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Preface

This book is de’signed to provide a comprehensive introduction to the design and
analysis of computer algorithms and data structures. In terms of the computer sci-
ence and computer engineering curricula, we have written this book to be prlmarlly
focused on the Junior-Senior level Algorithms (CS7) course, which is taught as a
first-year graduate course in some schools.

Topics

The topics covered in this book are taken from a broad spectrum of discrete algo--
rithm design and analyms including the followmg '

¢ Design and analysis of algorithms, including asymptotic notation, WOrst-

case analysis, amortization, randomization and experimental analysis

o Algorithmic design patterns, including greedy method, divide-and-conquer,

dynamic programming, backtracking and branch-and-bound

e Algorithmic frameworks, including NP- completenes's approximation algo-

rithms, on-line algorithms, external-memory algorithms, distributed ‘algo-
rithms, and parallel algorithms

e Data structures, including lists, vectors, trees, p_riorify queues, AVL trees, 2- |

4 trees, red-black trees, splay trees, B-trees, hash tables, skip-lists, union-find
trees

Combinatorial algonthms including heap-sort, quick-sort, .merge- sort se-
lection, parallel list ranking, parallel sorting

Graph algorithms, including traversals (DFS and BFS), topological sorting,
shortest paths (all-pairs and single-source), minimum spanning tree, maxi-
mum flow, minimum-cost flow, and matching

Geometric algorithms, including range searching, convex hulls, segment in-
tersection, and closest pairs

o Numerical algorithms, including integer, matrix, and polynomial multipli-

cation, the Fast Fourier Transform (FFT), extended Euclid’s algorithm, mod—
ular exponentiation, and primality testing

Internet algorithms, including packet routing, multicasting, leader election,
encryption, digital signatures, text pattern matching, information retrieval,
data compression, Web caching, and Web auctions

;
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" For the Instructor

This book is intended primarily as a textbook for a Junior-Senior Algorithms (CS7)
course, which is also taught as a first-year graduate course in some schools. This
book contains many exercises, which are divided between reinforcement exercises,
creativity exercises, and implementation projects. Certain aspects of this book were
specifically designed with the instructor in mind, including: | |

o Visual justifications (that is, picture proofs), which make mathematical ar-

- guments more understandable for students, appealing to visual learners. An
example of visual justifications is our analysis of bottom-up heap construc-
tion. This topic has traditionally been difficult for students to understand; -
hence, time consuming for instructors to explain. The included visual proof

' is intuitive, rigorous, and quick. ‘

o Algorithmic design patterns, which provide general techniques for design-
~ ingand implementing algorithms; Examples include divide-and-conquer, dy-

" namic programming, the decorator pattern, and the template method pattern.

o Use of randomization, which takes advantage of random choices in an al-

~ gorithm to simplify its- désign and analysis. Such usage replaces complex
average-case analysis of sophisticated data structures with intuitive analy-
sis of simple data structures and algorithms. Examples include skip lists,
randomized quick-sort, randomized quick-select, and randomized primality
 testing. | | | . '

o Internet algorithmics topics, which either motivate traditional algorithmic

“topics from a new Internet viewpoint or highlight new algorithms that are
derived from Internet applications. Examples include information retrieval,
‘Web crawling, packet routing, Web auction algdrithms, and Web caching
algorithms. We have found that motivating algorithms topics by their Inter-
net applications significantly improves. student interest in the study of algo-
rithms. - : _ . :

..o Java implementation examples, which cover software design methods, object-
oriented implementation issues, and experimental analysis of algorithms. .
These implementation. examples, provided in separate sections of various

chapters, are optional, so that instructors can either cover them in their lec-

tures, assign them as additional reading, or skip them altogether.

This book is also structured to allow the instructor a great deal of freedom in
how to organize and present the material. Likewise, the dependence between chap-
ters is rather flexible, allowing the instructor to customize an algorithms course to
highlight the topics that he or she feels are most important. 'We have extensively
discussed Internet Algorithmics topics, which should prove quite interesting to stu-
dents. In addition, we have included examples of Internet application of traditional

algorithms topics in several places as well.
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We show' in Table 0.1 how this book could be used for a traditional Intfoduc-
tion to Algorithms (CS7) course, albeit with some new topics motivated from the
Internet. | | o

all .
—2

. , Topics Option
1 ~Algorithm analysis Experimental analysis”
2 - Data structures Heap Java example
3 Searching | Include one of § 3.2-3.5
4 Sorting In-place quick-sort
5 Algonthmic techniques - TheFFT
6 Graph algonthms DFS Java example

7 Weighted graphs ~ Dijkstra Java example

-8 ~Matching and flow Include at end of course -
9 | Text processing (at least one section) Tries

12 Computational geometry " - Include at end of course

113 NP-completeness Backiracking .
| 14 Frameworks (at least one) Tnclude at end of course |

Table 0.1; Example syllabus schedule for

a traditional Introduction to Algorithms

(CS7) course, including optional c_hoices,for each chapter.

This book can also.-be used for ‘a specialize
which reviews some traditional algorithms topics,
light, while also ¢

plications. We

overing new algorithmic topics that are deri
show in Table 0.2 how this book could be used for a such a course.

Ch. Topics Option
1 Algorithm analysis Experimental analysis
2 | Data structures (inc. hashing) ‘Quickly review
3 | Searching (inc. § 3.5, skip lists) Search tree Java example
4 Sorting In-place quick-sort
5 ~ Algorithmic techniques The FFT
6 Graph algorithms DFS Java example
7 " Weighted graphs Skip one MST alg.
8 Matching and flow - Matching algorithms
1 9 Text processing _ Pattern matching
10 Security & Cryptography Java examples
11 | Network algorithms Multi-casting
13 NP-completeness Include at end of course
14 Frameworks (at least two) Tnclude at end of course

* Table 0.2: Example syllabus schedule for

ing optional choices for each chapter.

an Internet Algorithmics course, includ-

d Int_érnct Algbﬁth_mics course,
but in a new Internet-motivated
ved from Internet ap-
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Of course, other options are also possible, including a course that is a mixture of
a traditional Introduction to Algorithms (CS7) course and an Internet Algorithmics
course. We do not belabor this point, however, leaving such creative arrangements

. to the interested instructor.

Web Added-Value Education

This boek' comes accompanied by an extensive Web site:
http://www.wiley.com/college/goodrich/

ThJS Web site includes an extensive collection of educational aids that’ augment the
topics of this book. Specifically for students we include: :

¢ Presentation handouts (four—per—page_ format) for most topics in this book
e A database of hints on selected assignments, indexed by problem number
o Interactive applets that animate fundamental data structures and algorithms
o Source code for the Java examples in this book

We feel that the hint server should be of particular interest, particularly for creat1v1ty
problems that can be quite challenging for some students.

For instructors using this book, there is-a dedicated portion of the Web site just
for them, which includes the following additional teaching aids: -

e Solutions to selected exerc1ées in ihis book
e A database of additional exercises and their solutions
. Presentatlons (one-per-page format) for most topics covered in this book

Readers 1nterested in the 1mplementat10n of algorithms and data structures can
download JDSL the Data Structures Library in Java, from

http: //www Jdsl.org/

Prerequ&sntes

'We have written this book assuming that the reader comes to it with certain knowl-
~ edge. In particular, we assume that the reader has a basic understanding of elémen-
tary data structures, such as arrays and linked lists, and is at least vaguely familiar
with a high-level programming language, such as C, C++, or Java. Even so, all

- algorithms are described in a high-level “pseudo-code,” and specific programming

" language constructs are only used in the optional Java 1mplementat1on example
sections. -

In terms of mathematical background we assume the reader is familiar with
topics from first-year college mathematics, including exponents, logarithms, sum-
mations, limits, and elementary probability. Even so, we review most of these

 facts in Chapter 1, including exponents, logarithms, and summations; and we give
d summary of other useful mathematlcal facts, including elementary probablhty, in
Appendix A.
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Chapter 1. Algorithm Analysis

In a classic story, the famous mathematician Archimedes was asked to deter-
mine if a golden crown commissioned by the king was indeed pure gold, and not
part silver, as an informant had claimed. Archimedes discovered a way to determine
this while stepping into a (Greek) bath. He noted that water spilled out of the bath |
in proportion to the amount of him that went in. Realizing the implications of this
fact, he immediately got out of the bath and ran naked through the city shouting,
“Eureka, eureka!,” for he had discovered an analysis tool (displacement), which,
when combined with a simple scale, could determine if the king’s new crown was
good or not. This discovery was unfortunate for the goldsmith, however, for. when
Archimedes did his analysis, the crown displaced more water than an equal-weight
lump of pure gold, indicating that the crown was not, in fact, pure gold.

In this book, we are interested in the design of “good” algorithms and data
structures. Simply put, an algorithm is a step-by-step procedure for performing
some task in a finite amount of time, and a data structure is a systematic way of
- organizing and accessing data. These concepts are central to computing, but to
be able to classify some algorithms and data structures as “good,” we must have
precise ways of analyzing them. '

The primary analysis tool we will use in this book involves characterizing the
running times of algorithms and data structure operations, with space usage also
 being of interest. Running time is a natural measure of “goodness,” since time is a

precious resource. But focusing on running time as a primary measure of goodness
‘implies that we will need to use at least a little mathematics to describe running
times and compare algorithms. '

" We begin this chapter by describing the basic framework needed for analyzing
algorithms, which includes the language for describing algorithms, the computa-
tioual model that language is intended for, and the main factors we count when
considering running time. We also include a brief discussion of how recursive al-
gorithms are analyzed. In Section 1.2, we present the main notation we use to char-
acterize running times—the so-called “big-Oh” notation. These tools comprise the
main theoretical tools for designing and analyzing algorithms. o

In Section 1.3, we take a short break from our development of the framework
for algorithm analysis to review some important mathematical facts, including dis-
cussions of summations, logarithms, proof techniques, and basic probability. Given
this background and our notation for algorithm analysis, we present some case stud-
ies on theoretical algorithm analysis in Section 1.4. We follow these examples in
Section 1.5 by presenting an interesting analysis technique, known as amortization,
which allows us to account for the group behavior of many individual operations.
Finally, in Section 1.6, we conclude the chapter by discussing an important and
practical analysis technique-—experimentation. We discuss both the main princi-
ples of a good experimental framework as well as techniques for summarizing and
characterizing data from an experiinental analysis.
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1.1. Method_ologies forAnajyzing Alg(m'thms - 5

1.1 Methodologles for Analyzmg Algorlthms

-The running time of an algorithm or data structure operation typ1ca11y depends on
a number of factors, so what should be the proper way -of measuring it? If an
algorithm has been implemented, we can study its running time by executing it
on various test inputs and recording the actual time spent in each execution. Such
measurements can be taken in an accurate manner by using system calls that are
built into the language or operating system for which the algorithm is written. In
general, we are interested in determining the dependency of the running time on the
- size of the input. In order to determine this, we can perform several experiments
on many different test inputs of various sizes. We can then visualize the results
of such experiments by plotting the performance of each run of the algorithm as
a point with x-coordinate equal to the-input size, n, and y-coordinate equal to the
running time, ¢. (See Figure 1.1.) To be meaningful, this analysis requires that
-we choose good sample inputs and test enough of them to be able to make sound
statistical claims about the algorithm, Wthh is an approach we discuss in more
detail in Secuon 1.6. '
- In general, the running time of an algorithm or data structure method increases
with the input size; although it may ‘also vary for distinct inputs of the same size.
‘Also, the running time is affected by the hardware environment (processor,: clock
rate, memory, disk, etc.) -and software ‘environment (operating system, program- -
ming language, compiler, interpreter, etc.) in which the algonthm is implemented,
- compiled, and executed. All other factors being equal, the running time of the same
algorithm on the same input data will be smaller if the computer has, say, a much
faster processor or if the implementation is done in a program compiled into native
machine code instead of an interpreted implementation run on a virtual machine.
, . \ ) | -
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Figure 1.1: Results of an experimental study on the running time of an algorithm.
A dot with coordinates (r,¢) indicates that on an input of size n, the running time of
the algorithm is ¢ milliseconds (ms). (a) The algorlthm executed on a fast ccomputer;
~(b) the algorithm executed on a slow computer :
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Chapter 1 Algorlthm Analys:s

Requnrements for a General Analy5|s Methodology

Experimental stud1es on running tlmes are useful as we explore in Section 1.6, but
they have some limitations: '

o Expenments can be done only on a limited set of test mputs and care must

. be taken to make sure these are representative.

e It is difficult to compare the efficiency of two algorithms unless experiments

~ on their running times have been performed in the same hardware and soft-
ware environments.:

e It is necessary to implement and execute an algonthm in order to study its
- running time expenmentally o

Thus, while expenmentatlon has an 1mportant role to play in algonthm analys1s
~ it alone is not sufficient. Therefore, in addition to experimentation, we desire an
analytic framework that:

o Takes into account all possible inputs
e Allows us to evaluate the relative efficiency of any two algonthms ina way
- that is independent from the hardware and software environment
e Canbe performed by studylng a h1gh-leve1 description of the algonthm with-
out. actually 1mp1ement1ng it or runmng experlments onit. '

Th1s methodology aims at associating with each algorlthm a function f(n) that
characterizes the running time of the algorithm in terms of the mput size n. Typical
functlons that will be encountered include 7 and n?. For example we will write
statements .of the type “Algorithm A runs in time proportional to »n,” meaning that
if we were to perform experiments, we would find that the actual running time of
algorithm A on any input of size n never exceeds cn, wh'ere c is a constant that -
depends on the hardware and software environment used in the experiment. ‘Given
two algorithms A and B, where A runs in time proportional to # and B runs in time -
proportional to 2, we will prefer A to B, since the function 7 grows at a smaller
rate than the function n?. - |

- We are now ready to “roll up our sleeves” and start developing our- method- |
ology for algorithm analys1s There are several components to this methodology,'
including the following:

o A language for descnblng algorithms

o A computatronal model that algonthms execute within
e A metric for measunng algorithm running time
L

An approach for charactenzmg running times, including: those for recursive
algorithms.

We describe these components in more detail in the remainder of this section.' |
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1.1.1. -Pseudo—C-Ode

Programmers are often asked to describe algorrthms 1n a way. that is intended for
human eyes only. Such descriptions are not computer programs, but are more struc-
tured than usual prose. They also facilitate the high-level analysis of a data structure

- or algonthm We call these descriptions pseudo-code.

An Example of Pseudo-Code

The array-maximum problem is the simple problem of finding the max1mum ele-
ment in an array A storing » integers. To solve this problem, we can use an algo-
 rithm called arrayMax, which scans through the elements of A using a for loop.

The pseudo -code description of algorithm array_M axis. shown in Algorithm .1.2.

~Algorithm arrayMax(A,n):

Input: An array A storing n > | integers.

Output: The maximum element in A.
currentMax — A{0]
fori—1ton—1do

if currentMax < Ali] then
currentMax +— Ali]

veturn currentMax

| Algor’ithm"l.z: Algorithm arrayMax B

Note that the pseudo -code is more compact than an equlvalent actual software
~ code fragment would be In addition, the pseudo-code is easier to read and under-
stand

‘Using Pseudo-Code to Prove A‘Igorithm \Corﬂrectness -

By inspecting the pseudo-code, we can argue-about.the correctness of algorithm
arrayMax with a simple argument. Variable currentMax starts out being equal to
the first element of A. We claim that at the beg1nn1ng of the ith iteration of the loop,
currentMax is equal to the maximum of the first i elements in A. Since we compare
‘currentMax to Aff] in iteration i, if this claim is true before this-iteration, it will be
true after it for i + 1 (which is the next value of counter i). Thus, after n— 1 itera-

 tions, currentMax will equal the maximum element in A. As with this example, we ‘
want our pseudo-code descnptlons to always be detalled enough to fully justify the
correctness of the algorithm they describe, while be1ng simple enough for human
readers to understand
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What Is Pseudo-Code? |

Pseudo-code is a m1xture of natural language and high-level programming con-
structs that describe the main ideas behind a generic implementation of a data
“structure or algonthm There really is no precise definition of the pseudo-code lan--
guage, however, because of its reliance on natural language. At the same time, to
help achieve clarity, pseudo-code mixes natural language with standard program-
ming language constructs. The programming language constructs we choose are.
~ those consistent with modern high-level languages such as C, C++, and Java. These

constructs include the following:

. Expresswns We use standard mathematlcal symbols to express numeric

o A_and Boolean expressions. We use the left arrow sign (<) as the assignment
operator in ass1gnment staterments (equlvalent to the = operator in C, C++,
‘and Java) and we use the equal sign (=) as the equality relation in Boolean
expressions (equivalent to the “= =" relation in C, C++, and Java).

e Method declarations: Algorlthm name( paraml param2 .) declares a new
method “name” and its parameters

o Decision structures: if condition then true-actions [else false- actions]. We
use indentation to indicate what actions should be 1ncluded in the true-actions
~and false-actions. : :

o While-loops: while condition do actions. We use 1ndentat10n to indicate
" what actions should be included in the loop actions.

o Repeat-loops repeat actions until condition. We use indentation to indicate ‘
what actlons should be included in the loop actions.

e For-loops: for var1able-lncrement—deﬁnltlon do actions. We use indentation
to indicate ‘what actions should be included among the loop actions.

o Array indexing: Ali] represents the ith cell in the array A. The ce11s of an
n-celled array A are indexed from A[0] to A[n— 1] (consistent with C, C++,
and Java). '

e Method calls: object method(args) (object is optional if it is understood).

e Method returns: return value. This operation returns the value spec1ﬁed to
the method that calléd this one.

When we write pseudo -code, we must keep in mind that ‘we are wntlng for a
- human reader not a computer. Thus we should strive to.communicate high-level
ideas, not 10w level implementation details. At the same time, we should not gloss
over important steps. Like many forms of human communlcatlon ﬁndmg the r1ght
balance is an important skill that is refined through practice..

Now that we have developed a high-level way of descr1b1ng algorlthms let us
‘next d1scuss how we can analytically charactenze algorithms written in pseudo-
code
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1.1.2 The Random Access Machlne (RAM) Model

As we noted above, experimental analysis is valuable, but it has its limitations. If -
we wish to analyze a particular algorithm w1thout performing experiments on its
running time, we can take the following more analytic approach directly on the

high-level code or pseudo -code. We define a set of high-level primitive operatzons" h

that are largely independent from the programming language used and can be iden-
tified also in the pseudo-code. Primitive operations.include the following: = - .-

e Assigning a value to a variable
e Calling a method
e Performing an arithmetic operatlon (for example adding two numbers)
o Comparing two numbers
"o Indexing into an array
e Following an object reference
e Returning from a method.

Specifically, a primitive operation corresponds to a low-level instruction with an
execution time that depends on the hardware and software environment but is nev-
ertheless constant. Instead of trying to determine the specific execution _tirne of
each primitive operation, we will simply count how many primitive operations are
executed, and use this number ¢ as a high-level estimate of the running time of the
algorithm. This operation count w111 correlate to an actual running time in a spe-
cific hardware and software environment; for each prlmltlve operation corresponds

to a constant-time instruction, and there are only a fixed number of primitive opera-

-tions. The 1mp11¢1t assumption in this approach is that the running times of different

primitive operations will be fairly similar. Thus, the number, ¢, of primitive opera- -
tions an algorithm performs will. be proportronal to the actual running time of that

algorithm. :

RAM Machine Model Definition
This approach of simply countrng primitive operatlons glves rise to a computatlonal
model called the Random Access Machine (RAM) This model, which should not
be confused with “random access memory,” views a computer simply as a CPU
connected to a bank of memory cells. Each memory cell stores a word, which can
be a number, a character string, or an address, that is, the value of a base type. The
" term “random access” refers to'the ability of the CPU to access an arbitrary memory
cell with one primitive operation.. To keep the model simple, we do not place
any specific limits on the size of numbers that can be stored in words of memory.
We assume the CPU in the RAM model can perform any primitive operation in
a constant number of steps, which do not depend on the size of the input. Thus,
an accurate bound on the number of primitive operations arn algorithm performs
_ corresponds directly to the running time of:that algorlthm in the RAM model
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1.1.3 Counting P'rimitive Operations

We now show how to count the number of primitive operations executed by an al-
gorithm, using as an example algonthm arrayMax, whose pseudo-code was given -
back in Algonthm 1.2. We do this analys1s by focusmg or. each step of the algo- -
rithm and counting the primitive operations that it takes, taking into consideration -
that some operations are repeated, because they are enclosed in the body of a loop.

e Initializing the variable currentMax to A[O] corresponds to two primitive op-
erations. (indexing into an array and assigning a value to a variable) and is
executed only once at the beginning of the algonthm Thus, it contributes

'~ two units to the count. .

"o Atthe beginning of the for loop, counter I is 1n1t1a11zed to 1. This action corre-
sponds to executing one primitive operation (assigning a value to a vanable)

o Before entering the body of the for loop, COIldlthl’l i < n is verified. This
~action corresponds to executing one primitive instruction (comparing two
numbers). Since counter i starts-at 0 and is incremented by 1 at the end of:
each iteration of the loop, the comparison i < 7 is performed n times. Thus,’
it contributes » units to the count. :

e The body of the for loop is executed n — 1 times (for values 1,2,...,n— I
of the counter). At each iteration, Ali] is compared with currentMax (two
primitive operations, indexing and comparing), A[r*urrentMax] is possibly
assigned to currentMax (two primitive operations, indexing and assigning),

- and the counter i is incremented (two primitive operations, summing and
ass1gn1ng) Hence, at each iteration of the loop, either four or six primitive
‘operations are performed, depending on whether A[f] < currentMax or Ali] >
currentMax. Therefore, thé body of the loop contnbutes between 4(n — 1)
and 6(n — 1) units to the count.

e Returning the value of variable currentMax correSponds to one pnnnttve op-
eration, and is executed only once.

: To summarize, the number of primitive operatlons t(n) executed by algorithm ar-
rayMax is at least

. :/

2+1+n+4(n—1)+1="5n
and at mos; | |
' 2+1+n+6(n—1)+1=Tn—2.

The best case (t(n) = 5n) occurs when A[0] is the maximum element, so that vari-
able currentMax is never rea331gned The worst case (t( ) = 7n— 2) occurs when
the elements are sorted in increasing order, SO that variable currentMax 1s reas-
31gned at each iteration. of the for loop.
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| Average-Case énd_"Wgr- -Case Analysis

- Like the arrayMax meth- , an algorithm may run faster on some inputs than it does
~on others. In such caser /e may wish to express the running time of such an algo-
rithm as an average tak 1 over all possible inputs. Although such an average case
‘analysis would often be valuable, it is typically quite challenging. It requires us to
define a probability distribution on the set of inputs, which is typically a difficult
task. Figure 1.3 schematically shows how, depending on the input distribution, the
running time of an algorithm can be anywhere between the worst-case time and the
best-case time. For example, what if inputs are'r'eally' only of types “A” or “D”?
-An average-case analysis also typically requires that we calculate expected run-

mng times based on-a given input distribution. Such an analysis often réquires

" heavy mathematlcs and probability theory.

Therefore, except for expenmental studies or the analysis of algorithms that are
,themselves randomized, we will, for the remainder of this book, typlcally charac-
terize running times in terms of the worst case. We say, for example, that algorithm

- arrayMax executes #(n) = 7n — 2 primitive operations in the worst case, meaning
that the maximum number of primitive operations executed by the algorithm, taken
over all inputs of size n, is 7n —2. | -

This type of analysis is much easier than an average-case ana1y31s as it does
not requ1re probability theory; it _]llSt requires the ability to identify the worst-case
input, which is often straightforward: In addition, taking a worst-case approach can
‘actually lead to better algorithms. Making the standard of success that of having an
- algorithm perform well in the worst case necessarily requires that it perform well on
every input. That is, designing for the worst case can lead to stronger algorithmic
“muscles,” much like a track star who always practices by running up hill.

- oo o o e = m WOTSt-case time

© average-case time?

= = = best-case time

Running Time

A B C D E F G
_Input Instance  * |

anure 1.3: The dlfference between best-case and worst-case tlme Eachl bar repre-
sents the running time of some algorlthm on a different p0331b1e input.
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1.14 __'Ana|yz_ing Recursive Algorithms

Tteration is not the only interesting way of solving a problem. Another useful tech-
" nique, which is employed by many algorithms, is to use recursion. In this tech-
nique, we define a procedure P that is allowed to make calls to itself as a subrou-
tine, .provided those calls to P are for solving subproblems of smaller size. The
subroutine calls to P on smaller instances are called “recursive calls” A recur-
sive procedure should always define a base case, which is small enough that the
algorithm can solve it directly without using recursion. | ’ '

~ We give a recursive solution to the array maximum problem in- Algorithm 1.4,
~ This algorithm first checks if the array contains just a single item, which in this case
must be the maximum; hence, in this simple base case we can immediately solve
the problem. Otherwise, the algorithm recursively computes the maximum of the
first 71— 1 elements in the array and then returns the maximum of this value and the
" last element in the array. | | |
As with this example, recursive algorithms are often quite elegant. Analyzing
*the running time of a recursive algorithm takes a bit of additional work, however./ -
In particular, to analyze such a running time, we use a recurrence equation, which
defines mathematical statements that the running time of a recursive algorithm must
 satisfy. We introduce a function T (r) that denotes the running time of the algorithm
_on an input of size n, and we-write equations that T (n) must satisfy. For example,
we can characterize the running time, T (n), of the recu rsiveMax algorithm as

3 ifn=1"
T(n) = { T(n—1)+7 otherwise,

assuming that we count each comparison, array reference, recursive call, max cal-
culation, or return as a single primitive operation. Ideally, we would like to char-
acterize a recurrence equation like that above in closed form, where no references
to the function T appear on the righthand side: For the recursiveMax algorithm,
it isn’t too hard to see that a closed form would'be T'(n) =7(n—1)+3=T7n— 2.
In general, determining closed form solutions to recurrence equations can be much
more challenging than this, and we study some specific examples of recurrence
equations in Chapter 4, when we study some sorting and selection algorithms. We
study methods for solvir__lgl recurrence equations of a general form in Section 5.2.

" Algorithm recursiveMax(A, n): |
Input: An array A storing n > 1 integers.
Output: The maximum elementin A.
. if n =1 then "
return A[0] | |
return max{recursiveMax(4,n— 1), Aln— 1]}
B Algorithni 1.4: Algorithm recursiveMax.
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1.2 Asymptbtic ‘Notation

We have clearly gone into laborious detail for evaluating the running time of such
“a-simple algorithm as arrayMax and its recursive cousin, recursiveMax. Such an
approach would clearly prove cumbersome if we had to perform it for more compli-
 cated algorithms. In general, each step in a pseudo-code description and each state-
“ment in a high-level language implementation corresponds to a small number of
prir_n_itive operations that does not depend on the input size. Thus, we can perfofm
 asimplified analysis that estimates the number of primitive operations executed up
to a constant factor, by counting the steps of the pseudo-code or the statements of
the high-level language executed. Fortunately, there is a notation that allows us to
- characterize the main factors affecting an algorithm’s running time without going
‘into all the details of exactly how many primitive operations are performed for each
constant-time set of instructions. B S

12.1 The “Big-Oh” Notation

Let f(n) and g(r) be functions mapping nonnegative integers to real numbers We
say that f(n) is O(g(n)) if there is a real constant ¢ > 0 and an integer constant
no > 1 such that f(r) < cg(n) for every integer n > no. This definition is often
referred to as the “big-Oh” notation, for it is sometimes pronounced as “f(n) is big-
Oh of g(n)” Alternatively, we can also say “f(n) is order g(n).” (This definition
is illustrated in Figure 1.5.) : -

“Running Time

"o Input Size

Figure 1.5: Illustrating the “big-Oh” notation. The function f(n) is O(g(n)), for
f(n) < c-g(n) whenn > no.
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"Example 1.1: 7n—21isO(n).

Proof: By the big-Oh definition, we need to find a real constant ¢ > 0 and an
integer constant ng >'1 such that 7n — 2 < cn for every integer n 2> no. It is easy to .
see that a poss:ble choice is c =7 and ng = 1. Indeed, this is one of infinitely many
~choices available because any real number greater than or equal to 7 will work for

‘¢, and any integer greater than or equal to 1 will work for ny. _ .

" The big-Oh notatlon allows us to say that a functlon of nis “less than or equal
to” another function (by the inequality “<” in the definition), up to a constant factor
(by the constant ¢ in the deﬁnmon) and i in the asympfotic sense as n grows toward
infinity (by the statement “n > ng” in the deﬁnltlon)

The big-Oh notation is used widely to characterize running times and space
bounds in terms of some parameter »n, which varies from problem to problem, but
is usually defined as an intuitive notion of the “size” of the problem. For example, if
we are interested in finding the largest element in an array of integers (see arrayMax
given in Algorithm 1.2), it would be most natural to let n denote the number of
‘elements of the array. For example, we can write the following precise statement
on the running tlme of algorithm arrayM ax from Algorithm 1.2. S

Theorem 1.2: The running time of algonthm arrayMax for computing the maxi-
mum element in an array of n mtegers is O( )

Proof: As shown in Section 1.1.3, the number of primitive operations executed
by algorithm arrayMax is at most 7n— 2. We may therefore apply the big-Oh
definition with ¢ =7 and nyp = 1 and conclude that the runmng time of algorithm
arrayMax is O(n). : S [

| Let us consider a few additional examples that illustrate the big-Oh netat;ion.

Example 1.3: 20n® + 10nlogn+5 is O(n®).

‘Proof: 20n> +10nlogn-+5 < 352, forn > L | -
In fact, any polynomial agn* + ag—yn* ! - -+ ag will always be O(nF).

Example 1.4: 3logn+log logn is O(log n).

Proof: - 310gn+ loglogn < 4logn, for n > 2. Note that loglogn is not even
defined for n=1. That is why we usen > 2. |

Example 1.5: 2'% is o(1). |
‘Proof: . 2!% <2101 for > 1. Note that variable r does not appear in the
inequality, since we are dealing with constant-valued functions. | m
Example 1.6: 5/nis O(1/n).

Proof: 5 /n < 5(1/n), forn > 1 (even though this is actually a decreasing func-
tion). | I | o :
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In general we should use the blg-Oh notation to characterrze a function as
closely as possrble While it is true that f(n) = 4n3 + 314/3 ig O(n’), it is more
‘accurate to say that f(n) is O(n®). Consider, by way of analogy, a scenario where
a hungry traveler driving along a long country road happens upon a local farmer
walking home from a market. If the traveler asks the farmer how much longer he
- must drive before he can find some food, it may be truthful for the farmer to say,
- “certainly no longer than 12 hours,” but it is much more accurate (and helpful) for
him to say, “you can find a market just a few minutes’ drive up this road”
Instead of always applying the big-Oh definition directly to obtain a big-Oh
characterization, we can use the following rules to simplify notation.

Theorem 1.7: Letd(n) (n) f(n), and g(n) be functions mappmg nonnegame
integers to nonnegative reals. Then |

Ifd(n) is O(f(n)), then ad(n) is O(f(n)), for a.‘ny'_cons‘tanta > 0. |
Ifd(n) is O(f(n)) and e(n) is O(g(n)), then d(n) +e(n) is O(f(n) +8(n)).
If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is O(f f(n)g(n)).
Ifd(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O(g (n)).
If f(n) is a polynomial of degree d (that is, f (n) =ap+ain+ -+ agn’),
Vthen f(n) is O(n?). |
6. n*is O(a") for any fixedx >0 anda > 1.
7. logn® is O(logn) for any fixed x > 0. \
8. -logxn 1s O(ny) for any fixed constants x > 0 and y >0

'S”PS”N?‘

Itis consldered poor taste to include constant factors and lower order terms in
the big-Oh notation. For example, it is not fashionable to say that the function 2n%
is O(4n® + 6n log n), although this is completely correct. We should strive mstead

- to describe the function in the brg Oh in simplest terms. .

Example 1.8: 2n3 +4n?logn is O(n 3.

Proof: We can app]y the rules of Theorem 1.7 as foIIows

logn is O(n) (Rule 8). -

4n? logn is O(4n*) (Rule 3).

203 + dn*logn is O(2n3 + 4n?) (Rule 2)

o 23+ 413 is O(n®) (Rule 5 or Rule 1). .

o 2n°+4n’logn is O(n®) (Rule 4). | m

‘Some functions" appear often in the analysis of algorithms and data structures,
and we often use special terms to refer to them. Table 1.6 shows some terms com-
monly used in algorrthm analysrs

. logarlthmlc lmear quadratlc | ]rolynomial éxponential
(logn) O(n) | o) | 0@ k2D | 0(0”) (a>1),

Table 1.6: Termmology for classes of funcnons .
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It"‘-’isl.___chs_i_‘dered -Zpr_r ta_s:,te_, in generai, t;oz'say-,..*‘_ f(n) g O(Ig(n)),s’ sih_ce the big;Oh
already denotes the “less-than-or-equal-te”. concept. Likewise, although common,
it is not.completely correct to say “f(n) = O(g(n))” (with the usual understanding

of the “=""relation), and it is actually incorrect to say “f(n) >0(g(n))” or °f (n) >
O(g(n))”” It is best to say “f(n) is O(g(n)).” For the more mathematically inclined,

it is also correct to say,

 “fn) € O(g(m)?

for the big-Oh notation is, technically speaking, denoting 3 whole collection of
functions. S : : | o

~ Even with this interpretation, there is considerable freedom in how we can use
arithmetic operations with the big-Oh notation, provided the connection to the def-

inition of the big-Oh is clear. For instance, we can say,

“f(n) is g(n) + O(h(n)),”

which would mean that there are constants ¢ >0 and ng > 1 such that f(n) <
g(n) + ch(n) for n > ng. As in this example, we may sometimes wish to give the
exact leading term in an asymptotic characterization. In that case, we would say _
that “f(n) is g(n) + O(h(n)),” where h(n) grows slower than g(n). For example,

we could say that 2nlogn +4n+ 104/n is 2nlogn+ O(n).

1.2.2

“Relatives” of the Big-Oh
Just as the big-Oh notation provides an asymptotic .w_ay of saying that a function
is “less than or equal to” another function, there are other notations that provide '

‘asymptotic ways of making other types of comparisons.

.Big—Q’mega and Big—Theta

~ Let f(n) and g(n) be functions mapping integers to real numbers. We say that f(n)

is Q(g(n)) (pronounced “f(n) is big-Omega of g(n)”) if g(n) is O(f(n)); that is,
there is a real constant ¢ > 0 and an integer constant ng > 1 such that f(n) > cg(n),
for n > ny. This definition: allows us to say asymptotically that one function is

greater than or equal to another, up to a constant factor. Likewise, we say that f(n)

-~ is ©(g(n)) (pronounced “f(n) is big-Theta of g(n)”) if f (n) is O(g(n)) and f(n) is

Q(g(n)); that is, there are real constants ¢’ > 0 and ¢ > 0, and an integer constant
ng > 1 such that ¢’g(n) < f(n) < ¢"g(n), for n > no. ' ,

The big-Theta allows us to say that two functions are asymptotically equal, up
to a constant factor. We cohsider some examples of these notations below.
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Example 1. 9 310gn+loglogn is Q(logn)
 Proof: 3logn+1oglogn>31ogn forn>2. R m

* This example shows that lower order terms are not dominant in estabhshmg
lower bounds with the big-Omega notation. “Thus, as the next example sums up,
lower order terms are not dominant in the big- Theta notation e1ther

- Example 1 10: 310gn+loglogn is G)(logn)
Proof: This follows from Examples 1.4 and 1.9. | B

nge Worde of Caution

A few words of caution about asymptotic notation are in order at this point. First,
note that the use of the big-Oh and related notations.can be somewhat misleading
should the constant factors they “hide” be very large. For example while it is true
that the function 10!%®n is O(n), if this is the running time of an algorlthm being
compared to one whose running time is 10nlogn, we should prefer the @(nlogn)
time algorlthm even though the linear-time algorlthm is asymptotically faster. This. -
preference is because the constant. factor, 10*%, which is called “one googol,” is
believed by many astronomers to be an upper bound on the number of atoms in
~ the observable universe. So we are unlikely to ever have a real- world problem that
" has this number as its input size. Thus, even when using the big-Oh notation, we
should at least be somewhat mindful of the constant factors and lower order terms
we are “h1d1ng ” '

The above observanon raises the issue of what constitutes a “fast” algonthm
Generally speaking, any algorithm running in O(nlog n) time (with a reasonable
constant factor) should be considered efficient. Even an O(n ?) time method may be
fast enough in some contexts, that is, when 7 is small. But an algorithm running in
©(2") time should never be considered efficient. This fact is illustrated by a famous
story about the inventor of the game of chess. He asked only that his king pay him
1 grain of rice for the first square on the board, 2 grains for the second, 4 grains
for the third, 8 for the fourth, and so on. But try to imagine the 51ght of 264 grains
stacked on the last square! In fact, this number cannot even be represented as a

~ standaid long integer in most programming languages.

Therefore, if we must draw ‘a line between efficient and inefficient algorlthms
it is natural to make this distinction be.that between those algorithms running in

- polynomial time and those requiring exponential time. That is, make the distinction

between algorithms with a running time that is O(n n*), for some constant £ > 1, and

~ those with a running time that is ©(c"), for some constant'c > 1. Like so-many

" notions we have discussed i in this section, this too should be taken with a “grain of

salt,” for an algorithm running in @(n!%) time should probably .not be considered

“efficient.” Even so, the distinction between polynomial-time and exponentlal -time
algorithms is considered a robust measure of tractablhty
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“Distant Cousins” of the Big-Oh:- Little-Oh and Little-Omega

There are also some ways of saying that one function is strictly less than or strictly
greater than another asymptotlcally, but these are not used as often as the big-Oh, .
big-Omega, and big-Theta. Nevertheless, for the sake of completeness, we give
their definitions as well. : .

Let f(n) and g(n) be functions mapping 1ntegers to real numbers. We say that
- f(n) is o(g(n)) (pronounced “f(n) is little-oh of g(n)”) if, for any constant ¢ > 0,
there is a constant 7y > 0 such that f(n) < cg(n) for n > ny. Likewise, we say that
F(n) is 0(g(n)) (pronounced “f(n) is little-omega of g(n)”) if g(n) is o( f(n)), that
is, if, for any constant ¢ > 0, there is a constant ng > 0 such that g(n) < cf(n) for
n > ny. Intuitively, o(-) is analogous to “less than” in an asymptotlc sense, and o(-)
is analogous to “greater than” in an asymptotic sense:

Example 1.11: The function f(n) = 12112 +6n is o( 3) and o(n).

Proof Let us first show that f(n) is o(n®). Let ¢ > 0 be any constant. If we take
(12‘|‘6)/C then fOI‘n > nO, we have o

cn’ >12n —|—6n >12n —I—6n

" Thus, f(n) iso(n®). | | o | —
To show that f () is w(n), let c > 0 again be any constant. If we take ng = ¢/12,
then, for n > ny, we have \ ' , o . .

| 120 +6n>12n2 > cn. |
Thus, f(n) iso(m). e

For the reader familiar with 1itnits, we note that f (n) is o( (n)) if and only if

prov1ded thls lll‘nlt exists. The main dlfference between the little-oh and big-Oh
notions is that f(n) is O(g(n)) if there exist constants ¢ > 0 and ng > 1 such that
~ f(n) < cg(n), for n > ng; whereas f(n) is o(g(n)) if for all constants ¢ > 0 there is
"a constant 7o such that f(n) < cg(n), for n > ny. Intuitively, f(n) is o(g(n)) if f(n)
becomes insignificant compared to g(n) as n grows toward infinity. As previously |
-mentioned, asymptotic notation is useful because it allows us to concentrate on the
main factor determining a function’s growth '

To summarize, the asymptotic notations of big- Oh big- Omega and big-Theta,
as.well as little-oh and little-omega, provide a convenient language for us to analyze
* data structures and algorithms. As mentioned earlier, these notations provide con-
* veniénce because they let us concentrate on the “big picture” rather than low-level
details. - |
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|

123 -The Importance of Asymptotics |

Asymptotic notation has many important benefits, which might not be immediately
~ obvious. Specifically, we illustrate one important aspect of the asymptotic view-
point in Table 1.7. “This table explores the maximum size allowed for an input
instance for various running times to be solved in 1 second, 1 minute, and 1 hour,
assuming each operation can be processed in 1 microsecond (1 us). It also shows
the importance of algorithm design, because an algorithm with an asymptotically
_slow running time (for example, one that is O(n?)) is beaten in the long run by
~ an algorithm with an asymptotically faster running time (for example, one that is
O(nlogn)), even if the constant factor for the faster algorithm is worse.

- Running Maximum Problem Size (n)
Time = | 1second 1 minute 1 hour

"~ 400n 2,500 150,000 - 9,000,000
20n[logn] | 4,096 166,666 7,826,087
2P 707 5,477 42,426

n* 31 88 244

» | 19 . 25 . 31

Table 1.7: Maximum size of a problem that can be solved in one second, one
minute, and one hour, for various running times measured in microseconds.

The importance-of good algorithm design goes beyond just what can be solved
effectively on a given ‘computer, however. As shown in Table 1.8, even if we
achieve a dramatic speedup in hardware, we still cannot overcome the handicap
of an asymptotically slow algorithm. This table shows the new maximum problem
size achievable for any fixed amount of time, assuming algorithms with the given
running times are now run on a computer 256 times faster than the previous one.

| Running | New Maximum
' Time | = Problem Size
| 400n 256m - s
"1 20n[logn] | approx. 256((logm)/(7 +logm))m
2n? lem
n* o 4dm =
» | . . m+8

Table 1.8: Increase in the maximum size of a problem that can be solved in a certain
fixed amount of time, by using a computer that is 256 times faster than the previous
one, for various running times of the algorithm. Each entry is'given as a function
of m, the previous maximum problem size. AU |
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‘Ordering Functions by Their Growth Rates

Suppose two algorithms solving the same problem are available: an algorithm A,
which has a running time of ®(r), and an algorithm B, which has a running time
of ©(n?). Which one is better? The little-oh nootation says that 7 is o(n?), which
implies that algorithm A is asymptotically better than algorithm B, although for a
given (small) value of n, it is possible for algorithm B to have lower running time
than algorithm A. - Still, in the long run, as shown in the above tables, the benefits
of algorithm A over algorithm B will become clear. o : |

" In general, we can use the little-oh notation to order classes of functions by
asymptotic growth rate. In Table 1.9, we show a list of functions ordered by in-
creasing growth rate, that is, if a function f(n) precedes a function g(n) in the list,

then f(n) 15 0(g(n)). - .

Functions Ordered by Growth Rate
logn .
lo g2 n
vn
n
nlogn

n2

n®

on

Table 1.9: An ordered list of simple functions. Note that, .QSing common terminol-
ogy, one of the above functions is logarithmic, two are polylogarithmic, three are
sublinear, one is linear, one is quadratic, one is cubic, and one is exponential.

~

In Table 1. 1_0, we illustrate;_the differencg. in _the gro_Wth fate of all but one of the
functions shown in Table 1.9. - - :

n |logn n n  nlogn nt n on

2 1 1.4 2 2 & 8 4

4. | 2 2 4 - 8 16 64 | 16

8 3 28 8 24 64 512 256

16 4 4 16 64 256 4,006 65,536
2 |5 57 32 160 1,024 - 32,768  4,294,967,296
64 | 6 8 64 38 4,006 262,144 1.84 % 10"
128 | 7. 11 128 8% 16,384 2,097,152 3.40 x 108
256 8 16 256 2,048 . 65,53 16,777,216 - 1.15x 107
s12 | 9 23 512 4,608 262,144 134,217,728 - 1.34x 101
1,024 | 10 32 1,024 10,240 1,048,576 1,073,741,824 . 1.79 x 10°®

Table 1.10: Growth of several functions.
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1 3 A Quick Mathematlcal Revneyv

In this section, we briefly review some of the fundamental concepts from discrete

- mathematics that will arise in several of our discussions. In addition to these fun-

damental concepts, Appendix A includes a list of other useful mathemat1ca1 facts
that apply in the context of data structure and algorithm analysis.

1.3.1

Summations

A notation that appears again and again in the analysis of data structures and algo-
rithms is the sttmmation which is defined as

Zf( +f(a+1)+f(a+2)+ +f( )-

Summations arise in data structure and algorithm analy31s because the running
times of loops naturally give rise to summations. For example, a summation that
often arises in data structure and algorithm analysis is the geometric summation.

-The_nt'ém_ 1.1:_2: For ény_ fnteger.n > 0 and any real number 0 < a # 1, consider

n ) ’ ’
Nd=1+a+d*+---+a"
=0 .

(remembenng that a® = 1 ifa> 0) Th13 summation is equa] to

1 — n+1

1=a

~ Summations as shown in Theorem 1.12 are called geometric summations, be-
cause each term is geometncally larger than the previous one if @ > 1. That is, the
terms in such a geometric summation exhibit exponential growth. For example
everyone worklng in COmputlng should know that

[424+44+8+ 42 =21,

for this is the largest integer that can be represented in b1nary notation using » bits.
Another summation that arises in several contexts is ‘

2: 1—|—2—-|—3—|—'---—|—(n—.2)—|—(n—1)—|—n.

This summatlon often arlses 1in the ana1y81s of loops in cases where the number of
operations performed inside the loop increases by a fixed, constant amount with

“each iteration. This summation also has an interesting history. In 1787, a German

elementary schoolteacher decided to keep his 9- and IO—year-old pupils occupied
with the task of adding up all the numbers from 1 to 100. But almost immediately
after giving this assignment, one of the children claimed to have the answer—35,050.
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That elementary school student was none. other than Karl Gauss, who would
grow up to be one of the greatest mathematicians of the 19th century. It is widely
suspected that young Gauss derived the answer to his teacher’s assignment using -
the following identity. . : o

Theorem 1.13: For any integer n > 1, we have

iizn(n—l—l)-

Proof: We give two “visual” justifications of Theorem 1.13 in Figure 1.11, both
of which are based on computing the area of a collection of rectangles representing
the numbers 1 through z. In Figure 1.11a we draw a big triangle over an ordering
of the rectangles, noting that the area of the rectangles is the same as that of the
big triangle (n?/2) plus that of n small triangles, each of area 1/2. In Figure 1.11b,
which applies when 7 is even, we note that 1 plus nis n+1, as is 2 plus n— 1,3
plus n— 2, and so on. There are n/2 such pairings. m

}

- n+l

(b)

Figure 1.11: Visual justifications of Theorem 1.13. Both illustrations visualize the
identity in terms of the total area covered by n unit-width rectangles with heights
1,2,...,n. In (a) the rectangles are shown to cover a big triangle of area n?/2 (base
n and height n) plus n small triangles of area 1/2 each (base 1 and height 1). In
(b), which applies only when r is even, the rectangles are shown to cover a big
rectangle of base n/2 and height n+1. | |
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1.3.2 Logarithms and Exponents

One of the interesting and xsc__)metime‘s_ even surprising_ asﬁectsi='e'f the enalysis of data
structures and algorithms is the ubiquitous presence of logarithms and exponents,
where we say | . | . -
| logba:e if . a=b"

As is the custom in the computing literature, we omit writing the base b of the
logarithm when b = 2. For example, log 1024 = 10.

There are a number of important rules for logarithms and exponents, including:
the followmg ' ' : '

Theorem 1. 14: Leta, b, and ¢ be posmve real numbers. We have |

| 1._logbac:10gba+logbc
2. log,a/c =log,a—log,c
3. log,a° =clog,a -
4. log,a = (log.a)/log b
5. blqgca — alogcb
6- (ba)(.‘ — baC
7. b°b° = b

8 b =

| Also, as a notational shorthand, we use log®n to denote the function (logn)®
and we use logloga to denote log(logn). Rather than show how we could derive
each of the above identities, which all follow from the definition of logarithms and
exponents, let us instead 111ustrate these identities with a few examples of their

‘ usefulness

Example 1.15: We illustrate some interesting cases when the base of a Iogarithm
or exponent is 2 The rules cited refer to Theorem 1.14.

log(2n logn) = 1+logn +10g logn by rule’ T (tw1ce)
log(n/2) =logn—log2 = logn— 1, by rule 2
log/n =log(n)'/? = (logn)/2, by rule3
loglog /n = log(logn)/2 = log logn—1, by rules 2 and 3
log,n = (logn)/log4 = (logn)/2, by rule 4
log2™® = n, by rule 3 - o
296" — by rule 5 .
!22103" — (2°8™)2 = 2, by rules 5 and 6
4n = (22" = 2%, by rule 6

n?2318n = p?.n} =p’, by rules 5, 6,and 7
4n Jor =22 /om = 22n—n 2” by ruIes 6and 8.
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_ The Floor and Ceiling Func_tions |

One additional comment concerning loganthms is in order. The value of a loga-

-~ rithm is typically not an integer, yet the running time of an algorlthm is typically

~ expressed by means of an integer quantity, such as the number of operations per-

formed. Thus, an algorithm analysis may sometimes involve the use of the so-called
“floor” and ° ce111ng functions, which are defined respectively as follows:

o |x| =the 'largest- integer less than or equal 0 x.
- @ [x]| = the smallest integer greater than or equal to x.

* These functions give us a way to convert real- valued functions into integer—valued

functions. Even so, functions used to analyze data structures and algorithms are
often expressed 31mp1y as real-valued functions (for example nlogn or n*/%). We

~“should read such a running time as having a “big” ceiling function surrounding it.1

11.3.3

Simple Justiﬁcation Techniques

We will sometimes wish to make strong claims about a certain data structure or al-
gorithm. We may, for example, wish to show that our al gorlthm is correct or that it
runs fast. In order to rigorously make such claims, we must use mathematical lan-
guage, and in order to back up such claims, we must justify or prove our s}atements

- Fortunately, there are several simple ways to do this.

By Example

Some claims are of the generic form, “There is an element x in a set § that has

. property P.” To justify such a claim, we need only produce a particular x € S that

has property P. L1kew1se, some hard-to-believe claims are of the generic form,

- “Every element x in a set § has property P.” To justify that such a claim is false, we‘

need to only produce a particular x from S that does not have property P. Sl‘lch an

[instance is called a counterexample

Example 1.16: A certain Prefessor Amongus claims that every number of the

form?2 —1isa pnme When [ 1s an 1nteger greater than 1. Professor Amongus is
wrong. :

| Proof . To prove Professor Amongus is'wrong, we need to find a counter-example.

Fortunately, we need not look too far, for2* —1=15=3-5. . n

IReal-valued running- ume functrons are almost always used in conjunction with the asymptotic |
notation described in Section 1.2, for which the i use of the ceiling functlon wouid usually be redundant
anyway. (See Exercise R-1. 24)
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The “Contra” Attack

~ Another set of justification techmques 1nv01ves the use of the negative. The two

primary such methods are the use of the contrapositive and the contradiction. The
use of the contraposmve method is like looking through a negative mirror. To
justify the statement “if p is true, then ¢ is true” we instead establish that “if g is
not true, then p is not true.” Logically, these two statements are the same, but the
latter, which is called the contrapositive of the ﬁrst ,may be easier to think about

Example 1.17: Ifab is odd, then a is odd orb is even.

Proof To Just1fy this claim, c0n51der the contrapos1t1ve “Ifa iseven and b is odd,
then ab is even.” So, suppose.a = 2i, for some integer i. Then ab = = (20)b = 2(ib);

'hCHCC ab1seven o S T _ 7. n

Besides showing a use of the contrapositive ]usttﬁcatlon techmque the prev10us
example also contains an application of DeMorgan’s Law. This law helps us deal
with negations, for it states that the negation of a statement of the form “p or ¢ is

“not p and not g L1kew1se 1t states that the negatton of a statement of the form
“p and ¢” is “not p or not ¢.”

Another negative justification techn_iq_ue is proof by contradiction, which also.

often involves using DeMorgan’s Law. In applying the proof by contradiction tech-

“nique, we establish that a statement ¢ is true by first supposing that g is false and

then showmg that this assumption leads to a contradiction (such as 2% 2 or 1 > 3).
By reaching such a contradiction, we show that'no consistent situation exists with
q being false, so ¢ must be true. Of course, in order to reach this conclusion, we
must be sure our situation is consistent before we assume g is false.’

Example 1.18: Ifab is odd, thena is odd or b is even. - |
Proof: Letab be odd. We Wish to show that a is odd or b is even. So, with the
hope of leading to a contradiction let us assume the opposite, namely, suppose a

is even and b is odd. Then a = 2i for some integer i. Hence, ab = (2i)b = 2(ib),

that is, ab is even. But this is a contradiction: ab cannot s1mu1taneously be odd and
even. Therefore a is odd or b is even. - =

- r'/

Inductlon

Most of the claims we make about a running tnne Or a space bound involve an inte-
ger parameter » (usually denotmg an intuitive notion of the “size” of the problem).

Moreover, most of these claims are equivalent to saying some statement g(z) is true
“for all n > 1.” Since this is making a claim about an 1nﬁn1te set of numbers, we

cannot justify this exhaustively in a direct fashion. -

We can often justify claims such as those above as true, however by using the

“technique of induction. This technique amounts to showing that, for any particular

n>1, there is a ﬁmte sequence of implications' that starts with: somethlng known
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to be true and ultimately leads to showing that g(n) is true. Specifically, we begin
a proof by induction by showing that g(n) is true for n =1 (and possibly some

other values n = 2,3,... ,k, for some constant k). Then we justify that the inductive
“step” is true for n > k, namely, we show “if g(i) is true for i <n, thén g(n) is true.”

" The combination of these two pieces completes the proof by induction.

Example 1.19: Consider the Fibonacci sequence: F(1)=1,F(2)=2,andF (n)=
" F(n—1)+F(n—2) forn>2. We claim that F(n) < 2".

Proof: We will show our claim is right by induction.

Base cases: (n <2). F(1) =1<2=2"'and F(2) =2 <4 = 2.

Induction step: (n > 2). Suppose our claim is true forn' < n. Consider F(n). Since
n>2, F(n) =F(n—1)+F(n—2). Moreover, siace n— 1<nandn—2<n, we
can apply the inductive assumption (sometimes called the “inductive hygothesis"’)
to imply that F(n) < on—1 1 on=2 n addition,

2n—1 +2n'—-2 < 2n—1 4 2n.-—1 ____ 2. 2n—1 — .2"-

This completes the proof. | _ ' | ‘ | =

Let ué do another inductive zirgumelit, this time for a fact we have seen before.
Theorem 1.20: (which is the same as Theorem 1.13) |
' | ii_n(n#— 1) "
~

2.

Proof: We will justify this equality by induction.
Base case: n = 1. Trivial, for 1 = n(n+1)/2,ifn=1.
Induction step: n > 2. Assume the claim is true for n' < n. Consider 5.

By the induction hypothesis; then “ |
| | " noo 0 {n=1)n

-Zi:n+ 5

i=1

- which we can simplify as

- (n—-.l)n _ 2n+n2-—n _ n+n =._i’l.(;"lJI—l)-_

. \ 2 2 2 2
“This completes the proof. - - |

We may sometimes feel overwhelmed by the task of justifying something true
for all n > 1. We should remember, h_owever,'the concreteness of the inductive tech-
“nique. It shows that, for any particular n, there is a finite step-by-step sequence of
implications that starts with something true and leads to the truth about . In short,

~ the inductive argument is'a formula for building a sequence of direct justifications.
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Loop Invariants |
The final justification technique we discuss in this section is the loop invariant.

To prove some statement S about a 10015 is correct, define S in tefms
of a series of smaller statements So,S1; - -, Sk, Where: . '

1. The initial claim, S, is true before the loop begins. .

2. If S;_; is true before iteration i begins, then one can show that S;
will be true after iteration i is over. I

3 The final statement, Sk, implies the statement S that we wish to
justify as being true, ' '

We have, in fact, already seen the loop-invariant justification technique at work
in Section 1.1.1 (for the correctness of arrayMax), but let us nevertheless giv;c,, one
more example here. In particular, let us consider applying the loop invariant method
to justify the correctness of Algorithm arrayFind, shown in Algorithm 1.12, which
searches for an element x in an array A. - '

To show arrayFind to be correct, we use a loop invariant argument. That is,
we inductively define statements, S;, for i = 0,1,...,n, that lead to the correctness
of arrayFind. - Specifically, we claim the follOwing' to be true at the beginning of
iteration i: - | | - o

S;: x is not equal to any of the first i elements of A.

This claim is true at the beginning of the first iteration of the loop, since there
are no elements among the first 0 in A (this kind of a trivially-true claim is said to
hold vacuously). In iteration i, we compare element x to element A[i] and return the
index i if these two elements are equal, which is clearly correct. If the two elements
x and A[i] are not equal, then we have found one more element not equal to x and we
increment the index i. Thus, the claim S; will be true for this new value of i, for the
beginning of the next iteration. If the while-loop terminates without ever returning
an index in A, then S, is true—there are no elements of A equal to x. Therefore, the
algorithm is correct to return the nonindex value —1, as required. '

~ Algorithm arrayFind(x,A): )
Input: An element x and -an n-element array, A. |
OQutput: The index i such that x = A[i] or =1 if no element of A is equal to x.

{0
while i < ndo
if x = Ali] then
return i
else _
ikl
return —1 - - - | ‘
Algorithm 1.12; Algorithm arrayFind.
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| 1.3.4 Basic Probability

" When we analyze algorithms that use randomization or if we wish to analyze the
average-case performance of an algorithm, then we need to use.some basic facts
from probability theory. The most basic is that any statement about a probability
is defined upon a sample space S, which is defined as the set of all possible out-
comes from some experiment. We leave the ferms “outcomes” and “experiment”
undefined in any fornal sense, however. o

Example 1.21: Consider an expeﬂ'jnent that consists. of the outcome from flip-
ping a coin five times. This sample space has 23 different outcomes, one for each
different ordering -of possible flips that can occur.

Sample spaces can also be infinite, as the following example illustral;es.'

~ Example 1.22: Consider an experiment that consists of flipping a coin until it
comes up heads. This sample space is infinite, with each outcome being a sequence
- of i tails followed by a single flip that comes up heads, fori € {0,1,2,3,...}.

A probability space is a sample space § together with a probability function,
Pr, that maps subsets of S to real numbers in the interval [0, 1]. Tt captures math-
ematically the notion of the probability of certain “events” occurring. Formally,
each subset A of § is called an event, and the probability function Pr is assumed to -
possess the following basic properties with respect to events defined from S \

1. Pr(f) =0.

2. Pr(S) = 1.

3. 0<Pr(A) <1,forany A CS.

4. If A,B C S aid AN B = {, then Pr(AU B) = Pr(A) +Pr(B).

.Independence'

Two events A and B are indépeﬁdent if
Pr(ANB) = Pr(A) - Pr(B).
A cdllection of events {A,Az,...,Ap} is inutdallyindependgnt if
| Pr(A; NA, N---NAy) = Pr(A; ) Pr(Ay,) ---Pr(4s,). |
for any subset {A;,,As,, s A b | -

Example 1.23: Let A be the event that the roll of a die is a 6, let B be the event
that the roll of a second die is a 3, and let C be the event that the sum of these two
dice is a 10. Then A and B are independent events, but C is not independent with

either A or B.
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Conditional Probability

The conditional probability that an event'A occurs, given an event B, is denoted as
~ Pr(A|B), and is defined as . | | |
| ' - Pr(ANB)

By—= -/
. . . Pr(4| ) Pr(B)

assuming that Pr(B) > 0.

Example 1.24: Let A be the event that a roll of two dice sums to 10, and let B
" be the event that the roll of the first die is a 6. Note that Pr(B) = 1/6 and that
- Pr(ANB) = 1/36, for there is only one way {two dice can sum to 10 if the first one

is a 6 (namely, if the second is a 4). Thus, Pr(A|B) = (1/36)/(1/6) = 1/6.

* Random Variab_lés and Exﬁe_ctatic_)n |

- An elegant way for dealing with events is in terms of random variables. Intuitively,
random variables are variables whose values depend upon the outcome of some.
experiment. Formally, a random variable is a function X that maps outcomes from
some sample space S to real numbers. An indicator random variable is a random
variable that maps outcomes to the set {0,1}. Often in algorithm analysis we use
a random variable X that has a discrete set of possible outcomes o characterize
the running time of a randomized algorithm. In this case, the sample space S is

“defined by all possible outcomes of the random sources used in the algorithm. We
are usually most interested in the typical, average, or “expected” value of such a
random variable. The expected value of a discrete random variable X is defined as

E(X) =) xPr(X =x),
| : : : 7 x _
| | ‘where the summation is defined over the range of X.

Theorem 1.25 (The Linearity of Expectation): LetX andY be two arbitrary
- random variables. Then E(X+Y) = E(X) +EY). | |

Proof: - | | |
EX+Y) = > > x+y)Pr(X =x N Y=y)

= _ZExPr(X:xﬂ Y =y) + EzyPI(X=x NY=y)

— Y aB(X=xn¥ =y + R EyPr=ynX=3)
= YxPr(X=x)+ Dy Pr_(Y =) |

CE(X)+E(Y).

‘Note that this proof does not depend on any independence assumptions about the
events when X and Y take on their respective values. | |

il
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Example 1.26: LetX be a random variable that assigns the outcome of the roll of
two fair dice to the sum of the number of dots showing. ThenE(X) =17.

Proof: 7o justify this claim, let X; and X, be random variables corresponding to

the number of dots on each die, respectively. Thus, X; = X, (that is, they are two

instances of the same function) and E(X) = E(X; +X3) = E(X)) +E(X2). Each
outcome of the roll of a fair d1e occurs with probab111ty 1/6. Thus

2 3 4 5 6 T
o

I
EX)=¢teteTe 6 6 2
7

fori = 1,2. Therefore, E (. X)=

Two random variables X and Y are independent if
| Pr(X =xY =y) = Pr(X =),

for all real numbers x and y.

Theorem 1.27: If two random variables X and Y are independent, then
@m ()ﬂm-

Example 1.28: LetX be a random variable that assigns the outcome of a roll of
two fair dice to the product of the number of dots showing. Then E(X) = 49/4

Proof Let X; and X, be random vanab]es denotmg the number of dots on each
die. The variables X and X, are clearly independent; hence

E(X) = E(XiXz) = E(X)E(X) = (7/2) = 49/4.

Chernoff Bounds

Tt is often necessary in the analysis of randomized algorithms to bound the sum
of a set of random variables. One set of inequalities that makes this tractable is
the set of Chernoff Bounds. Let X,X5,...,X, be a set of mutually independent
indicator random variables, such that each X; is 1 with some probability p; > 0 and
0 otherwise. Let X = Y7, X; be the sum of these random variables, and let 4 denote
the mean of X, that is, y = E(X ) pya p,_ We give the followmg without proof

Theorem 1.29: Let X be as above. Then, for d > 0,
h)

| 7
. €

and,—fof() < ) 57-1; | o -

| O PHX < (1-8)p) < e M/
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1.4 Case Studies in Algorithm Analysis

- Having presented the general framework for describing and analyzing algorithms,
we now consider some case studies in algorithm analysis.- Specifically, we show
how to use the big-Oh notation _to.analyze two algorithms that solve the same prob-

lem but have different running times.

The problem we focus on in this section is the one of computing the so-called
prefix averages of a sequence of numbers. Namely, given an array X storing n
numbers, we want to compute an array A such that A[i] is the average of elements
x[0),..., X[, fori=0,...,n= 1, that is,

"o X [J]
| i+1
Computing prefix averages has many applications in economics and statistics. For
example, given the year-by-year returns of a mutual fund, an investor will typically
want to see the fund’s average annual returns for the last year, the last three years,
the last five years, and the last ten years. The prefix average is also useful as a
““smoothing” function for a'parametef that is quickly changing, as illustrated in.
'Figure 1.13. | ' |

Al =

120

100

80
— Values
_g Prefix

average

60

40

20

1 2 3.4 5 6 7 8 9 101 12 13 14

Figure 1.13: An illustratibq.-of the prgﬁx average function and how it is. useful for
smoothing a quickly changing sequence of values. " - |
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1.4, 1 A Quadratlc—Tlme Prefix Averages Algorlthm

Our first algonthm for the prefix averages problem, called prefleveragesl is
shown in Algorithm -1.14. It computes every element of A separately, followmg
the deﬁn1t10n |

Algorithm prefixAverages1(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that Ali] is
the average of elements X|[0],...,X[]].

Let A be an array of » numbers.
fori —Oton—1do
a—0
for j« Otoido
a—a+X[j]
Al —a/(i+1)
return array A

Algorithm 1.14: Algorithm prefixAveragesl.

Let us analyze the prefixAveragesl algorithm.

¢ Initializing and returning array A at the beginning and end can be done with
a constant number of primitive operations per element, and takes O(n) time,

o There are two nested for loops, which are controlled by counters i and J,
respectively. The body of the outer loop, controlled by counter i, is executed -
n times, for i = 0,...,n— 1. Thus, statements a = 0 and A[i] = a/(i+ 1) are
executed » times each. This implies that these two statements, plus the incre-
menting and testing of counter i, contribute a number of primitive operations
proportional to n, that is, O(n) time. -

e The body of the inner loop, which is controlled by counter j, is exectted
i+ 1 times, depending on the current value of the outer loop counter i. Thus,
statement @ = a+ X [j] in the inner loop is executed 1+2+3+ -+ - +n times.
By recalling Theorem 1.13, we know that 1 4+2+3+--+n= n(n +1)/2,

~ which implies that the statement in the inner loop contributes O(n?) time.
A similar argument can be done for the primitive operatlons associated with
incrementing and testing counter j, which also take O(n 2) time.

The running time of algorithm p‘refixAverégesl is given by the sum of three terms.
The first and the second term are O(n), and the third term is O(n?). By a s1mple |
application of Theorem 1.7, the running time of prefleveragesl is O(n 2). -
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142 A Linear-Titne Prefix Averages-’AIgorithm'

In order to compute prefix averages more efficiently, we can observe that two con-
secutive averages A[i — 1] and A[z] are similar:

CAfi—-1] = (X[0]+X[1]+---+X[i'~1])/i
Al = X[O]+X[1]+--+X[= 1]+ X[])/(+1).

- If we denote with S; the prefix sum X[0]+ X[1] + --- + X[i], we can compute
the prefix averages as A[i] = S;/(i+1). It is easy to keep track of the current prefix

~ sum while scanning array X w1th a loop. We present the details in Algorithm 1. 15
(prefixAverages2).

Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that A[i] is
the average of elements X[0],...,X][i].

Let A be an array of »n numbers.
5+0 .
fori —Oton—1do
5 — s+ X[i]
All] —s/(i+1)

| return array A

‘Algorithm 1.15: Algorithm prefixAverages2.

Bl .

‘The analysis of the running time of algorithm prefixAverages2 follows:

e Initializing and returning array A at the beginning and end can be done with
~a constant number of primitive operations per element, and takes O(n) time.

. 'Imt1a11z1ng variable s at the beginning takes O(1) time.

e There is a single for loop, which is controlled by counter i. The body. of the
loop is executed n tlmes fori=0,...,n—1. Thus, statements s = s+ X H
and Ali] = s/(i+1) are executed n times each. This implies that these two
statements plus the incrementing and testing of counter i contribute a number
of prnmtlve operatlons proportional to n, that is, 0( ) time.

' The running time of algonthm preﬁxAverages2 is given by the sum of three terms. -

“ The first and the third term are O(n), and the second term is 0(1} By a simple

- application of Theorem 1.7, the running time of prefixAverages2 is O(n), which is
much better than the quadratic-time algorithm prefixAveragesl. |
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1.5 Amortization |

An important analysis tool useful for understanding the running. times of algorithms
that have steps with widely varying performance is amortization. The term “amor-
tization” itself comes from the field of accounting, which provides an intuitive mon-
etary metaphor for algorithm analysis, as we shall see in this section.

The typical data structure usually supports a wide variety of different methods
for accessing and updating the elements it stores. Likewise, some algorithms oper-
ate iteratively, with each iteration performing a varying amount of work: In some
cases, we can effectively analyze the performance of these data structures and al-
gorithms on the basis of the worst-case running time of each individual operation.
Amortization takes a different viewpoint. Rather than focusing on each operation
separately, it considers the interactions between all the operations by studying the
running time of a series of these operations.

The Clearable Table Data Structure

As an example, let us introduce a simple abstract data type (ADT), the clearable
table. This ADT stores a table of elements, which can be accessed by their index in
- the table. In addition, the clearable table also supports the following two methods:

add(e): Add the the element ¢ to the next a&ail;ib\le cell in the
" table.

‘clear(): Empty the table by removing all its elements.

Let S be a clearable table with n elements imblemented by means of an array,
with a fixed upper bound, N, on its size. Operation clear takes O(n) time, since we

should dereference all the elements in the table in order to really empty it. '

Now consider a series of n operations on an initially empty clearable tab_lé S.
If we take a worst-case viewpoint, we may say that the running time of this series
of operations is O(n?), since the worst case of a single clear operation in the series
is O(n), and there may be as many as O(n) clear operations in this series. While
this.analysis is correct, it is also an overstatement, since an analysis that takes into
‘account the interactions between the operations shows that the running time of the

‘entire series is actually O(n).

Theorem 1.30: A series of operétidns on an initially empty clearable table im-
plemented with an array takes O(n) time. ‘

Proof: Let My,... ,Mnfl be the series of operations performed on S, and let
M;,;...,M; _, bethek clear operations within the series. We have B

0<ip<...<h1<n—1.

Let us also define i_; = —1. The running time of operation M;; (a clear operation)
is O(i;—ij—1); because at most i; —ij1 — 1 elements could have been added into
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the table (using the add operatlon) since the prev10us clear operation M - Or since
the beglnmng of the series. Thus the runmng time of all the clear operatlons is

: k—1.

O X (ij—iz-1)

j=0

A summation such as this is known as a felescoping sum, for all terms other than

the first and last cancel each other out. That is, this summation is O(i—; —i_),

which is O(n). All the remaining operations of the series take O(1) time each.

- Thus, we conclude that a series of n operations performed on an initially empty

'clearable table takes O(n) time. : - , m -

Theorem 1. 30 1ndlcates that the average running time of any operation on a -
clearable table is O(1), where the average is taken over an arbitrary series of oper-

‘ations, startlng with an 1mt1a11y empty clearable table.

| A.mortizi.nglén Algdfithm's Running Time

- The above example provides a motivation 'f_or the amortization technique, which
gives us a worst-case way of performing an average-case analysis. Formally, we

define the amortized running time of an operation within a seriés of operations as
the worst-case running time of the series of operations divided by the number of
operations. When the series of operations is not specified, it is usually assumed to
be a series of operations from the repertoire of a ceitain data structure, starting from
an empty structure. Thus, by Theorem 1.30, we can say that the amortized running

‘time of each operation in the clearable table ADTis 0(1) when we implement that

clearable table with an array Note that the actual running time of an operation may
be much higher than its amortized runmng tlme (for example, a particular clear
operation may take O(n) t1me) | |

The advantage of using amortization is that 1t glves us a way to do a robust
average-case analysis without using any probability. It simply requires that we have
some way of characterizing the worst-case running time for performing a series of
operations. We can even extend the notion of amortized running time so as to assign
each individual operation in a series of operations its own amortized running time,
provided the total actual time taken to process the entire series of operations is no

more than the sum of amortized bounds given to the 1nd1v1dual operations.

There are several ways of doing an amortlzed analysm The most obvious way

is to use a direct argument to derive bounds on the total time needed to perform

a series of operations, which is what we did in the proof of Theorem 1.30. While
direct arguments can often be found for a simple series of operations, performing an

amortized analyms of a nontrivial series of operations is often easier using special

techmques for amomzed analysis.
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1.5.1 Amortization Te‘chn/iques

There are two fundamental techniques for performing an amortized. analysis, one.
based on a financial model—the accounting method—and the other based on an
energy model—the potential function method.

The Accountmg Method

"The accounnng method for perfonmng an amortized analys1s is to use a scheme of

credits and debits for keeping track of the running time of the different operations
in the series. The basis of the accounting method is simple. We view the computer
as a coin-operated appliance that requires the payment of one. cyber-dollar for a
constant amount of computing time. We also view an operation as a sequence of
constant time primitive operations, which each cost one cyber-dollar to be exe-

cuted. When an operation is executed, we should have enough cyber-dollars avail-

able to pay for its running time. Of course, the most obvious approach is to charge
an operation a number of cyber-dollars equal to the number of primitivé opera-
tions performed. However, the interesting aspect of using the accounting method
is that we do not have to be fair in the way we charge the operations. Namely, we
can overcharge some operations that execute few primitive operations and use the
profit made on them to help out other operations that execute many primitive oper-

ations. This mechanism may allow us to charge the same amount @ of cyber—dollars

to each operation in the series, w1th0ut ever runmng out of cyber-dollars to pay for
the computer time. Hence if we can set up such a scheme, called an amortiza-

‘tion scheme, we can say that each operation in the series has an. amortized running

time that is O(a). When designing an amortization scheme, it is often convenient

~ to think of the unspent cyber—dollars as being “stored” in certain places of the data

structure, for example, at the elements of a table.

An alternative amortization scheme charges different amounts to the various
operations. In this case, the amortized running time of an Operatlon is proportlonal

‘to the total charges made divided by the number of operations.

We now go back to the clearable table example and present an amortization
scheme for it that yields an alternative proof of Theorem 1.30. Let us assume that
one cyber-dollar is enough to pay for the execution of operation of an index access
or an add 0perat10n and for the time spent by operation clear to ‘dereference one

"element We shall charge each operation two cyber—dollars - This means under-

charging operatlon clear and overcharging all the other 0perat1ons by one cyber-
dollar. The cyber-dollar proﬁted in an add operation will be stored at the element
inserted by the operation. (See Figure 1.16.) When a clear operation is executed,
the cyber-dollar stored at each element in the table is used to pay for the time spen
dereferencing it. Hence, we have a valid amortlzatlon scheme where each oper:
ation is charged two cybei-dollars, and all ‘the computmg time is- paid for. Th1<
simple amortization scheme implies the result of Theorem 1.30. .
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4 5 6 7 8 9 10 11 12 13 14 15 -

Figure 1.16: Cyber-dollars stored at the elements of a clearable table S in the amor-
tized analysis of a series of operations on S. - |

‘Notice that the worst case for the running time occurs for a series of add oper-
ations followed by a single clear operation. In other cases, at the end of the series
of operations, we may end up with some unspent cyber-dollars, which are those
profited from index access operations and those stored at the elements still in the
sequence. Indeed, the computing time for executing a series of operations can
be paid for with the amount of cyber-dollars between n and 2n. Our amortiza-
tion scheme accounts for the worst case by always charging two cyber-dollars per
operation. o : ' o |
- Atthis point, we should stress that the accounting method is simply an analysis
tool. It does not require that we modify a data structure or the execution of an
algorithm in any way. In particular, it does not require that we add objects for
keeping track of the cyber-dollars spent. '

\

~ Potential Fuln.ction's

Another useful technique for performing an amortized analysis is based on an en-
‘ergy model. In this approach, we associate with our structure 2 value, @, which
represents the current energy state of our system. Each operation that we perform
will contribute some additional amount, known as the amortized time, to ®, but
then also extracts value from @ in proportion to the amount of time actually spent.
Formaily, we let @ > 0 denote the initial value of @, before we perform any op-
erations, and we use ®; to denote the value of the potential function, @, after we
perform the ith operation. The main idea of using the potential function argument
is to use the change in potential for the ith operation, ®; — ;1 to characterize the
amortized time needed for that operation. L k |

‘Let us focus more closely on the action of the ith operation, letting denote its
actual running time. We define the amortized running-time of the ith operation as

t; =1+ 0 — Dpi.

That is, the amortized cost of the ith operation is the actual running time plus the
net change in potential that operation causes (which may be positive or negative).
Or, put.another way, :

=t + Dy — Piy

that is, the actual time spent is the amortized cost plus-the net drop in potential.
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Denote by T the total amortlzed time for performmg n operatlons on our struc-
. ture. That is,

T'= 1.
i=1

Then the total actual time, 7', taken by our n operations can be bounded as

n
T = 2[’,‘
=1
H
= Y (+o-o)
i=1"
n n
= zl}{‘l‘ Z ((Dz—l - ®@;)
=1  i=1
n ,
= T'+Y (P — D)
=1 -
_ = T'4+0y—,, _ ..
- since the second term above forms a telescoping sum. In other words, the total
*  actual time spent is equal to the total amortized time plus the net.drop in potential

over the entire sequence of operatioris. Thus, so long as @, > @y, then T < T, _the'
actual time spent is no more than the amortized time. | |
To make this concept more concrete, let us repeat our analysis of the clearable
table using a potential argument. In this case, we choose the potential @ of our
system to be the actual number of elements in our clearable table. We claim that
‘the amortized time for any operation is 2, that is, #{ =2, fori = 1,...,n. To justify
~this, let us consider the two possible methods for the ith operation.

e add(e): inserting the element ¢ into the table increases @ by I and the actual -
. time needed is 1 unit of time. So, in this case,
1 ‘_—?I,'=I£—I-q)i._1 —-(Dt =2—1,
which i is clearly true. " |

e clear(): removing all m elements from the table requires no more than m + 2
units of time-—m units to do the removal plus at most two units for the method
call and its overhead. But this operation also drops the potential ® of our
system from m to 0 (we even allow for m = 0). So, in this case

m+2=t= l‘;-l-q)i'_l —®; =24m,
which clearly holds.
Therefore, the amortized time to perform any operation on a clearable table is 0( 1)

Moreover, since @; > @y, for any i > 1, the actual time, T', to perform n operatlons
on an initially empty clearable table is 0( ) -
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1.5.2" Analyzing an Extendable Array Implementation -

A major weakness of the simple array implementation for the clearable table ADT
given above is that it requires advance specification of a fixed capacity, N, for the
“total number of elements that may be stored in the table. If the actual number of
elements, 7, of the table is much- smaller than N, then this implementation will
waste space. Worse, if 7 increases past N, then this implementation will crash.

- Letus provide a means to grow the array A that stores the elements of a table S.
Of course, in any conventional programming language, such as C, C++, and Java,
‘we cannot actually grow the array A; its capacity is fixed at some number N. In-
stead, when an overflow occurs, that is, when n = N and method add is called, we
perform the following steps:” |

1. Allocate a new array B of cépacity'ZN
2. Copy Afi] to B[i], fori=0,...,N—1
3. Let A = B, that is, we use B as the array supporting S.

This array replacément strategy is known as an extendable array. (See Fig- |
ure 1.17.) Intuitively, this strategy is much like that of the hermit crab, which
moves into a larger shell when it outgrows its previous one.

BT 1]

@) | ® o ©

Figure 1.17: An illustration of the three steps for “growing” an extendable array:
" (a) create new array B; (b) copy elements from A to B; (c) reassign reference A to
the new array. Not shown is the future garbage collection of the old array.

In terms of efficiency, this array replacement stratégy might at first seem slow,
for performing a single array replacement of size n required by some element in-
sertion takes ©(n) time. Still, notice. that after we perform an array replacement,

* our new array allows us to add » new elements to the table before the array must be
replaced again. This simple fact allows us to show ‘that the running time of a series
of operations performed.on an initially empty extendable table is actually quite ef-
ficient. Asa ;sh'orthand notation, let us refer to the insertion of an element to be the

last element in a vector as an “add” operation. Using amortization, we can show
that performing a sequence of such add operations on a table implemented with an
extendable array is actually quite efficient. o
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" Theorem 1.31: Let S be a table implemented by means of an extendable array:

A, as described above. The total time to perform a series of n add operations in S,
starting from S being empty and A having size N = 1, is O(n).

Proof: We justify thlS theorem using the accounting method for amortization. To -

perform this analysis, we again view the computer as a coin-operated appliance that -
requires the payment of one cyber-dollar for a constant amount of computing time.
When an operation is executed, we should have enough cyber-dollars available in

‘our current “bank account” to pay for that operation’s running time. Thus, the total

-amount of cyber-dollars spent for any computation will ‘be proportional to the total
- time spent on that computation ‘The beauty of this analysis is that we can over
- charge some operations to save up cyber—dollars to pay for others. -

- Let us assume that one cyber-dollar is enough to pay for the execution of each
add operatlon in S, excluding the time for growing the array. Also, let us assume
that growing the array from size X to size 2k requires k cyber-dollars for the time
spent copying the elements. We shall charge each add operation three cyber-dollars.
Thus, we over charge each add operation not causing an overflow by two cyber-
dollars.” Think of the two cyber-dollars profited in an insertion that does not grow
the array as being “stored” at the element inserted. An overflow occurs when the
table S has 2! elements, for some integer i > 0, and ‘the size of the array used by S
is 2. Thus, doubling the size of the array will require 2’ cyber-dollars. Fortunately,
these cyber-dollars can be found at the elements stored in cells 2! through 2' — 1:
(See Figure 1.18.) Note that the previous overflow occurred when the number of
elements became larger than 2¢=1 for the first time, and thus the cyber-dollars stored
in cells 2°~! tarough 2° — 1 were not prev10usly spent. Therefore, we have a valid
amortization scheme in Wthh each operation. is charged three cyber-dollars and
all the ~computing time is paid for. That is, we can pay for the execution of »n add
operations using 3n cyber-dollars. : ' |

01 2 3 4 5 6 7

(b)

0 1 2 4-56789'1011'12:1‘3'1415

F igure 1.18: A costly add operatlon (a) a full 8-cell with two cyber—dollars for cells
4 through 7; (b) an add doubles the capacity. Copying elements spends the cyber-
dollars in the table, inserting the new element spends one cyber-dollar charged to
the add and two cyber—dollars proﬁted are stored at cell 8.
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A table can be doubled in size with eac:h extensmn as we have descnbed 1t or

we can specify an explicit capacitylncrement parameter that determines the fixed

~amount an array should grow with each expansion. That is, this parameter is set

to a value, k, then the array adds k new cells when it grows. We must utilize such

a parameter with caution, however. For most apphcatlons doubhng in-size is the
right choice, as the following theorem shows.

Theorem 1.32: If we create an mmaHy empty table with a fixed positive ca pacn—

tylncrement value, then perfomnng a series of n add operations on this vector takes
Q(n?) time. |

| Proof Let ¢ > 0 be the capacntylncrement value, and let co > 0 denote the
initial size of the array. An overflow will be caused by an add operatlon when the
current number of elements in the table is cq + ic, for i =0,...,m — 1, where m =
| (n—co)/c]. Hence, by Theorem 1.13, the total time for handhng the overﬂows is.
proporuonal to

2 (co+ci) = com+c D, i = com—l—c’—n@i——),
= =0 - |
which is Q( 2). Thus, performing the n add operations takes Q(rn?) time. -

Flgure 1.19 compares the running times of a series of add operatlons on an _
initially empty table, for two initial values of ca pathIncrement
' We discuss applications. of amortization further when we discuss splay trees

* (Section 3.4) and a tree structure for performmg unions and finds in set partitions
"(Sect1on 4.2.2). o

_b_

running time of a push operation
running time of a push opération

) 9 10 11 12°13 14 15 16
current number of elemenzs ' current number of elements

(@) o o . (b)
Figure 1.19: Running tIl‘l‘lCS of a series of add operations on an extendable table. In
() the size is doubled with each expansion, and in (b) itis: 31mply incremented by
capacntylncrement =3, S

o l2;345678;9101112131415_16
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1.6 Experimentation
Using asymptotic analysis to bound the running time of an algorithm is a deductive
process. We study a pseudo-code description of the algorithm. We reason about
what would be worst-case choices for this algorithm, and we use mathematical
tools, such as amortization, summations, and recurrence equations, to characterize
the running time of the algorithm. | - -
This approach is very powerful, but it has its limitations.. The deductive ap-
proach to asymptotic analysis doesn’t always provide insight into the constant fac-~
tors that are “hiding” behind the big-Oh in an algorithm analysis. Likewise, the
deductive approach gives us little guidance into the breakpoint between when we
should use an asymptotically slow algorithm with a small constant factor and an
asymptotically fast algorithm with a larger constant. In addition, the deductive ap-
proach focuses ptimarily on worst-case inputs, which may not be representative
of the typical input for a certain problem. Finally, the deductive approach breaks
down when an algorithm is too complicated to allow us to effectively bound its per-
formance. In such cases, experimentation can often help us perform our algorithm -
analysis. o . | o
In this section, we discuss some techniques and principles for performing ex-
perimental algorithm analysis. | | | | |

1.6.1 Experimental Setup

I performing an experiment, there are several steps that must b_e performed in order
to set it up. These steps require thought and deliberation, and should be performed
with care.

Choosing the Question

The first thing to determine in setting up an experiment is to decide what to test. In
the realm of algorithm analysis, there are several possibilities: o

e Estimate the asymptotic running time of an algorithm in the average case.
e Test which of two competing algorithms is faster for a given range of input
values [ng,n;]. |
e For an algorithm that has numeric parameters, such as constants o or &, that
~ determine its behavior, find the values of these parameters that yield the best
performance. e S | :
e For an algorithm that tries to minimize or maximize some function of an
input, test how close the algorithm comes to the optimal value. _ ‘
Once we have determined which of these questions, or even an alternative question,
. we would like to answer empirically, we can then move to the next step in our
- experimental setup. oo o
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Deciding What to Measure

Once we know what question to ask, we should next focus on'quant_i_tative mea- -
surements that can be used to answer that question. In the case of an optimization-
problem, we should measure the function that we wish to maximize or minimize.
In the case of running time, the factor to measure is not as obvious as we might at
first think.

We can, of course measure that actual running time of an algorithm. Usmg a
procedure call that returns the time of day, we can measure the time of day before
-and after running our algorlthm and then subtract to determine how much time
passed as the algorithm was running. This measurement of time is most useful,
however, if the computer we are running on is representative of “typical” computers
that we will wish to use for this algorithm. | o | |
~ Moreover, we should recognize that the so-called “wall clock” time for running
an implementation of an algorithm can be affected by other factors, including pro-
grams that are running concurrently on our computer, whether or not our algorithm

" makes effective usé of a memory cache, and whether or not our algorithm uses so
much memory that its data is swapping in and out from secondary memory. ‘All of
these additional factors can slow down an otherwise fast algorithm, so if we are us- |
ing wall clock time to measure algorithm speed, we should make sure these effects
are minimized.

An alternative approach is to measure speed in a platform 1ndependent manner,
counting the number of times some primitive operation is used repeatedly in our.
algorithm. Examples of such primitive operations that have been used effectively
in algorithm analys1s include the following:

o Memory references. By counting memory references in a data intensive al-
- gorithm we get a measure that will correlate highly with the running time for -
this algorlthm on any mach1ne

o Comparisons. In an algorithm, such as sorting, that processes data primarily
by performing comparisons between pairs of elements, a count of the com-
parisons made by the algorithm will be hlghly correlated to the runmng time
of that algorithm.

"o Arithmetic operations. In numerical algorithms, which are dominated by
many arithmetic computations, counting the number of additions and/or mul-
tiplications can be an effective measure of running time. Such a measure can
be translated into running times on a given computer, by factoring in the
'performance achieved by whether thlS computer has a math cO- processor or
not.

Once we have decided what it is we wish to measure, we then must generate
test data upon which to run our algorithm and collect statistics.
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Generating Test Data

, Our goals in generating test data include the following:

o We w1sh to generate enough samples so that taking averages y1e1ds statlst1- '
cally significant results.

e We wish to generate sample inputs of varymg sizes, to be able to make ed-
‘ucated guesses about the performance of our algonthm over wide ranging
input 51zes

o We wish to generate test data that is representative of the kind of data that we
expect our algorithm to be given in practlce

Generating data that satisfies the first two points is simply a matter of coverage
satisfying the third criteria takes thought. We need to think about the input distri-
" bution, and generate test data according to that distribution. Simply generating data
uniformly at random is often not the appropriate choice here. For example, if our
algorithm performs searches based on words found in a natural language document,
then the distribution of requests should not be uniform. Ideally, we would like to
find some way of gathering actual data in a sufficient enough quantity that it gives
rise to statistically valid conclusions. When such data is only partially available, we
can compromise by generating random data that matches key statistical properties
of the available actual data. In any case, we should strive to create test data that will
enable us to derive general conclusions that support or refute specific hypotheses
~ about our algorithm.

Coding the Solution and Performing the Experiment

The necessary step of codmg up our algorithm correctly and efficiently involves a
~ certain amount of programming skill. Moreover, if we are comparing our algorithm
to another, then we must be sure to code up the competing algorithm using the
same level of skill as we are using for our own. The degree of code optimization
between two algorithm implementations that wé wish to compare should be as close
as p0331b1e Achieving a level playing field for comparing. algorithms empirically
is admittedly subjective, but we should still work as hard as we can to achieve
a fair comparison in such cases. Ultimately, we should strive for results that are
reproducible, that is, a different programmer with similar skill should be able to
reproduce the same results by performing similar experiments.

Once we have our program completed and we have generated our test data,
then we are ready to actually perform our expenments and collect our data. Of
course, we should perform our expenments in as “sterile” an environment as pos-
sible, eliminating as best we can any. sources of noise in our data collection. We
should take specific note of the details of the computational environment we are
o using, including the number of CPUs, the speed/of the CPUs, the main memory
size, and the speed of the memory bus. | :
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1.6. 2 Data Analysis and Vlsuallzatlon

' Vlewmg data in- ‘tables is common, but it is often not nearly as useful as a graph1ca1

“plot. A complete discussion of such data analysis and visualization techniques
is beyond the scope of this book, but we nevertheless discuss two analysis and
v1sual1zat10n techniques useful for algorithm analysis in this section.

The Ratio Test

In the ratio test we use knowledge of our algorlthm to derive a function f(n) = n°
for the main term in our algorithm’s running time, for some constant ¢ > 0. Our
analy31s is then-designed to test if the average running time of our algorithm is
@(n°) or not. Let #(n) denote the actual running time of our algorithm on a specific |
problem instance of size n. The ratio test is to plot the ratio r(n) =t(n)/f(n), using
several experimentally gathered values for #(n). (See Figure 1.20.)

'If r(n) grows as n increases, then our f(n) under estimates the running time
t(n ) If, on the other hand, r(n ) converges to 0, then our f(r) is an over estimate.
But if the ratio function r(r) converges to some constant b greater than 0, then we
have found a good estimate for the growth rate of #(n). In addition, the constant b
gives us a good estimate for the constant factor in the running time t(n).
 Still, we should recognize that any empirical study can only test a finite number
of inputs and input sizes; hence, the ratio test approach cannot be used to find an
exact value of the exponent ¢ > 0. Also, its accuracy is limited to polynomial
functions for f(n ), and even then studies have shown that the best it can achieve
for determmmg the exponent ¢ is to within the range [c—0.5,¢+0.5].
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Figure1. 20: An example plot ofa rat10 test estimating that r(n) =
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The Power Test

In the power test we can produce a good estimate for the running time, ¢(n), of an

“algorithm without producing a good guess for that running time in advance. The

idea is to take experimentally gathered data pairs (x,y) such that y = #(x), where x
is the size of a sample input, and apply the transformation (x,y) — (¥',)') where
¥ =1logx and ¥ =logy. Then we plot all the (x’,y’) pairs and examine the resuits.
Note that if #(n) = bn® for some constants » > 0 and ¢ > 0, then the log-log
transformation implies that y = cx’ + . Thus, if the (x',)’) pairs are close to form-
ing a line, then by a simple line fit we can determine the values of the constants
b and c. The exponent ¢ corresponds to the slope of the line in this log-log scale,
and the coefficient b corresponds to this line’s y-axis intercept. (See Figure 1.21.)
Alternatively, if (x’,)) pairs grow in a significant way, then we can safely deduce

that £(r) is super-polynomial, -and if the (¥',y’) pair converge to a constant, then

it is likely that ¢(n) is sublinear. In any case, because of the finiteness of testable
input sizes, as with the ratio test, it is difficult to estimate ¢ better than the range
[c —0.5,c+0.5] with the power test.

~ Even so, the ratio test and the power test are generally considered good ap-
proaches to estimating the empirical running time of an algorithm. They are con-
siderably better, for example, than trying to directly fit a polynomial to the test

«data through regressidn techniques. Such curve-fitting techniques tend to be overly

sensitive to noise; hence, they may not g1ve good estlmates to the exponents in
polynomial running times.
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anure 1.21: An exarnple plot of a power test. In this case we would estimate that

¥ = (4/3)x +2; hence, we would estimate t(r) = 2n%/>.
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. Basic data structures, such as stacks and queues, are used in a host of different
apphcatlons 'Using good data structures often makes. the difference between an
efficient algorithm and an inefficient one. Thus, we feel it important to review and
dlscuss several basic data structures.

We begln our discussion in this chaptef' by studying stacks and queUes_u,""in—.
cluding how they can be used to implement recursion and multiprogramming.: We

- follow this discussion by presenting the vector, list, and sequence ADTs, each of

which represents a collection of linearly arranged elements and provides methods

. for accessing, inserting, and removing arbitrary elements. An important property

of a sequence is that, just as with stacks and queues, the order of the elements.in
a sequence is determined by the operatlons in the abstract data type spec1ﬁcat10n
and oot by the values of the elements

In addition to these hnear data'structures we also discuss nonlinear structures,
which use organizational relationships richer than the simple “before” and “after”
relationships. Specifically, we discuss the free abstract data type, which defines
relationships that are hierarchical, with some objects being “above” and some
“below” others. The main terminology for tree data structures comes from fam-
ily trees, by the way, with the terms “parent,” “child,” “ancestor,” and “descendent”

being the most common words used to describe hierarchical relationships.

In this chapter, we also study data structures that store “prioritized elements,” -
that is, elements that have priorities assigned to them. Such a priority is typically
a numerical value, but we can view priorities as arbitrary objects, so long as there
is a consistent way of comparing pairs of such objects.” A priority queue allows
us to select and remove the element of first priority, which we define, without loss
of generality, to be an element with the smallest key. This general viewpoint al-
lows us to define a generic abstract data type, called the priority queue, for storing
and retrieving prioritized elements. This ADT is fundamentally different from the
position-based data structures we discuss in this chapter, such as stacks, queues, -
sequences, and even trees. These other data structures store elements at specific
positions, which are often positions i'n a linear arrangement of the elements deter-
mined by the insertion and deletion operatlons performed. The priority queue ADT
stores elements accordmg to the1r priorities, and has no notion of ¢ posmon

The final structure we discuss is the dictionary, which stores elements so that
they can be located quickly using keys. The motivation for such searches is that
each element in a dictionary typically stores additional useful information besides
its search key, but the only way to get at that information is to use the search key.
Like a priority queue, a dictionary is a container of key-element pairs.” Neverthe--
less, a total order relation on the keys is always required for a priority queue; it is
optional for a dictionary. Indeed, the simplest form of a dictionary, which uses a

- hash table, assumes only that we can assign an 1nteger to each key and determine

whether two keys are equal. o | A
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ﬁ2.1' Stac_k's and Queues

2.1.1 Stacks

A stack is a container of objects that are inserted and removed according to the last-
in first-out (LIFO) principle. Objects can be inserted into a stack at any time; but
only the most-recently inserted (that is, “last”) object can be removed at'any time.
The name “stack” is derived from the metaphor of a stack of plates in a spring-
loaded cafeteria plate dispenser. In this case, the fundamental operations involve
the “pushing” and “popping” of plates on the stack. o

Example 2.1: Internet Web browsers store the addresses of recently visited sites
on a stack. Each time a user visits a new site, that site’s address is “pushed” onto the
stack of addresses. The browser then allows the user to “pop” back to previously
visited sites using the “back” button. | o '

The Stack Abstract Data Type
A stack § is an abstract data type (ADT) su_pporting the _fqll_(_)Wing: two methods:

push(o): Insert object o at the top of the stack. |
- pop(): Remove from the stack and return the top object on the
- -stack, that is, the most recently inserted element still in
~ the stac]c; an error occurs if the stack is empty.
‘Additionally, let us also define the following Suppbrti'ng 'fnetho_dS: |
: size(): Returh the number of objects in the stack.
isEmpty(): Return a Boolean .ihdicating if the stack is empty.

o top(): _R_e'turn'the'top objeét' on th(: sfack, without _r’e_moving it;
| an error occurs if the stack is empty.

A Simple Ar'ra_y-Based __Irhpl.ementation

A stack is easily implemented with an N-element array ‘S, with elements stored
- from S[0] to S[¢], where  is an integer that gives the index of the top element in S.
Note that one of the important details of such an implementation is. that we must
* specify some maximum size N for our stack, say, N = 1,000. (See Figure 2.1.)

© N-1

0 12 - S -
- Figure 2.1: Implementing a stack with an array S. The top-element is in cell S[z].
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~ Recalling that the convention in this book is that arrays start at index 0, we
initialize f to —1, and we use this value for ¢ to identify when the stack is empty.
Likewise; we can use this variable to determine the number of elements in a stack
(t +1). We also must signal an error condition that arises if we try to insert a new
element and the array S is full. Given this new exception, we can then implement
the main methods of the stack ADT as described in Algorithm 2.2. |

: Algorii:hm push(o) :

if size() = N then

‘indicate that a stack-full error has occurred
t—1t+1
S[t] <o

- Algorithm pop():

if isEmpty() then
indicate that a stack-empty error has occurred
e — St].
Sit] < null
r—t—1
return e | |
Algorithm 2.2: Implementation of a stack by means of an array.

‘Pseudo-code descriptions for performing the supporting methods of the Stack
ADT in constant time are fairly straightforward. Thus, each of the stack methods in
the array realization executes a constant number of statements involving arithmetic
operations, comparisons, and assignments. That is, in this implementation of the
stack ADT, each method runs in O(1) time.

The array implementation of a stack is both simple and efficient, and is widely
used in a variety of computing applications. Nevertheless, this implementation
has one negative aspect; it must assume a fixed upper bound N on the ultimate
size of the stack. An application may actually need much less space than this,
in which case we would be wasting memory. Alternatively, an application may
need more space than this, in which case our stack implementation may “crash” the

~ application with an error as soon as it tries to push its (N + 1)st object on the stack.

Thus, even with its s_i_mplici_ty and efficiency, the array-based stack implemeﬂtation
is not .necessarily ideal. Fortunately, there are other implementations, discussed
later in this chapter, that do not have a size limitation and use space proportional

" to the actual number of elements stored in the stack. Alternatively, we could also

use an exténdable table, as discussed in Section 1.5.2. In cases where we have
a good estimate on the number of items needing to go in the stack, however, the
array-based implementation is hard to beat. Stacks serve a vital role in a number of
computing applications, so it is helpful to have a fast stack ADT implementation,

~ such as the simple array-based implementation. -
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Using Stacks for Procedure Calls and Recursion

Stacks are an important application to the run-time environments of modern proce-
dural languages, such as C, C++, and Java. Each thread in a running program writ- -
ten in one of these languages has a private stack, called the method stack, which is
used to keep track of local variables and other important information on methods,
 as they are invoked during execution. (See Figure 2.3) 4 |

‘More specifically, during the execution of a program thread, the runtime en-
vironment maintains a stack whose elements are descriptors of the currently ac-
tive (that is, nonterminated) invocations of methods. These descriptors are called
frames. A frame for some invocation of method “cool” stores the current values
of the local variables and parameters of method cool, as well as information on the
method that called cool and on what needs to be returned to this method.

N

(" maing{

int i=5;
1
L I
.
14 cool(i);
fool: : L .
PC =320 | ’
m=7 . | }
cool: , coolfint ) {
FC = 21 6 - ' int k=7;
=5
[
k=7 .
‘ 216 fool{k);
main: s S
PC=14 . o

_|=5 P

__ 320 fool(intm) {7
Stack | R

~ Program

Figure 2.3: An example of a method stack:. Method fool has just been called by
method cool, which itself was previously called by method main.” Note the values
of the program counter, parameters, and local variables stored in the stack frames..
“When the invocation of method fool terminates, the invocation of method cool will
resume its execution at instruction 217, which is obtained by incrementing the value
of the program counter stored in the stack frame. - B
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The runtime environment keeps the address of the statement the thread is cur-
rently executing in the program in a special register, called the program counter.
When. a method “cool’” invokes another method “fool”, the current value of the

_program counter is recorded in the frame of the current invocation of cool (so the
- computer will “kmow” where to return to when method fool is done). :

At the top of the method stack is the frame of the running method, that is,
the method that currently has control of the execution. The remaining elements of

" the stack are frames of the suspended methods, that is, methods that have invoked

another method and are currently waiting for it to return control to-them upon its
termination. The order of the elements in the stack corresponds to the chain of
invocations. of the currently active methods. When a new method is invoked, a-

“frame for this method is pushed onto the stack. When it terminates, its frame is

popped from the stack and the computer resumes the processing of the previously
suspended method.

Themethpd stack also perfomis.parameter passing to methods. Spec‘:iﬁ'(:ally,'
many languages, such as C and Java, use the call-by-value parameter passing pro-

tocol using the method stack. This means that the current value of a variable (or
expression) is what is passed as an argument to a called method. In the case of

'a variable x of a primitive type, such as an int or float, the current value of x is
- simply the number that is associated with x. When such a value is passed to the’

called method, it is assigned to a local variable in the called method’s frame. (This
simple assignment is also illustrated in Figure 2.3.) Note that if the called method
changes the value of this local variable, it will rot change the value of the vanable
in the calling method

Recursion o o - o

One of the benefits of using a stack to implement method invocation is that it ai‘l_ows
programs to use recursion (Section 1.1.4). That is, it allows a method to call itself

~as a subroutine.

Recall that in using this technique correctly, we must always design a recursive
method so that it is guaranteed to terminate at some point (for example, by always
making recursive calls for “smaller” instances of the problem and handling the
“smallest” instances nonrecurswely as special cases). We note that if we design
an “infinitely recursive” method, it will not actually run forever. It will instead, at

~ some point, use up all the memory available for the method stack and generate an
- out-of-memory error. If we use recursion with care, however, the method stack will

implement recursive methods without any trouble. Each call of the same method

-will be associated with a different frame, complete w1th its own values for local.
. variables. Recursion can be very powerful, as it often allows us to de31gn 31mple'

and efficient programs for fairly difficult problems.
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212 Queues

Another basic data structure is the queue. It is a close ‘cousin” of the stack, as
a queue is a container of objects that are inserted and removed according to the
first-in first-out (FIFO) principle. That is, elements can be inserted at any time,
but only the element that has been in the queue the longest can be removed at any
iime. We usually say that elements enter the queue at the rear and are removed
from the front. - - |

The Queue Abstract Data Type o

‘The queue ADT keeps objects in a sequence, where element access and deletion are

restricted to the first element in the sequence, which is called the front of the queue,
and element insertion is restricted to the end of the sequence, which is called the
rear of the queue. Thus, we enforce the rule that items are inserted and removed
according to the FIFO principle. The queue ADT supports the following two fun-
damental methods: :

enqueue(o): Insert object o at the rear of the queue.

dequeue(): Remove and return from the queue the object at the front;_
an error occurs if the queue is empty.

Additionally, the quene ADT includes the following supporting methods:

size.():- Return the nu/m'ber of objects in the Queue.
iIsEm pty()' Return a Boolean value indicating whether queue is empty.

front() Return; but do not remove, the front object in the queue
~an error occurs if the queue is empty.

A Simple Array-Based IAmpIementatien

‘We present a simple realization of a queue by means of an array, Q, with capacity
" N, for storing its elements. Since the main rule with the queue ADT is that we
~ insert and delete objects according to the FIFO principle, we must dec1de how we
are going to keep track of the front and rear of the queue.
To avoid moving objects once they are placed i in Q, we. deﬁne two variables f
and r, which have the followmg meanings: '

.o fisan 1ndex to- the cell of Q storing. the first element of the queue (which is
the next candidate to _be removed by a dequeue operation), unless the queue
is empty (in which case f =r)

e ris an index to the next available anay cell in Q.
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Initially, we assign f=r =0, and we indicate that the queue is empty by .the
condition f = r. Now, when we remove an element from the front of the queue, we
can simply increment f to index the next cell. Likewise, when we add an element,
we can simply increment 7 to index the next available cell in Q. We have to be a
little careful not to overflow the end of the array, however. Consider, for example,
what happens if we repeatedly enqueue and dequeue a single element N different
times. We would have f = r = N. If we were then to try to insert the element
just one more time, we would get an array-out-of-bounds error (since the N valid
locations in Q are from Q[0] to Q[N — 1]), even though there is plenty of room in
the queue in this case. To avoid this problem and be able to utilize all of the array
0, we let the f and r indices “wrap around” the end of Q. That is, we now view Q
as a “circular array” that goes from Q[0] to Q[N — 1] and then immediately back to
0[0] again. (See Figure 2.4.) | |

| (b) - ,
Figure 2.4: Using array Q in a circular fashion: (a) the “normal” configuration with
f < r; (b) the “wrapped around” configuration with r < f. The cells storing queue
elements are highlighted. ‘

Implementing this circular view of Q is pretty easy. Each time we increment
f or r, we simply compute this increment as “(f+1) mod N” or *“(r + 1) mod N,”
respectively, where the operator “mod” is the modulo operator, which is computed
by taking the remainder after an integral division, so that, if y is nonzero, then

xmod y=x—|x/y]y

- Consider now the situation that occurs if we enqueue N-objects without dequeu-

ing them. We would bave f =r, which is the same condition as when the queue is '

‘empty. Hence, we would not be able to tell the difference between a full: queue and:

an empty one in this case. Fortunately, this is not a big problem, and a number of

ways for dealing with it exist. For example, we can simply insist that Q can never

" hold more than N — 1 objects. The above simple rule for bandling a full queue
takes care of the final problem with our implementation, and leads to the pseudo-

coded descriptions of the main queue methods given in Algorithm 2.5. Note that we
may compute the size of the queue by means of the expression (N — f +r) mod N,
which gives the correct result both in the “normal” configuration (when f <r) and-
in the “wrapped around” configuration (when r < f).
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| Algorithm dequeue(): :
~ ifisEmpty() then
throw a QueueEmptyExceptlon'

temp — Qlf]

Q|f] — null
f<(f+1)mod N
return femp

Algorithin enqueue(o):
if size() =N — 1 then |
throw a QueueFullException

Qr] —o
r« (r+1) mod N

- Algorithm 2.5: Implementation of a queue by means of an array, which is viewed |
circularly. '

As with our array-based stack implementation, each of the queue methods in
the array realization executes a constant number of statements involving arithmetic
operations, comparisons, and assignments. Thus, each method in this 1mp1ementa—
tion runs in O(1) time. | -

Also, as with the array- _based stack nnplementauon the only real dlsadvantage
of the array-based queue implementation is that we artificially set the capacity of
the queue to be some number N. In a real application, we may actually need more
or less queue capacity than this, but if we have a good estimate of the number of
elements that will be in the queue at the same tlme then the array-based implemen-
tation is quite efficient.

Usin-g Queues for Multiprogramming

Multiprogramming is a way of achieving a limited form of parallelism, even on
a computer that has only one CPU. This mechanism allows us to have multiple
tasks or computational hreads running at the same time, with each thread being
responsible for some specific computation. Multiprogramming is useful in graph-

ical applications. For example, one thread can be responsible for catching mouse
clicks while several others are responsible for moving parts of.an animation around
in a screen canvas. Even if the computer has only one CPU, these different compu-
tational threads can all seem to be run'ning' at the same time because:

- 1. The CPU is so fast relative to our perception of time.
2. The operating system is prov1d1ng each thread with a dlfferent “shce” of the
CPU’s time. '

The time sllces glven to each different thread occur w1th such rap1d succession that
the different threads appear to be running sunultaneously, in parallel.


http://www.cvisiontech.com

64

Chapter 2. Basic Data Strtlc’tures'

For example Java has a built-in mechanism for achieving multlprogrammlng——
Java threads. Java threads are computational objects that can cooperate and com- -
municate with one another to share other objects in memory, the computer’s screen, ’
or other kinds of resources and devices. Switching between different threads in a
Java program occurs rapidly because each thread has its own Java stack stored in
the memory of the Java Virtual Machine. The method stack for each thread con-
tains the local variables and the frames for the methods that that thread is currently
running. Thus, to switch from a thread T to another thread U, all the CPU needs to
do is to “remember” where it left off in the thread T before it switches to the thread
/. We have already discussed a way for this to be done, namely, by storing the
current value of T’s program counter, which is a reference to the next instruction T

~ is to perform, at the top of 7°s Java stack. By saving the program counter for each

active thread in the top of its Java stack, the CPU can pick up where it left off in

- some other thread U, by restoring the value of the program counter to the value that
“was stored at-the top of U s Java stack (and using U’s stack as the ‘current™ J ava
: stack)

k.
;o

When designing a program that uses multiple threads, we must be careful not to
allow an individual thread to monopolize the CPU. Such CPU monopolization can
lead to.an apphcatlon or applet hanging, where it is technically running, but-not
actually doing anything. In some operating systems, CPU monopolizing by threads
is not an issue, however. These operating systems utilize a queue to allocate. CPU
t1me to the runnable threads in the round-robin protocol. o

" The main 1dea of the round-robm protocol 1s to store all runnable threads ina

_ queue Q When the CPU is ready to provide a time slice to a thread, it performs a

dequeue operation on the queue Q to get the next available runnable thread; let’s

“call it T. Before the CPU actually begins executing instructions for T, however,
it starts a timer running in hardware set to expire a fixed amount of time later.

The CPU now waits until either (a) thread T blocks itself (by one of the blocking

'methods mentioned above), or-(b) the timer expires. In the latter case, the CPU

stops the execution of T and and performs an enqueue operation to place T at the
end of the line of currently runnable threads. In either case, the CPU saves the
current value of T’s program counter at the top of 7’s method stack and processes
the next available runnable thread by extracting it from Q with a dequeue operation. J
In this way, the CPU ensures. that each runnable thread: is-given its fair share of
time. - Thus, by using a simple queue data structure and a hardware stopwatch, the :
operatmg system can avoid CPU monopohzatlon

While th1s queue—based solutlon solves the multlprogrammmg problem, we
should mention that this solution is actually an overs1mphﬁcat10n of the protocol
used by most operating systems that do round- robin time slicing, as most systems

. give threads priorities. Thus, they use a priority queue to 1mp1ement time slicing.
-We discuss priority queues in Section2.4.- ' o
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2.2 Vectors, Lists, ‘and' Sequences

Stacks and queues store elements accordlng to a linear sequence determined by
update operations that act on the “ends” of the sequence. The data structures we
discuss in this section maintain linear orders wh11e allowing for accesses and up-
dates i in the “mlddle »

221

| -Vectors E

Suppose we are glven alinear sequence S that contains n elements We can un1que1y
.refer to each element e of S-using an integer in the range [0,n — 1] that is equal to

the number of elements of S that precede e in S. We define the rank of an element
e in § to be the number of elements that are before ¢ in S. Hence the first element'
in a sequence has rank 0 ard the last element has rank n—1.

Note that rank is similar to an array index, but we do not insist that an array .
should be used to implement a sequence in such a way that the element at rank
0 is stored at index O in the array. The rank definition offers us a way to refer to -
the “index” of an element in a sequence without having to worry about the exact
implementation of that list. Note that the rank of an element may change whenever
the sequence is updated. For example, if we insert a new element at the beglnnlng
of the sequence, the rank of each of the other elements increases by one.

A linear sequence that supports access to its elements by their ranks is called”

a vector. Rank is a simple yet powerful notion, since it can be used to specify
- where to insert a new element into a vector or where to remove an old element. For

example, we can give the rank that a new element will have after it is inserted (for
example insert at rank 2). We could also use rank to spec1fy an element to be

removed (for example remove the element at rank 2).

The Vector Abstract Data Type

_A vector § stonng n elements supports the followmg fundamental methods:

elemAtRank( r): Return the element of S with rank r; an error COI’ldlthll‘
occursif r<Qorr>n—1.

replaceAtRank(r,e): Replace with e the element at rank r and return 1t an
: ~ error condition occurs-if r<Qorr>n-1.

“insertAtRank(r,¢): Insert a new element e into S to have rank r; an error
' condition occurs 1f r<Qorr>n. -

removeAtRank(r): Remove from $ the element at rank r an error condltlon ’_
| ' "'occurs1fr<Oorr>n—l | ‘

In addlthIl a vector supports the usual methods 5|ze() and |sEmpty()


http://www.cvisiontech.com

06

Chapter 2. Basic Data Structures

A Simple Array-Based Imp‘leme‘ntation

An obvious choice for implementing the vector ADT is to use an array A, where

Ali] stores (a reference to) the element with rank i. We choose the size N of array
A sufficiently large, and we maintain in an instance variable the number n < N
of elements in the vector. The details of the implementation of the methods of the -
vector ADT are reasonably simple. To implement the elemAt Rank(r) operation, for
example, we just return A[r]. Implementations of methods insertAtRank(r,e) and
removeAtRank(r) are given in Algorithm 2.6. An important (and time-consuming)
part of this implementation involves the shifting of elements up or down to keep
the occupied cells in the array contiguous. These shifting operations are requlred
to maintain our rule of always storing an element of rank i at index i in A (See

- Figure 2.7 and also Exercise C-2.5.)

Algorithm insertAtRank(r e):
fori=n—1,n-2,...,rdo
| Ali+1] — A[i] {make room for the new element}
o Alr] e
- n—n+1

e

- Algorithm removeAtRan k(r):

e—Alr] -~ {e is a temporary variable }
fori=r,r+1,...;n—2do -
All] — Ali+1] {fill in for the removed eléement}
n—n—1. ‘ _ R
return ¢

Algorithm 2.6: Methods in an array 1mp1ementat10n of the vector ADT

(b)

Figure 2. 7 Array-based 1mp1ementat10n of a vector S storing » elements: (a) shift-

ing up for an insertion at rank r; (b) sh1ft1ng down for aremoval at rank .’
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Table 2.8 shows the running times of the methods of a vector realized by means
of an array. The methods isEmpty, size, and elemAtRank clearly run in O(1) time,
but the inserticn and removal methods can take much longer than this. In particular,

~ insertAtRank(r,e) runs in time O(n ) in the worst case. Indeed, the worst case for
- this operation occurs when r = 0, since all the existing » elements have to be shifted
forward. A similar argument apphes to the method removeAtRank(r), which runs
in O(n) time, because we have to shift backward » — 1 elements in the worst case -
(r = 0). In fact, assuming that each possible rank is equally likely to be passed as
an argument to these operations, their average running time is ©(n), for we will
have to shift n/2 elements on average.

Method | Time

size() [ O(1)

isEmpty() | O(1)

elemAtRank(r) | O(1)
replaceAtRank(re) | O(1) |

~insertAtRank(r,e) | O(n)

removeAtRank(r) | O(n)

Table 2.8: Worst-case perforfnanee of a vector with n elemen__ts_; realized by an array.
The space usage is O(N), where N is the size of the array.

'Looking more closely at insertAtRank(r,e) and removeAtRank(r), we note that
they each run in time O(n — r+ 1), for only those elements at rank r and higher have
to be shifted up or down. Thus, inserting or removing an item at the end of a vector,
using the methods insertAtRank(n,e) and removeAtRank(n — 1), respectively take .

-O(1) time each. That is, inserting or removing an element at the end of a vector
takes constant time, as would inserting or removing an element within a constant
" number of cells from the end. Still, with the above implementation, inserting or
removing an element. at the begmmng. of a vector requires shifting every other ele-
ment by one; hence, it takes ©(n) time. Thus, there is an asymmetry to this vector -
implementation—updates at the end are fast, whereas updates at the begmnmg are
slow..
Actually, with a little effort, we can produce an array-based 1mplementat10n of -
the vector ADT that achieves O(1) time for insertions and removals at rank 0, as
well as insertions and removals at the end of the vector Achlevmg this requires
that we give up on our rule that an element at rank i is stored in the array at index
i, however, as we would have to use a circular array approach like we used in
‘Section 2.1.2 to implement a queue We leave the details of this implementation
for an exercise (C-2.5). In addition, we note that a vector can also be 1mplemented
efficiently using an extendable table (Sectlon 1.5.2), which in fact is the default.
implementation of the vector ADT in Java. |



http://www.cvisiontech.com

68

Chapter 2. Basic Data Structures

2 2.0 LIStS

Using a rank is not the only means of referring to- the place where an element
appears in a list: We could alternatively implement the list S so that each element
is stored in a special node object with references to the nodes before and after it in
the list. In this case, it could be more natural and efficiént to use a node 1nstead of a
rank to identify where to access and update a list. In this section, we explore a way
of abstracting the node concept of “place ina 11st - !

Positions and Node-Based Operations

We would like to define methods for a list S that take nodes of the 11st as parameters
and provide them as return types. For instance, we could define a hypothetical
method removeAtNode(v) that removes the element of S stored at node v of the
list. Using a mode as a parameter allows us to remove an element in 0(1) time by
simply going directly to the place where that node is stored and then. “11nk1ng out”
this node through an update of the referring links of its neighbors. ' /

Defining methods of a list ADT by adding such node-based operatlons raises
the issue of how much information we should be exposing about the implementa-
tion of our list. Certainly, it is desirable for us to be able to use such an implemen-
tation without revealing this detail to a user. Likewise, we do not wish to allow a
user to modify the internal structure of a list without our knowledge. To abstract
and unify the dlfferent ways of storing elements in the various implementations of
a list, we introduce the concept of position in a list, which formalizes the intuitive
notion of “place” of an element relative to others-in the list. |

In order to safely expand the set of operations for lists, we abstract a notion of

“position” that allows us to enjoy the efficiency of node- based list 1mp1ementat10ns

without violating object-oriented design principles. In this framework, we view a
list as a container of elements that stores each element at a position and that keeps
these positions arranged in a linear order. A position is itself an abstract data type
that supports the followmg simple method

element(): Retum the element stored at this position.

A position is always deﬁned relatively, that is, in terms of its neighbors. In a
list, a position p will always be “after” some position ¢ and “before” some p0s1t10n

- .8 (unless r is the first or last position). A pos1t10n p, which is associated with some
element eina list S, does not change, even if the rank of e changes in S, unless we

exp11c1tly remove e (and, hence, destroy position p). Moreover, the position p does
not change even if we replace or swap the element e stored at p with another ele-

“ment. These facts about positions allow us to define a rich set of pos1t10n—based list
| 'methods that take position objects as parameters and also prov1de position ob]ects

as return values.
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The List Abstract Data Type

Using the concept of position to encapsulate the idea of “node” in a list, we can.de—
fine another type of sequence ADT, called 31mply the hst ADT. This ADT supports
‘the followmg methods for a. llst S:

first():

last():
isFirst(p):
isLast(é)':
before(p):

after(p):

Return the position of the first element of §; an error oc-
curs if Sis empty. -

Return the position of the last element of §; an error oc-
curs if S is'empty.

Return a Boolean value indicating whether the given po-
sition is the first one in the list.

Return a Boolean value indicating whether the given po-

-sition is the last one in the list.

Return the position of the element of § preceding the one
at position p; an error occurs if p is the first position.,

Return the position of the element of S following the one
at position p; an error occurs if p is the last position.

The above methods allow us to refer to relative positions in a list, starting at
the beginning or end, and to be able to move incrementally up or down the list.
These positions can intuitively be thought of as nodes in the list, but note that there
are no specific references to node objects nor links to previous or next nodes in
these methods. In addition to the above methods and the generic methods size and
isEmpty, we also include the following update method_s for the list ADT.

repIaceEIetnent(p, e):

swapEIements(p,q)

insertFirst(e):
‘insertLast(e):

insertBefore(p, e):

insertAfter(p,e)

~ remove(p):

Replace the element at posmon D w1th e, returmng the
element formerly at position p- -

Swap the elements stored at posmons P and g, so that the
element that is at position p moves to position g and the
element that is at position g moves to position p.

Insert a new element e into S as the first element.

Insert a new element e into S as the last element.

Insert a new element e into S before position p in S; an
€rror OCCurs if' p is the first position.n

Insert a new element ¢ into § after posmon pin §; an
error occurs if p is the last posmon :

' Remove from § the elemdnt at-posmon D.:

Py
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The list ADT allows us to view an ordered collection of objects in terms of their
places, without worrying about the exact way those places are represented.” Also,
note that there is some redundancy in the above repertoire of operations for the list

ADT. Namely, we can perform operation isFirst(p) by checking whether p is equal

to the position returned by first(). We can also perform operation insertFirst(e) by
performing the operation msertBefore(flrst() e).” The redundant methods should
be viewed as shortcuts. :

An error condition occurs if a position passed as argument to one of the list
operations is invalid. Reasons for a position p to be invalid include its bet*g null, a
position of a different list, or previously deleted from the list.

The list ADT, with its built-in notion of position, is useful in a numbe‘il of set-
tings. For example, a simple text editor embeds the notion of positional i .sertlon

‘and removal, since such editors typically perform all updates relative to a éursor,

which represents the current position in the list of characters of text being edited.

Linked List Impleménfa’tion o - _ | o

. The linked list data structure allows for a great variety of opefations, inclljdir}g
insertion and removal at various places, to run in O(1) time. A node in a singly

linked list stores in a next link a reference to the next node in the list. Thus, a
singly linked list can only be traversed in one direction—from the head to the tail.
A node in a doubly linked list, on the other hand, stores two references—a, next
link, which points to the next node in the list, and a prev link, which points to the
previous node in the list. Therefore, a doubly linked list can be traversed in either
d1rect10n Being able to determine the previous and next node from any given'node
in a list greatly 31mphﬁes list implementation; so let us assume we are using a
doubly linked list to implement the list ADT. |

To simplify updates and searching, it is convenient to add special nodes at both.
ends of the list:: a header node just before the head of the list, and a trailer node
just after the tail of the list. These “dummy” or sentinel nodes do not store any
element. The header has a valid next reference but a null prev reference, while the

- trailer has a valid prev reference but a null zext reference. A doubly linked list with

these sentinels is shown in Figure 2.9. Note that a linked list object would simply
need to store these two sentinels and a size counter that keeps track of the number
of elements (not counting sentmels) in the list.

. header . . trailer

-kﬂ\m\*ﬂ\‘

- \
(New York) (Prowdenoe) Cn Francnsc)

Figure 2.9: A doubly linked list with sentmels header and trailer, markmg the ends
of the list. An empty list would have these sentinels pointing to each other.

L]
7

I
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We can simply make the nodes of the linked list implement the position ADT,
defining a method element(), which returns the element stored at the node. Thus,
the nodes themselves act as positions.

Consider how we nught implement the msertAfter(p, e) method for msertmg
an element e after posmon p. We create a new node v to hold the element e, link
v into its place in the list, and then update the next and prev references of v’s two
new neighbors. This method is given in pseudo—code in Algonthm 2. 10 and is
illustrated in Flgure 2.11.

Algorithm insertAfter(p,e):
Create a new node v
velement — e | .
v.prev < p {link v to its predecessor}
v.next < p.next. {link v to its successor}
(p.next).prev v . {link p’s old successor to v}
p-next+—v  {link pto its new successor, v}
return v {the position for the element ¢}

Algorithm 2.10: Inserting an element ¢ after a poéit’ioﬂ p in a linked list.

header ‘ trailer

= \'mxﬁ\_

L oD G

trailer

™

&ﬁ\'m\m\. "N ==1}
| @alﬁmox;a ,@ew Yo?) ( Paris ) C vxdence) . .
. : C :

Figure 2.11:. Addmg a new node after the position for “Baltnnore” (a) before the -
. insertion; (b) creating node v and hnkmg it m (c) after the 1nsert10n
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The algorithms for methods insertBefo'r_e',iin_sertFirst, and insertLast are similar
to that for method insertAfter; we leave their details as an exercise (R-2.]1). Next,

" consider the remove(p) method, which removes the element e stored at position p.

To perform this operation we link the two neighbors of p to refer to one another
as new neighbors—linking out p. Note that after p is linked out, no -nodes will
be pointing to p; hence, a garbage collector can reclaim the space for p. This
algorithm is given in Algorithm 2.12 and is illustrated in Figure 2.13. Recalling
our use of sentinels, note that this algorithm works even if p is the first, last, or only
real position in the list.

‘Algorithm remove(p):

t «— p.element {a temporary variable to hold the return value}
(p.prev).next «— p.next . - {linking out p} -

(p.next).prev «— p.prev |

p-prev < null {invalidating the position p}

p.next < null.

return ¢

Algorithm 2.12: Removing an element ¢ stored at a position p in a linked list.

header o ' trailer -

B =K S

( Batimore ) (New York ) ( pais ) ((Providence )
@ - . |

header . | ' P— N . traiter
- I E

Mﬂim\".-\ Pl L S
, . e \ 3
(Baltims)re) (New York) \-\\( Paris’ )“ : (F"rovidence)
: _ (b) —— e

header ) ) - : trailer
Nwi, R % ’ 1\ M
@ltim@ 'CNéw Y@. ‘ Pll'cI)vido;nce ’
— ©

Figure 2.13: Removing the object stored at the position for “Paris”: (a) before the
removal; (b) linking out the old node; (c) after the removal (and garbage collection).
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223 Sequences

In this section, we define a  generalized sequence ADT that 1ncludes all the methods
of the vector and list ADTs. This ADT therefore pr0v1des access to its elements
using both ranks and positions, and is a versatile data structure for a wide variety
of applications.

The Sequence Abstract Data Type

A sequence is an ADT that supports al.l_ the methods of both the vector ADT (_diS—
cussed in Section 2.2.1) and the list ADT (discussed in Section 2.2.2), plus the
following two “bridging” methods that provide connections between ranks and po-
sitions: - | |
-atRank(r): Return the position of the element with rank r.
rankOf(p): ‘Return the rank of the element at position p.
A general sequence can be implemented’ with either a doubly linked list or
an array, with natural tradeoffs between these two implementations. Table 2.14

compares the running times of the implementations of the general sequence ADT,
by means of an array (used in a circular fashion) and by means of a doubly hnked

list.

Operations | Array | List

size, isEmpty | O(1) | O(1)

- atRank, rankOf, elemAtRank | O(1) | O(n)

; first, last, before, after | O(1) | O(1)

“replaceElement, swapElements | O(1) | O(1)
replaceAtRank | O(1) | O(n)
msertAtRank removeAtRank | O(n) | O(n) |
insertFirst, insertLast | O(1) | O(1) |

insertAfter, insertBefore, | O(n) | O(1)

remove | O(n) | O(1)

Table 2.14: Comparison of the running times of the methods of a sequence imple-
mented with either an array (used in a circular fashion) or a doubly linked list. We
denote with # the number of elements in the sequence at the time the operation is

- performed. The space usage is O(n) for the doubly linked list implementation, and
O(N) for the array implementation, where N is the size of the array.

Summanzmg this table, we see that the array—based 1mplementat10n is supe-
rior to the linked-list 1mplementat10n on the rank-based access’ ‘operations (atRank,
ranikOf, and elemAtRank), and it is equal in performance to the linked-list im-
plementation on all the other access operations. Regardmg update operations, the
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Jinked-list implementation beats the array-based implementation in thé_ position-
‘based update operations (insertAfter, insertBefore, and remove). Even so, the

array-based and linked-list implementations have the same worst-case performance
on the rank-based update methods (insertAtRank and removeAtRank), but for dif-
ferent reasons. In update operations insertFirst and insertLast, the two implemen-
tations have comparable performance. -

Considering space usage, note that an array requires O(N) space, where N is
the size of the array (unless we utilize an extendable array), while a doubly linked
list uses O(n) space, where n is the number of elements in the sequence. Since 7 is
less than or equal to N, this implies that the asymptotic space usage of a linked-list
implementation is superior to that of a fixed-size array, although there is a small
constant factor overhead that is larger for linked lists, since arrays do not need links
to maintain the ordering of their cells. , _ '

" The array and linked-list implementations each have their advantages and dis--
advantages. The correct one for a particular application depends on the kinds of

“operations that are to be performed and the memery space available. Designing the

sequence ADT in a way that does not depend on the way it is implgme;nted allows

_ us to easily switch between implementations, enabling the use of the implementa-

tion that best suits our applications, with few changes to our pfogram.”

" lterators

A typical computation on a vector, list, or sequence is to march through its elements
in order, one at a time, for example, to look for a specific element.

An iterator is a software design pattern that abstracts the process of scanning
through a collection of elements one element' at a time. An iterator consists of a
sequence S, a current position in S, and a way of stepping to the next position in
S and making it the current position. Thus, an iterator extends the concept of the
position ADT we introduced in Section 2.2.2. In fact, a position can be thought of
as an iterator that doesn’t go anywhere. An iterator encapsulates the concepts of
“place” and “next” in a collection of objects. L "

We define the iterator ADT as supporting the following two methods:

hasNext: Test whether there are elements left in the iterator.

nextObject: Retu‘m'and remove the next element in the iterator..

Note that this ADT has the notion of the “current” element in a travers] through a

sequence. The first element in an iterator is returned by the first call to the method

nextObject, assuming of course that the iterator contains at least one element.
An iterator provides a unified scheme to access all the elements of a container

(a collection of objects) in a way that is independent from the specific organization

of the collection. An iterator for a sequence should return the elements according
to their linear ordering.
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2.3 'Trees

A free is an abstract data type that stores elements h1erarch1ca11y W1th the excep—
tion of the top element, each element in a tree has a parent element and zero or
more children clements.. A tree is usually .visualized by placing’ elements inside
ovals or rectangles, and by drawing the connections between parents and children
with straight lines. (See Figure 2.15.) We typically call the top element the root
of the tree, but it is drawn as the highest element, with the other elements being -
connected below (just the opposite of a botanical tree).

 Juser/rt/courses/

homeWorksq programsq projects/

/ANVAN

hwiy |hw2| |hw3] |prl | |pr2

grades

grades

. |papers/ demos/

—~ -

-1 buylow | | selthigh market

Figure 2.15: Atree represeriting a portion of a file system.

A tree T is a set of nodes storing elements in a parent-chzld relationship w1th |
the following properties: '

¢ T has a special node r, called the root of T
¢ Eachnode v of T different from r has a parent node u.

Note that according to the above deﬁmtlon a tree cannot be empty, since it-must
have at least one node, the root. One could also allow- the deﬁmtlon to include
empty trees, but we adopt the convention that a tree always has a root so as to keep
our presentation simple and to avoid havmg to always deal with the special case of
an empty tree in our algorithms. :

_ If node u is the parent of node v, then we say that vis a chzld of u. Two nodes

' that are children of the same parent are siblings. ‘A node is external if it has no
children and it is internal if it has one or more children. External nodes ‘are also
known as leaves. The subtree of T rooted at a node vlis the tree consisting of all
the descendents of v ini T (including v itself). An ancestor of a node is either the
node itself or an ancestor of the parent of the node. Conversely, we say ‘that a node
v is a descendent of a node u 1f u is an ancestor-of v.
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Example 2.2: In most operating 'sys'tems, files are organized hierarchically j‘i‘nto

nested directories (also called folders), which are presented to the user in the form
of a tree. (See Figure 2.15.) More specifically, the internal nodes of the tree are
associated with directories and the external nodes are associated with regular files.
In the UNIX/Linux operating system, the root of the tree is appropriately ‘called
the “root directory,” and is represented by the symbol “/.” It 1s the ancestor of all
directories and files in a UNIX/Linux file system.

A tree is ordered if there is a linear ordering defined for the children of each

‘node; that is, we can identify children of a node as being the first, second, third,

and so on. Ordered trees typically indicate the linear order relationship existing
between siblings by listing them in a sequence or iterator in the correct order.

Example 2.3: A structured document, such as a book, is hierarchically organized
as a tree whose internal nodes are chapters, sections, and subsections, and ‘whose
external nodes are paragraphs, tables, figures, thé bibliography, and so on. (See
Figure 2.16.) We could in fact consider expanding the tree further to show para-
graphs consisting of sentences, sentences consisting of words, and words consisting
of characters. In any case, such a tree is an example of an ordered tree, because
there is a well-defined ordering among the children of each node.

_(Book)

@

Figure 2.16: A tree associated with a book.

‘A binary tree is an ordered tree in which every node has at most two children. A

binary tree is proper if each -nternal node has two children. For each internal node

in a binary tree, we label each child as either being a left child or a right child.
These children are ordered so that a left child comes before a right child. The

‘subtree rooted at a left or nght child of an internal node v is called a left subtree

or i'ight subtree, respectively, of v. We make the convention in this book that,
unless otherwise stated, every binary tree is a proper binary tree. Of course, even

~ an improper binary tree is still a general tree, with the property that each internal

node has at most two children. Binary trees have a number of useful applications,
including the following. o :
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Example 2.4: An arithmetic expression can be represented by a tree whose exter-
nal nodes are associated with variables or constants, and whose internal nodes are
associated with one of the operators +, —, X, and /. (See Figure 2.17.) Each node
in such a tree has a value associated with it. |

e If a node is external, then its value is that of its variable or constant.
e If a node is internal, then its value is defined by applying its operation to the
values of its children.

Such an arithmetic expression tree is a proper binary tree, since each of the oper-
ators -, —, X, and / take exactly two operands. Of course, if we were to allow
for unary operators, like negation (—), as in “—x,” then we could have an improper
binary tree. | ' _ o

[3 1 91 [s 71 [a4

Figure 2.17: A binary tree representing an arithrhétié expression. This tree repre-
sents the expression ((((3+1) % 3)/((9—5)+2))— ((3x (7—4))+6)). The value.
associated with the internal node labeled /7 is 2. R -

231

The Tree Abstract Data Type

The tree ADT stores elements at positions, which, as with positions in a list, are

defined relative to neighboring positions. The positions in a tree are its nodes,

and neighboring positions satisfy the parent-child relationships that define a valid
tree. Therefore we use the terms “position” and “node” interchangeably for trees.
As with a list position, a position object for a tree supports the element() method,

“which returns the object at this position. The real power of node positions in a tree,

however, comes from the_”following accessor me'thads of the tree ADT:

root(): Return the root of the tree. |
_ parent(v): Return the parent of node v; an error occurs if v is root.
children(v): _Retum an iterator of the C_hildreti of node .

If a tree T is ordered, then the iterator children (v) p:ovides access to the children

‘of v in order. If v is an external node, then children(v) is an empty iterator.
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In addition, we also inelude the fo‘llewing query methods:

isInternal(v): Test whether node v is internal.
isExternal(v): Test whether node v is external.

isRoot(v): Test whether node v is the root.

There are also a number of methods a tree should support that are not neceséarily
related to its tree structure. Such generic methods include the following:

size(): Return the number of nodes in the tree. -

elements(): Return an iterator of all the elements stored at nodes of
- the tree.

positions(): Return an iterator of all the nodes of the tree.

swapElements(v,w): Swap the elements stored at the nodes v and w.

replaceElement(v,¢): Replace with e and return the element stored at node v.

We do not define any specialized update methods for a tree here. Instead, let
us reserve the potential to define different tree update methods in COIIJUIICthIl with
specific tree applications.

2.3.2 Tree Traversal

In this section, we present. algonthms for performing computations on a- tree by
accessmg it through the tree ADT methods. :

Assum ptions

In order to analyze the running time of tree-based algorithms, we make the follow-
ing assumptions on the running times of the methods of the tree ADT.

The accessor methods reot()’ and parent(v) take O(1) time.

The query methods isInternal(v), isExternal(v), and isRoot(v) _take 0(1).
time, as well.

The accessor method children(v) takes O(c,) time, where c, is the number
of children of v.

The genenc methods swapElements(v, w) and replaceElement(v,e) take o(1 )
time. -

The generic methods elements() and positions(), which return iterators, take
O(n) time, where » is the number of nodes in the tree.

For the iterators returned by methods elements(), positions(), and children(v),

- the methods hasNext(), nextObject() or nextPosition() take O(1) tis... « .. -
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- In Section 2.3. 4 we w111 present data structures for trees that satisfy the above

| assumptions. Before we describe how to implement the tree ADT using a concrete

data structure, however, let us describe how we can use the methods of the tree
ADT to solve some interesting problems for trees.

Depth and Height

:Let vbe anode of a tree T. The depth of v is the number of ancestors of v, excluding
v itself. Note that this definition implies that the depth of the root of T is 0. The

depth of a node v can also be recursively defined as follows:

e If vis the root, then the depth of v is 0.
‘e Otherwise, the depth of v is one plus the depth of the parent of v.

Based on the above definition, the recursive algorithm depth, shown in Algo-
rithm 2.18, computes the depth of a node v of T by calling itself recursively on
the parent of v, and adding 1 to the value returned. |

Algorithm depth(T,v):
if 7T.isRoot(v) then
return 0
else
return 1 + depth(7, 7T.parent(v))

' Algor_ithm 2.18: Algorithm depth for computing the depth of anode vin atree T.

The running time of algorithm depth(T,v) is O(1 +-d,), where d, denotes the
depth of the node v in the tree T, because the algorithm performs a constant-time
recursive step for each ancestor of v. Thus, in the worst case, the depth algorithm
runs in O(n) time where 7 is the total number of nodes in the tree T, since some
nodes may have nearly this depth in 7'. Although such a n’mning time is a function
of the input size, it is more accurate to characterize the running time in terms of the
parameter d,,, since this will often be much smaller than n.

The height of a tree T is equal to the maximum depth of an external node of T
While this definition is correct, it does not lead to an efficient algorithm. Indeed,
if we were to apply the above depth-finding algorithm to each node in the tree 7,
we would derive an O(n?)-time algorithm to compute the helght of T. We can do
much better, however, using the following recursive definition of the height of a
node vin atree 7'

e Ifvisan external node ‘then the he1ght of vis 0.
~ e Otherwise, the height of v'is one plus the maximum he1ght of a ehild of v.

The height of a tree T is the height of the root of T'.
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Algorithm height, shown in Algorithm 2.19 computes the height.of tree 7" in
an efficient manner by using the above recursive definition of height. The algo-
rithm is expressed by a recursive method height(7,v) that computes the height of

- the subtree of T rooted at a node v. The height of tree T is obtained by calling

helght(T T.root()).

Algorithm height (T, v):
if 7.isExternal(v) then

return 0 .
else
h=0

for each w € T.children (v)'do
h = max (h,height(T,w)) -
return 1+h

Algorxthm 2.19: Algomhm height for computmg the height of the subtree of tree T
rooted at a node v.

The height algorithm is recursive, and if it is initially called on the root of T,
it will eventually be called once on each node of T. Thus, we can determine the
running time of this method by an amortization argument where we first determine
the amount of time spent at each node (on the nonrécursive part), and then sum this
time bound over all the nodes.. The computation of an iterator children(v) takes
O(c,) time, where ¢, denotes the number of children of node v. Also, the while
loop has ¢, iterations, and each iteration of the loop takes O(1) time plus the time
for the recursive call on a child of v. Thus, algorithm height spends O(1+¢,) time
at each node v, and its running time is O(Y,,cr(1+¢,)). In order to complete the
analysis, we make use of the following property. | "

'Theorem 2.5: Let T be a tree with n nodes and let cv denote the number of

chﬂdren ofanodev of T. Then ‘
2. c, =n—1.

vel -

Proof:. Each node of T, with the exception of the root, is a child of another node,

and thus contributes one unit to the summation 3, Cy. [ ]

By Theorem_2.5 , the running time of Algorithm height when called on the root
of T is O(n), where # is the number of nodes of T

A traversal of a tree T is a systematic way of accessmg, or “visiting,” all the
nodes of T. We next present bas1c traversal schemes for trees, called preorder and

- postorder traversals.
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Preorder Traversal

In a preorder traversal of a tree T, the root of T is visited first and then the sub-
trees rooted at its children are traversed recursively. If the tree is ordered, then the

~ subtrees are traversed.according to the order of the children. The specific action

associated with the “visit” of a node v depends on the application of this traversal,
and could involve anything from incrementing a counter to performing some com-
plex computation for v. The pseudo-code for the preorder traversal of the subtree
rooted at a node v is shown 1n Algonthm 2 20. We initially call this routme as
preorder(7,T. root())

!

Algorithm preorder(7,v):
perform the “visit” action for node v
for each child wof v do o
recursively traverse the subtree rooted at w by calling preord er(T,w)

- Algorithm 2.20: Algorithm preorder.

The preorder traversal algorithm is useful for producing a linear ordering of
the nodes of a tree where parents must always come before their children in the
ordering. Such orderings have several different applications; we explore a simple
instance of such an application in the next example. '

References) .

Figure 2.21: Preorder traversal of an ordered tree.

Example 2.6: ‘The preorder l:raversal of the tree assoaated with a document, as in

~ Example 2.3, examines an entire document sequentially, from beginning to end. If

the external nodes are removed before the traversal, then the traversal examines the
table of contents of the document. (See Figure 2.21.)

The analysis of preorder traversal is actually similar to that of algorithm height
given above. At each node v, the nonrecursive part of the preorder traversal algo-
rithm requires time O(1+c¢,), where ¢, is the number of children of v. "Thus, by -
Theorem 2.5, the overall running time of the preorder traversal of T is O(n).
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Postorder Traversal

Another important tree traversal algorithm is the postorder traversal. This algo-
rithm can be viewed as the opposite of the preorder traversal, because it recursively

" traverses the subtrees rooted at the children of the root first, and then visits the

root. It is similar to the preorder traversal, however, in that we use it to solve a

‘particular problem by specializing an action associated with the “visit” of a node v.

Still, as with the preorder traversal, if the tree is ordered, we make recursive calls
for the children of a node v according to their specified order. Pseudo-code for the
postorder traversal is given in Algorlthm 2.22.

Algorithm postorder(T v):
for each child wof v do
recursively traverse the subtree rooted at w by calling postorde r(T w)
perform the “visit” action for node v :

Algorithm 2.22: Method postorder.
The name of the postorder traversal comes from the fact that tfi:is traversal
method will visit a node v after it has visited all the other nodes in the subtree
rooted at v. (See Figure 2 23.) '

Abstract

Figure 2.23: Postorder traversal of the ordered tree of Figure 2.21.

The analysis of the running time of a postorder traversal is analogous 't_o that
of a preorder traversal. The total time spent in the nonrecursive portions of the
algorithm is proportional to the time spent visiting the children of each node in the

“tree. Thus, a postorder traversal of a tree T with n nodes takes O(n) time, assuming

that visiting each node takes O(1) time.- That is, the postorder traversal runs in
linear time. o
The postorder traversal method is useful for solving problems where we wish

“to compute some property for each node v in a tree, but computing that property for

v requires that we have already computed that same property for v’s ch11dren Such
an app11cat10n is illustrated in the following example. -
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Example 2.7: Consider a file system tree T, where externa] nodes rep'resem files
and internal nodes represent directories (Example 2.2). Suppose we want to com-
pute the disk space used by a directory, which is recursively given by the sum of:

. Tbc size of the directory itself
e The sizes of the files in the directory
o The space used by the children directories.

(See Figure 2.24.) This computation can be done with a postorder traversal of
tree T. After the subtrees of an internal node v have been traversed, we compute
the space used by v by adding the sizes of the directory v itself and of the files
contained in v, to the space used by each internal child of v, which was computed
by the recursive postorder traversals of the children of v. '

5124K

- | fuser/rt/courses/

‘ 1K

249K ‘ 4874K
cs016/ ' cs252/

2K o _ o 1K

10K \'229K 4870K / \ |
grades; | homeworks/ Y [programs/ projects/ | |grades|
8K 1K 1K 1K 3K

4787K

AN,

hwi] [hw2] [hw3] [pri| [pr2] [pra papers/

3K || 2K [ [4K'| [57K| [97K]| |7aK| | 1K

buyiow | [ sellhigh | | market
26K. 55K 4786K

Figure 2.24: The tree of Figufe 2.15 representing a file system, showing the name

- and size of the associated file/directory inside each node, and the disk space used
by the associated directory above each internal node.

Although the preorder and postorder traversals are common ways of visiting
the nodes of a tree, we can also imagine other traversals. For example, we could
traverse a tree so that we visit all the nodes at depth d before we visit the nodes at
depth d + 1. Such a traversal could be implemented, for example, using a queue,
whereas the preorder and postorder traversals use a stack (this stack is implicit

‘in our use of recursion to describe these methods, but we could make this .use
‘explicit, as well, to avoid recursion). In addition, binary trees, which we discuss

next, support an additional traversal method, known as the inorder traversal..
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"2.3.3 Binary Trees

One kind of tree that is of particular interest is the binary tree. As we mentioned in
Section 2.3.1, a proper binary tree is an ordered tree in which each internal node
has exactly two children. We make the convention that, unless otherwise stated,
binary trees are assumed to be proper. Note that our convention for binary trees
is made without loss of generality, for we can easily convert any improper binary
tree into a proper one, as we explore in Exercise C-2.14. Even without such a
conversion, we can consider an improper binary tree as proper, simply-by viewing
missing external nodes as “null nodes” or place holders that still count as nodes.

The Binary Tree- Abstract Data Type

'As an abstract data type, a binary tree is a specialization of a tree that supports three
additional accessor methods: |

IeftChiId(iz): Return the left child of v; an error condition @échrs if vis
an external node. "

. rightChild(v): Return the right child of v; an error condi'tipﬁ\ occurs ifv
is an external node. \ :

~ sibling(v): Return the sibling of node v; an error cond‘ifi_,bn occurs if
o v is the root. | ’

Note that these methods must have additional error conditions if we are dealing with
improper binary trees. For example, in an improper binary tree, an internal node
may not have the left child or right child. We do not include here any methods for

~updating a binary tree, for such methods can be created as required in the context
of specific needs. ' |

Properties of Binary Trees

We denote the set of all nodes of a tree T at the same depth d as the level d of T

In a binary tree, level O has one node (the root), level 1 has at most two nodes (the
children of the root), level 2 has at most four nodes, and so on. (See Figure 2.25.) In
general, level d has at most 2¢ nodes, which implies the following theorem (whose
proof is left to Exercise R-2.4).. o

Theorem 2.8: Let T be a (proper) binary tree with n nodes, and let h denote the
height of T . Then T has the following properties:

1. The number of external nodes in T is at least h+ 1 and at most 2".
2. The number of internal nodes in T is at least h and at most 2k —1.
3. The total number of nodes in T is at least 2h+ 1 and at most okl _q,
4. .

The height of T is at least log(n + 1) — 1 and at most (n—1)/2, that is
log(n+1)—1<h<(n—1)/2. | |
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Level : : o Nodés

I~3

Figure 2.25: Maximum number of nodes in the levels of a biﬁary tree.

In add1t1on we also have the followmg

Theorem 2.9: Ina proper) binary tree T ; the number of extemal nodes is 1 more
than the number of internal nodes. :

Proof: The proof is by induction. If T itself has only one node v, then v is exter-
nal, and the proposition clearly holds. Otherwise, we remove from T an (arbitrary)
external node w and its parent v, which is an internal node. 'If v has - parent #,
then we reconnect # with the former sibling z of w, as shown in Figure 2.26. ‘This
operation, which we call removeAboveExternal(w), removes one internal node and
one external node, and it leaves the tree being-a proper binary tree. Thus, by the

inductive hypothesis, the number of external nodes in this tree is one more than the

number of internal nodes. Since we removed one internal and one external node to
reduce 7 to this smaller tree, this same property must hold’ for T m

)

Figure 2.26: Operation removeAboveExternal(w ) Wthh removes an external node

“and its parent node, used in the ]ustlﬁcatlon of Theorem 2. 9

Note that the above relat10nsh1p does not hold in general for nonbmary trees.

In subsequent chapters we explore some important app11cat1ons of the above
facts. Before we can discuss such applications, however, we should ﬁrst understand
more about how binary: trees are traversed and represented. BE
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Traversals of a Blnary Tree

As with general trees, computatlons performed on binary trees often 1nvolve tree
traversals. In this section, we present binary tree traversal algorithms expressed

- using the binary tree ADT methods. As for running times, in addition to the as-

sumptions on the running time of the tree ADT methods made in Section 2.3.2,
we assume that, for a binary tree, method children(v) takes O(1) time, because

- each node has either zero or two children. Likewise, we assume that methods

leftChild(v), rightChild(v), and sibling(v) each take O(1) time.

Preorder Traversal of a Binary Tree

Since any binary tree can also be viewed as a general tree, the preorder traversal
for general trees (Code Fragment 2.20) can be applied to any binary tree. We can
simplify the pseudo-code in the case of a blnary tree traversal, however, as we show
in Algorithm 2.27. -

"Algorithm binaryPteorder(T,v):

perform the “visit” action for node v

" if v is an internal node then

_binaryPreorder(7,T. IeftChild(v)) {recursively traverse left subtree}
binaryPreorder(T,T. rlghtChlld(v)) lrecurswely traverse right subtree}

| Algonthm 2. 27 Algonthm binaryPreorder that performs the preorder traversal of

the subtree of a ‘binary tree T rooted at node v.

Postorder Traversal of a Binary Tree

Analogously, the postorder traversal for general trees (Algorlthm 2.22) can be spe—

cialized for binary trees, as shown in Algorithin 2.28.

AlgOrithm binaryPostorder(T,v):

if v is an internal node then |
binaryPostorder(T, T.leftChild(v)) {recursively traverse left subtree}
binaryPostorder(T, T.rightChild(v)) {recursively traverse right subtree }
perform the “visit” action for the node‘v '. |

| | Algorlthm 2 28 Algonthm bmaryPostorder for performing the postorder traversal
of the subtree of a binary tree T rooted at node v.

Interestmgly, the spec1ahzatlon of the general preorder and postorder traversal

- methods to binary trees suggests a-third traversal in a bmary tree that is different

from hoth the nrearder and nostorder traversals.
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InOrder Traversal ‘of a Binary Tree

- An additional traversal method for a binary tree is the inorder- traversal. In this

traversal, we visit a node between the recursive traversals of its left and nght sub-
trees, as shown in in Algonthrn 2. 29 -

Algorithm inord_er(T, v): |
if v is an internal node then
inorder (7, T.leftChild(v)) {recurswely traverse left subtree}
-perform the “visit™ action for node v ‘
if v is an internal node then o ‘ N :
-~ inorder(T, TrightChild(v)) {recursively traverse right subtree}

Algonthm 2.29: Algonthm inorder for perforrmng the 1norder traversal of the sub-

treeof a bmary tree T rooted at a node v.

: The 1nor_der traversal of a binary tree T can be informally viewed as visiting
the nodes.of T “from left to right” Indeed, for every node v, the inorder traversal
visits v after all the nodes in the left subtree of v and before all the nodes in the right _'
subtree of v. (See Figure 2. 30 ) - |

Figure 2.30: Inorder traversal of a binary tree.

A Unified Tree Traversal Framework

The tree- traversal algonthms we have discussed so far are all forms of iterators.
Each traversal visits the nodes of a tree in a certain order, and is guaranteed to visit
each node exactly once. We can unify the tree-traversal algorithms given above -
into a single design pattern, however, by relaxing the requirement that each node .
be visited exactly once. The resulting traversal method is called the Euler tour
traversal, which we study next. The advantage of this traversal is that it allows for

" more general kinds of algorithms to be expressed easﬂy
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The Euler Tour Traversal of a Binary Tree

The Euler tour traversal of a binary tree 7 can be informally defined as a “walk”
around T, where we start.by going from the root toward its left child, viewing the.
edges of T as being ° ‘walls” that we always keep to our left. (See Flgure 2.31)
Each node v of T is encountered three times by the Euler tour:

e “On the left” (before the Euler tour of v’s left subtree)
e “From below” (between the Euler tours of v’s two subtrees)
e “On the right” (after the Euler tour of v’s right subtree).

If v is external, then these three “visits” actually all happén at the same time

- Figure 2.31: Euler tour traversal of a binziry tree.

We give pseudo-code for the Euler tour of the subtree rooted at a node v in
Algonthm 2.32. : |

Algdrithm eulerTour(T,v):

perform the action for visiting node v on the left
if v is an internal node then
recursively tour the left subtree of v by calling eulerTour (T, T. IeftCthd(v))
perform the action for visiting node v from below - |
if v is an internal node then '
recursively tour the right subtree of v by calling eulerTour(7, 7. rlghtChlld( )
- perform the action for visiting node v on the right

Algorithm 2.32: Algorithm eulerTour for computmg the Euler tour traversal of the
subtree of a bmary tree. 7" rooted at a node v.: |

“The pre_orde_r traversalw of a binary tree is equivalent to an Euler tour traversal
such that each node has an associated “visit” action occur onlv- when it is encoun-
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tered on the left. L1kew1se the inorder and postorder traversals. of a bmary tree
are equivalent to an Euler tour such that each node has an associated “visit” action
occur only when it is.encountered from below or on the right, respectively.

The Euler tour traversal extends the preorder, inorder; and postorder traversals,
but it can also perform other kinds of traversals. For example suppose we wish
to compute the number of descendents of each node v in an 7 node binary tree T.
We start an Euler tour by initializing a counter to 0, and then increment the counter
each time we visit a node on the left. To determine the number of descendents of
a node v, we compute the difference between the values of the counter when Vis

~ visited on the left and when it is visited on the right, and add 1. This simple rule

gives us the number of descendents of v, because each node i in the subtree rooted
at v is counted between v’s visit on the left and v’s visit on the right. Therefore, we
have an O(n)—ume method for computing the number of descendents of each.node
inT.

The running time of the Euler tour traversal 18 easy to analyze assuming visit-

ing a node takes O( 1) time. Namely, in each traversal we spend a:constant amount

of time at each node of the tree during the traversal, s0 the overall running time
is O(n) for an n node tree.

Another application of the Euler tour traversal is to print a fully parenthe-
sized arithmetic expression from its expression tree (Example 2.4). The method
printExpression, shown in Algorithm 2.33, accomplishes this task by performmg
the following actions in an Euler tour:

“On the left” action: if the node is 1nternal print “(”
¢ “From below” action: print the value or operator stored at the node
e “On the right” action: if the node is internal, print “).”

Algorithm printExpression(T, V)
if 7.isExternal(v) then
print the value stored at v
else _ -
print “(” - o !
prmtExpressnon(T T. leftChlld( )) |
print the operator stored at v
prlntExpreSSlon(T T. rlghtChiId(v))
- print *)”
Algorithm 2.33: An algonthm for printing the arithmetic expressmn associated w1th :
the subtree of an arlthmetlc expressmn tree T rooted at v. ‘ -

‘Having presented these pseudo-code examples, we now describe a number of

efficient ways of realizing the tree abstract data. type by concrete data structtires,

such as sequences and linked structures.
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left to right, although it may skip some numbers. (See Figure 2.34.)

234 Data Str’Uctu_r_e:s_Qfor Representing Trees

In this section, we describe concrete data structures for representing trees.

A Vector-Based Structure for Binary Trees

A simple struéture for ,reprcsenting abinary tree T is based on a way of numbering

the nodes of T. For every node v of T, let p(v) be the integer defined as follows.

. '_va is the root of T, then p(\;) =1.

o Ifvis the left child of node , then p(v) =2p(u).

v _ : . : ,
e Ifvisthe right child of node u, then p(v) ;‘2p(u) + 1.

The numbering function p is known as a level numbering of the nodes in a binary
tree T, because it numbers the nodes: on-each level of T in increasing order from

1

Figure 2.34: An 'examf)le binary tree level numbéring.‘

- Thelevel numbering function p suggests a representation of a binary tree T by
means of a vector S such that node v of T is associated with the element of S at
rank p(v). (See Figure 2.35.) Typically, we realize the vector S by means of an
extendable array. (See Section 1.5.2.) Such an implementation is simple and fast,

“for we can use it to easily perform the methods root, parent, leftChild, rightChild,

sibling, isInternal, isExternal, and isRoot by using simple arithmetic operations on
the numbers p(v) associated with each node v involved in the operation. That is,
each position object v is simply a “wrapper” for the index p{v) into the vector S.
We leave the details of such implementations as a simple exercise (R-2.7).

Let n be the number of nodes of T',-and let py be the maximum value of p(v)

‘over all the nodes of T. Vector § has size N = py + 1 since the element of S at

rank O is not associated with any node of T. Also, vector S will have, in general,
a number.of empty elements that do not refer to existing nodes of T. These empty

~ slots could, for example, correspond to empty external nodes or even slots where

descendents of such nodes would go. In fact, in the worst case, N = 2n+1)/2,
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Figure 2.35: Representation of a binary tree T by means of a vector S.

the Jusuﬁcatlon of which is left as an exercise (R-2.6). In Sectlon 2.4.3, we w111_
see a class of binary trees, called “heaps” for which N = n+ 1. Moreover, if all
external nodes are empty, as, will be the case in our heap 1mp1ementatlon then we
can save additional space by not even extending the size of the vector § to include

external nodes whose index is past that of the last internal node in the tree. Thus,
in spite of the worst-case space usage, there are applications for which the vector

~ representation of a binary tree is space efficient. Still, for general binary trees, the
'exponentlal worst-case space requlrement of this representationis proh1b1t1ve

“Table 2.36 summarizes the running times of the methods of a bmary tree im-
plemented with a vector. In this table we do not include any methods for updating
a binary tree. ' o : |

Operation | Time

positions, elements | O(
swapEIements replaceElement | O(
“root, parent, children | O(
o(
(

“leftChild; rightChild, sibling |
islnternal,,isE'xte,r_n.aI, isRoot | O

Table 2.36: Runnmg times of the metnods of a blnary tree T 1mplemented w1th a

vector S, where S is realized by means of an array. We denote with n the number
of nodes of T, and N denotes the size of S. Methods hasNext(), nextObJect() and
nextPosition() of the iterators elements(), posntlons() and children(v) take O(1)

_ time. The space usage is O(N), which is O(2'* (n 1)/ 2) in the worst case.

The vector implementation of a blnary tree is fast and snnple but it can be very
space inefficient if the height of the tree is large The next data structure we discuss
for representmg bmary trees does not have th1s drawback
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A Linked Structure for Binary Trees

A natural way to realize a b1nary tree 7T is to use a linked structure. In th1s approach

we represent each node v of T by an object with references to the element stored at

v and the positions associated with the children and parent of v. We show ‘a linked
structure representation of a binary tree in Figure 2.37. |

parent )

left : & , . right medence “Seantle

element

@ B ®-

" Flgure 2.37: An example hnked data structure for representtng a binary tree: (@)

object associated with a node; (b) complete data structure for a binary tree with five
nodes.. ‘

If vis the root of T then the reference to the parent node is nuII and 1f vis an

- external node, then the- references to the children of v are null.

Ifwe w1sh to save space for cases when external nodes are empty, then we can

‘have references to enipty external nodes be null. That is, we can allow a reference

from an internal node to an external node child to be null.

In addition,-it is fa1rly straightforward to. 1mp1ement each of the methods size(),
lsEmpty() swapElements(v, w), and replaceElement(v,e) in O(1) time. Moreover,

" the method positions() can be 1mp1emented by performing an inorder traversal,

and implementing the method elements() is similar. Thus, methods positions()
and elements() take O(n) time each.

Considering the space required by this data structure, note that there is‘a constant-
sizer object for every node of tree T. Thus, the overall space requn'ement is O(n).
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“A Linked Structure for \G“_enve\r:al Trees

We can extend the linked structure for binary trees to 'represent general trees. Since
there 1s no 11m1t on the number of children that a node v in a general tree can have,
we use a container (for éxample, a list or vector) to store the children of v, instead of
using instance variables. This structure is schematically illustrated in Flgure 2 38,

- assuming we implement the contamer for anode as a sequence.

»

parent

3—‘ element

chitdrenContainer I : 7
(a) | (b)

Figure 2.38: The linked structure for a tree: (a) the-object'associated with a node;
(b) the portion of the data structure associat_ed with a node and its children.

- {Baitanore  Chicago Providence

We note that the performance of a linked. 1mp1ementat10n of the tree ADT a
shown in Table 2.39, is similar to that of the linked implementation of a binary
tree. The main difference is that in the implementation of the tree ADT we use

- an efficient container, such as a list or.vector, to store the chlldren of each node v,

instead of direct links to exactly two chrldren

Operation | Time

size, isEmpty | O(1)

positions, elements | O(n)
swapElements, replaceElement | O(1)
- - root, parent | O(1)

| | ‘children(v) | O(cy)
rislnte_rnal,' isExternal, isRoot | O(1)

‘Table 2.39: Runmng times of the methods of an n—node tree: 1mplemented with a
linked structure We let ¢, denote the number of ch11dren of a node v.
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2.4 Prlorlty Queues and Heaps

~ In this section, we prov1de a framework for studymg priority queues, based on the
~ concepts of key and comparator.

2.4.1

The Prioi'ity Queue Abstract Data Type

Applications commonly require comparing and ranking obJects accordmg to pa
rameters or properties, called “keys,” that are ass1gned for each object in a collec-
tion. Formally, we define a key to be an object that is-assigned to an eélement as a
specific attribute for that element, which can be used to identify, rank, or weight
that element. Note that the key is ass1gned to an element, typlcally by a user or
application. '

 The concept of a key as an arbitrary object type is therefore quite general. But,
in order to deal consistently with such a general definition for keys and still be

. able to discuss when one key has priority over another, we need a way of robustly

defining a rule for comparing keys. That is, a priority queue needs a comparison
rule that will never contradict itself.. In order for a comparison rule, denoted by <,
to be robust in this way, it must define a total order relation, which'is to say that the
comparison rule is defined for every pair of keys and it must satisfy the following
properties:

e Reflexive property: k <k |
e Antisymmetric property: ifkj <ksand kp < kl, then k1 ka. .
e Transitive property: if k <k and ky < k3, then k) < k3

Any companson rule, <, that satisfies these three properties will never lead to a
comparison contradiction. In fact, such a rule defines a linear ordering relationship:
among a set of keys. Thus, if a (finite) collection of elements has a total order;
defined for it, then the notion of a smallest key, ky;n, is well defined. Namely, it 1s';
a key in which kyin < k, for any other key k in our collection. "

A priority. queue is a container of elements, each having an associated key
that is provided at the time the element is inserted. The name “priority queue”
comes from the fact that keys determine the “priority” used to ple elements to be

‘removed. The two fundamental methods of a priority queue P are as follows:

| msertltem(k e) Insert an element e with key k into P.

removeMm() ‘Return and remove from P an element with the smallest’
key, that 1s, an element whose key is less than or equal to
 that of every other element in P. :

By the way, some people refer to the removeMm method as the extractMm”
method, so. as to stress that tlns method s1mu1tane0usly removes and returns a
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smallest element in P We can additionally augment these two fundamental meth- |
ods, with supporting methods, such as size(), and isEmpty(). Also, we can add
accessor methods, such as the following- : -

., mmEIement() Return (but do not remove) an element of P with the-
smallest key. :

mmKey() Return (but do not remove) the smallest key in P.

. Both of these methods return error conditions 1f the pnonty queue is empty.

~ One of the interesting aspects of the priority queue ADT, which should now be
obvious, is that the priority queue ADT is much simpler than the sequence ADT.
This simplicity is due to the fact that-elements in a priority queue are inserted and
‘removed based entirely on their keys, whereas elements are inserted and removed
‘ina sequenee based on their positions and ranks.

Comparators

The priority queue ADT implicitly makes use of a software engineering design
pattern, the comparator. This pattern specifies the way in which we compare keys,
~ and is designed to support the most general and reusable form of a priority queue.
For such a des1gn we should not rely on the keys to prov1de their comparison rules,
- for sueh rules might not be what a user desires (particularly for multi-dimensional
data). Instead, we use special comparator objects that are external to. the keys to
- supply the comparlson rules. A comparator is an objeet that compares two keys.
We assume that a priority queue P is g1ven a comparator when P is constructed, and
‘we might also i imagine the ability of a priority queue to be given a new comparator
if its old one ever becomes “out of date” When P needs to compare two keys, it
“uses the comparator it was given to perform the companson Thus, a programmer
can wriie a general priority queue implementation that can work correetly in a wide
variety of contexts. Formally, a comparator object provides the following methods,
each of which takes two keys and compares them (or reports an error if the keys are
incomparable). The methods of the comparator ADT include: | '

 isLess(a,b): True if and orlly if a is less thanb |

(a,
isLessOrEqualTo(a,b): True if and only if @ is less than or equal to b._
isEqualTo(a,b): Trueif and only if @ and b are equal.
isGreater(a,b): True if and only if a is greatjerjthanl b.
isGreaterOrEq u'aITe(a,b): True if and only if a is greater than or equal to b.

“isComparablé(a): True if and only if'a,can'be'cormpéj‘r_:ed'.lf



http://www.cvisiontech.com

96

Chapter 2. Basic Data Structures

—

242 PQ Sort, Selectlon Sort, and Insertion-Sort

In this section, we discuss how to use a priority queue to sort a set of elements.

PQ-Sort: Using a Priority Queue to Sort’

In the sorting problem, we are glven a collection C of n elements that can be com-
pared according to a total ,order relation, and we want to rearrange them in increas-
ing order (or at least in nondecreasing order if there are ties). The algorithm for
sorting C with a pnonty queue Q is quite simple and consists of the following two
phases: : -

. In the first phase, we put the elements of C into an initially empty priority
queue P by means of a series of n insertltem operations, one for each ele-
ment. & '

2. In the second phase, we extract the elements from P in nbndeer'easing order
by means of a series of n removeM in operatlons puttmg them back into,C in
order.

We give pseudo-code for this algorithm in Algorithm 2.40, assummg that C is a
sequence (such as a list or vector). The algorithm works correctly for any priority.
queue P, no matter how P is implemented. However, the running time of the algo-~
rithm is determined by the running times of operations insertltem and removeMin,

~ which do depend on how P is implemented. Indeed, PnontyQueueSort should be

considered more a sorting “scheme” than a sorting “algorithm,” because it does not
specify how the priority queue P is implemented. The PriorityQueueSort scheme

_is the paradigm of several popular sorting algorithms, including selection sort,
‘insertion-sort, and heap-sort, which we discuss in the remainder of this section. =

Algorithm PQ-Sort(C, P):

Input: An n-element sequence C and a pnonty queue P that compares keys,
which are elements of C, using a total order relation
Output: The sequence C sorted by the total order relation

while C is not empty do

e — C.removeFirst() {remove an element ¢ from C}
Pinsertltem(e, e) {the key is the element itself}
while Pisnotempty do o
‘¢ — PremoveMin() {remove a smallest element from P}
- C.insertLast(e) - {add the element at the end of C}

Algorithm 2.40: ‘Algorithm PQ-Sort. Note that the elements of the input sequence
C serve both as keys and elements of the priority queue P. :
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Using a Prrorlty Queue Implemented with an Unordered Sequence

As our first implementation of a priority queue P, let us consider storing the ele-
ments of P and their keys in a sequence S. Let us say that S is a general sequence
_implemented with either an array or a doubly linked list (the choice of specific im-
plementation will not affect performance, as we will see). Thus, the elements of S
are pairs (k,e), where e is an element of P and  is its key. A simple way of im-
plementing method insertltem(k,e) of P is to add the new pair object p = (k, ) at
the end of sequence S, by executing method insertLast(p) on S. This implementa-
tion-of method insertitem takes O(1) time, independent of whether the sequence is
- implemented using an array or a linked list (see Section 2.2.3). This choice means
that S will be unsorted, for always inserting items at the end of S does not take into
account the ordering of the keys. As a consequence, to perform operation minEle-

" ment, minKey, or removeMin on P, we must inspect all the elements of sequence
-§ to find an element p = (k,e) of § with minimum k. Thus, no matter how the
sequence S is implemented, these search methods on P all take O(n) time, where n
is the. number of elements in P at the time the method is executed. Moreover, these
methods run in Q(n) time even in the best case, since they each require search-
ing the entire sequence to find a minimum element. That is, these methods run in
©(n) time. Thus, by using an unsorted sequence to implement a priority queue, we
achieve constant-time insertion, but the removeMm operation takes linear time. .

Selection-Sort -

If we implement the priority queue P with an unsorted sequence, then the first phase
of PQ-Sort takes O(n) time, for we cau insert each element in constant time. In
- 'the second phase, assuming we can compare two keys in constant time, the running
time of each removeMin operation is proportional to the number of elements cur-
" rently in P. Thus, the bottleneck: computation in this lmplementatlon is-the repeated
“’selection” of the minimum element from an unsorted sequence in phase 2 For this
reason, this algorithm is better known as selection-sort. -

‘Let us analyze the selection-sort algonthm As noted above the bottleneck is
the second phase where we repeatedly remove an element with smallest key from
the priority queue P. The size of P starts at n and 1ncrementa11y decreases with

- each removeMin until it becomes 0. Thus the first removeMin operation takes time
‘O(n), the second one takes time O(n 1), and so on, until the:last (nth) operation
takes time O(1). Therefore, the total time needed for this second phase is

i=1

O(n+(n_'1)+ +2+1) 0 (i;)

By Theorem 113, we have Yroi= "("+'l),. Thus, -the:-second‘phase takes time
O(n?) -as does the entire selection-sort algorithm "
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Using a 'Prior'ity_' Queue Implemented with a Sorted Sequence

An alternative implementation of a priority quene P also uses a sequence S, ex-
cept that this time let us store items ordered by key values. We can implement -
methods minElement and minKey in this case simply by accessing the first ele- g
ment of the sequence with the first method of S. Likewise, we can imi)le‘ment the
removeMin method of P as S.remove(S.first()). Assuming that § is implemented*
with a linked list or an array that supports constant-time, front-element removal (see.
Section 2.2.3), finding and removing the minimum in P takes O(1) time. Thus, us-
ing a sorted sequence allows for simple and fast implementations of priority queue.
access and removal methods. -

This benefit comes at a cost, however, for now the method insertltem of P’

requires that we scan through the sequence S to find the appropriate position to

insert the new element and key. Thus, implementing the insertitem method of
P now requires O(n) time, where n is the number of elements.in P at the time

the method is executed. In summary, when using a sorted se,quence.‘to implement
a priority queue, insertion runs in linear time whereas finding and removing the

minimum can be done in constant time.

Insertion-Sort

If we implement the priority qu.eue P using a sorted sequehce,-then we imprové
the running time of the second phase of the PQ-Sort method to O(n), for each

-~ operation removeMin on P now takes O(1) time. Unfortunately, the first phase now
_ becomes the bottleneck for the running time.- Indeed, i the worst case, the running
time of each insertltem operation is proportional to the number of elements that are

currently in the priority queue, which starts out having size zero and increases in

size until it has size n. The first msertlte_m operation takes time O(1), the _second

one takes time O(2), and so on, until the last (nth) operation takes time O(n), in the
worst case. Thus, if we use a sorted sequence to implement P, then the first phase
becomes the bottleneck phase. This sorting algorithm is therefore better.knowﬂ
as insertion-sort, for the bottleneck in this sorting algorithm involves the repeated
“insertion” of a new element at the appropriate position in a sorted sequence. .

Analyz_ihg the running time of insertion-sort, we note that the first phase takes

- O(3,i) time in the worst. case. Again, - by recalling Theorem 1.13, the ﬁrst

phase runs in O(n?) time, and hence so does the entire algorithm. Therefore, both
selection-sort and insertion-sort both have a running time that is O(n?).

Still, although selection-sort and insertion-sort are similar, they actually haVéi
some interesting differences. For instance, note that selection-sort always takes
Q(n?) time, for selecting the minimum in each step of the second phase requires

scanning the entire priority-queue sequence. The running time of insertion-sort, on

the other hand, varies depending on.the input sequence. For example, if the input

1 .1 ek an siiek wmaene A S ) Fims
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243 The Heap Data _StructUre |

A realization of a priority queue that is efficient for both insertions and removals
uses a data structure called a heap. This data structure allows us to perform both in-
‘sertions and removals in logarithmic time. T_he‘fund_amental way the héap achieves
this improvement is to abandon the idéa of storing elements and keys in a sequence
! and store elements and keys in a binary tree instead.; '

Figure 2.41: Example of a heap storing 13 integer keys. The last node is the one
storing key 8, and external nodes are empty. - '

A heap (see Figure 2:41) is a binary tree T that stores a collection of keys at
its internal nodes and that satisfies two additional properties: a relational property
defined in terms of the way keys are stored in T and a structural property defined
in terms of T itself. We assume that a total order relation on the keys is given, for
example, by a comparator. Also, in our definition of a heap the external nodes of

- T do not store keys or elements and serve only as “place-holders.” The relational
- property for T is the following: e " |

: Heap-()rde_r_ Pifope_rty: In a heap T, for every node v othér than the root, the key
. stored at v is greater than .or equal to the key stored at v's parent.

As a consequence of this property, the keys encountered on a path from the root to
an external node of T are in nondecreasing order. Also, a minimum key is always
stored at the root of T. For the sake of efficiency, we want the heap T to have
as small a height as possible. We enforce this desire by insisting that the heap T
satisfy an additional structural property: | - |

£ .
- Complete Binary Tree: A binary tree T with height & is complete if the levels
- 0,1,2,...,h—1 have the maximum number of nodes possible (that is, level i
has 2 nodes, for 0 <i < A—1) and in level 4 —1 all the internal nodes are to
the left of the extérnal nodes. | | |

By saying that all the internal nodes on level / — 1 are “to the left” of the external
‘nodes, we mean that all the internal nodes on this level will be visited before any
external nodes on this level in an incrder traversal. (See Figure 2.41.) |
- By insisting that a heap T be complete, we identify another important node in
.a heap T, other than the root, namely, the last node of T, which we define to be the

- richt-mnst deenact intarnal nada AfT Qoo Cimaea A A1 A
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Implementing a Prlorlty Queue W|th a Heap

Our heap-based priority queue consists of the following (see Flgure 2. 42)

L heap A complete binary tree T whose elements are stored at internal nodes
and have keys satisfying the heap- ~order property. We assume the binary tree
T is implemented using a vector, as described in Section 2.3.4. For each
internal node v of T, we denote the key of the. element stored at v as k(v).

e last: A reference to the last node of 7. Given the vector implementation of
T, we assume that the instance variable, last, is an integer index to the cellin
the vector storing the last node of T. : .

e comp: A a comparator that defines the total order relauon among the keys
Without loss of generality, we assume that comp maintains the minimum
element at the toot. If instead we wish the maximum element to be at the

~ root, then we can redefine our comparison rule accordingly.

Flglll'e 2.42: A heap-based pnonty queue stonng integer keys and text elements.

- The efﬁmency of this 1mp1ementatlon is based on the followmg fact
Theorem 2.10: A heap T storing n keys has height h = [log(n+ 1)]

Proof: . Since T is complete the number of internal nodes of T i isat least
T42+444- 28241 =21 Clg1=21

This lower bound is achieved when there is only one internal node on level A — 1.
| Alternately, we observe that the number of internal nodes of T is at most

1+2+4+ +2" L 1‘ |

| This upper bound is achleved when all the 2~ 1 nodes on 1eve1 h — 1 are internal.
Since the number of internal nodes is equal to the number n of keys, 2! < n and
n < 2" — 1. Thus, by taking logarithms of both sides of these two. inequalities, we
see that » <logn+ 1 and log(n + l) < h, which nnphes that h -[log(n+1)]. ®

Thus 1f we.can perfonn update operatlons on a heap in tlme proportlonal toits

11 e e Tmmntalanaln Almman
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The Vector Repre'sentat‘ion of a Heap.
Note that when the heap 7 is.implemented with a vector, the index of the last node

w is always equal toz, and the first empty external node z has index equal to n + 1.
(See Figure 2.43.) Note that this 1ndex for z is valid even for the following cases:

o If the current last node w is the right- -most node on its level, then z is the
left-most node of the bottom-most level (see Figure 2. 43b)

o If T has no 1nterna1 nodes (that is, the priority queue is empty and the last
node in 7" is not deﬁned) then z is the root of 7.

@ O

01234567809 1011 0123456789101l

| - (d)

Figure 2.43: Last node w and first external node z in a heap: (a) regular case where Z
is right of w; (b) case where z is left-most on bottom level. The vector representation
of (a) is shown in (c); similarly, the representation of (b) is shown in-(d).

The simplifications that come from representing the heap T with a vector aid
in our methods for implementing the priority queue ADT. For example, the update
“methods expandExternal(z) and removeAboveExternal(z) can also be performed
in 0(1) time (assuming no vector expansion is necessary), for they simply involve
allocating or deallocating a single cell in the vector. With this data structure, meth-
ods size and isEmpty take O(1) time, as usual. In addition, methods minElement
and minKey can also be easily performed in O(1) time by accessing the element
or key stored at the root of the heap (which is at rank 1 in the vector). More-
over, because T is a complete binary tree, the vector associated with heap 7' in a
‘vector-based implementation of a binary tree has 2n+ 1 elements, n+ 1 of which
are place-holder ‘external nodes by our convéntion. Indeed, since all the external
“nodes have indices hlgher than any internal node, we don t even, have to explicitly
“store all the extemal nodes (See Figure 2.43.} '
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Insertion

- Letus con31der how to perform method insertltem of the priority queue ADT usin g

the heap 7. In order to store a new key-element pair (k e) into T, weneed to add a
new internal node to 7. In order to keep T as a complete binary tree, we must add
this new node so that it becomes the new last node of T. That is, we must identify

" the correct external node z where we can perform an expandExternal(z) operation,

which replaces z with an internal node (with empty external-node children), and
then insert the new element at z. (See Figure 2.44a-b.) Node zis called the insertion
posmon

‘Usually, node z is the external node 1mmed1ate1y to the right of the last node w,
(See Figure 2.43a.) In any case, by our vector implementation of T, the insertio
position z is stored at index n+ 1, where #n is the current size of the heap. Thus, we

- can identify the node z in constant time in the vector implementing 7. After then
- performing expandExternal(z), node z becomes the last node, and we store the new

key-element pair (k,e) in it, so that k(z) =

Up-Heap Bubbling after"an Insertion

After this action, the tree T is complete, but it may violate the heap-order property.
Hence, unless node z is the root of T (that is, the priority queue was-empty before
the insertion), we compare key k(z) with the key k(u) stored at the parent u of z. If
k(u) > k(z), then we need to restore the heap-order property, which can be locally
achieved by swapping the key-element pairs stored at z and u. (See Flgure 2.44c~
d.) This swap causes the new key-element pair (k; ) to move up one level. Again,
the heap-order property may be violated, and we continue swapping going up in.T

until no violation of heap-order property occurs. (See Figure 2.44e-h.)

The upward movement by means. of swaps is. conventlonally called up-heap
bubbling. A swap either resolves the violation of the heap-order property or propa-
gates it one level up in the heap. In the worst case, up-heap bubbling causes the new
key-element pair to move all the way up to the root of heap T'. (See Figure 2.44.)
Thus, in the worst case, the running time of method insertltem is proportional to
the height of 7', that is, it is O(logn) because T is complete. |

" T is implemented with a vector, then we can find the new last node z imme-
dlately in O(1) time. For example, we could extend a vector-based implementation
of a binary tree, so as to add a method that returns the node with index n+- 1, that
is, with level number 7 + 1, as defined in Section 2.3.4. Alternately, we could even

define an add method, which adds a new element at the first external node z, at rank

n+ 11in the vector. In Algorithm 2.60, shown later in this chapter, we show how
to use this method to efficiently 1mp1ernent the method insertltem. I, on the other

- hand, the heap T is implemented with a linked structure, then finding the insertion
. position z is a little more involved. (See Exereise C-2.27) |
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- Figure 2, 44 Insertion of a new element w1th key 2 into the heap of Flgure 2. 42
(a) initial heap; (b) addmg a new last node to the right of the old last node; (c)—(d)

swap to locally restore the part:lal order property (e)—(t) another swap (g)—(h) final
- swap.
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Removal

Let iis now turn to method removeMin of the priority queue ADT. The algorithm
for perforiing method removeMin using heap T is illustrated in Figure 2.45.
We know that an element with the smaliest key is stored at the root r of the

‘heap T (even if there is more than one smallest key). However, unless r is the

only internal node of T, we cannot simply delete node r, because this action would
disrupt the binary tree structure. Instead, we access the last node w of T, copy
its key-element pair to the root r, and then delete the last node by performing the

'update operation removeAboveExternal(u), where u = T.rightChild(w)). This op-

eration removes the parent, w, of u, together with the node u itself, and replaces w

 with its left child. (See Figure 245a-b.)

After this constant-time action, we need to update our reference tothe last node,
which can be done simply by referencing the node at rank n (after the removal) in
the vector implementing the tree T'. |

Down-Heap Bubbling after a Removal

We are not done, however, for, even though T is now complete, T may now violate
the heap-order property. To determine whether we need to restore the heap-order
property, we examine the root 7-of T. If both children of r are external nodes,
then the heap-order property is trivially satisfied and we are done.. Otherwise, we
distinguish two cases: |

o If the left child of r is internal and the right child is external, 'let“'\s--be the left
child of r.

¢ Otherwise (both children of r are internal), let s be a child of r with the
smallest key. | .

If the key k(r) stored at r is greater than the key k(s) stored at s, then we need
to restore the heap-order property, which can be locally achieved by swapping the
key-element pairs stored at r and-s. (See Figure 2.45c-d.) Note that we shouldn’t
swap r with s’s sibling. The swap we perform restores the heap-order property for
node r and its children, but'it may violate this property at s; hence, we may have
to continue swapping down T until no violation of the heap-order property OCCurs:’
(See Figure 2.45¢e-h.) | - ' g

This downward swapping process is called down-heap bubbling. A swap either

-resolves the violation of the heap-order property or propagates it one level down in
~ the heap. In the worst case, a key-element pair moves all the way down to the level

innng:diately abOVe the bottom level. (See Figure 2.45.) Thus, the running time of
method removeMin is, in the worst case, proportional to the height of heap T, that
is, it is O(logn). ' |
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F:gure 2.45: Removal of the element with the smallest key from a heap: (a)—(b)
deletion of the last node, whose key-element pair gets stored into the root; (c)—(d)
swap to locally restore the heap order property; (e)—(f) another swap (g)—(h) final ~

SWap. | B §

S
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Performance .

Table 2.46 shows the runmng time of the priority queue ADT methods for the heap

~ "implementation of a priority queue, assuming that the heap T is realized by a data

structure for binary trees that supports the binary tree ADT methods (except for
elements()) in O(1) time. The linked structure and vector-based structure from
Section 2.3.4 easily satisfy this requlrement

Operation Time

size, isEmpty | O(1)

minElement, minKey | O(1) |

| ~insertitem | O(logn) |
removerin O(

Table 2.46: Performance of a priority queue realized by means: of a heap, wh1ch 18
in turn implemented with a vector-based structure for binary trees. ' We denote with
n the number of elements in the priority queue at the time a method is executed.
The space requirement is O(n) if the heap is realized with a linked structure and i 1s

O(N) if the heap is realized with a vector-based structure, where N > n is the size

of the array used to implement the vector.

In short, each of the priority queue ADT methods can be performed in O(1) or
in O(logn) time, where n is the number of elements at the time the method is exe-

| cuted The analys1s of the running time of the methods is based on the followmg

e The height of heap Tis O(logn), since T is cornplete -

e In the worst case, up-heap and down-heap bubbling take time proportlonal to’
the height of T'. :

e Finding the insertion position in the execution of insertltem and updating the
last node position in the execution of removeMin takes constant time. |

° The heap T has n internal nodes, each storing a reference to a key and a
reference to an element, and 7+ 1 external nodes.

We conclude that the heap data structure is a very efficient realization of the
priority queue ADT, independent of whether the heap is implemented with a linked
structure or a sequence. The heap implementation achieves fast running times for
both insertion and removal, unlike the sequence-based priority queue implementa-
tions. Indeed, an important consequence of the efficiency of the heap-based imple-

_mentation is that it can speed up priority-queue sorting to be much faster than the -

sequence-based insertion-sort and selection-sort algorithms. .
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2 4 4 Heap Sort

Let us c0n51der again the PQ-Sort sortlng scheme from Sectlon 2.4.2, which uses
a priority queue -P to sort a sequence S. If we 1mpl_em_ent the priority queue P with
a heap, then, during the first phase, each of the n insertltem operations takes time
O(logk), where k is the number of elements in the heap at the time. Likewise,
during the second phase, each of the n removeMin operations also runs in time
O(logk), where k is the number of elements in the heap at the time. Since we always
have k < n, each such operation runs in O(logn) time in the worst case. Thus, each
phase takes O(rlogn) time, so the entire priority-queue sorting algorithm runs in
O(nlogn) time when we use a heap to implement the priority queue. This sorting
algorithm is better known as heap-sort, and its performance is summarlzed in the
| followmg theorem.

‘Theorem 2. 11: The heap-sort a]gonthm sorts a sequence S of n comparable ele
ments in O(nlogn) time. | |

Recalling Table 1.7, we stress that the O(nlog n) runmng time of heap-sort is
much better than the O(n?) running time for selection-sort and insertion-sort. In
addition, there are several modifications we can make to the heap-sort algorithm to
improve its performance in practice.

Implementing Heap-Sort In-Place

If the sequence S to be sorted is implemented by means of an array, we can speed

“up heap-sort and reduce its space requirement by a constant factor using a portion
of the sequence S itself to store the heap, thus avoiding the use of an external heap
data structure This is accomplished by modifying the algorithm as-follows:

1.. We use a reverse comparator which corresponds to a heap where the largest
" element is at the top. At any time during the execution of the algorithm, we
use the left portion of S, up to a certain rank i — 1, to store the elements in
the heap, and the right portion of S, from rank.iton—1to store the elements
in the sequence. Thus, the first i/ elements.of S (at ranks 0, ...,i — 1) provide
the vector representation of the heap (with modified level numbers starting
at 0 instead of 1), that is, the. element at rank % is greater than or equal to its

. “children” at ranks 2k+ 1 and 2k + 2. |

2. In the first phase of the algorithm, we start with an empty heap and move the .
boundary between the heap and the sequence from left to right, one step at
atime. Instepi (i =1,...,n), we expand the heap by add1ng the element at
rank i — 1.

3. In the second phase of the algorlthm we start ‘with.an empty. sequence and
move the boundary between the heap and the sequence from right to left, one
step at a time. At step i (i = 1,...,n), we remove a maximum element from
the heap and store it at rank n— i.
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The above variation of heap-sort is said to be in-place, since ‘we use only a
constant amount of space in addition to the sequence itself. Instead of transferring
elements out of the sequence and then back in, we simply rearrange them. We illus-
trate in-place heap-sort in Figure 2.47. In general, we say that a sorting algorithm
is in-place if it uses only a constant amount of memory in addition to the memory
needed for the objects being sorted themselves. The advantage of an in-place sort-
ing algorithm in practice is that such an algorithm can make the most efficient use
of the main memory of the computer it is running on.

@ 4|7 2[1]3
(b) 2 7]2[1]3
© 7Te2]i]s
@ N EOE 1]3

Figure 2.47: First three steps of Phase 1 of in-place heap'-sottQ The heap portion of
the vector is highlighted with thick lines. Next to the vector, we draw a binary tree
view of the heap, even though this tree is not actually constructed by the in-place

- algorithm. | _
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Bottom-Up Heap Construction

The analysis of the heap-sort algorithm shows that we can construct a heap storing
n key-element pairs in O(nlogn) time, by means of n successive insertitem oper-
ations, and then use that heap to extract the elements in order. However, if all the

 keys to be stored in the heap are given in advance, there is an alternatlve bottom-up
construction method that runs in O(n) time.

We describe this method in this section, observing that it could be included as
one of the constructors in a Heap class, instead of filling a heap using a series of
n insertltem operations. For simplicity of exposition, we describe this bottom-up
heap construction assuming the number 7 of keys is an integer of the type

n=2"—1.
That is, the heap is a complete binary tree with every level bemg full, so the heap
has height
h=1log(n+1).

We describe bottom-up heap construction as a recursive algorithm, as shown in
" Algorithm 2.48, which we call by passing a sequence storing the keys for which we
wish to build a heap We describe the construction algorithm as acting on keys, with
the understanding that their elements accompany them: That is, the items stored in
the tree T are key-element pairs.

Algorithm BottomUpHeap(S):
Input: A sequence S storing n = 2" — 1 keys
Output: A heap T storing the keys in S.
if S is empty then
return an empty heap (consisting of a single external node)

Remove the first key, k, from S.
Spht S into two sequences, S and S, each of sme (n— 1) / 2. .
Ty + BottomUpHeap(S;)

T, + BottomUpHeap(S)
Create binary tree T with root r storing &, left subtree 77, and right subtree Tz
Perform a down-heap bubbling from the root r of T, if necessary.
return T .

- Algorithm 2.48: Recursive bottom-up heap construction.

This construction algorithm is called “bottom- up” heap construction because
~ of the way each recursive call returns a subtree that is a heap for the elements it
stores. That is, the “heapification” of T begins at its external nodes and, _proceeds
up the tree as each recursive call returns. For this reason, some authors refer to the
bottom-up heap construction as the “heapify” operation.
We illustrate bottom-up heap construction in Figure 2.49 for £ = 4.
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Figure 2.49: Bottom-up construction of a heap with 15 keys: (a) we begin by con-
structing 1-key heaps on the bottom level; (b)—(c) we combine these heaps into
3-key heaps and then (d)—(e) 7-key heaps, until (H)—(g) we create the final heap.
The paths of the down-heap bubblings are highlighted with thick lines. .
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Figure 2.50: Visual justification of the linear running time of bottom-up heap con-
struction, where the paths associated with the internal nodes have been highlighted
alternating grey and black. For example, the path associated with the root consists
of the internal nodes storing. keys 4, 6,7, and 11, plus an externa'l node.

Bottom-up heap construction is asymptotically faster than mcrementally insert-
ing n keys into an initially empty heap, as the followmg theorem shows

~ Theorem 2.12: The bottom-up construction of a heap with n 1tems takes O(n)
time. o

~ Proof: We analyze bottom-up heap construction using a_“visual” approach,
~ which is illustrated in Figure 2.50.
Let T be the final heap, let v be an internal node of T, and let T (v) denote the
subtree of T rooted at v. In the worst case, the time for forming T (v) from the
two recursively formed subtrees rooted at v’s children is proportional to the height -
of T(v). The worst case occurs when down-heap bubbling from v traverses a path
from v all the way to a bottom-most external node of 7'(v). Consider now the path
p(v) of T from node v to its inorder successor external node, that is, the path that
starts at v, goes to the right child of v, and then goes down leftward until it reaches
an external node. We say that path p(v) is associated with node v. Note that p(v)
is not necessarily the path followed by down-heap bubbling when forming T'(v).
‘Clearly, the length (number of edges) of p(v) is equal to the height of T'(v). Hence,
forming T (v) takes time proportional to the length of p(v), in the worst case. Thus,
the total running time of bottom-up heap construction is propomonal to the sum of
the lengths of the paths associated with the internal nodes of T. . .
Note that for any two internal nodes #and v of T, paths p() and p(v) do not
share edges, although they may share nodes. (See Figure 2.50.) Therefore, the sum
of the lengths of the paths associated with the internal nodes of T is no more than '
the number of edges of heap T, that is, no more than 2n. We conclude that the.‘_
bottom-up construction of heap T takes O(n) time. | o ]

To summarize, Theorem 2.12 says that the first phase of heap-sort can be im-
plemented to run in O(r) time. Unfortunately, the running time of the second phase
of heap-sort is Q(rlogn) in the worst case. - We will not Justlfy this lower bound

“until Chapter 4, however. = T
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The Locator Design Pattern

We conclude this section by discussing a design pattern that allows us to extend
the priority queue ADT to have additional functionality, which will be useful, for
example, in some of the graph algorithms discussed later in this book.

As we saw with lists and binary trees, abstracting positional information in a
container is a very powerful tool. The position ADT, described in Section 2.2.2,
allows us to identify a specific “place” in a container that can store an element. A
position can have its element changed, for example, as a consequence of a swapEle-
ments operation, but the position stays the same. S

There are also applications where we need to keep track of elements as they

" are being moved around inside a container, however. A design pattern that fulfills

this need is the locator. A locator is a mechanism for maintaining the association
between an element and its current position in a container. A locator “sticks” with
a specific element, even if the element changes its position in the cc‘i_ntaihér.

A locator is like a coat check; we can give our coattoa coat-room attendant, and
we receive back a coat check, which is a “locator’”’ for our coat. The position of our
coat relative to the other coats can change, as other coats are added and removed,
but our coat check can always be used to retrieve our coat. The important thing to
remember about a locator is that it follows its item, even if it changes p0'sition.

Like a coat check, we can now imagine getting something ‘baCk when we insert
an element in a container—we can get back a locator for that element. This locator

in turn can be used later to refer to the element within the container, for example,

to specify that this element should be removed from the container. As an abstract
data type, a locator £ supports the following methods:

element():. Return the element of the item associated with £.

" key(): Return the key of the item associated with £.
. x

For the sake of concreteness, we next discuss how we can use locators to extend
the repertoire of operations of the priority queue ADT to include methods that
return locators and take locators as arguments.

Locator—Based Priority Quéue Methods

We can use locators in a very natural way in the context of a priority queue. A
Jocator in such a scenario stays attached to an item inserted in the priority queue,
and allows us to access the item in a generic manner, independent of the specific
implementation of the priority queue. This ability is important for a priority queue
implementation, for there are no positions, per se, in a priority queue, since we do
not refer to items by any notions of “rank,” “index,” or “node.”
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Extending the Prlorzty Queue ADT

By using locators, we can extend the priority queue ADT with the followmg meth-
ods that. access and modify a priority queue P; -

~min(): Return the:loc_ator to an item of P with smallest key.

insert(k,e): Insert a new item with element ¢ and key & into P and

return a locator to the item.
remove(£): Remove from P the item with locator L.

replaceElement(Z,e): Replace with e and return the element of the item of P
| with locator £.

repla'ceKey(E,k): Replace with k and return the key of the item of P with
' o locator £. -

Locator-based access runs in O(1) t_ime; while a key—based' access, which must

look for the element via a search in an entire sequence or heap, runs in O(n) time

in the worst case. In addition, some applications call for us-to restrict the operation

replaceKey so that it only increases or decreases the key. This restriction can be

done by defining new methods increaseKey or decreaseKey, for example, which

would take a locator as an argument. Further apphcatlons of such priority queue
- methods are given in Chapter 7.

- Comparison of Different Priority Queue Implementations

In Table 2.51, we compare running times of the priority queue. ADT methode de-
fined in this section for the unsorted- sequence sorted- sequence and heap imple-

mentations.
| Unsorted Sorted |
| Method Sequence Sequence Heap
size, |sEmpty, key, replaceElement o(1) ~o(1) - ol)
minElement, min, minKey | = O(n) o(l) | o1
insertltem, insert | O(1) O(n) | O(logn)
removeMin O(n) - 0(1) O(logn)
remove o(1) o(1) O(logn)
replaceKey o(1) O(n) | O(logn)

Table 2.51: Comparison of the running times of the priority quelie ADT methods
- for'the unsorted-sequence, sorted-sequence, and heap implementations. We denote

with n the number of elements in the priority quéue at the time a method is executed.
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2.5 Dictionaries and Hash Tables

- A computer dictionary is similar to a paper dictionary of words in the sense that

both are used to look things up. The main idea is that users can assign keys to
elements and then use those keys later to look up or remove elements. (See Fig

ure 2.52.) Thus, the dictionary abstract data type has methods for the insertion,
removal, and searching of elements with keys. |

The Dictionary

Fig'ure‘ 2.52: A cohceptual illustration of the dictionary ADT. Keys (labels) are
assigned to elements (diskettes) by a user. The resulting items (labeled diskettes)
are inserted into the dictionary (file cabinet)., The keys can be-used later to retrieve

or remove the items.

25.1

The Unordered Dictionary ADT
A dictionary stores key-element pairs (k, ), which we call items, where k is the key
and e is the element. For example; in a dictionary storing student records (such as
the student’s name, address, and course grades), the key might be the student’s ID
number. In some applications, the key may be the element itself. |

‘We distinguish two types of dictionaries, the unordered dictionary and the or-
dered dictionary. We study ordered dictionaries in Chapter 3; we discuss unordered
dictionaries here. In either case, we use a key as an identifier that is assigned by an
application or user to an associated element. | o

For the sake of generality, our definition allows a dictionary to store multiple
items with the same key. Nevertheless, there are applications in which we want
to disallow items with the same key (for example, in a dictionary storing student
records, we would probably want to disallow two students having the same ID)
In such cases when keys are unique, then the key associated with an object can be
viewed as an “address” for that object in memory. ‘Indeed, such dictionaries are
sometimes referred to as “associative stores,” because the key associated with an
object determines its “location” in the dictionary. . |
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- Asan ADT, a dwnonary D supports the followmg fundamental methods:

find Element(k)' If D contains an item with key equal to k, then return

the element of such an item, else return a special element
NO_ SUCH KEY.

insertltem(k,e): Insert an item with element ¢ and key & into D.

removeElement(k): Remove from D an item with key equal to k, and return

- its element. If D has no such item, then return the special
element NO SUCH_KEY.

‘Note that if we wish to store an item ¢ in a dlct:lonary‘ so that the item is itself its own
key, then we would insert e with the method call insertltem(e, ¢). When operations
findElement (k) and removeElement(k) are unsuccessful (that is, the dictionary D
has no item with key equal to k), we use the convention of returning a special -
element NO_SUCH_KEY. Such a special element is known as a senfinel. '
~ In addition, a dictionary can implement other supporting methods, such as the
- usual size() and isEmpty() methods for containers. Moreover, we can include a
method, elements(), which returns the elements stored in D, and keys(), which
_returns the keys stored in D. Also, allowing for nonunique keys could motivate
*our including methods such as findAllElements(k), which returns an iterator of all
~ elements with keys equal to k, and removeAliElements(k), which removes from D
all the items with key equal to k, returning an iterator of their elements.

Log Files

A simple way of reahzmg a dlctlonary D uses an unsorted sequence S, ‘which in
turn is implemented using a vector or list to store the key-element pairs. Such an
“implementation is often called a log file or audit trail. The primary apphcatxons of
‘alog file are situations where we wish to store small amounts of data or data that is
unlikely to change much over time. We also refer to the log ﬁle implementation of
D as an unordered sequence implementation.

The space required for a log file is ®(n), since both the vector and hnked list
data structures can maintain their memory usage to be proportional to their size. In
addition, with a log file implementation of the dictionary ADT, we can realize op-
eration insertltem(k,e) easily and efficiently, just by a single call to the insertLast
method on S, which runs in O(1) time. - ,

Unfortunately, a find Element(k) operation must be performed by scanning the

~ entire sequence S, examining each of its items. The worst case for the running time

of this method clearly occurs when the search is unsuccessful, and we reach the end

- of the sequence having examined all of its z items. Thus, the findElement method

runs in O(n) time. Similarly, a linear amount of time is needed in the worst case to

perform a removeElement(k) operation on D, for in order to remove an itern with
a given key, we must first find it by scanning through the entire sequence S.
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25.2 Hash Tables

——

The keys associated with elements in a dictionary are often meant as “addresses”
for those elements. Examples of such applications include a compiler’s symbol
table and a registry of environment variables. Both of these structures consist of a
collection of symbolic names where each name serves as the “address” for proper-
ties about a variable’s type and value. One of the most efficient ways to implement
a dictionary in such circumstances is to use a hash table. Although, as we will see,
the worst-case running time of the dictionary ADT operations is O{n) when using
a hash table, where 7 is the number of items in the dictionary. A hash table can per-
form these operations in O(1) expected time. It consists of two major components,
the first of which is a bucket array. | R

Bucket Arrays |

A bucket array for a hash table is an array A of size N, where eachcell of A is
thought of as a “bucket” (that is, a container of key-element pairs) and the integer

N defines the capacity of the array. If the keys are integers well distributed in the

range [0,N — 1], this bucket array is all that is needed. An elemert e with key &
is simply inserted into the bucket Alk]. Any bucket cells associated with keys not
present in the dictionary are assumed to hold the special NO_SUCH_KEY object.
(See Figure 2.53.) - ' - .

0 1 2 3

4
NN RN
v v v v ¥ ¥

)

HDL =

‘The bucket for items with
key =16

Figure 2.53: An illustration of a bucket array.

Of course, if keys are not unique, then two different elements may be mapped
to the same bucket in A. In this case, we say that a collisior has occurred. Clearly,
if each bucket of A can store only a single element, then we cannot associate more
than one element with a single bucket, which is a problem in the case of collisions.
To be sure, there are ways of dealing with collisions, which we will discuss later,
but the best strategy is to try to avoid them in the first place.
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| Analysis of the Bucket Ar'ray'StrUc':tL‘lre |

If keys are unique, then collisions are ot a concern, and searches, insertions, and
removals in the hash table take worst-case time O(1). This sounds like a great
“achievement, but it has two major drawbacks. The first is that it-uses space @(N),
which is not necessarily related to the number of items, 7, actually present in the
dictionary. Indeed, if N is large relative to n, then this implementation is wasteful of
space. The second drawback is that the bucket array requires keys be uniqué inte-
gers in the rarige [0,N — 1], which is often not the case. Since these two drawbacks
are so common, we define the hash table data structure to consist of a bucket array
together with a “good” mapping from our keys to integers in the. range [O,N —1].

2.5.3 Hash Functions
The second part of a hash table structure is a function, h, called a hash function,
 that maps each key k in our dictionary to an integer in the range [0,N — 1], where
N is the capacity of the bucket array for this table. " Equipped with such a hash
function, 4, we can apply the bucket array method to arbitrary keys. The main idea
 of this approach is to use the hash function value, h(k), as an index into our bucket
array, A, instead of the key k (whichis most likely inappropriate for use as a bucket
array index). That is, we store the item (k, e) in the bucket A[h(k)]. |
We say that a hash function is “good” if it maps the keys in our dictionary -
0 as to minimize collisions as much as possible. For practical reasons, we also
~ would like the evaluation of a given hash function to be fast and easy to compute.
“Following a common convention, we view the evaluation of 2 hash function, A(k)
as consisting of two actions—mapping the key k to an integer, called the hash
.code, and mapping the hash code to an integer within the range of indices of a
' bucket array, called the compression map. (Sec Figure 2.54.) ‘

Arbitrary Objects *

~ hashcode_—
- oQo_o'oeogolg?-go'oodoo'oo'o >

\\\ R
IR - COmipression map

seccsc0c0ee
012 N-1 .

Figure 2.54: The two"parts. of a hash function: a hash cOde‘ and a comprqssion map. .
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Hash Codes

The first action that a hash function performs is to take an arbitrary key k and assign

it an integer value. The integer assigned to a key: k is called the hash code or hash
value for k. This integer value need not-be in the range [0,N — 1], and may even be
negative, but we desire that the set of hash codes assigned to our keys should avoid

collisions as much as possible. In addition, to be consistent with all of our keys, the

hash code we use for a key k should be the same as the hash code for any key that

18 equal to k.

Summing Components

For base types whose bit representation is double that of a hash code the above
scheme is not unmedlately applicable. Still, one possible hash code, and indeed
one that is used by many Java 1mp1ementat10ns is to simply cast a (long) integer
representatron of the type down to an integer the size of a hash code. This hash

~ code, of course, ignores half of the information present in the ongmal value, and if

many of the keys in our dictionary only differ in these bits, then they will collide
using this simple | hash code. An alternative hash code, then, which takes all the
original bits into consideration, is to sum an integer representatlon of the high-order
bits with an integer representation of the low-order bits. Indeed the approach of
summing components can be extended to any object x whose bmary representation

‘can be viewed as a k- tuple (xo X1yennyXk—1) of integers, for we. can then form a hash

code for x as Zl_o Xi.

| Polynomlal Hash Codes

~The summatlon hash code descnbed above, is not a good ch01ce for character

strmgs or ‘other multlple-length objects that can be v1ewed as tuples of the form
(%0, X1,- -y Xk—1 ), where the order of the x;’s 1S s1gn1ﬁcant For example, consider a
hash code for a character string s.that sums the ASCII (or Umcode) values of the

_characters in 5. This hash code unfortunately produces lots of unwanted collisions
~ for common groups of strings. In particular, "tempO1" and "temp10" collide using

this function, as do "stop”, "tops", "pots", and "spot". A better hash code

'should somehow take into consideration the positions of the x;’s. An alternative

hash code, which does exactly this, is to choose a nonzero constant, a # 1, and use
as a hash code the value - :

xd 1+ 0@ 4 x2a+ X,
which, by Homer s rule (see Exercise C-1.16), can be rewritten as _
Xk 1+a(xk 2 t+a(xg—3+- +a(x2+a(x1 + axg))-++)),

which, mathematlcally speaking; is simply a polynomial in g that ‘takes the compo-
nents (x0,X1,-.-,xk—1) of an object x as its coefﬁc1ents This hash code it therefore
called a polynomtal hash code.
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An Experlmental Hash Code Analysis

Intuitively, a polynormal hash code uses multrpllcatlon by the constant  as a way
of “making room” for each component in a tuple of values while also preserving
a characterization of the previous components. Of course, on a typical computer,

- evaluating a polynomial will be done using the finite bit representation for a hash

code; hence, the value will periodically overflow the bits used for an integer. Since

~we are more interested in a good spread of the object x with respect to other keys,

we srmply ignore such overflows. Still, we should be mindful that such overflows
are occurring and choose the constant a so that it has some nonzero, low-order bits,

which will serve to preserve some of the information content even as we are in an
overflow situation. ‘

We have done some experimental studies that suggest that 33, 37, 39, and 41
are particularly good choices for @ when working with character stnngs that are
English words. In fact; in a list of over 50,000 English words formed as the union

of the word lists provided in two variants of Unix, we found that tak1ng a to be 33,

37, 39, or 41 produced less than 7 collisions in each case!" It should come as no
surprise, then, to learn that many actual character string implementations choose

‘the polynomial hash function, using one of these constants for a, as a default hash

code for strings. For the sake of speed, however, some 1mp1ementat10ns only apply

- the polynomial hash function to a fraction of the characters in long strings, say,

every elght characters. |

254

Com pres_sion Maps

The hash code:for a key k will typically not be suitable for immediate use with a
bucket array, because the range of possible hash codes for our keys will typlcally
exceed the range of legal indices of our bucket array A. That is, incorrectly using a

hash code as an index into our bucket array may result in an array out-of-bounds ex-

ception being thrown, either because the index is negative or it- exceeds the capacity
of A. Thus, once we have determined an integer hash code for a key object k, there
is still the issue of mapping that integer into the range [0, N -1}, ThlS compressmn |

step is the second action that a hash function performs.

The Division Method
One simple compression nzap to use is
h(k) = |k| mod N,

which is called the division miethod.
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| If we take N to be a prime number, then the division compress_ion map helps
“spread out” the distribution of hashed values. Indeed, if N is not prime, there Eijs

-_ a higher likelihood that patterns in the distribution of keys will be repeated in the

distribution of hash codes, thereby causing collisions. For example, if we hagh
the keys {200,205,210,215, 220,...,600} to a bucket array of size 100, then each
hash code will collide with three others. But-if this same set of keys is hashed to
a bucket array of size 101, then there will be no collisions.. If a hash function i
chosen well, it should guarantee that the probability of two different keys getting

hashed to the same bucket is at most 1/N . Choosing N to:be -a'prime__number isnot
always enough, however, for if there is a repeated pattern of key values of the form

 iN+ j forseveral different s, then there will still be collisions.

The MAD Method |

" A more sophisticated compression function, which helps' eliminate repeated pat-

 where Nisa prime number, and @ and b are nonnegaﬁve'integers randomly chosen

‘at the time the compression function is determined so that @ mod N # 0. This 5
compression function is chosen in order to eliminate repeated patterns in the set

uniformly into A at random.

terns in a set of integer keys is the multiply add and divide (of “MAD”) method: Tn

using'_t}ﬁs-method we define the compression function as -
| h(k) = |ak +b| mod N,

of hash codes and get us closer to having a “good” hash function, that is, one

such that the probability any two different keys will collide is at most 1/N. This

good behavior would be the same as we would have if these keys were “thrown”

With a compression function such as this, that spreads n integers fairly evenly
in the range [0,N — 1], and a mapping of the keys in our dictionary to integers, we

' have an effective hash function. Together, such a hash function and a bucket array

~ define the key ingredients of a hash table implementation of the dictionary ADT,

But before we can give the details of how to perform such operations as find-

Element, insertltem, and removeElement, we must first resolve the issue of how.
we will be handling collisions. | ' :

255

Collision-Handling Schemes

Recall that the main idea of a hash table is to take a bucket array, A, and a hash

* function, A, and use them to implement a dictionary by storing each item (k,e) in

the “bucket” A[A(k)]. This simple idea is challenged, however, when we have two
distinct keys, k1 and kp, such that (ki) = h(k2). The existence of such collisions

prevents us from simply inserting a new item (k, ) directly in the bucket A[A(k)]-

They also complicate our procedure. for performing the findElement (k) operation.

" Thus, we need consistent strategies for resolving collisions.
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A simple and efficient way for dealing with collisions. is to have each bucket Alj]

store a reference to a list, vector, or sequence, S;, that stores all the items that

our hash function has mapped to the bucket A[i]. The sequence S; can be viewed
as a miniature dictionary, implemented using the unordered sequence or log file
method, but restricted fo only hold items (k,e) such that s(k) = i. This collision
resolution rule is known as separate chaining. Assuming that we implement each
nonempty bucket in a miniature dictionary as a log file in this way, we can perform
the fundamental dictionary operations as follows: S

o findElement(k):
B AJh(K)]
'if Bis empty then
return NO_SUCH_KEY
’ else , |
{search for the key k in the sequence for this bucket}
return B.findElement(k) | |

e insertltem(k,e):
if A[1(k)] is empty then |
Create a new initially empty, sequence-based dictionary B .
Alh(k)] — B - |
- else -
B — A[h(k)] |
B.insertltem(k,e) .

o removeElement(k):
B — A[h(V)
“if B is empty then
return NO_SUCH_KEY
Celse o
return B.removeElement (k)

Thus, for each of the fundamental dictionary operations involving a key k, we del-
egate the handling of this operation to the miniature: sequence-based dictionary
stored at A[k(k)]. So, an insertion will put the new item at the end of this sequence,
afind will search through this sequence until it reaches the end or finds an item with
the desired key, and a remove will additionally remove an item after it is found. We
can “get away” with using the simple log-file dictionary implementation in these
cases, because ,_the spreading properties of the hash function help keep each minia-
ture dictionary small. Indeed, a good hash function will' try to minimize collisions
- as much as possible, which will imply that most of our buckets are either empty or
- store just a single item. . o
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Figui‘e 2.55: Example of a hash table of size 13, s'toring 10 integer keys, with col-
lisions resolved by the chaining method. The compression map in this case is
h(k) = k mod 13. | ' o |

In Figure 2.55, we give an illustration of a simple hash table that uses the divi-
sion compression function and separate chaining to resolve collisions.

Load Factors and Rehashing

Assuming that we are using a good hash function for holding the n items of our
dictionary in a bucket array of capacity N, we expect each bucket to be of size
n/N. This parameter, which is called the load factor of the hash table, should
therefore be kept below a small constant, preferably below 1. For, given a good
hash function, the expected running time of operations findElement, insertitem,
and removeElement in a dictionary implemented with a hash table that uses this
function is O([n/N1]). Thus, we can implement the standard dictionary operations
to run in O(1) expected time, provided we know that nis O(N).

Keeping a hash table’s load factor a constant (0.75 is common) requires. addi-
tional. work whenever we add elements so as to exceed this bound. In such cases,
in order to keep the load factor below the specified constant, we need to increase
the size of our bucket array and change our compression map to match this new
size. Moreover, we must then insert all the existing hash-table elements into the
new. bucket array using the new compression map. Such a siZe increase and hash
table rebuild is called rehashing. Following the approach of the extendable array
(Section. 1.5.2), a good choice is to rehash into an array roughly double the size of
the original array, choosing the size of the new array to be.a prime number. B


http://www.cvisiontech.com

25, Dictionaries and Hash Tables o 123
Open Addressing

The separate chaining rule has many nice properties, such as allowing for sim-
ple 1mplementat1ons of dictionary. 0perat10ns but it nevertheless has one shght
disadvantage: it requires the use of an auxiliary data structure—a list, vector, or
sequence—to hold items with colliding keys as a log file. We can handle collisions
in other ways besides using the sepai:ate Mehajning rule, however. In particular, if
space is of a premium, then we can use the alternative approach of always _stoi'ing
each item directly in a bucket, at most one item per bucket. This approach saves
space because no auxiliary structures are employed, but it requires a bit more com-
plexity to deal with collisions. There are several methods for 1mplement1ng this.
approach, which is referred to as open addressmg ' -

Linear Probing

A s1mple open addressing collision-handling strategy is linear probing. In this

 strategy, if we try to insert an item (k, ) into a bucket A[i] that is already occupied,
where i = h(k), then we try next at A[(i + 1) mod N]. If A[(i+ 1) mod N] is oc- -
cupied, then we try A[(i+2) mod N], and so on, until we find an empty bucket in
A that can accept the new item. Once this bucket is located, we simply insert the

~item (k,e) here. Of course, using this collision resolution strategy requires that we
change the implementation of the findElement(k) operation. In particular, to per-
form such a search we must examine consecutive buckets, starting from A[h(k)],
“until we either find an item with key equal to k-or we find an empty bucket (1n
wh1ch case the search is unsuccessful) (See F1gure 2.56.) ‘

must probe 4 times _
" New element with : before finding empty slot
. key =15 to'be mserted N A —
0 N | 2 37 4 5 6 7 -8 9 10

13 26 | s ||| | |2

Flgure 2.56: An insertion into a hash table usmg linear probmg to resolve collisions.
Here we use the compress1on map h(k ) k mod 11 -

The operatlon removeElement (k) is more comphcated than this, however In-
deed, to fully implement this method, we should restore the contents of the bucket
array to look as though the item with key k was never inserted in.its bucket Ali]
in the first place Although performing such a restoration is certainly possible, it
requires that we shift items down in buckets above Ali], while not shifting others in

- this group (namely, the items that are already in their correct.location). A typical
way we can get around this difficulty is to replace.the deleted item with a: ‘special
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““deactivated item” object. This object must be marked in some way so that we can
immediately detect when it is occupying a given bucket. With this special marker

- possibly occupying buckets in our hash table, we modify our search algorithm for

removeElement(k) or findElement(k), so that the search for a key k should skip
over deactivated items and continue probing until reaching the desired item oOr an

empty bucket. But our algorithm for the insertitem (k, ) should instead stop at a

deactivated item and replace it with the new item to be inserted.

Linear probing saves space, but it complicates removals. Even with the use of
the deactivated item object, the linear-probing collision-handling strategy suffers
from an additional disadvantage. It tends to cluster the items of the dictionary into
contiguous runs, which causes searches to slow down considerably.

Quadratic Probing

Another open addressing strategy, known as quadratic pi‘obing,. involves iteratively
trying the buckets Al(i+ f(j)) mod N, for j = 0,1,2,..., where f(j) = 72, until
finding an empty bucket. As with linear probing, the quadratic probing strategy

- complicates the removal operation, but it does avoid the kinds of clustering patterns

that occur with linear probing. Nevertheless, it creates its own kind of clustering,
called secondary clustering, where the set of filled array _.cells_l_f__“bounces” around
the array in a fixed pattern. If ¥ is not chosen as a prime, then the quadratic probing

. strategy may not find an empty bucket in A even if one exists. In fact, even if N is
prime, this strategy may not find an empty slot, if the bucket array is at least half
full. ' o | |

Double Hashing

Another open addressing strategy that does not cause clustering of the kind pro-
duced by linear probing or the kind produced by quadratic ‘probing is the double
hashing-strategy. In this approach, we choose a secondary hash function, W, and
if  maps some key k to a bucket A[i], with /= h(k), that is already occupied, then

~ we iteratively try-the buckets Al(i -+ f(j)) mod N] next, for j=1,2,3,..., where

f(j) = j-H'(k). In this scheme, the secondary hash function'is not allowed to eval-
uate to zero; a common choice is #' (k) = g — (k mod g), for some prime number
g < N. Also, N should be 2 prime. Moreover, we should choose a secondary hash
function that will attempt to minimize clistering as much as possible.

These open addressing schemes save some space over the separate chaining
method, but they are not necessarily faster. In experimental and theoretical anal

yses, the chaining method is either cormpetitive or faster than the other methods,
- depending on the load factor of the bucket array. -So, if memory space is not a

major issue, the collision-handling. method of choice seems to be separate chain
ing. - Still, if memory space is in short supply, then one of these open addressing
methods might be worth implementing, provided our probing strategy minimizes
the clustering that can occur from open addressing. - | ‘
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2. 5. 6 Universal Hashmg

In this sect1on we show how a hash function can be guaranteed to be good In order
* to.do this carefully, we need to make our discussion a bit ' more mathematical.

As we mentioned earlier, we can assume without loss of generality that our set
of keys are integers in some range. Let [0, M — 1] be this range. Thus, we can view
a hash function # as a mapping from integers in the range [0,M — 1] to integers in

~ the range [0,N — 1], and we can view the set of candidate hash functions we are
considering as a family H of hash functions. Such a family is universal if for any
two integers jand kin the range [0,M —1] and fora hash fllIlCthIl chosen un1formly '
at random from H, - o -
Pe(h(j) = h(K)) < 1.
. Sucha farmly is also known as a 2-universal famlly of hash functlons The goal of
" choosing a good hash function can therefore be viewed as the problem of selecting
a small universal family H of hash functions that are easy to compute. The reason
universal families of hash ﬁmctlons are useful is that they result ina low expected
number of collisions. ' : :

Theorem 2.13: Let j bean rnteger in the range [0 M 1], let S be a set of n inte-

gers in this same range, and let h be a hash function chosen uniformly, at random,

from a universal family of hash functions from integers in the range [0,M — 1] to

1ntegers in the range [0, N —1]. Then the expected number of collisions between j
- and the rntegers in S is at most n/N. :

Proof: Let ch( j,S) denote the number of collisions between j and integers in S

(that is, cx(7,S) = [{k € S: h(j) = h(k)}|). The quantity we are interested in is the
- expected value E (cx( _],S)) We can write ¢4 (j,S) as

ch J ) ZX J.ks
kes - .

where X; jxisa random vanable that is 1 if A(j) = h(k) and is 0 .otherwise (that

is, X4 is an indicaior random variable for a collision between Jj and k) ‘By the
‘ hneanty of expectatlon *

E(cn(f,S ZE

' : seS -
Also, by the definition of a universal family,_E (X; ) 1 / N. Thus,
' - E(Ch(J:S)) <), ==
sES N N

~Put another way, this theorem states that the expected numbef of collisions
between a hash code j and the keys already in a hash table (using a hash function -
chosen at random from a universal family H) is at most the current load factor of
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the hash table. Since the time to perform a search, insertion, or deletien_ for a key

. j in a hash table that uses the chaining collision-resolution rule is proportional to,

the number of collisions between j and the other keys in the table, this implies that
the expected running time of any such operation is proportional to the hash table’s
load factor. This is exactly what we want. .

Let us turn our attention, then, to the problem of constructing a smali universal
family of hash functions that are easy to compute. The set of hash functions we
construct is actually similar to the final family we considered at the end of the

‘previous section. Let p be a prime number greater than or equal to the number of

hash codes M but less than 2M- (and there must always be such a prime number,

. according to.a mathematical fact known as Bertrand’s Postulate).

‘Define H as the set of hash functions of the form
by p(k) = (ak+b mod p) mod N.
The following theorem estabhshes that this family of hash funcuons is, ‘universal.

Theorem 2. 14' The family H = {h,, p0<a<p and 0 <b < p}is umversa].

Proof: Let Z denote the set of integers in the range [0, p- 1]. Let us separate

~ each hash function 4, into the functions

fap(k) =ak+b mod P

and

(k) =k mod N,

50 that kg (k) = g(fap(k)). The set of functions f, defines a family of hash

functions F that map integers in Z to integers in Z: We claim that each function

“in F causes no collisions at all. To justify this claim, consider f,5(j) and fz5( )

for some pair of different integers j and k in Z. If f; (/) = fap(k), then we would
have a collision. But, recalling the definition of the modulo operatlon this would

imply that
b k+b
aj+b-— laJ: Jp:ak—l—b— V ;— _Jp.

Without less of generality, we can as'sq;ne that k < Js which implies that

o[22

.Smce .a # 0 and k < j, this in turn implies that a( j—k) is a multiple of p. But

a<pand j— k < p, so there is no way that a(j — k) can be a positive multiple of
p, because p is prime (remember that every positive integer can be factored into a
product of primes). So it is impossible for f; 5(j) = fap(k) if j# k. To put this
another way, each f;, maps the integers in Z to the integers in Z.in a way that
defines a one-to-one correspondence Since the functions in F cause no collisions;

“the only way that a function A, can cause a colhsmn is for the function g to cause

a collision.
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Let j and k be two dlfferent integers in Z. Also, let ¢( j>k) denote the number
of functions in H that map j and k to the same integer (that is, that cause jand k
to collide). We can derive an upper bound for c(j,k) by using a simple counting
argument, If we consider any integer x in Z, there are p different functions Jap such
that f,;(j) = x (since we can choose a b for each choice of ato make this 50). Let
us now fix x and note that each such function fa b maps k to a unique integer

Y= f ab( )
in Z with x # y Moreover of the p dlfferent 1ntegers of the form y = £, bk ) there
are at most |
[p/N1-1

such that g(y) = ( ) and x # y (by the definition of g). Thus, for any x in Z, there
are at most [p /N1 — 1 functions A, in H such that

x=fop(j) and hop(j) = hap(k).

Since there are p cho1ces for the integer-x in Z, the above countmg arguments

. imply that .
<o < o([2]-)

< plp—1)
There are p(p— 1) functions in H, since each function 4, p is determined by a pair
(@,b) such that 0 < a < p and 0 < b < p. Thus, picking a function umformly at
random from H involves picking one of p( — 1) functions. Therefore, for any two
dlfferent 1ntegers jandkinZ, | : o '

. plp—1)/N -
Pr(hep(j) = hap(k)) < ———
| (hap(J) (k) pp—1)
~- 1 | R
_ _ N
 That is, the family H is universal. o .

* In addition to being umversal the functions i inH have a number of other nice
properties. Each function in H is easy to select, since doing so simply requires that
we select a pair of random integers a and b such _that 0<a<pand 0<b<p.

~ In addition, each function in H is easy to compute in O(1) time, requiring just one
multlphcatlon one addition, and two applications of the modulus function. Thus,
any hash function chosen umformly at random in H will result in an implemen-
tation of the dictionary ADT so that the fundamental operations all have expected
running times that are O([n/N1), since we are using the chaining rule for collision
resolution. | : o |


http://www.cvisiontech.com

128 ‘ S Chapter 2. Basic Data Structures

2.6 Java Example: Heap

- In order to better illustrate how the methods of the tree ADT and the priority queue
ADT could interact in a concrete implementation of the heap data’ structure, we
discuss a case study implementation of the heap data structure in Java in this sect-
tion. Specifically, a Java implementation of a heap-based priority queue is shown
in Algorithms 2.57-2.60. To aid in modularity, we delegate the maintenance of
the structure of the heap itself to a data structure, called heap-tree, that extends a

* binary tree and provides the following additional specialized update methods:

add(0): Performs the following sequence of operations:
expandExternal(z);
replaceElement(z,0);
return z; : ‘ o .
* such that z becomes the last node of the tree at the end of
the operation. R

remove(): Performs the following sequence of operations:
| | t « z.element(); .
removeAboveExternal(rightChild(z));
return f; S |
where z is the last node at the beginning of the operation

That is, the add operation adds a new element at the first external node, and the
remove operation removes the element at the last node. Using a vector-based im-
plementation of a tree (see Section 2.3.4), operations add. and remove take O(1)
time. The heap-tree ADT is represented by the Java interface HeapTree shown in
'Algorithm. 2.57. We assume that-a Java class VectorHeapTree (not shown) imple-
ments the HeapTree interface with a vector and supports methods add and remove
in O(1) time. | | | |

public interface HeapTree extends InspectableBinafyTree, Posifion’alContainer {
public Position add{Object elem);
public Object remove();

}

Code Fragment 2.57: Interface HeapTree for a heap-tree. It extends the interface
InspectableBinary Tree with methods replaceElement and swapElements, inherited
from the PositionalContainer interface, and adds the specialized update methods
add and remove. - f - | -

Class HeapPriorityQueue implements t_he PriorityQueue interface using a heap.
It is shown in Algorithms 2.58 and 2.60. Note that we store key-element items of
- class |tem, which is simply a class for key-element pairs, into the heap-tree.
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public class Hr'eépPriorityQu'eue irﬁplements-"Pri0rityQue'ue {
HeapTree T; * '
Comparator comp; = - -

public HeapPriorityQueue(Comparator ¢) {

if -((comp = ¢) == null) | - o |
throw new lllegalArgumentException("Null comparator passed");

T = new VectorHeapTree(); - _

}

public int size() {
return (T.size() — 1) / 2;

public boolean isEmpty() {
return Tsize() == 1; }

public Object minElement() throws PriorityQueueEmptyException { -

Cif (isEmpty()) e
© throw new PriorityQueueEmptyException("Empty Priority Queue");
_return element(T.root()); = =+ -~ = o I

}

public Object minKey() throws __Prio_rityQueueE_mptyEXcéption {
if (isEmpty()) - . N

throw new _PriorityQueueEmptyException(“Empty Priority Queue");
return key(T.root()); = | .

}

T
-

Code Fragment 2.58: Instance variables, constructor, and methods size, isEmpty,

minElement, and minKey of class HeapPriorityQueue, which implements a priority

queue by means of a heap. Other methods of this class are shown in Algori'thm'2.60.
~ The auxiliary methods key and element extract the key and element of an item of
 the priority queue stored at at given position of the heap-tree. B
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public void |nsertltem(0bject k, Object e) throws lnvatheyExceptlon {
if (lcomp.isComparable(k))
throw new InvalidKeyException("Invalid Key"); .
Position z = T.add(new Item(k, €));
Position u;
while (1T.isRoot(z)) { // up-heap bubbllng
u = T.parent(z);
if (comp. lsLessThanOrEqua!To(key(u) key(z)))
break;
T.swapElements(u, z);
z = u;
)
}

publlc Object removeMln() throws PrlorltyQueueEmptyException {
“if (isEmpty()) |
throw new PnontyQueueEmptyExceptnon("Empty prlorlty queue!");
Object min = element(T.root());
if (size() == 1)
~ T.remove();
else { o |
T. repIaceEIement(T root(), T.remove());
Position r = T.root();
while (T.isInternal(T.leftChild(r))) { // down- heap bubblang
Position s;
if (T.isExternal(T.rightChild(r)) ||
comp.isLessThanOrEqual To(key(T. leftChlId(r)) key(T rlghtChlld(r))))
s =T. IeftChlld(r)
else
s = T.rightChild(r);
if (comp.isLessThan(key(s), key(r))) {
‘T.swapElements(r, s);
r=s;
}
else
break;
"}
}

return min;

b

‘Code Fragment 2.60: Methods msert!tem and removeMin of class HeapPriori-
tyQueue. Other methods of this class are shown in Algorlthm 2. 58 |
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2.7 Exercises

Reinforcement

R-2.1

R-2.2

R-2.3

R-2.4

R-2.5

R-2.6

De<ribe,using pseudo-codeimplementitionsof the methodsinsertBefore(p, €),
insertFirst(e), andinsertLast(e) of thelist ADT, assuming thelist isimplemented
usng adoubly linked list.

Draw an expression tree that hasfour external nodes storing the numbersl,
5, 6, and7 (with eachnumberstored one per externalnodebut not necesarily
in this order),and hasthreeinternalnodes eachstoring an operationfrom the
sd {+,—, x,/} of binary arithmetc operaobrs, so thatthe value of therootis
21. The operabrs areassumedto return raonalnumbergnot integer9, andan
operabr may beussdmorethanonce(but we only store oneoperabr perinternal
node).

Let T beanorderedreewith morethanonenode.Isit possible thatthe preorder
traversalof T visits the nodesin the same orderas the pogordertraversa of T?

If so, give an exampke; otherwise, arguewhy this cannotoccur Likewise, isit

possible thatthe preordentraversal of T visits the nodesin the reverse order of

the postorder traversalof T? If so, give an example; otherwise, arguewhy this

cannotoccut

Answer the following quegionsso asto justify Theorem?.8.

a. Draw abinarytreewith height 7 and maximumnumberof externalnodes

b. What is the minimum numberof external nodesfor a binary tree with
heighth? Jugify youransver.

c. What is the maximum numberof external nodesfor a binary tree with
heighth? Judify youransver.

d. LetT beabinarytreewith height h andn nodes Show that

log(n+1)—1<h<(n-1)/2.

e. For whichvaluesof n andh canthe above lowerand upperboundsonh be
attairedwith equality ?

Let T beabinary treesuchthatall the externalnodeshave the same deph. Let
De bethe sum of the depths of al the externalnodesof T, and let D; bethe sum
of the depths of al the internalnodesof T. Find congants a andb such that

De+1=ab;j + bn,

wheren isthe numberof nodesof T.

Let T beab inary treewith n nodesandlet p bethelevel numberngof the nodes
of T, asgivenin Section 2.3.4.

a. Show that, for everynodev of T, p(v) < 21/2_1,
b. Show anexampk of a binary treewith atleas five nodesthat attains the
above upperboundon the maximumvalue of p(v) for somenodev.
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R-2.7 LetT beabinarytreewith nnodedhatisreaizedwith avecbr, S and let p bethe
level numberng of the nodesin T, as givenin Sectfion 2.3.4. Give pseudo-code
degriptionsof eachof themethodsoot, parent, leftChild, rightChild, isInternal,
isExternal, and isRoot.

R-2.8 lllustrate the performanceof the selecion-ort algorithm on the following input
sequencei(22,15,36,44,10,3,9,13,29,25).

R-2.9 lllustrate the performanceof the insertion-ort algorithm on the input sequence
of the previousproblem.

R-2.10 Giveanexampleof aworst-cag sequencavith n elementdor insertion-srt, and
show thatinsertii-sart runsin Q(n?) time on sucha sequence.

R-2.11 Wheremay anitemwith larged key bestoredin aheap?

R-2.12 lllustrate the performanceof the heap-®rt algorithm on the following input se-
quence:(2,5,16,4,10,23,39,18 26,15).

R-2.13 Suppo® a binarytreeT is implementedusing a vectorS, as describedin Sec-
tion 2.3.4. If nitems arestoredin Sin satedorder, startirg with index 1, isthe
treeT aheap?

R-2.14 IsthereaheapT storing sevendistinct elementsuch thata preordentraversal of
T yieldstheelemensof T in sortedorder?How aboutaninordertraversal? How
abouta podordertraversl ?

R-2.15 Show that the sum S, logi, which appearsin the analyss of heap-srt, is
Q(nlogn).

R-2.16 Show the stepsfor removing key 16 from the heapof Figure2.41.
R-2.17 Show the stepsfor replacing 5 with 18in the heapof Figure2.41.

R-2.18 Draw an exampk of a heapwhos keys are all the odd numbersfrom 1 to 59
(with no repeats),such that the insertian of an item with key 32 would cawse
up-heagbubblingto proceedall theway up to a child of theroot (replacingthat
child’s key with 32).

R-2.19 Draw the 11-item hashtalde resuting from hashng the keys 12, 44, 13, 88, 23,

94,11, 39, 20, 16, and5, using the has functon h(i) = (2i + 5) mod 11 and
assuming callisions arehandledby chaining.

R-2.20 What is the resut of the previous exercise,assuning callisions are handled by
linearprobing?

R-2.21 Show theresut of ExerciseR-2.19, assuming callisions arehandledby quadratic
probing,up to the pointwherethe methodfails becaus no emptyslot isfound.

R-2.22 Whatis thereault of Exercise R-2.19assuming collisionsarehandledby double
hasing using a secondaryhas functon b’ (k) = 7— (k mod 7)?

R-2.23 Giveapseudo-codaleriptionof aninsertioninto ahas tablethatuses quadraic
probing to resdve collisions, assuming we alsouse the trick of redacing deleted
itemswith a special“deactivateditem” object.

R-2.24 Show the reault of rehasing the hash table shown in Figure2.55into atable of
size19using thenew hash funcion h(k) = 2k mod 19.
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Creativity
c-21

C-22

C-23
C-24

C-25

C-2.6

C-2.7

C-28

C-29

De<ribe,in pseudo-codea link-hopping methodfor finding the middle nodeof

adoubly linked list with headerandtrailer seninels, andan odd numberof real
nodesbetweenthem. (Note: This method mug only use link hopping; it cannot
use acouner.) Whatis the running time of this method?

De<ribe how to implementthe queueADT usng two stacks so that the amor-
tized running time for dequeue andenqueue is O(1), assuming that the stacks
supportcondant time push, pop, and size methods Whatis therunningtime of
the enqueue() anddequeue() methodsin this cae?

Desribehow toimplementthe stackADT using two queuesWhatistherunning
time of the push() andpop() methodsin this cae?

Degribearecursve algorithm for enumeraig all permutiionsof the numbers
{1,2,...,n}. Whatistherunningtime of your metod?

Degribethe structure andpseudo-coddor an array-bagd implementtion of the
vectorADT thatachiesesO(1) timefor insertionsandremovalsat rank0, aswell
asinsertionsandremovals at the endof thevecbr. Yourimplemengtion should
also providefor a condant-time elemAtRank method.

In the children’s game*hot potato,” a groupof n childrensit in a circle passirgy
an object, called the “potato,” aroundthe circle (say in a clockwise direction).
The children continue pasing the potato until a leaderrings a bell, at which
point the child holding the potato mug |eave the game,andthe other children
close up the circle. This proces is thencontinueduntl thereis only onechild
remaning, who is declaredthe winner Using the sequenceADT, de<ribe an
efficient metod for implemening this game. Suppo® the leaderalways rings
the bell immediatelyafter the potatohas beenpased k times. (Determning
the lastchild remaining in this variation of hot potatois known asthe Josephus
problem.) Whatisthe runningtime of yourmetodin termsof n andk, assuming
the sequences implemenedwith a doubly linked list? What if the sequenceas
implementedwith anarray?

Using the Sequence ADT, descrike an efficient way of putting a sequence rep-
reenting a deckof n cardsinto randomorder Use the function randomlnt(n),
which returnsa randomnumberbetween0 and n— 1, inclusve. Your method
should guaranéethat every possible ordering is equaly likely. Whatis the run-
ning time of your metod, if the sequencas implementdwith anarray? What
if it isimplementedwith alinkedlist?

Design an algorithm for drawing a binary tree, using quantities computedin a
treetraversal.

Dedgn algorithmsfor the following operatonsfor anodev in abinarytreeT:

e preorderNext(V): returnthenodevisited afterv in apreordertraversal of T

o inorderNext(V): returnthenodevisited aftervin aninordertraversal of T

e postorderNext(V): return the nodevisited after v in a postorder traversal
of T.

What arethe worst-case running timesof your algorithms?
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C-2.10 Give an O(n)-time algorithm for computing the deph of all the nodesof atree
T, where n isthe numberof nodesof T.

C-2.11 Thebalancefactor of aninternalnodev of abinarytreeisthedifferencebetween
the heights of theright andleft subtreesof v. Show how to specializethe Euler
tourtraversal to print the balancefacorsof al the nodesof abinarytree.

C-2.12 Two orderedtreesT’ and T aresaid to be isomorphic if oneof the following
holds

e Both T/ andT” consst of asingle node

e Both T/ andT” have the samenumberk of subtrees and the ith subtreeof
T’ isisomorpht to theith subtreeof T”, fori =1,...,k.

Desgn an algorithmthat teds whethertwo given orderedtreesareisomorphic.
Whatis the running time of your algorithm?

C-2.13 Letavisit acionintheEuler tourtraversl be denoedby apair (v, a), wherevis
thevisited nodeanda is oneof left, below, or right. Dedgn an algorithm for per
forming operationtourNext(v,a), which returnsthevisit acton (w, b) following
(v,a). Whatistheworst-ca running time of your algorithm?

C-2.14 Show how to repregnt animproperbinary treeby meansof a properone.

C-2.15 Let T be abinary treewith n nodes Define a Roman node to beanodevin T,
such that the numberof desendens in v's left subtree differ from the number
of desendensin V'sright subtreeby at mog 5. Describe a lineartime method
for finding eachnodev of T, suchthatv is not a Romannode,but all of v's
desendent are Romannodes

C-2.16 In pssudo-codedescribe a nonrecursse method for performing an Euler tour
traversdl of abinarytreethatrunsin lineartime and doesnot use a stack.

Hint: You cantell which visit acion to performatanodeby taking note of where
you arecoming from.

C-2.17 In pssudo-codegescribe anonrecurgsse methodfor performing an inordertraver-
salof abinary treein lineartime.

C-2.18 LetT beabinarytreewith nnodeq T mayor may notberealizedwith avector).
Give a lineartime method that usesthe methodsof the BinaryTree interfaceto
traverse the nodesof T by increasng valuesof the level numberng function p
givenin Section 2.3.4. Thistraversal is known asthe level order traversal.

C-2.19 Thepath length of atreeT isthe sumof thedepthsof all thenodesn T. De<ribe
a lineartime method for computing the path length of a tree T (which is not
necesarily binary).

C-2.20 Definetheinternal path length, I(T), of atree T to be the sum of the depths of
all theinternalnodesin T. Likewise,define the external path length, E(T), ofa
treeT to bethe sum of the depths of all the externalnodesin T. Show thatif T
is abinarytreewith ninternalnodesthenE(T) = I(T) + 2n.
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C-2.21 LetT beatreewith nnodes Definethelowest common ancestor (LCA) between
two nodesv andw asthe lowed nodein T that hasboth v andw asdesendens
(wherewe allow a nodeto be a descendentof itself). Given two nodesv and
w, de<cribe an efficientagorithm for finding the LCA of v andw. Whatis the
runningtime of yourmethod?

C-2.22 LetT beat reewith n nodesand,for any nodevin T, let d, denot the deph of
vin T. Thedistance betveentwo nodess andwin T is dy + dy, — 2dy, whereu is
the LCA u of v andw (asdefinedin the previousexercise). The diameter of T is
the maximum distancebetveentwo nodesin T. Dexribe an efficientalgorithm
for finding the diameter of T. Whatis therunningtime of your method?

C-2.23 Suppo® we are given a collecion Sof n intenalsof theform [a;,b;]. Design an
efficient algorithm for computng the union of all theintervalsin S. Whatis the
runningtime of your metod?

C-2.24 Assuming the inputto the sorting problemis given in an array A, desribe how
to implementthe selecfion-9ort algorithm using only thearray A andatm ostsix
addiional (base-type)variables

C-2.25 Assuming the inputto the sorting problemis given in an array A, desribe how
to implementtheinsertion-sort algorithm using only the array A andat mog six
addiional (bas-type)variables

C-2.26 Assuming the inputto the sorting problemis given in an array A, de<ribe how
to implementthe heap-srt algorithm using only the array A and at mos six
addiional (base-type)variables

C-2.27 SuppoethebinarytreeT usedto implementa heapcanbeaccesed using only
the methodsof the binarytreeADT. Thatis, we cannotasume T isimplemented
asavecbr. Givenareferenceo the currentlast node,v, desribe an efficient
algorithm for finding the insertion point (thatis, the new last node)usingjust the
methodof thebinarytreeinterface.Be sure andhandleall possible caes What
isthe running time of this method?

C-2.28 Shaw that, for any n, thereis a sequenceof insertionsin a heapthat requres
Q(nlogn) time to process.

C-2.29 We canrepregnta pat from theroot to a nodeof a binary treeby meansof a
binary string, where0 means'go to the left child” and 1 means‘go to the right
child” Desggn alogarthmic-time algorithm for finding the lag nodeof a heap
holding n elementdasd on thethis repregntation.

C-2.30 Show thatthe problemof finding the kth smalleg elementin aheaptakes at leas
Q(k) timein theworst ca.

C-2.31 Develop an agorithm thatcompuesthe kth smalled elemenif a set of n distinct
integersin O(n+klogn) time.

C-2.32 Let T beaheapstoring n keys. Give an efficiert agorithm for reporting all the
keysin T that are smaller thanor equal to a given querykey x (which is not
necessarilyin T). For examplk, giventhe heapof Figure 2.41 and query key
X = 7, the algorithm should report4, 5, 6, 7. Note thatthe keys do not needto be
repored in sorted order. Idealy, your algorithm should runin O(k) time, where
k isthe numberof keys reportd.
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C-2.33 Thehas table dictionaryimplemengtion requiresthatwe find a prime number
betveena numberM anda number2M. Implementa method for finding such
a prime by usng the sieve algorithm. In this algorithm, we allocatea 2M cell
BooleanarrayA, suchthatcel i is asociatedwith theintegeri. Wetheninitialize
the array cellsto all be “true” and we “mark off” al the cellsthat aremultiples
of 2, 3,5, 7, andso on. This proces canstop afterit reachesa numberlarger

than+/2M.

C-2.34 Givethe pseudo-codalegription for performing aremoval from ahas tablethat
useslinear probing to resdve collisions wherewe do not use a special marker
to repregnt deletedelements Thatis, we mug rearrangethe contentsof the
has table so thatit appearghatthe removed item wasnever inserted in thefirst
place.

C-2.35 The quadraitc probing strategy hasa clugering problemthat relates to the way
it looks for opensglots whena collision occurs Namely whena collision oc-
curs at bucket h(k), we check A[(h(k) + f(j)) modN], for f(j) = j?, using
j=12...,N—1.

a. Show that f(j) modN will assume at most (N + 1)/2 distinct values,for
N prime,asj rangesrom 1 to N — 1. As a partof thisjudificaion, note
that f(R) = f(N—R) foral R.

b. A better strategy is to choos a prime N such that N is congruentto 3
modub 4 andthento checkthe buckets A[(h(k) + j%) modN] as | ranges
from 1 to (N — 1)/2, altermating betweenaddition and subtraction. Show
that this alternate type of quadraitc probing is guaranéedto checkevery
bucketin A.

Projects

P-2.1 Write a programthat takes as input a fully parenheszedarithmetic expresion
andconvertsit to abinaryexpresiontree. Your programshould display the tree
in someway and also print the value associated with the root For anaddiional
challerge, alow for the leavesto store variablesof the form x;, X, X3, and so on,
which are initially 0 and which canbe updatedinteractvely by your program,
with the correponding updat in the printed value of the root of the expression
tree.

P-2.2 Writeanappktor stand-abnegraphtal programthatanimatesaheap.Yourpro-
gramshould supportall the priority queueoperatonsandit should visualize the
operatonsof the up-heapnddown-heapbubbling procedures(Extra: Visualize
bottom-up heapconstruction as well.)

P-2.3 Perfam a comparative analysis that studiesthe collision ratesfor various hash
codesfor characer strings such as variouspolynomial hash codesfor different
values of the parametera. Use a hashtalle to determine collisions, but only
countcollisions wheredifferentstrings mapto the same has code(not if they
map to the sane location in this hashtable). Test thesehashcodes on text files
foundonthe Internet

P-2.4 Perform a comparaitve anaysis asin the previousexercise but for 10-digit tele-
phonenumberdnsteadof characer strings
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The basic data structures of stacks, queues, and linked lists discussed in this chaptér belong
to the folklore of computer science. They were first chronicled by Knuth in his seminal
book on Fundamental Algorithms [117]. In this chapter, we have taken the approach of
defining the basic data structures of stacks, queues, and deques, first in terms of their ADTs
and then in terms of concrete implementations. This approach to data structure specification
and implementation is an outgrowth of software engineering advances brought on by the
object-oriented design approach, and is now considered a standard approach for teaching
data structures. We were introduced to this.approach to data structure design by the classic
books by Aho, Hopcroft, and Ullman on data structures and algorithms [7, 8]. For further
study -of abstract data types, please see the book by Liskov and Guttag [135], the survey
paper by Cardelli and Wegner [44], or the book chapter by Demurjian [57]. The naming
conventions we use for the methods of the stack, queue, and deque ADTs are taken from
JDSL [86]. JDS_Iz is a data structures library in Java that builds on approaches taken for
C++ in the libraries STL [158] and LEDA [151]. We shall use this convention throughout
this text. In this chapter, we motivated the study of stacks and queues from implementation
issues in Java. The reader interested in learning more about the Java run-time environ-
ment known as the Java Virtual Machine (JVM) is referred to the book by Lindholm and
Yellin [134] that defines the JVM. :
~Sequences and iterators are pervasive concepts in the C++ Standard Template Library
(STL) [158], and they play fundamental roles in JDSL, the data structures library in Java.
‘The sequence ADT is a generalization and extension of the Java java.util.Vector API (for
example, see the book by Amold and Gosling [13]) and the list ADTs proposed by sev-
“eral authors, including Aho, Hopcroft, and Ullman [8], who introduce the “position” ab-
straction, and Wood [211], who defines a list ADT similar to ours. Implementations of
sequences via arrays and linked lists are discussed in Knuth’s seminal book, Fundamental
Algorithms [118]. Knuth’s companion volume, Sorting and Searching [119], describes the
bubble-sort method and the history of this and other sorting algorithms.

- The concept of viewing data structures as containers (and other principles of object-
oriented design) can be found in object-oriented design books by Booch [32] and Budd [42].
The concept also exists under the name “collection class™ in books by Golberg and Rob-
son [79] and Liskov and Guttag [135]. Our use of the “position” abstraction derives from
the “position” and “node” abstractions introduced by Aho, Hopcroft, and Ullman [8]. Dis-
cussions of the classic preorder, inorder, and postorder tree traversal methods can be found
in Knuth’s Fundamental Algorithms book [118]. The Euler tour traversal technique comes
from the parallel algorithms community, as it is introduced by Tarjan and"ViShkjn [197] and
is discussed by JaJa [107] and by Karp and Ramachandran [114]. The algorithm for draw-
ing a tree is generally considered to be a part of the “folklore” of graph drawing algorithms.
The reader interested in graph drawing is referred to works by Tamassia [194] and Di Bat-
tista ef al. [58, 59]. The puzzler in Exercise R-2.2 was communicated by Micha Sharir.

~Knuth’s book on sorting and searching [119] describes the motivation and history for
the selection-sort, insertion-sort, and heap-sort algorithms. The heap-sort algorithm is due
to Williams [210], and the linear-time heap construction algorithm is due to Floyd [70].
Additional algorithms and analyses for heaps and heap-sort variations can be found in pa-.
pers by Bentley [29], Carlsson [45], Gonnet and Munro [82], McDiarmid and Reed [141],

"and Schaffer and Sedgewick [178]. The locator pattern (also described in [86]), appears to
be new. ' |
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People like choices. We like to have different ways of solving the same prob-
lem, so that we can explore different trade-offs and efficiencies. This chapter is de-
voted to the exploration of different ways of implementing an ordered dictionary.
We begin this chapter by discussing binary search trees, and how they support a
simple tree-based implementation of an ordered dictionary, but do not guarantee
efficient worst-case performance. Nevertheless, they form the basis of many tree-
based dictionary 1mp1ementat10ns and we discuss several in this chapter. One of
the classic implementations is the AVL tree, presented in Section 3.2, which is a
binary search tree that achieves logarithmic-time search and update operations.

In Section 3.3, we introduce the concept of bounded-depth trees, which keep
all external nodes at the same depth or “pseudo-depth.” One such tree is the multi-
way search tree, which is an ordered tree where each internal node can store several
items and have several children. A multi-way search tree is a generalization of the
binary search tree, and like the binary search tree, it can be specialized into an ef-
ficient data structure for ordered dictionaries. A specific kind of multi-way search
tree discussed in Section 3.3 is the (2,4) tree, which is a bounded-depth search
tree in which each internal node stores 1, 2, or 3 keys and has 2, 3, or 4 children.
respectively. The advantage of these trees is that they have algorithms for insert
ing and removing keys that are simple and intuitive. Update operatlons rearrange

a (2,4) tree by means of natural operations that spllt and merge “‘nearby” nodes or
transfer keys between them. A (2,4) tree storing # items uses O(n) space and sup-
ports searches, insertions, and removals in O(logn) worst-case time. Another kind
of bounded-depth search tree studied in this section is the red- black tree. These

are binary search trees whose nodes are colored “red” and “black” in such a way
that the coloring scheme guarantees each external node is at the same (logarithmic)
“black depth.” The pseudo-depth notion of black depth results from an illuminat-
ing correspondence between red-black and (2,4) trees. Using this correspondence,
we motivate and pr0v1de intuition for the somewhat more complex algorithms for
insertion and removal in red-black trees, which are based on rotations and recol-
orings. An advantage that a red-black tree achieves over other binary search tress.
(such as AVL trees) is that it can be restructured after an insertion or removal with.
only O(1) rotations.

" In Section 3.4, we discuss splay trees, which are attractive due to the simplicity
of their search and update methods. Splay trees are binary search trees that, after
each search, insertion, or deletion, move the node accessed up to the root by means
of a carefully choreographed sequence of rotations. This simple “move-to-the-
top” heuristic helps this data structure adapt itself to the kinds of operations being
performed. One of the results of this heuristic is that splay-trees guarantee that the
amortized running time of each dictionary operation is logarithmic.

Finally, in Section 3.5, we discuss skip lists, which are not atree data structure,
but nevertheless have a notion of depth that keeps all elements at logarithmic depth.
These structures are randomized, however, so their depth bounds are probabilistic.
In particular, we show that with very high probability the height of a skip hst storing
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n elements is O(logn). This is admittedly not as strong as a true worst-case bound,
but the update operations for skip lists are quite simple and they éompare favorably
to search trees in practice. ' ‘ ' ' _

We focus on the practice of implementing binary search trees in Section 3.6,
giving Java implementations for both AVL and red-black trees. We highlight how
both of these data structures can build upon the tree ADT discussed in Section 2.3.

There are admittedly quite a few kinds of search structures discussed in' this
chapter, and we recognize that a reader or instructor with limited time might be
interested in studying only selected topics. For this reason, we have designed this
chapter so that each section can be studied independent of any other section except
for the first section, which we present next. ' '

3.1 Ordered Dictionaries andBinary Search Trees

In an ordered dictionary, we wish to perform the usual dictionary operations, dis-
cussed in Section 2.5.1, such as the operations findElement(k), insertltem(k,e),
and removeElement(k), but also maintain an order relation for the keys in our dic-
tionary. We can use a comparator to provide the order relation among keys, and, as
we will see, such an ordering helps us to efficiently implement the dictionary ADT.
In addition, an ordered dictionary also supports the following methods:

closestKeyBefore(k): Return the key of the item with largest key less than or
equal to k.

closestElemBefore(k): Return the element for the item with largest key less than
or equal to k. - :

closestKeyAfter(k):. Return the key of the item with"smallest key greater than
o or equal to k. |

closestEle mAffer(k): Return the element for the item with smallest key greater
than or equal to k. ’

Each of these methods returns the special NO_SUCH_KEY object if no item in the
dictionary satisfies the query. : : |
The ordered nature of the above operations makes the use of a log file or a
hash table inappropriate for implementing the dictionary, for neither of these data
structures maintains any ordering information for the keys in the dictionary. Indeed,
‘hash tables achieve their best search speeds when their keys are distributed almost
- atrandom. Thus, we should consider new dictionary implemeritations when dealing
- with ordered dictionaries. | | -
' Having defined the dictionary abstract data type, let us now look at some simple
ways of implementing this ADT. |


http://www.cvisiontech.com

142

Chapter 3. Search Trees and Skip Llst.gd

3.1.1 Sorted Tables

If a dictionary D is ordered, we can store its items in a vector § by nondecreasi
order of the keys. We specify that § is a vector, rather than a general sequence, for
the ordering of the keys in the vector S allows for faster-searching than would be
possible had S been, say, a linked list. We refer to this ordered vector 1rnp1ementa.
tion of a dictionary D as a lookup table. We contrast this implementation with the
log file, which uses an unordered sequence to implement the dictionary. ;

The space requirement of the lookup table is ©(n), which is similar to the 10g
file, assuming we grow and shrink the array supporting the vector S to keep the sizg
of this array proportional to the number of items in S. Unhke a log file, however
performing updates in a lookup table takes a considerable amount of time. In par;
ticular, performing the insertltem{k,e) operation in a lookup table requires O(n
time in the worst case, since we need to shift up all the items in the vector with ke
greater than & to make room for the new item (k,e). The lookup table implemen:
tation is therefore inferior to the log file in terms of the worst-case running time;
of the dictionary update operations. Nevertheless, we can perform the operatlon
findElement much faster in a sorted lookup table. ~

—

‘Binary Search

A significant advantage of using an array-based vector § to"implement an ordere
dictionary D with n items is that accessing an element of S by its rank takes O(1
time. We recall from Section 2.2.1 that the rank of an element in a vector is th
number of elements preceding it.- Thus, the first element in S has rank 0, and th
last element has rank n— 1. -

Thé elements in S are the items of dictionary D, and since S is ordered the 1ten
at rank i has a key no smaller than keys of the items at ranks 0,...,i—1, and-n
larger than keys of the items at ranks i+ 1,...,n— 1. This observatlon allows us t
quickly “home in” on a search key k using a vanant of the children’s game “high
low.” We call an item I of D a candidate if, at the current stage of the search, w

~ cannot rule out that / has key equal to k. The algorithm maintains two parameters

low and high, such that all the candidate items have rank at least low and at mos
high in $. Initially, low =0 and high = n—1, and we let key(i) denote the ke
at rank i, which has elem(i) as its element. We then compare k to the key of ‘th
median candidate, that is, the item with rank

mid = | (low + high)/2]. -
We con31der three cases:

o If k= key(mld) then we have found the item we were looking for, and th
search terminates successfully returning elem(mld) :
o If k < key(mid), then we recur on the first half of the vector, that is, on th
range of ranks from low to mid — 1. |
o Ifk> key(mld) we recur on the range of ranks from mnd +1to hlgh
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This search method is -called binar_y search, and is given in pseudo-code in
Algorithm 3.1. Operation findElement(k) on an n-item dictionary implemented
with a vector S consists of calling BinarySearch(S,k,0,n—1).

Algorlthm BinarySearch(S, k, low, high):

Input: An ordered vector § storing n items, whose keys are accessed with
method key(i) and whose elements are accessed with method elem(i); a
search key k; and integers low and high

-Output. An-element of S with key k and rank between low and high, if such an
element exists, and otherwise the special element NO_SUCH_KEY

if low > high then
return NO_SUCH_KEY
else
- mid < | (low+ high)/2| -
if k= key(mid) then
return elem(mid)
else if k& < key(mid) then
return BmarySearch(S k,low, mid — 1)
else
return BlnarySearch(S k,mid + 1, high)

Algorithm 3.1: Binary search in an ordered Veeter.

- We illustrate the binary search algorithm in Figure 3.2.

low mid high

27] 28 [33] 37

Iow=rhid=high

Flgure 3. 2. Example ofa bmary search'to perform operation find Element(22) ina
dictionary with integer keys, implemented with an array-based ordered vector. For
s1mp11c1ty we show the keys stored in the dictionary but not the elements


http://www.cvisiontech.com

144

Chapter 3. Search Trees and Skip Lists

Considering the running time of binary search, we observe that a constant num-
ber of operations are executed at each recursive call. Hence, the running time is
proportional to the number of recursive calls performed. A crucial fact is that with
each recursive call the number of candidate items still to be searched in the se-
quence S is given by the value high — low 4 1. Moreover, the number of remaining
candidates is reduced by at least one half with each recursive call. Specifically,

- from the definition of mid the number of remaining candidates is either

low +high ~ high—low +1
(mid—l)—low-l—lz[MJ_bwé_'g ow +

2 2
or

I high high — | 1
high—(mid+1)+1=high—[MJ__ g ow + )

2 2

Initially, the number of candidate is »; after the first call to' BinarySearch, it is at
most n/2; after the second call, it is at most n/4; and so on. That is, if welet a
function, T (n), represent the running time of this method, then we can characterize
the running time of the recursive binary search algorithm as follows:

b - - ifn<2
T(n) S{ T(n/2)+b else,

where b is a constant. In general, this recurrence equation shows that the number
of candidate items remaining after each recursive call is at most n/2’. (We discuss
recurrence equations like this one in more detail in Section 5.2.1.) In the worst case
(unsuccessful search), the recursive calls stop when there are no more candidate
items. Hence, the maximum number of recursive calls performed is the smallest
integer m such that n/2™ < 1. In other words (recalling that we omit a logarithm's
base when it is 2), m > logn. Thus, we have m = {logn] + 1, wh1ch implies that
BinarySearch(S,k,0,n — 1) runs in O(logn) time.

Table 3.3 compares the running times of the methods of a dictionary realized
by either a log file or a lookup table. A log file allows for fast insertions but slow
searches and removals, whereas a lookup table allows for fast searches but slow
insertions and removals.

‘Method Log File | Lookup Table
findElement O(n) O(logn)
insertltem - 0(1) O(n)
removeElement O(n) . O(n)
closestKeyBefore O(n) O(logn)

Table 3.3: Comparison of the running times of the primary methods of an ordered

dictionary realized by means of a log file or.a lookup table. We denote the number
of items in the dictionary at the time a method is executed with n. The performance
of the methods closestElemBefore, closestKeyAfter, closestElemAfter is similar to
that of closestKeyBefore. -


http://www.cvisiontech.com

31 Ordered Dictionaries and Bmary Search Trees | 145

3. 1 2 Blnary Search Trees

The data structure we discuss in this section, the blnary search tree, applies the
motivation of the binary search procedure to a tree-based data structure. We define
a binary search tree to be a binary tree in which each internal node v stores an
element e such that the elements stored in the left subtree of v are less than or equal
to e, and the elements stored in the right subtree of v are greater than or equal to e
Furthermore, let us assume that external nodes store no elements; hence, they could
in fact be null or references to a NULL_NODE object. ' |

An inorder traversal of a binary search tree visits the elements stored in such

-a tree in nondecreasing order. A binary search tree supports searching, where the

question asked at each internal node is whether the element at that node is less than,
equal to, or larger than the element being searched for.

We can use a binary search tree T to locate an element with a certain value x
by traversing down the tree T. At each internal node we compare the value of the
current node to our search element x. If the answer to the question is “smaller,”

_then the search continues in the left subtree. If the answer is “equal,” then the
search terminates successfully. If the answer is “greater,” then the search continues
in the right subtree. Finally, if we reach an external node (which is empty), then the
search terminates unsuccessfully (See Flgure 3.4)

Figure 3.4 A binary search tree storing integers. The thick solid path drawn with
thick lines is traversed when searching (successfully) for 36. The thick dasheéd path
is traversed when searching (unsuccessfully).for 70.
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3.1.3 Searching in a Binary Search Tree

Formally, a binary search tree is a binary tree T in which each internal node v of T
stores an item (k,e) of a dictionary D, and keys stored at nodes in the left subtree
of v are less than or equal to k, while keys stored at nodes in the right subtree of v
are greater than or equal to k.

In Algorithm 3.5, we give a recursive method TreeSearch, based on the above
strategy for searching in a binary search tree 7. Given a search key k and a node
v of T, method TreeSearch returns a node (position) w.of the subtree T(v)of T
rooted at v, such that one of the following two cases occurs:

e wis an internal node of T'(v) that stores key k. -
e w is an external node of T (v). All the internal nodes of T (v) that precede w
_ in the inorder traversal have keys smaller than k, and all the internal nodes of
T (v) that follow w in the inorder traversal have keys greater than k.

Thus, method findElement(k) can be performed on dictiona_i'y D by calling the

method TreeSearch(k, T.root()) on T. Let w be the node of T returned by this call
of the TreeSearch method. If node w is internal, we return the element stored at w;
otherwise, if w is external, then we return NO_SUCH_KEY. .

Algorithm TreeSearch(k,v): , o
Input: A search key k, and a node v of a binary search-tree 7'
Output: A node w of the subtree 7'(v) of T rooted at v, such that either wis an
internal node storing key k or w is the external node where an item with key
k would belong if it existed

if v is an external node then
return v
if k= key(v) then
return v
else if k < key(v) then
return TreeSearch(k, T.leftChild(v))
else | |
{we know k > key(v)}
return TreeSearch(k, T.rightChild(v))

Algorithm 3.5: Recursive search in a binary search tree.
Note that the running time of searching in a binary Sea:éh tree T is proportional

to the height of 7. Since the height of a tree with n nodes can be as small as
O(logn) or as large as Q(n), binary search trees are most efficient when they have

- small height. .
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Ana|y5|s of Binary Tree Searching

The formal analysis of the worst-case running time of searching in a binary search
tree T is simple. The binary tree search algorithm executes a constant number of
primitive operations for each node it traverses in the tree. Each new stép in the
traversal is made on a child of the previous node. That is, the binary tree search:
algorithm is performed on the nodes of a path of T that starts from the root and
goes down one level at a time. Thus, the number of such nodes is bounded by
h+ 1, where 4 is the height of 7. In other words, since we spend O(1) time per
node encountered in the search, method findElement (or any other standard search
operation) runs in O(h) time, where 4 is the height of the binary search tree T used
to implement the dictionary D. (See Figure 3.6.) |

‘time per level

height
—7 0(1)
o(1)
.
o(1)

total time:  O(h)

‘Figure 3.6: Illustrating the running time of searching in a binary search tree. The
figure uses standard visualization shortcuts of viewing a binary search tree as a big
triangle and a path from the root as a zig-zag line.

We can also show that a variation of the above algorithm performs operation
findAllElements(k), which finds all the items in the dictionary with key &, in time
O(h+s), where s is the number of elements returned. However, this method is
slightly more complicated, and the details are left as an exercise (C-3.3).

Admittedly, the height /2 of T can be as large as n, but we expect that it is usually
much smaller. Indeed, we will show in subsequent sections in this chapter how to
'maintain an upper bound of O(logn) on the height of a search tree T. Before we
describe such a scheme, however, let us describe implementations for dxctlonary
update methods in a possibly unbalanced binary search tree.
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3.1.4

‘Insertion in a Binary Search Tree

Binary search trees allow implementations of the insertitem and removeklemer
operations using algorithms that are fairly straightforward, but not trivial.

To perform the operation insertitem(k,e) on a dictionary D implemented wi
binary search tree T', we start by calling the method TreeSearch (k T. root())
Let w be the node returned by TreeSearch. \ \

e If w is an external node (no item with key & is stored in T), we replace y
with a new internal node storing the item (k,e) and two external children, by
means of operation expandExternal(w) on T (see Section 2.3.3). Note tha
w is the appropriate place to insert an item with key k.

¢ If-w is an internal node (another item with key k is stored at w) we cd
TreeSearch (k, rightChild(w)) (or, equivalently, TreeSearch(k, leftChild(w ))
and recursively apply the algorithm to the node returned by TreeSearch.

The above insertion algorithm eventually traces a path from the root of 7' dowi
to an external node, which gets replaced with a new internal node accommodatin;
the new item. Hence, an insertion adds the new item at the “bottom” of the searc]
tree T. An example of insertion into a binary search tree is shown in Figure 3.7.

The analysis of the insettion algorithm is analogous to that for searching. Th
number of nodes visited is proportional to the height % of T in the worst case. Also
assuming a linked structure implementation for T’ (see Section 2.3.4), we spen
O(1) time at each node visited. Thus, method insertltem runs in O(k) time.

Figure 3.7: -Insertion of an item with key 78 into a binary search tree. Finding
position to insert is shown in (a), and the resulting tree is shown in (b).
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3._1.5&' Removal in a Binary Search Tree

Performing the removeElement (k) operation on a dictionary D implemented with

-a binary search tree T is a bit more complex, since we do not wish to create any

- “holes” in the tree 7'. Such a hole, where an internal node would not store an ele-

ment, would make it difficult if not impossible for us to correctly perform searches

in the binary search tree. Indeed, if we have many removals that do not restruc-

~ ture the tree T, then there could be a large section of internal nodes that store no
~elements, which would confuse any future searches. | .

- The r_emo_val operation starts out simple enough, since we begin by executing

algorithm TreeSearch(k, T.root()) on T to find a node storing key k. If TreeSearch

~returns an external node, then there is no element with key % in dictionary D, and

- we return the special element NO_SUCH_KEY and we are done. If TreeSearch

returns an internal node w instead, then w stores an item we Wish to remove.
We distinguish two cases (of increasing difficulty) of how to proceed based on

whether w is a node that is easily removed or not:

e If one of the children of node w is an external node, say node z, we sim-
ply remove w and z from T by means of operation removeAboveExternal(z)
on T'. This operation (also see Figure 2.26 and Section 2.3.4) restructures T
by replacing w with the sibling of z, removing both w and z from T.

This case is illustrated in Figure 3.8.

- Figure 3.8: Removal from the binary search tree of Figure 3:7b, where the key to
remove (32) is stored at a node (w) with an external child: (a) shows the tree be-
fore the removal, together with the nodes affected by the removeAboveExternal(z)

- operation on-T'; (b) shows the tree T after the iem0val." AR
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e If both children of node w areinternal nodes, we cannot simply remove th
node w from T, since this would create a “hole” in T..Instead, we proceed a

follows (see Figure 3.9): o

1. We find the first internal node y that follows w in an‘jinorder traver

of T. Node y is the left-most internal node in the right subtree of

* and is found by going first to the right child of w and then down T fro

there, following left children. Also, the left child x of y is the external
node that immediately follows node w in the inorder traversa} of 7',

We save the element stored at w in a temporary variable ¢, and mov

the item of y into w. This action has the effect of removing the former;

~ item stored at w. - o g | |

3. We remove x and y from T using operation removeAbove’ExternaI(;_;)r

on T. This action replaces y with x’s sibling, and removes both x and y

™

from T. o - :
4. We return the element previously stored at w, which we had saved in

the temporary variable ¢.

Figure 3.9: Removal from the binary search tree of Figﬁi‘e 3.7b, where the key
remove (65) is stored at a node whose children are both internal: (a) before th

removal; (b) after the removal.

The analysis of the removal algorithm is analogous to that of the insertion a
search algorithms. We spend O(1) time at each node visited, and, in the wo
case, the number of nodes visited is proportional to. the height A of T. Thus, in
dictionary D implerhen_ted with a binary search tree T, the removeElement meth
runs in O(h) time, where  is the height of 7.

We can also show that a variation of the above algorithm perfonns. operation

removeAllElements(k) in time O(f -+ s), where s is the number-of elemeénts in the
iterator returned. The details are left as an exercise (C-3.4). '
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3.1.6 Performance of’ Bmary Search Trees.

The performance of a d1ct10nary implemented with a bmary search 18 summarized
in the following theorem and in Table 3.10.

w i

Theorem 3.1: A binary search tree T with height h for n key-element items uses
O(n) space and executes the dictionary ADT operations with the following running
times. Operations size and isEmpty each take O(1) time. Operations findElement, -
insertltem, and removeElement each take time O(h) time. Operations frndAIIEIe-
ments and removeAllElements each take O(h+s) time, Where s 18 the size of the
rterators returned.

_ Method | Time
\ size, isEmpty | O(1)
findElement, insertitem, removeElement | O(h)
findAllElements, removeAlIEIement_s O(h+s) |

Table 3:10: Runmng times of the main methods of a dlctlonary realized by a binary
search tree. We denote with A the current helght of the tree and with s the size of
the iterators returned by findAllElements and removeAllElements. The space usage
is O(n), where n is the number of items stored in the d1ct10nary

Note that the running time of search and update operatlons in a binary search
tree varies dramatlcally depending on the tree’s height. We can nevertheless take
comfort that, on average, a binary search tree with n keys generated from a random
series of insertions and removals of keys has expected height O(logn). Such a
statement requires careful mathematical language to precisely define what we mean
by a random series of insertions and removals, and ‘sophisticated probability theory
to justify; hence, its justification is beyond the scope of this book Thus, we can
be content knowing that random update sequences give rise to binary search trees
that have logarithmic height on average, but, keeplng in mind their poor worst-

~ case performance, we should also take care in using standard binary search trées in
appllcatlons where updates are not random.

The relative 51mphclty of the binary search tree and its good average-case per-
formance make binary search treés-a rather attractive dictionary data structure in
applications where the keys inserted and removed follow a random pattern and
occasionally slow response time is acceptable. There are, however, applications
where it is.essential to have a dictionary with fast worst-case search and update

~ time. The data structures presented in the next séctions address-this need.
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7392 AVL Trees

In the previous section, we discussed what should be an efficient dictionary
structure, but the worst-case performance it achieves for-the various operatio
linear time, which is no better than the performance of sequence-based dictio
‘implementations (such as log files and lookup tables). In this section, we des;
~ a simple way of correcting this problem so as to achieve logarithmic time f

~ the fundamental dictionary operations.

Definition
The simple correction is to add a rule to the binary search tree definition
maintain a logarithmic height for the tree. The rule we consider in this section.

following height?balance property, which characterizes the structure of a b
~ search tree T in terms of the heights of its internal nodes (récall from Section 2§

that the height of a node v in a tree is the length of a longest path from v
~ external node):

Height-Balance Property: For every internal node v of T, the heights of th

dren of v can differ by at most 1.

'_Any binary search tree T that satisfies this property is said to be an AVL free, Wil
~ is a concept named after the initials of its inventors: Adel’son-Vel’skii -and Lar
An example of an AVL tree is shown in Figure 3.11..

4
B ) 44

17 N ~( 78

32 o s0Y 88

8) (62

i
e
R

Figure 3.11: An example of an AVL tree. The keys are shown inside the node
“the heights are’ shown next to the nodes. . -

- An im_mcdizite consequenée of the height-balance property is that a subtreg
AVL tree is itself an AVL tree. The height-balance property has also the impotd
consequence of keeping the height small, as shown in the following propos
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Theorem 3.2: The height of an AVL tree T storing n_items is 0(log n).

Proof: Instead of trying to find an upper bound on the height of an AVL tree
directly, it is easier to work on the “inverse problem” of finding a lower bound on
the minimum number of internal nodes n(h) of an AVL tree with height 4. We will
show that n(h) grows at least exponentially, that is, n(h) is Q(c") for some constant
¢ > 1. From this, it will be an easy step to derive that the height of an AVL tree
storing n keys is O(logn). .
| Notice that n(1) = 1 and n(2) =2, because an AVL tree of height 1 must have at
least one internal node and an AVL tree of height 2 must have at least two internal
nodes. Now, for & > 3, an AVL tree with height ~ and the minimum number of
nodes is such that both its subtrees are AVL trees with the minimum number of
nodes: one with height # — 1 and the other with height # — 2. Taking the root into
~account, we obtain the following formula that relates n(h) to n(h—1) and n(h—2),
for h > 3: - | - - - -

_. n(h)=1+n(h—1)+nh-2). ! G.1)

Formula 3.1 implies that n(#) is a strictly increasing function of A (corresponding

to the Fibonacci progression). Thus, we know that n(h—1) > n(h—2). Replacing
n(h—1) with n(h—2) in Formula 3.1 and dropping the 1, we get, for h > 3,

S  nh) > 2-n(h-2). - s (3.2)

Formula 3.2 indicates that (k) at least doubles each time /4 inéreasegjby 2, which

~ intuitively means that n(h) grows exponentially. To show this fact in a formal way,
we apply Formula 3.2 repeatedly, by a simple inductive argument, to show that
Con(l)>2n(h-2i), | 3.3)
for any integer 7, such that s — 2i 2 1. Since we already khqw thf;s-'values of n(1) and
- n(2), we pick i so that h —2i is equal to either 1 or 2. That is, we pick i = [h/2] —1.
"By substituting the above’ value of i in Formula 3.3, we obtain, for 4 > 3,

= i)

2lE1-11) o
251 R  (34)

2
>

By taking logarithms of both sides of Formula 3.4, we obtain logn(k) > % — 1,
from which we get | - '
DA h < 2logn(h)+2, | (3.5)
which implies that an AVL tree storing »n keys_has' height at rﬁdst :210gn +2. @
By Theorem 3.2 and the anéiysis of binary search trees gi{fen in Section 3.1.2, | 7'

the operation findElement in a dictionary-im_plemented with an AVL tree, runs in
O(logn) time, where # is the number of items in the dictionarv
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3.2.1 L!pdat_e_Operations

The important {ssue remaining is to show how to maintgin the height-balancejy
~ erty of an AVL tree ofter an insertion or removal. ‘The insertion and removals
tions for AVL trees are similar to those for binary search trees, but with AV

we must perform additional computations.

Insertion

An insertion in an AVL tree T begins as In an inserfltem operation descril
Section 3.1.4 for a (simple) binary search tree. Recall that this operation

inserts the new item at a node w in T that was previously an external nodes

it makes w become an internal node with operationf;e’xpandExternal. Thaiae
adds two external node children to w. This action may violate the height=b;
property, however, for some nodes increase their heights by one. In particuld
w, and possibly some of its ancestors, q

increase their heights by one. Ther
us describe how to restructure ’

T to restore its height balance.
Given the binary search tree T, we say, 'thatfa*'node,v of T is balanced
solute value of the difference between the heights of the children of v is &
‘and we say that it :s unbalanced otherwise. Thus, the height-balance prope
acterizing AVL trees 1s equivalent t0 saying that every internal node is balar
 Suppose that T satisfies the height-balance property, and hence is an A\
prior to our inserting the new item. As we have mentioned, after perfo

operation expandExternaI(w) on T, the .hei'g;hts of some nodes of T, inclu
h of T fromw to the root of T, andl

increase. All such nodes are on the pat
are the only nodes of 7' that may.
Of course, if this happens, then

- mechanism to fix the “unbalance”

have just become unbalanced. (See Figure
T is no longer an AVL tree; hence, we
that we have just caused. '

Figure 3.12: An example nsertion of an element with key 54 in the AVE
Figure 3.11: (a after adding a new node for key 54, the nodes storin
and 44 become unbalanced; (b) a trinode restructuring restores the heig

property. We show the heights of nodes next to them, and we identify theil

15
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Algorlthm restructu re(x)
Input: A node x of a blnary search tree T that has both a parent yand a grand-
parent 7
Output: Tree T after a trmode restructuring (which corresponds toa smgle or
double rotation) involving nodes x, v, and z

1: Let (a,b,c) be a left-to-right (inorder) listing of the nodes x, y, and z, and let
(To,T1,T»,T3) be a left—to -right (1norder) listing of the four subtrees of x, ', ¥, and
z not rooted at x, y, or z.

2: Replace the subtree rooted at z with a new subtree rooted at b,

-3: Let a be the left child of » and let T and T} be the left and right subtrees of a,

respectively.

4: Let ¢ be the right child of b and let Tz and T3 be the left and nght subtrees of c,
respectively.

Algorithm 3.13: The trinode restructure operation in a binary search tree.

We restore the balance of the nodes in the binary search tree T by a simple
“search-and-repair” strategy. In particular, let z be the first node we encounter in
going up from w toward the root of T such that z is unbalanced. (See Figure 3.12a.)
Also, let y denote the child of z with higher height (and note that y must be an
‘ancestor of w). Finally, let x be the child of y with higher helght (and if there is a’
tie, choose x to be an ancestor of w). Note that node x could be equal to w and x is
a grandchlld of z. Since z became unbalanced because of an insertion in the subtree
rooted at its child y, the height of y is 2 greater than its sibling. We now rebalance
the subtree rooted at z by calling the trinode restructunng method, restructure(x),
- described in Algorithm 3.13 and illustrated in Figures 3.12 and 3.14. A trinode
restructure temporarily renames the nodes x, y, and z as @, b, and ¢, so that a
precedes b and b precedes ¢ in an inorder traversal of T. There are four possible
ways .of mapping x, y, and z to a, b, and ¢, as shown in Figure 3.14, which are
unified into one case by’ our relabeling. The trmode restructure then replaces z
with the node called b, makes the children of this node be a and ¢, and makes the
children of a and ¢ be the four previous children of X, y, and z (other than x and y)
while maintaining the inorder relatlonshlps of all the nodes in 7. |

The modification of a tree T caused by a trinode restructure operation is of - -
ten called a rofation, because of the geometric way we can visualize the way it
changes T'. If b = y (see Algorithm 3.13), the trinode-restructure method is called
a single rotation, for it can be visualized as “rotating” y over z. (See Figure 3.14a
and b.) Otherwise, if b = x, the trinode restructure operation is called a double
rotation, for it can be visualized as first “rotating” x over y and then over z. (See-
Figure 3.14c and d, and Figure 3.12.) Some researchers treat these two kinds as
separate methods, each with two symmetric types; we have chosen, however, to
‘unify these four types of rotations. No matter how we view it, note that the trinode
restructure method modifies parent-child relatlonsh_lps‘ of 0(1) nodes in 7, while
preserving the inorder traversal ordering of all the nodes in 7.
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Figure 3.14: Schematic illustration of a trinode restructure .ope.ration (Alg :‘
rithm 3.13). Parts (a) and (b) show a single rotation, and parts (c) and (d) shot

a double rotation.


http://www.cvisiontech.com

32, AVL Trees S | | 157

In addition to its order-preserving property, a trinode restructuring operation
changes the heights of nodes in T', s0 as to restore balance. Recall that we execute
the method restructu re(x) because z, the grandparent of x, is unbalanced. More-
over, this unbalgnce is due to one of the children of x now having too large a height
relative to the height of z’s other child. As a result of a rotation, we move up the
«“tall” child of x while pushing down the “short” child of z. Thus, after performing
restructure(x), all the nodes in the subtree now rooted at the node we called b are
balanced. (See Figure 3.14.) Thus, we restore the height-balance property locally
at the nodes x, y, and z. ' L ‘ - '

I addition, since after performing the new item insertion the subtree rooted at b
~ replaces the one formerly rooted at z, which was taller by one unit, all the ancestors
of z that-were formerly unbalanced become balanced. (See Figure 3.12.) (The
ju_stiﬁcation of this fact is left as Exercise C—_3.13.) Therefore, this one restructuring
- also restores the height-balance property globally. That is, one rotation (single or
double) is sufficient to restore the height-balance in an AVL tree after an insertion.

Removal -

 As was the case for the insertltem dictionary operation, we begin the implemen-
tation of the removeElement dictionary operation on an AVL tree Trby using the
algorithm for performing this operation on a regular binary search tree. The added |
difficulty in using this approach with an AVL tree is that it may violate the height-
balance property. - -

" In particular, after removing an internal node with operation removeAboveEx-
ternal and elevating one of its children into its place, there may be an unbalanced
node in T on the path from the parent w of the previously removed node to the root
of T. (See Figure 3.15a.) In fact, there can be one such unbalanced node at most.
(The justification of this fact is left as Exercise C-3.12) |

Figure 3.15: Rémoval of the element with key 32 from the AVL tree of rFigu‘_‘rre 3.11:
~ (a) after removing the node storing key 32, the.root become§ unb_alanced;, (b) a
- (single) rotation restores the height-balance property.
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- the root of T'. Also, let y be the child of z with larger height (note that no

~height. In any case, we then perform a restructure(x) operatlon, which rest;

Chapter 3. Seejfch_ Trees and §

As with'insertion, we use trinode restructuring to restore balance in the
In particular, let z be the first unbalanced node encountered going up from-

child of z that is not an ancestor of w), and let x be a child of y with largy
The choice of x may not be unique, since the subtrees of y may have th

height-balance property locally, at the subtree that was formerly rooted at
now rooted at the node we temporarily called b. (See Figure 3.15b.)
Unfortunately, this trinode restructuring may reduce the height of the.
rooted at b by 1, which may cause an ancestor of b to become unbalanced -
‘a single trinode restructuring may not restore the height-balance property gl
after a removal. So, after rebalancmg z, we continue walking up 7" looking 8
balanced nodes. If we find another, we perform a restructure operation to re
its balance, and continue marching up T looking for more, all the way to th
Still, since the height of T is O(logn), where n is the' number. of items, by.
rem 3.2, O(logn) trinode restructurings are sufficient to restore the height-|
‘property. | |

3.2.2

Performance

We summarize the analysm of the AVL tree as follows Operations findEler
insertltem, and removeElement visit the nodes along a root-to-leaf path of 7', pif
possibly their siblings, and spend O(1) time per node. Thus, since the helght
is O(logn) by Theorem 3.2, each of the above operations takes O(log n) time
illustrate this performance i in Figure 3.16.

'h_eight . C . time per level

L

AVL tiee T

O(log n)

worst-case time: O(log r)

Figure 3. 16 Illustratlng the running time of searches and updates in an AVL 3
The time performance is O(1) per level, broken into a down phase, which tyf§
cally involves searching, and an up phase, which typically involves updatmg ":.
values and perfomnng local trinode restructurings (rotations).
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.3 . Bounded-Depth Search Trees

Some search trees base their efficiency on rules that explicitly bound their depth.
In fact, such trees typically define a depth function, or a “pseudo-depth” function
closely related to depth, so that every external node is at the same depth or pseudo-
depth. In so doing, they maintain every external node to be at depth O(logn) in a
tree storing n elements. Since tree searches and updates usually run in times that
are proportional to depth, such a depth-bounded tree can be used to implement an
ordered dictionary with O(logn) search and update times. o

3.3.1 Multi-Way Search Trees

Some bounded-depth search trees are multi-way trees, that s, trees with internal
nodes that have two or more children. In this section, we describe how multi-way
irees can be used as search trees, including how- multi-way frees store items and
how we can perform search operations in multi-way search trees. Recall that the
items that we store in a search tree are pairs of the form (k,x), where k is the key .
and x is the element associated with the key. - X
Let v be a node of an ordered free. We say that v is a d-node if v has d children.
We define a multi-way search tree io be an ordered tree T that has the following

properties (which are illustrated in Figure 3.17a):

e Each internal node of 7 has at least two children. That is, each internal node
is a d-node, where d > 2. | __ , -
"o Each internal node of T stores a collection of items of the form (k,x), where
k is a key and x is an element. . / o
e Each d-node v of T, with children vi,...,va, Stores d — 1 items (ky,x1), .-
(kd_1,xd__1)_,where ki <--- < kd—_l- '
e Let us define kg = —oo and kq = +oc. For each item (k,x) stored at a node
in the subtree of v rooted at v, i=1,... .d,wehave ki1 <k <k.
That is, if we think of the set of keys stored at v as including the special fictitious
keys ko = —oo and k; = +oo, then a key k stored in the subtree of T rooted at a
child node v; must be “in between” two keys stored at v. This simple viewpoint
- gives rise to the rule that a node with d children stores d — 1 regular keys, and it
also forms the basis of the algorithm for searching in a multi-way search tree.
By the above definition; the external nodes of a multi-way search do not store
any items and serve only as “placeholders.” Thus, we view a binary search tree
(Section 3.1.2) as a special case of ‘a multi-way search tree. At the other extreme, a
multi-way search tree may have only a single internal node storing all the items. In
addition, while the external nodes could be null, we make the simplifying assump-
" tion here that they are actual nodes that don’t store anything.
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- cessful search); (c) search path in T for key 24 (succ'essfu_l search).
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.. Whether internal nodes of a multi-way tree have two children or many, however,
there is an interesting relationship between the number of items and the number of
- external nodes. B

Theorem 3.3: A multi-way search tree storing n items hasn+1 extémal nodes.

We,leave_the justification of this theorem as an_exeréise (C-3.16).

Searching in a Multi-Way Tree

" Given a multi-way search tree T, searching for an element with key & is simple. We
perform such a search by tracing a path in T starting at the root. (See Figure 3.17b
and c.) When we are at a d-node v during this search, we compare the key k with
the keys ki,...,ks_1 stored at v. If k = k; for some i, the search is successfully
completed. Otherwise, we continue the search in the child v; of v such that k; 1 <
k < k;. (Recall that we consider kg = —oo and k; = +00.) If we reach an external
node, then we know that there is no item with key kin T', and the search terminates
unsuccessfully. ' | '

Data Structures for'MuIti—Wéy Search Trees

In Section 2.3.4, we discussed different ways of representing general trees. Each of
these ‘representations_can also be used for multi-way search'trees;' In fact, in 'using
a general multi-way tree to implement a multi-way search tree, the only additional
information that we need to store at each node is the set of items (including keys) -
associated with that node. That is, we need to store with v a reference to some
container or collection object that stores the items for v. |
-~ Recall that when we use a binary tree to represent an ordered dictionary D, we

simply store a reference to a single item at each internal node. In using a multi-way
search tree T to represent D, we must store a reference to the ordered set of items
associated with v at each internal node v of T. This réasoning may at first seem
like a circular argument, since we need a representation of an ordered dictionary
to represent an ordered dictionary. We can avoid any circular arguments, however,
by using the bootstrapping technique, where we use a previous ‘(less advanced)
solution to aproblem to create a new (more advanced) solution, Inthis case, boot-
~ strapping consists of representing the ordered set associated with each internal node
using a dictionary data structure that we have previously constructed (for example,
a lookup table based on an ordered vector, as shown in Section 3. 1.1). In particu-
lar, assuming we already have a way of implementing ordered dictionaries, we can
realize a multi-way search tree by taking a tree T and storing such a dictionary at
each d-node vof T. L S -

“The dictionary we store at each node v is known as a secondary data structure,
for we are using it to support the bigger, primary data structure. - We denote the
dictionary stored.at a node v of T as D(v). The items we store in D(v) will allow us
to find which child node to move to next during a search op'eration~;;~,Spe_ciﬁcally, for
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L (400, null, v;). Thatis, an item (k;,x;,v;) of dictionary D(v v) has key k; and elem
(x;,Vi). Note that the last item stores the special key +oo.

~'to k, such as in the closestElemAfter(k) operation (see Section 3.1). We distingu
- tWO cases: . -

~ the overall space requirement for T is O( ).

- D(v). If D(v) is realized with a vector-based sorted sequence (that is, a looku
~ table), then we can process v in O(logd) time. If instead D(v) is realized usin
- an unsorted sequence (that is, a log file), then processing v takes O(d) time. Le

‘as this, is called a balanced search tree. Bounded-depth search trees satisfy thi

that Ccaps dmax at 4. In Section 14.1:2, we discuss a more general kind of multi-way

into the 1nternal memory of our computer. -

‘ Chapter 3. _Se'afd; Trees and Skip I,

each node v of 7, with children v1,...,v, and items (ky,x1); ..., (ka1 ,xa,_l);i;
store in the dictionary D(v) the items (k1,x1,v1), (k2,%2,v2), - .., (kd—1,%4—1,V

With the above realization of a multi- -way search tree 7, processmg a d -l
while searching for an element of 7 with key & can be done by performing a search§
operation to find the item (k;,x;,v;) in D(v) with smallest key greater than or eq

e If k < k;, then we continue the search by processing ch11d v;. (Note that if th
- special key ky = +c0 is returned, then k is greater than all the keys stored : a
node v, and we continue the search processing child v4.)

e Otherwise (k = k;), then the search terminates successfully.

Performance I55ues for Multi—Way Search Trees

Consider the space requ1rement for the above realization “of a multi- -way searc
tree T storing » items. By Theorem 3.3, using any of the common realizations of
ordered dictionaries (Section 2. 5) for the secondary structires of the nodes of T

Consider next the time spent answering a search in T. The time spent at a d
node v of T during a search depends on how we realize the secondary data structure

dmax denote the maximum number of children of any node of T, and let /# denote
the height of 7. The search time in a multi-way search tree is either O(hdpa) 0

O(hlogdmax ), depending on the specific implementation of the secondary structure
at'the nodes of T (the dictionaries D(v)). If dpay is a constant, the running time fo
performing a search is O(h), irrespective of the implementation of the secondary
structures. o ‘ _

- Thus, the prime efficiency goal for a multi-way search tree is to keep the heigh
as small as possible, that is, we want 4 to be a logarithmic function of n, the numbe
of total items stored in the dictionary. A search tree with logarithmic height, suc

goal by keeping each external node at exactly the same depth level in the tree.
Next, we discuss a bounded -depth search tree that is a multi-way search tree |

search tree that has appl1cat1ons where our search tree is too large to completely fit
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- 33.2 (2,4) Trees

In using a multi-way search tree in practice, we desire that it be balanced, that is,
have logarithmic height. The multi-way search tree we study next is fairly easy

or 2-3-4 tree. In fact, we can maintain balance in a (2,4) tree by maintaining two
simple properties (see Figure 3.18):

Size Property: Every node has at most four children.

Depth Property: All the external nodes have the same depth.

- stored at each internal node v using a constant-sized array. The depth property, on
the other hand, maintains the balance in a (2,4) tree, by forcing it to be a bounded-
depth structure. | - | -

" Theorem 3.4: The height of a (2,4) tree storing n items is ©(logn).

Proof: Let & be the height of a (2,4) tree T storing n items. Note that, by the
size property, we can have at most 4 nodes at depth 1, at most 42 nodes at depth 2,
and so on. Thus, the number of external nodes in T is at most 4". Likewise; by the
depth property and the definition of a (2,4) tree, we must have at least 2 nodes at

depth 1, at least 22 nodes at depth 2, and so on. Thus, the number of external nodes

-is n+ 1. Therefore, we obtain
| 2 <ntl and  n+l<4N
Taking the logarithm ih"baée 2 of each of the above terms, we get that_- |
h<log(n+1) and log(n+ 1) < 2h,

ed-Depth Search Trees N - | 163

to keep balanced. It is the (2,4) tree, which is sometimes also called the 2-4 tree

~ Enforcing the size property for (2,4) trees keeps the size of the nodes in the
multi-way search tree constant, for it allows us to represent the dictionary D(v)

in T is at least 2". In addition, by Theorem 3.3, the number of external nodes in 7'

which justifies our theorem.. | o »
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size property. Indeed, if a node v was prev1ously a 4-node, then it may be

* Chapter 3. Search Trees and Ski
“Insertion in a (2,4) Tree | | ,{:; |

Theorem 3. 4 states that the size and depth properties are sufficient for k
- multi-way tree balanced. Maintaining these propertles/requnes some eff
performing insertions and removals in a (2, 4) tree, however. In particular
a new item (k,x), with key £, into a (2,4) tree T, we first perform a se
Assuming that T has no element with key %, this search terminates unsucc
at an external node z. Let v be the parent of z. We insert the new item into g
and add a new child w (an external node) to v on the left of z. That is, we add
(k,x,w) to the dictionary D(v).
Our insertion method preserves the depth property, since we add a new ex
node at the same level as existing external nodes. Nevertheless, it may v1ola

5-node after the insertion, which causes the tree T to no longer be a (2,4) tree. i}
type of violation of the size property is called an overflow at node v, and 1t| |
be resolved in order to restore the properties of a (2,4) t) tree. Let vy,...,vs
children of v, and let &y, ..., k4 be the keys stored at v. To remedy the overﬂ_
node v, we perform a split operation on v as follows (see Figure 3.19):

. Replace 1% w1th two nodes v and v/ wher'e

o v/ 1s a 3 node with children V1, V2, v3 storrng keys ki and ko>
o v " is a 2-node with children V4, Vs Storing key kg.

¢ If v was the root of T, create a new root node u; else, let u be the parent

e Insert key k3 into u and make v’ and v " children of u, so that if v was chil
of u, then v and v” become chlldren i and z—l— 1 of u, respectively.

We show a sequence of 1nsertlons ina (2, 4) tree in Figure 3.20.

(b) - | - ©
Frgure 3. 19 A node spllr (a) overflow at a 5- node v; (b) the third key of v 1nsert
into the parent u of v; (c) node v replaced with a 3-node v’ and a 2-node v”

A split 'operation affe_'cts_ a constant nur_nber of 'nodes of the tree and O(1) ite
stored at such nodes. Thus, it can-be implemented to run in O(1) time.
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Figure 3.20: A sequence of insertions into a {2,4) tree: (a) initial tree with one-
item; (b) insertion of 6; (c) insertion of 12; (d) insertion of 15, which causes an
overflow; (e) split, which causes the creation of a new root node; (f) after the split;
(g) insertion of 3; (h) insertion of 5, which causes an overflow; (i) split; () afte.r the
split; (k) insertion of 10; (1) insertion of 8. L |
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Chapter 3. Search Trees and Skip';
Performance of (2,4) Tree Insertion

As a consequence of a split operation on node v, a new ovei'_ﬂow may oceur ¢
parent x of v. If such an overflow occurs, it triggers, in tum, a split at node u.
Figure 3.21.) A split operation either eliminates the overflow or propagates it
the parent of the current node. Indeed, this propagation can continue all the W
to the root of the search tree. But if it does propagate all the way to the root, 'i'
finally be resolved at that point. We show such a sequence of splitting propagau@
in Figure 3.21. ' :

Thus, the number of split operatlons is bounded by the height of the tree, w
is O(logn) by Theorem 3.4. Therefore, the total time to perform an 1nsertlon
(2 4) tree is O(logn).

- Figure 3.21: An insertion in a (2,4) tree that causes a cascading s'plit:_-: (a) .befdre,th

insertion; (b) insertion of 17, causing an overflow; (c) a split; (d) after the s
new overflow occurs; (e) another split, creating a new root:node; (f) final tree.
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Removal in a (2,4) Tree

" Letus now consider the remov_zﬂ of an item with key k from a (2,4) tree 7. We begin

such an operation by performing a search in T for an item with key k. Removing
such an item from a (2,4) tree can always be reduced to the case where the item to

" be removed is stored at a node v whose children are external nodes. Suppose, for

instance, that the item with key k that we wish to remove is stored in the ith item
(k;,x;) at a node z that has only internal-node children. In this case, we swap the
item (k;,x;) With an appropriate item that is stored at a node v with external-node
children as follows (Figure 3.22d):

1. We find the right-most internal node v in the subtree rooted at the ith child of
-z, noting that the children of node v are all external nodes.

2. _We s-wap thé item (k;,x;) at z with the last it’ém of_ V.

Once we eﬁsure_ that the item to remove is stored at a node v with only external-
node children (because either it was already at v or we swapped it into v), we
simply remove the item from v (that is, from the dictionary D(v)) and remove the

ith external node of v.

- Removing an item (and a child) from a node v as described above présefves the
depth property, for we always remove an external node child from a node v with
only external-node children. However, in removing such an external node we may

violate the size property at v. Indeed, if v was previously a 2-node, then it becomes

-a 1-node with no items after the removal (Figure 3.22d and e), which is not allowed
'in a (2,4) tree.. This type of violation of the size property is called an underflow

" number of fusion operations is bounded by the height of the tre¢, which is O(logn)

at node v. To remedy an underflow, we check whether an immediate sibling of v
is a 3-node or a 4-node. If we find such a sibling ‘w, then we perform a transfer
operation, in which we move a child of wto v, a key of w to the parent u of v and
w, and a key of u to v. (See Figure 3.22b and c.) If vhas only one sibling, or if both
immediate siblings of v are 2-nodes, then we perform a fusion operation, in which
we merge v with a sibling, creating a new node v’, and move a key from the parent
uof vtov’. (See Figure 3.23e and f.) |

- A fusion operation at node v may cause a new underflow to occur at the parent
uofv, which‘ in turn triggers a transfer or fusion at-u. (See Figure 3.23.) Hence, the

by Theorem 3.4. If an underflow propagates all the way up to the root, then the root

1S simply'deleted. (See Figure 3.23c and _'d.-‘)‘ We show asequenceof removals.from

a (2,4) tree in Figures 3.22-and 3.23.

~
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Figure 3.22: A sequence of removals from a (2,4) tree: (a) removal of 4
‘an underflow; (b) a transfer operation; (c) after the transfer operation; (d)
- of 12, causing an underflow; (e) a fusion operation; (f) after the fusion ope
(2) removal of 13; (h) after removing 13.- . |
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Performance of a (2,4) Tree

A

o The helght of a (2,4) tree stormg n items is 0(10g n), by Theorem 3. 4,
e A split, transfer or fusron operatlon takes O( ) time.
. A search 1nsert10n or remova] of an item vrsrts O(logn) nodes.

o - b Operation | Time -
o \ size, isEmpty | O(1)
findElement, insertitem, removeElement. Oflogn)
findAllElements, removeAliElements | O(logn +s)

'removeAIIEIements The space usage is O(n).

169

(c), d)
Figure 323: A propagating sequence of fusrons ina (2 4) tree: (a) removal of 14
which causes an underflow; (b) fusion, which causes another underflow; (c) second .
fusion operatlon which causes the root to be removed (d) final tree.

Table 3.24 summarizes the runmng tlmes of the main operations of a d1ct10nary
realized with a (2,4) tree. The time complexity analysis is based on the following:

-Table 324 Performance of an n-element dictionary realized by a (2, 4) tree,
where ‘s denotes the size of the iterators returned. by . fmdAIIEIements and -

‘Thus, (2,4) trees provrde for fast dictionary search and update operatlons (2,4
trees also have an interesting relat10nsh1p to the data structure we dlSCllSS next
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333 Red-Black Trees

" Root Property: The root is black.

~ note in passing that at the expense of slightly more complicated search and updalg

The data structure we discuss in this section, the red-black tree, is a binary searc
tree that uses a kind of “pseudo-depth” to achieve balance using the approach ¢
a depth-bounded search tree. In particular, a red-black tree is a binary search tre
with nodes colored red and black in a way that satisfies the following properties:

External Property: Every external node is black.
Interndl Property: The children of a red node are black.

Depth Property: All the extefnzi_l nodes have the same Tb.lchk depth, which is
fined as the number of black ancestors minus one. - o

An example of a red-black tree is shown in Figure 3.25. Throughout this Secti(f)

we use the convention of drawing black nodes and their parent edges with thi

lines. |
O 0ogd O | \

Figure 3.25: Red-black tree associated with the ‘(2,"4) tree of Figure 3.18. Eagll

external node of this red-black tree has three black ancestors; hence, it has bl_

depth 3. Recall that we use thick lines to denote black nodes. |

~ Ashas been the convention in this chapfer; we assume that items are stored I
the internal nodes of a red-black tree, with the external nodes being empty placg,

holders. Also, we describe our algorithms assuming external nodes are real, but ¥&

methods, external nodes could be nuil or references to a NULL_jNODE object.
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The red-black tree definition becomes moge intuitive b

node v. :

o If vis a2-node, then keep the (black) children of v asis.
e If v is a 3-node, then create a new red node w, give v’s
ve Ify is' a'4-node,- then create two new red nodes w and z,

(black) children to w, give v’s last two (black) children to z
2 be the two children of v. ' -

(b)

(c)

(b) 3-node; (c) 4-node.

171

Y noting an interesting

correspondence between red-black and (2,4) trees, as illustrated in Figure 3.26.
Namely, given a red-black tree, we can construct a corresponding (2,4) tree by
merging every red node v into its parent and storing the item from v at its parent.
Conversely, we can transform any (2,4) tree into a corresponding red-black tree by

- coloring each node black and performing a simple transformation for each interna]

first two (black) .

children to w and make w and v’s third child be the two children of .

give v’s first two'
, and make w and

Figure 3.26: Correspori'dence between a (2,4) tree and a :ed-black trcé: (a) 2-node;
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tant intuition that we will use in our discussions. In fact, the update algorithms fo

Chapter 3. Search Trees and Skip List

This correspondence between (2,4) trees and red-black trees provides imp

5
gt

red-black trees are mysteriously complex without this‘-intuition. We also have th
following property for red-black trees. ' . - .

Theorem 3.5: The height of a red-black tree storing n items is O(logn).

Proof: Let T be ared-black tree storing 7 items, and let  be the height of T.
justify this theorem by establishing the following fact:

log(n+1) <h< 21og(n+1).
Iet d be the common black depth of all the external nodes of 7. Let T’ be the (2
tree associated with 7', and let h' be the height of T’. We know that h' =d. Hen
by Theorem 3.4,d = h' <log(n+1). By the internal node property, #-< 2d. Th
we obtain h < 2log(n+1). The other inequality, 16g(n+ 1) < h, follows fro

Theorem 2.8 and the fact that T has 7 internal nodes.

We assume that a red-black tree is realized with a linked structure -fo'r_-binzﬁ
trees (Section 2.3.4), in which we store a dictionary item and a color indicator’
each node. Thus the space requirement for storing n keys is O(n). The algorith
for searching in a red-black tree T is the same as that for a standard binary seart
tree (Section 3.1.2). Thus, searching ina red-black tree takes O(logn) time. . -

Performing the update operations in a red-black tree is similar to that of a bina
search tree, except that we must additionally restore the color properties. o

Insertion in a Red—B'Iack'Tree

Consider the insertion of an element x with key k into a red-black tree T, keeﬁi

" in mind the correspondence between T and its associated (2,4) tree T’ and
-~ insertion algorithm for 7'. The insertion algorithm initially proceeds as in a bin:

search tree (Section 3.1 4). Namely, we search for kinT until we reach an exter
node of T, and we replace this node with an internal node z, storing (k,qc) ¢

- having two external—nbde children. If z is the root of T, we rolor z black, ¢

we color z red. We also color the children of z black. This action corresponds
inserting (k, ) into a node of the (2,4) tree T' with external children. In additi
this action preserves the root, external and depth properties of T, but it may vio
the internal property. Indeed, if z is not the root of T and the parent v of Z1is1
then we have a parent and a child (namely, v and 2) that are both red. Note !
by the root property, v cannot be the root of 7, and by the internal property (wi
was previously satisfied), the parent 4 of v must be black. Since z and its parenf
red, but z’s grandparent u is black, we call this violation of the internal proper
double red at node z. | | - :
" To remedy a double red, we consider two cases. -
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1: The Sibling w of v is Black. (See Figure 3.27.) In this case, the double
red denotes the fact that we have created a malformed replacement for a
corresponding 4-node of the (2,4) tree T’ in our red-black tree, which has as-
its children the four black children of u, v, and z. Our malformed replacement
has one red node (v) that is the parent of another red node (z), while we want
it to have the two red nodes as siblings instead. To fix this problem, we
perform a trinode restructuring of T. The trinode restructuring is done by
the operation restructure(z), which consists of the following steps (see again
Figure 3.27; this operation is also discussed in Section 3.2): '
¢ Take node z, its parent v, and grandparent , and temporarily.relabel
them as a, b, and ¢, in left-to-right order, so that a, b, and ¢ will be
visited in this order by an inorder tree traversal. | ‘
"« Replace the grandparent # with the node labeled b, and make nodes a
and ¢ the children of b, keeping inorder relationships unchanged.

After performing the restructure(z) operation, we color b black and we color
a and ¢ red. Thus, the restructuring eliminates the double-red problem.

Figure 3.27: Restﬁuéthring a red-black tree to remedy a double red: (a) the four
configurations for #, v,.and z ‘before !rcStru_cturing; (b). _af_ter restructuring.
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Case 2: The Sibling w of v is Red. (See Figure 3.28.) In this case, the douby
denotes an overflow in the corresponding (2,4) tree T. To fix the propid
we perform the equivalent of a split.operation. Namely, we do a recolos

" we color v and w black and their parent u red (unléss « is'the root, in:
case, it is colored black). It is possible that, after such a recolormg
double-red problem reappears, albeit higher up in the tree T, since U
have a red parent. If the double-red problem reappears at x, then we r
the consideration of the two cases at u. Thus, a recoloring either elimi
the double-red problem at node z, or propagates it to the grandparent y g
We continue going up T performing recolormgs 11nt11 we finally resolvejj
double-red problem (with either a final recoloring or a trinode restructu
Thus, the number of recolorings caused by an insertion is no more than-i
the height of tree T, that is, no more than log(n + 1) by Theorem 3. 5.

10 20 30 40

Figure 3.28: Recolormg to re‘nedy the double-red problem (a) before recolorm |
and the corresponding 5-node in the associated (2,4) tree before the split; (b) afte
the recoloring (and corresponding nodes in the associated (2, 4) tree after the sp11

Figures 3.29 and 3.30 show a sequence of insertions in a red-black tree.
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(k) L " | M

‘Figure 3.29: A sequence of insertions in a red-black tree: (a) initial tree; (b) inser- -
tion of 7; (c) insertion of 12, which causes a double red; (d) after restructuring; (e)
insertion ‘of 15, which causes a double red; (f) after recoloring (the root remains.
black); (g) insertion of 3; (h) insertion of 5; (i) insertion of 14, which causes a

" double red; (j) after restructuring; (k) insertion of 18, which causes a double red;
(1) after recoloring. (Continued in Figure 3.30.) ‘ '
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(0) . | | ()

)

Figure 3.30: A sequence of insertions in a red-black tree (continued from F

“ure 3.29): (m) insertion of 16, which causes a double red; (n) after restructuri
(0) insertion of 17, which causes a double red; (p) after recoloring there is agan
double red, to be handled by a restructuring; (q) after restructunng
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The cases for insertion imply an interesting property for red-black trees. Namely,
since the Case 1 action eliminates the double-red problem with a single trinode re-
structuring and the Case 2 action performs no restructuring operations, at most one
restructuring is needed in a red-black tree insertion. By the above analysis and the
fact that a restructuring or recoloring takes O(1) time, we have the following:

‘Theorem 3.6: The insértion of a key-element item in a red-black tree storing n
iterns can be done in O(logn) time and requires at most O(logn) recolorings and
one trinode restructuring (a restruct_u re operation). ' ‘

Removal in a Réd-BIack Tree

Suppose now that we are asked to remove an item with key k from a red-black
tree 7. Removing such an item initially proceeds as for a binary search tree (Sec-
tion 3.1.5). First, we search for a node u storing such an item. If node u does
not have an external child, we find the internal node v following u in the inorder .
traversal of T, move the item at v to u, and perform the removal at v. Thus, we may

" consider only the removal of an item with key & stored at anode v with an external
child w. Also, as we did for insertions, we keep in mind the correspondence be-

tween red-black tree T and its associated (2,4) tree T’ (and the removal algorithm
for T7). | |

To remove the item with key k from a node v of T with an external child w we
proceed as follows. Let r be the sibling of w and x be the parent of v. We remove
nodes v and w, and make r a child of x. If v was red (hence r is black) or r is red
(hence v was black), we color r black and we are done. If, instead, r is black and v
was black, then, to preserve the depth property, we give r a fictitious double-black
color. We now have.a color violation, called the double-black problem. A double
black in T denotes an underflow in the corresponding (2,4) tree T'. Recall that x
is the parent of the double-black node r. To remedy the double-black problem at r,

- we consider three cases. ‘ ; B

Case 1: The Sibling y of r is Black and has a Red Child z. (See Figure 3.31.)
. Resolving this case corresponds to a transfer operation in the (2,4) tree T'.

. We perform a trinode restricturing by means of operation restructure(z):
Recall that the operation restructure(z) takes the node z, its parent y, and.

grandparent x, labels them temporarily left to right as a, b, and c, and replaces

¥ with the node labeled b, making it the parent of the other two. (See also

| the-descriptiori of restructure in Section 3.2) We colora and c black, give b

the former color of x, and color r black. This trinode restructuring ‘eliminates

the double-black problem. Hence, at most one restructuring is performed in

aremoval operation in this case. - |
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(3) and (b) configurations before the-restructuring, where r is a right child
" the associated nodes in the: corresponding (2,4) tree before the transfer (two othe
- Symimetric configurations where r is a left child are possible); (c) configuration

Figure 3.31: Restructuring of a red-black tree to remedy the double-black probl

the restructuring and the associated nodes in the corresponding (2,4) tree after
transfer. - Node x in. parts (a) and (b) and node’b in part (c) may- be either red
black. - e ' '-
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Case 2: The Sibling y of v is Black and Both Children of y are Black. (See
Figures 3.32 and 3.33.) Resolving this case corresponds to a fusion operation -

in the corresponding (2, 4) tree T/. We do a recoloring; we color r black, El
we color y red, and, if x is red, we color it black (Figure 3 32); otherwise, we :
color x double black (Figure 3.33). Hence, after this recoloring, the double- - ;i
black problem may reappear at the parent x of r. (See Figure 3.33.) That is, 1
this recoloring either eliminates the double-black problem or propagates it 'Ii
into the parent of the current node. We then repeat a consideration of these ii
three cases at the parent. Thus, since Case 1 performs a trinode restructuring I
operation and stops (and, as we will soon see, Case 3 is similar), the number !
of recolorings caused by a removal is no more than log(n+ 1). é!
. I
1l

e Tt R

Pro

s

et e e e

N
T

T e e s

(b)

Figure 3.32: Recoloring of a red-black tree that fixes the double-black problem: (a)
before the recoloring and corresponding nodes in the associated (2,4) tree before
the fusion (other similar conﬁguratlons are possible); (b) after the recolormg and
correspondmg nodes in the associated (2,4) tree after the fusion.
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(b)

Figure 3.33: Recoloring of a red-black tree that propagates the double black
lem: (a) configuration before the recoloring and corresponding nodes in th
ciated (2,4) tree before the fusion (other similar configurations are possibl
configuration after the recoloring and corresponding nodes in the associated
tree after the fusion. * |
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Case 3: The Sibling y of v is Red. (See Figure 3.34.) In this case, we perform an
adjustment operation, as follows. If y is the right child of x, let z be the right
“child of y; otherwise, let z be the left child of y. Execute the trinode restruc-
ture operation restructure(z), which makes y the parent of x.-Color y black
and x red. An adjustment corresponds to choosing a different representation
of a 3-node in the (2,4) tree T’. After the adjustment operation, the sibling
of r is black, and either Case 1 or Case 2 applies, with a different meaning
of x and y. Note that if Case 2 applies, the double-black problem cannot
reappear. Thus, to complete Case 3 we make one more application of either
Case 1 or Case 2 above and we are done. Therefore, at most one adjustment
is performed in a removal operation. | B

Figure 3.34: Adjustmént of é red—black tree in the présence of a double plaék prob—
~ lem: (a) configuration before the adjustment and cogjrespondi.ng{ n_pdcs ir}(th‘e asso-
- ciated (2,4) tree (a symmetric configuration is possible); (b) configuration after the

adjustment with thie same corresponding nodes in the assoc1ated (2,4) tree.
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“a constant amount of work (in a restructuring, recoloring, or adjustment) per i

- restructunng

 Chapter 3. Search Trees and Skif .

From the above algorithm description, we see that the tree updating n
after a removal involves an upward march in the tree 7', while performing at

The changes we make at any node in T dunng this upward march takes 0(

n jtems takes O(logn) time and performs 0(10gn) recoIonngs and at mos
adjustment plus one additional trinode restructunng Thus, it pen“orms at mos ,
restructure operations.

Flglll'e 3.35: Sequence of removals from a red-black tree: (a) 1n1t1a1 tree; (b) rem
of 3; (¢) rernoval of 12 causmg a double black (handled by restructunng) (d);:,
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Figure 3.36: ' Sequence of removals in a red-black. tree (continued): (e) removal

~of 17; (f) removal of 18, causing a double black (handled by recoloring); (g) after
recoloring, (h) removal of 15; (1) removal.of 16, causing a-double black (handled
by an adjustment); {(j) after the adjustment, the- double black needs to be handled by
a recoloring; (k) after the recoloring. - SR \ :
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‘Table 3.37 summarizes the Tunning timés of the mair operations of a dictiﬁ

~tree. The time performance is O(1) per level, broken into a down phase, w

and perfomung local trmode restructurmgs (rotatlons)

more complicated than its corresponding (2,4) tree. Even so, a red-black tree

b2

Chapter 3. Search Trees and Ski

Performance of a Red—BIéck Tree

realized by means of a red-black tree. We 111ustrate the justification for these boy
in Flgure 3.38. ' :

Operation | Time
size, isEmpty | O(1)
“findElement, insertltem, removeElement | O(logn)
findAllElements, removeAllElements | O(logn+s)

Table 3.37:  Performance of an n-element dic_tionéry realized by a red-b]
tree, where s denotes the size of the iterators returned by findAllElements
removeAllElements. The space usage is O(n). | |

height | - | - time per leve[§
> - A 0000 mmmmm— o(1)
red-black .tree T
-------- Oo(1)
O(log n)
- A BONDILPIANe 5y 5 o 0o(1)
N B '

worst-case time: O(log n)

Figure 3.38: Illustrating the running time of searches and updates in a red-t

typically involves searching, and an up phase, which typically involves recolot

Thus a red-black tree achieves logarithmic worst-case runmng times for
searching and updating in a dictionary. The red-black tree data structure is slig

conceptual advantage that only a constant number of trinode restructurings a1e
needed to restore the balance in a red-black tree after an update.
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_,14 Splay Trees

The final balanced search tree data structure we discuss in th1s chapter is the splay'

tree. This structure is conceptually quite different from the previously discussed
balanced search trees (AVL, red- black, and (2,4) trees), for a splay tree does not
use any explicit rules to enforce its balance. Instead, it applies a cértain move-to-

root operation, called splaying after every access, in order to keep the search tree -

balanced in an amortized sense. The splaying operation is performed at the bottom-

most node x reached during an insertion, deletion, or even a search. The surprising -

thing about splaylng is that it allows us to guarantee amortized running times for

insertions, deletions, and searches that are logarithmic. The structure of a splay tree
is simply a binary search tree T. In fact, there are no additional he1ght balance, or

color labels that we associate with the nodes of this tree

3.4.1 Splaying

Given an internal node x of a binary search tree T, we splay x by moving x to
the root of T through a sequence of restructurings. The particular restructurings
we perform are important, for it is not sufficient to move x to the root of T by
just any sequence of restructurings. The specific operation we perform to move
x up depends upon the relative positions of x, its parent y, and (1f it exists) x’s
grandparent Z. There are three cases that we consider.

ztg-ztg The node x and its parent y are both left or right children. (See Fig-
“ure 3.39.) We replace z. by x, making y a child of x and z a child of Y, wh11e
ma1nta1n1ng the 1norder re1at10nsh1ps of the nodes i inT.

| ~(b)
Flgure 3.39: Zig-zig: (a) before (b). after There is another symmetnc conﬁguratlon
~where x and y are left children.
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tig-zag: One of x and y is a left child and the other is a right child. (Se
~ure 3.40.) In this case, we replace z by x and make x have as its childre
nodes y and z, while maintaining the inorder relationships of the nodes

. Figure 3.40: Zig-zag: (a) before; (b) after. There is another symmetric configy

where x is a right child and y is a left child.

zig: x does not have a grandparent (or we are not considering x’s grandparg
some reason). (See Figure 3.41.) In this case, we rotate X over y, m
children be the node y and one of x’s former children w, so as to. main
relative inorder relationships of the nodes in T'. '

Figure 3.41: Zig: (a) before; (b) after. There is ’anothe.r symmetric confi
- where x and w are left children. ‘ a -

We perform a zig-zig or a zig-zag when x has a grandparent, and we pertori
zig when x has a parent but not a grandparent. ‘A splaying step consists of repea
these restructurings at x until x becomes the root of 7. Note that this is
same as a sequence of simple rotations that brings x to the root. An exampl

splaying of a node is shown in Figures 3.42 and 3.43. |
After a zig-zig or zig-zag, the depth of x decreases by two, and afte
‘the deptb of x decreases by one. Thus, if x bas depibh d, splaying x cons
sequence of |d/2] zig-zigs and/or zig-zags, plus one final zig if d is odd. SI
single zig-zig, zig-zag, or zig affects a constant number of nodes, it can
“in O(1) time. Thus, splaying a node x in a binary search tree T takes time{

where d is the depth of x in 7. In other words, the time for performing a sp j

step for a node x is asymptotically the same as the time needed just to read]
" node in a top-down search from the root of 7.
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'Figure -3‘.42‘:‘ Example of splaying ‘a node: (a) splaying the node S’toﬁng 14 starts
with a zig-zag; (b) after the zig-zag; (c) the next step is a zig-zig. g

e R RN
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the 21g-21g, (e) the next step is again a 21g 21g, (f) after-the 21g-21g
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| When to Splay L - :

The rules that dictate when splaying is performed are as follows:

e When searching for key k, if k is found at-a node x, we splay x, else we splay
the parent of the external node at which the search terminates unsuccessfully.
For example, the splaying in Figures 3.42 and 3.43 would be performed after
searching successfully for key 14 or unsuccessfully for key 14.5.

e When inserting key k, we splay the newly created internal node where k
gets inserted. For example, the splaying in Figures 3.42 and 3.43 would
be performed if 14 were the newly inserted key. We show a sequence of
insertions in a splay tree in Figure 3.44. |

A

| (8

Figure 3.44: A sequence of insertions in a spla)f tree: (a) initial tree; (b) after insert-
ing 2; (c) after splaymg, (d) after 1nsert1ng 3; (e) after splaymg, f) after inserting:
4;(g) after splaymg ‘
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_Flgure 3.45: Deletion from a splay tree: (a) the deletlon of 8 from node r 1s
formed by moving to rthe key of the right-most internal node v, in the left sub
of r, deleting v, and splaying the parent ¥ of v; (b) splaying u starts W1th a zig:
(c) after the Zig-7Zig; (d) the next step is a zig; (e) after the 21g

~ ® When deleting a key k, we splay the parent of the node w that gets remo
~ that is, wis either the node storing k or one of its descendents. (Recall
deletion algorithm for binary search trees given in Section 3.1.2.) An ex
ple of splaying following a deletion is shown in Figure 3.45.

In the worst case, the overall running t_ime of a search, insertion, or deletio
a splay tree of height 4 is O(h), since the node we splay might be the deepest n
in the tree. Moreover, it is possible for & to be Q(n), as shown in Figure 3.44. Th
from a worst-case point of view, a splay tree is riot an attractlve data structure.
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: 3 4.2 Amortlzed AnaIyS|s of Splaying

In spite of its poor worst-case performance, a splay tree performs well in an amor-
tized sense. That is, in a sequence of intermixed searches, insertions, and deletions,
each operation takes on average logarithmic time. We note that the time for per-
forming a search, insertion, or deletion is proportional to the time for the assoc1ated

splaying; hence, in our analysis, we consider only the splaying time. |
Let T be a splay tree with n keys, and let v be a node of 7. We define the J i

|

i

size n(v) of v as the number of nodes in the subtree rooted at v. Note that the size
of an internal node is one more than the sum of the sizes of its two children. We
define the rank r(v) of a node v as the logarithm in base 2 of the size of v, that
is, r(v) = logn(v). Clearly, the root of T has the maximum size 2n+ 1 and the
maximum rank, log(2n+ 1), while each external node has size 1 and rank 0. |
“We use cyber-dollars to pay for the work we perform in splaying a'node x in
T, and we assume that one cyber-dollar pays for a zig, while two cyber-dollars pay T
for a zig-zig or a zig-zag. Hence, the cost of splaying a node at depth d is d cyber- - |
dollars. We keep a virtual account, storing cyber dollars, at each internal node of
T. Note.that this account exists only for the purpose of our amortized analysis, [Ek
and does not need to be included in a data structure implementing the splay tree 7.
When we perform a splaying, we pay a certain number of cyber-dollars (the exact I
value will be determined later). We distinguish three cases: - - ik

o If the payment is equal to the splaying work, then we use it all to pay for the
splaymg ' | |

e If the payment is greater than the splaying work, we depos1t the excess in the
accounts of several nodes. -

o If the payment is less than the splaymg work, we make withdrawals from the
accounts of several nodes to cover the deﬁc1ency 4 ik

We show that a payment of O(logn) cyber-dollars per operation is sufficient to keep
the system working, that is, to ensure that each node keeps a nonnegative account
balance. We use a scheme in which transfers are made between the accounts of
the nodes to ensure that there will always be enough cyber-dollars to withdraw for

- paying for splaying work when needed We also mamtam the. followmg invariant:

Before and after a splaying, each node v of T has r(v) cyber-dollars.

Note that the invariant does not require us to endow an empty tree with any cyber-
dollars. Let 7(T) be the sum of the ranks of all the nodes of T. To preserve ‘the
1nvanant after a Splaymg, we must make.a payment equal to the splaying work plus
the total change in 7(T'). We refer to a single zig, zig- zig, or zig-zag operation in a
splaying as a'splaying substep. Also, we denote the rank of a node v of T before
and after a splaying substep with r(v) and r/(v), respect1ve1y The following lemma
gives an upper bound on the change of r(T) caused by a single splaying substep.
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.ZIg, Zig-zig, or Zig-zag) for a node x in a splay tree T. We have the following:

zig: (Recall Figure 3 41.) In this case, only the ranks of X a.nd y change, where

Chapter 3. Search Trees and Skip I;

Lemma 3. 8 Let d be the V&I‘I&UOH of r(T) caused by a single splaying substep

e 8<3(r'(x) — r(x)) — 2 if the substep is a Z1g-21g or zig-zag.

o 3 < 3(r'(x) —r(x)) if the substep is a zig. |
Proof: We shall make use of the following mathematical fact (see Appendlx
Ifa>0,b>0,and ¢ >a+b, then
~ loga+logh <2logc—2... (3

Let us consider the change in 7(T') caused by each type of splaying substep.
zig-zig: (Recall Figure 3, 39.) Since the size of each node is one more than

size of its two children, note that only the ranks of x, y, and z change i
zZig-zig operatlon where y is the parent of x and z is the parent of y. Al

r'(x) = r(z) r'(y) < r'(x), and r(y) > r(x) . Thus |
5= PWr )+ @)= -r0)—r)
< r'y)+ri) —r(x) -r() |
< F)+r'() - 2r().
+n'(z) < n’(x) Thus, by 3.6, r(x) +r'(z) < 2r'(x)

" Observe that n(x)
That is,

F(2) < 2" (3) = r(3) = 2.
This 1nequa11ty and 3.7 imply o | .
3 < ’(x)+(2r’(x)—r(x) 2) —2r(x)
< 3@ -r(¥) -2 ,.
zig-zag: (Recall Figure 3.40.) Again, by the definition of size and rank, only th

ranks of x, y, and z change, where y denotes the parent of x and z denotes the
parent of y. Also, r'(x) = r(z) and r(x) < r(y). Thus .

§ = r'(x)+r'(y)+r()—r(x)-r(y)—r(z)
< PO+ Q) - @) —10) o
< PO+ @2 (38

Observe that n’ () +n'(z) < n'(x). Thus, by 3.6, r'(3) +7'(2) < 2¢"(x) ~
This inequality and 3.8 imply | | . -

8 < 2r'(x)—-2- 2r(x) o
< 3('"(x) - r(x))

denotes the parent of x. Also, r’ (y) < r(y) and r'(x) > r(x). Thus
8 = rO)+rE)—r()—r(x)
r(x )—r(t)_

<
< 30~ ).
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Theorem 3.9: LetT bea splay tree with root t, and let A be the total variation of
r(T) caused by splaying a node x at depth d. We have

A <3(r(t) — r(x)) —d+2.

Proof: Splaying node x consists of p = [d/2] splaying substeps, each of which
is a zig-zig or a zig-zag, except possibly the last one, which is a zig if d is odd. Let
ro(x) = r(x) be the initial rank of ¥, and fori = 1,..., p, let r;(x) be the rank of x
after the ith substep and 6; 'be the variation of #(T) caused by the ith substep. By

*  ‘Lemma 3.8, the total variation A of r(T) caused by splaying node x is given by

p
A= D8
i=1

< i(3(?i(x)—ri—1(x))_‘2)+2 | |
= 3(rp(x) —ro(x)) —2p+2 |
< 30— r(®) —d+2. .

By Theorem 3.9, if we make a payment of 3(r(t) — r(x)) + 2 cyber-dollars
towards the splaying of node x; we have enough cyber-dollars to maintain the in-
 variant, keeping r(v).cyber-dellars at each node vin T’ and pay for the entire splay-
* ing work, which costs d dollars.. Since the size of the root # is 2n+ 1, its rank .
* r(t) = log(2n +1). In addition, we have r(x) < r(¢). Thus, the payment to be
made for splaying is O(logn) cyber-dollars. To complete our analysis, we have to
compute the cost for maintaining the invariant-when a node is inserted or deleted.
When inserting a new node v into a splay tree with n keys, the ranks of all the
ancestors of v are increased. Namely, let vp,v;, ..., vq be the€ ancestors of v, where
"o = v, v; is the parent of v;_, and vy is the root. Fori=1,...;d, letn’(v;) and
n(v;) be the size of v; before and after the insertion, respectively, and let r'(v;) and
r(v;) be the rank of v; before and after the insertion, respectively. We have

n'(vi) = n(v;) + L.
Also, since n(v;)+1 < n(viyr), for i = 0,1,...,d — 1, we have the following for
each i in this range: | _ . f
| ' (v) = log(n'(v)) = log(n(v:) + 1) < 1og(n(vis1)) = r(vie)-.
Thus, the total variation of (T) caused by the insertion is
d ) ‘ d—1. . ‘
Y () —rm)) < a4 X (i) =)
i=1 o L =1 B
. ) — r!(vd)_-r(vo) e
| | N < log(2n+1). | o
Thus, a payment of O(logn) cyber-dollars is sufficient to maintain the invariant
when a new node is inserted. . o e
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‘does so using a simple binary tree that does not need’ any extra balance informa

~ denote the number of times the item i is accessed i in the splay tree, that is, its |

- this theorem is that it states that the amortized runmng time of accessing an i

‘as many as /m/4 times, then the amortized runnmg time of each of these ac

- trees is that they can “adapt” to the ways in which items are being accessed

Chapter 3. S_ea_r_ch Trees and Skip:

When deleting a node v from a splay tree with »n keys, the ranks of al]
ancestors of v are decreased. Thus, the total variation of r(T') caused by the dele
is negative, and we do not need to make any payment to6 maintain the i invarj
Therefore, we may summanze our amortized ana1y31s in the followmg theorem

Theorem 3.10: Consider a sequence of m operauons on a splay tree, ea
search, insertion, or deletion, starting from an empty splay tree with zero koiy
Also, let n; be the number of keys in the tree after operation i, and n be the
tal number of insertions. The total running time for pezfonmng the sequenc

operations is
0, m—l—Zlogni‘ ;-
i=1

In other words, the amortized running time of performmg a search, msem
or deletion in a splay tree is O(logn), where n is the size of the splay tree at
time. Thus, a splay free can achieve logarithmic time amortized performance
implementing an ordered dictionary ADT. This amortized performance matcht
the worst-case performance of AVL trees, (2,4) trees, and red-black trees, bi

which is O(m logn).

stored at each of its nodes. In addition, splay trees have a number of other intereq§
ing properties that are not shared by these other balanced search trees. We exp' '

one such additional property in the following theorem (whlch is sometlmes caj
the “Statlc Optimality” theorem for splay trees) |

Theorem 3.11: Cons1der a sequence of m operations on' a splay tree, ea,
search, insertion, or deletion, starting from a tree T with no keys. Also, let-

quency, and let n be total number of items. Assummg that each item is accessel

We leave the proof of this theorem as an exercise. The remarkable thing ab

is O(log(m/f(i))). For example, if a sequence Of operations accesses some ite
is O(1) when the dictionary is implemented with a splay tree. Contrast this ¢
Q(logn) time needed to access this item if the dictionary is implemented withidl
AVL tree, (2,4) tree, or red-black tree. Thus, an additional nice property of splal

dlCthl’lal'V SO as to achieve facter minnino timaea far the frennantls: annaccad it
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such a way that search and update times are logarithmic on average

Randomizing Data Structures and‘AIgori‘thms‘

Interestingly, the notion of average time complexity used here does not depend
on the probability distribution of the keys in the input. Instead, it depends on the
use of a random-number generator in the implementation of the insertions to help
decide where to place the new item. That is, the structure of the data structure and
some algorithms that operate on it depend on the outcomes of random events. In
this context, running time is averaged over all possible outcomes of the random
numbers used when inserting items.

Because they are used extensively in computer games, cryptography, and com-
puter simulations, methods that generate numbers that can be viewed as random
numbers are built into most modern computers. Some methods, called pseudo-
random number generators, generate random-like numbers deterministically, start-
ing with an initial number called a seed. Other methods use hardware devices to

- extract “true” random numbers from nature. In any case, we will assume that our
- computer has access to numbers that are sufficiently random for our analysis.

design is that the structures and methods that result are usually simple and efficient.

loganthrmc time bound for searching, similar to what is achieved by the binary
searching algonthm Nevertheless, the logarithmic bound-is expected.for the skip
list, while it is worst-case for binary searching in a lookup table. On the other hand,
skip lists are much faster than lookup tables for dlctlonary updates. -~

- Skip List Definition .
A skip list S for dictionary D consists of a series of hsts {So,Sl, .,S5}. Each list
- §; stores a subset of the items of D sorted by a nondecreasing key plus items with
two special keys, denoted —oo and +oo, where —oo is smaller than every possible

key that can be inserted in D and +oo is larger than every possible key that can be
inserted in D. In addmon the lists in § satlsfy the following:

—oo and —1—oo)
o Fori=1,...,h—1,list$; contams (in addmon o —00. and —|—oo) arandomly
generated subset of the 1tems in hst Sl 1- S :

PR s }

- An interesting data structure for efﬁc1ent1y realizing the ordered dlctlonary ADT is
the skip list. This data structure makes random choices in arranging the items 1n_

The main advantage of using rardomizatior in data structure and algorithm

We can devise a simple randomized data structure, called the skip list, that has. a

e List SO contains évery item of dlctlonary D (plus the Spe01a1 items w1th keys:
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‘as the height of skip list S.

Ss <] -

Sq =] {7

Sy [ 17 B

Sy [} i 17 (25 {31}

s, o {E—O—— s ——— (]

8., with probability 1/2. That is, in essence, we “flip a coin” for each iter

| Chapter 3. Search Trees and Ski

An example of a skip list is shown in Figure 3.46. It is. customary to Visi
skip list S with list Sp at the bottom and lists S1,..., S, above it. Also, we rg

5, [} —Or—{m -0
Figure 3.46: Example of a skip list.

Intuitive_ly, the lists are set up so that S;.1 contains more or less every o
in 5;. As we shall see in the details of the insertion method, the items in
chosen at random from the: items in S; by-picking each item from S; to alsg

and place that item in Sy if the coin comes up “heads.” Thus, we expect S
about n/2 items, S, to have about n/4 items, and, in general, S; to have abol
items. In other words, we expect the height % of S to be about logn. The hal
the number of items from one list to the next is not enforced as an explicit pro
of skip lists, however. Instead, randomization is used. | '

Using the position abstraction used for lists and trees, we view a skip _;
two-dimensional collection of positions arranged horizontally into levels:

~ tically into fowers. Each level is a list S; and each tower contains positions Sl

the same item across consecutive lists. The positions in a skip list can be tra
-using the following operations: - o A

after'( p): Return the position following p on the same level
3

before(p): Return the position preceding p on the same level

below( p) . Return the position below p in the same tower.
):

_above(p): Return the position ébove pin the samé tower.

We conventionally assume that the above operations return a null positio
‘position requested does not exist. Without going into the details, we note tha
can easily implement a skip list by means of a linked structure such that th
traversal methods each take O(1) time, given a skip-list position p. Such z
structure is essentially acollection of / doubly linked lists aligned at towers
are also doubly linked lists. o |

&
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""3_,31 Searching

Skip lists allow for snnple dlctlonary search algorithms. In fact, all of the skip-list

‘search methods are based on an elegant SkipSearch procedure, shown in Algo-

~ rithm 3.47, that takes a key k and finds the item in a skip list S with the largest key
(which is possibly —o0) that is less than or equal to k. .

~ Algorithm SkipSearch(k):
Input: A searchkeyk '
Output: Position in S whose item has the largest key less than or equal to k
Let p be the top -most, left pos1t10n of § (whlch should have at least 2 levels)
while below(p) # null do

p «—below(p)  {drop down}
while key(after(p)) < k do
Let p « after(p) - {scan forward}
. return p.

Algorithm 3.47: Algorithm for searchmg in a skip 11st S.

| Let us examine this algonthm more closely. We begin the SklpSearch method |
by setting a position variable p to the top-most, left position in the skip list S. That
is, p is set to the position of the spe01a1 item with key —00 In Sk We then perform
the followmg steps (see Figure: 3 48):

1. If S.below(p) is null, then the search terminates—we are af the bottom and
have located the largest item in S with key less than or equal to the search
key k. Otherwise, we drop down to the next lower level in the present tower
by setting p « S.below(p). -

2. Starting at position p, we move p forward until it is at the right-most position
on the present level such that key(p) < k. We call this the scan forward step.
Note that such a position always exists, since each level contains the special

- keys +00 and —oo. In fact, after we perform the scan forward for this level,

= : p may remam where it started. In any case, we then repeat the prev1ous step.

‘Figure 3.48: Example of a search in a skip list. The ‘positions visited and the links
traversed when searchmg (unsuccessfull j) for key 52 are drawn with thick 11nes
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3.5.2 Update Operations

~ create the fower for (k,e). We give the pseudo code for this insertion algoriths
for a skip list § in Algorithm 3.49 and we illustrate this algorithm in Figure 3 56

- position g, returning the position 7 of the new item (and setting internal refere

Given the SkipSearch method, it is easy to implement findElement(k)—we simp;
perform p « SkipSearch(k) and test whether or not key(p) = k. As it turns out, th
expected running time of the SkipSearch algorithm is O(logn). We postpone thi
analysm however, until after we discuss the update methods for skip lists.

Insertion

The insertion algorithm for skip lists uses randomization to decide how many r
ences to the new item (k, ¢) should be added to the skip list. We begin the insert
of a new item (k, ) into a skip list by performing a SkipSearch(k) operation.
gives us the position p of the bottom-level item with the largest key less tha
equal to k (note that p may be the position of the special item with key —oc).
then insert (k,e) in this bottom-level list immediately after position p. After inser
ing the new item at this level, we “flip” a coin. That is, we call a method ra ndom|
that returns a number between O and 1, and if that number is less than 1/2,
we consider the flip to have come up “heads”; otherwise, we consider the fli
have come up “tails.” If the flip comes up tails, then we stop here. If the flip co
up headb, on the other hand, then we backtrack to the previous (next higher) 1
and insert (k,e) in this level at the appropriate position. We again flip a coi
it comes up heads, we go to the next higher level and repeat. Thus, we contini
to insert the new item (k,e) in lists until we finally get a flip that comes up tails
We link together all the references to the new item (k, ) created in this proces

Our insertion algorithm uses an operation insertAfterAbove(p,q, (k,)) that inser
a position storing the item (k,e) after position p (on the same level as p) and a

so that after, before, above, and below methods will work correctly for p, g, andr

Algorithm Skipinsert(k, e):
Input: Ttem (k,e)
Output: None
p « SkipSearch (k) S
g «— insertAfterAbove(p,null, (k,e)) {we are at the bottom level}
while random() < 1/2 do |
while above(p) = null do

© p — before(p) {scan backward}
p < above(p) {jump up to higher level} .
g — insertAfterAbove(p,q,(k,e)) {insert new item}

Algorithm 3.49: In_sertibn in a skip list, assuming random() returns a random nu
ber between 0 and 1, and we never insert past the top level.
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“ Figure 3.50: Insemon of an element with key 42 into the sk1p list of Flgure 3.46.

The positions visited and the links traversed are drawn with thick lines. The posi-
tions 1nse11ed to hold the new item are drawn w1th dashed llnes

Removal

Like the search and insertion algorithms, the removal algorlthm for a skip list S is

- quite simple. In fact, it is even easier than the insertion algorithm. Namely, to per-

form a removeElement (k) operation, we begin by performing a search for the given
key k. If a position p with key k is not found, then we return the NO_SUCH_KEY
element. Otherwise, if a position p with key & is found (on the bottom level), then
we remove all the positions above p, which are easily accessed by using above op-
erations to climb up the tower of this item in § starting at position p. The removal
algorithm is illustrated in Figure 3.51 and a detailed description of it is left as an
exercise (R-3.19). As we show in the next subsection, the running time for rémoval
in a skip list is expected to be O(logn).

~ Before we give this analysis, however, there are some minor improvements to
the skip list data structure we would like to discuss. First, we don’t need to store

references to items at the levels above 0, because all that is needed at these levels

are references to keys. Second, we don’t actually need the above method. In fact,
we don’t need the before method either. We can perform item insertion and removal -
in strictly a top-down, scan-forward fashion, thus saving space for “up” and “prev”

. references. We explore the detalls of this opnmlzatlon in an exercise (C-3.26).

“Figure 3.51: Removal of the item with key 25 from fhe skip list of Figure 3.50. The
positions visited and the links traversed after the initial search are drawn with thick
lines. The posmOns removed are drawn with dashed lmes
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~ analysis we will see that 2 = max{10,2[log ]} is a reasonable choice, and'

the next section.

- Chapter 3. Sea_rch Trees and 8 iy
Mai-htaining the'Top-most Level

A skip list § must maintain a reference to the top-most, left position i
instance variable, and must have a policy for any insertion that wishes to
inserting a new item past the top level of S.- There are two possible courses
we can take, both of which have their merits.- -
One possibility is to restrict the top level, A, to be kept at some ﬁxed va|
is a function of n, the number of elements currently in the dictionary (

h = 3[logn] is even safer). Implementing this choice means that we must:
the insertion algorithm to stop inserting a new item once we reach the topf
level (unless [logn| < [log(n+1)], in which case we can now go at least on ‘
level, since the bound on the height is increasing).

The other possibility is to let an insertion continue 1nsert1ng a new ele
long it keeps returning heads from the random number generator. As we
the analysis of skip lists, the probability that an insertion will go to a level;fi#
more than O(logn) is very low, so this design choice should also work.

However, either choice will still result in our being able to perform
search, insertion, and removal in expected 0(log n) time, which we w1ll shioy

353

to the other dictionary implementations discussed earlier in this chapter. ]

analysis we give below uses only basiﬁ! concepts of probability ‘theory.

A Probabilistic Analysis of Skip Lists

As we have shown above, skip lists provide a simple 1mplementat10n Qf i
dered dictionary. In terms of worst-case performance, however, skip lists arg!
superior data structure. In fact, if we don’t officially prevent an insertion frc
tinuing significantly past the current highest level, then the insertion algorit
go into what is almost an infinite loop (it is not actually an infinite loop,
since the probability of having a fair coin repeatedly come up heads foreve
Moreover, we cannot infinitely add elements to a list without eventually run _.
of memory. In any case, if we terminate item insertion at the highest level
the worst-case running time for performmg the findElement, insertltem,:
moveElement operations in a skip list § with » items and height % is O(n +i :
worst-case performance occurs when the tower of every item reaches leve
where 4 is the height of S. However, this event has very low probability
from this worst case, we might conclude that the skip list structure is strictl

would not be a fair analysis, for this worst-case behavior is a gross overestii

Because the insertion step involves randomization, a more honest analysid
skip lists involves a bit of probability. At first, this might seem like a majoj
dertaking, for a complete and thorough probablllstlc analysis could requ"
mathematics. Fortunately, such-an analysis is not necessary to understand,
pected asymptotic behavior of skip lists. The informal and intuitive probs
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Let us begin by determining the expected value of the height 2 of § (assumlng that

we do not terminate insertions early). The probability that a given item is stored in
a position at level i is equal to the probability of getting i consecutive heads when
flipping a coin, that is, this probability is 1/2’. Hence the probablhty P; that level i

~ has at least one item is at most
- n
. P, i < Ea‘ '
for the probability that any one of » different events occurs is, at most, the sum of
the probabilities that each occurs.”
The probability that the helght h of 8 Iﬂarger than { is equal to the probablhty
that level i has at least one item, that is, it is no more-than P.. This means that % is

larger than, say, 3logn with probab111ty at most

n n 1

P3logn = _231bgn = n—3 = ;li
More generally, glven a constant ¢ > 1, h is larger than clogn with probablllty at’
most 1/n°~!. That is, the probability that 4 is smaller than or equal to clogn is at

least 1 —1 /nz‘C L Thus with high probability, the height h of §is O(logn).

Analyzing Search Time in a Skip List

Consider the running time of a search in skip list S, and recall that such a search
involves two nested while loops. The inner loop performs a scan forward on a level
of § as long as the next key is no greater than the search key k, and the outer loop
drops down to the next level and repeats the scan forward iteration. Since the height
hof S is O(logn) w1th high probability, the number of drop-down steps is O(logn)
with hlgh probability.

So we have yet to bound the number of scan forward steps we make. Let n; be
the number of keys examined while scanning forward at level i. Observe that, after
the key at the starting position, each additional key examined in a scan-forward at
level i cannot also belong to level i + 1. If any of the%e items were on the previous
level, we would have encountered them in the previous scan-forward step. Thus,
the probability that any key is counted in n; is 1/2. Therefore, the expected value of
n; is exactly equal to the expected number of times we must flip a fair coin before
it comes up heads. Let us denote this quantity with e.. We have

1 1
=3 14+ 5 (1 —I-e) |
Thus, e = 2 and the expected amount of tlme spent scanmng forward at any level i
is O(1). Since S has O(logn) levels with high probability, a search in § takes ex-
pected time O(logn). By a similar analysis, we can show that the expected running

time of an insertion or a removal is O(logn).
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'Hence, the expected space requirement of S is O(n).

Chapter 3. Search Trees and Skig

Space Usage in a Skip List

Finally, let us turn to the space requirement of a skip list'S. As we observ
the expected number of items at level i is n/2¢, which means that the expec
number of items in $ is -

H |
— =n 2 — < 2n.
=02

Table 3. 52 summarizes the performance of a d1ct10nary realized byas

Operation | Time

| keys, elements | O(n)
findElement, insertltem, removeklement O(logn) (expected)
findAllElements, removeAllElements 0(logn +5) (expected)

Table 3.52: Performance of a dictionary implemented w1th a skip list. ¥
note the number of items in the dictionary at the time the operation is perf i
with n, and the size of the iterator returned by operations findAllElem
removeAllElements with s. The expected space requirement is O(n).

3.6 Java Example: AVL and Red-Black Trees

In this section, we describe a general binary search tree class, Bina rySearc

- pairs of class ltem as the elements stored at the positions (nodes) of its un

_BinaryTree interface, where we assume that BinaryTree includes also me

Code Fragments 3.58-3.59 and 3.62-3.63) to identify the position where {

and how it can be extended to produce either an AVL tree implementatio a"
red-black tree implementation. The BinarySearchTree class stores key

ing binary tree. The code for BinarySearchTree is shown in Code Fragmentsg
through 3.56. Note that the underlymg binary tree T is used only throu

pandExternal and removeAboveExternaI (see Section 2.3.4). Thus class B
SearchTree takes advantage of code reuse. :

‘The auxiliary method findPosition, based on the TreeSearch algorith
voked by the findElement, insertltem, and removeElement methods. The I
variable actionPos stores the position where the most recent search, inserti
removal ended. This instance variable is not necessary to the implemen
binary search tree, but is useful to classes that will extend BinarySearch

vious search, insertion, or removal has taken place Position actionPo
intended meaning prov1ded it is used rlght after executlng methods fdeIj
insertltem, and removeklement.
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public class Item {
private Object key, elem;
protected Item (Object k, Object e) {
key = k;
elem = ¢;

public Object key() { return key; }

public Object element() { return elem; }
public void setKey(Object k) { key = k; }
public void setElement(Object €) { elem = e; }

- Code Fragment 3.53: Class for the key-element pairs stored in a dictiohary.

/** Realization of a dictionary by means of a binary search tree */
public class BinarySearchTree implements Dictionary {
Comparator C; // comparator
BinaryTree T; // binary tree
protected Position actionPos; // insertion pos:t|on or parent of removed position

publlc BinarySearchTree(Comparator ¢) {
C=q
T = (BinaryTree) new NodeBinaryTree();

// auxiliary methods:
/** Extract the key of the item at a given node of the tree. */
protected Object key(Position position) { -
return ((item) position.element()).key();
/** Extract the element of the item at a given node of the tree. */
protected Object element(Position position) { |
return ((ltem) position.element()).e{ement();

/** Check whether a given key is valid. */
protected void checkKey(Object key) throws !nvalldKeyExceptlon {
if(!C.isComparable(key)) -

throw new InvalidKeyException("Key "+key+" is not comparable");

} o .
Code Fragment 3.54: Class BinarySearchTree. (Cohtinlied in Code Fragment 3.55.)
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‘protected void swap(Position swapPos, Position remPos){

} .
Code Fragment 3.55: Class BinarySearchTree, contlnued from Cod_
ment 3.54. (Continues in Code Fragment 3.56.) :

Chapter 3. Search Trees and

3

~ -

/*¥* Auxiliary method used by removeElement. */

T.replaceElement(swapPos, remPos. element())
}
/** Auxiliary method used by findElement, ;nsertltem and removeEIement
protected Position findPosition(Object key, Pos:t:on pos) {
if (T.isExternal(pos)) |
return pos; // key not found and external node reached returned
else {
Object curKey = key(pos);
- if(C.isLessThan(key, curKey))
return findPosition(key, T.leftChild(pos));
' else if(C.isGreaterThan(key, curKey)) // search in Ieft subtree
return findPosition(key, T.rightChild(pos)); // search in right subtree E
else
return pos; // return internal node where key is found

}
}
// methods of the dictionary ADT

public int size()
return (T:size() — 1) / 2;

public boolean lsEmpty() {
return T.size() == 1,

public Object flndEiement(ObJect key) throws InvalldKeyExceptton {
checkKey(key); // may throw an InvalidKeyException
Position curPos = findPosition(key, T.root());
actionPos = curPos; // node. where the search ended
if (T.isInternal(curPos))
return element(curPos);

else
return NO_SUCH_KEY;
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publlc void msertltem(ObJect key, Object element)
throws InvalidKeyException { .
checkKey(key); // may throw an InvalldKeyExcept;on
Position insPos = T. root();
do {
insPos = findPosition(key, 1nsPos)
if (T. fsExternaI(msPos))
break;
else // the key already exists
insPos = T. rlghtChﬂd(msPos)
} while (true);
T.expandExternal(insPos);
ltem newltem = new ltem(key, eIement)
T.replaceElement(insPos, newltem);
. actionPos = insPos; // node where the new item was inserted
o | '
public Object removeE!ement(ObJect key) throws !nvalldKeyExceptlon {
Object toReturn;
checkKey(key); // may throw an invaldeeyExceptlon
Position remPos = findPosition(key, T. root())
if (T.isExternal(remPos)) {
actionPos = remPos; // node where the search ended unsuccessfully'
~return NO_SUCH_KEY; ' -
b
else{ :
toReturn =, element(remPos); // eIement to be returned .
if (T.:sExternaI(T.IeftChlId(remPos)))
~ remPos = T .leftChild(remPos); |
else if (T.isExternal(T.rightChild(remPos)))
remPos = T.rightChild(remPos);
else { // key is at a node with internal children
Position swapPos = remPos; // find node for swappmg items
remPos = T. nghtCh:Id(swapPos)
do B
remPos = T leftChild(remPos);
while (T .isInternal(remPos));
swap(swapPos- T.parent(remPos));

actionPos = T.sibling(remPos); // sibling of the Ieaf to be removed
T.removeAboveExternal(remPos);
return toReturn;

1}
)
Code Fragment 3 56; Class BlnarySearchTree ,(Contiriued from Code Frag-
ment 3. 55 ) .
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3.6.1 Java Implementation of AVL Trees

“nodes are affected and can be maintained in O(logn) time.

Let us now turn to the implementation details and analysis of using an AV
with n internal nodes to implement an ordered dictionary of 7 items. The i ing
and removal algorithms for T require that we are able to perform trinode
turings and determine the difference between the heights of two sibling .nodf
garding restructurings, we should extend the collection of operations of th
tree ADT by adding the method restructure. It is easy to see that a restructy
eration can be performed in O(1) time if 7 is implemented with a linked s
(Section 2.3.4), which would not be the case with a vector (Section 2.34
we prefer a linked structure for representing an AVL tree. -

Regardlng height information, we can explicitly store the height of ea
node, v, in the node itself. Alternatively, we can store the balance factor of!
which is defined as the height of the left child of v minus the height of the
of v. Thus, the balance factor of v is always equal to —1, 0, or 1, except d
insertion or removal, when it may become femporarily equal to —2 or +2
the execution of an insertion or removal, the heights and balance factors of Of

In Code Fragments 3.57-3.59, we show a Java implementation of a dictig]]
realized with an AVL tree. Class AVLItem, shown in Algorithm 3.57, exten;
[tem class used to represent a key-element item of a binary search tree. It defif
additional instance variable height, representing the height of the node. Cl
Tree, shown in full in Code Fragments 3.58 and 3.59, extends BinarySea
(Code Fragments 3.54-3.56). The constructor of AVLTree executes the su
constructor first, and then assigns a RestructurableNodeBinaryTree to T
is a class that implements the binary tree ADT, and in addition supports mi
restructure for performing trinode restructurings. Class AVLTree inherits
size, isEmpty, findElement, findAllElements, and removeAllElements from 1§
perclass BinarySearchTree, but overrides methods insertltem and removeEleq

Method insertltem (Code Fragment 3.59) begins by calling the sup
insertltem method, which inserts the new item and assigns the insertion
(node storing key 54 in Figure 3.12) to instance variable actionPos. The a
method rebalance is then used to traverse the path from the insertion po
the root. This traversal updates the heights of all the nodes visited, and pe
trinode restructuring if necessary. Similarly, method removeElement (Cod
ment 3.59) begins by calling the superclass’s removeElement method, whi
forms the removal of the item and assigns the position replacing the dele
to instance variable actionPos. The auxiliary method rebalance is then
traverse the path from the removed position to the root.
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public class AVLItem extends Item {
int height;
AVLItem(Object k, Object e, int h) {
super(k, e);
height = h;

} -
public int height() { return height; }
public int setHeight(int h) {

int oldHeight = height;

height = h;

return oldHeight;

}

~ Code Fragment 3.57: Class implementing a node of an AVL tree. The height of the

node in the tree is stored as an instance variable.

/** Realization of a d|ct|onary by means of an AVL tree. */
public class AVLTree extends BinarySearchTree implements Dictionary {
public AVLTree(Comparator c) { |
super(c);
T = new RestructurableNodeBinaryTree();

private int height(Position p) {
if (T.isExternal(p))-
return 0;

else -
“return ((AVL!tem) p.element()).height();
}

private void setHeight(Position p) { // called only if p s internal
((AVLItem) p.element()).setHeight(1+-Math.max(height(T. leftChild(p)),
helght(T rightChild(p))));

private boolean isBalanced(Position p) {
// test whether node p has balance factor between -1 and 1

int bf = height(T.leftChild(p)) — height(T. rsghtChlld(p))
-return ((—1 <= bf) && (bf <= 1));.

private Position tallerChild(Position p) {
// return a child of p with height no smaller than that of the other chlld
if (height(T .leftChild(p)) >= height(T. rightChtId(p)))
return T.leftChild(p);
else
return T. nghtChlld(p)

-
-

| Code Fragment 3. 58 Constructor and auxiliary methods of class AVLTree
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* Auxiliary method called by insertitem and removeElement.
¥ Traverses the path of T from the given node to the-root. For
* each node zPos encountered, recomputes the height of zPos and
* performs a trinode restructuring if zPos is unbalanced. '
* | |
private void rebalance(Position zPos) {
while (IT.isRoot(zPos)) {
zPos = T.parent(zPos);
setHeight(zPos);
if (lisBalanced(zPos)) {
// perform a trinode restructuring
Position xPos = tallerChild(tallerChild(zPos));
zPos = ((RestructurableNodeBinaryTree) T).restructure(xPos); -
setHeight(T.leftChild(zPos)); |
.setHeight(T.rightChild(zPos));
.- setHeight(zPos);
} .
)
}
// methods of the dictionary ADT

- /** Overrides the corresponding method of the parent class. */
public void insertltem(Object key, Object element).
" throws InvalidKeyException {
super.insertltem(key, element); // may throw an InvalidKeyException
" Position zPos = actionPos; // start at the insertion position
T replaceElement(zPos, new AVLitem(key, element, 1));
rebalance(zPos); o

}

/** Overrides the corresponding method of the parent class. */
public Object removeElement(Object key) '
throws InvalidKeyException { '
Object toReturn = super.removeElement(key); . |
// may throw an InvalidKeyException:
- if(toReturn != NO_SUCH_KEY) { o
Position zPos = actionPos; // start at the removal position
rebalance(zPos); - | -

}

- return toReturn;

}

Code Fragment 3.59: Auxiliary method rebalance and methods insertltem angs

moveElement of cljass AVLTree.
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7362 Java Implementation of Red-Black Trees

In Code Fragments 3.60-3.63, we show portions of a Java implementation of a
dictionary realized by means of a red-black tree. Class RBTltem, shown in Code
Fragment 3.60, extends the Item class used to represent a key-element item of a
binary search tree. It defines an additional instance variable isRed, representing the
color of the node, and methods to set.and return it. -

public class RBTltem extends item {
private boolean isRed;
public RBTltem(Object k, Object elem, boolean color) {
super(k, elem);
isRed = color;

} |
public boolean isRed() {return isRed;}

public void makeRed() {isRed = true;}
public void -makeBlack() {isRed = false;}
public void setColor(boolean color) {isRed = color;}

Code Fragment 3.60: Class implementing a node of a red-black tree.

/** Realization of a dictionary by means of a red-black tree. */

public class RBTree extends BinarySearchTree |mplements Dictionary {
static boolean Red = true; :
static boolean Black = false; -

public RBTree(Comparator C) {

super(C);

T = new RestructurableNodeBinaryTree();
} - Code Fragment 3.61: Instance variables and constructor of class RB Tree.
Class RBTree, partially shown in Code Fragments 3.61-3.63, extends Bmary-
SearchTree (Code Fragments 3.54-3.56). As in class AVLTree the constructor of
RBTree executes first the superclass’s constructor, and then assigns to T a Restruc-
turabIeNodeBmaryTree which is a class that implements the binary tree ADT, and,
in addition, supports the method restructure for performing trinode restructurings
(rotations). Class RBTree inherits methods size, isEmpty, findElement, findAl-
|Elements, and removeAllElements from BinarySearch Tree but overrides methods
insertltem and removeElement. Several auxiliary methods of class RBTree are not
shown. : '

Methods insertltem (Code Frag’ment 3.62) and removeElement (Code Frag-
ment 3.63) call the corresponding methods of the superclass first and then rebal-
ance the tree by calling auxiliary methods to perform rotations along the path from
the update position (given by the instance variable actionPos 1nher1ted from the
superclass) to the root.
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public void insertltem(Object key, Object element)
throws InvalidKeyException { | :
super.insertitem(key, element); // may throw an InvaildKeyException
Position posZ = actionPos; // start at the insertion position
T.replaceElement(posZ, new RBTltem(key, element Red));
if (T.isRoot(posZ)) .
setBlack(posZ);
else
remedyDoubleRed(posZ);
}

protected void remedyDoubleRed(Position posZ) {
Position posV = T.parent{posZ); .
if (T. |sRoot(posV))
return;
if (hsPosRed(posV))
return; ' ’
-// we have a double red: posZ and posV |
if (lisPosRed(T sibling(posV))) { // Case 1: trinode restructuring
posV = ((RestructurableNodeBinaryTree) T). restructure(posZ)
setBlack(posV);
setRed(T.leftChild(posV));
setRed(T.rightChild(posV));

else { / / Case 2: recolor:ng
- setBlack(posV);
setBlack(T. 5|bI|ng(posV))
Position post = T.parent(posV);
if (T.isRoot(posU))
~return; '
~setRed(posU);
remedyDoubIeRed(posU)

}
}

Code 'Fragment 3.62: Dictionary method insertltem and auxiliary meth
" remedyDoubleRed of class RBTree. '
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public Object removeElement(Object key) throws !nvalidKeyExceptlon {
- Object toReturn = super.removeElement(key);
Position posR = actionPos;
if (toReturn != NO_SUCH_KEY) { | |

if (wasParentRed(posR) || T. |sRoot(posR) || |sPosRed(posR))

- setBlack(posR);

else

remedyDoubleBlack(posR);

} , .

~ return toReturn;

protected void remedyDoubleBlack(Position posR) {-
- Position posX, posY, pasZ;
- boolean oldColor;
posX = T.parent(posR);
posY = T.sibling(posR);
if (lisPosRed(posY)) {
posZ = redChild(posY);
if. (hasRedChild(posY)) { // Case 1: trmode restructurmg
oldColor = isPosRed(posX);
posZ = ((RestructurabIeNodeBmaryTree) T).restructure(posZ);
setColor(posZ, oIdCoIor)
setBlack(posR);
setBlack(T.leftChild(posZ));
setBlack(T.rightChild(posZ));
return;

setBlack(posR); .
setRed(posY);
if (lisPosRed(posX)) { // Case 2: recolormg
if (IT.isRoot(posX))
remedyDoubIeBIack(posX)
return;
setBlack(posX);
return;
} // Case 3: adjustment
if (posY == T.rightChild(posX))
posZ = T rightChild(posY);
else
posZ = T. IeftChlid(posY)
((RestructurableNodeBinary Tree) T). restructure(posZ)
setBIack(posY)
setRed(posX);’
-remedyDoubIeBIack(posR)

Code Fragment 3.63: Method removeEIement and its aux1hary method

211
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3.7 Exercises

Reinforcement

R-3.1

R-3.2

R-3.3

R-3.4

R-3.5

R-3.6

R-3.7

R-3.8
R-3.9

R-3.10

R-3.11

R-3.12

R-3.13

Insert items with the following keys (in the given order) into an initially empty
binary search tree: 30, 40, 24, 58, 48, 26, 11, 13. Draw the tree after each
insertion.

A certain Professor Amongus claims that the order in which a fixed set of ele-
mentsisinserted into a binary search tree does not matter—the same tree results
every time. Give asmall example that proves Professor Amongus wrong.

Professor Amongus claims he has a “patch” to his claim from the previous ex-
ercise, namely, that the order in which afixed set of elementsisinserted into an
AVL tree does not matter—the same AVL tree results every time. Give a small
example that provesthat Professor Amongusis still wrong.

Isthe rotation done in Figure 3.12 a single or a double rotation? What about the
rotation in Figure 3.15?

Draw the AVL tree resulting from the insertion of an item with key 52 into the
AVL tree of Figure 3.15b.

Draw the AVL tree resulting from the removal of the item with key 62 from the
AVL tree of Figure 3.15b.

Explain why performing a rotation in an n-node binary tree represented using a
sequence takes Q(n) time.

Isthe multi-way search tree of Figure 3.17aa (2,4) tree? Justify your answer.

An alternative way of performing asplit at anodevina(2,4) treeisto partition
vinto v’ and v/, with v/ being a 2-node and v’ being a 3-node. Which of the
keyski, ko, k3, or kg do we store at v's parent in this case? Why?

Professor Amongus claims that a (2,4) tree storing a set of items will always
have the same structure, regardless of the order in which the items are inserted.
Show that Professor Amongusis wrong.

Consider the following sequence of keys:
(5,16,22,45,2,10,18,30,50,12,1).
Consider the insertion of itemswith this set of keys, in the order given, into:

a Aninitialy empty (2,4) tree T'.
b. Aninitially empty red-black tree T”.

Draw T’ and T” after each insertion.

Draw four different red-black trees that correspond to the same (2,4) tree using
the correspondence rules described in the chapter.

Draw an example red-black tree that is not an AVL tree. Your tree should have at
least 6 nodes, but no more than 16.
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R-3.14

R-3.15

R-3.16

R-3.17

R-3.18

R-3.19
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For each of the following statements about red-black trees, determine whether it
istrue or false. If you think it is true, provide a justification. If you think it is
false, give a counterexample.

a. A subtree of ared-black treeisitself ared-black tree.

b. Thesibling of an external nodeis either external or it isred.

c. Given ared-black tree T, thereis an unique (2,4) tree T’ associated with
T.

d. Givena(2,4)treeT, thereisauniquered-black tree T’ associated with T.

Perform the following sequence of operationsin aninitially empty splay tree and
draw the tree after each operation.

a InsertkeysO, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order.
b. Searchforkeys1l,3,5,7,9, 11, 13, 15, 17, 19, in this order.
c. DeletekeysO, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order.

What does a splay tree look like if its items are accessed in increasing order by
their keys?

How many trinode restructuring operations are needed to perform the zig-zig,
zig-zag, and zig updatesin splay trees? Use figures to explain your counting.

Draw an example skip list resulting from performing the following sequence of
operations on the skip list in Figure 3.51: removeElement(38), insertltem(48,x),
insertltem(24,y), removeElement(55). Assume the coin flips for the first inser-
tion yield two heads followed by tails, and those for the second insertion yield
three heads followed by tails.

Give a pseudo-code description of the removeElement dictionary operation, as-
suming the dictionary isimplemented by a skip-list structure.

Creativity
c31

C-3.2

C-33

C-34

Suppose we are given two ordered dictionaries Sand T, each with n items, and
that Sand T are implemented by means of array-based ordered sequences. De-
scribe an O(logn)-time algorithm for finding the kth smallest key in the union of
thekeysfrom Sand T (assuming no duplicates).

Design an algorithm for performing findAllElements(K) in an ordered dictionary
implemented with an ordered array, and show that it runsin time O(logn+s),
where n isthe number of elementsin the dictionary and sis the number of items
returned.

Design an agorithm for performing the operation findAllElements(K) in an or-
dered dictionary implemented with abinary searchtree T, and show that it runsin
timeO(h+s), wherehisthe height of T and sisthe number of items returned.

Describe how to perform the operation removeAllElements(k) in an ordered dic-
tionary implemented with a binary search tree T, and show that this method runs
in time O(h+s), where h is the height of T and sis the size of the iterator re-
turned.
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C-35

C-3.6

C-3.7

C-3.8

C-3.9

C-3.10

C-311

C-3.12

C-3.13

C-3.14
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Draw an example of an AVL tree such that a single removeElement operation
could require ®(logn) trinode restructurings (or rotations) from aleaf to the root
in order to restore the height-balance property. (Use triangles to represent sub-
trees that are not affected by this operation.)

Show how to perform operation removeAllElements(K) in a dictionary imple-
mented with an AVL tree in time O(slogn), where n is the number of elements
in the dictionary at the time the operation is performed and s is the size of the
iterator returned by the operation.

If we maintain a reference to the position of the left-most internal node of an
AVL tree, then operation first can be performedin O(1) time. Describe how the
implementation of the other dictionary methods needs to be modified to maintain
areference to the left-most position.

Show that any n-node binary tree can be converted to any other n-node binary
tree using O(n) rotations.

Hint: Show that O(n) rotations sufficeto convert any binary treeinto aleft chain,
where each internal node has an external right child.

Show that the nodes that become unbalanced in an AV L tree after operation ex-
pa