be settled
d(v) = dist(s, v) and k(v) is the length of the shortest (s, t)-path. Therefore,
only the nodes on the shortest (s, t)-path will be settled, each of which exactly
once. Moreover, it can easily be shown that this algorithm is equivalent to Dijk-
stra’s algorithm performed on the same input graph when using the alternative
nonnegative length function:

lπ∗
t
(v, w) := l(v, w)− π∗t (v) + π∗t (w). (2)

Of course, the exact values π∗t (v) will be unknown in general. So, one has to
settle for an approximation of π∗. A function πt : V → R is called a feasible
potential function if:

πt(t) = 0 and 0 ≤ lπt(v, w) := l(v, w)− πt(v) + πt(w) ∀(v, w) ∈ E. (3)

It turns out that condition (3) implies that the approximations πt(v) must be
lower bounds for the length of a shortest path from v to t. So, the performance
of an A∗ algorithm is highly dependent on the feasible potential function used: If
πt ≡ 0, the A∗-search is equivalent to the original version of Dijkstra’s algorithm.
In contrast, knowledge of exact distances would indeed result in a perfect reduc-
tion of search space. In general, tighter lower bounds lead to a smaller number
of settled nodes. Therefore, it is crucial to find a good compromise between the
quality of the lower bounds and the associated cost for obtaining them. The
classic approach works for embedded graphs in the plane and uses Euclidean
bounds in order to obtain feasible potentials.

Bidirectional A∗. Note that A∗-search can also be used within the bidirectional
search framework. The drawback of such an approach is that, in general, the
termination criterion of the bidirectional search — i. e., to stop on the first node
which is settled from both directions – becomes invalid. One possibility to over-
come this drawback is to redefine the termination condition [641]. Algorithms
of this type are called symmetric. They are based on the following termination
condition: the algorithm terminates either if the priority queues of both search
direction are empty or one of the searches has already reached the sink t. An
alternative is to use the same length function for both the forward and reverse
search routines, requiring πt(v) + πs(v) = c, for all v ∈ V and some constant c.
Such algorithms are called consistent. See [421] for details.

9.2.2 Phase II: Speed-Up Techniques for P2P (1999 – 2005)

In 1999, Schulz et al. initiated the search for new speed-up techniques for Di-
jkstra’s algorithm on large-scale real networks [714]. In their work, the authors
introduced two general approaches for speed-up techniques: exploit a natural

9. Case Studies 395

hierarchy within the network, or make the search goal-directed. The former ap-
proach tries to identify unimportant parts of the graph that can be skipped as
soon as one is sufficiently far away from source and target of the query, while
the latter tries to prune edges directing “away” from the target.

Goal-Directed Search. For goal-directed search, two approaches have been
proved useful: either change the ordering the nodes are visited or prune edges
directing in to the “wrong” direction. A∗ is a representative of the former, while
Geometric Containers and Arc-Flags are examples for the latter. Note that A∗
has been significantly enhanced during phase II by the introduction of landmarks
which we explain in the following.

Landmark-A∗ (ALT). As already discussed in Section 9.2.1, the success of A∗-
search depends on the quality of the potentials. In [338], Goldberg et al. suggest
a new lower-bounding technique with preprocessing based on landmarks. It can
be applied to all problem instances whose length function satisfy the triangle
inequality. The main idea is to choose landmarks L ⊂ V as a small subset (≈
16) of all graph nodes; for each such landmark � ∈ L a complete shortest path
tree to (and from) all other nodes is computed during the preprocessing.

Computing lower bounds using this precomputed information is then part of
the query algorithm. As, by assumption, the triangle inequality is satisfied, the
distances from each node v ∈ V to a landmark � lead to a feasible potential
function π

(�)
t (v) := max{dist(v, �) − dist(t, �), dist(�, t) − dist(�, v)}. To achieve

better bounds the maximum over all landmarks will be chosen, as the maximum
function over feasible potentials is also a feasible potential: πt(v) := max�∈L π

(�)
t .

Obviously, the quality of the lower bounds heavily depends on the choice and
number of landmarks. Although several algorithms were proposed for landmark
selection [338,342], their qualities relative to each other are highly dependent on
the specific problem instances and there is no single best selection scheme. Note
that Landmark-A∗ is often also called the ALT-algorithm (A∗, Landmarks, and
the Triangle inequality).

Geometric Containers. The idea of geometric containers is to precompute a set
M(e) of nodes for each edge of the graph. This container includes a superset of
all nodes that lie on a shortest path starting with e. Then, in an s–t query, an
edge e needs not be relaxed if t 	∈M(e). In [714], M(e) is specified by an angular
range. Better results can be achieved with other geometric containers [816,818],
the best trade-off in search space reduction and query performance is achieved
for axis parallel rectangles.

Arc-Flags. A crucial problem of geometric containers is that preprocessing is
based on solving APSP. Arc-Flags, introduced in [510,493], improve on this by
reversing the idea of geometric containers. Instead of storing a container for each
edge, the graph is partitioned in k cells. Then, each edge gets assigned a k-bit
flag, where the i-th bit is set to true if at least one node in cell i lies on a shortest
path starting with e.

396 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Preprocessing of Arc-Flags is split into two parts: partitioning the graph and
computing arc-flags. In [582], several approaches for partitioning have been eval-
uated. It turns out that the best results are achieved for k-way arc-separator
algorithms, e.g., METIS [467]. The obtained partitions fulfill most requirements
of a useful partition: balanced cell-sizes, connected, and a small number of edges
connecting two regions. Setting arc-flags can be done by constructing a shortest
path tree from each boundary node (a node adjacent to a node of a different cell)
on the reverse graph. An edge gets a flag for a cell i set to true as soon as it is
a tree-edge for at least one of those trees grown. In [392], Hilger et al. show how
to accelerate preprocessing further by growing a single centralized shortest path
tree from each cell.

Arc-Flags can be made bidirectional in a straightforward manner: Compute a
second set of flags for each edge of the reverse graph and use them to prune the
backward search. The stopping criterion is the standard one from bidirectional
Dijkstra.

Hierarchical Approaches. Roughly speaking, hierarchical approaches try to
prune unimportant nodes or edges as soon as the search is sufficiently far away
from source and target. This can either be achieved by “skipping” unimpor-
tant parts of the graph or by some kind of centrality measure indicating the
importance of a node. In the following, we explain a representative for both
approaches.

Multi-Level Techniques. In [716,404,405], Schulz et al. designed and empirically
investigated the following multi-level approach for timetable queries in public
transportation. Their work is based on previous results, published in [714,715].

To construct the graph Gi+1 from Gi they choose a subset Vi+1 ⊆ Vi. For each
shortest path connecting two nodes u, v ∈ Vi+1 in Gi which does not contain
any other node of Vi+1 there is an an edge (u, v) ∈ Ei+1 with according weight.
Analogously, there are edges — connecting Gi and Gi+1 — representing shortest
paths between any two nodes w ∈ Vi \ Vi+1 and v ∈ Vi+1 as long as these paths
do not contain any other node from Vi+1. Note that this implicitly partitions
the nodes Vi with respect to their incidence with Gi+1. This yields a hierarchy
on which a so-called multi-level graph M is based; a graph Gi is called the i-th
level of M.

An (s, t)-query algorithm applies a search algorithm to a subgraph S of M,
exploiting the above partitioning property. Such subgraph S, which is substan-
tially smaller than G0, depends on the specific query and is therefore determined
on the fly.

Reach. Another hierarchical approach was introduced by Gutman [372] and
involves the notion of reach: Let P be a s–t path in G, and let v be a node on P .
The reach rP (v) of v w.r.t. P is defined as min{distP (u, v), distP (v, w)}, with
distP denoting the length of the subpath of P between the two specified nodes.
The reach of v is now defined as

r(v) := max{rP (v) | P is a shortest path in G containing v} .

9. Case Studies 397

Intuitively, if the reach of a node v is high, we know that v lies in the middle of
a “long” shortest path. Now, we can make up the following pruning condition:
When settling a node v, we can prune, i.e., not relax any edge (v, u) ∈ E, if
r(v) < min{dist(s, v), dist(v, t)} holds. While dist(s, v) is given by the key of v
in the priority queue, dist(v, t) is not known in general. However, using some
lower bounds dist(v, t) does not violate correctness of the pruning condition.

The computation of the exact reaches could be done by computing APSP.
But even specialized, more efficient algorithms, as presented in [339], are too ex-
pensive for large graphs. Fortunately, we can use upper bounds r̄ for the reaches
instead. Since the reaches are completely independent of the query algorithm,
the upper bounds for the reaches can be computed in advance. In [372], an ef-
ficient algorithm is suggested to compute the upper bounds. The main idea is
to iteratively construct partial shortest path trees for each node. These are then
used for finding the nodes with a low reach and temporarily removing them from
G (redefining the costs on the edges in the remaining graph appropriately). This
step is then iteratively performed on smaller graphs until we have some r̄(v)
for all nodes v. Note that some nodes u might have r̄(u) = ∞ if we decide to
terminate this process early, in order to save computation time.

To render the pruning condition as effective as possible, good lower bounds
on the distances are needed. Originally (in [372]), Euclidean distances were used
to compute these bounds. This resulted in such algorithms to be only applicable
to graphs with given layout information. An alternative method that avoids this
restriction was suggested in [339], where a bidirectional version of reach-based
pruning was introduced. More precisely, when settling a node u in the forward
direction, we already know the exact dist(s, u). The distance from u to t can be
estimated as the distance already covered by the reverse search. Hence, we do not
require any layout information and virtually no additional effort for computing
the lower bounds on distances.

Combinations. The interested reader may have noticed that goal-directed and
hierarchical search exploit different facts for accelerating the query algorithm.
Hence, it seems promising to combine speed-up techniques among each other.
In [714], the authors combine their goal-directed and hierarchical approach with
each other. The experimental evaluation confirms that combinations indeed fur-
ther reduces query times: a speed-up of 62 is reported for timetable information
in railway networks. In [407,406], all pre 2004 techniques are systematically com-
bined among each other. It turns out that depending on the graph type, different
combinations perform best. For the real-world graph examined, a combination
of bidirectional search and geometric containers leads to the best running times.

Final Remarks on Phase II. The main contribution in phase II was the
introduction of the most fundamental concepts for accelerating P2P-queries:
hierarchical and goal-directed speed-up techniques. It turns out that both ap-
proaches are the fundament of most of the techniques developed during the
following phase III.

398 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

However, a crucial problem during phase II was the unavailability of public
data sets. Each group working on route planning algorithms had his own (clas-
sified) data set for testing their developed speed-up technique. This made the
comparison of the techniques almost impossible. Moreover, the networks used for
evaluation still were quite small. As a result, a preprocessing based on APSP

was still feasible.

9.2.3 Phase III: Road Networks (2005 – 2008)

A second turning point in research on P2P was the publication of large continen-
tal-sized road networks, namely of Europe and the USA. The resulting graphs,
made available in 2005, have up to 24 million nodes and 58 million edges. For
the first time, it was possible to compare different approaches on a challeng-
ing input. Immediately after the publication of these data sets, a kind of “horse
race” for the fastest technique on this input started. Inspired by the DIMACS
implementation challenge on shortest paths [233], many techniques were devel-
oped. Especially the hierarchical approaches surged a high interest since road
networks seem to inherit a natural hierarchy due to different road categories,
i.e., motorways, national roads, urban streets, and rural roads. In the follow-
ing, we discuss how to compare speed-up techniques among each other, present
the developed hierarchical approaches and their impact on combinations with
goal-directed techniques.

Note that some cited papers in this subsection have been published after 2008.
The reason for this is that we refer to the later published journal version of this
paper. The first publication however, always falls within the given years between
2005 and 2008.

Methodology of Comparison. The quality of speed-up technique can be evalu-
ated by three criteria: preprocessing time, preprocessing space, and the result-
ing speed-up over Dijkstra’ algorithm. In general, preprocessing time should be
within some hours, even for huge inputs, the additional space should be linear
in the number of nodes, while query times should be as low as possible.

Engineering Hierarchical Approaches. As already mentioned, the hierar-
chical approach seems most promising for route planning in road networks: the
resulting graphs are sparse, i.e., m ∈ O(n), and some roads are more impor-
tant for quickest paths than others. Hierarchical approaches try to exploit this
natural hierarchy.

Highway Hierarchies (HH). The first hierarchical speed-up technique capable of
preprocessing the European road network was Highway Hierarchies, introduced
by Sanders and Schultes in [697] and significantly enhanced in [698]. Preprocess-
ing times are below one hour for Europe and the US while random queries, i.e.,
source and target are picked uniformly at random, on these inputs take 1 ms on
average.

9. Case Studies 399

Basically, preprocessing conducts two phases: a node-reduction routine fol-
lowed by identifying so-called highway-edges. The node-reduction iteratively re-
moves low-degree nodes and introduces additional edges, so called shortcuts, in
order to preserve distances between non-removed nodes. While this procedure
adds only a few edges at the beginning of the preprocessing, more and more edges
are added at later iteration steps. Hence, an edge reduction scheme is applied
by classifying edges as highway edges or not. Therefore, a local neighborhood
Nh(v) for each node v is defined. The neighborhood Nh(v) (for some predefined
constant h) consists of the h closest nodes to v. An edge (u, v) ∈ EH then is
a highway edge if there exists some shortest path P = 〈u′, . . . , u, v, . . . v′〉 with
v /∈ Nh(u′) and u /∈ Nh(v′). It turns out that non-highway edges can be removed.

Summarizing, the preprocessing adds shortcuts to the graph and assigns a
level information to each node, i.e., the iteration step it was removed by node-
reduction. The query algorithm is basically a slight modification of a bidirectional
Dijkstra algorithm. [698] is a very good example of Algorithm Engineering. It
showcases the main engineering principles and aspects which are crucial for a
better performance of an algorithm.

The RE algorithm. Inspired by Highway Hierarchies, Goldberg et al. [339] intro-
duces the concept of shortcuts to reach. The key observation is that the reach
value of a removed node can be bounded directly during removal. Moreover,
Goldberg et al. improve the iterative computation of reaches over [372] by re-
moving all nodes from the graph that have their final reach value assigned. In
combination with a similar node-reduction scheme as presented in [698], reach
values can be computed for continental-sized road networks within 1 to 2 hours.
It turns out that shortcuts make queries more effective by reducing the num-
ber of nodes traversed and by reducing the reach-values of the nodes bypassed
by shortcuts. The query performance, however, cannot compete with Highway
Hierarchies. However, the RE algorithms harmonizes perfectly with the ALT-
algorithm (cf. Combinations at the end of this subsection).

Transit-Node Routing. In [66], Bast et al. improved the average running times
by another two orders of magnitude. The key observation is that if you drive
somewhere “far away”, you pass by a very few spots, no matter where you go.
In a city for example, these important spots are the ramps to the motorway. It
turns out that the number of those spots in a continental-sized road network is
only about 10 000. So, it is feasible to precompute all distances between those
so-called transit nodes and from every node to its relevant transit nodes, called
access nodes. With this information at hand, a long- and mid-range query can
be reduced to 3 table-lookups yielding query times of below 4 μs for random
queries. The final ingredient of Transit-Node Routing is a locality filter in order
to decide whether a path is local or not. If the path is local, another speed-up
technique, i.e., Highway Hierarchies, is used for determining the quickest path.
More layers of transit nodes are introduced for improving the running times of
local queries as well. A remarkable fact about Transit Node Routing is that a
brief abstract has been published in Science [67].

400 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Highway-Node Routing. Although Transit-Node Routing was the fastest tech-
nique by the beginning of 2007, its space consumption is quite high and both the
preprocessing and query algorithm are complicated. Highway-Node Routing [712]
improves on this by engineering the multi-level method due to [715,716,404,405].
Again, for a given sequence of node sets V =: V0 ⊇ V1 ⊇ . . . ⊇ VL a hierarchy
of overlay graphs is constructed: The level-� overlay graph consists of the node
set V� and an edge set E� that ensures the property that all distances between
nodes in V� are equal to the corresponding distances in the underlying graph
G�−1. A bidirectional query algorithm takes advantage of the multi-level over-
lay graph by never moving downwards in the hierarchy — by that means, the
search space size is greatly reduced. The node classification of HNR is given by a
precomputed HH. The advantage of HNR over HH is its easier search algorithm
and a simple way to update the preprocessed data in case edge weights change
due to delays or traffic jams. The preprocessing effort is less than for Highway
Hierarchies, while query times are slightly higher for Highway-Node Routing.

Contraction Hierarchies. The main disadvantage of Highway-Node Routing is
that the node classification stems from the complicated Highway Hierarchies pre-
processing. [323] improves on this by obtaining a node classification by iteratively
contracting the ‘least important’ node, i.e., the node is removed and shortcuts are
added for preserving distances between remaining nodes. This yields a hierarchy
with up to |V | levels. Here, importance of a node u is given by several properties
such as the degree of node u, the number of already contracted neighbors, and
others.

By this procedure, the input graph G is transferred to a search graph G′ by
storing only edges leading from unimportant to important nodes. As a remark-
able result, G′ is smaller (at least in road networks) than G yielding a negative
overhead per node. Finally, by this transformation, the query is simply a plain
bidirectional Dijkstra search operating on G′. Although the concept of Contrac-
tion Hierarchies is much simpler than the one of Reach or Highway Hierarchies,
query performance of Contraction Hierarchies is up to 5 times better.

Combinations with Goal-Directed Techniques. Naturally, all hierarchical
techniques engineered during the third phase can again be combined with goal-
directed techniques. Two candidates proved useful for combinations: the ALT-
algorithm and Arc-Flags. In the following, we report on these combinations.

REAL. Goldberg et al. [339, 340] have successfully combined their advanced
version of REach with landmark-based A∗ search (the ALt algorithm), obtain-
ing the REAL algorithm. As already mentioned, reach based pruning requires
a lower bound to the target. When this is provided via landmark information,
query performance increases over reach-based pruning based on implicit bounds.
Moreover, it turns out that running A∗ instead of Dijkstra harmonizes well with
reach. The resulting query performance is comparable to Highway Hierarchies.
In the most recent version [340], the authors introduce a variant where landmark

9. Case Studies 401

distances are stored only with the more important nodes, i.e., nodes with
high reach values. By this means, the memory consumption can be reduced
significantly.

HH∗. [225] combines highway hierarchies [698] (HH) with landmark-based A∗
search. Similar to [340], the landmarks are not chosen from the original graph,
but for some level k of the highway hierarchy, which reduces the preprocessing
time and memory consumption. As a result, the query works in two phases: In
an initial phase, a plain highway query is performed until the search reaches
level where landmark information is available. So, for the remaining search, the
landmark distances are available: a combined (goal-directed) algorithm can be
used.

SHARC. [71, 72] integrates contraction into Arc-Flags. The key observation is
that arc-flags of removed edges during contraction can be set automatically with-
out costly computations. Although such computed flags are suboptimal, they can
be refined as very last step of the preprocessing. A remarkable fact about SHARC
is that Arc-Flags are set in such a way that long shortcuts are preferred over
other edges as long as the target is “far away”. As soon as the search approaches
the target, unneeded (long) shortcuts are pruned. This can be achieved without
any modification to the query algorithm of Arc-Flags. In other words, SHARC
is a unidirectional goal-directed approach that encodes hierarchical properties
via the Arc-Flags. The advantage of this approach is its easy usage in scenarios
where bidirectional search is prohibitive (cf. Section 9.2.4).

Hierarchical Arc-Flags. In [73], Arc-Flags are combined with Contraction Hi-
erarchies and Transit-Node Routing yielding the fastest known route planning
algorithms for (static) road networks. The key observation of both approaches is
that the costly preprocessing of Arc-Flags can be restricted to the “upper” part
of the hierarchy constructed by the hierarchical ingredient. By this, the search is
additionally made goal-directed, improving query performance between a factor
of 2 and 10. Since arc-flags are only computed for the “important” part of the
graph, the additional preprocessing effort stays limited.

Results. As already mentioned, most of the research during phase III was driven
by the available road networks. Since this benchmark data set was used in almost
all publications on route planning since 2005, Table 9.1 reports the results of
all above mentioned speed-up techniques on the European road network. We
report the preprocessing effort in time and additional bytes per node. Query
performance is evaluated by running random queries, i.e., source and target are
picked uniformly at random, and by reporting the average number of settled
nodes and the resulting average query times. Note that all experiments were
conducted on comparable machines. Also note that preprocessing space does not
include path unpacking information which in practice needs about 4-8 additional
bytes per node.

402 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Table 9.1. Overview of the performance of various speed-up techniques, grouped goal-
directed, hierarchical, and combined techniques on the European road network bench-
mark data set. Column data from indicates from which paper the figures where taken
from, while speed-up refers to the (rough) speed-up over unidirectional Dijkstra. The
preprocessing effort is given in hours and minutes and additional bytes per node.

Prepro. Queries
time space #settled time00 speed

technique data from [h:m] [bytes/n] nodes [ms]00 up (≈)
Dijkstra [74] 0:00 0.0 9 114 385 5 592.0000 1
Bidir. Dijkstra [74] 0:00 1.0 4 764 110 2 713.0000 2
ALT [226] 0:13 128.0 74 669 53.6000 100
Arc-Flags [392] 35:56 25.0 1 593 1.1000 5 000
Highway Hierarchies [711] 0:13 48.0 709 0.6100 9 000
RE [340] 1:23 17.0 4 643 3.4700 1 600
Transit-Node Routing [711] 1:52 204.0 N/A 0.0034 1.6 mio.
Highway-Node Routing [711] 0:15 2.4 981 0.8500 6 500
Contraction Hierarchies [323] 0:25 -2.7 355 0.1600 35 000
REAL [340] 2:21 36.0 679 1.1100 5 000
HH∗ [711] 0:14 72.0 511 0.4900 11 000
SHARC [72] 1:21 14.5 654 0.2900 19 000
CH+AF [73] 1:39 12.0 45 0.0170 330 000
TNR+AF [73] 3:49 321.0 N/A 0.0019 3 mio.

We observe that purely goal-directed techniques either suffer from long pre-
processing times (Arc-Flags) or rather low speed-ups combined with a high space
consumption (ALT). Hierarchical approaches perform much better: Contraction
Hierarchies has a very low preprocessing effort combined with a speed-up of up
to 35 000 over Dijkstra’s algorithm. If a user is willing to accept a higher pre-
processing effort (both space and time), Transit-Node Routing achieves average
query times of below 4 μs. These values can be further improved by a combina-
tion of Arc-Flags: Contraction Hierarchies with Arc-Flags score query times of
below 20 μs, while the goal-directed variant of Transit-Node Routing even has a
query performance of below 2 μs.

Final Remarks on Phase III. The most remarkable fact about phase III is the
concept of shortcuts. Introduced as (minor) ingredient for Highway Hierarchies,
it turned out that shortcuts are the solution to route planning in road networks.
Any other technique from phase II can be made efficient by a combination with
shortcuts reducing preprocessing effort and improving query performance signif-
icantly. Finally, it even turned out that shortcuts on their own are a very potent
and easy speed-up technique, i.e., Contraction Hierarchies.

With the end of phase III in 2008, route planning in static road networks
can be considered as “solved”. The developed route planning algorithms provide
a wide spectrum for the user’s needs: the fastest technique, Transit-Node Routing

9. Case Studies 403

combined with Arc-Flags computes quickest paths in a few microseconds, Con-
traction Hierarchies combined with Arc-Flags needs less than 50 microseconds
with much less space consumption, while preprocessing times of all techniques
are within a few hours.

9.2.4 Phase IV: New Challenges on P2P (Since 2008)

While the route planning problem on static road networks was considered as
solved, a lot of other problems remained open, e.g., timetable information in
public transportation networks, time-dependent (road) networks, handling graph
updates due to traffic jams or delays, or finding better routes via multi-criteria
optimization. In this last subsection, we discuss very recent developments and
open problems for route planning in transportation networks.

Closing the Circle: Back to Theory. A challenging task is to understand why
speed-up techniques perform so remarkably well on road networks. These net-
works are almost planar and have small separators. These properties may help to
explain the remarkably good practical performance. However, many researchers
believe that this is due to the hidden hierarchy in the networks such that only
very few edges, i.e., the motorways, are important for long-range queries. Very
recently, Abraham et al. [1] provided the first rigorous proofs of efficiency for
several heuristics. They introduced the notion of highway dimension. Roughly
speaking, a graph has small highway dimension if for every r > 0 there is a
sparse set of vertices Sr such that every shortest path of length greater than r
hits a vertex from Sr. Sparse here means that every ball of radius O(r) contains
a small number of elements of Sr. The authors succeeded to show that graphs
with low highway dimension have provable guarantees of efficiency for several
of the methods discussed in this chapter (sometimes with small modifications):
Reach (RE), Contraction Hierarchies, Highway Hierarchies (HH), Transit-Node
Routing, and SHARC. They also introduced a simple generative model for road
networks, and show that the resulting networks have low highway dimension.
Future work will show whether enhanced generative models may lead to even
tighter bounds.

Another interesting question is whether the problem of determining the pre-
processing that minimizes the average search space of a speed-up technique is
NP-hard or not.

Network Analysis. Closely related to the just mentioned problem is the question
whether we can somehow predict the performance of a speed-up technique on
a given network. Although some work on such indices has already been done
in [75], it seems as if this preliminary study is more a starting than an end point
for network analysis with respect to the performance of speed-up techniques.

Augmented Scenarios. Besides giving a theoretical foundation of the achieved
results, research moved on to the adaption of the route planning algorithms

404 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

to augmented scenarios, e.g., dynamic or time-dependent graphs, multi-criteria
optimization, other networks, etc. The main challenge here is to preserve cor-
rectness of the adapted techniques and to keep the loss in query performance
limited.

Dynamic Scenarios. Most of the speed-up techniques discussed so far require
the graph to be static, i.e., neither the topology nor the edge weights change
between two queries. However, updates to a transportation network appear quite
frequently in practice, i.e., traffic jams or delays of trains. In order to keep the
queries correct, the preprocessed data needs to be updated. The most straight
forward way would be to recompute the preprocessing from scratch after an
update. However, this is infeasible since even the fastest methods need more
than 10 minutes for preprocessing. The solution is to identify the invalid parts
of the preprocessing and recompute only the affected parts.

Geometric Containers was the first technique studied in such a dynamic sce-
nario [817]. The key idea is to allow suboptimal containers after a few updates.
However, this approach yields quite a loss in query performance. The same holds
for the dynamic variant of Arc-Flags [97]: after a number of updates, the qual-
ity of the flags gets worse yielding only low speed-ups over Dijkstra’ algorithm.
The ALT algorithm, however, works in a dynamic graphs as long as the edge
weights do not drop below their initial value. This is a reasonable assumption be-
cause in most times, delays or traffic jams only increase the overall travel times.
Still, query performance decreases if too many edges are perturbed [226]. The
only hierarchical techniques working in a dynamic scenario are Highway-Node
Routing and its successor, Contraction Hierarchies. Since edges contribute to
shortcuts, they also need to be updated as soon as the original edge is updated.
This is achieved by storing sets of nodes from which the preprocessing needs to
be repeated if an edge is updated [712,221].

Summarizing, all above techniques work in a dynamic scenario as long as the
number of updates is small. As soon as a major breakdown of the system occurs,
it is most often better to repeat the complete preprocessing.

Time-Dependency. In practice, travel duration in a transportation network often
depends on the departure time. It turns out that efficient models for routing in
almost all transportation systems, e.g., timetable information for railways or
scheduling for airplanes, are based on time-dependent networks. Moreover, road
networks are not static either: there is a growing body of data on travel times of
important road segments stemming from road-side sensors, GPS systems inside
cars, traffic simulations, etc. Using this data, we can assign speed profiles to
roads. This yields a time-dependent road network.

Switching from a static to a time-dependent scenario is more challenging than
one might expect: The input size increases drastically as travel times on con-
gested motorways change during the day. On the technical side, most static tech-
niques rely on bidirectional search, this concept is complicated in time-dependent
scenarios since the arrival time would have to be known in advance for such an
approach. Moreover, possible problem statements for shortest paths become even

9. Case Studies 405

more complex in such networks. A user could ask at what time she should depart
in order to spend as little time traveling as possible. As a result, none of the
existing high-performance techniques can be adapted to this realistic scenario
easily.

The key idea for adapting speed-up techniques to this challenging scenario was
the concept of ingredients [219]: identify very basic ingredients of route planning,
i.e., bidirectional search, landmarks, Arc-Flags, and contraction, and check which
ingredients contribute to which technique. By augmenting the ingredients such
that correctness can still be guaranteed, the following speed-up techniques work
in time-dependent networks: ALT [609,222], SHARC [218,220], and Contraction
Hierarchies [70]. One of the most remarkable facts about time-dependent route
planning is that the concept of shortcuts gets quite space consuming: the travel
time function assigned to the shortcut is as complex as all edge functions the
shortcut represents. The reason for this is that we need to link the travel time
functions (cf. [220] for details). For example, Contraction Hierarchies which re-
lies solely on shortcuts yields an overhead of ≈ 1 000 bytes per node [70] in a
time-dependent scenario whereas the overhead in a time-independent scenario
is almost negligible (cf. Table 9.1). Very recently, first results on how to reduce
the memory consumption of time-dependent SHARC have been published [140].
The key idea is not to store the travel time function for shortcuts: instead, it is
evaluated on-the-fly. It turns out that the performance penalty is quite low.

For a more detailed overview over time-dependent route planning, we direct
the interested reader to [228].

Multi-Criteria. In transportation networks, the quickest connection often is not
the “best” one. Especially in railway networks, a user is willing to travel slightly
longer if the number of transfers is less. A common approach to cope with such a
situation is to find Pareto-optimal (concerning other metrics than travel times)
routes. Such routes have the property that each route is better than any other
route with respect to at least one metric under consideration, e.g., travel costs
or number of train changes.

The straightforward approach to find all Pareto-optimal paths is the gener-
alization [381, 538, 579] of Dijkstra’s algorithm: Each node v ∈ V gets a num-
ber of multi-dimensional labels assigned, representing all Pareto paths to v. By
this generalization, Dijkstra loses the label-setting property, i.e., now a node
may be visited more than once. It turns out that a crucial problem for multi-
criteria routing is the number of labels assigned to the nodes. The more labels
are created, the more nodes are reinserted in the priority queue yielding con-
siderably slow-downs compared to the single-criteria setup. In the worst case,
the number of labels can be exponential in |V | yielding impractical running
times [381]. In railway networks, however, [595] observed that in such networks,
the number of labels is limited such that the brute force approach for finding all
Pareto paths is often feasible. Experimental studies finding all Pareto-optimal
solution vectors (and sometimes also all corresponding Pareto-optimal paths) in
timetable graphs can be found in [651,652,713,653,594,365,251]. In most cases
a special version of A∗ is adapted to this scenario. The only speed-up technique

406 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

developed during phase III that has successfully adapted to a multi-criteria sce-
nario is SHARC [227]. The idea for augmentation is the same as for adaption
to time-dependent networks: augment the basic ingredients and leave the basic
concept untouched.

Multi-Modal. The interested reader may have noticed that all techniques dis-
cussed so far only work in one transportation network at a time. On the long
run, however, we are interested in multi-modal queries where we change the type
of transportation along our journey. Unfortunately, it is not sufficient to merge
all networks and compute quickest paths in the resulting bigger network: The
quickest path may force us to change the type of transportation too frequently. A
possible approach to this problem is the Label Constrained Shortest Path

Problem. The idea is as follows. Each edge gets a label assigned depicting the
type of transportation network it represents. Then, only a path between s and t
is valid if certain constraints are fulfilled by the labels along the path.

Up to the beginning of phase IV, only theoretical results [565, 63] or evalua-
tion of basic techniques [62, 61] for the Label Constrained Shortest Path

Problem have been published. The only attempt for using insights gained dur-
ing phase III for multi-modal route planning can be found in [223], which adapts
ideas from Transit-Node Routing to the multi-modal scenario. The main idea
is to preprocess, for each node of a road network, all relevant access-nodes to
the public transportation network. Then, the query algorithm can skip the road
network which makes up most of the combined network under consideration.
The authors report average query times of below 5 ms on a network with 50
million nodes and 125 million edges, a speed-up of more than 30 000 over a label
constrained variant of Dijkstra’s algorithm.

Flash Memory. As soon as a speed-up technique should be used on a mobile
device, space consumption plays a crucial role. Moreover, the data needs to be
ordered in such a way that the number of accesses to the flash memory stays as
small as possible. Goldberg and Werneck were the first who implemented their
goal-directed ALT technique on a mobile device [342]. The results, however, are
not very good since query times decrease significantly over the implementation
of a server. Keeping the requirement of few flash memory accesses in mind, a
hierarchical speed-up technique seems more promising for implementation on a
mobile device: most of the query is carried out on a small subgraph. Indeed,
Contraction Hierarchies also works in such a scenario [699]. The authors report
query times of less than 100 ms on a mobile device. Moreover, they were able to
reduce the space consumption including the graph from ≈ 20 bytes per node to
≈ 8 bytes per node (all values refer to the European road network).

Remarks on Phase IV. It should be noted that phase IV is not finished yet,
for most of the above mentioned problems, only first results have been published.
Even for the time-dependent scenario, space consumption is the main issue to

9. Case Studies 407

(a) (b) (c)

Fig. 9.1. (a) Euclidean Steiner tree, (b) rectilinear Steiner tree on the same terminal
set as in (a), (c) Steiner tree in a network with the black dots being the terminals

deal with in the near future. In the field of multi-modal route planning, the
ultimate goal would be to have a graph modeling the world-wide transportation
network. Computations of best connections (by multi-criteria optimization) in
such a huge graph will definitely be challenging, even with the insights gained
in phase III. The main academic challenge, however, is the theoretical analysis
of the techniques developed so far.

9.2.5 Conclusions

In this section, we presented a review of the research on point-to-point shortest
paths along its historical lines. It turns out that we can make up four phases of
development. The first phase starts directly after Dijkstra’s publication in 1959.
During this phase, researchers tried to improve the worst-case running times
by the introduction of clever data structures. Moreover, first basic speed-up
techniques, i.e., bidirectional search and A∗, were developed. The phase ends in
1999 with the publication of Schulz et al. on speed-up techniques [714] leading to
a number of follow-up studies and the development of new speed-up techniques.
The third phase starts by the introduction of publicly available continental-sized
road networks. These challenging huge inputs directly lead to a kind of “horse
race” for the fastest technique on this input. The climax of this race was surely
the DIMACS implementation challenge on shortest path in 2006 [233]. At the
end of the third phase, i.e., in 2008, the route planning problem on static road
networks was considered as solved. Hence, in phase IV, researches focused on
new challenges in the field of route planning. While some of them are already
solved, a lot of open problems still persist.

9.3 Steiner Trees

Given a set of cities we search for a shortest interconnection of these. This
problem is one of the variants of the Steiner tree problem which asks for a
connection of a set of points (so-called terminals) with lines of shortest total
length. See Figure 9.1 for different examples of Steiner trees. Historically, the
first who considered a Steiner tree problem was Fermat (1601–1665). He posed

408 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

the following question: “Given three points in the plane, find a fourth point such
that the sum of its distances to the three given points is minimum.” Torricelli
found a solution for Fermat’s problem with circle and ruler before 1640. The
generalization of the problem to n given points for which we search for a point
which minimizes the sum of the distances to the n points was considered by
many researchers; also by the mathematician Jacob Steiner (1796–1863). In 1934
Jarník and Kössler were the first who investigated the problem to find a shortest
interconnection for n given points which interconnects them [433]. Courant and
Robbins referred to Steiner in their popular book “What is Mathematics?” [194],
establishing the notion “Steiner tree problem”.

Variants of the Problem. There are two main variants of the Steiner tree
problem, the Steiner tree problem in networks and the geometric Steiner tree
problem. Given a graph G = (V, E), a subset T ⊆ V called terminals, and
a length function l : E → R≥0, a Steiner tree is a connected subgraph of G
spanning all terminals. The Steiner tree problem in networks asks for a Steiner
tree with minimum length for the given instance. Such a tree is called Steiner
minimum tree.

For the geometric Steiner tree problem we get as input a set of points (also
called terminals) in the plane and a distance function. A Steiner tree is a set of
line segments interconnecting all terminals. Moreover, it is allowed to introduce
auxiliary points (so-called Steiner points) to shorten the overall length of the
Steiner tree. A Steiner tree with minimum total length is called Steiner minimum
tree.

The Euclidean and the rectilinear versions are the most studied geometric
Steiner tree problems. These types of geometric Steiner tree problems only differ
by their distance functions which are defined as follows: The Euclidean and
rectilinear distance between two points u = (ux, uy) and v = (vx, vy) are ‖uv‖2 =√
|ux − vx|2 + |uy − vy|2 and ‖uv‖1 = |ux−vx|+ |uy−vy|, respectively. See also

Figure 9.1 for examples of Steiner trees. An instance of the rectilinear Steiner
tree problem can be transformed into an instance of the Steiner tree problem
in graphs. Hanan [380] observed that there is a Steiner minimum tree which
includes only edges from the grid induced by vertical and horizontal lines through
all terminals. Thus, the constructed graph instance has quadratic size in the
number of terminals.

Further variants of the Steiner tree problem are, e. g., the node weighted
Steiner tree problem and the group Steiner tree problem. In the node weighted
Steiner tree problem, besides the edges also the nodes have assigned weights and
one wants to find a Steiner tree with minimum total weight. In the group Steiner
tree problem, the set of terminals is partitioned into groups and we search for a
Steiner tree which contains at least one terminal of each group.

All typical variants of the Steiner tree problem are NP–hard, as has been
shown for networks [464], for the Euclidean [316] and for the rectilinear Steiner
tree problem [317]. Therefore, besides exact algorithms approximation algo-
rithms have been considered. But due to recently developed algorithmic

9. Case Studies 409

techniques, exact algorithms can now even solve problem instances with several
thousands of terminals to optimality. These approaches use powerful combina-
torial insights and linear programming based formulations.

Overview. In the following we give a survey on the design and implementation
of algorithms for the Steiner tree problem and their development over the years.
After describing one key application, we start with a presentation of the progress
for exact algorithms in Section 9.3.1. The most interesting fact in this regard
is that for almost twenty years there was no substantial improvement. Then
two approaches have been developed which we will investigate in Section 9.3.1.
The first one mainly based on combinatorics and the second one being a linear
programming approach. In Section 9.3.2, we turn to approximation algorithms
and heuristics: First, we present a general greedy framework for which many
different variants exist. Afterwards, we discuss two heuristics which deliver quite
good empirical results.

Applications and Modeling. The Steiner tree problem models several real-
world problems. As an example we discuss the physical design of VLSI chips
where in the placement and routing process Steiner trees are used. After a very
rough overview of the main phases of VLSI design in which Steiner trees are
used, we point out different requirements of the chip design and the appropriate
Steiner tree models.

In the logical design phase it has been specified which elementary logical units
(circuits) are to be used and which of the chosen circuits must be connected by
wires so that the chip performs in the way it should. Each circuit is characterized
by its width, its height, its contact points (so-called pins) and its electric prop-
erties. A net is a set of circuits that must be connected by a wire (as specified
in the logical design phase). The list of circuits and the list of nets are the input
of the physical design phase. Here, the task is to assign the cells to a certain
rectangular area (placement) and connect (route) the nets by wires.

The physical design is a highly demanding process. In a first step, the circuits
are embedded on the placement area. In the placement process, each circuit
receives its exact position.

If we consider each circuit of a net as a terminal, a Steiner tree is a solution
of the required interlinkage of a net. The exact positions of the wires are es-
tablished in the routing phase. To process the routing in appropriate time, it is
divided into global and local routing. In the global routing phase, the topology
of the wires is determined. Afterwards, the wires get their exact positions in the
local routing phase. For the global design very fast algorithms are needed. Here
an inaccuracy up to a certain degree is tolerable. Once a rough layout structure
is fixed more accurate models and solutions are required. To work towards a
feasible routing, one objective is to minimize the length of the interlinkages of
a net. This can be modeled by classical Steiner trees [173]. But in VLSI design
many more constraints have to be considered. E. g., the wires can be placed on a
number of different routing layers. Each layer prefers one of usually two approved

410 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

perpendicular directions. To connect adjacent layers so-called vias are used. The
layers may have varying cost depending on the material and the available routing
space. If we want to model these constraints, we search for a minimum cost
Steiner tree which take via costs and layer costs into account [852].

Other constraints are preplaced macros or other circuits. Wires may run over
obstacles but are not allowed to exceed a given length on top of an obstacle.
This requirement can be modeled by length restricted Steiner trees : A length
restricted Steiner tree is allowed to run over obstacles; however, if we intersect
the Steiner tree with some obstacle, then no connected component of the induced
subtree may be longer than a given fixed length [415,597].

In the detailed routing phase, we are faced with the group Steiner tree prob-
lem, since the logical units typically allow the nets to connect to several elec-
trically equivalent pins [856]. Nowadays, a chip consists of millions of nets and
for each net we must solve a Steiner tree problem. The different Steiner trees
have to be edge disjoint. This is modeled by the Steiner tree packing problem:
We simultaneously search for a set of Steiner trees in a given graph where each
edge is allowed to be used at most once [361].

Here we see a relevant challenge of Algorithm Engineering because in the
placement as well as in the two phases of the routing process we must solve
different Steiner tree problems. For a more detailed description of application
of Steiner trees in VLSI design, see [516, 257]. On account of these applications
we need good and fast algorithms for the problem. It is important to design
algorithms which are efficient on real world instances and not only to judge an
algorithm by its worst case running time. Even if in early design stages inaccurate
solutions are admissible, approximations and heuristics can be in the later design
process insufficient. So, also for an NP-hard problem as the Steiner tree problem
it makes sense to search for exact algorithms. And as we see in the following
section the area of exactly solvable instances could be highly expanded. Another
aspect is that we need exact algorithms to determine the empirical performance
of heuristics. A benefit of the many applications of the Steiner tree problem
is that they provide numerous test instances to measure the performance of
implemented algorithms.

Structural properties. The graph of a Steiner tree without an embedding in
the plane is called a topology. A Steiner tree is called full if each of its terminals
has degree one. Each Steiner tree is the concatenation of sets of full components.
That is, it is either a full Steiner tree or splits into two or more full Steiner trees
at terminals of degree greater than one. See Figure 9.2 for an example.

9.3.1 Progress with Exact Algorithms

In 1961, Melzak established the first finite algorithm for the Euclidean Steiner
tree problem. His approach is to first construct a minimal tree for every full
topology. Then one selects the shortest tree composed of a subset of these gener-
ated full trees [564]. Regarding the network Steiner tree problem, a new approach

9. Case Studies 411

Fig. 9.2. Full components of a Euclidean Steiner tree

was introduced by Dreyfus and Wagner in 1971, which was based on dynamic
programming [256]. Here the Steiner minimum tree for a given terminal set is
recursively computed by Steiner trees for all proper subsets of the terminals.
Both approaches were varied and advanced by multiple researchers, e. g., Smith,
Ganley and Cohoon, and Fößmeier and Kaufmann [746, 314, 302]. Comparing
these three algorithms points out the gap between theory and practice. The al-
gorithm of Ganley and Cohoon has a worst case running time of O(k2 · 2.38k)
for instances with k terminals [302]. This bound has recently been improved to
O((2+ δ)kn12/

√
δ/ ln(1/δ)) for sufficiently small δ by Fuchs et al. [309]. Björklund

et al. [104], in turn, achieved the first Õ(2kn2 + nm) algorithm for the Steiner
tree problem in graphs with n vertices, k terminals, and m edges with bounded
integer weights. However, these improvements seem to be only of theoretical
value, given the progress by other methods. To the best of our knowledge, only
problems with no more than 50 terminals could be solved. This opened a huge
field for Algorithm Engineering to improve also the practical running times.

In 1998, a breakthrough was established by Nielsen, Warme, Winter and
Zachariasen who developed the program GeoSteiner and continuously improved
it in the following years [823, 614, 824]. GeoSteiner was developed for solving
instances of the Euclidean and rectilinear Steiner tree problems. In 2002 it was
generalized to the so-called uniform orientation metrics (λ-metrics) where one
can use orientations building consecutive angles of π/λ [614]. For the Steiner tree
in networks an algorithm and implementation was introduced by Daneshmand
and Polzin in 2001 and improved until today [644, 645]. Their implementation
is currently the most efficient for the network Steiner tree problem. Measured
by the number of terminals it can compute larger instances than the GeoSteiner
program. Nevertheless, also the GeoSteiner approach can solve instances with
more than a thousand terminals. It is also worth noting that for the GeoSteiner
algorithm the problem is modeled as a combinatorial problem, whereas Danesh-
mand and Polzin use integer linear programming. This emphasizes that it is also
important for the design of efficient algorithms and implementations to look for
an appropriate modeling of the problem. Due to the impressive performance
of these two algorithms we illustrate them in the course of the following two
sections.

412 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Combinatorial Approach to the Geometric Steiner Tree Problem. First
we present the above-mentioned combinatorial algorithm for the geometric Stei-
ner tree problem introduced by Nielsen, Warme, Winter and Zachariasen. The
basic idea is to compute full Steiner minimum trees for subsets of the terminals
and subsequently combine them to a tree for all terminals. This approach can
be seen as the top-down pendant of the bottom-up method due to Melzak: All
topologies are enumerated and Steiner minimum trees are computed by parti-
tioning into full subtopologies.

The rough course of the algorithm can be described as follows: In a first
step full Steiner trees are generated and powerful pruning techniques are used
to reduce the number of full Steiner trees. Then a subset of the remaining full
Steiner trees has to be extracted whose full components can be concatenated to
obtain a Steiner tree spanning all terminals.

Up to this new approach the bottleneck was the computation of full Steiner
trees. But as a result of the speed-up in generating full Steiner trees, the bot-
tleneck moved to the concatenation of trees. In consequence, researchers started
focusing on developing better techniques for this subproblem. One example of
this kind is due to Warme who improved the concatenation dramatically [821].
He formulated the concatenation of full Steiner trees as a problem of finding a
minimum spanning tree in a hypergraph. In this hypergraph the vertices are the
terminals and the hyperedges are the generated full Steiner trees. In previous
algorithms, concatenation was always done by enumerating all possible combina-
tions of full components which is apparently not all too efficient. Notwithstanding
Warme’s approach, the concatenation is up to now still the bottleneck.

The GeoSteiner algorithm was first developed for Euclidean and rectilinear
geometries, but later has been adapted also to other geometries. However, the
general framework is similar in all cases. In the following sections we describe
the two phases of the GeoSteiner algorithm in more detail. We mainly focus
on the mechanisms which are responsible for improving the empirical running
time.

Generating Full Steiner Trees. Instead of enumerating all topologies for all
subsets of terminals, GeoSteiner confines itself to construct only full components
without enumerating all subsets. It starts with a selected terminal, designated
as a root. Then it grows this component by adding further terminals one by one.
Successively each terminal is chosen as the root. Tests are applied to each single
tree to determine its possible optimality. We discuss such pruning tests in the
next paragraph. Only relatively few subsets of terminals actually survive these
tests.

In empirical tests it was observed that approximately less than 4n full Steiner
trees were to be generated. All other possible Steiner trees could successfully be
excluded by the tests. This is a main advantage compared to the approaches
developed until then. However, in theory the number of full Steiner trees can

9. Case Studies 413

v

u

(a)

v

u

(b)

Fig. 9.3. (a) Euclidean lune, (b) rectilinear lune

be exponential in the number of terminals. To illustrate this, the number of full
topologies considered by Melzak’s approach is

f(n) =
n∑

k=2

(
n

k

)
· g(k), with g(k) =

(2k − 4)!
2k−2(k − 2)!

.

The function g is super-exponential in k, i. e., it increases faster than every
exponential function (e. g., g(4) = 3, g(6) = 105 and g(8) = 10395).

Pruning Techniques. A vast set of tests to prune the set of feasible Steiner
trees has been developed. We only introduce three of them in the next part
to illustrate the structure of these tests. These tests were not only introduced
and used by the developers of GeoSteiner but also by other researchers as e. g.,
Daneshmand and Polzin for the network Steiner tree problem (see Section 9.3.1).

Bottleneck Steiner Distances. Consider a minimum spanning tree on the ter-
minals for the Steiner tree problem. For each pair of terminals memorize the
length of a longest edge of the path in this tree connecting them. This length is
called bottleneck Steiner distance. It is easy to see that no edge on the path of a
minimum Steiner tree between two terminals can be longer than the associated
bottleneck Steiner distance. So, if during the construction of some full Steiner
tree we get an edge longer than the associated bottleneck Steiner distance, this
tree can be pruned away.

Lune Property. Another useful pruning technique depends on how close other
terminals are to an edge. A lune of a line segment uv is the intersection of two
cycles both with radius l(u, v) measured in the corresponding metric. The cycles
are centered at u and v, respectively (see Figure 9.3). It is straightforward to see
that in a Steiner minimum tree no lune may contain terminals. Otherwise, we
can construct a shorter tree. Therefore, we check for all edges added during the
construction of full Steiner trees whether the associated lune is empty.

414 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

t0

tk
t1

t2

t3

t4

sk

Fig. 9.4. Intermediate rectilinear full component

Upper Bounds. Several good heuristics for Steiner trees are available. They imply
upper bounds for the full Steiner trees constructed by the algorithm.

During the construction of a full component F we successively add terminals
and Steiner points to the current component. Assume t1, . . . , tk are the terminals
and sk the most recent Steiner point added to F (see Figure 9.4). Use one of
the heuristics to determine a Steiner tree S, for t1, . . . , tk and sk as terminals.
This means we force the tree to contain sk. If S is shorter than the constructed
component F then F cannot be contained in a Steiner minimum tree. A simple
heuristic is to compute the minimum spanning tree of the terminals. For this
and further heuristics see Section 9.3.2.

Concatenating Full Steiner Trees. The concatenation of full Steiner trees
is metric-independent in contrast to their generation. In the preceding steps, we
have computed a set F = {F1, F2, . . . , Fm} of full Steiner trees. Since F is the
result of the enumeration of all those full Steiner trees that may possibly be part
of the solution, some subset of F constitutes the full components of a Steiner
minimum tree for all terminals. Thus, the concatenation problem is to find such
a subset of minimum total length.

This problem can be solved using dynamic programming or backtrack search.
The first has better asymptotic running time than backtrack search but in com-
mon practical scenarios it showed less efficiency. After developing the framework
of generating the set of possible full Steiner trees and pruning most of them
away, the concatenation phase becomes the bottleneck [823]. On account of this,
Warme proved that the concatenation problem is equivalent to finding a mini-
mum spanning tree in a hypergraph with the terminals being the vertices and
the computed full Steiner trees being the edges of the hypergraph. Furthermore,
he developed an algorithm to solve it [822]. This idea, which will be discussed
later, has been a breakthrough and led to excellent practical results. In the next
part we give a brief overview on the progress concerning the concatenation of
full Steiner trees.

Dynamic Programming. The algorithm of Ganley and Cohoon [314] which is
an enhancement of the algorithm of Dreyfus and Wagner [256] is based on full
Steiner trees. It uses the fact that a Steiner tree is either a full Steiner tree or
splits into two or more full Steiner trees. The algorithm considers subsets of ter-
minals with increasing cardinality and computes a Steiner minimum tree either
as a full Steiner tree or composed of full Steiner trees with smaller cardinality.

9. Case Studies 415

The running time of this algorithm for the rectilinear Steiner tree problem is
O(n2 · 2.62n). This approach has been further improved by Fößmeier and Kauf-
mann to a running time upper bounded by O(n2 · 2.38n) [302]. Recently, the
worst case running time of this algorithm was shown to be O(n2 · 2.357n) [310].

These approaches give the best asymptotic worst case running time for the
concatenation problem. However, in practice only sets of about up to 40 termi-
nals can be computed because of the huge memory requirements [301]. It will
turn out that backtrack search yields better results. We also note that the asymp-
totic worst case running times of the dynamic programming approach cannot be
transferred to the Euclidean case because in contrast to rectilinear Steiner trees
no better upper bound than O(2n) for the number of full Steiner trees is known.
The number of needed full rectilinear Steiner minimum trees can be bounded by
O(n · 1.357n) [310].

Backtrack Search. The backtrack search algorithm starts with a single full
Steiner tree F ∈ F and seeks a tree of shortest length interconnecting all ter-
minals and containing F . More precisely, full Steiner trees are added recursively
until all terminals are interconnected or it can be concluded that the constructed
tree or subtree cannot be optimal. In the latter case the search backtracks and
tries to add another full Steiner tree.

It is essential to apply cut-off tests because otherwise the running time would
amount to Θ(2m), for m being the number of constructed full Steiner trees, and
the algorithm would become impractical. The first who introduced such tests
was Winter [838]. He considered only relatively simple cut-off tests such that
the concatenation still dominates the generation already for n ≈ 15. More tests
were performed during the next years by Cockayne and Hewgill [179,180]. They
applied problem decomposition, full Steiner tree compatibility and full Steiner
tree pruning to the concatenation phase. Problem decomposition splits the initial
concatenation problem into several subproblems. This approach, however, did
not stand the test for larger problem instances.

Full Steiner tree compatibility and other pruning tests are significantly better
approaches. Two full Steiner trees are incompatible if they cannot appear simul-
taneously in any Steiner minimum tree. For example they are incompatible if
they span two or more common terminals. There is a series of compatibility tests
which can be applied without much computational effort while still significantly
reducing the number of Steiner trees to be considered.

One good pruning technique is to examine a full Steiner tree F and its set of
compatible full Steiner trees. If the union of these is disconnected, e. g., they do
not span all terminals, then F can be pruned away.

A real improvement was given by Winter and Zachariasen in 1997 [839]. They
managed to solve instances of up to 140 terminals which was a striking progress
compared to the dynamic programming methods. However, the latest approach
of Warme brought an even more drastic rise concerning the size of instances that
could be solved [822].

416 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Hypergraphs. The approach of Warme models the concatenation problem as
a minimum spanning tree problem in hypergraphs [822]. The vertices of the
hypergraph H = (V, E) are simply the terminals of the Steiner tree prob-
lem and the edges reflect the computed full Steiner trees, i. e., each edge is a
set of vertices which corresponds to the terminals spanned by the full tree. A
chain in H from v0 ∈ V to vk ∈ V is a sequence of vertices and hyperedges
(v0, e0, v1, e1, v2, . . . , ek−1, vk). All vertices and hyperedges have to be distinct
and vi, vi+1 ∈ ei for i = 0, 1, . . . , k − 1. A spanning tree in H is a subset of
hyperedges E′ ⊆ E such that there exists a unique chain between any pair of
vertices vi, vj ∈ V . The uniqueness implies that the spanning tree in H consti-
tutes a Steiner tree in the original instance.

The minimum spanning tree problem is known to be NP–hard for hypergraphs
containing edges of cardinality four or more [822]. Warme developed an integer
programming formulation that can be solved via branch-and-cut. Let c ∈ R

|E|

be a vector denoting the costs of the edges and x ∈ {0, 1}|E| a vector indicating
whether an edge is chosen for the minimum spanning tree or not. For e ∈ E
we denote by |e| the cardinality of the hyperedge e. The linear program is given
by:

min cT x

s. t.
∑

e∈E

(|e| − 1)xe = |V | − 1 (4)

∑

e∈E: |e∩S|≥1

(|e ∩ S| − 1)xe ≤ |S| − 1, ∀S ⊂ V, |S| ≥ 2 (5)

xe ∈ {0, 1} ∀e ∈ E

Equation (4) forces the exact number of edges of a minimum spanning tree. Con-
straint (5) corresponds to the well-known subtour elimination constraints which
guarantee that there do not appear any cycles.

This integer program is solved via branch-and-cut. Lower bounds are provided
by the linear programming relaxation. The problem of this formulation is the
exponential number of subtour elimination constraints given by the inequalities
(5). Therefore, we add these constraints by separation methods. More precisely,
we first add the constraints for |S| = 2. Then we solve the LP and get a solu-
tion which possibly violates some not considered constraints. To find violated
constraints, one possible approach is to solve a series of max-flow problems.

Experimental Results. All approaches and ideas discussed so far were com-
bined and implemented in a program package called GeoSteiner [824]. Test beds
for the implementation are VLSI-instances, instances of the OR-library, TSPLIB
instances and randomly generated instances [79, 668]. Instances for 1000 termi-
nals can be solved in less than 4 minutes for both, the Euclidean and recti-
linear case1. Also for other geometries like the octilinear geometry, where four

1 Computed on a 930 Pentium III Linux machine with 1 GB of memory.

9. Case Studies 417

directions differing by 45 degrees are allowed, the largest instance of the OR-
library (containing 10000 terminals) can be solved in less than two days [614]1.

In 1998 Warme, Winter and Zachariasen published a comprehensive experi-
mental study of their program [823]. In the following we resume their conclusions.
The power of the pruning techniques becomes apparent by the small number of
full Steiner trees which are generated. Approximately 4n full Steiner trees re-
main in the rectilinear and 2n in the Euclidean case (for n being the number of
terminals). An interesting phenomenon detected during tests of the algorithm is
that it is not necessarily an advantage to prune away as many Steiner trees as
possible. In fact, it was empirically observed that if fewer full Steiner trees are
constructed, e. g., more full Steiner trees are pruned away, the branch-and-cut al-
gorithm requires more separation iterations and branch-and-bound nodes [823].
Due to the sophisticated approach for concatenating full Steiner trees, most of
the running time for the considered problem instances was spent in the genera-
tion phase [614].

On randomly generated instances full rectilinear Steiner trees span on av-
erage 2.95 terminals, and full Euclidean 2.70, respectively. For n = 500, the
largest rectilinear (resp. Euclidean) full Steiner tree of a Steiner minimum tree
computed by the program spans 7 (resp. 6) terminals. Once again we observe the
importance of the pruning tests. Plenty of full Steiner trees with many terminals
can be pruned away once they turn out to be of no importance for the Steiner
minimum tree.

However, there is one disadvantage, though. Fößmeier and Kaufmann devel-
oped seemingly “difficult” instances for which the number of full Steiner trees ful-
filling a so-called tree star condition is exponential [301]. These instances are par-
ticularly constructed so that most pruning tests do not apply, e. g., the lune prop-
erty. Therefore, for these instances the algorithm generates super-polynomially
many rectilinear full Steiner trees [855]. The number of full Steiner trees and the
total CPU-time grows rapidly, although the structure of the optimal solution
does not differ radically from randomly generated instances. To solve instances
with 52 terminals one needs almost 200 times as much CPU-time as for randomly
generated instances with 100 terminals [823]. However, it is not astonishing that
an algorithm for an NP–hard problem has exponential running time for some
malevolently constructed instances.

Linear Programming Approach for the Network Steiner Tree Prob-
lem. In the following we describe the extension of a linear programming ap-
proach for the Steiner tree problem in graphs which achieves the best results
on commonly used test environments as the OR-library and SteinLib [79, 489].
It was introduced and developed by Althaus, Daneshmand and Polzin. The
algorithm consists of various parts which have been enhanced over the last
years [642,644,643,25, 645]. In the following we give a description of the overall
scheme.

The general framework of the algorithm is a branch-and-bound approach.
In the branching step a set of possible solutions is partitioned into two

418 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

non-empty subsets. In the bounding step a lower bound for the value of each
of the two subsets is computed. A subset of solutions can be excluded if such a
computed lower bound exceeds an upper bound. The main focus of Daneshmand
and Polzin actually lies not in the branching step but on computing lower and
upper bounds and some special preprocessing steps which are also referred to
as reduction methods. Only if this process happens to be blocked, a branching
step is performed. In the following section we give the required definitions and
introduce the underlying integer program. Afterwards, we introduce the main
features of the algorithm. The success of the algorithm lies in the interaction of
different components such as the computation of lower and upper bounds and
also reduction tests. Each of these components was enhanced during the last
years. We will describe the process of enhancement.

Directed Cut Formulation. There are many different integer programming
formulations and relaxations of the Steiner tree problem. For an overview and
theoretical study see the survey of Daneshmand and Polzin [643]. Here we give
only the directed cut formulation used in their implementation.

The Steiner tree problem can also be defined for a directed network G =
(V, A, c). Let T ⊆ V be the set of terminals and one terminal t1 ∈ T designated
as the unique root. The Steiner arborescence problem is to find an arborescence
of minimal total length rooted at r and spanning all terminals, that is, a tree
with a directed path from r to each terminal.

Any instance of the undirected Steiner tree problem in networks can be trans-
formed into an instance of the directed Steiner arborescence problem: Replace
each undirected edge by two directed edges in opposite directions each with the
same weight as the undirected one. Then choose an arbitrary terminal as root.

A cut in a directed graph G = (V, A, c) is defined as a partition C = (W, W)
of V with ∅ 	= W ⊂ V and V = W ∪̇W . We use δ−(W) to denote the set of
edges (vi, vj) ∈ A with vi ∈ W and vj ∈ W . A cut is called a Steiner cut if
r ∈ W and (T \ {r}) ∩W 	= ∅, that is the cut separates r from at least one of
the other terminals in T . The underlying integer program used by Daneshmand
and Polzin is a directed cut formulation. It was first introduced by Wong [841].

min
∑

(vi,vj)∈A

cijxij

∑

(vi,vj)∈δ−(W)

xij ≥ 1 ∀(W, W) Steiner cut (6)

xij ∈ {0, 1} ∀(vi, vj) ∈ A

The inequalities (6) ensure to get a Steiner arborescence. They force to select
for each Steiner cut at least one edge from W to W . Altogether one gets a
arborescence rooted at r spanning all terminals. Unfortunately, their can be
exponentially many inequalities.

When we drop the integrality constraints of the integer linear program and
solving the resulting LP (called LP relaxation), we get an surprisingly tight lower

9. Case Studies 419

bound for the original problem. Daneshmand and Polzin investigated that for all
D-instances of the OR-library2, which consist of instances of graphs with 1000
nodes each, the solution of the relaxation is equal to that of the original program
[644]. Due to the exponentially many inequalities, one cannot solve this relaxation
directly with an LP-solver. Therefore, other methods had to be developed. We de-
scribe two methods to get lower bounds. First a combinatoric algorithm to get a
solution of the dual and second a method called row generation.

Lower Bounds. The directed cut formulation is also defined for undirected
graphs [32]. A primal-dual approximation for constrained forest problems based
on undirected cut formulations includes the Steiner tree problem [336]. Although,
the ratio between the upper and lower bound is two, the empirical results for
lower bounds of the undirected cut formulation are worse than those for the di-
rected cut formulation for which no such theoretical bound was known. Danesh-
mand and Polzin use the directed cut formulation and alter the algorithm so
that they managed to guarantee a bound of two and also derive good empirical
results.

Let yW be the dual variable associated with the Steiner cut (W, W). Then
the dual to the LP relaxation of the above integer program is given by:

max
∑

(W,W) Steiner cut
yW

∑

W, (vi,vj)∈δ−(W)

yW ≤ cij (7)

yW ≥ 0 ∀(W, W) Steiner cut.

The meaning behind the inequalities (7) is that the values of the dual variables
which have to be maximized are not allowed to exceed the sum of the costs of the
edges of the corresponding Steiner cut. So the dual variables specify the edges
which have to be used by a Steiner tree.

Wong introduced a dual ascent algorithm for the directed Steiner problem
to compute lower bounds [841]. His approach is based on an equivalent multi-
commodity flow relaxation. Wong’s approach is summarized in Algorithm 8.

Although the algorithm empirically computes tight lower bounds, the ratio
between the upper and lower bound can be arbitrarily large. As already men-
tioned, Daneshmand and Polzin presented an algorithm which combines both
features, empirically tight lower bounds and a ratio of two [642]: For each termi-
nal tk ∈ T the component of tk is the set of all vertices for which there exists a
directed path to tk using only edges of zero reduced costs. An active component
is a component which does not contain the root. The main idea is to grow the
components as long as they are active. Dual variables corresponding to several
cuts which share the same arc may be increased at the same time. To avoid the
problem of decreasing the reduced costs of arcs which are in the cuts of many
2 The OR-library consists of four problem sets B, C, D, E summing up to 78 instances.

420 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Algorithm 8. DUAL-ASCENT ALGORITHM
1: Set the reduced costs c̃ij := cij for all (i, j) ∈ A, the lower bound lower := 0 and

all dual variables yW = 0.
2: while A terminal tk ∈ T \{r} exists which is not reachable from r by edges of zero

reduced costs do
3: Let W � tk be the smallest set such that (W, W) is a Steiner cut and c̃ij > 0

for all (vi, vj) ∈ δ−(W).
4: Set Δ := min{c̃ij |(vi, vj) ∈ δ−(W)}.
5: Set yW := Δ, lower := lower + Δ and c̃ij := c̃ij −Δ for all (vi, vj) ∈ δ−(W).

active components they limit the decrease of dual variables which share a vertex
by a constant.

The running time of the dual ascent algorithm is O(|A|min{|A|, |T |·|V |}). The
variation of Daneshmand and Polzin can be designed to run in time O(|A|+ |V | ·
log(|V |)). The empirical results are impressive: The average gap between lower
bound and optimum is 0.4% for the D-instances of the OR-library (containing
graphs with 1000 nodes). The average running time is .4s. Unfortunately, for
larger instances the algorithm becomes too slow. To get a fast routine to solve the
relaxed program they introduced a so-called row generation which starts with a
subset of constraints of the relaxed primal program as the initial program, solves
it and then finds violated Steiner cut inequalities and adds them to the program.
This procedure is iterated until no Steiner cut inequality is violated anymore.
This idea has already been used before to solve the Steiner tree problem in
networks [169,80, 490].

In 2003 Althaus, Daneshmand and Polzin introduced a new technique for
computing lower bounds with relaxations [25]. Their approach, called vertex
splitting, aims at identifying locations in the network that contribute to the
integrality gap and split up the decisive vertices. The transformation is equivalent
to the integral solution but the solution of the LP relaxation may be improved. In
this publication they also describe new separation techniques as well as shrinking
operations, the latter being first mentioned by Chopra and Rao [170]. Separation
techniques want to find feasible but fractional solutions to separate whereas
shrinking operations want to reduce the graph by shrinking operations.

Reductions. Beasley [78] was the first who came up with reductions for the
Steiner tree problem in graphs. Combining them with a Lagrangian relaxation
(meaning that some side constraints are omitted but their violation is penalized
in the objective function) he was able to compute lower bounds with an average
duality gap of approximately 12% for 30 instances with up to 50 terminals, 200
edges, and 100 vertices in total. Three years later Beasley used a shortest span-
ning tree formulation with additional constraints and solved all of these instances
to optimality within one second [436]. Again he applied some reduction test to
the instances before solving them. Duin and Volgenant captured the idea of re-
duction and were able to solve all instances to optimality with the reduction tests

9. Case Studies 421

they developed even faster [262]. This development shows that instances which
seem to be hard to solve can turn out to be easy within a few years. In order
to have a platform for comparing algorithms without implementing all reduc-
tion tests in advance Duin and Voß developed the so-called incidence instances
which are hard to reduce by all methods known until then [263]. Daneshmand
and Polzin improved known tests and designed efficient realizations of them.
Furthermore, they designed new tests and integrated them into their packet. It
is essential to have a large arsenal of tests because each test works only for a spe-
cial type of instance. Therefore, a significant achievement can only be obtained
in the interaction of a series of tests.

There are two major classes of reduction tests: The alternative-based and
the bound-based tests. The first class looks for alternative solutions such that
the current solution can be pruned away. Here we can distinguish two different
ideas. The exclusion tests check whether there is an alternative solution of no
greater cost without the current part. The inclusion tests check the converse
argument. The bound-based tests in contrast compute a lower bound under the
assumption that a certain part of the graph is contained or is not contained in
the solution. If such a lower bound exceeds a known upper bound we exclude the
considered part. In the following we give an example for each of the two tests.

Alternative-based Reduction. One alternative-based reduction is to delete all
edges with length greater than the bottleneck Steiner distance as described before
for the geometric Steiner tree problem. This test for networks was introduced
by Duin and Volgenant [262]. It was enhanced by Duin [261] and made practical
by Daneshmand and Polzin who used the following well-known proposition:

Proposition 1. Let B be the length of a longest edge in the minimum spanning
tree for all terminals. Then every edge (vi, vj) with c(vi, vj) > B can be removed
from the network.

Bound-based Reduction. On top of their use in exact algorithms, lower and
upper bounds can serve to reduce the instance. We can use the dual ascent algo-
rithm or the variant of Daneshmand and Polzin for reductions by the following
proposition:

Proposition 2. Let G = (V, A, c) be a (directed) network and c̃ ≤ c. Let lower′

be a lower bound for the value of any (directed) Steiner tree in G′ = (V, A, c′) with
c′ := c− c̃. For each x̃ representing a feasible Steiner tree for G, lower′+ c̃T x̃ ≤
cT x̃ holds.

Assume c̃ to be the reduced cost of the DUAL-ASCENT algorithm, then one
can easily observe that the lower bound lower provided by the algorithm is the
same as lower′ in G′. Thus, for any x̃ representing a feasible Steiner tree T̃ ,
lower +

∑
(vi,vj)∈A c̃ij x̃ij represents a lower bound for T̃ . This observation can

be used to compute lower bounds for the value of an optimal Steiner tree under
certain assumptions, e. g., that the tree contains a certain non-terminal.

422 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Daneshmand and Polzin give many extensions of these tests which are very
effective, for example, they introduced new reduction techniques based on vertex
separators using partitioning methods [645].

Experimental Results. Daneshmand and Polzin use as test environment in-
stances of the OR-library and SteinLib [79, 489]. The OR-library is older than
SteinLib and more experimental results of other algorithms exist for it. On
the three groups of instances of the OR-library the results of Daneshmand and
Polzin are impressive. The fastest algorithm due to Koch and Martin [490] be-
fore this new implementation solves problems of the instance groups C,D and
E of the OR-library3 in 16, 117 and 1020 seconds in comparison to that of
Daneshmand and Polzin in 0.2, 0.3 and 1.4 seconds, respectively. This improve-
ment cannot be explained by the speed up of the hardware (a Sun Sparc 20
and a Pentium-II). Daneshmand and Polzin solve instances with up to 11500
terminals in less than one hour [644]. The largest amount of time for a previ-
ously solved instance has been 74s (the E18 of the OR-Library). This stands
in a huge contrast to 68000s used by Koch and Martin’s algorithm. More-
over, in the publication of 2003 also instances are mentioned that were not
solved by other authors before. The largest of these instances has about 52000
terminals [25].

As in the program packet GeoSteiner for the geometric Steiner tree problem,
the excellent results are achieved by the interaction of different parts. For both
problems, the geometric and the network problem, it was important to design
powerful pruning and reduction tests to restrict the size of the search space.

9.3.2 Approximation Algorithms and Heuristics

Even though there are powerful algorithms and implementations which solve
the Steiner tree problem exactly, there are also approximations for the problem.
However, most of them are only considered from a theoretical point of view. The
asymptotic worst case running times can be shown to be polynomial but not
that good to reach fast implementations. Most of them are not implemented so
far.

The most popular approach is the minimum spanning tree heuristic which
was suggested several times, e. g., by Choukmane [171] and by Kou, Markowsky
and Berman [496]. Almost all approximation algorithms use the spanning tree
approximation as a starting point. Improvements are done in different ways.
After introducing this fundamental approach, we present a general approxima-
tion framework due to Zelikovsky [857]. This algorithm, initially designed for
the Steiner tree problem in graphs, has multiple extensions also for the geomet-
ric Steiner tree problem. Most of the approximation algorithms for the Steiner
tree problem in networks as well as for the geometric Steiner tree problem use
this idea for which various kinds of enhancements were developed. Finally, we
3 The C, D and E instances of the OR-library contain instances with 500, 1000 and

25000 nodes, respectively.

9. Case Studies 423

describe a local search heuristic which maintains good performances on experi-
mental test beds when it was published [448].

Minimum Spanning Tree Algorithm. We restrict the illustration of the
algorithm to the Steiner tree problem in graphs. Nevertheless, it can also be
adapted to the geometric Steiner tree problem.

The minimum spanning tree algorithm (see Algorithm 9) takes as input the
distance network. The distance network for a graph G = (V, E), a subset T ⊆ V
and length function l : E → R≥0 is the complete graph GD = (T, ED) on the
terminal set with length function lD : T × T → R≥0. For each pair of terminals
v, w ∈ T the length lD(v, w) of the edge between v and w is defined as the length
of a shortest (v, w)-path in G.

Algorithm 9. MST ALGORITHM
1: Compute the complete distance network GD.
2: Compute a minimum spanning tree TD in GD.
3: Transform TD to a subgraph T of the original graph: Replace each edge of E(TD)

by the corresponding shortest path in G.
4: Compute a minimum spanning tree T ∗ in T .
5: Transform T ∗ into a Steiner tree by removing all leaves which are not terminals.

Instead of computing a Steiner minimum tree, the idea of the algorithm is to
determine the minimum spanning tree for the set of terminals. This gives an ap-
proximation of the Steiner minimum tree. The bottleneck of this algorithm is the
computation of the distance network. We must compute O(|T |) shortest paths
each requiring at most O(n log n + m). Mehlhorn improves the running time by
using instead of the distance network a sparser network while still ensuring that
every minimum spanning tree of this sparse network to be also a minimum span-
ning tree of the distance network [554]. He uses an application of Voronoi regions
to graphs and includes an edge between two terminals in the sparser network
only if there exists an edge between the Voronoi regions of these terminals. With
this we get a running time of O(n log n + m) for the minimum spanning tree
algorithm with an instance of n vertices and m edges [554]. Variations of this
heuristic have been tested by de Aragão and Werneck [204].

For the Steiner tree problem in graphs this algorithm delivers a 2-approxima-
tion. For the rectilinear and Euclidean Steiner tree problem the bounds are
3/2 [418] and 2/

√
3 [258], respectively. Empirical tests show that these worst-case

bounds, although tight for certain instances, are overly pessimistic for typical
instances [204].

Greedy Local Search. As input for the algorithm we assume an instance of
the Steiner tree problem in networks or of the geometric Steiner tree problem.
First, we compute the distance network on the set of terminals as defined above.

424 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

e triple

(a)

Circle

Circle

g

(b)

Fig. 9.5. The inserted triple is shown by dashed lines. In (b) the longest edges are
removed.

Furthermore, we choose a k ∈ N and a selection function f : T → R with T
the set of terminals. The algorithm (see Algorithm 10) starts with a minimum
spanning tree as a first solution. In each step it tries to improve the current
solution by selecting a Steiner minimum tree for a subset of the terminals. The
subsets are of cardinality at most k. The selection is managed by the function f .

Algorithm 10. GREEDY LOCAL SEARCH
1: Compute the minimum spanning tree for the terminals T (in the distance network).
2: Set i := 0.
3: while There is an improving full component measured by the selection function f

do
4: Choose a subset τi ∈ T with cardinality ≤ k that minimizes f .
5: Contract the vertices of τi.
6: Set i = i + 1.
7: Output the Steiner tree by undoing the contraction of τ0, τ1, . . . , τi−1.

The difference between the various algorithms lies in the choice of k and
the selection function f . The selection function measures the estimated gain of
selecting some subset. This means the improvement is compared to the current
solution. Zelikovsky chooses k = 3 and defines the function as follows: If we
insert the Steiner minimum tree (denoted as smt(τ)) for a triple τ , then the tree
contains two cycles. For each of these cycles choose the longest edge denoted by
e and g, respectively. See also Figure 9.5. The selection function is defined as
f(τ) = l(e) + l(g)− l(smt(τ)). This gives an 11/6-approximation for the Steiner
tree problem and the running time is O(nm + |T |4) for a graph with n vertices
and m edges [857].

Berman and Ramaiyer generalize Zelikovsky’s approach to full components
with cardinality k and achieve a performance ratio of 1.734 for large k [96].
However, this last algorithm gives only a theoretical profit because it is not
practicable for large k.

9. Case Studies 425

A further improvement by Robins and Zelikovsky takes the loss of a Steiner
tree as basis for the selection function [677], [678]. The loss was introduced
by Karpinski and Zelikovsky [466]. It measures how much length is needed to
connect the Steiner points of a full component to its terminals. The idea is to
penalize the choice of Steiner points that require long edges to connect themselves
to a terminal. The loss Loss(A) of a set of Steiner points A is defined as the
minimum length forest in which every Steiner point v ∈ A is connected to a
terminal. The length of the Loss(A) is denoted by loss(A). The second idea now
is to take into account not the absolute but the relative difference, i. e., to relate
the length of the chosen component to its benefit. Assume that the algorithm
has already chosen the full components τ1, . . . , τi. The length of the tree after
choosing these sets is denoted as mst(K/(τ1 ∪ . . . ∪ τi)). Then the selection
function measures the loss relative to the benefit of the chosen component:

f(τ) :=
loss(τ)

mst(K/(τ1 ∪ . . . ∪ τi))−mst(K/(τ1 ∪ . . . ∪ τi ∪ τ))
.

The performance ratio of this algorithm is 1.550, but it is mainly of theoretical
interest because simpler heuristics achieve also good results and are much easier
to implement. Generally, little is known about experimental results with these
approaches. Most of them are impractical, i. e., computing the loss of a Steiner
tree is quite expensive compared to the expected gain.

Only a variant, called batched-greedy heuristic, of Zelikovsky’s greedy al-
gorithm for uniform orientation metrics introduced by Kahng, Mǎndoiu and
Zelikovsky achieves good results [446, 447]. They compute approximations for
instances up to 500,000 terminals in less than half an hour. These instances can-
not be solved by GeoSteiner. The worst-case running time of the algorithm is
O(n log2 n). The main difference to Zelikovsky’s approach is, that the gain is not
updated each time a triple is contracted.

Iterated 1-Steiner Heuristic and Edge-Based Heuristic. The iterated 1-
Steiner Heuristic of Kahng and Robins is a simple local search heuristic which
was introduced in 1992 [448]. The algorithm starts with a minimum spanning
tree for the terminals T and an initially empty set of Steiner vertices I. In
each step it checks whether the current solution can be improved by adding a
Steiner point v to I. That means to compute the minimum spanning for the set
T ∪I∪{v} and remove all Steiner vertices of degree one and two. If the resulting
tree is shorter than the previous then add v to I. Otherwise do nothing. The
algorithm stops when no Steiner point leads to an improvement of the solution.
For quasi-bipartite and rectilinear instances Robins and Zelikovsky proved that
this heuristic achieves an approximation ratio of 3/2 [677], [448].

A slightly similar approach which adds in each step an edge and removes the
longest edge of the induced cycle was introduced by Borah, Owens and Irwin for
the rectilinear Steiner tree problem in 1999 [121]. The algorithm also starts with a
minimum spanning tree of the terminals. Then it performs the edge replacements
as long as the solution can be improved. See Figure 9.6 for one step of the

426 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

e

f

e

Fig. 9.6. Insert the edge e and delete f

algorithm. The running time of this algorithm is O(n2), or with sophisticated
data structures O(n log n). This approach has better empirical running time
than the iterated 1-Steiner heuristic and can be applied to instances with tens
of thousands of terminals.

Linear Programming Based Heuristic. In 1999, Mǎndoiu, Vazirani and
Ganley proposed a heuristic which uses as subroutine an algorithm of Rajagopa-
lan and Vazirani who introduced a 3/2-approximation for the metric Steiner
tree problem on quasi-bipartite graphs [604,659]. Quasi-bipartite graphs do not
contain edges connecting pairs of Steiner vertices. The algorithm of Rajagopalan
and Vazirani is based on the linear programming relaxation of the so-called
bidirected cut formulation for the metric Steiner tree problem. Mǎndoiu, Vazirani
and Ganley algorithm computes a Steiner tree of a quasi-bipartite subgraph of
the original graph using Rajagopalan’s and Vazirani’s algorithm. The process is
iterated with the selected Steiner points as additional terminals. So the algorithm
is allowed to consider larger quasi-bipartite subgraphs. This approach has better
average running time than the iterated 1-Steiner heuristic and also GeoSteiner.
Moreover, this heuristic gives on average better solutions than the iterated 1-
Steiner heuristic.

9.3.3 Conclusions

In this section we presented the Steiner tree problem to give an example for
Algorithm Engineering. The earlier algorithms can solve only problems with few
terminals. Intensive studies of the structural properties of Steiner trees and the
behavior of known algorithms led to very good ideas and approaches to solve the
problem also for larger real-world instances up to tens of thousands of terminals.
An interesting observation is that theoretical improvements do not automatically
yield to enhancements of the practical behavior: For the GeoSteiner implemen-
tation it was noticed that it was not necessarily good to prune as much full
Steiner trees away as possible because the concatenation phase slows down in
consequence of this [823]. We see that extensive experimental studies are capable
of detecting bottlenecks of algorithms which can systematically be removed. It
is also helpful to have common libraries of test instances to get better compar-
isons of the different implementations. One further conclusion is that up to now

9. Case Studies 427

all successful algorithms and implementations are improved in all parts of the
appropriate algorithm. It does not suffice to improve one detail of the problem
to be solved. Excellent results are achieved by good interaction of different me-
thods. In particular, this can be seen by the work of Daneshmand and Polzin
who achieve good results due to the interaction of a vast amount of Algorithm
Engineering techniques: First the modeling of the problem as an integer lin-
ear program based on Steiner cuts, second the different approaches to get good
lower and upper bounds, and finally the methods to reduce the problem size by
applying preprocessing methods.

We have restricted our consideration to the classical Steiner tree problem
without further constraints. As already mentioned, there are lots of variants for
the Steiner tree problem as, e. g., the group Steiner tree problem or the node
weighted Steiner tree problem. For some of these variants very little is known
about the practical performance of algorithms. Here is a further field of research
with potential for Algorithm Engineering.

9.4 Voronoi Diagrams

Voronoi diagrams are subdivisions of the plane into nearest neighbor regions
with respect to a given set of geometric objects called sites. Figure 9.7 shows
a Voronoi diagram of a set of point sites with respect to Euclidean distance.
Voronoi diagrams are ubiquitous in geometric computing. Since they have so
many applications in different areas, Algorithm Engineering issues have been
addressed in a number of research papers on algorithms for computing Voronoi
diagrams.

As discussed in Chapters 3 and 6, precision caused robustness problems are
a major issue in the implementation of geometric algorithms: Geometric algo-
rithms are usually designed under the assumption that we have exact real arith-
metic at hand. As we have seen in Section 3.5.2 of Chapter 3 on “Algorithm
Design”, straightforward implementations of geometric algorithms produce nu-
merical errors. Geometric algorithms can be very susceptible to those errors be-
cause of the strong dependency of combinatorial decisions on numerical results.
Inconsistency in these decisions can then lead to all kind of errors as illustrated
in [471]. Additionally, many papers on geometric algorithms leave handling of
degenerate configurations to the reader. This also holds for papers on algorithms
for computing Voronoi diagrams.

We have chosen Voronoi diagrams for this geometric case study, because
different approaches to attack precision and robustness problems have been
successfully applied to the design and implementation of Voronoi diagram al-
gorithms, culminating in Held’s extremely robust VRONI software for Voronoi
diagrams for points and line segments of line segments on one hand, and in exact
Voronoi diagrams implementations on the other hand. Such implementations for
computing exact Voronoi diagrams, even for degenerate input, is offered by the
CGAL and LEDA software libraries and J. R. Shewchuck’s triangle software,
which computes the Delaunay triangulation, the geometric dual of the Voronoi

428 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Fig. 9.7. (Part of the) Voronoi diagram of a set of points with respect to Euclidean
distance

diagram of a set of points. All these are master pieces in Algorithm Engineering
in Computational Geometry.

Before we consider geometric Algorithm Engineering issues regarding the com-
putation of Voronoi diagrams of point sites and Voronoi diagrams of line seg-
ments, both for Euclidean distance, we give a more precise definition, discuss
applications, and then briefly present standard algorithms.

9.4.1 Nearest Neighbor Regions

Actually, Voronoi diagrams have been reinvented in different areas. Descartes
[239] already used them informally in 1644. Voronoi diagrams are also known
as Dirichlet tessellations and Voronoi regions as Thiessen polygons. The name
Voronoi diagram goes back to a paper by Georgy Voronoi in 1908 [815].

Voronoi diagram partition the plane into nearest neighbor regions with respect
to a given finite set of geometric objects, usually points, and a distance function.
In the context of Voronoi diagram computation, the given objects are called
sites. The goal is to compute regions such that all points in a region have the
same closest site among the given ones. Figure 9.7 provides an example.

Let S be a set of sites and d be a distance function to measure distance from
a point to a site. Let xi and xj be sites in S. The set of all points in the plane
that have equal distance to xi and xj is the bisector B(xi, xj) of xi and xj :

B(xi, xj) = B(xj , xi) = { x ∈ R
2 | d(x, xi) = d(x, xj) }.

The set of points closer to xi than to xj is called the dominance region of xi

over xj :
R(xi, xj) = { x ∈ R

2 | d(x, xi) < d(x, xj) }.

9. Case Studies 429

Fig. 9.8. Left: invalid circle (contains a point); right: valid circle (no point enclosed)

The intersection of all dominance regions of xi over the remaining sites in S
is the Voronoi region VR(xi) of xi,i. e.,

VR(xi) =
⋂

j �=i

R(xi, xj).

The Voronoi diagram is the set of points belonging to no region, i.e., the set of
points that have at least two closest sites. A point with at least three closest
sites is a Voronoi vertex. A Voronoi vertex v is degenerate with respect to S if v
has more than three closest sites in S.

In this case study we consider Voronoi diagrams with respect to the Euclidean
metric only. We only consider sets of point sites and sets of line segments and
points as sites. For a set of points S, the Delaunay diagram is the so-called dual
of the Voronoi diagram. Two points xi, xj ∈ S are connected by the straight line
segment xixj if and only if their Voronoi regions have a one-dimensional common
boundary. If there are no degenerate vertices in a Voronoi diagram, its dual is a
triangulation, the Delaunay triangulation, and it is the unique triangulation so
that the circumsphere of every triangle contains no sites in its interior, cf. Fig-
ure 9.8. The Delaunay triangulation has the nice property, that it maximizes
the minimum angle over all triangulations of S. Figure 9.9 shows the Delaunay
diagram corresponding to the Voronoi diagram shown in Figure 9.7, refined to
a triangulation.

Every vertex in the Voronoi diagram (see Figure 9.10(a)) corresponds to ex-
actly one triangle in the Delaunay triangulation (see Figure 9.10(b)). The circum-
circle of the triangle has its center in exactly that Voronoi vertex. Therefore, the
Voronoi diagram can be obtained from the Delaunay triangulation by replacing
each triangle in the Delaunay triangulation with the center of its circumcircle
and the three bisectors that meet there. Figure 9.8 shows an illustration of a
circumcircle not contributing and a circumcirle contributing to the Delaunay
triangulation for the point set used in Figure 9.10.

430 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Fig. 9.9. (Part of the) Voronoi diagram of a set of points with respect to Euclidean
distance and a corresponding Delaunay triangulation of the point set

9.4.2 Applications

Voronoi diagrams have many applications in various disciplines beyond Compu-
tational Geometry. We list only a few of them:

In the Area of Pattern Recognition they can support the layout of Neural
Networks by partitioning the input space given by the training patterns
(see [128]).

In Art Voronoi diagrams are applicable for creating abstract ornamental de-
signs (see [454]). Kaplan specifically outlines two very useful features of
Voronoi diagrams: the conservation of symmetry and the continuity of the
output when changing the generating points. This allows for interesting
tilings of the plane as well as for smooth, nearly organic animations of tilings.

In Biology, e.g. in the area of ecology and botany, they can help with the simu-
lation and analysis of systems of growing plants. Those plants, being depicted
as points in the Voronoi diagrams, are characterized by their coordinates,
radii and the type of species. Based on different growing rules for different
plants, the interdependencies of plant interactions in a dense system of grow-
ing plants are of interest. To study the size-distance and size-area relation-
ships of those living spaces, weighted Euclidean Voronoi diagrams provide
an efficient way to model those influences. For example, the area occupied
by a plant is computed as the area of the Voronoi region corresponding to
this plant (see [320] for the software tool).

In Materials Sciences (see Roberts and Garboczi in [673]) most real cellular
solids are random materials, while most of the known theoretical results are
for periodic models. To obtain realistic elastic properties for random models

9. Case Studies 431

(a) (b)

Fig. 9.10. Example Voronoi diagram and Delaunay triangulation

Voronoi diagrams can be used to generate models that more adequately
represent the structures of foamed solids. Roberts and Garboczi were able
to reveal an even more complex density dependence of the aforementioned
elastic properties than predicted by conventional theories that relied only on
periodic models.

In Robot Motion Planning Voronoi diagrams can be used for determining
paths around obstacles while always maintaining the maximum possible dis-
tance to them. A simple approach would be to limit movements along the
Voronoi bisectors (see [106] for a more sophisticated idea).

TSP Solving can benefit from the structures known from Voronoi diagrams
and Delaunay triangulations as they can be used for heuristic approaches
(see [706]).

For further applications we refer the interested reader to Christopher Gold’s
www.voronoi.com web-site and David Eppstein’s Geometry in Action4 pages on
Voronoi diagrams.

9.4.3 Algorithms

Next, we turn to Voronoi diagram computation. Opposite to the previous case
study on Steiner trees, polynomial-time algorithms are available. As usual in
theory, the algorithms are designed for a machine that can compute exactly
with arbitrary real numbers.

Standard geometric algorithm design paradigms have been applied to Voronoi
diagram computation and to the construction of the Delaunay triangulation,
including the incremental approach, the divide-and-conquer approach, and the
sweep-line approach. Let us shortly talk about their basic ideas, before going
into details, especially on the caveats of implementing a “robust” algorithm.

4 http://www.ics.uci.edu/~eppstein/gina/voronoi.html

432 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Fig. 9.11. Illustration of the incremental approach (from left to right and top to bot-
tom): Current state, the new point to be inserted, the invalidated Voronoi edges, the
Voronoi region of the new point, the Voronoi region after the removal of conflicting
bisectors, the updated Voronoi diagram.

Incremental Construction. The idea is well-known: The algorithm starts out
with any three sites of the complete problem. For these three sites the Voronoi
diagram is trivial. The other sites are added successively and the Voronoi diagram
is updated each time until all sites were added (see Fig 9.11).

For each newly inserted site all invalidated Voronoi regions have to be removed
and the new partition has to be made. As the algorithms run time clearly depends
on the number of regions and edges that need to be updated, it suffers from “bad”
insertion orders and can speed up with “good” insertion orders. To minimize the
influence of such effects randomization helps a lot.

The Divide-and-Conquer Approach. In 1975, Shamos and Hoey [728] pre-
sented the first deterministic worst-case optimal algorithm for Voronoi diagrams.
Their approach is based on the divide-and-conquer paradigm, very similar to

9. Case Studies 433

Fig. 9.12. Divide-and-conquer: On top, the left and right point set’s Voronoi diagrams
and below the resulting (combined) Voronoi diagram with the bisector of the two point
sets.

general divide-and-conquer approaches. However, in geometric applications it
helps to “divide” in such a way that locality information on the involved geomet-
ric objects is preserved. This eases the “merge” step.

1. divide the set of sites into two parts of equal size by a vertical line
2. generate the Voronoi diagram recursively for each part
3. merge the two parts

The interesting steps are the first and the last one. When both can be carried
out in O(n) then the overall run time of the algorithm will be in O(n log n).

After presorting the elements of S by their x– and y–coordinates (which re-
quires O(n log n) time), the dividing line can be chosen easily within constant
time, for example by taking the median. This solves the first step.

The merge process then requires the merging bisector of the left and right part
to be determined in order to form the solution, cf. Figure 9.12. One possible
approach utilizes the relation between Voronoi diagrams and the convex hull:
The convex hull of a (partial) Voronoi diagrams can be constructed in O(n), as

434 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

all points with an unlimited Voronoi region are part of the convex hull. Details
can be found in [51].

The Sweep-Line Approach. The basic idea with a sweep-line approach is
to convert a static n-dimensional problem into a dynamic (n − 1)-dimensional
problem.

Consider the classic example: The discovery of all intersections of lines segment
in the plane. In a sweep-line approach a vertical line L is moved from the left
to the right across the plane. A list stores all line segments that L currently
intersects in a bottom-up order. When L hits a line segment’s endpoint, the line
segment is added to or removed from the list, respectively. After each update
of the order only pairs of line segments which just became neighbors have to
be checked for intersection (instead of a quadratic number of line pairs with
the brute-force approach). To apply the sweep-line idea to Voronoi diagrams of
points in the plane some more effort is required though, see Figure 9.13 for an
illustration.

The interested reader will find more details about the sweep-line method in
the original paper by Fortune [294] and in Seidel [721] or in Aurenhammer and
Klein [51].

9.4.4 The Implementation Quest

While most algorithms developed in numerical analysis are stable, in the sense
that the computed output is close to the correct output for a small perturbation
of the input data, most algorithms in computational geometry are neither sta-
ble nor robust in this sense. In geometric computing rounding errors can easily
lead to inconsistent decisions that the algorithms cannot handle, because it was
designed under the assumption of exact arithmetic that excludes such incon-
sistencies. There are two obvious approaches to deal with numerical problems
caused by the discrepancy between theory, here exact real arithmetic, and prac-
tice, where inherently inexact floating-point arithmetic is used. Namely, either
adopt theory or change practice. The former means to take imprecision into ac-
count when designing geometric algorithms, the latter means to enable exact
computation in practice. Indeed, this is possible for many classes of problem in-
stances and many geometric algorithms. Both approaches have been successfully
applied in the context of Voronoi diagrams.

9.4.5 The Exact Geometric Computation Paradigm for the
Computation of Voronoi diagrams

A branching in the execution of an algorithm depends on the sign of some nu-
merical expressions that ultimately depend on some constants and the numerical
data in the input only. The computation of the signs of these expressions is usu-
ally encapsulated in so-called geometric primitives. Of course, we avoid incon-
sistent decisions, if we guarantee all decisions, i.e., all sign computations, to be

9. Case Studies 435

Fig. 9.13. Illustration for the sweep-line approach for Voronoi diagrams of points in
the plane

436 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

correct. This is the basic idea behind the so-called exact geometric computation
paradigm: Exact numerical values are not necessary, exact sign computations,
and consequently exact decisions, suffice.

Although each geometric algorithm uses different geometric primitives, there
are geometric primitives that are used in many geometric algorithms. We provide
some examples for geometric primitives:

Coordinate comparison. Does point p have a smaller, the same, or a larger
x-coordinate than point q?

Sidedness. Does a point lie on, on the left side, or on right side of a directed
line?

In-circle test. Does a point lie inside or outside of a circle defined by three
points, or on it?

Order along a bisector. Do we reach the Voronoi vertex of points p, q, and r
before we reach the Voronoi vertex of points p, q, and t when walking along
the bisector of points p and q in a given direction?

Order of circle event and point event. Is the x-coordinate of the leftmost
point of the circumcircle of three points q, r, and s smaller than, equal to,
or larger than the x-coordinate of point p?

Such geometric primitives are used in the computation of Voronoi diagrams. For
many geometric problems, only rational numbers arise during evaluation of the
related geometric primitives, if all input data are rational numbers, too. This
holds for the computation of Voronoi diagrams of point sites with Euclidean
distance, but unfortunately not, if line segments are involved, because bisectors
are non-linear in this case, cf. Figure 9.14, and the coordinates of Voronoi vertices
might be irrational algebraic numbers.

Thus, if only rational numbers arise during the geometric computations, a
rational number type based on arbitrary precision integers suffices to get numer-
ically correct results and hence correct decisions, thereby guaranteeing correct
Delaunay triangulation for point sets and correct combinatorics, i.e., topology,
of the Voronoi diagram of a set. Such exact rational number types are provided
by the GNU multiple precision library [334] and LEDA [513] for example, see
also Chapter 7. However, this approach slows down computation significantly.
Karasick et al. [458] report on a slow-down factor of several orders of magnitude
when computing Delaunay triangulation of a set of points using a hand-made
arbitrary precision rational arithmetic.

Therefore, Karasick et al. [458] already exploit alternative approaches, based
on the observation that high numerical precision is required only if the numerical
value whose sign we are interested in is close to zero. This is the basic idea of
floating-point filters that is discussed in Section 6.7 on “Geometric Algorithms”.
Their paper was the first approach implementing the exact geometric computa-
tion paradigm using speed-up techniques partially based on interval arithmetic
in the context of computing Delaunay triangulations and, equivalently, Voronoi
diagrams. However, while the approach is similar on an abstract level to the
floating-filters, that were introduced and discussed a few years later by For-
tune and van Wyk [298] for the computation of Delaunay triangulations, the

9. Case Studies 437

Fig. 9.14. (Part of the) Voronoi diagram of a set of line segments and their endpoints
with respect to Euclidean distance

engineering details are quite different. In particular, Fortune and van Wyk used
static analysis techniques and integer arithmetic tuned for special applications.
Furthermore, they provide an expression compiler to ease the tuning task.

Finally, Shewchuk [731] presented very efficient exact predicates for the com-
putation of Delaunay triangulations, which are based on techniques by Dekker,
Knuth, and Priest for extending the precision of floating-point arithmetic. These
techniques are discussed in Section 6.7 of the chapter on “Implementation As-
pects”. In contrast to standard floating-point filters, which switch to an exact
arithmetic if the floating-point computation can not be verified by the computed
error bound, Shewchuk’s predicates use several stages to increase adaptiveness.
While this could be achieved by cascaded filters as well, Shewchuk’s predicates
have the additional advantage that they reuse previous results in later stages. His
predicates guarantee exact sign computations as long as intermediate floating-
point results are representable. No further a priori information on the numerical
data in the input, e.g., integrity in a certain range, is required.

Thanks to such techniques correct Delaunay triangulation software based on
the exact geometric computation paradigm is often slowed-down only by a small
factor less than two compared to its purely floating-point based counterparts.
This requires a word of explanation: For random input points degenerate and
nearly degenerate configurations are unlikely, and thus software based on the
exact geometric computation paradigm mainly has to verify its floating-point
computations at low additional cost. The additional cost is much higher for
(most) degenerate and nearly degenerate cases, because now additional, more
expensive computations are required. But in this case, we compare apples and

438 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

oranges anyway, because for such degenerate and nearly degenerate cases, purely
floating-point based software will crash or “at best” compute slightly incorrect
results. Despite of its algorithmic beauty, the sweep-line algorithm is not the best
choice in terms of exact geometric computation, because of the use of geometric
predicates with a higher arithmetic demand.

Compared to the computation of Voronoi diagrams of point sets with Eu-
clidean distance in the plane, the arithmetic demand involved in the computa-
tion of Voronoi diagrams of line segments in the plane is much higher, especially
because algebraic numbers arise. Here, general purpose number types for exact
geometric computation with real algebraic numbers like CORE::Expr [457] and
leda::real [141] (as described in Section 6.7.3) could be used. However, some
implementations use more restricted number types with better performance for
what is actually needed.

9.4.6 Topology-Oriented Inexact Approaches

Algorithms designed for the real RAM model with exact real arithmetic usually
can not cope with numerical imprecision when the theoretical exact arithmetic
is simply replaced by inherently inexact floating-point arithmetic. Especially for
input instances involving degenerate and near degenerate configurations, algo-
rithms designed for exact real arithmetic are very likely to fail. Thus, numerical
imprecision has to be taken into account already at the design phase. The so-
called topology-oriented approach is an approach pioneered by Sugihara and
co-workers [765, 764, 619] in the context of Voronoi diagrams. The basic princi-
ple is to rank topological correctness and consistency higher than the result of
numerical computations.

When designing according to the topology-oriented approach, first some “topo-
logical” properties are selected that every valid solution to a problem instance
must have. Preserving these topological properties is the guideline for the algo-
rithm. The properties must be efficiently checkable with combinatorial and topo-
logical computation which does not involve any numerical computations. Thus,
the checking can be assumed to be correct. The basic part of the algorithm
is based on purely combinatorial and topological computation in such a way
that the selected properties are maintained. Numerical computations support
the combinatorial and topological computation. Numerical results that contra-
dict the results of combinatorial and topological computation are simply refused.
The combinatorial and topological computation has priority. Usually, the com-
puted solution contains some numerical data as well, but they are not guaranteed
to correspond to the computed combinatorial and topological parts. Since the
combinatorial and topological computation has right of way, there are no incon-
sistencies caused by numerical imprecision.

In order to keep the algorithms simple, the topology-oriented approach does
not handle degenerate cases. Since numerical computations are not trustworthy,
because they are error-prone, the numerical detection of a degenerate case is
not trusted either. Instead, the numerical computation is refused and a non-
degenerate topology is computed.

9. Case Studies 439

A very strong point of the topology-oriented approach is the lack of assump-
tions on the precision or the accuracy of the numerical computations. Algorithms
designed according to the topology-oriented approach “work” even if all numerical
results are replaced by random values! Working means, the computed solutions
has the desired topological properties. The numerical data in the output will be
garbage, however.

To illustrate the idea, we apply the topology-oriented approach to the con-
struction of the Voronoi diagram of points in the plane [764, 765]. The selected
topological properties for the Voronoi diagram of points in the plane are

– (a) every site has its own Voronoi region,
– (b) every Voronoi region is connected, and
– (c) two Voronoi regions share at most one edge.

The algorithm computes the Voronoi diagram incrementally. The basic step from
n− 1 to n points consists of two parts: (1) finding the Voronoi regions affected
by the insertion of the new point, and (2) updating the affected Voronoi regions.
Part (1) is supported by numerical computations. By giving combinatorial and
topological computations higher priority it is ensured that the part of the Voronoi
diagram to be removed is always a tree-like structure. By ensuring this prop-
erty, the selected topological properties are preserved. Whenever the numerical
computations would tell to remove a cyclic subpart, these numerical compu-
tation would be refused. Of course, by numerical computations coordinates of
Voronoi vertices are computed. There is no guarantee that these coordinates
give us a crossing-free embedding of the computed topological structure. How-
ever, preserving the topological properties guarantees that such a crossing-free
embedding of the computed topological structure indeed exists.

For an illustration of the update step we refer to Figures 9.15 and 9.16.
The exact coordinates of the six newly inserted vertices are not important, cf.
Figure 9.17.

One could say that the numerical and topological part complement each other
by taking turns in solving the problem. That way it is always guaranteed, that the
result of the algorithm is a topologically correct structure, although it might be
(depending on the numerical errors) far away from the “exact” solution. With rea-
sonably accurate arithmetic we will even get the topologically correct structure
for the given input in many cases. Furthermore, if the algorithm is implemented
correctly, the resulting program will never crash. However, since degeneracies
are not handled, we never obtain the exact topological structure in the presence
of degeneracies (in the output), even if an exact arithmetic is used.

The topological approach is considered attractive, because degeneracies are
completely avoided, in contrast to “epsilon-tweaking”, where whatever is close to
zero is interpreted as zero, i.e., nearly degenerate is considered degenerate, and
closeness is determined by some, often mysterious, epsilon. Perturbation also
avoids handling degenerate cases. While symbolic perturbation requires exact
sign computations, the more recent approach of controlled perturbation [378] by
Halperin and Shelton purely relies on floating-point computation. The chosen
non-symbolic perturbation must let all carried-out floating-point computations

440 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Fig. 9.15. a) Intermediate Voronoi diagram. b) The new point and the Voronoi edges
that need to be updated. c) Each of the outer edges obtains a new Voronoi vertex on
it. d) The Voronoi regions of the new point consists of these vertices.

be easily verifiable. Thus, floating-point filter would never fail. This approach has
been recently applied to the computation of Delaunay triangulations by Funke,
Klein, Mehlhorn, and Schmitt [311].

9.4.7 Available Implementations

Both mainstream approaches to tackle precision and robustness problems in geo-
metric computation have been successfully applied to the computation of Voronoi
diagrams, including Euclidean Voronoi diagrams for point sets, or equivalently
the Delaunay triangulation of the point sets, and for sets of line segments. Re-
garding point sets the efforts culminate in the code available in the C++ libraries
CGAL [151] and LEDA [513] and Shewchuk’s triangle software on one hand
and Sugihara’s FORTRAN code on the other hand. The former intensively use
the filtering techniques discussed above for efficiency while the latter implements
a topology-based approach. Regarding sets of line segments the efforts culminate
in Karavelas’ CGAL implementation and Held’s VRONI code. While Karavelas’

9. Case Studies 441

Fig. 9.16. a) New Voronoi region and the skeleton marked for removal. b) Skeleton
removed. c) The new point and its Voronoi region. d) The resulting Voronoi diagram.

Fig. 9.17. Two different, but topologically equivalent Voronoi diagrams

implementation is based on the exact geometric computation paradigm, VRONI
uses the topology-oriented approach as well and therefore does not guarantee
utmost accuracy, but a certain topological correctness of the resulting Voronoi

442 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

diagram. In the sequel we take a closer look at these approaches for line segment
Voronoi diagrams.

Karavelas’ Implementation. [459] computes the line segment Voronoi dia-
gram in the plane, even for intersecting segments. Based on exact arithmetic pro-
vided by CGAL [151] it uses a randomized incremental algorithm and achieves
better performance than Seel’s avd (shortcut for abstract Voronoi diagrams)
code for Euclidean Voronoi diagrams of line segments [718]. Its main ideas are
the following:

Site Representation. When representing intersection points by their coordinates,
the number of bits required for exact representation might increase arbitrarily
up to exponential size. While avd suffers from this fact on larger instances that
can quickly fill the available RAM of a machine, Karavelas follows a different
approach: Line segments without intersections are represented by their two end-
points. A point of intersection between two line segments is not represented by
its coordinates, but by the endpoints of the intersecting line segments. A partial
line segment, created by a cut of a line segment with up to two other line seg-
ments, is represented by the original line segment’s end points as well as by the
cutting line segments’ endpoints. This technique keeps the number of bits that
are required for an exact representation of the sites at a constant level.

Geometric Filtering. The well-known arithmetic filtering at first tries to eval-
uate a predicate, e.g. sidedness, using a fixed-precision floating-point number
type and keeps track of the numerical error. Should the error become too large,
the predicate is determined using an exact number type. Geometric filtering
now means to test for shortcuts before the numerical evaluation of predicates
is activated. For example, when determining the intersection of two line seg-
ments no numerical calculations are necessary at all if those segments share an
endpoint.

Random Shuffling of the input data is used to avoid bad insertion orders with
high probability.

PLVOR as introduced by Imai [425] uses the topology-oriented approach of
Sugihara and Iri [764] in combination with an incremental algorithm to com-
pute the Voronoi diagram of a disjoint set of line segments and points. At first
PLVOR constructs the Voronoi diagram of points and then successively adds the
line segments (without their endpoints, as they are already part of the Voronoi
diagram of points).

The program features no exceptional rules to handle degeneracies, so they
have to be resolved by the topology-oriented approach alone. It is written in
Fortran and accepts only integer coordinates.

9. Case Studies 443

VRONI has been engineered by Held [385]. It can be seen as a successor of
pvd (= Pocket Voronoi diagram), a program by Sethia, Held and Mitchell [725]
for computing the Voronoi diagram of line segments that form non-intersecting
polygons. The main objectives in the design of VRONI were to create a com-
pletely reliable and fast program based on conventional floating-point arithmetic,
that can handle any polygonal input of arbitrary size. VRONI is also based on
the topology-oriented approach and uses a randomized incremental algorithm as
well. The construction of the Voronoi diagram is then a two-split process: Similar
to the PLVOR code by Imai [425], at first the Voronoi diagram of the endpoints
of the line segments (and further points) is computed. The second step then
inserts one line segment after another and modifies the existing Voronoi regions
appropriately.

In order to ensure the correctness of the resulting Voronoi diagram, the cor-
rectness of each single step has to be guaranteed. VRONI achieves this by in-
cluding the following features:

– a careful implementation of the numerical computations
– an automatic relaxation of epsilon thresholds and
– a multi-level recovery process in combination with a so-called desperate mode.

Numerical Considerations. Typical degeneracies are zero-length edges, partially
overlapping edges, vertices on the edges of a polygon as well as (self)intersections.
Unfortunately, most of them are the undesired result of algorithmic or numerical
problems within the generator software. As advised by the “defensive design”
paradigm everything that cannot be influenced by the programmer, e.g., external
data, should be treated as unpredictable.

In VRONI at first the duplicate points are removed via a simple scan after
sorting them by their x- and y-coordinates. Every input point is then assigned an
index in the sorted array of points so duplicate points will have the same index.
The intersection point of two lines sharing a common endpoint is revealed easily
by these indices. Also the zero-length line segments can be discarded.

Although the topology-oriented approach ensures that the solution fulfills
various criteria, it is obvious that the quality of the final output significantly
depends on the fidelity of the numerical computations. So additionally to the
basic topology checks the following numerical plausibility checks are used:

– When inserting a new Voronoi vertex (= center of a new circumcircle) during
the incremental update, this vertex has to lie on each bisector it forced to
be cut off (removed bisectors are not considered).

– The clearance distance of the new Voronoi vertex has to lie between the
minimum and maximum of those of the previous vertices.

– In the case of an (already inserted) line segment as a generator, the new
Voronoi vertex has to lie on the same side of that very line as the vertex it
replaced.

Those properties help to detect whether the result is valid or not. If one of them
fails the multi-level recovery process is initiated (detailed below).

444 D. Delling, R. Hoffmann, M. Kandyba, and A. Schulze

Relaxation of ε-Thresholds. With the numerical errors coming from using stan-
dard floating point arithmetic an epsilon has to be given that defines the bound
for the question: “Is a given number still equal to zero?” or in terms of geometry:
“How far must two points be at least apart for not being considered as the same
point?” This user-given bound, called upper bound, together with the minimum
epsilon given by the used floating point arithmetic, called lower bound, gives a
range for VRONI to work in. When approaching a point in the program where
numerical data computation is required, the ε-relaxation works as follows:

– Initialize epsilon to the maximum precision (the lower bound).
– Conduct the necessary calculations and check whether they are correct ac-

cording to the topological properties and the numerical sanity checks.
– If the data is not correct, raise epsilon and repeat the calculation until either

the data is considered correct or the upper bound for epsilon is hit.

When the upper bound is reached, “local plausibility checks” (see Numerical
Considerations above) are conducted. If the relaxation should not succeed the
“Backup Algorithms” stand in.

Backup Algorithms. The typical routines needed during the computation of the
Voronoi diagram include the determination of roots of second-order polynomials
as well as solving linear equations. As standard algorithms for those tasks might
suffer from instabilities, there exists at least one backup routine in VRONI for
every required numerical computation. Those routines are executed instead of
the original ones, whenever the input data indicates that the calculation might
be numerically unstable. They mostly have a larger run time for the same task,
but are designed to avoid any instability by renouncing vulnerable operations
like square roots or divisions.

Desperate Mode. VRONI also contains a so-called “desperate mode” that is ac-
tivated whenever all of the above methods failed. It then tries to extract usable
information from already achieved calculations and decides how to continue. If
a specific numerical computation did not succeed, then an approximation of the
calculation result is determined and used instead. Again special care has been
taken not to use any operation that is not defined for floating point numbers.
Second, if the numerical computation should succeed but one or more of the
following sanity checks fail, the result which fits best is chosen. Finally any vi-
olation of topological properties is “healed”, by force if necessary. This mode
guarantees that VRONI will terminate correctly, whatever happens.

Algorithm 11 provides a schematic overview of the program flow of VRONI.

9.4.8 Conclusions

Voronoi diagrams are an important tool in computational geometry and its appli-
cation areas. Therefore, the computation of Voronoi diagrams has gained a lot of
attention. Both the exact geometric computation paradigm as well as topology-
oriented approaches have been successfully applied. Comparing both approaches

9. Case Studies 445

Algorithm 11. Schematic program flow of VRONI
1: remove duplicate points
2: remove zero-length edges
3: topologically construct the Voronoi diagram of points
4: while (there is a not-yet-inserted line segment left) do
5: insert the new line segment
6: update the Voronoi diagram topologically
7: calculate the new vertices’ coordinates numerically using the ε-relaxation
8: if (a numerical plausibility check fails) then
9: use a backup algorithm instead

10: if (the backup algorithm also fails) then
11: enter DESPERATE MODE

in terms of performance is like comparing apples and oranges. With the topology-
oriented approaches you get an approximate structure quickly. However this ap-
proach only preserves some essential properties. While most of these approaches
are perfectly robust, since they never crash, but always compute some result,
there are no guarantees regarding stability, i.e., the quality of the computed
result with respect to the actual input data. On the other hand, the exact geo-
metric computation paradigm guarantees exact results, even in the presence of
degeneracies. However, this utmost accuracy does not come for free. Especially
in the presence of degeneracies it takes time to compute the exact result.

For both approaches it took a lot of geometric Algorithm Engineering to
achieve what we have now: A user with inaccurate input data can go for the much
more efficient topological approach, while a user more interested in accuracy
of the output might prefer to invest more running time to get exact results.
This situation is rather rare in computational geometry. Since implementing the
exact geometric computation paradigm is much easier with available tools, this
approach has gained more attention over the past decades. It allows for a more
straightforward implementation and does not require redesigning algorithms in
order to deal with imprecision. On the other hand, VRONI nicely illustrates
what a clever imprecision-oriented (re)design can achieve.

Chapter 10. Challenges in Algorithm Engineering

Matthias Müller-Hannemann and Stefan Schirra

This final book chapter is meant as a brief reflection on the current status of
Algorithm Engineering and its future development. It is devoted to the many
challenges this discipline has to face. By challenges we mean things that are
worthy to invest a significant research effort, and working on these problems
promises a high potential impact.

In early 2007, the authors made a poll among colleagues questioning about
the most important challenges for Algorithm Engineering. We also asked them
about future trends and developments for the discipline they envision. The an-
swers we obtained covered a broad range of issues which we tried to integrate
into the following discussion and overview. We acknowledge thankfully contri-
butions by David Bader, Ulrik Brandes, Hervé Brönniman, Dan Halperin, Riko
Jacob, Michael Jünger, Ernst Mayr, Cathy McGeoch, Kurt Mehlhorn, Petra
Mutzel, Stefan Näher, Hartmut Noltemeier, Knut Reinert, Peter Sanders, Anita
Schöbel, Steve Skiena, Anand Srivastav, Raimund Seidel, Berthold Vöcking, and
Ingo Wegener. Another valuable source for challenges is the grant proposal by
Mehlhorn et al. [556] for the DFG funding initiative on Algorithm Engineer-
ing (www.algorithm-engineering.de). Nevertheless, the following compilation de-
scribes the personal view of the authors in first place.

We start our discussion with general remarks on the discipline, and then
list challenges along the different phases of the Algorithm Engineering cycle.
Thus, the order of topics should not be interpreted as a ranking with respect to
importance.

10.1 Challenges for the Algorithm Engineering Discipline

According to the French philosopher Bruno Latour, much science-in-the-making
appears as art until it becomes settled science [508]. Algorithm Engineering is a
quite young and evolving new discipline. Therefore, it is quite natural that it has
to face a number of challenges with respect to its own development. The main
challenge is probably to further establish Algorithm Engineering as a scientific
discipline in algorithmics and more generally in computer science.

In algorithmics, theoretical and experimental research have been to a large ex-
tent separated since the 1970s and 1980s, and experimental work in algorithmcs
often does not yet get the credit it deserves, although experimentation is an in-
tegral part of the process of taking theoretical results to practice. Experimental
algorithmics is still often only considered as a substitute where theoretical anal-
ysis fails, not as a complementary method to better study what is best suited
to solve real-world problems at hand in practice. Still, driven by the need for
practical solutions Algorithm Engineering has entered algorithmics over the past
decade. Besides classical asymptotic algorithm analysis, there are now more and

M. Müller-Hannemann and S. Schirra (Eds.): Algorithm Engineering, LNCS 5971, pp. 446–453, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

10. Challenges in Algorithm Engineering 447

more field experiments that measure runtimes on real-world problem instances
in order to get more precise information about program performance in prac-
tice [549]. But Algorithm Engineering is more than that, e.g. it can also lead to
new algorithmic insights.

The most general and ambitious goal of Algorithm Engineering is to close
the gap between theory and practice in algorithmics. This by itself is obviously
a major challenge as Algorithm Engineering has to make use of the algorith-
mic knowledge developed in theory and thus has to turn sophisticated methods
into (re)usable software. Regarding runtime prediction the gap between asymp-
totic unit cost analysis and performance on real computers is ever increasing
with modern system architectures that have multicore processors and multilevel
caches. Engineering practical efficient algorithms for multicore, parallel, and dis-
tributed systems is another major general challenge in Algorithm Engineering
these days.

10.1.1 Realistic Hardware Models

The demand for experimentation in Algorithm Engineering exists because asymp-
totic analysis and the models of computation used in theory do not allow for pre-
dicting the actual performance in practice accurately. The gap between theory and
practice in algorithmics is partially due to a gap between models of computation,
like a random access machine with uniform cost measures, and existent computers
today. Thus we need more useful models. We need models that are closer to the
actual hardware and allow for more accurate performance prediction. Ideally, such
better models are still simple enough for design and analysis, but let the algorithm
designers tune their algorithms prior to the experimentation phase or might even
render the experimentation phase obsolete.

Modern architectures are particularly challenging. With respect to memory
hierarchies, the cache-aware and cache-oblivious models are important steps for-
wards, but they have their limitations as well and still must prove impact on
practice.

Use of flash memory is one of the latest developments. Flash memory will
either completely replace magnetic hard disks or become at least an additional
secondary storage in the near future. Flash memory is similar to RAM with
respect to its ability of fast random reads, but also similar to hard disks as a
block based device with slow write operations. Since write operations require the
erasure of a whole block, and erased blocks wear out, erasures should be spread
out almost evenly over the blocks to extend the life time of the chip. This is
called wear leveling and requires new algorithmic designs, something like “flash-
aware” or “flash-oblivious” algorithms. The latter is particularly desired since
flash technology still changes very rapidly. Algorithmic research in this area has
just started [21].

The key challenge today is the design and analysis of efficient, high-perfor-
mance algorithms for multicore and parallel processors. The industry has adopted
multicore as a mechanism to continue to leverage Moore’s Law, and parallel algo-
rithm design now moves from a special niche to the mainstream. Yet the masses of

448 M. Müller-Hannemann and S. Schirra

algorithm designs and programmers think “sequentially” and no canonical model
of parallel algorithm design is accepted for multicore processors such as the IBM
Cell, Intel TeraOps, and other homogeneous and heterogeneous multicore chips.
While it is difficult to engineering algorithms for sequential processors due to
memory hierarchies, it is even more difficult to incorporate other artifacts such
as memory bandwidths, hierarchical systems (multicore, SMP, clusters), transac-
tional memory, heterogeneous cores, speculative multithreading, and so on. The
design of good models for parallel and distributed computing that take thread
safety into account is quite challenging. It is not clear how Algorithm Engineer-
ing will model multiple cores in a canonical fashion and refactor all algorithms
into multicore frameworks. This demand will certainly become more important
in the near future.

10.1.2 Challenges in the Application Modeling and Design Phase

As for software engineering, which spans both the design and the implementation
phase, fostering reuse and extracting code commonality for generic design are
primary objectives.

Due to the ubiquitousness of information technology and increasing capacity
of storage media, the amount of (measured) data that has to be processed has
become huge in many applications. Dealing with such massive data sets is chal-
lenging with respect to memory hierarchies. On the other hand, massive data
sets are particularly interesting from a more theoretical point of view, because
many asymptotically efficient methods developed in theory become relevant for
such large problem instances only.

Massive data streams often require that decisions must be made by algo-
rithms that merely make one single pass over the stream. The design of one-pass,
space-efficient algorithms is a relatively new area which is likely to benefit from
Algorithm Engineering techniques a lot.

But even without the strong data access restriction of one-pass algorithms,
large scale instances usually have to be solved in linear (or even sublinear) time.
Thus the question is how far can we get if we restrict ourselves to the class of
linear time algorithms with small or moderate-size hidden constants, for some
appropriate notion of “small” or “moderate-size”.

Given that most real problems in practice involve NP-hard or even more dif-
ficult problems, algorithmics has developed a large body of approximation algo-
rithms that are guaranteed to find near-optimal solutions, for various definitions
of “near”. The classical quest is to find the best possible approximation guaran-
tee for a problem which has led to the development of many very complicated
algorithms. Here Algorithm Engineering may help if we shift our focus towards
drastically simpler and practically applicable algorithms which still come with
reasonable performance guarantees. There seems to be a big playground to ex-
plore the trade-off between approximation guarantees and efficiency.

Modeling uncertainty is another challenge in the modeling and design phase.
For example, real-world data are often subject to uncertainty because of measure-
ment errors. Nevertheless, many algorithms for such applications are designed

10. Challenges in Algorithm Engineering 449

under the assumption of exact input data, or — at best — by using simplifying
assumptions on probability distributions of the input, for example, for the loca-
tion of a point in a GIS algorithm or for the distribution of processing times in
stochastic scheduling.

10.1.3 Challenges in the Analysis Phase

Analogously to the quest for more realistic models of computation a major
challenge of the analysis phase is to achieve better performance prediction in
practice. This subsumes better analysis techniques for expected running times,
gaining more insight and developing better tools for comparison of expected per-
formance, and finding further ways towards explaining well-behavior in practice.
The latter includes extending smoothed analysis to other problems, see also
Chapter 4. The traditional competitive analysis of on-line algorithms is often
way too pessimistic. Here we probably need a new concept and methodology to
analyze algorithms in such a setting more appropriately.

Again, modern computer architectures with multicore processors and memory
hierarchies and parallel, cluster, and distributed systems pose further challenges
for algorithm analysis in Algorithm Engineering. Regarding the analysis of ex-
perimental results there is certainly a need for developing good statistical tools
for analyzing data. The existing tools are intended to answer different types of
questions — for example, techniques intended for fitting curves can be adjusted
for use in finding bounds on curves. Probably we should collaborate more closely
with statisticians and data analysis experts to find methodologies specifically de-
signed to address the types of questions we find interesting.

Finally, there are algorithm-specific and domain-specific challenges for algo-
rithm analysis, for example, analyzing quality and efficiency of meta-heuristics.
Many practical problems are so badly understood that no one is able to for-
malize the function to be optimized. Often this function can be obtained only
by an experiment or by the simulation of the experiment. Then non-specialized
randomized search heuristics like local search, taboo search, Metropolis, simu-
lated annealing and all variants of evolutionary and genetic algorithms seem to
be the methods of choice. Unfortunately, these methods come typically without
any performance guarantee. Therefore, we need to build a theory of randomized
search heuristics and to improve the methods to analyze the expected optimiza-
tion time of these heuristics for various problems.

10.1.4 Challenges in the Implementation Phase

The transition from the high-level pseudo-code description of a sophisticated
algorithm or data structure into an efficient implementation often appears to be
more difficult than expected. In fact, many algorithms developed in theoretical
computer science are regarded as purely theoretical and no attempt has been
made to implement them due to the large hidden constants that are involved.
With rare exceptions, theory papers specify the running time of algorithms only

450 M. Müller-Hannemann and S. Schirra

in big-Oh-notation and do not even specify the approximate size of the sup-
pressed constants.

A typical example for the semantic gap between abstract specification and
implementation is a famous O(nm log n) matching algorithm by Galil, Micali,
and Gabow [312] from 1986. This algorithm makes extensively use of sophis-
ticated data structures, in particular of concatenable priority queues. Its first
implementation succeeded in 2000 by Schäfer and Mehlhorn [563].

We need further attempts to implement some of the more advanced algorithms
that have never been implemented. Quite recently, Tazari and the first author
started a project to implement a PTAS suggested by Borradaile et al. [126,127]
for the Steiner tree problem in planar graphs. Our experience with this attempt
and our accompanying computational study suggest that we can learn a lot
from such endeavors. In this particular case our own expectations of what might
be achievable with such an algorithm has been well exceeded in computational
experiments with large instances [776].

Even the implementation of relatively easy algorithms can be demanding.
Small implementation details can lead to significant differences in the constant
factors.

The ability to perform successful experiments is closely related to good soft-
ware engineering in the implementation phase. Insightful experimentation re-
quires that we are able to exchange data structures and subalgorithms in a most
flexible way. In Algorithm Engineering we are not only reusing existing software,
but we are also interested in providing our algorithmic solutions in such a way,
that they are reusable for us and others. Hence, software libraries that make
algorithmic advances available are crucial for the implementation phase. It is
getting more and more important that such libraries can exploit modern com-
puter architectures with multicore processors and modern memory hierarchies.

Many people in Algorithm Engineering would prefer such libraries as open
source. Chapter 7 discusses what makes a good software library for Algorithm
Engineering. In Algorithm Engineering it is specifically important that software
libraries are flexible and adaptable and ease the exchange of components. This
allows for engineering the combination that is most appropriate for the actual
problem instances by experimentation.

10.1.5 Challenges in the Experimentation Phase

Experimental studies should be conclusive. They are not so much interesting by
its own, but they should allow a computer scientist to make the right design
choices for producing software for a particular problem. The results of experi-
ments should be generalizable and portable. Apparently, this is not so easy to
achieve.

We need better, more generally accepted guidelines for experimental setup
and hypothesis testing.

In the experimentation phase of Algorithm Engineering choosing the right
problem instances for testing is always challenging. For example, often there
are several input parameters affecting the performance. Then we have to see

10. Challenges in Algorithm Engineering 451

how these parameters influence the test results and we have to find appropri-
ate parameter settings and variations thereof for the experiments. Evaluating
performance when parameters affecting the performance are changed, and how
to compare non-problem-specific methods whose performance depends on many
parameters, is a major challenge in Algorithm Engineering. Maybe, there is no
general solution for this problem.

Similarly, it is difficult to choose input for testing beyond worst and average
cases systematically. What are other relevant and interesting cases and how do
we get corresponding problem instances? While we might be able to generate
such problem instances artificially, it is usually quite hard to get real-world data
with the characteristics we want, if we know what we want at all.

Benchmark test libraries make experimental studies more comparable and
should support predictability of algorithmic behavior. In some areas, good col-
lections of meaningful benchmark problem instances are available, especially for
hard optimization problems (for example, MIPLIB, TSPLib, SteinLib). In some
others, such collections do not exist. It is a striking observation that realistic
problem instances are especially rare for certain classes of polynomially solv-
able problems like network flows or matching. Seemingly no-one knows how to
construct typical instances for these problem classes. Likewise, the artificial con-
struction of “hard instances” for many, if not most known algorithmic approaches
for efficiently solvable problems would be desirable since the gap between ob-
served performance and predicted worst-case performance is quite large.

Comparability of experimental studies on the same subject and reproducibility
of experiments are a must for good Algorithm Engineering. Comparability and
reproducibility make Algorithm Engineering research more transparent. Never-
theless, both are often cited as primary challenges in Algorithm Engineering.
Reproducibility requires a detailed comprehensive description of what has been
done and this usually takes more space than what is available in conference pro-
ceedings. Or it requires publication of all the software and data sets. While there
are many papers that publish relevant code and problem instances used in the
experiments, in computer science, including Algorithm Engineering, it is by far
not common practice yet to do so.

Writing good experimental papers is difficult. Experimental results almost
ever give rise to further questions which require additional experiments. Thus, it
is much harder to finalize an experimental paper, while a theoretical paper can
be finished as soon as all proofs are completed. Referees are often in a difficult
position. They have, of course, to ensure that a paper is sound and answers
the right questions. But they have also to refrain from requesting too many
additional experiments.

The ACM Journal of Experimental Algorithmics (JEA) has been initiated
with the aim (among others)

“to distribute programs and testbeds throughout the research community
and to provide a repository of useful programs and packages to both
researchers and practitioners.”

452 M. Müller-Hannemann and S. Schirra

As the publication of programs and test data is not mandatory it seems difficult
to encourage authors to do so: looking back to publications of JEA in recent
years, it is more the exception than the rule that a paper comes with related re-
sources. The recently added JEA Research Code Repository (www.jea.acm.org/
repository) is a repository for code, data, and test files that accompany papers
presented at conferences and workshops addressing problems in Experimental
Algorithmics. It is intended for those cases where the publisher of the proceed-
ings does not support electronic publication of code and test data. This initiative
needs further support by the community.

The sister discipline Mathematical Programming has recently decided to set
up a new journal — Mathematical Programming Computation, edited by Bill
Cook of Georgia Tech. Its first issue appeared in July 2009. Its review process
includes the evaluation and testing of accompanying software. The journal en-
courages authors to publish their software as open source. Submission of articles
describing non-open source software will require that referees are given access
to executable codes that can be used to verify reported results. If this policy
will be accepted by authors in practice, it would be a big step forward also in
Algorithm Engineering.

Finally, it would be nice to have workbenches for experimentation. They should
allow non-experts, e.g., more theoretically oriented people, to experiment with
various alternatives quite easily in order to get more insight into algorithmic prob-
lems and to compare existing solutions with their own. Such workbenches would
also enhance reproducibility of experiments for non-experts. However, this rather
seems to be a long-term goal. A first project in this direction was ExpLab [389],
but unfortunately its further development has been stopped.

10.1.6 Increase the Community!

Like every other scientific discipline, Algorithm Engineering must try to attract
the strongest young talents. Successful work in this area requires a fairly broad
spectrum of skills, ranging from a strong background in theory, profound knowl-
edge in application modeling and hardware architectures, excellence in software
engineering and the implementation of complex algorithms to a good sense for
experiments.

Currently, we observe that many talented PhD students go to industry after
graduation in Algorithm Engineering and decide against a career in academia.
Usually, they can freely choose between several job offers from industry. This
may be interpreted as good news in so far as it shows that there is a high de-
mand for people with these skills and may also be seen as a sign that industry
acknowledges our attempt to bridge the gap between theory and practice. The
truth, however, is probably that the overall demand for computer scientists ex-
ceeds the number of available professionals by a great margin. But at the same
time, it may be an indication that career opportunities inside academia are not
sufficiently attractive. Although this move from academia to industry may have
a positive side effect for the dissemination of ideas and concepts of Algorithm
Engineering, it certainly bears problems for the development of the discipline.

10. Challenges in Algorithm Engineering 453

For example, many promising projects are stopped after the driving forces
behind it change their position. In comparison with pure theoretical research,
Algorithm Engineering usually requires a much longer time horizon for a research
project, since implementation and experiments, as well as several runs through
the Algorithm Engineering cycle are very time-consuming.

While theory is typically done by single researchers or by small and only
loosely connected groups of researchers working on a short-term basis and with
similar background on a specific problem together (for just one common paper),
the situation in Algorithm Engineering is quite different. In general, it requires
true teamwork and, for the development of efficient algorithmic libraries, also
larger groups which work closely together for a longer period. Maybe it could
help if we set out an award for the “best algorithmic software of the year”.

The fact that the research community of researchers in Algorithm Engineer-
ing is still quite small becomes also apparent with refereed conferences. There
are only few annual conferences explicitly devoted to Algorithm Engineering.
These conferences still have program committees with a considerable fraction of
members who are highly respected colleagues in traditional theoretical computer
science but have only little own experience with Algorithm Engineering.

Maintaining and updating repositories of benchmark instances is a substantial
amount of work which requires some kind of award system to find volunteers.
This service for the community should be organized like a scientific journal to
ensure long-term availability. Several years ago, in 1999, Andrew Goldberg and
Bernard Moret already promoted such an initiative [341], but at that time did
not receive enough support to get it really started.

10.2 Epilogue

Our brief discussion of challenges shows that the new paradigm Algorithm En-
gineering is still in the transition towards an established discipline, but offers
several fascinating research opportunities.

Success stories of Google Inc., Celera Corporation, Akamai Technologies Inc.,
and ILOG Inc. — just to name a few prominent examples of companies whose
main products all build to a large extent on strong Algorithm Engineering—
clearly demonstrate the potential and importance of this discipline for the de-
velopment of innovations in almost all current and future technologies. Thus it
is highly desirable that the spirit and basic principles of Algorithm Engineering
will be spread out from a still small scientific community to industry as soon as
possible.

References

1. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, short-
est paths, and provably efficient algorithms. In: Proceedings of the 21st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 782–793 (2010)

2. Abrial, J.-R.: The B-book: Assigning programs to meanings. Cambridge Univer-
sity Press, Cambridge (August 1996)

3. Abrial, J.-R., Schuman, S.A., Meyer, B.: Specification language. In: McKeag,
R.M., Macnaghten, A.M. (eds.) On the Construction of Programs: An Advanced
Course, pp. 343–410. Cambridge University Press, Cambridge (1980)

4. Achlioptas, D., Chrobak, M., Noga, J.: Competitive analysis of randomized paging
algorithms. Theoretical Computer Science 234(1-2), 203–218 (2000)

5. Achterberg, T., Berthold, T., Martin, A., Wolter, K.: SCIP – solving constraint
integer programs (2007), http://scip.zib.de/

6. Achterberg, T., Grötschel, M., Koch, T.: Software for teaching modeling of integer
programming problems, ZIB Report 06-23, Zuse Institute Berlin (2006)

7. Ackerman, M.J.: The visible human project - getting the data (2004),
http://www.nlm.nih.gov/research/visible/getting_data.html (last update:
January 11, 2010)

8. Advanced Micro Devices, Inc., AMD developer central - ATI stream software
development kit, SDK (2009),
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx

9. Agarwal, P.K., Arge, L., Danner, A., Holland-Minkley, B.: Cache-oblivious data
structures for orthogonal range searching. In: Proceedings of the 19th Annual
ACM Symposium on Computational Geometry, pp. 237–245. ACM Press, New
York (2003)

10. Agarwal, P.K., Arge, L.A., Murali, T.M., Varadarajan, K., Vitter, J.: I/O-efficient
algorithms for contour-line extraction and planar graph blocking. In: Proceedings
of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
117–126 (1998)

11. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31(9), 1116–1127 (1988)

12. Aggarwal, G., Datar, M., Rajagopalan, S., Ruhl, M.: On the streaming model
augmented with a sorting primitive. In: Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 540–549 (2004)

13. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathemat-
ics 160(2), 781–793 (2004)

14. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer
algorithms. Addison-Wesley Publishing Company, Reading (1974)

15. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: Theory, algorithms, and
applications. Prentice Hall, Englewood Cliffs (1993)

16. Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.E.: Faster algorithms for the
shortest path problem. Journal of the ACM 37(2), 213–223 (1990)

17. Ahuja, R.K., Orlin, J.B.: Use of representative operation counts in computational
testing of algorithms. INFORMS Journal on Computing 8, 318–330 (1992)

References 455

18. AIX versions 3.2 and 4 performance tuning guide (1996),
http://www.unet.univie.ac.at/aix/aixbman/prftungd/toc.htm

19. Ajwani, D., Dementiev, R., Meyer, U.: A computational study of external-memory
BFS algorithms. In: Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 601–610 (2006)

20. Ajwani, D., Dementiev, R., Meyer, U., Osipov, V.: The shortest path problem:
The ninth DIMACS implementation challenge. In: DIMACS series in Discrete
Mathematics and Theoretical Computer Science, ch. Breadth First Search on
Massive Graphs, vol. 74, pp. 291–308. American Mathematical Society, Providence
(2009)

21. Ajwani, D., Malinger, I., Meyer, U., Toledo, S.: Characterizing the performance of
flash memory storage devices and its impact on algorithm design. In: McGeoch,
C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 208–219. Springer, Heidelberg (2008)

22. Akl, S.G.: Parallel computation: models and methods. Prentice-Hall, Inc., Engle-
wood Cliffs (1997)

23. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: Incorpo-
rating long messages into the LogP model for parallel computation. Journal of
Parallel and Distributed Computing 44(1), 71–79 (1997)

24. Allen, E., Chase, D., Flood, C., Luchangco, V., Maessen, J.-W., Ryu, S., Steele
Jr., G.L.: Project Fortress: A multicore language for multicore processors. Linux
Magazine, 38–43 (2007)

25. Althaus, E., Polzin, T., Daneshmand, S.V.: Improving linear programming ap-
proaches for the Steiner tree problem. Research Report MPI-I-2003-1-004, Max-
Planck-Institut für Informatik, Saarbrücken, Germany (2003)

26. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Readings in Computer Architecture, pp. 79–81. Mor-
gan Kaufmann Publishers Inc., San Francisco (1999)

27. Amenta, N., Ziegler, G.M.: Deformed products and maximal shadows of poly-
topes. In: Contemporary Mathematics, vol. 223, pp. 57–90. American Mathemat-
ical Society, Providence (1999)

28. Amini, M.M., Barr, R.S.: Network reoptimization algorithms: A statistically de-
signed comparison. ORSA Journal on Computing 5(4), 395–409 (1993)

29. An, P., Jula, A., Rus, S., Saunders, S., Smith, T., Tanase, G., Thomas, N., Amato,
N.M., Rauchwerger, L.: STAPL: An adaptive, generic parallel C++ library. In:
LCPC, pp. 193–208 (2001)

30. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du
Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK
users’ guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadel-
phia (1999)

31. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Computing Surveys 36(4), 335–371 (2004)

32. Aneja, Y.P.: An integer linear programming approach to the Steiner problem in
graphs. Networks 10, 167–178 (1980)

33. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The traveling salesman
problem: A computational study. Princeton University Press, Princeton (2006)

34. Apt, K.: Principles of constraint programming. Cambridge University Press, Cam-
bridge (2003)

35. Arge, L.: The buffer tree: A new technique for optimal I/O-algorithms. In: Sack,
J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp.
334–345. Springer, Heidelberg (1995)

456 References

36. Arge, L.: External memory data structures. In: Meyer auf der Heide, F. (ed.) ESA
2001. LNCS, vol. 2161, pp. 1–29. Springer, Heidelberg (2001)

37. Arge, L.: External memory data structures. In: Abello, J., Pardalos, P.M.,
Resende, M.G.C. (eds.) Handbook of Massive Data Sets, pp. 313–357. Kluwer
Academic Publishers, Dordrecht (2002)

38. Arge, L., Bender, M., Demaine, E., Holland-Minkley, B., Munro, J.I.: Cache-
oblivious priority-queue and graph algorithms. In: Proceedings of the 34th
ACM Symposium on Theory of Computing (STOC), pp. 268–276. ACM Press,
New York (2002)

39. Arge, L., Brodal, G.S., Fagerberg, R.: Cache-oblivious data structures. In: Mehta,
D.P., Sahni, S. (eds.) Handbook on Data Structures and Applications. CRC Press,
Boca Raton (2004)

40. Arge, L., Brodal, G.S., Toma, L.: On external-memory MST, SSSP and multi-way
planar graph separation. Journal of Algorithms 53(2), 186–206 (2004)

41. Arge, L., Chase, J., Vitter, J., Wickremesinghe, R.: Efficient sorting using registers
and caches. ACM Journal of Experimental Algorithmics 7(9), 1–17 (2002)

42. Arge, L., de Berg, M., Haverkort, H., Yi, K.: The priority R-tree: A practically
efficient and worst-case optimal R-tree. In: SIGMOD International Conference on
Management of Data, pp. 347–358 (2004)

43. Arge, L., Goodrich, M.T., Nelson, M., Sitchinava, N.: Fundamental parallel algo-
rithms for private-cache chip multiprocessors. In: Proceedings of the 20th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 197–206
(2008)

44. Arge, L., Procopiuc, O., Vitter, J.S.: Implementing I/O-efficient data structures
using TPIE. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461,
pp. 88–100. Springer, Heidelberg (2002)

45. Arge, L., Toma, L.: Simplified external memory algorithms for planar DAGs. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 493–503.
Springer, Heidelberg (2004)

46. Arge, L., Toma, L., Zeh, N.: I/O-efficient topological sorting of planar DAGs. In:
Proceedings of the 15th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pp. 85–93. ACM, New York (2003)

47. Arge, L., Vitter, J.S.: Optimal dynamic interval management in external memory.
In: Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 560–569 (1996)

48. Arora, S.: Polynomial time approximation schemes for the Euclidean traveling
salesman and other geometric problems. Journal of the ACM 45, 753–782 (1998)

49. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions.
In: Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 271–280 (1993)

50. Atkinson, A.C.: Plots, transformations and regression: an introduction to graphi-
cal methods of diagnostic regression analysis. Oxford University Press, UK (1987)

51. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.-R., Urrutia, J. (eds.)
Handbook of Computational Geometry, ch. 5, pp. 201–290. North-Holland, Am-
sterdam (1999)

52. Avnaim, F., Boissonnat, J.-D., Devillers, O., Preparata, F., Yvinec, M.: Evaluating
signs of determinants using single precision arithmetic. Algorithmica 17(2), 111–
132 (1997)

53. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: ACM PODS, pp. 1–16 (2002)

References 457

54. Bader, D.A., Kanade, V., Madduri, K.: SWARM: A parallel programming frame-
work for multi-core processors. In: 21st International Parallel and Distributed
Processing Symposium (IPDPS 2007), pp. 1–8 (2007)

55. Bader, D.A., Madduri, K.: SNAP, small-world network analysis and partition-
ing: An open-source parallel graph framework for the exploration of large-scale
networks. In: 22nd International Parallel and Distributed Processing Symposium
(IPDPS 2008), pp. 1–12 (2008)

56. Bader, D.A., Moret, B.M.E., Sanders, P.: Algorithm engineering for parallel com-
putation. In: Fleischer, R., Moret, B.M.E., Schmidt, E.M. (eds.) Experimental
Algorithmics. LNCS, vol. 2547, pp. 1–23. Springer, Heidelberg (2002)

57. Bader, M., Zenger, C.: Cache oblivious matrix multiplication using an element
ordering based on a Peano curve. Linear Algebra and its Applications (Special
Issue in honor of Friedrich Ludwig Bauer) 417(2-3), 301–313 (2006)

58. Baeza-Yates, R., Barbosa, E.F., Ziviani, N.: Hierarchies of indices for text search-
ing. Journal of Information Systems 21, 497–514 (1996)

59. Balzert, H.: Lehrbuch der Software-Technik. Spektrum Akademischer Verlag,
Heidelberg (1996)

60. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart Jr., W.R.: Design-
ing and reporting on computational experiments with heuristic methods. Journal
of Heuristics 1(1), 9–32 (1995)

61. Barrett, C., Bisset, K., Holzer, M., Konjevod, G., Marathe, M.V., Wagner,
D.: Engineering label-constrained shortest-path algorithms. In: Demetrescu, C.,
Goldberg, A.V., Johnson, D.S. (eds.) Shortest Path Computations: Ninth DI-
MACS Challenge, DIMACS Book, vol. 74, pp. 309–319. American Mathematical
Society, Providence (2009)

62. Barrett, C., Bisset, K., Jacob, R., Konjevod, G., Marathe, M.V.: Classical and
contemporary shortest path problems in road networks: Implementation and ex-
perimental analysis of the TRANSIMS router. In: Möhring, R.H., Raman, R.
(eds.) ESA 2002. LNCS, vol. 2461, pp. 126–138. Springer, Heidelberg (2002)

63. Barrett, C., Jacob, R., Marathe, M.V.: Formal-language-constrained path prob-
lems. SIAM Journal on Computing 30(3), 809–837 (2000)

64. Barták, R.: Constraint programming: In pursuit of the holy grail. In: Proceedings
of the Week of Doctoral Students (WDS), Prague, Czech Republic. MatFyz Press
(1999)

65. Basili, V.R., Boehm, B., Davis, A., Humphrey, W.S., Leveson, N., Mead, N.R.,
Musa, J.D., Parnas, D.L., Pfleeger, S.L., Weyuker, E.: New year’s resolutions for
software quality. IEEE Softw. 21(1), 12–13 (2004)

66. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to con-
stant shortest-path queries in road networks. In: Proceedings of the 9th Workshop
on Algorithm Engineering and Experiments (ALENEX 2007), pp. 46–59. SIAM,
Philadelphia (2007)

67. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science 316(5824), 566 (2007)

68. Bast, H., Weber, I.: Don’t compare averages. In: Nikoletseas, S.E. (ed.) WEA
2005. LNCS, vol. 3503, pp. 67–76. Springer, Heidelberg (2005)

69. Batista, V.H.F., Millman, D.L., Pion, S., Singler, J.: Parallel geometric algorithms
for multi-core computers. In: Proceedings of the 25th Annual ACM Symposium
on Computational Geometry, pp. 217–226. ACM, New York (2009)

70. Batz, V., Delling, D., Sanders, P., Vetter, C.: Time-dependent contraction hi-
erarchies. In: Proceedings of the 11th Workshop on Algorithm Engineering and
Experiments (ALENEX 2009), pp. 97–105. SIAM, Philadelphia (2009)

458 References

71. Bauer, R., Delling, D.: SHARC: Fast and robust unidirectional routing. In: Munro,
I., Wagner, D. (eds.) Proceedings of the 10th Workshop on Algorithm Engineering
and Experiments (ALENEX 2008), pp. 13–26. SIAM, Philadelphia (April 2008)

72. Bauer, R., Delling, D.: SHARC: Fast and robust unidirectional routing. ACM
Journal of Experimental Algorithmics 14, 2.4–2.29 (2009); Special Section on
Selected Papers from ALENEX 2008

73. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:
Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s al-
gorithm. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 303–318.
Springer, Heidelberg (2008)

74. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:
Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algo-
rithm. ACM Journal of Experimental Algorithmics 15(3) (2010)

75. Bauer, R., Delling, D., Wagner, D.: Shortest-path indices: Establishing a method-
ology for shortest-path problems. Tech. Report 2007-14, ITI Wagner, Faculty of
Informatics, Universität Karlsruhe, TH (2007)

76. Bäumker, A., Dittrich, W., Meyer auf der Heide, F.: Truly efficient parallel al-
gorithms: 1-optimal multisearch for an extension of the BSP model. Theoretical
Computer Science 203(2), 175–203 (1998)

77. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dexes. Acta Informatica, 173–189 (1972)

78. Beasley, J.E.: An algorithm for the Steiner tree problem in graphs. Networks 14,
147–159 (1984)

79. Beasley, J.E.: OR-Library: Distributing test problems by electronic mail. Journal
of the Operation Research Society 41, 1069–1072 (1990)

80. Beasley, J.E., Lucena, A.: A branch and cut algorithm for the Steiner problem in
graphs. Networks 31, 39–59 (1998)

81. Beckmann, A., Dementiev, R., Singler, J.: Building a parallel pipelined external
memory algorithm library. In: 23rd IEEE International Parallel & Distributed
Processing Symposium (IPDPS). IEEE, Los Alamitos (2009)

82. Beebe, N.H.F.: GNU scientific library (2001),
http://www.math.utah.edu/software/gsl.html

83. Beier, R., Vöcking, B.: Probabilistic analysis of knapsack core algorithms. In:
Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 468–477 (2004)

84. Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. Journal
of Computer and System Sciences 69(3), 306–329 (2004)

85. Beier, R., Vöcking, B.: An experimental study of random knapsack problems.
Algorithmica 45(1), 121–136 (2006)

86. Beier, R., Vöcking, B.: Typical properties of winners and losers in discrete opti-
mization. SIAM Journal on Computing 35(4), 855–881 (2006)

87. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11(1), 73–91 (1994)

88. Bender, M.A., Cole, R., Raman, R.: Exponential structures for cache-oblivious
algorithms. In: Widmayer, P., Ruiz, F.T., Bueno, R.M., Hennessy, M., Eiden-
benz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 195–207. Springer,
Heidelberg (2002)

89. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious B-trees. In:
Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 399–409. IEEE Computer Society Press, Los Alamitos (2000)

References 459

90. Bender, M.A., Duan, Z., Iacono, J., Wu, J.: A locality-preserving cache-oblivious
dynamic dictionary. In: Proceedings of 13th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 29–38 (2002)

91. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9), 509–517 (1975)

92. Bentley, J.L.: Experiments on traveling salesman heuristics. In: Proceedings of the
1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 91–99
(1990)

93. Bentley, J.L.: Programming Perls. Addison Wesley Professional, Reading (2000)
94. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K.,

Reichel, J., Schmitt, S., Schömer, E., Wolpert, N.: EXACUS: Efficient and exact
algorithms for curves and surfaces. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005.
LNCS, vol. 3669, pp. 155–166. Springer, Heidelberg (2005)

95. Berkeley Unified Parallel C (UPC) Project (2009), http://upc.lbl.gov/
96. Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree problem.

Journal of Algorithms 17, 381–408 (1994)
97. Berretini, E., D’Angelo, G., Delling, D.: Arc-flags in dynamic graphs. In: ATMOS

2009 - Proceedings of the 9th Workshop on Algorithmic Approaches for Trans-
portation Modeling, Optimization, and Systems, Dagstuhl Seminar Proceedings.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2009)

98. Beth, T., Gollmann, D.: Algorithm engineering for public key algorithms. IEEE
Journal on Selected Areas in Communications 7, 458–466 (1989)

99. Bilardi, G., Pietracaprina, A., Pucci, G.: Decomposable BSP: A Bandwidth-
Latency Model for Parallel and Hierarchical Computation. In: Handbook of par-
allel computing: Models, algorithms and applications. CRC Press, Boca Raton
(2007)

100. Bilardi, G., Pietracaprina, A., Pucci, G., Herley, K.T., Spirakis, P.G.: BSP versus
LogP. Algorithmica 24(3-4), 405–422 (1999)

101. Binder, R.V.: Testing object-oriented systems: Models, patterns, and tools.
Addison-Wesley Professional, Reading (October 1999)

102. Bisseling, R.H.: Parallel scientific computation. In: A Structured Approach Using
BSP and MPI. Oxford University Press, Oxford (2004)

103. Bixby, R.E.: Solving real-world linear programs: A decade and more of progress.
Operations Research 50, 3–15 (2002)

104. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast
subset convolution. In: Proceedings of the 39th Annual ACM Symposium on The-
ory of Computing (STOC), pp. 67–74. ACM, New York (2007)

105. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G.,
Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K.,
Whaley, R.C.: An updated set of basic linear algebra subprograms (BLAS). ACM
Trans. Math. Software 28(2), 135–151 (2002)

106. Blaer, P., Allen, P.K.: Topbot: automated network topology detection with a mo-
bile robot. In: Proceedings of the 2003 IEEE International Conference on Robotics
and Automation, pp. 1582–1587 (2003)

107. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable
graphs. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 679–688 (2003)

108. Blazewicz, J., Trystram, D., Ecker, K., Plateau, B. (eds.): Handbook on parallel
and distributed processing. Springer, New York (2000)

109. Blitz++: Object-oriented scientific computing, version 0.9 (2005),
http://www.oonumerics.org/blitz/

460 References

110. Bloch, J.: Effective Java: Programming language guide. Java series. Addison-
Wesley, Boston (2001)

111. Bloom, T., Sharpe, T.: Managing data from high-throughput genomic processing:
A case study. In: Very Large Data Bases (VLDB), pp. 1198–1201 (2004)

112. Blum, M., Kannan, S.: Designing programs that check their work. Journal of the
ACM 42(1), 269–291 (1995)

113. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Computing 25(6), 1305–1317 (1996)

114. Bodlaender, H.L., Telle, J.A.: Space-efficient construction variants of dynamic
programming. Nordic Journal of Computing 11, 374–385 (2004)

115. Bogdanov, A., Trevisan, L.: Average-case complexity. Found. Trends Theor. Com-
put. Sci. 2(1), 1–106 (2006)

116. Bollobás, B.: Modern graph theory. Springer, New York (2002)
117. Bondi, A.B.: Characteristics of scalability and their impact on performance. In:

WOSP 2000: Proceedings of the 2nd International Workshop on Software and
Performance, pp. 195–203. ACM Press, New York (2000)

118. Bonorden, O., Gehweiler, J., Meyer auf der Heide, F.: A web computing environ-
ment for parallel algorithms in Java. Journal on Scalable Computing: Practice
and Experience 7(2), 1–14 (2006)

119. Bonorden, O., Juurlink, B., von Otte, I., Rieping, I.: The Paderborn University
BSP (PUB) library. Parallel Computing 29(2), 187–207 (2003)

120. Boost C++ Libraries, version 1.42 (2010), http://www.boost.org
121. Borah, M., Owens, R.M., Irwin, M.J.: A fast and simple Steiner routing heuristic.

Discrete Applied Mathematics 90, 51–67 (1999)
122. Borgelt, C., Kruse, R.: Unsicherheit und Vagheit: Begriffe, Methoden, Forschungs-

themen. KI, Künstliche Intelligenz 3(1), 18–24 (2001)
123. Börger, E., Stärk, R.: Abstract state machines: A method for high-level system

design and analysis. Springer, Heidelberg (2003)
124. Borgwardt, K.H.: The simplex method – a probabilistic analysis. Springer,

Heidelberg (1987)
125. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis.

Cambridge University Press, Cambridge (1998)
126. Borradaile, G., Kenyon-Mathieu, C., Klein, P.N.: A polynomial time approxima-

tion scheme for Steiner tree in planar graphs. In: Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1285–1294 (2007)

127. Borradaile, G., Kenyon-Mathieu, C., Klein, P.N.: Steiner tree in planar graphs: An
O(n log n) approximation scheme with singly-exponential dependence on epsilon.
In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 275–
286. Springer, Heidelberg (2007)

128. Bose, N.K., Garga, A.K.: Neural network design using Voronoi diagrams. IEEE
Transactions on Neural Networks 4(5), 778–787 (1993)

129. Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer,
Heidelberg (2005)

130. Brodal, G.S.: Cache-oblivious algorithms and data structures. In: Hagerup, T.,
Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 3–13. Springer, Heidelberg
(2004)

131. Brodal, G.S., Fagerberg, R.: Cache oblivious distribution sweeping. In: Widmayer,
P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 426–438. Springer, Heidelberg (2002)

References 461

132. Brodal, G.S., Fagerberg, R.: Funnel heap - a cache oblivious priority queue. In:
Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 219–228. Springer,
Heidelberg (2002)

133. Brodal, G.S., Fagerberg, R., Jacob, R.: Cache oblivious search trees via binary
trees of small height. In: Proceedings of the 13th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 39–48 (2002)

134. Brodal, G.S., Fagerberg, R., Meyer, U., Zeh, N.: Cache-oblivious data struc-
tures and algorithms for undirected breadth-first search and shortest paths. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 480–492.
Springer, Heidelberg (2004)

135. Brodal, G.S., Fagerberg, R., Vinther, K.: Engineering a cache-oblivious sorting
algorithm. In: Proceedings of the 6th Workshop on Algorithm Engineering and
Experiments (ALENEX), pp. 4–17. SIAM, Philadelphia (2004)

136. Brönnimann, H., Burnikel, C., Pion, S.: Interval arithmetic yields efficient dy-
namic filters for computational geometry. In: Proceedings of the 14th Annual
ACM Symposium on Computational Geometry, pp. 165–174 (1998)

137. Brönnimann, H., Emiris, I.Z., Pan, V.Y., Pion, S.: Computing exact geometric
predicates using modular arithmetic with single precision. In: Proceedings of the
13th Annual ACM Symposium on Computational Geometry, pp. 174–182. ACM
Press, New York (1997)

138. Brönnimann, H., Yvinec, M.: Efficient exact evaluation of signs of determinants.
In: Proceedings of the 13th Annual ACM Symposium on Computational Geome-
try, pp. 166–173. ACM Press, New York (1997)

139. Brooke, A., Kendrick, D., Meeraus, A., Rosenthal, R.E.: GAMS - A user’s guide
(2006)

140. Brunel, E., Delling, D., Gemsa, A., Wagner, D.: Space-efficient SHARC-routing.
In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 47–58. Springer, Heidelberg
(2010)

141. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Efficient exact geometric
computation made easy. In: Proceedings of the 15th Annual ACM Symposium on
Computational Geometry, pp. 341–350. ACM Press, New York (1999)

142. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: A strong and easily com-
putable separation bound for arithmetic expressions involving radicals. Algorith-
mica 27, 87–99 (2000)

143. Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: A separation bound
for real algebraic expressions. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS,
vol. 2161, pp. 254–265. Springer, Heidelberg (2001)

144. Burnikel, C., Funke, S., Seel, M.: Exact geometric computation using cascading.
International Journal of Computational Geometry and Applications 11(3), 245–
266 (2001)

145. Bussieck, M.: Optimal lines in public rail transport, Ph.D. thesis, Technische
Universität Braunschweig (1998)

146. Butenhof, D.R.: Programming with POSIX threads. Addison-Wesley, Reading
(1997)

147. Buyya, R. (ed.): High performance cluster computing: Programming and appli-
cations. Prentice Hall PTR, Upper Saddle River (1999)

148. C++ applications (2009),
http://public.research.att.com/~bs/applications.html

149. Camazine, S., Franks, N.R., Sneyd, J., Bonabeau, E., Deneubourg, J.-L., Ther-
aula, G.: Self-organization in biological systems. Princeton University Press,
Princeton (2001)

462 References

150. Caragea, G.C., Saybasili, A.B., Wen, X., Vishkin, U.: Brief announcement:
Performance potential of an easy-to-program PRAM-on-chip prototype versus
state-of-the-art processor. In: SPAA 2009: Proceedings of the 21st Annual ACM
Symposium on Parallel Algorithms and Architectures, Calgary, Alberta, Canada,
August 11-13, pp. 163–165. ACM, New York (2009)

151. CGAL: Computational Geometry Algorithms Library, version 3.4 (2009),
http://www.cgal.org/

152. CGAL user and reference manual (2009),
http://www.cgal.org/Manual/index.html

153. cgmLIB: A library for coarse-grained parallel computing, version 0.9.5 Beta
(2003), http://lib.cgmlab.org/

154. Chakravarti, A.J., Baumgartner, G., Lauria, M.: The organic grid: Self-organizing
computation on a peer-to-peer network. IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans 35(3), 373–384 (2005)

155. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the
Chapel language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

156. Chan, A., Dehne, F.: CGMgraph/CGMlib: Implementing and testing CGM graph
algorithms on PC clusters. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.)
EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 117–125. Springer, Heidelberg (2003)

157. Chan, A., Dehne, F., Taylor, R.: CGMGRAPH/CGMLIB: Implementing and test-
ing CGM graph algorithms on PC clusters and shared memory machines. Interna-
tional Journal of High Performance Computing Applications 19(1), 81–97 (2005)

158. Chan, T.M., Chen, E.Y.: Optimal in-place algorithms for 3-D convex hulls and
2-D segment intersection. In: Proceedings of the 25th Annual ACM Symposium
on Computational Geometry, pp. 80–87. ACM Press, New York (2009)

159. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: Par-
allel programming in openMP. Morgan Kaufmann, San Francisco (2000)

160. Chang, E.-C., Choi, S.W., Kwon, D., Park, H., Yap, C.-K.: Shortest path amidst
disc obstacles is computable. In: Proceedings of the 21st Annual ACM Symposium
on Computational Geometry, pp. 116–125. ACM Press, New York (2005)

161. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable shared memory
parallel programming. MIT Press, Cambridge (2007)

162. Charles, P., Grothoff, C., Saraswat, V.A., Donawa, C., Kielstra, A., Ebcioglu,
K., von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform
cluster computing. In: OOPSLA, pp. 519–538 (2005)

163. Chazelle, B.: Triangulating a simple polygon in linear time. In: Proceedings of the
31st Annual IEEE Symposium on Foundations of Computer Science, pp. 29–38
(1990)

164. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Computa-
tional Geometry 6, 485–524 (1991)

165. Chazelle, B.: Cuttings. In: Handbook of Data Structures and Applications. CRC
Press, Boca Raton (2005)

166. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex
cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
238–249. Springer, Heidelberg (2006)

167. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: Theory
and experimental evaluation. Mathematical Programming 73, 129–174 (1996)

168. Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter,
J.S.: External-memory graph algorithms. In: Proceedings of the 6th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 139–149 (1995)

References 463

169. Chopra, S., Gorres, E.R., Rao, M.R.: Solving the Steiner tree problem on a graph
using branch and cut. ORSA Journal on Computing 4, 320–335 (1992)

170. Chopra, S., Rao, M.R.: The Steiner tree problem I: Formulations, compositions
and extension of facets. Mathematical Programming 64, 209–229 (1994)

171. Choukhmane, E.-A.: Une heuristique pour le probleme de l’arbre de Steiner.
RAIRO Rech. Opér. 12, 207–212 (1978)

172. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman
problem. Tech. Report 388, GSIA, Carnegie-Mellon University, Pittsburgh (1976)

173. Chu, C., Wong, Y.-C.: Fast and accurate rectilinear Steiner minimal tree algorithm
for VLSI design. In: ISPD 2005: Proceedings of the 2005 International Symposium
on Physical Design, pp. 28–35. ACM Press, New York (2005)

174. Cilk Arts, Multicore programming software (2009), http://www.cilk.com/
175. CLAPACK: f2c’ed version of LAPACK, version 3.1.1.1 (2008),

http://www.netlib.org/clapack/
176. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: Proceed-

ings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 383–391 (1996)

177. Clarkson, K.L.: Safe and effective determinant evaluation. In: Proceedings of the
31st IEEE Symposium on Foundations of Computer Science (FOCS), Pittsburgh,
PA, pp. 387–395 (October 1992)

178. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel, Y.
(ed.) Proc. 1964 International Congress for Logic, Methodology, and Philosophy
of Science, pp. 24–30. North-Holland, Amsterdam (1964)

179. Cockayne, E.J., Hewgill, D.E.: Exact computation of Steiner minimal trees in the
plane. Information Processing Letters 22, 151–156 (1986)

180. Cockayne, E.J., Hewgill, D.E.: Improved computation of plane Steiner minimal
trees. Algorithmica 7(2/3), 219–229 (1992)

181. Coffin, M., Saltzmann, M.J.: Statistical analysis of computational tests of algo-
rithms and heuristics. INFORMS Journal on Computing 12(1), 24–44 (2000)

182. Comer, D.: The ubiquitous B-tree. ACM Computing Surveys, 121–137 (1979)
183. Conover, W.J.: Practical nonparametric statistics. John Wiley & Sons, Chichester

(1980)
184. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of

the 3rd Annual ACM Symposium on Theory of Computing (STOC), pp. 151–158
(1971)

185. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley, New York (1998)

186. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symb. Comput. 9(3), 251–280 (1990)

187. Coppola, M., Schmollinger, M.: Hierarchical models and software tools for paral-
lel programming. In: Meyer, U., Sanders, P., Sibeyn, J.F. (eds.) Algorithms for
Memory Hierarchies. LNCS, vol. 2625, pp. 320–354. Springer, Heidelberg (2003)

188. Cordella, L., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for match-
ing large graphs. In: 3rd IAPR-TC15 Workshop on Graph-based Representations
in Pattern Recognition (May 2001)

189. The Core library, version 1.7 (2004),
http://cs.nyu.edu/exact/core_pages/index.html

190. Cormen, T.H., Goodrich, M.T.: A bridging model for parallel computation, com-
munication, and I/O. ACM Computing Surveys, Article No. 208, 28 (1996)

191. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms,
3rd edn. MIT Press, Cambridge (2009)

464 References

192. Corrêa, R., Dutra, I., Fiallos, M., Gomes, F. (eds.): Models for parallel and dis-
tributed computation. Theory, algorithmic techniques and applications. Kluwer,
Dordrecht (2002)

193. Cosnard, M., Trystram, D.: Parallel algorithms and architectures. PWS Publish-
ing Co. (1995)

194. Courant, R., Robbins, H.: What is mathematics? Oxford University Press, Oxford
(1941)

195. Crauser, A., Mehlhorn, K.: LEDA-SM, extending LEDA to secondary memory.
In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 228–242.
Springer, Heidelberg (1999)

196. Crowder, H.P., Dembo, R.S., Mulvey, J.M.: Reporting computational experiments
in mathematical programming. Mathematical Programming 15, 316–329 (1978)

197. Crowder, H.P., Dembo, R.S., Mulvey, J.M.: On reporting computational exper-
iments with mathematical software. ACM Transactions on Mathematical Soft-
ware 5(2), 193–203 (1979)

198. Culler, D.E., Karp, R.M., Patterson, D., Sahay, A., Santos, E.E., Schauser, K.E.,
Subramonian, R., von Eicken, T.: LogP: a practical model of parallel computation.
Commun. ACM 39(11), 78–85 (1996)

199. Culler, D.E., Singh, J.P., Gupta, A.: Parallel computer architecture - a hardware/-
software approach. Morgan Kaufmann, San Francisco (1999)

200. Dahl, O.-J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic
Press, New York (1972)

201. Dall‘Osso, A.: Computer algebra systems as mathematical optimizing compilers.
Science of Computer Programming 59(3), 250–273 (2006)

202. Dantzig, G.B.: Linear programming and extensions. Princeton University Press,
Princeton (1963)

203. Dash optimization – Leading optimization software (2007),
http://www.dashoptimization.com/home/products/products_optimizer.html

204. de Aragão, M.P., Werneck, R.F.: On the implementation of MST-based heuristics
for the Steiner problem in graphs. In: Mount, D.M., Stein, C. (eds.) ALENEX
2002. LNCS, vol. 2409, pp. 1–15. Springer, Heidelberg (2002)

205. de Berg, M.: Linear size binary space partitions for fat objects. In: Spirakis, P.G.
(ed.) ESA 1995. LNCS, vol. 979, pp. 252–263. Springer, Heidelberg (1995)

206. de Berg, M., Cheong, O., van Krefeld, M., Overmars, M.: Computational geome-
try: Algorithms and applications, 3rd rev. edn. Springer, Heidelberg (2008)

207. de Berg, M., van der Stappen, A.F., Vleugels, J., Katz, M.J.: Realistic input
models for geometric algorithms. Algorithmica 34(1), 81–97 (2002)

208. de Kunder, M.: Geschatte grootte van het geïndexeerde world wide web, Master’s
thesis, Universiteit van Tilburg (2008)

209. de la Torre, P., Kruskal, C.P.: Submachine locality in the bulk synchronous setting
(extended abstract). In: Fraigniaud, P., Mignotte, A., Robert, Y., Bougé, L. (eds.)
Euro-Par 1996. LNCS, vol. 1124, pp. 352–358. Springer, Heidelberg (1996)

210. Dean, A., Voss, D.: Design and analysis of experiments. Springer Texts in Statis-
tics. Springer, Heidelberg (1999)

211. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelli-
gence 38(3), 353–366 (1989)

212. Dehne, F.: Guest editor’s introduction. Algorithmica 24(3-4), 173–176 (1999)
213. Dehne, F.: Guest editor’s introduction. Algorithmica 45(3), 263–267 (2006)
214. Dehne, F., Dittrich, W., Hutchinson, D.: Efficient external memory algorithms by

simulating coarse-grained parallel algorithms. Algorithmica 36, 97–122 (2003)

References 465

215. Dehne, F., Dittrich, W., Hutchinson, D., Maheshwari, A.: Bulk synchronous par-
allel algorithms for the external memory model. Theory Comput. Systems 35,
567–597 (2002)

216. Dehne, F., Fabri, A., Rau-Chaplin, A.: Scalable parallel computational geometry
for coarse grained multicomputers. Int. J. Comput. Geometry Appl. 6(3), 379–400
(1996)

217. Dekker, T.J.: A floating-point technique for extending the available precision.
Numerische Mathematik 18(3), 224–242 (1971)

218. Delling, D.: Time-dependent SHARC-routing. In: Halperin, D., Mehlhorn, K.
(eds.) ESA 2008. LNCS, vol. 5193, pp. 332–343. Springer, Heidelberg (2008)

219. Delling, D.: Engineering and augmenting route planning algorithms, Ph.D. thesis,
Universität Karlsruhe (TH), Fakultät für Informatik (2009)

220. Delling, D.: Time-dependent SHARC-routing. In: Algorithmica (2009); Special
Issue: European Symposium on Algorithms 2008 (2009)

221. Delling, D., Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in
large road networks using contraction hierarchies. Transportation Science (2009)
(submitted)

222. Delling, D., Nannicini, G.: Bidirectional core-based routing in dynamic time-
dependent road networks. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.)
ISAAC 2008. LNCS, vol. 5369, pp. 812–823. Springer, Heidelberg (2008)

223. Delling, D., Pajor, T., Wagner, D.: Accelerating multi-modal route planning by
access-nodes. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
587–598. Springer, Heidelberg (2009)

224. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning al-
gorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and
Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

225. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In:
Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.) Shortest Path Computa-
tions: Ninth DIMACS Challenge. DIMACS Book, vol. 74, pp. 141–174. American
Mathematical Society, Providence (2009)

226. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Deme-
trescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg
(2007)

227. Delling, D., Wagner, D.: Pareto paths with SHARC. In: Vahrenhold, J. (ed.) SEA
2009. LNCS, vol. 5526, pp. 125–136. Springer, Heidelberg (2009)

228. Delling, D., Wagner, D.: Time-dependent route planning. In: Ahuja, R.K.,
Möhring, R.H., Zaroliagis, C. (eds.) Robust and Online Large-Scale Optimiza-
tion. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009)

229. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better external memory
suffix array construction. ACM Journal of Experimental Algorithms 12(3.4), 1–24
(2008)

230. Dementiev, R., Kettner, L., Mehnert, J., Sanders, P.: Engineering a sorted list
data structure for 32 bit keys. In: ALENEX 2004: Algorithm Engineering and
Experiments, pp. 142–151. SIAM, Philadelphia (2004)

231. Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard template library for
XXL data sets. Software: Practice and Experience 38(6), 589–637 (2008)

232. Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph
streaming problems. In: Proceedings of the 17th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 714–723 (2006)

466 References

233. Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): Shortest path computa-
tions: Ninth DIMACS challenge. DIMACS Book, vol. 74. American Mathematical
Society, Providence (2009)

234. Demetrescu, C., Italiano, G.F.: What do we learn from experimental algorith-
mics? In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 36–51.
Springer, Heidelberg (2000)

235. Demetrescu, C., Italiano, G.F.: Dynamic shortest paths and transitive closure:
Algorithmic techniques and data structures. Journal of Discrete Algorithms 4(3)
(2006)

236. DeMillo, R.A., McCracken, W.M., Martin, R.J., Passafiume, J.F.: Software testing
and evaluation. Benjamin-Cummings Publishing, Redwood City (1987)

237. Demmel, J., Hida, Y.: Fast and accurate floating point summation with applica-
tion to computational geometry. Numerical Algorithms 37, 101–112 (2005)

238. National Institute of Standards Department of Commerce and Technology, An-
nouncing request for candidate algorithm nominations for the advanced encryp-
tion standard (AES). Federal Register 62(177), 48051–48058 (1997)

239. Descartes, R.: Principia philosophiae, Ludovicus Elzevirius (1644)
240. Deshpande, A., Spielman, D.A.: Improved smoothed analysis of the shadow ver-

tex simplex method. In: Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 349–356 (2005)

241. Dial, R.B.: Algorithm 360: shortest-path forest with topological ordering [H].
Communications of the ACM 12(11), 632–633 (1969)

242. Diestel, R.: Graph theory. Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2005)

243. Dietzfelbinger, M.: Primality testing in polynomial time. Springer, Heidelberg
(2004)

244. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

245. Dijkstra, E.W.: Notes on structured programming, circulated privately (April
1970)

246. DiLascia, P.: What makes good code good? MSDN Magazine 19(7), 144 (2004)
247. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., Weihl, B.: Globally

distributed content delivery. IEEE Internet Computing 6(5), 50–58 (2002)
248. DIMACS implementation challenges (2006),

http://dimacs.rutgers.edu/Challenges/
249. DIMACS TSP challenge (2006), http://www.research.att.com/~dsj/chtsp/
250. Website of Dinkumware’s STL implementation (2006),

http://www.dinkumware.com/cpp.aspx
251. Disser, Y., Müller-Hannemann, M., Schnee, M.: Multi-criteria shortest paths

in time-dependent train networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS,
vol. 5038, pp. 347–361. Springer, Heidelberg (2008)

252. DOC++ (2003), http://docpp.sourceforge.net/
253. Dorrigiv, R., López-Ortiz, A., Salinger, A.: Optimal speedup on a low-degree

multi-core parallel architecture (LoPRAM). In: SPAA 2008: Proceedings of the
Twentieth Annual Symposium on Parallelism in Algorithms and Architectures,
pp. 185–187. ACM, New York (2008)

254. Douglas, C.C., Hu, J., Kowarschik, M., Rüde, U., Weiss, C.: Cache optimization
for structured and unstructured grid multigrid. Elect. Trans. Numer. Anal. 10,
21–40 (2000)

255. Drayton, P., Albahari, B., Neward, T.: C# in a nutshell: A desktop quick refer-
ence, 2nd edn. O’Reilly & Associates, Inc., Sebastopol (2003)

References 467

256. Dreyfus, S.E., Wagner, R.A.: The Steiner problems in graphs. Networks 1,
195–207 (1971)

257. Du, D.-Z., Cheng, X. (eds.): Steiner trees in industries. Kluwer Academic
Publishers, Dordrecht (2001)

258. Du, D.-Z., Hwang, F.K.: A proof of the Gilbert-Pollak conjecture on the Steiner
ratio. Algorithmica 7, 121–135 (1992)

259. Du, Z., Eleftheriou, M., Moreira, J.E., Yap, C.-K.: Hypergeometric functions
in exact geometric computation. Electronic Notes in Theoretical Computer Sci-
ence 66(1), 53–64 (2002)

260. Duboc, L., Rosenblum, D.S., Wicks, T.: A framework for modelling and analysis of
software systems scalability. In: ICSE 2006: Proceeding of the 28th International
Conference on Software Engineering, pp. 949–952. ACM Press, New York (2006)

261. Duin, C.W.: Steiner’s problem in graphs: reduction, approximation, variation,
Ph.D. thesis, Universiteit van Amsterdam (1994)

262. Duin, C.W., Volgenant, A.: Reduction tests for the Steiner problem in graphs.
Networks 19, 549–567 (1989)

263. Duin, C.W., Voss, S.: Efficient path and vertex exchange in Steiner tree algo-
rithms. Networks 29, 89–105 (1997)

264. Duran, J.W., Wiorkowski, J.J.: Quantifying software validity by sampling. IEEE
Transactions on Reliability R-29, 141–144 (1980)

265. The ECLiPSe constraint programming system (2007),
http://eclipse.crosscoreop.com/

266. ECMA-334 C# language specification (2006),
http://www.ecma-international.org/publications/files/ecma-st/
ECMA-334.pdf

267. Edelkamp, S., Jabbar, S., Schrödl, S.: External A∗. In: Biundo, S., Frühwirth,
T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 226–240. Springer,
Heidelberg (2004)

268. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: A technique to cope with
degenerate cases in geometric algorithms. In: Proceedings of the 4th Annual ACM
Symposium on Computational Geometry, pp. 118–133 (1988)

269. Edmonds, J.: Paths, trees, and flowers. Canadian J. Math. 17, 449–467 (1965)
270. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,

A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
271. Eiden, W.A.: Präzise Unschärfe – Informationsmodellierung durch Fuzzy-Mengen.

ibidem-Verlag (2002)
272. Eiden, W.A.: Scheduling with fuzzy methods. In: Fleuren, H., den Hertog, D.,

Kort, P. (eds.) Operations Research Proceedings 2004, Operations Research Pro-
ceedings, vol. 2004, pp. 377–384. Springer, Heidelberg (2004)

273. Emiris, I.Z., Canny, J.F.: A general approach to removing degeneracies. SIAM J.
Comput. 24(3), 650–664 (1995)

274. Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proceedings
of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
788–797. SIAM, Philadelphia (2004)

275. Erikson, C.: Hierarchical levels of detail to accelerate the rendering of large static
and dynamic polygonal environments, Ph.D. thesis, University of North Carolina
(2000)

276. EXACUS: Efficient and exact algorithms for curves and surfaces, version 1.0
(2006), http://www.mpi-inf.mpg.de/projects/EXACUS/

277. Exploratory data analysis (2006),
http://www.itl.nist.gov/div898/handbook/eda/eda.htm

468 References

278. Fabri, A., Giezeman, G.-J., Kettner, L., Schirra, S., Schönherr, S.: On the design
of CGAL, a computational geometry algorithms library. Software Practice and
Experience 30(11), 1167–1202 (2000)

279. Fantozzi, C., Pietracaprina, A., Pucci, G.: Translating submachine locality into
locality of reference. In: Proc. 18th Intl. Parallel and Distributed Processing Symp
(IPDPS 2004), CD-ROM. IEEE Computer Society, Los Alamitos (2004)

280. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting complexity
of suffix tree construction. Journal of the ACM 47, 987–1011 (2000)

281. Farias, R., Silva, C.T.: Out-of-core rendering of large, unstructured grids. IEEE
Computer Graphics and Applications 21(4), 42–50 (2001)

282. Fatahalian, K., Knight, T.J., Houston, M., Erez, M., Horn, D.R., Leem, L., Park,
J.Y., Ren, M., Aiken, A., Dally, W.J., Hanrahan, P.: Sequoia: Programming the
memory hierarchy. In: Proceedings of the 2006 ACM/IEEE Conference on Super-
computing (2006)

283. Fatourou, P., Spirakis, P., Zarafidis, P., Zoura, A.: Implementation and exper-
imental evaluation of graph connectivity algorithms using LEDA. In: Vitter,
J.S., Zaroliagis, C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 124–138. Springer,
Heidelberg (1999)

284. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 531–543. Springer, Heidelberg (2004)

285. Ferragina, P., Grossi, R.: The string B-tree: A new data structure for string search
in external memory and its applications. Journal of the ACM 46, 236–280 (1999)

286. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.:
Competitive paging algorithms. J. Algorithms 12(4), 685–699 (1991)

287. Fiat, A., Woeginger, G.J. (eds.): Online algorithms: The state of the art. Springer,
Heidelberg (1998)

288. Fleischer, R., Moret, B.M.E., Schmidt, E.M. (eds.): Experimental Algorithmics.
LNCS, vol. 2547. Springer, Heidelberg (2002)

289. http://blog.flickr.net/en/2008/11/03/3-billion/ (2008)
290. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained

Global Optimization Algorithms. LNCS, vol. 455. Springer, Heidelberg (1990)
291. Foggia, P.: The VFLib graph matching library, version 2.0 March (2001),

http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html
292. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination – a

case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

293. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,
Princeton (1963)

294. Fortune, S.: A sweepline algorithm for Voronoi diagrams. In: Proceedings of the
2nd Annual ACM Symposium on Computational Geometry, pp. 313–322. ACM
Press, New York (1986)

295. Fortune, S.: Stable maintenance of point set triangulations in two dimensions. In:
Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 494–499 (1989)

296. Fortune, S.: Polyhedral modelling with exact arithmetic. In: SMA 1995: Proceed-
ings of the Third ACM Symposium on Solid Modeling and Applications, pp.
225–234. ACM, New York (1995)

297. Fortune, S.: Introduction. Algorithmica 27(1), 1–4 (2000)

References 469

298. Fortune, S., van Wyk, C.J.: Efficient exact arithmetic for computational geometry.
In: Proceedings of the 9th Annual ACM Symposium on Computational Geometry,
pp. 163–172 (1993)

299. Fortune, S., van Wyk, C.J.: Static analysis yields efficient exact integer arith-
metic for computational geometry. ACM Transactions on Graphics 15(3), 223–248
(1996)

300. Fortune, S., Wyllie, J.: Parallelism in random access machines. In: Proceedings of
the 10th ACM Symposium on Theory of Computing (STOC), pp. 114–118 (1978)

301. Fößmeier, U., Kaufmann, M.: On exact solutions for the rectilinear Steiner tree
problem, Tech. Report WSI-96-09, Universität Tübingen (1996)

302. Fößmeier, U., Kaufmann, M.: On exact solutions for the rectilinear Steiner tree
problem Part I: Theoretical results. Algorithmica 26, 68–99 (2000)

303. Foster, I.T., Iamnitchi, A.: On death, taxes, and the convergence of peer-to-peer
and grid computing. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS,
vol. 2735, pp. 118–128. Springer, Heidelberg (2003)

304. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A modeling language for math-
ematical programming. Brooks/Cole Publishing Company, Monterey (2002)

305. Fox, G., Williams, R., Messina, P.: Parallel computing works! Morgan Kaufmann,
San Francisco (1994)

306. Frias, L., Petit, J., Roura, S.: Lists revisited: Cache-conscious STL lists. In: Àl-
varez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 121–133. Springer,
Heidelberg (2006)

307. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches
in logarithmic expected time. ACM Transactions on Mathematical Software 3(3),
209–226 (1977)

308. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 285–298. IEEE Computer Society, Los Alamitos
(1999)

309. Fuchs, B., Kern, W., Mölle, D., Richter, S., Rossmanith, P., Wang, X.: Dynamic
programming for minimum Steiner trees. Theory Comput. Syst. 41(3), 493–500
(2007)

310. Fuchs, B., Kern, W., Wang, X.: The number of tree stars is O∗(1.357n). Algorith-
mica 49, 232–244 (2007)

311. Funke, S., Klein, C., Mehlhorn, K., Schmitt, S.: Controlled perturbation for Delau-
nay triangulations. In: Proceedings of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 1047–1056 (2005)

312. Galil, Z., Micali, S., Gabow, H.N.: An O(EV log V) algorithm for finding a maxi-
mal weighted matching in general graphs. SIAM J. Comput. 15(1), 120–130 (1986)

313. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of
reusable object-oriented software. Addison-Wesley, Reading (1995)

314. Ganley, J.L., Cohoon, J.P.: Optimal rectilinear Steiner minimal trees in
O(n22.62n) time. In: Proc. 6th Canad. Conf. on Computational Geometry, pp.
308–313 (1994)

315. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software — Practice and Experience 30(11), 1203–
1233 (2000)

316. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner
minimal trees. SIAM Journal on Applied Mathematics 32, 835–859 (1977)

317. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics 32, 826–834 (1977)

470 References

318. Gärtner, B., Henk, M., Ziegler, G.M.: Randomized simplex algorithms on Klee-
Minty cubes. Combinatorica 18(3), 349–372 (1998)

319. Gass, S.I., Saaty, T.L.: The computational algorithm for the parametric objective
function. Naval Research Logistics Quarterly 2, 39 (1955)

320. Gavrilova, M.: Weighted Voronoi diagrams in biology (2007),
http://pages.cpsc.ucalgary.ca/~marina/vpplants/

321. Website of the GNU GCC project (2006), http://gcc.gnu.org/
322. Gebremedhin, A.H., Lassous, I.G., Gustedt, J., Telle, J.A.: PRO: A model for par-

allel resource-optimal computation. In: Proc. 16th Int. Symp. High Performance
Computing Systems and Applications (HPCS), pp. 106–113. IEEE Computer So-
ciety, Los Alamitos (2002)

323. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.)
WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

324. Geldermann, J., Rommelfanger, H.: Fuzzy Sets, Neuronale Netze und Künstliche
Intelligenz in der industriellen Produktion. VDI-Verlag, Düsseldorf (2003)

325. Gent, I.P., Grant, S.A., MacIntyre, E., Prosser, P., Shaw, P., Smith, B.M., Walsh,
T.: How not to do it, Tech. Report 97.27, School of Computer Studies, University
of Leeds (May 1997)

326. Gent, I.P., Jefferson, C., Miguel, I.: MINION: A fast, scalable, constraint solver.
In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) Proc. 17th Eu-
ropean Conference on Artificial Intelligence (ECAI 2006). Frontiers in Artificial
Intelligence and Applications, vol. 141, pp. 98–102. IOS Press, Amsterdam (2006)

327. Gent, I.P., Walsh, T.: CSPLIB: A benchmark library for constraints, Tech. Re-
port APES-09-1999, Department of Computer Science, University of Strathclyde,
Glasgow (1999)

328. Gent, I.P., Walsh, T.: CSPLIB: A benchmark library for constraints. In: Jaffar,
J. (ed.) CP 1999. LNCS, vol. 1713, pp. 480–481. Springer, Heidelberg (1999)

329. Gerbessiotis, A.V., Valiant, L.G.: Direct bulk-synchronous parallel algorithms. J.
Parallel Distrib. Comput. 22(2), 251–267 (1994)

330. Geurts, A.J.: A contribution to the theory of condition. Numerische Mathe-
matik 39, 85–96 (1982)

331. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of software engineering.
Prentice Hall, New Jersey (1991)

332. Gibbons, P.B., Matias, Y., Ramachandran, V.: Can a shared-memory model serve
as a bridging model for parallel computation? Theory Comput. Syst. 32(3), 327–
359 (1999)

333. Giegerich, R., Kurtz, S.: From Ukkonen to McCreight and Weiner: A unifying
view of linear-time suffix tree construction. Algorithmica 19(3), 331–353 (1997)

334. GMP: GNU Multiple Precision Arithmetic Library, version 4.2.1 (2006),
http://www.swox.com/gmp/

335. Goedecker, S., Hoisie, A.: Performance optimization of numerically intensive
codes. Society for Industrial and Applied Mathematics, Philadelphia (2001)

336. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM Journal on Computing 24(2), 296–317 (1995)

337. Gog, S.: Broadword computing and Fibonacci code speed up compressed suffix
arrays. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 161–172. Springer,
Heidelberg (2009)

338. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets
graph theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA), pp. 156–165 (2005)

References 471

339. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: Efficient point-to-
point shortest path algorithms. In: Proceedings of the 8th Workshop on Algorithm
Engineering and Experiments (ALENEX 2006), pp. 129–143. SIAM, Philadelphia
(2006)

340. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In:
Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg
(2007)

341. Goldberg, A.V., Moret, B.M.E.: Combinatorial algorithms test sets (CATS): The
ACM/EATCS platform for experimental research. In: Proceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, Maryland,
January 17-19, pp. 913–914 (1999)

342. Goldberg, A.V., Werneck, R.F.: Computing point-to-point shortest paths from
external memory. In: Proceedings of the 7th Workshop on Algorithm Engineering
and Experiments (ALENEX 2005), pp. 26–40. SIAM, Philadelphia (2005)

343. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys 23(1), 5–48 (1991)

344. Goldchleger, A., Goldman, A., Hayashida, U., Kon, F.: The implementation of
the BSP parallel computing model on the integrade grid middleware. In: MGC
2005: Proceedings of the 3rd International Workshop on Middleware for Grid
Computing, pp. 1–6. ACM, New York (2005)

345. Golden, B.L., Stewart, W.R.: Empirical analysis of heuristics. In: The Traveling
Salesman Problem – a Guided Tour of Combinatorial Optimization, pp. 207–249.
John Wiley & Sons, Chichester (1985)

346. Goldstine, H.H., von Neumann, J.: Numerical inverting of matrices of high order
II. Proc. Amer. Math. Soc. 2, 188–202 (1951); Reprinted in (774, pp. 558–572)

347. Goodrich, M.T., Handy, M., Hudson, B., Tamassia, R.: Accessing the internal
organization of data structures in the JDSL library. In: Goodrich, M.T., McGeoch,
C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp. 124–139. Springer, Heidelberg
(1999)

348. Goodrich, M.T., Tamassia, R.: Algorithm design: Foundations, analysis, and in-
ternet examples. Wiley, Chichester (September 2001)

349. Goodrich, M.T., Tsay, J.-J., Vengroff, D.E., Vitter, J.S.: External-memory com-
putational geometry. In: Proceedings of the 34th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 714–723 (1993)

350. Govindaraju, N.K., Larsen, S., Gray, J., Manocha, D.: A memory model for sci-
entific algorithms on graphics processors. In: Proceedings of the ACM/IEEE SC
2006 Conference on High Performance Networking and Computing, Tampa, FL,
USA, November 11-17, p. 89 (2006)

351. Graham, S., Kessler, P., McKusick, M.: An execution profiler for modular pro-
grams. Software - Practice and Experience 13, 671–685 (1993)

352. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to parallel comput-
ing. Pearson Education, London (2003)

353. Grama, A., Kumar, V., Ranka, S., Singh, V.: Architecture independent analysis
of parallel programs. In: Proc. Intl. Conf. on Computational Science (ICCS 2001)
- Part II, London, UK, pp. 599–608. Springer, Heidelberg (2001)

354. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–
347 (2004)

355. Granlund, T.: GMP: The GNU multiple precision arithmetic library. In: Free
Software Foundation, Boston, MA (2006)

472 References

356. Graphviz: Graph visualization software, version 2.16 (2007),
http://www.graphviz.org/

357. Greenberg, H.J.: Computational testing: Why, how and how much. ORSA Journal
on Computing 2(1), 94–97 (1990)

358. Greene, D.H.: Integer line segment intersection (unpublished manuscript)
359. Greene, D.H., Yao, F.F.: Finite-resolution computational geometry. In: Proceed-

ings of the 27th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 143–152 (1986)

360. Gregor, D., Lumsdaine, A.: The parallel BGL: A generic library for distributed
graph computations. Tech. report, Open Systems Laboratory, Indiana University
(2005)

361. Grötschel, M., Martin, A., Weismantel, R.: The Steiner tree packing problem in
VLSI design. Mathematical Programming 78(2), 265–281 (1997)

362. Grubb, P., Takang, A.A.: Software maintenance: concepts and practice, 2nd edn.
World Scientific, Singapore (2003)

363. GSL: GNU scientific library, version 1.8 (2006),
http://www.gnu.org/software/gsl/

364. Guibas, L.J., Salesin, D., Stolfi, J.: Constructing strongly convex approximate
hulls with inaccurate primitives. In: SIGAL 1990, pp. 261–270. Springer, Heidel-
berg (1990)

365. Gunkel, T., Müller-Hannemann, M., Schnee, M.: Improved search for night train
connections. In: Liebchen, C., Ahuja, R.K., Mesa, J.A. (eds.) Proceedings of
the 7th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS 2007), Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, pp. 243–
258 (2007)

366. Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.): ASM 2000. LNCS,
vol. 1912. Springer, Heidelberg (2000)

367. Gusfield, D.: Algorithms on strings, trees, and sequences. University of Cambridge
Press, Cambridge (1997)

368. Gustavson, D.B.: The many dimensions of scalability. In: COMPCON, pp. 60–63
(1994)

369. Gustavson, F.G.: Recursion leads to automatic variable blocking for dense linear-
algebra algorithms. IBM J. of Research and Development 41(6), 737–756 (1999)

370. Gustedt, J.: External memory algorithms using a coarse grained paradigm. Tech.
Report 5142, INRIA Lorraine / LORIA, France (March 2004)

371. Gustedt, J., Vialle, S., De Vivo, A.: The parXXL environment: Scalable fine
grained development for large coarse grained platforms. In: Kågström, B., Elm-
roth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp.
1094–1104. Springer, Heidelberg (2007)

372. Gutman, R.J.: Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. In: Proceedings of the 6th Workshop on Algorithm
Engineering and Experiments (ALENEX 2004), pp. 100–111. SIAM, Philadelphia
(2004)

373. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In:
Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

374. Haigh, T.: Oral history: An interview with, Traub, J.F. (2004),
http://history.siam.org/oralhistories/traub.htm

375. Hall, N.G., Posner, M.E.: Generating experimental data for computational testing
with machine scheduling applications. Operations Research 49(7), 854–865 (2001)

References 473

376. Halperin, D., Leiserowitz, E.: Controlled perturbation for arrangements of circles.
In: Proceedings of the 19th Annual ACM Symposium on Computational Geome-
try, pp. 264–273 (2003)

377. Halperin, D., Packer, E.: Iterated snap rounding. Comput. Geom. Theory
Appl. 23, 209–225 (2002)

378. Halperin, D., Shelton, C.R.: A perturbation scheme for spherical arrangements
with application to molecular modeling. In: Proceedings of the 13th Annual ACM
Symposium on Computational Geometry, pp. 183–192. ACM Press, New York
(1997)

379. Hambrusch, S.E.: Models for parallel computation. In: ICPP Workshop, pp. 92–95
(1996)

380. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM Journal on
Applied Mathematics 14, 255–265 (1966)

381. Hansen, P.: Bricriteria path problems. In: Fandel, G., Gal, T. (eds.) Multiple
Criteria Decision Making – Theory and Application, pp. 109–127. Springer, Hei-
delberg (1979)

382. Hart, P.E., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4,
100–107 (1968)

383. Hassin, R.: Approximation schemes for the restricted shortest path problem.
Mathematics of Operations Research 17(1), 36–42 (1992)

384. Heitmann, C.: Beurteilung der Bestandsfestigkeit von Unternehmen mit Neuro-
Fuzzy, Peter Lang, Frankfurt am Main (2002)

385. Held, M.: VRONI: An engineering approach to the reliable and efficient compu-
tation of Voronoi diagrams of points and line segments. Comput. Geom. Theory
Appl. 18(2), 95–123 (2001)

386. Hendrickson, B., Leland, R.: A multilevel algorithm for partitioning graphs. In:
Supercomputing 1995: Proceedings of the 1995 ACM/IEEE Conference on Super-
computing (CDROM), p. 28. ACM Press, New York (1995)

387. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams.
In: External Memory Algorithms, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 50, pp. 107–118 (1999)

388. Heroux, M.A., Raghavan, P., Simon, H.D.: Parallel processing for scientific com-
puting (software, environments and tools). SIAM, Philadelphia (2006)

389. Hert, S., Kettner, L., Polzin, T., Schäfer, G.: ExpLab - a tool set for computational
experiments (2003), http://explab.sourceforge.net

390. Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück. Math.
Annalen 38, 459–460 (1891)

391. Hildrum, K., Kubiatowicz, J.D., Rao, S., Zhao, B.Y.: Distributed object location
in a dynamic network. In: SPAA 2002: Proceedings of the Fourteenth Annual
ACM Symposium on Parallel Algorithms and Architectures, pp. 41–52. ACM
Press, New York (2002)

392. Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast point-to-point shortest
path computations with arc-flags. In: Demetrescu, C., Goldberg, A.V., Johnson,
D.S. (eds.) Shortest Path Computations: Ninth DIMACS Challenge. DIMACS
Book, vol. 74, pp. 41–72. American Mathematical Society, Providence (2009)

393. Hill, J., McColl, W., Stefanescu, D., Goudreau, M., Lang, K., Rao, S., Suel, T.,
Tsantilas, T., Bisseling, R.: BSPlib: the BSP programming library. Parallel Com-
puting 24, 1947–1980 (1998)

394. Hill, M.D.: What is scalability? SIGARCH Computer Architecture News 18(4),
18–21 (1990)

474 References

395. Hill, M.D., Smith, A.J.: Evaluating associativity in CPU caches. IEEE Trans.
Comput. 38(12), 1612–1630 (1989)

396. Hiller, B., Krumke, S.O., Rambau, J.: Reoptimization gaps versus model errors
in online-dispatching of service units for ADAC. Discrete Appl. Math. 154(13),
1897–1907 (2006)

397. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

398. Hobby, J.D.: Practical segment intersection with finite precision output. Comput.
Geom. Theory Appl. 13(4), 199–214 (1999)

399. Hochstein, L., Basili, V.R., Vishkin, U., Gilbert, J.: A pilot study to compare
programming effort for two parallel programming models. Journal of Systems
and Software 81(11), 1920–1930 (2008)

400. Hoffman, K.L., Jackson, R.H.F.: In pursuit of a methodology for testing mathe-
matical programming software. In: Mulvey, J.M. (ed.) Evaluating Mathematical
Programming Techniques, Proceedings of a Conference held at the National Bu-
reau of Standards, Boulder, Colorado, January 5-6, 1981. Lecture Notes in Eco-
nomics and Mathematical Systems, vol. 199, pp. 177–199. Springer, Heidelberg
(1982)

401. Hoffmann, C.M.: Robustness in geometric computations. Journal of Computing
and Information Science in Engineering 2, 143–155 (2001)

402. Hoffmann, C.M., Hopcroft, J.E., Karasick, M.S.: Towards implementing robust
geometric computations. In: Proceedings of the 4th Annual ACM Symposium on
Computational Geometry, pp. 106–117. ACM Press, New York (1988)

403. Holte, R.C.: Very simple classification rules perform well on most commonly used
datasets. Machine Learning 11, 63–91 (1993)

404. Holzer, M., Schulz, F., Wagner, D.: Engineering multi-level overlay graphs for
shortest-path queries. In: Proceedings of the 8th Workshop on Algorithm Engi-
neering and Experiments (ALENEX 2006). SIAM, Philadelphia (2006)

405. Holzer, M., Schulz, F., Wagner, D.: Engineering multi-level overlay graphs for
shortest-path queries. ACM Journal of Experimental Algorithmics 13, 2.5:1–2.5:26
(2008)

406. Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining speed-up techniques
for shortest-path computations. ACM Journal of Experimental Algorithmics 10,
2.5 (2005)

407. Holzer, M., Schulz, F., Willhalm, T.: Combining speed-up techniques for shortest-
path computations. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS,
vol. 3059, pp. 269–284. Springer, Heidelberg (2004)

408. Hooker, J.N.: Needed: An empirical science of algorithms. Operations Re-
search 42(2), 201–212 (1994)

409. Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1(1),
33–42 (1995)

410. Hoos, H.H., Stützle, T.: SATLIB: An online resource for research on SAT. In:
Gent, I., van Maaren, H., Walsh, T. (eds.) SAT 2000, Highlights of Satisfiability
Research in the Year 2000. Frontiers in Artificial Intelligence and Applications,
vol. 63, pp. 283–292. IOS Press, Amsterdam (2000)

411. Hopcroft, J.E., Kahn, P.J.: A paradigm for robust geometric algorithms. Algo-
rithmica 7(4), 339–380 (1992)

412. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. Journal of the ACM 21,
549–568 (1974)

413. Hou, Q., Zhou, K., Guo, B.: BSGP: Bulk-synchronous GPU programming. ACM
Trans. Graph. 27(3), 1–12 (2008)

References 475

414. Hougardy, S., Prömel, H.-J.: A 1.598 approximation algorithm for the Steiner
problem in graphs. In: Proceedings of the Tenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 448–453 (1999)

415. Hu, J., Alpert, C.J., Quay, S.T., Gandham, G.: Buffer insertion with adaptive
blockage avoidance. In: ISPD 2002: Proceedings of the 2002 International Sym-
posium on Physical Design, pp. 92–97. ACM Press, New York (2002)

416. Huddleston, S., Mehlhorn, K.: A new data structure for representing sorted lists.
Acta Informatica, 157–184 (1982)

417. Hüffner, F.: Algorithm engineering for optimal graph bipartization. In: Nikolet-
seas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 240–252. Springer, Heidelberg
(2005)

418. Hwang, F.K.: On Steiner minimal trees with rectilinear distance. SIAM Journal
on Applied Mathematics 30, 104–114 (1976)

419. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and
sum of subset problems. Journal of the ACM 22(4), 463–468 (1975)

420. IEEE standard for binary floating-point arithmetic, ANSI/IEEE standard 754–
1985, Institute of Electrical and Electronics Engineers, New York (1985);
Reprinted in SIGPLAN Notices 22(2), 9-25 (1987)

421. Ikeda, T., Hsu, M.-Y., Imai, H., Nishimura, S., Shimoura, H., Hashimoto, T.,
Tenmoku, K., Mitoh, K.: A fast algorithm for finding better routes by AI search
techniques. In: Proceedings of the Vehicle Navigation and Information Systems
Conference (VNSI 1994), pp. 291–296. ACM Press, New York (1994)

422. ILOG CPLEX: High-performance software for mathematical programming and
optimization (2009), http://www.ilog.com/products/cplex/

423. ILOG CPLEX 11.2 reference manuals (2009), http://www.cplex.com
424. ILOG solver (2009), http://www.ilog.com/products/solver/
425. Imai, T.: A topology oriented algorithm for the Voronoi diagram of polygons. In:

Proceedings of the 8th Canadian Conference on Computational Geometry, pp.
107–112. Carleton University Press (1996)

426. Yahoo claims record with petabyte database (2008),
http://www.informationweek.com/news/software/database/
showArticle.jhtml?articleID=207801436

427. Intel threading building blocks website, http://osstbb.intel.com/
428. Netezza promises petabyte-scale data warehouse appliances (2008),

http://www.intelligententerprise.com/
showArticle.jhtml?articleID=205600559

429. ISO/IEC 14882:2003 programming languages – C++ (2003)
430. Jackson, R.H.F., Boggs, P.T., Nash, S.G., Powell, S.: Guidelines for reporting

results of computational experiments. Report of the ad hoc committee. Mathe-
matical Programming 49, 413–425 (1991)

431. Jacobsen, L., Larsen, K.S.: Complexity of layered binary search trees with relaxed
balance. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001.
LNCS, vol. 2202, pp. 269–284. Springer, Heidelberg (2001)

432. JaJa, J.: An introduction to parallel algorithms. Addison-Wesley, Reading (1992)
433. Jarník, V., Kössler, M.: O minimálních grafech osahujících n daných bodu. Ĉas.

Pêstování Mat. 63, 223–235 (1934)
434. Jazequel, J.-M., Meyer, B.: Design by contract: The lessons of Ariane. Com-

puter 30(1), 129–130 (1997)
435. Jensen, J.R.: Remote sensing of the environment: An earth resource perspective.

Prentice-Hall, Englewood Cliffs (2007)

476 References

436. Beasley, J.E.: An SST-based algorithm for the Steiner problem in graphs. Net-
works 19, 1–16 (1989)

437. Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms.
In: Goldwasser, M.H., Johnson, D.S., McGeoch, C.C. (eds.) Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation
Challenges. DIMACS Monographs, vol. 59, pp. 215–250 (2002)

438. Johnson, D.S., McGeoch, C.C. (eds.): Network flows and matching: First
DIMACS implementation challenge. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 12. AMS, Providence (1993)

439. Johnson, D.S., McGeoch, L.: Experimental analysis of heuristics for the STSP.
In: Gutin, Punnen (eds.) The Traveling Salesman Problem and its Variations, pp.
369–443. Kluwer Academic Publishing, Dordrecht (2002)

440. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study in
local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Com-
binatorial Optimization. John Wiley and Sons, Chichester (1997)

441. Johnson, S.: Lint, a C program checker, Unix Programmer’s Manual. AT&T Bell
Laboratories (1978)

442. Jones, J.A., Harrold, M.J., Stakso, J.: Visualization of test information to assist
fault localization. In: ICSE 2002 International Conference on Software Engineer-
ing, pp. 467–477 (2002)

443. Jovanovich, M., Annexstein, F., Berman, K.: Scalability issues in large peer-to-
peer networks - a case study of Gnutella. Tech. report, ECECS Department,
University of Cincinnati (2001)

444. Juurlink, B.H.H., Wijshoff, H.A.G.: A quantitative comparison of parallel com-
putation models. ACM Trans. Comput. Syst. 16(3), 271–318 (1998)

445. Kaashoek, M.F., Karger, D.R.: Koorde: A simple degree-optimal distributed hash
table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp.
98–107. Springer, Heidelberg (2003)

446. Kahng, A.B., Mǎndoiu, I.I., Zelikovsky, A.Z.: Highly scalable algorithms for rec-
tilinear and octilinear Steiner trees. In: Proceedings 2003 Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 827–833 (2003)

447. Kahng, A.B., Mǎndoiu, I.I., Zelikovsky, A.Z.: Practical Approximations of Steiner
Trees in Uniform Orientation Metrics. In: Approximation Algorithms and Meta-
heuristics. Chapman & Hall/CRC (2007)

448. Kahng, A.B., Robins, G.: A new class of iterative Steiner tree heuristics with good
performances. IEEE Trans. Computer-Aided Design 11, 1462–1465 (1992)

449. Kalai, G.: A subexponential randomized simplex algorithm. In: Proceedings of the
24th Annual ACM Symposium on Theory of Computing (STOC), pp. 475–482
(1992)

450. Kalai, G., Kleitman, D.J.: A quasi-polynomial bound for the diameter of graphs
of polyhedra. Bulletin Amer. Math. Soc. 26, 315 (1992)

451. Kaligosi, K., Sanders, P.: How branch mispredictions affect quicksort. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 780–791. Springer, Heidelberg
(2006)

452. Kanet, J.J., Ahire, S.L., Gorman, M.F.: Constraint Programming for Scheduling.
In: Handbook of Scheduling: Algorithms, Models, and Performance Analysis, pp.
47-1–47-21. Chapman & Hall/CRC (2004)

453. Kanth, K.V.R., Singh, A.: Optimal dynamic range searching in non-replicating
index structures. In: International Conference on Database Theory ICDT, pp.
257–276 (1999)

References 477

454. Kaplan, C.S.: Voronoi diagrams and ornamental design. In: Proceedings of the
First Annual Symposium of the International Society for the Arts, Mathematics,
and Architecture, ISAMA 1999, San Sebastián, Spain, June 7-11, pp. 277–283
(1999)

455. Kaplan, H., Shafrir, N.: The greedy algorithm for shortest superstrings. Informa-
tion Processing Letters 93(1), 13–17 (2005)

456. Karakostas, G.: A better approximation ratio for the vertex cover problem. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 1043–1050. Springer, Heidelberg (2005)

457. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.-K.: A core library for robust
numeric and geometric computation. In: Proceedings of the 15th Annual ACM
Symposium on Computational Geometry, pp. 351–359 (1999)

458. Karasick, M., Lieber, D., Nackman, L.R.: Efficient Delaunay triangulation using
rational arithmetic. ACM Trans. Graph. 10(1), 71–91 (1991)

459. Karavelas, M.I.: A robust and efficient implementation for the segment Voronoi
diagram. In: International Symposium on Voronoi Diagrams in Science and En-
gineering (VD 2004), pp. 51–62 (2004)

460. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.:
Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the world wide web. In: ACM Symposium on Theory of Computing,
pp. 654–663 (May 1997)

461. Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. In: Proceedings of the
33rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
208–217 (1992)

462. Karlsson, B.: Beyond the C++ standard library: An introduction to Boost.
Addison-Wesley, Reading (2005)

463. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-
binatorica 4(4), 373–396 (1984)

464. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–104.
Plenum Press, New York (1972)

465. Karp, R.M., Ramachandran, V.: Parallel algorithms for shared-memory machines.
In: Handbook of Theoretical Computer Science. Algorithms and Complexity,
vol. A, pp. 869–942. Elsevier, Amsterdam (1990)

466. Karpinski, M., Zelikovsky, A.: New approximation algorithms for the Steiner tree
problem. Journal of Combinatorial Optimization 1, 47–65 (1997)

467. Karypis, G.: METIS - family of multilevel partitioning algorithms (2007)
468. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)
469. Kelner, J.A., Spielman, D.A.: A randomized polynomial-time simplex algorithm

for linear programming. In: Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC), pp. 51–60 (2006)

470. Kettner, L.: Reference counting in library design — optionally and with union-
find optimization. In: Lumsdaine, A., Schupp, S. (eds.) Library-Centric Software
Design (LCSD 2005), San Diego, CA, USA, pp. 1–10. Department of Computer
Science, Texas A&M University (October 2005)

471. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.-K.: Classroom examples
of robustness problems in geometric computations. In: Albers, S., Radzik, T. (eds.)
ESA 2004. LNCS, vol. 3221, pp. 702–713. Springer, Heidelberg (2004)

472. Khachiyan, L.G.: A polynomial algorithm in linear programming. Dokl. Akad.
Nauk SSSR 244, 1093–1096 (1979)

478 References

473. Khronos Group, OpenCL (2009), http://www.khronos.org/opencl/
474. Klein, C.: Controlled perturbation for Voronoi diagrams, Master’s thesis, Univer-

sität des Saarlandes (April 2004)
475. Kleinberg, J., Tardos, E.: Algorithm design. Pearson Education, London (2006)
476. Klingman, D., Albert Napier, H., Stutz, J.: NETGEN: A program for generat-

ing large scale capacitated assignment, transportation, and minimum cost flow
network problems. Management Science 20(5), 814–821 (1974)

477. Knuth, D.E.: The art of computer programming, 1st edn. Seminumerical Algo-
rithms, vol. 2. Addison-Wesley Professional, Reading (1969)

478. Knuth, D.E.: Structured programming with go to statements. ACM Computing
Surveys 6, 261–301 (1974)

479. Knuth, D.E.: The WEB system of structured documentation, Stanford Computer
Science Report CS980 (September 1983)

480. Knuth, D.E.: Literate programming. The Computer Journal 27(2), 97–111 (1984)
481. Knuth, D.E.: The Stanford graphbase: A platform for combinatorial computing.

ACM Press, New York (1993)
482. Knuth, D.E.: The art of computer programming, 2nd edn. Sorting and Searching,

vol. 3. Addison-Wesley Professional, Reading (1998)
483. Knuth, D.E.: The art of computer programming. Fascile 1: Bitwise tricks and

techniques; binary decision diagrams, vol. 4. Addison-Wesley Professional, Read-
ing (2009)

484. Knuth, D.E., Levy, S.: The CWEB system of structured documentation, version
3.0. Addison-Wesley, Reading (1993)

485. Köbler, J., Schöning, U., Toran, J.: The graph isomorphism problem: Its structural
complexity. Birkhäuser, Basel (1993)

486. Koch, T.: ZIMPL user guide, ZIB Report 00-20, Zuse Institute Berlin (2001),
Current version, http://zimpl.zib.de/download/zimpl.pdf

487. Koch, T.: Rapid mathematical programming, Ph.D. thesis, Technische Universität
Berlin, ZIB-Report 04-58 (2004)

488. Koch, T.: ZIMPL (2008), http://zimpl.zib.de/
489. Koch, T., Martin, A.: Steinlib (1997),

ftp://ftp.zib.de/pub/Packages/mp-testdata/steinlib/index.html
490. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Net-

works 33, 207–232 (1998)
491. Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on Steiner tree prob-

lems in graphs, Tech. Report ZIB-Report 00-37, Konrad-Zuse-Zentrum für Infor-
mationstechnik Berlin, Takustr. 7, Berlin (2000)

492. Koch, W., et al.: The GNU privacy guard, version 1.4.5 (2006),
http://gnupg.org/

493. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and con-
strained shortest path computation. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS,
vol. 3503, pp. 126–138. Springer, Heidelberg (2005)

494. Kontoghiorghes, E.J. (ed.): Handbook of parallel computing and statistics. Chap-
man & Hall/CRC (2005)

495. Kotula, J.: Source code documentation: An engineering deliverable. In: TOOLS
2000: Proceedings of the Technology of Object-Oriented Languages and Systems
(TOOLS 34’00), Washington, DC, USA, p. 505. IEEE Computer Society, Los
Alamitos (2000)

496. Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta
Inform. 15, 141–145 (1981)

References 479

497. Kowarschik, M., Weiß, C.: An overview of cache optimization techniques and
cache-aware numerical algorithms. In: Meyer, U., Sanders, P., Sibeyn, J.F. (eds.)
Algorithms for Memory Hierarchies. LNCS, vol. 2625, pp. 213–232. Springer, Hei-
delberg (2003)

498. KProf – profiling made easy (2002), http://kprof.sourceforge.net/
499. Krishnamurthy, B.: Constructing test cases for partitioning heuristics. IEEE

Transactions on Computers 36(9), 1112–1114 (1987)
500. Krumke, S.O., Noltemeier, H.: Graphentheorische Konzepte und Algorithmen.

B. G. Teubner (2005)
501. Kühl, D., Nissen, M., Weihe, K.: Efficient, adaptable implementations of graph

algorithms. In: Proceedings of the 1st Workshop on Algorithm Engineering, WAE
1997 (1997), http://www.dsi.unive.it/~wae97/proceedings/

502. Kuhn, T.S.: The structure of scientific revolutions. The University of Chicago
Press, Chicago (1970)

503. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to parallel comput-
ing: Design and analysis of algorithms. Benjamin-Cummings Publishing (1994)

504. LaMarca, A., Ladner, R.E.: The influence of caches on the performance of sorting.
In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 370–379 (1997)

505. LaMarca, A., Ladner, R.E.: The influence of caching on the performance of sort-
ing. Journal of Algorithms 31, 66–104 (1999)

506. Lane, D., Lu, J., Peres, C., Zitek, E.: Online statistics: An interactive multimedia
course of study (2006), http://onlinestatbook.com/index.html

507. LAPACK: Linear Algebra PACKage, version 3.1.1 (2007),
http://www.netlib.org/lapack/

508. Latour, B.: Science in action. Harvard University Press, Cambridge (1987)
509. Laura, L., Leonardi, S., Millozzi, S., Meyer, U., Sibeyn, J.F.: Algorithms and

experiments for the webgraph. In: Di Battista, G., Zwick, U. (eds.) ESA 2003.
LNCS, vol. 2832, pp. 703–714. Springer, Heidelberg (2003)

510. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in
static networks with geographical background. In: Geoinformation und Mobilität
- von der Forschung zur praktischen Anwendung. IfGI prints, vol. 22, pp. 219–230
(2004)

511. L’Ecuyer, P.: Simulation of algorithms for performance analysis. INFORMS Jour-
nal on Computing 8(1), 16–20 (1996)

512. The LEDA user manual (2009),
http://www.algorithmic-solutions.info/leda_manual/

513. LEDA, Library for efficient data types and algorithms, Version 6.2.1 (2009),
http://www.algorithmic-solutions.com/

514. Leighton, F.T.: Introduction to parallel algorithms and architectures: Arrays -
trees - hypercubes. Morgan Kaufmann, San Francisco (1992)

515. Leiss, E.L.: A programmer’s companion to algorithm analysis. Chapman &
Hall/CRC (2006)

516. Lengauer, T.: Combinatorial algorithms for integrated circuit layout. Wiley,
Chichester (1990)

517. Lennerz, C., Thiel, S.: Handling of parameterized data types in LEDA, Tech.
report, Algorithmic Solutions GmbH (1997)

518. Lester, D., Gowland, P.: Using PVS to validate the algorithms of an exact arith-
metic. Theoretical Computer Science 291, 203–218 (2003)

519. Levin, L.A.: Universal sequential search problems. Problems of Information Trans-
mission 9(3), 265–266 (1973)

480 References

520. Levitin, A.: Introduction to the design and analysis of algorithms. Pearson Edu-
cation, London (2003)

521. Lewis, B.: Debugging backward in time. In: Proceedings of the 5. International
Workshop on Automated and Algorithmic Debugging, AADEBUG (2003),
http://www.lambdacs.com/debugger/debugger.html

522. Lewis, H.R., Papadimitriou, C.H.: Elements of the theory of computation.
Prentice-Hall, Englewood Cliffs (1981)

523. Li, C., Yap, C.-K.: A new constructive root bound for algebraic expressions. In:
Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 496–505 (2001)

524. Li, C., Yap, C.-K.: Recent progress in exact geometric computation. In: Basu, S.,
Gonzalez-Vega, L. (eds.) Proc. DIMACS Workshop on Algorithmic and Quantita-
tive Aspects of Real Algebraic Geometry in Mathematics and Computer Science,
March 12-16 (2001)

525. Liang, J., Kumar, R., Ross, K.W.: Understanding KaZaA (2004),
http://citeseer.ist.psu.edu/liang04understanding.html

526. Lidor, G.: Construction of nonlinear programming test problems with known so-
lution characteristics. In: Mulvey, J.M. (ed.) Evaluating Mathematical Program-
ming Techniques, Proceedings of a Conference held at the National Bureau of
Standards, Boulder, Colorado, January 5-6. Lecture Notes in Economics and
Mathematical Systems, vol. 199, pp. 35–43. Springer, Heidelberg (1982)

527. Lindner, T.: Train schedule optimization in public rail transport, Ph.D. thesis,
Technische Universität Braunschweig, Germany (2000)

528. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal
Applied Mathematics 36, 177–189 (1979)

529. Liskov, B., Guttag, J.: Abstraction and specification in program development.
MIT Press, Cambridge (1986)

530. Literate programming (2009), http://www.literateprogramming.com
531. Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Operations

Research 53(6), 1007–1023 (2005)
532. Ma, B.: Why greed works for shortest common superstring problem. In: Ferragina,

P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 244–254. Springer,
Heidelberg (2008)

533. Maggs, B.M., Matheson, L.R., Tarjan, R.E.: Models of parallel computation: A
survey and synthesis. In: Proceedings of the 28th Hawaii International Conference
on System Sciences, pp. 61–70 (January 1995)

534. Maheshwari, A., Zeh, N.: I/O-efficient algorithms for graphs of bounded treewidth.
In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 89–90, ACM-SIAM (2001)

535. Maheshwari, A., Zeh, N.: I/O-optimal algorithms for planar graphs using sepa-
rators. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 372–381, ACM-SIAM (2002)

536. Makhorin, A.: GNU linear programming kit reference manual version 4.11, Dept.
Applied Informatics, Moscow Aviation Institute (2006)

537. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation
of the butterfly. In: Proceedings of the 21st Annual ACM Symposium on Principles
of Distributed Computing, pp. 183–192. ACM Press, New York (2002)

538. Martins, E.Q.: On a multicriteria shortest path problem. European Journal of
Operational Research 26(3), 236–245 (1984)

539. Matias, Y.: Parallel algorithms column: On the search for suitable models. ACM
SIGACT News 28(3), 21–29 (1997)

References 481

540. Matousěk, J., Pach, J., Sharir, M., Sifrony, S., Welzl, E.: Fat triangles determine
linearly many holes. SIAM Journal on Computing 23(1), 154–169 (1994)

541. Matousěk, J., Sharir, M., Welzl, E.: A subexponential bound for linear program-
ming. Algorithmica 16(4/5), 498–516 (1996)

542. McCarl, B.: McCarl GAMS user guide (2008),
http://www.gams.com/dd/docs/bigdocs/gams2002/mccarlgamsuserguide.pdf

543. McColl, W.F.: Scalable computing. In: van Leeuwen, J. (ed.) Computer Science
Today: Recent Trends and Developments. LNCS, vol. 1000, pp. 46–61. Springer,
Heidelberg (1995)

544. McColl, W.F., Tiskin, A.: Memory-efficient matrix multiplication in the BSP
model. Algorithmica 24(3-4), 287–297 (1999)

545. McGeoch, C.C.: Analyzing algorithms by simulation: Variance reduction tech-
niques and simulation speedups. ACM Computing Surveys 24(2), 195–212 (1992)

546. McGeoch, C.C.: Challenges in algorithm simulation. INFORMS Journal on Com-
puting 8(1), 27–28 (1996)

547. McGeoch, C.C.: Toward an experimental method for algorithm simulation. IN-
FORMS Journal on Computing 8(1), 1–15 (1996)

548. McGeoch, C.C.: Experimental analysis of algorithms. Notices of the AMS 48(3),
304–311 (2001)

549. McGeoch, C.C.: Experimental algorithmics. Communications of the ACM 50(11),
27–31 (2007)

550. McGeoch, C.C., Moret, B.M.E.: How to present a paper on experimental work
with algorithms. SIGACT News 30(4), 85–90 (1999)

551. McGeoch, C.C., Sanders, P., Fleischer, R., Cohen, P.R., Precup, D.: Using finite
experiments to study asymptotic performance. In: Fleischer, et al. (eds.) [288],
pp. 93–126

552. Megiddo, N.: Improved asymptotic analysis of the average number of steps per-
formed by the self-dual simplex algorithm. Mathematical Programming 35(2),
140–172 (1986)

553. Mehl, M., Weinzierl, T., Zenger, C.: A cache-oblivious self-adaptive full multigrid
method. Numer. Linear Algebra Appl. 13(2-3), 275–291 (2006)

554. Mehlhorn, K.: A faster approximation algorithm for the Steiner problem in graphs.
Information Processing Letters 27, 125–128 (1988)

555. Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear
I/O. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 723–
735. Springer, Heidelberg (2002)

556. Mehlhorn, K., Möhring, R.H., Monien, B., Mutzel, P., Sanders, P., Wagner, D.:
Antrag auf ein Schwerpunktprogramm zum Thema Algorithm Engineering (2006),
http://www.algorithm-engineering.de/beschreibung.pdf

557. Mehlhorn, K., Mutzel, P.: On the embedding phase of the Hopcroft and Tarjan
planarity testing algorithm. Algorithmica 16(2), 233–242 (1996)

558. Mehlhorn, K., Näher, S.: Algorithm design and software libraries: Recent develop-
ments in the LEDA project. In: Algorithms, Software, Architectures, Information
Processing — Proc. IFIP Congress, vol. 1, pp. 493–505. Elsevier Science, Ams-
terdam (1992)

559. Mehlhorn, K., Näher, S.: LEDA: A platform for combinatorial and geometric
computing. CACM: Communications of the ACM 38, 96–102 (1995)

560. Mehlhorn, K., Näher, S.: From algorithms to working programs: On the use of
program checking in LEDA. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS
1998. LNCS, vol. 1450, pp. 84–93. Springer, Heidelberg (1998)

482 References

561. Mehlhorn, K., Näher, S.: LEDA: A platform for combinatorial and geometric
computing. Cambridge University Press, Cambridge (November 1999)

562. Mehlhorn, K., Sanders, P.: Algorithms and data structures - the basic toolbox.
Springer, Heidelberg (2008)

563. Mehlhorn, K., Schäfer, G.: Implementation of O(nm log n) weighted matchings
in general graphs: The power of data structures. ACM Journal of Experimental
Algorithms 7(4), 1–19 (2002)

564. Melzak, Z.A.: On the problem of Steiner. Canad. Math. Bull. 4, 143–148 (1961)
565. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.

SIAM Journal on Computing 24(6), 1235–1258 (1995)
566. Meyer, B.: Design by contract, Tech. Report TR-EI-12/CO, Interactive Software

Engineering Inc. (1986)
567. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992)
568. Meyer, B.: Object-oriented software construction, 2nd edn. Prentice Hall PTR,

Englewood Cliffs (March 2000)
569. Meyer, U., Sanders, P., Sibeyn, J.F. (eds.): Algorithms for Memory Hierarchies.

LNCS, vol. 2625. Springer, Heidelberg (2003)
570. Meyers, S.: More effective C++. Addison-Wesley, Reading (1996)
571. Meyers, S.: Effective C++, 3rd edn. Addison-Wesley, Reading (2005)
572. Milenkovic, V.J.: Verifiable implementation of geometric algorithms using finite

precision arithmetic. Artif. Intell. 37(1-3), 377–401 (1988)
573. Milenkovic, V.J.: Shortest path geometric rounding. Algorithmica 27(1), 57–86

(2000)
574. Miller, G.L.: Riemann’s hypothesis and tests for primality. Journal of Computer

and System Sciences 13, 300–317 (1976)
575. Minakawa, T., Sugihara, K.: Topology oriented vs. exact arithmetic - experience

in implementing the three-dimensional convex hull algorithm. In: Leong, H.W.,
Imai, H., Jain, S. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 273–282. Springer,
Heidelberg (1997)

576. Mishra, B.: Algorithmic algebra. Texts and Monographs in Computer Science.
Springer, Heidelberg (1993)

577. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-MST, and
related problems. SIAM Journal on Computing 28(4), 1298–1309 (1999)

578. Mitchell, J.S.B.: A PTAS for TSP with neighborhoods among fat regions in the
plane. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 11–18 (2007)

579. Möhring, R.H.: Verteilte Verbindungssuche im öffentlichen Personenverkehr –
Graphentheoretische Modelle und Algorithmen. In: Horster, P. (ed.) Angewandte
Mathematik, insbesondere Informatik – Beispiele erfolgreicher Wege zwischen
Mathematik und Informatik, pp. 192–220. Vieweg (1999)

580. Möhring, R.H., Müller-Hannemann, M.: Complexity and modeling aspects of
mesh refinement into quadrilaterals. Algorithmica 26, 148–171 (2000)

581. Möhring, R.H., Müller-Hannemann, M., Weihe, K.: Mesh refinement via bidi-
rected flows: Modeling, complexity, and computational results. Journal of the
ACM 44, 395–426 (1997)

582. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speed up Dijkstra’s algorithm. In: Nikoletseas, S.E. (ed.) WEA 2005.
LNCS, vol. 3503, pp. 189–202. Springer, Heidelberg (2005)

583. Mokbel, M.F., Aref, W.G., Kamel, I.: Analysis of multi-dimensional space-filling
curves. Geoinformatica 7(3), 179–209 (2003)

References 483

584. Moret, B.M.E.: Towards a discipline of experimental algorithmics. In: Gold-
wasser, M.H., Johnson, D.S., McGeoch, C.C. (eds.) Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation
Challenges. DIMACS Monographs, vol. 59, pp. 197–213. American Mathematical
Society, Providence (2002)

585. Moret, B.M.E., Shapiro, H.D.: Algorithms and experiments: The new (and old)
methodology. Journal of Universal Computer Science 7(5), 434–446 (2001)

586. Moret, B.M.E., Shapiro, H.D.: An empirical assessment of algorithms for con-
structing a minimal spanning tree. In: Computational Support for Discrete Math-
ematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, vol. 15, pp. 99–117 (1994)

587. Morin, P.: Coarse grained parallel computing on heterogeneous systems. In: Proc.
1998 ACM Symp. on Applied Computing (SAC 1998), pp. 628–634. ACM Press,
New York (1998)

588. Morrison, D.R.: PATRICIA: Practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM 15, 514–534 (1968)

589. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press,
Cambridge (1995)

590. Mount, D.M.: ANN programming manual (2006),
http://www.cs.umd.edu/~mount/ANN

591. MPFI, Multiple precision floating-point interval library, version 1.3.4-RC3 (2006),
http://gforge.inria.fr/projects/mpfi/

592. MPFR, A multiple precision floating-point library, version 2.2.0 (2005),
http://www.mpfr.org/

593. MTL: The matrix template library, version 2.1.2-22 (2005),
http://www.osl.iu.edu/research/mtl/

594. Müller–Hannemann, M., Schnee, M.: Finding all attractive train connections by
multi-criteria Pareto search. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner,
D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 246–
263. Springer, Heidelberg (2007)

595. Müller–Hannemann, M., Weihe, K.: Pareto shortest paths is often feasible in
practice. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.) WAE
2001. LNCS, vol. 2141, pp. 185–197. Springer, Heidelberg (2001)

596. Müller-Hannemann, M.: High quality quadrilateral surface meshing without tem-
plate restrictions: A new approach based on network flow techniques. International
Journal of Computational Geometry and Applications 10, 285–307 (2000)

597. Müller-Hannemann, M., Peyer, S.: Approximation of rectilinear Steiner trees with
length restrictions on obstacles. In: Dehne, F.K.H.A., Sack, J.-R., Smid, M.H.M.
(eds.) WADS 2003. LNCS, vol. 2748, pp. 207–218. Springer, Heidelberg (2003)

598. Müller-Hannemann, M., Schwartz, A.: Implementing weighted b-matching algo-
rithms: Insights from a computational study. ACM Journal of Experimental Al-
gorithms 5, 8 (2000)

599. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix in-
version. Combinatorica 7(1), 105–113 (1987)

600. Munagala, K., Ranade, A.: I/O-complexity of graph algorithms. In: Proceedings
of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
687–694 (1999)

601. Murtagh, B.A.: Advanced linear programming. McGraw-Hill, New York (1981)
602. Musser, D.R.: Introspective sorting and selection algorithms. Software: Practice

and Experience 27(8), 983–993 (1997)

484 References

603. Muthu Muthukrishnan, S.: Data streams: Algorithms and applications. In: Foun-
dations and Trends in Theoretical Computer Science, vol. 1(2). NOW (2005)

604. Mǎndoiu, I.I., Vazirani, V.V., Ganley, J.L.: A new heuristic for rectilinear Steiner
trees. In: ICCAD 1999: Proceedings of the 1999 IEEE/ACM international confer-
ence on Computer-aided design, Piscataway, NJ, USA, pp. 157–162. IEEE Press,
Los Alamitos (1999)

605. Myers, N.C.: Traits: A new and useful template technique. C++ Report 7(5),
32–35 (1995)

606. Näher, S.: Delaunay triangulation and other computational geometry experiments
(2003), http://www.informatik.uni-trier.de/∼naeher/Professur/research/
index.html

607. Näher, S., Zlotowski, O.: Design and implementation of efficient data types for
static graphs. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461,
pp. 748–759. Springer, Heidelberg (2002)

608. Nanevski, A., Blelloch, G., Harper, R.: Automatic generation of staged geometric
predicates. Higher-Order and Symbolic Computation 16, 379–400 (2003)

609. Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* search for
time-dependent fast paths. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038,
pp. 334–346. Springer, Heidelberg (2008)

610. Naor, M., Wieder, U.: Novel architectures for P2P applications: The continuous-
discrete approach. In: SPAA 2003: Proceedings of the Fifteenth Annual ACM
Symposium on Parallel Algorithms, pp. 50–59 (2003)

611. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. John
Wiley & Sons, New York (1988)

612. Nemhauser, G.L., Wolsey, L.A.: Integer programming. In: Nemhauser, G.L., et al.
(eds.) Optimization, pp. 447–527. Elsevier North-Holland, Inc., New York (1989)

613. Nethercote, N., Seward, J.: Valgrind: A program supervision framework. Elec-
tronic Notes in Theoretical Computer Science 89(2), 44–66 (2003)

614. Nielsen, B.K., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-
oriented Steiner tree problem. In: Möhring, R.H., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 760–772. Springer, Heidelberg (2002)

615. Nodine, M.H., Goodrich, M.T., Vitter, J.S.: Blocking for external graph searching.
Algorithmica 16(2), 181–214 (1996)

616. Nodine, M.H., Vitter, J.S.: Deterministic distribution sort in shared and dis-
tributed memory multiprocessors. In: Proceedings of the 5th Annual ACM Sym-
posium on Parallel Algorithms and Architectures, pp. 120–129 (1993)

617. NVIDIA Corporation, CUDA zone – the resource for CUDA developers (2009),
http://www.nvidia.com/cuda/

618. OGDF — open graph drawing framework (2008), http://www.ogdf.net
619. Oishi, Y., Sugihara, K.: Topology-oriented divide-and-conquer algorithm for

Voronoi diagrams. CVGIP: Graphical Model and Image Processing 57(4), 303–314
(1995)

620. Okasaki, C.: Red-black trees in a functional setting. Journal of Functional Pro-
gramming 9(4), 471–477 (1999)

621. O’Neill, R.P.: A comparison of real-world linear programs and their randomly gen-
erated analogs. In: Mulvey, J.M. (ed.) Evaluating Mathematical Programming
Techniques, Proceedings of a Conference held at the National Bureau of Stan-
dards, Boulder, Colorado, January 5-6. Lecture Notes in Economics and Mathe-
matical Systems, vol. 199, pp. 44–59. Springer, Heidelberg (1982)

622. Orlin, J.B.: On experimental methods for algorithm simulation. INFORMS Jour-
nal on Computing 8(1), 21–23 (1996)

References 485

623. Overmars, M.H., van der Stappen, A.F.: Range searching and point location
among fat objects. Journal of Algorithms 21(3), 629–656 (1996)

624. Owre, S., Shankar, N., Rushby, J.M.: PVS: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

625. The Oxford BSP toolset, version 1.4 (1998),
http://www.bsp-worldwide.org/implmnts/oxtool/

626. Page, L., Brin, S., Motwani, R., Winograd, T.: The Page-Rank citation ranking:
Bringing order to the web (1999),
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

627. Pan, V.Y., Yu, Y., Stewart, C.: Algebraic and numerical techniques for the com-
putation of matrix determinants. Computers and Mathematics with Applica-
tions 34(1), 43–70 (1997)

628. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization. Dover Publica-
tions, Inc., New York (1998)

629. Parnas, D.L., Clements, P.C.: A rational design process: How and why to fake it.
IEEE Trans. Softw. Eng. 12(2), 251–257 (1986)

630. Paterson, M., Frances Yao, F.: Efficient binary space partitions for hidden-surface
removal and solid modeling. Discrete & Computational Geometry 5, 485–503
(1990)

631. Patterson, D.A., Hennessy, J.L.: Computer organization and design. In: The Hard-
ware/Software Interface, 3rd edn. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2005)

632. Paul, W.J., Bach, P., Bosch, M., Fischer, J., Lichtenau, C., Röhrig, J.: Real PRAM
programming. In: Euro-Par 2002: Proc. 8th International Euro-Par Conference on
Parallel Processing, pp. 522–531. Springer, Heidelberg (2002)

633. PBGL: The parallel boost graph library, version 0.7.0 (2009),
http://www.osl.iu.edu/research/pbgl/

634. Space-filling curve, http://en.wikipedia.org/wiki/Space-filling_curve (last
visited 15.2.2009)

635. Peano, G.: Sur une courbe qui remplit toute une aire plane. Math. Annalen 36,
157–160 (1890)

636. Pietracaprina, A., Pucci, G., Silvestri, F.: Cache-oblivious simulation of paral-
lel programs. In: Proc. 8th Workshop on Advances in Parallel and Distributed
Computational Models (CD). IEEE Computer Society, Los Alamitos (2006)

637. Pion, S., Yap, C.-K.: Constructive root bound for k-ary rational input numbers.
In: Proceedings of the 19th ACM Symposium on Computational Geometry, pp.
256–263. ACM Press, San Diego (2003)

638. Pisinger, D.: Algorithms for knapsack problems, Ph.D. thesis, University of
Copenhagen, Dept. of Computer Science (1995)

639. Pizzonia, M., Di Battista, G.: Object-oriented design of graph oriented data struc-
tures. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619,
pp. 140–155. Springer, Heidelberg (1999)

640. Plauger, P.J., Stepanov, A.A., Lee, M., Musser, D.R.: The C++ Standard Tem-
plate Library. Prentice-Hall, Englewood Cliffs (2000)

641. Pohl, I.: Bi-directional search. In: Meltzer, B., Michie, D. (eds.) Proceedings of
the Sixth Annual Machine Intelligence Workshop, vol. 6, pp. 124–140. Edinburgh
University Press, Edinburgh (1971)

642. Polzin, T., Daneshmand, S.V.: Primal-dual approaches to the Steiner problem.
In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 214–225.
Springer, Heidelberg (2000)

486 References

643. Polzin, T., Daneshmand, S.V.: A comparison of Steiner relaxations. Discrete Ap-
plied Mathematics 112, 241–261 (2001)

644. Polzin, T., Daneshmand, S.V.: Improved algorithms for the Steiner problem in
networks. Discrete Applied Mathematics 112, 263–300 (2001)

645. Polzin, T., Daneshmand, S.V.: Practical partitioning-based methods for the
Steiner problem. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007,
pp. 241–252. Springer, Heidelberg (2006)

646. Pratt, V.R.: Every prime has a succinct certificate. SIAM Journal of Computing 4,
214–220 (1975)

647. Prechelt, L.: An empirical comparison of seven programming languages. Com-
puter 33(10), 23–29 (2000)

648. Priest, D.M.: On properties of floating point arithmetics: Numerical stability and
the cost of accurate computations, Ph.D. thesis, University of California at Berke-
ley (1992)

649. Procopiuc, O., Agarwal, P.K., Arge, L., Vitter, J.S.: Bkd-tree: A dynamic scalable
kd-tree. In: 8th International Symposium on advances in Spatial and Temporal
Databases, SSTD, pp. 46–65 (2003)

650. Prokop, H.: Cache-oblivious algorithms, Master’s thesis, Massachusetts Institute
of Technology (1999)

651. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Experimental comparison of
shortest path approaches for timetable information. In: Proceedings of the 6th
Workshop on Algorithm Engineering and Experiments (ALENEX 2004), pp. 88–
99. SIAM, Philadelphia (2004)

652. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Towards realistic modeling of
time-table information through the time-dependent approach. In: Proceedings of
ATMOS Workshop 2003, pp. 85–103 (2004)

653. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient models for timetable
information in public transportation systems. ACM Journal of Experimental Al-
gorithmics, Article 2.4, 12 (2007)

654. Raab, S., Halperin, D.: Controlled perturbation for arrangements of polyhedral
surfaces (2002),
http://acg.cs.tau.ac.il/danhalperin/publications/
dan-halperins-publications

655. Rabin, M.O.: Mathematical theory of automata. In: Proceedings of the 19th ACM
Symposium in Applied Mathematics, pp. 153–175 (1966)

656. Rabin, M.O.: Probabilistic algorithm for testing primality. Journal of Number
Theory 12, 128–138 (1980)

657. Rahman, N., Cole, R., Raman, R.: Optimized predecessor data structures for
internal memory. In: Brodal, G.S., Frigioni, D., Marchetti-Spaccamela, A. (eds.)
WAE 2001. LNCS, vol. 2141, pp. 67–78. Springer, Heidelberg (2001)

658. Rahman, N., Raman, R.: Analysing the cache behaviour of non-uniform distri-
bution sorting algorithm. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp.
380–391. Springer, Heidelberg (2000)

659. Rajagopalan, S., Vazirani, V.V.: On the bidirected cut relaxation for the metric
Steiner tree problem. In: Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 742–751 (1999)

660. Rajasekaran, S., Reif, J. (eds.): Handbook of parallel computing: Models, algo-
rithms and applications. Chapman & Hall CRC Computer & Information Science.
CRC Press, Boca Raton (2007)

References 487

661. Ramachandran, V.: Parallel algorithm design with coarse-grained synchroniza-
tion. In: International Conference on Computational Science, vol. 2, pp. 619–627
(2001)

662. Ramsey, N.: Literate programming simplified. IEEE Softw. 11(5), 97–105 (1994)
663. Rardin, R.L., Lin, B.W.: Test problems for computational experiments – issues

and techniques. In: Mulvey, J.M. (ed.) Evaluating Mathematical Programming
Techniques, Proceedings of a Conference held at the National Bureau of Stan-
dards, Boulder, Colorado, January 5-6, vol. 199, pp. 8–15. Springer, Heidelberg
(1982)

664. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable
content-addressable network. In: Proceedings of the ACM SIGCOMM, pp. 161–
172. ACM Press, New York (August 2001)

665. Ratschek, H., Rokne, J.: Exact computation of the sign of a finite sum. Applied
Mathematics and Computation 99, 99–127 (1999)

666. Raymond, E.S.: The art of UNIX programming. Pearson Education, London
(2003)

667. Reinders, J.: Intel threading building blocks: Outfitting C++ for multi-core pro-
cessor parallelism. O’Reilly Media, Inc., Sebastopol (2007)

668. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA Journal on
Computing 3(4), 376–384 (1991)

669. Reis, G.D., Mourrain, B., Rouillier, F., Trébuchet, P.: An environment for sym-
bolic and numeric computation. In: International Congress of Mathematical Soft-
ware ICMS 2002 (April 2002)

670. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Com-
puter Graphics 21(4), 25–34 (1987)

671. Rice, J.R.: A theory of condition. SIAM J. Num. Anal. 3, 287–310 (1966)
672. Richardson, D.: How to recognize zero. Journal of Symbolic Computation 24(6),

627–645 (1997)
673. Roberts, A.P., Garboczi, E.J.: Elastic moduli of model random three-dimensional

closed-cell cellular solids. Acta Materialia 49(2), 189–197 (2001)
674. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: Efficiently four-coloring

planar graphs. In: Proceedings of the 28th ACM Symposium on Theory of Com-
puting (STOC), pp. 571–575. ACM Press, New York (1996)

675. Robertson, N., Seymour, P.D.: Graph minors. XIII: The disjoint paths problem.
J. Comb. Theory Ser. B 63(1), 65–110 (1995)

676. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb.
Theory Ser. B 92(2), 325–357 (2004)

677. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In:
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 770–779 (2000)

678. Robins, G., Zelikovsky, A.: Tighter bounds for graph Steiner tree approximation.
SIAM Journal on Discrete Mathematics 19(1), 122–134 (2005)

679. Röglin, H., Vöcking, B.: Smoothed analysis of integer programming. In: Jünger,
M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 276–290. Springer, Hei-
delberg (2005)

680. Rossi, F.: Constraint (logic) programming: A survey on research and applications.
In: Selected papers from the Joint ERCIM/Compulog Net Workshop on New
Trends in Constraints, pp. 40–74. Springer, London (2000)

681. Rossi, F., Petrie, C., Dhar, V.: On the equivalence of constraint satisfaction prob-
lems. In: Aiello, L.C. (ed.) ECAI 1990: Proceedings of the 9th European Confer-
ence on Artificial Intelligence, pp. 550–556. Pitman, Stockholm (1990)

488 References

682. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of constraint programming.
Elsevier, Amsterdam (2006)

683. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

684. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part I: Faith-
ful rounding. SIAM Journal on Scientific Computing 31(1), 189–224 (2008)

685. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part II:
Sign, K-fold faithful and rounding to nearest. SIAM Journal on Scientific Com-
puting 31(2), 1269–1302 (2008)

686. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. Society for Indus-
trial and Applied Mathematics, Philadelphia (April 2003)

687. Sagan, H.: Space-filling curves. Springer, Heidelberg (1994)
688. Salesin, D., Stolfi, J., Guibas, L.J.: Epsilon geometry: building robust algorithms

from imprecise computations. In: Proceedings of the 5th Annual ACM Symposium
on Computational Geometry, pp. 208–217. ACM Press, New York (1989)

689. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity analysis in
practice: A guide to assessing scientific models. John Wiley & Sons, Chichester
(2004)

690. Samet, H.: The quadtree and related hierarchical data structures. ACM Comput-
ing Surveys 16(2), 187–260 (1984)

691. Sametinger, J.: Software engineering with reusable components. Springer, Heidel-
berg (1997)

692. Sanchis, L.A.: On the complexity of test case generation for NP-hard problems.
Information Processing Letters 36(3), 135–140 (1990)

693. Sanders, P.: Presenting data from experiments in algorithmics. In: Fleischer, et
al. (eds.) [288], pp. 181–196

694. Sanders, P.: Algorithm engineering - an attempt at a definition. In: Albers, S., Alt,
H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 321–340. Springer,
Heidelberg (2009)

695. Sanders, P.: Algorithm engineering — an attempt at a definition using sorting
as an example. In: Blelloch, G., Halperin, D. (eds.) ALENEX 2010, pp. 55–61.
SIAM, Philadelphia (2010)

696. Sanders, P., Egner, S., Korst, J.H.M.: Fast concurrent access to parallel disks. In:
Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 849–858 (2000)

697. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579.
Springer, Heidelberg (2005)

698. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach,
T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)

699. Sanders, P., Schultes, D., Vetter, C.: Mobile route planning. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 732–743. Springer, Heidelberg
(2008)

700. Savage, J.E.: Models of computation, exploring the power of computing. Addison-
Wesley, Reading (1998)

701. Savage, J.E., Zubair, M.: A unified model for multicore architectures. In: Pro-
ceedings of the 1st International Forum on Next-Generation Multicore/Manycore
Technologies, IFMT 2008, Cairo, Egypt, p. 9 (2008)

References 489

702. Schamberger, S., Wierum, J.M.: A locality preserving graph ordering approach for
implicit partitioning: Graph-filling curves. In: Proc. 17th Intl. Conf. on Parallel
and Distributed Computing Systems, PDCS 2004, ISCA, pp. 51–57 (2004)

703. Schirra, S.: A case study on the cost of geometric computing. In: Goodrich, M.T.,
McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp. 156–176. Springer,
Heidelberg (1999)

704. Schirra, S.: Robustness and precision issues in geometric computation. In: Sack,
J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 597–632.
Elsevier, Amsterdam (January 2000)

705. Schirra, S.: Real numbers and robustness in computational geometry. In: 6th Con-
ference on Real Numbers and Computers, Schloss Dagstuhl, Germany (November
2004) (invited lecture)

706. Schmitting, W.: Das Traveling-Salesman-Problem - Anwendungen und heuris-
tische Nutzung von Voronoi-Delaunay-Strukturen zur Lösung euklidischer,
zweidimensionaler Traveling-Salesman-Probleme, Ph.D. thesis, Heinrich-Heine-
Universität Düsseldorf (1999)

707. Schneider, S.: The B-method: An introduction. Palgrave (2002)
708. Schorn, P.: Robust algorithms in a program library for geometric computation,

Ph.D. thesis, ETH: Swiss Federal Institute of Technology Zürich, Diss. ETH No.
9519 (1991)

709. Schorn, P.: An axiomatic approach to robust geometric programs. J. Symb. Com-
put. 16(2), 155–165 (1993)

710. Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc.,
Chichester (1998)

711. Schultes, D.: Route planning in road networks, Ph.D. thesis, Universität Karlsruhe
(TH), Fakultät für Informatik (February 2008)

712. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C.
(ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)

713. Schulz, F.: Timetable information and shortest paths, Ph.D. thesis, Universität
Karlsruhe (TH), Fakultät für Informatik (2005)

714. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE
1999. LNCS, vol. 1668, pp. 110–123. Springer, Heidelberg (1999)

715. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical
case study from public railroad transport. ACM Journal of Experimental Algo-
rithmics 5 (2000)

716. Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable in-
formation in railway systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002.
LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)

717. Sedgewick, R.: Implementing quicksort programs. Communications of the
ACM 21(10), 847–857 (1978)

718. Seel, M.: Eine Implementierung abstrakter Voronoidiagramme, Master’s thesis,
Universität des Saarlandes (1994)

719. Segal, M.: Using tolerances to guarantee valid polyhedral modeling results. In:
SIGGRAPH 1990: Proceedings of the 17th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 105–114. ACM Press, New York (1990)

720. Segal, M., Séquin, C.H.: Consistent calculations for solids modeling. In: Proceed-
ings of the 1st Annual ACM Symposium on Computational Geometry, pp. 29–38.
ACM Press, New York (1985)

721. Seidel, R.: Constrained Delaunay triangulations and Voronoi diagrams, Report
260 IIG-TU Graz, pp. 178–191 (1988)

490 References

722. Seidel, R.: The nature and meaning of perturbations in geometric computing. In:
Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775,
pp. 3–17. Springer, Heidelberg (1994)

723. Sellappa, S., Chatterjee, S.: Cache-efficient multigrid algorithms. Int. J. High Per-
form. Comput. Appl. 18(1), 115–133 (2004)

724. Sen, S., Chatterjee, S.: Towards a theory of cache-efficient algorithms. In: Pro-
ceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 829–838 (2000)

725. Sethia, S., Held, M., Mitchell, J.S.B.: PVD: A stable implementation for comput-
ing Voronoi diagrams of polygonal pockets. In: Buchsbaum, A.L., Snoeyink, J.
(eds.) ALENEX 2001. LNCS, vol. 2153, pp. 105–116. Springer, Heidelberg (2001)

726. Seti@home (2006), http://setiathome.berkeley.edu
727. Website of SGI’s STL implementation (2006), http://www.sgi.com/tech/stl/
728. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of the 16th An-

nual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 151–162.
IEEE Computer Society, Los Alamitos (1975)

729. Sheskin, D.J.: Handbook of parametric and nonparametric statistical procedures.
CRC Press, Boca Raton (2007)

730. Shewchuk, J.R.: Companion web page to [731],
http://www.cs.cmu.edu/~quake/robust.html

731. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust ge-
ometric predicates. Discrete and Computational Geometry 18, 305–363 (1997)

732. Shier, D.R.: On algorithm analysis. INFORMS Journal on Computing 8(1), 24–26
(1996)

733. Sibeyn, J.F.: From parallel to external list ranking, Technical Report MPI-I-97-
1-021, Max-Planck Institut für Informatik (1997)

734. Sibeyn, J.F., Kaufmann, M.: BSP-like external memory computation. In: Bongio-
vanni, G.C., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp.
229–240. Springer, Heidelberg (1997)

735. Siegel, S.: Nonparametric statistics for the behavioral sciences. McGraw-Hill,
New York (1956)

736. Siek, J.G., Lee, L., Lumsdaine, A.: The Boost graph library. Addison-Wesley,
Reading (2002)

737. Siek, J.G., Lumsdaine, A.: The matrix template library: A generic programming
approach to high performance numerical linear algebra. In: Caromel, D., Old-
ehoeft, R.R., Tholburn, M. (eds.) ISCOPE 1998. LNCS, vol. 1505, pp. 59–70.
Springer, Heidelberg (1998)

738. de Moura, E.S., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and flexible word
searching on compressed text. ACM Transactions on Information Systems 18(2),
113–139 (2000)

739. Singler, J.: Graph isomorphism implementation in LEDA 5.1, version 2.0 (2006),
http://www.algorithmic-solutions.de/bilder/graph_iso.pdf

740. Singler, J., Sanders, P., Putze, F.: MCSTL: The Multi-Core Standard Template
Library. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS,
vol. 4641, pp. 682–694. Springer, Heidelberg (2007)

741. Skiena, S.S.: Who is interested in algorithms and why? Lessons from the Stony
Brook algorithms repository. In: Mehlhorn, K. (ed.) Algorithm Engineering, pp.
204–212. Max-Planck-Institut für Informatik (1998)

742. Skiena, S.S.: The algorithm design manual, 2nd edn. Springer, New York (2008)
743. Skillicorn, D.B., Talia, D.: Models and languages for parallel computation. ACM

Computing Surveys 30(2), 123–169 (1998)

References 491

744. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

745. Smale, S.: On the average number of steps of the simplex method of linear pro-
gramming. Mathematical Programming 27, 241–262 (1983)

746. Smith, W.D.: How to find Steiner minimal trees in Euclidean d-space. Algorith-
mica 7, 137–177 (1992)

747. Snir, M., Otto, S.: MPI – the complete reference: The MPI core, 2nd edn. MIT
Press, Cambridge (1998)

748. Sommerville, I.: Software engineering, 8th edn. International Computer Science
Series. Addison-Wesley, New York (2006)

749. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM 51(3), 385–463
(2004)

750. Spirakis, P.G., Zaroliagis, C.D.: Distributed algorithm engineering. In: Fleis-
cher, R., Moret, B.M.E., Schmidt, E.M. (eds.) Experimental Algorithmics. LNCS,
vol. 2547, pp. 197–228. Springer, Heidelberg (2002)

751. Splint – secure programming lint, version 3.1.2 (2007), http://splint.org/
752. Spolsky, J.: User interface design for programmers. Apress, Berkeley (2001)
753. Sprent, P., Smeeton, N.C.: Applied nonparametric statistical methods. Chapman

& Hall/CRC (2001)
754. Stallman, R.M., et al.: GCC, the GNU compiler collection, version 4.3.3, source

code (2009), http://gcc.gnu.org/
755. Stepanov, A.A., Lee, M.: The standard template library, Tech. Report HPL-95-11,

Hewlett Packard (November 1995)
756. Website of STLport (2006), http://www.stlport.org/
757. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-

able peer-to-peer lookup service for internet applications. In: Proceedings of the
2001 ACM SIGCOMM Conference, pp. 149–160 (2001)

758. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13,
354–356 (1969)

759. Stroustrup, B.: The C++ programming language, special edition. Addison-
Wesley, Reading (2000)

760. Stroustrup, B.: A brief look at C++ox (January 2006),
http://www.artima.com/cppsource/cpp0x.html

761. STXXL: Standard template library for extra large data sets, version 1.2.1 (2008),
http://stxxl.sourceforge.net/

762. Sugihara, K.: A robust and consistent algorithm for intersecting convex polyhedra.
Comput. Graph. Forum 13(3), 45–54 (1994)

763. Sugihara, K., Iri, M.: A solid modelling system free from topological inconsistency.
J. Inf. Process. 12(4), 380–393 (1989)

764. Sugihara, K., Iri, M.: A robust topology-oriented incremental algorithm for
Voronoi diagrams. Int. J. Comput. Geometry Appl. 4(2), 179–228 (1994)

765. Sugihara, K., Iri, M., Inagaki, H., Imai, T.: Topology-oriented implementation -
an approach to robust geometric algorithms. Algorithmica 27(1), 5–20 (2000)

766. Suijlen, W.J.: BSPonMPI (2006), http://bsponmpi.sourceforge.net/
767. Sun, X.-H., Ni, L.M.: Another view on parallel speedup. In: Supercomputing

1990: Proc. ACM/IEEE Conf. on Supercomputing, pp. 324–333. IEEE Computer
Society, Los Alamitos (1990)

768. Sutcliffe, G., Suttner, C.B.: The TPTP problem library - CNF release v1.2.1.
Journal of Automated Reasoning 21(2), 177–203 (1998)

492 References

769. Sweedyk, Z.: A 2 1
2
-approximation algorithm for shortest superstring. SIAM Jour-

nal on Computing 29(3), 954–986 (1999)
770. Tamassia, R., Vismara, L.: A case study in algorithm engineering for geometric

computing. International Journal of Computational Geometry Applications 11(1),
15–70 (2001)

771. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J.
ACM 22(2), 215–225 (1975)

772. Tarjan, R.E.: Updating a balanced search tree in O(1) rotations. Information
Processing Letters 16(5), 253–257 (1983)

773. Tarjan, R.E.: Amortized computational complexity. SIAM Journal on Algebraic
and Discrete Methods 6(2), 306–318 (1985)

774. Taub, A.H. (ed.): John von Neumann collected works. Design of Computers, The-
ory of Automata and Numerical Analysis, vol. V. Pergamon, Oxford (1963)

775. Tazari, S., Müller-Hannemann, M., Weihe, K.: Workload balancing in multi-
stage production processes. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS,
vol. 4007, pp. 49–60. Springer, Heidelberg (2006)

776. Tazari, S., Müller-Hannemann, M.: Dealing with large hidden constants: Engi-
neering a planar Steiner tree PTAS. In: ALENEX 2009, pp. 120–131. SIAM,
Philadelphia (2009)

777. Tennent, R.D.: Specifying software. Cambridge University Press, Cambridge
(2002)

778. The BlueGene/L Team, An overview of the BlueGene/L supercomputer. In: Proc.
ACM/IEEE Conf. on Supercomputing, pp. 1–22 (2002)

779. Thiel, S.: The LEDA memory manager, Tech. report, Algorithmic Solutions
GmbH (August 1998),
http://www.algorithmic-solutions.info/leda_docs/leda_memmgr.ps.gz

780. Thorup, M.: Integer priority queues with decrease key in constant time and
the single source shortest paths problem. Journal of Computer and System Sci-
ences 69(3), 330–353 (2004)

781. Toledo, S.: A survey of out-of-core algorithms in numerical linear algebra. In: Ex-
ternal memory algorithms, pp. 161–179. American Mathematical Society, Provi-
dence (1999)

782. TPIE: A transparent parallel I/O environment (2005),
http://www.cs.duke.edu/TPIE/ (version from September 19, 2005)

783. Trefethen, L.N., Bau III, D. (eds.): Numerical linear algebra. Society for Industrial
and Applied Mathematics, Philadelphia (1997); MR1444820 (98k:65002)

784. Tufte, E.R.: The visual display of quantitative information. Graphics Press (1983)
785. Tukey, J.W.: Exploratory data analysis. Addison-Wesley, Reading (1977)
786. Turing, A.M.: Rounding-off errors in matrix processes. Quarterly Journal of Me-

chanics and Applied Mathematics 1, 287–308 (1948); Reprinted in [787] with
summary and notes (including corrections)

787. Turing, A.M.: Pure mathematics. Collected Works of A. M. Turing. North-
Holland, Amsterdam (1992); Edited and with an introduction and postscript by
J. L. Britton and Irvine John Good. With a preface by P. N. Furbank

788. The universal protein resource, UniProt (2007), http://www.uniprot.org/
789. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),

103–111 (1990)
790. Valiant, L.G.: General purpose parallel architectures. In: Handbook of Theoretical

Computer Science. Algorithms and Complexity (A), vol. A, pp. 943–972. Elsevier,
Amsterdam (1990)

References 493

791. Valiant, L.G.: A bridging model for multi-core computing. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 13–28. Springer, Heidelberg
(2008)

792. Valiente, G.: Algorithms on trees and graphs. Springer, Heidelberg (2002)
793. Frank van der Stappen, A.: Motion planning amidst fat obstacles, Ph.D. thesis,

Department of Computer Science, Utrecht University (March 1994)
794. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and

linear space. Information Processing Letters 6, 80–82 (1977)
795. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an effi-

cient priority queue. Mathematical Systems Theory 10, 99–127 (1977)
796. van Heesch, D.: The Doxygen website (2009),

http://www.stack.nl/~dimitri/doxygen/
797. van Hulzen, J.A., Hulshof, B.J.A., Gates, B.L., van Heerwaarden, M.C.: A code

optimization package for REDUCE. In: Proceedings of the ACM-SIGSAM 1989
International Symposium on Symbolic and Algebraic Computation, pp. 163–170
(1989)

798. van Leeuwen, J. (ed.): Handbook of theoretical computer science. Algorithms and
complexity, vol. A. Elsevier/MIT Press (1990)

799. van Leeuwen, M.A.: Literate programming in C: CWEBx manual, Report AM-
R9510, Centrum voor Wiskunde en Informatica, Department of Analysis, Algebra
and Geometry, Stichting Mathematisch Centrum, Amsterdam, The Netherlands
(1995)

800. Vandervoorde, D., Josuttis, N.M.: C++ templates: the complete guide. Addison-
Wesley, Reading (2003)

801. Veldhuizen, T.L.: Expression templates. C++ Report 7(5), 26–31 (1995)
802. Veldhuizen, T.L.: Arrays in Blitz++. In: Caromel, D., Oldehoeft, R.R., Thol-

burn, M. (eds.) ISCOPE 1998. LNCS, vol. 1505, pp. 223–230. Springer, Heidelberg
(1998)

803. Venners, B.: Joshua Bloch: A conversation about design (An interview with ef-
fective Java author, Josh Bloch by Bill Venners) (January 2002), First Published
in JavaWorld,
http://www.javaworld.com/javaworld/jw-01-2002/jw-0104-bloch.html

804. Vershynin, R.: Beyond Hirsch conjecture: walks on random polytopes and
smoothed complexity of the simplex method. In: Proceedings of the 47th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 133–142
(2006)

805. Vigna, S.: Broadword implementation of rank/select queries. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 154–168. Springer, Heidelberg (2008)

806. Vishkin, U., Caragea, G.C., Lee, B.C.: Models for Advancing PRAM and Other
Algorithms into Parallel Programs for a PRAM-On-Chip Platform. In: Handbook
of parallel computing: Models, algorithms and applications. CRC Press, Boca
Raton (2007)

807. Visone: Analysis and visualization of social networks, version 2.3.5 (2008),
http://visone.info/

808. Vitter, J.S.: External memory algorithms and data structures: Dealing with mas-
sive data. ACM Computing Surveys 33(2), 209–271 (2001)

809. Vitter, J.S.: Algorithms and data structures for external memory. Foundations
and Trends in Theoretical Computer Science. NOW Publishers (2008)

810. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory I: Two level mem-
ories. Algorithmica 12(2-3), 110–147 (1994)

494 References

811. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory, I/II. Algorith-
mica 12(2/3), 110–169 (1994)

812. Vleugels, J.: On fatness and fitness – realistic input models for geometric algo-
rithms, Ph.D. thesis, Department of Computer Science, Utrecht University (March
1997)

813. von Neumann, J., Goldstine, H.H.: Numerical inverting of matrices of high order.
Bull. Amer. Math. Soc. 53, 1021–1099 (1947); Reprinted in (774, pp. 479–557)

814. von zur Gathen, J., Gerhard, J.: Modern computer algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

815. Voronoi, G.: Nouvelle applications des paramètres continus à la theorie des formes
quadratiques. J. Reine Angew. Math. 134, 198–287 (1908)

816. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003.
LNCS, vol. 2832, pp. 776–787. Springer, Heidelberg (2003)

817. Wagner, D., Willhalm, T., Zaroliagis, C.: Dynamic shortest path containers. In:
Proceedings of ATMOS Workshop 2003, pp. 65–84 (2004)

818. Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric containers for efficient
shortest-path computation. ACM Journal of Experimental Algorithmics 10, 1.3
(2005)

819. Wallis, P.J.L. (ed.): Improving floating-point programming. Wiley, London (1990)
820. Wang, J.: Average-case computational complexity theory. In: Selman, A.L. (ed.)

Complexity Theory Retrospective, in Honor of Juris Hartmanis on the Occasion
of His Sixtieth Birthday, July 5, 1988, vol. 2. Springer, Heidelberg (1997)

821. Warme, D.M.: A new exact algorithm for rectilinear Steiner minimal trees, Tech.
report, System Simulation Solutions, Inc., Alexandria, VA 22314, USA (1997)

822. Warme, D.M.: Spanning trees in hypergraphs with applications to Steiner trees,
Ph.D. thesis, Computer Science Dept., The University of Virginia (1998)

823. Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree
problems: A computational study, Tech. Report TR-98/11, DIKU, Department
of Computer Science, Copenhagen, Denmark (1998)

824. Warme, D.M., Winter, P., Zachariasen, M.: GeoSteiner 3.1, DIKU, Department
of Computer Science, Copenhagen, Denmark (2003),
http://www.diku.dk/geosteiner/

825. Weidendorfer, J.: Performance analysis of GUI applications on Linux. In: KDE
Contributor Conference (2003)

826. Weihe, K.: A software engineering perspective on algorithmics. ACM Computing
Surveys 33(1), 89–134 (2001)

827. Weihe, K., Brandes, U., Liebers, A., Müller-Hannemann, M., Wagner, D., Will-
halm, T.: Empirical design of geometric algorithms. In: Proceedings of the 15th
Annual ACM Symposium on Computational Geometry, pp. 86–94 (1999)

828. Weinard, M., Schnitger, G.: On the greedy superstring conjecture. SIAM Journal
on Discrete Mathematics 20(2), 502–522 (2006)

829. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimization of
software and the ATLAS project. Parallel Computing 27(1-2), 3–35 (2001)

830. Wikipedia (2010),
http://en.wikipedia.org/wiki/Wikipedia:Modelling_Wikipedia’s_growth

831. Wilkinson, J.H.: Rounding errors in algebraic processes. In: IFIP Congress, pp.
44–53 (1959)

832. Wilkinson, J.H.: Error analysis of floating-point computation. Numer. Math. 2,
319–340 (1960)

References 495

833. Wilkinson, J.H.: Rounding errors in algebraic processes, Notes on Applied Sci-
ence, No. 32, Her Majesty’s Stationery Office, London (1963); Also published by
Prentice-Hall, Englewood Cliffs, NJ, USA (1964); Translated into Polish as Bledy
Zaokragleń w Procesach Algebraicznych by PWW, Warsaw, Poland (1967); And
translated into German as Rundungsfehler by Springer-Verlag, Berlin, Germany
(1969); Reprinted by Dover Publications, New York (1994)

834. Wilkinson, J.H., Reinsch, C.H. (eds.): Handbook for automatic computation. Lin-
ear Algebra, vol. 2. Springer, Heidelberg (1971)

835. Williams, R.: FunnelWeb user’s manual. University of Adelaide, Adelaide, South
Australia, Australia (1992)
ftp.adelaide.edu.au/pub/compression/pub/funnelweb

836. Williams, T.L., Parsons, R.J.: The heterogeneous bulk synchronous parallel
model. In: Proc. 15th Intl. Parallel and Distributed Processing Symp. (IPDPS
2000), Workshops on Parallel and Distr. Processing, pp. 102–108. Springer, Hei-
delberg (2000)

837. Wilson, P.R., Johnstone, M.S., Neely, M., Boles, D.: Dynamic storage allocation:
A survey and critical review. In: Baker, H.G. (ed.) IWMM-GIAE 1995. LNCS,
vol. 986, pp. 1–116. Springer, Heidelberg (1995)

838. Winter, P.: An algorithm for the Steiner problem in the Euclidean plane. Net-
works 15, 323–345 (1985)

839. Winter, P., Zachariasen, M.: Euclidean Steiner minimum trees: An improved exact
algorithm. Networks 30, 149–166 (1997)

840. Wolsey, L.A.: Integer programming. John Wiley & Sons, Chichester (1998)
841. Wong, R.T.: A dual ascent approach for Steiner tree problems on a directed graph.

Mathematical Programming 28, 271–287 (1984)
842. Woodcock, J.C.P., Davies, J.: Using Z: Specification, proof and refinement. Pren-

tice Hall International Series in Computer Science (1996)
843. Li, X., Zhang, X., Kubricht, S.A.: Improving memory performance of sorting

algorithms. ACM Journal of Experimental Algorithmics 5(3) (2000)
844. Yap, C.-K.: A geometric consistency theorem for a symbolic perturbation scheme.

J. Comput. Syst. Sci. 40(1), 2–18 (1990)
845. Yap, C.-K.: Symbolic treatment of geometric degeneracies. J. Symb. Com-

put. 10(3-4), 349–370 (1990)
846. Yap, C.-K.: Towards exact geometric computation. Comput. Geom. Theory

Appl. 7(1-2), 3–23 (1997)
847. Yap, C.-K.: Fundamental problems of algorithmic algebra. Oxford University

Press, Oxford (2000)
848. Yap, C.-K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J.

(eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 927–
952. Chapmen & Hall/CRC, Boca Raton (2004)

849. Yap, C.-K., Mehlhorn, K.: Towards robust geometric computation. In: Fundamen-
tals of Computer Science Study Conference, Washington DC, July 25-27 (2001)

850. Yeh, T.-H., Kuo, C.-M., Lei, C.-L., Yen, H.-C.: Competitive analysis of on-line
disk scheduling. Theory of Computing Systems 31, 491–506 (1998)

851. Yellen, J., Gross, J.L.: Graph theory and its applications. CRC Press, Boca Raton
(1998)

852. Yildiz, M.C., Madden, P.H.: Preferred direction Steiner trees. In: GLSVLSI 2001:
Proceedings of the 11th Great Lakes symposium on VLSI, pp. 56–61. ACM Press,
New York (2001)

853. Yoon, S.-E., Lindstrom, P.: Mesh layouts for block-based caches. IEEE Trans.
Visualization and Computer Graphics 12(5), 1213–1220 (2006)

496 References

854. Yourdon, E.: Flashes on maintenance from techniques of program structure and
design. Techniques of Program Structure and System Maintenance, QED Infor-
mation Science (1988)

855. Zachariasen, M.: Rectilinear full Steiner tree generation. Tech. Report TR-97/29,
DIKU, Department of Computer Science, Copenhagen, Denmark (1997)

856. Zachariasen, M., Rohe, A.: Rectilinear group Steiner trees and applications in
VLSI design. Mathematical Programming 94, 407–433 (2003)

857. Zelikovsky, A.Z.: An 11/6-approximation algorithm for the network Steiner prob-
lem. Algorithmica 9, 463–470 (1993)

858. Zeller, A.: Why programs fail – a guide to systematic debugging, 2nd edn., Dpunkt
(2009)

859. ZIB optimization suite (2009), http://zibopt.zib.de/
860. Ziegler, J.: The LEDA tutorial (2006), http://www.leda-tutorial.org/
861. Zokaities, D.: Writing understandable code, Software Development, 48–49 (2001)
862. Zumbusch, G.: Parallel multilevel methods. Adaptive mesh refinement and load-

balancing. Teubner (2003)

Subject Index

absolute error, 109
abstract

factory, 263
model, 159
problems, 1

abstraction, 17
level, 17, 20

accounting method, 135, 136
accuracy, 26, 347, 350
ad hoc network, 195
adaptability, 12, 238
adaptive rounding, 147, 150
Advanced Encryption Standard (AES),

61
adversary, 10, 141
aggregate analysis, 135, 136
Akamai Technologies, Inc., 13
ALENEX, 7, 328
algebraic

identity, 258
modeling language, 9, 17, 30,

49–53
number, 309, 436, 438

real, 279
algorithm

approximation, 6
certifying, 243–245
design, 6, 9, 19
external memory, 11
geometric, 14
greedy, 65
library, 291
linear time, 3
offline, 139, 179
online, 15, 138–141
pencil-and-paper, 5
randomized, 15
sublinear, 3, 15
sweep-line, 323

Algorithm Engineering, V, IX, XIV,
2, 4–7, 9, 11–19, 21, 26–28,
49, 50, 53, 55, 57–59, 63,

73, 89, 159, 200, 219, 235,
237–239, 250, 262, 263, 267,
273, 284, 325–327, 353–355,
360, 389, 390, 393, 399, 410,
411, 426–428, 445–453

cycle, 6, 15, 325, 326
process, 27

Algorithmics, 1, 8
classical, 2

all-pairs shortest paths (APSP), 390
alldifferent constraint, 45
Amdahl’s law, 210, 249
amortized

analysis, 9, 130, 134–140
cost, 135, 137

AMPL, 49
analysis, 2, 4, 6, 23, 325

amortized, 9, 130, 134–140
average-case, 9, 128, 130,

132–134, 140, 192
experimental, 5, 174, 325
graphical, 368–375, 381
of requirements, 8
probabilistic, 152, 155, 159
sensitivity, 22
smoothed, 10, 128, 130,

140–159, 449
statistical, 337, 368, 375–381
theoretical, 4, 326, 328
worst-case, 9, 128, 130–132,

168, 172
antithetic variate, 338
application, 3, 6, 430

development, 1
domain, 1
real-world, 6, 22

approximation, 26, 160, 364, 409
algorithm, 2, 6, 333, 422
ratio, 370
scheme, 2

APX-hard, 164
arbitrary position, 4

498 Subject Index

arc, 31
arc-flags, 395, 400, 404
argument passing, 258
array padding, 211
assertions, 103, 248
assumption, 4, 5, 191

hidden, 97
simplifying, 97
unrealistic, 18, 19

A∗-search, 93, 393, 394
asymptotic

analysis, 173
bottleneck operation, 171, 334
growth, 174
performance, 168, 173
performance analysis, 174
positive function, 130
upper bound, 183

asymptotical running time, 2
automated theorem proving, 101
availability, 347, 350
average-case, 175

analysis, 9, 128, 130, 132–134,
140, 192

complexity, 134, 140, 143
running time, 133

axiomatic approach, 118

B-tree, 74, 89, 208, 209, 217
backtrack search, 44, 415
backup algorithm, 444
bandwidth, 448
bar chart, 369, 371
basic step, 129
batching, 203, 204
benchmark, 313, 383, 390

library, 14
test, 451

BGL, 294, 296, 314–319
bidirectional search, 393, 397
big-M -constraint, 46
big-M -formulation, 39, 40
binary

integer program, 37
optimization problem, 141
search, 156

search tree, 74
space partition, 160, 161, 165
tree, 165
variable, 37

bioinformatics, 1, 3, 30
BIP, see binary integer program
bisector, 428
black box, 240
black-box testing, 101
BLAS, 212
Blitz++, 296
board assembly, 16, 23, 24
Boost, 12, 294, 296, 298, 300,

302–304, 309, 311
Graph Library (BGL), 314–319

bottleneck, 131, 249, 364, 412
operation, 10, 132, 169, 333

count, 334
Steiner distance, 413, 421

bounding box, 162
Box Cox rule, 179, 185
box plot, 370, 372
branch prediction, 2
branch-and-bound, 369, 371, 417
branch-and-cut, 416, 417
breadth first search, 131
bridging model, 200, 220, 223, 227,

235
broadword computing, 259
brute force, 93
BSP, 160, 165–168, 221, 235
BSP-like algorithm, 231
budget, 27
buffer tree, 209
bug, 59, 61, 356
building block, 7
bulk-synchronous parallel

model, 221, 296
processing, 219

c-competitive, 87
cache, 11, 196, 209–219

behavior, 5
direct-mapped, 196
effect, 72, 362
full-associative, 196

Subject Index 499

line, 196
miss, 210
set-associative, 196
sharing, 224

cache-aware algorithm, 201
cache-oblivious, 200, 202, 214–218,

447
caching, 2, 173
calibration, 358
callback, 305, 317
car manufacturing, 19, 23, 25, 33,

36, 37, 52
CATS, 351
Celera Genomics Group, 13
certainty, 26
certification, 104
certifying

algorithm, 243–245
optimality, 147

CGAL, 12, 14, 265, 295, 301, 308,
319–324, 427, 440

kernel, 320
challenge, 15, 403, 446–453

DIMACS implementation, 4
for implementation, 3

checking, 11, 242–245
checklist, 18, 26
Chomsky normal form, 85
Christofides heuristic, 127
chromatic number, 140
class library, 291
clock cycle, 196
clustering, 205
clutteredness, 163
coarse-grained multicomputer, 222
code

generation, 259
reuse, 11

coding, 356
coding convention, 271
collections

of input data, 6
collision, 89
collision-free motion, 164
column generation, 41

combinatorial optimization, 14,
32, 159

communication
cost, 198
networks, 1
overhead, 70

comparability, 339, 343, 346, 347,
382, 383, 451

competitive
analysis, 139
ratio, 139–141

compilation, 355
compiler, 61, 275, 358, 359, 383, 384
completeness, 347, 349
complex problem, 21
complexity

average-case, 143
of implementation, 27
status, 8

component library, 291
computational

environment, 169
geometry, 3, 4, 9, 14, 113, 160,

295, 319–324, 430
testing, 130, 169

computer
architecture, 10
assisted surgery, 3
model, realistic, 10, 11

computing
distributed, 2, 15
high performance, 15
model, parallel, 11
parallel, 2, 15

concavity oracle, 180, 186
concept, 2
condition, 109

number, 109
conditional

branch, 256
expectation, 338

configuration, 137
connectivity, 31, 140
consistency, 44, 123

approach, 119

500 Subject Index

constant factor, 2, 3, 171
improvements, 3

constrained shortest path, 150, 160
constraint, 20–22, 26, 43, 62

alldifferent, 45
global, 45
hard, 21
linear, 35
programming, 9, 17, 28, 30,

43–49
real-world, 27
redundant, 28, 47
soft, 21, 24, 28
time, 27

construction problem, 20
container, 306

type, 293
context free grammar, 84
contraction hierarchies, 400, 403, 404
control

flow graph, 240
variate, 338

controlled perturbation, 120, 123
convex

hull, 8, 324
programming, 9

core, 199
correctness, 11, 96, 237, 239–248, 290,

297
correlation, 21
counting problem, 20
coverage, 348

edge, 241
path, 241
statement, 240

CP, see constraint programming
CPLEX, 13, 37, 49
CPU time, 168, 169, 171, 172
credit, 136
crew management, 56
cryptographic system, 95
cryptography, 1
CSPLib, 352
CUDA, 225
curve

bounding, 173, 179
rule, 176, 181, 188, 190, 191,

193
fitting, 179, 185

cutting plane, 41
cvs, 359, 360
cycle

Algorithm Engineering, 6, 12,
325, 326

DAG, 286
data

compression, 91
quality, 330
sets

spatial, 3
structure, 2, 3, 138, 309, 314,

326
advanced, 2
external memory, 11
I/O-efficient, 209

warehouse, 194
data-dependent program, 82
debugging, 11, 246–248
decentralization, 68, 77
decision problem, 20
decomposition, 26, 71

tree, 86
defensive

copying, 105
design, 101, 105, 443

degeneracy, 12, 122, 439, 443, 445
degenerate, 115

case, 15
Delaunay

diagram, 429
triangulation, 8, 120, 262, 323,

427, 429
delay, 404
density function, 133, 134
dependency graph, 82
design, 2, 6, 9, 17

by contract, 105
defensive, 101, 105, 443
diversity, 98
goal of algorithm, 3

Subject Index 501

of experiments (DOE), 375
pattern, 263, 273
phase, 8, 21, 26
VLSI, 3, 389

desperate mode, 444
detail, level of, 28
development environment, 275
diagram, 368, 385–388
diameter, 158, 162
dictionary, 74
difference rule, 179, 186
difficulty, 348, 349
Dijkstra’s algorithm, 93, 391, 392,

405
DIMACS implementation challenge,

4, 349, 352, 383, 398, 407
dimension, 153
Dirichlet tessellation, 428
discrete

logarithm, 95
optimization problem, 141

discretization error, 108
distance network, 423
distributed

computing, 15
computing model, 2
hash table, 68, 77, 78
system, 129

distribution sweeping, 206
diversity, 348, 349
divide-and-conquer, 71, 251, 431, 432
divided differences, 187
documentation, 11, 238, 268–271, 356
DOE (design of experiments), 337
domain, 43

reduction, 44
dominating set, 67
down-up property, 182
Doxygen, 269
dual ascent algorithm, 419
dynamic

backward slice, 247
graph, 404
programming, 84, 143, 411, 414
scenario, 404

ease of implementation, 335
ease of use, 3, 11, 238, 267, 297, 348,

350
edge, 31, 153

cracking, 120
edit distance, 30
efficiency, 1, 3, 11, 26, 218, 237, 248–

262, 290, 339
elementary operation, 129
ellipsoid method, 152
enumeration, 310

implicit, 44
epsilon geometry, 118
ε-cutting, 3
error

absolute, 109
backward, 111
correcting code, 100
forward, 111
relative, 109

error-free transformation, 284
ESA, 7, 328
estimate, 178
Euclidean

norm, 154
space, 160, 162
TSP with neighborhoods, 164

evaluation, 1, 364
experimental, 5

exact
geometric computation, 11, 12,

116, 278, 436
number type, 278, 319

EXACUS, 295, 319–324
expected running time, 157
experience, 4, 17
experiment, 1, 2, 5, 12, 178, 325–388
experimental

analysis, 5, 174
design, 376
environment, 330
measure, 168
setup, 4, 367, 384
study, 173

502 Subject Index

experimentally falsifiable hypothesis,
191

experimentation, 4, 5, 174
process, 329

exponential bound, 190
expression template, 311
expressiveness, 43
extensibility, 238, 290, 319, 350
external

memory, 236
algorithm, 11
BFS, 233
data structure, 11
model, 200, 297

model, 176

face, 153
facet, 168
facility location, 40
factor, 13, 329, 335, 361, 378, 383

constant, 2, 3
fail-safe-return, 99
failure, 246
falsifiable hypothesis, 5, 193
fat

geometric objects, 55
neighborhood, 164
scene, 161

fatness, 161–163
fault

acceptance, 98
avoidance, 101
compensation, 99
containment, 98, 100
design, 97
interaction, 97
masking, 98, 100
prevention, 102
propagation, 99
removal, 101

feasibility
gap, 150
problem, 38

feedback, 18
Fibonacci heap, 61
filter

dynamic, 280
floating-point, 280
module, 106
static, 280

finger table, 79
finite element mesh, 8
flash memory, 406, 447
flash-oblivious, 447
flexibility, 3, 11, 12, 238, 262–267,

290, 297
floating-point

arithmetic, 11, 15, 277, 434
filter, 280, 289, 436, 440
filtering, 320
number, 308
operation, 277
standard IEEE 754, 282, 307

flow, 31
formal verification, 101
formalism, 26, 32
formalization, 8
formulation, 40
four-coloring planar graphs, 61
framework, 9
frequency polygon, 370–372
full

component, 410
Steiner tree, 414

full-text index, 206
function

library, 291
pointer, 263

functional plot, 368
functor, 305
funnelsort, 205, 233
fuzzy

set, 22
theory, 22

GAMS, 49
gap, 1, 17, 18

between theory and practice, 2,
326

Gaussian
elimination, 113
random variable, 142, 157

Subject Index 503

general position, 55, 295
general-purpose tool, 27
generality, 4
generator, 384
generic

pointer, 304
programming, 265, 292, 304

geographic information system, 1, 194
geometric

algorithm, 14, 276–289
computing, 434
container, 395, 397
filtering, 442
kernel, 319
predicate, 438
primitives, 114
rounding, 124
Steiner tree problem, 408

GeoSteiner, 411, 412, 416, 422, 426
global

constraint, 45
routing, 409

GMP, 296, 308
gnuplot, 375
goal

Algorithm Engineering, 4
goal-directed search, 395
Google Inc., 13
gprof, 210, 249, 363
GPU, 216, 225
graceful degradation, 99
granularity, 219
graph, 17, 31

algorithm, 192
bipartization, 63
decomposition, 205
drawing, 295
random, 4
real-world, 4
weighted, 31

graph-based model, 30–35
graphical analysis, 368–375, 381
greatest common divisor (gcd), 243
greedy

algorithm, 65

heuristic, 250, 425
local search, 423

grid computing, 68, 71, 76
group Steiner tree problem, 408
guess

difference rule, 179, 182
function, 181, 190
ratio, 179

rule, 181
guidance, 18
guideline, 8, 19

halfspace, 165
Hamiltonian cycle, 32, 143, 149
hard

constraint, 21
disk, 197
instance, 451

hardware, 22
hash table, 74
hashing, 89
heapsort, 76
heuristic, 14, 143, 159, 174, 333, 361,

364, 369–372, 377, 384, 409,
414, 422

hidden
assumption, 97
constant, 325
variable method, 119

hierarchical
approach, 396, 398
arc-flags, 401

hierarchy
memory, see memory hierarchy
processor, 2

high performance computing, 15
high-end power rule, 184
high-level presentation, 3
highway dimension, 403
Highway Hierarchies, 398, 402, 403
highway-node routing, 400, 404
Hirsch conjecture, 152, 157
histogram, 369
Hoare calculus, 245
homogeneous coordinates, 282
hypercube, 161

504 Subject Index

hypergraph, 415
hyperplane, 153, 165, 168
hypothesis, 175, 364, 367

falsifiable, 5
test, 330, 450
testing, 376

I/O-bottleneck, 199
I/O-efficiency, 11
I/O-efficient data structure, 209
IDE, 275
idle time, 70
IEEE floating-point standard, 307
image processing, 1
impact, 4
implementation, 1–4, 6, 11, 14, 32,

237–289, 326, 354, 355, 365,
366, 383, 434, 440

phase, 26
implicit enumeration, 44
imprecision, 22
in-circle test, 116, 436
inaccurate data, 122
incremental

algorithm, 442
approach, 431

independence, 349
infection, 246
inflow, 33
information

hiding, 105
retrieval, 1, 3

inlining, 257, 266
input, 21

data, 22
real-world, 4

model, 161
realistic, 10

size, 336
inspection, 101
installation manual, 269
instance, 384

artificial, 343
generator, 4
perturbed, 345
real-world, 342, 345

test, 13
instruction

parallelism, 2
pipeline, 197

integer
arithmetic, 437
linear program, 62
linear programming, 9, 411
numbers, 307
program, 37
programming formulation, 416,

418
interactive tool, 179
interface, 267

design, 11
interpolation, 88, 186

polynomial, 187
interpreter, 275
interval

arithmetic, 308
geometry, 55, 118

inversion, 139
isoefficiency function, 73
isolating lemma, 144
iterated 1-Steiner, 425
iterator, 263, 266, 303, 304, 317, 323

Javadoc, 269
JEA, 7, 328, 384, 451

research code repository, 452
JIT (just-in-time-compiler), 292
journal

graph algorithms and
applications, 7

Mathematical Programming
Computation, 7

kd-split, 166, 167
kd-tree, 75
kernel, 319
key technology, 1
knapsack problem, 140, 142, 143,

159, 160
Kruskal’s algorithm, 131, 132

Subject Index 505

label constrained
shortest path problem, 406

labeling, 43
algorithm, 391

laboratory, 330, 354, 360, 366
Lagrangian relaxation, 385, 420
lambda expression, 311
landmark, 395
LAPACK, 212, 296
Las Vegas algorithm, 64
lazy evaluation, 253
LEDA, 12, 14, 294–324, 427, 436,

440
extension package, 300
graph, 314, 315
kernel, 319

level, 336, 378
of detail, 28

library, 27, 249, 267, 290–324, 358,
363, 384, 426

algorithm, 6
benchmark, 14
creation, 349–350
graph algorithms, 32
maintenance, 350–351
parallel, 236
software, 6, 12, 14
test data, 13
update, 350–351

line planning, 56
linear

constraint, 35
program, 30, 37, 49, 62, 132, 141,

416
programming, 13, 151, 326, 385,

417, 426
formulation, 409

regression, 172, 179, 183, 185,
379

time, 3
linked list, 207
literate programming, 271
local search, 423
locality, 235

spatial, 203

temporal, 203, 204
logarithmic

factor, 190, 191
model, 129

logistics, 1
LogP model, 200, 228
lookup table, 9, 59, 84
loop

fusion, 211
interchange, 211
tiling, 212

low density, 162, 163
LP, see linear program

formulation, 31
relaxation, 37, 40

lune property, 413

machine
epsilon, 112
independent, 176
load, 336
model, 133

abstract, 1
von-Neumann, 2

machine-independent
comparison, 1

main memory, 197, 336
maintainability, 3, 238
maintenance, 11, 13
man month, 27
manpower, 4
manual, 269
Markov’s inequality, 148
massive data, 448
matching, 5, 31, 145
Mathematical Programming, 7, 8,

13, 44, 49, 56, 325, 452
matrix multiplication, 214, 226
maximum flow, 318
measurability, 340
measure, 334

performance, 330, 333
structural, 334

measurement, 364

506 Subject Index

memory
flash, 406
hierarchy, 2, 10, 129, 194, 195,

198, 200, 233, 257, 357–359,
447

management, 302, 322
requirement, 2

mergesort, 131
mesh layout, 216
message complexity, 129
meta-heuristics, 15, 449
methodology, 4, 5

Algorithm Engineering, 13
of comparison, 398

milestone, 13
Miller–Rabin test, 65
min-cut problem, 64
minimum

cost flow, 33, 35
spanning tree, 15, 131, 142, 326,

414, 416, 421, 423
heuristic, 422

MIP, see mixed integer program
formulation, 31
solver, 40

mixed
integer program, 30, 49
integer programming, 17, 35–44

model
assessment, 28
bridging, 200
cache-oblivious, 200, 202
checking, 101
formal, 16
generic, 23
graph-based, 30–35
parallel computing, 2
probabilistic, 4
problem, 19
realistic, 6
semi-random, 10
solution approach, 18, 26

modeling, 3, 6, 9, 17
decision, 18
framework, 17, 18, 30–53
of complex problems, 8
of problems, 8

phase, 26, 31
process, 8, 18, 19, 28

modular
arithmetic, 283
protection, 106

modularity, 62, 238, 268
Monte Carlo algorithm, 64
Moore’s law, 199
motion planning, 164
move-to-front, 138
MPI, 228, 235
MPS file format, 49
multi-criteria optimization, 404, 405
multi-level graph, 396
multi-modal, 406
multi-threading, 2
multicore, 236, 447, 450

computing, 224
multigraph, 31
multithreading, 448
mutable, 258

network
analysis, 403
flow, 5, 35

problem, 33, 344
model, 36, 220
simplex algorithm, 169

Newton polynomial, 187
non-linear program, 49
non-parametric statistics, 382
normal distribution, 189
normalization, 120, 123, 358, 363,

365, 373
NP-hard, 8, 28, 37, 86, 128, 143, 150,

160, 163, 364, 389, 410
null hypothesis, 376
numerical

instability, 40
problem, 21
robustness, 9, 108
stability, 14, 112

numerically stable, 111

object-oriented programming,
264, 292

Subject Index 507

oblivious, 88, see also cache-oblivious
observer, 263, 267
octree, 166
offline algorithm, 139, 179
omission, 99
one-pass algorithm, 448
online

algorithm, 15, 134, 138–141
scenario, 87

OpenMP, 225
operating system, 22, 358, 365, 384
operation counts, 13, 359
Operations Research, 7, 8, 13, 56,

151, 325
optimization problem, 20
oracle function, 179
organic grid, 80
orientation

predicate, 277
test, 116

origin destination matrix, 56
outflow, 33
outlier, 180
output, 21
over-eager evaluation, 254
overflow, 108
overhead, 72

P2P, 390
packing problem, 168
paging, 88, 173, 334
paradigm, 2

exact geometric computation, 278
shift, 2

parallel
algorithm, 11
computing, 11, 15

model, 2, 218–229
disk model, 176, 200, 201

parameter, 20, 21, 384, 385
setting, 361

parameterization, 304
Pareto-optimal, 405
parsimonious, 119
partition, 167
partitioning, 422

passing
by reference, 258
by value, 258

patent
software, 27

path, 31
pattern

design, 263
matching, 92
recognition, 430

Peano curve, 215, 216
pebble game, 82
peer-to-peer, 59, 69, 76
performance, 1, 4, 32, 168, 175, 178,

311, 323, 332, 359, 361
actual, 198
analysis, 17, 173, 175, 192
guarantee, 2, 4

worst-case, 1
measure, 329, 383
predicted, 4, 198

perturbation, 14, 140
controlled, 123
model, 150
random, 149
symbolic, 123, 439

phylogenetic tree, 389
physical design, 409
pioneer, 1
pipeline, 357
pipelining, 2, 197
pitfall, 18, 19, 353, 381
pivot rule, 152
pivoting, 113
planning, 12, 325, 331, 337
platform, 357
plot, 368

box, 370
functional, 368
scatter, 369, 370

point location, 161
point-to-point, 9

shortest path problem (P2P),
390

508 Subject Index

polygon, 154, 156
simple, 3

polyhedron, 152, 153, 156
polymorphism, 264, 322
polynomial

running time, 130
time, 1

approximation scheme, 2
time algorithm, 130

portability, 340, 349
POSIX threads, 296
post-processing, 26
potential

function, 136
method, 135, 136, 139

power rule, 179, 183
with differences, 184

PRAM, 11, 219, 226, 228, 235
model, 194
simulation, 229

predicate, 319
predictability, 4
prediction, 11
prefetching, 254
preflow push, 318
preprocessing, 9, 14, 59, 76, 92, 357,

392, 402, 404, 418
presolving, 43
pricing, 14
primality test, 65
priority queue, 209, 310, 393

external, 205
probabilistic

analysis, 152, 155, 159
model, 4, 156

probability distribution, 9, 133, 134,
140, 192

problem
abstract, 1
analysis, 21–23
artificial, 17
class, 17, 20, 21
complex, 21
construction, 20
counting, 20

decision, 20
decomposition, 19, 55, 56
feasibility, 38
ill-conditioned, 110
ill-posed, 8
instance

typical, 27
minimum cost flow, 33
numerical, 21
optimization, 20
specification, 23–26
Steiner tree, 2
traveling salesman, 2, 24

process, 5
processor hierarchy, 2
profiler, 363
profiling, 210, 249
program checker, 242
programming

constraint, 9
convex, 9
generic, 265
language, 169, 273
literate, 271
object-oriented, 264
skills, 4

projection, 155
projective space, 283
Prolog, 44
protein, 29
pruning, 412, 413, 415, 417
pseudo-polynomial, 143, 160

algorithm, 147
running time, 149

PTAS, 160, 164
public transportation, 21, 396, 403

QSM, 222
quadratic program, 49
queue, 207
quicksort, 64, 76, 356

railway network, 405
RAM, 235

model, 10, 194, 196, 198
real, see real RAM

Subject Index 509

random
data, 240
facet rule, 152
graph, 4, 140
instance, 4
linear program, 154
noise, 189
number, 338

generator, 344
sample, 3
shuffling, 442

random-access machine, see RAM
randomization, 169
randomized

algorithm, 15, 143, 175
parallel algorithm, 145

range searching, 161
rapid Mathematical Programming,

49
ratio test, 14
rational numbers, 307
reach, 396, 403
readability, 268
real

RAM, 1, 115, 237, 277, 306, 438
time, 3

real-world
application, 6, 160
graph, 4
input data, 4

realistic
computer model, 10, 11
input model, 10, 130, 159

reasoning
deductive, 5
inductive, 5

recovery, 98, 99
red-black tree, 60, 74
reduction, 420, 421
redundancy, 99
redundant constraint, 47
refactoring, 275
reference

counting, 251, 321
manual, 269

register, 196, 357

regression, 190
regular algorithm, 201
relative error, 109
relaxation, 418, 444
reliability, 4
reliable component, 6
report, 331
reporting, 382
repository, 354, 366
representation, 121
representative operation, 170, 172

count, 10, 130, 169, 171
reproducibility, 13, 329, 341, 343,

347, 355, 359, 361, 365, 382,
384, 451

requirement analysis, 8
requirements, 17, 19–21, 23, 25, 27,

55, 56
residual

analysis, 179, 191
sum of squares, 183, 185

return value optimization, 255
reusability, 59, 104, 238, 354
reuse, 6, 103, 273

of code, 11
reverse graph, 393
road network, 398, 401
robust, 5
robustness,9,59,95–126,290,334,385

numerical, 9
problem, 14

rolling stock, 56
round-off, 108
rounding, 146

adaptive, 147
CSG, 125
error, 12
geometric, 124
hot pixel, 124
manifold, 125
shortest path, 125
snap, 124

route planning, 390
row generation, 420

510 Subject Index

run, 337
running time, see also CPU time,

333, 335, 384
running-phase, 353, 360–364
runtime fault detection, 102
Runtime Type Information (RTTI),

322

sampling point, 336
satisfiability (SAT), 62
SATLIB, 352
scalability, 9, 59, 67–80
scale

logarithmic, 371, 381
scaling, 387
scanning, 204
scatter plot, 369, 370
scene, 162
schedule, 35, 362
scheduling, 17, 19, 23, 24, 38, 46

single-machine, 25
scientific

method, 5, 174, 191
revolution, 2

SCIP, 37, 50
scripting, 360, 375
SEA, 7, 328
search

engine, 3, 93
tree, 138, 311

self containment, 100
self-organization, 68
self-organizing list, 74
semantic gap, 450
semi-random model, 10, 142, 150
semidefinite programming, 65
sensitivity, 109

analysis, 22
sentinel, 253
separation, 42

bound, 288, 289
of design and analysis, 2
oracle, 153

separator, 205, 422
setup, 353
setup-phase, 353–360

shadow, 154
size, 155
vertex, 153, 154, 157

SHARC, 401, 403, 405
shared memory, 219
shortcut, 399, 402
shortest

common superstring, 66
path, 14, 78, 92, 93, 389–407

point-to-point, 9
side constraints, 8
sign test, 376, 377
significance, 341, 346, 367

level, 376
similarity assumption, 160
simple

cover complexity, 161, 163
polygon, 3

simplex algorithm, 13, 37, 73, 132,
140, 141, 151–158, 326

simplicity, 9, 27, 59
simplification, 25
simplifying assumption, 97
simulated annealing, 326
simulation

cache-oblivious, 232
multiple-processor, 232
single-processor, 231
speed-up, 331, 337, 339

Simulation of Simplicity (SoS), 123
single processor machine, 10
single-source shortest path (SSSP),

390
sink, 33
smoothed

analysis, 10, 128, 130, 140–159,
449

complexity, 142
running time, 140

smoothing, 180
snap rounding, 124
social network, 195
SODA, 327
soft constraint, 21, 24, 28

Subject Index 511

software
engineering, 5, 27
library, 6, 11, 12, 14, 60, 290,

450
patent, 27
system, 290

solution
approach, 19
approach model, 18, 26

sorted array, 74
sorting, 15, 204, 311

cache-oblivious, 233
source, 33
space

consumption, 129, 333, 335
partitioning, 3

space-filling curve, 214
spatial data sets, 3
specialization, 266
specially ordered set (SOS), 42
specification, 18, 102

formal, 20
informal, 20
semi-formal, 20

speed profile, 404
speed-up, 14, 72, 218, 364, 402, 412

technique, 355, 392, 394, 398,
401

trick, 366
splay tree, 74
split plot design, 378
stable set, 31, 33, 38
stack, 135, 207
standard deviation, 142
Stanford Graph Base (SGB), 294
state-of-the-art, 13
statistical

analysis, 368, 375–381
methods, 13
tools, 449

statistics, 332
Steiner

arborescence, 418
minimum tree, 8, 408
point, 408
tree, 14, 389, 407–427

packing, 410
problem, 2, 168

SteinLib, 390
STL, 12, 233, 265, 267, 294, 296,

298, 300, 302–305, 309–311,
313, 323, 324

stopping criterion, 365
straight line program, 82
strategy pattern, 263
streaming, 448

model, 203
strongly NP-hard, 143
structural measure, 365
sublinear algorithm, 3, 15
subtour elimination, 42
success story, 11, 13, 14
Sudoku, 16, 19, 23, 32, 37, 45, 50
suffix tree, 90, 93
superlinear, 3
surgery

computer assisted, 3
svn, 276, 359, 360
sweep-line

algorithm, 323
approach, 431, 434

table, 386–388
tandem search technique, 167
technology transfer, 4, 12
template, 257, 260, 304

metaprogramming, 265
specialization, 309

temporary object, 254
terminal, 3, 407
test

data
generation, 339–347
library, 13, 330, 347–352

instance, 13, 325, 329, 333, 354,
426

set, 354, 383
statistic, 376

test-bed, 353
testing, 4, 11, 101, 239–242, 355, 364

black-box, 101
white-box, 101

512 Subject Index

textbook, 9, 18, 31
theoretical analysis, 4, 176
thread safety, 448
time

constraint, 27
forward processing, 205
line, 27
linear, 3
real, 3
series, 385

time-dependent
graph, 404
network, 404

time-space trade-off, 9, 59, 69,
80–95, 257

timeless, 1
timetable

graph, 405
information, 403
query, 396

timing, 13, 355, 360
TLB, 197
tolerance-based approach, 118
top-down design, 61
topicality, 349, 350
topological approach, 15
topology-oriented approach, 119,

438, 443
TPTP, 352
trade-off, 4, 8

time-space, 9
tradition, 8, 13
traffic jam, 404
train schedule, 56
transfer to applications, 4
transformation, 3

polynomial time, 1
transit-node routing, 399, 402, 403
translation lookaside buffer, see TLB
transportation network, 392
transshipment vertex, 33
traveling salesman problem, 2, 19,

24, 28, 32, 127, 142, 143,
149, 168

tree decomposition, 86

treewidth, 205, 326
trend, 178, 191, 387, 388

oracle, 180, 188
triangle, 160
triangulation, 29, 323
TSP, see traveling salesman prob-

lem, 24, 28, 160, 164, 327,
344, 370, 377, 383, 431

heuristic, 369
TSPLIB, 416
Tukey’s test, 190, 379
tuning, 250–259

of algorithms, 5
tutorial, 269
type-system, 274
typical instance, 140

unbiasedness, 342, 346
uncertainty, 448
unclutteredness, 161, 163
undefined behavior, 274
underflow, 108
uniform

distribution, 133, 140
model, 129
orientation metrics, 411

union-find, 326
data structure, 309

unsorted
array, 74
list, 138

vague data, 22
Valgrind, 210
validation, 102
validity check, 98
van Emde Boas layout, 217
variable, 20, 21

binary, 37
indexing, 46
integer, 35
real, 35

variance reduction, 339, 375
technique, 331, 337

variety, 342
vehicle guidance, 3

Subject Index 513

verification, 11, 101, 102, 245–246
version control, 13, 359–361, 366
versioning, 276
vertex, 31, 153

coloring, 32
cover, 65
shifting, 120
transshipment, 33

virtual running time, 170–172, 334
visitor, 263
VLSI design, 3, 389
Voronoi

diagram, 14, 323, 389, 390, 427–
445

of line segments, 14
region, 423, 429

VRONI, 15, 427, 440, 442, 444, 445

WAE, 6
WEA, 7
wear leveling, 447
weighted graph, 31
white box, 240
Wilcoxon test, 378
winner gap, 145, 147, 150
witness, 105
word parallelism, 259
workbench, 452
workshop, 6
world wide web (WWW), 194
worst-case

analysis, 9, 128, 130–132, 168,
172

instance, 4

Xpress, 37

ZIMPL, 49, 50

	Front matter
	Chapter 1
	Chapter 1. Foundations of Algorithm Engineering
	Introduction
	Classical Algorithmics
	The New Paradigm: Algorithm Engineering
	Towards a Definition of Algorithm Engineering
	Methodology
	Visibility of Algorithm Engineering

	Building Blocks of Algorithm Engineering
	Modeling of Problems
	Algorithm Design
	Analysis
	Realistic Computer Models
	Implementation
	Libraries
	Experiments
	Success Stories of Algorithm Engineering
	Challenges
	Further Topics — Not Covered in This Book

	Chapter 2
	Chapter 2. Modeling
	Introduction
	Modeling Fundamentals
	Fundamentals
	Problem Analysis
	Problem Specification: Examples
	Modeling a Solution Approach
	Model Assessment
	Inherent Difficulties within the Modeling Process

	Modeling Frameworks
	Graph-Based Models
	Mixed Integer Programming
	Constraint Programming
	Algebraic Modeling Languages
	Summary on Modeling Frameworks

	Further Issues
	Specific Input Characteristics
	Problem Decomposition for Complex Applications

	Conclusion

	Chapter 3
	Chapter 3. Selected Design Issues
	Introduction
	Simplicity
	Advantages for Implementation
	How to Achieve Simplicity?
	Effects on Analysis

	Scalability
	Towards a Definition of Scalability
	Scalability in Parallel Computing
	Basic Techniques for Designing Scalable Algorithms
	Scalability in Grid Computing and Peer-to-Peer Networks

	Time-Space Trade-Offs
	Formal Methods
	Reuse and Lookup Tables
	Time-Space Trade-Offs in Storing Data
	Preprocessing
	Brute Force Support

	Robustness
	Software Engineering Aspects
	Numerical Robustness Issues
	Robustness in Computational Geometry

	Chapter 4
	Chapter 4. Analysis of Algorithms
	Introduction and Motivation
	Worst-Case and Average-Case Analysis
	Worst-Case Analysis
	Average-Case Analysis

	Amortized Analysis
	Aggregate Analysis
	The Accounting Method
	The Potential Method
	Online Algorithms and Data Structures

	Smoothed Analysis
	Smoothed Analysis of Binary Optimization Problems
	Smoothed Analysis of the Simplex Algorithm
	Conclusions and Open Questions

	Realistic Input Models
	Computational Geometry
	Definitions and Notations
	Geometric Input Models
	Relationships between the Models
	Applications

	Computational Testing
	Representative Operation Counts
	Identifying Representative Operations
	Applications of Representative Operation Counts

	Experimental Study of Asymptotic Performance
	Performance Analysis Inspired by the Scientific Method
	Empirical Curve Bounding Rules
	Conclusions on the Experimental Study of Asymptotic Performance

	Conclusions

	Chapter 5
	Chapter 5. Realistic Computer Models
	Introduction
	Large Data Sets
	RAM Model
	Real Architecture
	Disadvantages of the RAM Model
	Future Trends
	Realistic Computer Models

	Exploiting the Memory Hierarchy
	Memory Hierarchy Models
	Fundamental Techniques
	External Memory Data Structures
	Cache-Aware Optimization
	Cache-Oblivious Algorithms
	Cache-Oblivious Data Structures

	Parallel Computing Models
	PRAM
	Network Models
	Bridging Models
	Recent Work
	Application and Comparison

	Simulating Parallel Algorithms for I/O-Efficiency
	PRAM Simulation
	Coarse-Grained Parallel Simulation Results

	Success Stories of Algorithms for Memory Hierarchies
	Cache-Oblivious Sorting
	External Memory BFS
	External Suffix Array Construction
	External A*-Search

	Parallel Bridging Model Libraries
	Conclusion

	Chapter 6
	Chapter 6. Implementation Aspects
	Introduction
	Correctness
	Motivation and Description
	Testing
	Checking
	Verification
	Debugging

	Efficiency
	Implementation Tricks – Tuning the Algorithms
	Implementation Tricks – Tuning the Code
	Code Generation

	Flexibility
	Achieving Flexibility

	Ease of Use
	Interface Design
	Documentation and Readability
	Literate Programming

	Implementing Efficiently
	Reuse
	Programming Language
	Development Environment
	Avoiding Errors
	Versioning

	Geometric Algorithms
	Correctness: Exact Number Types
	Efficiency: Floating-Point Filters and Other Techniques
	Easy to Use: The Number Types CORE::Expr and leda::real

	Chapter 7
	Chapter 7. Libraries
	Introduction
	Library Overview
	Libraries as Building Blocks
	Basic Design Goals and Paradigms of Combinatorial and Geometric Libraries
	Fundamental Operations
	Memory Management
	Iterators versus Items
	Parameterization of Data Types
	Callbacks and Functors

	Advanced Number Types
	Basic Data Structures and Algorithms
	Data Structures
	Algorithms
	Summary and Comparison

	Graph Data Structures and Algorithms
	Data Structures
	Node and Edge Data
	Algorithms
	Summary and Comparison

	Computational Geometry
	Kernels and Exact Number Types
	Low-Level Issues in Geometric Kernels
	Functionality
	Performance
	Conclusion

	Chapter 8
	Chapter 8. Experiments
	Introduction
	Example Scenarios
	The Importance of Experiments
	The Experimentation Process

	Planning Experiments
	Introduction
	Measures
	Factors and Sampling Points
	Advanced Techniques

	Test Data Generation
	Properties to Have in Mind
	Three Types of Test Instances
	What Instances to Use

	Test Data Libraries
	Properties of a Perfect Library
	The Creation of a Library
	Maintenance and Update of a Library
	Examples of Existing Libraries

	Setting-Up and Running the Experiment
	Setup-Phase
	Running-Phase
	Supplementary Advice

	Evaluating Your Data
	Graphical Analysis
	Statistical Analysis
	Pitfalls for Data Analysis

	Reporting Your Results
	Principles for Reporting
	Presenting Data in Diagrams and Tables

	Chapter 9
	Chapter 9. Case Studies
	Introduction
	Shortest Paths
	Phase I: “Theory” (1959 – 1999)
	Phase II: Speed-Up Techniques for P2P (1999 – 2005)
	Phase III: Road Networks (2005 – 2008)
	Phase IV: New Challenges on P2P (Since 2008)
	Conclusions

	Steiner Trees
	Progress with Exact Algorithms
	Approximation Algorithms and Heuristics
	Conclusions

	Voronoi Diagrams
	Nearest Neighbor Regions
	Applications
	Algorithms
	The Implementation Quest
	The Exact Geometric Computation Paradigm for the Computation of Voronoi diagrams
	Topology-Oriented Inexact Approaches
	Available Implementations
	Conclusions

	Chapter 10
	Chapter 10. Challenges in Algorithm Engineering
	Challenges for the Algorithm Engineering Discipline
	Realistic Hardware Models
	Challenges in the Application Modeling and Design Phase
	Challenges in the Analysis Phase
	Challenges in the Implementation Phase
	Challenges in the Experimentation Phase
	Increase the Community!

	Epilogue

	Back matter

