
A. Kaveh

Advances in
Metaheuristic
Algorithms for
Optimal Design of
Structures

Advances in Metaheuristic Algorithms for Optimal
Design of Structures

ThiS is a FM Blank Page

A. Kaveh

Advances in Metaheuristic
Algorithms for Optimal
Design of Structures

A. Kaveh
School of Civil Engineering, Centre of Excellence
for Fundamental Studies in Structural Engineering

Iran University of Science and Technology
Tehran, Iran

ISBN 978-3-319-05548-0 ISBN 978-3-319-05549-7 (eBook)
DOI 10.1007/978-3-319-05549-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014937527

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Recent advances in structural technology require greater accuracy, efficiency, and

speed in design of structural systems. It is therefore not surprising that new methods

have been developed for optimal design of real-life structures and models with

complex configurations and a large number of elements.

This book can be considered as an application of metaheuristic algorithms to

optimal design of skeletal structures. The present book is addressed to those

scientists and engineers, and their students, who wish to explore the potential of

newly developed metaheuristics. The concepts presented in this book are not only

applicable to skeletal structures and finite element models but can equally be used

for design of other systems such as hydraulic and electrical networks.

The author and his graduate students have been involved in various develop-

ments and applications of different metaheuristic algorithms to structural optimi-

zation in the last two decades. This book contains part of this research suitable for

various aspects of optimization for skeletal structures.

This book is likely to be of interest to civil, mechanical, and electrical engineers

who use optimization methods for design, as well as to those students and

researchers in structural optimization who will find it to be necessary professional

reading.

In Chap. 1, a short introduction is provided for the development of optimization

and different metaheuristic algorithms. Chapter 2 contains one of the most popular

metaheuristic known as the Particle Swarm Optimization (PSO). Chapter 3 pro-

vides an efficient metaheuristic algorithm known as Charged System Search (CSS).

This algorithm has found many applications in different fields of civil engineering.

In Chap. 4, Magnetic Charged System Search (MCSS) is presented. This algorithm

can be considered as an improvement to CSS, where the physical scenario of

electrical and magnetic forces is completed. Chapter 5 contains a generalized

metaheuristic so-called Field of Forces Optimization (FFO) approach and its

applications. Chapter 6 presents the recently developed algorithm known as Dol-

phin Echolocation Optimization (DEO) mimicking the behavior of dolphins.

Chapter 7 contains a powerful parameter independent algorithm, called Colliding

Bodies Optimization (CBO). This algorithm is based on one-dimensional collisions

v

http://dx.doi.org/10.1007/978-3-319-05549-7_1
http://dx.doi.org/10.1007/978-3-319-05549-7_2
http://dx.doi.org/10.1007/978-3-319-05549-7_3
http://dx.doi.org/10.1007/978-3-319-05549-7_4
http://dx.doi.org/10.1007/978-3-319-05549-7_5
http://dx.doi.org/10.1007/978-3-319-05549-7_6
http://dx.doi.org/10.1007/978-3-319-05549-7_7

between bodies, with each agent solution being considered as the massed object or

body. After a collision of two moving bodies having specified masses and veloc-

ities, these bodies are separated with new velocities. This collision causes the agents

to move toward better positions in the search space. In Chap. 8, Ray Optimization

Algorithm (ROA) is presented in which agents of the optimization are considered as

rays of light. Based on the Snell’s light refraction law when light travels from a

lighter medium to a darker medium, it refracts and its direction changes. This

behavior helps the agents to explore the search space in early stages of the

optimization process and to make them converge in the final stages. In Chap. 9,

the well-known Big Bang-Big Crunch (BB-BC) algorithm is improved (MBB-BC)

and applied to structural optimization. Chapter 10 contains application of Cuckoo

Search Optimization (CSO) in optimal design of skeletal structures. In Chap. 11,

Imperialist Competitive Algorithm (ICA) and its application are discussed. Chaos

theory has found many applications in engineering and optimal design. Chapter 12

presents Chaos Embedded Metaheuristic (CEM) Algorithms. Finally, Chap. 13 can

be considered as a brief introduction to multi-objective optimization. In this chapter

a multi-objective optimization algorithm is presented and applied to optimal design

of large-scale skeletal structures.

I would like to take this opportunity to acknowledge a deep sense of gratitude to

a number of colleagues and friends who in different ways have helped in the

preparation of this book. Professor F. Ziegler encouraged and supported me to

write this book. My special thanks are due to Mrs. Silvia Schilgerius, the senior

editor of the Applied Sciences of Springer, for her constructive comments, editing,

and unfailing kindness in the course of the preparation of this book. My sincere

appreciation is extended to our Springer colleagues Ms. Beate Siek and

Ms. Sashivadhana Shivakumar.

I would like to thank my former and present Ph.D. and M.Sc. students,

Dr. S. Talatahari, Dr. K. Laknejadi, Mr. V.R. Mahdavi, Mr. A. Zolghadr,

Mrs. N. Farhoudi, Mr. S. Massoudi, Mr. M. Khayatazad, Mr. M. Ilchi,

Mr. R. Sheikholeslami, Mr. T. Bakhshpouri, and Mr. M. Kalate Ahani, for using

our joint papers and for their help in various stages of writing this book. I would like

to thank the publishers who permitted some of our papers to be utilized in the

preparation of this book, consisting of Springer Verlag, Elsevier and Wiley.

My warmest gratitude is due to my family and in particular my wife,

Mrs. L. Kaveh, for her continued support in the course of preparing this book.

Every effort has been made to render the book error free. However, the author

would appreciate any remaining errors being brought to his attention through his

email address: alikaveh@iust.ac.ir.

Tehran, Iran A. Kaveh

February 2014

vi Preface

http://dx.doi.org/10.1007/978-3-319-05549-7_8
http://dx.doi.org/10.1007/978-3-319-05549-7_9
http://dx.doi.org/10.1007/978-3-319-05549-7_10
http://dx.doi.org/10.1007/978-3-319-05549-7_11
http://dx.doi.org/10.1007/978-3-319-05549-7_12
http://dx.doi.org/10.1007/978-3-319-05549-7_13

Contents

1 Introduction . 1

1.1 Metaheuristic Algorithms for Optimization 1

1.2 Optimal Design of Structures and Goals of the Present Book . . . 2

1.3 Organization of the Present Book . 3

References . 8

2 Particle Swarm Optimization . 9

2.1 Introduction . 9

2.2 PSO Algorithm . 10

2.2.1 Development . 10

2.2.2 PSO Algorithm . 12

2.2.3 Parameters . 13

2.2.4 Premature Convergence . 16

2.2.5 Topology . 17

2.2.6 Biases . 18

2.3 Hybrid Algorithms . 19

2.4 Discrete PSO . 21

2.5 Democratic PSO for Structural Optimization 21

2.5.1 Description of the Democratic PSO 21

2.5.2 Truss Layout and Size Optimization with Frequency

Constraints . 23

2.5.3 Numerical Examples . 25

References . 37

3 Charged System Search Algorithm . 41

3.1 Introduction . 41

3.2 Charged System Search . 41

3.2.1 Background . 41

3.2.2 Presentation of Charged Search System 45

3.3 Validation of CSS . 52

3.3.1 Description of the Examples . 52

3.3.2 Results . 53

vii

3.4 Charged System Search for Structural Optimization 60

3.4.1 Statement of the Optimization Design Problem 60

3.4.2 CSS Algorithm-Based Structural Optimization

Procedure . 66

3.5 Numerical Examples . 68

3.5.1 A Benchmark Truss . 68

3.5.2 A 120-Bar Dome Truss . 72

3.5.3 A 26-Story Tower Space Truss . 73

3.5.4 An Unbraced Space Frame . 77

3.5.5 A Braced Space Frame . 81

3.6 Discussion . 82

3.6.1 Efficiency of the CSS Rules . 82

3.6.2 Comparison of the PSO and CSS 84

3.6.3 Efficiency of the CSS . 85

References . 85

4 Magnetic Charged System Search . 87

4.1 Introduction . 87

4.2 Magnetic Charged System Search Method 87

4.2.1 Magnetic Laws . 88

4.2.2 A Brief Introduction to Charged System Search

Algorithm . 90

4.2.3 Magnetic Charged System Search Algorithm 92

4.2.4 Numerical Examples . 98

4.2.5 Engineering Examples . 109

4.3 Improved Magnetic Charged System Search 116

4.3.1 A Discrete IMCSS . 117

4.3.2 An Improved Magnetic Charged System Search for

Optimization of Truss Structures with Continuous and

Discrete Variables . 117

References . 132

5 Field of Forces Optimization . 135

5.1 Introduction . 135

5.2 Formulation of the Configuration Optimization Problems 136

5.3 Fundamental Concepts of the Fields of Forces 136

5.4 Necessary Definitions for a FOF-Based Model 138

5.5 A FOF-Based General Method . 139

5.6 An Enhanced Charged System Search Algorithm for

Configuration Optimization . 140

5.6.1 Review of the Charged System Search Algorithm 140

5.6.2 An Enhanced Charged System Search Algorithm 142

5.7 Design Examples . 143

5.7.1 An 18-Bar Planar Truss . 143

5.8 Discussion . 153

References . 154

viii Contents

6 Dolphin Echolocation Optimization . 157

6.1 Introduction . 157

6.2 Dolphin Echolocation in Nature . 157

6.3 Dolphin Echolocation Optimization . 158

6.3.1 Introduction to Dolphin Echolocation 158

6.3.2 Dolphin Echolocation Algorithm 159

6.4 Structural Optimization . 169

6.5 Numerical Examples . 170

6.5.1 Truss Structures . 170

6.5.2 Frame Structures . 180

References . 192

7 Colliding Bodies Optimization . 195

7.1 Introduction . 195

7.2 Colliding Bodies Optimization . 195

7.2.1 The Collision Between Two Bodies 196

7.2.2 The CBO Algorithm . 197

7.2.3 Test Problems and Optimization Results 202

7.3 CBO for Optimum Design of Truss Structures with

Continuous Variables . 214

7.3.1 Flowchart and CBO Algorithm . 214

7.3.2 Numerical Examples . 217

7.3.3 Discussion . 225

References . 230

8 Ray Optimization Algorithm . 233

8.1 Introduction . 233

8.2 Ray Optimization for Continuous Variables 234

8.2.1 Definitions and Concepts from Ray Theory 234

8.2.2 Ray Optimization Method . 238

8.2.3 Validation of the Ray Optimization 243

8.3 Ray Optimization for Size and Shape Optimization of Truss

Structures . 251

8.3.1 Formulation . 251

8.3.2 Design Examples . 253

8.4 An Improved Ray Optimization Algorithm for Design of Truss

Structures . 262

8.4.1 Introduction . 262

8.4.2 Improved Ray Optimization Algorithm 263

8.4.3 Mathematical and Structural Design Examples 266

References . 275

9 Modified Big Bang–Big Crunch Algorithm 277

9.1 Introduction . 277

9.2 Modified BB-BC Method . 277

9.2.1 Introduction to BB–BC Method 277

9.2.2 A Modified BB–BC Algorithm . 280

Contents ix

9.3 Size Optimization of Space Trusses Using a MBB–BC

Algorithm . 283

9.3.1 Formulation . 283

9.3.2 Design Examples . 284

9.4 Optimal Design of Schwedler and Ribbed Domes Using

MBB–BC Algorithm . 297

9.4.1 Introduction . 297

9.4.2 Dome Structure Optimization Problems 299

9.4.3 Pseudo-Code of the Modified Big Bang–Big

Crunch Algorithm . 302

9.4.4 Elastic Critical Load Analysis of Spatial

Structures . 304

9.4.5 Configuration of Schwedler and Ribbed Domes 304

9.4.6 Results and Discussion . 308

9.4.7 Discussion . 312

References . 314

10 Cuckoo Search Optimization . 317

10.1 Introduction . 317

10.2 Optimum Design of Truss Structures Using Cuckoo Search

Algorithm with Lévy Flights . 318

10.2.1 Formulation . 318

10.2.2 Lévy Flights as Random Walks 319

10.2.3 Cuckoo Search Algorithm . 320

10.2.4 Optimum Design of Truss Structures Using Cuckoo

Search Algorithm . 322

10.2.5 Design Examples . 324

10.2.6 Discussions . 332

10.3 Optimum Design of Steel Frames . 334

10.3.1 Optimum Design of Planar Frames 335

10.3.2 Optimum Design of Steel Frames Using Cuckoo

Search Algorithm . 337

10.3.3 Design Examples . 337

10.3.4 Discussions . 343

References . 346

11 Imperialist Competitive Algorithm . 349

11.1 Introduction . 349

11.2 Optimum Design of Skeletal Structures 350

11.2.1 Constraint Conditions for Truss Structures 351

11.2.2 Constraint Conditions for Steel Frames 351

11.3 Imperialist Competitive Algorithm . 353

11.4 Design Examples . 357

11.4.1 Design of a 120-Bar Dome Shaped Truss 357

11.4.2 Design of a 72-Bar Spatial Truss 359

x Contents

11.4.3 Design of a 3-Bay, 15-Story Frame 360

11.4.4 Design of a 3-Bay 24-Story Frame 362

11.5 Discussions . 366

References . 368

12 Chaos Embedded Metaheuristic Algorithms 369

12.1 Introduction . 369

12.2 An Overview of Chaotic Systems . 370

12.2.1 Logistic Map . 373

12.2.2 Tent Map . 373

12.2.3 Sinusoidal Map . 373

12.2.4 Gauss Map . 373

12.2.5 Circle Map . 374

12.2.6 Sinus Map . 374

12.2.7 Henon Map . 374

12.2.8 Ikeda Map . 374

12.2.9 Zaslavskii Map . 375

12.3 Use of Chaotic Systems in Metaheuristics 375

12.4 Chaotic Update of Internal Parameters for Metaheuristics 376

12.5 Chaotic Search Strategy in Metaheuristics 379

12.6 A New Combination of Metaheuristics and Chaos Theory 381

12.6.1 The Standard PSO . 381

12.6.2 The CPVPSO Phase . 383

12.6.3 The CLSPSO Phase . 383

12.6.4 Design Examples . 384

12.7 Discussion . 388

References . 390

13 A Multi-swarm Multi-objective Optimization Method for
Structural Design . 393

13.1 Introduction . 393

13.2 Preliminaries . 395

13.3 Background . 396

13.3.1 Charged System Search . 397

13.3.2 Clustering . 398

13.4 MO-MSCSS . 399

13.4.1 Algorithm Overview . 400

13.4.2 Search Process by CSS Algorithm 401

13.4.3 Charge Magnitude of Particles 403

13.4.4 Population Regeneration . 404

13.4.5 Mutation Operator . 405

13.4.6 Global Archive Updating Process 406

13.4.7 Constraint Handling . 407

13.5 Structural Optimization . 407

13.5.1 Statement of the Considered Optimization Design

Problem . 407

Contents xi

13.6 Numerical Examples . 409

13.6.1 Unconstrained Multi-objective Problems 409

13.6.2 Constrained Multi-objective Problems 416

13.7 Discussions . 423

References . 425

xii Contents

Chapter 1

Introduction

1.1 Metaheuristic Algorithms for Optimization

In today’s extremely competitive world, human beings attempt to exploit the

maximum output or profit from a limited amount of available resources. In engi-

neering design, for example, choosing design variables that fulfill all design

requirements and have the lowest possible cost is concerned, i.e. the main objective

is to comply with basic standards but also to achieve good economic results.

Optimization offers a technique for solving this type of problems.

The term “optimization” refers to the study of problems in which one seeks to

minimize or maximize a function by systematically choosing the values of variables

from/within a permissible set. In one hand, a vast amount of research has been

conducted in this area of knowledge, hoping to develop effective and efficient

optimization algorithms. On the other hand, the application of the existing algo-

rithms to real projects has been the focus of many studies.

In the past, the most commonly used optimization techniques were gradient-

based algorithms which utilized gradient information to search the solution space

near an initial starting point [1, 2]. In general, gradient-based methods converge

faster and can obtain solutions with higher accuracy compared to stochastic

approaches. However, the acquisition of gradient information can be either costly

or even impossible to obtain the minima. Moreover, this kind of algorithms is only

guaranteed to converge to local optima. Furthermore, a good starting point is quite

vital for a successful execution of these methods. In many optimization problems,

prohibited zones, side limits and non-smooth or non-convex functions should be

taken into consideration. As a result, these non-convex optimization problems

cannot easily be solved by these methods.

On the other hand other types of optimization methods, known as metaheuristic

algorithms, are not restricted in the aforementioned manner. These methods are

suitable for global search due to their capability of exploring and finding promising

regions in the search space at an affordable computational time. Metaheuristic

algorithms tend to perform well for most of the optimization problems [3, 4].

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_1, © Springer International Publishing Switzerland 2014

1

This is because these methods refrain from simplifying or making assumptions

about the original problem. Evidence of this is their successful applications to a vast

variety of fields, such as engineering, physics, chemistry, art, economics, market-

ing, genetics, operations research, robotics, social sciences, and politics.

The word heuristic has its origin in the old Greek work heuriskein, which means

the art of discovering new strategies (rules) to solve problems. The suffix meta, also
is a Greek word, means “upper level methodology”. The term metaheuristic was

introduced by F. Glover in the paper [5].

A heuristic method can be considered as a procedure that is likely to discover a

very good feasible solution, but not necessarily an optimal solution, for a consid-

ered specific problem. No guarantee can be provided about the quality of the

solution obtained, but a well-designed heuristic method usually can provide a

solution that is at least nearly optimal. The procedure also should be sufficiently

efficient to deal with very large problems. The heuristic methods are often consid-

ered as iterative algorithm, where each iteration involves conducting a search for a

new solution that might be better than the best solution found previously. After a

reasonable time when the algorithm is terminated, the solution it provides is the best

one that was found during any iteration. A metaheuristic is formally defined as an

iterative generation process which guides a subordinate heuristic by combining

intelligently different concepts for exploring (global search) and exploiting (local

search) the search space, learning strategies are used to structure information in

order to find efficiently near-optimal solutions [5–7].

Metaheuristic algorithm has found many applications in different areas of

applied mathematics, engineering, medicine, economics and other sciences.

These methods are extensively utilized in the design of different systems in civil,

mechanical, electrical, and industrial engineering. At the same time, one of the most

important trends in optimization is the constantly increasing emphasis on the

interdisciplinary nature of the field.

1.2 Optimal Design of Structures and Goals
of the Present Book

In the area of structural engineering that is the main concern of this book, one tries

to achieve certain objectives in order to optimize weight, construction cost, geom-

etry, layout, topology and time satisfying certain constraints. Since resources, fund

and time are always limited, one has to find solutions to optimal usage of these

resources.

The main goal of this book is to introduce some well established and the most

recently developed metaheuristics for optimal design of structures. Schematic of

the chapters of the present book in one glance is shown in Fig. 1.1.

Most of these methods are either nature-based or physics-based algorithms,

Fig. 1.2. Though many design examples are included, however, the results may

2 1 Introduction

or may not have small constraint violations, and do not constitute the main

objective of the book.

1.3 Organization of the Present Book

After this introductory chapter, the remaining chapters of this book are organized in

the following manner:

Chapter 2 introduces the well-known Particle Swarm Optimization (PSO)

algorithms. These algorithms are nature-inspired population-based metaheuristic

algorithms originally accredited to Eberhart, Kennedy and She. The algorithms

mimic the social behavior of birds flocking and fishes schooling. Starting with a

Fig. 1.1 Schematic of the chapters of the present book in one glance

1.3 Organization of the Present Book 3

Fig. 1.2 Classification of the metaheuristics presented in this book

4 1 Introduction

randomly distributed set of particles (potential solutions), the algorithms try to

improve the solutions according to a quality measure (fitness function). The improvi-

sation is preformed through moving the particles around the search space by means of

a set of simple mathematical expressions which model some inter-particle communi-

cations. These mathematical expressions, in their simplest and most basic form,

suggest the movement of each particle towards its own best experienced position

and the swarm’s best position so far, along with some random perturbations.

Chapter 3 presents the well established Charged System Search Algorithm

(CSS), developed by Kaveh and Talatahari. This chapter consists of two parts. In

the first part an optimization algorithm based on some principles from physics and

mechanics is introduced. In this algorithm the governing Coulomb law from

electrostatics and the Newtonian laws of mechanics are utilized. CSS is a multi-

agent approach in which each agent is a Charged Particle (CP). CPs can affect each

other based on their fitness values and their separation distances. The quantity of the

resultant force is determined by using the electrostatics laws and the quality of the

movement is determined using Newtonian mechanics laws. CSS can be utilized in

all optimization fields; especially it is suitable for non-smooth or non-convex

domains. CSS needs neither the gradient information nor the continuity of the

search space. In the second part, CSS is applied to optimal design of skeletal

structures and high performance of CSS is illustrated.

Chapter 4 extends the algorithm of the previous chapter and presents the

Magnetic Charged System Search, developed by Kaveh, Motie Share and Moslehi.

This chapter consists of two parts. In first part, the standard Magnetic Charged

System Search (MCSS) is presented and applied to different numerical examples to

examine the efficiency of this algorithm. The results are compared to those of the

original charged system search method. In the second part, an improved form of the

MCSS algorithm, denoted by IMCSS, is presented and also its discrete version is

described. The IMCSS algorithm is applied to optimization of truss structures with

continuous and discrete variables to demonstrate the performance of this algorithm

in the field of structural optimization.

Chapter 5 presents a generalized CSS algorithm known as the Field of Forces

Optimization. Although different metaheuristic algorithms have some differences

in approaches to determine the optimum solution, however their general perfor-

mance is approximately the same. They start the optimization with random solu-

tions; and the subsequent solutions are based on randomization and some other

rules. With the progress of the optimization process, the power of rules increases,

and the power of randomization decreases. It seems that these rules can be modelled

by a familiar concept of physics known as the fields of forces (FOF). FOF is a

concept which is utilized in physics to explain the reason of the operation of the

universe. The virtual FOF model is approximately simulated by using the concepts

of real world fields such as gravitational, magnetic or electric fields.

Chapter 6 presents the recently developed algorithm known as Dolphin Echo-

location Optimization, proposed by Kaveh and Farhoudi. Nature has provided

inspiration for most of the man-made technologies. Scientists believe that dolphins

are the second to human beings in smartness and intelligence. Echolocation is the

1.3 Organization of the Present Book 5

biological sonar used by dolphins and several kinds of other animals for navigation

and hunting in various environments. This ability of dolphins is mimicked in this

chapter to develop a new optimization method. There are different metaheuristic

optimization methods, but in most of these algorithms parameter tuning takes a

considerable time of the user, persuading the scientists to develop ideas to improve

these methods. Studies have shown that metaheuristic algorithms have certain

governing rules and knowing these rules helps to get better results. Dolphin

Echolocation takes advantages of these rules and outperforms some of the existing

optimization methods, while it has few parameters to be set. The new approach

leads to excellent results with low computational efforts.

Chapter 7 contains the most recently developed algorithm so-called Colliding

Bodies Optimization proposed by Kaveh and Mahdavi. This chapter presents a

novel efficient metaheuristic optimization algorithm called Colliding Bodies Opti-

mization (CBO), for optimization. This algorithm is based on one-dimensional

collisions between bodies, with each agent solution being considered as the massed

object or body. After a collision of two moving bodies having specified masses and

velocities, these bodies are separated with new velocities. This collision causes the

agents to move toward better positions in the search space. CBO utilizes simple

formulation to find minimum or maximum of functions; also it is internally

parameter independent.

Chapter 8 presents the Ray Optimization (RO) Algorithm originally developed

by Kaveh and Khayat Azad. Similar to other multi-agent methods, Ray Optimiza-

tion has a number of particles consisting of the variables of the problem. These

agents are considered as rays of light. Based on the Snell’s light refraction law when

light travels from a lighter medium to a darker medium, it refracts and its direction

changes. This behaviour helps the agents to explore the search space in early stages

of the optimization process and to make them converge in the final stages. This law

is the main tool of the Ray Optimization algorithm. This chapter consists of three

parts. In first part, the standard Ray optimization is presented and applied to

different mathematical functions and engineering problems. In the second part,

RO is employed for size and shape optimization of truss structures. Finally in the

third part, an improved ray optimization (IRO) algorithm is introduced and applied

to some benchmark mathematical optimization problems and truss structure

examples.

Chapter 9 presents a modified Big Bang-Big Crunch (BB–BC) Algorithm. The

standard BB–BC method is developed by Erol and Eksin, and consists of two

phases: a Big Bang phase, and a Big Crunch phase. In the Big Bang phase,

candidate solutions are randomly distributed over the search space. Similar to

other evolutionary algorithms, initial solutions are spread all over the search

space in a uniform manner in the first Big Bang. Erol and Eksin associated the

random nature of the Big Bang to energy dissipation or the transformation from an

ordered state (a convergent solution) to a disorder or chaos state (new set of solution

candidates).

Chapter 10 presents the Cuckoo Search (CS) Optimization developed by Yang

and colleagues. In this chapter CS is utilized to determine optimum design of

6 1 Introduction

http://en.wikipedia.org/wiki/Sonar#Sonar
http://en.wikipedia.org/wiki/Animal#Animal
http://en.wikipedia.org/wiki/Navigation_research#Navigation%20research

structures for both discrete and continuous variables. This algorithm is recently

developed by Yang and colleagues, and it is based on the obligate brood parasitic

behaviour of some cuckoo species together with the Lévy flight behaviour of some

birds and fruit flies. The CS is a population based optimization algorithm and

similar to many others metaheuristic algorithms starts with a random initial popu-

lation which is taken as host nests or eggs. The CS algorithm essentially works with

three components: selection of the best by keeping the best nests or solutions;

replacement of the host eggs with respect to the quality of the new solutions or

Cuckoo eggs produced based randomization via Lévy flights globally (exploration);

and discovering of some cuckoo eggs by the host birds and replacing according to

the quality of the local random walks (exploitation).

Chapter 11 presents the Imperialist Competitive Algorithm (ICA) proposed by

Atashpaz et al. ICA is a multi-agent algorithm with each agent being a country,

which is either a colony or an imperialist. These countries form some empires in the

search space. Movement of the colonies toward their related imperialist, and

imperialistic competition among the empires, form the basis of the ICA. During

these movements, the powerful Imperialists are reinforced and the weak ones are

weakened and gradually collapsed, directing the algorithm towards optimum

points.

Chapter 12 is an introduction is provided to Chaos Embedded Metaheuristic

Algorithms. In nature complex biological phenomena such as the collective behav-

iour of birds, foraging activity of bees or cooperative behaviour of ants may result

from relatively simple rules which however present nonlinear behaviour being

sensitive to initial conditions. Such systems are generally known as “deterministic

nonlinear systems” and the corresponding theory as “chaos theory”. Thus real

world systems that may seem to be stochastic or random, may present a nonlinear

deterministic and chaotic behaviour. Although chaos and random signals share the

property of long term unpredictable irregular behaviour and many of random

generators in programming softwares as well as the chaotic maps are deterministic;

however chaos can help order to arise from disorder. Similarly, many

metaheuristics optimization algorithms are inspired from biological systems

where order arises from disorder. In these cases disorder often indicates both

non-organized patterns and irregular behaviour, whereas order is the result of

self-organization and evolution and often arises from a disorder condition or from

the presence of dissymmetries. Self-organization and evolution are two key factors

of many metaheuristic optimization techniques. Due to these common properties

between chaos and optimization algorithms, simultaneous use of these concepts can

improve the performance of the optimization algorithms. Seemingly the benefits of

such combination is a generic for other stochastic optimization and experimental

studies confirmed this; although, this has not mathematically been proven yet.

Chapter 13 consists of a multi-objective optimization method to solve large-

scale structural problems in continuous search space. This method is based on the

Charged System Search, which has been used for single objective optimization in

chapter 3. In this study the aim is to develop a multi-objective optimization

algorithm with higher convergence rate compared to the other well-known methods

1.3 Organization of the Present Book 7

to enable to deal with multi-modal optimization problems having many design

variables. In this method, the CSS algorithm is utilized as a search engine in

combination with clustering and particle regeneration procedures. The proposed

method is examined for four mathematical functions and two structural problems,

and the results are compared to those of some other state-of-art approaches.

Finally it should be mentioned that most of the metaheuristic algorithms are

attractive, because each one has its own striking features. However, the one which

is simple, less parameter dependent, easy to implement, and has a good balance

between exploration and exploitation, higher capability to avoid being trapped in

local optima, higher accuracy and applicable to wider types of problems and can

deal with higher number of variables, can be considered as the most attractive for

engineering usage.

In order to have the above features partially or collectively, sometimes it is

necessary to design hybrid algorithms. There are many such algorithms and a

successful example of this is that of Kaveh and Talatahari [8].

Finally, the author strongly believes that optimal analysis, introduced by

Kaveh [9,10], can provide an important means for optimal design of future large-

scale structures. Metaheuristic algorithms often require a large number of analyses

and optimal analysis can play an important role in reducing the computational cost

of the design.

References

1. Majid KI (1974) Optimum design of structures. Newness-Butterworth, UK

2. Kirsch U (1993) Structural optimization: fundamentals and applications. Springer, Berlin

3. Gonzalez TF (ed) (2007) Handbook of approximation algorithms and metaheuristics, Com-

puter and information science series. Chapman & Hall/CRC, Boca Raton, FL

4. Yang X-S (2010) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, UK

5. Glover F, Kochenberger GA (eds) (2003) Handbook of metaheuristics. Kluwer Academic

Publishers, Dordrecht

6. Voß S, Martello S, Osman IH, Roucairol C (eds) (1999) Metaheuristics: advances and trends in

local search paradigms for optimization. Kluwer Academic Publishers, Dordrecht

7. Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Oper Res 63:513–623

8. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of truss structures. Comput Struct 87:267–293

9. Kaveh A (2013) Optimal analysis of structures by concepts of symmetry and regularity.

Springer, Wien

10. Kaveh A (2014) Computational structural analysis and finite element methods. Springer, Wien

8 1 Introduction

Chapter 2

Particle Swarm Optimization

2.1 Introduction

Particle Swarm Optimization (PSO) algorithms are nature-inspired population-

based metaheuristic algorithms originally accredited to Eberhart, Kennedy and

Shi [1, 2]. The algorithms mimic the social behavior of birds flocking and fishes

schooling. Starting form a randomly distributed set of particles (potential solu-

tions), the algorithms try to improve the solutions according to a quality measure

(fitness function). The improvisation is preformed through moving the particles

around the search space by means of a set of simple mathematical expressions

which model some inter-particle communications. These mathematical expres-

sions, in their simplest and most basic form, suggest the movement of each particle

towards its own best experienced position and the swarm’s best position so far,

along with some random perturbations. There is an abundance of different variants

using different updating rules, however.

Though being generally known and utilized as an optimization technique, PSO

has its roots in image rendering and computer animation technology where Reeves

[3] defined and implemented a particle system as a set of autonomous individuals

working together to form the appearance of a fuzzy object like a cloud or an

explosion. The idea was to initially generate a set of points and to assign an initial

velocity vector to each of them. Using these velocity vectors each particle changes

its position iteratively while the velocity vectors are being adjusted by some

random factors.

Reynolds [4] added the notion of inter-object communication to Reeves’ particle

system to introduce a flocking algorithm in which the individuals were able to

follow some basic flocking rules such as trying to match each other’s velocities.

Such a system allowed for modeling more complex group behaviors in an easier

and more natural way.

Kennedy and Eberhart [1] while trying to “graphically simulate the graceful but

unpredictable choreography of a bird flock” came across the potential optimization

capabilities of a flock of birds. In the course of refinement and simplification of their

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_2, © Springer International Publishing Switzerland 2014

9

paradigm they discussed that the behavior of the population of agents that they were

suggesting follows the five principles of swarm intelligence articulated by Millonas

[5]. First, the proximity principle: the population should be able to carry out simple

space and time computations. Second, the quality principle: the population should

be able to respond to quality factors in the environment. Third, the principle of

diverse response: the population should not commit its activities along excessively

narrow channels. Fourth, the principle of stability: the population should not change

its mode of behavior every time the environment changes. Fifth, the principle of

adaptability: the population must be able to change behavior mode when it’s worth

the computational price. They also mentioned that they compromisingly call their

mass-less volume-less population members particles in order to make the use of

concepts like velocity and acceleration more sensible. Thus, the term particle

swarm optimization was coined.

2.2 PSO Algorithm

2.2.1 Development

As Kennedy and Eberhart [1] indicated appropriately particle swarm optimization

is probably best presented and understood by explaining its conceptual develop-

ment. Hence, the algorithms transformation process from its earliest stages to its

current canonical form is briefly reviewed in this section. Future discussion on the

main aspects and issues would be more easily done in this way.

The earliest attempt to use the concept for social behavior simulation carried out

by Kennedy and Eberhart [1] resulted in a set of agents randomly spread over a

torus pixel grid which used two main strategies: nearest neighbor velocity matching

and craziness. At each iteration a loop in the program determined for each agent

which other agent was its nearest neighbor, then assigned that agent’s X and Y

velocities to the agent in focus. As it is predictable, it has been viewed that sole use

of such a strategy will quickly settle down the swarm on a unanimous, unchanging

direction. To avoid this, a stochastic variable called craziness was introduced. At

each iteration, some change was added to randomly chosen X and Y velocities. This

introduced enough variation into the system to give the simulation a “life-like”

appearance. The above observation points out one of the most necessary features of

PSO which indicates its seemingly unalterable non-deterministic nature: incorpo-

ration of randomness.

Kennedy and Eberhart took the next step by replacing the notion of “roost”

(a place that the birds know previously) in Heppner and Grenander [6] by “food”

(for which the birds must search) and therefore converted the social simulation

algorithm into an optimization paradigm. The idea was to let the agents (birds) find

10 2 Particle Swarm Optimization

an unknown favorable place in the search space (food source) through capitalizing

on one another’s knowledge. Each agent was able of remembering its best position

and knowing the best position of the whole swarm. The extremum of the mathe-

matical function to be optimized can be thought of as the food source. After a series

of minor alterations and elimination of the ancillary variables, the updating rules for

calculating the next position of a particle was introduced as:

vkþ1
i, j ¼ vki, j þ c1r1 xbest ki, j � xki, j

� �
þ c2r2 xgbest kj � xki, j

� �
ð2:1Þ

xkþ1
i, j ¼ xki, j þ vkþ1

i, j ð2:2Þ

where xi,j
k and vi,j

k are the jth component of the ith particle’s position and velocity

vector respectively in the kth iteration, r1 and r2 are two random numbers uniformly

distributed in the range (1,0), xbesti and xgbest indicate the best positions experi-

enced so far by the ith particle and the whole swarm, respectively, c1 and c2 are two
parameters representing the particle’s confidence in itself (cognition) and in the

swarm (social behavior), respectively. These two parameters were set equal to 2 in

the initial version of the PSO presented by Kennedy and Eberhart [1] so that the

particles would overfly the target about half the time. These two parameters are

among the most important parameters of the algorithm in that they control the

balance between exploration and exploration tendencies. A relatively high value of

c1 will encourage the particles to move towards their local best experiences while

higher values of c2 will result in faster convergence to the global best position.

Although the above formulation embodies the main concept of PSO that has

survived over time and forms the skeleton of quite all subsequent variants, it has

still been subject to amendment. Eberhart et al. [7] introduced a maximum velocity

parameter, Vmax, in order to prevent particles from leaving the search space. Shi and

Eberhart [8] discussed the role of the three terms of (2.1) and concluded that the first

term, previous velocity of the particle, has an important effect of global and local

search balance. By eliminating this term the particles can note leave their initially

encircled portion of the search space and the search space will shrink gradually over

time. This will be equivalent to a local search procedure. Alternatively, by giving

the previous velocity term relatively higher effects the particles will be reluctant to

converge to the known good positions. They will instead tend to explore unseen

regions of the search space. This could be conceived as global search tendency.

Both the local search and global search will benefit solving some kinds of problems.

Therefore, an inertia weight w is thus introduced into (2.1) in order to maintain

balance between these to effects:

vkþ1
i, j ¼ wvki, j þ c1r1 xlbest ki, j � xki, j

� �
þ c2r2 xgbest kj � xki, j

� �
ð2:3Þ

2.2 PSO Algorithm 11

Shi and Eberhart [8] indicated that the inertia weight can be a positive

constant or even a positive linear or nonlinear function of time. They examined

the use of constant values in the range [0, 1.4] for the benchmark problem of

Schaffer’s f6 function and concluded the range [0.9, 1.2] to be appropriate. Later,

Eberhart and Shi [9] indicated that the use of the inertia weight w, which

decreases linearly from about 0.9 to 0.4 during a run, provides improved perfor-

mance in a number of applications. Many different research works has focused

on inertia weight parameter and different strategies have been proposed ever

since. A brief discussion on these methods and strategies will be presented in the

next section.

Later, Clerc [10] indicated that the use of a constriction factor may be necessary

to insure convergence of the particle swarm algorithm and proposed an alternative

formulation for the velocity vector:

vkþ1
i, j ¼ χ vki, j þ c1r1 xlbest ki, j � xki, j

� �
þ c2r2 xgbest kj � xki, j

� �h i
ð2:4Þ

χ ¼ 2

2� ϕ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 � 4ϕ

p���
���

where ϕ ¼ c1 þ c2, ϕ > 4 ð2:5Þ

Schematic movement of a particle is illustrated in Fig. 2.1.

Such a formulation was intended to impose some restriction on velocity vectors

and thus to prevent divergence. Eberhart and Shi [9] compared the use of inertia

weights and constriction factors in particle swarm optimization and concluded that

the two approaches are equivalent and could be interchangeably used by proper

parameter setting. They also indicated that the use of constriction factor does not

eliminate the need for Vmax parameter unlike what might be assumed at the first

glance. Though the two approaches are shown to be equivalent they both survived

and have been continually used by researchers. Simultaneous utilization of inertia

weight and constriction factor can also be found in the literature (e.g. see [11]

among others).

2.2.2 PSO Algorithm

The general structure of a canonical PSO algorithm is as follows [12]:

12 2 Particle Swarm Optimization

procedure Particle Swarm Optimization

begin

Initialize xi, vi and xbesti for each particle i;

while (not termination condition) do

begin
for each particle i

Evaluate objective function;

Update xbesti

end
for each i

Set g equal to index of neighbor with best xbesti;

Use g to calculate vi;

Update xi = xi + vi;

Evaluate objective function;

Update xbesti

end

end

end

2.2.3 Parameters

Like any other metaheuristic algorithm PSO’s performance is dependent on the

values of its parameters. The optimal values for the parameters depend mainly on

the problem at hand and even the instance to deal with and on the search time that

Fig. 2.1 Scematic

movement of a particle

based on (2.4)

2.2 PSO Algorithm 13

the user wants to spend for solving the problem [13]. In fact the main issue is to

provide balance between exploration and exploitation tendencies of the algorithm.

Total number of particles, total number of iterations, inertia weight and/or

constriction factor, and cognition and social behavior coefficients (c1 and c2) are
the main parameters that should be considered in a canonical PSO. The total

number of iterations could be replaced with a desired precision or any other

termination criterion. In general, the search space of an n-dimensional optimization

problem can be conceived as an n-dimensional hyper-surface. The suitable values

for a metaheuristic’s parameters depend on relative ruggedness and smoothness of

this hyper-space. For example, it is imaginable that in a smoother hyper-space

fewer number of particles and iteration numbers will be required. Moreover, in a

smoother search space there will be fewer local optimal positions and less explo-

ration effort will be needed while in a rugged search space a more through

exploration of the search space will be advisable.

Generally speaking, there are two different strategies for parameter value selec-

tion, namely offline parameter initialization and online parameter tuning [13]. In

off-line parameter initialization, the values of different parameters are fixed before

the execution of the metaheuristic. These values are usually decided through

empirical study. It should be noted that deciding about a parameter of a

metaheuristic algorithm while keeping the others fixed (i.e. one-by-one parameter

selection) may result in misleading observations since the interactions of the

parameters are not taken into account. However, it is the common practice in the

literature since examining combinations of the algorithm parameters might be very

time-consuming. To perform such an examination, when desired, a meta-

optimization approach may be performed i.e. the algorithm parameters can be

considered as design variables and be optimized in an overlying level.

The main drawback of the off-line approaches is their high computational cost

since the process should be repeated for different problems and even for different

instances of the same problem. Moreover, appropriate values for a parameter might

change during the optimization process. Hence, online approaches that change the

parameter values during the search procedure must be designed. Online approaches

may be classified in two main groups [13]; dynamic approaches and adaptive

approaches. In a dynamic parameter updating approach, the change of the param-

eter value is performed without taking into account the search progress. The

adaptive approach changes the values according to the search progress.

Attempts have been made to introduce guidelines and strategies for selection of

PSO parameter. Shi and Eberhart [14] analyzed the impact of inertia weight and

maximum allowable velocity on the performance of PSO and provided some

guidelines for selecting these two parameters. For this purpose they utilized differ-

ent combinations of w and Vmax parameters to solve the Schaffer’s f6 test function

while keeping other parameters unchanged. They concluded that when Vmax is

small (<¼ 2 for the f6 function), an inertia weight of approximately 1 is a good

choice, while when Vmax is not small (> ¼ 3), an inertia weight w ¼ 0.8 is a good

choice. They declared that in absence of proper knowledge regarding the selection

of Vmax, it is also a good choice to set Vmax equal to Xmax and an inertia weight

14 2 Particle Swarm Optimization

w ¼ 0.8 is a good starting point. Furthermore if a time varying inertia weight is

employed, even better performance can be expected. As the authors indicated, such

an empirical approach using a small benchmark problem cannot be easily

generalized.

Carlisle and Dozier [15] proposed another set of guidelines based on evidence

from six experiments. They recommended to start with an asynchronous constricted

algorithm setting r1 ¼ 2.8 and r2 ¼ 1.3. However, no directives are provided in

order to progress from this initial setting.

Trelea [16] used dynamic system theory for a theoretical analysis of the algo-

rithm producing some graphical guidelines for parameter selection. A simplified

deterministic one-dimensional PSO was used for this study. Trelea indicates that

the results are predictably dependent on the form of the objective function. The

discussion is supported by experiments on five benchmark functions.

Zhang et al. [17] suggested some optimal ranges for constriction factor and Vmax

to Xmax ratio parameters based on experimental study on nine mathematical func-

tions. The optimal range for constriction factor is claimed to be [4.05, 4.3] while for

Vmax to Xmax ratio the range [0.01, 1] is recommended.

More recently Pedersen [18] carried out Meta-Optimization to tune the PSO

parameters. A table is presented to help the practitioner choose appropriate PSO

parameters based on the dimension of the problem at hand and the total number of

function evaluation that is intended to be performed. Performance evaluation of

PSO is performed using some mathematical functions. As mentioned before, the

results of the above-mentioned off-line parameter tuning studies are all problem-

dependent and can not be claimed as universally optimal.

Many different online tuning strategies are also proposed for different PSO

parameters. For inertia weight, methods such as Random Inertia Weight, Adaptive

Inertia Weight, Sigmoid Increasing/Decreasing Inertia Weight, Linear Decreasing

Inertia Weight, Chaotic Inertia Weight and Chaotic Random Inertia Weight, Oscil-

lating Inertia Weight, Global-Local Best Inertia Weight, Simulated Annealing

Inertia Weight, Natural Exponent Inertia Weight Strategy, Logarithm Decreasing

Inertia Weight, Exponent Decreasing Inertia Weight are reported in the literature.

All of these methods replace the inertia weight parameter with a mathematical

expression which is either dependent on the state of the search process (e.g. global

best solution, current position of the particle etc.) or not. Bansal et al. [19] examined

the above mentioned inertia weight strategies for a set of five mathematical

problems and concluded that Chaotic Inertia Weight is the best strategy for better

accuracy while Random Inertia Weight strategy is best for better efficiency. This

shows that the choice of a suitable inertia weight strategy depends not only on the

problem under consideration, but also on the practitioner’s priorities.

Other adaptive particle swarm optimization algorithms could be found in the

literature [20].

2.2 PSO Algorithm 15

2.2.4 Premature Convergence

One of the main advantages of PSO is its ability to attain reasonably good solutions

relatively fast. At the same time, this is probably the algorithm’s most recognized

drawback. In fact, Angeline [21] while studying PSO versus Evolutionary optimi-

zation techniques showed that although PSO discovers good quality solutions much

faster than evolutionary algorithms, it does not improve the quality of the solutions

as the number of generations is increased. This is because of the particles getting

clustered in a small region of the search space and thus the loss of diversity

[22]. Improving the exploration ability of PSO has been an active research topic

in recent years [20].

Attempts have been made in order to improve the algorithm’s exploration

capabilities and thus to avoid premature convergence. van den Bergh and

Engelbrecht [23] introduced a Guaranteed Convergence PSO (GCPSO) in which

particles perform a random search around xgbest within a radius defined by a

scaling factor. The algorithm is reported to perform better than original PSO in

unimodal problems while producing similar results in multimodal ones. The scaling

factor however is another parameter for which prior knowledge may be required to

be optimally set.

Krink et al. [24] proposed a collision free PSO where particles attempting to

gather about a sub-optimal solution bounce away. A random direction changer, a

realistic bounce and a random velocity changer where used as three bouncing

strategies. The latter two are reported to significantly improve the exploration

capabilities of the algorithm and obtain better results especially in multimodal

problems.

Implementing diversity measures is another way to control swarm stagnation.

Riget and Vesterstrøm [25] utilized such a measure along with alternative attraction

and repulsion of the particles to and from the swarm best position. Repulsion could

be induced by inverting the velocity update rule. The approach improves the

performance in comparison to canonical PSO, especially when problems under

consideration are multimodal.

Silva et al. [26] introduced a predator-prey optimization system in which a

predator particle enforces other particles to leave the best position of the search

space and explore other regions. Improved performance is reported based on

experiments carried out on four high-dimensional test functions.

Jie et al. [27] introduced an adaptive PSO with feedback control of diversity in

order to tune the inertia weight parameter and alleviate the premature convergence.

The improvements increase the robustness and improve the performance of the

standard PSO in multimodal functions.

Wang et al. [20] proposed a self-adaptive learning based particle swarm optimi-

zation which used four PSO based search strategies on probabilistic basis according

to the algorithms performance in previous iterations. The use of different search

strategies in a learning based manner helps the algorithm to handle problems with

different characteristics at different stages of optimization process. 26 test functions

16 2 Particle Swarm Optimization

with different characteristics such as uni-modality, multi-modality, rotation,

ill-condition, mis-scale and noise are considered and the results are compared

with eight other PSO variants.

Kaveh and Zolghadr [28] introduced a democratic particle swarm optimization

(DPSO) which uses the updating information of a particle form a more diverse set

of sources instead of using local and global best solutions merely. An eligibility

parameter is introduced which determines which particles to incorporate when

updating a specific particle. The improved algorithm is compared to the standard

one for some mathematical and structural problems. The performance is improved

for the problems under consideration.

2.2.5 Topology

While xgbest of (2.1) is considered to be the whole swarm’s global best position in

canonical PSO, this is not necessarily always the case. Different topologies have

been defined and used for inter-particle communications in PSO [29, 30]. In fact in

updating a particle’s position, xgbest could mean the best particle position of a

limited neighborhood to which the particle is connected instead of the whole

swarm. It has been shown that the swarm topologies in PSO can remarkably

influence the performance of the algorithm. Figure 2.2 shows some of the basic

PSO neighborhood topologies introduced by Mendes et al. [29]. Many other

topologies can be defined and used.

These different topologies affect the way that information circulates between the

swarm’s particles and thus can control exploration-exploitation behavior and con-

vergence rate of the algorithm. Canonical PSO uses the fully-connected topology in

which all of the particles are neighbors. Such a topology exhibits a fast (and

probably immature) convergence since all of the particles are directly linked to

the global best particle and simultaneously affected by it. Thus, the swarm does not

explore other areas of the search space and would most probably get trapped in local

optima.

Ring topology which is a usual alternative to fully-connected topology repre-

sents a regular graph with the minimum node degrees. This could be considered the

slowest way of information circulation between the particles and is supposed to

result in the slowest rate of convergence since it takes a relatively long time for

information of the best particle to reach the other end of the ring.

Other neighborhood topologies are somewhere in between. Predictably, the

effect of different neighborhood topologies on effectiveness and efficiency of the

algorithm is problem dependent and is more or less empirically studied.

2.2 PSO Algorithm 17

2.2.6 Biases

It is shown that many metaheuristic optimization algorithms, including PSO, are

biased toward some specific regions of the search space. For example, they perform

best when the optimum is located at or near the center of the initialization region,

which is often the origin [31]. This is particularly true when the information from

different members of the population is combined using some sort of averaging

operator [32]. Since many of the benchmark optimization problems have their

global optimal solutions at or near the origin, such a biased behavior can make

the performance evaluation of the algorithms problematic. Different approaches

have been taken in order to expose and probably alleviate this bias while testing

PSO. Angeline [32] popularized a method called Region Scaling initially proposed

by Gehlhaar and Fogel [33]. The method, tries to let the origin outside the initial

region covered by the particles by generating the initial solutions in a portion of the

search space that does not include origin. Monson and Seppi [31] showed that

origin-seeking biases depend on the way that the positions of the particles are

updated and Region Scaling method could not be sufficient for all motion rules.

They introduced a Center Offset method in which the center of the benchmark

function under consideration was moved to a different location of the search space.

Suganthan et al. [34] also recommended the use of non-biased shifted or rotated

benchmark problems.

Fig. 2.2 Some topologies for PSO neighborhoods [29]. Fully-connected: where all vertexes are

connected to every other; Ring: where every vertex is connected to two others; Four clusters: with
four cliques connected among themselves by gateways; Pyramid: a triangular wire-frame pyramid,

and Square: which is a mesh where every vertex has four neighbors that wraps around on the edges

as a torus

18 2 Particle Swarm Optimization

Clerc [35] showed that this biased behavior can be attributed to the confinement

method used i.e. the method by which the particles are prevented from leaving the

search space. A hybrid confinement method is introduced and claimed to be useful

in terms of reducing the bias.

Attempts have also been made to propose improved non-biased variants

(e.g. Wilke et al. [36]). This is however of less generality in case of unbiased

performance comparison because it does not have any effect on the other existing

algorithms.

2.3 Hybrid Algorithms

A popular way of producing new improved algorithms is to hybridize two or more

existing ones in an attempt to combine favorable features while omitting undesir-

able aspects. Some of the best results for the real-life and classical optimization

problems are obtained using hybrid methods [37]. Numerous different hybrid

algorithms using PSO as the main or the supplementary ingredient have been

proposed usually in the context of some specific application domain for which

that hybrid is particularly well suited [38]. A selection of these methods and

approaches is briefly mentioned here along with some examples.

Hybridizing PSO with other metaheuristic algorithms seems to be one of the

most popular strategies. This is mainly because the resulting algorithm maintains

positive characteristics of metaheuristic algorithms such as global search capability,

little dependence on starting point, no need to gradient information, and applica-

bility to non-smooth or non-convex domains. The other metaheuristic algorithm

(s) to be hybridized with PSO can be either single-agent or population-based.

Simulated Annealing (SA) [39] is a single-agent metaheuristic algorithm that

has been successfully hybridized with PSO. It has been shown in the literature [40]

that SA algorithms, when subject to very low variations of temperature parameters,

and when the solution search for each temperature can reach an equilibrium

condition have very high chances of finding the global optimal solution. Moreover,

the metropolis process in SA provides an ability of jumping away from a local.

However, SA algorithms require very slow temperature variations and thus increase

the required computational effort. On the other hand, although PSO exhibits

relatively fast convergence rate, is easy to implement, and is able to find local

optimal solutions in a reasonable amount of time, it is notorious of premature

convergence i.e. getting trapped in local optima. Therefore, combining these two

algorithms in a judicious way will probably result in a hybridized algorithm with

improved performance [41]. Execution of PSO and SA algorithms can be either

alternative or sequential. In an alternative execution every member of the PSO

swarm can be considered as a SA single-agent at the end of each iteration. Instead,

in a sequential execution, the final local solution found by PSO could be considered

as a starting point for SA.

2.3 Hybrid Algorithms 19

As another single-agent metaheuristic algorithm, Tabu Search algorithm

(TS) [42, 43] can have the same effect as SA in hybridization with PSO. The global

search could be left to PSO while TS attempts to improve the suboptimal solutions

found by PSO in a local search process. In these hybridized algorithms TS alleviates

premature convergence of PSO while PSO alleviates excessive required computa-

tional effort of TS [44].

Hybridization of PSO with other population-based metaheuristic algorithms is

more popular. In this case hybridization might signify different meanings. In some

hybridized schemes some techniques are simply borrowed from other algorithms.

For example Løvebjerg et al. [45] borrowed the breeding technique from GAs

i.e. along with standard PSO updating rules pairs of particles could be chosen to

breed with each other and produce off-springs. Moreover, to keep away from

suboptimal solutions subpopulations were introduced.

Another approach to be mentioned is to use different metaheuristics simulta-

neously. Krink and Løvebjerg [46] introduced a lifecycle model that allowed for

use of PSO, GA or hill climber by each particle depending on the particle’s own

preference based on its memory of the best recent improvements. Kaveh and

Talatahari [47] introduced a hybridized HPSACO algorithm in which particle

swarm optimizer with passive congregation (PSOPC) was used to perform global

search task while Ant Colony Optimization (ACO) [48] was utilized for updating

positions of particles to attain the feasible solution space and Harmony Search

(HS) [49] algorithm was employed for dealing with variable constraints.

In the above-mentioned approaches the position updating rules of the original

algorithms need not to be changed. The algorithms are merely operating in combi-

nation to each other. Another hybridization approach, however, could be based on

combining the updating rules. Higashi and Iba [50] combined GA’s Gaussian

mutation with velocity and position update rules of PSO. Juang [51] incorporated

mutation, crossover and elitism. As another example, Kaveh and Talatahari [52]

introduced some of the positive aspects of PSO like directing the agents toward the

global best and the local best positions into Charged System Search (CSS) [53]

algorithm to improve its performance.

PSO could also be hybridized with techniques and tools other than metaheuristic

algorithms. Liu and Abraham [54] hybridized a turbulent PSO with a fuzzy logic

controller to produce a Fuzzy Adaptive TPSO (FATPSO). The fuzzy logic control-

ler was used for adaptively tune the velocity parameters during an optimization in

order to balance exploration and exploitation tendencies. Zahara et al. [55] hybrid-

ized Nelder-Mead simplex search and particle swarm optimization for constrained

engineering design problems. A hybrid PSO-simplex method was also used for

damage identification of delaminated beams by Qian et al. [56].

20 2 Particle Swarm Optimization

2.4 Discrete PSO

Though PSO has been introduced and more commonly utilized for continuous

optimization problems, it can be equally applied to discrete search spaces. A simple

and frequently used method to use PSO in discrete problems is to transform the real-

valued vectors found by a continuous PSO algorithm into discrete ones. To do this

the nearest permitted discrete values could be replaced with any value selected by

agents i.e. a rounding function could be used [57]. However, many discrete and

binary PSO variants have been developed that work in discrete search space

directly.

The first discrete binary version of PSO is developed by Kennedy and Eberhart

[58]. They kept the particle position updating rule unchanged and replaced the

velocity in each vector by the probability of a bit in position vector taking the value

1. In other words, if for example vi, j ¼ 0.20, then there is a twenty percent chance

that xi,j will be a one, and an eighty percent chance it will be a zero. In order to keep
vi,j in interval [0,1] a sigmoid transformation function was used.

More recently, Chen et al. [59] have proposed a set-based PSO for discrete

optimization problems. They have replaced the candidate solutions and velocity

vectors as crisp sets and sets with possibilities, respectively. The arithmetic oper-

ators in position updating rules are replaced by the operators and procedures defined

on such sets.

2.5 Democratic PSO for Structural Optimization

2.5.1 Description of the Democratic PSO

As discussed earlier different updating strategies have been proposed for PSO

resulting in many different variants. Mendes et al. [29] have proposed a fully

informed PSO for example, in which each particle uses the information from all

of the other particles in its neighborhood instead of just the best one. It has been

shown that the fully informed PSO outperforms the canonical version in all of the

mathematical functions under consideration. In a conceptually similar work Kaveh

and Zolghadr [28] have proposed a Democratic PSO for structural optimization

problems with frequency constraints. Here a brief description of the Democratic

algorithm is presented as an improved PSO version in the field of structural

optimization. The structural optimization under consideration is then introduced

in the following section and the results are then compared to those of the canonical

PSO on the same problems reported by Gomes [60].

As indicated before, canonical PSO is notorious for premature convergence and

this can be interpreted as a lack of proper exploration capability. In fact in the

standard PSO all of the particles are just being eagerly attracted toward better

solutions. And by each particle, moving toward the best position experienced by

2.5 Democratic PSO for Structural Optimization 21

itself and by the whole swarm so far is thought of as the only possible way of

improvement. Naturally, such an enthusiasm for choosing the shortest possible

ways to accomplishment results in some of the better regions of the search space

being disregarded.

In a sense, it can be said that the particles of the canonical PSO are only

motivated by selfishness (their own preference) and tyranny (the best particle’s

dictation). Except for their own knowledge and that of the best particle so far, they

do not take the achievements of the other members of the swarm into account

i.e. the information is not appropriately shared between the members of the swarm.

In order to address this problem, the velocity vector of the democratic PSO is

defined as:

vkþ1
i, j ¼ χ ωvki, j þ c1r1 xlbest ki, j � xki, j

� �
þ c2r2 xgbest kj � xki, j

� �
þ c3r3d

k
i, j

h i
ð2:6Þ

in which dki,j is the jth variable of the vector D for the ith particle. The vector

D represents the democratic effect of the other particles of the swarm on the

movement of the ith particle. r3 is a random number uniformly distributed in the

range (1,0). Parameter c3 is introduced to control the weight of the democratic

vector. Here, the vector D is taken as:

Di ¼
Xn
k¼1

Qik Xk � Xið Þ ð2:7Þ

where Qik is the weight of the kth particle in the democratic movement vector of the

ith particle and can be defined as:

Qik ¼
Eik

objbest
obj kð Þ

Xn
j¼1

Eij
objbest
obj jð Þ

ð2:8Þ

in which obj stands for objective function value; objbest is the value of the objective
function for the best particle in the current iteration; X is the particle’s position

vector; E is the eligibility parameter and is analogous to parameter P in CSS [53]. In

a minimization problem E can be defined as:

Eik ¼
1

obj kð Þ � obj ið Þ
objworst � objbest

> rand ∨ obj kð Þ < obj
�
i
�

0 else

8<
: ð2:9Þ

where objworst and objbest are the values of the objective function for the worst and

the best particles in the current iteration, respectively. The symbol _ stands for

union.

Schematic movement of a particle is illustrated in Fig. 2.3.

22 2 Particle Swarm Optimization

Since a term is added to the velocity vector of PSO, the parameter χ should be

decreased in order to avoid divergence. Here, this parameter is determined using a

trial and error process. It seems that a value in the range (0.4, 0.5) is suitable for the

problems under consideration.

As it can be seen, the democratic PSO makes use of the information produced by

all of the eligible members of the swarm in order to determine the new position of

each particle. In fact, according to (2.9), all of the better particles and some of the

worse particles affect the new position of the particle under consideration. This

modification enhances the performance of the algorithm in two ways: (1) helping

the agents to receive information about good regions of the search space other than

those experienced by themselves and the best particle of the swarm and (2) letting

some bad particles take part in the movement of the swarm and thus improving the

exploration capabilities of the algorithm. Both of the above effects help to alleviate

the premature convergence of the algorithm.

Numerical results show that this simple modification which does not call for any

extra computational effort meaningfully enhances the performance of the PSO.

2.5.2 Truss Layout and Size Optimization with Frequency
Constraints

In a frequency constraint truss layout and size optimization problem the aim is to

minimize the weight of the structure while satisfying some constraints on natural

frequencies. The design variables are considered to be the cross-sectional areas of

the members and/or the coordinates of some nodes. The topology of the structure is

not supposed to be changed and thus the connectivity information is predefined and

kept unaffected during the optimization process. Each of the design variables

should be chosen within a permissible range. The optimization problem can be

stated mathematically as follows:

Fig. 2.3 Schmatic

movement of a particle

based on (2.6)

2.5 Democratic PSO for Structural Optimization 23

Find X ¼ x1, x2, x3, . . . :, xn½ �
to minimize P Xð Þ ¼ f Xð Þ � f penalty Xð Þ
subjected to
ωj � ωj

� for some natural frequencies j
ωk � ωk

� for some natural frequencies k
ximin � xi � ximax

ð2:10Þ

where X is the vector of the design variables, including both nodal coordinates and

cross-sectional areas; n is the number of variables which is naturally affected by the

element grouping scheme which in turn is chosen with respect to the symmetry and

practice requirements; P(X) is the penalized cost function or the objective function

to be minimized; f(X) is the cost function, which is taken as the weight of the

structure in a weight optimization problem; fpenalty(X) is the penalty function which
is used to make the problem unconstrained. When some constraints corresponding

to the response of the structure are violated in a particular solution, the penalty

function magnifies the weight of the solution by taking values bigger than one; ωj is

the jth natural frequency of the structure and ωj
* is its upper bound. ωk is the kth

natural frequency of the structure and ωk
* is its lower bound. ximin and ximax are the

lower and upper bounds of the design variable xi, respectively.
The cost function is expressed as:

f Xð Þ ¼
Xnm
i¼1

ρiLiAi ð2:11Þ

where ρi is the material density of member i; Li is the length of member i; and Ai is

the cross-sectional area of member i.
The penalty function is defined as:

f penalty Xð Þ ¼ 1þ ε1:vð Þε2 , v ¼
Xq
i¼1

vi ð2:12Þ

where q is the number of frequency constraints.

vi ¼
0 if the ith constraint is satisfied

1� ωi

ω�
i

������

������
else

8>><
>>:

ð2:13Þ

The parameters ε1 and ε2 are selected considering the exploration and the

exploitation rate of the search space. In this study ε1 is taken as unity, and ε2 starts
from 1.5 linearly increases to 6 in all test examples. These values penalize the

unfeasible solutions more severely as the optimization process proceeds. As a

result, in the early stages, the agents are free to explore the search space, but at

the end they tend to choose solutions without violation.

24 2 Particle Swarm Optimization

2.5.3 Numerical Examples

Four numerical examples from the field of truss layout and size optimization are

provided in this section in order to examine the viability of the democratic PSO and

to compare it with the canonical PSO to clarify the effect of the modifications. The

results are compared with those of the canonical version and some other methods

reported in the literature.

Parameter χ is set to 0.5 in all numerical examples while parameter c3 is set to
4. A Total population of 30 particles is utilized for all of the examples. Each

example has been solved 30 times independently. In all the examples, the termina-

tion criterion is taken as the number of iterations. Total number of 200 iterations is

considered for all of the examples. The side constraints are handled using an

HS-based constraint handling technique, as introduced by Kaveh and Talatahari

[47], is used. Any other appropriate side constraint handling technique might

be used.

2.5.3.1 A 10-bar Truss

For the first example, size optimization of a 10-bar planar is considered. The

configuration of the structure is depicted in Fig. 2.4.

This is a well-known benchmark problem in the field of frequency constraint

structural optimization. Each of the members’ cross-sectional area is assumed to be

an independent variable. A non-structural mass of 454.0 kg is attached to all free

nodes. Table 2.1 summarizes the material properties, variable bounds, and fre-

quency constraints for this example.

This problem has been investigated by different researchers: Grandhi and

Venkayya [61] employing an optimality algorithm, Sedaghati et al. [62] using a

sequential quadratic programming and finite element force method, Wang et al. [63]

using an evolutionary node shift method, Lingyun et al. [64] utilizing a niche hybrid

genetic algorithm, Gomes employing the standard particle swarm optimization algo-

rithm [60] and Kaveh and Zolghadr [65, 66] utilizing the standard and an enhanced

CSS, and a hybridized CSS-BBBC with a trap recognition capability.

The design vectors and the corresponding masses of the optimal structures found

by different methods are summarized in Table 2.2.

It should be noted that a modulus of elasticity of E ¼ 6.98 � 1010 Pa is used in

Gomes [60] and Kaveh and Zolghadr [65]. This will generally result in relatively

lighter structures. Considering this, it appears that the proposed algorithm has

obtained the best solution so far. Particularly, the optimal structure found by the

algorithm is more than 5.59 kg lighter than that of the standard PSO in spite of using

smaller value for modulus of elasticity. Using E ¼ 6.98 � 1010 Pa DPSO finds a

structure weighted 524.70 kg which is about 13 kg lighter than that of standard

PSO. The mean weight and the standard deviation of the results gained by DPSO

are 537.80 kg and 4.02 kg respectively, while PSO has obtained a mean weight of

2.5 Democratic PSO for Structural Optimization 25

540.89 kg and a standard deviation of 6.84 kg. This means that DPSO performs

better than the standard PSO in terms of best weight, average weight, and standard

deviation.

Fig. 2.4 Schematic of the

planar 10-bar truss structure

Table 2.1 Material properties, variable bounds and frequency constraints for the 10-bar truss

structure

Property [unit] Value

E (Modulus of elasticity) [N/m2] 6.89 � 1010

ρ (Material density) [kg/m3] 2,770.0

Added mass [kg] 454.0

Design variable lower bound [m2] 0.645 � 10–4

Design variable upper bound [m2] 50 � 10–4

L (main bar’s dimension) [m] 9.144

Constraints on first three frequencies [Hz] ω1 � 7, ω2 � 15, ω3 � 20

Table 2.2 Optimized designs (cm2) obtained for the planar 10-bar truss problem (the optimized

weight does not include the added masses)

Element

number

Grandhi

and

Venkayya

[61]

Sedaghati

et al. [62]

Wang

et al. [63]

Lingyun

et al. [64]

Gomes

[60]

Kaveh and

Zolghadr

[65]

Democratic

PSO [28]

Standard

CSS

1 36.584 38.245 32.456 42.23 37.712 38.811 35.944

2 24.658 9.916 16.577 18.555 9.959 9.0307 15.530

3 36.584 38.619 32.456 38.851 40.265 37.099 35.285

4 24.658 18.232 16.577 11.222 16.788 18.479 15.385

5 4.167 4.419 2.115 4.783 11.576 4.479 0.648

6 2.070 4.419 4.467 4.451 3.955 4.205 4.583

7 27.032 20.097 22.810 21.049 25.308 20.842 23.610

8 27.032 24.097 22.810 20.949 21.613 23.023 23.599

9 10.346 13.890 17.490 10.257 11.576 13.763 13.135

10 10.346 11.452 17.490 14.342 11.186 11.414 12.357

Weight (kg) 594.0 537.01 553.8 542.75 537.98 531.95 532.39

26 2 Particle Swarm Optimization

Table 2.3 represents the natural frequencies of the optimized structures obtained

by different methods.

Figure 2.5 compares the convergence curves for the 10-bar planar truss obtained

by the democratic PSO and the standard PSO.

The termination criterion is not clearly stated in reference [60]. It is just declared

that a combination of three different criteria was simultaneously employed: (1) the

differences in the global best design variables between two consecutive iterations,

(2) the differences of the global best objective function, and (3) the coefficient of

variation of objective function in the swarm. In any case, it seems no improvement

is expected from PSO after the 2,000th analysis and hence the execution is

terminated.

Comparison of the convergence curves above provides some useful points about

the differences of the two algorithms. The standard and the democratic PSO utilize

50 and 30 particles for this problem, respectively. Although the standard PSO uses

more particles which is supposed to maintain better coverage of the search space

and higher level of exploration, its convergence curve shows that the convergence

is almost attained within the first 1,000 analyses and after that the convergence

curve becomes straight. On the other hand democratic PSO reaches an initial

convergence after about 1,500 analyses and it still keeps exploring the search

space until it reaches the final result at 3,000th analysis. This can be interpreted

as the modifications being effective on the alleviation of the premature convergence

problem. It should be noted that the structure found by DPSO at 2,000th analysis is

much lighter than that found by PSO at the same analysis. In fact while the

modifications improve the exploration capabilities of the algorithm, they do not

disturb the algorithm’s convergence task.

Table 2.3 Natural frequencies (Hz) evaluated at the optimized designs for the planar 10-bar truss

Frequency

number

Grandhi

and

Venkayya

[61]

Sedaghati

et al. [62]

Wang

et al.

[63]

Lingyun

et al. [64]

Gomes

[60]

Kaveh

and

Zolghadr

[65]

Democratic

PSO [28]

Standard

CSS

1 7.059 6.992 7.011 7.008 7.000 7.000 7.000

2 15.895 17.599 17.302 18.148 17.786 17.442 16.187

3 20.425 19.973 20.001 20.000 20.000 20.031 20.000

4 21.528 19.977 20.100 20.508 20.063 20.208 20.021

5 28.978 28. 173 30.869 27.797 27.776 28.261 28.470

6 30.189 31.029 32.666 31.281 30.939 31.139 29.243

7 54.286 47.628 48.282 48.304 47.297 47.704 48.769

8 56.546 52.292 52.306 53.306 52.286 52.420 51.389

2.5 Democratic PSO for Structural Optimization 27

2.5.3.2 A Simply Supported 37-Bar Planar Truss

A simply supported 37-bar Pratt type truss, as depicted in Fig. 2.6, is examined as

the second example.

The elements of the lower chord are modeled as bar elements with constant

rectangular cross-sectional areas of 4 � 10�3 m2. The other members are modeled

as bar elements. These members which form the sizing variables of the problem are

grouped with respect to symmetry. Also, the y-coordinate of all the nodes on the

upper chord can vary in a symmetrical manner to form the layout variables. On the

lower chord, a non-structural mass of 10 kg is attached to all free nodes. The first

three natural frequencies of the structure are considered as the constraints. So this is

an optimization on layout and size with nineteen design variables (14 sizing vari-

ables + five layout variables) and three frequency constraints. This example has

been studied by Wang et al. [63] using an evolutionary node shift method and

Lingyun et al. [64] using a niche hybrid genetic algorithm. Gomes [60] has

investigated this problem using the standard particle swarm algorithm. Kaveh and

Zolghadr [65] used the standard and an enhanced CSS to optimize the structure.

Material properties, frequency constrains and added masses are listed in

Table 2.4.

Fig. 2.5 Comparison of convergence curves of democratic and standard PSO algorithms recorded

in the 10-bar truss problem

28 2 Particle Swarm Optimization

Final cross-sectional areas and node coordinates obtained by different methods

together with the corresponding weight are presented in Table 2.5. It can be seen

that the proposed algorithm has found the best results so far. Specifically, in

comparison to the standard PSO, the resulted structure is meaningfully lighter.

The mean weight and the standard deviation of the results obtained by DPSO are

362.21 kg and 1.68 kg respectively, while PSO has obtained a mean weight of

381.2 kg and a standard deviation of 4.26 kg. This indicates that DPSO not only

finds a better best solution but also is more stable.

Table 2.6 represents the natural frequencies of the final structures obtained by

various methods for the 37-bar simply supported planar truss.

Figure 2.7 shows the optimized layout of the simply-supported 37-bar truss as

found by DPSO. The convergence curves for the democratic PSO and the standard

PSO are shown in Fig. 2.6. The information on the convergence curve values at the

few first analyses is not available in [60] (Fig. 2.8).

2.5.3.3 A 52-Bar Dome-Like Truss

Simultaneous layout and size optimization of a 52-bar dome-like truss is considered

as the third example. Initial layout of the structure is depicted in Fig. 2.9.

Non-structural masses of 50 kg are attached to all free nodes.

Table 2.7 summarized the material properties, frequency constraints and vari-

able bounds for this example.

Fig. 2.6 Schematic of the simply-supported planar 37-bar truss

Table 2.4 Material properties and frequency constraints for the simply supported planar 37-bar

truss

Property [unit] Value

E (Modulus of elasticity) [N/m2] 2.1 � 1011

ρ (Material density) [kg/m3] 7,800

Design variable lower bound [m2] 1 � 10–4

Design variable upper bound [m2] 10 � 10–4

Added mass [kg] 10

Constraints on first three frequencies [Hz] ω1 � 20, ω2 � 40, ω3 � 60

2.5 Democratic PSO for Structural Optimization 29

All of the elements of the structure are categorized in 8 groups according to

Table 2.8. All free nodes are permitted to move�2 m from their initial position in a

symmetrical manner. This is a configuration optimization problem with thirteen

variables (eight sizing variables + five layout variables) and two frequency

constraints.

This example has been investigated by Lin et al. [67] using a mathematical

programming technique and Lingyun et al. [64] using a niche hybrid genetic

algorithm. Gomes [60] has analyzed this problem using the standard particle

swarm algorithm. This problem has been studied using the standard and an

Table 2.5 Optimized designs obtained for the planar 37-bar truss problem

Variable

Wang

et al. [63]

Lingyun

et al. [64]

Gomes

[60]

Kaveh and

Zolghadr

[65]

Democratic

PSO [28]

Standard

CSS

Y3 , Y19 (m) 1.2086 1.1998 0.9637 0.8726 0.9482

Y5 , Y17 (m) 1.5788 1.6553 1.3978 1.2129 1.3439

Y7 , Y15 (m) 1.6719 1.9652 1.5929 1.3826 1.5043

Y9 , Y13 (m) 1.7703 2.0737 1.8812 1.4706 1.6350

Y11 (m) 1.8502 2.3050 2.0856 1.5683 1.7182

A1, A27 (cm2) 3.2508 2.8932 2.6797 2.9082 2.6208

A2, A26 (cm2) 1.2364 1.1201 1.1568 1.0212 1.0397

A3, A24 (cm2) 1.0000 1.0000 2.3476 1.0363 1.0464

A4, A25 (cm2) 2.5386 1.8655 1.7182 3.9147 2.7163

A5, A23 (cm2) 1.3714 1.5962 1.2751 1.0025 1.0252

A6, A21 (cm2) 1.3681 1.2642 1.4819 1.2167 1.5081

A7, A22 (cm2) 2.4290 1.8254 4.6850 2.7146 2.3750

A8, A20 (cm2) 1.6522 2.0009 1.1246 1.2663 1.4498

A9, A18 (cm2) 1.8257 1.9526 2.1214 1.8006 1.4499

A10, A19 (cm2) 2.3022 1.9705 3.8600 4.0274 2.5327

A11, A17 (cm2) 1.3103 1.8294 2.9817 1.3364 1.2358

A12, A15 (cm2) 1.4067 1.2358 1.2021 1.0548 1.3528

A13, A16 (cm2) 2.1896 1.4049 1.2563 2.8116 2.9144

A14 (cm2) 1.0000 1.0000 3.3276 1.1702 1.0085

Weight (kg) 366.50 368.84 377.20 362.84 360.40

Table 2.6 Natural frequencies (Hz) evaluated at the optimized designs for the planar 37-bar truss

Frequency

number

Wang

et al. [63]

Lingyun

et al. [64]

Gomes

[60]

Kaveh and

Zolghadr [65] Democratic

PSO [28]Standard CSS

1 20.0850 20.0013 20.0001 20.0000 20.0194

2 42.0743 40.0305 40.0003 40.0693 40.0113

3 62.9383 60.0000 60.0001 60.6982 60.0082

4 74.4539 73.0444 73.0440 75.7339 76.9896

5 90.0576 89.8244 89.8240 97.6137 97.2222

30 2 Particle Swarm Optimization

enhanced CSS [65] and a hybridized CSS-BBBC with a trap recognition

capability [66].

Table 2.9 compares the final cross-sectional areas and node coordinates found by

different methods together with the corresponding weight for the 52 bar space truss.

It can be seen that the result gained by the democratic PSO is far better than the

standard PSO. The standard PSO uses 70 particles and about 160 iterations (11,200

analyses) to reach its best result while the democratic PSO uses 30 particles and

200 iterations (6,000 analyses). Table 2.8 indicates that among all the methods

listed above the democratic PSO has obtained the best solution. The mean weight

and the standard deviation of the results gained by DPSO are 198.71 kg and

13.85 kg, respectively while PSO has obtained a mean weight of 234.3 kg and a

standard deviation of 5.22 kg. DPSO performs considerably better in terms of best

and mean weight.

Table 2.10 shows the natural frequencies of the final structures found by various

methods for the 52-bar dome-like space truss.

Fig. 2.7 Schematic of the optimized layout of the simply-supported planar 37-bar truss

Fig. 2.8 Comparison of convergence curves of democratic and standard PSO algorithms recorded

in the 37-bar Pratt type planar truss

2.5 Democratic PSO for Structural Optimization 31

Fig. 2.9 Schematic of the initial layout of the spatial 52-bar truss. (a) Top view and (b) Side view

32 2 Particle Swarm Optimization

Figure 2.10 shows the optimized layout of the spatial 52-bar truss as found by

DPSO. The convergence curve of the best run of the democratic PSO for the 52-bar

dome-like truss is shown in Fig. 2.11. The convergence curve for the standard PSO

is not available in [60].

Table 2.7 Material properties and frequency constraints and variable bounds for the spatial

52-bar truss

Property [unit] Value

E (Modulus of elasticity) [N/m2] 2.1 � 1011

ρ (Material density) [kg/m3] 7,800

Added mass [kg] 50

Allowable range for cross-sections [m2] 0.0001 � A � 0.001

Constraints on first three frequencies [Hz] ω1 � 15.916, ω2 � 28.648

Table 2.8 Element grouping

adopted in the spatial 52-bar

truss problem

Group number Elements

1 1–4

2 5–8

3 9–16

4 17–20

5 21–28

6 29–36

7 37–44

8 45–52

Table 2.9 Optimized designs obtained for the spatial 52-bar truss problem

Variable

Liu

et al. [67]

Lingyun

et al. [64]

Gomes

[60]

Kaveh and

Zolghadr

[65]

Democratic

PSO [28]

Standard

CSS

ZA (m) 4.3201 5.8851 5.5344 5.2716 6.1123

XB (m) 1.3153 1.7623 2.0885 1.5909 2.2343

ZB (m) 4.1740 4.4091 3.9283 3.7093 3.8321

XF (m) 2.9169 3.4406 4.0255 3.5595 4.0316

ZF (m) 3.2676 3.1874 2.4575 2.5757 2.5036

A1 (cm2) 1.00 1.0000 0.3696 1.0464 1.0001

A2 (cm2) 1.33 2.1417 4.1912 1.7295 1.1397

A3 (cm2) 1.58 1.4858 1.5123 1.6507 1.2263

A4 (cm2) 1.00 1.4018 1.5620 1.5059 1.3335

A5 (cm2) 1.71 1.911 1.9154 1.7210 1.4161

A6 (cm2) 1.54 1.0109 1.1315 1.0020 1.0001

A7 (cm2) 2.65 1.4693 1.8233 1.7415 1.5750

A8 (cm2) 2.87 2.1411 1.0904 1.2555 1.4357

Weight

(kg)

298.0 236.046 228.381 205.237 195.351

2.5 Democratic PSO for Structural Optimization 33

Table 2.10 Natural frequencies (Hz) evaluated at the optimized designs for the spatial 52-bar

truss

Frequency

number

Liu

et al. [67]

Lingyun

et al. [64]

Gomes

[60]

Kaveh and

Zolghadr [65] Democratic

PSO [28]Standard CSS

1 15.22 12.81 12.751 9.246 11.315

2 29.28 28.65 28.649 28.648 28.648

3 29.28 28.65 28.649 28.699 28.648

4 31.68 29.54 28.803 28.735 28.650

5 33.15 30.24 29.230 29.223 28.688

Fig. 2.10 Schematic of the optimized layout of the spatial 52-bar truss

Fig. 2.11 Convergence curve of the democratic PSO for the spatial 52-bar truss

34 2 Particle Swarm Optimization

Fig. 2.12 Schematic of the 120-bar

2.5 Democratic PSO for Structural Optimization 35

2.5.3.4 A 120-Bar Dome Truss

The 120-bar dome truss shown in Fig. 2.12 is considered as the last example. This

problem has been previously studied as a benchmark optimization problem with

static constraints.

This problem has been used as a size optimization problem with frequency

constraints in [65]. Non-structural masses are attached to all free nodes as follows:

3,000 kg at node one, 500 kg at nodes 2 through 13 and 100 kg at the rest of the

nodes. Material properties, frequency constraints and variable bounds for this

example are summarized in Table 2.11. The layout of the structure is kept

unchanged during the optimization process. Hence, this is a sizing optimization

problem.

This example is solved here using both the standard and democratic PSO in order

to make the comparison possible. 30 particles and 200 iterations are used for both

methods. Table 2.12 represents a comparison between the final results obtained by

Table 2.11 Material properties and frequency constraints and variable bounds for the 120-bar

dome truss

Property [unit] Value

E (Modulus of elasticity) [N/m2] 2.1 � 1011

ρ (Material density) [kg/m3] 7971.810

Added mass [kg] m1 ¼ 3,000, m1 ¼ 500, m2 ¼ 100

Allowable range for cross-sections [m2] 0.0001 � A � 0.01293

Constraints on first three frequencies [Hz] ω1 � 9, ω2 � 11

Table 2.12 Optimized

designs (cm2) obtained for the

120-bar dome truss

Element group Standard PSO Democratic PSO

1 23.494 19.607

2 32.976 41.290

3 11.492 11.136

4 24.839 21.025

5 9.964 10.060

6 12.039 12.758

7 14.249 15.414

Weight (kg) 9,171.93 8,890.48

Table 2.13 Natural

frequencies (Hz) evaluated at

the optimized designs for the

120-bar dome truss

Frequency number Standard PSO Democratic PSO

1 9.0000 9.0001

2 11.0000 11.0007

3 11.0052 11.0053

4 11.0134 11.0129

5 11.0428 11.0471

36 2 Particle Swarm Optimization

the standard and the democratic PSO. Table 2.13 shows the natural frequencies of

the final structures found by both methods.

According to Table 2.12, the result obtained by the democratic PSO is mean-

ingfully lighter than that of the standard PSO. The mean weight and the standard

deviation of the results gained by DPSO are 8,895.99 kg and 4.26 kg, respectively

while PSO has obtained a mean weight of 9,251.84 kg and a standard deviation of

89.38 kg. This shows that the Democratic PSO outperforms the standard version in

all of the above mentioned aspects. Fig. 2.13 shows the convergence curves for both

methods.

References

1. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE interna-

tional conference on neural networks, vol 4, pp 1942–1948

2. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEEWorld

congress on computational intelligence. In: The 1998 I.E. international conference on evolu-

tionary computation, pp 69–73

3. Reeves WT (1983) Particle systems – a technique for modeling a class of fuzzy objects. ACM

Trans Graph 2(2):91–108

4. Renolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graph

21(4):25–34 (Proc SIGGRAPH ’87)

Fig. 2.13 Comparison of converge curves of democratic and standard PSO algorithms recorded in

the 120-bar dome problem

References 37

5. Millonas MM (1993) Swarms, phase transitions, and collective intelligence. In: Langton CG

(ed) Proceedings of ALIFE III. Addison-Wesley, Santa Fe Institute

6. Heppner F, Grenander U (1990) A stochastic nonlinear model for coordinated bird flocks. In:

Krasner S (ed) The ubiquity of chaos. AAAS Publications, Washington, DC

7. Eberhart RC, Simpson P, Dobbins R (1996) Computational intelligence PC tools, Chapter 6.

AP Professional, San Diego, CA, pp 212–226

8. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of the

congress on evolutionary computation, pp 73–79

9. Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle

swarm optimization. In: Proceedings of IEEE congress evolutionary computation, San Diego,

CA, pp 84–88

10. Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm

optimization. In: Proceedings I999 ICEC, Washington, DC, 1951–1957

11. Bui LT, Soliman O, Abass HS (2007) A modified strategy for the constriction factor in particle

swarm optimization. In: Randall M, Abass HS, Wiles J (eds) Lecture Notes in Artificial

Intelligence 4828, pp 333–344

12. Kennedy J (2006) Swarm intelligence. In Handbook of Nature-Inspired and Innovative

Computing, Springer, 187-219

13. Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, UK

14. Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: Proceedings

of evolutionary programming VII (EP98), pp 591–600

15. Carlisle A, Dozier G (2001) An off-the-shelf PSO. In: Proceedings of workshop on particle

swarm optimization, Indianapolis, IN

16. Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and

parameter selection. Inform Proc Lett 85:317–325

17. Zhang L, Yu H, Hu S (2005) Optimal choice of parameters for particle swarm optimization. J

Zhejiang Univ Sci 6A(6):528–534

18. Pedersen MEH (2010) Good parameters for particle swarm optimization. Hvass Laboratories

Technical Report HL1001

19. Bansal JC, Singh PK, Saraswat M, Verma A, Jadon SS, Abraham A (2011) Inertia weight

strategies in particle swarm optimization. In: IEEE 3rd world congress on nature and biolog-

ically inspired computing (NaBIC 2011), Salamanca, Spain, pp 640–647

20. Wang Y, Li B, Weise T, Wang J, Yuan B, Tian Q (2011) Self-adaptive learning based particle

swarm optimization. Inform Sci 181(20):4515–4538

21. Angeline PJ (1998) Evolutionary optimization versus particle swarm optimization: philosophy

and performance difference. In: Proceedings of 7th annual conference on evolutionary pro-

gramming, p 601

22. Zhao Y, Zub W, Zeng H (2009) A modified particle swarm optimization via particle visual

modeling analysis. Comput Math Appl 57:2022–2029

23. van den Bergh F, Engelbrecht AP (2002) A new locally convergent particle swarm optimizer.

In: Proceedings of IEEE conference on systems, man and cybernetics, Hammamet, Tunisia

24. Krink T, Vestertroem JS, Riget J (2002) Particle swarm optimization with spatial particle

extension. Proceedings of the IEEE congress on evolutionary computation (CEC 2002),

Honolulu, Hawaii

25. Riget J, Vesterstrøm JS (2002) A diversity-guided particle swarm optimizer–the ARPSO.

EVALife technical report no 2002–2002

26. Silva A, Neves A, Costa E (2002) An empirical comparison of particle swarm and predator

prey optimization. In: Proceedings of the 13th Irish international conference on artificial

intelligence and cognitive science, vol 2464, pp 103–110

27. Jie J, Zeng J, Han CZ (2006) Adaptive particle swarm optimization with feedback control of

diversity. In: Proceedings of the 2006 international conference on computational intelligence

and bioinformatics (ICIC’06), vol Part III, pp 81–92

38 2 Particle Swarm Optimization

http://www.softcomputing.net/nabic11_7.pdf
http://www.softcomputing.net/nabic11_7.pdf

28. Kaveh A, Zolghadr A (2013) A democratic PSO for truss layout and size optimization with

frequency constraints. Comput Struct 42(3):10–21

29. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe

better. IEEE Trans Evolut Comput 8(3):204–210

30. Matsushita H, Nishio Y (2009) Network-structured particle swarm optimizer with various

topology and its behaviors. Advances in self-organizing maps. Lecture Notes in Computer

Science 5629:163–171

31. Monson CK, Seppi KD (2005) Exposing origin-seeking bias in PSO. In: Proceedings of the

conference on genetic and evolutionary computation (GECCO’05), Washington DC, USA, pp

241–248

32. Angeline PJ (1998) Using selection to improve particle swarm optimization. In: Proceedings of

the IEEE congress on evolutionary computation (CEC 1998), Anchorage, Alaska, USA

33. Gehlhaar DK, Fogel DB (1996) Tuning evolutionary programming for conformationally

flexible molecular docking. In: Evolutionary Programming, pp 419–429

34. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem

definitions and evaluation criteria for the CEC 2005 Special Session on Real Parameter

Optimization. Nanyang Technological University, Singapore

35. Clerc M (2006) Particle swarm optimization. Antony Rowe, Chippenham, Wiltshire

36. Wilke DN, Kok S, Groenwold AA (2007) Comparison of linear and classical velocity update

rules in particle swarm optimization: notes on scale and frame invariance. Int J Numer

Methods Eng 70:985–1008

37. Talbi E-G (2002) A taxonomy of hybrid metaheuristics. J Heuristics 8:541–564

38. Banks A, Vincent J, Anyakoha C (2008) A review of particle swarm optimization. Part II:

Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative appli-

cations. Nat Comput 7(1):109–124

39. Černý V (1985) Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. J Optim Theory Appl 45:41–51

40. Locatelli M (1996) Convergence properties of simulated annealing for continuous global

optimization. J Appl Probability 33:1127–1140

41. Shieh HL, Kuo CC, Chiang CM (2011) Modified particle swarm optimization algorithm with

simulated annealing behavior and its numerical verification. Appl Math Comput 218:4365–

4383

42. Glover F (1989) Tabu Search - Part 1. ORSA J Comput 1(2):190–206

43. Glover F (1990) Tabu Search - Part 2. ORSA J Comput 2(1):4–32

44. Shen Q, Shi WM, Kong W (2008) Hybrid particle swarm optimization and tabu search

approach for selecting genes for tumor classification using gene expression data. Comput

Bio Chemist 32:53–60

45. Løvberg M, Rasmussen TK, Krink T (2001) Hybrid particle swarm optimiser with breeding

and subpopulations. In: Proceedings of the genetic and evolutionary computation conference,

pp 469–476

46. Krink T, Løvbjerg M (2002) The lifecycle model: combining particle swarm optimization,

genetic algorithms and hillclimbers. In: Proceedings of parallel problem solving from nature

VII (PPSN 2002). Lecture Notes in Computer Science (LNCS) 2439: 621–630

47. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of truss structures. Comput Struct 87(56):267–283

48. Dorigo M (1992) Optimization, learning and natural algorithms (in Italian), PhD Thesis.

Dipartimento di Elettronica, Politecnico di Milano, IT

49. Geem ZW, Kim J-H, Loganathan GV (2001) A new heuristic optimization algorithm: harmony

search. Simulation 76(2):60–68

50. Higashi N, Iba H (2003) Particle swarm optimization with Gaussian mutation. In: Proceedings

of the IEEE swarm intelligence symposium 2003 (SIS 2003), Indianapolis, IN, USA, pp 72–79

51. Juang C-F (2004) A hybrid of genetic algorithm and particle swarm optimization for recurrent

network design. IEEE Trans Syst Man Cybern – Part B: Cybern 34(2):997–1006

References 39

52. Kaveh A, Talatahari S (2011) Hybrid charged system search and particle swarm optimization

for engineering design problems. Eng Comput 28(4):423–440

53. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search.

Acta Mech 213(3–4):267–289

54. Liu H, Abraham A (2005) Fuzzy adaptive turbulent particle swarm optimization. In: Pro-

ceedings of 5th international conference on hybrid intelligent systems (HIS’05), Rio de

Janeiro, Brazil, 6–9 November

55. Zahara E, Kao YT (2009) Hybrid Nelder-Mead simplex search and particle swarm optimiza-

tion for constrained engineering design problems. Expert Syst Appl 36:3880–3886

56. Qian X, Cao M, Su Z, Chen J (2012) A hybrid particle swarm optimization (PSO)-simplex

algorithm for damage identification of delaminated beams. Math Prob Eng:11 (Article ID

607418)

57. Kaveh A, Talatahari S (2007) A discrete particle swarm ant colony optimization for design of

steel frames. Asian J Civil Eng 9(6):563–575

58. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In:

Proceedings of the conference on systems, man and cybernetics, Piscataway, New Jersey, pp

4104–4109

59. ChenWN, Zhang J, Chung HSH, ZhongWL,WuWG, Shi Y (2010) A novel set-based particle

swarm optimization method for discrete optimization problems. IEEE Trans Evol Comput 14

(2):278–300

60. Gomes MH (2011) Truss optimization with dynamic constraints using a particle swarm

algorithm. Expert Syst Appl 38:957–968

61. Grandhi RV, Venkayya VB (1988) Structural optimization with frequency constraints. AIAA J

26:858–866

62. Sedaghati R, Suleman A, Tabarrok B (2002) Structural optimization with frequency con-

straints using finite element force method. AIAA J 40:382–388

63. Wang D, Zha WH, Jiang JS (2004) Truss optimization on shape and sizing with frequency

constraints. AIAA J 42:1452–1456

64. Lingyun W, Mei Z, Guangming W, Guang M (2005) Truss optimization on shape and sizing

with frequency constraints based on genetic algorithm. J Comput Mech 25:361–368

65. Kaveh A, Zolghadr A (2011) Shape and size optimization of truss structures with frequency

constraints using enhanced charged system search algorithm. Asian J Civil Eng 12:487–509

66. Kaveh A, Zolghadr A (2012) Truss optimization with natural frequency constraints using a

hybridized CSS-BBBC algorithm with trap recognition capability. Comput Struct 102–

103:14–27

67. Lin JH, Chen WY, Yu YS (1982) Structural optimization on geometrical configuration and

element sizing with static and dynamic constraints. Comput Struct 15:507–515

40 2 Particle Swarm Optimization

Chapter 3

Charged System Search Algorithm

3.1 Introduction

This chapter consists of two parts. In the first part an optimization algorithm based on

some principles from physics andmechanics, which is known as the Charged System

Search (CSS) [1]. In this algorithm the governing Coulomb law from electrostatics

and the Newtonian laws of mechanics. CSS is a multi-agent approach in which each

agent is a Charged Particle (CP). CPs can affect each other based on their fitness

values and their separation distances. The quantity of the resultant force is deter-

mined by using the electrostatics laws and the quality of the movement is determined

using Newtonian mechanics laws. CSS can be utilized in all optimization fields;

especially it is suitable for non-smooth or non-convex domains. CSS needs neither

the gradient information nor the continuity of the search space.

In the second part, CSS is applied to optimal design of skeletal structures and

high performance of CSS is illustrated [2].

3.2 Charged System Search

3.2.1 Background

3.2.1.1 Electrical Laws

In physics, the space surrounding an electric charge creates an electric field, which

exerts a force on other electrically charged objects. The electric field surrounding a

point charge is given by Coulomb’s law. Coulomb confirmed that the electric force

between two small charged spheres is proportional to the inverse square of their

separation distance. The electric force between charged spheres A and B in Fig. 3.1

causes the spheres to either attract or repel each other, and the resulting motion

causes the suspended fiber to twist. Since the restoring torque of the twisted fiber is

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_3, © Springer International Publishing Switzerland 2014

41

proportional to the angle through which the fiber rotates, a measurement of this

angle provides a quantitative measure of the electric force of attraction or repulsion

[3]. Coulomb’s experiments showed that the electric force between two stationary

charged particles:

• is inversely proportional to the square of the separation distance between the

particles and directed along the line joining them;

• is proportional to the product of the charges qi and qj on the two particles;

• is attractive if the charges are of opposite sign, and repulsive if the charges have

the same sign.

From the above observations, Coulomb’s law provides the magnitude of the

electric force (Coulomb force) between the two point-charges [3] as

Fij ¼ ke
qiqj
r2ij

ð3:1Þ

where ke is a constant called the Coulomb constant; rij is the distance between the

two charges.

Consider an insulating solid sphere of radius a, which has a uniform volume

charge density and carries a total positive charge qi. The electric field Eij at a point

outside the sphere is defined as

Fig. 3.1 Coulomb’s torsion

balance, used to establish

the inverse-square law for

the electric force between

two charges [1]

42 3 Charged System Search Algorithm

Eij ¼ ke
qi
r2ij

ð3:2Þ

The magnitude of the electric field at a point inside the sphere can be obtained

using Gauss’s law. This is expressed as

Eij ¼ ke
qi
a3

rij ð3:3Þ

Note that this result shows that Eij ! 0 as rij ! 0. Therefore, the result elim-

inates the problem that would exist at rij ¼ 0 if Eij is varied as 1/r
2
ij inside the sphere

as it does outside the sphere. That is, if Eij / 1/r2ij the field will be infinite at rij ¼ 0,

which is physically impossible. Hence, the electric field inside the sphere varies

linearly with rij. The field outside the sphere is the same as that of a point charge qi
located at rij ¼ 0. Also the magnitudes of the electric fields for a point at inside or

outside the sphere coincide when rij ¼ a. A plot of Eij versus rij is shown in

Fig. 3.2 [3].

In order to calculate the equivalent electric field at a point (rj) due to a group of

point charges, the superposition principle is applied to fields which follows directly

from the superposition of the electric forces. Thus, the electric field of a group of

charges can be expressed as

Fig. 3.2 A plot of Eij

versus rij for a uniformly

charged insulating sphere

[1]

3.2 Charged System Search 43

Ej ¼
XN

i¼1, i 6¼j

Eij ð3:4Þ

where N is the total number of charged particles and Eij is equal to

Eij ¼

keqi
a3

rij if rij < a

keqi
r2ij

if rij � a

8>>><
>>>:

ð3:5Þ

In order to obtain both the magnitude and direction of the resultant force on a

charge qj at position rj due to the electric field of a charge qi at position ri, the full
vector form is required which can be expressed as

Fij ¼ Eijqj
ri � rj

ri � rj
�� ���� �� ð3:6Þ

For multiple charged particles, this can be summarized as follows:

Fj ¼ keqj
X
i, i6¼j

qi
a3

rij � i1 þ qi
r2ij

� i2
 !

ri � rj

ri � rj
�� ���� �� i1 ¼ 1, i2 ¼ 0 , rij < a

i1 ¼ 0, i2 ¼ 1 , rij � a

�
ð3:7Þ

3.2.1.2 Newtonian Mechanics Laws

Newtonian mechanics or classical mechanics studies the motion of objects. In the

study of motion, the moving object is described as a particle regardless of its size. In

general, a particle is a point-like mass having infinitesimal size. The motion of a

particle is completely known if the particle’s position in space is known at all times.

The displacement of a particle is defined as its change in position. As it moves from

an initial position rold to a final position rnew, its displacement is given by

Δr ¼ rnew � rold ð3:8Þ

The slope of tangent line of the particle position represents the velocity of this

particle as

v ¼ rnew � rold
tnew � told

¼ rnew � rold
Δt

ð3:9Þ

When the velocity of a particle changes with time, the particle is said to be

accelerated. The acceleration of the particle is defined as the change in the velocity

divided by the time interval during which that change has occurred:

44 3 Charged System Search Algorithm

a ¼ vnew � vold
Δt

ð3:10Þ

Using (3.8), (3.9), and (3.10), the displacement of any object as a function of

time is obtained approximately as

rnew ¼ 1

2
a � Δt2 þ vold � Δtþ rold ð3:11Þ

Another law utilized in this article is Newton’s second law which explains the

question of what happens to an object that has a nonzero resultant force acting on it:

the acceleration of an object is directly proportional to the net force acting on it and

inversely proportional to its mass

F ¼ m � a ð3:12Þ

where m is the mass of the object.

Substituting (3.12) in (3.11), we have

rnew ¼ 1

2

F

m
� Δt2 þ vold � Δtþ rold ð3:13Þ

3.2.2 Presentation of Charged Search System

In this section, a new efficient optimization algorithm is established utilizing the

aforementioned physics laws, which is called Charged System Search (CSS). In the

CSS, each solution candidate Xi containing a number of decision variables

(i.e.Xi ¼ {xi,j}) is considered as a charged particle. The charged particle is affected
by the electrical fields of the other agents. The quantity of the resultant force is

determined by using the electrostatics laws as discussed in Sect. 3.2.1.1 and the

quality of the movement is determined using the Newtonian mechanics laws. It

seems that an agent with good results must exert a stronger force than the bad ones,

so the amount of the charge will be defined considering the objective function

value, fiti). In order to introduce CSS, the following rules are developed:

Rule 1 Many of the natural evolution algorithms maintain a population of solu-

tions which are evolved through random alterations and selection [4,5]. Similarly,

CSS considers a number of Charged Particles (CP). Each CP has a magnitude of

charge (qi) and as a result creates an electrical field around its space. The magnitude

of the charge is defined considering the quality of its solution, as follows

qi ¼
fit ið Þ � fitworst

fitbest� fitworst
, i ¼ 1, 2, . . . ,N ð3:14Þ

where fitbest and fitworst are the so far best and the worst fitness of all particles;

3.2 Charged System Search 45

fit(i) represents the objective function value or the fitness of the agent i; and N is the

total number of CPs. The separation distance rij between two charged particles is

defined as follows:

rij ¼
Xi � Xj

�� ���� ������ Xi þ Xj

� �
=2� Xbest

����þ ε
ð3:15Þ

where Xi and Xj are the positions of the ith and jth CPs, Xbest is the position of the

best current CP, and ε is a small positive number to avoid singularities.

Rule 2 The initial positions of CPs are determined randomly in the search space

x
oð Þ
i, j ¼ xi,min þ rand � xi,max � xi,minð Þ, i ¼ 1, 2, . . . , n ð3:16Þ

where x
ðoÞ
i;j determines the initial value of the ith variable for the jth CP; xi,min and

xi,max are the minimum and the maximum allowable values for the ith variable; rand
is a random number in the interval [0,1]; and n is the number of variables. The

initial velocities of charged particles are zero

v
oð Þ
i, j ¼ 0, i ¼ 1, 2, . . . , n ð3:17Þ

Rule 3 Three conditions could be considered related to the kind of the attractive

forces:

• Any CP can affect another one; i.e. a bad CP can affect a good one and vice versa

(pij ¼ 1).

• A CP can attract another if its electric charge amount (fitness with revise relation

in minimizing problems) is better than other. In other words, a good CP attracts a

bad CP

pij ¼
1 fit jð Þ > fit

�
i
�

0 else

8<
: ð3:18Þ

• All good CPs can attract bad CPs and only some of bad agents attract good

agents, considering following probability function

46 3 Charged System Search Algorithm

pij ¼
1

fit ið Þ � fitbest

fit jð Þ � fit ið Þ > rand _ fit jð Þ > fit
�
i
�

0 else

8><
>: ð3:19Þ

According to the above conditions, when a good agent attracts a bad one, the

exploitation ability for the algorithm is provided, and vice versa if a bad CP attracts

a good CP, the exploration is provided. When a CP moves toward a good agent it

improves its performance, and so the self-adaptation principle is guaranteed.

Moving a good CP toward a bad one may cause losing the previous good solution

or at least increasing the computational cost to find a good solution. To resolve this

problem, a memory which saves the best so far solution can be considered.

Therefore, it seems that the third kind of the above conditions is the best rule

because of providing strong exploration ability and an efficient exploitation.

Rule 4 The value of the resultant electrical force acting on a CP is determined

using (3.7) as

Fj ¼ qj
X
i, i 6¼j

qi
a3

rij � i1 þ qi
r2ij

� i2
 !

pij Xi � Xj

� �
,

j ¼ 1, 2, . . . ,N
i1 ¼ 1, i2 ¼ 0 , rij < a
i1 ¼ 0, i2 ¼ 1 , rij � a

*

ð3:20Þ

where Fj is the resultant force acting on the jth CP, as illustrated in Fig. 3.3.

In this algorithm, each CP is considered as a charged sphere with radius a, which
has a uniform volume charge density. In this paper, the magnitude of a is set to

unity; however for more complex examples, the appropriate value for a must be

defined considering the size of the search space. One can utilize the following

equation as a general formula

a ¼ 0:10�max xi,max � xi,min

��i ¼ 1, 2, . . . , n
� �� � ð3:21Þ

According to this rule, in the first iteration where the agents are far from each

other the magnitude of the resultant force acting on a CP is inversely proportional to

the square of the separation between the particles. Thus the exploration power in

this condition is high because of performing more searches in the early iterations. It

is necessary to increase the exploitation of the algorithm and to decrease the

exploration gradually. After a number of searches where CPs are collected in a

small space and the separation between the CPs becomes small say 0.1, then the

resultant force becomes proportional to the separation distance of the particles

instead of being inversely proportional to the square of the separation distance.

According to Fig. 3.4, if the first equation (Fij / 1/r2ij) is used for rij ¼ 0.1, we have

Fij ¼ 100 � keqiqj that is a large value, compared to a force acting on a CP at

rij ¼ 2 (Fij ¼ 0.25 � keqiqj), and this great force causes particles to get farther

from each other instead of getting nearer, while the second one (Fij / rij)

3.2 Charged System Search 47

guaranties that a convergence will happen. Therefore, the parameter a separates the
global search phase and the local search phase, i.e. when majority of the agents are

collected in a space with radius a, the global search is finished and the optimizing

process is continued by improving the previous results, and thus the local search

starts. Besides, using these principles controls the balance between the exploration

and the exploitation.

Fig. 3.3 Determining the resultant electrical force acting on a CP [1]

Fig. 3.4 A comparison between the equation [1] (a) Fij / 1/r2ij and (b) Fij / rij when rij < a

48 3 Charged System Search Algorithm

It should be noted that this rule considers the competition step of the algorithm.

Since the resultant force is proportional to the magnitude of the charge, a better

fitness (great qi) can create a bigger attract force, so the tendency to move toward a

good CP becomes more than a bad particle.

Rule 5 The new position and velocity of each CP is determined considering (3.9)

and (3.13), as follows

Xj,new ¼ randj1 � ka � Fj

mj
� Δt2 þ randj2 � kv � Vj,old � Δtþ Xj,old ð3:22Þ

Vj,new ¼ Xj,new � Xj,old

Δt
ð3:23Þ

where ka is the acceleration coefficient; kv is the velocity coefficient to control the

influence of the previous velocity; and randj1 and randj2 are two random numbers

uniformly distributed in the range of (0,1). Here, mj is the mass of the CPs which is

equal to qj. Δt is the time step and is set to unity.

The effect of the pervious velocity and the resultant force acting on a CP can be

decreased or increased based on the values of the kv and ka, respectively. Excessive
search in the early iterations may improve the exploration ability; however it must

be deceased gradually, as described before. Since ka is the parameter related to the

attracting forces, selecting a large value for this parameter may cause a fast

convergence and vice versa a small value can increase the computational time.

In fact ka is a control parameter of the exploitation. Therefore, choosing an

incremental function can improve the performance of the algorithm. Also, the

direction of the pervious velocity of a CP is not necessarily the same as the resultant

force. Thus, it can be concluded that the velocity coefficient kv controls the

exploration process and therefore a decreasing function can be selected. Thus, kv
and ka are defined as

kv ¼ 0:5 1� iter=itermaxð Þ, ka ¼ 0:5 1þ iter=itermaxð Þ ð3:24Þ

where iter is the actual iteration number and itermax is the maximum number of

iterations. With this equation, kv decreases linearly to zero while ka increases to one
when the number of iterations rises. In this way, the balance between the exploration

and the fast rate of convergence is saved. Considering the values of these parameters,

(3.22) and (3.23) can be rewritten as

Xj,new ¼ 0:5randj1 � 1þ iter=itermaxð Þ �
X
i, i 6¼j

qi
a3

rij � i1 þ qi
r2ij

� i2
0
@

1
Apij

�
Xi � Xj

�
þ 0:5randj2 � 1þ iter=itermaxð Þ � Vj,old þ Xj,old

ð3:25Þ

3.2 Charged System Search 49

Vj,new ¼ Xj,new � Xj,old ð3:26Þ

Figure 3.5 illustrates the motion of a CP to its new position using this rule. The

rules 5 and 6 provide the cooperation step of the CPs, where agents collaborate with

each other by information transferring.

Rule 6 Considering a memory which saves the best CP vectors and their related

objective function values can improve the algorithm performancewithout increasing

the computational cost. To fulfill this aim, ChargedMemory (CM) is utilized to save

a number of the best so far solutions. In this paper, the size of the CM (i.e. CMS) is
taken asN/4. Another benefit of the CMconsists of utilizing this memory to guide the

current CPs. In other words, the vectors stored in the CM can attract current CPs

according to (3.20). Instead, it is assumed that the same number of the current worst

particles cannot attract the others.

Rule 7 There are two major problems in relation to many metaheuristic algo-

rithms; the first problem is the balance between exploration and exploitation in the

beginning, during, and at the end of the search, and second is how to deal with an

agent violating the limits of the variables.

The first problem is solved naturally through the application of above-stated

rules; however, in order to solve the second problem, one of the simplest approaches

is utilizing the nearest limit values for the violated variable. Alternatively, one can

force the violating particle to return to its previous position or one can reduce the

maximum value of the velocity to allow fewer particles to violate the variable

boundaries. Although these approaches are simple, they are not sufficiently efficient

Fig. 3.5 The movement of

a CP to the new position [1]

50 3 Charged System Search Algorithm

and may lead to reduced exploration of the search space. This problem has previ-

ously been addressed and solved using the harmony search-based handling

approach [4,6]. According to this mechanism, any component of the solution vector

violating the variable boundaries can be regenerated from the CM as

xi, j ¼
w:p: CMCR ¼¼> select a new value for a variable from CM

¼¼> w:p: 1� PARð Þ do nothing

¼¼> w:p: PAR choose a neighboring value

w:p: 1� CMCRð Þ ¼¼> select a new value randomly

8>><
>>:

ð3:27Þ

where “w.p.” is the abbreviation for "with the probability"; xi,j is the ith component

of the CP j; The CMCR (the Charged Memory Considering Rate) varying between

0 and 1 sets the rate of choosing a value in the new vector from the historic values

stored in the CM, and (1�CMCR) sets the rate of randomly choosing one value

from the possible range of values. The pitch adjusting process is performed only

after a value is chosen from CM. The value (1�PAR) sets the rate of doing nothing.

For more details, the reader may refer to [4,6].

Rule 8 The terminating criterion is one of the followings:

• Maximum number of iterations: the optimization process is terminated after a

fixed number of iterations, for example, 1,000 iterations.

• Number of iterations without improvement: the optimization process is termi-

nated after some fixed number of iterations without any improvement.

• Minimum objective function error: the difference between the values of the best

objective function and the global optimum is less than a pre-fixed anticipated

threshold.

• Difference between the best and the worst CPs: the optimization process is

stopped if the difference between the objective values of the best and the

worst CPs becomes less than a specified accuracy.

• Maximum distance of CPs: the maximum distance between CPs is less than a

pre-fixed value.

Now we can establish a new optimization algorithm utilizing the above rules.

The following pseudo-code summarizes the CSS algorithm:

Level 1: Initialization

• Step 1: Initialization. Initialize CSS algorithm parameters; Initialize an array of

Charged Particles with random positions and their associated velocities (Rules

1 and 2).

• Step 2: CP ranking. Evaluate the values of the fitness function for the CPs,

compare with each other and sort increasingly.

3.2 Charged System Search 51

• Step 3: CM creation. Store CMS number of the first CPs and their related values

of the objective function in the CM.

Level 2: Search

• Step 1: Attracting forces determination. Determine the probability of moving

each CP toward others (Rule 3), and calculate the attracting force vector for each

CP (Rule 4).

• Step 2: Solution construction. Move each CP to the new position and find the

velocities (Rule 5).

• Step 3: CP position correction. If each CP exits from the allowable search space,

correct its position using Rule 7.

• Step 4: CP ranking. Evaluate and compare the values of the objective function

for the new CPs; and sort them increasingly.

• Step 5: CM updating. If some new CP vectors are better than the worst ones in

the CM, include the better vectors in the CM and exclude the worst ones from the

CM (Rule 6).

Level 3: Terminating criterion controlling

• Repeat search level steps until a terminating criterion is satisfied (Rule 8).

The flowchart of the CSS algorithm is illustrated in Fig. 3.6.

3.3 Validation of CSS

In order to verify the efficiency of the new algorithm, some numerical examples are

considered from literature. The examples contain 18 uni-modal and multi-modal

functions. These numerical examples are presented in Sect. 3.3.1. The performance

of the CSS to optimize these functions is investigated in Sect. 3.3.2. In Sect. 3.3.3,

some well-studied engineering design problems taken from the optimization liter-

ature are used to illustrate the way in which the proposed method works.

3.3.1 Description of the Examples

In this section a number of benchmark functions chosen from [7] are optimized

using CSS and compared to GA and some of its variations to verify the efficiency of

CSS. The description of these test problems is provided in Table 3.1. When the

dimension is selected as 2, a perspective view and the related contour lines for some

of these functions are illustrated in Fig. 3.7.

52 3 Charged System Search Algorithm

3.3.2 Results

Similar to the other met-heuristics, for the CSS a large value for the number of CPs

increases the search strength of the algorithm as well as the computational cost and

vice versa a small number causes a quick convergence without performing a

complete search. Here, the number of CPs is set to 20 and the maximum number

of the permitted iterations is considered as 200. These values seem to be suitable for

finding the optimum results. The value of HMCR is set to 0.95 and that of PAR is

taken as 0.10 [4]. The results obtained by CSS are listed in Table 3.2 along with

those obtained by GA and some of its variations, which are directly derived from

[7]. The numbers denote the average number of function evaluations from 50 inde-

pendent runs for every objective function described in Sect. 3.1. The numbers in

parentheses represent the fraction of successful runs in which the algorithm has

located the global minimum with predefined accuracy, which is taken as ε ¼ fmin
� ffinal ¼ 10�4. The absence of the parentheses denotes that the algorithm has been

successful in all independent runs. Although the GEN-S-M-LS finds good results in

Fig. 3.6 The flowchart of the CSS [1]

3.3 Validation of CSS 53

T
a
b
le

3.
1

S
p
ec
ifi
ca
ti
o
n
s
o
f
th
e
b
en
ch
m
ar
k
p
ro
b
le
m
s

F
u
n
ct
io
n
n
am

e
In
te
rv
al

F
u
n
ct
io
n

G
lo
b
al

m
in
im

u
m

A
lu
ffi
-P
en
ti
n
y

X
∈

[�
1
0
,
1
0
]2

f
Xð
Þ¼

1 4
x4 1

�
1 2
x2 1

þ
1 1
0
x 1

þ
1 2
x2 2

�0
.3
5
2
3
8
6

B
o
h
ac
h
ev
sk
y
1

X
∈

[�
1
0
0
,
1
0
0
]2

f
Xð
Þ¼

x2 1
þ
2
x2 2

�
3 1
0
co
s
3
π
x 1

ð
Þ�

4 1
0
co
s
4
π
x 2

ð
Þþ

7 1
0

0
.0

B
o
h
ac
h
ev
sk
y
2

X
∈

[�
5
0
,
5
0
]2

f
Xð
Þ¼

x2 1
þ
2
x2 2

�
3 1
0
co
s
3
π
x 1

ð
Þc

o
s
4
π
x 2

ð
Þþ

3 1
0

0
.0

B
ec
k
er

an
d
L
ag
o

X
∈

[�
1
0
,
1
0
]2

f(
X
)
¼

(|
x 1
|
�

5
)2

+
(|
x 2
|
�

5
)2

0
.0

B
ra
n
in

0
�

x 2
�

1
5
�

5
�

x 1
�

1
0

f
Xð
Þ¼

x 2
�

5
:1

4
π
2
x2 1

þ
5 π
x 1

�
� 2 þ

1
0
1
�

1 8
π

�
� co

s
x 1ð
Þþ

1
0

0
.3
9
7
8
8
7

C
am

el
X

∈
[�

5
,
5
]2

f
Xð
Þ¼

4
x2 1

�
2
:1
x4 1

þ
1 3
x6 1

þ
x 1
x 2

�
4
x2 2

þ
4
x4 2

�1
.0
3
1
6

C
b
3

X
∈

[�
5
,
5
]2

f
Xð
Þ¼

2
x2 1

�
1
:0
5
x5 1

þ
1 6
x6 1

þ
x 1
x 2

þ
x2 2

0
.0

C
o
si
n
e
m
ix
tu
re

n
¼

4
,
X

∈
[�

1
,
1
]n

f
Xð
Þ¼

Xn i¼
1

x2 i
�

1 1
0

Xn i¼
1

co
s
5
π
x i

ð
Þ

�0
.4

D
eJ
o
u
n
g

X
∈

[�
5
.1
2
,
5
.1
2
]3

f(
X
)
¼

x2 1
+
x2 2

+
x2 3

0
.0

E
x
p
o
n
en
ti
al

n
¼

2
,
4
,
8
,
X

∈
[�

1
,
1
]n

f
Xð
Þ¼

�e
x
p

�0
:5
Xn i¼

1

x2 i

!

�1

G
o
ld
st
ei
n
an
d
p
ri
ce

X
∈

[�
2
,
2
]2

f
Xð
Þ¼

� 1þ
� x 1

þ
x 2

þ
1
� 2� 1

9
�
1
4
x 1

þ
3
x2 1
�1

1
4
x 2

þ
6
x 1
x 2

þ
3
x2 2

	
�
� 30

þ
2
x 1

�
3
x 2

ð
Þ2� 1

8
�
3
2
x 1

�
1
2
x2 1

þ
4
8
x 2

�
3
6
x 1
x 2

þ
2
7
x2 2

	 2
3
.0

G
ri
ew

an
k

X
∈

[�
1
0
0
,
1
0
0
]2

f
Xð
Þ¼

1
þ

1
2
0
0

X2 i¼
1

x2 i
�
Y2 i¼

1

co
s

x i
ffiffi ip�
�

0
.0

H
ar
tm

an
3

X
∈

[0
,
1
]3

f
Xð
Þ¼

�X4 i¼
1

c i
ex
p

�X3 j¼
1

a
ij
x j
�
p
ij

�
� 2

!

a
¼

3
1
0

3
0

0
:1

1
0

3
5

3
1
0

3
0

0
:1

1
0

3
5

2 6 6 4
3 7 7 5,

c
¼

1 1
:2 3 3
:22 6 6 4
3 7 7 5an

d

�3
.8
6
2
7
8
2

54 3 Charged System Search Algorithm

p
¼

0
:3
6
8
9

0
:1
1
7

0
:2
6
7
3

0
:4
6
9
9

0
:4
3
8
7

0
:7
4
7

0
:1
0
9
1

0
:8
7
3
2

0
:5
5
4
7

0
:0
3
8
1
5

0
:5
7
4
3

0
:8
8
2
8

2 6 6 4
3 7 7 5

H
ar
tm

an
6

X
∈

[0
,
1
]6

a
¼

1
0

3
1
7

3
:5

1
:7

8

0
:0
5

1
0

1
7

0
:1

8
1
4

3
3
:5

1
7

1
0

1
7

8

1
7

8
0
:0
5

1
0

0
:1

1
4

2 6 6 4
3 7 7 5,

c
¼

1 1
:2 3 3
:22 6 6 4
3 7 7 5an

d

p
¼

0
:1
3
1
2

0
:1
6
9
6

0
:5
5
6
9

0
:0
1
2
4

0
:8
2
8
3

0
:5
8
8
6

0
:2
3
2
9

0
:4
1
3
5

0
:8
3
0
7

0
:3
7
3
6

0
:1
0
0
4

0
:9
9
9
1

0
:2
3
4
8

0
:1
4
5
1

0
:3
5
2
2

0
:2
8
8
3

0
:3
0
4
7

0
:6
6
5
0

0
:4
0
4
7

0
:8
8
2
8

0
:8
7
3
2

0
:5
7
4
3

0
:1
0
9
1

0
: 0
3
8
1

2 6 6 4
3 7 7 5

�3
.3
2
2
3
6
8

R
as
tr
ig
in

X
∈

[�
1
,
1
]2

f
Xð
Þ¼

X2 i¼
1

x2 i
�

co
s
1
8
x i

ð
Þ

�
�

�2
.0

R
o
se
n
b
ro
ck

X
∈

[�
3
0
,
3
0
]n
,
n
¼

2
f
Xð
Þ¼

Xn�1 i¼
1

1
0
0
x i
þ1

�
x2 i

�
� 2 þ

x i
�
1

ð
Þ2

0
.0

3.3 Validation of CSS 55

Aluffi-Pentiny

Bohachevsky 1

Bohachevsky 2

-2
-1

0
1

2

-2

0

2

0

2

4

x
1

x
2 x

1

x
2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0

5

10

15

20

-2
-1

0
1

2

-2

0

2

0

5

10

x
1

x
2 x

1

x
2

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

-2
-1

0
1

2

-2

0

2

0

2

4

6

8

x
1

x
2 x

1

x
2

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

a

b

c

Fig. 3.7 (continued)

56 3 Charged System Search Algorithm

Becker and Lago

Branin

Camel

-10
-5

0
5

10

-10

0

10
0

20

40

x
1

x
2 x

1

x
2

-10 -5 0 5 10
-10

-5

0

5

10

0

5

10

15

20

-5
-4

-3
-2

-1
0

10

12

14

0

50

100

x
1

x
2 x

1

x
2

-5 -4 -3 -2 -1 0
10

11

12

13

14

15

0

5

10

15

20

-2

0

2

-2

0

2

0

100

200

300

400

x
1

x
2 x

1

x
2

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

0

5

10

15

20

d

e

f

Fig. 3.7 (continued)

3.3 Validation of CSS 57

Cb3

Cosine mixture

Exponential

-2
-1

0
1

2

-2

0

2

0

10

20

30

x
1

x
2 x

1

x
2

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

5

10

15

20

25

30

-1
-0.5

0
0.5

1

-1

0

1
-1

0

1

2

x
1

x
2 x1

x
2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0

0.5

1

1.5

2

-1
-0.5

0
0.5

1

-1

0

1
-1

-0.8

-0.6

-0.4

-0.2

x
1

x
2 x1

x
2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0

5

10

15

20

g

h

i

Fig. 3.7 (continued)

58 3 Charged System Search Algorithm

some cases, it must be noted that GEN-S-M-LS utilizes some auxiliary mechanisms

such as an improved stopping rule, a new mutation mechanism, a repeated appli-

cation of a local search procedure. To sum up, comparison of the results demon-

strates that CSS has a faster convergence than original GA and its variations.

In order to have some general idea about the way the CSS works, Fig. 3.8 is

prepared to show the positions of the current CPs and the stored CPs in the CM for

the first example. It can be seen that in the first iterations, the CPs investigate the

entire search space to discover a favorite space (global search). When this favorite

Griewank

Rastrigin

Rosenbrock

-20
-10

0
10

20

-20

0

20

0

2

4

6

x
1

x
2 x

1

x
2

-20 -10 0 10 20

-20

-10

0

10

20

0

5

10

15

20

-1
-0.5

0
0.5

1

-1

0

1
-2

0

2

4

x
1

x
2 x

1

x
2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

0

5

10

15

20

-5

0

5

-5

0

5

0

5000

10000

15000

x
1

x
2 x

1

x
2

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

0

5

10

15

20

j

k

l

Fig. 3.7 A perspective view and the related contour lines for some of function when n ¼ 2 [1]

3.3 Validation of CSS 59

space containing a global optimum is discovered, the movements of the CPs are

limited to this space in order to provide more exploitation (local search).

For many heuristic algorithms it is common property that if all the agents get

gathered in a small space, i.e. if the agents are trapped in part of the search space,

escaping from this may be very difficult. Since prevailing forces for the CSS algo-

rithm are attracting forces, it looks as if the above problem has remained unsolved for

this method. However, having a good balance between the exploration and the

exploitations, and considering three steps containing self-adaptation, cooperation

and competition in the CSS, can solve this problem. As illustrated in Fig. 3.9 which

shows the positions of the CPs for the first example when all the initial agents are

located in a small part of the space, CSS can escape from this space and go toward the

favorite space.

3.4 Charged System Search for Structural Optimization

3.4.1 Statement of the Optimization Design Problem

For optimum design of structures the objective function can be expressed as

Table 3.2 Performance comparison for the benchmark problems

Function GEN GEN–S GEN–S–M GEN–S–M–LS CSS

AP 1,360 (0.99) 1,360 1,277 1,253 804

Bf1 3,992 3,356 1,640 1,615 1,187

Bf2 20,234 3,373 1,676 1,636 742

BL 19,596 2,412 2,439 1,436 423

Branin 1,442 1,418 1,404 1,257 852

Camel 1,358 1,358 1,336 1,300 575

Cb3 9,771 2,045 1,163 1,118 436

CM 2,105 2,105 1,743 1,539 1,563

Dejoung 9,900 3,040 1,462 1,281 630

Exp2 938 936 817 807 132

Exp4 3,237 3,237 2,054 1,496 867

Exp8 3,237 3,237 2,054 1,496 1,426

Goldstein and Price 1,478 1,478 1,408 1,325 682

Griewank 18,838 (0.91) 3,111 (0.91) 1,764 1,652 (0.99) 1,551

Hartman3 1,350 1,350 1,332 1,274 860

Hartman6 2,562 (0.54) 2,562 (0.54) 2,530 (0.67) 1,865 (0.68) 1,783

Rastrigin 1,533 (0.97) 1,523 (0.97) 1,392 1,381 1,402

Rosenbrock 9,380 3,739 1,675 1,462 1,452

Total 112,311 (96.72) 41,640 (96.77) 29,166 (98.16) 25,193 (98.16) 17,367

60 3 Charged System Search Algorithm

minimize W Xð Þ ¼
Xn
i¼1

γi � xi � Li ð3:28Þ

where W(X) is the weight of the structure; n is the number of members making up

the structure; γi represents the material density of member i; Li is the length of

member i; xi is the cross-sectional area of member i chosen between xmin and xmax;

and min is the lower bound and max is the upper bound. This minimum design also

has to satisfy inequality constraints that limit design variable sizes and structural

responses, Lee and Geem [8].

3.4.1.1 Constraint Conditions for Truss Structures

For truss structures, the constraints are as follows:

a b c

d e f

g h i

* Position of the current CPs

Position of the CPs stored in the CM

-10 -5 0 5 10
-10

-5

0

5

10

x
2

Iteration = 0

Best fitness =1.49484878898

-10 -5 0 5 10
-10

-5

0

5

10

x
2

Iteration = 10

Best fitness =-0.351262525717993

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
1

x
1

x
2

Iteration = 20

Best fitness =-0.351944034806277

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 30

Best fitness =-0.352234845817814

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 40

Best fitness =-0.352318153870349

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 50

Best fitness =-0.35237500608

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 60

Best fitness =-0.352375006088472

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 70

Best fitness =-0.352383372704915

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 80

Best fitness =-0.352332151592387

Fig. 3.8 The positions of the current CPs and the stored CPs in the CM for the first example [1]

3.4 Charged System Search for Structural Optimization 61

δmin � δi � δmax i ¼ 1, 2, ::::,m
σmin � σi � σmax i ¼ 1, 2, ::::, n
σ b
i � σi � 0 i ¼ 1, 2, ::::, nc

ð3:29Þ

in which m is the number of nodes; nc denotes the number of compression

elements; σi and δi are the stress and nodal deflection, respectively; σbi represents

allowable buckling stress in member i when it is in compression.

3.4.1.2 Constraint Conditions for Frame Structures

For the frame structures, according to the AISC-ASD [9] code, the constraints are as

follows:

The stress limitations:

* Position of the current CPs

□ Position of the CPs stored in the CM

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 0
Best fitness =1100.9116597710338

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 1
Best fitness =1099.5592737710338

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 5
Best fitness =0.291862923832733

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 10
Best fitness =-0.255371765924082

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 20
Best fitness =-0.352316132115542

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 40
Best fitness =-0.352316132115542

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 60
Best fitness =-0.352342007467438

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 80
Best fitness =-0.352378405577619

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x
2

Iteration = 100
Best fitness =-0.352386072407224

a b c

d e f

h i j

Fig. 3.9 The positions of the CPs for the first example when the all initial agents are introduced in

a small part of the space [1]

62 3 Charged System Search Algorithm

f a
Fa

þ f bx
Fbx

þ f by
Fby

� 1, For
f a
Fa

� 0:15 ð3:30Þ

f a
Fa

þ Cmx f bx

1� f a
F
0
ex

 �
Fbx

þ Cmyf by

1� f a
F
0
ey

� �
Fby

� 1, For
f a
Fa

> 0:15 ð3:31Þ

f a
0:6Fy

þ f bx
Fbx

þ f by
Fby

� 1, For
f a
Fa

> 0:15 ð3:32Þ

The slenderness ratio limitation:

λi ¼ kiLi
ri

� 300 For tension members

λi ¼ kiLi
ri

� 200 For compression members

8>>><
>>>:

ð3:33Þ

where fa (¼P/Ai) represents the computed axial stress. The computed flexural

stresses due to bending of the member about its major (x) and minor (y) principal

axes are denoted by fbx and fby, respectively. F
0
ex and F

0
ey denote the Euler stresses

about principal axes of the member that are divided by a factor of safety of 23/12.

The allowable bending compressive stresses about major and minor axes are

designated by Fbx and Fby. Cmx and Cmy are the reduction factors, introduced to

counterbalance overestimation of the effect of secondary moments by the amplifi-

cation factors 1� f a
F
0
ex

 �
. For unbraced frame members, these factors are taken as

0.85. For braced frame members without transverse loading between their ends,

these are calculated from Cm ¼ 0.6 � 0.4M1/M2, where M1/M2 is the ratio of

smaller end moment to the larger end moment. Finally, for braced frame members

having transverse loading between their ends, these factors are determined from the

formula Cm ¼ 1 + ψ(fa/F
0
e) based on a rational approximate analysis outlined in

ASD-AISC [9] Commentary-H1, where ψ is a parameter that considers maximum

deflection and maximum moment in the member. Fa stands for the allowable axial

stress under axial compression force alone, and is calculated depending on elastic or

inelastic bucking failure mode of the member according to the slenderness ratio:

Fa ¼
1� λ2i

2C2
C

0
@

1
AFy

2
4

3
5, 5

3
þ 3λi
8CC

� λ3i
8C3

C

0
@

1
A For λi < CC

12π2E

23λ2i
For λi � CC

8>>>>>><
>>>>>>:

ð3:34Þ

where E ¼ the modulus of elasticity; Fy ¼ the yield stress of steel; Cc ¼
the slenderness ratio dividing the elastic and inelastic buckling regions (CC ¼

3.4 Charged System Search for Structural Optimization 63

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p
); λi ¼ the slenderness ratio (λi ¼ kLi/ri); k ¼ the effective length

factor; and ri ¼ the governing radius of gyration. For an axially loaded bracing

member whose slenderness ratio exceeds 120, Fa is increased by a factor of

(1.6 � Li/200ri) considering relative unimportance of the member. Equation

(23) represents the slenderness limitations imposed on all members such that

maximum slenderness ratio is limited to 300 for members under tension, and to

200 for members under compression loads.

Geometric constraints:

Geometric constraints are considered between beams and columns framing into

each other at a common joint for practicality of an optimum solution generated. For

the two beams B1 and B2 and the column shown in Fig. 3.10, the following

geometric constraints are written (Saka and Hasançebi [10]):

bfb � bfc ð3:35Þ
b

0
fb � dc � 2tf

� � ð3:36Þ

where bfb, b
0
fb and bfc are the flange width of the beam B1, the beam B2 and the

column, respectively, dc is the depth of the column, and tf is the flange width of the

column. Equation (3.35) ensures that the flange width of the beam B1 remains

smaller than that of the column. On the other hand, (3.36) enables that flange width

of the beam B2 remains smaller than clear distance between the flanges of the

column.

Maximum lateral displacement:

ΔT

H
� R ð3:37Þ

Inter-story displacement constraints:

di
hi

� RI, i ¼ 1, 2, . . . , ns ð3:38Þ

where ΔT is the maximum lateral displacement. H is the height of the frame

structure. R is the maximum drift index (¼ 1/400). di is the inter-story drift. hi is
the story height of the ith floor. ns represents the total number of stories. RI is the

inter-story drift index permitted by the code of the practice (¼ 1/400).

3.4.1.3 Design Loads for Frame Structures

The frame examples are subjected to various gravity loads in addition to lateral

wind forces. The gravity loads acting on floor slabs cover dead (D), live (L) and

snow (S) loads. All the floors excluding the roof are subjected to a design dead load

of 2.88 kN/m2 and a design live load of 2.39 kN/m2. The roof is subjected to a

64 3 Charged System Search Algorithm

design dead load of 2.88 kN/m2 plus snow load. The design snow load is computed

using the equation (7-1) in ASCE 7-05 [11], resulting in a design snow pressure of

0.75 kN/m2. The calculated gravity loads are applied as uniformly distributed loads

on the beams using distribution formulas developed for slabs. The design wind

loads (W) are also computed according to ASCE 7-05 using the following equation:

pw ¼ 0:613KzKztKdV
2I

� �
GCp

� � ð3:39Þ

where pw is the design wind pressure in kN/m2; Kz (¼1.07) is the velocity exposure

coefficient; Kzt (¼1.0) is the topographic factor, Kd (¼0.85) is the wind direction-

ality factor; I (¼1.15) is the importance factor; and V (¼46.94 m/s) is the basic

Fig. 3.10 Beam-column

geometric constraints [2]

3.4 Charged System Search for Structural Optimization 65

wind; G (¼0.85) is the gust factor, and Cp (¼0.8 for windward face and �0.5 for

leeward face) is the external pressure coefficient. The calculated wind loads are

applied as uniformly distributed lateral loads on the external beams of the frames

located on windward and leeward facades at every floor level.

The load combination per AISC-ASD specification is considered as

Dþ Lþ SþWxð Þ:
Dþ Lþ SþWy

� �
:

It should be noted that for wind forces in the above load combinations two cases

are considered. In the first case, the wind loading is acting along x-axis, whereas in
the second one it is applied along y-axis.

3.4.2 CSS Algorithm-Based Structural Optimization
Procedure

As defined in the previous section, there are some problem-specific constraints in

structural optimization problems that must be handled. The penalty function

method has been the most popular constraint-handling technique due to its simple

principle and ease of implementation. In utilizing the penalty functions, if the

constraints are between the allowable limits, the penalty will be zero; otherwise,

the amount of penalty is obtained by dividing the violation of allowable limit to the

limit itself. Since the CSS is independent of the type of penalty function, one can

easily utilize another approach in the application of CSS.

Detailed procedure of the proposed CSS algorithm-based method to determine

optimal design of structures is shown in Fig. 3.11. Considering the rules defined for

the CSS in Sect. 3, and utilizing the penalty functions to handle the problem-

specific constraints, the CSS algorithm-based structural optimization procedure

can be divided into the following three phases:

Phase 1: Initialization CSS algorithm parameters such as N, CMS, kv, ka and

design variable bounds are initialized. An array of CPs with random positions and

their associated velocities considering variable bounds are randomly generated that

are equal to the size of the N. The generated CPs are analyzed and the values of the
fitness function for the CPs considering the weight of the structure and the penalty

functions are evaluated. Then, CPs are ranked in an increasing order. CMS number

of the first CPs and their related values of the fitness function are stored in the CM.

Phase 2: Search Each CP moves to the new position considering the probability of

motion (3.24), the magnitude of the attracting force vector (3.25) and the motion

laws (3.26) and (3.27). If each CP exits from the allowable search space, its position

is corrected using the harmony-based algorithm. Then, the new CPs are analyzed to

66 3 Charged System Search Algorithm

Fig. 3.11 The flowchart of the CSS for the truss structures [2]

3.4 Charged System Search for Structural Optimization 67

evaluate the fitness function and to sort them increasingly. Then, some of the good

new CPs are stored in the CM and the worst ones are excluded from the CM.

Phase 3: Terminating Criterion Controlling Search level is continued until a

terminating criterion is satisfied.

3.5 Numerical Examples

In this section, three truss and two frame structures are optimized utilizing the new

algorithm. The final results are then compared to the solutions of other advanced

heuristic methods to demonstrate the efficiency of this work. For the CSS algo-

rithm, a population of 20 CPs is used for the first and the second truss examples and

a population of 50 candidates is selected for the remaining examples. The effect of

the pervious velocity and the resultant force affecting a CP can decrease or increase

based on the values of the kv and ka. Here, kv and ka are defined as

kv ¼ c 1� iter=itermaxð Þ
ka ¼ c 1þ iter=itermaxð Þ ð3:40Þ

where iter is the iteration number, and itermax is the maximum number of the

iterations, c is set to 0.5 and 0.2 when the population of 20 and 50 CPs are selected,
respectively. With this equation, kv decreases linearly while ka increases when the

number of iterations raises. In this way, the balance between the exploration and the

fast rate of convergence is saved.

In order to investigate the effect of the initial solution on the final result and

because of the stochastic nature of the algorithm, each example is independently

solved several times. The initial population in each of these runs is generated in a

random manner according to Rule 2. The first two truss examples are optimized by

the CSS algorithm for 50 times, while performance comparisons of the CSS method

in other examples based on 20 evaluations. The algorithms are coded in Matlab and

structures are analyzed using the direct stiffness method.

3.5.1 A Benchmark Truss

The topology and nodal numbering of a 25-bar spatial truss structure, shown in

Fig. 3.12, are known as a benchmark example in the field of structural optimization.

The material density is considered as 0.1 lb/in3 (2767.990 kg/m3) and the modulus

of elasticity is taken as 10,000 ksi (68,950 MPa). Twenty five members are

categorized into eight groups, as follows: (1) A1, (2) A2–A5, (3) A6–A9, (4) A10–

A11, (5) A12–A13, (6) A14–A17, (7) A18–A21, and (8) A22–A25.

68 3 Charged System Search Algorithm

This spatial truss is subjected to two loading conditions shown in Table 3.3.

Maximum displacement limitations of �0.35 in (�8.89 mm) are imposed on every

node in every direction and the axial stress constraints vary for each group as shown

in Table 3.4. The range of cross-sectional areas varies from 0.01 to 3.4 in2

(0.6452 cm2 to 21.94 cm2).

Fig. 3.12 Schematic of a twenty five-bar spatial truss [2]

Table 3.3 Loading conditions for the 25-bar spatial truss

Node

Case 1 Case 2

PX kips (kN) PY kips (kN) PZ kips (kN) PX kips (kN) PY kips (kN) PZ kips (kN)

1 0.0 20.0 (89) �5.0 (22.25) 1.0 (4.45) 10.0 (44.5) �5.0 (22.25)

2 0.0 �20.0 (89) �5.0 (22.25) 0.0 10.0 (44.5) �5.0 (22.25)

3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

Table 3.4 Member stress limitation for the 25-bar spatial truss

Element group Compressive stress limitations, ksi (MPa) Tensile stress limitations, ksi (MPa)

1 A1 35.092 (241.96) 40.0 (275.80)

2 A2–A5 11.590 (79.913) 40.0 (275.80)

3 A6–A9 17.305 (119.31) 40.0 (275.80)

4 A10–A11 35.092 (241.96) 40.0 (275.80)

5 A12–A13 35.092 (241.96) 40.0 (275.80)

6 A14–A17 6.759 (46.603) 40.0 (275.80)

7 A18–A21 6.959 (47.982) 40.0 (275.80)

8 A22–A25 11.082 (76.410) 40.0 (275.80)

3.5 Numerical Examples 69

T
a
b
le

3.
5

P
er
fo
rm

an
ce

co
m
p
ar
is
o
n
fo
r
th
e
2
5
-b
ar

sp
at
ia
l
tr
u
ss

E
le
m
en
t

g
ro
u
p

O
p
ti
m
al

cr
o
ss
-s
ec
ti
o
n
al

ar
ea
s
(i
n
2
)

R
aj
ee
v
an
d

K
ri
sh
n
am

o
o
rt
h
y

S
ch
u
tt
e
an
d

G
ro
en
w
o
ld

L
ee

an
d

G
ee
m

K
av
eh

et
al
.

K
av
eh

an
d
T
al
at
ah
ar
i

P
re
se
n
t
w
o
rk

[2
]

G
A
[1
4
]

P
S
O
[1
5
]

H
S
[8
]

IA
C
S
[1
3
]

P
S
A
C
O

[4
]

H
P
S
A
C
O

[4
]

H
B
B
–
B
C

[1
2
]

in
2

cm
2

1
A
1

0
.1
0

0
.0
1
0

0
.0
4
7

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
6
5

2
A
2
–
A
5

1
.8
0

2
.1
2
1

2
.0
2
2

2
.0
4
2

2
.0
5
2

2
.0
5
4

1
.9
9
3

2
.0
0
3

1
2
.9
2
3

3
A
6
–
A
9

2
.3
0

2
.8
9
3

2
.9
5
0

3
.0
0
1

3
.0
0
1

3
.0
0
8

3
.0
5
6

3
.0
0
7

1
9
.4
0
0

4
A
1
0
–
A
1
1

0
.2
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
6
5

5
A
1
2
–
A
1
3

0
.1
0

0
.0
1
0

0
.0
1
4

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
6
5

6
A
1
4
–
A
1
7

0
.8
0

0
.6
7
1

0
.6
8
8

0
.6
8
4

0
.6
8
4

0
.6
7
9

0
.6
6
5

0
.6
8
7

4
.4
3
2

7
A
1
8
–
A
2
1

1
.8
0

1
.6
1
1

1
.6
5
7

1
.6
2
5

1
.6
1
6

1
.6
1
1

1
.6
4
2

1
.6
5
5

1
0
.6
7
7

8
A
2
2
–
A
2
5

3
.0

2
.7
1
7

2
.6
6
3

2
.6
7
2

2
.6
7
3

2
.6
7
8

2
.6
7
9

1
7
.1
6
1

B
es
t
w
ei
g
h
t

(l
b
)

5
4
6

5
4
5
.2
1

5
4
4
.3
8

5
4
5
.0
3

5
4
5
.0
4

5
4
4
.9
9

5
4
5
.1
6

5
4
5
.1
0

2
,4
2
4
.7

N

A
v
er
ag
e

w
ei
g
h
t

(l
b
)

N
/A

5
4
6
.8
4

N
/A

5
4
5
.7
4

N
/A

5
4
5
.5
2

5
4
5
.6
6

5
4
5
.5
8

2
,4
2
6
.8

N

S
td

D
ev
(l
b
)

N
/A

1
.4
7
8

N
/A

0
.6
2
0

N
/A

0
.3
1
5

0
.3
6
7

0
.4
1
2

1
.8
3
3
N

N
o
.
o
f

an
al
y
se
s

N
/A

9
,5
9
6

1
5
,0
0
0

3
,5
2
0

2
8
,8
5
0

9
,8
7
5

1
2
,5
0
0

7
,0
0
0

70 3 Charged System Search Algorithm

The CSS algorithm achieves the best solution after 7,000 searches. However, the

HBB–BC (Kaveh and Talatahari [12]) and HPSACO (Kaveh and Talatahari [4])

algorithms find the best solution after about 12,500 and 9,875 analyses respectively,

which are 50 % and 41 %more than the present work. The best weight of the CSS is

545.10 lb. Although the CSS approach has slightly worse performance than the

improved methods IACS (Kaveh et al. [13]) and HPSACO (Kaveh and Talatahari

[4]), it performs better than other algorithms (GA (Rajeev and Krishnamoorthy

[14]), PSO (Schutte and Groenwold [15]) and HS (Lee and Geem [8]) when the best

Fig. 3.13 Schematic of a 120-bar dome shaped truss [2]

3.5 Numerical Examples 71

weight, the average weight or the standard deviation are compared. Table 3.5

presents a comparison of the performance of the CSS algorithm and other heuristic

algorithms.

3.5.2 A 120-Bar Dome Truss

The topology and group numbers of 120-bar dome truss are shown in Fig. 3.13. The

modulus of elasticity is 30,450 ksi (210,000 MPa), and the material density is

0.288 lb/in3 (7971.810 kg/m3). The yield stress of steel is taken as 58.0 ksi

(400 MPa). The dome is considered to be subjected to vertical loading at all the

unsupported joints. These loads are taken as �13.49 kips (�60 kN) at node

1, �6.744 kips (�30 kN) at nodes 2–14, and �2.248 kips (�10 kN) at the rest of

the nodes. The minimum cross-sectional area of all members is 0.775 in2 (2 cm2)

and the maximum cross-sectional area is taken as 20.0 in2 (129.03 cm2). The

constraints are considered as:

1. Stress constraints (according to the AISC-ASD (1989) code):

σþi ¼ 0:6Fy for σi � 0

σ�i for σi < 0

�
ð3:41Þ

where σ�i is calculated considering the slenderness ratio (3.34).

2. Displacement limitations of �0.1969 in (�5 mm) are imposed on all nodes in x,

y and z directions.

Table 3.6 illustrates the best solution vectors, the corresponding weights and

the required number of analyses for convergence in the present algorithm and

Table 3.6 Performance comparison for the 120-bar dome truss

Element group

Optimal cross-sectional areas (in2)

Kaveh

et al. Kaveh and Talatahari Present work [2]

IACS

[13]

PSOPC

[4]

PSACO

[4]

HPSACO

[4]

HBB–BC

[12] in2 cm2

1 A1 3.026 3.040 3.026 3.095 3.037 3.027 19.529

2 A2 15.06 13.149 15.222 14.405 14.431 14.606 94.232

3 A3 4.707 5.646 4.904 5.020 5.130 5.044 32.542

4 A4 3.100 3.143 3.123 3.352 3.134 3.139 20.252

5 A5 8.513 8.759 8.341 8.631 8.591 8.543 55.116

6 A6 3.694 3.758 3.418 3.432 3.377 3.367 21.723

7 A7 2.503 2.502 2.498 2.499 2.500 2.497 16.110

Best weight (lb) 33320.52 33481.2 33263.9 33248.9 33287.9 33251.9 147912 N

No. of analyses 3,250 150,000 32,600 10,000 10,000 7,000

72 3 Charged System Search Algorithm

some of other heuristic methods. Except IACS which uses two auxiliary mecha-

nisms for searching, the CSS optimization has best convergence rates. Fig-

ure 3.14 shows the best and average convergence history for the results of the

CSS. In addition, CSS and HPSACO find the best result among the other

metaheuristics. A comparison of the allowable and existing stresses and dis-

placements of the 120-bar dome truss structure using CSS is shown in Fig. 3.15.

The maximum value for displacement is equal to 0.19689 in (5 mm) and the

maximum stress ratio is equal to 99.98 %.

3.5.3 A 26-Story Tower Space Truss

The 26-story tower space truss containing 942 elements and 244 nodes is consi-

dered as the large-scale truss example. Fifty-nine design variables are used to

represent the cross-sectional areas of 59 element groups in this structure, employing

the symmetry of the structure. Figure 3.16 shows the geometry and the 59 element

groups. The material density is 0.1 lb/in3 (2,767.990 kg/m3) and the modulus of

elasticity is 10,000 ksi (68,950 MPa).

The members are subjected to the stress limits of�25 ksi (172.375 MPa) and the

four nodes of the top level in the x, y, and z directions are subjected to the

displacement limits of �15.0 in (38.10 cm) (about 1/250 of the total height of the

tower). The allowable cross-sectional areas in this example are selected from 0.1 to

20.0 in2 (from 0.6452 cm2 to 129.032 cm2). The loading on the structure consists of:

1. The vertical load at each node in the first section is equal to �3 kips (�13.344

kN);

2. The vertical load at each node in the second section is equal to�6 kips (�26.688

kN);

10 50 100 150 200 250 300 350
3.2

3.4

3.6

3.8

4

4.2

4.4
x 10

4

Iterations

W
ei

g
h
t

(l
b
)

The average of 50 runs

The best result

Fig. 3.14 Convergence history of the 120-bar dome shaped truss for the CSS algorithm [2]

3.5 Numerical Examples 73

3. The vertical load at each node in the third section is equal to �9 kips (�40.032

kN);

4. The horizontal load at each node on the right side in the x direction is equal to�1

kips (�4.448kN);

5. The horizontal load at each node on the left side in the x direction is equal to 1.5

kips (6.672kN);

6. The horizontal load at each node on the front side in the y direction is equal to

�1 kips (�4.448kN);

7. The horizontal load at each node on the back side in the x direction is equal to

1 kips (4.448kN).

The CSS method achieved a good solution after 15,000 analyses and found an

optimum weight of 47,371 lb (210,716 N). The best weights for the GA, PSO, BB–

BC and HBB–BC are 56,343 lb (250,626 N), 60,385 lb (268,606 N), 53,201 lb

(236,650 N) and 52,401 lb (233,091 N), respectively. In addition, CSS has better

performance in terms of the optimization time, standard deviation and the average

weight. Table 3.7 provides the statistic information for this example. The stress

constraints are dominant in this example. The maximum value of stress ratio is

equal to 96.7 %. Figure 3.17 compares the allowable and existing stresses in the

a b

c d

0 5 10 15 20 25 30 35 37

-0.2

-0.1

0

0.1

0.2

The node number

D
is

p
la

ce
m

en
t

(i
n
)

The allowable value

The exsiting value

0 5 10 15 20 25 30 35 37

-0.2

-0.1

0

0.1

0.2

The node number

D
is

p
la

ce
m

en
t

(i
n

)

The allowable value

The exisiting value

0 5 10 15 20 25 30 35 37

-0.2

-0.1

0

0.1

0.2

The node number

D
is

p
la

ce
m

en
t

(i
n
)

The allowable value

The existing value

1 20 40 60 80 100 120
-30

-20

-10

0

10

20

30

40

The element number

S
tr

es
s

The allowable value

The exisiting value

Fig. 3.15 Comparison of the allowable and existing constraints for the 120-bar dome shaped truss

using the CSS [2]. (a) Displacement in the x direction, (b) displacement in the y direction,

(c) displacement in the z direction and (d) stress

74 3 Charged System Search Algorithm

Fig. 3.16 Schematic of a

26-story tower truss [2]

3.5 Numerical Examples 75

T
a
b
le

3.
7

P
er
fo
rm

an
ce

co
m
p
ar
is
o
n
fo
r
th
e
2
6
-s
to
ry

to
w
er

sp
at
ia
l
tr
u
ss

K
av
eh

an
d
T
al
at
ah
ar
i
[1
2
]

P
re
se
n
t
w
o
rk

[2
]

G
A

P
S
O

B
B
–
B
C

H
B
B
–
B
C

B
es
t
w
ei
g
h
t
(l
b
)

5
6
,3
4
3
(2
5
0
,6
2
6
N
)

6
0
,3
8
5
(2
6
,8
6
0
6
N
)

5
3
,2
0
1
(2
3
6
,6
5
0
N
)

5
2
,4
0
1
(2
3
3
,0
9
1
N
)

4
7
,3
7
1
(2
1
0
,7
1
6
N
)

A
v
er
ag
e
w
ei
g
h
t
(l
b
)

6
3
,2
2
3
(2
8
1
2
3
0
N
)

7
5
,2
4
2
(3
3
4
,6
9
3
N
)

5
5
,2
0
6
(2
4
5
,5
6
8
N
)

5
3
,5
3
2
(2
3
8
,1
2
2
N
)

4
8
,6
0
3
(2
1
6
,1
9
7
N
)

S
td

D
ev

(l
b
)

6
,6
4
0
.6

(2
9
,5
3
9
N
)

9
,9
0
6
.6

(4
4
,0
6
7
N
)

2
,6
2
1
.3

(1
1
,6
6
0
N
)

1
,4
2
0
.5

(6
,3
1
8
N
)

9
5
0
.4

(4
,2
2
7
N
)

N
o
.
o
f
an
al
y
se
s

5
0
,0
0
0

5
0
,0
0
0

5
0
,0
0
0

3
0
,0
0
0

1
5
,0
0
0

O
p
ti
m
iz
at
io
n
ti
m
e
(s
)

4
,4
5
0

3
,6
4
0

3
,1
6
2

1
,9
2
6

1
,3
4
0

76 3 Charged System Search Algorithm

elements for the CSS result. The convergence history is shown in Fig. 3.18. The

final designs obtained by the CSS technique for this example is given in Table 3.8.

3.5.4 An Unbraced Space Frame

A 10-story space steel frame consisting of 256 joints and 568 members is shown in

Fig. 3.19. This problem has been formerly studied by Saka and Hasançebi [10] to

evaluate the performance of a HS-based technique in real size optimum design of

steel frameworks considering ASD-AISC as the code of the practice.

The columns in a story are collected in three member groups as corner columns,

inner columns and outer columns, whereas beams are divided into two groups as

inner beams and outer beams. The corner columns are grouped together as having

the same section in the first three stories and then over two adjacent stories

1 200 400 600 800 942
-30

-20

-10

0

10

20

30

Number of elements

S
tr

es
s

(k
si

)

Fig. 3.17 Comparison of

the allowable and existing

stress constraints for the

26-story tower truss truss

using the CSS [2]

10 50 100 150 200 250 300
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

5

Iterations

W
ei

g
h
t

(l
b
)

The average of the 20 runs

The best result

Fig. 3.18 Convergence

history of the 26-story

tower truss for the CSS

algorithm [2]

3.5 Numerical Examples 77

thereafter, as are corner columns, inner columns, outer columns, inner beams and

outer beams. This results in a total of 25 distinct design groups.

The optimum design of the space frame described above is carried out using the

CSS and compared with those of the simulated annealing (SA), evolution strategies

(ESs), particle swarm optimizer (PSO), tabu search optimization (TSO), simple

genetic algorithm (SGA), ant colony optimization (ACO), and harmony search

(HS) methods (Saka and Hasançebi [10]). In each optimization technique the

number of iterations was taken as 50,000, when ASD-AISC is used as the code of

the practice. Our investigation shows that 12,500 analyses are sufficient as the

maximum number of analyses for the CSS. This shows that the CSS can reach a

similar result as the other methods with smaller number of analyses. The design

history of each run by each technique is shown in Fig. 3.20.

The optimum design attained by the CSS method for this example is

225,654.0 kg, while it is 228,588.3 kg for the ESs. Among the metaheuristic

algorithms, the adaptive harmony search algorithm is the third best which is

1.6 % heavier than the one obtained by evolutionary strategies algorithm. The

optimum result for the TSO, SA, ACO, SGA and PSO is 235,167.5 kg,

238,756.5 kg, 241,470.31 kg, 245,564.80 kg and 253,260.23 kg, respectively. The

minimum weights as well as W-section designations obtained by some of the best

algorithms are provided in Table 3.9.

Table 3.8 The optimum design of the CSS algorithm for the 26-story tower spatial truss

Optimal cross-sectional areas (cm2)

Members Area Members Area Members Area

1 A1 0.962 21 A21 2.780 41 A41 0.417

2 A2 2.557 22 A22 0.430 42 A42 0.679

3 A3 1.650 23 A23 3.048 43 A43 19.584

4 A4 0.402 24 A24 5.112 44 A44 0.533

5 A5 0.657 25 A25 19.352 45 A45 1.640

6 A6 18.309 26 A26 0.476 46 A46 0.618

7 A7 0.346 27 A27 2.887 47 A47 0.531

8 A8 3.076 28 A28 19.500 48 A48 1.374

9 A9 2.235 29 A29 4.772 49 A49 19.656

10 A10 3.813 30 A30 5.063 50 A50 0.888

11 A11 0.856 31 A31 15.175 51 A51 4.456

12 A12 1.138 32 A32 1.176 52 A52 0.386

13 A13 3.374 33 A33 0.839 53 A53 10.398

14 A14 0.573 34 A34 1.394 54 A54 18.834

15 A15 19.530 35 A35 0.153 55 A55 18.147

16 A16 1.512 36 A36 0.247 56 A56 3.280

17 A17 2.667 37 A37 18.673 57 A57 2.972

18 A18 0.478 38 A38 0.696 58 A58 4.927

19 A19 17.873 39 A39 1.395 59 A59 0.288

20 A20 0.335 40 A40 0.422

Weight (N) 210716

78 3 Charged System Search Algorithm

Fig. 3.19 (continued)

3.5 Numerical Examples 79

Fig. 3.19 Schematic of an unbraced space frame [2]

80 3 Charged System Search Algorithm

3.5.5 A Braced Space Frame

The second frame example considered in this paper is a 36-story braced space steel

frame consisting of 814 joints and 1,860 members, as shown in Fig. 3.21, Saka and

Hasançebi [10]. An economical and effective stiffening of the frame against lateral

forces is achieved through exterior diagonal bracing members located on the

perimeter of the building, which also participate in transmitting the gravity forces.

The 1,860 frame members are collected in 72 different member groups, consid-

ering the symmetry of the structure and the practical fabrication requirements. That

is, the columns in a story are collected in three member groups as corner columns,

inner columns and outer columns, whereas beams are divided into two groups as

inner beams and outer beams. The corner columns are grouped together as having

the same section over three adjacent stories, as are inner columns, outer columns,

inner beams and outer beams. Bracing members on each facade are designed as

three-story deep members, and two bracing groups are specified in every six stories.

The minimum weight design of the frame is equal to 2,301.69 ton for the CSS

algorithm while it is 2,383.60 ton and 4,438.17 ton for the adaptive harmony search

and the simple harmony search algorithms, respectively. Figure 3.22 shows the

design history graph obtained for this example. In the optimum design process, CSS

finds the optimum design after 12,500 analyses, while ES needs 50,000 searches to

determine the optimum solution.

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

500,000

550,000

600,000

650,000

700,000

750,000

800,000

850,000

900,000

Number of analyses

W
e
ig

h
t

CSS

ESs

AHS

TSO

SA

ACO

SGA

PSO

Fig. 3.20 Comparison of the convergence history for the unbraced space frame [2]

3.5 Numerical Examples 81

3.6 Discussion

3.6.1 Efficiency of the CSS Rules

Solution of a number of design examples shows the superiority of the CSS algo-

rithm to the other existing metaheuristics. To investigate the effect of some utilized

rules, a number of the CSS-based algorithms are defined as follows:

Case 1: Rule 3 is changed as:

The kind of the electric forces between two charged particles is selected

randomly.

Case 2: Rule 4 is changed as:

Any CP can act on another one; i.e. a bad CP can affect a good one and vice versa

(pij ¼ 1).

Case 3: Rule 4 is changed as:

Table 3.9 Optimal design for the unbraced space frame

Optimal W-shaped sections

Element group

Saka and Hasançebi (2009)

Present work [2]SA TSO AHS ESs

1 W14X193 W14X193 W14X176 W14X193 W14X132

2 W8X48 W8X48 W14X48 W8X48 W21X55

3 W8X40 W8X40 W10X39 W10X39 W12X40

4 W10X22 W10X22 W10X22 W10X22 W10X33

5 W21X44 W21X50 W24X55 W21X50 W21X50

6 W12X65 W10X54 W12X65 W10X54 W12X65

7 W14X145 W14X120 W14X145 W14X109 W14X99

8 W14X145 W14X159 W14X159 W14X176 W14X120

9 W24X65 W21X44 W14X30 W18X40 W21X44

10 W24X55 W18X40 W18X40 W18X40 W21X44

11 W10X49 W10X45 W10X54 W10X49 W14X61

12 W14X90 W14X90 W14X90 W14X90 W10X88

13 W14X120 W12X120 W14X120 W14X109 W14X99

14 W16X36 W12X44 W14X34 W14X30 W18X35

15 W16X40 W16X36 W18X40 W16X36 W12X50

16 W12X40 W10X33 W8X31 W12X45 W21X68

17 W12X65 W12X65 W12X65 W12X65 W16X57

18 W12X26 W14X34 W18X35 W10X22 W24X68

19 W12X72 W12X79 W12X79 W12X79 W16X36

20 W16X36 W14X30 W14X30 W14X30 W16X31

21 W8X24 W10X39 W10X22 W8X35 W10X33

22 W10X49 W12X45 W10X45 W10X39 W16X31

23 W8X24 W12X35 W8X31 W8X31 W8X28

24 W12X26 W6X20 W10X22 W8X18 W8X18

25 W12X26 W12X26 W12X26 W14X30 W10X26

Weight (kg) 238,756.5 235,167.5 232,301.2 228,588.3 225,654.0

82 3 Charged System Search Algorithm

Only good CPs can attract bad CPs.

Case 4: Rule 5 is changed as:

Always i1 ¼ 0 and i2 ¼ 1.

Case 5: Rule 5 is changed as:

Always i1 ¼ 1 and i2 ¼ 0.

3D view Front view Side view Plan

a b c d

Fig. 3.21 Schematic of a braced space frame [2]

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Number of analyses

W
e
ig

h
t

CSS

AHS

HS

Fig. 3.22 Comparison of the convergence history for the braced space frame [2]

3.6 Discussion 83

Table 3.10 shows the results of the 50 runs of the first example for the each case.

Comparing the result of Case 1 with the result of the original CSS (Table 3.5)

confirms that considering repulsive forces between CPs reduces the power of the

algorithm. Although when a good agent attracts a bad one, the exploitation ability

for the algorithm is provided, and vice versa if a bad CP attracts a good CP, the

exploration is provided, however differences between the results of the Cases 2 and

3 with the original CSS indicated that when all bad agents attract good ones, a

disorder will be created and when only good CPs attract bad ones the convergence

will occur very soon and a complete search will not be performed. As a result, at

least the computational cost to reach a good solution may increase for the condition

of the Cases 2 and 3.

3.6.2 Comparison of the PSO and CSS

Both the CSS and the PSO are multi-agent algorithms in which the position of each

agent is obtained by adding the agent’s movement to its previous position; however

the movement strategies are different. In the PSO algorithm, each particle contin-

uously focuses and refocuses on the effort of its search according to both local best

and global best, while the CSS approach uses the governing laws from electrical

physics and the governing laws of motion from the Newtonian mechanics to

determine the amount and the direction of a charged particle’ movement. The

potency of the PSO is summarized to find the direction of an agent’ movement,

while the CSS method can determine not only the directions but also the amount of

movements. In the PSO, the direction of an agent is calculated using only two best

positions containing local best and global best. However, in the CSS the agent

direction is calculated based on the overall forces resulted by the best agents stored

in the CM and some of the best current CPs. CSS can distinguish finishing the

global phase and change the movement updating equation for the local phase to

have a better balance between the exploration and exploitation. While one of the

greatest disadvantages of the PSO approach is the existence of some difficulties in

controlling the balance between the exploration and exploitation due to ignoring the

effect of other agents, Kaveh and Talatahari [4].

Table 3.10 Investigation on the performance of various CSS-based algorithms for the 25-bar

truss in 50 runs

Case 1 Case 2 Case 3 Case 4 Case 5

Best weight (lb) 551.31 551.10 545.99 546.28 550.55

Average weight (lb) 554.75 552.39 549.42 547.06 550.90

Std. Dev. (lb) 1.210 0.885 1.467 0.707 0.686

84 3 Charged System Search Algorithm

3.6.3 Efficiency of the CSS

CSS utilizes the Coulomb and Gauss laws to determine the direction and the

amount of the movement of each agent and uses some laws of the Newtonian

mechanics to complete the movement process. Compared to other metaheuristics,

CSS has less computing cost and can determine the optimum result with a smaller

number of analyses. Due to having a good balance between the exploration and

exploitation, the performance of the CSS in both global search stage (initial

iterations) and the local search stage (last iterations) is good. The comparison of

the CSS results with those of the other heuristics shows the robustness of the present

algorithm and demonstrates the efficiency of the algorithm to find optimum design

of structures.

References

1. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search.

Acta Mech 213(3–4):267–286

2. Kaveh A, Talatahari S (2010) Optimal design of truss structures via the charged system search

algorithm. Struct Multidiscip Optim 37(6):893–911

3. Halliday D, Resnick R, Walker J (2008) Fundamentals of physics, 8th edn. Wiley, USA

4. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of truss structures. Comput Struct 87(5–6):267–283

5. Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with

evolutionary algorithms: a survey of the state of the art. Comput Meth Appl Mech Eng

191(11–12):1CA.245–1CA.287

6. Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures

with discrete variable. J Construct Steel Res 65(8–9):1558–1568

7. Tsoulos IG (2008) Modifications of real code genetic algorithm for global optimization.

Appl Math Comput 203:598–607

8. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search

algorithm. Comput Struct 82:781–798

9. American Institute of Steel Construction (AISC) (1989) Manual of steel construction-

allowable stress design, 9th edn. AISC, Chicago, IL

10. Saka MP, Hasançebi O (2009) Design code optimization of steel structures using adaptive

harmony search algorithm. In: Geem ZW (ed) Chapter 3 of a book entitled: harmony search

algorithms for structural design. Springer, Heidelberg

11. ASCE 7-05, Minimum design loads for building and other structures, Standards ASCE/SEI

7-05

12. Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang–Big Crunch

algorithm. Comput Struct 87:1129–1140

13. Kaveh A, Farahmand Azar B, Talatahari S (2008) Ant colony optimization for design of space

trusses. Int J Space Struct 23(3):167–181

14. Rajeev S, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algo-

rithms. J Struct Eng ASCE 118(5):1233–50

15. Schutte JJ, Groenwold AA (2003) Sizing design of truss structures using particle swarms.

Struct Multidiscip Optim 25:261–269

References 85

Chapter 4

Magnetic Charged System Search

4.1 Introduction

This chapter consists of two parts. In first part, the standard Magnetic Charged

System Search (MCSS) is presented and applied to different numerical examples to

examine the efficiency of this algorithm. The results are compared to those of the

original charged system search method [1].

In the second part, an improved form of the MCSS algorithm, denoted by

IMCSS, is presented and also its discrete version is described. The IMCSS algo-

rithm is applied to optimization of truss structures with continuous and discrete

variables to demontrate the performance of this algorithm in the field of structural

optimization [2].

4.2 Magnetic Charged System Search Method

One of the most recent metaheuristic algorithms is the Charged System Search

(CSS) presented in Chap. 3, which uses the Coulomb and Gauss laws from physics

and Newtonian laws from mechanics to guide the Charged Particles (CPs) to

explore the locations of the optimum [3].

In this chapter, an improved CSS algorithm which is called Magnetic Charged

System Search (MCSS) is presented. The new algorithm utilizes the governing laws

for magnetic forces, and includes magnetic forces in addition to electrical forces.

The movements of CPs due to the total force (Lorentz force) are determined using

Newtonian mechanical laws.

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_4, © Springer International Publishing Switzerland 2014

87

4.2.1 Magnetic Laws

4.2.1.1 Magnetic Fields

There is a relation between electric and magnetic forces and these forces are called

electromagnetic forces. The region surrounding any stationary or moving charged

particle contains electric fields. In addition to electric field, the region surrounding

any moving charged particle also contains magnetic fields. The existence of the

magnetic field near the moving charged particles was Oersted’s discovery in 1819.

He has shown that a compass needle deflected by a current-carrying conductor.

Shortly after this discovery, Biot and Savart proposed a mathematical expression

so-called Biot-Savar law that provides the magnitude of magnetic field at any point

of the space in terms of the electric current that produces the field, Fig. 4.1. Biot-

Savar law is expressed [4] as:

dB ¼ μ0
4π

Ids� r̂

r2
ð4:1Þ

Here, dB is the magnetic field at point P and μ0 is a constant called the

permeability of free space, and r is the distance between ds to P.
Consider a straight wire with radius of R carrying electric current of magnitude

I which is uniformly distributed through the cross-section of the wire, Fig. 4.2a. By
utilizing Biot-Savar law, the magnetic field produced by wire at a point like

P outside the wire, can be determined as:

B ¼ μ0
2π

I

r
when r � R ð4:2Þ

The magnitude of the magnetic field inside the wire can be obtained using

Ampère’s law,

B ¼ μ0
2π

I

R2

� �
� r when r < R ð4:3Þ

With this formulation for magnetic field, the magnitude of the field inside the

wire increases linearly from r ¼ 0 to r ¼ R (B / r), and outside of the wire, it is

inversely proportional to the distance (B / 1/r), and decreases by increasing the

distance. When r ¼ R, the (4.2) and (4.3) have an overlap, and both give identical

magnitude for the magnetic field. A plot of these two equations from [4] is shown in

Fig. 4.2b.

If there are many wires in a space, in order to calculate the total magnitude of the

magnetic field in a specified point, the equivalent magnetic field should be calcu-

lated by considering the principle of superposition, and summing the magnetic

fields produced by each wire. Therefore, the total magnetic field at a specified point

P, due to a group of wires, can be obtained as:

88 4 Magnetic Charged System Search

BP ¼
Xn
i¼1

Bip ð4:4Þ

where BP is the total magnetic field at point P, n is the number of wires in the space,

and Bip is the magnetic field created by the ith wire at point P which can be

expressed as:

Bip ¼

μ0
2π

I

r
for r � R

μ0
2π

I

R2

0
@

1
A� r for r < R

8>>>>><
>>>>>:

ð4:5Þ

4.2.1.2 Magnetic Forces

When a charged particle moves in a magnetic field, a magnetic force FB will be

imposed on that moving charged particle. Experiments on charged particles moving

in a magnetic field results in the following:

• The magnitude of the magnetic force FB exerted on the charged particle is

proportional to the charge q and to the speed v of the particle.
• The magnitude and direction of the magnetic force FB depend on the velocity of

the particle and magnitude and direction of magnetic field B.

Fig. 4.1 The magnitude of

the magnetic field dB at

point P due to current

I through a length element

ds given by Biot-Savar law

[1]

Fig. 4.2 (a) A wire

carrying electric current

I that is uniformly

distributed in its cross-

section. (b) A plot of

distribution of magnetic

field produced by a wire in

the space [1]

4.2 Magnetic Charged System Search Method 89

By summarizing these observations, an expression for calculating the magnetic

force is obtained [4] as:

FB ¼ qv� B ð4:6Þ

where B is the magnetic field exerted on the particle. Here, the only source of the

magnetic field is the magnetic field produced by the wires. Thus, the magnitude of

the B can be calculated using (4.5).

4.2.2 A Brief Introduction to Charged System Search
Algorithm

The Charged system search (CSS) algorithm, as explained in Chap. 3, takes its

inspiration from the physic laws governing a group of charged particles, CPs. These

charge particles are sources of the electric fields, and each CP can exert electric

force on other CPs. Using the Newtonian mechanic laws, the movement of each CP

due to the electric force can be determined. The CSS algorithm is summarized in a

step-by-step form as follows:

Step 1. Initialization
The initial positions of the CPs are randomly determined using a uniform source,

and the initial velocities of the particles are set to zero. A memory is used to save

a number of best results. This memory is called the Charged Memory (CM).

Step 2. Determination of electric forces and the corresponding movements

• Force Determination. Each charged particle imposes electric forces on the

other CPs according to the magnitude of its charge. The charge of the each CP

is:

qi ¼
fit ið Þ � fitworst

fitbest� fitworst
ð4:7Þ

where fit(i) is the objective function value of the ith CP, fitbest and fitworst are the
so far best and worst fitness among all of the CPs, respectively.

In addition to electric charge, the magnitude of the electric forces exerted on the

CPs is depended on their separation distance that is,

rij ¼
Xi � Xj

�� ���� ������ Xi þ Xj

� �
=2� Xbest

����þ ε
ð4:8Þ

where Xi and Xj are the position of the ith and jth CPs, and rij is the separation

distance these CPs. Xbest is the position of the best current CP, and ε is a small

positive number to prevent singularity.

90 4 Magnetic Charged System Search

The probability of the attraction of the ith CP by the jth CP is expressed as:

pij ¼
1 , fit ið Þ � fitbest

fit jð Þ � fit ið Þ > rand, or, fit jð Þ > fit
�
i
�

0 , else:

8<
: ð4:9Þ

The electric resultant force FE,j, acting on the jth can be calculated by the

following equation:

FE, j ¼ qj
X
i, i 6¼j

qi
a3

rij � w1 þ qi
rij2

� w2

� �
� pji

� Xi � Xj

� �
,

w1 ¼ 1,w2 ¼ 0 , rij < R
w1 ¼ 0,w2 ¼ 1 , rij � R
j ¼ 1, 2, . . . ,N

8<
: ð4:10Þ

• Movements Calculations. According to the determined forces, each CP

moves to its new position, and attain velocity as:

Xj,new ¼ randj1 � ka � Fj

mj
� Δt2 þ randj2 � kv � Vj,old � Δtþ Xj,old, ð4:11Þ

Vj,new ¼ Xj,new � Xj,old

Δt
ð4:12Þ

where randj1 and randj2 are two random numbers that uniformly distributed in the

range (0, 1). ka is the acceleration coefficient, kv is the velocity coefficient, and mj is

the mass of particle that is considered equal to qj. The magnitudes of the ka and kv
are set to 0.5 which are linearly increased and decreased as:

ka ¼ 0.5(1 + iter/itermax), kv ¼ 0.5(1 � iter/itermax) (4.13)

where iter is the current iteration number, and itermax is the maximum number of

iterations.

Step 3. Charged Memory (CM) Updating

If among all of the new CPs, there are better CP or CPs that have better objective

function value than the worst ones in the CM, these should be included in the

CM, and the worst ones in the CM are excluded from the CM.

Step 4. Checking the Termination Criteria

Steps 2 and 3 are reiterated until one of the specified terminating criteria is

satisfied.

4.2 Magnetic Charged System Search Method 91

4.2.3 Magnetic Charged System Search Algorithm

4.2.3.1 Combination of Magnetic and Electric forces

The inspiration of the standard CSS algorithm is based on a group of charged

particles that exert electric forces on each other based on their charges and their

separation distances. After computing the electric forces, each particle moves and

its movement is calculated by using Newtonian mechanics laws. Therefore, we

have charged particles that move in the search space. In physics, it has been shown

that when a charged particle moves, it produces magnetic field. This magnetic field

can exert a magnetic force on other charged particles. Thus, in addition to the

electric forces we should consider magnetic forces. In physics, when a charged

particle moves with velocity v in the presence of both an electric field E and a

magnetic field B, experiences both an electric force qE and a magnetic force

qv � B. The total force, known as the Lorentz force [4], exerting on the charged

particle is: X
F ¼FB þ FE ¼ qv� Bþ qE ¼ q � v� Bþ Eð Þ ð4:14Þ

Where F is the Lorentz force. Thus, MCSS, considers the magnetic force as an

additional force with the purpose of making the new algorithm closer to the nature

of the movement of charged particles. From optimization point of view, this new

force records additional information about the movement of the CPs, and it

improves the performance of the standard CSS.

4.2.3.2 MCSS Algorithm

The MCSS algorithm is based on its original version, standard CSS. The difference

between these two algorithms is that CSS only considers the electric force, but

MCSS includes magnetic forces besides electric forces. The main structure of the

algorithm is the same as the standard CSS, but in MCSS changes are made in part of

the algorithm where the forces are computed. By using the aforementioned physical

laws about magnetic fields and forces, the magnetic forces are determined. Each

solution candidate Xi known as CP (charged particle) contains electrical charge.

These CPs produce electric fields, and exert electric forces on each other. When a

CP moves, it creates a magnetic field in the space, and this magnetic field imposes

magnetic forces on other CPs.

As explained previously, the source of the magnetic fields is the movement of

the CPs. For computing these fields, we assumed that CPs move in virtual straight

wires with radius of R. Thus, the path of movement of each particle consists of

straight wires. These straight wires change their directions by each movement of the

CPs, but during the movement, each wire remains straight, Fig. 4.3. The places that

a wire changes its direction, is the position of the CP at the end of its movement.

92 4 Magnetic Charged System Search

When the CP starts a new movement, the direction of its movement may differ from

its previous one, so the direction of the wire which includes the CP during its

movement also changes. According to magnetic laws presented in Sect. 4.2.1, a

conducting wire carrying electric current can creates magnetic fields in the space.

Now our virtual wires contain charged particles that move on them. By each

movement of the CPs, their charges are altered, so during the movement the

magnitude of the charge is not constant, and changes during the movement. This

movement of CPs can be comprehended as an electric current in the virtual wire.

The current of a wire is the rate at which charge flows through one specified cross-

section of the wire. If Δq is the amount of charge that passes through this area in a

time interval Δt, the average current Iavg will be equal to the charge that passes

through the cross-section per unit time:

Iavg ¼ Δq
Δq

ð4:15Þ

Since the time intervals of each movement are set to unity, the average current

will be equal to the variation of the charge. For computing the variation of the

charges, we consider the start and the end points of the movement of CPs. By taking

these assumptions into account, (4.15) can be written as:

Iavg
� �

ik
¼ qi

k � qi
k�1 ð4:16Þ

where (Iavg)ik is the average current in the ith wire of ith CP in the kth movement

(iteration), and qi
k � 1 and qi

k are the charges of the ith CP at the start and end of its

kth movement, respectively. Equation (4.16) shows that by this definition for the

electric current, the concept of quantity represents the variation of the objective

function of each CP in each movement. By this definition, the electric current can

be both positive and negative values. A positive one indicates that the movement

produced an improvement in the charge of the CP. In other words, since the charge

of a CP is a quantity of its quality or objective function value, a positive electric

current means an improvement and a negative electric current means an deteriora-

tion in the quality of the CP.

Charge of the CPs is defined by (4.7). This expression for computing electric

charges results in values between 0 to 1. This is due to normalization of the

1+k
iq

k
iq

2+k
iq

3+k
iq

4+k
iqFig. 4.3 The schematic

view of a virtual wire

(movement path of a CP),

qi
k is the charge of the ith

CP at end of the kth
movement (kth iteration) [1]

4.2 Magnetic Charged System Search Method 93

objective function of each CP in that expression. Therefore, the charges of the worst

and best CP are always zero and unity, respectively. Now, consider the situation

that the worst CP moves in the search space, at the end of the movement, it may

attain a better objective function value, but it may still be the worst CP, so its charge

will still be zero. This means that there may be some situations that the objective

function of a CP improves but its charge does not change because charge is a

relative quantity. It seems necessary to modify the electric current expression in a

way that the concept of electric current is saved, and the aforementioned problem is

solved. In relation with this problem, two alternative expressions for computing

electric current are proposed. The first one is:

Iavg
� �

ik
¼ qi,k � qi,k�1

qi,k
ð4:17Þ

Where qi,k and qi,k � 1 are the charge of the ith CP at the start of the kth and k – 1th
iterations, respectively. This equation gives a normalized value for the variation of

the ith CP. The second proposed relation is expressed as:

Iavg
� �

ik
¼ sign df i,k

� �� df i,k
�� ��� dfmin,k

dfmax,k � dfmin,k

ð4:18Þ

df i,k ¼ fitk ið Þ � fitk�1 ið Þ ð4:19Þ

where dfi,k is the variation of the objective function in the kth movement (iteration).

fitk(i) and fitk � 1(i) are the values of the objective function of the ith CP at the start

of the kth and k – 1th iterations, respectively. The quantity dfi,k can attain both

positive and negative values. If we consider absolute values of df for all of the
current CPs, dfmax,k and dfmin,k will be the maximum and minimum values among

these absolute values of df, respectively. Therefore, dfmax,k and dfmin,k are always

positive quantities. It should be noted that here the second expression (4.18) and

(4.19) is utilized for the computation of the electric current.

For computing the magnetic field in place of each particle, one must compute the

distance of that particle from the virtual wire. This distance is assumed to be the

same as (4.8). Thus, rij now means the distance between the ith wire and ith virtual

CP to the jth charged particle.

In the expression for computing the magnetic force, (4.6), we should consider

the velocity of the movement of CPs. In this case, due to the movements of both CPs

(CP in the virtual wire and CP in the space) the relative velocity, vrel, is considered
as:

vrel ¼ Xi � Xj

Δt
ð4:20Þ

where Xi and Xj are the positions of the ith and jth CPs, the Δt is the time step that is

set to unity. Therefore the relative velocity can be rewritten as:

94 4 Magnetic Charged System Search

vrel ¼ Xi � Xj ð4:21Þ

By considering these assumptions, the magnetic force FB,ji exerted on the jth CP
due to the magnetic field produced by the ith virtual wire (ith CP) can be expressed
as:

FB, ji ¼ qj �
Ii

R2
rij � z1 þ Ii

rij
� z2

� �
� pmji

� Xi � Xj

� �
,

z1 ¼ 1, z2 ¼ 0 , rij < R
z1 ¼ 0, z2 ¼ 1 , rij � R

�
ð4:22Þ

where qi is the charge of the ith CP, R is the radius of the virtual wires, Ii is the
average electric current in each wire, and pmji is the probability of the magnetic

influence (attracting or repelling) of the ith wire (CP) on the jth CP. This term can

be computed by the following expression:

pmji ¼ 1 , fit ið Þ > fit
�
j
�

0 , else

�
ð4:23Þ

where fit(i) and fit(j) are the objective values of the ith and jth CP, respectively. This
probability determines that only a good CP can affect a bad CP by the magnetic

force. This magnetic probability is slightly different from the electric probability

expressed by (4.9). The electric probability considers a chance for both good and

bad CPs to attract each other, but the magnetic probability has allocated this chance

only to good CPs. The purpose of this definition of magnetic probability is to reduce

the parasite magnetic fields and reinforce the efficiency of the magnetic forces.

Investigating different terms of the magnetic force shows how this force can help

the standard CSS algorithm. If Ii, electric current in virtual ith virtual wire is

negative, according to the concept of the electric current, a negative value means

that the ith CP did not experienced an improvement in the value of its objective

function. Thus, a negative value will be multiplied by (Xi � Xj), so this produces a

repelling force. In this case, it is an ideal force. On the other hand, if the ith CP

experiences an improvement in its movement, it will attract the jth CP. From

optimization point of view, this kind of force can help the algorithm. It stores and

applies the information of the movement of each CP. This information is lost in the

standard CSS, but MCSS utilizes this information and increases the efficiency of

algorithm.

Now by considering the group of the charged particles, the resultant magnetic

force acting on each CP can be calculated using the following expression:

4.2 Magnetic Charged System Search Method 95

FB, j ¼ qj �
X
i, i6¼j

Ii

R2
rij � z1 þ Ii

rij
� z2

� �
� pmji

� Xi � Xj

� �
,

z1 ¼ 1, z2 ¼ 0 , rij < R
z1 ¼ 0, z2 ¼ 1 , rij � R
j ¼ 1, 2, . . . ,N

8<
: ð4:24Þ

where FB,j is the resultant magnetic force exerted on the jth charged particle.

The quantity R is the radius of the virtual wires, and if a charged particle places

outside or inside of a virtual wire, the magnetic force that exerted on it is computed

differently. With this formulation for magnetic force, in the early iterations where

the agents are far from each other, their distances will be large values, and the

magnetic force in this case will be inversely proportional to the distances. As a

result, the magnitude of the magnetic force is relatively small, and this feature of the

algorithm provides a good situation for search ability of the CPs in the early

iterations which is ideal for optimization problems. After a number of iterations,

CPs search the search space and most of them will be gathered in a small space.

Now, the distances between CPs are decreased and a local search starts. In this case,

if the magnetic force computed based on the inverse relation between distances, the

magnitude of the forces will be increased due to decrease of the distances. These

large forces may prevent the convergence of the algorithm in the local search. One

of the solutions that can be proposed is that when the distances are relatively small,

the magnetic force should be computed using the linear formulation of magnetic

fields (4.3). This means that the formulation of the magnetic force for global and

local phases should be separated, (4.24). A suitable value for R in (4.24) can be

unity. However, by more investigating in the magnetic force formulation, it could

be understood that the aforementioned problem can be solved automatically. If the

value of the R is taken as zero, all of the magnetic fields produced by virtual wires

can be calculated based on (4.2) Using this equation for small distances gives large

values for the magnetic field, but when the values of distances are small, it means

that the CPs are collected in a small space and their movements are small (Local

Search). Thus, both Xi � Xj and Ii are small values. By considering (4.24) for

calculating the magnetic forces, it can be noted that a large value is multiplied by

two small values, so the final value (magnetic force) is a normal value which helps

the algorithm. Due to the ease of implementation, and better convergence rate the

second solution is selected in this part and the magnetic force is revised in (4.25).

The term pmji, in the expression for calculating the magnetic force, provides

competition ability for the CPs. According to the concept of the magnetic force in

this algorithm, when a CP experience an improvement in its value of the objective

function, should attract another CPs, regardless to its previous and current charge.

However, by considering the term pmji, CPs with larger charges have more ten-

dency to attract other CPs. The reason is that by considering this term, the redundant

and parasite magnetic fields made by bad CPs are eliminated and it helps the

efficiency of the algorithm.

96 4 Magnetic Charged System Search

It should be noted that in implementing the MCSS, the part of CSS algorithm

related to computing forces should be changed. Both magnetic and electric forces

should be computed, and superposed. The Lorentz force (total force) will be

expressed as:

X
Fj ¼ FB, j þ FE, j ¼ qj

X
i, i6¼j

Ii
rij

� pmji þ qi
a3

rij � w1 þ qi
rij2

� w2

� �
� pji

� �

� Xi � Xj

� �
,

w1 ¼ 1,w2 ¼ 0 , rij < R
w1 ¼ 0,w2 ¼ 1 , rij � R
j ¼ 1, 2, . . . ,N

8<
: ð4:25Þ

where Fj is the resultant Lorentz force (total force) acting on the jth CP.

Consider the ith CP among all of the CPs; this CP has a charge which is larger

than a number of other CPs charge. Considering the rules of the CSS, the ith CP

attracts all other CPs that have smaller charges. After computing the electric forces,

all of the CPs move around the search space. Now, the ith CPs also moved to a new

position. In this movement, the ith particle may experience deterioration in its

objective function value. Due to this decrease, the new charge of the ith particle will
be decreased, but its charge may still be larger than a number of CPs. According to

the CSS algorithm, the ith particle still attracts all other CPs with smaller charges

regardless of the failure of the ith CP in its last movement. From one perspective,

this is logical that a good CP can attract bad CPs. This feature ensures the

competition ability of the algorithm. However, from another point of view, if no

attention is paid to the success or failure of the CPs in their last movement, a lot of

useful information in optimization process will be lost. Thus, in the MCSS algo-

rithm, magnetic forces are included to prevent the loss of this kind of information

which benefits the algorithm. By this concept, the ith particle which has experi-

enced a failure in its last movement, exerts repelling magnetic forces on the other

CPs. In this situation, the direction of the magnetic forces and electrical ones that

are acted on CPs by the ith CP is opposite.

That was a special case that the magnetic and electric forces were against each

other. Most of the times, the magnetic and electric forces are in the same direction

and they reinforce the effect of each other. Consequently, the exploitation ability of

the algorithm is mostly reinforced. Because of this increase in exploitation ability,

we can slightly modify kv in (4.14) to increase the exploration ability of the

algorithm. In fact, the MCSS algorithm guides the CPs with more information

and the efficiency of the algorithm including a fast convergence is improved, and in

comparison to the standard CSS, a better exploitation and exploration are provided.

4.2 Magnetic Charged System Search Method 97

4.2.4 Numerical Examples

In order to ensure the efficient performance of the MCSS algorithm, some numer-

ical examples are solved and the results are compared to those of the standard CSS

algorithm. The examples consist of 18 mathematical functions. The numerical

examples are presented in Sect. 5.2.4.1. In Sect. 5.2.4.2 the results of the MCSS

are presented and compared to those of the CSS and other optimization algorithms

in the literature. Finally, in Sect. 5.2.5 three well-studied engineering design

problems are solved by MCSS and the results are compared to those of the CSS.

4.2.4.1 Mathematical Benchmark Functions

Comparison Between MCSS, CSS and a Set of Genetic Algorithms

In this section, some mathematical benchmarks are chosen from [5], and optimized

using the MCSS algorithm. The description of these mathematical benchmarks is

provided in Table 4.1.

Numerical Results

In this section, the numerical results of optimization for the mathematical bench-

marks are presented. In this investigation, some parameters of the algorithm such

as, HMCR, PAR, CM size (CMS), the number of CPs, and the maximum number of

iteration are modified. For eliminating the effect of such parameters in studying the

performance of the algorithm, these parameters are considered the same as those of

[6]. It should be noted that the number of CPs is set to 20, and the maximum number

of iterations is considered as 200 for both CSS and MCSS algorithm. In Table 4.2,

the results of the MCSS are compared to the results obtained by the CSS from [6],

and GA and some of its variants derived from [5]. For a fair comparison between

MCSS and CSS, the random initial solutions of each runs are the same. The

numbers in Table 4.2 indicate the average number of function evaluation from

50 independent runs. The numbers in parenthesis, demonstrate the fraction of the

unsuccessful to successful runs. The absence of a parenthesis means that the

algorithm was successful in all of the runs. Each run of the algorithm is successful

when that run determines a local minimum with predefined accuracy, i.e., ε ¼
|fmin � ffinal| ¼ 10� 4. The results verify the efficiency of the MCSS algorithm

compared to the CSS and other Genetic algorithms. The existence of the magnetic

forces in the MCSS provides a better exploration and exploitation for the algorithm.

Thus, the convergence is speeded up. One of the important features of the MCSS

algorithm is its ability to converge to the desired optimum with a few number of

CPs and a small value for maximum number of iterations. The difference between

the CSS algorithm and MCSS algorithm becomes more obvious when the number

98 4 Magnetic Charged System Search

T
a
b
le

4.
1

D
es
cr
ip
ti
o
n
o
f
th
e
m
at
h
em

at
ic
al

b
en
ch
m
ar
k
s

F
u
n
ct
io
n
n
am

e
In
te
rv
al

F
u
n
ct
io
n

G
lo
b
al

m
in
im

u
m

A
lu
ffi
-p
en
ti
n
y

X
∈

�1
0
,

1
0

½
�2

f
Xð
Þ¼

1 4
x 1

4
�

1 2
x 1

2
þ

1 1
0
x 1

þ
1 2
x 2

2
�0

.3
5
2
3
8
6

B
o
h
ac
h
ev
sk
y
1

X
∈

�1
0
0
,

1
0
0

½
�2

f
Xð
Þ¼

x 1
2
þ
2
x 2

2
�

3 1
0
co
s
3
π
x 1

ð
Þ�

4 1
0
co
s
4
π
x 2

ð
Þþ

7 1
0

0
.0

B
o
h
ac
h
ev
sk
y
2

X
∈

�5
0
,

5
0

½
�2

f
Xð
Þ¼

x 1
2
þ
2
x 2

2
�

3 1
0
co
s
3
π
x 1

ð
Þ�

co
s
4
π
x 2

ð
Þþ

3 1
0

0
.0

B
ec
k
er

an
d
L
ag
o

X
∈

�1
0
,

1
0

½
�2

f(
X
)
¼

(|
x 1
|
�

5
)2

+
(|
x 2
|
�

5
)2

0
.0

B
ra
n
in

0
�

x 2
�

1
5
,

�
5
�

x 1
�

1
0

f
Xð
Þ¼

x 2
�

5
:1

4
π
2
x 1

2
þ

5 π
x 1

�
� 2 þ

1
0
�
1
�

1 8
π

�
� co

s
x 1ð
Þþ

1
0

0
.3
9
7
8
8
7

C
am

el
X
∈

�5
,

5
½

�2
f
Xð
Þ¼

4
x 1

2
�
2
:1
x 1

4
þ

1 3
x 1

6
þ
x 1
x 2

�
4
x 2

2
þ
4
x 2

4
�1

.0
3
1
6

C
b
3

X
∈

�5
,

5
½

�2
f
Xð
Þ¼

2
x 1

2
�
1
:0
5
x 1

4
þ

1 6
x 1

6
þ
x 1
x 2

þ
x 2

2
0
.0

C
o
si
n
e
M
ix
tu
re

X
∈

�1
,

1
½

�n ,
n
¼

4
f
Xð
Þ¼

Xn i¼
1

x i
2
�

1 1
0

Xn i¼
1

co
s
5
π
x i

ð
Þ

�0
.4

D
eJ
o
u
n
g

X
∈

�5
:1
2
,

5
:1
2

½
�3

f(
X
)
¼

x 1
2
+
x 2

2
+
x 3

2
0
.0

E
x
p
o
n
en
ti
al

X
∈

�1
,

1
½

�n ,
n
¼

2
,4
,8

f
Xð
Þ¼

�e
x
p

�0
:5
�Xn i¼

1

x i
2

!

�1
.0

G
o
ld
st
ei
n
an
d

p
ri
ce

X
∈

�2
,

2
½

�2
f
Xð
Þ¼

� 1þ
� x 1

þ
x 2

þ
1
� 2 �

� 19
�
1
4
x 1

þ
3
x 1

2
�
1
4
x 2

þ
6
x 1
x 2

þ
3
x 2

2
�	 �

� 30
þ

2
x 1

�
3
x 2

ð
Þ2

�� 18
�
3
2
x 1

�
1
2
x 1

þ
4
8
x 2

�
3
6
x 1
x 2

þ
2
7
x 2

2
�	

3
.0

G
ri
ew

an
k

X
∈

�1
0
0
,

1
0
0

½
�2

f
Xð
Þ¼

1
þ

1
2
0
0

X2 i¼
1

x i
2
�
Y2 i¼

1

co
s

x i
ffiffi ip�
�

0
.0

H
ar
tm

an
3

X
∈

�3
0
,

3
0

½
�3

f
Xð
Þ¼

�X4 i¼
1

c i
ex
p

�X3 j¼
1

a i
j
x j
�
p i
j

�
� 2

! ,a

¼
3

1
0

3
0

0
:1

1
0

3
5

3
1
0

3
0

0
:1

1
0

3
5

2 6 6 4
3 7 7 5,c

¼
1 1
:2 3 3
:22 6 6 4
3 7 7 5

�3
.8
6
2
7
8
2

(c
o
n
ti
n
u
ed
)

4.2 Magnetic Charged System Search Method 99

T
a
b
le

4.
1

(c
o
n
ti
n
u
ed
)

F
u
n
ct
io
n
n
am

e
In
te
rv
al

F
u
n
ct
io
n

G
lo
b
al

m
in
im

u
m

p
¼

0
:3
6
8
9

:1
1
7

0
:2
6
7
3

0
:4
6
9
9

0
:4
3
8
7

0
:7
4
7

0
:1
0
9
1

0
:8
7
3
2

0
:5
5
4
7

0
:0
3
8
1
5

0
:5
7
4
3

0
:8
8
2
8

2 6 6 4
3 7 7 5

H
ar
tm

an
6

X
∈

0
,

1
½

�6
f
Xð
Þ¼

�X4 i¼
1

c i
ex
p

�X4 j¼
1

a i
j
x j
�
p i
j

�
� 2

! ,a

¼
1
0

3
1
7

3
:5

1
:7

8

0
:0
5

1
0

1
7

0
:1

8
1
4

3
3
:5

1
:7

1
0

1
7

8

1
7

8
0
:0
5

1
0

0
:1

1
4

2 6 6 4
3 7 7 5

c
¼

1 1
:2 3 3
:22 6 6 4
3 7 7 5,p

¼
0
:1
3
1
2

0
:1
6
9
6

0
:5
5
6
9

0
:0
1
2
4

0
:8
2
8
3

0
:5
8
8
6

0
:2
3
2
9

0
:4
1
3
5

0
:8
3
0
7

0
:3
7
3
6

0
:1
0
0
4

0
:9
9
9
1

0
:2
3
4
8

0
:1
4
5
1

0
:3
5
2
2

0
:2
8
8
3

0
:3
0
4
7

0
:6
6
5
0

0
:4
0
4
7

0
:8
8
2
8

0
:8
7
3
2

0
:5
7
4
3

0
:1
0
9
1

0
:0
3
8
1

2 6 6 4
3 7 7 5

�3
.3
2
2
3
6
8

R
as
tr
ig
in

X
∈

�1
,

1
½

�2
f
Xð
Þ¼

X2 i¼
1

x i
2
�

co
s
1
8
x i

ð
Þ

�
�

�2
.0

R
o
se
n
b
ro
ck

X
∈

�3
0
,

3
0

½
�n ,

n
¼

2
f
Xð
Þ¼

Xn�1 i¼
1

1
0
0
x i
þ1

�
x i

2
�

� 2 þ
x i
�
1

ð
Þ2

0
.0

100 4 Magnetic Charged System Search

of CPs and the number of iterations are set to small values. Thus, another compar-

ison is performed to show the difference between the CSS and MCSS algorithm in

unsuitable situations, i.e., small number of CPs and maximum number of permitted

iterations. Therefore, the number of CPs is set to 10 and the maximum number of

permitted iterations is considered as 100. This means that the computational cost is

one quarter of the previous comparison. The results of this comparison are

presented in Table 4.3. The numbers in the Table 4.3 are the optimum found by

each algorithm. These are the average of 100 independent runs. The accuracy of the

solutions in some cases may be unsatisfactory, but it should be noted that the

number of CPs and maximum number of iterations are small. The purpose of this

comparison is to magnify the difference between the CSS andMCSS algorithm, and

verify the better performance of the MCSS in this situation. For more detailed

presentation, Fig. 4.4 illustrates the optimization process and convergence.

Statistical Test

Now in the following we want to ensure that the results of MCSS in Table 4.3 are

better than CSS algorithm. For this purpose, we apply a multi-problem analysis

using statistical tests. We apply the test on the obtained errors by each algorithm. If

we have the normality condition for our sample of results, a parametric pair t-test

Table 4.2 Performance comparison for the benchmark problems

Function GEN GEN-S GEN-S-M

GEN-S-M-

LS

CSS

[6]

MCSS

[1]

AP 1,360(0.99) 1,360 1,277 1,253 804 437

Bf1 3,992 3,356 1,640 1,615 1,187 542

Bf2 20,234 3,373 1,676 1,636 742 556

BL 19,596 2,412 2,439 1,436 423 481

Branin 1,442 1,418 1,404 1,257 852 351

Camel 1,358 1,358 1,336 1,300 575 384

Cb3 9,771 2,045 1,163 1,118 436 288

CM 2,105 2,105 1,743 1,539 1,563 538

Dejoung 9,900 3,040 1,462 1,281 630 387

Exp2 938 936 817 807 132 183

Exp4 3,237 3,237 2,054 1,496 867 317

Exp8 3,237 3,237 2,054 1,496 1,426 659

Goldstein and

Price

1,478 1,478 1,408 1,325 682 450

Griewank 18,838(0.91) 3,111(0.91) 1,764 1,652(0.99) 1,551 1,272

Hartman3 1,350 1,350 1,332 1,274 860 344

Hartman6 2,562(0.54) 2,562(0.54) 2,530(0.67) 1,865(0.68) 1,783 908

Rastrigin 1,533(0.97) 1,523(0.97) 1,392 1,381 1,402 1,252

Rosenbrock 9,380 3,739 1,675 1,462 1,452 1,424

Total 112,311(96.7) 41,640(96.7) 29,166(98.16) 25,193(98.16) 17,367 10,773

4.2 Magnetic Charged System Search Method 101

can be suitable. We first analyze a safe usage of parametric tests. We utilized two

normality tests including: Kolmogorov-Smirnov, and Shapiro-Wilk test. The

p-values of the normality tests over the sample results obtained by CSS and

MCSS are shown in Table 4.4. If we consider a significance level α ¼ 0.05, all of

the p-values in Table 4.4 will be less than 0.05. Thus the sample results do not

follow a normal distribution. The Q–Q plot for sample results is illustrated in

Fig. 4.5, and it can be understood that the normality conditions is not satisfied in

both CSS and MCSS algorithms. This result was predictable because the sample

size (the number of problems) is small. Therefore, a parametric test such as pair t-
test is not appropriate in this case. Therefore we use Wilcoxcon test that is a

non-parametric test for pairwise comparisons. The method of this test is described

in [7]. The result of this test can be summarized as:

• The p-value obtained by Wilcoxcon test is 0.00. Consequently, the Wilcoxcon

test considers a difference between the performance of these two algorithms

assuming a significance level α ¼ 0.05. Therefore, because of better mean value

of the MCSS algorithm results, MCSS outperforms its predecessor, CSS

algorithm.

Table 4.3 Numerical comparison of CSS and MCSS algorithms

Function Global minimum CSS MCSS CSS’s error

MCSS’s

error

AP �0.352386 �0.198721 �0.308396 0.153665 0.04399

Bf1 0.0 28.809183 0.088327 28.80918 0.088327

Bf2 0.0 8.938997 0.034876 8.938997 0.034876

BL 0.0 0.106252 6.781E-05 0.106252 6.78E-05

Branin 0.397887 3.960884 0.537231 3.562997 0.139344

Camel �1.0316 �0.866765 �1.031591 0.164835 9E-06

Cb3 0.0 0.125161 6.517E-05 0.125161 6.52E-05

CM �0.4 �0.230142 �0.352661 0.169858 0.047339

Dejoung 0.0 0.166451 6.891E-05 0.166451 6.89E-05

Exp2 �1.0 �0.999366 �0.999947 0.000634 5.3E-05

Exp4 �1.0 �0.990884 �0.999818 0.009116 0.000182

Exp8 �1.0 �0.949659 �0.999686 0.050341 0.000314

Goldstein and Price 3.0 15.729613 4.620501 12.72961 1.620501

Griewank 0.0 0.342795 0.105112 0.342795 0.105112

Hartman3 �3.862782 �3.491627 �3.816318 0.371155 0.046464

Hartman6 �3.322368 �2.054548 �3.292364 1.26782 0.030004

Rastrigin �2.0 �1.875735 �1.917121 0.124265 0.082879

Rosenbrock 0.0 19.476846 3.117751 19.47685 3.117751

Number of CPs ¼ 10, maximum number of iterations ¼ 100

102 4 Magnetic Charged System Search

a b

c d

e f

0 20 40 60 80 100

-2

0

2

4

6

8

10

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100

0

100

200

300

400

500

600

700

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100

0

2

4

6

8

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100
0

5

10

15

20

25

30

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100

0

20

40

60

80

100

120

140

160

Iteration

M
in

im
um

MCSS
CSS
Global minimum

Fig. 4.4 (continued)

4.2 Magnetic Charged System Search Method 103

0 20 40 60 80 100

-1

0

1

2

3

4

5

6

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100

-0.4

-0.2

0

0.2

0.4

0.6

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100

0

2

4

6

8

10

12

14

16

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100
-1.02

-1

-0.98

-0.96

-0.94

-0.92

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100

-1

-0.95

-0.9

-0.85

-0.8

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100
-1

-0.9

-0.8

-0.7

-0.6

Iteration

M
in

im
um

MCSS
CSS

Global minimum

g h

i j

k l

Fig. 4.4 (continued)

104 4 Magnetic Charged System Search

0 20 40 60 80 100
0

100

200

300

400

500

600

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100

0

5

10

15

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100
-4

-3.5

-3

-2.5

-2

-1.5

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100
-3.5

-3

-2.5

-2

-1.5

-1

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100

-2

-1.5

-1

-0.5

0

Iteration

M
in

im
um

MCSS
CSS
Global minimum

0 20 40 60 80 100

0

5

10

15
x 104

Iteration

M
in

im
um

MCSS
CSS
Global minimum

m n

o p

q r

Fig. 4.4 Comparison of the convergence rate of optimizing mathematical benchmarks [1]: (a) AP,
(b) Bf1, (c) Bf2, (d) BL, (e) Branin, (f) Camel, (g) Cb3, (h) CM, (i) Dejoung, (j) Exp2, (k) Exp4,
(l) Exp8, (m) Goldstein and price, (n) Griewank, (o) Hartman3, (p) Hartman6, (q) Rastrigin, (r)
rosenbrock

4.2 Magnetic Charged System Search Method 105

4.2.4.2 Comparison Between MCSS and Other State-of-Art Algorithms

Description of Test Functions and Algorithms

In the following section, the set of test functions designed for Special Session on

Real Parameter Optimization organized in the 2005 I.E. Congress on Evolutionary

Computation (CEC 2005) are solved by the MCSS algorithm. The detailed descrip-

tion of test functions is presented by Suganthan et al. [8]. The set of these test

functions consists of the following functions:

• 5 displaceUnimodals functions (f1–f5)

• Sphere function d.

• Schewefel’s problem 1.2 displaced.

• Elliptical function rotated widely conditioned

• Schwefel’s problem 1.2 displaced with noise in the fitness.

• Schwefel’s problem 2.6 with global optimum in the frontier.

• 20 Multimodals functions (f6–f7)

• 7 basic functions

• Rosenbrock function displaced.

• Griewank function displaced and rotated without frontiers.

• Ackley function displaced and rotated with the global optimum in the frontier.

• Rastrigin function displaced.

• Rastrigin function displaced and rotated.

• Weierstrass function displaced and rotated.

• Schewefel’s problem 2.13.

• 2 expanded functions.

Fig. 4.5 Normal Q–Q plots of the sample results of the CSS and MCSS algorithms [1]

Table 4.4 Normality tests

and their p-values over
multiple-problem analysis

Algorithm Kolmogorov-Smirnov Shapiro-Wilk

CSS 0.00 0.00

MCSS 0.00 0.00

106 4 Magnetic Charged System Search

• 11 hybrid functions. Each one of these has been defined through compositions of

10 out of 14 previous functions (different in each case).

The characteristics of this experiment is the same as what has been suggested by

Suganthan et al. [8]. Each function is solved by MCSS in 25 independent runs, and

the average error of the best CP is recorded. The number of CPs is set to 25. The

dimension of the test functions is set to 10 (D ¼ 10), and algorithm performs

10,000 function evaluation. The termination criterion is either reaching the maxi-

mum number of function evaluation or achieving error less than 10�8. Table 4.5

shows the official results of the participated algorithms obtained from Garcia

et al. [9]. The description of each algorithm is given in [19]. The results of the

MCSS algorithm are added to Table 4.5. The values of Table 4.5 indicate the

average error rate of each algorithm. This value can be considered as a means for

measuring the performance of each algorithm.

Numerical Results and Statistical Test

As the results in Table 4.5 show, MCSS has a good performance and its average

error rates are good, however, there are some cases that MCSS performs slightly

weaker than some other algorithms. For a fair comparison, we have to use statistical

test to judge about the performance of MCSS in comparison to other algorithms.

We want to find out whether the results of MCSS have a significant difference in

comparison to the other algorithms. This analysis is multiple-problem analysis;

therefore, a non-parametric test is more suitable in this case. We utilized the

Welcoxon’s test. This test performs pairwise comparisons between two algorithms.

In this test, MCSS is compared to some other remaining algorithms.

Table 4.6 summarizes the results of applying the Wilcoxin test. Table 4.6

includes sum of ranking and p-value of each comparison. The method of this test

is simply described in [7]. The significance level α is considered as 0.05. In each

comparison when the corresponding p-value is less than 0.05, it means that two

compared algorithms behave differently, and the one with smaller mean value of

error rate has a better performance.

The p-value in pairwise comparison is independence from another one. If we

draw a conclusion involving more than one pairwise comparison in Wilcoxcon’s

analysis, an accumulated error which is merged up by combination of pairwise

comparisons will be obtained. In statistics terms, the Family Wise Error Rate

(FWER) will be lost. FWER is defined as the probability of making one or more

false discoveries among all the hypotheses when performing multiple pairwise tests

(Garcia et al. [9]). The true statistical significance for combining pairwise compar-

isons is given by:

4.2 Magnetic Charged System Search Method 107

T
a
b
le

4.
5

A
v
er
ag
e
er
ro
r
ra
te
s
o
f
th
e
al
g
o
ri
th
m
s
in

C
E
C
’2
0
0
5
an
d
M
C
S
S
al
g
o
ri
th
m

F
u
n
ct
io
n

B
L
X
-G

L
5
0

B
L
X
-M

A
C
o
E
V
O

D
E

D
M
S
-L
-P
S
O

E
D
A

G
-C
M
A
-E
S

K
-P
C
X

L
-C
M
A
-E
S

L
-S
aD

E
S
P
C
-P
N
X

M
C
S
S

f1
1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

f2
1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

1
E
-0
9

f3
5
7
0
.5

4
7
,7
1
0

1
E
-0
9

1
.9
4
E
-0
6

1
E
-0
9

2
1
.2
1

1
E
-0
9

0
.4
1
5

1
E
-0
9

0
.0
1
6
7
2

1
.0
8
E
5

0
.1
0
1

f4
1
E
-0
9

2
E
-0
8

1
E
-0
9

1
E
-0
9

0
.0
0
1
8
8
5

1
E
-0
9

1
E
-0
9

7
.9
4
E
-0
7

1
.7
6
E
6

1
.4
2
E
-0
5

1
E
-0
9

1
E
-0
9

f5
1
E
-0
9

0
.0
2
1
2
4

2
.1
3
3

1
E
-0
9

1
.1
4
E
-0
6

1
E
-0
9

1
E
-0
9

4
8
.5

1
E
-0
9

0
.0
1
2

1
E
-0
9

1
E
-0
9

f6
1
E
-0
9

1
.4
9

1
2
.4
6

0
.1
5
9

6
.8
9
E
-0
8

0
.0
4
1
8
2

1
E
-0
9

0
.4
7
8

1
E
-0
9

1
.2
E
-0
8

1
8
.9
1

0
.0
1
4

f7
0
.0
1
1
7
2

0
.1
9
7
1

0
.0
3
7
0
5

0
.1
4
6

0
.0
4
5
1
9

0
.4
2
0
5

1
E
-0
9

0
.2
3
1

1
E
-0
9

0
.0
2

0
.0
8
2
6
1

1
.E
-0
9

f8
2
0
.3
5

2
0
.1
9

2
0
.2
7

2
0
.4

2
0

2
0
.3
4

2
0

2
0

2
0

2
0

2
0
.9
9

2
0

f9
1
.1
5
4

0
.4
3
7
9

1
9
.1
9

0
.9
5
5

1
E
-0
9

5
.4
1
8

0
.2
3
9

0
.1
1
9

4
4
.9

1
E
-0
9

4
.0
2

0
.0
1
2

f1
0

4
.9
7
5

5
.6
4
3

2
6
.7
7

1
2
.5

3
.6
2
2

5
.2
8
9

0
.0
7
9
6

0
.2
3
9

4
0
.8

4
.9
6
9

7
.3
0
4

2
.1
5
2

f1
1

2
.3
3
4

4
.5
5
7

9
.0
2
9

0
.8
4
7

4
.6
2
3

3
.9
4
4

0
.9
3
4

6
.6
5

3
.6
5

4
.8
9
1

1
.9
1

3
.8
2
3

f1
2

4
0
6
.9

7
4
.3

6
0
4
.6

3
1
.7

2
.4
0
0
1

4
4
2
.3

2
9
.3

1
4
9

2
0
9

4
.5
E
-0
7

2
5
9
.5

2
.5
0
3

f1
3

0
.7
4
9
8

0
.7
7
3
6

1
.1
3
7

0
.9
7
7

0
.3
6
8
9

1
.8
4
1

0
.6
9
6

0
.6
5
3

0
.4
9
4

0
.2
2

0
.8
3
7
9

0
.5
5
2

f1
4

2
.1
7
2

2
.0
3

3
.7
0
6

3
.4
5

2
.3
6

2
.6
3

3
.0
1

2
.3
5

4
.0
1

2
.9
1
5

3
.0
4
6

2
.4
3
2

f1
5

4
0
0

2
6
9
.6

2
9
3
.8

2
5
9

4
.8
5
4

3
6
5

2
2
8

5
1
0

2
1
1

3
2

2
5
3
.8

1
5
3
.4
6

f1
6

9
3
.4
9

1
0
1
.6

1
7
7
.2

1
1
3

9
4
.7
6

1
4
3
.9

9
1
.3

9
5
.9

1
0
5

1
0
1
.2

1
0
9
.6

9
0
.5
6
7

f1
7

1
0
9

1
2
7

2
1
1
.8

1
1
5

1
1
0
.1

1
5
6
.8

1
2
3

9
7
.3

5
4
9

1
1
4
.1

1
1
9

1
0
2
.1
2

f1
8

4
2
0

8
0
3
.3

9
0
1
.4

4
0
0

7
6
0
.7

4
8
3
.2

3
3
2

7
5
2

4
9
7

7
1
9
.4

4
3
9
.6

7
4
1
.7
3

f1
9

4
4
9

7
6
2
.8

8
4
4
.5

4
2
0

7
1
4
.3

5
6
4
.4

3
2
6

7
5
1

5
1
6

7
0
4
.9

3
8
0

3
1
7
.2
7

f2
0

4
4
6

8
0
0

8
6
2
.9

4
6
0

8
2
2

6
5
1
.9

3
0
0

8
1
3

4
4
2

7
1
3

4
4
0

5
0
2
.3
1

f2
1

6
8
9
.3

7
2
1
.8

6
3
4
.9

4
9
2

5
3
6

4
8
4

5
0
0

1
,0
5
0

4
0
4

4
6
4

6
8
0
.1

4
3
6
.6
1

f2
2

7
5
8
.6

6
7
0
.9

7
7
8
.9

7
1
8

6
9
2
.4

7
7
0
.9

7
2
9

6
5
9

7
4
0

7
3
4
.9

7
4
9
.3

6
4
2
.4
9

f2
3

6
3
8
.9

9
2
6
.7

8
3
4
.6

5
7
2

7
3
0
.3

6
4
0
.5

5
5
9

1
,0
6
0

7
9
1

6
6
4
.1

5
7
5
.9

6
3
0
.3
8

f2
4

2
0
0

2
2
4

3
1
3
.8

2
0
0

2
2
4

2
0
0

2
0
0

4
0
6

8
6
5

2
0
0

2
0
0

1
9
4
.1
7

f2
5

4
0
3
.6

3
9
5
.7

2
5
7
.3

9
2
3

3
6
5
.7

3
7
3

3
7
4

4
0
6

4
4
2

3
7
5
.9

4
0
6

3
5
6
.5
1

M
ea
n

2
2
4
.6
8
1
5

2
,1
4
4
.9
2
2

2
7
2
.4
1
7
3

1
8
9
.7
2
5
4

2
0
3
.5
4
1
4

2
1
3
.4
8
1
4

1
5
2
.6
6
2
3

2
7
3
.1
5
3
4

7
0
,6
3
5
.3

1
9
4
.2
6
1

1
9
1
.1
2

1
6
7
.9
7

108 4 Magnetic Charged System Search

p ¼ 1�
Yi¼k�1

i¼1

1� pHið Þ ð4:26Þ

where k is the number of pairwise comparisons considered, and pHi is the p-value of
each comparison. For more information, the reader may refer to [9].

Considering the values of Table 4.6, the p-value of all of the comparisons except

MCSS vs. G-CMA-ES is less than significance level α ¼ 0.05, it cannot be con-

cluded that MCSS is better than all of algorithms except G-CMA-ES because we

have to consider FWER in making a conclusion in multiple pairwise comparisons.

The MCSS outperforms all of the algorithms except G-CMA-ES considering

independence pairwise comparisons due to the fact that the achieved p-values are
less than α ¼ 0.05. The true p-value for multiple pairwise comparisons can be

computed using (4.26):

p ¼ 1� � 1� 0:16ð Þ � �1� 0:0
� � �1� 0:0

� � �1� 0:05
� � �1� 0:24

� � �1� 0:001
�

� 1� 0:025ð Þ � �1� 0:048
� � �1� 0:027

� � �1� 0:001
�� ¼ 0:17765

ð4:27Þ

Based on this algorithm, it can be claimed that the MCSS algorithm has a better

performance in relation with all of the algorithms except G-CMA-ES with a p-value
of 0.17765. As a result, if we consider a significance level α ¼ 0.17765, the

confidence interval for the mentioned claim will be 100(1�α) ¼ 82.23 %.

4.2.5 Engineering Examples

Three well-studied engineering design problems that have been solved by vari-

ous optimization methods in the literature are used to examine the efficiency of

the MCSS algorithm, and compare the results with those obtained by the CSS.

Table 4.6 The Wilcoxcon

test results
MCSS vs. R+ R� p-Value

BLX-GL50 46 185 0.016

BLX-MA 6 270 0.000

CoEVO 14 239 0.000

DE 59 172 0.050

DMS-L-PSO 57 196 0.024

EDA 20 211 0.314

G-CMA-ES 70 120 0.001

K-PCX 20 233 0.025

L-CMA-ES 45 165 0.048

L-SaDE 65.5 187 0.027

SPC-PNX 52 179 0.001

4.2 Magnetic Charged System Search Method 109

For handling constrains, a simple penalty function is utilized to prevent adding

the effect of a robust constrain handling method on the performance of the

algorithm.

Example 1 A tension/compression spring design problem

This is a well-known optimization problem which has been used to evaluate the

efficiency of different optimization methods [6]. This problem is defined by

Belegundu [10] and Arora [11] as depicted in Fig. 4.6. The objective of this

optimization problem is to minimize the weight of tension/compression spring.

This minimization involves some constrains, i.e., shear stress, frequency, and

minimum deflection.

The design variables are the mean coil diameter D(¼x1); the wire diameter

d(¼x2), and the number active coils N(¼x3). By considering these decision vari-

ables, the cost function can be formulated as:

f cos t Xð Þ ¼ x3 þ 2ð Þx2x12 ð4:28Þ

g1 Xð Þ ¼ 1� x2
3x3

71785 � x14 � 0,

g2 Xð Þ ¼ 4x2
2 � x1x2

12566 � x2x13 � x14ð Þ þ
1

5108 � x12 � 1 � 0,

g3 Xð Þ ¼ 1� 140:45x1
x22x3

� 0,

g4 Xð Þ ¼ x1 þ x2
1:5

� 1 � 0:

ð4:29Þ

The decision variables are limited as:

0:05 � x1 � 2,

0:25 � x2 � 1:3,
2 � x3 � 15:

ð4:30Þ

This problem has been solved with various methods by different researchers,

Belegundu [10], Arora [11], Coello [12], Coello and Montes [13], He and Wang

[14], Montes and Coello [15], and Kaveh and Talathari [14,26]. The results of the

best solutions found by different methods are presented in Table 4.7. From Table 4.7

Fig. 4.6 A tension/compression spring

110 4 Magnetic Charged System Search

it can be understood that the best solution found by MCSS is better than other

methods. The statistical simulation results of 30 independent runs for MCSS are

illustrated in Table 4.8 and compared to other methods.

Example 2 A welded beam design

One of the practical design problems which has been widely used as a benchmark to

test the performance of different optimization methods, is the welded beam design

problem as illustrated in Fig. 4.7. The goal of this optimization problem is to

minimize the constructing cost of a welded beam that is subjected to different

constrains, such as shear (τ) and bending (σ) stresses, buckling load (Pc), end

deflection (δ), and end side constraint. Design variables are h(¼ x1),l(¼ x2),
t(¼ x3) and b(¼ x4). By considering the set-up, welding labor, and the materials

costs, the cost function can be expressed as:

f cos t Xð Þ ¼ 1:1047x1
2x2 þ 0:04811x3x4 � 14:0þ x2ð Þ ð4:31Þ

Subjected to the following constrains:

Table 4.8 Statistical results of different methods for the tension/compression spring

Methods Best Mean Worst Standard deviation

Belegundu [10] 0.0128334 N/A N/A N/A

Arora [11] 0.0127303 N/A N/A N/A

Coello [12] 0.0127048 0.012769 0.012822 3.9390e-5

Coello and Montes [13] 0.0126810 0.012742 0.012973 5.9000e-5

He and Wang [14] 0.0126747 0.012730 0.012924 5.1985e-5

Montes and Coello [15] 0.012698 0.013461 0.16485 9.6600e-4

Kaveh and Talatahari [16] 0.0126432 0.012720 0.012884 3.4888e-5

Kaveh and Talathari (CSS) [6] 0.0126384 0.012852 0.013626 8.3564e-5

Present work [1] 0.0126192 0.012794 0.013962 5.3491e-5

Table 4.7 Optimum results for the tension/compression spring design

Methods

Optimal design variables

x1(d) x2(D) x3(N) fcost

Belegundu [10] 0.050000 0.315900 14.250000 0.0128334

Arora [11] 0.053396 0.399180 9.1854000 0.0127303

Coello [12] 0.051480 0.351661 11.632201 0.0127048

Coello and Montes [13] 0.051989 0.363965 10.890522 0.0126810

He and Wang [14] 0.051728 0.357644 11.244543 0.0126747

Montes and Coello [15] 0.051643 0.355360 11.397926 0.012698

Kaveh and Talatahari [16] 0.051865 0.361500 11.000000 0.0126432

Kaveh and Talathari (CSS) [6] 0.051744 0.358532 11.165704 0.0126384

Present work [1] 0.051645 0.356496 11.271529 0.0126192

4.2 Magnetic Charged System Search Method 111

g1 Xð Þ ¼ τ
��

x
��� τmax � 0,

g2 Xð Þ ¼ σ
��

x
��� δmax � 0,

g3 Xð Þ ¼ x1 � x4 � 0,

g4 Xð Þ ¼ 0:10471x1
2 þ 0:04811x3x4 �

�
14:0þ x2

�� 5:0 � 0,

g5 Xð Þ ¼ 0:125� x1 � 0,

g6 Xð Þ ¼ δ
��

x
��� δmax � 0,

g7 Xð Þ ¼ P� Pc

��
x
�� � 0:

ð4:32Þ

Where

τ Xð Þ ¼
ffi
τ0ð Þ2 þ 2τ0 � τ00 x2

2R
þ τ

00

 �2s

,

τ
0 ¼ Pffiffiffi

2
p

x1 � x2
, τ

00 ¼ MR

J
,

M ¼ P � Lþ x2
2

0
@

1
A,R ¼

ffi
x2

2

4
þ x1 þ x2

2

0
@

1
A

2
vuuut ,

J ¼ 2
� ffiffiffi

2
p

x1x2
� x22
12

þ x1 þ x3
2

0
@

1
A

2	�
,

σ Xð Þ ¼ 6PL

x4 � x32 , δ
�
X
� ¼ 4PL3

Ex23x4
,

Pc Xð Þ ¼
4:013E

ffiffiffiffiffiffiffiffiffi
x23x

6
4

36

s

L2
1� x3

2L

ffiffiffiffiffiffi
E

4G

s0
@

1
A,

P ¼ 6, 000 lb, L ¼ 14 in,E ¼ 30� 106psi, G ¼ 12� 106psi

ð4:33Þ

And variable boundaries are:

Fig. 4.7 A welded beam

system

112 4 Magnetic Charged System Search

0:1 � x1 � 2,

0:1 � x2 � 10,

0:1 � x3 � 10,

0:1 � x3 � 2:

ð4:34Þ

This is a well-studied problem that is solved by different researchers using

different approaches. Regsdell and Phillips [17] solved it using mathematical-

based methods. Deb [18], Coello [12], and Coello and Montes [13], solved it

using GA-based algorithms. Also, He and Wang [14] solved it by CPSO, Montes

and Coello [15] by Evolutionary strategies, and Kaveh and Talathari [16] by ACO.

This problem is also solved by Kaveh and Talathari [6] utilizing the CSS algorithm.

The results of the best solution found by each method are listed in Table 4.9. The

best solution found by MCSS is better than other results in literature. The result of

the MCSS is slightly better than that of the CSS, but the speed of the convergence is

much higher compared to the CSS. The results of statistical simulation are

Table 4.9 Optimum results for the design of welded beam

Methods

Optimal design variables

x1(h) x2(l) x3(t) x4(b) fcost

Regsdell and Phillips [17]

APPROX 0.2444 6.2189 8.2915 0.2444 2.3815

DAVID 0.2434 6.2552 8.2915 0.2444 2.3841

SIMPLEX 0.2792 5.6256 7.7512 0.2796 2.5307

RANDOM 0.4575 4.7313 5.0853 0.6600 4.1185

Deb [18] 0.248900 6.173000 8.178900 0.253300 2.433116

Coello [12] 0.248900 3.420500 8.997500 0.210000 1.748309

Coello and Montes [13] 0.205986 3.471328 9.020224 0.206480 1.728226

He and Wang [14] 0.202369 3.544214 9.048210 0.205723 1.728024

Montes and Coello [15] 0.199742 3.612060 9.037500 0.206082 1.737300

Kaveh and Talathari [16] 0.205700 3.471131 9.036683 0.205731 1.724918

Kaveh and Talathari (CSS) [6] 0.205820 3.468109 9.038024 0.205723 1.724866

Present work [1] 0.205729 3.470493 9.036623 0.205729 1.724853

Table 4.10 Statistical results of different methods for the design of welded beam

Methods Best Mean Worst Standard deviation

Regsdell and Phillips [17] 2.3815 N/A N/A N/A

Deb [18] 2.433116 N/A N/A N/A

Coello [12] 1.748309 1.771973 1.785835 0.011220

Coello and Montes [13] 1.728226 1.792654 1.993408 0.074713

He and Wang [14] 1.728024 1.748831 1.782143 0.012926

Montes and Coello [15] 1.737300 1.813290 1.994651 0.070500

Kaveh and Talatahari [16] 1.724918 1.729752 1.775961 0.009200

Kaveh and Talathari (CSS) [6] 1.724866 1.739654 1.759479 0.008064

Present work [1] 1.724853 1.735438 1.753681 0.009527

4.2 Magnetic Charged System Search Method 113

presented in Table 4.10. Similar to the CSS algorithm MCSS has a small value for

the standard deviation.

Example 3 A pressure vessel design problem

The objective of this optimization is to minimize the cost of fabricating a pressure

vessel which is clapped at both ends by hemispherical heads as depicted in Fig. 4.8.

The construction cost consists of the cost of materials, forming and welding

[19]. The design variables are the thickness of the shell Ts (¼ x1), the thickness of
the head Th (¼ x2), the inner radius R (¼ x3), and the length of cylindrical section of
the vessel L (¼ x4). Ts and Th are integer multiples of 0.0625in, the available

thickness of the rolled steel plates, but R and L are continuous variables. The

mathematical expression of the cost function is:

f cos t Xð Þ ¼ 0:6224x1x3x4 þ 1:7781x2x
2
3 þ 3:1661x21 þ 19:84x21x3, ð4:35Þ

The constrain areas are as follows:

g1 Xð Þ ¼ �x1 þ 0:0193x3 � 0,

g2 Xð Þ ¼ �x2 þ 0:00954x3 � 0,

g3 Xð Þ ¼ �π � x23x4 �
4

3
π � x33 þ 1, 296, 000 � 0,

g4 Xð Þ ¼ x4 � 240 � 0:

ð4:36Þ

The search space is defined as:

0 � x1 � 99,

0 � x2 � 99,

10 � x3 � 200,

10 � x3 � 200:

ð4:37Þ

Fig. 4.8 A pressure vessel, and its design variables

114 4 Magnetic Charged System Search

Various types of methods have been used to solve this problem. Some of

these approaches are as: a branch and bound method [19], an augmented

Lagrangian multiplier approach [20], genetic adaptive search [21], a GA-based

algorithm [12], a feasibility-based tournament selection scheme [13], a

co-evolutionary particle swarm method [14], an evolution strategy [15], an

improved ant colony optimization [16], and the CSS algorithm [6]. The results

of the best solution found by different methods are presented in Table 4.11.

MCSS algorithm found better solution compared to other techniques and the

standard CSS. In Table 4.12 the results of statistical simulations are listed. The

mean value of the 30 independent runs for MCSS is slightly weaker than that of

the CSS, however, the best solution and speed of the convergence for MCSS is

much higher.

Table 4.11 Optimum results for the design of welded beam

Methods

Optimal design variables

x1(Ts) x2(Th) x3(R) x4(L) fcost

Sandgren [19] 1.125000 0.625000 47.700000 117.701000 8,129.1036

Kannan and Kramer [20] 1.125000 0.625000 58.291000 43.690000 7,198.0428

Deb and Gene [21] 0.937500 0.500000 48.329000 112.679000 6,410.3811

Coello [12] 0.812500 0.437500 40.323900 200.000000 6,288.7445

Coello and Montes [13] 0.812500 0.437500 42.097398 176.654050 6,059.9463

He and Wang [14] 0.812500 0.437500 42.091266 176.746500 6,061.0777

Montes and Coello [15] 0.812500 0.437500 42.098087 176.640518 6,059.7456

Kaveh and Talatahari [16] 0.812500 0.437500 42.098353 176.637751 6,059.7258

Kaveh and Talathari (CSS) [6] 0.812500 0.437500 42.103624 176.572656 6,059.0888

Present work [1] 0.812500 0.437500 42.107406 176.525589 6,058.6233

Table 4.12 Statistical results of different methods for the design of welded beam

Methods Best Mean Worst Standard deviation

Sandgren [19] 8,129.1036 N/A N/A N/A

Kannan and Kramer [20] 7,198.0428 N/A N/A N/A

Deb and Gene [21] 6,410.3811 N/A N/A N/A

Coello [12] 6,288.7445 6,293.8432 6,308.1497 7.4133

Coello and Montes [13] 6,059.9463 6,177.2533 6,469.3220 130.9297

He and Wang [14] 6,061.0777 6,147.1332 6,363.8041 86.4545

Montes and Coello [15] 6,059.7456 6,850.0049 7,332.8798 426.0000

Kaveh and Talatahari [16] 6,059.7258 6,081.7812 6,150.1289 67.2418

Kaveh and Talathari (CSS) [6] 6,059.0888 6,067.9062 6,085.4765 10.2564

Present work [1] 6,058.6233 6,073.5931 6,108.5479 24.6712

4.2 Magnetic Charged System Search Method 115

4.3 Improved Magnetic Charged System Search

In this part, the improved version of magnetic charged system search (IMCSS) is

presented and also utilized for optimization of truss structures. As mentioned

earlier, the standard CSS and MCSS algorithms use harmony search-based

approach for process of position correction of CPs. In this process, the CMCR

and PAR parameters help the algorithm to find globally and locally improved

solutions, respectively [22]. PAR and bw in HS scheme are very important param-

eters in fine-tuning of optimized solution vectors, and can be potentially useful in

adjusting convergence rate of algorithm to optimal solution.

The traditional HS scheme uses fixed value for both PAR and bw. Small PAR

values with large bw values can led to poor performance of the algorithm and

increase the iterations needed to find optimum solution, also on the other hand small

bw values in final iterations increase the fine-tuning of solution vectors, but in the

first iterations bw must take a bigger value to enforce the algorithm to increase the

diversity of solution vectors. Furthermore, large PAR values with small bw values

usually led to the improvement of best solutions in final iterations and converged

algorithm to optimal solution vector. To improve the performance of the HS

scheme and eliminate the drawbacks lies with fixed values of PAR and bw,

IMCSS algorithm uses an improved form of HS algorithm with varied PAR and

bw for the step of position correction. PAR and bw change dynamically with

iteration number as shown in Fig. 4.9 and expressed as follow [22]:

PAR iterð Þ ¼ PARmin þ PARmax � PARminð Þ
itermax

� iter ð4:38Þ

and

bw iterð Þ ¼ bwmaxexp c � iterð Þ, ð4:39Þ

c ¼
Ln bwmin=bwmax

 �
itermax

, ð4:40Þ

where PAR(iter) and bw(iter) are the values of the PAR and bandwidth for each

iteration, respectively, Subscripts min and max denote the minimum and maximum

values for each parameter, respectively, and iter is the current iteration number.

PAR max

PAR min

First lter
lteration

Iter max

PA
R

bw max

bw min

First lter
lteration

Iter max

bw

a b

Fig. 4.9 Variation of (a) PAR and (b) bw versus iteration number [2]

116 4 Magnetic Charged System Search

4.3.1 A Discrete IMCSS

The IMCSS algorithm can be also applied to optimal design problem with discrete

variables. One way to solve discrete problems using a continuous algorithm is to

utilize a rounding function which changes the magnitude of a result to the nearest

discrete value [23], as follow:

Xj,new ¼ Fix randj1 � ka � Fj

mj
� Δt2 þ randj2 � kv � Vj,old � Δtþ Xj,old

� �
, ð4:41Þ

where Fix(X) is a function which rounds each elements of vector X to the nearest

allowable discrete value. Using this position updating formula, the agents will be

permitted to select discrete values.

4.3.2 An Improved Magnetic Charged System Search
for Optimization of Truss Structures with Continuous
and Discrete Variables

4.3.2.1 Statement of the Optimization Problem

The aim of size optimization of truss structures is to find the optimum values for

cross-sectional area of members Ai, in order to minimize the structural weight W,

satisfying the constraints corresponding to the response of the structure. Thus, the

optimal design problem can be expressed as:

Find X ¼ x1; x2; x3; . . . ; xn½ �
to minimize Mer Xð Þ ¼ fpenalty

�
X
��W

�
X
�

subject to σmin < σi < σmax i ¼ 1, 2, . . . , nm
δmin < δi < δmax i ¼ 1, 2, . . . , nn

ð4:42Þ

where X is the vector containing the design variables; for a discrete optimum design

problem, the variables xi are selected from an allowable set of discrete values; n is

the number of member groups; Mer(X) is the merit function; W(X) is the cost

function, which is taken as the weight of the structure; fpenalty(X) is the penalty

function which results from the violations of the constraints; nm is the number of

members forming the structure; nn is the number of nodes; σi and δi are the stress of
members and nodal displacements, respectively; min and max mean the lower and

upper bounds of constraints, respectively. The cost function can be expressed as:

4.3 Improved Magnetic Charged System Search 117

W Xð Þ ¼
Xnm
i¼1

ρi � Ai � Li ð4:43Þ

where ρi is the material density of member i, Li is the length of member i, and Ai is

the cross-sectional area of member i.
The penalty function can be defined as:

f penalty Xð Þ ¼ 1þ ε1 �
Xnp
i¼1

ϕ k
σ ið Þ þ ϕ k

δ ið Þ

 � !ε2

, ð4:44Þ

where np is the number of multiple loadings. Here ε1 is taken as unity and ε2 is set to
1.5 in the first iterations of the search process, but gradually it is increased to

3 [24]. ϕk
σ and ϕk

δ are the summation of stress penalties and nodal displacement

penalties for kth charged particle which are mathematically expressed as:

ϕσ ¼
Xnm
i¼1

max
σi
σi

����
����� 1, 0

� �
, ð4:45Þ

ϕδ ¼
Xnn
i¼1

max
δi
δi

����
����� 1, 0

� �
, ð4:46Þ

where σi, σi are the stress and allowable stress in member i, respectively, and δi, δi
are the displacement of the joints and the allowable displacement, respectively.

4.3.2.2 Numerical Examples

In this section, common truss optimization examples as benchmark problems are

used for optimization using the proposed algorithm. This algorithm is applied to

problems with both continuous and discrete variables. The final results are com-

pared to those of previous studies to demonstrate the efficiency of the present

method. The discrete variables are selected from American Institute of Steel

Construction (AISC) Code [25], listed in Table 4.13.

In the proposed algorithm, for all of examples a population of 25 CPs is used and

the value of CMCR is set to 0.95.

Example 1 A 10-bar planar truss structure

The 10-bar truss structure is a common problem in the field of structural optimiza-

tion to verify the efficiency of a proposed optimization algorithm. The geometry

and support conditions for this planar, cantilevered truss with loading condition is

shown in Fig. 4.10.

There are 10 design variables in this example and a set of pseudo variables

ranging from 0.1 to 35.0 in2 (0.6452 cm2 to 225.806 cm2).

In this problem two cases are considered:

118 4 Magnetic Charged System Search

Case 1, P1 ¼ 100 kips (444.8 kN) and P2 ¼ 0, and Case 2, P1 ¼ 150 kips (667.2

kN) and P2 ¼ 50 kips (222.4 kN).

The material density is 0.1 lb/in3 (2,767.990 kg/m3) and the modulus of elasticity

is 10,000 ksi (68,950 MPa). The members are subjected to the stress limits of �25

ksi (172.375 MPa) and all nodes in both vertical and horizontal directions are

subjected to the displacement limits of �2.0 in (5.08 cm). Figure 4.11 shows a

comparison of the convergence history of both cases for MCSS and IMCSS

algorithms.

Tables 4.14 and 4.15 are provided for comparison of the optimal design results

with those of the previous studies for both cases. In both cases the HS algorithm

reach its best solutions after 20,000 analyses, and the PSO and PSOPC algorithms

after 3,000 iterations (150,000 analyses). The HPSACO algorithm finds the best

solution after 10,650 and 9,925 analyses, for Case 1 and Case 2, respectively.

Table 4.13 The allowable

steel pipe sections taken from

AISC code

No. Area (in2) Area (mm2) No. Area (in2) Area (mm2)

1 0.111 71.613 33 3.84 2,477.414

2 0.141 90.968 34 3.87 2,496.769

3 0.196 126.451 35 3.88 2,503.221

4 0.25 161.29 36 4.18 2,696.769

5 0.307 198.064 37 4.22 2,722.575

6 0.391 252.258 38 4.49 2,896.768

7 0.442 285.161 39 4.59 2,961.284

8 0.563 363.225 40 4.8 3,096.768

9 0.602 388.386 41 4.97 3,206.445

10 0.766 494.193 42 5.12 3,303.219

11 0.785 506.451 43 5.74 3,703.218

12 0.994 641.289 44 7.22 4,658.055

13 1 645.16 45 7.97 5,141.925

14 1.228 792.256 46 8.53 5,503.215

15 1.266 816.773 47 9.3 5,999.988

16 1.457 939.998 48 10.85 6,999.986

17 1.563 1,008.385 49 11.5 7,419.43

18 1.62 1,045.159 50 13.5 8,709.66

19 1.8 1,161.288 51 13.9 8,967.724

20 1.99 1,283.868 52 14.2 9,161.272

21 2.13 1,374.191 53 15.5 9,999.98

22 2.38 1,535.481 54 16 10,322.56

23 2.62 1,690.319 55 16.9 10,903.2

24 2.63 1,696.771 56 18.8 12,129.01

25 2.88 1,858.061 57 19.9 12,838.68

26 2.93 1,890.319 58 22 14,193.52

27 3.09 1,993.544 59 22.9 14,774.16

28 1.13 729.031 60 24.5 15,806.42

29 3.38 2,180.641 61 26.5 17,096.74

30 3.47 2,238.705 62 28 18,064.48

31 3.55 2,290.318 63 30 19,354.8

32 3.63 2,341.931 64 33.5 21,612.86

4.3 Improved Magnetic Charged System Search 119

The MCSS and IMCSS algorithms achieve the best solutions after 355 iterations

(8,875 analyses) and 339 iterations (8,475 analyses), respectively. The best weights

of IMCSS are 5,064.6 lb for Case 1 and 4,679.15 for Case 2.

As seen in both Tables, although the best weights of IMCSS in both cases are a

little bigger than the HPSACO, but it has lower penalty values rather than

HPSACO, and therefore IMCSS has a lower merit function than HPSACO.

Example 2 A 52-bar planar truss

The 52-bar planar truss structure shown in Fig. 4.12 has been analyzed by Lee and

Geem [27], Li et al. [28], Wu and Chow [30] and Kaveh and Talatahari [31].

The members of this structure are divided into 12 groups: (1) A1–A4, (2) A5–

A10, (3) A11–A13, (4) A14–A17, (5) A18–A23, (6) A24–A26, (7) A27–A30,

(8) A31–A36, (9) A37–A39, (10) A40–A43, (11) A44–A49, and (12) A50–A52.

The material density is 7,860.0 kg/m3 and the modulus of elasticity is

2.07 � 105 MPa. The members are subjected to stress limitations of �180 MPa.

Both of the loads, Px ¼ 100kN and Py ¼ 200kN, are considered.

Table 4.16 and Fig. 4.13 are provided for comparison of the optimal design

results with the previous studies and convergence rates for the 52-bar planar truss

structure, respectively.

Table 4.16 shows that, the best weight of MCSS and IMCSS algorithms are

1,904.05 lb and 1,902.61 lb, respectively, while for DHPSACO is 1,904.83 lb.

The MCSS and IMCSS algorithms find the best solutions after 4,225 and 4,075

analyses respectively, but the DHPSACO reach a good solution in 5,300 analyses.

As it can be seen in the results of Table 4.16, the IMCSS algorithm achieve good

optimal results than previous methods like MCSS, PSO, PSOPC, HPSO and

DHPSACO algorithms.

Fig. 4.10 Schematic of

a10-bar planar truss

structure

120 4 Magnetic Charged System Search

Example 3 A 72-bar spatial truss

In the 72-bar spatial truss structure which is shown in Fig. 4.14, the material density

is 0.1 lb/in3 (2,767.990 kg/m3) and the modulus of elasticity is 10,000 ksi

(68,950 MPa). The nodes are subjected to the displacement limits of �0.25 in

(�0.635 cm) and the members are subjected to the stress limits of �25 ksi

(�172.375 MPa).

All members of this spatial truss are categorized into 16 groups using symmetry:

(1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30,

a

b

Case 1

Case 2

50 100 150 200 250 300 350 400
5000

5500

6000

6500

7000

7500

Iteration

W
ei

g
h
t(

lb
)

MCSS

IMCSS

50 100 150 200 250 300
4500

5000

5500

6000

6500

7000

7500

8000

8500

Iteration

W
ei

g
h
t(

lb
)

MCSS

IMCSS

Fig. 4.11 Convergence history for the 10-bar planar truss structure using MCSS, IMCSS [2]

4.3 Improved Magnetic Charged System Search 121

T
a
b
le

4.
14

O
p
ti
m
al

d
es
ig
n
co
m
p
ar
is
o
n
fo
r
th
e
1
0
-b
ar

p
la
n
n
er

tr
u
ss

(C
as
e
1
)

E
le
m
en
t
g
ro
u
p

C
am

p
et

al
.
[2
6
]

L
ee

an
d
G
ee
m

[2
7
]

L
i
et

al
.
[2
8
]

K
av
eh

an
d
T
al
at
ah
ar
i
[2
9
]

P
re
se
n
t
w
o
rk

[2
]

G
A

H
S

P
S
O

P
S
O
P
C

H
P
S
O

H
P
S
A
C
O

M
C
S
S

IM
C
S
S

1
A
1

2
8
.9
2

3
0
.1
5

3
3
.4
6
9

3
0
.5
6
9

3
0
.7
0
4

3
0
.3
0
7

2
9
.5
7
6
6

3
0
.0
2
5
8

2
A
2

0
.1

0
.1
0
2

0
.1
1

0
.1

0
.1

0
.1

0
.1
1
4
2

0
.1

3
A
3

2
4
.0
7

2
2
.7
1

2
3
.1
7
7

2
2
.9
7
4

2
3
.1
6
7

2
3
.4
3
4

2
3
.8
0
6

2
3
.6
2
7

4
A
4

1
3
.9
6

1
5
.2
7

1
5
.4
7
5

1
5
.1
4
8

1
5
.1
8
3

1
5
.5
0
5

1
5
.8
8
7

1
5
.9
7
3

5
A
5

0
.1

0
.1
0
2

3
.6
4
9

0
.1

0
.1

0
.1

0
.1
1
3
7

0
.1

6
A
6

0
.5
6

0
.5
4
4

0
.1
1
6

0
.5
4
7

0
.5
5
1

0
.5
2
4
1

0
.1
0
0
3

0
.5
1
6
7

7
A
7

7
.6
9

7
.5
4
1

8
.3
2
8

7
.4
9
3

7
.4
6

7
.4
3
6
5

8
.6
0
4
9

7
.4
5
6
7

8
A
8

2
1
.9
5

2
1
.5
6

2
3
.3
4

2
1
.1
5
9

2
0
.9
7
8

2
1
.0
7
9

2
1
.6
8
2

2
1
.4
3
7

9
A
9

2
2
.0
9

2
1
.4
5

2
3
.0
1
4

2
1
.5
5
6

2
1
.5
0
8

2
1
.2
2
9

2
0
.3
0
3

2
0
.7
4
4

1
0

A
1
0

0
.1

0
.1

0
.1
9

0
.1

0
.1

0
.1

0
.1
1
1
7

0
.1

W
ei
gh

t(
lb
)

5,
0
76

.3
1

5,
05

7.
88

5,
52

9.
5

5,
06

1
5,
06

0.
92

5,
05

6.
56

5,
08

6.
9

5,
06

4.
6

D
is
p
la
ce
m
en
t
C
o
n
st
ra
in
t

–
–

–
–

5
.5
3
E
-0
7

9
.9
2
E
-0
4

1
.4
9
E
-0
5

5
.8
5
E
-0
8

N
o
.
o
f
an
al
y
se
s

N
/A

2
0
,0
0
0

1
5
0
,0
0
0

1
5
0
,0
0
0

N
/A

1
0
,6
5
0

8
,8
7
5

8
,4
7
5

122 4 Magnetic Charged System Search

(7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52,

(12) A53–A54, (13) A55–A58, (14) A59–A66 (15), A67–A70, and (16) A71–A72.

Two optimization cases are implemented:

Case 1: The discrete variables are selected from the set D ¼ {0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1,

2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2} (in2) or {0.65, 1.29, 1.94, 2.58,

3.23, 3.87, 4.52, 5.16, 5.81, 6.45, 7.10, 7.74, 8.39, 9.03, 9.68, 10.32, 10.97,

12.26, 12.90, 13.55, 14.19, 14.84, 15.48, 16.13, 16.77, 17.42, 18.06, 18.71,

19.36, 20.00, 20.65} (cm2).

Case 2: The discrete variables are selected from AISC code in Table 4.13.

Table 4.17 lists the values and directions of the two load cases applied to the

72-bar spatial truss.

Tables 4.18 and 4.19 are provided for comparison the results of MCSS and

IMCSS algorithms with the results of the previous studies for both cases. The

Convergence history for both algorithms is shown in Fig. 4.15.

In Case 1, the best weight of the IMCSS and DHPSACO algorithm are 385.54 lb

(174.88 kg), while it is 389.49 lb, 388.94 lb, 387.94 lb, 400.66 lb for the MCSS,

HPSO, HS, and GA, respectively. For the PSO and PSOPC algorithms, these

algorithms do not get optimal results when the maximum number of iterations is

reached. The IMCSS algorithm gets the best solution after 145 iterations (3,625

analyses) while it takes for MCSS and DHPSACO 216 iterations (5,400 analyses)

and 213 iterations (5,330 analyses), respectively.

Table 4.15 Optimal design comparison for the 10-bar planner truss (Case 2)

Element

group

Lee and

Geem [27] Li et al. [28]

Kaveh and

Talatahari [29] Present work [2]

HS PSO PSOPC HPSO HPSACO MCSS IMCSS

1 A1 23.25 22.935 23.473 23.353 23.194 22.863 23.299

2 A2 0.102 0.113 0.101 0.1 0.1 0.120 0.1

3 A3 25.73 25.355 25.287 25.502 24.585 25.719 25.682

4 A4 14.51 14.373 14.413 14.25 14.221 15.312 14.510

5 A5 0.1 0.1 0.1 0.1 0.1 0.101 0.1

6 A6 1.977 1.99 1.969 1.972 1.969 1.968 1.969

7 A7 12.21 12.346 12.362 12.363 12.489 12.310 12.149

8 A8 12.61 12.923 12.694 12.894 12.925 12.934 12.360

9 A9 20.36 20.678 20.323 20.356 20.952 19.906 20.869

10 A10 0.1 0.1 0.103 0.101 0.101 0.100 0.1

Weight(lb) 4,668.81 4,679.47 4,677.7 4,677.29 4,675.78 4,686.47 4,679.15

Displacement

constraint

– – – 0 7.92E-04 0 0

Stress

constraint

– – – 2.49E-

05

7.97E-05 0 0

No. of

analyses

N/A 150,000 150,000 N/A 9,625 7,350 6,625

4.3 Improved Magnetic Charged System Search 123

In Case 2, the best obtained weight from IMCSS is 389.60 lb, but it is 393.13 lb,

389.87 lb, 392.84 lb, 393.06 lb and 393.38 lb for MCSS, CS, ICA, CSS and

HPSACO algorithms, respectively. IMCSS algorithm finds the best solutions after

173 iterations (4,325 analyses), while MCSS, CS, ICA, CSS and HPSACO algo-

rithms, need 4,775, 4,840, 4,500, 7,000 and 5,330 analyses to find the best solutions.

Fig. 4.12 Schematic of a

52-bar planar truss

124 4 Magnetic Charged System Search

Example 4 A 120-bar dome shaped truss

The 120-bar dome truss was first analyzed by Soh and Yang [34] to obtain the

optimal sizing and configuration variables, but for this study only sizing variables

are considered to minimize the structural weight in this example, similar to Lee and

Geem [27] and Keleşoğlu and Ülker [35].

The geometry of this structure is shown in Fig. 4.16. The modulus of elasticity is

30,450 ksi (210,000 MPa) and the material density is 0.288 lb/in3 (7,971.810 kg/

m3). The yield stress of steel is taken as 58.0 ksi (400 MPa).

Table 4.16 Optimal design comparison for the 52-bar planar truss

Element

group

Lee and

Geem

[27] Li et al. [28]

Kaveh and

Talatahari

[31] Present work [2]

HS PSO PSOPC HPSO DHPSACO MCSS IMCSS

1 4,658.055 4,658.055 5,999.988 4,658.055 4,658.055 4,658.055 4,658.055

2 1,161.288 1,374.19 1,008.38 1,161.288 1,161.288 1,161.288 1,161.288

3 506.451 1,858.06 2,696.38 363.225 494.193 363.225 494.193

4 3,303.219 3,206.44 3,206.44 3,303.219 3,303.219 3,303.219 3,303.219

5 940 1,283.87 1,161.29 940 1,008.385 939.998 939.998

6 494.193 252.26 729.03 494.193 285.161 506.451 494.193

7 2,290.318 3,303.22 2,238.71 2,238.705 2,290.318 2,238.705 2,238.705

8 1,008.385 1,045.16 1,008.38 1,008.385 1,008.385 1,008.385 1,008.385

9 2,290.318 126.45 494.19 388.386 388.386 388.386 494.193

10 1,535.481 2,341.93 1,283.87 1,283.868 1,283.868 1,283.868 1,283.868

11 1,045.159 1,008.38 1,161.29 1,161.288 1,161.288 1,161.288 1,161.288

12 506.451 1,045.16 494.19 792.256 506.451 729.031 494.193

Weight (kg) 1,906.76 2,230.16 2,146.63 1,905.49 1,904.83 1,904.05 1,902.61

No. of

analyses

N/A N/A N/A 50,000 5,300 4,225 4,075

20 40 60 80 100 120 140 160 180 200
1000

2000

3000

4000

5000

6000

7000

8000

Iteration

W
ei

g
h
t(

lb
)

MCSS

IMCSS

Fig. 4.13 Convergence

history for the 52-bar planar

truss structure using MCSS,

IMCSS [2]

4.3 Improved Magnetic Charged System Search 125

The allowable tensile and compressive stresses are used according to the AISC-

ASD code [25], as follows:

σþi ¼ 0:6Fy for σi � 0

σ�i for σi < 0

�
ð4:47Þ

where σ�i is calculated according to the slenderness ratio

Fig. 4.14 Schematic of a 72-bar spatial truss

Table 4.17 Loading conditions for the 72-bar spatial truss

Node

Case 1 Case 2

PX kips (kN) Py kips (kN) Pz kips (kN) PX kips (kN) Py kips (kN) Pz kips (kN)

17 5.0 (22.25) 5.0 (22.25) �5.0 (�22.25) 0.0 0.0 �5.0 (�22.25)

18 0.0 0.0 0.0 0.0 0.0 �5.0 (�22.25)

19 0.0 0.0 0.0 0.0 0.0 �5.0 (�22.25)

20 0.0 0.0 0.0 0.0 0.0 �5.0 (�22.25)

126 4 Magnetic Charged System Search

σ�i ¼
1� λ2i

2C2
c

0
@

1
AFy

2
4

3
5, 5

3
þ 3λi
8Cc

� λ3i
8C3

c

0
@

1
A for λi < Cc

12π2E

23λ2i
for λi � Cc

8>>>>><
>>>>>:

ð4:48Þ

where E is the modulus of elasticity, Fy is the yield stress of steel, Cc is the

slenderness ratio (λi) dividing the elastic and inelastic buckling regions

(Cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p
), λi is the slenderness ratio (λi ¼ kLi/ri), k is the effective length

factor, Li is the member length and ri is the radius of gyration. The radius of

gyration (ri) can be expressed in terms of cross-sectional areas, i.e., ri ¼ aAb
i .

Here, a and b are the constants depending on the types of sections adopted for the

members such as pipes, angles, and tees. In this paper, pipe sections (a ¼ 0.4993

and b ¼ 0.6777) were adopted for bars [36].

All members of the dome are categorized into seven groups, as shown in

Fig. 4.16. The dome is considered to be subjected to vertical loading at all the

unsupported joints. These were taken as �13.49 kips (60 kN) at node 1, �6.744

Table 4.18 Optimal design comparison for the 72-bar truss (Case 1)

Element group

Wu and

Chow

[30]

Lee and

Geem

[27] Li et al. [28]

Kaveh and

Talatahari

[31]

Present work

[2]

GA HS PSO PSOPC HPSO DHPSACO MCSS IMCSS

A1 A1–A4 1.5 1.9 2.6 3 2.1 1.9 1.8 2

A2 A5–A12 0.7 0.5 1.5 1.4 0.6 0.5 0.5 0.5

A3 A13–A16 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.1

A4 A17–A18 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

A5 A19–A22 1.3 1.4 2.1 2.7 1.4 1.3 1.3 1.3

A6 A23–A30 0.5 0.6 1.5 1.9 0.5 0.5 0.5 0.5

A7 A31–A34 0.2 0.1 0.6 0.7 0.1 0.1 0.1 0.1

A8 A35–A36 0.1 0.1 0.3 0.8 0.1 0.1 0.1 0.1

A9 A37–A40 0.5 0.6 2.2 1.4 0.5 0.6 0.7 0.5

A10 A41–A48 0.5 0.5 1.9 1.2 0.5 0.5 0.6 0.5

A11 A49–A52 0.1 0.1 0.2 0.8 0.1 0.1 0.1 0.1

A12 A53–A54 0.2 0.1 0.9 0.1 0.1 0.1 0.1 0.1

A13 A55–A58 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.2

A14 A59–A66 0.5 0.5 1.9 1.9 0.5 0.6 0.6 0.6

A15 A67–A70 0.5 0.4 0.7 0.9 0.3 0.4 0.4 0.4

A16 A71–A72 0.7 0.6 1.6 1.3 0.7 0.6 0.4 0.6

Weight (kg) 400.6 387.94 1,089.88 1,069.79 388.94 385.54 389.49 385.54

No. of analyses N/A N/A N/A 150,000 50,000 5,330 5,400 3,625

4.3 Improved Magnetic Charged System Search 127

T
a
b
le

4.
19

O
p
ti
m
al

d
es
ig
n
co
m
p
ar
is
o
n
fo
r
th
e
7
2
-b
ar

tr
u
ss

(C
as
e
2
)

E
le
m
en
t
g
ro
u
p

W
u
an
d
C
h
o
w
[3
0
]

L
i
et

al
.
[2
8
]

K
av
eh

an
d
T
al
at
ah
ar
i

K
av
eh

an
d
B
ak
h
sh
p
o
o
ri
[3
3
]

P
re
se
n
t
w
o
rk

[2
]

G
A

P
S
O

P
S
O
P
C

H
P
S
O

D
H
P
S
A
C
O

[3
1
]

C
S
S
[2
3
]

IC
A

[3
2
]

C
S

M
C
S
S

IM
C
S
S

1
A
1
–
A
4

0
.1
9
6

7
.2
2

4
.4
9

4
.9
7

1
.8

1
.9
9

1
.9
9

1
.8

1
.8

1
.8

2
A
5
–
A
1
2

0
.6
0
2

1
.8

1
.4
5
7

1
.2
2
8

0
.4
4
2

0
.4
4
2

0
.4
4
2

0
.5
6
3

0
.5
6
3

0
.5
6
3

3
A
1
3
–
A
1
6

0
.3
0
7

1
.1
3

0
.1
1
1

0
.1
1
1

0
.1
4
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

4
A
1
7
–
A
1
8

0
.7
6
6

0
.2

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
4
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

5
A
1
9
–
A
2
2

0
.3
9
1

3
.0
9

2
.6
2

2
.8
8

1
.2
2
8

0
.9
9
4

1
.2
2
8

1
.2
6
6

1
.4
5
7

1
.2
2
8

6
A
2
3
–
A
3
0

0
.3
9
1

0
.7
9

1
.1
3

1
.4
5
7

0
.5
6
3

0
.5
6
3

0
.6
0
2

0
.5
6
3

0
.5
6
3

0
.5
6
3

7
A
3
1
–
A
3
4

0
.1
4
1

0
.5
6

0
.1
9
6

0
.1
4
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

8
A
3
5
–
A
3
6

0
.1
1
1

0
.7
9

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
4
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

9
A
3
7
–
A
4
0

1
.8

3
.0
9

1
.2
6
6

1
.5
6
3

0
.5
6
3

0
.5
6
3

0
.5
6
3

0
.5
6
3

0
.5
6
3

0
.3
9
1

1
0

A
4
1
–
A
4
8

0
.6
0
2

1
.2
3

1
.4
5
7

1
.2
2
8

0
.5
6
3

0
.5
6
3

0
.5
6
3

0
.4
4
2

0
.4
4
2

0
.5
6
3

1
1

A
4
9
–
A
5
2

0
.1
4
1

0
.1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

1
2

A
5
3
–
A
5
4

0
.3
0
7

0
.5
6

0
.1
1
1

0
.1
9
6

0
.2
5

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

0
.1
1
1

1
3

A
5
5
–
A
5
8

1
.5
6
3

0
.9
9

0
.4
4
2

0
.3
9
1

0
.1
9
6

0
.1
9
6

0
.1
9
6

0
.1
9
6

0
.1
9
6

0
.1
9
6

1
4

A
5
9
–
A
6
6

0
.7
6
6

1
.6
2

1
.4
5
7

1
.4
5
7

0
.5
6
3

0
.5
6
3

0
.5
6
3

0
.6
0
2

0
.5
6
3

0
.5
6
3

1
5

A
6
7
–
A
7
0

0
.1
4
1

1
.5
6

1
.2
2
8

0
.7
6
6

0
.4
4
2

0
.4
4
2

0
.3
0
7

0
.3
9
1

0
.3
0
7

0
.3
0
7

1
6

A
7
1
–
A
7
2

0
.1
1
1

1
.2
7

1
.4
5
7

1
.5
6
3

0
.5
6
3

0
.7
6
6

0
.6
0
2

0
.5
6
3

0
.7
6
6

0
.5
6
3

W
ei
gh

t
(l
b
)

4
2
7.
20

1,
2
09

94
1.
8
2

93
3.
09

39
3.
38

39
3.
06

39
2.
84

38
9.
87

39
3.
13

38
9.
6

N
o
.
o
f
an
al
y
se
s

N
/A

N
/A

1
5
0
,0
0
0

5
0
,0
0
0

5
,3
3
0

7
,0
0
0

4
,5
0
0

4
,8
4
0

4
,7
7
5

4
,3
2
5

128 4 Magnetic Charged System Search

kips (30 kN) at nodes 2–14, and �2.248 kips (10 kN) at the rest of the nodes. The

minimum cross-sectional area of all members is 0.775 in2 (2 cm2).

In this example, two cases of constraints are considered:

Case 1, with stress constraints and no displacement constraints, and Case 2, with

stress constraints and displacement limitations of �0.1969 in (5 mm) imposed on

all nodes in x- and y-directions. For two cases, the maximum cross-sectional area is

5.0 in2 (32.26 cm2).

Figure 4.17 shows the convergence history for all cases and Table 4.20 gives the

best solution vectors and weights for both cases.

In Case 1, the best weights of MCSS and IMCSS are 19,607.39 lb and

19,476.92 lb, respectively, while for the Ray, HPSACO and PSOPC are

19,476.19 lb, 19,491.30 lb and 19,618.7 lb. The MCSS and IMCSS find the best

50 100 150 200 250
300

400

500

600

700

800

900

1000

1100

Iteration

W
ei

g
h

t(
lb

)

MCSS

IMCSS

20 40 60 80 100 120 140 160 180 200

500

1,000

1,500

2,000

Iteration

W
ei

g
h

t(
lb

)

MCSS

IMCSS

a

b

Fig. 4.15 Convergence

history for the 72-bar truss

structure using MCSS,

IMCSS [2]. (a) Case 1 and

(b) Case 2

4.3 Improved Magnetic Charged System Search 129

solutions in 314 iterations (7,850 analyses) and 299 iterations (7,475 analyses),

respectively, but for Ray and HPSACO algorithms, it takes 19,950 and 10,025

analyses to reach the best solutions, respectively.

In Case 2, the MCSS and IMCSS algorithms need 386 iterations (9,650 analyses)

and 324 iterations (8,100 analyses) to find the best solutions, respectively, while for

Ray and HPSACO algorithms 19,950 and 10,075 analyses is required. The best

weights obtained from MCSS and IMCSS algorithms are 19,928 lb and

Fig. 4.16 Schematic of a 120-bar dome shaped truss

130 4 Magnetic Charged System Search

19,796.71 lb, respectively, but from the Ray, HPSACO and PSOPC are 20,071.9 lb,

20,078 and 20,681.7 lb, respectively.

Some design examples as benchmark problems are optimized using the IMCSS

algorithm for both continuous and discrete design variables. The aim of this study is

to find the best merit function, i.e. considering both penalty and cost functions. In

comparison the results with those of the previous studies for all examples, the

IMCSS has the better merit function than all of previous algorithms, however for

few examples the best weight obtained from IMCSS algorithm is not the best in the

results. Also, the results demonstrate the effectiveness of improvement process for

MCSS algorithm to achieve a better convergence and find better solutions espe-

cially in final iterations of the improved algorithm.

0 50 100 150 200 250 300 350
1

2

3

4

5

6

7

8

9

10
x 10

4

Iteration

W
ei

g
h
t(

lb
)

MCSS

IMCSS

0 50 100 150 200 250 300 350 400
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7 x 10
4

Iteration

W
ei

g
h
t(

lb
)

MCSS

IMCSS

a

b

Fig. 4.17 Comparison of

the convergence rates

between the MCSS and

IMCSS for the 120-bar

dome truss structure [2], (a)
Case 1 and (b) Case 2

4.3 Improved Magnetic Charged System Search 131

References

1. Kaveh A, Motie Share MA, Moslehi M (2013) A new meta-heuristic algorithm for optimiza-

tion: magnetic charged system search. Acta Mech 224(1):85–107

2. Kaveh A, Jafarvand A, Mirzaei B (2014) An improved magnetic charged system search for

optimization of truss structures with continuous and discrete variables. Asian J Civil Eng 15

(1):95–105

3. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search.

Acta Mech 213(3–4):267–286

4. Halliday D, Resnick R, Walker J (2008) Fundamentals of physics, 8th edn. Wiley, New York

5. Tsoulos IG (2008) Modifications of real code genetic algorithm for global optimization. Appl

Math Comput 203:598–607

Table 4.20 Optimal design comparison for the 120-bar dome truss (two cases) optimal cross-

sectional areas (in2)

Element

group

Case 1

Lee and Geem [27]

Kaveh and

Talatahari

[29]

Kaveh and

Khayatazad

[37] Present work [2]

HS PSO PSOPC HPSACO Ray MCSS IMCSS

1 3.295 3.147 3.235 3.311 3.128 3.1108 3.1208

2 3.396 6.376 3.37 3.438 3.357 3.3903 3.3566

3 3.874 5.957 4.116 4.147 4.114 4.106 4.111

4 2.571 4.806 2.784 2.831 2.783 2.7757 2.7811

5 1.15 0.775 0.777 0.775 0.775 0.9674 0.8055

6 3.331 13.798 3.343 3.474 3.302 3.2981 3.3001

7 2.784 2.452 2.454 2.551 2.453 2.4417 2.4451

Weight (lb) 19,707.77 32,432.9 19,618.7 19,491.3 19,476.19 19,607.39 19,476.92

No. of

analyses

35,000 N/A 125,000 10,025 19,950 7,850 7,475

Case 2

Lee and Geem [27]

Kaveh and

Talatahari

[29]

Kaveh and

Khayatazad

[37] Present workElement

group HS PSO PSOPC HPSACO Ray MCSS IMCSS
1 3.296 15.978 3.083 3.779 3.084 3.309 3.3187

2 2.789 9.599 3.639 3.377 3.360 2.6316 2.4746

3 3.872 7.467 4.095 4.125 4.093 4.2768 4.2882

4 2.57 2.79 2.765 2.734 2.762 2.7918 2.8103

5 1.149 4.324 1.776 1.609 1.593 0.9108 0.7753

6 3.331 3.294 3.779 3.533 3.294 3.5168 3.523

7 2.781 2.479 2.438 2.539 2.434 2.3769 2.3826

Weight (lb) 19,893.34 41,052.7 20,681.7 20,078 20,071.9 19,928 19,796.71

No. of

analyses

35,000 N/A 125,000 10,075 19,950 9,650 8,100

132 4 Magnetic Charged System Search

6. Kaveh A, Talatahari S (2010) Optimal design of truss structures via the charged system search

algorithm. Struct Multidisp Optim 37(6):893–911

7. Hines W, Montgomery D (1990) Probability and statistics in engineering and management

science, 3rd edn. Wiley, New York

8. Suganthan PN, Hansen N, Liang, JJ, Deb K, Chen Y.-P, Auger A, Tiwari S (2005) Problem

definitions and evaluation criteria for CEC 2005 Special Session on real-parameter optimiza-

tion. Technical Report, Nanyang Technological University, Singapore and KanGAL report

number 2005005

9. Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for

analyzing the evolutionary algorithms behavior: a case study on the CEC 2005 Special Session

on Real Parameter Optimization. J Heurist 15:617–644

10. Belegundu AD (1982) A study of mathematical programming methods for structural optimi-

zation. Ph.D. thesis, Department of Civil and Environmental Engineering, University of Iowa,

Iowa, USA

11. Arora JS (2000) Introduction to optimum design. McGraw-Hill, New York (1989)

12. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization

problems. Comput Ind 41:113–127

13. Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of

dominance-based tournament selection. Adv Eng Inform 16:193–203

14. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for

constrained engineering design problems. Eng Appl Artif Intell 20:89–99

15. Montes EM, Coello CAC (2008) An empirical study about the usefulness of evolution

strategies to solve constrained optimization problems. Int J Gen Syst 37(4):443–473

16. Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineer-

ing design problems. Eng Comput 27(1):155–182

17. Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using

geometric programming. ASME J Eng Ind B 98(3):1021–1025

18. Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29

(11):2013–2015

19. Sandgren E (1988) Nonlinear integer and discrete programming in mechanical design. In:

Proceedings of the ASME design technology conference, Kissimine, FL, pp 95–105

20. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed

integer discrete continuous optimization and its applications to mechanical design. Trans

ASME J Mech Des 116:318–320

21. Deb K, Gene AS (1997) A robust optimal design technique for mechanical component design.

In: Dasgupta D, Michalewicz Z (eds) Evolutionary algorithms in engineering applications.

Springer, Berlin, pp 497–514

22. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for

solving optimization problems. Appl Math Comput 188:1567–1579

23. Kaveh A, Talatahari S (2010) A charged system search with a fly to boundary method for

discrete optimum design of truss structures. Asian J Civil Eng 11(3):277–293

24. Kaveh A, Farahmand Azar B, Talatahari S (2008) Ant colony optimization for design of space

trusses. Int J Space Struct 23(3):167–181

25. American Institute of Steel Construction (AISC) (1989) Manual of steel construction-

allowable stress design, 9th edn. AISC, IL, Chicago

26. Camp C, Pezeshk S, Cao G (1998) Optimized design of two dimensional structures using a

genetic algorithm. J Struct Eng ASCE 124(5):551–559

27. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search

algorithm. Comput Struct 82:781–798

28. Li LJ, Huang ZB, Liu F, Wu QH (2007) A heuristic particle swarm optimizer for optimization

of pin connected structures. Comput Struct 85:340–349

29. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of truss structures. Comput Struct 87:267–283

References 133

30. Wu SJ, Chow PT (1995) Steady-state genetic algorithms for discrete optimization of trusses.

Comput Struct 56(6):979–991

31. Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures

with discrete variables. J Construct Steel Res 65(8–9):1558–1568

32. Kaveh A, Talatahari S (2010) Optimum design of skeletal structures using imperialist com-

petitive algorithm. Comput Struct 88:1220–1229

33. Kaveh A, Bakhshpoori T (2013) Optimum design of space trusses using cuckoo search

algorithm with lévy flights. Iranian J Sci Technol: Trans Civil Eng 37:C1.1–15

34. Soh CK, Yang J (1996) Fuzzy controlled genetic algorithm search for shape optimization.

J Comput Civil Eng ASCE 10(2):143–150

35. Keleşoğlu O, Ülker M (2005) Fuzzy optimization geometrical nonlinear space truss design.

Turkish J Eng Environ Sci 29:321–329

36. Saka MP (1990) Optimum design of pin-jointed steel structures with practical applications.

J Struct Eng ASCE 116:2599–620

37. Kaveh A, Khayatazad M (2013) Ray optimization for size and shape optimization of truss

structures. Comput Struct 117:82–94

134 4 Magnetic Charged System Search

Chapter 5

Field of Forces Optimization

5.1 Introduction

Although different metaheuristic algorithms have some differences in approaches

to determine the optimum solution, however their general performance is approx-

imately the same. They start the optimization with random solutions; and the

subsequent solutions are based on randomization and some other rules. With

progressing the optimization process, the power of rules increases, and the power

of randomization decreases. It seems that these rules can be modeled by a familiar

concept of physics as well-known as the fields of forces (FOF). FOF is a concept

which is utilized in physics to explain the reason of the operation of the universe.

The virtual FOF model is approximately simulated by using the concepts of real

world fields such as gravitational, magnetical or electrical fields, Kaveh and

Talatahari [1].

This chapter utilizes the concept of the FOF model to enhance the performance

of the CSS algorithm. To reach such an improved algorithm, the definition of the

iteration for the FOF model is altered. Though this change is only performed for the

CSS algorithm, however it can be easily utilized for all the above mentioned

metaheuristic. It seems the enhanced method opens a new horizon for the concept

of time or iteration for the metaheuristics.

In order to investigate the efficiently of the enhanced CSS algorithm, it is used to

the optimum configuration design of the structures. The aim of the structural

configuration optimization is to obtain optimum locations of the structural joints

and suitable cross sections for the structural elements, such that the weight of the

structure becomes a minimum. In this type of optimization problems usually a large

numbers of design variables are encountered, corresponding to a design space of

large dimension, Kaveh et al. [2]. In addition, there are many constraints such as

member stresses, buckling stresses and joint displacements, and many local opti-

mums which increase the complexity and difficulty of the problem. Therefore, the

configuration optimization is found to be a good field to examine the performance

of the new algorithm.

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_5, © Springer International Publishing Switzerland 2014

135

The remaining sections are organized as follows: In Sect. 5.2, statement of the

configuration optimization design of structures is formulated. Fundamental con-

cepts of the fields of forces from physics are presented in Sect. 5.3. The necessary

definitions for a FOF-based model are presented in Sect. 5.4. Section 5.5 describes

the FOF-based methods as a unified general framework of metaheuristics. An

enhanced CSS algorithm is provided in Sect. 5.6. Various examples are studied in

Sect. 5.7 and conclusions are derived in Sect. 5.8.

5.2 Formulation of the Configuration Optimization
Problems

The goal of configuration optimization is to find the optimal shape of the structure

for a given topology. Therefore, decision variables of the problem include the

coordinates of certain nodes of the truss (G) in addition to the sizing variables for

its different members (A). The problem can be expressed as follows:

minimize W A;Gð Þ ¼
Xn
i¼1

γi � Ai � Li

subject to : δmin � δi � δmax i ¼ 1, 2, . . . ,m
σmin � σi � σmax i ¼ 1, 2, . . . , n
σ b
i � σi � 0 i ¼ 1, 2, . . . , ns

Ai,min � Ai � Ai,max i ¼ 1, 2, . . . , ng
Gi,min � Gi � Gi,max i ¼ 1, 2, . . . ,m

ð5:1Þ

whereW(A,G) is the weight of the structure; n is the number of members making up

the structure; m denotes the number of nodes; ns is the number of compression

elements; ng is the number of groups (number of design variables); γi represents the
material density of member i; Li is the length of member i; Ai is the cross-sectional

area of member i chosen between Amin and Amax; Gi denotes the location of the

joints; min and max are the lower and upper bounds, respectively; σi and δi are the
stress and nodal deflection, respectively; σbi represents the allowable buckling stress
in member i when it is in compression.

5.3 Fundamental Concepts of the Fields of Forces

In physics, a field is a physical quantity associated to each point of space-time,
Gribbin [3]. Space-time is a mathematical model that combines space and time into

a single construct and is usually interpreted with space being three-dimensional and

time playing the role of the fourth dimension. Particles in the space-time exert field

forces which dictate the motion of particles because of carrying the energy. There

136 5 Field of Forces Optimization

are many types of the fields in physics such as temperature fields, air pressure fields,

Newtonian gravitational fields, electric fields and magnetic fields, etc.

In physics, it is known that the force field between two charges, two magnetic

monopoles, or two masses all follow an inverse square law as

Fij ¼ G
mimj

r2ij

Fij ¼ ke
qiqj
r2ij

Fij ¼ U
MiMj

r2ij

ð5:2Þ

where G, ke and U are constants; rij is the distance between two objects; m is the

mass of the object; q is the magnitude of charge on the particle and M is the

magnetic monopoles strength. According to (5.2), the force between two particles is

inversely proportional to the square of the separation distance between them, and

proportional to the product of the related magnitudes. Also, the force is directed

along the line joining the particles. The magnitude of the field is obtained for

particle i, by substituting a unit particle instead of mj, qj or Mj in the (5.2) as

Eij ¼ G
mi

r2ij

Eij ¼ Ke
qi
r2ij

Eij ¼ U
Mi

r2ij

ð5:3Þ

As the second example, let us consider an insulating solid sphere of radius a,
which has a uniform volume charge density and carries a total charge of qi. The
electric field Eij at a point inside the space can be obtained using the Gauss’s law as

Eij ¼ ke
qi
a3

rij ð5:4Þ

The magnitude of the electric field at a point outside the sphere is as defined by

(5.3).

The magnitude of the field at a point due to a group of objects is obtained by

using the superposition principle as

E ¼j
XN

i¼1, i 6¼j

Eij ð5:5Þ

where N is the total number of objects. In a vector form, it can be expressed as the

following

5.3 Fundamental Concepts of the Fields of Forces 137

E ¼j
XN

i¼1, i 6¼j

Eij
rij

rij
�� ���� �� ð5:6Þ

where Eij for the electric fields is given as

Eij ¼

keqi
a3

rij if rij < a

keqi
r2ij

if rij � a

8>>><
>>>:

ð5:7Þ

5.4 Necessary Definitions for a FOF-Based Model

Here, some principal and definitions of the FOF-based models are presented as

follows:

• Probe: Each agent in the optimization algorithm is treated as a particle or probe

which can only move in the predefined search space and its location is deter-

mined in the search space in the current time and sometime in the previous times.

The location of probes is a vector of numbers in which each number represents a

dimension of the search-time and the value of the number indicates the value of

that parameter.

• Space-time: The term of the space-time is used for the search space at a

determined time. The dimension of the space-time is equal to the number of

the design variables in addition to the time.

• Time: In the optimization problem, the iteration term is used for the time and

thus it can be assumed that the time changes discretely. This means that the time

domain is an integer domain and the change of the space-time is performed

considering this property.

• Sources of fields: In a FOF-based model, there are some sources of fields which

can create a virtual field of force and attract the probes toward themselves;

however their powers are limited. The sources cannot be located out of the

space-time.

• Effective material: The power of the field sources is limited by the amount of the

effective material. The effective material can be modeled on the amount of the

mass for a particle in Newtonian gravitational fields, or the magnitude of the

charge in the electric fields. The magnitude of the effective materials may be

altered during the optimization process based on the value (or fitness) of the

objective.

• Uniform field: The points of space-time under the effect of the uniform field can

be selected with a uniform probability. In the start of the algorithms, the initial

solutions are obtained randomly. This model can be utilized in this condition.

• Additional instrument: The field-based model can utilize randomization as an

additional instrument. This will change some required values, such as the

138 5 Field of Forces Optimization

location of probes or location or the magnitude of effective material of sources,

in a random manner.

5.5 A FOF-Based General Method

Based on the definitions presented in the previous section, here a unified approach is

developed which directly utilizes the FOF concept. Before describing the properties

of the new algorithm, a pseudo-code as a general form of the FOF-based algorithms

is provided as follows:

Step 1: Initialization. For initialization of the algorithm, we have

• The assumptions and definitions are as presented in Sect. 5.4.

• The primary location of the agents must be determined (often obtained

randomly using uniform fields).

• The location and the amounts of the effective material for the sources must

also be determined.

Step 2: Solution construction.

• In this step, each agent moves toward the space-time and finds a place using

affected fields of forces created by the sources. The rules of moving is

dependent on the type of the algorithm, however, all algorithms use the

abilities of the randomization in this stage.

Step 3: Source updating.

• The amounts of the effective material for the sources must be updated; and/or

• The new locations of the sources must be obtained.

Step 4: Terminating criterion control.

• Steps 2 and 3 are repeated until a terminating criterion is satisfied. Though the

order of steps 2 and 3 may be changed, this cannot make a problem in

generality of this pseudo-code.

Figure 5.1 summarizes the flowchart of the general FOF-based model.

5.5 A FOF-Based General Method 139

5.6 An Enhanced Charged System Search Algorithm
for Configuration Optimization

5.6.1 Review of the Charged System Search Algorithm

The Charged System Search (CSS) algorithm is proposed by Kaveh and Talatahari

[4] and utilized for size optimization of the structures (Kaveh and Talatahari [5,

6]. The pseudo-code for the CSS algorithm is summarized as follows:

Step 1: Initialization.

• The initial positions of CPs are determined randomly in the search space and

the initial velocities of charged particles are assumed to be zero. A memory,

called Charged Memory (CM) is considered to save the best results.

Step 2: Solution construction.

Fig. 5.1 Flowchart of the FOF-based model [1]

140 5 Field of Forces Optimization

Forces determination. Each CP is a source of the field. Based on the field of CPs,

the force vectors for all CPs are calculated as

Fj ¼ qj
X
i, i 6¼j

qi
a3

rij � i1 þ qi
r2ij

� i2
 !

pij Xi � Xj

� � j ¼ 1, 2, . . . ,N
i1 ¼ 1, i2 ¼ 0 , rij < a
i1 ¼ 0, i2 ¼ 1 , rij � a

*
ð5:8Þ

where Fj is the resultant force acting on the jth CP. Xi andXj are the positions of the

ith and jth CPs, respectively. qi is the effective martial of the ith CP and is defined

considering the quality of its solution. The separation distance rij between two

charged particles is defined as follows

rij ¼
Xi � Xj

�� ���� ������ Xi þ Xj

� �
=2� Xbest

����þ ε
ð5:9Þ

where Xbest is the position of the best current CP, and ε is a small positive number.

In (5.8), pij is the probability of moving each CP toward the others and is equal to

pij ¼
1

fit ið Þ � fitbest

fit jð Þ � fit ið Þ > rand or fit jð Þ > fit
�
i
�

0 else

8><
>: ð5:10Þ

New position creation. Each CP moves to the new position and find the

velocities as

Xj,new ¼ randj1 � ka � Fj

mj
� Δt2 þ randj2 � kv � Vj,old � Δtþ Xj,old ð5:11Þ

Vj,new ¼ Xj,new � Xj,old

Δt
ð5:12Þ

where ka is the acceleration coefficient; kv is the velocity coefficient to control the

influence of the previous velocity; and randj1 and randj2 are two random numbers

uniformly distributed in the range of (0, 1). Then, the related objective functions for

the agents are calculated.

Step 3: CM (sources) updating.

• If some new CP vectors are better than the worst ones in the CM, in terms of

their objective function values, the better vectors are included in the CM and

the worst ones are excluded from the CM.

Step 4: Terminating criterion control.

• Steps 2 and 3 are reiterated until a terminating criterion is satisfied.

5.6 An Enhanced Charged System Search Algorithm for Configuration Optimization 141

5.6.2 An Enhanced Charged System Search Algorithm

One of the assumptions, we described in Sect. 5.4 for establishing a FOF-based

model of metaheuristics is that the time alters discretely. This means that all

alterations in space-time are performed when all agents have created their solutions.

For example, in the CSS algorithm, when the calculations of the amount of forces

are completed for all CPs, the new locations of agents are determined (step 2). Also

CM updating is fulfilled after moving all CPs to their new locations. All these

conform to discrete time concept. In the optimization problems, this is known as

iteration. In other words, the modification of the space-time for the multi-agent

algorithms is often performed when an iteration is completed and the new iteration

is not started yet. Here, we ignore this assumption for the CSS algorithm and

therefore an enhanced CSS is presented. In the enhanced CSS, time changes

continuously and after creating just one solution, all updating processes are

performed. Using this enhanced CSS, the new position of each agent can affect

on the moving process of the subsequent CPs while in the standard CSS unless an

iteration is completed, the new positions are not utilized. Based on this inference,

the enhanced CSS is as follows:

Step 1: Initialization.

• This step is similar to the one defined previously. The initial positions and

velocities of CPs as well as the CM are initialized. A number associated to

each CP is considered.

Step 2: Solution construction.

• Forces determination. The force vector for the jth CP is calculated as (5.8).

• New position creation. Each CP moves to the new position as defined in

(5.11) and (5.12). It should be noted that in order to determine the location of

each CP using (5.11), the recent location of the previous agents is utilized

instead of the previous ones and this leads to the use of the pervious

information directly after their generation. After moving the CP to its new

position, the objective function is evaluated.

Step 3: CM (sources) updating.

• If the new CP vector is better than the worst one in the CM, it is included in

the CM.

Step 4: Terminating criterion control.

• Steps 2 and 3 are repeated until a terminating criterion is satisfied.

142 5 Field of Forces Optimization

5.7 Design Examples

This section presents some numerical design examples to illustrate the efficiency of

the new algorithm. The two first examples chosen from literature are known as the

benchmark examples in the field of the configuration optimization problem

containing an 18-bar planar truss and a 25-bar space truss. Since the largeness of

the examples does not make much difference on the search space, the number of

CPs is set to 20 for all the studied examples. The result of the enhanced CSS is

obtained and compared to some other numerical methods. The last example is

solved by the primary and enhanced CSS to identify the superiority of the new

approach. The algorithms are coded in Matlab and a direct stiffness method is

utilized to analysis the structures.

5.7.1 An 18-Bar Planar Truss

The initial configuration of an 18-bar cantilever planar truss is shown in Fig. 5.2

which has been previously analyzed by many authors to obtain the optimal design.

The material density is 2,768 kg/m3 (0.1 lb/in3) and the modulus of elasticity is

68,950 MPa (10,000 ksi). The members are subjected to stress limitations of

�137.9 MPa (�20 ksi). Also, an Euler bucking compressive stress limitation is

imposed for truss member i, according to

σ b
i ¼ �kEAi

L2i
ð5:13Þ

where E is the modulus of elasticity; and k is a constant determined from the cross-

sectional geometry and here it is equal to 4.

Vertical downward loads of –89 N (–20 kips) at nodes 1, 2, 4, 6 and 8 are

considered. The cross-sectional areas of the members are linked into four groups, as

follows:

1. A1, A4, A8, A12, A16;

2. A2, A6, A10, A14, A18;

3. A3, A7, A11, A15; and

4. A5, A9, A13, A17.

The lower nodes, 3, 5, 7, and 9, are allowed to move in any direction in the x-y

plane. Thus, there are 12 design variables which include four sizing and eight

coordinate variables. Side constraints for geometry variable are as follows:

5.7 Design Examples 143

�571:5 cm �225 inð Þ � y3, y5, y7, y9 � 622:3 cm 245 inð Þ;
1, 968:5 cm 775 inð Þ � x3 � 3, 111:5 cm 1, 225 inð Þ;
1, 333:5 cm 525 inð Þ � x5 � 2, 476:5 cm 975 inð Þ;
698:5 cm 275 inð Þ � x7 � 1, 841:5 cm 725 inð Þ;
63:5 cm 25 inð Þ � x9 � 1, 206:5 cm 475 inð Þ:

In this example, the continuous size variables are used and the allowable bounds

on the cross-sectional areas are 22.58�129.03 cm2 (3.5–20 in2).

Table 5.1 presents the best solution vectors from the CSS and other methods.

Imai and Schmit [7] and Felix [8] used the mathematical methods to find optimum

results which are equal to 20,763.8 and 25,412.7 N, respectively. GA-based

approaches (many authors including Rahami et al. [9]) are also used to solve this

example. The weights are 20,251.9, 20,158.9, 20,536.5, 20,105.9 and 20,067.7 N,

respectively. Zheng et al. [10] used a GP algorithm and find a truss with the weight

of 21,377.7 N. The HS result (Lee and Geem [11]) is equal to 20,086.4 N. The best

CSS design results in a truss weighing 20,048.7 N, which is the best among the

other approaches. Among the GA-based methods, the result of the algorithm

proposed by Rahami et al. [9] is the best and obtained after 8,000 structural analyses

and the HS algorithm (Lee and Geem [11]) converges to the optimum point after

24,805 analyses while CSS needs 4,000 FEM analyses to reach the result. Figure 5.3

shows the convergence history for the CSS results and Fig. 5.4 displays optimal

geometry of the 18-bar truss obtained by the CSS algorithm. Also, a comparison

between the allowable and existing stress values in elements for the CSS result is

shown in Fig. 5.5. In this figure, the dashed bold lines indicates the limits of the

stress constraints and it is equal to 20.00 ksi when the type of stress is tension and

the limit for elements in compression are obtained by using (5.13). The maximum

tension stress is equal to 20.00 ksi in the 16th element and the maximum compres-

sion stress is �17.0152 ksi in the last element while the allowable buckling stress

equals to �17.0154 ksi.

Fig. 5.2 The initial geometry of the 18-bar planar truss [1]

144 5 Field of Forces Optimization

Table 5.1 Performance comparison for the 18-bar truss

Design

variables

Imai and

Schmit [7]

Rahami

et al. [8]

Zheng

et al. [9]

Lee and Geem

[10]

Kaveh and

Talatahari [1]

A1 11.24 12.554 12.040 12.65 12.476

A2 15.68 18.029 17.847 7.22 17.831

A3 7.93 5.114 7.969 6.17 5.277

A5 6.49 3.571 4.726 3.55 3.726

x3 891.10 912.969 944.882 903.10 911.698

y3 143.60 188.067 150.000 174.30 185.788

x5 608.20 646.450 664.961 630.30 643.917

y5 105.40 150.617 122.441 136.30 147.640

x7 381.70 416.624 414.961 402.10 414.18

y7 57.10 102.526 77.559 90.50 98.507

x9 181.00 204.282 192.520 195.30 202.444

y9 �3.20 32.653 17.323 30.60 30.557

Best Weight (N) 20,763.8 20,067.7 21,377.7 20,086.4 20,048.7

5010 100 150 200

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

4

Iterations

W
ei

g
h

t
(N

)

Fig. 5.3 Convergence history of the 18-bar truss for the CSS algorithm [1]

Fig. 5.4 Optimal geometry of the 18-bar truss obtained by the CSS algorithm

5.7 Design Examples 145

5.7.1.1 A 25-Bar Spatial Truss

Figure 5.6 shows the initial topology of a 25-bar spatial truss structure. This

example has been frequently studied in sizing and configuration optimization

using mathematical approaches. The material density is 2,768 kg/m3 (0.1 lb/in3)

and the modulus of elasticity is 68,950 MPa (10,000 ksi). Two cases are considered:

Case 1: The cross-sectional are continuous and the bounds on the member cross-

sectional areas are 0.065–6.45 cm2 (0.01–1.0 in2). The load condition for this case

is indicated in Table 5.2. All members are constrained to 275.6 MPa (40 ksi) in both

tension and compression. In addition, all members stresses are constrained to the

Euler buckling stress, as given by (5.13) with the buckling constant k ¼ 39.274

corresponding to tubular members with a nominal diameter-to-thickness ratio 100.

Case 2: For the second case the discrete set of cross sections is considered. The list

of the available profiles are as: {0.645I (I ¼ 1,. . ., 26), 18.064, 19.355, 20.645,
21.935} cm2 or {0.1I (I ¼ 1,. . ., 26), 2.8, 3.0, 3.2, 3.4} in2 which has thirty discrete
values. Table 5.3 presents the load condition for this case. The constraints are the

nodal displacements (no more than 0.89 cm or 0.35 in) in all directions of the

coordinate system for the nodes and the stress constraint (no more than �275.6 MPa

or �40 ksi) for all members.

The structure was required to be doubly symmetric about x- and y- axe; this
condition grouped the truss members as follows: (1) A1; (2) A2–A5; (3) A6–A9;

(4) A10–A11; (5) A12–A13; (6) A14–A17; (7) A18–A21; and (8) A22–A23. For the

configuration optimization, the geometric variables are selected as coordinates x4,
y4, z4, x8, and y8, with symmetry required in x–z and y–z planes. The side constraints
for the geometric variables in the second case are as follows:

2 4 6 8 10 12 14 16 18

-20

-15

-10

-5

0

5

10

15

20

Number of the element

T
h
e

st
re

ss
 V

al
u

e
(k

si
)

Fig. 5.5 Comparison of the

allowable and existing

stress values for the 18-bar

truss using the CSS

algorithm [1]

146 5 Field of Forces Optimization

50:8 cm 20 inð Þ � x4 � 152:4 cm 60 inð Þ;
101:6 cm 40 inð Þ � y4 � 203:2 cm 80 inð Þ;
228:6 cm 90 inð Þ � z4 � 330:2 cm 130 inð Þ;
101:6 cm 40 inð Þ � x8 � 203:2 cm 80 inð Þ; and

254 cm 100 inð Þ � y8 � 355:6 cm 140 inð Þ:

Considering Case 1, this example was solved by different methods. Vanderplaats

and Moses [12] and Felix [7] used mathematical methods and Yang [13], Soh and

Yang [14] and Yang and Soh [15] utilized GA-based methods. In addition, Zheng

et al. [10] used a GP algorithm to solve this example. The corresponding weight of

Fig. 5.6 The initial geometry of the 25-bar spatial truss

Table 5.2 Loading conditions for the 25-bar spatial truss (Case 1)

Case 1 Case 2

Node PX kips(kN) PY kips(kN) PZ kips(kN) PX kips(kN) PY kips(kN) PZ kips(kN)

1 0.0 20.0 (89) �5.0 (22.25) 1.0 (4.45) 10.0 (44.5) �5.0 (22.25)

2 0.0 �20.0 (89) �5.0 (22.25) 0.0 10.0 (44.5) �5.0 (22.25)

3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

Table 5.3 Loading

conditions for the 25-bar

spatial truss (Case 2)

Node PX kips(kN) PY kips(kN) PZ kips(kN)

1 1.0 (4.45) �10.0 (44.5) �10.0 (44.5)

2 0.0 �10.0 (44.5) �10.0 (44.5)

3 0.5 (2.22) 0.0 0.0

6 0.6 (2.67) 0.0 0.0

5.7 Design Examples 147

these methods are 593.8, 571.6, 610.3, 590.9, 584.0, 583.8 N, respectively while it

is 567.5 for the solution vector of the CSS algorithm. Table 5.4 presents some of the

best results of these algorithms. CSS need 4,000 analyses to reach the optimum

result as shown in Fig. 5.7.

For Case 2, Wu and Chow [16], Kaveh and Kalatjari [17] and Rahami et al. [9]

used GA-based algorithms. Lee and Geem [11] used a harmony search algorithm.

The result of the CSS algorithm is 528.58 N which is 14.6 %, 4.35 %, 1.08 % and

4.12 % less than the previous studies, respectively. Table 5.5 summarizes the design

vectors as well as the weight of the results obtained by different algorithms.

Maximum displacement for the design of the CSS algorithm is 0.888 cm which is

less than its maximum limit. Also, its maximum stress value is equal �126.4 MPa

and so it can be seen that the displacement constraint is dominant in this case. The

optimum configurations for two cases are shown in Fig. 5.8.

In addition to previous cases, when the range of cross-sectional areas varies from

0.01 to 3.4 in2 (0.6452 cm2 to 21.94 cm2) and only size optimization is considered, a

statistical study on the results of different algorithms is performed. The detailed

information for constraint conditions is presented in Kaveh and Talatahari

[4]. Table 5.6 compares the performance of the presented algorithm and other

metaheuristic algorithms. Obviously, the enhanced CSS performs better than

other algorithms when the best weight, the average weight or the standard deviation

are compared.

Table 5.4 Performance comparison for the 25-bar truss (Case 1)

Design

variables

Vanderplaats and

Moses [12]

Felix

[8]

Soh and Yang

[14]

Zheng

et al. [10]

Kaveh and

Talatahari [1]

A1 0.08 0.07 0.58 0.58 0.11

A2 2.67 3.14 2.84 4.97 2.33

A3 5.43 5.39 5.81 4.39 5.64

A4 0.21 0.16 0.32 0.52 0.25

A5 0.65 0.79 0.71 0.065 0.70

A6 0.78 0.54 1.36 0.1 0.80

A7 4.77 4.50 4.52 3.1 5.34

A8 3.57 3.54 3.61 3.1 3.69

x4 54.6 60.20 55.8 32.0 51.57

y4 122.7 125.2 110.7 222.0 96.00

z4 254.8 248.2 246.0 254.0 262.77

x8 54.1 69.9 35.9 159.0 45.65

y8 244.7 244.9 206.1 254.0 198.71

Best Weight (N) 593.8 571.6 590.9 583.8 567.5

148 5 Field of Forces Optimization

5.7.1.2 A 120-Bar Dome Truss

The design of a 120-bar dome truss, shown in Fig. 5.9, is considered as the last

example to compare the practical capability of the standard and enhanced CSS

algorithms. This dome is utilized in literature to find size optimum design, however

here the aim is to obtain the optimal sizing and configuration variables. The

modulus of elasticity is 210,000 MPa (30,450 ksi), and the material density is

7971.810 kg/m3 (0.288 lb/in3). The yield stress of steel is taken as 400 MPa (58.0

ksi). The dome is considered to be subjected to vertical loading at all the

unsupported joints. These loads are taken as �60 kN (�13.49 kips) at node

1, �30 kN (�6.744 kips) at nodes 2 through 14, and �10 kN (�2.248 kips) at

the rest of the nodes. The minimum cross-sectional area of all members is 2 cm2

10 50 100 150 200
560

580

600

620

640

660

680

Iterations

W
ei

g
h

t
(N

)

Fig. 5.7 Convergence

history of the 25-bar spatial

truss for the CSS algorithm

[1]

Table 5.5 Performance comparison for the 25-bar truss (Case 2)

Design

variables

Wu and

Chow [16]

Kaveh and

Kalatjari [17]

Rahami

et al. [9]

Lee and

Geem [11]

Kaveh and

Talatahari [1]

A1 0.1 0.1 0.1 0.2 0.1

A2 0.2 0.1 0.1 0.1 0.1

A3 1.1 1.1 1.1 0.9 0.9

A4 0.2 0.1 0.1 0.1 0.1

A5 0.3 0.1 0.1 0.1 0.1

A6 0.1 0.1 0.1 0.1 0.1

A7 0.2 0.1 0.2 0.2 0.1

A8 0.9 1.0 0.8 1.0 1.0

x4 41.07 36.23 33.049 31.88 36.762

y4 53.47 58.56 53.566 83.57 56.920

z4 124.6 115.59 129.909 126.35 124.863

x8 50.8 46.46 43.783 40.43 49.767

y8 131.48 127.95 136.838 130.64 136.757

Best Weight (N) 605.85 551.58 534.30 550.55 528.58

5.7 Design Examples 149

(0.775 in2) and the maximum cross-sectional area is taken as 129.03 cm2 (20.0 in2).

Due to the symmetry of the structure, the geometric variables are selected as the

height of the rings and the crown (three geometric variables). The geometric

Fig. 5.8 Optimal geometry of the 25-bar truss obtained by the CSS algorithm [1]: (a) Case 1; (b)
Case 2

150 5 Field of Forces Optimization

T
a
b
le

5.
6

P
er
fo
rm

an
ce

co
m
p
ar
is
o
n
fo
r
th
e
2
5
-b
ar

sp
at
ia
l
tr
u
ss

(p
u
re

si
ze

o
p
ti
m
iz
at
io
n
)

R
aj
ee
v
an
d

K
ri
sh
n
am

o
o
rt
h
y

S
ch
u
tt
e
an
d

G
ro
en
w
o
ld

L
ee

an
d

G
ee
m

K
av
eh

an
d
T
al
at
ah
ar
i

G
A

[1
7
]

P
S
O

[1
8
]

H
S
[1
0
]

P
S
A
C
O

[1
9
]

H
P
S
A
C
O

[1
9
]

H
B
B
–
B
C

[2
0
]

C
S
S

[4
]

K
av
eh

an
d
T
al
at
ah
ar
i

[1
]

B
es
t
W
ei
gh

t(
lb
)

5
4
6

5
4
5
.2
1

5
4
4
.3
8

5
4
5
.0
4

5
4
4
.9
9

5
4
5
.1
6

5
4
5
.1
0

5
4
4
.9
2

A
ve
ra
ge

W
ei
g
ht

(l
b
)

N
/A

5
4
6
.8
4

N
/A

N
/A

5
4
5
.5
2

5
4
5
.6
6

5
4
5
.5
8

5
4
5
.4
2

St
d
D
ev
(l
b
)

N
/A

1
.4
7
8

N
/A

N
/A

0
.3
1
5

0
.3
6
7

0
.4
1
2

0
.3
7
5

5.7 Design Examples 151

variables are allowed to move 0.50 m, based on their initial value. The stress

constraints of the structural members are calculated as per AISC [21] specifications.

Besides, the displacements of all nodes in any direction are limited to a maximum

value of 5 mm (0.1969 in).

Table 5.7 compares the result of the standard CSS and enhanced CSS. When

pure size optimization is considered, the enhanced CSS can find a better result in a

less number of analyses. The enhanced CSS needs 4,000 analyses to find the

optimum result while it is 7,000 for the standard CSS as reported by the authors

Fig. 5.9 The initial geometry of the 120-bar dome shaped truss

152 5 Field of Forces Optimization

(Kaveh and Talatahari [5]). Figure 5.10 shows the convergence history for these

two CSS-based algorithms. For the configuration optimization, the enhanced CSS

algorithm can find a design with weight of 98,815 N while it is 100,984 N for the

standard CSS. Adding three geometry design variables to the problem saves the

structural martial more than 33 %.

5.8 Discussion

A model is developed to improve the performance of metaheuristics utilizing the

concept of the virtual fields of forces. This general framework of the FOF-based

algorithm contains four steps:

• Initialization, where considers some probes and sources and determines the first

location of the probes (initial solutions) using a uniform field. Also, the amounts

of the effective material for the sources based on the utilized approach are

determined.

• Solution construction, in which each probe moves toward the sources and finds a

place as a new solution.

• Source updating, where the location of the sources and/or the amounts of the

effective material are updated to direct the search process toward an optimum

point.

• Terminating criterion control, which determines the end time of the search

process.

Table 5.7 Performance comparison for the 120-bar truss

Pure size optimization Configuration optimization

Design

variables

Standard CSS (Kaveh

and Talatahari [5])

Kaveh and

Talatahari [1] Standard CSS

Kaveh and

Talatahari [1]

A1 3.027 3.032 3.103 3.235

A2 14.606 15.335 7.328 4.875

A3 5.044 4.767 4.350 4.303

A4 3.139 3.030 2.731 2.764

A5 8.543 8.252 1.719 2.438

A6 3.367 3.723 3.739 3.637

A7 2.497 2.502 2.452 2.505

z1 – – 286.505 259.569

z2 – – 209.295 207.017

z3 – – 107.271 106.556

Best weight (N) 147,912 147,537 100,984 98,815

Average weight(N) 151,865 149,862 102,723 101,156

Std Dev(N) 2,963 2,456 3,365 2,884

5.8 Discussion 153

Using this model, an enhanced CSS algorithm is developed. Although the CSS

algorithm uses the concept of the FOF model directly, however considering the

continuous space-time for this algorithm improves its efficiency. In this algorithm,

time changes continuously and after creating just one solution, all updating pro-

cesses are performed. Using the enhanced CSS, the new position of each agent can

affect the moving process of the subsequent CPs, while in the standard CSS until the

completion the iteration, the new positions are not utilized and this change

improves the performance of the algorithm.

In this chapter, the enhanced CSS is utilized to determine the optimum config-

uration design of the truss structures. For this purpose, three examples are consid-

ered and the results are compared to the results of different algorithms and the

standard CSS. The results indicate the efficiency of the enhanced CSS for deter-

mining the optimum design of structures.

It can be postulated that further improvement of metaheuristics can be achieved

by changing the definition and/or application of some concepts used in the FOF

model. Considering the continuous space-time is the first result of such an improve-

ment. Utilizing what is defined as the continuous space-time for other metaheuristic

algorithms opens a new horizon for the concept of the time or iteration for

metaheuristics, and it is expected this continuous space-time can be expended for

other algorithms. As a future work, one can change the manner of using other

concepts of the FOF model to reach to some better optimization methods similar to

the enhanced CSS which alters the way of using the space-time term.

References

1. Kaveh A, Talatahari S (2011) An enhanced charged system search for configuration optimi-

zation using the concept of fields of forces. Struct Multidiscip Optim 43(3):339–351

2. Kaveh A, Farahmand Azar B, Talatahari S (2008) Ant colony optimization for design of space

trusses. Int J Space Struct 23(3):167–181

10 50 100 150 200 250 300 350
3.2

3.4

3.6

3.8

4

4.2

4.4
x 10

4

Iterations

W
ei

g
h
t

(l
b
)

Standard CSS

Enhanced CSS

Fig. 5.10 Convergence

history of the 120-bar dome

shaped truss for the

CSS-based algorithms [1]

154 5 Field of Forces Optimization

3. Gribbin J (1998) Particle physics from A to Z. Weidenfeld & Nicolson, London

4. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search.

Acta Mech 213(3–4):267–286

5. Kaveh A, Talatahari S (2010) Optimal design of skeletal structures via the charged system

search algorithm. Struct Multidiscip Optim 41(6):893–911

6. Kaveh A, Talatahari S (2010) Charged system search for optimum grillage systems design

using the LRFD-AISC code. J Constr Steel Res 66(6):767–771

7. Imai K, Schmit LA (1981) Configuration optimisation of trusses. J Struct Div ASCE

107:745–756

8. Felix JE (1981) Shape optimization of trusses subjected to strength, displacement, and

frequency constraints. M.Sc. thesis, Naval Postgraduate School

9. Rahami H, Kaveh A, Gholipoura Y (2008) Sizing, geometry and topology optimization of

trusses via force method and genetic algorithm. Eng Struct 30:2360–2369

10. Zheng QZ, Querin OM, Barton DC (2006) Geometry and sizing optimization of discrete

structure using the genetic programming method. Struct Multidiscip Optim 231:452–461

11. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search

algorithm. Comput Struct 82:781–798

12. Vanderplaats GN, Moses F (1972) Automated design of trusses for optimum geometry. J

Struct Div, ASCE 98:671–690

13. Yang JP (1996) Development of genetic algorithm-based approach for structural optimization.

Ph.D. Thesis, Nanyang Technology University, Singapore

14. Soh CK, Yang JP (1996) Fuzzy controlled genetic algorithm for shape optimization. J Comput

Civil Eng, ASCE 10(2):143–150

15. Yang JP, Soh CK (1997) Structural optimization by genetic algorithms with tournament

selection, J Comput Civil Eng. ASCE 11(3):195–200

16. Wu SJ, Chow PT (1995) Integrated discrete and configuration optimization of trusses using

genetic algorithms. Comput Struct 55(4):695–702

17. Kaveh A, Kalatjari V (2004) Size/geometry optimization of trusses by the force method and

genetic algorithm. Z Angew Math Mech 84(5):347–357

18. Rajeev S, Krishnamoorthy CS (1997) Genetic algorithms based methodologies for design

optimisation of trusses. J Struct Eng, ASCE 123:350–358

19. Schutte JF, Groenwold AA (2003) Sizing design of truss structures using particle swarms.

Struct Multidiscip Optim 25:261–269

20. Kaveh A, Talatahari S (2009) Hybrid algorithm of harmony search, particle swarm and ant

colony for structural design optimization, Chapter 5 of a book entitled: Harmony search

algorithms for structural design, Springer-Verlag Berlin Heidelberg

21. American Institute of Steel Construction (AISC) (1989) Manual of steel construction-

allowable stress design, 9th edn. AISC, IL, Chicago

22. Kaveh A, Talatahari S (2009) Size optimization of space trusses using big bang–big crunch

algorithm. Comput Struct 87(17–18):1129–1140

References 155

Chapter 6

Dolphin Echolocation Optimization

6.1 Introduction

Nature has provided inspiration for most of the man-made technologies. Scientists

believe that dolphins are the second to humans in smartness and intelligence.

Echolocation is the biological sonar used by dolphins and several kinds of other

animals for navigation and hunting in various environments. This ability of dol-

phins is mimicked in this chapter to develop a new optimization method. There are

different metaheuristic optimization methods, but in most of these algorithms

parameter tuning takes a considerable time of the user, persuading the scientists

to develop ideas to improve these methods. Studies have shown that metaheuristic

algorithms have certain governing rules and knowing these rules helps to get better

results. Dolphin Echolocation takes advantages of these rules and outperforms

many existing optimization methods, while it has few parameters to be set. The

new approach leads to excellent results with low computational efforts [1].

Dolphin echolocation is a new optimization method which is presented in this

chapter. This method mimics strategies used by dolphins for their hunting process.

Dolphins produce a kind of voice called sonar to locate the target, doing this

dolphin change sonar to modify the target and its location. Dolphin echolocation

is depicted in Fig. 6.1. This fact is mimicked here as the main feature of the new

optimization method.

6.2 Dolphin Echolocation in Nature

The term “echolocation” was initiated by Griffin [2] to describe the ability of flying

bats to locate obstacles and preys by listening to echoes returning from high-

frequency clicks that they emitted. Echolocating animals include some mammals

and a few birds. The best studied echolocation in marine mammals is that of the

bottlenose dolphins, Au [3].

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_6, © Springer International Publishing Switzerland 2014

157

http://en.wikipedia.org/wiki/Sonar#Sonar
http://en.wikipedia.org/wiki/Animal#Animal
http://en.wikipedia.org/wiki/Navigation_research#Navigation%20research

A dolphin is able to generate sounds in the form of clicks. Frequency of these

clicks is higher than that of the sounds used for communication and differs between

species. When the sound strikes an object, some of the energy of the sound-wave is

reflected back towards the dolphin. As soon as an echo is received, the dolphin

generates another click. The time lapse between click and echo enables the dolphin

to evaluate the distance from the object; the varying strength of the signal as it is

received on the two sides of the dolphin’s head enabling him to evaluate the

direction. By continuously emitting clicks and receiving echoes in this way, the

dolphin can track objects and home in on them, May [4]. The clicks are directional

and are for echolocation, often occurring in a short series called a click train. The

click rate increases when approaching an object of interest [3].

Though bats also use echolocation, however, they differ from dolphins in their

sonar system. Bats use their sonar system at short ranges of up to approximately 3–4

m, whereas dolphins can detect their targets at ranges varying from a few tens of

meters to over a hundred meters. Many bats hunt for insects that dart rapidly

to-and-fro, making it very different from the escape behavior of a fish chased by

dolphin. The speed of sound in air is about one fifth of that of water, thus the

information transfer rate during sonar transmission for bats is much shorter than

that of the dolphins. These and many other differences in environment and prey

require totally different types of sonar system, which naturally makes a direct

comparison difficult [3, 5].

6.3 Dolphin Echolocation Optimization

6.3.1 Introduction to Dolphin Echolocation

Regarding an optimization problem, it can be understood that echolocation is

similar to optimization in some aspects; the process of foraging preys using

echolocation in dolphins is similar to finding the optimum answer of a problem.

As mentioned in the previous part, dolphins initially search all around the search

space to find the prey. As soon as a dolphin approaches the target, the animal

restricts its search, and incrementally increases its clicks in order to concentrate on

the location.

Fig. 6.1 A real dolphin

catching its prey [1]

158 6 Dolphin Echolocation Optimization

The method simulates dolphin echolocation by limiting its exploration propor-

tional to the distance from the target. For making the relationship much clear,

consider an optimization problem. Two stages can be identified: in the first stage the

algorithm explores all around the search space to perform a global search, therefore

it should look for unexplored regions. This task is carried out by exploring some

random locations in the search space, and in the second stage it concentrates on

investigation around better results achieved from the previous stage. These are

obvious inherent characteristics of all metaheuristic algorithms. An efficient

method is presented in [6] for controlling the value of the randomly created answers

in order to set the ratio of the results to be achieved in phase 1 to phase 2.

By using Dolphin Echolocation (DE) algorithm, the user would be able to

change the ratio of answers produced in phase 1 to the answers produces in phase

2 according to a predefined curve. In other words, global search, changes to a local

one gradually in a user defined style.

The user defines a curve on which the optimization convergence should be

performed, and then the algorithm sets its parameters in order to be able to follow

the curve. The method works with the likelihood of occurrence of the best answer in

comparison to the others. In other words, for each variable there are different

alternatives in the feasible region, in each loop the algorithm defines the possibility

of choosing the best so far achieved alternative according to the user determined

convergence curve. By using this curve, the convergence criterion is dictated to the

algorithm, and then the convergence of the algorithm becomes less parameter

dependent. The curve can be any smooth ascending curve but there are some

recommendations for it, which will be discussed later.

Previously it has been shown that there is a unified method for parameter

selection in metha-heuristics [6]. In the latter paper, an index called the conver-

gence factor was presented. A Convergence Factor (CF) is defined as the average

possibility of the elitist answer. As an example, if the aim is to devote some steel

profiles to a structure that has four elements, then in the first step, frequency of

modal profile of each element should be defined. CF is the mean of these frequen-

cies. Table 6.1 illustrates an example of calculating the CF for a structure

containing four elements.

6.3.2 Dolphin Echolocation Algorithm

Before starting optimization, search space should be sorted using the following

rule:

Search Space Ordering For each variable to be optimized during the process, sort

alternatives of the search space in an ascending or descending order. If alternatives

include more than one characteristic, perform ordering according to the most

important one. Using this method, for variable j, vector Aj of length LAj is created

which contains all possible alternatives for the jth variable putting these vectors next

6.3 Dolphin Echolocation Optimization 159

to each other , as the columns of a matrix, the Matrix AlternativesMA*NV is created,

in which MA is max(LAj)j¼ 1 : NV; with NV being the number of variables.

Moreover, a curve according to which the convergence factor should change

during the optimization process, should be assigned. Here, the change of CF is

considered to be according to the following curve:

PP Loopið Þ ¼ PP1 þ 1� PP1ð Þ LoopPower
i � 1

LoopsNumberð ÞPower � 1
ð6:1Þ

PP: Predefined probability.

PP1: Convergence factor of the first loop in which the answers are selected

randomly.

Loopi: Number of the current loop.

Power: Degree of the curve. As it can be seen, the curve in (6.1) is a polynominal

of Power degree.
Loops Number: Number of loops in which the algorithm should reach to the

convergence point. This number should be chosen by the user according to the

computational effort that can be afforded for the algorithm.

Figure 6.2 shows the variation of PP by the changes of the Power, using the

proposed formula, Eq. (6.1).

The flowchart of the algorithm is shown in Fig. 6.3. The main steps of Dolphin

Echolocation (DE) for discrete optimization are as follows:

1. Initiate NL locations for a dolphin randomly.

This step contains creating LNL*NV matrix, in which NL is the number of

locations and NV is the number of variables (or dimension of each location).

2. Calculate the PP of the loop using (6.1).

3. Calculate the fitness of each location.

Fitness should be defined in a manner that the better answers get higher values.

In other words the optimization goal should be to maximize the fitness.

Table 6.1 An example for calculation of the CF [6]

Element 1 Element 2 Element 3 Element 4

Answer 1 5 41 22 15

Answer 2 3 36 22 17

Answer 3 4 39 25 16

Answer 4 3 42 22 17

Answer 5 3 41 22 19

Modal answer 3 41 22 17

Frequency of the modal answer 3 2 4 2

Proportion of the modal answer

among all answers

60 % 40 % 80 % 40 %

CF 55 %

160 6 Dolphin Echolocation Optimization

4. Calculate the accumulative fitness according to dolphin rules as follows:

(a) for i ¼ 1 to the number of locations

for j ¼ 1 to the number of variables

find the position of L(i,j) in jth column of the Alternatives matrix and name

it as A.
for k ¼ � Re to Re

Fig. 6.2 Sample

convergence curves, using

(6.1) for different values for

power [6]

Fig. 6.3 The flowchart of

the DE algorithm [1]

6.3 Dolphin Echolocation Optimization 161

AF Aþkð Þj ¼
1

Re

� Re �
��k��� �

Fitness ið Þ þ AF Aþkð Þj ð6:2Þ

end

end

end

Where

AF(A + k)j is the accumulative fitness of the (A + k)th alternative (number-

ing of the alternatives is identical to the ordering of the Alternative matrix) to

be chosen for the jth variable; Re: is the effective radius in which accumu-

lative fitness of the alternative A’s neighbors are affected from its fitness.

This radius is recommended to be not more than 1/4 of the search space;

Fittness (i) is the fitness of location i.
It should be added that for alternatives close to edges (where A + k is not a

valid; A + k < 0 or A + k > LAj), the AF is calculated using a reflective

characteristic. In this case, if the distance of an alternative to the edge is less

than Re, it is assumed that the same alternative exists where picture of the

mentioned alternative can be seen, if a mirror is placed on the edge.

(b) In order to distribute the possibility much evenly in the search space, a small

value of is added to all the arrays as AF ¼ AF + ε. Here, ε should be chosen
according to the way the fitness is defined. It is better to be less than the

minimum value achieved for the fitness.

(c) Find the best location of this loop and name it “The best location”. Find the

alternatives allocated to the variables of the best location, and let their AF be

equal to zero.

In other words:

for j ¼ 1: Number of variables

for i ¼ 1: Number of alternatives

if i ¼ The best location(j)

AFij ¼ 0 ð6:3Þ

end

end

end

5. for variable j(j ¼ 1,…, NV), calculate the probability of choosing alternative

i(i ¼ 1,…, ALj), according to the following relationship:

Pij ¼ AFijXLAj
i¼1

AFij

ð6:4Þ

6. Assign a probability equal to PP to all alternatives chosen for all variables of the

162 6 Dolphin Echolocation Optimization

best location and devote rest of the probability to the other alternatives according

to the following formula:

for j ¼ 1: Number of variables

for i ¼ 1: Number of alternatives

if i ¼ The best location(j)

Pij ¼ PP ð6:5Þ

Else

Pij ¼ 1� PPð ÞPij ð6:6Þ

end

end

end

Calculate the next step locations according to the probabilities assigned to

each alternative.

Repeat Steps 2 to 6 as many times as the Loops Number.

Parameters of the Algorithm Input parameters for the algorithm are as follows:

(a) Loops Number

For an optimization algorithm it is beneficial for the user to be able to dictate the

algorithm to work according to the affordable computational cost. The answers

may obviously be dependent on the selected number of loops and will improve

by an increase in the loops number. However, the point is that one may not

achieve results as bad as those of other optimization algorithms gained in less

loops, because in this case although the algorithm quit its job much sooner than

expected, the answer is good because of convergence criteria being reached.

The number of loops can be selected by sensitivity analysis when high accuracy

is required, however, in structural optimization of normal buildings, the loops

number is recommended to be more than 50.

(b) Convergence Curve Formula

This is another important parameter to be selected for the algorithm. The curve

should reach to the final point of 100 % smoothly. If the curve satisfies the

above mentioned criteria the algorithm will perform the job properly, but it is

recommended to start with a linear curve and try the curves that spend more

time (more loops) in high values of the PP. For example, if one is using

proposed curves of this chapter, it is recommended to start with Power ¼1

which usually gives good results and it is better to try some cases of the

Power < 1 to check if it improves the results.

(c) Effective Radius (Re)

This parameter is better to be chosen according to the size of search space. It is

recommended to be selected less than ¼ of the size of the search space.

6.3 Dolphin Echolocation Optimization 163

(d) ε
This parameter is better to be less than any possible fitness.

(e) Number of Locations (NL)
This parameter is the same as the population size in GA or number of ants in

ACO. It should be chosen in a reasonable way.

An Illustrative Numerical Example As an example consider the following sim-

ple mathematical function optimization problem:

min h ¼
XN
i¼1

x2i

 !
, xi ∈ Z, � 20 � xi � 20 ð6:7Þ

Considering N ¼ 4, dolphin echolocation algorithm suggests the following

steps:

Before starting the optimization process for the changes of CF, a curve should be

selected using (6.1), utilizing Power ¼ 1, Loops number ¼ 8, and PP1 ¼ 0.1, as

follow:

PP ¼ 0:1þ 0:9
Loopi � 1

7

� �
¼ 0:1þ 0:9 Loopi � 1ð Þ ð6:8Þ

It should be noted that the PP1 is better to be considered as the CF of the

randomly selected generation of the first loop, which is equal to 0.11 for this

example.

Dolphin Echolocation steps to solve the problem are as follows:

1. Create the initial locations randomly, which includes the generating NL vectors

consisting of N integer numbers between �20 and 20. For example, considering

NL and N equal to 30 and 4, 30 vectors of length 4 should be selected randomly.

One possible answer for the ith location can be Li ¼ {�10, 4, � 7, 18}.

2. Calculate the PP of the loop using (6.8).

3. Calculate fitness for each location. In this example as the objective function is

defined by (6.7), for the considered location (Li), h ¼ (�10)2 + 42 + (�7)2 +

182 ¼ 489. As in DE, the fitness is used to calculate the probability. Better

fitnesses should have higher possibilities, then we can use Fitness ¼ 1/h. It
should be added that, for this special case, as h can be equal to zero, small

value of 1 is added to the h in order to prevent the error of dividing by zero. Then

the Fitness ¼ 1/(h + 1), and for the considered location Fitness(Li) ¼
1/(489 + 1) ¼ 0.00204.

4. Calculate the Accumulative fitness, using (6.2). As discussed before the alter-

natives should be sorted in an ascending order. The AlternativesMA*NV (MA is the

number of alternatives, and NV is the number of optimization variables) is

allocated to the possible alternatives for variables. For this example, the Alter-

natives matrix is:

164 6 Dolphin Echolocation Optimization

Alternatives ¼

�20 �20 �20 �20

�19 �19 �19 �19

: : : :
: : : :
: : : :
19 19 19 19

20 20 20 20

2
666666664

3
777777775

ð6:9Þ

Then for sample location, Li, considering Re ¼ 10, Eq. (6.2) becomes:

for i ¼ Li
for j ¼ 1 to 4

find the position of L(i,j) in the jth column of the Alternatives matrix and

name it as A.
for k ¼ � 10 to 10

AF Aþkð Þj ¼
1

10
� 10� ��k��� �

Fitness Lið Þ þ AF Aþkð Þj ð6:10Þ

end

end

end

Equation (6.10) can also be stated as:

for j ¼ {1, 2, 3, 4}

L i; jð Þ ¼ �10, 4, � 7, 18f g, then A ¼ 11; 25; 14; 39f g

for k ¼ � 10 to 10

AF 11þkð Þ1 ¼ 1

10
� 10� ��k��� �

Fitness
�
Li
�þ AF 11þkð Þ1

AF 25þkð Þ2 ¼
1

10
� 10� ��k��� �

Fitness
�
Li
�þ AF 25þkð Þ2

AF 14þkð Þ3 ¼ 1

10
� 10� ��k��� �

Fitness
�
Li
�þ AF 14þkð Þ3

AF 39þkð Þ4 ¼ 1

10
� 10� ��k��� �

Fitness
�
Li
�þ AF 39þkð Þ4

ð6:11Þ

end

end

Considering ε as the worth possible fitness, it will be ε ¼ 1/(4 * 202) and then

AF ¼ AF + 0.000625.

In these equations, it can be seen that for example for j ¼ 2 (the second

variable), for calculating the accumulative fitness, search space should be

6.3 Dolphin Echolocation Optimization 165

divided into two regions: affected region (in effective radius) and not affected

region. Choosing Re equal to 10, alternatives with absolute distance to 4 (alter-

native 4 is chosen for the second variable) more than 10 (x < � 6 and x > 14)

are considered not affected. Also in the affected area the accumulative fitness

resulted from this sample location changes linearly in a way that its maximum

appears in x ¼ 4. The accumulative fitness to be added for this alternative is:

AF xþ25ð Þ2 ¼ AF xþ25ð Þ2 þ

0 x < �6
Fitness Lið Þ

10
xþ 6ð Þ � 6 < x � 4

Fitness Lið Þ
10

14� xð Þ 4 < x � 14

0 x > 14

8>>>>>>><
>>>>>>>:

AF ¼ AFþ 0:000625

ð6:12Þ

Figure 6.4 shows the result of performing the explained process for all 4 vari-

ables of this location.

Performing Step 4 for all the randomly selected answers, the final Accumu-

lative fitness of the first loop is achieved.

5. For variable j(j ¼ 1,…, 4), calculate the probability of choosing alternative

i(i ¼ 1,…, 40), according to the following relationship:

Pij ¼ AFijX40
i¼1

AFij

ð6:13Þ

and consequently the probability will be according to Figs. 6.5 and 6.6.

6. Figure 6.5 demonstrates the accumulative fitness of variables X1, X2, X3 and

X4. The best location of the first loop is achieved by setting variables as:

X1 ¼ � 11, X2 ¼ 3, X3 ¼ X4 ¼ 4. On the other hand, according to (6.8),

Fig. 6.4 Accumulative fitness resulted from sample location of the mathematical example [1]

166 6 Dolphin Echolocation Optimization

PP for the first loop is equal to 10 %, as a result all variables in their best

placement is equal to 10 % probability of the other alternatives is defined

distributing remaining value of probability equal to 90 % to the other alterna-

tives, using the following formula:

Pij ¼ 1� 0:1ð ÞPij ¼ 0:9Pij ð6:14Þ

Since the number of loops is equal to 8, Steps 2 to 6 should be repeated

8 times.

Figures 6.7, 6.8, 6.9, and 6.10 show the accumulative fitness and the proba-

bility of alternatives in loops 4 and 8, respectively. It can be seen from these

figures that the probability changes in a way that in 8 loops DE reaches the best

answer.

Fig. 6.5 Accumulative fitness of all four variables in the first loop of DE in mathematical example

[1]

Fig. 6.6 Probability curve of all four variables in the first loop of DE in mathematical example [1]

6.3 Dolphin Echolocation Optimization 167

Fig. 6.7 Accumulative fitness of all four variables in the fourth loop of DE in of mathematical

example [1]

Fig. 6.8 Probability curve of all four variables in the fourth loop of DE in mathematical example

Fig. 6.9 Accumulative fitness of all four variables in the eighth loop of DE in of mathematical

example [1]

168 6 Dolphin Echolocation Optimization

Comparison Between the Dolphin Echolocation and Bat Inspired
Algorithm Bat inspired algorithm can be considered as a balanced combination

of the standard particle swarm optimization and the intensive local search con-

trolled by the loudness and pulse rate [7]. In this algorithm loudness and pulse

frequency are echolocation parameters that gradually restrict the search according

to pulse emission and loudness rules. This is while, in dolphin echolocation

algorithm there is no movement to the best answer. DE algorithm works with

possibilities.

6.4 Structural Optimization

In this study the structural optimization goal is to minimize the weight of the

structure that is formulated as follows:

Minimize:

W ¼ ρ
XM
i¼1

AiLi ð6:15Þ

Subjected to:

KU � P ¼ 0

g1 � 0, g2 � 0, . . . , gn � 0
ð6:16Þ

Where g1, g2, . . ., gn are constraint functions depending on the element being

used in each problem and K, U and P are the stiffness matrix, nodal displacement

and nodal force vectors, respectively. In this study, different constraints are

implemented for structural design including drift, displacement and strength. Con-

straints are clarified in numerical examples.

Fig. 6.10 Probability curve of all four variables in the eighth loop of DE in mathematical example

[1]

6.4 Structural Optimization 169

Furthermore, such a constrained formulation is treated in an unconstrained form,

using a penalized fitness function as:

F ¼ F0 �W � 1þ Kp:V
� � ð6:17Þ

Where F0 is a constant taken as zero for the class of considered examples. Kp is

the penalty coefficient, and V denotes the total constraints’ violation considering all

the load combinations.

6.5 Numerical Examples

In this section three trusses and two frames are optimized using the present

algorithm and the results are compared to those of some other existing approaches.

The algorithms are coded in Matlab and structures are analyzed using the direct

stiffness method.

6.5.1 Truss Structures

In the following three trusses are optimized and the results of the present algorithm

are compared to those of different algorithm.

6.5.1.1 A 25-Bar Spatial Truss

The 25-bar spatial truss structure shown in Fig. 6.11 has been studied in [8–11]. The

material density is 0.1 lb/in3 (2,767.990 kg/m3) and the modulus of elasticity is

10,000 ksi (68,950 MPa). The stress limitations of the members are �40 kpsi

(�275.80 MPa). All nodes in three directions are subjected to displacement limi-

tations of �0.35 inch (in) (�8.89 mm) imposed on every node in each direction.

The structure includes 25 members, which are divided into eight groups, as follows:

(1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21

and (8) A22–A25. Two optimization cases are implemented.

Case 1: The discrete variables are selected from the set D ¼ {0.01, 0.4, 0.8, 1.2,

1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6.0} (in2) or {0.065, 2.58, 5.16,

7.74, 10.32, 12.90, 15.48, 18.06, 20.65, 23.22, 25.81, 28.39, 30.97, 33.55, 36.13,

38.71} (cm2).

Case 2: The discrete variables are selected from the [12], listed in Table 6.2.

The loads for both cases are shown in Table 6.3.

170 6 Dolphin Echolocation Optimization

For solving this problem by the use of DE, Loops number is set to 80. Conver-

gence curve is according to (6.1) considering PP1 ¼ 0.15 and Power ¼ 1. Re and ε
are equal to 5 and 1, respectively.

According to Tables 6.4 and 6.5 and Fig. 6.12, DE achieves the best answer in

approximately 50 loops in Case 1 and near 80 loops in Case 2, while HPSACO

reaches to the same result in around 100 loops. It should be mentioned that Kaveh

and Talatahari [11] show that the HPSACO itself has better convergence rate in

comparison to GA, PSO, PSOPC and HPSO.

In addition, Fig. 6.13 shows the convergence factor history. It can be seen that

the algorithm follows the predefined linear curve as expected.

6.5.1.2 A 72-Bar Spatial Truss

For the 72-bar spatial truss structure shown in Fig. 6.14, the material density is

0.1 lb/in3 (2,767:990 kg/m3) and the modulus of elasticity is 10,000 ksi

(68,950 MPa). The members are subjected to the stress limits of �25 ksi

(�172.375 MPa). The nodes are subjected to the displacement limits of �0.25 in

(�0.635 cm).

The 72 structural members of this spatial truss are sorted into 16 groups using

symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–

A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–

A54, (13) A55–A58, (14) A59–A66 (15), A67–A70, and (16) A71–A72.

Two optimization cases are implemented.

Fig. 6.11 Schematic of a 25-bar spatial truss

6.5 Numerical Examples 171

Case 1: The discrete variables are selected from the set D ¼ {0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4,

2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2} (in2) or {0.65, 1.29, 1.94, 2.58, 3.23, 3.87, 4.52,

5.16, 5.81, 6.45, 7.10, 7.74, 8.39, 9.03, 9.68, 10.32, 10.97, 12.26, 12.90, 13.55,

14.19, 14.84, 15.48, 16.13, 16.77, 17.42, 18.06, 18.71, 19.36, 20.00, 20.65} (cm2).

Table 6.2 The available

cross-section areas of the

AISC code

No. in2 mm2 No. in2 mm2

1 0.111 (71.613) 33 3.840 (2,477.414)

2 0.141 (90.968) 34 3.870 (2,496.769)

3 0.196 (126.451) 35 3.880 (2,503.221)

4 0.250 (161.290) 36 4.180 (2,696.769)

5 0.307 (198.064) 37 4.220 (2,722.575)

6 0.391 (252.258) 38 4.490 (2,896.768)

7 0.442 (285.161) 39 4.590 (2,961.284)

8 0.563 (363.225) 40 4.800 (3,096.768)

9 0.602 (388.386) 41 4.970 (3,206.445)

10 0.766 (494.193) 42 5.120 (3,303.219)

11 0.785 (506.451) 43 5.740 (3,703.218)

12 0.994 (641.289) 44 7.220 (4,658.055)

13 1.000 (645.160) 45 7.970 (5,141.925)

14 1.228 (792.256) 46 8.530 (5,503.215)

15 1.266 (816.773) 47 9.300 (5,999.988)

16 1.457 (939.998) 48 10.850 (6,999.986)

17 1.563 (1,008.385) 49 11.500 (7,419.430)

18 1.620 (1,045.159) 50 13.500 (8,709.660)

19 1.800 (1,161.288) 51 13.900 (8,967.724)

20 1.990 (1,283.868) 52 14.200 (9,161.272)

21 2.130 (1,374.191) 53 15.500 (9,999.980)

22 2.380 (1,535.481) 54 16.000 (10,322.560)

23 2.620 (1,690.319) 55 16.900 (10,903.204)

24 2.630 (1,696.771) 56 18.800 (12,129.008)

25 2.880 (1,858.061) 57 19.900 (12,838.684)

26 2.930 (1,890.319) 58 22.000 (14,193.520)

27 3.090 (1,993.544) 59 22.900 (14,774.164)

28 1.130 (729.031) 60 24.500 (15,806.420)

29 3.380 (2,180.641) 61 26.500 (17,096.740)

30 3.470 (2,238.705) 62 28.000 (18,064.480)

31 3.550 (2,290.318) 63 30.000 (19,354.800)

32 3.630 (2,341.931) 64 33.500 (21,612.860)

Table 6.3 Loading conditions for the 25-bar spatial truss

Node

Case 1 Case 2

PX kips (kN) PY kips (kN) PZ kips (kN) PX kips (kN) PY kips (kN) PZ kips (kN)

1 0.0 20.0 (89) �5.0 (22.25) 1.0 (4.45) 10.0 (44.5) �5.0 (22.25)

2 0.0 �20.0 (89) �5.0 (22.25) 0.0 10.0 (44.5) �5.0 (22.25)

3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

172 6 Dolphin Echolocation Optimization

Table 6.4 Optimal design comparison for the 25-bar spatial truss (Case 1)

Element

group

Optimal cross-sectional areas (in2)

Wu and

Chow [8]

Lee and

Geem [9]Li et al. [10]

Kaveh and

Talatahari [11]

HPSACO

Present work

[1]

GA HS PSO PSOPCHPSO in2 cm2 in2 cm2

1 A1 0.40 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.07

2 A2–

A5

2.00 2.00 2.00 2.00 2.00 1.60 10.32 1.60 10.32

3 A6–

A9

3.60 3.60 3.60 3.60 3.60 3.20 20.65 3.20 20.65

4 A10–

A11

0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.07

5 A12–

A13

0.01 0.01 0.40 0.01 0.01 0.01 0.07 0.01 0.07

6 A14–

A17

0.80 0.80 0.80 0.80 0.80 0.80 5.16 0.80 5.16

7 A18–

A21

2.00 1.60 1.60 1.60 1.60 2.00 12.90 2.00 12.90

8 A22–

A25

2.40 2.40 2.40 2.40 2.40 2.40 15.48 2.40 15.48

Weight (lb) 563.52 560.59 566.44560.59 560.59 551.6 250.2 kg551.6 250.2 kg

Table 6.5 Optimal design comparison for the 25-bar spatial truss (Case 2)

Element

group

Optimal cross-sectional areas (in2)

Wu and Chow [8] Li et al. [10]

Kaveh and

Talatahar [11]

HPSACO

Present work

[1]

GA PSO PSOPC HPSO in2 cm2 in3 cm3

1 A1 0.31 1.00 0.11 0.11 0.11 0.72 0.11 0.72

2 A2–A5 1.99 2.62 1.56 2.13 2.13 13.74 2.13 13.74

3 A6–A9 3.13 2.62 3.38 2.88 2.88 18.58 2.88 18.58

4 A10–A11 0.11 0.25 0.11 0.11 0.11 0.72 0.11 0.72

5 A12–A13 0.14 0.31 0.11 0.11 0.11 0.72 0.11 0.72

6 A14–A17 0.77 0.60 0.77 0.77 0.77 4.94 0.77 4.94

7 A18–A21 1.62 1.46 1.99 1.62 1.62 10.45 1.62 10.45

8 A22–A25 2.62 2.88 2.38 2.62 2.62 16.90 2.62 16.90

Weight (lb) 556.43 567.49 567.49 551.14 551.1 249.99 551.1 249.99

6.5 Numerical Examples 173

Case 2: The discrete variables are selected from Table 6.2.

Table 6.6 lists the values and directions of the two load cases applied to the

72-bar spatial truss.

The problem has been solved by GA [8, 9] and DHPSO [11].

Solving the problem using DE, the Loops number is set to 200. Convergence

curve is according to (6.1) considering PP1 ¼ 0.15 and Power ¼ 1. Re and ε are

equal to 5 and 1, respectively.

It can be seen from Table 6.7 that in Case 1 the best answer is achieved using DE

that is better than GA and HS and although it is the same as DHPACO, but the

penalty of the optimum answer is less than that of the DHPACO.

Moreover Table 6.8 shows that in Case 2, the DE achieves better results in

comparison to the previously published works. Figure 6.15 shows that the DE can

converge to the best answer in 200 loops, then it has higher convergence rate

compared to the other algorithms.

In addition, Fig. 6.16 shows the convergence factor history. It can be seen that

the algorithm follows the predefined linear curve as expected.

500

600

700

800

900

0 20 40 60 80

W
ei

g
h
t

(k
N

)

Iteration

Average of the results

The best result

500

600

700

800

900

0 20 40 60 80

W
ei

g
h
t

(k
N

)

Iteration

Average of the results

The best result

b

aFig. 6.12 The optimum

answer convergence history

for the 25-bar truss using

DE [1]. (a) Case 1 and (b)
Case 2

174 6 Dolphin Echolocation Optimization

Figure 6.17 shows the allowable and existing displacements for the nodes of the

72-bar truss structure using the DE.

6.5.1.3 A 582-Bar Tower Truss

The 582-bar tower truss shown in Fig. 6.18, is chosen from [13]. The symmetry of

the tower about x-axis and y-axis is considered to group the 582 members into

32 independent size variables.

A single load case is considered consisting of the lateral loads of 5.0 kN (1.12

kips) applied in both x- and y-directions and a vertical load of 30 kN (6.74 kips)

applied in the z-direction at all nodes of the tower. A discrete set of 140 economical

standard steel sections selected from W-shape profile list based on area and radii of

gyration properties is used to size the variables [13]. The lower and upper bounds on

size variables are taken as 6.16 in2 (39.74 cm2) and 215.0 in2 (1,387.09 cm2),

respectively. The stress limitations of the members are imposed according to the

provisions of ASD-AISC [12] as follows:

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80
C

o
n
v
eg

en
ce

 F
ac

to
r

Iteration

a

The best result

Pre-defined curve

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80

C
o
n
v
eg

en
ce

 F
ac

to
r

Iteration

b

The best result

Pre-defined curve

Fig. 6.13 The optimum

answer and the average

answers’ convergence

factor history for the 25-bar

truss structure using the DE

[1]. (a) Case 1 and (b)
Case 2

6.5 Numerical Examples 175

Fig. 6.14 Schematic of a

72-bar spatial truss [1]. (a)
Front view, (b) top view,

and (c) Element and node

numbering system of a

typical story

176 6 Dolphin Echolocation Optimization

σþi ¼ 0:6Fy for σi � 0

σ�i for σi < 0

�
ð6:18Þ

Where σ�i is calculated according to the slenderness ratio

σ�i ¼
1� λ2i

2C2
i

0
@

1
AFy

2
4

3
5= 5

3
þ 3λi
8CC

� λ3i
8C3

C

0
@

1
A for λi < CC

12π2E

23λ2i
for λi � CC

8>>>>><
>>>>>:

ð6:19Þ

Table 6.6 Loading conditions for the 72-bar spatial truss

Node

Case 1 Case 2

Px kips (kN) PY kips (kN) PZ kips (kN) PX kips (kN) PY kips (kN) PZ kips (kN)

17 5.0 (22.25) 5.0 (22.25) �5.0 (22.25) 0 0 �5.0 (22.25)

18 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

19 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

20 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

Table 6.7 Optimal design comparison for the 72-bar spatial truss (Case 1)

Element

group

Optimal cross-sectional areas (in2)

Wu and Chow [8] Lee and Geem [9]

Kaveh and Talatahari

[11] Present work [1]

GA HS DHPSACO DE

in2 in2 in2 cm2 in2 cm2

1 A1–A4 1.5 1.9 1.9 12.26 2.0 12.90

2 A5–A12 0.7 0.5 0.5 3.23 0.5 3.23

3 A13–A16 0.1 0.1 0.1 0.65 0.1 0.65

4 A17–A18 0.1 0.1 0.1 0.65 0.1 0.65

5 A19–A22 1.3 1.4 1.3 8.39 1.3 8.39

6 A23–A30 0.5 0.6 0.5 3.23 0.5 3.23

7 A31–A34 0.2 0.1 0.1 0.65 0.1 0.65

8 A35–A36 0.1 0.1 0.1 0.65 0.1 0.65

9 A37–A40 0.5 0.6 0.6 3.87 0.5 3.23

10 A41–A48 0.5 0.5 0.5 3.23 0.5 3.23

11 A49–A52 0.1 0.1 0.1 0.65 0.1 0.65

12 A53–A54 0.2 0.1 0.1 0.65 0.1 0.65

13 A55–A58 0.2 0.2 0.2 1.29 0.2 1.29

14 A59–A66 0.5 0.5 0.6 3.87 0.6 3.87

15 A67–A70 0.5 0.4 0.4 2.58 0.4 2.58

16 A71–A72 0.7 0.6 0.6 3.87 0.6 3.87

Weight (lb) 400.66 387.94 385.54 174.9 kg 385.54 174.9 kg

6.5 Numerical Examples 177

Where E ¼ the modulus of elasticity; Fy ¼ the yield stress of A36 steel;

CC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p
; λi ¼ the slenderness ratio (kLi/ri); k ¼ the effective length

factor; Li ¼ the member length; and ri ¼ the radius of gyration. The other

constraint is the limitation of the nodal displacements (no more than 8.0 cm or

3.15 in for each direction). In addition, the maximum slenderness ratio is limited

to 300 for the tension members, and this limit is recommended to be 200 for the

compression members according to the ASD-AISC [26] design code provisions.

The problem was solved later by Kaveh and Talatahari [14] and Sonmez

[15]. Two cases for analyzing are used according to [15], as follows:

Case 1: All members are selected from a set of 140 W-shaped profiles according to

[13] and the maximum number of evaluations is set to 50,000. For the DE, 25,000

evaluations are considered for this case to demonstrate the efficiency of the

algorithm.

Case 2: There is no difference between Case 1 and Case 2, but in the number

of evaluations which is set to 100,000. For the DE, 50,000 evaluations are

considered for this case to demonstrate efficiency of the algorithm.

Convergence curve is according to (6.1) considering PP1 ¼ 15% and Power ¼
0.2. Re and ε are equal to 10 and 1, respectively.

Results can be seen in Table 6.9, which shows that in Case 1, the DE outperforms

the HPSACO, ABC and PSO by 5.7 % , 2.3 % and 1 %, respectively, and in

Table 6.8 Optimal design comparison for the 72-bar spatial truss (Case 2)

Element group

Optimal cross-sectional areas (in2)

Wu and Chow [8] Kaveh and Talatahari [11] Present work [1]

GA DHPSACO DE

in2 in2 cm2 in2 cm2

1 A1–A4 0.196 1.800 11.610 2.130 13.742

2 A5–A12 0.602 0.442 2.850 0.442 2.852

3 A13–A16 0.307 0.141 0.910 0.111 0.716

4 A17–A18 0.766 0.111 0.720 0.111 0.716

5 A19–A22 0.391 1.228 7.920 1.457 9.400

6 A23–A30 0.391 0.563 3.630 0.563 3.632

7 A31–A34 0.141 0.111 0.720 0.111 0.716

8 A35–A36 0.111 0.111 0.720 0.111 0.716

9 A37–A40 1.800 0.563 3.630 0.442 2.852

10 A41–A48 0.602 0.563 3.630 0.563 3.632

11 A49–A52 0.141 0.111 0.720 0.111 0.716

12 A53–A54 0.307 0.250 1.610 0.111 0.716

13 A55–A58 1.563 0.196 1.270 0.196 1.265

14 A59–A66 0.766 0.563 3.630 0.563 3.632

15 A67–A70 0.141 0.442 2.850 0.307 1.981

16 A71–A72 0.111 0.563 3.630 0.563 3.632

Weight (lb) 427.203 393.380 178.4 kg 391.329 177.47 kg

178 6 Dolphin Echolocation Optimization

Case 2, the DE results is 1.6 % better than those of ABC algorithm. In addition

comparing the results with those presented in [13], it can be seen that the optimum

answer of the DE in Case 1 is 1.1 %, 1.3 %, 2.2 %, 2.7 %, 4.7 % and 6.7 % lighter

than those of the ESs, SA, TS, ACO, HS and SGA.

Fig. 6.15 The optimum answer and average answers’ convergence history for the 72-bar truss

using the DE [1]. (a) Case 1 and (b) Case 2

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

C
on

ve
ge

nc
e

Fa
ct

or

Iteration

a

The best results

The average of the results

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

C
on

ve
ge

nc
e

Fa
ct

or

Iteration

b

The best result

The average of the results

Fig. 6.16 The optimum answer and the average answers’ convergence factor history for the

72-bar truss structure using the DE [1]. (a) Case 1 and (b) Case 2

6.5 Numerical Examples 179

Figure 6.19 shows the comparison of the allowable and existing constrains for

the 582-bar truss using the DE. The maximum values for displacement in x, y and
z directions are 3.148 in (7.995 cm), 2.986 in (7.584 cm) and 0.931 in (2.365 cm),

respectively. The maximum stress ratio is 96.60 %. It can be seen that some

displacements and stresses are near the boundary conditions. It should be men-

tioned that there is a small difference between analysis results of Sap2000

(Hasançebi et al. [13]), C# programming language code (Sonmez [15]) and Matlab

code (present study). Then checking the results of each code with another one may

show a violation of constraints. Figure 6.19 shows according to the finite element

program coded in Matlab, there is no penalty for the best answer.

Figure 6.20 shows the convergence history of the best answer and average

results for the DE, and Fig. 6.21 illustrates the convergence factor history. It can

be seen that the algorithm follows the predefined linear curve as expected.

6.5.2 Frame Structures

The displacement and AISC combined strength constraints are the performance

constraints of the frame as follows:

(a) Maximum lateral displacement:

ΔT

H
< R ð6:20Þ

Where ΔT is the maximum lateral displacement of the structure (the roof lateral

displacement), H is the height of the structure, and R is the maximum drift index.

1 5 10 16

-0.25

0

0.25

Node Number

D
is

pl
ce

m
en

t (
in

ch
)

Case 1

1 5 10 16

-0.25

0

0.25

Node Number

D
is

pl
ce

m
en

t (
in

ch
)

Case 2

Fig. 6.17 Comparison of the allowable and existing displacements for the nodes of the 72-bar

truss structure using the DE [1]

180 6 Dolphin Echolocation Optimization

Fig. 6.18 Schematic of a 582-bar tower truss. (a) 3D view, (b) side view, and (c) top view

6.5 Numerical Examples 181

Table 6.9 Optimal design comparison for the 582-bar spatial truss

Element group

Optimal cross-section

Case 1 Case 2

Hasançebi

et al. [13]

Sonmez

[15]

Kaveh and

Talatahari [14]

Present

work [1]

Sonmez

[15]

Present

work [1]

(PSO) (ABC) (DHPSACO) (DE) (ABC) (DE)

Ready

section

Ready

section Ready section

Ready

section

Ready

section

Ready

section

1 W8X21 W8X22 W8X24 W8X21 W8X22 W8X21

2 W12X79 W12X97 W12X72 W12X96 W10X78 W27X94

3 W8X24 W8X25 W8X28 W8X24 W8X25 W8X24

4 W10X60 W12X59 W12X58 W12X58 W14X62 W12X58

5 W8X24 W8X24 W8X24 W8X24 W8X24 W8X24

6 W8X21 W8X21 W8X24 W8X21 W8X21 W8X21

7 W14X48 W12X46 W10X49 W12X45 W12X51 W12X50

8 W8X24 W8X24 W8X24 W8X24 W8X24 W8X24

9 W8X21 W8X21 W8X24 W8X21 W8X21 W8X21

10 W10X45 W12X46 W12X40 W12X45 W10X50 W12X45

11 W8X24 W8X22 W12X30 W8X21 W8X25 W8X21

12 W10X68 W12X66 W12X72 W12X65 W10X69 W12X72

13 W14X74 W10X77 W18X76 W10X77 W18X77 W14X74

14 W14X48 W10X49 W10X49 W10X49 W14X49 W12X50

15 W18X76 W14X83 W14X82 W14X82 W10X78 W10X68

16 W8X31 W8X32 W8X31 W8X31 W8X32 W8X31

17 W16X67 W12X53 W14X61 W10X60 W21X62 W14X61

18 W8X24 W8X24 W8X24 W8X24 W8X24 W8X24

19 W8X21 W8X21 W8X21 W8X21 W8X21 W8X21

20 W8X40 W16X36 W12X40 W12X45 W14X43 W14X43

21 W8X24 W8X24 W8X24 W8X21 W8X24 W8X21

22 W8X21 W10X22 W14X22 W8X21 W8X21 W8X21

23 W10X22 W10X22 W8X31 W10X22 W8X24 W6X25

24 W8X24 W6X25 W8X28 W8X21 W8X24 W8X21

25 W8X21 W8X21 W8X21 W8X21 W8X21 W8X21

26 W8X21 W8X21 W8X21 W8X21 W8X21 W8X21

27 W8X24 W8X24 W8X24 W8X21 W8X24 W8X21

28 W8X21 W8X21 W8X28 W8X21 W8X21 W8X21

29 W8X24 W8X22 W16X36 W8X21 W8X21 W8X21

30 W8X21 W10X23 W8X24 W8X21 W8X21 W8X21

31 W8X21 W8X25 W8X21 W8X21 W8X24 W8X21

32 W8X24 W6X26 W8X24 W8X21 W8X24 W8X21

Best (lb) 363,795.7 368,484.1 380,982.7 360,367.8 365,906.3 360,143.3

Average (lb) 365,124.9 370,178.6 – 364,404.7 366,088.4 362,207.1

Worst (lb) 370,159.1 373,530.3 – 371,922.1 369,162.2 367,512.2

Evaluations (#) 50,000 50,000 8,500 25,000 100,000 50,000

Differences com-

pared to DE

0.95 % 2.25 % 5.72 % 1.60 %

182 6 Dolphin Echolocation Optimization

3.148

0

0.5

1

1.5

2

2.5

3

11 30 50 70 90 110 130 153

11 30 50 70 90 110 130 153

11 30 50 70 90 110 130 153

D
is

p
la

ce
m

en
t

(i
n
ch

)

Node number

a
2.986

0

0.5

1

1.5

2

2.5

3

D
is

p
la

ce
m

en
t

(i
n
ch

)

Node number

b

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

D
is

p
la

ce
m

en
t

(i
n
ch

)

Node number

c
0.996

0.996

0

0.2

0.4

0.6

0.8

1

1 100 200 300 400 500 582

S
tr

es
s

R
at

io

Element number

d

Fig. 6.19 Comparison of the allowable and existing constrains for the 582-bar truss, Case 2 using

DE [1]. (a) Displacement in the x-direction. (b) Displacement in y-direction. (c) Displacement in

the z-direction. (d) Stress ratios

Fig. 6.20 Convergence history of optimum result and average results for the 582-bar tower truss,

Case 2, using DE [1]

6.5 Numerical Examples 183

(b) The inter-story displacements:

dj
hj

< RI, j ¼ 1, 2, . . . , ns ð6:21Þ

dj is the inter-story drift which is used to give the relative displacement of each

roof in comparison to its following floor; hj is the story height of jth floor; ns is the
total number of stories; RI is the inter-story drift index which is equal to 1/300

according to the ANSI/AISC 360-05 (2005) [16].

(c) Element forces:

Pu

2ϕCPn
þ Mu

ϕbMn
< 1 for

Pu

ϕCPn
< 0:2

Pu

ϕCPn
þ 8

9

Mu

ϕbMn
< 1 for

Pu

ϕCPn
� 0:2

ð6:22Þ

Where Pu is the required strength (tension or compression); Pn is the nominal

axial strength (tension or compression); ϕc is the axial resistance factor (ϕc ¼ 0.9

for tension, ϕc ¼ 0.85 for compression); Mu is required flexural strength; Mn is

nominal flexural strength; and ϕb is the flexural resistance factor (ϕb ¼ 0.9).

6.5.2.1 A 3-Bay 15-Story Planar Frame

Figure 6.22 shows the configuration and applied loads of a 3-bay 15-story frame

structure chosen from [14]. This frame consists of 64 joints and 105 members. The

sway of the top story is limited to 23.5 cm. The material has a modulus of elasticity

0
10
20
30
40
50
60
70
80
90

100

0 200 400 600 800 1000
C

o
n

v
e
g
e
n

c
e
 F

a
c
to

r

Iteration

Pre-defined curve

The best result

Fig. 6.21 Convergence

factor history for the

582-bar tower truss [1],

Case 2 using DE

184 6 Dolphin Echolocation Optimization

Fig. 6.22 Schematic of a

3-bay 15-story planar frame

6.5 Numerical Examples 185

equal to E ¼ 200 GPa and a yield stress of Fy ¼ 248.2 MPa. The effective length

factors of the members are calculated as Kx � 0 for a sway-permitted frame and the

out-of-plane effective length factor is specified as Ky ¼ 1.0. Each column is

considered as non-braced along its length, and the unbraced length for each beam

member is specified as one-fifth of the span length.

For solving this problem by DE, the Loops number is set to 100. The conver-

gence curve is according to (6.1) considering PP1 ¼ 0.15 and Power ¼ 1. Re and ε
are equal to 5 and 1, respectively.

Results of the present study and those of [7, 14, 17] are provided in Table 6.10. It

can be seen that the DE achieves results that are 26 %, 14 %, 8 %, 6 % and 4 %

lighter than the PSO, PSOPC, HPSACO, ICA and CSS, respectively.

Convergence history is depicted in Fig. 6.23. It can be seen that the present

algorithm leads to the best answer in 100 loops which is less than that of the CSS

(250 loops).

The maximum value of displacement is 14.27 cm which is less than the allow-

able limit (23.5 cm).

Figure 6.24 shows the inter-story drifts, the maximum value of which is 1.15 cm.

This is less than the allowable value (1.17 cm). It can be recognized that by

reducing the weight of structure its stiffness is reduced, then the inter-story drifts

are closer to the maximum allowable value.

In Fig. 6.25 the stress ratios of the elements are shown. The maximum stress

ratio is 99.69 %. One can see that similar to the inter-story limitation, stress ratios

are closer to the limit line.

Figure 6.26 shows the CF changes during optimization. It is clear that the CF
changes around predefined line.

Table 6.10 Optimal design comparison for the 3-bay 15-story planar frame

Element group

Optimal W-shaped sections

Kaveh and Talatahari

Present

work [1]PSO [14]

PSOPC

[14]

HPSACO

[14] ICA [17] CSS [7]

1 W33X118 W27X129 W21X111 W24X117 W21X147 W12X87

2 W33X263 W24X131 W18X158 W21X147 W18X143 W36X182

3 W24X76 W24X103 W10X88 W27X84 W12X87 W21X93

4 W36X256 W33X141 W30X116 W27X114 W30X108 W18X106

5 W21X73 W24X104 W21X83 W14X74 W18X76 W18X65

6 W18X86 W10X88 W24X103 W18X86 W24X103 W14X90

7 W18X65 W14X74 W21X55 W12X96 W21X68 W10X45

8 W21X68 W27X94 W27X114 W24X68 W14X61 W12X65

9 W18X60 W21X57 W10X33 W10X39 W18X35 W6X25

10 W18X65 W18X71 W18X46 W12X40 W10X33 W10X45

11 W21X44 W21X44 W21X44 W21X44 W21X44 W21X44

Weight (kN) 496.68 452.34 426.36 417.466 412.62 395.35

Differences com-

pared to DE

26 % 14 % 8 % 6 % 4 %

186 6 Dolphin Echolocation Optimization

Fig. 6.24 Comparison of

the allowable and the

existing inter-story drift for

the 3-bay 15-story planar

frame [1]

Fig. 6.25 Comparison of

the allowable and the

existing stress ratios for the

3-bay 15-story planar frame

[1]

Fig. 6.23 The optimum

answer and average answer

with the convergence

history for the 3-bay

15-story frame using the DE

[1]

6.5 Numerical Examples 187

6.5.2.2 A 3-bay 24-story planar frame

Figure 6.27 shows the topology and the service loading conditions for a 3-bay

24-story frame consisting of 100 joints and 168 members which is chosen from

Camp et al. [18]. The frame is designed following the LRFD specification and uses

an inter-story drift displacement constraint. The material properties are a modulus

of elasticity equal to E ¼ 205 GPa and a yield stress of Fy ¼ 230.3 MPa.

The effective length factors of the members are calculated as Kx � 0 for the

sway-permitted frame and the out-of-plane effective length factor is specified as

Ky ¼ 1.0. All columns and beams are considered non-braced along their lengths.

Fabrication conditions are imposed on the construction of the 168-element frame

requiring that the same beam section be used in the first and third bay on all the

floors except the roof beams, resulting in four beam groups.

Beginning at the foundation, the exterior columns are combined into one group

and the interior columns are combined together in another group over three

consecutive stories. The grouping results in 16 column sections and 4 beam sections

for a total of 20 design variables. In this example, each of the four beam element

groups is chosen from all 267 W-shapes, while the 16 column element groups are

limited to W14 sections (37 W-shapes).

For solving this problem by the DE, the Loops number is set to be equal to 200.

The convergence curve is according to (6.1) considering PP1 ¼ 0.15 and Power
¼ 1. Re and ε are equal to 5 and 1, respectively.

Results of the present study and those of Camp et al. [18], Degertekin [19] and

Kaveh and Talatahari [7, 17, 20] are provided in Table 6.11. It can be seen that the

DE achieves results that are 7.5 %, 4.8 %, 6 %, 3.7 %, and 3.6 % lighter than those

of the ACO, HS, IACO, ICA and CSS, respectively.

Convergence history is depicted in Fig. 6.28. It can be observed that DE leads to

the best answer in 200 loops which is less than that of CSS being 275 loops.

The maximum value of displacement is 26.11 cm which is less than the allow-

able limit (29.20 cm).

Figure 6.29 shows the inter-story drifts with maximum value being 1.202 cm that

is less than the allowable value (1.205 cm). It can be recognized that by reducing the

0

20

40

60

80

100

0 20 40 60 80 100
C

on
ve

ge
nc

e
Fa

ct
or

Iteration

The best results

Pre-defined curve

Fig. 6.26 The optimum

answer and the average

answer with the

convergence factor history

for the 3-bay 15-story

planar frame using the DE

[1]

188 6 Dolphin Echolocation Optimization

Fig. 6.27 Schematic of a

3-bay 24-story planar frame

6.5 Numerical Examples 189

Table 6.11 Optimal design comparison for the 3-bay 24-story planar frame

Element group

Optimal W-shaped sections

Camp

et al. [18]

Degertekin

[19] Kaveh and Talatahari

Present

work [1]ACO HS

IACO

[20] ICA [17] CSS [7]

1 W30X90 W30X90 W30X99 W30X90 W30X90

2 W8X18 W10X22 W16X26 W21X50 W21X50 W6X20

3 W24X55 W18X40 W18X35 W24X55 W21X48 W21X44

4 W8X21 W12X16 W14X22 W8X28 W12X19 W6X9

5 W14X145 W14X176 W14X145 W14X109 W14X176 W14X159

6 W14X132 W14X176 W14X132 W14X159 W14X145 W14X145

7 W14X132 W14X132 W14X120 W14X120 W14X109 W14X132

8 W14X132 W14X109 W14X109 W14X90 W14X90 W14X99

9 W14X68 W14X82 W14X48 W14X74 W14X74 W14X68

10 W14X53 W14X74 W14X48 W14X68 W14X61 W14X61

11 W14X43 W14X34 W14X34 W14X30 W14X34 W14X43

12 W14X43 W14X22 W14X30 W14X38 W14X34 W14X22

13 W14X145 W14X145 W14X159 W14X159 W14X145 W14X109

14 W14X145 W14X132 W14X120 W14X132 W14X132 W14X109

15 W14X120 W14X109 W14X109 W14X99 W14X109 W14X90

16 W14X90 W14X82 W14X99 W14X82 W14X82 W14X82

17 W14X90 W14X61 W14X82 W14X68 W14X68 W14X74

18 W14X61 W14X48 W14X53 W14X48 W14X43 W14X43

19 W14X30 W14X30 W14X38 W14X34 W14X34 W14X30

20 W14X26 W14X22 W14X26 W14X22 W14X22 W14X26

Weight (kN) 980.63 956.13 967.33 946.25 945.02 912.26

Difference com-

pared to DE

7.5 % 4.8 % 6.0 % 3.7 % 3.6 %

Fig. 6.28 The optimum

answer and the average

answer, with the

convergence history for the

3-bay 24-story frame using

the DE [1]

190 6 Dolphin Echolocation Optimization

weight of structure its stiffness is reduced and the inter-story drifts are quite close to

the maximum allowable value.

In Fig. 6.30 the stress ratios of the elements are shown. One can see that similar

to the inter-story limitation, the stress ratios are closer to the limitation line. The

maximum stress ratio is 98.33 %.

Figure 6.31 shows the CF changes during the optimization process. It is clear

that the CF changes around the predefined line.

Fig. 6.29 Comparison of

the allowable and the

existing inter-story drift for

the 3-bay 24-story planar

frame [1]

Fig. 6.30 Comparison of

the allowable and existing

stress ratio for the 3-bay

24-story planar frame [1]

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

C
on

ve
ge

nc
e

Fa
ct

or

Iteration

The best result

Pre-defined curve

Fig. 6.31 The optimum

answer and the average

answer with the

convergence factor history

for the 3-bay 24-story

planar frame using the DE

[1]

6.5 Numerical Examples 191

6.5.2.3 Discussion

In this study a novel optimization method is developed based on dolphin echolo-

cation. The new method has the advantage of working according to the computa-

tional effort that user can afford for his/her optimization. In this algorithm, the

convergence factor defined by Kaveh and Farhoudi [6] is controlled in order to

perform a suitable optimization.

For the examples optimized in this chapter, the DE achieves better results with

higher convergence rates compared to other existing metaheuristic algorithms such

as GA, ACO, PSO, BB–BC, HS, ESs, SGA, TS, ICA, IACO, PSOPC, HPSACO

and CSS previously applied to these problems. The authors believe that the results

achieved from metaheuristics are mostly dependent on the parameter tuning of the

algorithms. It is also believed that by performing a limited number of numerical

examples, one cannot correctly conclude the superiority of one method with respect

to the others. Dolphin echolocation is an optimization algorithm that has the

capability of adopting itself by the type of the problem in hand, having a reasonable

convergence rate, and leading to an acceptable optimum answer in a number of

loops specified by the user.

References

1. Kaveh A, Farhoudi N (2013) A new optimization method: dolphin echolocation. Adv Eng

Softw 59:53–70

2. Griffin DR (1958) Listening in the dark: the acoustic orientation of bats and men. Yale

University Press, New Haven, CT, p 413 [Biological Laboratories, Harvard University,

Cambridge, MA]

3. Au WWL (1993) The sonar of dolphins. Springer, New York, NY

4. May J (1990) The Greenpeace book of dolphins. Greenpeace Communications Ltd, New York

5. Thomas JA, Moss CF, Vater M (2002) Echolocation in bats and dolphins. University of

Chicago Press, Chicago

6. Kaveh A, Farhoudi N (2011) A unified approach to parameter selection in meta-heuristic

algorithms for layout optimization. J Constr Steel Res 67:15453–15462

7. Kaveh A, Talatahari S (2012) Charged system search for optimal design of planar frame

structures. Appl Soft Comput 12:382–393

8. Wu SJ, Chow PT (1995) Steady-state genetic algorithms for discrete optimization of trusses.

Comput Struct 56:979–991

9. Lee KS, Geem ZW, Lee SH, Bae KW (2005) The harmony search heuristic algorithm for

discrete structural optimization. Eng Optim 37:663–684

10. Li LJ, Huang ZB, Liu F (2009) A heuristic particle swarm optimization method for truss

structures with discrete variables. Comput Struct 87:435–443

11. Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures

with discrete variables. Comput Struct 87:1129–1140

12. Construction (AISC) (1989) Manual of steel construction allowable stress design, 9th edn.

American Institute of Steel Construction, Chicago, IL

13. Hasançebi O, Çarbaş S, Doğan E, Erdal F, Saka MP (2009) Performance evaluation of

metaheuristic search techniques in the optimum design of real size pin jointed structures.

Comput Struct 87(5–6):284–302

192 6 Dolphin Echolocation Optimization

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&ie=UTF8&field-author=John%20...

14. Kaveh A, Talatahari S (2009) Hybrid algorithm of harmony search, particle swarm and ant

colony for structural design optimization. Stud Comput Intell 239:159–198

15. Sonmez M (2011) Discrete optimum design of truss structures using artificial bee colony

algorithm. Struct Multidiscip Optim 43:85–97

16. ANSI/AISC 360–05 (2005) Specification for structural steel buildings. American Institute of

Steel Construction, Chicago,IL

17. Kaveh A, Talatahari S (2010) Optimum design of skeletal structures using imperialist com-

petitive algorithm. Comput Struct 88:1220–1229

18. Camp CV, Bichon J, Stovall SP (2005) Design of steel frames using ant colony optimization. J

Struct Eng ASCE 131(3):369–379

19. Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct

Multidiscip Optim 36:393–401

20. Kaveh A, Talatahari S (2010) An improved ant colony optimization for design of planar steel

frames. Eng Struct 32:864–876

References 193

Chapter 7

Colliding Bodies Optimization

7.1 Introduction

This chapter presents a novel efficient metaheuristic optimization algorithm called

Colliding Bodies Optimization (CBO), for optimization. This algorithm is based on

one-dimensional collisions between bodies, with each agent solution being consid-

ered as the massed object or body. After a collision of two moving bodies having

specified masses and velocities, these bodies are separated with new velocities. This

collision causes the agents to move toward better positions in the search space.

CBO utilizes simple formulation to find minimum or maximum of functions; also it

is internally parameter independent [1].

This chapter consists of two parts. In the first part the main algorithm is

developed and three well-studied engineering design problems and two structural

design problems taken from the optimization literature are used to investigate the

efficiency of the proposed approach [1]. In the second part, the CBO is applied to a

number of continuous optimization benchmark problems. These examples include

three well-known space trusses and two planar bridge structures [2].

7.2 Colliding Bodies Optimization

The main goal of this section is to introduce a simple optimization algorithm based

on the collision between objects, which is called Colliding Bodies Optimization

(CBO).

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_7, © Springer International Publishing Switzerland 2014

195

7.2.1 The Collision Between Two Bodies

Collisions between bodies are governed by the laws of momentum and energy.

When a collision occurs in an isolated system (Fig. 7.1), the total momentum of the

system of objects is conserved. Provided that there are no net external forces acting

upon the objects, the momentum of all objects before the collision equals the

momentum of all objects after the collision.

The conservation of the total momentum demands that the total momentum

before the collision is the same as the total momentum after the collision, and can be

expressed by the following equation:

m1v1 þ m2v2 ¼ m1v
0
1 þ m2v

0
2 ð7:1Þ

Likewise, the conservation of the total kinetic energy is expressed as:

1

2
m1v1

2 þ 1

2
m2v2

2 ¼ 1

2
m1v

0
12þ

1

2
m2v

0
22þ Q ð7:2Þ

Where v1 is the initial velocity of the first object before impact, v2 is the initial

velocity of the second object before impact, v
0
1 is the final velocity of the first object

after impact, v
0
2 is the final velocity of the second object after impact, m1 is the mass

of the first object, m2 is the mass of the second object and Q is the loss of kinetic

energy due to the impact [3].

The formulas for the velocities after a one-dimensional collision are:

v
0
1 ¼

m1 � εm2ð Þv1 þ m2 þ εm2ð Þv2
m1 þ m2

ð7:3Þ

v
0
2 ¼

m2 � εm1ð Þv2 þ m1 þ εm1ð Þv1
m1 þ m2

ð7:4Þ

Where ε is the Coefficient Of Restitution (COR) of the two colliding bodies, defined
as the ratio of relative velocity of separation to relative velocity of approach:

Fig. 7.1 The collision

between two bodies. (a)
before the collision (b) after
the collision [1]

196 7 Colliding Bodies Optimization

ε ¼ v
0
2 � v

0
1

�� ��
v2 � v1j j ¼

v
0

v
ð7:5Þ

According to the coefficient of restitution, there are two special cases of any

collision as follows:

1. A perfectly elastic collision is defined as the one in which there is no loss of

kinetic energy in the collision (Q ¼ 0 and ε ¼ 1). In reality, any macroscopic

collision between objects will convert some kinetic energy to internal energy

and other forms of energy. In this case, after collision, the velocity of separation

is high.

2. An inelastic collision is the one in which part of the kinetic energy is changed to

some other form of energy in the collision. Momentum is conserved in inelastic

collisions (as it is for elastic collisions), but one cannot track the kinetic energy

through the collision since some of it will be converted to other forms of energy.

In this case, coefficient of restitution does not equal to one (Q 6¼ 0 & ε � 1).

In this case, after collision the velocity of separation is low.

For the most real objects, the value of ε is between 0 and 1.

7.2.2 The CBO Algorithm

7.2.2.1 Theory

The main objective of the present study is to formulate a new simple and efficient

metaheuristic algorithm which is called Colliding Bodies Optimization (CBO). In

CBO, each solution candidate Xi containing a number of variables (i.e. Xi ¼ {Xi,j})

is considered as a colliding body (CB). The massed objects are composed of two

main equal groups; i.e. stationary and moving objects, where the moving objects

move to follow stationary objects and a collision occurs between pairs of objects.

This is done for two purposes: (1) to improve the positions of moving objects; (2) to

push stationary objects towards better positions. After the collision, new positions

of colliding bodies are updated based on new velocity by using the collision laws as

discussed in Sect. 7.2.

The CBO procedure can briefly be outlined as follows:

1. The initial positions of CBs are determined with random initialization of a

population of individuals in the search space:

x0i ¼ xmin þ rand xmax � xminð Þ , i ¼ 1, 2, . . . , n , ð7:6Þ

Where, x0i determines the initial value vector of the i th CB. xmin and xmax are the

7.2 Colliding Bodies Optimization 197

http://en.wikipedia.org/wiki/Elastic_collision#Elastic%20collision
http://en.wikipedia.org/wiki/Kinetic_energy#Kinetic%20energy
http://en.wikipedia.org/wiki/Internal_energy#Internal%20energy
http://en.wikipedia.org/wiki/Inelastic_collision#Inelastic%20collision
http://en.wikipedia.org/wiki/Momentum#Momentum

minimum and the maximum allowable values vectors of variables; rand is a random
number in the interval [0,1]; and n is the number of CBs.

2. The magnitude of the body mass for each CB is defined as:

mk ¼
1

fit kð Þ
Xn
i¼1

1

fit ið Þ
, k ¼ 1, 2, . . . , n ð7:7Þ

Where fit(i) represents the objective function value of the agent i; n is the popula-

tion size. It seems that a CB with good values exerts a larger mass than the bad ones.

Also, for maximization, the objective function fit(i) will be replaced by 1
fit ið Þ.

3. The arrangement of the CBs objective function values is performed in ascending

order (Fig. 7.2a). The sorted CBs are equally divided into two groups:

• The lower half of CBs (stationary CBs); These CBs are good agents which are

stationary and the velocity of these bodies before collision is zero. Thus:

vi ¼ 0 , i ¼ 1, . . . ,
n

2
ð7:8Þ

• The upper half of CBs (moving CBs): These CBs move toward the lower half.

Then, according to Fig. 7.2b, the better and worse CBs, i.e. agents with upper

fitness value, of each group will collide together. The change of the body

position represents the velocity of these bodies before collision as:

vi ¼ xi � xi�n
2
, i ¼ n

2
þ 1, . . . , n ð7:9Þ

Where, vi and xi are the velocity and position vector of the ith CB in this group,

respectively; xi�n
2
is the ith CB pair position of xi in the previous group.

4. After the collision, the velocities of the colliding bodies in each group are

evaluated utilizing Eqs. (7.3) and (7.4), and the velocity before collision. The

velocity of each moving CBs after the collision is obtained by:

198 7 Colliding Bodies Optimization

v
0
i ¼

mi � εmi�n
2

� ffi
vi

mi þ mi�n
2

, i ¼ n

2
þ 1, . . . , n ð7:10Þ

Where, vi and v
0
i are the velocity of the ith moving CB before and after the collision,

respectively; mi is mass of the i th CB; mi�n
2
is mass of the i th CB pair. Also, the

velocity of each stationary CB after the collision is:

v
0
i ¼

miþn
2
þ εmiþn

2

� ffi
viþn

2

mi þ miþn
2

, i ¼ 1, . . . ,
n

2
ð7:11Þ

Where, viþn
2
and v

0
i are the velocity of the i th moving CB pair before and the i th

stationary CB after the collision, respectively;mi is mass of the i th CB;miþn
2
is mass

of the i th moving CB pair; ε is the value of the COR parameter whose law of

variation will be discussed in the next section.

5. New positions of CBs are evaluated using the generated velocities after the

collision in position of stationary CBs.

The new positions of each moving CB is:

xnewi ¼ xi�n
2
þ rand∘v

0
i , i ¼ n

2
þ 1, . . . , n ð7:12Þ

Where, xnewi and v
0
i are the new position and the velocity after the collision of the i th

moving CB, respectively; xi�n
2
is the old position of i th stationary CB pair. Also, the

new positions of stationary CBs are obtained by:

Fig. 7.2 (a) CBs sorted in

increasing order; (b)
colliding object pairs [1]

7.2 Colliding Bodies Optimization 199

xnewi ¼ xi þ rand∘v
0
i , i ¼ 1, . . . ,

n

2
ð7:13Þ

Where, xnewi , xi and v
0
i are the new position, old position and the velocity after the

collision of the i th stationary CB, respectively. rand is a random vector uniformly

distributed in the range (�1,1) and the sign “∘” denotes an element-by-element

multiplication.

6. The optimization is repeated from Step 2 until a termination criterion, such as

maximum iteration number, is satisfied. It should be noted that, a body’s status

(stationary or moving body) and its numbering are changed in two subsequent

iterations.

Apart from the efficiency of the CBO algorithm, which is illustrated in the next

section through numerical examples, parameter independency is an important

feature that makes CBO superior over other metaheuristic algorithms. Also, the

formulation of CBO algorithm does not use the memory which saves the best-so-far

solution (i.e. the best position of agents from the previous iterations).

The penalty function approach was used for constraint handling. The fit

(i) function corresponds to the effective cost. If optimization constraints are satis-

fied, there is no penalty; otherwise the value of penalty is calculated as the ratio

between the violation and the allowable limit.

7.2.2.2 The Coefficient of Restitution

The metaheuristic algorithms have two phases: exploration of the search space and

exploitation of the best solutions found. In the metaheuristic algorithm it is very

important to have a suitable balance between the exploration and exploitation. In

the optimization process, the exploration should be decreased gradually while

simultaneously exploitation should be increased.

In this paper, an index is introduced in terms of the coefficient of restitution

(COR) to control exploration and exploitation rate. In fact, this index is defined as

the ratio of the separation velocity of two agents after collision to approach velocity

of two agents before collision. Efficiency of this index will be shown using one

numerical example.

In this section, in order to have a general idea about the performance of COR in

controlling local and global searches, a benchmark function (Aluffi-Pentiny) chosen

from [4] is optimized using the CBO algorithm. Three variants of COR values are

considered. Figure 7.3 is prepared to show the positions of the current CBs in 1st, 50th

and 100th iteration for these cases. These three typical cases result in the following:

1. The perfectly elastic collision: In this case, COR is set equal to unity. It can be

seen that in the final iterations, the CBs investigate the entire search space to

discover a favorite space (global search).

200 7 Colliding Bodies Optimization

2. The hypothetical collision: In this case, COR is set equal to zero. It can be seen

that in the 50th iterations, the movements of the CBs are limited to very small

space in order to provide exploitation (local search). Consequently, the CBs are

gathered in a small region of the search space.

3. The inelastic collision: In this case, COR decreases linearly to zero and ε is

defined as:

ε ¼ 1� iter

itermax

ð7:14Þ

where iter is the actual iteration number and itermax is the maximum number of

iterations. It can be seen that the CBs get closer by increasing iteration. In this way a

good balance between the global and local search is achieved. Therefore, in the

optimization process COR is considered such as the above equation.

Fig. 7.3 Evolution of the positions of CBs during optimization history for different definitions of

the coefficient of restitution (Aluffi-Pentiny benchmark function) [1]

7.2 Colliding Bodies Optimization 201

7.2.3 Test Problems and Optimization Results

Three well-studied engineering design problems and two structural design prob-

lems taken from the optimization literature are used to investigate the efficiency of

the proposed approach. These examples have been previously studied using a

variety of other techniques, which are useful to show the validity and effectiveness

of the proposed algorithm. In order to assess the effect of the initial population on

the final result, these examples are independently optimized with different initial

populations.

For engineering design examples, 30 independent runs were performed for CBO,

considering 20 individuals and 200 iterations; the corresponding number of func-

tion evaluations is 4,000. The number of function evaluations set for the GA-based

algorithm developed by Coello [5], the PSO-based method developed by He and

Wang [6], the evolution strategies developed by Montes and Coello [7] is 900,000,

200,000 and 25,000, respectively. Similar to CBO, the number of function evalu-

ation for the charged system search algorithm developed by Kaveh and Talatahari

[8] is 4,000.

In the truss design problems, 20 independent runs were carried out, considering

40 individuals and 400 iterations: hence, the maximum number of structural

analyses was 16,000. The CBO algorithm was coded in MATLAB. Structural

analysis was performed with the direct stiffness method.

7.2.3.1 Example 1: Design of Welded Beam

As the first example, design optimization of the welded beam shown in Fig. 7.4 is

carried out. The welded beam design problem was often utilized to evaluate

performance of different optimization methods. The objective is to find the best

set of design variables to minimize the total fabrication cost of the structure subject

to shear stress (τ), bending stress (σ), buckling load (Pc), and end deflection (δ)
constraints. Assuming x1 ¼ h, x2 ¼ l, x3 ¼ t, and x4 ¼ b as the design variables,

the mathematical formulation of the problem can be expressed as:

Find

x1; x2; x3; x4f g ð7:15Þ

To minimize

cos t xð Þ ¼ 1:10471x21x2 þ 0:04811x3x4
�
14þ x2

� ð7:16Þ

Subjected to

202 7 Colliding Bodies Optimization

g1 xð Þ ¼ τ
�
x
�� τmax � 0

g2 xð Þ ¼ σ
�
x
�� σmax � 0

g3 xð Þ ¼ x1 � x4 � 0

g4 xð Þ ¼ 0:10471x21 þ 0:04811x3x4
�
14þ x2

�� 5 � 0

g5 xð Þ ¼ 0:125� x1 � 0

g6 xð Þ ¼ δ
�
x
�� δmax � 0

g7 xð Þ ¼ p� pc
�
x
� � 0

ð7:17Þ

The bounds on the design variables are:

0:1 � x1 � 2, 0:1 � x2 � 10, 0:1 � x3 � 10, 0:1 � x4 � 2 ð7:18Þ

Where

τ xð Þ ¼
ffi
τ0ð Þ2 þ 2τ0τ00

x2
2R

þ τ
00

� ffi2
s

τ
0 ¼ Pffiffiffi

2
p

x1x2
τ
00 ¼ MR

J
M ¼ P Lþ x2

2

0
@

1
A R ¼

ffi
x22
4
þ x1 þ x3

2

0
@

1
A

2
vuuut

J ¼ 2
ffiffiffi
2

p
x1x2

x22
12

þ x1 þ x3
2

0
@

1
A

22
4

3
5

8<
:

9=
; σ xð Þ ¼ 6PL

x4x23
δ xð Þ ¼ 4PL3

Ex33x4

Pc xð Þ ¼
4:013

ffi
E x23x

6
4=36

� �q

L2
�
1� x3

2L

ffiffiffiffiffiffi
E

4G

s �

ð7:19Þ

The constants in (7.17) and (7.19) are chosen as follows:

P ¼ 6,000 lb, L ¼14 in, E ¼30 � 106 psi, G ¼ 12 � 106 psi, τmax ¼ 13,600

psi, σmax ¼ 30,000 psi, and δmax ¼ 0.25 in.

Radgsdell and Phillips [9] compared optimal results of different optimization

methods which were mainly based on mathematical optimization algorithms. Deb

[10], Coello [5] and Coello and Montes [11] solved this problem using GA-based

Fig. 7.4 Schematic of the

welded beam structure with

indication of design

variables

7.2 Colliding Bodies Optimization 203

T
a
b
le

7.
1

C
o
m
p
ar
is
o
n
o
f
C
B
O

o
p
ti
m
iz
ed

d
es
ig
n
s
w
it
h
li
te
ra
tu
re

fo
r
th
e
w
el
d
ed

b
ea
m

p
ro
b
le
m

D
es
ig
n

V
ar
ia
b
le
s

B
es
t
so
lu
ti
o
n
fo
u
n
d

R
ag
sd
el
l
an
d
P
h
il
li
p
s

[9
]

D
eb

[1
0
]

C
o
el
lo

[1
1
]

C
o
el
lo

an
d
M
o
n
te
s

[1
1
]

H
e
an
d
W
an
g

[6
]

M
o
n
te
s
an
d
C
o
el
lo

[7
]

K
av
eh

an
d

T
al
at
ah
ar
i
[8
]

P
re
se
n
t

w
o
rk

[1
]

x
1
(h
)

0
.2
4
5
5
0
0

0
.2
4
8
9
0
0

0
.2
0
8
8
0
0

0
.2
0
5
9
8
6

0
.2
0
2
3
6
9

0
.2
0
2
3
6
9

0
.2
0
5
8
2

0
.2
0
5
7
2
2

x
2
(l
)

6
.1
9
6
0
0
0
0

6
.1
7
3
0
0
0

3
.4
2
0
5
0
0

3
.4
7
1
3
2
8

3
.5
4
4
2
1
4

3
.5
4
4
2
1
4

3
.4
6
8
1
0
9

3
.4
7
0
4
1

x
3
(t
)

8
.2
7
3
0
0
0

8
.1
7
8
9
0
0

8
.9
9
7
5
0
0

9
.0
2
0
2
2
4

9
.0
4
8
2
1

9
.0
4
8
2
1

9
.0
3
8
0
2
4

9
.0
3
7
2
7
6

x
4
(b
)

0
.2
4
5
5
0
0

0
.2
5
3
3
0
0

0
.2
1
0
0
0
0

0
.2
0
6
4
8

0
.2
0
5
7
2
3

0
.2
0
5
7
2
3

0
.2
0
5
7
2
3

0
.2
0
5
7
3
5

f(
x
)

1
.7
2
8
0
2
4

2
.4
3
3
1
1
6

�1
.7
4
8
3
1
0

1
.7
2
8
2
2
6

1
.7
2
8
0
2
4

1
.7
2
8
0
2
4

1
.7
2
4
8
6
6

1
.7
2
4
6
6
3

204 7 Colliding Bodies Optimization

methods. Also, He and Wang [6] used effective co-evolutionary particle swarm

optimization, Montes and Coello [7] solved this problem utilizing evolution strat-

egies, and Kaveh and Talatahari [8] employed charged system search.

Table 7.1 compares the optimized design and the corresponding cost obtained by

CBO with those obtained by other metaheuristic algorithms documented in litera-

ture. It can be seen that the best solution obtained by CBO is better than those

quoted for the other algorithms. The statistical data on 30 independent runs reported

in Table 7.2 also demonstrate the better search ability of CBO with respect to the

other algorithms: in fact the best, worst and average costs, and the standard

deviation (S.D.) of the obtained solutions are better than literature. The lowest

standard deviation achieved by CBO proves that the present algorithm is more

robust than other metaheuristic methods.

7.2.3.2 Test Problem 2: Design of a Pressure Vessel

Design optimization of the cylindrical pressure vessel capped at both ends by

hemispherical heads (Fig. 7.5) is considered as the second example. The objective

of optimization is to minimize the total manufacturing cost of the vessel based on

the combination of welding, material and forming costs. The vessel is designed for

a working pressure of 3,000 psi and a minimum volume of 750 ft3 regarding the

provisions of ASME boiler and pressure vessel code. Here, the shell and head

thicknesses should be multiples of 0.0625 in. The thickness of the shell and head

is restricted to 2 in. The shell and head thicknesses must not be less than 1.1 in and

0.6 in respectively. The design variables of the problem are x1 as the shell thickness
(Ts), x2 as the spherical head thickness (Th), x3 as the radius of cylindrical shell (R),
and x4 as the shell length (L). The problem formulation is as follows:

Find

x1; x2; x3; x4f g ð7:20Þ

To minimize

Table 7.2 Statistical results from different optimization methods for the welded beam design

problem

Methods Best result Average optimized cost Worst result Std dev

Ragsdell and Phillips [9] 2.385937 N/A N/A N/A

Deb [10] 2.433116 N/A N/A N/A

Coello [5] 1.748309 1.771973 1.785835 0.011220

Coello and Montes [11] 1.728226 1.792654 1.993408 0.074713

He and Wang [6] 1.728024 1.748831 1.782143 0.012926

Montes and Coello [7] 1.737300 1.813290 1.994651 0.070500

Kaveh and Talatahari [8] 1.724866 1.739654 1.759479 0.008064

Present work [1] 1.724662 1.725707 1.725059 0.0002437

7.2 Colliding Bodies Optimization 205

cos t xð Þ ¼ 0:6224x3x1x4 þ 1:7781x23x2 þ 3:1611x21x4 þ 19:8621x3x
2
1 ð7:21Þ

Subject to

g1 xð Þ ¼ 0:0193x3 � x1 � 0

g2 xð Þ ¼ 0:00954x3 � x2 � 0

g3 xð Þ ¼ 750� 1728� πx23x4 �
4

3
πx33 � 0

g4 xð Þ ¼ x4 � 240 � 0

ð7:22Þ

The bounds on the design variables are:

1:125 � x1 � 2, 0:625 � x2 � 2, 10 � x3 � 240, 10 � x4 � 240 ð7:23Þ

It can be seen from Table 7.3 that the present algorithm found the best design

overall which is about 3 % lighter than the best known design quoted in literature

(5,889.911 vs. 6,059.088 of [8]). The statistical data reported in Table 7.4 indicate

that the standard deviation of CBO optimized solutions is the third lowest among

those quoted for the different algorithms compared in this test case. Statistical

results given in Table 7.4 indicate that CBO is in general more robust than the other

metaheuristic algorithms. However, the worst optimized design and standard devi-

ation found by CBO are higher than for CSS.

7.2.3.3 Test Problem 3: Design of a Tension/Compression Spring

This problem was first described by Belegundu [15] and Arora [16]. It consists of

minimizing the weight of a tension/compression spring subject to constraints on

shear stress, surge frequency, and minimum deflection as shown in Fig. 7.6. The

design variables are the wire diameter d (¼ x1); the mean coil diameter D (¼ x2),
and the number of active coils N (¼ x3). The problem can be stated as follows:

Find

x1; x2; x3f g ð7:24Þ

To minimize

Fig. 7.5 Schematic of the

spherical head and

cylindrical wall of the

pressure vessel with

indication of design

variables

206 7 Colliding Bodies Optimization

cos t xð Þ ¼ �
x3 þ 2

�
x2x

2
1 ð7:25Þ

Subject to

g1 xð Þ ¼ 1� x32x3
71785x41

� 0

g2 xð Þ ¼ 4x22 � x1x2

12566 x2x
3
1 � x41

� �þ 1

5108x21
� 1 � 0

g3 xð Þ ¼ 1� 140:45x1
x22x3

� 0

g4 xð Þ ¼ x1 þ x2
1:5

� 1 � 0

ð7:26Þ

Table 7.3 Comparison of CBO optimized designs with literature for the pressure vessel problem

Methods X1 (Ts) X2 (Th) X3 (R) X4 (L)

Sandgren [12] 1.125000 0.625000 47.70000 117.7010

Kannan and Kramer [13] 1.125000 0.625000 58.29100 43.6900

Deb and Gene [14] 0.937500 0.500000 48.32900 112.6790

Coello [5] 0.812500 0.437500 40.32390 200.0000

Coello and Montes [11] 0.812500 0.437500 42.09739 176.6540

He and Wang [6] 0.812500 0.437500 42.09126 176.7465

Montes and Coello [7] 0.812500 0.437500 42.09808 176.6405

Kaveh and Talatahari [8] 0.812500 0.812500 0.812500 176.572656

Present work [1] 0.779946 0.385560 40.409065 198.76232

Table 7.4 Statistical results from different optimization methods for the pressure vessel problem

Methods Best result Average optimized cost Worst result Std Dev

Sandgren [12] 8,129.103 N/A N/A N/A

Kannan and Kramer [13] 7,198.042 N/A N/A N/A

Deb and Gene [14] 6,410.381 N/A N/A N/A

Coello [5] 6,288.744 6,293.843 6,308.149 7.4133

Coello and Montes [11] 6,059.946 6,177.253 6,469.322 130.9297

He and Wang [6] 6,061.077 6,147.133 6,363.804 86.4545

Montes and Coello [7] 6,059.745 6,850.004 7,332.879 426.0000

Kaveh and Talatahari [8] 6,059.088 6,067.906 6,085.476 10.256

Present work [1] 5,889.911 5,934.201 6,213.006 63.5417

Fig. 7.6 Schematic of the

tension/compression spring

with indication of design

variables

7.2 Colliding Bodies Optimization 207

The bounds on the design variables are:

0:05 � x1 � 2, 0:25 � x2 � 1:3, 2 � x3 � 15, ð7:27Þ

This problem has been solved by Belegundu [15] using eight different mathe-

matical optimization techniques. Arora [16] also solved this problem using a

numerical optimization technique called a constraint correction at the constant

cost. Coello [5] as well as Coello and Montes [11] solved this problem using

GA-based method. Additionally, He and Wang [6] utilized a co-evolutionary

particle swarm optimization (CPSO). Recently, Montes and Coello [7], Kaveh

and Talatahari [8] used evolution strategies and the CSS to solve this problem,

respectively.

Tables 7.5 and 7.6 compare the best results obtained in this paper and those of

the other researches. Once again, CBO found the best design overall. In fact, the

lighter design found by Kaveh and Talatahari in [8] actually violates the first two

optimization constraints. The statistical data reported in Table 7.6 show that the

standard deviation on optimized cost seen for CBO is fully consistent with

literature.

7.2.3.4 Test Problem 4: Weight Minimization of the 120-Bar
Truss Dome

The fourth test case solved in this study is the weight minimization problem of the

120-bar truss dome shown in Fig. 7.7. This test case was investigated by Soh and

Yang [17] as a configuration optimization problem. It has been solved later as a

sizing optimization problem by Lee and Geem [18], Kaveh and Talatahari [8] and

Kaveh and Khayatazad [19].

The allowable tensile and compressive stresses are set according to the AISC

ASD (1989) [20] code, as follows:

σþi ¼ 0:6Fy forσi � 0

σ�i forσi � 0

�
ð7:28Þ

where σ�i is calculated according to the slenderness ratio

σ�i ¼
1� λ2i

2C2
c

0
@

1
AFy

2
4

3
5= 5

3
þ 3λi
8Cc

� λ3i
8C3

c

0
@

1
A forλi < Cc

12π2E

23λ2i
forλi � Cc

8>>>>><
>>>>>:

ð7:29Þ

208 7 Colliding Bodies Optimization

T
a
b
le

7.
5

C
o
m
p
ar
is
o
n
o
f
C
B
O

o
p
ti
m
iz
ed

d
es
ig
n
s
w
it
h
li
te
ra
tu
re

fo
r
th
e
te
n
si
o
n
/c
o
m
p
re
ss
io
n
sp
ri
n
g
p
ro
b
le
m

M
et
h
o
d
s

O
p
ti
m
al

d
es
ig
n
v
ar
ia
b
le
s

C
o
n
st
ra
in
ts

f(
x
)

x
1
(d
)

x
2
(D

)
x
3
(N

)
g
1
(x
)

g
2
(x
)

g
3
(x
)

g
4
(x
)

B
el
eg
u
n
d
u
[1
5
]

0
.0
5
0
0
0
0

0
.3
1
5
9
0
0

1
4
.2
5
0
0
0
0

�0
.0
0
0
0
1
4

�0
.0
0
3
7
8
2

�3
.9
3
8
3
0
2

�0
.7
5
6
0
6
7

0
.0
1
2
8
3
3
4

A
ro
ra

[1
6
]

0
.0
5
3
3
9
6

0
.3
9
9
1
8
0

9
.1
8
5
4
0
0

�0
.0
5
3
3
9
6

�0
.0
0
0
0
1
8

�4
.1
2
3
8
3
2

�0
.6
9
8
2
8
3

0
.0
1
2
7
3
0
3

C
o
el
lo

[5
]

0
.0
5
1
4
8
0

0
.3
5
1
6
6
1

1
1
.6
3
2
2
0
1

�0
.0
0
2
0
8
0

�0
.0
0
0
1
1
0

�4
.0
2
6
3
1
8

0
.0
1
2
7
0
4
8

C
o
el
lo

an
d
M
o
n
te
s
[1
1
]

0
.0
5
1
9
8
9

0
.3
6
3
9
6
5

1
0
.8
9
0
5
2
2

�0
.0
0
0
0
1
3

�0
.0
0
0
0
2
1

�4
.0
6
1
3
3
8

�0
.7
2
2
6
9
8

0
.0
1
2
6
8
1
0

H
e
an
d
W
an
g
[6
]

0
.0
5
1
7
2
8

0
.3
5
7
6
4
4

1
1
.2
4
4
5
4
3

�0
.0
0
0
8
4
5

�1
.2
6
0
0
e�

0
5

�4
.0
5
1
3
0
0

�0
.7
2
7
0
9
0

0
.0
1
2
6
7
4
7

M
o
n
te
s
an
d
C
o
el
lo

[7
]

0
.0
5
1
6
4
3

0
.3
5
5
3
6
0

1
1
.3
9
7
9
2
6

�0
.0
0
1
7
3
2

�0
.0
0
0
0
5
6
7

�4
.0
3
9
3
0
1

�0
.7
2
8
6
6
4

0
.0
1
2
6
9
8

K
av
eh

an
d
T
al
at
ah
ar
i
[8
]

0
.0
5
1
7
4
4

0
.3
5
8
5
3
2

1
1
.1
6
5
7
0
4

8
.7
8
6
0
3
e�

6
0
.0
0
1
1
0
4
3

�4
.0
6
3
3
7
1

�0
.7
2
6
4
8
3

0
.0
1
2
6
3
8
4

P
re
se
n
t
w
o
rk

[1
]

0
.0
5
1
8
9
4

0
.3
6
1
6
7
4
0

1
1
.0
0
7
8
4
6

�3
.1
0
7
3
e�

4
�1

.4
1
8
9
e�

5
�4

.0
6
1
8
4
6

�0
.7
2
4
2
8
7

0
.0
1
2
6
6
9
7

7.2 Colliding Bodies Optimization 209

Table 7.6 Statistical results from different optimization methods for tension/compression string

problem

Methods Best result Average optimized cost Worst result Std Dev

Belegundu [15] 0.0128334 N/A N/A N/A

Arora [16] 0.0127303 N/A N/A N/A

Coello [5] 0.0127048 0.012769 0.012822 3.9390e�5

Coello and Montes [11] 0.0126810 0.0127420 0.012973 5.9000e�5

He and Wang [6] 0.0126747 0.012730 0.012924 5.1985e�5

Montes and Coello [7] 0.012698 0.013461 0.16485 9.6600e�4

Kaveh and Talatahari [8] 0.0126384 0.012852 0.013626 8.3564e�5

Present work [1] 0.126697 0.1272964 0.128808 5.00376e�5

Fig. 7.7 Schematic of the

spatial 120-bar dome truss

with indication of design

variables and main

geometric dimensions

210 7 Colliding Bodies Optimization

where E is the modulus of elasticity, Fy is the yield stress of steel, Cc is

the slenderness ratio (λi) dividing the elastic and inelastic buckling regions (Cc

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=

Fy

q
), λi is the slenderness ratio (λi ¼ KLi

ri
), K is the effective length factor, Li

is the member length and ri is the radius of gyration.
The modulus of elasticity is 30,450 ksi (210,000 MPa) and the material density is

0.288 lb/in3 (7,971.810 kg/m3). The yield stress of steel is taken as 58.0 ksi

(400 MPa). On the other hand, the radius of gyration (ri) is expressed in terms of

cross-sectional areas as ri ¼ aAi
b [28]. Here, a and b are constants depending on the

types of sections adopted for the members such as pipes, angles, and tees. In this

example, pipe sections (a ¼ 0.4993 and b ¼ 0.6777) are adopted for bars. All

members of the dome are divided into seven groups, as shown in Fig. 7.7. The

dome is considered to be subjected to vertical loads at all the unsupported joints.

These are taken as �13.49 kips (60 kN) at node 1, �6.744 kips (30 kN) at nodes

2 through 14, and�2.248 kips (10 kN) at the remaining of the nodes. The minimum

cross-sectional area of elements is 0.775 in2 (cm2). In this example, four cases of

constraints are considered: with stress constraints and no displacement constraints

(Case 1), with stress constraints and displacement limitations of�0.1969 in (5 mm)

imposed on all nodes in x- and y-directions (Case 2), no stress constraints but

displacement limitations of�0.1969 in (5 mm) imposed on all nodes in z-directions

(Case 3), and all constraints explained above (Case 4). For Case 1 and Case 2, the

maximum cross-sectional area is 5.0 in2 (32.26 cm2) while for Case 3 and Case 4 is

20.0 in2 (129.03 cm2).

Table 7.7 compares the optimization results obtained in this study with previous

research presented in literature. It can be seen that CBO always designed the

lightest structure except for Cases 3 and 4 where HPSACO converged to a slightly

lower weight. CBO always completed the optimization process within 16,000

structural analyses (40 agents � 400 optimization iterations) while HPSACO

required on average 10,000 analyses (400 optimization iterations) and PSOPC

required 125,000 analyses (2,500 iterations). The average number of analyses

required by the RO algorithm was instead 19,900. Figure 7.8 shows that the

convergence rate of CBO is considerably higher than that of PSO and PSOPC.

7.2.3.5 Test Problem 5: Design of Forth Truss Bridge

The last test case was the layout optimization of the forth bridge shown in Fig. 7.9a

which is a 16 m long and 1 m high truss of infinite span. Because of infinite span, the

cross section of the bridge can be modeled as symmetric about the axis joining

nodes 10 and 11. Structural symmetry allowed the 37 elements of which the bridge

7.2 Colliding Bodies Optimization 211

T
a
b
le

7.
7

C
o
m
p
ar
is
o
n
o
f
C
B
O

o
p
ti
m
iz
ed

d
es
ig
n
s
w
it
h
li
te
ra
tu
re

in
th
e
1
2
0
-b
ar

d
o
m
e
p
ro
b
le
m

E
le
m
en
t
g
ro
u
p

O
p
ti
m
al

cr
o
ss
-s
ec
ti
o
n
al

ar
ea
s
(i
n
2
)

C
as
e
1

C
as
e
2

K
av
eh

an
d
K
h
ay
at
az
ad

[1
9
]

P
re
se
n
t
w
o
rk

[1
]

K
av
eh

an
d
K
h
ay
at
az
ad

[1
9
]

P
re
se
n
t
w
o
rk

[1
]

P
S
O

P
S
O
P
C

H
P
S
A
C
O

R
O

P
S
O

P
S
O
P
C

H
P
S
A
C
O

R
O

1
3
.1
4
7

3
.2
3
5

3
.3
1
1

3
.1
2
8

3
.1
2
2
9

1
5
.9
7

3
.0
8
3

3
.7
7
9

3
.0
8
4

3
.0
8
3
2

2
6
.3
7
6

3
.3
7
0

3
.4
3
8

3
.3
5
7

3
.3
5
3
8

9
.5
9
9

3
.6
3
9

3
.3
7
7

3
.3
6
0

3
.3
5
2
6

3
5
.9
5
7

4
.1
1
6

4
.1
4
7

4
.1
1
4

4
.1
1
2
0

7
.4
6
7

4
.0
9
5

4
.1
2
5

4
.0
9
3

4
.0
9
2
8

4
4
.8
0
6

2
.7
8
4

2
.8
3
1

2
.7
8
3

2
.7
8
2
2

2
.7
9
0

2
.7
6
5

2
.7
3
4

2
.7
6
2

2
.7
6
1
3

5
0
.7
7
5

0
.7
7
7

0
.7
7
5

0
.7
7
5

0
.7
7
5
0

4
.3
2
4

1
.7
7
6

1
.6
0
9

1
.5
9
3

1
.5
9
1
8

6
1
3
.7
9
8

3
.3
4
3

3
.4
7
4

3
.3
0
2

3
.3
0
0
5

3
.2
9
4

3
.7
7
9

3
.5
3
3

3
.2
9
4

3
.2
9
2
7

7
2
.4
5
2

2
.4
5
4

2
.5
5
1

2
.4
5
3

2
.4
4
5
8

2
.4
7
9

2
.4
3
8

2
.5
3
9

2
.4
3
4

2
.4
3
3
6

B
es
t
w
ei
g
h
t
(I
b
)

3
2
,4
3
2
.9

1
9
,6
1
8
.7

1
9
,4
9
1
.3

1
9
,4
7
6
.1
9
3

1
9
,4
5
4
.7

4
1
,0
5
2
.7

2
0
,6
8
1
.7

2
0
,0
7
8
.0

2
0
,0
7
1
.9

2
0
,0
6
4
.5

A
v
er
ag
e
w
ei
g
h
t
(I
b
)

–
–

–
–

1
9
,4
6
6
.0

–
–

–
–

2
0
,0
9
8
.3

S
td

(I
b
)

–
–

–
3
3
.9
6
6

7
.0
2

–
–

–
1
1
2
.1
3
5

2
6
.1
7

C
as
e
3

C
as
e
4

1
1
.7
7
3

2
.0
9
8

2
.0
3
4

2
.0
4
4

2
.0
6
6
0

1
2
.8
0
2

3
.0
4
0

3
.0
9
5

3
.0
3
0

3
.0
2
8
4

2
1
7
.6
3
5

1
6
.4
4
4

1
5
.1
5
1

1
5
.6
6
5

1
5
.9
2
0
0

1
1
.7
6
5

1
3
.1
4
9

1
4
.4
0
5

1
4
.8
0
6

1
4
.9
5
4
3

3
7
.4
0
6

5
.6
1
3

5
.9
0
1

5
.8
4
8

5
.6
7
8
5

5
.6
5
4

5
.6
4
6

5
.0
2
0

5
.4
4
0

5
.4
6
0
7

4
2
.1
5
3

2
.3
1
2

2
.2
5
4

2
.2
9
0

2
.2
9
8
7

6
.3
3
3

3
.1
4
3

3
.3
5
2

3
.1
2
4

3
.1
2
1
4

5
1
5
.2
3
2

8
.7
9
3

9
.3
6
9

9
.0
0
1

9
.0
5
8
1

6
.9
6
3

8
.7
5
9

8
.6
3
1

8
.0
2
1

8
.0
5
5
2

6
1
9
.5
4
4

3
.6
2
9

3
.7
4
4

3
.6
7
3

3
.6
3
6
5

6
.4
9
2

3
.7
5
8

3
.4
3
2

3
.6
1
4

3
.3
7
3
5

7
0
.8
0
0

1
.9
5
4

2
.1
0
4

1
.9
7
1

1
.9
3
2
0

4
.9
8
8

2
.5
0
2

2
.4
9
9

2
.4
8
7

2
.4
8
9
9

W
ei
g
h
t
(l
b
)

4
6
,8
9
3
.5

3
1
,7
7
6
.2

3
1
,6
7
0
.0

3
1
,7
3
3
.2

3
1
,7
2
4
.1

5
1
,9
8
6
.2

3
3
,4
8
1
.2

3
3
,2
4
8
.9

3
3
,3
1
7
.8

3
3
,2
8
6
.3

A
v
er
ag
e
w
ei
g
h
t
(I
b
)

–
–

–
–

3
2
,1
6
2
.4

–
–

–
–

3
3
,3
9
8
.5

S
td

(I
b
)

–
–

–
2
7
4
.9
9
1

2
4
0
.2
2

–
–

–
3
5
4
.3
3
3

6
7
.0
9

212 7 Colliding Bodies Optimization

is comprised to be grouped into 16 groups (see Table 7.8): hence, there are

16 independent sizing variables. Nodal coordinates were included as layout vari-

ables: X-coordinates of nodes could not vary while Y-coordinates (except those of

nodes 1 and 20) were allowed to change between �140 and 140 cm with respect to

the initial configuration of Fig. 7.9a. Thus, the optimization problem included also

10 layout variables. The cross-sectional areas (sizing variables) could vary between

0.5 and 100 cm2.

Material properties were set as follows: modulus of elasticity of 210 GPa,

allowable stress of 250 MPa, specific weight of 7.8 ton/m3. The structure is subject

to self-weight and concentrated loads shown in Fig. 7.9a.

Table 7.8 compares CBO optimization results with literature. It appears that

CBO found the best design overall saving about 1,000 kg with respect to the

optimum currently reported in literature. Furthermore, the standard deviation on

optimized weight observed for CBO in 20 independent optimization runs was lower

than for the other metaheuristic optimization algorithms taken as basis of

comparison.

The optimized layout of the bridge is shown in Fig. 7.9b. Figure 7.10 compares

the convergence behavior of CBO and RO. Although RO was considerably faster in

the early optimization iterations, CBO converged to a significantly better design

without being trapped in local optima.

15000

25000

35000

45000

55000

65000

75000

85000

0 400 800 1200 1600 2000 2400 2800 3200

W
ei

g
h
t

 (
Ib

)

Iteration

a

c

PSO

PSOPC

CBO

15000

25000

35000

45000

55000

65000

75000

85000

0 400 800 1200 1600 2000 2400 2800 3200

W
ei

g
h
t

 (
Ib

)

Iteration

b
PSO
PSOPC
CBO

15000

25000

35000

45000

55000

65000

75000

85000

0 400 800 1200 1600 2000 2400 2800 3200

W
ei

g
h
t

 (
Ib

)

Iteration

PSO

PSOPC

CBO

15000

25000

35000

45000

55000

65000

75000

85000

0 400 800 1200 1600 2000 2400 2800 3200

W
ei

g
h
t

(I
b
)

Iteration

d
CBO

PSO

PSOPC

Fig. 7.8 Convergence curves obtained for the different variants of the 120-bar dome problem [2]

7.2 Colliding Bodies Optimization 213

7.3 CBO for Optimum Design of Truss Structures
with Continuous Variables

This part considers: (1) The CBO algorithm is introduced for optimization of

continuous problems. (2) A comprehensive study of sizing optimization for truss

structures is presented. The examples are chosen from the literature to verify the

effectiveness of the algorithm. These examples are as follows: a 25-member spatial

truss with 8 design variables, a 72-member spatial truss with 16 design variables, a

582-member space truss tower with 32 design variables, a 37-member plane truss

bridge with 16 design variables, and a 68-member plane truss bridge with 4, 8 and

12 design variables. All the structures are optimized for minimum weight with CBO

algorithm, and a comparison is carried out in terms of the best optimum solutions

and their convergence rates in a predefined number of analyses. The results indicate

that the proposed algorithm is very competitive with other state-of-the-art

metaheuristic methods.

7.3.1 Flowchart and CBO Algorithm

The flowchart of the CBO algorithm is shown in Fig. 7.11. The main steps of CBO

algorithm are as follows:

Level 1: Initialization

Fig. 7.9 (a) Schematic of the Forth truss bridge (b) Optimized layout of the forth bridge [2]

214 7 Colliding Bodies Optimization

Table 7.8 Comparison of CBO optimization results with literature for the forth bridge problem

No Design variable

Kaveh and Khayatazad [19]

Present Work [2]BB–BC PSO RO

1 A1 56.41 25.20 20.54 23.314

2 A2 58.20 97.60 44.62 36.867

3 A3,A5 53.89 35.00 6.37 9.847

4 A4 60.21 64.30 50.10 49.679

5 A6 56.27 14.51 30.39 26.563

6 A7 57.08 37.91 17.61 12.737

7 A8 49.19 69.85 41.04 37.120

8 A10 48.67 8.76 8.55 1.545

9 A9,A11 45.43 47.54 33.93 28.35

10 A12 15.14 6.36 0.63 0.891

11 A14 45.31 27.13 26.92 24.110

12 A13 62.91 3.82 23.42 9.112

13 A18 56.77 50.82 42.06 29.071

14 A15,A17 46.66 2.70 2.01 8.222

15 A16 57.95 5.46 8.51 8.715

16 A19 54.99 17.62 1.27 2.107

17 Δy2, Δy19 6.89 140 70.88 11.093

18 Δy3, Δy18 17.74 139.65 64.88 50.352

19 Δy4, Δy17 1.81 117.59 �6.99 �50.529

20 Δy5, Δy16 23.57 139.70 128.31 119.315

21 Δy6, Δy15 3.22 �16.51 �64.24 �124.378

22 Δy7, Δy14 5.85 139.06 139.29 34.219

23 Δy8, Δy13 4.01 �127.74 �109.62 �120.867

24 Δy9, Δy12 10.52 �81.03 21.82 �41.323

25 Δy10 �25.99 60.16 �55.09 �115.609

26 Δy11 2.74 �139.97 2.29 �54.590

Best weight (kg) 37,132.3 20,591.9 11,215.7 10,250.9

Average weight (kg) 40,154.1 25,269.3 11,969.2 11,112.63

Std (kg) 1,235.4 2,323.7 545.5 522.54

10

20

30

40

50

60

0 100 200 300 400

W
ei

g
h
t

 (
to

n
)

Iteration

RO

CBO

Fig. 7.10 Convergence

curves obtained in the forth

bridge problem [2]

7.3 CBO for Optimum Design of Truss Structures with Continuous Variables 215

• Step 1: Initialization. Initialize an array of CBs with random positions and their

associated values of the objective function (Eq. 7.6).

Level 2: Search

• Step 1: CBs ranking. Compare the value of the objective function for each CB,

and sort them in an increasing order.

• Step 2: Groups creation. CBs are divided into two equal groups: (1) stationary

group, (2) moving group. Then, the pairs of CB are defined for collision

(Fig. 7.2).

• Step 3: Criteria before the collision. The value of mass and velocity of each CB

for each group are evaluated before the collision (Eqs. 7.7, 7.8, and 7.9).

• Step 4: Criteria after the collision. The value velocity of each CB in each groups

are evaluated after the collision (Eqs. 7.10 and 7.11).

• Step 5: CBs updating. The new position of each CB is calculated (Eqs. 7.13 and

7.14).

Level 3: Terminating criterion control

• Step 1: Repeat search level steps until a terminating criterion is satisfied.

Fig. 7.11 The flowchart of

the CBO [2]

216 7 Colliding Bodies Optimization

7.3.2 Numerical Examples

In order to assess the effectiveness of the proposed methodology a number of

continuous optimization benchmark problems are examined. These examples

include three well-known space trusses and two planar bridge structures. The

number of design variables for the first to fifth examples are 8, 16, 32, 26, respec-

tively and for the last example 4, 8 and 12 variables are used. Similarly, the number

of Colliding Bodies or agents for these examples are considered as 30, 40, 50, 40

and 20, respectively. For all of these examples the maximum number of iteration is

considered as 400. The algorithm and the direct stiffness method for the analysis of

truss structures are coded in Matlab software.

For the sake of simplicity and to be fair in comparisons, the penalty approach is

used for the constraint handling. The constrained objective function can formally be

stated as follows:

Mer Xð Þ ¼ f Xð Þ � f penalty Xð Þ ¼ f Xð Þ � �
1þ ε1

Xni
i¼1

max 0, gi xð Þð Þ�ε2 ð7:30Þ

where X is the vector of design variables, gi is the ith constraint from ni inequality
constraints (gi(X)� 0, i ¼ 1, 2, . . ., ni), andMer(X) is the merit function; f(X) is the
weight of structure; fpenalty(X) is the penalty function which results from the

violations of the constraints corresponding to the response of the structure. The

parameters ε1 and ε2 are selected considering the exploration and the exploitation

rate of the search space. In this study, ε1 is selected as unity and ε2 is taken as 1.5 at
the start and linearly increases to 6.

7.3.2.1 A 25-Bar Spatial Truss

Size optimization of the 25-bar planar truss shown in Fig. 7.12 is considered. This is

a well-known problem in the field of weight optimization of the structures. In this

example, the material density is considered as 0.1 lb/in3 (2,767.990 kg/m3) and the

modulus of elasticity is taken as 10,000 ksi (68,950 MPa). Table 7.9 shows the two

load cases for this example. The structure includes 25 members, which are divided

into eight groups, as follows: (1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–

A13, (6) A14–A17, (7) A18–A21 and (8) A22–A25.

Maximum displacement limitations of�0.35 in (8.89 mm) are imposed on every

node in every direction and the axial stress constraints vary for each group as shown

in Table 7.10. The range of the cross-sectional areas varies from 0.01 to 3.4 in2

(0.6452 to 21.94 cm2).

By the use of the proposed algorithm, this optimization problem is solved and

Table 7.11 shows the obtained optimal design of CBO, which is compared with GA

[21], PSO [22], HS [6] and RO [19]. The best weight of the CBO is 544.310 lb,

which is slightly improved compared to other algorithms. It is evident from

7.3 CBO for Optimum Design of Truss Structures with Continuous Variables 217

Table 7.11 that the number of analysis and standard deviation of 20 independent

runs for the CBO are 9,090 and 0.294 lb, respectively, which are much less than the

other optimization algorithms. Figure 7.13 provides the convergence diagram of the

CBO in 400 iterations.

7.3.2.2 A 72-Bar Spatial Truss Structure

Schematic topology and element numbering of a 72-bar space truss is shown in

Fig. 7.14. The elements are classified in 16 design groups according to Table 7.12.

Fig. 7.12 Schematic of a

25-bar spatial truss

Table 7.9 Loading conditions for the 25-bar spatial truss

Node

Case 1 Case 2

PX kips (kN) PY kips (kN) PZ kips (kN) PX kips (kN) PY kips (kN) PZ kips (kN)

1 0.0 20.0 (89) �5.0 (22.5) 1.0 (4.45) 10.0 (44.5) �5.0 (22.5)

2 0.0 �20.0 (89) �5.0 (22.5) 0.0 10.0 (44.5) �5.0 (22.5)

3 0.0 0.0 0.0 0.5 (22.5) 0.0 0.0

4 0.0 0.0 0.0 0.5 (22.5) 0.0 0.0

Table 7.10 Member stress limitations for the 25-bar spatial truss

Element group Compressive stress limitations ksi (MPa) Tensile stress limitation ksi (MPa)

1 35.092 (241.96) 40.0 (275.80)

2 11.590 (79.913) 40.0 (275.80)

3 17.305 (119.31) 40.0 (275.80)

4 35.092 (241.96) 40.0 (275.80)

5 35.092 (241.96) 40.0 (275.80)

6 6.759 (46.603) 40.0 (275.80)

7 6.959 (47.982) 40.0 (275.80)

8 11.082 (76.410) 40.0 (275.80)

218 7 Colliding Bodies Optimization

The material density is 0.1 lb/in3 (2,767.990 kg/m3) and the modulus of elasticity is

taken as 10,000 ksi (68,950 MPa). The members are subjected to the stress limits of

�25 ksi (�172.375 MPa). The uppermost nodes are subjected to the displacement

limits of �0.25 in (�0.635 cm) in both x and y directions. The minimum permitted

cross-sectional area of each member is taken as 0.10 in2 (0.6452 cm2), and the

maximum cross-sectional area of each member is 4.00 in2 (25.81 cm2). The loading

conditions are considered as:

1. Loads 5, 5 and �5 kips in the x, y and z directions at node 17, respectively;
2. A load �5 kips in the z direction at nodes 17, 18, 19 and 20;

Table 7.12 summarizes the results obtained by the present work and those of the

previously reported researches. The best result of the CBO approach is 379.694,

while it is 385.76, 380.24, 381.91, 379.85 and 380.458 Ib for the GA [23], ACO

[24], PSO [25], BB–BC [26] and RO [19] algorithm, respectively. Also, the number

of analyses of the CBO is 15,600, while it is 18,500, 19,621 and 19,084 for the

Table 7.11 Comparison of CBO optimized designs with literature in the 25-bar spatial truss

Element group

Optimal cross-sectional areas (in2)

Rajeev et al.

GA [21]

Schutte et al.

PSO[22]

Lee et al.

HS [18]

Kaveh et al.

RO [19] Present work [2]

1 A1 0.10 0.010 0.047 0.0157 0.0100

2 A2–A5 1.80 2.121 2.022 2.0217 2.1297

3 A6–A9 2.30 2.893 2.95 2.9319 2.8865

4 A10–A11 0.20 0.010 0.010 0.0102 0.0100

5 A12–A13 0.10 0.010 0.014 0.0109 0.0100

6 A14–A17 0.80 0.671 0.688 0.6563 0.6792

7 A18–A21 1.80 1.611 1.657 1.6793 1.6077

8 A22–A25 3.0 2.717 2.663 2.7163 2.6927

Best weight (Ib) 546 545.21 544.38 544.656 544.310

Average weight (Ib) N/A 546.84 N/A 546.689 545.256

Std dev N/A 1.478 N/A 1.612 0.294

No. of analyses N/A 9,596 15,000 13,880 9,090

500

550

600

650

700

0 100 200 300 400

W
ei

gh
t (

Ib
)

Itera�on

Fig. 7.13 The convergence

diagram for the 25-bar

spatial truss [2]

7.3 CBO for Optimum Design of Truss Structures with Continuous Variables 219

ACO, BB–BC and RO algorithm, respectively. Also, it is evident from Table 7.12

that the standard deviation of 20 independent runs for the CBO is less than the other

optimization algorithms. Figure 7.15 shows the convergence diagrams in terms of

the number of iterations for this example. Figure 7.16 shows the allowable and

existing stress values in truss member using the CBO.

7.3.2.3 A 582-Bar Tower Truss

The 582-bar spatial truss structure, shown in Fig. 7.17, was studied with discrete

variables by other researchers [27, 28]. However, here we have used this structure

with continuous sizing variables. The 582 structural members categorized as

32 independent size variables. A single load case is considered consisting of lateral

loads of 5.0 kN (1.12 kips) applied in both x- and y-directions and a vertical load of

�30 kN (�6.74 kips) applied in the z-direction at all nodes of the tower. The lower

and upper bounds on size variables are taken as 3.1 in2 (20 cm2) and 155.0 in2

(1,000 cm2), respectively.

The allowable tensile and compressive stresses are used as specified by the AISC

ASD [20] code, as Eqs. (7.28) and (7.29).

The maximum slenderness ratio is limited to 300 for tension members, and it is

recommended to be limited to 200 for compression members according to

ASD-AISC [20]. The modulus of elasticity is 29,000 ksi (203,893.6 MPa) and the

yield stress of steel is taken as 36 ksi (253.1 MPa). Other constraints are the

120 in
(304.8 cm)

(17)

(10)

(6)

(8)

(6)

(2)

Element and node
numbering system

(4)
(5)

(1)

1 11

12
13

15

Typical Story

(7)

(3)

17
18

7

8

34
9

14

10
16

265

(2)

(14)

(18)

(13)

(9)

(5)

(1)

240 in
(609.6 cm)

60 in
(152.4 cm)

60 in
(152.4 cm)

60 in
(152.4 cm)

60 in
(152.4 cm)

120 in
(304.8 cm)

Y

Z
X

X

Fig. 7.14 Schematic of a seventy-two bar spatial truss

220 7 Colliding Bodies Optimization

Table 7.12 Comparison of CBO optimized designs with literature in the 72-bar spatial truss (in2)

Element group

Optimal cross-sectional areas (in2)

Erbatur

et al.

GA [23]

Camp

et al.

ACO [24]

Perez

et al.

PSO [25]

Camp

BB–BC

[26]

Kaveh

et al.

RO [19]

Present work

[2]

1–4 1.755 1.948 1.7427 1.8577 1.8365 1.9028

5–12 00.505 0.508 0.5185 0.5059 0.5021 0.5180

13–16 0.105 0.101 0.1000 0.1000 0.1000 0.1001

17–18 0.155 0.102 0.1000 0.1000 0.1004 0.1003

19–22 1.155 1.303 1.3079 1.2476 1.2522 1.2787

23–30 0.585 0.511 0.5193 0.5269 0.5033 0.5074

31–34 0.100 0.101 0.1000 0.1000 0.1002 0.1003

35–36 0.100 0.100 0.1000 0.1012 0.1001 0.1003

37–40 0.460 0.561 0.5142 0.5209 0.5730 0.5240

41–48 0.530 0.492 0.5464 0.5172 0.5499 0.5150

49–52 0.120 0.1 0.1000 0.1004 0.1004 0.1002

53–54 0.165 0.107 0.1095 0.1005 0.1001 0.1015

55–58 0.155 0.156 0.1615 0.1565 0.1576 0.1564

59–66 0.535 0.550 0.5092 0.5507 0.5222 0.5494

67–70 0.480 0.390 0.4967 0.3922 0.4356 0.4029

71–72 0.520 0.592 0.5619 0.5922 0.5971 0.5504

Best weight (Ib) 385.76 380.24 381.91 379.85 380.458 379.6943

Average weight (Ib) N/A 383.16 N/A 382.08 382.553 379.8961

Std dev N/A 3.66 N/A 1.912 1.221 0.0791

No. of analyses N/A 18,500 N/A 19,621 19,084 15,600

300

700

1100

1500

1900

2300

0 50 100 150 200 250 300 350 400

W
ei

gh
t

(Ib
)

Itera�on

Fig. 7.15 The convergence diagram of the CBO algorithm for the 72-bar spatial truss [2]

7.3 CBO for Optimum Design of Truss Structures with Continuous Variables 221

limitations of nodal displacements which should be no more than 8.0 cm (3.15 in) in

all directions.

Table 7.13 lists the optimal values of the 32 size variables obtained by the

present algorithm. Figure 7.18 shows the convergence diagrams for the utilized

algorithms. Figure 7.19 shows the allowable and existing stress ratio and displace-

ment values of the CBO. Here, the number of structural analyses is taken as 20,000.

The maximum values of displacements in the x-, y- and z-directions are 8 cm,

7.61 cm and 2.15 cm, respectively. The maximum stress ratio is 0.47 %.

7.3.2.4 A 52-Bar Dome-Like Truss

Figure 7.20 shows the initial topology and the element numbering of a 52-bar

dome-like space truss. This example has been investigated by Lingyun et al. [29],

Gomes [30] utilized the NHGA and PSO algorithms. This has also been investi-

gated by Kaveh and Zolghadr [31] using the standard CSS. This example is

optimized for shape and configuration. The space truss has 52 bars, and

non-structural masses of m ¼ 50 kg are added to the free nodes. The material

density is 7,800 kg/m3 and the modulus of elasticity is 210, 000MPa. The structural

members of this truss are categorized into eight groups, where all members in a

group share the same material and cross-sectional properties. Table 7.14 shows

each element group by member numbers. The range of the cross-sectional areas

varies from 1 to 10 cm2. The shape optimization is performed taking into account

that the symmetry is preserved in the process of design. Each movable node is

allowed to vary �2 m. There are two constraints in the first two natural frequencies

so that ω1 � 15.916 HZ and ω2 � 28.648 HZ. This example is considered to be a

Fig. 7.16 Comparison of the allowable and existing stresses in the elements of the 72-bar truss

structure [2]

222 7 Colliding Bodies Optimization

truss optimization problem with two natural frequency constraints and 13 design

variables (five shape variables plus eight size variables).

Table 7.15 compares the cross section, best weight, mean weight and standard

deviation of 20 independent runs of CBO with the results of other researches. It is

evident that the CBO is better than in term of best weight of the results. Table 7.16

shows the natural frequencies of optimized structure obtained by different authors

in the literature and the results obtained by the present algorithm. Figure 7.21

provides the convergence rates of the best result founded by the CBO.

Fig. 7.17 Schematic of a

582-bar tower truss. (a) 3D
view, (b) side view, and (c)
top view

7.3 CBO for Optimum Design of Truss Structures with Continuous Variables 223

7.3.2.5 The Model of Burro Creek Bridge

The last example is the sizing optimization of the planar bridge shown in Fig. 7.22a.

This example has been first investigated byMakiabadi et al. [32] using the teaching-

learning-based optimization algorithm. This bridge is 680 ft long and 155 ft high

truss of the main span. Also, both upper and lower chords shapes are quadratic

parabola. Because of symmetry of this truss, one can analysis half of the structure,

Fig. 7.22b. The element groups and applied equivalent centralized loads are shown

in Fig. 7.22b. The modulus of elasticity of material is 4.2 � 109 lb/ft2, Fy is taken

Table 7.13 Optimum design cross-sections for the 582-bar tower truss

Element groups

Present work [2]

Element groups

Present work [2]

Area (cm2) Area (cm2)

1 20.5526 17 155.6601

2 162.7709 18 21.4951

3 24.8562 19 25.1163

4 122.7462 20 94.0228

5 21.6756 21 20.8041

6 21.4751 22 21.223

7 110.8568 23 53.5946

8 20.9355 24 20.628

9 23.1792 25 21.5057

10 109.6085 26 26.2735

11 21.2932 27 20.6069

12 156.2254 28 21.5076

13 159.3948 29 24.1394

14 107.3678 30 20.2735

15 171.915 31 21.1888

16 31.5471 32 29.6669

Volume (m3) 16.1520

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400

vo
lu

m
e

(m
3)

Itera�on

Fig. 7.18 The convergence diagram of the CBO for 582-bar tower truss [2]

224 7 Colliding Bodies Optimization

as 72.0 � 105 lb/ft2 and the density of material is 495 lb/ft3. For this example,

allowable tensile and compressive stresses are considered according to AISC ASD

(1989) [20]. According to Australian Bridge Code [33], the allowable displacement

is 0.85 ft.

Three design cases are studied according to three different groups of variables

including 4, 8 and 12 variables in the design. For three cases, the size variables are

chosen from 0.2 in2 to 5.0 in2. Table 7.17 shows the full list of three different groups

of variables used in the problem.

Table 7.18 compares the results obtained of the CBO with those of the TLS

algorithm. The optimum weight of the CBO are 299,756.7, 269,839.5 and

253,871.3 Ib, while these are 368,598.1, 315,885.7, and 298,699.9 for Case I, II

and III, respectively. It can be seen that the number of analyses is much less than

that of TLS algorithm. Figure 7.23 provides a comparison of the convergence

diagrams of the CBO for three cases.

7.3.3 Discussion

CBO utilizes simple formulation to find minimum of functions and does not depend

on any internal parameter. Also, the formulation of CBO algorithm does not use the

Fig. 7.19 Comparison of the allowable and existing constraints for the 582-bar truss using the

DHPSACO [2]. (a) Stress ratio, (b) displacement in the z- direction, (c) displacement in the

y-direction, (d) displacement in the x-direction

7.3 CBO for Optimum Design of Truss Structures with Continuous Variables 225

Fig. 7.20 Schematic of the

52-bar space truss. (a) Top
view and (b) side view

Table 7.14 Element

grouping
Group number Elements

1 1–4

2 5–8

3 9–16

4 17–20

5 21–28

6 29–36

7 37–44

8 45–52

226 7 Colliding Bodies Optimization

Table 7.15 Cross-sectional areas and nodal coordinates obtained by different researchers for the

52-bar space truss

Variable Initial

Lingyun et al.

GA [29]

Gomes

PSO [30]

Kaveh et al.

CSS [31] Present work [2]

ZA (m) 6.000 5.8851 5.5344 5.2716 5.6523

XB (m) 2.000 1.7623 2.0885 1.5909 1.9665

ZB (m) 5.700 4.4091 3.9283 3.7039 3.7378

XF (m) 4.000 3.4406 4.0255 3.5595 3.7620

ZF (m) 4.500 3.1874 2.4575 2.5757 2.5741

A1 (cm
2) 2.0 1.0000 0.3696 1.0464 1.0009

A2 (cm
2) 2.0 2.1417 4.1912 1.7295 1.3326

A3 (cm
2) 2.0 1.4858 1.5123 1.6507 1.3751

A4 (cm
2) 2.0 1.4018 1.5620 1.5059 1.6327

A5 (cm
2) 2.0 1.9110 1.9154 1.7210 1.5521

A6 (cm
2) 2.0 1.0109 1.1315 1.0020 1.0000

A7 (cm
2) 2.0 1.4693 1.8233 1.7415 1.6071

A8 (cm
2) 2.0 2.1411 1.0904 1.2555 1.3354

Best weight (kg) 338.69 236.046 228.381 205.237 197.962

Average weight (kg) – – 234.3 213.101 206.858

Std dev – – 5.22 7.391 5.750

No. of analyses – – 11,270 4,000 4,000

Table 7.16 Natural frequencies (HZ) of the optimized 52-bar planar truss

Frequency number Initial

Lingyun et al.

GA [29]

Gomes

PSO [30]

Kaveh et al.

CSS [31] Present work [2]

1 22.69 12.81 12.751 9.246 10.2404

2 25.17 28.65 28.649 28.648 28.6482

3 25.17 28.65 28.649 28.699 28.6504

4 31.52 29.54 28.803 28.735 28.7117

5 33.80 30.24 29.230 29.223 29.2045

100

200

300

400

500

600

0 25 50 75 100 125 150 175 200

W
ei

gh
t

(k
g)

Itera�on

Fig. 7.21 Convergence

history for the 52-bar truss

[2]

7.3 CBO for Optimum Design of Truss Structures with Continuous Variables 227

memory for saving the best-so-far solution (i.e. the best position of agents from the

previous iterations). By defining the coefficient of restitution (COR), a good

balance between the global and local search is achieved in CBO. The proposed

approach performs well in several test problems both in terms of the number of

fitness function evaluations and in terms of the quality of the solutions. The results

are compared to those generated with other techniques reported in the literature.

66

69 67

68 64 60

65
63 61

58 54
50

57 55 53
51 49

48

47 45

46
42

43

44

41

38

39

40

37

34

35

36

33

30

31

32

29

26

27

28

25

22

23

24

21

18

19

20

17

14

15

16

13

10

11

12

9

6

7

8

5

3

4

1

2
2P

P

P

P

P

P

P
P

34ºc20´

36´

99´

20´

P

52
56

59

62

a

b

Fig. 7.22 (a) Schematic of the Burro Creek Bridge. (b) finite element nodel and element

numbering of Burro Creek Bridge

228 7 Colliding Bodies Optimization

T
a
b
le

7.
17

T
h
re
e
d
if
fe
re
n
t
d
es
ig
n
v
ar
ia
b
le
s
fo
r
th
e
B
u
rr
o
C
re
ek

B
ri
d
g
e

D
es
ig
n
v
ar
ia
b
le
s

M
em

b
er

n
u
m
b
er

C
as
e
I
(4

v
ar
ia
b
le
s)

C
as
e
II
(8

v
ar
ia
b
le
s)

C
as
e
II
I
(1
2
v
ar
ia
b
le
s)

1
6
7
,6
3
,5
9
,5
5
,5
1
,4
7
,4
3
,3
9
,3
5
,3
1
,2
7
,2
3
,1
9
,1
5
,1
1
,7
,3

6
7
,6
3
,5
9
,5
5
,5
1
,4
7
,4
3
,3
9
,3
5
,3
1
,2
7

6
7
,6
3
,5
9
,5
5
,5
1
,4
7
,4
3

2
6
6
,6
2
,5
8
,5
4
,5
0
,4
6
,4
2
,3
8
,3
4
,3
0
,2
6
,2
2
,1
8
,1
4
,1
0
,6
,2

6
6
,6
2
,5
8
,5
4
,5
0
,4
6
,4
2
,3
8
,3
4
,,
3
0
,2
6

6
6
,6
2
,5
8
,5
4
,5
0
,4
6
,4
2

3
6
9
,6
5
,6
1
,5
7
,5
3
,4
9
,4
5
,4
1
,3
7
,3
3
,2
9
,2
5
,2
1
,1
7
,1
3
,9
,5
,1

6
9
,6
5
,6
1
,5
7
,5
3
,4
9
,4
5
,4
1
,3
7
,3
3
,2
9

6
9
,6
5
,6
1
,5
7
,5
3
,4
9
,4
5

4
6
8
,6
4
,6
0
,5
6
,5
2
,4
8
,4
4
,4
0
,3
6
,3
2
,2
8
,2
4
,2
0
,1
6
,1
2
,8
,4

6
8
,6
4
,6
0
,5
6
,5
2
,4
8
,4
4
,4
0
,3
6
,3
2
,2
8

6
8
,6
4
,6
0
,5
6
,5
2
,4
8
,4
4

5
2
3
,1
9
,1
5
,1
1
,7
,3

3
9
,3
5
,3
1
,2
7
,2
3
,1
9

6
2
2
,1
8
,1
4
,1
0
,6
,2

3
8
,3
4
,3
0
,2
6
,2
2
,1
8

7
2
5
,2
1
,1
7
,1
3
,9
,5
,1

4
1
,3
7
,3
3
,2
9
,2
5
,2
1

8
2
4
,2
0
,1
6
,1
2
,8
,4

4
0
,3
6
,3
2
,2
8
,2
4
,2
0

9
1
5
,1
1
,7
,3

1
0

1
4
,1
0
,6
,2

1
1

1
7
,1
3
,9
,5
,1

1
2

1
6
,1
2
,8
,4

7.3 CBO for Optimum Design of Truss Structures with Continuous Variables 229

References

1. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method.

Comput Struct (in press)

2. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization method for optimum design of

truss structures with continuous variables. Adv Eng Softw 70:1–12

3. Tolman RC (1979) The principles of statistical mechanics. Clarendon Press, Oxford, Reissued

4. Tsoulos IG (2008) Modifications of real code genetic algorithm for global optimization. Appl

Math Comput 203:598–607

5. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization

problems. Comput Ind 41:113–127

6. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for

constrained engineering design problem. Eng Appl Artif Intell 20:89–99

Table 7.18 Comparison of CBO optimized cross sectional areas (in2) with those of TLS for the

Burro Creek Bridge

Design variables

Maktobi et al.

TLS [32] Present work [2]

Case I Case II Case III Case I Case II Case III

1 0.20000 0.2000 0.20000 0.20000 0.20000 0.20010

2 0.39202 0.46247 0.49843 0.35830 0.46532 0.43580

3 0.41654 0.22233 0.20000 0.20000 0.20007 0.20020

4 0.85487 0.57067 0.39476 0.78100 0.48657 0.32630

5 0.20012 0.20000 0.20000 0.20000

6 0.31227 0.42170 0.20004 0.27960

7 0.42791 0.25346 0.20001 0.20010

8 0.84160 0.63739 0.81310 0.70410

9 0.20000 0.20000

10 0.27992 0.20010

11 0.43354 0.20000

12 0.83483 0.74470

Best weight (Ib) 368,598.1 315,885.7 298,699.9 299,756.7 269,839.5 253,871.3

Number of analyses 15,000 35,000 50,000 8,000 8,000 8,000

200000

600000

1000000

1400000

1800000

0 50 100 150 200 250 300 350 400

W
ei

gh
t (

Ib
)

Itera�on

Case I

Case II

Case III

Fig. 7.23 Comparison of

the convergence rates

between three different

cases for the Burro Creek

Bridge [2]

230 7 Colliding Bodies Optimization

7. Montes EM, Coello CAC (2008) An empirical study about the usefulness of evolution

strategies to solve constrained optimization problems. Int J Gen Syst 37:443–473

8. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search.

Acta Mech 213:267–289

9. Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using

geometric programming. ASME J Eng Ind Ser B 98:1021–1025

10. Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29:2013–2015

11. Coello CAC, Montes EM (1992) Constraint-handling in genetic algorithms through the use of

dominance-based tournament. IEEE Trans Reliab 41(4):576–582

12. Sandgren E (1988) Nonlinear integer and discrete programming in mechanical design. In:

Proceedings of the ASME design technology conference, Kissimine, FL, pp 95–105

13. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed

integer discrete continuous optimization and its applications to mechanical design. Trans

ASME J Mech Des 116:318–320

14. Deb K, Gene AS (1997) A robust optimal design technique for mechanical component design.

In: Michalewicz Z, Dasgupta D (eds) Evolutionary algorithms in engineering applications.

Springer, Berlin, pp 497–514

15. Belegundu AD (1982) A study of mathematical programming methods for structural optimi-

zation. Ph.D. thesis, Department of Civil and Environmental Engineering, University of Iowa,

Iowa City, IA

16. Arora JS (1989) Introduction to optimum design. McGraw-Hill, New York, NY

17. Soh CK, Yang J (1996) Fuzzy controlled genetic algorithm search for shape optimization.

J Comput Civil Eng ASCE 10:143–150

18. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search

algorithm. Comput Struct 82:781–798

19. Kaveh A, Khayatazad M (2012) A novel meta-heuristic method: ray optimization. Comput

Struct 112–113:283–294

20. American Institute of Steel Construction (AISC) (1989) Manual of steel construction allow-

able stress design, 9th edn. American Institute of Steel Construction (AISC), Chicago, IL

21. Rajeev S, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algo-

rithms. J Struct Eng ASCE 118:1233–1250

22. Schutte JJ, Groenwold AA (2003) Sizing design of truss structures using particle swarms.

Struct Multidiscip Optim 25:261–269

23. Erbatur F, Hasançebi O, Tütüncü I, Kiliç H (2000) Optimal design of planar and space

structures with genetic algorithms. Comput Struct 75:209–224

24. Camp CV, Bichon J (2004) Design of space trusses using ant colony optimization. J Struct Eng

ASCE 130:741–751

25. Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization.

Comput Struct 85:1579–1588

26. Camp CV (2007) Design of space trusses using Big Bang–Big Crunch optimization. J Struct

Eng ASCE 133:999–1008

27. Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures

with discrete variables. J Construct Steel Res 65:1558–1568

28. Hasançebi O, Çarbas S, Dogan E, Erdal F, Saka MP (2009) Performance evaluation of

metaheuristic search techniques in the optimum design of real size pin jointed structures.

Comput Struct 87:284–302

29. Lingyun W, Mei Z, Guangming W, Guang M (2005) Truss optimization on shape and sizing

with frequency constraints based on genetic algorithm. J Comput Mech 25:361–368

30. Gomes MH (2011) Truss optimization with dynamic constraints using a particle swarm

algorithm. Expert Syst Appl 38:957–968

31. Kaveh A, Zolghadr A (2011) Shape and size optimization of truss structures with frequency

constraints using enhanced charged system search algorithm. Asian J Civil Eng 12:487–509

References 231

32. Makiabadi MH, Baghlani A, Rahnema H, Hadianfard MA (2013) Optimal design of truss

bridges using teaching-learning-base optimization algorithm. Int J Optim Civil Eng 3

(3):499–510

33. AustRoads. 92 (1992) Austroads bridge design code. Australasian Railway Association, Surry

Hills, NSW

232 7 Colliding Bodies Optimization

Chapter 8

Ray Optimization Algorithm

8.1 Introduction

In this chapter a newly developed metaheuristic method, so-called Ray Optimiza-

tion, is presented. Similar to other multi-agent methods, Ray Optimization has a

number of particles consisting of the variables of the problem. These agents are

considered as rays of light. Based on the Snell’s light refraction law when light

travels from a lighter medium to a darker medium, it refracts and its direction

changes. This behavior helps the agents to explore the search space in early stages

of the optimization process and to make them converge in the final stages. This law

is the main tool of the Ray Optimization algorithm. This chapter consists of three

parts.

In the first part Ray Optimization (RO) algorithm is developed and applied to

some benchmark functions and engineering problems [1].

In the second part, RO is employed for size and shape optimization of truss

structures. The goal function of the present optimization method is the minimiza-

tion of truss weight under the required constraints [2].

In the third part, an improved ray optimization (IRO) algorithm is presented.

This technique employs a new approach for generating solution vectors and mod-

ifies the procedure which returns the violated agents into the feasible search space.

The IRO algorithm applied to some benchmark mathematical optimization prob-

lems and truss structure examples and its numerical results are compared to those of

the standard RO and some well-known metaheuristic algorithms [3].

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_8, © Springer International Publishing Switzerland 2014

233

8.2 Ray Optimization for Continuous Variables

The present method is inspired by transition of ray from one medium to another

from physics. Here the transition of ray is utilized for finding the global or near-

global solution. This algorithm is called Ray Optimization (RO) and uses the

Snell’s refraction law of the light.

8.2.1 Definitions and Concepts from Ray Theory

The contents of this section mainly follow the definitions and concepts presented

in [4].

Certain transparent materials so-called dielectric, refract the light. As the light

travels through these materials, its path is changed according to the Snell’s refrac-

tion law. Each transparent material has an index of refraction. Showing the index of

the refraction of the lighter material by nd, and denoting the index of the refraction

of the darker material by nt, the Snell’s law can be expressed as:

nd: sin θð Þ ¼ nt: sin ϕð Þ: ð8:1Þ

Where, θ and ϕ are the angles between the normal of two surfaces, n, with
incoming ray vector and the angle between the normal with the refracted ray vector,

respectively, as shown in Fig. 8.1. Having the direction of incoming ray vector and

the index of refraction of lighter and darker mediums, one can find the direction of

refracted ray vector t.
The computation for finding t is rather lengthy, but not difficult. To help us along

the way, we use Fig. 8.1, where the vectors d, n and b are unit vectors. This makes

the formula slightly less complicated. The steps for finding t in a two dimensional

space are outlined in the following:

1. We express t in terms of n and b.

Let tn be the component of t along n and tb be the component of t along b. Then,
since t is a unit vector, we have

cos ϕð Þ ¼ tnk k
tk k ¼ tnk k: ð8:2Þ

Similarly,

sin ϕð Þ ¼ tbk k: ð8:3Þ

Now

234 8 Ray Optimization Algorithm

tn ¼ � tnk k:n, ð8:4Þ

and

tb ¼ tbk k:b: ð8:5Þ

Therefore,

t ¼ � cos ϕð Þ:nþ sin ϕð Þ:b: ð8:6Þ

2. Express b in terms of the known quantities using the fact that b is the unit length
vector parallel to the projection of d onto the perpendicular to n. Let dn be the

component of d along n and db be the component of d along b, the direction

perpendicular to n. Then

d ¼ dn þ db: ð8:7Þ

Thus

db ¼ d� dn ¼ d� d:nð Þ:n: ð8:8Þ

Also, since d is a unit vector, we have

sin θð Þ ¼ dbk k
dk k ¼ dbk k: ð8:9Þ

Thus

Fig. 8.1 Incident and

refracted rays and their

specifications [1]

8.2 Ray Optimization for Continuous Variables 235

b ¼ db
dbk k ¼ d� d:nð Þ:n

sin θð Þ : ð8:10Þ

3. Using (8.1), one can express everything in terms of n, d, nd and nt.

Therefore

t ¼ � cos ϕð Þ:nþ sin
�
ϕ
�
:b ¼ � cos

�
ϕ
�
:nþ sin

�
ϕ
�
:
d� d:nð Þ:n

sin θð Þ ¼

� cos ϕð Þ:nþ nd
nt

:
�
d� �

d:n
�
:n
� ð8:11Þ

Now we express cos(ϕ) in terms of known quantities. Using the identity, we

have

cos ϕð Þ ¼
ffi
1� sin 2 ϕð Þ

p
, ð8:12Þ

and employing Eq. (8.1), we obtain:

cos ϕð Þ ¼
ffi
1� n2d

n2t
: sin 2 θð Þ

s
: ð8:13Þ

Finally, we have

t ¼ �n:

ffi
1� n2d

n2t
: sin 2 θð Þ

s
þ nd

nt
: d� d:nð Þ:nð Þ ð8:14Þ

Here, t is a normalized vector.

In tracing a ray in a 2-dimesional space, d, t, n were placed in z¼ 0 plane. In a

3-dimensional space, it is clear that one can pass a plane through two vectors like n
and d, which intersect each other at one point. Thus the ray tracing in 3-dimensional

spaces is a special state of ray tracing in 2-dimensional spaces which occurs in a

plane with an arbitrary orientation. Now if one can find two normalized vectors that

are perpendicular to each other, like i* and j*, then n and d can be rewritten in terms

of these unit vectors. Finally, after finding t in the new coordinate system, it can be

rearranged based on the primary coordinate system. One of these new unit compo-

nents can be n as i*. The other one can be found by the following relationship:

n:d ¼ nk k: dk k: cos ωð Þ ¼ cos ωð Þ ð8:15Þ

Where ω is the angle between n and d. Now if

236 8 Ray Optimization Algorithm

n:d ¼ 0 ð8:16Þ

Then ω¼ π/2 and d will be j*, and if

0 < n:d � 1 ð8:17Þ

then the direction of j* will be obtained by n� d
n:d

� �
, since

n: n� d

n:d

� �
¼ n:n� n:d

n:d
¼ 1� 1 ¼ 0 ð8:18Þ

And finally

j� ¼ n� d
n:d

� �
norm n� d

n:d

� � ð8:19Þ

Where norm is function in MATLAB that provides the magnitude of a vector.

Similarly if

�1 � n:d < 0 ð8:20Þ

j* can be obtained by:

j� ¼ nþ d
�n:d

� �
norm nþ d

�n:d

� � : ð8:21Þ

Now, in the new form, d and n are stated as:

n� ¼ 1; 0ð Þ, ð8:22Þ

And

d� ¼ d:i�, d:j�ð Þ: ð8:23Þ

Therefore after calculating t*¼ (t1
*, t2

*) in a two dimensional space, t in a three

dimensional space is obtained as

t ¼ t�1:i
� þ t�2:j

�: ð8:24Þ

It should be mentioned that for avoiding singularity in MATLAB, some changes

are considered as shown in Table 8.1.

8.2 Ray Optimization for Continuous Variables 237

8.2.2 Ray Optimization Method

8.2.2.1 Scattering and Evaluation Step

Like every other metaheuristic method, the RO has also a number of agents

containing the variables of the design problem. As it was mentioned before, the

ray tracing which is the main base of the RO was addressed in two and three

dimensional spaces but it is necessary to introduce a procedure for performing the

steps of the algorithm in higher dimensional spaces.

Suppose a solution vector has four design variables. In the first step, the goal

function for this solution vector is determined. Now, this solution vector must be

moved to a new position in the search space based on the RO algorithm. To achieve

this, the solution vector is divided into two groups each group having two members

and then the corresponding agents are moved to their new positions. In other word,

we move the first group to the new position based on a 2D space and also the second

group is moved to the new position in another 2D space. Now, we have a new

solution vector with four variables which is ready for determining the goal function.

If a solution vector for another problem has seven variables, then we divide it

into two groups of two variables and one group of three variables, and repeat the

above procedure in two 2D spaces and one 3D space for the movement. After the

movements, we join them together to have a unit solution vector. For any other

number of variables the grouping into two and three elements can be performed.

Therefore by using this approach, the problem of higher dimensions is dealt with

and one can return to the first step of the algorithm. In this step, the agents must be

scattered in the search space, and this requirement is provided by:

Xij ¼ Xj,min þ rand: Xj,max � Xj,min

� � ð8:25Þ

Where Xij is the jth variable of the ith agent. Xj,min and Xj,max are the minimum

and maximum limits of the jth variable, and rand is a random number with its range

being between 0 and 1. At the end of this step, after the evaluation of the goal

function for each agent, the position of the best agent is saved as the global best and

the position of each agent is saved as its local best.

Table 8.1 The component of the new coordinate system

� 0.05� n. d� 0.05 0.05� n. d� 1 � 1� n. d�� 0.05

i* n n n

j* d
j� ¼ n� d

n:dð Þ
norm n� d

n:dð Þ j� ¼ nþ d
�n:dð Þ

norm nþ d
�n:dð Þ

238 8 Ray Optimization Algorithm

8.2.2.2 Movement Vector and Motion Refinement Step

For each of the above mentioned agents, a groups of movement vectors should be

assigned according to their division, and if the agent has a one 3-variable group and

two 2-variable groups, it must have a one 3-variable movement vector group and

two 2-variable movement vector groups, respectively. For the first movement, these

vectors are obtained by:

vij ¼ �1þ 2:rand: ð8:26Þ

Where vij is the jth component of the ith agent and it may belong to a 2-variable

or a 3-variable group. After finding the components of each 2 or 3-variable group,

these must be converted to normalized vectors. The reason of this action will be

presented in the subsequent steps. Now by adding the movement vector of each

agent, they move to their new positions, but there is a possibility of boundary

violation, so they must be refined. This objective is fulfilled by the following

procedure:

If an agent violates a boundary, it intersects the boundary at a specified point,

because of having definite movement vector. Now using this point and initial

position of the agent, one can make a new vector whose direction is the same as

the prior movement vector and its length is a multiple of the distance which is

between the initial position and the boundary intersection. This multiple should

naturally be less than 1. Since the best answer, especially in engineering problems,

is close to the boundaries [5], it is locked on 0.9. During the implementation of this

stage, it is found that when a movement vector is very close to a unit

one-component vector such (1,0) and (0,1) for 2-dimensional spaces and (1,0,0) ,

(0,1,0) and (0,0,1) for 3-dimensional spaces, it causes singularity in the process of

finding the intersection point at the boundary. For solving this problem, after

normalizing the movement vector, if one component of this vector is equal or

greater than 0.95, the other component(s) are not considered and upon this solitary

component, the new movement vector is made.

After motion refinement and evaluation of the goal function, again the so-far best

agent at this stage is selected as the global best and for each agent, the so-far best

position by this stage, is selected as its local best.

8.2.2.3 Origin Making and Convergent Step

Now each agent must be moved to its new position, and first the point to which each

particle moves must be determined. This point is named origin and it is specified by:

O k
i ¼ iteþ kð Þ:GBþ ite� kð Þ:LBi

2:ite
ð8:27Þ

Where Oi
k is the origin of ith agent for the kth iteration, ite is the total number of

8.2 Ray Optimization for Continuous Variables 239

iteration for the optimization process, and GB and LBi are the global best and local

best of the ith agent, respectively. As Eq. (8.27) implies, at the beginning of

iterations, the origin is approximately at the middle of the local best and global

best. Thus exploration which is an important parameter in optimization is achieved.

By progressing the iterations there is a balance between exploration and second

important parameter, known as the exploitation. By passing the mid steps of

iterations, the origin will be close to global best and the exploitation is empowered.

As it was mentioned before, the ray tracing is used for the movement and

convergent step. Each ray of light has a normalized vector with which passes the

medium. In the optimization, the movement vector is a positive multiple of this

vector. When the ray comes to a new darker medium, the direction of its vector will

be converted upon its angle between the initial direction and normal of surfaces of

mediums and the ratio of refraction index. After refraction, the new direction will

be closer to the normal than the initial direction, so one can say it converges to the

normal. Therefore if in the process of optimization, the normal is selected as a

vector whose origin is O and its end is the current position of agent, it should be

anticipated that the agent will converge to O. With refinement of O during the

optimization, the agents approach to best result.

In order to show how the agents converge the to a point, consider an agent with

arbitrary position and movement vector in the two dimensional space, like (4,5) and

(0.707, �0.707), respectively. If this particle wants to move to a predefined point

like the origin, it can be moved toward this point as illustrated in Fig. 8.2. It should

be mentioned that, some restrictions are imposed for this convergence. These

consist of a fixed ratio 0.6 as the index refraction and 200 times as the number of

iterations. In order to show how the ratio of the index refraction affects the search

procedure, see Fig. 8.3 where the above problem is solved with different values of

the index refraction ratios. As can be seen, when the index refraction ratio is a

number close to 1, the exploration is increased, but by decreasing this value the

convergence occurs rapidly.

Now, the direction of the new movement vector is determined. According to

(8.14), it is a normalized vector and it requires a logical coefficient. Thus the final

form of the movement vector after finding the new direction is given by:

Vi, l ¼ Vi, l
0
:norm Xi, l �Oi, lð Þ: ð8:28Þ

Where Vi,l
’, Xi,l , Oi,l , and Vi,l are the normalized movement vector, current

position of the agent, the origin, and refined movement vector of the ith agent,

respectively, that belong to lth group.

In some cases it is possible that for an agent, Oi,l and its current position are the

same, so the direction of normal cannot be obtained. This problem occurs when the

agent is the so-far best one. Therefore, it is logical to permit it to move in the same

direction because of finding a more adequate answer, but the length of this vector

should be changed according to:

240 8 Ray Optimization Algorithm

Vi, l
kþ1 ¼ Vi, l

k

norm Vi, l
k

� � :rand:0:001 ð8:29Þ

In this equation, Vi,l
k is the movement vector of the kth iteration that belongs to

lth group of the ith agent, and Vi,l
k+1 is the movement vector of the (k+ 1)th

iteration. Also, for a fine and stochastic search, the initial normalized vector is

multiplied by 0.001 and a random number between 0 and 1 is utilized.

One of the important features of each metaheuristic algorithm is that, it should

have a stochastic nature to find the best answer. Here, this feature is added to the RO

by adding a random change to the movement vector. In other word, there is a

Fig. 8.2 The movement of

an agent to the origin [1]

Fig. 8.3 Ratio of the index

refraction of the magnet

line, brown line and blue

line are 0.5, 0.65 and 0.85,

respectively [1]

8.2 Ray Optimization for Continuous Variables 241

possibility like stoch that specifies whether a movement vector must be changed or

not. If this occurs, a new movement vector will be made considered as

V
kþ1ð Þ
ijl ¼ �1þ 2:rand, ð8:30Þ

where V
ðkþ 1Þ
ijl is the jth component of the lth group that belongs to the ith agent in (k

+ 1)th iteration. However, the length of this vector should be refined. Therefore the
following relationship is considered:

Vil
kþ1 ¼ Vil

kþ1ð Þ0

norm Vil
kþ1ð Þ0

� � :
a

d
:rand ð8:31Þ

Here, a is calculated by the following relationship:

a ¼
ffiXn
i¼1

Xi,max � Xi,minð Þ2
s

n ¼ 2 for two variable groups

3 for three variable groups

	

ð8:32Þ

Where Xi,max and Xi,min are the maximum and minimum limits of variables that

belongs to ith component of the movement vector, and d is a number that divides

a into smaller segements for effective search. It is found that if d and stoch are

chosen as 7.5 and 0.35, the best result for optimization process will be obtained.

8.2.2.4 Finish or Redoing Step

By approaching to a pre-specific criterion, the process of optimization ceases. Some

criteria are considered as

• Maximum number of iteration: by approaching to a predefined number of

iteration, the process of optimization will be terminated.

• Number of ineffective iteration: if by passing a predefined number of iteration,

there is no improvement in the goal function, the process of optimization will be

ceased.

• Approaching to a minimum goal function error: sometimes the best answer of a

goal function is specified, like mathematical benchmarks, so if an answer is

found with a predefined error compared to real answer, the process of optimi-

zation will be terminated.

However if one of these criteria is not fulfilled, the process of optimization will

continue and with new movement vector, the agents will move to their new

positions. This cycle is continued until a predefined criterion is fulfilled.

242 8 Ray Optimization Algorithm

The flowchart of the optimization is illustrated in Fig. 8.4. The movement of a

typical agent is shown in Fig. 8.5. As can be seen, in the origin making and

convergent step, because of similar global best position and local best position

that belong to agent 1, this agent moves in the same direction but with a smaller

length. The movement vector for the agent 2 is determined based on the light

refraction law. Finally, for showing the stochastic behavior of RO, agent 3 moves in

a random direction with a controlled length.

8.2.3 Validation of the Ray Optimization

In order to validate the efficiency of the RO, some mathematical examples are

considered from literature. These examples are investigated in Sect. 8.2.3.1. For

further investigation, in Sect. 8.2.3.2, some well-studied engineering design prob-

lems are also studied from the literature.

8.2.3.1 Mathematical Optimization Problems

In order to verifying the efficiency of the RO algorithm, some benchmark functions

chosen from [6] are optimized by this algorithm, Table 8.2. A perspective view and

the corresponding contour lines for these benchmarks are depicted in Figs. 8.6, 8.7,

8.8, and 8.9, where the number of variables is taken as 2. Like any other

Fig. 8.4 The flowchart of the RO [1]

8.2 Ray Optimization for Continuous Variables 243

metaheuristics, considering a large number of agent causes vigorous search, but it

increases the time and cost of the optimization. Also considering a small number of

agents leads to a weak search. Therefore, for optimizing the mathematical prob-

lems, the number of agents is taken as 20. However it should mentioned we used

100 agents for the EXP16, SHEKEL5, SHEKEL7, SHEKEL10. Table 8.3 shows

the result of the optimization by the present approach. In this table, the numbers in

columns specify the average number of function evaluations. In this part for

providing the stochastic behavior of metaheuristic algorithms, the number of

independent runs is chosen as 50. The numbers in the parentheses represent the

ratio of successful runs in which the algorithm has found the global minimum with a

predefined accuracy, which is taken as ε¼ fmin � ffinal¼ 10�4. The absence of the

parentheses shows that the algorithm has been successful in all independent runs.

Fig. 8.5 Schematic view of the agent movement [1]

244 8 Ray Optimization Algorithm

T
a
b
le

8.
2

S
p
ec
ifi
ca
ti
o
n
s
o
f
th
e
b
en
ch
m
ar
k
p
ro
b
le
m
s

F
u
n
ct
io
n
n
am

e
In
te
rv
al

F
u
n
ct
io
n

G
lo
b
al

m
in
im

u
m

A
lu
ffi
-P
en
ti
n
y

X
E
[�

1
0
,1
0
]2

f
Xð
Þ¼

1 4
x4 1

�
1 2
x2 1

þ
1 1
0
x 1

þ
1 4
x2 2

�0
.3
5
2
3
8
6

B
o
h
ac
h
ev
sk
y
1

X
E
[�

1
0
0
,1
0
0
]2

f
Xð
Þ¼

x2 1
þ
2
x2 2

�
3 1
0
co
s
3
π
x 1

ð
Þ�

4 1
0
co
s
4
π
x 2

ð
Þþ

7 1
0

0
.0

B
o
h
ac
h
ev
sk
y
2

X
E
[�

5
0
,5
0
]2

f
Xð
Þ¼

x2 1
þ
2
x2 2

�
3 1
0
co
s
3
π
x 1

ð
Þc

o
s
4
π
x 2

ð
Þþ

3 1
0

0
.0

B
ec
k
er

an
d
la
g
o

X
E
[�

1
0
,1
0
]2

f(
X
)
¼
(|
x 1
|�

5
)2
+
(|
x 2
|�

5
)2

0
.0

B
ra
n
in

0
�
x
2
�
1
5
�5

�
x
1
�
1
0

f
Xð
Þ¼

x 2
�

5
:1

4
π
2
x2 1

þ
5 π
x 1

�
� 2

þ
1
0
1
�

1 8
π

�
� co

s
x 1ð
Þþ

1
0

0
.3
9
7
8
8
7

C
am

el
X
E
[�

5
,5
]2

f
Xð
Þ¼

4
x2 1

�
2
:1
x4 1

þ
1 3
x6 1

þ
x 1
x 2

�
4
x2 2

þ
4
x4 2

�1
.0
3
1
6

C
b
3

X
E
[�

5
,5
]2

f
Xð
Þ¼

2
x2 1

�
1
:0
5
x4 1

þ
1 6
x6 1

þ
x 1
x 2

þ
x2 2

0
.0

C
o
si
n
e
m
ix
tu
re

n
¼
4
,
X
E
[�

1
,1
]n

f
Xð
Þ¼

Xn i¼
1

x2 i
�

1 1
0

Xn i¼
1

co
s
� 5
π
x i
�

�0
.4

D
e
Jo
u
n
g

X
E
[�

5
.1
2
,5
.1
2
]2

f(
X
)
¼
x2 1

+
x2 2

+
x2 3

0
.0

E
x
p
o
n
en
ti
al

n
¼
2
,4
,8
,
X
E
[�

1
,1
]n

f
Xð
Þ¼

�e
x
p
� �

0
:5
Xn i¼

1

x2 i

�
�1

.0

G
o
ld
st
ei
n

A
n
d
p
ri
ce

X
E
[�

2
,2
]2

f
Xð
Þ¼

� 1
þ
� x 1

þ
x 2

þ
1
� 2

� 1
9
�
1
4
x 1

þ
3
x2 1

�
1
4
x 2

þ
6
x 1
x 2

þ
3
x2 2

�
� 3
0
þ
� 2
x 1

�
3
x 2
� 2�

1
8
�
3
2
x 1

�
1
2
x2 1
þ

4
8
x 2

�
3
6
x 1
x 2

þ
2
7
x2 2

�

3
.0

G
ri
ew

an
k

X
E
[�

1
0
0
,1
0
0
]2

f
Xð
Þ¼

1
þ

1
2
0
0

Xn i¼
1

x2 i
�
Y2 i¼

1

co
s

x i
ffiffi ip�
�

0
.0

R
as
tr
ig
in

X
E
[�

1
,1
]2

f
Xð
Þ¼

Xn i¼
1

� x2 i
�

co
s
1
8
x i

ð
Þ�

�2
.0

8.2 Ray Optimization for Continuous Variables 245

The results show that the present algorithm has a higher efficiency than GA and

some of its variants for these benchmark functions.

Fig. 8.6 A perspective view and the related contour lines for some of function when n¼ 2 [1]: (a)
Aluffi-Pentiny, (b) Becker and lago, (c) Bohachevsky 1

246 8 Ray Optimization Algorithm

8.2.3.2 Engineering Design Problems

In this section, two engineering design problems are presented to show the effi-

ciency of the RO. For the sake of simplicity, the penalty approach is used for

constraint handling. In using the penalty function, if the constraints are not violated,

the penalty will be zero; otherwise, the value of the penalty is calculated by dividing

the violation of the allowable limit to the limit itself. It should be mentioned that in

Fig. 8.7 A perspective view and the related contour lines for some of function when n¼ 2 [1]: (a)
Camel, (b) Branin, (c) Bohachevsky 2

8.2 Ray Optimization for Continuous Variables 247

the RO, the use of this type of constraint handling is not a necessity and any other

type of constraint handling approach can be employed.

Fig. 8.8 A perspective view and the related contour lines for some of function when n¼ 2 [1]: (a)
Exponential, (b) Goldstein and price, (c) Cb3

248 8 Ray Optimization Algorithm

A Tension/Compression Spring Design Problem

Belegunda [7] and Arora [8] described this problem for the first time. The goal of

this problem is to minimize the weight of a tension/compression spring subjected to

constraints on shear stress, surge frequency, and minimum deflection as shown in

Fig. 8.10. Here, the design variables are the mean coil diameter D; the wire

diameter d, and the number of active coils. Table 8.4 shows the cost function,

constraints and the bounds of the design space.

Belegunda [7] has solved this problem using eight different mathematical

optimization techniques (only the best results are shown). Also, it has been solved

by Arora [8] using a numerical optimization technique called constraint at the

constant cost. Finally, this problem is solved by RO using 40 agents, and the results

of optimization are shown in Table 8.5. Considering these results, it can be

concluded that the RO performs better than the above-mentioned methods. The

average value and the standard deviation for 50 independents runs are 0.13547 and

0.001159, respectively.

Fig. 8.9 A perspective view and the related contour lines for some of function when n¼ 2 [1]: (a)
Griewank, (b) Rastrigin

8.2 Ray Optimization for Continuous Variables 249

Table 8.3 Performance comparison for the benchmark problems

FUNCTION GEN GEN–S GEN–S–M–LS

Kaveh and

Khayatazad [1]

AP 1,360(0.99) 1,360 1,253 331

Bf1 3,992 3,356 1,615 677

Bf2 20,234 3,373 1,636 582

BL 19,596 2,412 1,436 303

Branin 1,442 1,418 1,257 463

Camel 1,358 1,358 1,300 332

Cb3 9,771 2,045 1,118 262

CM 2,105 2,105 1,539 802

Dejoung 9,900 3,040 1,281 452

EXP2 938 936 807 136

EXP4 3,237 3,237 1,496 382

EXP8 3,237 3,237 1,496 1,287

EXP16 8,061 8,061 1,945 17,236(0.46)

GRIEWANK 18,838(0.91) 3,111(0.91) 1,652(0.99) 1,091(0.98)

RASTRIGIN 1,533(0.97) 1,523(0.97) 1,381 1,013(0.98)

Goldstein and Price 1,478 1,478 1,325 451

SHEKEL5 2,527(0.61) 2,507(0.61) 2,049(0.67) 3,401(0.52)

SHEKEL7 2,567(0.72) 2,500(0.72) 2,032(0.75) 3,459(0.76)

SHEKEL10 2,641(0.71) 2,598(0.71) 2,141(0.76) 4,152(0.66)

TOTAL 114,815(94.26) 49,655(94.31) 28,759(95.63) 36,812(91.36)

Fig. 8.10 A tension/

compression spring

Table 8.4 Specifications of

the tension/compression

spring problem

Cost function f(X)¼ (x3 + 2)x2x
2
1

Constraint functions g1 Xð Þ ¼ 1� x3
2
x3

71785x4
1

� 0

g2 Xð Þ ¼ 4x4
2
�x1x2

12566 x2x
3
1
�x4

1ð Þ þ
1

5108x2
1

� 1 � 0

g3 Xð Þ ¼ 1� 140:45x1
x2
2
x3

� 0

g4 Xð Þ ¼ x1þx2
1:5 � 1 � 0

Variable region 0.05� x1� 2

0.25� x2� 1.3

2� x3� 15

250 8 Ray Optimization Algorithm

A Welded Beam Design Problem

The other well-studied engineering design problem is the welded beam design

problem that is often used as a benchmark problem [9]. The goal is to find the

minimum fabricating cost of the welded beam subjected to constraints on shear

stress (τ), bending stress (σ), bulking load (Pc), end deflection (δ) and side con-

straint. The design variables are h(¼x1), L(¼x2), t(¼x3) and b(¼x4), Fig. 8.11.

Table 8.6 shows the cost function, constraints and the bounds of the design space.

This problem has been solved by Radgsdell and Philips [9] and Deb

[10]. Radgsdell and Philips compared optimal results of different optimization

methods which were mainly based on mathematical optimization algorithms.

These methods are APPROX (Griffith and Stewart’s Successive linear approxima-

tion), DAVID (Deviation-Fletcher-Powell with a penalty function), SIMPLEX

(Simplex method with a penalty function), and RANDOM (Richardson’s random

method) algorithms. Finally, RO solved this problem by using 40 agents in 50 inde-

pendents runs. The results are collected in Table 8.7 indicating that the RO has a

better solution than the above mentioned methods. The mean of the results and the

standard deviation of 50 independent runs are 1.9083 and 0.173744, respectively.

8.3 Ray Optimization for Size and Shape Optimization
of Truss Structures

In this part, Ray Optimization is employed for size and shape optimization of truss

structures. The goal function of the present optimization method is the minimiza-

tion of truss weight under the required constraints.

8.3.1 Formulation

Metaheuristic algorithms have been extensively used for solving the truss optimi-

zation. The mathematical formulation of this optimization problem can be

expressed as:

Table 8.5 Optimum results for the tension/compression spring design

Methods

Optimal design variable

fcostX1(d) X2(D) X3(N)

Belegunda [7] 0.050000 0.315900 14.250000 0.0128334

Arora [8] 0.053396 0.399180 9.185400 0.0127303

Kaveh and Khayatazad [1] 0.051370 0.349096 11.76279 0.0126788

8.3 Ray Optimization for Size and Shape Optimization of Truss Structures 251

Fig. 8.11 A welded beam

system

Table 8.6 Specifications of a welded beam design problem

Cost function f(X)¼ 1.1047x21x2 + 0.04811x3x4(14.0 + x2)

Constraint functions g1(X)¼ τ(X)� τmax� 0

g2(X)¼ σ(X)� σmax� 0

g3(X)¼ x1� x4� 0

g4(X)¼ 0.1047x21 + 0.04811x3x4(14.0 + x2)� 5.0� 0

g5(X)¼ 0.125� x1� 0

g6(X)¼ δ(X)� δmax� 0

g7(X)¼P�Pc(X)� 0

τ Xð Þ ¼
ffi
τ0ð Þ2 þ 2τ0τ00 x2

2R þþ τ00ð Þ2
q

τ
0 ¼ Pffiffi

2
p

x1x2
τ
00 ¼ MR

J

M ¼ P
Lþx

2
2

2

� �
, R ¼

ffi
x2
2

4
þ x1þx3

2

� �2q

J ¼ 2
ffiffiffi
2

p
x1x2

x2
2

12
þ x1þx3

2

� �2h in o

σ Xð Þ ¼ 6PL
x4x23

, δ Xð Þ ¼ 4PL3

Ex4x33

Pc Xð Þc ¼ 4:013E

ffiffiffiffiffiffi
x2
3
x6
4

36

q

L2
1� x3

2L

ffiffiffiffiffi
E
4G

q� �

P¼ 6000lb, L¼ 14in

E¼ 30� 106psi, G¼ 12� 106psi

τmax¼ 13.6� 103psi, σmax¼ 30� 103psi, δmax¼ 0.25in

Variable regions 0.1� x1,4� 2

0.1� x2,3� 10

252 8 Ray Optimization Algorithm

minimize W
�
xf g� ¼

Xn
i¼1

γi:Ai:Li
�
x
�

subject to : δmin � δi � δmax, i ¼ 1, 2, . . . ,m
σmin � σi � σmax, i ¼ 1, 2, . . . , n
σ b
i � σi � 0, i ¼ 1, 2, . . . , ns

Amin � Ai � Amax, i ¼ 1, 2, . . . , ng

ð8:33Þ

whereW({x}) is the weight of the structure; n is the number of members making up

the structure; m is the number of nodes; ns is the number of compression elements;

ng is the number of groups (number of design variables); γ is the material density of

the member i; Li is the length of the member i which depends on the nodal

coordinates; x; Ai is cross-sectional area of the member i chosen between Amin

and Amax; min showing the lower bound and max indicating the upper bound; σi and
δi are the stress and nodal deflection, respectively; σi

b is the allowable buckling

stress in member i when it is in compression.

8.3.2 Design Examples

In this section, three examples are optimized utilizing the new algorithm:

• A 200-bar spatial truss structure;

• A model of First of Forth bridge;

• A 37-bar simply supported truss.

After optimizing these structures, their results are compared to the solution of the

other methods to demonstrate the efficiency of the present method. For the first,

second and third examples 100, 75 and 80 agents are used, respectively. Also, for

these examples, the maximum number of iteration is considered as 400. In order to

asses the effect of the initial solution vector on the final result and because of the

random nature of the algorithm, these examples are independently optimized 20, 30

and 30 times, respectively. For the sake of simplicity, the penalty approach is used

for constraint handling. In using the penalty function, if the constraints are not

Table 8.7 Optimum results for the design of welded beam

Methods

Optimal design variables

fcostX1(h) X2(l) X3(t) X4(b)

Regsdell and Philips [9]

APPROX 0.2444 6.2189 8.2915 0.2444 2.3815

DAVID 0.2434 6.2552 8.2915 0.2444 2.3841

SIMPLEX 0.2792 5.6256 7.7512 0.2796 2.5307

RANDOM 0.4575 4.7313 5.0853 0.6600 4.1185

Deb [10] 0.248900 6.173000 8.178900 0.253300 2.433116

Kaveh and Khayatazad [1] 0.203687 3.528467 9.004233 0.207241 1.735344

8.3 Ray Optimization for Size and Shape Optimization of Truss Structures 253

violated, the penalty will be zero; otherwise the value of the penalty is calculated by

dividing the violation of the allowable limit to the limit itself. It should be

mentioned that in the RO, one does not necessarily need to use this type of

constraint handling and any other type of constraint handling approach can be

employed. All the algorithms, and the direct stiffness method for the analysis of

truss structures are coded in MATLAB.

8.3.2.1 A 200-Bar Planar Truss Structure

The first example considered for size optimization is the 200-bar plane truss

structure, shown in Fig. 8.12. All members are made of steel: the material density

and modulus of elasticity are 0.283 lb/in3 (7,933.410 kg/m3) and 30,000 ksi

(206,000 MPa), respectively. This truss is subjected to constraints only on stress

limitations of �10 ksi (68.95 MPa). There are three loading conditions: (1) 1.0 kip

(4.45 kN) acting in the positive x-direction at nodes 1, 6, 15, 20, 29, 43, 48, 57,

62, and 71; (2) 10 kips (44.5 kN) acting in the negative y-direction at nodes 1, 2,

3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24,. . ., 71, 72, 73, 74, and 75; and
(3) Conditions 1 and 2 acting together. The 200 members of this truss are divided

into 29 groups, as shown in Table 8.8. The minimum cross-sectional area of all

members is 0.1 in2 (0.6452 cm2) and the maximum cross-sectional area is 20 in2

(129.03 cm2).

The RO algorithm found the best weight as 25,193.228 lb after 326 iterations

(32,600 analyses), with the standard deviation being 1,221.146 lb. Table 8.8 com-

pares the optimal results of the PSO, PSOPC, HPSACO [5] and RO. Figure 8.13

shows the existing and allowable element stress values for Cases 1, 2 and 3. As can

be seen, the design controlling factors in this problem are Cases 1 and 2.

8.3.2.2 A Model of the First of Forth Bridge

This example was first analyzed by Gil and Andreu [11] to obtain the optimal sizing

and configuration variables. This structure is 16 m long and 1 m high truss beam of

infinite span. But in this part, for better control on the shape variables, the height of

the truss is changed to 3 m. If there are infinite span, the structure can be modeled as

is shown in Fig. 8.14a. Because of symmetry of this problem, one can analysis half

of the structure, Fig. 8.14b. Notice that it is necessary to adjust the bar cross-section

and the force which lay on the axis of symmetry by considering half of them in the

main structure and loading. In the field of shape optimization, the vertical coordi-

nates of nodes which are free vertically, are the design variables. The origins of

these nodes are those positions which are shown in Fig. 8.14b, and the range of their

variation is in between �140 cm and 140 cm. Thus there are ten variables for shape

optimization. In the field of size optimization, the cross-section of each bar, with

their areas being 0.5 cm2 through 100 cm2 are other design variables. In Fig. 8.14b,

the encircled numbers show the element grouping, and there are 16 groups of

254 8 Ray Optimization Algorithm

element for size optimization. The modulus of elasticity of material is 2.1� 108

kN/m2, the allowable stress value is 25 kN/cm2 and the specific weight of material

is 7.8 ton/m3. The applied forces are self-weight and the loads shown in Fig. 8.14a.

After designing the structure, the best weight of the structure is obtained as

11,215.7 kg and the corresponding cross-sections and coordinates are as provided in

Table 8.9. The standard deviation and average weight for 30 independent runs is

545.5 kg and 11,969.2 kg, respectively. The prior work obtained 7,102 kg as the

optimal weight [11]. Figure 8.15 shows the convergence rate for this structure. The

best results obtained for the PSO and BB–BC are 20,591.9 kg and 37,132.3 kg,

respectively. The standard deviation for 30 independent runs for the latter two

methods are 2,323.7 kg and 1,235.4 kg, respectively. Finally 25,269.3 kg and

40,154.1 kg are obtained as the average weight for 30 independent runs for the

PSO and BB–BC.

Fig. 8.12 Schematic of a

200-bar planar truss

structure

8.3 Ray Optimization for Size and Shape Optimization of Truss Structures 255

T
a
b
le

8.
8

O
p
ti
m
al

d
es
ig
n
co
m
p
ar
is
o
n
fo
r
th
e
2
0
0
-b
ar

p
la
n
ar

tr
u
ss

G
ro
u
p

V
ar
ia
b
le
s
m
em

b
er
s
(A

i,
i¼

1
,.
..
,2
0
0
)

O
p
ti
m
al

cr
o
ss
-s
ec
ti
o
n
al

ar
ea
s
(i
n
2
)

K
av
eh

an
d
T
al
at
ah
ar
i
[5
]

K
av
eh

an
d
K
h
ay
at
az
ad

[2
]

P
S
O

P
S
O
P
C

H
P
S
A
C
O

(i
n
2
)

(c
m

2
)

1
1
,2
,3
,4

0
.8
0
1
6

0
.7
5
9
0

0
.1
0
3
3

0
.3
8
2

2
.4
6
6

2
5
,8
,1
1
,1
4
,1
7

2
.4
0
2
8

0
.9
0
3
2

0
.9
1
8
4

2
.1
1
6

1
3
.6
4
7

3
1
9
,2
0
,2
1
,2
2
,2
3
,2
4

4
.3
4
0
7

1
.1
0
0
0

0
.1
2
0
2

0
.1
0
2

0
.6
6
0

4
1
8
,2
5
,5
6
,6
3
,9
4
,1
0
1
,1
3
2
,1
3
9
,1
7
0
,1
7
7

5
.6
9
7
2

0
.9
9
5
2

0
.1
0
0
9

0
.1
4
1

0
.9
0
9

5
2
6
,2
9
,3
2
,3
5
,3
8

3
.9
5
3
8

2
.1
3
5
0

1
.8
6
6
4

3
.6
6
2

2
3
.6
2
0

6
6
,7
,9
,1
0
,1
2
,1
3
,1
5
,1
6
,2
7
,2
8
,3
0
,3
1
,3
3
,3
4
,3
6
,3
7

0
.5
9
5
0

0
.4
1
9
3

0
.2
8
2
6

0
.1
7
6

1
.1
3
7

7
3
9
,4
0
,4
1
,4
2

5
.6
0
8
0

1
.0
0
4
1

0
.1
0
0
0

0
.1
2
1

0
.7
8
1

8
4
3
,4
6
,4
9
,5
2
,5
5

9
.1
9
5
3

2
.8
0
5
2

2
.9
6
8
3

3
.5
4
4

2
2
.8
6
1

9
5
7
,5
8
,5
9
,6
0
,6
1
,6
2

4
.5
1
2
8

1
.0
3
4
4

0
.1
0
0
0

0
.1
0
8

0
.6
9
5

1
0

6
4
,6
7
,7
0
,7
3
,7
6

4
.6
0
1
2

3
.7
8
4
2

3
.9
4
5
6

5
.5
6
5

3
5
.8
9
2

1
1

4
4
,4
5
,4
7
,4
8
,5
0
,5
1
,5
3
,5
4
,6
5
,6
6
,6
8
,6
9
,7
1
,7
2
,7
4
,7
5

0
.5
5
5
2

0
.5
2
6
9

0
.3
7
4
2

0
.5
4
2

3
.4
9
3

1
2

7
7
,7
8
,7
9
,8
0

1
8
.7
5
1
0

0
.4
3
0
2

0
.4
5
0
1

0
.1
3
8

0
.8
9
0

1
3

8
1
,8
4
,8
7
,9
0
,9
3

5
.9
9
3
7

5
.2
6
8
3

4
.9
6
0
2
9

5
.1
3
9

3
3
.1
4
9

1
4

9
5
,9
6
,9
7
,9
8
,9
9
,1
0
0

0
.1
0
0
0

0
.9
6
8
5

1
.0
7
3
8

0
.1
0
1

0
.6
5
2

1
5

1
0
2
,1
0
5
,1
0
8
,1
1
1
,1
1
4

8
.1
5
6
1

6
.0
4
7
3

5
.9
7
8
5

8
.7
4
2

5
6
.3
8
8

1
6

8
2
,8
3
,8
5
,8
6
,8
8
,8
9
,9
1
,9
2
,1
0
3
,1
0
4
,1
0
6
,1
0
7
,1
0
9
,1
1
0
,1
1
2
,1
1
3

0
.2
7
1
2

0
.7
8
2
5

0
.7
8
6
2
9

0
.4
3
1

2
.7
8
1

1
7

1
1
5
,1
1
6
,1
1
7
,1
1
8

1
1
.1
5
2
0

0
.5
9
2
0

0
.7
3
7
4
3

0
.9
9
8

6
.4
3
5

1
8

1
1
9
,1
2
2
,1
2
5
,1
2
8
,1
3
1

7
.1
2
6
3

8
.1
8
5
8

7
.3
8
0
9

7
.2
1
2

4
6
.5
1
6

1
9

1
3
3
,1
3
4
,1
3
5
,1
3
6
,1
3
7
,1
3
8

4
.4
6
5
0

1
.0
3
6
2

0
.6
6
7
4
0

0
.1
5
2

0
.9
7
9

2
0

1
4
0
,1
4
3
,1
4
6
,1
4
9
,1
5
2

9
.1
6
4
3

9
.2
0
6
2

8
.3
0
0
0

8
.4
5
2

5
4
.5
1
6

2
1

1
2
0
,1
2
1
,1
2
3
,1
2
4
,1
2
6
,1
2
7
,1
2
9
,1
3
0
,1
4
1
,1
4
2
,1
4
4
,1
4
5
,1
4
7
,
1
4
8
,1
5
0
,1
5
1

2
.7
6
1
7

1
.4
7
7
4

1
.1
9
6
7
2

0
.8
3
5

5
.3
8
3

2
2

1
5
3
,1
5
4
,1
5
5
,1
5
6

0
.5
5
4
1

1
.8
3
3
6

1
.0
0
0
0

0
.4
1
3

2
.6
6
1

2
3

1
5
7
,1
6
0
,1
6
3
,1
6
6
,1
6
9

1
6
.1
6
4
0

1
0
.6
1
1
0

1
0
.8
2
6
2

1
0
.1
4
6

6
5
.4
4
0

2
4

1
7
1
,1
7
2
,1
7
3
,1
7
4
,1
7
5
,1
7
6

0
.4
9
7
4

0
.9
8
5
1

0
.1
0
0
0

0
.8
7
4

5
.6
3
9

2
5

1
7
8
,1
8
1
,1
8
4
,1
8
7
,1
9
0

1
6
.2
2
5
0

1
2
.5
0
9
0

1
1
.6
9
7
6

1
1
.3
8
4

7
3
.4
2
8

256 8 Ray Optimization Algorithm

2
6

1
5
8
,1
5
9
,1
6
1
,1
6
2
,1
6
4
,1
6
5
,1
6
7
,1
6
8
,1
7
9
,1
8
0
,1
8
2
,1
8
3
,
1
8
5
,1
8
6
,1
8
8
,1
8
9

1
.0
0
4
2

1
.9
7
5
5

1
.3
8
8
0

1
.1
9
7

7
.7
2
1

2
7

1
9
1
,1
9
2
,1
9
3
,1
9
4

3
.6
0
9
8

4
.5
1
4
9

4
.9
5
2
3

5
.7
4
7

3
7
.0
6
9

2
8

1
9
5
,1
9
7
,1
9
8
,2
0
0

8
.3
6
8
4

9
.8
0
0
0

8
.8
0
0
0

7
.8
2
3

5
0
.4
6
1

2
9

1
9
6
,1
9
9

1
5
.5
6
2
0

1
4
.5
3
1
0

1
4
.6
6
4
5

1
3
.6
5
5

8
8
.0
7
4

W
ei
g
h
t
(l
b
)

4
4
,0
8
1
.4

2
8
,5
3
7
.8

2
5
,1
5
6
.5

2
5
,1
9
3
.2
2

1
1
2
,1
0
9
.9

8.3 Ray Optimization for Size and Shape Optimization of Truss Structures 257

Figure 8.14c shows the obtained optimal shape. Because of the support posi-

tions, the behavior of this truss is similar to that of a fixed beam. In a fixed beam

bearing concentrated loads along its length, the internal moment at the ends and

middle is greater than the other sections. Therefore for bearing this kind of loading,

the moment of inertia in these sections must be greater. As can be seen, the optimal

shape matches with this requirement.

The final result of concatenating infinite span with the optimal solution of the RO

is shown in Fig. 8.14d. This final shape is similar to the famous bridge “the First of

Forth Bridge”, Fig. 8.14e. The reason of such difference is the construction require-

ments instead of saving material.

Fig. 8.13 Existing and

allowable element stress

value for the 200-bar planar

truss [2]

258 8 Ray Optimization Algorithm

8.3.2.3 A 37-Bar Simply Supported Truss

This example has been investigated by Wang et al. [12] using the evolutionary node

shift method and by Lingyun et al. [13] utilizing the NHGA algorithm. It is a simple

supported Pratt Type 37-bar truss as shown by Fig. 8.16a. There are non-structural

masses of m¼ 10 kg attached to each of the bottom nodes of the lower chord, which

Fig. 8.14 (a) Problem diagram. (b) Analytical model. (c) Optimal shape. (d) Optimized config-

uration formed by concatenating basic modules. (e) The First of Forth Bridge, built during 1883–

1890 [11]

8.3 Ray Optimization for Size and Shape Optimization of Truss Structures 259

are modeled as bar elements with rectangular cross-sectional areas of 4� 10�3 m2.

The other bars are modeled as simple bar elements in the field of size optimization

with the range of 1� 10�4 m2 thorough 3.5� 10�4 m2. The material property for

the bar elements are selected as E¼ 2.1� 1011 N/m2 and ρ¼ 7,800 kg/m3. Also,

this example is considered as a truss shape optimization since all nodes of the upper

Table 8.9 Optimal cross-sections and coordinates for the model of first of forth bridge

Element

group

Optimal cross-section (cm2)

Coordinate

variable

Optimal coordinate (cm)

BB–

BC PSO

Kaveh and

Khayatazad [2] BB–BC PSO

Kaveh and

Khayatazad [2]

1 56.41 25.20 20.54 1 6.89 140 70.88

2 58.20 97.60 44.62 2 17.74 139.65 64.88

3 53.89 35.00 6.37 3 1.81 117.59 �6.99

4 60.21 64.30 50.10 4 23.57 139.70 128.31

5 56.27 14.51 30.39 5 3.22 �16.51 �64.24

6 57.08 37.91 17.61 6 5.85 139.06 139.29

7 49.19 69.85 41.04 7 4.01 �127.74 �109.62

8 48.67 8.76 8.55 8 10.52 �81.03 21.82

9 45.43 47.54 33.93 9 �25.99 60.16 �55.09

10 15.14 6.36 0.63 10 �2.74 �139.97 2.29

11 45.31 27.13 26.92

12 62.91 3.82 23.42

13 56.77 50.82 42.06 BB–BC PSO Kaveh and

Khayatazad

[2]

14 46.66 2.70 2.01 Best weight

(kg)

37,132.3 20,591.9 11,215.7

15 57.95 5.46 8.51 Average weight

(kg)

40,154.1 25,269.3 11,969.2

16 54.99 17.62 1.27 Std (kg) 1,235.4 2,323.7 545.5

Fig. 8.15 Convergence rate for the model of the First of Forth Bridge [2]

260 8 Ray Optimization Algorithm

chord are allowed to vary in the y-axis in a symmetrical manner in the range 1 m

thorough 2.5 m. There are three constraints in the first three natural frequencies as

ω1¼ 20 Hz, ω2¼ 40 Hz and ω3¼ 60 Hz. Therefore, it is considered as a truss

optimization problem with three frequency constraints and nineteen design vari-

ables (five shape variables and 14 sizing variables). Table 8.10 shows a comparison

Fig. 8.16 (a) A 37-bar truss structure with added masses. (b) The 37-Bar structure optimized by

the present work [12]

Table 8.10 Optimal design cross sections for different methods for the 37-bar truss structure

Variable no. Wang et al. [12] Lingyun et al. [13] PSO [14] Kaveh and Khayatazad [2]

Y3,Y19 (m) 1.2086 1.1998 0.9637 1.0010

Y5,Y17 (m) 1.5788 1.6553 1.3978 1.3909

Y7,Y15 (m) 1.6719 1.9652 1.5929 1.5893

Y9,Y13 (m) 1.7703 2.0737 1.8812 1.7507

Y11 (m) 1.8502 2.3050 2.0856 1.8336

A1,A27 (cm
2) 3.2508 2.8932 2.6797 3.0124

A2,A26 (cm
2) 1.2364 1.1201 1.1568 1.0623

A3,A24 (cm
2) 1.0000 1.0000 2.3476 1.0005

A4,A25 (cm
2) 2.5386 1.8655 1.7182 2.2647

A5,A23 (cm
2) 1.3714 1.5962 1.2751 1.6339

A6,A21 (cm
2) 1.3681 1.2642 1.4819 1.6717

A7,A22 (cm
2) 2.4290 1.8254 4.6850 2.0591

A8,A20 (cm
2) 1.6522 2.0009 1.1246 1.6607

A9,A18 (cm
2) 1.8257 1.9526 2.1214 1.4941

A10,A19 (cm
2) 2.3022 1.9705 3.8600 2.4737

A11,A17 (cm
2) 1.3103 1.8294 2.9817 1.5260

A12,A15 (cm
2) 1.4067 1.2358 1.2021 1.4823

A13,A16 (cm
2) 2.1896 1.4049 1.2563 2.4148

A14 (cm
2) 1.0000 1.0000 3.3276 1.0034

Weight (kg) 366.50 368.84 377.20 364.04

8.3 Ray Optimization for Size and Shape Optimization of Truss Structures 261

among the optimal design cross sections of several methods including the present

work (RO). As it can be seen, the best result for the RO, Wang et al. [12], Lingyun

et al. [13], PSO [14] are 364.04 kg, 366.5 kg, 368.84 kg and 377.20 kg, respectively.

Figure 8.16b shows the final truss shape of the design optimizations, and

Fig. 8.17 illustrates the weight convergence history for the RO algorithm for the

37-bar truss with added masses.

8.4 An Improved Ray Optimization Algorithm for Design
of Truss Structures

8.4.1 Introduction

This part develops an improved ray optimization (IRO) algorithm for solving

optimization problems. IRO employs a new approach for generating new solution

vectors which has no limitation on the number of variables, so in the process of

algorithm there is no need to divide the variables into groups like standard RO. The

procedure which returns the violated agents into feasible search space is also

modified. The Simulation results of the IRO for benchmark mathematical optimi-

zation problems and truss structures are compared to those of the standard RO and

some well-known metaheuristic algorithms, respectively. Numerical results indi-

cate the effectiveness and robustness of the proposed IRO [3].

Fig. 8.17 Convergence history of the RO for the simply supported 37-bar truss with added masses

[2]

262 8 Ray Optimization Algorithm

8.4.2 Improved Ray Optimization Algorithm

In the improved ray optimization algorithm, a memory which saves some or all the

historically best positions of agents, is considered as local best memory (LBM). If

the so far best positions of all agents are saved (especially when the number of

agents is large), the computational cost grows. Therefore in this technique, when

the number of agents are more than or equal to 25, the size of the local best memory

is considered as 25, otherwise the size of the LBM is taken as half number of agents.

When an agent violates the boundary limitations in standard RO, all the com-

ponents are changed. However in IRO, only the components that violate the

boundary are refunded. This violated component must be regenerated by the

following formula:

Xkþ1
ij ¼ Xk

ij þ 0:9 Intij � Xk
ij

� �
ð8:34Þ

Where Xij
k+1 and Xij

k are the refined component and component of the jth
variable for the ith agent in (k + 1)th and kth iteration, respectively. Intij is the

intersection point of violated agent with boundary (If an agent violates a boundary,

it intersects the boundary at a specified point, because of having definite movement

vector).

The main idea of standard RO is approximating the new movement vector with a

normal vector. To achieve this aim, if the number of variables was more than three,

the proposed formula cannot be applied directly and first the main problem must be

divided into some sub-problems and after the calculation, merge the results of the

sub-problems to evaluate the goal function. When the number of variables is large

the computational cost grows considerably. Instead of this approach the following

formula (which has no limit on the number of variables) is applied to calculate the

direction of the new movement vector as illustrated in Fig. 8.18.

Tvi ¼ Oi � Xi ð8:35Þ
Vkþ1

i ¼ α:Tvi
k þ β:V k

i ð8:36Þ

Where Tvi is target vector, Vi
k+1and Vi

k are movement vectors in (k + 1)th and

kth iteration, respectively. Oi
k is the origin according to (8.27) but in this method,

LB is considered randomly from local best memory. α and β are the factors that

control the exploitation and exploration as shown in Fig. 8.19. An efficient optimi-

zation algorithm should perform good exploration in early iterations and good

exploitation in final iterations. Thus, α and β are increasing and decreasing func-

tions respectively, and are defined as:

8.4 An Improved Ray Optimization Algorithm for Design of Truss Structures 263

α ¼ 1þ k

ite

� �
ð8:37Þ

β ¼ 1� 0:5
k

ite

� �
ð8:38Þ

Finally all the Vi
k+1 vectors should be normalized.

The magnitude of movement vectors must be calculated because in the previous

formulas only the direction of the movement vector is defined.

One of the important features of each metaheuristic algorithm is its ability to

escape from the trap when agents fall into a local minimum, so in the standard RO

there is a possibility like stoch that specifies whether a movement vector must be

changed or not, therefore we have

(a) with probability like stoch,

Vij
kþ1 ¼ �1þ 2:rand ð8:39Þ

Vi
Kþ1 ¼ Vi

kþ1

norm Vi
kþ1

� � : a
d
:rand ð8:40Þ

(b) with probability like (1-stoch),
If norm(Oi

k – Xi
k)¼ 0,

Fig. 8.18 Generation of the new movement vector [3]

Fig. 8.19 Influence of the α and β parameters [3]

264 8 Ray Optimization Algorithm

Vi
kþ1 ¼ Vi

k

norm Vi
k

� � :rand:0:001 ð8:41Þ

Otherwise,

Vi
kþ1 ¼ Vi

kþ1:norm Xi
k �Oi

k
� � ð8:42Þ

In the case of problems that have function constraints (behavior constraints),

the following formulas are utilized instead of (8.42)

Vi
Kþ1 ¼ Vi

kþ1:
a

d
ð8:43Þ

d ¼ d þ r:d:
k

ite

� �
ð8:44Þ

Where r is a constant factor and when the number of iterations rises, the value

of d increase and it help the algorithm to handle the constraint well. a and d are
the factors that were defined in Sect. 8.2.2.3.

The flowchart of the IRO algorithm is illustrated in Fig. 8.20.

Fig. 8.20 The flowchart of the IRO [3]

8.4 An Improved Ray Optimization Algorithm for Design of Truss Structures 265

8.4.3 Mathematical and Structural Design Examples

8.4.3.1 Standard Mathematical Functions

To test the ability of the proposed algorithm and to compare its results with those of

the standard RO, some benchmark mathematical functions are considered as in

Sect. 8.2.3.1. Each of these functions tests the optimization algorithm in special

conditions, identifying the weak points of the optimization algorithm. These func-

tions are selected by Tsoulos [6] for evaluating modifications of Genetic Algorithm

and utilized by Kaveh and Khayatazad [1] for investigating the standard RO.

The IRO method with different number of agents has been tested for some of

these functions. Assigning the number of agents as 50 in the CM, Griewank and

Rastring functions and as 10 for other ones shows a better performance. We also

have tried to tune other parameters of algorithm. From our simulations it is

recommended to set parameters as 0.35 and 700 for Stoch and d, respectively.
After implementing IRO algorithm using MATLAB, it has been run independently

50 times to carry out meaningful statistical analysis. The algorithm stops when the

variations of function values are less than a given tolerance as 10�4. Table 8.11

reports the performance of GEN–S–M–LS as the best modificationof GA [6], the

standard RO [1] and proposed IRO respectively, where the numbers are in the

format: average number of evaluations� one standard deviation (success rate).

Considering this table, the standard RO and the improved RO show better perfor-

mances in terms of the required number of analyses and success rate.

8.4.3.2 Continuous and Discrete Trusses

In this section, common truss optimization examples as benchmark problems are

optimized with the IRO algorithm. The final results are compared to the solutions of

other methods to demonstrate the efficiency of the IRO. In the sequel, penalty

function formula and constraint conditions for truss structures are briefly

overviewed at the first subsection then the examples are presented. The examples

contain a 25-bar transmission tower, a 72-bar spatial truss and a dome shaped space

truss. From our simulations, setting the number of agents and Stoch 25 and 0.35 are

efficient for design examples, respectively. Table 8.12 tabulates other parameters

for each case.

Optimum Design of Truss Structures

In order to handle the constraints, a penalty approach is utilized. In this method, the

aim of the optimization is redefined by introducing the cost function as:

266 8 Ray Optimization Algorithm

f cos t Xf gð Þ ¼ 1þ ε1:υð Þε2 �W Xf gð Þ, υ ¼
Xn
j¼1

max 0, gj Xf gð Þ
h i

ð8:45Þ

gj Xf gð Þ � 0, j ¼ 1, 2, . . . , n ð8:46Þ

Where W({x}) is the weight of the structure (Sect. 8.3.1), υ denotes the sum of the

violations of the design, gj({X})denotes design constraints and n represents the

number of constraints. The constants ε1 and ε2 are selected considering the explo-

ration and the exploitation rate of the search space. Here, ε1 is set to unity, ε2 is
selected in a way that it decreases the penalties and reduces the cross-sectional

areas. Thus, in the first steps of the search process, ε2 is set to 1.5 and ultimately

increased to 3.

The constraint conditions for truss structures are briefly explained in the follow-

ing. The stress limitations of the members are imposed according to the provisions

of ASD-AISC [15] as follows:

Table 8.11 Performance comparison for the benchmark problems

FUNCTION GEN–S–M–LS Ray optimization Kaveh et al. [3]

AP 1,253 331 253� 38.7985(100)

Bf1 1,615 677 438� 48.4636(100)

Bf2 1,636 582 395� 45.9674(100)

BL 1,436 303 194� 31.2733(100)

Branin 1,257 463 312� 81.0515(100)

Camel 1,300 332 184� 21.0855(100)

Cb3 1,118 262 247� 36.4549(100)

CM 1,539 802 1,290� 65.3543(100)

Dejoung 1,281 452 213� 26.3344(100)

EXP2 807 136 90� 20.5115(100)

EXP4 1,496 382 220� 50.5624(100)

EXP8 1,496 1,287 512� 97.7743(100)

EXP16 1,945 17,236(0.46) 1,141� 142.76(100)

GRIEWANK 1,652(0.99) 1,091(0.98) 1,383� 100.3458(100)

RASTRIGIN 1,381 1,013(0.98) 1,662� 202.3105(100)

Goldstein and Price 1,325 451 361� 59.0105(100)

TOTAL 22,537(99.94) 25,800(96.38) 8,895(100)

Table 8.12 Algorithm

parameters for truss examples
Parameter 25-bar 72-bar 120-bar

d 15 15 10

r 7 7 20

8.4 An Improved Ray Optimization Algorithm for Design of Truss Structures 267

σþi ¼ 0:6 Fy for σi � 0

σ�i for σi < 0

	
ð8:47Þ

σ�i ¼
1� λ2i

2 c2c

0
@

1
AFy

2
4

3
5
,

5

3
þ 3λi
8 cc

þ λ3i
8 c3c

0
@

1
A for λi � cc

12 π2 E

23 λ2i
for λi � cc

8>>>>><
>>>>>:

ð8:48Þ

Where E is the modulus of elasticity; Fy is the yield stress of steel; cc denotes

the slenderness ratio (λi) dividing the elastic and inelastic buckling regions (cc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p
); λi¼ the slenderness ratio (λi¼ kli/ri); k¼ the effective length factor;

Li¼ the member length; and ri¼ the radius of gyration. The radius of gyration (ri)

can be expressed in terms of cross-sectional areas as ri¼ a Ab
i . Here, a and b are the

constants depending on the types of sections adopted for the members such as pipes,

angles, and tees. In this study, pipe sections (a¼ 0.4993 and b¼ 0.6777) are adopted

for bars [16].

The other constraint corresponds to the limitation of the nodal displacements:

δi � δui � 0 i ¼ 1, 2, . . . , nn ð8:49Þ

Where δi is the nodal deflection; δi
u is the allowable deflection of node i; and nn is

the number of nodes.

A 25-Bar Space Truss with Discrete Variables

The 25-bar transmission tower is used widely in structural optimization to verify

various metaheuristic algorithms. The topology and nodal numbering of the truss is

shown in Fig. 8.21 [17]. The material density is considered as 0.1 lb/in3

(2,767.990 kg/m3) and the modulus of elasticity is taken as 107 psi (68,950 MPa).

Twenty-five members are categorized into eight groups, as follows: (1) A1, (2) A2 –

A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21, and (8) A22–

A25.

A single load case {(kips) (kN)} is applied to the structure, at nodes 1, 2, 3 and

4 as follows: 1{(0, �10, �10) (0, �44.5, �44.5)}, 2{(1, �10, �10) (4.45, �44.5,

�44.5)}, 3{(0.6, 0, 0) (2.67, 0, 0)} and 4{(0.5, 0, 0) (2.225, 0, 0)}. The allowable

stresses and displacements are respectively�40 ksi (275.80 MPa) for each member

and �0.35 in (�8.89 mm) for each node in the x, y and z directions. The range of

discrete cross-sectional areas is from 0.1 to 3.4 in2 (0.6452 to 21.94 cm2) with 0.1

in2 (0.6452 cm2) increment (resulting in 34 discrete cross sections) for each of the

eight element groups [18].

268 8 Ray Optimization Algorithm

Table 8.13 presents the performance of the IRO and other algorithms. The IRO

algorithm achieves the best solution weighted by 484.85 lb (219.92 kg), after

925 analyses. Although, this is identical to the best design developed using BB–

BC algorithm [18] and a multiphase ACO procedure [19], it perform better than

others when the number of analyses and average weight for 50 runs are compared.

Fig. 8.21 Schematic of a 25-bar space truss

Table 8.13 Performance comparison for the 25-bar spatial truss

Element group

Optimal cross-sectional areas (in2)

GA [18] GA [18] ACO [19] BB–BC phases 1, 2 [18]

Kaveh et al. [3]

in2 cm2

1 A1 0.10 0.10 0.10 0.10 0.10 0.645

2 A2–A5 1.80 0.50 0.30 0.30 0.30 1.935

3 A6–A9 230 3.40 3.40 3.40 3.40 21.935

4 A10–A11 020 0.10 0.10 0.10 0.10 0.645

5 A12–A13 010 1.90 2.10 2.10 2.10 13.548

6 A14–A17 0.80 0.90 1.00 1.00 1.00 6.452

7 A18–A21 .80 0.50 0.50 0.50 0.50 3.226

8 A22–A25 3.00 3.40 3.40 3.40 3.40 21.935

Best weight (lb) 546.01 485.05 484.85 484.85 484.85 219.92 (kg)

Average weight

(lb)

N/A N/A 486.46 485.10 484.90 219.94 (kg)

Number of

analyses

800 15,000 7,700 9,000 925

8.4 An Improved Ray Optimization Algorithm for Design of Truss Structures 269

A 72- Bar Space Truss with Discrete Variables

For the 72-bar spatial truss structure shown in Fig. 8.22 [20], the material density is

0.1 lb/in3 (2,767.990 kg/m3) and the modulus of elasticity is 107 psi (68,950 MPa).

The 72 structural members of this spatial truss are categorized into 16 groups using

symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18, (5) A19– A22, (6) A23–

A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12) A53–

A54, (13) A55–A58, (14) A59–A66 (15), A67– A70, and (16) A71–A72. In this example,

designs for a multiple load cases using discrete design variables are performed. The

values and directions of the two load cases applied to the 72-bar spatial truss are

listed in Table 8.14. The members are subjected to the stress limits of �25 ksi

(�172.375 MPa). Maximum displacement limitations of �0.25 in (�6.35 mm), are

imposed on every node in every direction and on the uppermost nodes in both x and

y directions respectively.

Fig. 8.22 Schematic of a 72-bar space truss

Table 8.14 Multiple loading

conditions for the 72-bar truss
Case Node Fx kips (kN) Fy kips (kN) Fz kips (kN)

1 17 0.0 0.0 �5.0 (�22.25)

18 0.0 0.0 �5.0 (�22.25)

19 0.0 0.0 �5.0 (�22.25)

20 0.0 0.0 �5.0 (�22.25)

2 17 5.0 (22.25) 5.0 (22.25) �5.0 (�22.25)

270 8 Ray Optimization Algorithm

In this case, the discrete variables are selected from 64 discrete values from

0.111 to 33.5 in2 (71.613 to 21,612.860 mm2). For more information, the reader can

refer to Table 2 in Kaveh and Talatahari [21].

Table 8.15 shows the best solution vectors, the corresponding weights and the

required number of analyses for present algorithm and some other metaheuristic

algorithms. The IRO algorithm can find the best design among the other existing

studies. Although the number of required analyses by the IRO algorithm is more

than ICA algorithm, but the best weight of the IRO algorithm is 389.33 lb

(176.60 kg) that is 3.51 lb (1.59 kg) lighter than the best result obtained by ICA

Table 8.15 Performance comparison for the 72-bar spatial truss with discrete variable

Element

group

Optimal cross-sectional areas (in2)

GA [21]

PSOPC

[21]

HPSO

[21]

HPSACO

[22]

ICA

[21]

Kaveh et al. [3]

in2 cm2

1 A1–A4 0.196 4.490 4.970 1.800 1.99 1.99 12.839

2 A5–A12 0.602 1.457 1.228 0.442 0.442 0.563 3.632

3 A13–

A16

0.307 0.111 0.111 0.141 0.111 0.111 0.716

4 A17–

A18

0.766 0.111 0.111 0.111 0.141 0.111 0.716

5 A19–

A22

0.391 2.620 2.880 1.228 1.228 1.228 7.923

6 A23–

A30

0.391 1.130 1.457 0.563 0.602 0.563 3.632

7 A31–

A34

0.141 0.196 0.141 0.111 0.111 0.111 0.716

8 A35–

A36

0.111 0.111 0.111 0.111 0.141 0.111 0.716

9 A37–

A40

1.800 1.266 1.563 0.563 0.563 0.563 3.632

10 A41–

A48

0.602 1.457 1.228 0.563 0.563 0.442 2.852

11 A49–

A52

0.141 0.111 0.111 0.111 0.111 0.111 0.716

12 A53–

A54

0.307 0.111 0.196 0.250 0.111 0.111 0.716

13 A55–

A58

1.563 0.442 0.391 0.196 0.196 0.196 1.265

14 A59–

A66

0.766 1.457 1.457 0.563 0.563 0.563 3.632

15 A67–

A70

0.141 1.228 0.766 0.442 0.307 0.391 2.523

16 A71–

A72

0.111 1.457 1.563 0.563 0.602 0.563 3.632

Weight (lb) 427.203 941.82 933.09 39,380 392.84 389.33 176.60

(kg)

Number of

analyses

N/A 150,000 50,000 5,330 4,500 17,925

8.4 An Improved Ray Optimization Algorithm for Design of Truss Structures 271

algorithm [21].The convergence history of the best result and the average penalized

weight of 50 runs are shown in Fig. 8.23. Convergence speed in IRO is acceptable

and step-like movements in diagram of IRO performance exhibit how it escapes

from local minimum points, to find a better optimum point. It is important to note

that this case has an expended search space than is requisite. The performance of the

IRO decreased from 389.87� 1.1643 to 408.17� 71.2108 considering 47 and all

50 independent runs, respectively. In the other words, IRO yields to unexpected

designs in just three of 50 independent runs. Unfortunately comprehensive statis-

tical study of this case is not available in optimization literature.

Design of a 120-Bar Dome Shaped Truss with Continuous Variables

The topology, nodal numbering and element grouping of the 120-bar dome truss are

shown in Fig. 8.24. For clarity, not all the element groups are numbered in this

figure. The 120 members are categorized into seven groups, because of symmetry.

Other conditions of problem are as follows [21], the modulus of elasticity is 30,450

ksi (210,000 MPa) and the material density is 0.288 lb/in3 (7,971.810 kg/m3). The

yield stress of steel is taken as 58.0 ksi (400 MPa). The dome is considered to be

subjected to vertical loading at all the unsupported joints. These loads are taken as

�13.49 kips (�60 kN) at node 1, �6.744 kips (�30 kN) at nodes 2 through 14, and

�2.248 kips (�10 kN) at the rest of the nodes. The minimum cross-sectional area of

all members is 0.775 in2 (5 cm2) and the maximum cross-sectional area is taken as

20.0 in2 (129.032 cm2). The constraints are stress constraints [as defined by (8.47)

and (8.48)] and displacement limitations of �0.1969 in (�5 mm), imposed on all

nodes in x, y and z directions.

Table 8.16 shows the best solution vectors, the corresponding weights and the

required number of analyses for convergence of the present algorithm and some

other metaheuristic algorithms. The IRO-based algorithm needs 18,300 analyses to

find the best solution while this number is equal to 150,000, 32,600, 10,000, 10,000,

7,000 and 6,000 analyses for a PSO-based algorithm [5], a PSO and ACO hybrid

5,000 10,000 15,000 20,000

400

600

800

1000

1200

1400

1600

1800

2000

Number of analyses

W
ei

g
h
t

(l
b
)

The best feasible result

The average penalized weight of 50 runs

Fig. 8.23 Convergence

history of the 72-bar space

truss [3]

272 8 Ray Optimization Algorithm

algorithm [5], a combination algorithm based on PSO, ACO and HS [5], an

improved BB–BC method using PSO properties [20], the CSS algorithm [17] and

the ICA algorithm [21], respectively. As a result, the IRO optimization algorithm

only has better convergence rates than PSOPC and PSACO algorithms. Comparing

the final results of the IRO and those of the other metaheuristics shows that IRO

finds the so nearly optimum design to the best results of other efficient methods

while the difference between the result of the IRO and that obtained by the

HPSACO [5], as the first best result, is 9 lbs. A comparison of the allowable and

existing stresses and displacements of the 120-bar dome truss structure using IRO is

shown in Fig. 8.25. The maximum value for displacement is equal to 0.1969 in

(5 mm) and the maximum stress ratio is equal to 99.99 %.

Fig. 8.24 Schematic of a

120-bar dome shaped truss

8.4 An Improved Ray Optimization Algorithm for Design of Truss Structures 273

T
a
b
le

8.
16

P
er
fo
rm

an
ce

co
m
p
ar
is
o
n
fo
r
th
e
1
2
0
-b
ar

d
o
m
e
sh
ap
ed

tr
u
ss

w
it
h
co
n
ti
n
u
o
u
s
v
ar
ia
b
le
s

E
le
m
en
t
g
ro
u
p

O
p
ti
m
al

cr
o
ss
-s
ec
ti
o
n
al

ar
ea
s
(i
n
2
)

P
S
O
P
C
[5
]

P
S
A
C
O

[5
]

H
P
S
A
C
O
[5
]

H
B
B
–
B
C
[2
0
]

C
S
S
[1
7
]

IC
A
[2
1
]

K
av
eh

et
al
.
[3
]

in
2

cm
2

1
A
1

3
.0
4
0

3
.0
2
6

3
.0
9
5

3
.0
3
7

3
.0
2
7

3
.0
2
7
5

3
.0
2
5
2

1
9
.5
1
7
4

2
A
2

1
3
.1
4
9

1
5
.2
2
2

1
4
.4
0
5

1
4
.4
3
1

1
4
.6
0
6

1
4
.4
5
9
6

1
4
.8
3
5
4

9
5
.7
1
2
1

3
A
3

5
.6
4
6

4
.9
0
4

5
.0
2
0

5
.1
3
0

5
.0
4
4

5
.2
4
4
6

5
.1
1
3
9

3
2
.9
9
2
8

4
A
4

3
.1
4
3

3
.1
2
3

3
.3
5
2

3
.1
3
4

3
.1
3
9

3
.1
4
1
3

3
.1
3
0
5

2
0
.1
9
6
7

5
A
5

8
.7
5
9

8
.3
4
1

8
.6
3
1

8
.5
9
1

8
.5
4
3

8
.4
5
4
1

8
.4
0
3
7

5
4
.2
1
7
3

6
A
6

3
.7
5
8

3
.4
1
8

3
.4
3
2

3
.3
7
7

3
.3
6
7

3
.3
5
6
7

3
.3
3
1
5

2
1
.4
9
3
5

7
A
7

2
.5
0
2

2
.4
9
8

2
.4
9
9

2
.5
0
0

2
.4
9
7

2
.4
9
4
7

2
.4
9
6
8

1
6
.1
0
8
4

B
es
t
w
ei
g
h
t
(l
b
)

3
3
,4
8
1
.2

3
3
,2
6
3
.9

3
3
,2
4
8
.9

3
3
,2
8
7
.9

3
3
,2
5
1
.9

3
3
,2
5
6
.2

3
3
,2
5
6
.4
8

1
5
,0
8
4
.8
9
(k
g
)

A
v
er
ag
e
w
ei
g
h
t
(l
b
)

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

3
3
,2
8
0
.8
5

1
5
,0
9
5
.9
4
(k
g
)

N
u
m
b
er

o
f
an
al
y
se
s

1
5
0
,0
0
0

3
2
,6
0
0

1
0
,0
0
0

1
0
,0
0
0

7
,0
0
0

6
,0
0
0

1
8
,3
0
0

274 8 Ray Optimization Algorithm

References

1. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput

Struct 112–113:283–294

2. Kaveh A, Khayatazad M (2013) Ray optimization for size and shape optimization of truss

structures. Comput Struct 117:82–94

3. Kaveh A, Ilchi Ghazaan M, Bakhshpoori T (2013) An improved ray optimization algorithm for

design of truss structures. Period Polytech 57(2):97–112

4. Laval PB (2003) Mathematics for computer graphics-ray tracing III. Kennesaw-MATH–4490,

Kennesaw State University, Kennesaw, GA

5. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of truss structures. Comput Struct 87:267–283

6. Tsoulos IG (2008) Modifications of real code genetic algorithm for global optimization. Appl

Math Comput 203:598–607

7. Belegundu AD (1982) A study of mathematical programming methods for structural optimi-

zation. Ph.D. thesis, Department of Civil and Environmental Engineering, University of Iowa,

Iowa, IA

8. Arora JS (1989) Introduction to optimum design. McGraw-Hill, New York, NY

9. Ragsdell KM, Phillips DT (1976) Optimal design of a class of welded structures using

geometric programming. ASME J Eng Ind Ser B 98:1021–1925

10. Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29:2013–2015

11. Gil L, Andreu A (2003) Shape and cross-section optimization of a truss structure. Comput

Struct 79:681–689

0 10 20 30 40 50

-0.2

-0.1

0

0.1

0.2

The nude number

X
 d

is
p
la

ce
m

en
t

(i
n
) The existing value

The allowable value

0 10 20 30 40 50

-0.2

-0.1

0

0.1

0.2

The nude number

Y
 d

is
p
la

ce
m

en
t

(i
n
) The existing value

The allowable value

0 10 20 30 40 50

-0.2

-0.1

0

0.1

0.2

The nude number

Z
 d

is
p
la

ce
m

en
t

(i
n
)

The existing value

The allowable value

0 20 40 60 80 100 120
-3

-2

-1

0

1

2

3

4
x 10

4

The element number

S
tr

es
s

(K
si

)

The allowable value

The existing value

dc

ba

Fig. 8.25 Comparison of the allowable and existing constraints for the 120-bar dome shaped truss

using the IRO [3]: (a) Displacement in the x direction, (b) Displacement in the y direction, (c)
Displacement in the z direction, (d) Stresses

References 275

12. Wang D, Zhang WH, Jiang JS (2004) Truss optimization on shape and sizing with frequency

constraints. AIAA J 42:1452–1456

13. Lingyun W, Mei Z, Guangming W, Guang M (2005) Truss optimization on shape and sizing

with frequency constraints based on genetic algorithm. J Comput Mech 25:361–368

14. Gomes HM (2011) Truss optimization with dynamic constraints using a particle swarm

algorithm. Expert Syst Appl 38:957–968

15. American Institute of Steel Construction, AISC (1989) Manual of steel construction allowable

stress design, 9th edn. American Institute of Steel Construction, Chicago, IL

16. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search

algorithm. Comput Struct 82:781–798

17. Kaveh A, Talatahari S (2010) Optimal design of skeletal structures via the charged system

search algorithm. Struct Multidiscip Optim 41:893–911

18. Camp CV (2007) Design of space trusses using Big Bang–Big Crunch optimization. J Struct

Eng ASCE 133:999–1008

19. Camp CV, Bichon J (2004) Design of space trusses using ant colony optimization. J Struct Eng

ASCE 130:741–751

20. Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang-Big Crunch

algorithm. Comput Struct 87:1129–1140

21. Kaveh A, Talatahari S (2010) Optimum design of skeletal structures using imperialist com-

petitive algorithm. Comput Struct 88:1220–1229

22. Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures

with discrete variables. J Construct Steel Res 65:1558–1568

276 8 Ray Optimization Algorithm

Chapter 9

Modified Big Bang–Big Crunch Algorithm

9.1 Introduction

The Big Bang–Big Crunch (BB–BC) method developed by Erol and Eksin [1]

consists of two phases: a Big Bang phase, and a Big Crunch phase. In the Big Bang

phase, candidate solutions are randomly distributed over the search space. Similar

to other evolutionary algorithms, initial solutions are spread all over the search

space in a uniform manner in the first Big Bang. Erol and Eksin [1] associated the

random nature of the Big Bang to energy dissipation or the transformation from an

ordered state (a convergent solution) to a disorder or chaos state (new set of solution

candidates).

This chapter consists of two parts. In the first part the developed Modified Big

Bang–Big Crunch (MBB–BC) optimization algorithm is employed for optimal

design of truss structures [2]. In the second part optimal design of the Schwedler

and ribbed domes is performed [3].

9.2 Modified BB-BC Method

9.2.1 Introduction to BB–BC Method

The BB–BC method developed by Erol and Eksin [1] consists of two phases: a Big

Bang phase, and a Big Crunch phase. In the Big Bang phase, candidate solutions are

randomly distributed over the search space. Similar to other evolutionary algo-

rithms, initial solutions are spread all over the search space in a uniform manner in

the first Big Bang. Erol and Eksin [1] associated the random nature of the Big Bang

to energy dissipation or the transformation from an ordered state (a convergent

solution) to a disorder or chaos state (new set of solution candidates).

The Big Bang phase is followed by the Big Crunch phase. The Big Crunch is a

convergence operator that has many inputs but only one output, which is named as

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_9, © Springer International Publishing Switzerland 2014

277

the “center of mass”, since the only output has been derived by calculating the

center of mass. Here, the term mass refers to the inverse of the merit function value.

The point representing the center of mass that is denoted by A
cðkÞ
i is calculated

according to:

A
c kð Þ
i ¼

XN
j¼1

1

Merj
� A k;jð Þ

i

XN
j¼1

1

Merj

i ¼ 1, 2, . . . , ng ð9:1Þ

where A
ðk;jÞ
i is the ith component of the jth solution generated in the kth iteration;

N is the population size in Big Bang phase. After the Big Crunch phase, the

algorithm creates the new solutions to be used as the Big Bang of the next iteration

step, by using the previous knowledge (center of mass). This can be accomplished

by spreading new off-springs around the center of mass using a normal distribution

operation in every direction, where the standard deviation of this normal distribu-

tion function decreases as the number of iterations of the algorithm increases:

A
kþ1, jð Þ
i ¼ A

c kð Þ
i þ rjα1 Amax � Aminð Þ

k þ 1
i ¼ 1, 2, . . . , ng ð9:2Þ

where rj is a random number from a standard normal distribution which changes for

each candidate, and α1 is a parameter for limiting the size of the search space.

These successive explosion and contraction steps are carried out repeatedly until

a stopping criterion has been met. A maximum number of iterations is utilized as a

stopping criterion.

BB–BC does not require an explicit relationship between the objective function

and constraints. Instead, the objective function for a set of design variables can be

penalized to reflect any violation of the design constraints. In utilizing the penalty

functions, if the constraints are between the allowable limits, the penalty will be

zero; otherwise, the amount of penalty is obtained by dividing the violation of

allowable limit to the limit itself. After analyzing a structure, the deflection of each

node and the stress in each member are obtained. These values are compared to the

allowable limits to calculate the penalty functions as:

σmin
i < σi < σmax

i) Φ ið Þ
σ ¼ 0

σmin
i > σi or σmax

i < σi) Φ ið Þ
σ ¼ σi � σmin=max

i

σmin=max
i

8>><
>>:

i ¼ 1, 2, . . . , n

ð9:3Þ

278 9 Modified Big Bang–Big Crunch Algorithm

σb < σi < 0) Φ ið Þ
σb ¼ 0

σi < 0 ^ σi < σb) Φ ið Þ
σb ¼

σi � σb
σb

8><
>:

i ¼ 1, 2, . . . , ns ð9:4Þ

δmin
i < δi < δmax

i) Φ ið Þ
δ ¼ 0

δmin
i > δi or δmax

i < δi) Φ ið Þ
δ ¼ δi � δmin=max

i

δmin=max
i

8>><
>>:

i ¼ 1, 2, . . . ,m

ð9:5Þ

In optimizing structures, the main objective is to find the minimum amount of

the merit function. This function is defined as [4]:

Merk ¼ ε1 �Wk þ ε2 � Φ k
σ þΦ k

δ þΦ k
σb

� �ε3 ð9:6Þ

Merk is the merit function for the kth candidate; ε1, ε2 and ε3 are coefficients of
merit function. Φk

σ , Φk
δ and Φk

σb is the summation of stress penalties, summation of

nodal deflection penalties and summation of buckling stress penalties for candidate

k, respectively.
For multiple loadings, after analyzing the structure and determining the penalty

functions for each component of the load, the total penalty function is calculated

through addition of penalty functions of stress, buckling stress for each member,

and deflection for each node, as:

Merk ¼ ε1 �Wk þ ε2 �
Xnp
i¼1

Φ k
σ ið Þ þΦ k

δ ið Þ þΦ k
σb ið Þ

ffi �ε3 ð9:7Þ

where np is the number of multiple loadings. In this part, for a better control on

other parameters, ε1 is set to 1. The coefficient ε2 is taken as the weight of the

structure and the coefficient ε3 is set in a way that the penalties decrease. The cross-
sectional areas can also be reduced. Therefore, in the first iterations of the search

process, ε3 is set to 1.5 but gradually it is increased to 3 [4].

The pseudo-code of the BB–BC algorithm can be summarized as follows:

Step 1: Generate initial candidates in a random manner (considering allowable

boundaries).

Step 2: Calculate the merit function values of all the candidate solutions

[Eqs. (9.7) and (9.8)].

Step 3: Find the center of the mass (Eq. 9.2).

Step 4: Calculate new candidates around the center of the mass (Eq. 9.3).

Step 5: Return to Step 2 and repeat the process until the condition for the

stopping criterion is fulfilled.

9.2 Modified BB-BC Method 279

9.2.2 A Modified BB–BC Algorithm

The advantages of applying BB–BC algorithm for structural design are similar to

other evolutionary algorithms. BB–BC is a multi-agent and randomized search

technique that in each cycle, a number of search space points are tested. The

random selection and the information obtained in each cycle (center of mass) are

used to choose new points in subsequent cycles. The BB–BC method has the ability

to handle a mixture of discrete and continuous design variables and multiple

loading cases.

Although BB–BC performs well in the exploitation (the fine search around a

local optimum), there are some problems in the exploration (global investigation of

the search place) stage. If all of the candidates in the initial Big Bang are collected

in a small part of search space, the BB–BC method may not find the optimum

solution and with a high probability, it may be trapped in that subdomain. One can

consider a large number for candidates to avoid this defect, but it causes an increase

in the function evaluations as well as the computational costs. This chapter uses the

Particle Swarm Optimization (PSO) capacities to improve the exploration ability of

the BB–BC algorithm.

The Particle Swarm Optimization is motivated from the social behavior of bird

flocking and fish schooling which has a population of individuals, called particles,

that adjust their movements depending on both their own experience and the

population’s experience [5]. At each iteration, a particle moves towards a direction

computed from the best visited position (local best) and the best visited position of

all particles in its neighborhood (global best). The modified BB–BC approach

similarly not only uses the center of mass but also utilizes the best position of

each candidate (A
lbestðk;jÞ
i) and the best global position (A

gbestðkÞ
i) to generate a new

solution, as:

A
kþ1, jð Þ
i ¼ α2A

c kð Þ
i þ 1� α2ð Þ α3A

gbest kð Þ
i þ 1� α3ð ÞAlbest k;jð Þ

i

ffi �
þ rjα1 Amax �Aminð Þ

kþ 1

i¼ 1, 2, . . . ,ng
j¼ 1, 2, . . . ,N

�

ð9:8Þ

where A
lbestðk;jÞ
i is the best position of the jth particle up to the iteration k and A

gbestðkÞ
i

is the best position among all candidates up to the iteration k; α2 and α3 are

adjustable parameters controlling the influence of the global best and local best

on the new position of the candidates, respectively.

Another improvement in the BB–BC method is employing Sub-Optimization

Mechanism (SOM) as an auxiliary tool which works as a search-space updating

mechanism. SOM, based on the principles of finite element method, was introduced

by Kaveh et al. [4, 6]. Similar to the finite element method which requires dividing

of the problem domain into many subdomains and using these patches instead of the

280 9 Modified Big Bang–Big Crunch Algorithm

main domain, SOM divides the search space into sub-domains and performs

optimization process into these patches, and then based on the resulted solutions

the undesirable parts are deleted, and the remaining space is divided into smaller

parts for more investigation in the next stage. This process continues until the

remaining space becomes less than the required size to satisfy accuracy.

This mechanism can be considered as the repetition of the following steps for

definite times, nc, (in the stage k of the repetition) [4, 6]:

Step 1: Calculating cross-sectional area bounds for each group. IfA
gbest kSOM�1ð Þ
i is

the global best solution obtained from the previous stage (kSOM � 1) for design

variable i, then:

A
kSOMð Þ
min,i ¼A

gbest kSOM�1ð Þ
i �β1 � A

kSOM�1ð Þ
max,i �A

kSOM�1ð Þ
min,i

ffi �
�A

kSOM�1ð Þ
min,i

A
kSOMð Þ
max,i ¼A

gbest kSOM�1ð Þ
i þβ1 � A

kSOM�1ð Þ
max,i �A

kSOM�1ð Þ
min,i

ffi �
�A

kSOM�1ð Þ
max,i

8><
>:

i¼1,2, ...,ng
kSOM¼2, ...,nc

�

ð9:9Þ

where β1 is an adjustable factor which determines the amount of the remaining

search space and in this research it is taken as 0.3 [6]; A
kSOMð Þ
min,i and A

kSOMð Þ
max,i are the

minimum and the maximum allowable cross-sectional areas at the stage kSOM,

respectively. In stage 1, the amounts of A
ð1Þ
min;i and A

ð1Þ
max;i are set to:

A
1ð Þ
min, i ¼ Amin,A

1ð Þ
max, i ¼ Amax i ¼ 1, 2, . . . , ng ð9:10Þ

Step 2: Determining the amount of increase in allowable cross-sectional areas.

In each stage, the number of permissible value for each group is considered as β2,
and therefore the amount of the accuracy rate of each variable is equal to:

A
� kSOMð Þ
i ¼

A
kSOMð Þ
max, i � A

kSOMð Þ
min, i

ffi �

β2 � 1
i ¼ 1, 2, . . . , ng ð9:11Þ

where A
� kSOMð Þ
i is the amount of increase in allowable cross-sectional area; Unlike

ACO, β2 (the number of subdomains) does no affect the optimization time and in

the BB–BC optimization, β2 is set to 100.

Step 3: Creating the series of the allowable cross-sectional areas. The set of

allowable cross-sectional areas for group i can be defined as:

A
kSOMð Þ
min, i ,A

kSOMð Þ
min, i þ A

� kSOMð Þ
i , . . . ,A

kSOMð Þ
min, i þ ðβ2 � 1Þ � A� kSOMð Þ

i

¼ A
kSOMð Þ
min, i i ¼ 1, 2, . . . , ng ð9:12Þ

Step 4: Determining the optimum solution of the stage kSOM. The last step is

performing an optimization process using the BB–BC algorithm.

The stopping creation for SOM can be described as:

9.2 Modified BB-BC Method 281

The termination conditions satisfied?
No

Output the best solution
Yes

Initialize MBB–BC parameters, SOM parameters, and problem definition,

determine
*A , minA and

maxA , and set 1=SOMk .

Construct new solutions (Eq. (9.8)).

Set 1=k .

Evaluate the boundaries of the design variables (Eq. (9.9)).

Evaluate the allowable sets of the design variables (Eqs. (9.11), (9.12)).

Calculate the Merit function values of all the candidate solutions (Eq. (9.7)).

1=SOMk ?
NoYes

Generate initial candidates in a

random manner

Use previous solutions as initial

candidates

Find the center of mass (Eq. (9.1)).

1+= kk

1+= SOMSOM kk
.

Yes

)(AA nc
i £ ?

No

Fig. 9.1 The flowchart for the MBB–BC algorithm [2]

282 9 Modified Big Bang–Big Crunch Algorithm

A
� ncð Þ
i � A� i ¼ 1, 2, . . . , ng ð9:13Þ

where A
�ðncÞ
i is the amount of accuracy rate of the last stage; and A* is the amount of

accuracy rate of the primary problem.

Sub-Optimization Mechanism continues the search process until a solution is

obtained with the required accuracy. SOM performs as a search-space updating rule

which improves the search process with updating the search space from one stage to

the next stage. Also, SOM helps distribute the initial particles in the first Big Bang.

Another advantage of SOM is to select a small number of candidates because of

reducing the search space. The MBB–BC procedure is illustrated in Fig. 9.1.

9.3 Size Optimization of Space Trusses Using a MBB–BC
Algorithm

9.3.1 Formulation

Truss optimization is one of the most active branches of the structural optimization.

Size optimization of truss structures involves determining optimum values for

member cross-sectional areas, Ai, that minimize the structural weight W. This

minimum design should also satisfy the inequality constraints that limit design

variable sizes and structural responses. The optimal design of a truss can be

formulated as:

minimize W
�
xf g� ¼

Xn
i¼1

γi � Ai � Li

subject to : δmin � δi � δmax i ¼ 1, 2, . . . ,m
σmin � σi � σmax i ¼ 1, 2, . . . , n
σ b
i � σi � 0 i ¼ 1, 2, . . . , ns

Amin � Ai � Amax i ¼ 1, 2, . . . , ng

ð9:14Þ

whereW({x}) is the weight of the structure; n is the number of members making up

the structure; m is the number of nodes; ns is the number of compression elements;

ng is the number of groups (number of design variables); γi is the material density of

member i; Li is the length of member i; Ai is the cross-sectional area of member

i chosen between Amin and Amax;min is the lower bound andmax ¼ upper bound; σi
and δi is the the stress and nodal deflection, respectively; σbi is the allowable

buckling stress in member i when it is in compression.

In this part, the MBB–BC is implemented to solve the truss optimization

problems. The MBB–BC method consists of two phases: a Big Bang phase where

candidate solutions are randomly distributed over the search space, and a Big

Crunch phase working as a convergence operator where the center of mass is

9.3 Size Optimization of Space Trusses Using a MBB–BC Algorithm 283

generated. Then new solutions are created by using the center of mass to be used as

the next Big Bang. These successive phases are carried repeatedly until a stopping

criterion has been met. This algorithm not only considers the center of mass as the

average point in the beginning of each Big Bang, but also similar to Particle Swarm

Optimization-based approaches [5], utilizes the best position of each particle and

the best visited position of all particles. As a result because of increasing the

exploration of the algorithm, the performance of the BB–BC approach is improved.

Another reformation is to use Sub-Optimization Mechanism (SOM), introduced by

Kaveh et al. [4, 6] for ant colony approaches. SOM is based on the principles of

finite element method working as a search-space updating technique. Some changes

are made to prepare SOM for the MBB–BC algorithm. Numerical simulation based

on the MBB–BC method including medium- and large-scaled trusses and compar-

isons with results obtained by other heuristic approaches demonstrate the effec-

tiveness of the present algorithm.

9.3.2 Design Examples

In this section, five truss structures are optimized utilizing the present method. Then

the final results are compared to the solutions of other advanced heuristic methods

to demonstrate the efficiency of this work. These optimization examples include:

• A 25-bar spatial truss structure;

• A 72-bar spatial truss structure;

• A 120-bar dome shaped truss;

• A square on diagonal double-layer grid;

• A 26-story-tower spatial truss.

For the proposed algorithm, a population of 50 individuals is used for the first

through third examples and a population of 100 candidates is selected for two last

examples. A* for all the examples is selected as 0.01. The algorithms are coded in

Matlab and the structures are analyzed using the direct stiffness method.

In order to investigate the effect of the initial solution on the final result and

because of the stochastic nature of the algorithm, each example is independently

solved several times. The initial population in each of these runs is generated in a

random manner. Last example is optimized by the MBB–BC optimization for

20 times, while performance comparisons of the MBB–BC method in other exam-

ples based on 50 evaluations. The performance of the present algorithm in the first

example is compared to the simple and improved heuristic approaches, it is

compared to the simple heuristic algorithms in the second example and in the

third example, some improved approaches are considered from literature. Example

4 is optimized using GA, PSO, a hybrid PSO (PSOPC [7]), BB–BC and the MBB–

BC method. Last example which has 942 members is solved by the present

algorithm and the results are compared to those of GA, PSO and the BB–BC

method.

284 9 Modified Big Bang–Big Crunch Algorithm

9.3.2.1 Twenty Five-Bar Spatial Truss

The topology and nodal numbers of a 25-bar spatial truss structure are shown in

Fig. 9.2. In this example, designs for a multiple load case are performed and

the results are compared to those of other optimization techniques employed by

[8–13]. In these studies, the material density is considered as 0.1 lb/in3

(2,767.990 kg/m3) and the modulus of elasticity is taken as 10,000 ksi

(68,950 MPa).

Twenty five members are categorized into eight groups, as follows:

(1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–

A21, and (8) A22–A25.

This spatial truss is subjected to two loading conditions shown in Table 9.1.

Maximum displacement limitations of �0.35 in (8.89 mm) are imposed on every

node in every direction and the axial stress constraints vary for each group as shown

in Table 9.2. The range of cross-sectional areas varies from 0.01 to 3.4 in2

(0.6452 cm2 to 21.94 cm2).

Using α1 ¼ 1.0 allows an initial search of the full range of values for each design

variable. Figure 9.3 shows the effect of various values for α2 and α3 on the average

weight of designs for the 25-bar truss. This figure shows that α2 ¼ 0.40 and

α3 ¼ 0.80 are suitable values for MBB–BC algorithm. These parameter values

are used for all other examples presented.

The MBB–BC algorithm achieves the best solution after 12,500 searches.

However, the BB–BC algorithm finds the best solution after about 20,566 analyses

[14] which is 64 % more than the present work. The best weight of the MBB–BC is

545.16 lb while the best result of BB–BC is 545.38 lb. In addition, the MBB–BC

75 in.

(190.5 cm)

200 in.
(508 cm)

13

15

25

22 14

21

20

(10)

23
24

12

(5)

(2)

(3)

(1)

9

10
5

4 8

1

2

3 7
6

11

19

18

17

16

(4)

Z

X

Y

(8)

(190.5 cm)
75 in.

(7)

(9)

(6)

200 in.
(508 cm)

100 in.
(254 cm)

100 in.
(254 cm)

75 in.
(190.5 cm)

Fig. 9.2 Schematic of a twenty five-bar spatial truss

9.3 Size Optimization of Space Trusses Using a MBB–BC Algorithm 285

algorithm has better performance than the BB–BC algorithm with respect to the

average weight and standard deviation. Although the MBB–BC approach has worse

performance than the improved methods (IACS [4] and PSACO [15] and HPSACO

[16]), it performs better than other simple algorithms (GA [8], PSO [17]) when the

best weight, the average weight or the standard deviation are compared. Also, the

MBB–BC approach has smaller required number of iterations for convergence than

Table 9.1 Loading conditions for the 25-bar spatial truss

Node

Case 1 Case 2

PX kips (kN) PY kips (kN) PZ kips (kN) PX kips (kN) PY kips (kN) PZ kips (kN)

1 0.0 20.0 (89) �5.0 (22.25) 1.0 (4.45) 10.0 (44.5) �5.0 (22.25)

2 0.0 �20.0 (89) �5.0 (22.25) 0.0 10.0 (44.5) �5.0 (22.25)

3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

Table 9.2 Member stress limitation for the 25-bar spatial truss

Element group Compressive stress limitations ksi (MPa) Tensile stress limitations ksi (MPa)

1 A1 35.092 (241.96) 40.0 (275.80)

2 A2–A5 11.590 (79.913) 40.0 (275.80)

3 A6–A9 17.305 (119.31) 40.0 (275.80)

4 A10–A11 35.092 (241.96) 40.0 (275.80)

5 A12–A13 35.092 (241.96) 40.0 (275.80)

6 A14–A17 6.759 (46.603) 40.0 (275.80)

7 A18–A21 6.959 (47.982) 40.0 (275.80)

8 A22–A25 11.082 (76.410) 40.0 (275.80)

0.1 0.2 0.3 0.4 0.5. 0.6 0.7 0.8 0.9
545

550

555

560

565

570

575

580

585

W
ei

gh
t (

lb
)

2

2

2

2

2

2

2

2 = 0.10

= 0.20

= 0.30

= 0.40

= 0.50

= 0.60

= 0.70

= 0.80α
α
α
α
α
α
α
α

3α

Fig. 9.3 Effect of MBB–BC parameters on average weight of the 25-bar truss

286 9 Modified Big Bang–Big Crunch Algorithm

T
a
b
le

9.
3

P
er
fo
rm

an
ce

co
m
p
ar
is
o
n
fo
r
th
e
2
5
-b
ar

sp
at
ia
l
tr
u
ss

E
le
m
en
t

g
ro
u
p

O
p
ti
m
al

cr
o
ss
-s
ec
ti
o
n
al

ar
ea
s
(i
n
2
)

R
aj
ee
v
an
d

K
ri
sh
n
am

o
o
rt
h
y

S
ch
u
tt
e
an
d

G
ro
en
w
o
ld

L
ee

an
d

G
ee
m

K
av
eh

et
al
.
K
av
eh

an
d
T
al
at
ah
ar

C
am

p

P
re
se
n
t
w
o
rk

[2
]

G
A

[8
]

P
S
O
[1
7
]

H
S
[1
8
]

IA
C
S
[4
]

P
S
A
C
O

[1
5
]

H
P
S
A
C
O

[1
6
]

B
B
–
B
C

[1
4
]

in
2

cm
2

1
A
1

0
.1
0

0
.0
1
0

0
.0
4
7

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
6
5

2
A
2
–
A
5

1
.8
0

2
.1
2
1

2
.0
2
2

2
.0
4
2

2
.0
5
2

2
.0
5
4

2
.0
9
2

1
.9
9
3

1
2
.8
5
6

3
A
6
–
A
9

2
.3
0

2
.8
9
3

2
.9
5
0

3
.0
0
1

3
.0
0
1

3
.0
0
8

2
.9
6
4

3
.0
5
6

1
9
.7
1
7

4
A
1
0
– A
1
1

0
.2
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
6
5

5
A
1
2
– A
1
3

0
.1
0

0
.0
1
0

0
.0
1
4

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
1
0

0
.0
6
5

6
A
1
4
– A
1
7

0
.8
0

0
.6
7
1

0
.6
8
8

0
.6
8
4

0
.6
8
4

0
.6
7
9

0
.6
8
9

0
.6
6
5

4
.2
9
3

7
A
1
8
– A
2
1

1
.8
0

1
.6
1
1

1
.6
5
7

1
.6
2
5

1
.6
1
6

1
.6
1
1

1
.6
0
1

1
.6
4
2

1
0
.5
9
4

8
A
2
2
– A
2
5

3
.0

2
.7
1
7

2
.6
6
3

2
.6
7
2

2
.6
7
3

2
.6
7
8

2
.6
8
6

2
.6
7
9

1
7
.2
8
1

B
es
t w
ei
g
h
t

(I
b
)

5
4
6

5
4
5
.2
1

5
4
4
.3
8

5
4
5
.0
3

5
4
5
.0
4

5
4
4
.9
9

5
4
5
.3
8

5
4
5
.1
6

2
4
2
5
N

A
v
er
ag
e

w
ei
g
h
t

(I
b
)

N
/A

5
4
6
.8
4

N
/A

5
4
5
.7
4

N
/A

5
4
5
.5
2

5
4
5
.7
8

5
4
5
.6
6

S
td

d
ev

N
/A

1
.4
7
8

N
/A

0
.6
2
0

N
/A

0
.3
1
5

0
.4
9
1

0
.3
6
7

N
o
.
o
f

an
al
y
se
s

N
/A

9
,5
9
6

1
5
,0
0
0

3
,5
2
0

2
8
,8
5
0

9
,8
7
5

2
0
,5
6
6

1
2
,5
0
0

9.3 Size Optimization of Space Trusses Using a MBB–BC Algorithm 287

PSACO and HS [18]. Table 9.3 presents a comparison of the performance of the

MBB–BC method and other heuristic algorithms.

9.3.2.2 Seventy Two-Bar Spatial Truss

For the 72-bar spatial truss structure shown in Fig. 9.4, the material density is 0.1 lb/

in3 (2,767.990 kg/m3) and the modulus of elasticity is 10,000 ksi (68,950 MPa).

The members are subjected to the stress limits of �25 ksi (�172.375 MPa). The

uppermost nodes are subjected to the displacement limits of �0.25 in (0.635) in

both the x and y directions. The 72 structural members of this spatial truss are sorted

into 16 groups using symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18,

(5) A19–A22, (6), A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48,

(11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–A66 (15), A67–A70, (16) A71–

A72. The minimum permitted cross-sectional area of each member is 0.10 in2

(0.6452 cm2), and the maximum cross-sectional area of each member is 4.00 in2

(25.81 cm2). Table 9.4 lists the values and directions of the two load cases applied

to the 72-bar spatial truss.

The best weight of the MBB–BC optimization is 379.66 lb, while it is 379.85 lb,

380.24 lb, 381.91 and 385.76 lb for the BB–BC [14], ACO [19], PSO [20] and GA

[21], respectively. Standard deviation in the MBB–BC is 1.201 lb while standard

deviation of primary BB–BC algorithm has been reported 1.912 lb [14]. In addition,

the required analyses for reaching a convergence is 13,200 analyses, which is 48 %

and 40 % less than the BB–BC method and ACO, respectively. Table 9.5 compares

Fig. 9.4 Schematic of a 72-bar spatial truss

288 9 Modified Big Bang–Big Crunch Algorithm

the performance of the improved BB–BC algorithm with those previously reported

in the literature.

Table 9.4 Loading conditions for the 72-bar spatial truss

Node

Case 1 Case 2

PX kips (kN) PY kips (kN) PZ kips (kN) PX PY PZ kips (kN)

17 5.0 (22.25) 5.0 (22.25) �5.0 (22.25) 0.0 0.0 �5.0 (22.25)

18 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

19 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

20 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

Table 9.5 Performance comparison for the 72-bar spatial truss

Element

group

Optimal cross-sectional areas (in2)

Erbatur

et al.

Camp and

Bichon

Perez and

Behdinan Camp

Kaveh and

Talatahari [2]

GA [21] ACO [19] PSO [20] BB–BC [14] in2 cm2

1 A1–A4 1.755 1.948 1.7427 1.8577 1.9042 12.2851

2 A5–A12 0.505 0.508 0.5185 0.5059 0.5162 3.3303

3 A13–A16 0.105 0.101 0.1000 0.1000 0.1000 0.6452

4 A17–A18 0.155 0.102 0.1000 0.1000 0.1000 0.6452

5 A19–A22 1.155 1.303 1.3079 1.2476 1.2582 8.1176

6 A23–A30 0.585 0.511 0.5193 0.5269 0.5035 3.2488

7 A31–A34 0.100 0.101 0.1000 0.1000 0.1000 0.6452

8 A35–A36 0.100 0.100 0.1000 0.1012 0.1000 0.6452

9 A37–A40 0.460 0.561 0.5142 0.5209 0.5178 3.3409

10 A41–A48 0.530 0.492 0.5464 0.5172 0.5214 3.3639

11 A49–A52 0.120 0.100 0.1000 0.1004 0.1000 0.6452

12 A53–A54 0.165 0.107 0.1095 0.1005 0.1007 0.6497

13 A55–A58 0.155 0.156 0.1615 0.1565 0.1566 1.0104

14 A59–A66 0.535 0.550 0.5092 0.5507 0.5421 3.4973

15 A67–A70 0.480 0.390 0.4967 0.3922 0.4132 2.6658

16 A71–A72 0.520 0.592 0.5619 0.5922 0.5756 3.7133

Best weight

(lb)

385.76 380.24 381.91 379.85 379.66 1,689 N

Average

weight (lb)

N/A 383.16 N/A 382.08 381.85

Std dev (lb) N/A 3.66 N/A 1.912 1.201

Number of

analyses

N/A 18,500 N/A 19,621 13,200

9.3 Size Optimization of Space Trusses Using a MBB–BC Algorithm 289

9.3.2.3 A 120-Bar Dome Truss

Figure 9.5 shows the topology and group numbering of a 120-bar dome truss. The

modulus of elasticity is 30,450 ksi (210,000 MPa), and the material density is

0.288 lb/in3 (7,971.810 kg/m3). The yield stress of steel is taken as 58.0 ksi

(400 MPa).

The dome is considered to be subjected to vertical loading at all the unsupported

joints. These loads are taken as �13.49 kips (�60 kN) at node 1, �6.744 kips (�30

Fig. 9.5 Schematic of a 120-bar dome shaped truss

290 9 Modified Big Bang–Big Crunch Algorithm

kN) at nodes 2 through 14, and �2.248 kips (�10 kN) at the rest of the nodes. The

minimum cross-sectional area of all members is 0.775 in2 (2 cm2) and the maxi-

mum cross-sectional area is taken as 20.0 in2 (129.03 cm2). The constraints are

considered as:

1. Stress constraints (according to the AISC ASD (1989) [22] code):

σþi ¼ 0:6Fy for σi � 0

σ�i for σi < 0

�
ð9:15Þ

where σ�i is calculated according to the slenderness ratio:

σ�i ¼
1� λ2i

2C2
C

0
@

1
AFy

2
4

3
5
,

5

3
þ 3λi
8CC

� λ3i
8C3

C

0
@

1
A for λi < CC

12π2E

23λ2i
for λi � CC

8>>>>><
>>>>>:

ð9:16Þ

where E is the modulus of elasticity; Fy is the yield stress of steel; Cc is the

slenderness ratio (λi) dividing the elastic and inelastic buckling regions (CC

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p
); λi is the slenderness ratio (λi ¼ kLi/ri); k is the effective length

factor; Li is the member length; and ri is the radius of gyration.
2. Displacement limitations of �0.1969 in (5 mm) are imposed on all nodes in x, y

and z directions.

Table 9.6 illustrates the best solution vectors, the corresponding weights and the

required number for convergence in the present algorithm and some of other

heuristic methods. Except IACS which uses two auxiliary mechanisms for

searching, the MBB–BC optimization and HPSACO have best convergence rates.

9.3.2.4 A Square on Diagonal Double-Layer Grid

A double-layer grid of the type shown in Fig. 9.6 with a span of 21 m and the height

of 1.5 m is chosen from [23]. The structure is simply supported at the corner nodes

of the bottom-layer.

The loading is assumed as a uniformly distributed load on the top-layer of

intensity of 155.5 kg/m2 and it is transmitted to the joints acting as concentrated

vertical loads only. The structure is assumed as pin jointed with elastic modulus of

210,000 MPa and the material density is assumed as 0.008 kg/cm3 for all the

members. Member areas are linked to maintain symmetry about the four lines of

symmetry axes in the plane of the grid. Thus the problem has 47 design variables.

The maximum allowable area is considered as 22 cm2 with a lower limit of 0.1 cm2.

Stress, Euler buckling and displacement constraints are considered in this

problem. All the elements are subjected to the following stress constraints:

9.3 Size Optimization of Space Trusses Using a MBB–BC Algorithm 291

�1, 000 � σi � 1; 400 kg=cm2 i ¼ 1, 2, . . . , 47 ð9:17Þ

where i is the element number. Tubular members are considered with a diameter to

thickness ratio of 10. Thus Euler buckling is considered as:

σ b
i ¼ �10:1EAi=8L

2
i i ¼ 1, 2, . . . , 47 ð9:18Þ

In addition, displacement constraints are imposed on the vertical component of

the three central joints along the diagonal of the grid (joints 19, 20 and 22):

�1:5 � δi � 1:5cm i ¼ 1, 2, 3 ð9:19Þ

This example is solved by GA, Standard PSO, PSOPC, BB–BC and the MBB–

BC algorithm. The number of required iterations for the proposed algorithm is

determined by using (9.13) (250 iterations in average), while it is considered as

500 iterations for other examples. The results are presented in Table 9.7.

The efficiency of the proposed algorithm in terms of the required optimization

time and standard deviation is better than that of other approaches. The optimiza-

tion time in the MBB–BC algorithm is 631 s while in primary BB–BC algorithm, it

is 1,249 s on a core™ 2 Duo 3.0GHz CPU. Also, the MBB–BC algorithm can find

the best result in comparison to other algorithms. Figure 9.7 shows the convergence

rate of the best and average of 50 runs for the proposed algorithm.

Table 9.6 Performance comparison for the 120-bar dome truss

Element

group

Optimal cross-sectional areas (in2)

Kaveh

et al. Kaveh and Talatahari Present work [2]

IACS [4]

PSOPC

[15]

PSACO

[15]

HPSACO

[16] BB–BC in2 cm2

1 A1 3.026 3.040 3.026 3.095 3.026 3.037 19.596

2 A2 15.06 13.149 15.222 14.405 14.276 14.431 93.010

3 A3 4.707 5.646 4.904 5.020 4.986 5.130 33.094

4 A4 3.100 3.143 3.123 3.352 3.175 3.134 20.217

5 A5 8.513 8.759 8.341 8.631 8.617 8.591 55.427

6 A6 3.694 3.758 3.418 3.432 3.558 3.377 21.785

7 A7 2.503 2.502 2.498 2.499 2.510 2.500 16.129

Best

weight

(Ib)

33,320.52 33,481.2 33,263.9 33,248.9 33,340.7 33,287.9 148,064 N

No. of

analyses

3,250 150,000 32,600 10,000 22,000 10,000

292 9 Modified Big Bang–Big Crunch Algorithm

9.3.2.5 A 26-Story Tower Spatial Truss

The 26-story tower space truss containing 942 elements and 244 nods is considered.

Fifty nine design variables are used to represent the cross-sectional areas of 59 ele-

ment groups in this structure, employing the symmetry of the structure. Figure 9.8

shows the geometry and the 59 element groups. The material density is 0.1 lb/in3

(2767.990 kg/m3) and the modulus of elasticity is 10,000 ksi (68,950 MPa). The

members are subjected to the stress limits of �25 ksi (172.375 MPa) and the four

nodes of the top level in the x, y, and z directions are subjected to the displacement

limits of �15.0 in (38.10 cm) (about 1/250 of the total height of the tower).

The allowable cross-sectional areas in this example are selected from 0.1 to 20.0

in2 (from 0.6452 cm2 to 129.032 cm2). The loading on the structure consists of:

1. The vertical load at each node in the first section is equal to �3 kips (�13.344

kN);

2. The vertical load at each node in the second section is equal to�6 kips (�26.688

kN);

Fig. 9.6 Schematic of a

square on diagonal double-

layer grid [23]

9.3 Size Optimization of Space Trusses Using a MBB–BC Algorithm 293

Table 9.7 Performance comparison for the square on diagonal double-layer grid

Group Members

Optimal cross-sectional areas (cm2)

GA PSO PSOPC BB–BC Present work [2]

1 1-2 0.308854 1.791978 1.012706 0.285600 0.433754

2 2-3 10.83306 3.607462 10.32799 13.55730 5.584617

3 3-4 12.16883 7.951644 11.49081 11.91084 9.799718

4 4-5 16.45846 9.300211 10.68151 9.476018 17.07508

5 10-11 15.26131 17.51948 15.02204 13.63725 16.31362

6 11-12 17.96606 20.36895 18.01115 17.20785 19.63048

7 12-13 20.41424 21.99344 19.85809 18.81188 21.28936

8 16-17 11.12362 12.35451 11.21260 13.52788 10.02678

9 17-18 12.32299 19.71894 20.56506 15.32646 12.81294

10 20-21 13.20768 1.191691 3.287622 2.815005 9.633889

11 2-10 1.041269 14.52528 1.386787 0.572246 0.609792

12 3-11 4.161487 6.035163 0.608871 0.516033 0.572243

13 4-12 2.683208 13.56488 2.498575 0.505283 7.470955

14 11-16 2.849718 4.147840 3.987492 7.615556 0.685628

15 12-17 5.767594 0.793823 1.167498 1.022668 1.935885

16 17-20 0.816791 5.981349 1.297827 0.712039 1.237232

17 6-7 8.397544 9.386567 10.21764 13.75949 9.245048

18 7-8 3.72534 0.115224 0.922781 2.307911 0.949586

19 8-9 12.42663 10.02391 11.95824 2.470798 3.547774

20 6-14 15.29086 11.51125 14.69415 11.44199 16.15166

21 14-8 4.202762 0.924454 3.749231 1.321159 0.390444

22 8-15 1.410931 0.313266 0.564762 0.944948 5.009982

23 14-19 5.476267 14.30610 0.823906 0.731927 0.805348

24 19-15 4.34482 0.100715 0.780927 0.598549 4.229839

25 19-22 8.591895 15.97170 8.698821 8.818147 6.403876

26 6-1 7.833766 17.20812 8.625590 0.674610 6.961359

27 6-2 7.909819 4.294630 6.957233 13.27894 5.523857

28 6-10 18.56878 21.23205 19.22719 20.42001 19.36144

29 7-2 10.39279 4.382740 8.955598 3.643809 4.942896

30 7-3 4.534203 11.74380 7.007269 5.77340 7.867227

31 7-10 5.458530 5.204881 4.226522 7.61358 4.030943

32 7-11 5.847516 10.25399 4.42828 10.10760 3.746393

33 8-3 5.462611 3.141240 4.759653 3.036577 6.408331

34 8-4 10.16044 10.12301 6.047255 1.659517 3.18843

35 8-11 2.732264 2.647940 2.705861 2.513062 2.657439

36 8-12 2.957776 2.515398 7.098940 2.603133 2.932186

37 9-4 3.832699 1.520112 1.755671 1.313180 3.347062

38 9-12 10.44930 2.155439 0.299187 12.73675 6.036277

39 14-11 1.526541 1.002402 6.212577 4.481129 0.319025

40 14-16 10.24427 9.794119 11.67664 13.48525 10.07837

41 14-10 16.04097 8.867614 10.55834 3.083517 21.97723

42 15-17 0.782389 3.801597 16.12512 5.875162 0.505746

43 15-12 0.469413 12.66615 0.964569 0.115837 0.354663

44 19-17 2.830117 3.049450 5.495865 3.872755 3.969591

45 19-20 9.576797 18.10949 11.43763 10.27249 3.8124

(continued)

294 9 Modified Big Bang–Big Crunch Algorithm

3. The vertical load at each node in the third section is equal to �9 kips (�40.032

kN);

4. The horizontal load at each node on the right side in the x direction is equal to�1

kips (�4.448 kN);

5. The horizontal load at each node on the left side in the x direction is equal to 1.5

kips (6.672 kN);

6. The horizontal load at each node on the front side in the y direction is equal to

�1 kips (�4.448 kN);

7. The horizontal load at each node on the back side in the x direction is equal to

1 kips (4.448 kN).

The MBB–BC method achieved a good solution after 30,000 analyses and found

an optimum weight of 52,401 lb. The best weights for the GA, Standard PSO and

BB–BC are 56,343 lb, 60,385 lb and 53,201 lb, respectively. In addition, MBB–BC

Table 9.7 (continued)

Group Members

Optimal cross-sectional areas (cm2)

GA PSO PSOPC BB–BC Present work [2]

46 19-16 9.393793 20.48772 6.014988 10.83278 9.327422

47 20-22 1.971953 17.67174 9.354127 14.32975 4.513447

Best weight (kg) 5236 5814 4951 4636 4413

Average weight (kg) 5614 6917 5162 4762 4508

Std dev (kg) 512.6 810.3 352.5 189.5 108.3

No. of analyses 50,000 50,000 50,000 50,000 25,000

Optimization time (s) 1,854 1,420 1,420 1,249 631

50 100 150 200 250
4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

Iterations

W
ei

gh
t (

kg
)

The average of 50 runs
The best result

Fig. 9.7 Convergence history of the square on diagonal double-layer grid for the MBB–BC

algorithm [2]

9.3 Size Optimization of Space Trusses Using a MBB–BC Algorithm 295

has better performance in terms of the optimization time, standard deviation and the

average weight. Table 9.8 provides the statistic information for this example.

Figure 9.9 compares the scattering of the particles for the 8th, 26th, 32nd, and

37th design variables in the 1st, 180th and 300th iterations (end of the optimization)

for this example. It can be seen that particles can be given any value in the

allowable space in the first iteration (Fig. 9.9a); while after 180 iterations, the

particles are concentrated on a little space of search domain (Fig. 9.9b). At the

end of optimization (Fig 9.9c), almost all candidates are concentrated around a

specific value. Figure 9.10 shows the best and average of 20 runs convergence

history for the proposed algorithm.

Fig. 9.8 Schematic of a 26-story-truss tower

296 9 Modified Big Bang–Big Crunch Algorithm

9.3.2.6 Discussion

The comparisons of numerical results of various trusses using the MBB–BC

method with the results obtained by other heuristic approaches are performed to

demonstrate the robustness of the present algorithm. With respect to the BB–BC

approach, MBB–BC has better solutions and standard deviations. Also, MBB–BC

has low computational time and high convergence speed compared to BB–BC.

Specially, when the number of design variables increases the modified BB–BC

shows better performance. By adding the PSO principle to the BB–BC algorithm,

we increase the exploration by raising the search ability of the algorithm. As a result

contrary to the other metaheuristic techniques which present convergence difficulty

or get trapped at a local optimum in large size structures, MBB–BC performs well

in large size structures. On the other hand, increasing the exploration often causes

increasing the number of analyses. This problem is solved by using SOM which

works as a search space updating rule and reduces the number analyses for

convergence.

9.4 Optimal Design of Schwedler and Ribbed Domes Using
MBB–BC Algorithm

9.4.1 Introduction

Covering large areas without intermediate supports has always been an attractive

problem for architects and a challenging task for structural engineers. Dome

structures are lightweight and elegant structures that provide economical solutions

for covering large areas with their splendid aesthetic appearance. The joints of

dome structures are considered to be rigidly connected and the members are

exposed to both axial forces and bending moments. Therefore, bending moments

of members affect the axial stiffness of these elements because of being slender

members. Consequently, consideration of geometric nonlinearity in the analysis of

these structures becomes important if the real behavior of these structures is

intended to be obtained [24]. Furthermore, the instability of domes is also required

to be checked during the nonlinear analysis [25, 26]. Some recent researches by

Saka have shown that consideration of nonlinear behavior in the optimum design of

Table 9.8 Performance comparison for the 26-story-tower spatial truss

GA PSO BB–BC Kaveh and Talatahari [2]

Best weight (lb) 56,343 60,385 53,201 52,401 (233,081 N)

Average weight (lb) 63,223 75,242 55,206 53,532

Std dev (lb) 6,640.6 9,906.6 2,621.3 1,420.5

No. of analyses 50,000 50,000 50,000 30,000

Optimization time (s) 4,450 3,640 3,162 1,926

9.4 Optimal Design of Schwedler and Ribbed Domes Using MBB–BC Algorithm 297

1 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

The number of candidate

Th
e

va
lu

e
of

 d
es

ig
n

va
ria

bl
e

1 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

The number of candidate

Th
e

va
lu

e
of

 d
es

ig
n

va
ria

bl
e

The 37th variable
The 8th variable
The 26th variable
The 32th variable

1 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

The number of candidate

Th
e

va
lu

e
of

 d
es

ig
n

va
ria

bl
e

The 37th variable
The 8th variable
The 26th variable
The 32nd variable

b

c

a

Fig. 9.9 The value of design variable (a) in the first iteration (for the 8th variable) (b) in the 180th
iteration (for the 8th, 26th, 32nd, 37th and variables) (c) in the 300th iteration (for the 8th, 26th,

32nd, 37th and variables) [2]

298 9 Modified Big Bang–Big Crunch Algorithm

domes does not only provide more realistic results, it also produces lighter struc-

tures [27, 28].

In this part, optimum topology design algorithm based on the MBB–BC method

is developed for the Schwedler and ribbed domes. The algorithm determines the

optimum number of rings, the optimum height of crown, and sectional designations

for the members of the Schwedler domes under the external loads. Due to the

selection of the number of rings as the design variable, a simple procedure is

necessary to determine the dome configuration. In order to fulfill this aim, a simple

methodology is introduced in here. This procedure consists of calculating the joint

coordinates and the element constructions. Diagonal members are considered in the

Schwedler domes to stiffen the structure. The effect of these members on the results

of the optimization is investigated. The serviceability and the strength requirements

are considered in the design problem as specified in LRFD–AISC [29]. The steel

pipe sections list of LRFD–AISC is adopted for the cross sections of dome members

and the nonlinear response of the dome is considered during the optimization

process.

9.4.2 Dome Structure Optimization Problems

Optimal design of Schwedler and ribbed domes consists of finding optimal sections

for elements, optimal height for the crown, and the optimum number of rings, under

the determined loading conditions. The allowable cross sections are considered as

37 steel pipe sections, as shown in Table 9.9, where abbreviations ST, EST, and

10 50 100 150 200 250 300
4

6

8

10

12

14
x 104

Iterations

W
ei

gh
t (

lb
)

The average of 20 runs
The best result

Fig. 9.10 Convergence history of the 26-story-tower truss for the MBB–BC algorithm [2]

9.4 Optimal Design of Schwedler and Ribbed Domes Using MBB–BC Algorithm 299

DEST stand for standard weight, extra strong, and double-extra strong,

respectively.

These sections are taken from LRFD–AISC [29] which is also utilized as the

code of practice. The process of the optimum design of the dome structures can be

summarized as

Table 9.9 The allowable steel pipe sections taken from LRFD-AISC

Type

Nominal diameter Weight per ft Area I S J Z

in (lb) in2 in4 in3 in4 in3

1 ST 1/2 0.85 0.250 0.017 0.041 0.082 0.059

2 EST 1/2 1.09 0.320 0.020 0.048 0.096 0.072

3 ST 3/4 1.13 0.333 0.037 0.071 0.142 0.100

4 EST 3/4 1.47 0.433 0.045 0.085 0.170 0.125

5 ST 1 1.68 0.494 0.087 0.133 0.266 0.187

6 EST 1 2.17 0.639 0.106 0.161 0.322 0.233

7 ST 11/4 2.27 0.669 0.195 0.235 0.470 0.324

8 ST 11/2 2.72 0.799 0.310 0.326 0.652 0.448

9 EST 11/4 3.00 0.881 0.242 0.291 0.582 0.414

10 EST 11/2 3.63 1.07 0.666 0.561 1.122 0.761

11 ST 2 3.65 1.07 0.391 0.412 0.824 0.581

12 EST 2 5.02 1.48 0.868 0.731 1.462 1.02

13 ST 21/2 5.79 1.70 1.53 1.06 2.12 1.45

14 ST 3 7.58 2.23 3.02 1.72 3.44 2.33

15 EST 21/2 7.66 2.25 1.92 1.34 2.68 1.87

16 DEST 2 9.03 2.66 1.31 1.10 2.2 1.67

17 ST 31/2 9.11 2.68 4.79 2.39 4.78 3.22

18 EST 3 10.25 3.02 3.89 2.23 4.46 3.08

19 ST 4 10.79 3.17 7.23 3.21 6.42 4.31

20 EST 31/2 12.50 3.68 6.28 3.14 6.28 4.32

21 DEST 21/2 13.69 4.03 2.87 2.00 4.00 3.04

22 ST 5 14.62 4.30 15.2 5.45 10.9 7.27

23 EST 4 14.98 4.41 9.61 4.27 8.54 5.85

24 DEST 3 18.58 5.47 5.99 3.42 6.84 5.12

25 ST 6 18.97 5.58 28.1 8.50 17.0 11.2

26 EST 5 20.78 6.11 20.7 7.43 14.86 10.1

27 DEST 4 27.54 8.10 15.3 6.79 13.58 9.97

28 ST 8 28.55 8.40 72.5 16.8 33.6 22.2

29 EST 6 28.57 8.40 40.5 12.2 24.4 16.6

30 DEST 5 38.59 11.3 33.6 12.1 24.2 17.5

31 ST 10 40.48 11.9 161 29.9 59.8 39.4

32 EST 8 43.39 12.8 106 24.5 49.0 33.0

33 ST 12 49.56 14.6 279 43.8 87.6 57.4

34 DEST 6 53.16 15.6 66.3 20.0 40.0 28.9

35 EST 10 54.74 16.1 212 39.4 78.8 52.6

36 EST 12 65.42 19.2 362 56.7 113.4 75.1

37 DEST 8 72.42 21.3 162 37.6 75.2 52.8

ST standard weight, EST extra strong, DEST double- extra strong

300 9 Modified Big Bang–Big Crunch Algorithm

Find X ¼ x1; x2; . . . ; xng
	

, h,Nr

xi ∈ d1; d2; . . . ; d37f g to minimize V Xð Þ ¼
Xnm
i¼1

xi � Li
hi ∈ hmin, hmin þ h�, . . . , hmaxf g

ð9:20Þ

subjected to the following constraints:

Displacement constraint

δi � δmax
i i ¼ 1, 2, . . . , nn ð9:21Þ

Interaction formula constraints

Pu

2ϕcPn
þ Mux

ϕbMnx
þ Muy

ϕbMny

� �
� 1 For

Pu

ϕcPn
< 0:2 ð9:22Þ

Pu

ϕcPn
þ 8

9

Mux

ϕbMnx
þ Muy

ϕbMny

� �
� 1 For

Pu

ϕcPn
� 0:2 ð9:23Þ

Shear constraint

Vu � ϕvVn ð9:24Þ

where X is the vector containing the design variables of the elements; h is the

variable of the crown height; Nr is the total number of rings; dj is the jth allowable

discrete value for the design variables; hmin, hmax and h* are the permitted mini-

mum, maximum and increased amounts of the crown height which in this part are

taken as D/20, D/2 and 0.25 m, respectively in which D is the diameter of the dome;

ng is the number of design variables or the number of groups; V(X) is the volume of

the structure; Li is the length of member i; δi is the displacement of node i; δmax
i is

the permitted displacement for the ith node; nn is the total number of nodes; ϕc is

the resistance factor (ϕc ¼ 0.9 for tension, ϕc ¼ 0.85 for compression); ϕb is the

flexural resistance reduction factor (ϕb ¼ 0.90); Mux and Muy are the required

flexural strengths in the x and y directions, respectively; Mnx and Mny are the

nominal flexural strengths in the x and y directions, respectively; Pu is the required

strength; and Pn denotes the nominal axial strength which is computed as

Pn ¼ AgFcr ð9:25Þ

where Ag is the gross area of a member; and Fcr is calculated as following

Fcr ¼ 0:658λc
2

ffi �
� f y For λc � 1:5 ð9:26Þ

9.4 Optimal Design of Schwedler and Ribbed Domes Using MBB–BC Algorithm 301

Fcr ¼ 0:877

λc
2

� �
� f y For λc > 1:5 ð9:27Þ

Here, fy is the specified yield stress; and λc is obtained from

λc ¼ kl

πr

ffiffiffiffi
f y
E

r
ð9:28Þ

where k is the effective length factor taken as 1; l is the length of a dome member;

r is governing radius of gyration about the axis of buckling; and E is the modulus of

elasticity.

In (9.24), Vu is the factored service load shear; Vn is the nominal strength in

shear; and ϕv represents the resistance factor for shear (ϕv ¼ 0.90).

In order to handle the constraints, the objective function for a set of design

variables can be penalized to reflect any violation of the design constraints. In

utilizing the penalty functions, if the constraints are satisfied, the penalty will be

zero; otherwise, the amount of penalty is obtained by dividing the violation of

allowable limit to the limit itself. After analyzing the structure and determining the

penalty functions for each constraint, the merit function is defined as

Merk ¼ ε1 � Vk þ ε2 � Φk
� �ε3 ð9:29Þ

where Merk ¼ merit function for the kth candidate; ε1, ε2 and ε3 ¼ coeffi-

cients of merit function. Φk ¼ summation of penalty functions for the candidate k.
The main objective of optimizing structures is to find the minimum amount of the

merit function. In this part, ε1 is set to 1. The coefficient ε2 is taken as the volume of

the structure and the coefficient ε3 is set to 1.5 but gradually, it is increased to 3 [4].

9.4.3 Pseudo-Code of the Modified Big Bang–Big Crunch
Algorithm

The pseudo-code of the MBB–BC algorithm can be summarized as follows:

Step 1: Generate initial candidates in a random manner (considering allowable

set).

Step 2: Calculate the merit function values of all the candidate solutions

(Eq. 9.29).

Step 3: Find the center of the mass. The term mass refers to the inverse of the

merit function value for the dome structures. The point representing the center of

mass that is denoted by A
cðkÞ
i , is calculated according to

302 9 Modified Big Bang–Big Crunch Algorithm

A
c kð Þ
i ¼

XN
j¼1

1

Merj
� A k;jð Þ

i

XN
j¼1

1

Merj

i ¼ 1, 2, . . . , ng ð9:30Þ

where A
ðk;jÞ
i is the ith component of the jth solution generated in the kth iteration;

N is the population size in Big Bang phase.

Step 4: Calculate new candidates around the center of the mass. The modified

BB–BC approach uses the center of mass, the best position of each candidate

(A
lbestðk;jÞ
i) and the best global position (A

gbestðkÞ
i) to generate a new solution as:

A
kþ1, jð Þ
i ¼ α2A

c kð Þ
i þ 1� α2ð Þ α3A

gbest kð Þ
i þ 1� α3ð ÞAlbest k;jð Þ

i

ffi �
þ rjα1 Amax � Aminð Þ

k þ 1

i ¼ 1, 2, . . . , ng
j ¼ 1, 2, . . . ,N

�

ð9:31Þ

where rj is a random number from a standard normal distribution which changes for

each candidate; α1 is a parameter for limiting the size of the search space; Amin

¼ 0.250 in. 2; Amax ¼ 21.3 in. 2; A
lbestðk;jÞ
i is the best position of the jth particle up to

the iteration k and A
gbestðkÞ
i is the best position among all candidates up to the

iteration k; α2 and α3 are adjustable parameters controlling the influence of the

global best and local best on the new position of the candidates, respectively.

In order to reach a discrete solution, the new position of each agent is redefined

as the following

A
kþ1,jð Þ
i ¼Fix α2A

c kð Þ
i þ 1�α2ð Þ α3A

gbest kð Þ
i þ 1�α3ð ÞAlbest k;jð Þ

i

ffi �
þrjα1 Amax�Aminð Þ

kþ1

� �

ð9:32Þ

where Fix(X) is a function which rounds each elements of X to the nearest

permissible discrete value. Using this position updating formula, the agents will

be permitted to select discrete values [12].

Step 5: Return to Step 2 and repeat the process until the condition for the

stopping criterion is fulfilled.

9.4 Optimal Design of Schwedler and Ribbed Domes Using MBB–BC Algorithm 303

9.4.4 Elastic Critical Load Analysis of Spatial Structures

The dome structures are rigid structures for which the overall loss of stability might

take place when these structures are subjected to equipment loading concentrated at

the apex. Therefore, stability check is necessary during the analysis to ensure that

the structure does not lose its load carrying capacity due to instability [24] and

furthermore, considering the nonlinear behaviour in the design of domes is neces-

sary because of the change in geometry under external loads.

Details of the elastic instability analysis of a dome with rigid connections are

carried out as the following [24]:

Step 1: Set the load factor to a pre-selected initial value and assume the axial

forces in members are equal to zero.

Step 2: Compute the stability functions using the current values of axial forces in

members, as in [30].

Step 3: Set up the nonlinear stiffness matrix for each member.

Step 4: Transform the member stiffness matrices from local coordinates into the

global coordinate and assemble the overall stiffness matrix.

Step 5: Check the stability of the dome. Calculate the determinant of the overall

stiffness matrix. If it becomes negative, then the dome becomes instable and the

design process is terminated; otherwise, go to the next step.

Step 6: Analyze the dome under the factored external loads and obtain joint

displacements.

Step 7: Find the member forces.

Step 8: Replace the previous axial forces in members with the new ones.

Step 9: Repeat the steps from 2 until differences between two successive sets of

axial forces are smaller than a specific tolerance.

Step 10: Increase the load factor by pre-selected increment. If the load factor has

reached the specified ultimate value, terminate the elastic critical load analysis;

otherwise, go to Step 2.

9.4.5 Configuration of Schwedler and Ribbed Domes

The configuration of a Schwedler dome is shown in Fig. 9.11. Schwedler, a German

engineer, who introduced this type of dome in 1863, built numerous braced domes

during his lifetime. A Schwedler dome, one of the most popular types of braced

domes, consists of meridional ribs connected together to a number of horizontal

polygonal rings. To stiffen the resulting structure, each trapezium formed by

intersecting meridional ribs with horizontal rings is subdivided into two triangles

by introducing a diagonal member.

The number of nodes in each ring for the Schwedler domes is considered

constant and it is equal to ten in this part. The distances between the rings in the

dome on the meridian line are generally of equal length. The structural data for the

304 9 Modified Big Bang–Big Crunch Algorithm

Fig. 9.11 Schematic of a

Schwedler dome [3]. (a)
3-D view, (b) top view, (c)
side view

9.4 Optimal Design of Schwedler and Ribbed Domes Using MBB–BC Algorithm 305

geometry of this form of the Schwedler domes is a function of the diameter of the

dome (D), the total number of rings (N), and the height of the crown (h). The total
number of rings can be selected 3, 4 or 5. The top joint at the crown is numbered as

first joint as shown in Fig. 9.12a (joint number 1) which is located in the centre of

the coordinate system in x-y plane. The coordinates of other joints in each ring are

obtained as

15

25

35

14

5 4
3

13

11

40

8

6

16

26

36

7172737

18

28

38

9

19

29

39

10

20

30

21

31

41

x

22

1 2
12

32

D

R

h

R-h

O

z

x

y

2 12 22 32

33

23

24

34

a

b

Fig. 9.12 Nodal

numbering and the

corresponding coordinate

system [3]. (a) Top view of

the dome and (b) section of

the dome

306 9 Modified Big Bang–Big Crunch Algorithm

xi ¼ D

2N
cos

360

4ni

�
i�

Xi�1

j¼1

4nj � 1
�

0
@

1
A

yi ¼
D

2N
sin

360

4ni

�
i�

Xi�1

j¼1

4nj � 1
�

0
@

1
A

zi ¼

ffi

R2 � n2i D
2

4N2

0
@

1
A

vuuut � R� hð Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð9:33Þ

where ni is the number of ring corresponding to the node i; R ¼ (D2 + 4h2)/(8h) is
the radius of the hemisphere as shown in Fig. 9.12b.

The member of grouping is determined in a way that rib members between each

consecutive pair of rings belong to one group, diagonal members belong to one

group and the members on each ring form another group. Therefore, the total

number of groups is equal to 3ni � 2. Figure 9.13 shows the number of groups

corresponding to rib, diagonal and ring members. The configuration of elements

contains determining the start and end nodes of each element.For the first group, the

start node for all elements is the joint number 1 and the end nodes are those on the

first ring. The start and end nodes of ring groups can be obtained using following

equations:

I ¼ 10� ni � 1ð Þ þ jþ 1

J ¼ 10� ni � 1ð Þ þ jþ 2

8<
:

j ¼ 1, 2, 3, . . . , 9
ni ¼ 1, 2, . . . ,Nr � 1

�
ð9:34Þ

I ¼ 10� ni � 1ð Þ þ 2

J ¼ 10� ni þ 1

�
ni ¼ 1, 2, . . . ,Nr � 1 ð9:35Þ

Also for the rib and diagonal groups, we have

I ¼ 10� ni�i1
� �þ 2þ Fix

� j� 1

2

�

J ¼ 10� niþij� Fix
j� 1

2

0
@

1
A

j ¼ 2, 3, . . . , 20
ni ¼ 1, 2, . . . ,Nr � 1

�
8>>>>><
>>>>>:

ð9:36Þ

I ¼ 10� ni � 1ð Þ þ 2

J ¼ 10� ni þ 1ð Þ þ 1
ni ¼ 1, 2, . . . ,Nr � 1

�
ð9:37Þ

where I and J are the start and end nodal numbers of the elements, respectively.

Equation (9.34) determines the elements of ring groups where each element is made

up of two consecutive nodes on each ring. The element with the lower and upper

numbers on each ring also corresponds to that group, according to (9.35). Equations

9.4 Optimal Design of Schwedler and Ribbed Domes Using MBB–BC Algorithm 307

(9.36) and (9.37) present the total elements of the rib and diagonal groups located

between the rings ni and ni + 1. Equation (9.37) presents only one element which

connects the first node on the ring ni to the last node on the ring ni + 1.

A dome without the diagonal members is called the ribbed dome, as shown in

Fig. 9.14. For these domes Eqs. (9.33), (9.34) and (9.35) are also valid to determine

the joint coordinates and the ring member constructions. However, the rib members

are assigned using the following relationship:

I ¼ 10� ni � 1ð Þ þ jþ 1

J ¼ 10� ni þ jþ 1

(
j ¼ 1, 2, . . . , 10

ni ¼ 1, 2, . . . ,Nr � 1

�
ð9:38Þ

9.4.6 Results and Discussion

This section presents the optimum design of the Schwedler and ribbed domes using

the MBB–BC algorithm. The modulus of elasticity for the steel is taken as 205 kN/

mm2. The limitations imposed on the joint displacements are 28 mm in the

z direction and 33 mm in the x and y directions for the 1st, 2nd and 3rd nodes,

respectively.

For the proposed algorithm, a population of 50 individuals is used. Using

α1 ¼ 1.0 allows the initial search of the full range of values for each design

variable. Previous investigations show that α2 ¼ 0.40 and α3 ¼ 0.80 are suitable

values for MBB–BC algorithm. Here, first a comparison is made between the

Schwedler and ribbed domes, and then the efficiency of the Schwedler domes for

various diameters is investigated.

Fig. 9.13 The Schwedler

dome with the related

member grouping [3]

308 9 Modified Big Bang–Big Crunch Algorithm

Fig. 9.14 Schematic of a

ribbed dome [3]. (a) 3-D
view, (b) top view, (c)
side view

9.4 Optimal Design of Schwedler and Ribbed Domes Using MBB–BC Algorithm 309

9.4.6.1 Comparison of the Schwedler and Ribbed Domes

The diameter of the dome is selected as 40 m. The dome is considered to be

subjected to equipment loading at its crown. The three loading conditions are

considered:

Case 1. The vertical downward load of �500 kN;

Case 2. The two horizontal loads of 100 kN in the x and y directions;
Case 3. The vertical downward load of �500 kN and two horizontal loads of

100 kN in the x and y directions.
Table 9.10 presents the results for the Schwedler and ribbed domes. In all

loading cases, the optimum number of rings for both domes is three. The volume

of the dome structures can be considered as a function of the average cross-

sectional area of the elements (A) and the sum of the element lengths, written as

V Xð Þ ¼ A �
Xnm
i¼1

Li ð9:20Þ

In Case 1, A for the ribbed dome is 60 % more than the Schwedler one. Both

domes have approximately the same height; therefore, because of having less

number of elements, the ribbed dome has smaller value (64 %) for the sum of the

element lengths than the Schwedler dome. Therefore, the difference of the volume

for the domes is small and increasing the sum of element lengths for the Schwedler

dome is compensated by reduction of the average cross-sectional areas of the

elements.

Because of existing only horizontal forces in Case (2), the angles of elements

with the horizontal line in the optimum design must have the minimum value;

therefore, both domes have the minimum allowable heights. When comparing the

optimum sections for these two types of domes, it can be shown that the rib

members in the ribbed dome have much heavier sections than the rings elements,

while almost all members in the Schwedler dome are not so much different. In

addition, contrary to Case 1 and Case 3, the neighboring elements to supports in

both domes have the stronger sections than the others, while in two other cases the

elements near to the apex have the heavier members. Another interesting point is

that the stress constraints are dominant for the Schwedler dome while for the ribbed

dome, the displacement constraints are dominant. Therefore, the Schwedler dome

has better performance against the external lateral forces and has the smaller

volume.

The Schwedler dome contains more appropriate sections and lighter weight than

the ribbed dome for Case 3. In order to provide lateral stiffness, all rib members in

the ribbed domes have very strong sections, and A has a very large value; whereas

the Schwedler dome has small A because of existing diagonal elements which

provide the necessary lateral stiffness against the horizontal external loads. The

height of the ribbed dome must be selected small because of existing the horizontal

loads in one hand and in the other hand, it must have a large value to provide the

310 9 Modified Big Bang–Big Crunch Algorithm

necessary strength against the vertical load and to avoid instability. Thus, the

optimum height of the ribbed dome is constrained to a small range. It is obtained

7.25 m which is between the optimum heights in two previous cases. For the

Schwedler dome, the diagonal and rib elements provide the lateral and vertical

strengths, respectively. Therefore, the height of the dome can be selected from a

broad range and the algorithm has a large space to find the optimum design. To sum

up, the Schwedler domes are more appropriate than the ribbed ones against vertical

and horizontal loads.

9.4.6.2 Schwedler Domes with Different Diameters

In order to investigate the efficiency of the Schwedler domes, two other domes with

different diameters are considered: one with smaller diameter (20 m) and another

with larger diameter (60 m). The loading condition is the same as the Case 3 in

previous section. Figure 9.15 shows the normalized optimum volume of these

domes when the number of rings is altered. For all three cases, a dome with three

rings is lighter. Optimum designs for domes with five and four rings are approxi-

mately 18 % and 8 % heavier than the one with three rings in average, respectively.

Therefore, it seems that selecting a minimum number for the rings leads the better

Table 9.10 Optimum design of the Ribbed and Schwedler domes

Group number

Optimum section (Designations)

Case 1 Case 2 Case 3

Ribbed

dome

Schwedler

dome

Ribbed

dome

Schwedler

dome

Ribbed

dome

Schwedler

dome

1 PIPST (8) PIPST (8) PIPST (6) PIPST (3) PIPST

(12)

PIPST (10)

2 PIPST (5) PIPST (1/2) PIPST (6) PIPST (3) PIPST

(12)

PIPST (31/2)

3 PIPST (5) PIPST (5) PIPST

(10)

PIPST (21/2) PIPST

(10)

PIPST (6)

4 PIPST (8) PIPST (1/2) PIPST

(1/2)

PIPST (31/2) PIPST (8) PIPST (4)

5 PIPST (5) PIPST (5) PIPST

(11/4)

PIPST (21/2) PIPST (6) PIPST (5)

6 N/A PIPST (8) N/A PIPEST (2) N/A PIPST (8)

7 N/A PIPST (5) N/A PIPST (3) N/A PIPST (5)

Height (m) 13.5 13.5 2.00 2.00 7.25 10.75

Max. displace-

ment (cm)

2.80 2.80 3.29 1.79 3.30 2.73

Max. strength

ratio

0.79 0.81 0.63 0.95 0.82 0.92

Volume (m3) 1.33 1.38 1.16 0.74 2.42 1.94

∑ li (m) 377.75 623.25 324.90 535.70 340.20 591.10

A (cm2) 35.35 22.06 35.15 13.81 71.20 32.83

9.4 Optimal Design of Schwedler and Ribbed Domes Using MBB–BC Algorithm 311

results unless a dome has very large diameter in which case some elements will

buckle if the number of rings is selected small.

The optimum height of crown is 5.25 m, 10.75 m and 18.5 m for domes with

20 m, 40 m and 60 m diameters and the ratio of the height to the diameter is equal to

0.26, 0.27, and 0.31, respectively. Thus, when the diameter of the dome increases,

the ratio of the height to the diameter raises slightly. It seems that the range of 0.2 to

0.4 can be utilized as a good search space for the ratio of the height to the diameter.

The convergence history for the studied Schwedler domes are shown in

Fig. 9.16, and the comparison of the optimal design of Schwedler domes with

different diameters is made in Table 9.11. In this table, the mean of the required

materials to cover the space is obtained by dividing the optimum volume of each

dome to the covered area by the dome (πD2/4).

In other words, this ratio can be considered as the cost of required structural

material to the space being covered. Almost for all domes, the required structural

material is the same and this shows the suitability of the Schwedler domes to cover

large areas.

9.4.7 Discussion

A Modified Big Bang–Big Crunch optimization is developed for optimal design of

geometrically nonlinear Schwedler and ribbed domes. This method consists of a

Big Bang phase where candidate solutions are randomly distributed over the search

space, and a Big Crunch phase working as a convergence operator where the center

of mass is generated. The Particle Swarm Optimization capacities are added to

improve the exploration ability of the algorithm. A simple procedure is developed

to determine the configuration of the ribbed and Schwedler domes. Using this

procedure, the joint coordinates are calculated and the elements are constructed.

D= 20m D= 40m D= 60m
0

0.25

0.5

0.75

1

1.25

1.5

N
o
rm

al
iz

ed
 V

o
lu

m
e

With 5 rings

With 4 rings

With 3 rings

Fig. 9.15 The normalized

optimum volume for the

Schwedler domes with

different number of rings

[3]

312 9 Modified Big Bang–Big Crunch Algorithm

The domes with the diagonal elements (Schwedler domes) and without them

(ribbed domes) are optimized using the MBB–BC algorithm.

The three considered loading conditions consist of the vertical downward load,

the two horizontal loads and both of these loads acting simultaneously. In Case

1, the volume of the ribbed dome is smaller than the Schwedler one because of

having less number of elements. In Case 2, both domes have the minimum height

and the stress constraints are dominant for the Schwedler dome while for the ribbed

one, the displacement constraints are dominant. In Case 3, the Schwedler dome has

lighter weight. Despite the fact that diagonal elements increase the sum of the

element lengths, they have efficient influences against vertical and horizontal loads

and therefore, the MBB–BC algorithm is allowed to select some lighter sections for

other elements in the Schwedler domes. In addition, the efficiency of the Schwedler

domes to cover various areas is investigated. The results show that a minimum

number for rings is the best choice and selecting a ratio of the height to the diameter

from the range of [0.2, 0.4] can improve the performance of the dome. Finally, the

results reveal that the normalized required material for Schwedler domes is approx-

imately identical for small or large areas. As a result, this type of domes can be

considered as a good selection to cover large areas without intermediate columns.

1 50 100 150 200 250 300

1

1.2

1.4

1.6

1.8

2

Iteration

C
u
rr

en
t

V
o
lu

m
e

/
B

es
t

V
o
lu

m
e

D = 60m

D = 40m

D = 20m

Fig. 9.16 The convergence

history for the Schwedler

domes [3]

Table 9.11 Comparison of optimal design of the Schwedler domes with different diameters

D ¼ 20 m D ¼ 40 m D ¼ 60 m

Height (m) 5.25 10.75 18.50

Max. displacement (cm) 2.73 2.73 2.80

Max. strength ratio 0.96 0.92 0.99

Volume (m3) 0.53 1.94 4.11

∑ li (m) 294.25 591.10 913.27

A (cm2) 18.16 32.83 45.08

Required materials to cover the space 0.170 0.154 0.145

9.4 Optimal Design of Schwedler and Ribbed Domes Using MBB–BC Algorithm 313

References

1. Erol OK, Eksin I (2006) New optimization method: Big Bang–Big Crunch. Adv Eng Softw

37:106–111

2. Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang–Big Crunch

algorithm. Comput Struct 87:1129–1140

3. Kaveh A, Talatahari S (2010) Optimal design of Schwedler and ribbed domes; hybrid Big

Bang-Big Crunch algorithm. J Construct Steel Res 66:412–419

4. Kaveh A, Farahmand Azar B, Talatahari S (2008) Ant colony optimization for design of space

trusses. Int J Space Struct 23(3):167–181

5. Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers,

Edinburgh

6. Kaveh A, Talatahari S (2010) An improved ant colony optimization for constrained engineer-

ing design problems. Eng Comput 27(1):155–182

7. He S, Wu QH, Wen JY, Saunders JR, Paton RC (2004) A particle swarm optimizer with

passive congregation. Biosystem 78:135–147

8. Rajeev S, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algo-

rithms. J Struct Eng ASCE 118(5):1233–1250

9. Camp CV, Bichon J (2005) Design of steel frames using ant colony optimization. J Struct Eng

ASCE 131:369–379

10. Kaveh A, Shojaee S (2007) Optimal design of skeletal structures using ant colony optimisa-

tion. Int J Numer Methods Eng 70(5):563–581

11. Van Laarhoven PJM, Aarts EHL (1998) Simulated annealing, theory and applications. Kluwer

Academic, Boston, MA

12. Dorigo M (1992) Optimization, Learning and Natural Algorithms. Ph.D thesis. Dipartimento

di Elettronica e Informazione, Politecnico di Milano, IT (in Italian)

13. Dorigo M, Caro GD, Gambardella LM (1999) An algorithm for discrete optimization. Artif

Life 5:137–172

14. Camp CV (2007) Design of space trusses using Big Bang–Big Crunch optimization. J Struct

Eng ASCE 133:999–1008

15. Kaveh A, Talatahari S (2008) A hybrid particle swarm and ant colony optimization for design

of truss structures. Asian J Civil Eng 9(4):329–348

16. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of truss structures. Comput Struct 87:267–283

17. Schutte JJ, Groenwold AA (2003) Sizing design of truss structures using particle swarms.

Struct Multidiscip Optim 25:261–269

18. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search

algorithm. Comput Struct 82:781–798

19. Camp CV, Bichon J (2004) Design of space trusses using ant colony optimization. J Struct Eng

ASCE 130(5):741–751

20. Perez RE, Behdinan K (2007) Particle swarm approach for structural design optimization.

Comput Struct 85:1579–1588

21. Erbatur F, Hasancebi O, Tutuncil I, Kihc H (2000) Optimal design of planar and space

structures with genetic algorithms. Comput Struct 75:209–224

22. American Institute of Steel Construction (AISC) (1989) Manual of steel construction-

allowable stress design, 9th edn. American Institute of Steel Construction (AISC), Chicago, IL

23. Salajegheh E, Vanderplaats GN (1986/87) An efficient approximation method for structural

synthesis with reference to space structures. Int J Space Struct 2:165–175

24. Saka MP, Kameshki ES (1998) Optimum design of nonlinear elastic framed domes. Adv Eng

Softw 29(7–9):519–528

25. Makowski ZS (1984) Analysis, design and construction of braced domes. Granada Publishing

Ltd, London

314 9 Modified Big Bang–Big Crunch Algorithm

26. Coates RC, Coutie MG, Kong FK (1972) Structural analysis. Thomas Nelson & Sons Ltd.,

London

27. Saka MP (2007) Optimum geometry design of geodesic domes using harmony search algo-

rithm. Adv Struct Eng 10:595–606

28. Saka MP (2007) Optimum topological design of geometrically nonlinear single layer latticed

domes using coupled genetic algorithm. Comput Struct 85:1635–1646

29. American Institute of Steel Construction (AISC) (1991) Manual of steel construction-load

resistance factor design, 3rd edn. AISC, Chicago, IL

30. Ekhande SG, Selvappalam M, Madugula KS (1989) Stability functions for three-dimensional

beam-columns. J Struct Eng ASCE 115:467–479

References 315

Chapter 10

Cuckoo Search Optimization

10.1 Introduction

In this chapter, a metaheuristic method so-called Cuckoo Search (CS) algorithm is

utilized to determine optimum design of structures for both discrete and continuous

variables. This algorithm is recently developed by Yang [1], Yang and Deb [2, 3],

and it is based on the obligate brood parasitic behavior of some cuckoo species

together with the Lévy flight behavior of some birds and fruit flies. The CS is a

population based optimization algorithm and similar to many others metaheuristic

algorithms starts with a random initial population which is taken as host nests or

eggs. The CS algorithm essentially works with three components: selection of the

best by keeping the best nests or solutions; replacement of the host eggs with

respect to the quality of the new solutions or Cuckoo eggs produced based random-

ization via Lévy flights globally (exploration); and discovering of some cuckoo

eggs by the host birds and replacing according to the quality of the local random

walks (exploitation) [2].

This chapter consists of two parts. In part 1, optimum design of the truss

structures is presented for both discrete and continuous variables, based on the

Cuckoo Search (CS) algorithm [4]. In order to demonstrate the effectiveness and

robustness of the present method, minimum weight design of truss structures is

performed and the results of the CS and some well-known metaheuristic algorithms

are compared for some benchmark truss structures.

In part 2, optimum design of two dimensional steel frames for discrete variables

based on the Cuckoo search (CS) algorithm is presented [5].

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_10, © Springer International Publishing Switzerland 2014

317

10.2 Optimum Design of Truss Structures Using Cuckoo
Search Algorithm with Lévy Flights

10.2.1 Formulation

The aim of optimizing a truss structure is to find a set of design variables

corresponding to the minimum weight satisfying certain constraints. This can be

expressed as:

Find Xf g ¼ x1; x2; . . . ; xng
� �

, xi ∈Di

To minimize W Xf gð Þ ¼
Xng
i¼1

xi
Xnm ið Þ

j¼1

ρj:Lj ð10:1Þ

Subject to : gj Xf gð Þ � 0 j ¼ 1, 2, . . . , n

where {X} is the set of design variables; ng is the number of member groups in

structure (number of design variables); Di is the allowable set of values for the

design variable xi ;W({X}) presents weight of the structure; nm (i) is the number of

members for the ith design variable; ρj and Lj denotes the material density and the

length of the member j, respectively; gj({X}) denotes design constraints; and n is the
number of the constraints. Di can be considered either as a continuous set or as a

discrete one. In the continuous problems, the design variables can vary continu-

ously in the optimization process.

Di ¼ xi
ffiffixi ∈ xi,min; xi,max½ �� � ð10:2Þ

where xi,min and xi,max are minimum and maximum allowable values for the design

variables xi, respectively. If the design variables represent a selection from a set of

parts as

Di ¼ di, 1; di, 2; . . . ; di,nm ið Þ
� � ð10:3Þ

then the problem can be considered as a discrete one.

In order to handle the constraints, a penalty approach is utilized. In this method,

the aim of the optimization is redefined by introducing the cost function as:

f cos t Xf gð Þ ¼ 1þ ε1:υð Þε2 �W Xf gð Þ, υ ¼
Xn
j¼1

max 0, gj Xf gð Þ
h i

ð10:4Þ

where n represents the number of evaluated constraints for each individual design,

and υ denotes the sum of the violations of the design. The constants ε1 and ε2 are
selected considering the exploration and the exploitation rate of the search space.

318 10 Cuckoo Search Optimization

Here, ε1 is set to unity, ε2 is selected in a way that it decreases the penalties and

reduces the cross-sectional areas. Thus, in the first steps of the search process, ε2 is
set to 1.5 and ultimately increased to 3.

The constraint conditions for truss structures are briefly explained in the follow-

ing. The stress limitations of the members are imposed according to the provisions

of ASD-AISC [6] as follows:

σþi ¼ 0:6 Fy for σi � 0

σ�i for σi < 0

	
ð10:5Þ

σ�i ¼
1� λ2i

2 c2c

0
@

1
AFy

2
4

3
5
,

5

3
þ 3λi
8 cc

þ λ3i
8 c3c

0
@

1
A for λi � cc

12 π2 E

23 λ2i
for λi � cc

8>>>>><
>>>>>:

ð10:6Þ

where, E is the modulus of elasticity; Fy is the yield stress of steel; cc
denotes the slenderness ratio (λi) dividing the elastic and inelastic buckling regions

(cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p
); λi ¼ the slenderness ratio (λi ¼ kli/ri); k ¼ the effective length

factor; Li ¼ the member length; and ri ¼ the radius of gyration. The radius of

gyration (ri) can be expressed in terms of cross-sectional areas as ri ¼ a Ab
i . Here,

a and b are the constants depending on the types of sections adopted for the

members such as pipes, angles, and tees. In this study, pipe sections (a ¼ 0.4993

and b ¼ 0.6777) are adopted for bars.

The other constraint corresponds to the limitation of the nodal displacements:

δi � δui � 0 i ¼ 1, 2, . . . , nn ð10:7Þ

where δi is the nodal deflection; δui is the allowable deflection of node i; and nn is the
number of nodes.

10.2.2 Lévy Flights as Random Walks

The randomization plays an important role in both exploration and exploitation in

metaheuristic algorithms. The Lévy flights as random walks can be described as

follows [2]:

A random walk is a random process which consists of taking a series of

consecutive random steps. A random walk can be expressed as:

10.2 Optimum Design of Truss Structures Using Cuckoo Search Algorithm with. . . 319

Sn ¼
Xn
i¼1

Xi ¼ X1 þ X2 þ . . .þ Xn ¼
Xn�1

i¼1

Xi þ Xn ¼ Sn�1 þ Xn ð10:8Þ

where Sn presents the random walk with n random steps and Xi is the ith random

step with predefined length. The last statement means that the next state will only

depend on the current existing state and the motion or transition Xn. In fact the step

size or length can vary according to a known distribution. A very special case is

when the step length obeys the Lévy distribution; such a random walk is called a

Lévy flight or Lévy walk. In fact, Lévy flights have been observed among foraging

patterns of albatrosses, fruit flies and spider monkeys.

From the implementation point of view, the generation of random numbers with

Lévy flights consists of two steps: the choice of a random direction and the

generation of steps which obey the chosen Lévy distribution. While the generation

of steps is quite tricky, there are a few ways of achieving this. One of the most

efficient and yet straightforward ways is to use the so-called Mantegna algorithm.

In the Mantegna’s algorithm, the step length S can be calculated by:

S ¼ u

vj j1=β
ð10:9Þ

where β is a parameter between [1, 2] interval and considered to be 1.5; u and v are
drawn from normal distribution as

u � N 0; σ2u
� �

, v � N 0; σ2v
� � ð10:10Þ

where

σu ¼ Γ 1þ βð Þ sin πβ=2ð Þ
Γ 1þ βð Þ=2½ � β 2 β�1ð Þ=2

()1=β

, σv ¼ 1 ð10:11Þ

Studies show that the Lévy fights can maximize the efficiency of the resource

searches in uncertain environments. In fact, Lévy flights have been observed among

foraging patterns of albatrosses, fruit flies and spider monkeys..

10.2.3 Cuckoo Search Algorithm

This algorithm is inspired by some species of a bird family called cuckoo because of

their special lifestyle and aggressive reproduction strategy. These species lay their

eggs in the nests of other host birds (almost other species) with amazing abilities

such as selecting the recently spawned nests, and removing the existing eggs that

increase the hatching probability of their eggs. On the other hand, some of host

320 10 Cuckoo Search Optimization

birds are able to combat this parasites behavior of cuckoos, and throw out the

discovered alien eggs or build their new nests in new locations.

This algorithm contains a population of nests or eggs. For simplicity, following

representations is used; where each egg in a nest represents a solution and a Cuckoo

egg represents a new one. If the Cuckoo egg is very similar to the host’s egg, then

this Cuckoo’s egg is less likely to be discovered, thus the fitness should be related to

the difference in solutions. The aim is to employ the new and potentially better

solutions (Cuckoos’) to replace a not-so-good solution in the nests [2].

For simplicity in describing the CS, the following three idealized rules are

utilized [3]:

1. Each Cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;

2. The best nests with high quality of eggs are carried over to the next generations;

3. The number of available host nests is constant, and the egg which is laid by a

Cuckoo is discovered by the host bird with a probability of pa in the range of [0,
1]. The later assumption can be approximated by the fraction pa of the n nests is
replaced by new ones (with new random solutions).

Based on the above three rules, the basic steps of the CS can be summarized as

the pseudo code shown in Fig. 10.1.

This pseudo code, provided in the book entitled Nature-Inspired metaheuristic

algorithms, by Yang [1], is a sequential version and each iteration of the algorithm

consisting of two main steps, but another version of the CS which is supposed to be

different and more efficient is provided by Yang and Deb [3]. This new version has

some differences with the book version as follows:

In the first step according to the pseudo code, one of the randomly selected nests

(except the best one) is replaced by a new solution, produced by random walk with

Lévy flight around the so far best nest, considering the quality. But in the new

version, all of the nests except the best one are replaced in one step, by new

solutions. When generating new solutions xi
(t+1) for the ith Cuckoo, a Lévy flight

is performed using the following equation:

x
tþ1ð Þ
i ¼ x

tð Þ
i þ α:S ð10:12Þ

where α > 0 is the step size parameter and should be chosen considering the scale

of the problem and is set to unity in the CS [2], and decreases function as the

number of generations increases in the modified CS. It should be noted that in this

new version, the solutions’ current positions are used instead of the best solution so

far as the origin of the Lévy flight. The step size is considered as 0.1 in this work

because it results in efficient performance of algorithm in our examples. The

parameter S is the length of random walk with Lévy flights according to the

Mantegna’s algorithm as described in (10.9).

In the second step, the pa fraction of the worst nests are discovered and replaced
by new ones. However, in the new version, the parameter pa is considered as the

10.2 Optimum Design of Truss Structures Using Cuckoo Search Algorithm with. . . 321

probability of a solution’s component to be discovered. Therefore, a probability

matrix is produced as:

Pij ¼ 1 if rand < pa
0 if rand � pa

	
ð10:13Þ

where rand is a random number in [0, 1] interval and Pij is discovering probability

for jth variable of ith nest. Then all of the nests are replaced by new ones produced

by random walks (point wise multiplication of random step sizes with probability

matrix) from their current positions according to quality. In this study the later

version of the CS algorithm is used for optimum design of truss structures.

10.2.4 Optimum Design of Truss Structures Using Cuckoo
Search Algorithm

The pseudo code of optimum design algorithm is as follows:

Generate initial population of n host nests

xi (i =1 , 2, .., n) ;

Objective function f (x), x = (x1, x2, ..., xd) ;

while (stop criterion)

Get a Cuckoo randomly by Lévy flights;

Evaluate its quality/fitness Fi ;

Choose a nest among n (say j) randomly;

jiF Fif ≥

replace j by the new solution;

end
Abandon a fraction (pa) of worse nests

[and build new ones at new locations via Lévy flights]

Keep the best solutions (or nests with quality solutions);

Rank the solutions and find the current best;

end while
Post process results and visualization;

Fig. 10.1 Pseudo code of the CS [4]

322 10 Cuckoo Search Optimization

10.2.4.1 Initialize the Cuckoo Search Algorithm Parameters

The CS parameters are set in the first step. These parameters are number of nests

(n), step size parameter (α), discovering probability (pa) and maximum number of

analyses as the stopping criterion.

10.2.4.2 Generate Initial Nests or Eggs of Host Birds

The initial locations of the nests are determined by the set of values assigned to each

decision variable randomly as

nest
0ð Þ
i, j ¼ xj,min þ rand: xj,max � xj,min

� � ð10:14aÞ

where nesti,j
(0) determines the initial value of the jth variable for the ith nest; xj,min

and xj,max are the minimum and the maximum allowable values for the jth variable;
rand is a random number in the interval [0, 1]. For problems with discrete design

variables it is necessary to use a rounding function as

nest
0ð Þ
i, j ¼ ROUND xj,min þ rand: xj,max � xj,min

� �� � ð10:14bÞ

10.2.4.3 Generate New Cuckoos by Lévy Flights

In this step all of the nests except for the best so far are replaced in order of quality

by new Cuckoo eggs produced with Lévy flights from their positions as

nest
tþ1ð Þ
i ¼ nest

tð Þ
i þ α:S: nest

tð Þ
i � nest

tð Þ
best

� �
:r ð10:15Þ

where nesti
t is the ith nest current position; α is the step size parameter which is

considered to be 0.1; S is the Lévy flights vector as in Mantegna’s algorithm; r is a
random number from a standard normal distribution and nesttbest is the position of

the best nest so far.

10.2.4.4 Alien Eggs Discovery

The alien eggs discovery is preformed for all of eggs using of the probability matrix

for each component of each solution. Existing eggs are replaced considering quality

by newly generated ones from their current position by random walks with step size

such as [7]:

10.2 Optimum Design of Truss Structures Using Cuckoo Search Algorithm with. . . 323

S ¼ rand: nests permute1 i½ � j½ �½ � � nests permute2 i½ � j½ �½ �ð Þ
nest tþ1ð Þ ¼ nest tð Þ þ S:�P ð10:16Þ

where permute1 and permute2 are different rows permutation functions applied to

the nests matrix and P is the probability matrix which was mentioned in (10.13).

10.2.4.5 Termination Criterion

The generation of new Cuckoos and the discovering of the alien eggs steps are

performed alternately until a termination criterion is satisfied. The maximum

number of structure analyses is considered as algorithm’s termination criterion.

10.2.5 Design Examples

In this section, common truss optimization examples as benchmark problems are

optimized with the CS algorithm. The final results are compared to the solutions of

other methods to demonstrate the efficiency of the CS. We have tried to vary the

number of host nests (or the population size of n) and the probability pa. From our

simulations, we found that n ¼ 7–20 and pa ¼ 0.15–0.35 are efficient for design

examples. The examples contain a 25-bar transmission tower and a 72-bar spatial

truss with both discrete and continuous design variables and a dome shaped space

truss with continuous search space.

10.2.5.1 A 25-Bar Space Truss

The 25-bar transmission tower is used widely in structural optimization to verify

various metaheuristic algorithms. The topology and nodal numbering of a 25-bar

space truss structure is shown in Fig. 10.2. The material density is considered as

0.1 lb/in3 (2,767.990 kg/m3) and the modulus of elasticity is taken as 107 psi

(68,950 MPa). Twenty-five members are categorized into eight groups, as follows:

(1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21,

and (8) A22–A25. In this example, designs for both a single and multiple load cases

using both discrete and continuous design variables are performed. The parameters

of the CS algorithm are considered to be pa ¼ 0.15, number of nests ¼ 10 and the

maximum number of analyses ¼ 14,000 as the stopping criterion.

324 10 Cuckoo Search Optimization

10.2.5.2 Design of a 25-Bar Truss Utilizing Discrete Variables

In the first design of a 25-bar truss, a single load case {(kips) (kN)} is applied to the

structure, at nodes 1, 2, 3 and 4 as follows: 1{(0, �10, �10) (0, �44.5, �44.5)},

2{(1, �10, �10) (4.45, �44.5, �44.5)}, 3{(0.6, 0, 0) (2.67, 0, 0)} and 4{(0.5, 0, 0)

(2.225, 0, 0)}. The allowable stresses and displacements are respectively 	40 ksi

(275.80 MPa) for each member and 	0.35 in (8.89 mm) for each node in the x, y

and z directions. The range of discrete cross-sectional areas is from 0.1 to 3.4 in2

(0.6452 to 21.94 cm2) with 0.1 in2 (0.6452 cm2) increment (resulting in 34 discrete

cross sections) for each of the eight element groups [8].

The CS algorithm achieves the best solution weighted by 484.85 lb (2,157.58 N),

after 2,000 analyses. Although, this is identical to the best design developed using

BB-BC algorithm [8] and a multiphase ACO procedure [9], it performs better than

others when the number of analyses and average weight for 100 runs are compared.

Table 10.1 presents the performance of the CS and other heuristic algorithms.

10.2.5.3 Design of a 25-Bar Truss Utilizing Continuous Variables

In the second design of a 25-bar truss, the structure is subjected to two load cases

listed in Table 10.2. Maximum displacement limitations of 	0.35 in (8.89 mm)

are imposed on every node in every direction and the axial stress constraints vary

for each group as shown in Table 10.3. The range of cross-sectional areas varies

from 0.01 to 3.4 in2 (0.06452 to 21.94 cm2) [10].

Table 10.4 shows the best solution vectors, the corresponding weights, average

weights and the required number of analyses for present algorithm and some other

metaheuristic algorithms. The best result obtained by IACS algorithm [12] in the

aspects of low weight and number of analyses. The CS-based algorithm needs 6,100

analyses to find the best solution while this number is equal to 9,596, 15,000, 9,875,

12,500 and 7,000 analyses for a PSO-based algorithm, HS algorithm [11], a

Fig. 10.2 Schematic of a

25-bar space truss

10.2 Optimum Design of Truss Structures Using Cuckoo Search Algorithm with. . . 325

combination algorithm based on PSO, ACO and HS [13], an improved BB–BC

method using PSO properties [14] and the CSS algorithm [10], respectively. The

difference between the result of the CS and these algorithms are very small, but the

average weight obtained by the CS algorithm for 100 runs is better than others. The

convergence history for best result and average weight of 100 runs are shown in

Fig. 10.3. The important point is that although the CS requires 6,100 analyses to

achieve the 545.17 lb (2,426.02 N), it can achieve the 545.76 lb (2,428.63 N) after

2,700 analyses, because CS uses the exploration step in terms of Lévy flights. If the

search space is large, Lévy flights are usually more efficient.

Table 10.1 Performance comparison for the 25-bar spatial truss under single load case

Element group

Optimal cross-sectional areas (in2)

GA GA ACO BB-BC phase 1, 2 Present work [4]

[8] [8] [9] [8] in2 cm2

1 A1 0.10 0.10 0.10 0.10 0.10 0.645

2 A2–A5 1.80 0.50 0.30 0.30 0.30 1.935

3 A6–A9 2.30 3.40 3.40 3.40 3.40 21.935

4 A10–A11 0.20 0.10 0.10 0.10 0.10 0.645

5 A12–A13 0.10 1.90 2.10 2.10 2.10 13.548

6 A14–A17 0.80 0.90 1.00 1.00 1.00 6.452

7 A18–A21 1.80 0.50 0.50 0.50 0.50 3.226

8 A22–A25 3.00 3.40 3.40 3.40 3.40 21.935

Best weight (lb) 546.01 485.05 484.85 484.85 484.85 2,157.58 (N)

Average weight (lb) N/A N/A 486.46 485.10 485.01 2,158.29 (N)

Number of analyses 800 15,000 7,700 9,000 2,000

Table 10.2 Loading

conditions for the 25-bar

spatial truss

Case Node Fx kips (kN) Fy kips (kN) Fz kips (kN)

1 1 1.0 (4.45) 10.0 (44.5) �5.0 (�22.25)

2 0.0 10.0 �5.0 (�22.25)

3 0.5 (2.225) 0.0 0.0

6 0.5 (2.225) 0.0 0.0

2 1 0.0 20.0 (89) �5.0 (�22.25)

2 0.0 �20.0 (�89) �5.0 (�22.25)

Table 10.3 Member stress

limitation for the 25-bar space

truss

Element group Compression ksi (MPa) Tension ksi (MPa)

1 A1 35.092 (241.96) 40.0 (275.80)

2 A2–A5 11.590 (79.913) 40.0 (275.80)

3 A6–A9 17.305 (119.31) 40.0 (275.80)

4 A10–A11 35.092 (241.96) 40.0 (275.80)

5 A12–A13 35.092 (241.96) 40.0 (275.80)

6 A14–A17 6.759 (46.603) 40.0 (275.80)

7 A18–A21 6.959 (47.982) 40.0 (275.80)

8 A22–A25 11.082 (76.410) 40.0 (275.80)

326 10 Cuckoo Search Optimization

10.2.5.4 A 72-Bar Space Truss

For the 72-bar spatial truss structure shown in Fig. 10.4 taken from [14], the

material density is 0.1 lb/in3 (2,767.990 kg/m3) and the modulus of elasticity is

107 psi (68,950 MPa). The 72 structural members of this spatial truss are catego-

rized into 16 groups using symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–

A18, (5) A19– A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–

A48, (11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–A66 (15), A67– A70, and

(16) A71–A72. In this example, designs for a multiple load cases using both discrete

and continuous design variables are performed. The values and directions of the

Table 10.4 Performance comparison for the 25-bar spatial truss under multiple load cases

Element

group

Optimal cross-sectional areas (in2)

PSO

[10] HS [11]

IACS

[12]

HPSACO

[13]

HBB–BC

[14]

CSS

[10]

Present work [4]

in2 cm2

1 A1 0.010 0.047 0.010 0.010 0.010 0.010 0.01 0.065

2 A2–A5 2.121 2.022 2.042 2.054 1.993 2.003 1.979 12.765

3 A6–A9 2.893 2.950 3.001 3.008 3.056 3.007 3.005 19.386

4 A10–A11 0.010 0.010 0.010 0.010 0.010 0.010 0.01 0.065

5 A12–A13 0.010 0.014 0.010 0.010 0.010 0.010 0.01 0.065

6 A14–A17 0.671 0.688 0.684 0.679 0.665 0.687 0.686 4.428

7 A18–A21 1.611 1.657 1.625 1.611 1.642 1.655 1.679 10.830

8 A22–A25 2.717 2.663 2.672 2.678 2.679 2.660 2.656 17.134

Best weight

(lb)

545.21 544.38 545.03 544.99 545.16 545.10 545.17 2,426.02

(N)

Average

weight

(lb)

546.84 N/A 545.74 545.52 545.66 545.58 545.18 2,426.05

(N)

Number of

analyses

9,596 15,000 3,254 9,875 12,500 7,000 6,100

0 2000 4000 6000 8000 10000 12000 14000
544

546

548

550

552

554

556

558

560

Number of analyses

W
ei

g
h
t

(I
b
)

The best feaseble result

The avearage penalized weight of 100 runs

Fig. 10.3 Convergence

history of the 25-bar space

truss under multiple load

cases [4]

10.2 Optimum Design of Truss Structures Using Cuckoo Search Algorithm with. . . 327

two load cases applied to the 72-bar spatial truss for both discrete and continuous

designs are listed in Table 10.5. The members are subjected to the stress limits of

	25 ksi (172.375 MPa) for both discrete and continuous designs. Maximum

displacement limitations of 	0.25 in (6.35 mm), are imposed on every node in

every direction and on the uppermost nodes in both x and y directions respectively

for discrete and continuous cases. In this example, the parameters of the CS

algorithm are considered to be pa ¼ 0.15 and number of nests ¼ 7, maximum

number of analyses ¼ 21,000.

10.2.5.5 Design of a 72-Bar Truss Using Discrete Variables

In this case, the discrete variables are selected from 64 discrete values from 0.111 to

33.5 in2 (71.613 to 21,612.860 mm2). For more information, the reader can refer to

Table 10.2 in Kaveh and Talatahari [15].

Table 10.6 shows the best solution vectors, the corresponding weights and the

required number of analyses for present algorithm and some other metaheuristic

algorithms. The CS algorithm can find the best design among the other existing

studies. Although the number of required analyses by the CS algorithm is slightly

more than ICA algorithm, but the best weight of the CS algorithm is 389.87 lb

(1,734.93 N) that is 2.97 lb (13.22 N) lighter than the best result obtained by ICA

algorithm [15].

Fig. 10.4 Schematic of a 72-bar space truss

328 10 Cuckoo Search Optimization

10.2.5.6 Design of a 72-Bar Truss Using Continuous Variables

In this case the minimum value for the cross-sectional areas is 0.1 in2 (0.6452 cm2)

and the maximum value is limited to 4.00 in2 (25.81 cm2).

The CS algorithm achieves the best result among other algorithms in the aspects

of weight, number of required analyses and the average weight of 100 runs. The

convergence history of the best result and the average weight of 100 runs are shown

in Fig. 10.5. Notice that as shown in this figure, although the CS requires 10,600

analyses to achieve 379.63 lb (1,689.37 N), but achieves the 380 lb (1,691 N)

possible design after 4,900 analyses. Table 10.7 compares the results of the CS to

those of the previously reported methods in the literature.

For Further studies of one of two CS parameters we have tried this example

alternatively for constant number of nests as 7 and various amounts of pa from the

[0, 1] interval with 21,000 as the maximum number of analyses. The convergence

history of the average weight for 100 runs is shown in Fig. 10.6. According to this

Table 10.5 Multiple loading

conditions for the 72-bar truss
Case Node Fx kips (kN) Fy kips (kN) Fz kips (kN)

1 17 0.0 0.0 �5.0 (�22.25)

18 0.0 0.0 �5.0 (�22.25)

19 0.0 0.0 �5.0 (�22.25)

20 0.0 0.0 �5.0 (�22.25)

2 17 5.0 (22.25) 5.0 (22.25) �5.0 (�22.25)

Table 10.6 Performance comparison for the 72-bar spatial truss with discrete variables

Element group

Optimal cross-sectional areas (in2)

GA PSOPC HPSO HPSACO ICA Present work [4]

[15] [15] [15] [16] [15] in2 cm2

1 A1–A4 0.196 4.490 4.970 1.800 1.99 1.800 11.613

2 A5–A12 0.602 1.457 1.228 0.442 0.442 0.563 3.632

3 A13–A16 0.307 0.111 0.111 0.141 0.111 0.111 0.716

4 A17–A18 0.766 0.111 0.111 0.111 0.141 0.111 0.716

5 A19–A22 0.391 2.620 2.880 1.228 1.228 1.266 8.168

6 A23–A30 0.391 1.130 1.457 0.563 0.602 0.563 3.632

7 A31–A34 0.141 0.196 0.141 0.111 0.111 0.111 0.716

8 A35–A36 0.111 0.111 0.111 0.111 0.141 0.111 0.716

9 A37–A40 1.800 1.266 1.563 0.563 0.563 0.563 3.632

10 A41–A48 0.602 1.457 1.228 0.563 0.563 0.442 2.852

11 A49–A52 0.141 0.111 0.111 0.111 0.111 0.111 0.716

12 A53–A54 0.307 0.111 0.196 0.250 0.111 0.111 0.716

13 A55–A58 1.563 0.442 0.391 0.196 0.196 0.196 1.265

14 A59–A66 0.766 1.457 1.457 0.563 0.563 0.602 3.884

15 A67–A70 0.141 1.228 0.766 0.442 0.307 0.391 2.523

16 A71–A72 0.111 1.457 1.563 0.563 0.602 0.563 3.632

Weight (lb) 427.203 941.82 933.09 393.380 392.84 389.87 1,734.93 (N)

Number of analyses N/A 150,000 50,000 5,330 4,500 4,840

10.2 Optimum Design of Truss Structures Using Cuckoo Search Algorithm with. . . 329

figure, the values from [0.15, 0.35] are more efficient for the performance of the

algorithm and 0.15 gives the best result among others.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.1

x 104

380

385

390

395

400

Number of analyses

W
ei

g
h
t

(I
b
)

The best feaseble result

The avearage penalized weight of 100 runs

Fig. 10.5 Convergence

history of the 72-bar space

truss with continious

variables [4]

Table 10.7 Performance comparison for the 72-bar spatial truss with continuous variables

Element group

Optimal cross-sectional areas (in2)

GA ACO PSO BB–BC HBB–BC Present work [4]

[14] [9] [14] [8] [14] in2 cm2

1 A1–A4 1.755 1.948 1.7427 1.8577 1.9042 1.9122 12.055

2 A5–A12 0.505 0.508 0.5185 0.5059 0.5162 0.5101 3.267

3 A13–A16 0.105 0.101 0.1000 0.1000 0.1000 0.1000 0.646

4 A17–A18 0.155 0.102 0.1000 0.1000 0.1000 0.1000 0.645

5 A19–A22 1.155 1.303 1.3079 1.2476 1.2582 1.2577 8.487

6 A23–A30 0.585 0.511 0.5193 0.5269 0.5035 0.5128 3.343

7 A31–A34 0.100 0.101 0.1000 0.1000 0.1000 0.1000 0.645

8 A35–A36 0.100 0.100 0.1000 0.1012 0.1000 0.1000 0.646

9 A37–A40 0.460 0.561 0.5142 0.5209 0.5178 0.5229 3.197

10 A41–A48 0.530 0.492 0.5464 0.5172 0.5214 0.5177 3.345

11 A49–A52 0.120 0.100 0.1000 0.1004 0.1000 0.1000 0.648

12 A53–A54 0.165 0.107 0.1095 0.1005 0.1007 0.1000 0.645

13 A55–A58 0.155 0.156 0.1615 0.1565 0.1566 0.1566 1.013

14 A59–A66 0.535 0.550 0.5092 0.5507 0.5421 0.5406 3.492

15 A67–A70 0.480 0.390 0.4967 0.3922 0.4132 0.4152 2.839

16 A71–A72 0.520 0.592 0.5619 0.5922 0.5756 0.5701 3.486

Weight (lb) 385.76 380.24 381.91 379.85 379.66 379.63 1,689.37 (N)

Average weight (lb) N/A 383.16 N/A 382.08 381.85 379.73 1,689.80 (N)

Number of analyses N/A 18,500 N/A 19,621 13,200 10,600

330 10 Cuckoo Search Optimization

10.2.5.7 Design of a 120-Bar Dome Shaped Truss

The topology, nodal numbering and element grouping of a 120-bar dome truss are

shown in Fig. 10.7. For clarity, not all the element groups are numbered in this

figure. The 120 members are categorized into seven groups, because of symmetry.

Other conditions of problem are as follows [8], the modulus of elasticity is 30,450

ksi (210,000 MPa) and the material density is 0.288 lb/in3 (7,971.810 kg/m3). The

yield stress of steel is taken as 58.0 ksi (400 MPa). The dome is considered to be

subjected to vertical loading at all the unsupported joints. These loads are taken as

�13.49 kips (�60 kN) at node 1, �6.744 kips (�30 kN) at nodes 2 through 14, and

�2.248 kips (�10 kN) at the rest of the nodes. The minimum cross-sectional area of

all members is 0.775 in2 (5 cm2) and the maximum cross-sectional area is taken as

20.0 in2 (129.032 cm2). The constraints are stress constraints [as defined by (10.5)

and (10.6)] and displacement limitations of 	0.1969 in (5 mm), imposed on all

nodes in x, y and z directions.

In this example, the parameters of the CS algorithm are considered to be

pa ¼ 0.15, the number of nests ¼ 7 and the maximum number of analyses

¼ 21,000. Table 10.8 shows the best solution vectors, the corresponding weights

and the required number of analyses for convergence of the present algorithm and

some other metaheuristic algorithms. The CS-based algorithm needs 6,300 analyses

to find the best solution while this number is equal to 150,000, 32,600, 10,000,

10,000, 7,000 and 6,000 analyses for a PSO-based algorithm [13], a PSO and ACO

hybrid algorithm [13], a combination algorithm based on PSO, ACO and HS [13],

an improved BB–BC method using PSO properties [14], the CSS algorithm [10]

and the ICA algorithm [17], respectively. As a result, the CS optimization algorithm

has second best convergence rates among the considered metaheuristics and its

difference with the ICA is only 300 analyses. Comparing the final results of the CS

and those of the other metaheuristics shows that CS finds the second best result

while the difference between the result of the CS and that obtained by the HPSACO

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.1

x 104

379

379.5

380

380.5

381

381.5

382

382.5

383

383.5

Number of analyses

W
ei

g
h
t

(I
b
)

Number of nests=7, pa=0.05

Number of nests=7, pa=0.15

Number of nests=7, pa=0.35

Number of nests=7, pa=0.65

Fig. 10.6 Convergence

history for the average

weight of 100 runs, with

constant number of nests

and different values of pa
[4]

10.2 Optimum Design of Truss Structures Using Cuckoo Search Algorithm with. . . 331

[13], as the first best result, is very small. A comparison of the allowable and

existing stresses and displacements of the 120-bar dome truss structure using CS is

shown in Fig. 10.8. The maximum value for displacement is equal to 0.1969 in

(5 mm) and the maximum stress ratio is equal to 99.99 %.

10.2.6 Discussions

A version of cuckoo search algorithm via Lévy flights is applied to optimum design

of truss structures using both discrete and continuous design variables. Looking at

the CS algorithm carefully, one can observe essentially three components: selection

of the best, exploitation by local random walk, and exploration by randomization

via Lévy flights globally. In order to sample the search space effectively so that the

newly generated solutions be diverse enough, the CS uses the exploration step in

terms of Lévy flights. In contrast, most metaheuristic algorithms use either uniform

distributions or Gaussian to generate new explorative moves. For large search

spaces the Lévy flights are usually more efficient.

Fig. 10.7 Schematic of a

120-bar dome shaped truss

332 10 Cuckoo Search Optimization

T
a
b
le

10
.8

P
er
fo
rm

an
ce

co
m
p
ar
is
o
n
fo
r
th
e
1
2
0
-b
ar

d
o
m
e
sh
ap
ed

tr
u
ss

w
it
h
co
n
ti
n
u
o
u
s
v
ar
ia
b
le
s

E
le
m
en
t
g
ro
u
p

O
p
ti
m
al

cr
o
ss
-s
ec
ti
o
n
al

ar
ea
s
(i
n
2
)

P
S
O
P
C

P
S
A
C
O

H
P
S
A
C
O

H
B
B
–
B
C

C
S
S

IC
A

P
re
se
n
t
w
o
rk

[4
]

[1
3
]

[1
3
]

[1
3
]

[1
4
]

[1
0
]

[1
7
]

in
2

cm
2

1
A
1

3
.0
4
0

3
.0
2
6

3
.0
9
5

3
.0
3
7

3
.0
2
7

3
.0
2
7
5

3
.0
2
4
4

1
9
.5
1
2

2
A
2

1
3
.1
4
9

1
5
.2
2
2

1
4
.4
0
5

1
4
.4
3
1

1
4
.6
0
6

1
4
.4
5
9
6

1
4
.7
1
6
8

9
4
.9
4
7

3
A
3

5
.6
4
6

4
.9
0
4

5
.0
2
0

5
.1
3
0

5
.0
4
4

5
.2
4
4
6

5
.0
8
0
0

3
2
.7
7
4

4
A
4

3
.1
4
3

3
.1
2
3

3
.3
5
2

3
.1
3
4

3
.1
3
9

3
.1
4
1
3

3
.1
3
7
4

2
0
.2
4
1

5
A
5

8
.7
5
9

8
.3
4
1

8
.6
3
1

8
.5
9
1

8
.5
4
3

8
.4
5
4
1

8
.5
0
1
2

5
4
.8
4
7

6
A
6

3
.7
5
8

3
.4
1
8

3
.4
3
2

3
.3
7
7

3
.3
6
7

3
.3
5
6
7

3
.3
0
1
9

2
1
.3
0
3

7
A
7

2
.5
0
2

2
.4
9
8

2
.4
9
9

2
.5
0
0

2
.4
9
7

2
.4
9
4
7

2
.4
9
6
5

1
6
.1
0
6

B
es
t
w
ei
g
h
t
(l
b
)

3
3
,4
8
1
.2

3
3
,2
6
3
.9

3
3
,2
4
8
.9

3
3
,2
8
7
.9

3
3
,2
5
1
.9

3
3
,2
5
6
.2

3
3
,2
5
0
.4
2

1
4
7
,9
6
4
.3
7
(N

)

A
v
er
ag
e
w
ei
g
h
t(
lb
)

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

3
3
,2
5
3
.2
8

1
4
7
,9
7
7
.1
0
(N

)

N
u
m
b
er

o
f
an
al
y
se
s

1
5
0
,0
0
0

3
2
,6
0
0

1
0
,0
0
0

1
0
,0
0
0

7
,0
0
0

6
,0
0
0

6
,3
0
0

10.2 Optimum Design of Truss Structures Using Cuckoo Search Algorithm with. . . 333

Unique characteristics of the CS algorithm over other metaheuristic methods are

its simplified numerical structure and its dependency on a relatively small number

of parameters to define and determine - or limit- the algorithm’s performance. In

fact, apart from the step size parameter α and the population size n, there is

essentially one parameter pa.
Three design examples consisting of two space trusses with continuous and

discrete design variables and a dome-shaped truss with continuous search space

are studied to illustrate the efficiency of the present algorithm. The comparisons of

the numerical results of these structures utilizing the CS and those obtained by other

optimization methods are carried out to demonstrate the robustness of the present

algorithm in terms of good results and number of analyses together. The most

noticeable result obtained by the CS is that the average weight of 100 runs is better

than other algorithms.

10.3 Optimum Design of Steel Frames

In this section, optimum design of two dimensional steel frames for discrete vari-

ables based on the Cuckoo search algorithm is developed. The design algorithm is

supposed to obtain minimum weight frame through suitable selection of sections

from a standard set of steel sections such as American Institute of Steel

0 5 10 15 20 25 30 35 40 45 49

-0.2

-0.1

0

0.1

0.2

The node number

X
 d

is
pl

ac
em

en
t (

in
)

The existing value
The allowable value

0 5 10 15 20 25 30 35 40 45 49

-0.2

-0.1

0

0.1

0.2

The node number

Y
 d

is
pl

ac
em

en
t (

in
)

The existing value
The allowable value

0 5 10 15 20 25 30 35 40 45 49

-0.2

-0.1

0

0.1

0.2

The node number

Z
di

sp
la

ce
m

en
t (

in
)

The existing value
The allowable value

0 20 40 60 80 100 120

-30

-20

-10

0

10

20

30

40

The element number

S
tre

ss
 (K

si
)

The allowable value
the existing value

dc

ba

Fig. 10.8 Comparison of the allowable and existing constraints for the 120-bar dome shaped truss

using the CS [4] (a) Displacement in the x direction, (b) Displacement in the y direction, (c)
Displacement in the z direction, (d) Stresses

334 10 Cuckoo Search Optimization

Construction (AISC) wide-flange (W) shapes. Strength constraints of AISC load

and resistance factor design specification and displacement constraints are imposed

on frames.

10.3.1 Optimum Design of Planar Frames

The aim of optimizing the frame weight is to find a set of design variables that has

the minimum weight satisfying certain constraints. This can be expressed as:

Find xf g ¼ �
x1, x2, ::::, xng

�
, xi ∈Di

to minimize w
�
xf g� ¼

Xnm
i¼1

pi:xi:Li

subject to : gi
�
xf g� � 0, j ¼ 1, 2, . . . , n

ð10:17Þ

where {x} is the set of design variables; ng is the number of member groups in

structure (number of design variables); Di is the allowable set of values for the

design variable xi; w({x}) presents weight of the structure; nm is the number of

members of the structure; pi denotes the material density of member i; Li and xi are
the length and the cross sectional area of member i, respectively; gi({x}) denotes
design constraints include strength constraints of the American Institute of Steel

Construction load and resistance factor design (AISC [18]) and displacement

constraints; and n is the number of the constraints. Di can be considered either as

a continuous set or as a discrete one. If the design variables represent a selection

from a set of parts as

Di ¼ di, 1; di, 2; . . . ; di, r ið Þ
� � ð10:18Þ

Then the problem can be considered as a discrete one, where r(i) is the number

of available discrete values for the ith design variable.

In this study, an implementation of penalty approach is used to account for

constraints. In this method, the aim of the optimization is redefined by introducing

the cost function as:

f cos t Xf gð Þ ¼ 1þ ε1:υð Þε2 �W Xf gð Þ, υ ¼
Xn
j¼1

max 0, gi xf gð Þ½ � ð10:19Þ

where n represents the number of evaluated constraints for each individual design,

and υ denotes the sum of the violations of the design. The constant ε1 and ε2 are
selected considering the exploration and the exploitation rate of the search space.

Here, ε1 is set to unity; ε2 is selected in a way that it decreases the penalties and

reduces the cross-sectional areas. Thus, in the first steps of the search process, ε2 is
set to 1.5 and ultimately increased to 3.

10.3 Optimum Design of Steel Frames 335

Design constraints according to LRFD-AISC requirements can be summarized

as follows:

Maximum lateral displacement:

ΔT

H
� R � 0 ð10:20Þ

Inter-story drift constraints:

di
hi
� RI � 0, i ¼ 1, 2, . . . , ns ð10:21Þ

Strength constraints:

Pu

2ϕPn
þ Mux

ϕbMnx
þ Muy

ϕbMny

0
@

1
A� 1 � 0, for

Pu

ϕcPn
h0:2

Pu

ϕcPn
þ 8

9

Mux

ϕbMnx
þ Muy

ϕbMny

0
@

1
A� 1 � 0, for

Pu

ϕcPn
0:2h

ð10:22Þ

where ΔT is the maximum lateral displacement; H is the height of the frame

structure; R is the maximum drift index (1/300); di is the inter-story drift; hi is
the story height of the ith floor; ns is the total number of stories; RI presents the

inter-story drift index permitted by the code of the practice (1/300); Pu is the

required strength (tension or compression); Pn is the nominal axial strength (tension

or compression); ϕc is the resistance factor (ϕc ¼ 0.9 for tension, ϕc ¼ 0.85 for

compression); Mux and Muy are the required flexural strengths in the x and

y directions, respectively; Mnx and Mny are the nominal flexural strengths in the

x and y directions (for two-dimensional structures, Mny ¼ 0); and ϕb denotes the

flexural resistance reduction factor (ϕc ¼ 0.90) The nominal tensile strength for

yielding in the gross section is computed as

Pn ¼ Ag:Fy ð10:23Þ

and the nominal compressive strength of a member is computed as

Pn ¼ Ag:Fcr ð10:24Þ
Fcr ¼ 0:658λ

2
c

� �
Fy, forλc � 1:5

Fcr ¼ 0:877

λ2c

0
@

1
AFy, forλci1:5

ð10:25Þ

336 10 Cuckoo Search Optimization

λc ¼ kl

rπ

ffiffiffiffiffi
Fy

E

r
ð10:26Þ

where Ag is the cross-sectional area of a member and k is the effective length factor
determined by the approximated formula based on Dumonteil [19].

10.3.2 Optimum Design of Steel Frames Using Cuckoo
Search Algorithm

Before initiating optimization process, it is necessary to set the search space. The

steel members used for the design of steel frames, consist of 267 W-shaped sections

from the AISC-LRFD database starting from W44 � 335 to W4 � 13. These

sections with their properties are used to prepare a design pool. The sequence

numbers assigned to this pool that sorted with respect to area of sections are

considered as design variables. In other words the design variables represent a

selection from a set of integer numbers between 1 and the number of sections. The

pseudo code of optimum design algorithm is identical to that of Sect. 10.2.4.

10.3.3 Design Examples

In this section, three steel frames are optimized using the CS algorithm as bench-

mark problems. To investigate the effect of the initial solution on the final results,

each example is solved independently several times with random initial designs due

to the stochastic nature of the algorithm. The proposed algorithm is coded in

MATLAB and structures are analyzed using the direct stiffness method. The final

results are compared to the solutions of other methods to demonstrate the efficiency

of the present approach. First example is also used for adjusting algorithm param-

eters and the obtained results are used in other examples.

10.3.3.1 A One-Bay Ten-Story Frame

Figure 10.9 shows the topology, the service loading conditions and the numbering

of member groups for a one-bay ten-story frame. The element grouping results in

four beam sections and five column sections for a total of nine design variables.

Beam element groups were chosen from 267 W-sections, and column groups were

selected from only W14 and W12 sections.

The AISC-LRFD combined strength constraints and a displacement constraint

of inter-story drift < story height/300 are the performance constraints of this frame.

The material has a modulus of elasticity equal to E ¼ 29,000 ksi (200 GPa) and a

10.3 Optimum Design of Steel Frames 337

yield stress of fy ¼ 36 ksi (248.2 MPa). The effective length factors of the members

are calculated as Kx � 1.0 using the approximate equation proposed by Dumonteil

[19], for a sway-permitted frame and the out-of-plane effective length factor is

specified as Ky¼ 1.0. Each column is considered as non-braced along its length, and

the non-braced length for each beam member is specified as one-fifth of the span

length.

Based on Yang’s simulations [1], considering algorithm parameters (population

size or number of host nests (n) and probability pa) such as n ¼ 15–25 and

pa ¼ 0.15–0.3 is efficient for most optimization problems. In order to adjust

probability pa for the two-dimensional steel frame optimization problem, we

solve this example alternatively with a constant n equal to10 and various amounts

Fig. 10.9 Schematic of a

one-bay ten-story frame

338 10 Cuckoo Search Optimization

of pa within the [0, 1] interval with 30,000 as the maximum number of analyses.

The results are summarized in Table 10.9, where the second and third columns

contain minimum weight and minimum number of analyses (Min Noa) for best
runs, respectively. Two other columns show the results of 100 runs for the obtained

optimal weight and the number of analyses in the format: average 	 one standard

deviation (success rate) (Yang [1]). Therefore, 62,088.25 	 41.66 (90 %) means

that the average optimal weight is 62,088.25 lb with a standard deviation of

41.66 lb, and the success rate of all runs in finding the best obtained weight is

90 %. As it is shown, the amounts from 0.1 to 0.3 are efficient for algorithm and the

pa ¼ 0.3 pa ¼ 0.3 gives the best result.

In order to adjust the population size, we design this frame with constant pa
equal to 0.3 and various n values within the [5] interval with 30,000 as the

maximum number of analyses. Results are shown in Table 10.10 with the previous

table’s format for 100 independent runs. As it is demonstrated, considering the

number of nests from 7 to 20 is sufficient, and n ¼ 7 is the most efficient value

which results the minimum number of analyses despite poor performance with

respect to average optimal weight and standard deviation. The table also indicates

that CS results the same best design in all cases. Overall, it seems that choosing

Pa ¼ 0.3 and n ¼ 7 can give efficient performance of the CS for the

two-dimensional steel frame optimization problem. Thus, we used these values

for the present example and two subsequent ones.

This frame was studied for discrete design variables by Pezeshk et al. [20] using

GA, Camp et al. [17] using ACO and Kaveh and Talatahari [21] using IACO.

Table 10.11 lists the designs developed by these algorithms and the CS. The lighter

design with minimum number of analyses obtained by IACO algorithm. The best

design developed by CS weighted 62,074 (lb) with 4,438 as required number of

analyses that is 0.4 % heavier than the lighter design obtained by IACO. The

average weight and standard deviation of 100 runs (lb) are 63,308 	 684 and

63,279 	 618 for ACO and IACO algorithms, respectively, and 62,923 	 1.74

for 30 runs by HS, CS results in 62,186.96 	 240.12 for 100 runs that is better than

others.

Table 10.9 Performance of the CS for one-bay ten-story frame with various amounts of pa

CS parameters

Best run 100 runs

Min weight

(lb)

Min

Noa Weight (lb) Noa

Pa ¼ 0.1, n ¼ 10 62,074.368 9,320 62,195.35 	 188.77 (45 %) 17,400 	 5,900 (45 %)

Pa ¼ 0.2, n ¼ 10 62,074.368 6,040 62,133.05 	 149.07 (74 %) 16,480 	 5,600 (74 %)

Pa ¼ 0.25, n ¼ 10 62,074.368 6,980 62,111.01 	 130.74 (81 %) 14,360 	 5,360 (81 %)

Pa ¼ 0.3, n ¼ 10 62,074.368 7,100 62,088.25 	 41.66 (90 %) 14,640 	 4,520 (90 %)

Pa ¼ 0.4, n ¼ 10 62,074.368 6,280 62,110.47 	 60.9 (74 %) 13,780 	 3,800 (74 %)

Pa ¼ 0.5, n ¼ 10 62,074.368 8,820 62,156.84 	 173.54 (63 %) 15,120 	 4,580 (63 %)

10.3 Optimum Design of Steel Frames 339

10.3.3.2 A Three-Bay Fifteen-Story Frame

The configuration, the service loading conditions and the numbering of member

groups for a three-bay fifteen-story frame is shown in Fig. 10.10. The loads are

W ¼ 6.75 kips and w1 ¼ 3.42 kips/ft. All 64 columns grouped into 9 groups and all

45 beams are considered as a beam element group. All element groups are chosen

from 267 W-sections. Performance constraints, material properties and other con-

ditions are the same as those of the first example. One additional constraint of

displacement control is that the sway of the top story is limited to 9.25 in (23.5 cm).

The parameters of algorithm are considered same as those of the first example. The

maximum number of analyses is 19,600.

The frame was designed by Kaveh and Talatahari using PSO algorithm [15],

hybrid PSO and BB-BC algorithm [22] and ICA algorithm [15]. Table 10.12

shows the optimal design developed by CS algorithm, a frame weighting

86,809 lb that is 7.4 % lighter than the best design obtained by ICA algorithm

as best result of three other algorithms. The average optimal weight and standard

deviation of 50 independent runs with random initial designs are 87,784 	 942 lb.

The convergence history for best result and penalized average weight of 50 runs

are shown in Fig. 10.11, and for clarity the upper bound of y axis limited to

120 kips. It should be noted that although the CS requires 16,170 analyses to reach

the lightest design, but achieves the 93,630 lb structure as a feasible design after

4,700 analyses. The maximum value of sway at the top story, stress ratio and

inter-story drift are 5.39 in. 99.72 % for right corner column at 10th story and 0.46

in for 4th story, respectively.

Table 10.10 Performance of the CS for one-bay ten-story frame with various amounts of n

CS parameters

Best run 100 runs

Min weight

(lb)

Min

Noa Weight (lb) Noa

n ¼ 5, Pa ¼ 0.3 62,074.368 4,560 62,672.28 	 854.16

(41 %)

8,140 	 4,640 (41 %)

n ¼ 7, Pa ¼ 0.3 62,074.368 4,438 62,186.96 	 240.12

(58 %)

10,528 	 3,920

(58 %)

n ¼ 10,

Pa ¼ 0.3

62,074.368 7,100 62,088.25 	 41.66 (90 %) 14,640 	 4,520

(90 %)

n ¼ 15,

Pa ¼ 0.3

62,074.368 11,610 62,109.71 	 66.48 (76 %) 19,920 	 4,860

(76 %)

n ¼ 20,

Pa ¼ 0.3

62,074.368 13,280 62,116.00 	 66.89 (71 %) 23,320 	 3,800

(71 %)

n ¼ 25,

Pa ¼ 0.3

62,074.368 16,400 62,177.38 	 137.74

(45 %)

24,900 	 3,250

(45 %)

340 10 Cuckoo Search Optimization

10.3.3.3 A Three-Bay Twenty Four-Story Frame

The last example is a three-bay twenty four-story frame shown in Fig. 10.12. Camp

et al. [17], Degertekin [23], Kaveh and Talatahari [22] and Kaveh and Talatahari

[15] utilized ant colony optimization, harmony search algorithm, a hybrid PSO and

BB-BC, and Imperialist competitive algorithm to solve this problem, respectively

The frame is designed following the LRFD specifications. The inter-story drift

displacement constraint is same as the first example. The loads are W ¼ 5,761.85

lb, w1 ¼ 300 lb/ft, w2 ¼ 436 lb/ft, w3 ¼ 474 lb/ft and w4 ¼ 408 lb/ft. The

material’s modulus of elasticity is E ¼29,732 ksi (205 GPa) and its yield stress is

fy ¼ 33.4 ksi (230.3 MPa). The element grouping results in 16 column sections and

4 beam sections for a total of 20 design variables. In this example, each of the four

beam element groups is chosen from all 267 W-shapes, while the 16 column

element groups are limited to W14 sections (37 W-shapes). The effective length

factors of the members are calculated as Kx � 1.0 for a sway-permitted frame and

the out-of-plane effective length factor is specified as Ky ¼ 1.0. All columns and

beams are considered as non-braced along their lengths.

The optimum designs of the algorithms are listed in Table 10.13. The best design

of previous works is due to ICA algorithm, weights 212,640 lb with 10,500 as the

number of analyses. The lightest design of 20 independently runs for CS algorithm

weights 201,451 lb that is 5.3 % lighter than developed by ICA.

The convergence history for best result and penalized average weight of 20 runs

are shown in Fig. 10.13. For clarity the initial iterations of algorithm are eliminated.

As depicted in this figure although the best design of the CS needs 15,918 analyses,

it reaches to a feasible design of 211,979 lb with 3,528 analyses which is lighter

than the design obtained by ICA. The average optimal weight for the 20 runs is

205,096 lb, and the standard deviation is 4,533 lb. The average number of analyses

is 18,000. The optimal average weight and a standard deviation for 100 runs of

ACO and HS algorithms is 229,555 	 4,561 lb and 222,620 	 5,800 lb with

15,500 and 14,651 as average number of analyses, respectively.

Table 10.11 Performance comparison for the one-bay ten-story frame

Element group

Optimal W-shaped sections

GA ACO HS IACO Present work [5]

1 Column 1–2 S W14 � 233 W14 � 233 W14� 211 W14 � 233 W14 � 233

2 Column 3–4 S W14 � 176 W14 � 176 W14� 176 W14 � 176 W14 � 176

3 Column 5–6 S W14 � 159 W14 � 145 W14� 145 W14 � 145 W14 � 132

4 Column 7–8 S W14 � 99 W14 � 99 W14 � 90 W14 � 90 W14 � 109

5 Column 9–10 S W12 � 79 W12 � 65 W14 � 61 W12 � 65 W14 � 61

6 Beam 1–3 S W33 � 118 W30 � 108 W33� 118 W33 � 118 W33 � 118

7 Beam 4–6 S W30 � 90 W30 � 90 W30 � 99 W30 � 90 W30 � 108

8 Beam 7–9 S W27 � 84 W27 � 54 W24 � 76 W24 � 76 W24 � 55

9 Beam 10 S W24 � 55 W21 � 44 W18 � 46 W14 � 30 W18 � 40

Best weight (lb) 65,136 62,610 61,864 61,796 62,074

No. of analyses 3,000 5,100 3,690 2,500 4,438

10.3 Optimum Design of Steel Frames 341

The maximum value of sway at the top story, stress ratio and inter-story drift are

10.63 in. 80.18 % for right inner column at 2nd story and 0.48 in for 13th story,

respectively. Figure 10.14a, b shows the inter-story drift for all the stories, stress

ratio for all the members, and their upper bounds. Evidently, the inter-story drift is

the dominant constraint in the frame design so that it is more than 90 % of the

maximum drift between 2 to 17 stories.

Fig. 10.10 Schematic of a three-bay fifteen-story frame [5]

342 10 Cuckoo Search Optimization

10.3.4 Discussions

A version of Cuckoo Search algorithm via Lévy flights, which is proposed by Yang

and Deb [3], is utilized to optimum design of two dimensional steel frames. The

procedure of discrete design variables are performed according to AISC-LRFD

specifications. The CS algorithm is comprised of three major components as

following: selection of the best, exploitation by local random walk, and exploration

by randomization based on Lévy flights. In order to sample the search space

effectively so that the newly generated solutions to be diverse enough, the CS

uses the exploration step in terms of Lévy flights. In contrast, most metaheuristic

algorithms use either uniform distributions or Gaussian to generate new explorative

moves. When the search space is large, Lévy flights are usually more efficient. As

shown in convergence figures of examples, the ability of algorithm to local search is

not very efficient as its exploration.

Table 10.12 Performance comparison for the three-bay fifteen-story frame

Element group

Optimal W-shaped sections

PSO HBB-BC ICA Present work [5]

1 W33 � 118 W24 � 117 W24 � 117 W 14 � 99

2 W33 � 263 W21 � 132 W21 � 147 W 27 � 161

3 W24 � 76 W12 � 95 W27 � 84 W14 � 82

4 W36 � 256 W18 � 119 W27 � 114 W 24 � 104

5 W21 � 73 W21 � 93 W14 � 74 W 12 � 65

6 W18 � 86 W18 � 97 W18 � 86 W 18 � 86

7 W18 � 65 W18 � 76 W12 � 96 W 18 � 50

8 W21 � 68 W18 � 65 W24 � 68 W 14 � 61

9 W18 � 60 W18 � 60 W10 � 39 W 8 � 24

10 W18 � 65 W10 � 39 W12 � 40 W 14 � 40

11 W21 � 44 W21 � 48 W21 � 44 W 21 � 44

Best weight (lb) 111,613 97,649 93,813 86,809

No. of analyses 50,000 9,500 6,000 16,170

0 200 400 600 800 1000 1200 1400
85

90

95

100

105

110

115

120

Iterations

W
ei

g
h
t

(k
ip

s)

The avearage penalized weight of 50 runs

The lightest design

Fig. 10.11 The best and

average design history of

the three-bay fifteen-story

frame [5]

10.3 Optimum Design of Steel Frames 343

Fig. 10.12 Schematic of a three-bay twenty-four story frame

344 10 Cuckoo Search Optimization

Unique characteristics of the CS algorithm over other metaheuristic methods are

its simplified numerical structure and its dependency on a relatively small number

of parameters, to define and determine the algorithm’s performance. In fact, apart

from the step size parameter α, and population size n, there is essentially one

parameter pa. Simulations show that reaching the optimum designs via the later

version of CS is insensitive to parameter tuning.

Table 10.13 Performance comparison for the three-bay twenty four-story frame

Element group

Optimal W-shaped sections

ACO HS HBB-BC ICA Present work [5]

1 W14� 145 W14 � 176 W14 � 176 W14 � 109 W14 � 159

2 W14 � 132 W14 � 176 W14 � 159 W14 � 159 W14 � 132

3 W14 � 132 W14 � 132 W14 � 109 W14 � 120 W14 � 99

4 W14 � 132 W14 � 109 W14 � 90 W14 � 90 W14 � 74

5 W14 � 68 W14 � 82 W14 � 82 W14 � 74 W14 � 61

6 W14 � 53 W14 � 74 W14 � 74 W14 � 68 W14 � 53

7 W14 � 43 W14 � 34 W14 � 38 W14 � 30 W14 � 34

8 W14 � 43 W14 � 22 W14 � 30 W14 � 38 W14 � 22

9 W14 � 145 W14 � 145 W14 � 159 W14 � 159 W14 � 90

10 W14 � 145 W14 � 132 W14 � 132 W14 � 132 W14 � 99

11 W14 � 120 W14 � 109 W14 � 109 W14 � 99 W14 � 99

12 W14 � 90 W14 � 82 W14 � 82 W14 � 82 W14 � 90

13 W14 � 90 W14 � 61 W14 � 68 W14 � 68 W14 � 74

14 W14 � 61 W14 � 48 W14 � 48 W14 � 48 W14 � 53

15 W14 � 30 W14 � 30 W14 � 34 W14 � 34 W14 � 34

16 W14 � 26 W14 � 22 W14 � 26 W14 � 22 W14 � 22

17 W30 � 90 W30 � 90 W30 � 90 W30 � 90 W 30� 90

18 W8 � 18 W10 � 22 W21 � 48 W21 � 50 W 6� 15

19 W24 � 55 W18 � 40 W18 � 46 W24 � 55 W 24� 55

20 W8 � 21 W12 � 16 W8 � 21 W8 � 28 W 6� 8.5

Best weight (lb) 220,465 214,860 215,933 212,640 201,451

No. of analyses NA 9,924 10,500 7,500 15,918

0 200 400 600 800 1000 1200 1400
190

200

210

220

230

240

250

260

270

Iterations

W
ei

g
h
t

(k
ip

s)

The avearage penalized weight of 20 runs

The lightest design

Fig. 10.13 The best and

average design history of

three-bay twenty four-story

frame [5]

10.3 Optimum Design of Steel Frames 345

Three steel frames with various number of stories and bays, are studied to

illustrate the efficiency of the present algorithm. The comparisons of the numerical

results obtained by CS with those by other optimization methods are carried out to

demonstrate the robustness of the present algorithm in terms of reaching to best

designs. According to what has been investigated, it can be interpreted that dis-

placement constraints become dominant along the height of the structures. The

most noticeable result obtained by the CS is that the performance of the algorithm

in several independent runs is better than other algorithms.

References

1. Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, Bristol

2. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of world congress on

nature and biologically inspired computing. IEEE Publications, USA, pp 210–214

3. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer

Optim 1:330–343

4. Kaveh A, Bakhshpoori T (2013) Optimum design of space trusses using cuckoo search. Iranian

J Sci Technol C1(37):1–15

5. Kaveh A, Bakhshpoori T (2013) Optimum design of steel frames using cuckoo search

algorithm with Lévy flights. Struct Des Tall Build Spec Struct 22(13):1023–1036

6. American Institute of Steel Construction (AISC) (1989) Manual of steel construction–

allowable stress design, 9th edn. AISC, Chicago

7. Tuba M, Subotic M, Stanarevic N (2011) Modified cuckoo search algorithm for unconstrained

optimization problems. In: Proceedings of the 5th European computing conference (ECC’11),

pp 263–268

8. Camp CV (2007) Design of space trusses using big bang-big crunch optimization. J Struct Eng

133:999–1008

9. Camp CV, Bichon BJ (2004) Design of space trusses using ant colony optimization. J Struct

Eng 130:741–751

10. Kaveh A, Talatahari S (2010) Optimal design of skeletal structures via the charged system

search algorithm. Struct Multidiscip Optim 41:893–911

0 5 10 15 20 24
0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

Frame story

In
te

r-
st

o
ry

 d
ri

ft

The existing value

The allowable value

0 20 40 60 80 100 120 140 168
0

0.2

0.4

0.6

0.8

1

Element number

S
tr

es
s

ra
ti

o

ba

Fig. 10.14 Comparison of allowable and existing values for three-bay twenty four-bay frame

using the CS [5] (a) Inter-story drift, (b) Stress ratio

346 10 Cuckoo Search Optimization

11. Lee KS, Geem W (2004) A new structural optimization method based on the harmony search

algorithm. Comput Struct 82:781–798

12. Kaveh A, Talatahari S (2008) Ant colony optimization for design of space trusses. Int J Space

Struct 23:167–181

13. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of truss structures. Comput Struct 87:267–283

14. Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang-Big Crunch

algorithm. Comput Struct 87:1129–1140

15. Kaveh A, Talatahari S (2010) Optimum design of skeletal structures using imperialist com-

petitive algorithm. Comput Struct 88:1220–1229

16. Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures

with discrete variables. J Construct Steel Res 65:1558–1568

17. Camp CV, Bichon BJ, Stovall SP (2005) Design of steel frames using ant colony optimization.

J Struct Eng ASCE 131:369–379

18. AISC (2001) Manual of steel construction: load and resistance factor design. AISC, Chicago

19. Dumonteil P (1992) Simple equations for effective length factors. Eng J AISE 29(3):1115

20. Pezeshk S, Camp CV, Chen D (2000) Design of nonlinear framed structures using genetic

optimization. J Struct Eng ASCE 126:382–388

21. Kaveh A, Talatahari S (2010) An improved ant colony optimization for the design of planar

steel frames. Eng Struct 32:864–873

22. Kaveh A, Talatahari S (2010) A discrete Big Bang—Big Crunch algorithm for optimal design

of skeletal structures. Asian J Civil Eng 11(1):103–122

23. Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct

Multidiscip Optim 36:393–401

References 347

Chapter 11

Imperialist Competitive Algorithm

11.1 Introduction

In this chapter an optimization method is presented based on a socio-politically

motivated strategy, called Imperialist Competitive Algorithm (ICA). ICA is a

multi-agent algorithm with each agent being a country, which is either a colony

or an imperialist. These countries form some empires in the search space. Move-

ment of the colonies toward their related imperialist, and imperialistic competition

among the empires, form the basis of the ICA. During these movements, the

powerful Imperialists are reinforced and the weak ones are weakened and gradually

collapsed, directing the algorithm towards optimum points. Here, ICA is utilized to

optimize the skeletal structures which is based on [1, 2].

This algorithm is proposed by Atashpaz et al. [3, 4] and is a socio-politically

motivated optimization algorithm which similar to many other evolutionary algo-

rithms starts with a random initial population. Each individual agent of an empire is

called a country, and the countries are categorized into colony and imperialist states
that collectively form empires. Imperialistic competitions among these empires

form the basis of the ICA. During this competition, weak empires collapse and

powerful ones take possession of their colonies. Imperialistic competitions direct

the search process toward the powerful imperialist or the optimum points.

On the other hand, finding the optimum design of the skeletal structures is known

as benchmark examples in the field of difficult optimization problems due to the

presence of many design variables, large size of the search space, and many

constraints. Thus, this chapter presents an ICA-based algorithm to solve optimiza-

tion skeletal structures problems which can be considered as a suitable field to

investigate the efficiency of the new algorithm. The chapter covers both the discrete

and continuous structural design problems. Comparison of the results of the ICA

with some well-known metaheuristics demonstrates the efficiency of the present

algorithm.

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_11, © Springer International Publishing Switzerland 2014

349

11.2 Optimum Design of Skeletal Structures

The aim of optimizing a structure is to find a set of design variables that has the

minimum weight satisfying certain constraints. This can be expressed as

Find xf g ¼ �x1, x2, . . . , xng�,
xi ∈Di

to minimize W
�
xf g� ¼Xnm

i¼1

ρi � xi � Li
subject to : gj

�
xf g� � 0 j ¼ 1, 2, ::::, n

ð11:1Þ

where {x} is the set of design variables; ng is the number of member groups in

structure (number of design variables); Di is the allowable set of values for the

design variable xi; W({x}) presents weight of the structure; nm is the number of

members of the structure; ρi denotes the material density of member i; Li and xi are
the length and the cross-sectional of member i, respectively; gj({x}) denotes design
constraints; and n is the number of the constraints.

Di can be considered either as a continuous set or as a discrete one [5]. In the

continuous problems, the design variables can vary continuously in the optimiza-

tion process

Di ¼ xi
��xi ∈ xi,min; xi,max½ �� � ð11:2Þ

where xi,min and xi,max are minimum and maximum allowable values for the design

variable i, respectively. If the design variables represent a selection from a set of

parts as

Di ¼ di, 1; di, 2; . . . ; di, r ið Þ
� � ð11:3Þ

Then the problem is considered as a discrete one, where r(i) is the number of

available discrete values for the ith design variable.

In order to handle the constraints, a penalty approach is utilized. In this method,

the aim of the optimization is redefined by introducing the cost function as

f cost xf gð Þ ¼ 1þ ε1 � υð Þε2 �W xf gð Þ, υ ¼
Xn
i¼1

max 0; υi½ � ð11:4Þ

where n represents the number of evaluated constraints for each individual design.

The constant ε1 and ε2 are selected considering the exploration and the exploitation
rate of the search space. Here, ε1 is set to unity, ε2 is selected in a way that it

decreases the penalties and reduces the cross-sectional areas. Thus, in the first steps

of the search process, ε2 is set to 1.5 and ultimately increased to 3.

350 11 Imperialist Competitive Algorithm

This chapter investigates two types of skeletal structures consisting of trusses

and frames. The constraint conditions for these structures are briefly explained in

the following sections.

11.2.1 Constraint Conditions for Truss Structures

For truss structures, the stress limitations of the members are imposed according to

the provisions of ASD-AISC [6] as follows:

σþi ¼ 0:6Fy for σi � 0

σ�i for σi < 0

	
ð11:5Þ

where σ�i is calculated according to the slenderness ratio:

σ�i ¼
1� λ2i

2C2
C

0
@

1
AFy

2
4

3
5, 5

3
þ 3λi
8CC

� λ3i
8C3

C

0
@

1
A for λi < CC

12π2E

23λ2i
for λi � CC

8>>>>>><
>>>>>>:

ð11:6Þ

where E is the modulus of elasticity; Fy is the yield stress of steel; Cc denotes the

slenderness ratio (λi) dividing the elastic and inelastic buckling regions; λi presents
the slenderness ratio.

The other constraint is the limitation of the nodal displacements:

δi � δui i ¼ 1, 2, ::::, nn ð11:7Þ

where δi is the nodal deflection; δui is the allowable deflection of node i; and nn is the
number of nodes.

11.2.2 Constraint Conditions for Steel Frames

Optimal design of frame structures is subjected to the following constrains

according to LRFD-AISC provisions [7]:

Maximum lateral displacement

ΔT

H
� R ð11:8Þ

Inter-story displacements constraints

11.2 Optimum Design of Skeletal Structures 351

di
hi

� RI, i ¼ 1, 2, . . . , ns ð11:9Þ

The strength constraints

Pu

2ϕcPn
þ Mux

ϕbMnx
þ Muy

ϕbMny

0
@

1
A � 1, For

Pu

ϕcPn
< 0:2

Pu

ϕcPn
þ 8

9

Mux

ϕbMnx
þ Muy

ϕbMny

0
@

1
A � 1, For

Pu

ϕcPn
� 0:2

ð11:10Þ

where ΔT is the maximum lateral displacement; H is the height of the frame

structure; R is the maximum drift index (1/300); di is the inter-story drift; hi is the
story height of the ith floor, ns is the total number of stories; RI presents the inter-

story drift index permitted by the code of the practice (1/300); Pu is the required

strength (tension or compression); Pn is the nominal axial strength (tension or

compression); ϕc is the resistance factor (ϕc ¼ 0.9 for tension, ϕc ¼ 0.85 for

compression); Mux and Muy are the required flexural strengths in the x and

y directions, respectively; Mnx and Mny are the nominal flexural strengths in the

x and y directions (for two-dimensional structures, Mny ¼ 0); and ϕb denotes the

flexural resistance reduction factor (ϕb ¼ 0.90). The nominal tensile strength for

yielding in the gross section is computed as

Pn ¼ Ag � Fy ð11:11Þ

and the nominal compressive strength of a member is computed as

Pn ¼ Ag � Fcr ð11:12Þ
Fcr ¼ 0:658λ

2
c

ffi �
Fy, For λc � 1:5 ð11:13Þ

Fcr ¼ 0:877

λ2c

 !
Fy, For λc > 1:5

λc ¼ kl

rπ

ffiffiffiffiffi
Fy

E

r
ð11:14Þ

where Ag is the cross-sectional area of a member.

352 11 Imperialist Competitive Algorithm

11.3 Imperialist Competitive Algorithm

ICA simulates the social-political process of imperialism and imperialistic compe-

tition. This algorithm contains a population of agents or countries. The pseudo-code

of the algorithm is as follows:

Step 1: Initialization The primary locations of the agents or countries are deter-

mined by the set of values assigned to each decision variable randomly as

x
oð Þ
i, j ¼ xi,min þ rand � xi,max � xi,minð Þ ð11:15Þ

where x
ðoÞ
i;j determines the initial value of the ith variable for the jth country; xi,min

and xi,max are the minimum and the maximum allowable values for the ith variable;
rand is a random number in the interval [0,1]. If the allowable search space is a

discrete one, using a rounding function will also be necessary.

For each country, the cost identifies its usefulness. In the optimization process,

the cost is proportional to the penalty function. When the values of cost for initial

countries are calculated [as defined by (11.4)], some of the best countries

(in optimization terminology, countries with the least costs) will be selected to be

the imperialist states and the remaining countries will form the colonies of these

imperialists. The total number of initial countries is set to Ncountry and the number of

the most powerful countries to form the empires is equal to Nimp. The remaining

Ncol of the initial countries will be the colonies each of which belongs to an empire.

In this chapter, a population of 30 countries consisting of 3 empires and 27 colonies

are used. All the colonies of initial countries are divided among the imperialists

based on their power. The power of each country, the counterpart of fitness value, is

inversely proportional to its cost value. That is, the number of colonies of an empire

should be directly proportionate to its power. In order to proportionally divide the

colonies among the imperialists, a normalized cost for an imperialist is defined as

Cj ¼ f
imp;jð Þ
cost �max

i
f
imp;ið Þ
cost

ffi �
ð11:16Þ

where f
ðimp;jÞ
cost is the cost of the jth imperialist and Cj is its normalized cost. The

colonies are divided among empires based on their power or normalized cost and

for the jth empire it will be as follows:

NCj ¼ Round
CjXNimp

i¼1

Ci

����������

����������
� Ncol

0
BBBB@

1
CCCCA ð11:17Þ

where NCj is the initial number of colonies associated to the jth empire which are

11.3 Imperialist Competitive Algorithm 353

selected randomly among the colonies. These colonies together with the jth impe-

rialist, form the empire number j.

Step 2: Colonies Movement In the ICA, the assimilation policy pursued by some

of former imperialist states, is modeled by moving all the colonies toward the

imperialist. This movement is shown in Fig. 11.1a in which a colony moves toward

the imperialist by a random value that is uniformly distributed between 0 and β � d
[3]:

xf gnew ¼ xf gold þ U 0, β � dð Þ � V1f g ð11:18Þ

where β is a parameter with a value greater than one, and d is the distance between

colony and imperialist. β > 1 peruseds the colonies to get closer to the imperialist

state from both sides. β � 1 gradually results in a divergence of colonies from the

imperialist state, while a very close value to 1 for β reduces the search ability of the

algorithm. {V1} is a vector which its start point is the previous location of the

Fig. 11.1 Movement of

colonies to its new location

in the ICA [2] (a) toward
their relevant imperialist,

(b) in a deviated direction

(c) using various random

values

354 11 Imperialist Competitive Algorithm

colony and its direction is toward the imperialist locations. The length of this vector

is set to unity.

In order to increase the searching around the imperialist, a random amount of

deviation is added to the direction of movement. Figure 11.1b shows the new

direction which is obtained by deviating the previous location of the country as

big as θ. In this figure θ is a random number with uniform distribution as

θ ¼ U �γ, þ γð Þ ð11:19Þ

where γ is a parameter that adjusts the deviation from the original direction. In most

of the implementations, a value of about 2 for β [3] and about 0.1 (Rad) for γ, result
in a good convergence of the countries to the global minimum.

In order to improve the performance of the ICA, we change the movement step

as follow:

First: different random values are utilized for different components of the

solution vector inplace of only one value (11.18) as

xf gnew ¼ xf gold þ β � d � randf g 	 V1f g ð11:20Þ

where {V1} is the base vector starting the previous location of colony and directing

to the imperialistic; {rand} is a random vector and the sign “
N

” denotes an

element-by-element multiplication. Since these random values are not necessarily

the same, the colony is deviated automatically without using the definition of θ.
However, for having a suitable exploration ability, the utilization of θ is modified

by defining a new vector.

Second: From the above equation, it is possible to obtain the orthogonal colony-

imperialistic contacting line (denoted by {V2}). Then, deviation process is

performed by using this vector in place of using θ as

xf gnew ¼ xf gold þ β � d � randf g 	 V1f g þ U �1, þ 1ð Þ � tan θð Þ � d

� V2f g, V1f g � V2f g ¼ 0,
���� V2f g���� ¼ 1

ð11:21Þ

Figure 11.1c describes the performance of this movement. In order to access the

discrete results after performing the movement process, a rounding function is

utilized which changes the magnitude of the results by the value of the nearest

discrete value. Although this may reduce the exploration of the algorithm [8], as

explained in the above, however we increase this ability by considering different

random values and by defining a new deviation step.

Step 3: Imperialist Updating If the new position of the colony is better than that

of its relevant imperialist (considering the cost function), the imperialist and the

colony change their positions and the new location with a lower cost becomes the

imperialist. Then the other colonies move toward this new position.

11.3 Imperialist Competitive Algorithm 355

Step 4: Imperialistic Competition Imperialistic competition is another strategy

utilized in the ICA methodology. All empires try to take the possession of colonies

of other empires and control them. The imperialistic competition gradually reduces

the power of weaker empires and increases the power of more powerful ones. The

imperialistic competition is modeled by just picking some (usually one) of the

weakest colonies of the weakest empires and making a competition among all

empires to possess these (this) colonies. In this competition based on their total

power, each of empires will have a likelihood of taking possession of the mentioned

colonies.

Total power of an empire is mainly affected by the power of imperialist country.

But the power of the colonies of an empire has an effect, though negligible, on the

total power of that empire. This fact is modeled by defining the total cost as

TCj ¼ f
imp;jð Þ
cos t þ ξ �

XNCj

i¼1

f
col;ið Þ
cos t

NCj
ð11:22Þ

where TCn is the total cost of the jth empire and ξ is a positive number which is

considered to be less than 1. A small value for ξ causes the total power of the empire

to be determined by just the imperialist and increasing it will add to the role of the

colonies in determining the total power of the corresponding empire. The value of

0.1 for ξ is found to be a suitable value in most of the implementations [3]. Similar

to (11.16), the normalized total cost is defined as

NTCj ¼ TCj �max
i

TCið Þ ð11:23Þ

where NTCj is the normalized total cost of the jth empire. Having the normalized

total cost, the possession probability of each empire is evaluated by:

Pj ¼ NTCjXNimp

i¼1

NTCi

����������

����������
ð11:24Þ

Step 5: Implementation When an empire loses all of its colonies, it is assumed to

be collapsed. In this model implementation, where the powerless empires collapse

in the imperialistic competition, the corresponding colonies will be divided among

the other empires.

Step 6: Terminating Criterion Control Moving colonies toward imperialists are

continued and imperialistic competition and implementations are performed during

the search process. When the number of iterations reaches to a pre-defined value or

356 11 Imperialist Competitive Algorithm

the amount of improvement in the best result reduces to a pre-defined value, the

searching process is stopped.

The movement of colonies towards their relevant imperialist states along with

competition among empires and also the collapse mechanism will hopefully cause

all the countries to converge to a state in which there exist just one empire in the

world and all the other countries are colonies of that empire. In this ideal new world,

colonies will have the same position and power as the imperialist.

11.4 Design Examples

In this section, the optimal design of four steel structures is performed by the

present algorithm. The final results are compared to the solutions of other methods

to demonstrate the efficiency of the present approach. The examples contain a dome

shaped truss example with continuous search space and a 72-bar spatial truss with

the discrete variables. In addition, two benchmark frames are optimized by the ICA

to find the optimum designs.

11.4.1 Design of a 120-Bar Dome Shaped Truss

The topology and elements group numbers of 120-bar dome truss are shown in

Fig. 11.2. The modulus of elasticity is 30,450 ksi (210,000 MPa), and the material

density is 0.288 lb/in3 (7,971.810 kg/m3). The yield stress of steel is taken as 58.0

ksi (400 MPa). The dome is considered to be subjected to vertical loading at all the

unsupported joints. These loads are taken as �13.49 kips (�60 kN) at node

1, �6.744 kips (�30 kN) at nodes 2 through 14, and �2.248 kips (�10 kN) at

the rest of the nodes. The minimum cross-sectional area of all members is 0.775 in2

(2 cm2) and the maximum cross-sectional area is taken as 20.0 in2 (129.03 cm2).

The constraints are stress constraints [as defined by (11.5) and (11.6)] and displace-

ment limitations of
0.1969 in (
5 mm) imposed on all nodes in x, y and

z directions.
Table 11.1 shows the best solution vectors, the corresponding weights and the

required number of analyses for convergence of the present algorithm and some

other metaheuristic algorithms. ICA-based algorithm needs 6,000 analyses to find

the best solution while this number is equal to 150,000, 32,600, 10,000, 10,000 and

7,000 analyses for a PSO-based algorithm [11], a PSO and ACO hybrid algorithm

[11], a combination algorithm based on PSO, ACO and HS [11], an improved BB–

BC method using PSO properties [12] and the CSS algorithm [13], respectively. As

a result, the ICA optimization algorithm has best convergence rates among the

considered metaheuristics. Figure 11.3 shows the convergence history for the best

results of the ICA. Comparing the final results of the ICA and those of the other

metaheuristics, ICA finds the third best result while the difference between the

11.4 Design Examples 357

result of the ICA and those obtained by the HPSACO and the CSS methods, as the

first and second best results, are very small. The maximum value for displacement

is equal to 0.1969 in (5 mm) and the maximum stress ratio is equal to 99.999 %.

Fig. 11.2 Schematic of a 120-bar dome shaped truss

358 11 Imperialist Competitive Algorithm

11.4.2 Design of a 72-Bar Spatial Truss

For the 72-bar spatial truss structure shown in Fig. 11.4, the material density is

0.1 lb/in3 (2,767.990 kg/m3) and the modulus of elasticity is 10,000 ksi

(68,950 MPa). The members are subjected to the stress limits of
25 ksi

(
172.375 MPa). The nodes are subjected to the displacement limits of
0.25 in

(
0.635 cm). The 72 structural members of this spatial truss are categorized as

16 groups using symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16, (4) A17–A18,

Table 11.1 Performance comparison for the 120-bar dome truss

Optimal cross-sectional areas (in2)

Element

group

PSOPC

[10]

PSACO

[10]

HPSACO

[10]

HBB–BC

[9] CSS [6]

Present work [2]

in2 cm2

1 A1 3.040 3.026 3.095 3.037 3.027 3.0275 19.532

2 A2 13.149 15.222 14.405 14.431 14.606 14.4596 93.288

3 A3 5.646 4.904 5.020 5.130 5.044 5.2446 33.836

4 A4 3.143 3.123 3.352 3.134 3.139 3.1413 20.266

5 A5 8.759 8.341 8.631 8.591 8.543 8.4541 54.543

6 A6 3.758 3.418 3.432 3.377 3.367 3.3567 21.656

7 A7 2.502 2.498 2.499 2.500 2.497 2.4947 16.095

Best

weight

(lb)

33,481.2 33,263.9 33,248.9 33,287.9 33,251.9 33,256.2 147,931

N

No. of

required

analyses

150,000 32,600 10,000 10,000 7,000 6,000

0 50 100 150 200
3

4

5

6

7

8

9

10
x 104

Iteration

W
ei

g
h
ts

 (
lb

)

The best weights

The mean weights

Fig. 11.3 The convergence

for the dome shaped truss

obtained by the ICA [2]

11.4 Design Examples 359

(5) A19–A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, (9) A37–A40, (10) A41–A48,

(11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–A66 (15), A67–A70, and

(16) A71–A72. The discrete variables are selected from Table 11.2. The values and

directions of the two load cases applied to the 72-bar spatial truss are listed in

Table 11.3.

The ICA algorithm can find the best design among the other existing studies. The

best weight of the ICA algorithm is 392.84 lb (178.19 kg), while it is 393.38 lb

(178.43 kg), for the HPSACO [8]. The weight of the GA-based algorithm is equal to

427.203 lb (193.77 kg) [14]. The PSOPC and the standard PSO algorithms do not

find optimal results when the maximum number of iterations is reached [10]. The

HPSO and HPSACO algorithms get the optimal solution after 50,000 [10] and

5,330 [11] analyses while it takes only 4,500 analyses for the ICA. Table 11.4

compares the results of the CSS algorithm to those of the previously reported

methods in the literature. In this example, stress constraints are not dominant

while the maximum nodal displacement (0.2499 in or 0.635 cm) is close to its

allowable value.

11.4.3 Design of a 3-Bay, 15-Story Frame

The configuration and applied loads of a three-bay fifty-story frame structure [5] is

shown in Fig. 11.5. The displacement and AISC combined strength constraints are

the performance constraint of this frame. The sway of the top story is limited to

Fig. 11.4 Schematic of a 72-bar spatial truss

360 11 Imperialist Competitive Algorithm

23.5 cm (9.25 in.). The material has a modulus of elasticity equal to E ¼ 200 GPa

(29,000 ksi) and a yield stress of Fy ¼ 248.2 MPa (36 ksi). The effective length

factors of the members are calculated as Kx � 0 for a sway-permitted frame and the

out-of-plane effective length factor is specified as Ky ¼ 1.0. Each column is

Table 11.2 The available

cross-section areas of the

AISC code

No. in.2 mm2 No. in.2 mm2

1 0.111 (71.613) 33 3.840 (2,477.414)

2 0.141 (90.968) 34 3.870 (2,496.769)

3 0.196 (126.451) 35 3.880 (2,503.221)

4 0.250 (161.290) 36 4.180 (2,696.769)

5 0.307 (198.064) 37 4.220 (2,722.575)

6 0.391 (252.258) 38 4.490 (2,896.768)

7 0.442 (285.161) 39 4.590 (2,961.284)

8 0.563 (363.225) 40 4.800 (3,096.768)

9 0.602 (388.386) 41 4.970 (3,206.445)

10 0.766 (494.193) 42 5.120 (3,303.219)

11 0.785 (506.451) 43 5.740 (3,703.218)

12 0.994 (641.289) 44 7.220 (4,658.055)

13 1.000 (645.160) 45 7.970 (5,141.925)

14 1.228 (792.256) 46 8.530 (5,503.215)

15 1.266 (816.773) 47 9.300 (5,999.988)

16 1.457 (939.998) 48 10.850 (6,999.986)

17 1.563 (1,008.385) 49 11.500 (7,419.430)

18 1.620 (1,045.159) 50 13.500 (8,709.660)

19 1.800 (1,161.288) 51 13.900 (8,967.724)

20 1.990 (1,283.868) 52 14.200 (9,161.272)

21 2.130 (1,374.191) 53 15.500 (9,999.980)

22 2.380 (1,535.481) 54 16.000 (10,322.560)

23 2.620 (1,690.319) 55 16.900 (10,903.204)

24 2.630 (1,696.771) 56 18.800 (12,129.008)

25 2.880 (1,858.061) 57 19.900 (12,838.684)

26 2.930 (1,890.319) 58 22.000 (14,193.520)

27 3.090 (1,993.544) 59 22.900 (14,774.164)

28 1.130 (729.031) 60 24.500 (15,806.420)

29 3.380 (2,180.641) 61 26.500 (17,096.740)

30 3.470 (2,238.705) 62 28.000 (18,064.480)

31 3.550 (2,290.318) 63 30.000 (19,354.800)

32 3.630 (2,341.931) 64 33.500 (21,612.860)

Table 11.3 Loading conditions for the 72-bar spatial truss

Node

Case 1 Case 2

PX kips (kN) PY kips (kN) PZ kips (kN) PX PY PZ kips (kN)

17 5.0 (22.25) 5.0 (22.25) �5.0 (22.25) 0.0 0.0 �5.0 (22.25)

18 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

19 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

20 0.0 0.0 0.0 0.0 0.0 �5.0 (22.25)

11.4 Design Examples 361

considered as non-braced along its length, and the non-braced length for each beam

member is specified as one-fifth of the span length.

The optimum design of the frame is obtained after 6,000 analyses by using the

ICA, having the minimum weight of 417.46 kN (93.85 kips). The optimum designs

for HBB–BC [9], HPSACO, PSOPC and PSO [5] has the weights of 434.54

(97.65kN), 426.36 (95.85), 452.34 kN (101.69 kips) and 496.68 kN (111.66 kips),

respectively. Table 11.5 summarizes the optimal designs for these algorithms. The

HBB–BC approach could find the result after 9,900 analyses [9] and the HSPACO

needs 6,800 analyses to reach a solution [5].

Figure 11.6 shows the convergence history for the result of the ICA method. The

global sway at the top story is 11.52 cm, which is less than the maximum sway. The

maximum value for the stress ratio is equal to 98.45 %. Also, the maximum drift

story is equal to 1.04 cm.

11.4.4 Design of a 3-Bay 24-Story Frame

Figure 11.7 shows the topology and the service loading conditions of a three-bay

twenty four-story frame consisting of 168 members originally designed by Davison

and Adams [15]. Camp et al. utilized ant colony optimization [16], Degertekin

developed least-weight frame designs for this structure using a harmony search [17]

Table 11.4 Optimal design comparison for the 72-bar spatial truss

Element group

Optimal cross-sectional areas (in2)

GA [14] PSOPC [10] HPSO [10] HPSACO [11] Present work [2]

1 A1 ~ A4 0.196 4.490 4.970 1.800 1.99

2 A5 ~ A12 0.602 1.457 1.228 0.442 0.442

3 A13 ~ A16 0.307 0.111 0.111 0.141 0.111

4 A17 ~ A18 0.766 0.111 0.111 0.111 0.141

5 A19 ~ A22 0.391 2.620 2.880 1.228 1.228

6 A23 ~ A30 0.391 1.130 1.457 0.563 0.602

7 A31 ~ A34 0.141 0.196 0.141 0.111 0.111

8 A35 ~ A36 0.111 0.111 0.111 0.111 0.141

9 A37 ~ A40 1.800 1.266 1.563 0.563 0.563

10 A41 ~ A48 0.602 1.457 1.228 0.563 0.563

11 A49 ~ A52 0.141 0.111 0.111 0.111 0.111

12 A53 ~ A54 0.307 0.111 0.196 0.250 0.111

13 A55 ~ A58 1.563 0.442 0.391 0.196 0.196

14 A59 ~ A66 0.766 1.457 1.457 0.563 0.563

15 A67 ~ A70 0.141 1.228 0.766 0.442 0.307

16 A71 ~ A72 0.111 1.457 1.563 0.563 0.602

Weight (lb) 427.203 941.82 933.09 393.380 392.84

No. of required analyses – 150,000 50,000 5,330 4,500

362 11 Imperialist Competitive Algorithm

Fig. 11.5 Schematic of a

three-bay fifteen-story

frame

11.4 Design Examples 363

and the authors utilized a hybrid PSO and BB–BC algorithm to solve this

example [9].

The frame is designed following the LRFD specification and uses an inter-story

drift displacement constraint. The material properties are: the modulus of elasticity

E ¼ 205 GPa (29,732 ksi) and a yield stress of Fy ¼ 230.3 MPa (33.4 ksi). The

detailed information is available in [9].

Table 11.6 lists the designs developed by: the ICA, the HBB–BC algorithm [9],

the ant colony algorithm [16] and harmony search [17]. The ICA algorithm required

7,500 frame analyses to converge to a solution, while the 10,500 analyses were

required by HBB–BC [9], 15,500 analyses by ACO [16] and 13,924 analyses by HS

[17]. In this example, ICA can find the best results with 946.25 kN which is 3.67 %,

1.01 % and 1.60 % lighter than the results of the ACO [16], HS [17], and HBB–BC

Table 11.5 Optimal design comparison for the 3-bay 15-story frame

Element group

Optimal W-shaped sections

PSO [5] PSOPC [5] HPSACO [5] HBB–BC [9] Present work [2]

1 W33X118 W26X129 W21X111 W24X117 W24X117

2 W33X263 W24X131 W18X158 W21X132 W21X147

3 W24X76 W24X103 W10X88 W12X95 W27X84

4 W36X256 W33X141 W30X116 W18X119 W27X114

5 W21X73 W24X104 W21X83 W21X93 W14X74

6 W18X86 W10X88 W24X103 W18X97 W18X86

7 W18X65 W14X74 W21X55 W18X76 W12X96

8 W21X68 W26X94 W26X114 W18X65 W24X68

9 W18X60 W21X57 W10X33 W18X60 W10X39

10 W18X65 W18X71 W18X46 W10X39 W12X40

11 W21X44 W21X44 W21X44 W21X48 W21X44

Weight (kN) 496.68 452.34 426.36 434.54 417.466

No. of required analyses 50,000 50,000 6,800 9,900 6,000

0 50 100 150 200
400

500

600

700

800

900

1000

Iteration

W
ei

g
h
ts

 (
lb

)

The best weights

The mean weights

Fig. 11.6 The convergence

for the three-bay fifteen-

story frame obtained by the

ICA [2]

364 11 Imperialist Competitive Algorithm

Fig. 11.7 Schematic of a

three-bay twenty four-story

frame

11.4 Design Examples 365

[9], respectively. The global sway at the top story is 25.52 cm (10.05 in.) which is

less than the maximum sway. The maximum value for the stress ratio is 99.37 %

and the maximum inter-story drift is equal to 1.215 cm (0.4784 in.). Figure 11.8

shows the values of the stress ratios for all elements of the optimum design obtained

by the ICA algorithm.

11.5 Discussions

Many of metaheuristic algorithms are proposed based on the simulation of the

natural processes. The genetic algorithms, particle swarm optimization, ant colony

optimization, harmony search and charged system search are the most well-known

metaheuristic algorithms. As an alternative to these metaheuristic approaches, this

chapter investigates the performance of a new metaheuristic algorithm to optimize

the design of skeletal structures. This method is called ICA which is a socio-

politically motivated optimization algorithm.

Table 11.6 Optimal design comparison for the 3-bay 24-story frame

Element group

Optimal W-shaped sections

Camp et al. [16] Degertekin [17]

ACO HS HBB–BC [9] Present work [2]

1 W30X90 W30X90 W30X90 W30X90

2 W8X18 W10X22 W21X48 W21X50

3 W24X55 W18X40 W18X46 W24X55

4 W8X21 W12X16 W8X21 W8X28

5 W14X145 W14X176 W14X176 W14X109

6 W14X132 W14X176 W14X159 W14X159

7 W14X132 W14X132 W14X109 W14X120

8 W14X132 W14X109 W14X90 W14X90

9 W14X68 W14X82 W14X82 W14X74

10 W14X53 W14X74 W14X74 W14X68

11 W14X43 W14X34 W14X38 W14X30

12 W14X43 W14X22 W14X30 W14X38

13 W14X145 W14X145 W14X159 W14X159

14 W14X145 W14X132 W14X132 W14X132

15 W14X120 W14X109 W14X109 W14X99

16 W14X90 W14X82 W14X82 W14X82

17 W14X90 W14X61 W14X68 W14X68

18 W14X61 W14X48 W14X48 W14X48

19 W14X30 W14X30 W14X34 W14X34

20 W14X26 W14X22 W14X26 W14X22

Weight (kN) 980.63 956.13 960.90 946.25

No. of required analyses 15,500 13,924 10,500 7,500

366 11 Imperialist Competitive Algorithm

In the ICA, an agent or a country can be treated as a colony or imperialist and the

agents collectively form a number of empires. This algorithm starts with some

random initial countries. Some of the best countries are selected to be the imperi-

alist states and all the other countries form the colonies of these imperialists.

Imperialistic competitions among the empires direct the search process towards

the powerful imperialist and thus to the optimum spaces. During the competition,

when weak empires collapse, the powerful ones take possession of their colonies. In

addition, colonies of an empire move toward their related imperialist. In order to

improve the ICA performance, here two movement steps are defined by using:

(1) different random values for the components of the solution vector instead of

only one value; (2) deviation by using orthogonal colony-imperialistic contacting

line instead of using θ.
Four design examples consisting of two trusses and two frames are considered to

illustrate the efficiency of the present algorithm. The comparisons of the numerical

results of these structures utilizing the ICA and those obtained by other advanced

optimization methods are performed to demonstrate the robustness of the present

algorithm in finding good results in a less number of iterations. In order to highlight

the positive characters of the ICA, a comparison of the ICA and the PSO algorithm

is provided in the following:

– In the ICA algorithm, there is no need to save the pervious location of agents

(velocity), while the PSO requires two positions saving memory (the current

position and the pervious position).

– In the ICA algorithm, {V1} determines the movement direction of agents, while

in the PSO, this is performed by the global and local best vectors. The vector

{V1} is the best of the empire, i.e., it is the best agent among a predefined number

of agents, while in the PSO the global best, denoted by {Pg}, is the position of

the best agent of all agents. Therefore, {V1} will change for different agents

during an iteration (depending on the empire which they belong to) and this

helps the algorithm to increase the exploration ability, while {Pg} is constant for

all the agents in an iteration.

1 20 40 60 80 100 120 140 168

0

0.2

0.4

0.6

0.8

1

Element number

S
tr

es
s

ra
ti

o

Fig. 11.8 The values of the

stress ratios of elements for

the ICA result [2]

11.5 Discussions 367

– In the ICA algorithm, saving the local best position of agents is not necessary,

and instead the vector {V2} is utilized.

References

1. Kaveh A, Talatahari S (2010) Imperialist competitive algorithm for engineering design

problems. Asian J Civil Eng 11(6):675–697

2. Kaveh A, Talatahari S (2010) Optimum design of skeletal structures using imperialist com-

petitive algorithm. Comput Struct 88:1220–1229

3. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for

optimization inspired by imperialistic competition. In: IEEE congress on evolutionary com-

putation, Singapore, pp 4661–4667

4. Atashpaz-Gargari E, Hashemzadeh F, Rajabioun R, Lucas C (2008) Colonial competitive

algorithm: a novel approach for PID controller design in MIMO distillation column process.

Int J Intell Comput Cybern 1(3):337–355

5. Kaveh A, Talatahari S (2009) Hybrid algorithm of harmony search, particle swarm and ant

colony for structural design optimization. In: Geem ZW (ed) Harmony search algorithms for

structural design. Springer, Berlin, Chapter 5

6. American Institute of Steel Construction (AISC) (1989) Manual of steel construction–

allowable stress design, 9th edn. AISC, Chicago

7. American Institute of Steel Construction (AISC) (2001) Manual of steel construction–load

resistance factor design, 3rd edn. AISC, Chicago

8. Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures

with discrete variable. J Constr Steel Res 65(8–9):1558–1568

9. Kaveh A, Talatahari S (2010) A discrete big bang–big crunch algorithm for optimal design of

skeletal structures. Asian J Civil Eng 11(1):103–122

10. Li LJ, Huang ZB, Liu F (2009) A heuristic particle swarm optimization method for truss

structures with discrete variables. Comput Struct 87(7–8):435–443

11. Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony strategy and harmony

search scheme hybridized for optimization of truss structures. Comput Struct 87(5–6):267–283

12. Kaveh A, Talatahari S (2009) Size optimization of space trusses using Big Bang–Big Crunch

algorithm. Comput Struct 87(17–18):1129–1140

13. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search.

Acta Mech 213(3–4):267–286

14. Wu SJ, Chow PT (1995) Steady-state genetic algorithms for discrete optimization of trusses.

Comput Struct 56(6):979–991

15. Davison JH, Adams PF (1974) Stability of braced and unbraced frames. J Struct Div ASCE

100(2):319–334

16. Camp CV, Bichon J (2005) Design of steel frames using ant colony optimization. J Struct Eng

ASCE 131:369–379

17. Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct

Multidiscip Optim 36:393–401

368 11 Imperialist Competitive Algorithm

Chapter 12

Chaos Embedded Metaheuristic Algorithms

12.1 Introduction

In nature complex biological phenomena such as the collective behavior of birds,

foraging activity of bees or cooperative behavior of ants may result from relatively

simple rules which however present nonlinear behavior being sensitive to initial

conditions. Such systems are generally known as “deterministic nonlinear systems”

and the corresponding theory as “chaos theory”. Thus real world systems that may

seem to be stochastic or random, may present a nonlinear deterministic and chaotic

behavior. Although chaos and random signals share the property of long term

unpredictable irregular behavior and many of random generators in programming

softwares as well as the chaotic maps are deterministic; however chaos can help

order to arise from disorder. Similarly, many metaheuristics optimization algo-

rithms are inspired from biological systems where order arises from disorder. In

these cases disorder often indicates both non-organized patterns and irregular

behavior, whereas order is the result of self-organization and evolution and often

arises from a disorder condition or from the presence of dissymmetries. Self-

organization and evolution are two key factors of many metaheuristic optimization

techniques. Due to these common properties between chaos and optimization

algorithms, simultaneous use of these concepts can improve the performance of

the optimization algorithms [1]. Seemingly the benefits of such combination is a

generic for other stochastic optimization and experimental studies confirmed this;

although, this has not mathematically been proven yet [2].

Recently, chaos and metaheuristics have been combined in different studies for

different purposes. Some of the works have intended to show the chaotic behaviors

in the metaheuristic algorithms. In some of the works, chaos has been used to

overcome the limitations of metaheuristics. Hence previous research can be classi-

fied into two types.

In the first type, chaos is inserted into the metaheuristics instead of a random

number generator, i.e., the chaotic signals are used to control the value of param-

eters in the metaheuristic’s equations. The convergence properties of metaheuristics

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_12, © Springer International Publishing Switzerland 2014

369

are closely connected to the random sequence applied on their operators during a

run. In particular, when starting some optimizations with different random num-

bers, experience shows that the results may be very close but not equal, and require

different numbers of generations to reach the same optimal value. The random

numbers generation algorithms, on which most used metaheuristics tools rely,

usually satisfy on their own some statistical tests like chi-square or normality.

However, there are no analytical results that guarantee an improvement of the

performance indexes of metaheuristics algorithms depending on the choice of a

particular random number generator [3].

In the second type, chaotic search is incorporated into the procedures of the

metaheuristics in order to enrich the searching behavior and to avoid being trapped

in local optimums. A traditional chaos optimization algorithm (COA) which is a

stochastic search technique was proposed based on the advantages of chaos vari-

ables. The simple philosophy of the COA contains two main stages: firstly mapping

from the chaotic space to the solution space, and then searching optimal regions

using chaotic dynamics instead of random search [4]. However, COA also has some

disadvantages. For example, in the large-scale optimization problems the efficiency

of the algorithm will be very low and the COA often needs a large number of

iterations to reach the global optimum.

The main contribution of this chapter is to provide a state of the art review of the

combination of chaos theory and metaheuristics, and describes the evolution of

these algorithms along with some improvements, their combinations with various

methods as well as their applications. Also a novel metaheuristic which is called

chaotic swarming of particles (CSP) is introduced. The CSP uses chaos theory in

order to improve the convergence characteristics of the particle swarm optimization

(PSO) and to perform exploitation. This method is a kind of multi-phase optimiza-

tion technique which employs chaos theory in two phases by the use of chaotic

number generators each time a random number is needed by the classical PSO for

parameters adaptation, and chaotic local search algorithm to avoid being trapped

into local optimum.

12.2 An Overview of Chaotic Systems

In mathematic chaos is defined as “randomness” generated by simple deterministic

systems. The randomness is a result of the sensitivity of chaotic systems to the

initial conditions; it means that slight changes in the parameters or the starting

values for the data lead to vastly different future behaviors, such as stable fixed

points, periodic oscillations, bifurcations, and ergodicity. However, since the cha-

otic systems are deterministic, chaos implies order. A system can make the trans-

formation from a regular periodic system to a complex chaotic system simply by

changing one of the controlling parameters. Also a chaotic movement can go

through every state in a certain area according to its own regularity, and every

state is obtained only once [5]. An example of chaotic map is shown in Fig. 12.1.

370 12 Chaos Embedded Metaheuristic Algorithms

Considering a discrete-time series, one can define chaos in the sense of

Li-Yorke. A one-dimensional iterated map is based on a function of a real variable

and takes the form

xtþ1 ¼ F xtð Þ ð12:1Þ

where x(t) ∈ ℜn, t ¼ 1, 2, 3, . . . and F is a map from ℜn to itself.

Let F(p) denotes the composition of F with itself p > 0 times, then a point x is
called a p-periodic point of F if F (p)(x) ¼ x but F(k)(x) 6¼ x for all k such that

k � p. In particular, a point x satisfying F(x) ¼ x is called a fixed point of F. The ε-
neighborhood Nε(x) of a point x is defined by

Nε xð Þ ¼ y∈ℜn
�� x� yk k � ε

� ffi ð12:2Þ

where ||.|| denotes the Euclidean norm in ℜn. Then, we introduce the following

definition of chaos in the sense of Li-Yorke [6]:

Definition 1 If a discrete-time series satisfies the following conditions, then it is

called chaotic:

Fig. 12.1 An example of chaotic map (Logistic map)

12.2 An Overview of Chaotic Systems 371

1. There exist a positive constant N such that for any p � N, F has a p-periodic
point.

2. There exists an uncountable set S � ℜn, which does not include any periodic

point of F and satisfies the following conditions

(a) F Sð Þ � S

(b) For any points x, y ∈ S(x 6¼ y)

lim
n!1 sup F nð Þ xð Þ � F nð Þ yð Þ�� �� > 0,

and for any x ∈ S and any periodic point y of F,

lim
n!1 sup F nð Þ xð Þ � F nð Þ yð Þ�� �� > 0:

(c) There exists an uncountable subset S0 � S such that for any x, y ∈ S0,

lim
n!1 inf F nð Þ xð Þ � F nð Þ yð Þ�� �� ¼ 0

The set S in the above definition is called the scrambled set.

Then, it is well known that the existence of a fixed point called a snap-back

repeller in a system implies that the system is chaotic in the sense of Li-Yorke

[7]. Thus a system is chaotic if it contains infinitely many periodic orbits whose

periods are arbitrarily large. This definition essentially is a result of Sarkovskii’s

theorem which was proved by the Russian mathematician Sarkovskii in 1964;

however apparently presented in a well-known paper by Li and Yorke [6] in

which the word chaos first appeared in its contemporary scientific meaning [8].

A chaotic map can be used as spread-spectrum sequence for random number

sequence. Chaotic sequences have been proven to be easy and fast to generate and

store, and therefore there is no need for storing long sequences. One needs only a

few functions (chaotic maps) and few parameters (initial conditions) for very long

sequences. Also an enormous number of different sequences can be generated

simply by altering its initial condition. In addition, these sequences are determin-

istic and reproducible. The choice of chaotic sequences can be justified theoreti-

cally by their unpredictability, corresponding to their spread-spectrum

characteristic and ergodic properties [9]. Therefore when a random number is

needed, it can be generated by iterating one step of the chosen chaotic map

(cm) being started from a random initial condition at the first iteration of the run.

The literature is rich in chaotic time series sequences, some of these are listed in

following subsections.

372 12 Chaos Embedded Metaheuristic Algorithms

12.2.1 Logistic Map

This map, whose equation appears in nonlinear dynamics of biological population

evidencing chaotic behavior (May [10])

xkþ1 ¼ axk 1� xkð Þ ð12:3Þ

In this equation, xk is the kth chaotic number, with k denoting the iteration

number. Obviously, xk ∈ (0, 1) under the conditions that the initial xo ∈ (0, 1)

and that x0 =2 {0.0, 0.25, 0.5, 0.75, 1.0}. In the experiments a ¼ 4 is utilized.

12.2.2 Tent Map

Tent map resembles the logistic map, Peitgen et al. [11]. It generates chaotic

sequences in (0, 1) assuming the following form

xkþ1 ¼ xk=0:7 xk < 0:7
10=3xk 1� xkð Þ otherwise

�
ð12:4Þ

12.2.3 Sinusoidal Map

This iterator (May [10]) is represented by

xkþ1 ¼ ax2k sin πxkð Þ ð12:5Þ

For a ¼ 2.3 and xo ¼ 0.7 it has the following simplified form:

xkþ1 ¼ sin πxkð Þ ð12:6Þ

It generates chaotic sequence in (0, 1).

12.2.4 Gauss Map

The Gauss map is utilized for testing purpose in the literature (Peitgen et al. [11])

and is represented by

xkþ1 ¼ 0 xk ¼ 0

1=xkmod 1ð Þ otherwise

�

12.2 An Overview of Chaotic Systems 373

1=xkmod 1ð Þ ¼ 1

xk
� 1

xk

� �
ð12:7Þ

Here, [x] denotes the largest integer less than x and acts as a shift on the

continued fraction representation of numbers. This map also generates chaotic

sequences in (0, 1).

12.2.5 Circle Map

The circle map (Zheng [12]) is represented by

xkþ1 ¼ xk þ b� a=2πð Þ sin 2πxkð Þmod 1ð Þ ð12:8Þ

With a ¼ 0.5 and b ¼ 0.2, it generates chaotic sequence in (0, 1).

12.2.6 Sinus Map

Sinus map is defined as

xkþ1 ¼ 2:3 xkð Þ2 sin πxkð Þ ð12:9Þ

12.2.7 Henon Map

This map is a nonlinear two-dimensional map most frequently employed for testing

purposes, and it is represented by

xkþ1 ¼ 1� ax2k þ bxk�1 ð12:10Þ

The suggested parameter values are a ¼ 1.4 and b ¼ 0.3.

12.2.8 Ikeda Map

An Ikeda map is a discrete-time dynamical system defined by Dressler and Farmer

[13]:

374 12 Chaos Embedded Metaheuristic Algorithms

xnþ1 ¼ 1þ 0:7 xn cos θnð Þ � yn sin θnð Þð Þ,
ynþ1 ¼ 0:7 xn sin θnð Þ þ yn cos θnð Þð Þ,
θn ¼ 0:4� 6

1þ x2n þ y2n

ð12:11Þ

12.2.9 Zaslavskii Map

One of the interesting dynamic systems evidencing chaotic behavior is the

Zaslavskii map (Zaslavskii [14]), the corresponding equation is given by

xkþ1 ¼ xk þ vþ αykþ1 mod1ð Þ
ykþ1 ¼ cos 2πxkð Þ þ e�ryk

ð12:12Þ

where mod is the modulus after division and v ¼ 400, r ¼ 3, α ¼ 12.6695. In this

case, yt ∈ [–1.0512, 1.0512].

12.3 Use of Chaotic Systems in Metaheuristics

In the artificial intelligence community, the term metaheuristic was created and is

now well accepted for general algorithms that represent a family of approximate

optimization methods which are not limited to a particular problem. There were

many attempts to give a rigorous mathematical definition of metaheuristics. Here

some of these are accompanied by explanations.

1. “They are solution methods that orchestrate an interaction between local

improvement procedures and higher level strategies to create a process capable

of escaping from local optima and performing a robust search of a solution

space.” (Glover and Kochenberger [15])

2. “These methods can be defined as upper level general methodologies that can be

used as guiding strategies in designing underlying heuristics to solve specific

optimization problems”, Talbi [16]

3. “They are a set of concepts that can be used to define heuristic methods that can

be applied to a wide set of different problems with relatively few modifications

to make them adapted to a specific problem”, Dorigo [17].

Design and implementation of such optimization methods had been at the origin

of a multitude of contributions to the literature in the last 50 years as described in

the previous chapters. Generally, a metaheuristic algorithm uses two basic strate-

gies while searching for the global optima; exploration and exploitation. The

exploration enables the algorithm to reach at the best local solutions within the

search space, and the exploitation provides the ability to reach at the global

optimum solution which may exist around the local solutions obtained. In exploi-

tation, the promising regions are explored more comprehensively, while in

12.3 Use of Chaotic Systems in Metaheuristics 375

exploration the non-explored regions are visited to make sure that all the regions of

the search space are fairly explored.

Due to common properties of chaos and metaheuristic optimization algorithms,

simultaneous use of these concepts seems to improve the performance and to

overcome the limitations of metaheuristics. The previous research can be catego-

rized into two types. In the first type, chaotic system is inserted into the

metaheuristics instead of a random number generator for updating the value of

parameters; and in the second type, chaotic search is incorporated into the pro-

cedures of the metaheuristics in order to enrich the searching behavior and to avoid

being trapped in local optimums using traditional COAs.

12.4 Chaotic Update of Internal Parameters
for Metaheuristics

For simulating complex phenomena, sampling, numerical analysis, decision mak-

ing and in particular in metaheuristic optimization, random sequences are needed

with a long period and reasonable uniformity. On the other hand as mentioned

before chaos is a deterministic, random-like process found in nonlinear dynamical

system which is non-period, non-converging and bounded. The nature of chaos

looks to be random and unpredictable, possessing an element of regularity. Math-

ematically, chaos is randomness of a simple deterministic dynamical system, and

chaotic system may be considered as sources of randomness (Schuster [18]; Coelho

and Mariani [19]; Alatas [20]).

However, metaheuristics are non-typical; hence, the critical issue in

implementing metaheuristic methods is the determination of “proper” parameters

which must be established before running these algorithms. The efficient determi-

nation of these parameters leads to a reasonable solution. That is why; these

parameters may be selected chaotically by using chaotic maps. In this case,

sequences generated from chaotic systems substitute random numbers for the

parameters where it is necessary to make a random-based choice. By this way, it

is intended to improve the global convergence and to prevent to stick on a local

solution.

Alatas et al. [21] proposed different chaotic maps to update the parameters of

PSO algorithm. This has been done by using of chaotic number generators each

time a random number is needed by the classical PSO algorithm. Twelve chaos-

embedded PSO methods have been proposed and eight chaotic maps have been

analyzed in the unconstrained benchmark functions. The simulation results show

that the application of deterministic chaotic signals may be a possible strategy to

improve the performances of PSO algorithms. Also Alatas [20] presented another

interesting application. He has integrated chaos search with HS for improved

performance. Seven new chaotic HS algorithms have been developed using differ-

ent chaotic maps. A similar utilizing of chaotic sequences for artificial bee colony

376 12 Chaos Embedded Metaheuristic Algorithms

(ABC) (Alatas [22], BB-BC (Alatas [23]), ICA (Talatahari et al. [24]), and CSS

(Talatahari et al. [25]) have been performed by researchers. Based on the results

obtained from literature, it is not easy to say which chaotic map performs the best.

However, we can say that chaotic maps have a considerable positive impact on the

performance of metaheuristics.

In these studies generally unconstraint problems were considered. On the other

hand, most of the real life problems including design optimization problems require

several types of variables, objective and constraint functions simultaneously in their

formulation. In engineering design as the first attempts to analyze the performance

of metaheuristics in which chaotic maps are used for parameters updating process,

Talatahari et al. [26] combined the benefits of chaotic maps and the ICA to

determine optimum design of truss structures. These different chaotic maps were

investigated by solving two benchmark truss examples involving 25- and 56-bar

trusses to recognize the most suitable one for this algorithm. As an example, a

56-bar dome truss structure taken from [26] is shown in Fig. 12.2. Members of the

dome are categorized into seven groups. Table 12.1 shows the statistical results and

the optimum weight for the 56-bar dome truss using the ICA algorithms, where cm

is a chaotic map based on the Sinusoidal map for CICA-1, Logistic map for CICA-

2, Zaslavskii map for CICA-3 and Tent map for CICA-4. The results show that the

use of Sinusoidal map (CICA-1) results in a better performance for the chaotic ICA

than the others. Two other larger examples were also considered by Talatahari

et al. [26] to obtain more clear details about the performance of the new algorithm.

These were 200- and 244-bar trusses with 29 and 32 design variables, respectively.

Almost for all examples, the performance of the new algorithm is far better than the

standard ICA; especially when the standard deviations of the results are compared.

The standard deviation of the new algorithm is much better than the standard ICA

and this illustrates the high ability of the new algorithm.

As another attempt in optimization problems related to the engineering design, a

new improved CSS using chaotic maps was presented for engineering optimization

by Talatahari et al. [27]. They defined five different variants of the new methodol-

ogy by adding the chaos to the enhanced CSS. Then, different chaotic systems were

utilized instead of different parameters available in the algorithm. To evaluate the

performance of the new algorithm two sets of examples were considered: In the first

set four well-known benchmark examples including design of a piston lever, design

of a welded beam, design of a four-storey, two-bay frame, and design of a car side

impact were selected from literature to compare the variants of the new method. In

the second set two mechanical examples consisting of a 4 step-cone pulley design

and speed reducer design problems were utilized in order to compare the variants of

the new method with other metaheuristics. As an example, in design of a 4 step-

cone pulley the objective is to design a pulley with minimum weight using five

design variables, as shown in Fig. 12.3. Four design variables are associated with

the diameters of each step, and the fifth corresponds to the width of the pulley. In

this example, it is assumed that the widths of the cone pulley and belt are identical.

There are 11 constraints, out of which 3 are equality constraints and the remaining

are inequality constraints. The constraints are imposed to assure the same belt

12.4 Chaotic Update of Internal Parameters for Metaheuristics 377

length for all the steps, tension ratios, and power transmitted by the belt. The 4 step

pulley is designed to transmit at least 0.75 hp (0.75·745.6998 W), with an input

speed of 350 rpm and output speeds of 750, 450, 250, and 150 rpm. This problem is

Fig. 12.2 Schematic of a 56-bar dome spatial truss structure [26]

Table 12.1 Optimal design comparison for the 56-bar dome truss

ICA CICA-1 CICA-2 CICA-3 CICA-4

Best weight (kg) 546.14 546.13 546.16 546.15 546.15

Average weight (kg) 547.91 546.21 546.31 546.24 546.34

Std dev (kg) 5.791 0.49 0.62 0.56 0.59

378 12 Chaos Embedded Metaheuristic Algorithms

considered to compare the chaotic CSS (CCSS) method with other metaheuristic

algorithms which was solved by using Teaching–learning-based optimization

(TLBO) and ABC, previously, Rao et al. [28]. It is observed from Table 12.2 that

CCSS gives better results than the other methods for the best, mean, and standard

deviation, Talatahari et al. [27].

Due to the simplicity and potency of these methods, it seems that they can easily

be utilized for many engineering optimization problems.

12.5 Chaotic Search Strategy in Metaheuristics

The basic idea of COA generally includes two major stages. Firstly, based on the

selected chaotic map (cm) define a chaotic number generator for generating

sequences of points then map them to a design space. Afterwards, evaluate the

objective functions with respect to these points, and choose the point with the

minimum objective function as the current optimum. Secondly, the current opti-

mum is assumed to be close to the global optimum after certain iterations, and it is

viewed as the center with a little chaotic perturbation, and the global optimum is

obtained through fine search. Repeat the above two steps until some specified

convergence criterion is satisfied, and then the global optimum is obtained, Yang

et al. [29]. The pseudo-code of COA is summarized as follows

Fig. 12.3 A 4 step-cone pulley [28]

12.5 Chaotic Search Strategy in Metaheuristics 379

Step 1: Initialization. Initialize the number N of chaotic search, different initial

value of n chaos variables cmi
0, and the lower and upper bound of the decision

variables (XL and XU). Set the iteration counter as k ¼ 1. Determine the initial

design variables as

x0i ¼ XLi þ cm0
i XUi

� XLið Þ, i ¼ 1, 2, . . . , n ð12:13Þ

Evaluate the objective function and set f * ¼ f(x0).
Step 2: Variable mapping. Map chaotic variables cmk into the variance range of the

optimization variables by the following equation

xkþ1
i ¼ XLi þ cmkþ1

i XUi
� XLið Þ, i ¼ 1, 2, . . . , n ð12:14Þ

Step 3: Searching for optimal solution. Evaluate the objective function.

If k � N, then

If f (xk+1) � f *, then x* ¼ xk+1, f * ¼ f (xk+1).
Set k ¼ k + 1, cmk ¼ cmk+1, and go to step 2.

Else if k > N is satisfied then stop.

Due to the pseudo-randomness of chaotic motion, the motion step of chaotic

variables between two successive iterations is always big, which resulted in the big

jump of the design variables in design space. Thus, even if the above COAs have

reached the neighborhood of the optimum, it needs to spend much computational

effort to approach the global optimum eventually by searching numerous points.

Hence, the hybrid methods attracted the attention of some researchers, in which

chaos is incorporated into the metaheuristics where the parallel searching ability of

metaheuristics and chaotic searching behavior are reasonably combined. Wu and

Cheng [30] integrated GA with COA, which uses chaos sequence to generate

original population and add chaotic fine search to genetic operation which can

avoid premature convergence. Guo and Wang [31] presented a novel immune

evolutionary algorithm (IEA) based on COA to improve the convergence perfor-

mance of the IEA. Ji and Tang [32] and Liu et al. [4] suggested a hybrid method of

SA and PSO combined with chaos search, and examined its efficiency with several

nonlinear functions, respectively. Similar approaches were also presented for PSO

by Wang and Liu [33], Gao and Liu [34], He et al. [35]. Baykasoglu [36] presented

how can the performance of great deluge algorithm (GDA) be enhanced by

integrating with COA for solving constrained non-linear engineering design

Table 12.2 Statistical results

of the 4 step-cone pulley for

different metaheuristics

Method Best Mean Std dev

TLBO 16.63451 24.0113 0.34

ABC 16.63466 36.0995 0.06

CCSS 16.41235 29.1058 0.11

380 12 Chaos Embedded Metaheuristic Algorithms

optimization problems. Such hybrid methods can save much CPU time and enhance

the computational efficiency of algorithms.

12.6 A New Combination of Metaheuristics and Chaos
Theory

CSP is a newly developed type of metaheuristic algorithms. This algorithm is

proposed by Kaveh et al. [37]. The CSP is inspired from the chaotic and collective

behavior of species such as bees, fishes, and birds in which chaos theory is used to

control the value of the parameters of PSO and to increase the local search

capability of the PSO in order to enhance search behavior and skip local optima.

The CSP approach not only performs exploration by using the population-based

evolutionary searching ability of PSO, but also performs exploitation by using the

chaotic local searching behavior. The framework of the CSP is illustrated in

Fig. 12.4. In the CLSPSO1 phase, the initial positions of the particles are deter-

mined chaotically in the search space. The values of the fitness function for the

particles are also calculated. The best particle among the entire set of particles is

treated as a global best (Xg). After reaching a pre-defined number of iterations (N1),

the CLSPSO1 is stopped and switched to PSO while CPVPSO applies for updating

the value of parameters in the velocity updating equation. In the second phase, the

CLSPSO2 (updating process) is activated if PSO stops moving. CLSPSO2 causes

the particles to escape from local minima using the logistic map. After a better

solution is found by the CLSPSO2 or after a fixed number of iterations (N2), the

PSO will continue. The algorithm is terminated when the termination criterion has

been met: that is, if there is no significant improvement in the solution. The CSP

algorithm can simply be described as follows:

12.6.1 The Standard PSO

PSO involves a number of particles, which are initialized randomly in the space of

the design variables. These particles fly through the search space and their positions

are updated based on the best positions of individual particles and the best position

among all particles in the search space which in truss sizing problems corresponds

to a particle with the smallest weight in PSO, a swarm consists of N particles

moving around in a D-dimensional search space. The position of the jth particle at

the kth iteration is used to evaluate the quality of the particle and represents

candidate solution(s) for the search or optimization problems. The update moves

a particle by adding a change velocity Vj
k+1 to the current position Xj

k as follows

12.6 A New Combination of Metaheuristics and Chaos Theory 381

Vkþ1
j ¼ wV k

j þ c1 � r k1j
N

Pk
j � Xk

j

	

þ c2 � r k2j

N�
Pk
g � Xk

j

�

Xkþ1
j ¼ Xk

j þ V k
j

ð12:15Þ

where w is an inertia weight to control the influence of the previous velocity; rk1j
and rk2j are random numbers uniformly distributed in the range of (0,1); c1 and c2
are two acceleration constants namely called cognitive and social parameter,

Fig. 12.4 Flowchart of the CSP algorithm [1]

382 12 Chaos Embedded Metaheuristic Algorithms

respectively; Pj
k is the best position of the jth particle up to iteration k; Pg

k is the

best position among all particles in the swarm up to iteration k. In order to increase

PSO’s exploration ability, the inertia weight is now modified during the optimiza-

tion process with the following equation

wkþ1 ¼ wk � Dr � rand ð12:16Þ

where Dr is the damping ratio which is a constant number in the interval (0,1); and

rand is a uniformly distributed random number in the range of (0,1).

12.6.2 The CPVPSO Phase [37]

In this phase, when a random number is needed by PSO algorithm, it can be

generated by iterating one step of the chosen chaotic map (cm) being started from

a random initial condition of the first iteration of PSO. As we mentioned before one

of the well-known chaotic maps is the Logistic map which is a polynomial map.

This map is defined by (12.3).

In order to control values of PSO parameters by using chaotic maps, rk1j, r
k
2j, and

rand are generated from the iterations of Logistic map instead of using classical

random number generator as

Vkþ1
j ¼ wk � V k

j þ c1 � cmk
N

Pk
j � Xk

j

	

þ c2 � cmk

N�
Pk
g � Xk

j

�

wkþ1 ¼ wk � Dr � cmk
ð12:17Þ

12.6.3 The CLSPSO Phase [37]

In this phase, COA is introduced in the PSO formulation. This is a kind of multi-

phase optimization technique because chaotic optimization and PSO coexist and are

switched to each other according to certain conditions. Here, chaotic search that

uses Logistic map for the particle is incorporated to enhance search behavior and to

skip local optima. The CLSPSO process is now described:

• CLSPSO1 (First chaotic search process):

Step 1: Set t ¼ 0. Initialize the number of the first chaotic search N1, initial

value of chaos variables (cm0), the lower and upper bound of the decision

variables (Xmin and Xmax), and the number of particles. Determine the initial

design variables for the jth particle as

X0
j ¼ Xmin þ cm0

j Xmax � Xminð Þ ð12:18Þ

Step 2: Evaluate the objective function and determine Xg
0 by finding f * ¼ min

f(Xj
0).

12.6 A New Combination of Metaheuristics and Chaos Theory 383

Step 3:Map the chaotic variables cmt into the variance range of the optimization

variables by the following equation:

Xtþ1
j ¼ Xt

g þ 2cmt
j � 1

	

Xt
g � Xt

j

	

ð12:19Þ

Step 4: Evaluate the new position (Xj
t+1).

Step 5: If the new solution is better than the initial solution f (Xj
t+1) � f* , then

f* ¼ f (Xj
t+1).

Step 6: Generate the next values of the chaotic variables by a chaotic map and

set t ¼ t + 1.
Step 7: If t < N1 go to step 3, else stop the first chaotic search process and obtain

the output Xg and f* as the result of the CLSPSO1.

Step 8: Set Xg as the global best (Pg).

• CLSPSO2 (Second chaotic search process):

Step 1: Initialize the number of the second chaotic search N2 and set i ¼1.
Step 2: Using the PSO algorithm, generate the global best Pk

g.

Step 3: Set X i
g ¼ Pk

g

Step 4: Update the global best position of the particles using the chaotic map by

the following equation:

Xiþ1
g ¼ Xi

g þ 2cmi � 1
� �Xmax � Xmin

k
ð12:20Þ

Step 5: If the new solution is better than the initial solution f(Xg
i+1) � f(Xg

i),

then f* ¼ f(Xg
i+1) and Pk

g ¼ Xg
i+1.

Step 6:Generate the subsequent values of the chaotic variables by a chaotic map

and set i ¼ i + 1.
Step 7: If i < N2 go to step 4, else stop the second chaotic search process and

obtain the output Pk
g and f* as the result of the CLSPSO2.

12.6.4 Design Examples

In order to test the performance of the CSP method, two large-scale test problems

are adapted from Kaveh et al. [37] which previously treated by other investigators

are studied: the weight minimization 200-bar, and 942-bar truss. For all test cases,

after a sensitivity analysis, the CSP internal parameters are set to: w0 ¼ 0.9,

damping ratio (Dr) ¼ 0.99, number of the first chaotic search (N1) ¼ 50 and

number of the second chaotic search (N2) ¼ 10. Also the maximum number of

iteration is set to 2,500, number of particles (N) ¼ 100, and c1 ¼ 1, c2 ¼ 3.

The planar 200-bar truss structure shown in Fig. 12.5 is designed for minimum

weight. Truss elements are divided into 29 groups (design variables) All members

are made of steel: the material density and modulus of elasticity are 0.283 lb/in3

384 12 Chaos Embedded Metaheuristic Algorithms

(7,933.410 kg/m3) and 30 Msi (206 GPa), respectively. Element stresses must not

exceed �10 ksi (68.95 MPa). There are three independent loading conditions:

(1) 1.0 kip (4.45 kN) acting in the positive x-direction at nodes 1, 6, 15, 20,

29, 34, 43, 48, 57, 62, and 71; (2) 10 kips (44.5 kN) acting in the negative

y-direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24,

. . . , 71, 72, 73, 74, and 75; and (3) conditions 1 and 2 acting together.

The minimum weight and the values of the cross sectional area obtained by CSP

and some other previous studies reported in the literature such as a modified

Fig. 12.5 A 200-bar truss structure [37]

12.6 A New Combination of Metaheuristics and Chaos Theory 385

simulated annealing algorithm (CMLPSA) (Lamberti [38]), an improved GA

(Togan and Daloglu [39]), and self adaptive HS (SAHS) (Degertekin [40]) are

presented in Table 12.3. It can be seen that the CSP algorithm found an optimum

weight of 25,467.95 lb after approximately 317 iterations and 31,700 analyses. The

optimal design obtained using the CSP algorithm showed an excellent agreement

with the previous designs reported in the literature [37].

As another example, the 26-story-tower space truss with 942 elements and

244 nodes is considered, as shown in Fig. 12.6. Fifty-nine design variables are

used to represent the cross-sectional areas of 59 element groups in this structure,

Table 12.3 Comparison of optimized designs for the 200-bar truss

Element group CMLPSA GA SAHS CSP

A1~4 0.1468 0.3469 0.154 0.1480

A5, 8 , 11, 14, 17 0.9400 1.0810 0.941 0.9460

A19~24 0.1000 0.1000 0.100 0.1010

A18, 25, 56, 63, 94, 101, 132,139, 170, 177 0.1000 0.1000 0.100 0.1010

A26,29,32,35,38 1.9400 2.1421 1.942 1.9461

A6, 7, 9, 10, 12, 13, 15, 16, 27,28, 30, 31, 33, 34, 36, 37 0.2962 0.3470 0.301 0.2979

A39~42 0.1000 0.1000 0.100 0.1010

A43, 46, 49, 52, 55 3.1042 3.5650 3.108 3.1072

A57~62 0.1000 0.3470 0.100 0.1010

A64, 67, 70, 73, 76 4.1042 4.8050 4.106 4.1062

A44, 45, 47, 48, 50, 51, 53, 54,65, 66, 68, 69, 71, 72, 74, 75 0.4034 0.4400 0.409 0.4049

A77~80 0.1912 0.4400 0.191 0.1944

A81, 84, 87, 90, 93 5.4284 5.9520 5.428 5.4299

A95~100 0.1000 0.3470 0.100 0.1010

A102, 105, 108, 111, 114 6.4284 6.5720 6.427 6.4299

A82, 83, 85, 86, 88, 89,91, 92, 103,104, 106, 107,109, 110, 112, 113 0.5734 0.9540 0.581 0.5755

A115~118 0.1327 0.3470 0.151 0.1349

A119, 122, 125, 128, 131 7.9717 8.5250 7.973 7.9747

A133~138 0.1000 0.1000 0.100 0.1010

A140, 143, 146, 149, 152 8.9717 9.3000 8.974 8.9747

A120, 121, 123, 124, 126, 127,129,130, 141, 142, 144, 145,

147, 148,150, 151

0.7049 0.9540 0.719 0.70648

A135~156 0.4196 1.7639 0.422 0.4225

A157, 160, 163, 166, 169 10.8636 13.3006 10.892 10.8685

A171~176 0.1000 0.3470 0.100 0.1010

A178, 181, 184, 187, 190 11.8606 13.3006 11.887 11.8684

A158, 159, 161, 162, 164, 165, 167,168, 179, 180, 182, 183,

185, 186,188, 189

1.0339 2.1421 1.040 1.035999

A191~194 6.6818 4.8050 6.646 6.6859

A195, 197, 198, 200 10.8113 9.3000 10.804 10.8111

A196, 199 13.8404 17.1740 13.870 13.84649

Best weight (lb) 25,445.6 28,533.1 25,491.9 25,467.9

Average weight (lb) N/A N/A 25,610.2 25,547.6

Std dev (lb) N/A N/A 141.85 135.09

No. of analyses 9,650 51,360 19,670 31,700

386 12 Chaos Embedded Metaheuristic Algorithms

employing the symmetry of the structure. Figure 12.6 shows the geometry and the

59 element groups. The material density is 0.1 lb/in3 (2,767.990 kg/m3) and the

modulus of elasticity is 10 Gsi (68.950 GPa). The members are subjected to the

stress limits of�25 ksi (172.375 MPa) and the four nodes of the top level in the x, y

and z directions are subjected to the displacement limits of �15.0 in (38.10 cm)

(about 1/250 of the total height of the tower). The allowable cross-sectional areas in

this example are selected from 0.1 to 200.0 in2 (from 0.6452 to 1,290.32 cm2).

Loading conditions are presented in Table 12.4.

Fig. 12.6 Schematic of a 26-story space tower (a) Side view; (b) Top view

12.6 A New Combination of Metaheuristics and Chaos Theory 387

After 485 iterations and 48,500 analyses, CSP found an optimum weight

corresponding to the design listed in Table 12.5. The best weights are 56,343 lb,

60,385 lb, 53,201 lb, and 52,401 lb for the GA, PSO, BB–BC and HBB–BC (Kaveh

and Talatahari [41]), respectively. In addition, CSP is more efficient in terms of

average weight and standard deviation of optimized weight. The average weight

obtained by CSP is 53,147 lb which is 15.94 %, 29.36 %, 3.73 % and 0.72 % lighter

than GA, PSO, BB-BC, and HBB-BC, respectively. Table 12.6 provides the

statistic information for this example [37].

These results clearly demonstrat the performance of the proposed method with

respect to classical and improved variants of metaheuristic algorithms. It has been

proven that coupling emergent results in different areas, like those of PSO and

complex dynamics, can improve the quality of results in some optimization prob-

lems. Furthermore, including chaotic search schemes may be an effective approach.

12.7 Discussion

As an important tool in optimization theory, metaheuristic algorithms explore the

search space of the given data in both exploration and exploitation manner and

provide a near-optimal solution within a reasonable time. Metaheuristics have

many features that make them as suitable techniques not only as standalone

algorithms but also to be combined with other optimization methods. Even the

standard metaheuristics have been successfully implemented in various applica-

tions; however, many modification and improvements to these algorithms have also

been reported in the literature. Each of them is tightly related to some aspects of

these algorithms such as parameters setting or balancing of exploration and exploi-

tation. In this chapter, we turned the attention to chaos embedded metaheuristic

algorithms and survey most of the modifications proposed in the literature.

Chaos is a bounded unstable dynamic behavior that exhibits sensitive depen-

dence on initial conditions and includes infinite unstable periodic motions in

nonlinear systems. Recently, the idea of using the benefits of chaotic systems has

been noticed in several fields. One of these fields is optimization theory. Experi-

mental studies show the performance of combining chaos and metaheuristics. Here

chaos embedded metaheuristics are classified into two general categories. First

Table 12.4 Loading

conditions for the spatial

26-story tower

Case number Direction Load

1 Vertical 3 kips (13.344 kN)

2 Vertical 6 kips (26.688 kN)

3 Vertical 9 kips (40.032 kN)

4 Horizontal (X direction) 1 kips (4.448 kN)

5 Horizontal (X direction) 1.5 kips (6.672 kN)

6 Horizontal (Y direction) 1 kips (4.448 kN)

7 Horizontal (Y direction) 1 kips (4.448 kN)

388 12 Chaos Embedded Metaheuristic Algorithms

category contains the algorithms in which chaos is used instead of random number

generators. On the other hand in the second category chaotic search that uses

chaotic map is incorporated into metaheuristics to enhance searching behavior of

these algorithms and to skip local optima.

Finally a new combination of swarm intelligence and chaos theory is introduced

in which the tendency to form swarms appearing in many different organisms and

chaos theory has been the source of inspiration, and the algorithm is called CSP.

This method is a kind of multi-phase optimization technique which employs chaos

theory in two phases, in the first phase it controls the parameter values of the PSO

and the second phase is utilized for local search using COA. Compared to those of

the other metaheuristic algorithms the performance of the new method can be

concluded.

Table 12.5 Optimized

designs obtained for the

26-story tower

Members Area Members Area Members Area
A
1 14.0925 A

21 4.3475 A
41 0.6235

A
2 8.6965 A

22 1.1995 A
42 2.9045

A
3 6.1505 A

23 6.2555 A
43 12.3365

A
4 0.9095 A

24 9.2665 A
44 1.2195

A
5 0.6245 A

25 8.9865 A
45 4.9785

A
6 4.6535 A

26 4.4975 A
46 1.0685

A
7 1.0435 A

27 2.9485 A
47 0.7465

A
8 13.0025 A

28 4.2215 A
48 1.4485

A
9 9.4465 A

29 5.9315 A
49 16.4445

A
10 6.7035 A

30 9.8325 A
50 1.8985

A
11 0.6035 A

31 13.8705 A
51 5.0325

A
12 1.2095 A

32 1.5125 A
52 1.0255

A
13 3.0725 A

33 3.0985 A
53 11.6285

A
14 1.0005 A

34 1.1185 A
54 15.4075

A
15 8.2485 A

35 0.5965 A
55 16.6135

A
17 0.7215 A

37 1.6875 A57 3.1965
A
18 8.2665 A

38 8.0155 A
58 2.6845

A
19 1.0625 A

39 1.1215 A
59 4.3205

A
20 6.5035 A

40 4.7895

Table 12.6 Comparison of optimization results for the 26-story tower

GA PSO BB-BC HBB-BC CSP

Best weight (lb) 56,343 60,385 53,201 52,401 52,200

Average weight (lb) 63,223 75,242 55,206 53,532 53,147

Std dev (lb) 6,640.6 9,906.6 2,621.3 1,420.5 1,256.2

No. of analyses 50,000 50,000 50,000 30,000 48,500

12.7 Discussion 389

References

1. Sheikholeslami R, Kaveh A (2013) A survey of chaos embedded metaheuristic algorithms. Int

J Optim Civil Eng 3:617–633

2. Tavazoei MS, Haeri M (2007) An optimization algorithm based on chaotic behavior and

fractal nature. J Comput Appl Math 206:1070–1081

3. Bucolo M, Caponetto R, Fortuna L, Frasca M, Rizzo A (2002) Does chaos work better than

noise? IEEE Circ Syst Mag 2(3):4–19

4. Liu B, Wang L, Jin YH, Tang F, Huang DX (2005) Improved particle swarm optimization

combined with chaos. Chaos Solitons Fractals 25(5):1261–1271

5. Liu S, Hou Z (2002) Weighted gradient direction based chaos optimization algorithm for

nonlinear programming problem. Proceedings of the 4th world congress on intelligent control

and automation, pp 1779–1783

6. Li TY, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992

7. Tatsumi K, Obita Y, Tanino T (2009) Chaos generator exploiting a gradient model with

sinusoidal perturbations for global optimization. Chaos Solitons Fractals 42:1705–1723

8. Hilborn RC (2000) Chaos and nonlinear dynamics. Oxford University Press, New York

9. Heidari-Bateni G, McGillem CD (1994) A chaotic direct-sequence spread spectrum commu-

nication system. IEEE Trans Commun 42(2–4):1524–1527

10. May R (1976) Mathematical models with very complicated dynamics. Nature 261:459–467

11. Peitgen H, Jurgens H, Saupe D (1992) Chaos and fractals. Springer, Berlin

12. Zheng WM (1994) Kneading plane of the circle map. Chaos Solitons Fractals 4(7):1221–1233

13. Dressler U, Farmer JD (1992) Generalized Lyapunov exponents corresponding to higher

derivatives. Physica D 59:365–377

14. Zaslavskii GM (1987) The simplest case of a strange attractor. Phys Lett A69(3):145–147

15. Glover F, Kochenberger GA (2003) Handbook of metaheuristic. Kluwer Academic, Boston

16. Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, New Jersey

17. Dorigo M (2009) Metaheuristics network website (2000). http://www.metaheuristics.net/.

Visited in January

18. Schuster HG (1988) Deterministic chaos: an introduction (2nd Revised edn). Physick-Verlag

GmnH, Weinheim, Federal Republic of Germany

19. Coelho L, Mariani V (2008) Use of chaotic sequences in a biologically inspired algorithm for

engineering design optimization. Expert Syst Appl 34:1905–1913

20. Alatas B (2010) Chaotic harmony search algorithm. Appl Math Comput 29(4):2687–2699

21. Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms.

Chaos Solitons Fractals 40:1715–1734

22. Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst

Appl 37:5682–5687

23. Alatas B (2011) Uniform big bang-chaotic big crunch optimization. Commun Nonlinear Sci

Numer Simul 16(9):3696–3703

24. Talatahari S, Farahmand Azar B, Sheikholeslami R, Gandomi AH (2012) Imperialist compet-

itive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer

Simul 17:1312–1319

25. Talataharis S, Kaveh A, Sheikholeslami R (2011) An efficient charged system search using

chaos for global optimization problems. Int J Optim Civil Eng 1(2):305–325

26. Talatahari S, Kaveh A, Sheikholeslami R (2012) Chaotic imperialist competitive algorithm for

optimum design of truss structures. Struct Multidiscip Optim 46:355–367

27. Talatahari S, Kaveh A, Sheikholeslami R (2012) Engineering design optimization using

chaotic enhanced charged system search algorithms. Acta Mech 223:2269–2285

28. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel

method for constrained mechanical design optimization problems. Comput Aided Des 43:303–

315

390 12 Chaos Embedded Metaheuristic Algorithms

http://www.metaheuristics.net/

29. Yang D, Li G, Cheng G (2007) On the efficiency of chaos optimization algorithms for global

optimization. Chaos Solitons Fractals 34:1366–1375

30. Wu TB, Cheng Y, Zhou TY, Yue Z (2009) Optimization control of PID based on chaos genetic

algorithm. Comput Simul 26:202–204

31. Guo ZL, Wang SA (2005) The comparative study of performance of three types of chaos

immune optimization combination algorithms. J Syst Simul 17:307–309

32. Ji MJ, Tang HW (2004) Application of chaos in simulated annealing. Chaos Solitons Fractals

21:933–941

33. Wang Y, Liu JH (2010) Chaotic particle swarm optimization for assembly sequence planning.

Robot Cim-Int Manuf 26:212–222

34. Gao L, Liu X (2009) A resilient particle swarm optimization algorithm based on chaos and

applying it to optimize the fermentation process. Int J Inf Syst Sci 5:380–391

35. He Y, Zhou J, Li C, Yang J, Li Q (2008) A precise chaotic particle swarm optimization

algorithm based on improved tent map. In Proceedings of the 4th international conference on

natural computation, pp 569–573

36. Baykasoglu A (2012) Design optimization with chaos embedded great deluge algorithm. Appl

Soft Comput 12(3):1055–1067

37. Kaveh A, Sheikholeslami R, Talatahari S, Keshvari-Ilkhichi M (2014) Chaotic swarming of

particles: a new method for size optimization of truss structures. Adv Eng Softw 67:136–147

38. Lamberti L (2008) An efficient simulated annealing algorithm for design optimization of truss

structures. Comput Struct 86:1936–1953

39. Togan V, Daloglu AT (2008) An improved genetic algorithm with initial population strategy

and self-adaptive member grouping. Comput Struct 86:1204–1218

40. Degertekin SO (2012) Improved harmony search algorithms for sizing optimization of truss

structures. Comput Struct 92–93:229–241

41. Kaveh A, Talatahari S (2009) Size optimization of space trusses using big bang-big crunch

algorithm. Comput Struct 87:1129–1140

References 391

Chapter 13

A Multi-swarm Multi-objective Optimization
Method for Structural Design

13.1 Introduction

In this chapter a multi-objective optimization algorithm is presented and applied to

optimal design of large-scale skeletal structures [1]. Optimization is a process in

which one seeks to minimize or maximize a function by systematically choosing

the values of variables from/within a permissible set. In recent decades, a vast

amount of research has been conducted in this field in order to design effective and

efficient optimization algorithms. Besides, the application of the existing algo-

rithms to engineering design problems has also been the focus of many studies

(Gou et al. [2]; Lee and Geem [3]; Gero et al. [4]). In a vast majority of structural

design applications, including previous studies (Kaveh and Talatahari [5]; Kaveh

and Talatahari [6]; Kaveh and Talatahari [7]; Kaveh and Rahami [8]), the fitness

function was based on a single evaluation criterion. For example, the total weight or

total construction cost of a steel structural system has been frequently employed as

the evaluation criterion in structural engineering applications. But in the practical

optimization problems, usually more than one objective are required to be opti-

mized, such as, minimum mass or cost, maximum stiffness, minimum displacement

at specific structural points, maximum natural frequency of free vibration, maxi-

mum structural strain energy. This makes it necessary to formulate a multi-

objective optimization problem, and look for the set of compromise solutions in

the objective space. This set of solutions provides valuable information about all

possible designs for the considered engineering problem and guides the designer to

make the best decision. The application of multi-objective optimization algorithms

to structural problems has attracted the interest of many researchers. For example,

in (Mathakari et al. [9]) Genetic algorithm is employed for optimal design of truss

structures, or in (Liu et al. [10]) Genetic algorithm is utilized for multi-objective

optimization for performance-based seismic design of steel moment frame struc-

tures, and in (Paya et al. [11]) the problem of design of RC building frames is

formulated as a multi-objective optimization problem and solved by simulated

annealing. In all these studies, some well-known multi-objective algorithms have

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures,
DOI 10.1007/978-3-319-05549-7_13, © Springer International Publishing Switzerland 2014

393

been applied to structural design problems. However, the approach which has

attracted the attention of many researchers in recent years is to utilize a high-

performance multi-objective optimization algorithm for structural design problems.

For example, in (Su et al. [12]) an adaptive multi-island search strategy is incor-

porated with NSGA-II for solving the truss layout optimization problem, or in

(Ohsaki et al. [13]) a hybrid algorithm of simulated annealing and tabu search is

used for seismic design of steel frames with standard sections, and in (Omkar

et al. [14]) the specific version of particle swarm optimization is utilized to solve

design optimization problem of composite structures which is a highly multi-modal

optimization problem. These are only three examples of such studies.

Similarly, the main aim of this study is to propose a new high-performance

multi-objective optimization algorithm capable of solving large-scale structural

design problems with continuous variables. The first step for proposing such an

algorithm is to recognize and investigate the characteristics of this group of

problems. By reviewing the corresponding literature, the properties of these prob-

lems can be summarized as follows:

(i) In these problems usually many design variables accompany the optimization

process.

(ii) The fitness function in these problems is usually a multi-modal function, i.e.,

there are too many local optimal points. Therefore the utilized algorithm

should be able to escape from all local optima.

(iii) In this group, the computational cost of fitness function evaluation is really

considerable, because usually each fitness function evaluation means a com-

plete analysis and design of a structure. Consequently, the utilized optimiza-

tion algorithm should be able to find global optimum with lower number of

fitness function evaluations.

The next step for proposing such an algorithm is to review the other existing

multi-objective optimization algorithms and investigate their capabilities. Over the

last decade, in the literature of evolutionary computation, a number of multi-

objective evolutionary algorithms have been suggested which are based on different

concepts. Some of which are: Multi-objective evolutionary algorithm based on

decomposition (MOEA/D) (Zhang and Li [15]), Non-dominated Sorting Genetic

Algorithm NSGA-II (Deb et al. [16]), Strength Pareto Evolutionary Algorithm

SPEA2 (Zitzler et al. [17]), Multi-objective particle swarm optimization MOPSO

(Coello et al. [18]), sMOPSO (Mostaghim and Teich [19]) and cMOPSO (Toscano

and Coello [20]) which is a multi-swarm multi-objective optimization algorithm.

Additionally, in (Toscano and Coello [20]; Fan and Chang [21]; Yen and Leong

[22]; Leong and Yen [23]) the concept of multi-swarm population is used to

improve the convergence rate of multi-objective particle swarm optimization.

Furthermore, hybrid or memetic optimization algorithms have attracted the atten-

tion of many researchers in recent years. For example in (Goh et al. [24]; Sindhya

et al. [25]) a gradient based method is incorporated with NSGA-II in order to

improve the local search ability of this method and increase its convergence rate.

It is clear that in the literature of evolutionary computation, the main approach has

394 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

been to design an optimization algorithm that is capable of solving different kinds

of optimization problems, and reducing the number of fitness function evaluation

was not the main aim. Consequently, some of these algorithms require more than

100,000 evaluations to show their great capability in covering the Pareto fronts.

In this study, the aim is to develop a new multi-objective optimization algorithm

that is capable of solving structural design problems, with the above mentioned

features, more efficiently than the other available algorithms in the literature. In

other words, a multi-objective optimization algorithm which is capable to deal with

multi-modal optimization problems having many design variables, and capable of

covering the Pareto front with lower number of fitness function evaluation in

comparison to other available multi-objective optimization methods. To achieve

this goal, a new multi-swarm algorithm, which is composed of three main steps, is

designed. In this algorithm the search process is performed by the use of the charge

system search (CSS) (Kaveh and Talatahari [6]) procedure while a clustering

algorithm is employed for grouping the particles in the search space. Additionally,

a particle regeneration procedure is added to improve the algorithm’s ability in

escaping the local optima.

This chapter describes the proposed architecture of multi-objective optimization

algorithm and its applications. Two different groups of problems, i.e. non-constrained

with four mathematical problems and constrained with two problems of truss

and frame sizing optimization problems, are used to evaluate the performance

of the proposed algorithm. A comparison is drawn between our new algorithm

and some other well-known multi-objective optimization methods, which are

based on Genetic algorithm and particle swarm optimization. To carry out these

computations, all optimization algorithms were developed by the use of MATLAB

language. It is illustrated that the proposed algorithm, MO-MSCSS, is capable of

covering all parts of Pareto front with higher rate of convergence in comparison to

other methods [1].

13.2 Preliminaries

For a better understanding of the MOPs, the following concepts are important

(Coello et al. [26]) which are summarized here:

Definition 1 (General Multi-objective Optimization Problem). In general, multi-

objective optimization for minimization problem can be described as:

Find a vector x ¼ (x1, x2, . . ., xn) which satisfies k inequality constraints as

qi xð Þ � 0 i ¼ 1, 2, . . . , kð Þ

and l equality constraints:

13.2 Preliminaries 395

hj xð Þ ¼ 0 j ¼ 1, 2, . . . , lð Þ

and minimizes the vector function

Minx∈Ω F xð Þ ¼ f 1 xð Þ, f 2 xð Þ, . . . , f m xð Þf g ð13:1Þ

where Ω is a set of decision vectors and m is the number of objectives. In a word, it

aims to find vectors subjected to some constraints, which make all the objective

values as small as possible.

Definition 2 (Pareto Dominance). A vector u ¼ (u1, u2, . . ., un) is said to be

dominate to another vector v ¼ (v1, v2, . . ., vn) (denoted by u ≺ v) if and only if

u is partially less than v, i.e., 8 i ∈ {1, 2, . . ., n },

ui � vi ^ ∃ i ∈ {1, 2, . . ., n} : ui < vi.

Definition 3 (Pareto Optimal). A solution x ∈ Ω is said to be Pareto Optimal

with respect to Ω if and only if there is no x ’ ∈ Ω for which v ¼ (f1(x ’), f2(x ’),

. . ., fn(x ’)) dominates u ¼ (f1(x), f2(x), . . ., fn(x)). The phrase Pareto Optimal is
taken to mean with respect to the entire decision variable space unless otherwise

specified.

Definition 4 (Pareto Optimal Set). For a given MOP, F(x), the Pareto Optimal Set
P is defined as

P ¼ x∈Ω
��Ø∃x0 ∈Ω F x0ð Þ≺F xð Þ� �

Definition 5 (Pareto Optimal Front). For a given MOP, F(x), and Pareto Optimal

Set P the Pareto Front PF is defined as PF ¼ {u ¼ F(x)|x ∈ P }.

A solution is said to be Pareto Optimal if it is not dominated by any other

solutions in the search space, also termed as non-dominated solution. In this

chapter, we distinguish the true Pareto Optimal front, termed PFtrue, and the final

set of non-dominated solutions obtained by a multi-objective optimization algo-

rithm, termed PFknown as defined by the aim of the multi-objective optimization

algorithms is to find a well uniformly distributed PFknown that approximates

PFknown as close as possible.

13.3 Background

The specific features of the charged system search algorithm have motivated us to

utilize this method as the main engine of the search process in the MO-MSCSS. A

brief detail of this method and an introduction to k-means clustering algorithm are

presented in Sects. 13.3.1 and 13.3.2, respectively.

396 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

13.3.1 Charged System Search

The charged system search is based on electrostatic and Newtonian mechanics laws

(Kaveh and Talatahari [6]). The Coulomb and Gauss laws provide the magnitude of

the electric field at a point inside and outside a charged insulating solid sphere,

respectively, as follows:

Eij ¼

keqi
a3

rij if rij < a

keqi
rij2

if rij � a

8>>>><
>>>>:

ð13:2Þ

where ke is a constant known as the Coulomb constant; rij is the separation of the

centre of sphere and the selected point; qi is the magnitude of the charge; and a is

the radius of the charged sphere. Using the principle of superposition, the resulting

electric force due to N charged spheres is equal to:

Fj ¼ keqj
XN
i¼1

� qi
a3

rij:i1 � qi
rij2

:i2

� �
xi � xj

xi � xj
�� �� i1 ¼ 1, i2 ¼ 0 if rij < a

i1 ¼ 0, i2 ¼ 1 if rij � a

�

ð13:3Þ

where the magnitude of the charge q is defined considering the quality of its

solution, as follows:

qi ¼
fit ið Þ � fitworst

fitbest� fitworst
ð13:4Þ

where, fitbest and fitworst are the so far best and the worst fitness of all particles, and
fit(i) represents the objective function value or the fitness of the particle i; and N is

the total number of particles. Each electrical force can be attractive or repulsive,

i.e., each particle in the search space is attracted by better particles (with higher

fitness value) and is repulsed by worse particles (with lower fitness value).

According to this rule, in the first iteration where the particles are far from each

other the magnitude of the resultant force acting on a particle is inversely propor-

tional to the square of the separation between the particles. Thus, the exploration

power in this condition is high because of performing more searches in the early

iterations. It is necessary to increase the exploitation of the algorithm and to

decrease the exploration gradually. After a number of searches where particles

are collected in a small space, the resultant force becomes proportional to the

separation distance of the particles. Therefore, the parameter a separates the global
search phase and the local search phase. According to Newtonian mechanics, we

have

13.3 Background 397

Δx ¼ xnew � xold , v ¼ xnew � xold
Δt

, a ¼ vnew � vold
Δt

ð13:5Þ

where xold and xnew are the initial and final position of a particle, respectively; v is

the velocity of the particle; and a is the acceleration of the particle. Combining the

above equations and using Newton’s second law, the displacement of any object as

a function of time is obtained as

xj,new ¼ ka:
1

2

Fj

mj
Δt2 þ kv:vj,old:Δtþ xj,old ð13:6Þ

where, mj is the mass of the jth particle, which is considered equal to qj as in the

main algorithm (Kaveh and Talatahari [6]).Δt is the time step, and it is set to 1. ka is
the acceleration coefficient; kv is the velocity coefficient to control the influence of

the previous velocity. These coefficients can be considered fixed or adaptive during

the search process (Kaveh and Talatahari [5, 7]). Also, we have:

vj,new ¼ xj,new � xj,old
Δt

ð13:7Þ

Inspired by the above electrostatic and Newtonian mechanics laws, the concept

of the CSS optimization method is organized as follows:

1. Initialization: Initialize an array of particles with random positions. The initial

velocities of these particles are taken as zero. Each particle has a charge of

magnitude (q) defined considering the quality of its solution. The separation

distance rij between two charged particles i and j is defined as Euclidean distance
between them (in search space).

2. Search: The attracting or repulsing force vector for each particle is determined

according to (13.3). Where in this equation Fj is the resultant force affecting the

jth particle. After computing resultant forces acting on all particles, each particle

is moved to its new position and its velocity is updated. This procedure contin-

uous until the considered stopping criteria ends the search process.

13.3.2 Clustering

Clustering refers to the process of grouping samples so that the samples are similar

within each group, these groups are called clusters. Different clustering methods are

available in the literature and for this study one of the most prominent clustering

methods is utilized, called k-means (Haritigan [27]). In this method, first k points

are selected as initial centroids, where k is a user specified parameter, namely, the

number of clusters desired. Each point is then assigned to the closest centroid, and

each collection of points assigned to a centroid is a cluster. The centroid of each

cluster is then updated based on the points assigned to the cluster. The process of

398 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

assignment and updating is repeated until no point changes clusters, or equiva-

lently, until the centroids remain the same. In this chapter, clustering is done with

respect to closeness in the search space.

13.4 MO-MSCSS

Approximation to the Pareto optimal set involves the following two distinct objec-

tives: (1) to obtain a non-dominated front that is close to the true Pareto front and

(2) to maintain the diversity of the solutions along the resulting Pareto front. For the

problems with very many design variables, application of multi-swarm strategy has

resulted in excellent results in both of these objectives, i.e. high convergence rate

and maintaining diversity (Fan and Chang [21]; Yen and Leong [22]; Leong and

Yen [23]). By employing several swarms, each swarm should cover just part of the

Pareto front and this means that for its particles the range of changes for each design

variable is limited to a smaller boundary. The great ability of this strategy is seen

more when the considered optimization problem has a high number of design

variables. On the other hand, by employing several swarms actually each swarm

works as a local optimizer. This feature provides an opportunity to utilize a

powerful local search algorithm as the search engine in each swarm.

As mentioned above, the application of gradient based algorithms as a local

optimizer has been studied by many researchers. It is clear that gradient based

algorithms have great potential to be used as local search algorithm in multi-

objective optimization algorithms. These results encouraged us to use an evolu-

tionary gradient based algorithm as the local search engine. The CSS algorithm,

introduced in Sect. 13.3.1, uses (13.3) to guide the particles in the search space. It is

seen that in CSS two terms contribute in guiding each particle in the search space.

First, the entered force of the other particles and second particles velocity in the

search space. It should be noted that the first term of (13.6) is an approximate

estimation of the gradient of the search process. In fact in (Salomon [28]) it is

proved that an acceptable estimation of the true gradient direction at point x
!
t can be

obtained as follows:

gt
! ¼ lim

λ!1

Xλ
i¼1

1

λ
f ti

!	 ffi
� f xt

!	 ffi	 ffi
: ti

! � xt
!	 ffi

ð13:8Þ

This function is correct when the distance of all t
!
i to x

!
t is less than a specific

value (σt). It means that all the considered points should be close to each other in the

search space. Consequently, the first term of (13.6) guides each particle in the

direction of space gradient at its location. The condition of (13.6), i.e. points should

be close to each other, is fulfilled here because usually particles of each swarm are

very close to each other. This is why CSS algorithm in a limited part of search

13.4 MO-MSCSS 399

space, can be categorized as an evolutionary gradient based algorithm and this is the

reason this algorithm is selected as the local search engine in the proposed

algorithm.

Employing several swarms for the search process raises the issue of information

exchange among swarms. Swarms traverse different parts of the search space and

obtain information about the space. Exchanging the information among swarms

improves search ability of all the swarms and it helps to maintain diversity of the

solutions along the Pareto front (Yen and Daneshyari [29]). Additionally as men-

tioned above, the structural optimization problems objective function are multi-

modal functions, i.e. they have lots of local optima, and employed algorithm should

be able to escape of these points. The considered solution for both of these

problems, is particle regeneration (Fan and Chang [21]). It means the particles in

each swarm are regenerated by the use of information provided by the archive

members allocated to each swarm. In this way, first it is not required to exchange

information among different swarms because in each iteration all swarms are

regenerated, second this strategy helps the algorithm to escape from local optima.

More details are presented in Sect. 13.4.1.

13.4.1 Algorithm Overview

The main algorithm of MO-MSCSS is quite similar to other multi-swarm algo-

rithms. The generic steps of MO-MSCSS are as follows. First, based upon a preset

number of swarms (kswarm), every swarm of particles is initialized. Second, the

members of local archive (L-archive) of each swarm are identified by the domina-

tion test and the internal iteration is reset to zero. In internal loop, the particles in

each swarm will be guided by both the particles from their L-archive and other

particles in their swarm (CSS search process). As soon as the force determination

process is completed, the particles perform the move operation. Afterward, the

L-archive of each swarm is updated. These steps are performed until they reach the

maximum internal iteration (iterIntMax). By the end of internal loop, the following
steps are performed: (1) all of the L-archives are merged into the global archive

(G-archive) (2) A clustering algorithm is applied to the G-archive to group the

non-dominated particles, where the number of groups is determined by the number

of swarms chosen, and each of these groups is assigned to a swarm as its L-archive

(3) the population-generation strategy is performed to regenerate the population of

each swarm by the use of newly assigned L-archive to the swarm. Then other

internal loop starts search process. These steps are performed until they reach the

maximum external iteration (iterExtMax). Figure 13.1 shows the pseudo-code of

the MO-MSCSS. For additional clarification, each part of the algorithm is described

further in the following sections.

400 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

13.4.2 Search Process by CSS Algorithm

In the proposed algorithm, search process is accomplished by CSS algorithm. In

this algorithm, as mentioned in Sect. 13.3.1, all particles which exist in a swarm,

with respect to their fitness and distance, contribute in guiding a particle. Better

particles attract and worse particles repulse the considered particle in the search

space. This process is performed in four steps as follows:

Step 1 The Euclidean distance between all the particles in swarm(i) and also

particles in archive(i) (in search space) are determined. Then these distances are

normalized to Rallow. This parameter is considered to overcome the effect of the

range of search variables (this parameter is set to 5 in this chapter).

Begin
Parameters initialization for CSS search algorithm, mutation operator, population generator.

/* Population Initialization

Set no. of swarms (kswarm)

Set Maximum internal iteration (iterIntMax)

Set Maximum external iteration (iterExtMax)

Set internal iteration iterInt=0. Set external iteration iterExt=0.

For each swarm

For each particle

Fitness evaluation.

EndFor
Store all found non-dominated particles as members of L-archive.

EndFor
iterExt=1;

While iterExt<iterExtMax
For each swarm

While interInt<iterIntMax
Charge_magnitude_determination()
For each particle

Determine the resultant force exerted to each particle using Eq.(10,11, 12) (CSS search

process). Move particle. Fitness evaluation.

Apply Mutation operator.

Maintain the particles within the search space.

Control the velocity of the particles (maxmax xv =).

EndFor
EndWhile
Store all newly found non-dominated particles in L-archive.

EndFor
Combine kswarm L-archives and update G-archive.

Apply clustering algorithm to group G-archive.

Assign obtained groups to swarms as their L-archive.

Population_generation_strategy()
EndWhile

End

Fig. 13.1 Pseudo-code of the MO-MSCSS [1]

13.4 MO-MSCSS 401

Step 2 The resultant force exerted to each particle is computed using the following

expression. This exerting force is formed from three parts:

1. A particle in the swarm is attracted by all archive members. In this case the

resultant force is as follows:

Fj ¼ qj
Xl
i¼1

Qi

a3
rij:i1 þ Qi

rij2
:i2

� �
x ið Þ � x jð Þð Þ i1 ¼ 1, i2 ¼ 0 if rij < a

i1 ¼ 0, i2 ¼ 1 if rij � a

�
ð13:9Þ

where, x(i) and x(j) are the positions of the ith and jth particles, l is the number of

archive members in archive (i), Q is the charge magnitude (fitness value) of

archive members, q is the charge magnitude of an ordinary particle in swarm(i)
and rij is the distance between the two particles i and j. In this chapter, a is set to 1.

2. A particle is attracted by other better particles in swarm(i), i.e. a particle j is
attracted by particle i if and only if the charge magnitude of the particle i is
higher than that of the particle j. In this case, the exerting force on each particle is
equal to

Fj ¼ qj
Xk
i¼1

qi
a3

rij:i1 þ qi
rij2

:i2

� �
x ið Þ � x jð Þð Þ i1 ¼ 1, i2 ¼ 0 if rij < a

i1 ¼ 0, i2 ¼ 1 if rij � a

�
,

qi > qj

ð13:10Þ

3. A particle is repulsed by other worse particles in swarm(i), i.e., a particle j is
repulsed by particle i if and only if the charge magnitude of the particle i is lower
than that of the particle j.

Fj ¼ qj
Xk
i¼1

� qi
a3

rij:i1 � qi
rij2

:i2

� ��
x ið Þ � x jð Þ i1 ¼ 1, i2 ¼ 0 if rij < a

i1 ¼ 0, i2 ¼ 1 if rij � a

�
,

qi < qj

ð13:11Þ

These three cases are illustrated in Fig. 13.2a, b in which for example in

Fig. 13.2a, particle P1 is attracted by the archive members P01, P02, P03, P04 and P05
and also is repulsed by P3, P4 and P6. In Fig. 13.2b the particle P4 is attracted by the

archive members P01, P02, P03, P04 and P05 and by other better swarm particles (P1
and P2) and is repulsed by P3.

Step 3 The new position and velocity of each particle is obtained using the

following expression:

402 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

xj,new ¼ rand:
Fj

mj
þ ω:vj,old þ xj,old ð13:12Þ

vj,new ¼ xj,new � xj,old ð13:13Þ

where rand is a set of uniformly distributed random numbers in the range [0,1].mj is

the mass of jth particle which is equated to qj in this chapter.

Step 4 The particles are maintained within the search space when they go beyond

their boundaries (Coello et al. [18]). When a design variable goes beyond its

boundaries, then two things are done: (1) the decision variable takes the value of

its corresponding boundary (either the lower or the upper boundary) and (2) its

velocity is multiplied by (�1) so that it searches in the opposite direction.

13.4.3 Charge Magnitude of Particles

The charge magnitudes of the particles are related to their fitness values. The

scheme which is employed in the proposed algorithm is similar to the fitness

assignment algorithm which is introduced in SPEA2 (Zitzler et al. [17]), but with

some modifications.

Here, each particle in the population is assigned a strength value, representing

the number of solutions it dominates (Pt is the collection of members of population

and Pt is the collection of members of the archive):

Fig. 13.2 Attraction and repulsion strategies in MO-MSCSS [1] (a) Case 1 (b) Case 2

13.4 MO-MSCSS 403

S ið Þ ¼ j j j∈Pt þ Pt ^ i � j
� ��� �� ð13:14Þ

where, | . | denotes the cardinality of a set, + stands for multi-set union, and the

symbol � corresponds to the Pareto dominance relation. On the basis of the

S values, the raw fitness R(i) of an individual i is calculated as

R ið Þ ¼
X

j∈PrþPt , j�i

S jð Þ ð13:15Þ

According to this methodology, a particle with lower raw fitness is a better

solution than the other solutions with higher raw fitness values. In order to reverse

this pattern, the charge magnitude of each particle is determined as follows:

qi ¼
Rmax � Ri þ ε

Rmax

� �1=2

ð13:16Þ

Rmax ¼ max R ið Þð Þ for all i ¼ 1, 2, . . . ,N ð13:17Þ

where ε is a small positive number to avoid zero value for q in (13.16). According to
this definition all members of the archive have zero charge and so this method is not

verified for classifying these members. In order to provide a measure for qualifying

diversity of the archive members, the following charge magnitude is introduced:

First the crowding distance (Deb et al. [16]) for the archive members is calculated

and then members are sorted in descending order according to their crowding
distance, and the charge magnitude is determined as

Qi ¼ 1þ 1

rank archive ið Þð Þ
� �1=2

ð13:18Þ

where rank(archive(i)) is the rank of archive(i) in the sorted list. Figure 13.3 shows
the pseudo-code of the Charge-magnitude-determination strategy.

13.4.4 Population Regeneration

Different methods can be used for population regeneration step. In the proposed

algorithm a simple equation is utilized to generate new population. This task is done

by the use of archive members which are assigned to each swarm after clustering

phase. The pseudo-code of population-generation strategy is presented in Fig. 13.4.

In this algorithm one new particle j in a swarm is generated as follows:

404 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

xj ¼ hþ w: swmax � swminð Þ:randnj: 1� iterExt

iterExtMax

� �
ð13:19Þ

where, randnj is a random number from a standard normal distribution which changes

for each particle, swmin and swmax are the minimum and maximum of all search

variables in swarm archive(i) respectively, h is one randomly selected member of the

swarm archive, and w is a parameter which increase the domain of new generated

particles. It should be mentioned that this parameter is considered so that each swarm

can cover much more space, and to enable the algorithm to escape from premature

convergence. This parameter, in this study, is set to 3 in all examples.

13.4.5 Mutation Operator

CSS is known to have a very high convergence speed (Kaveh and Talatahari [6]).

However, such convergence speed may be harmful in the context of multi-objective

optimization, because a MO-MSCSS based algorithm may converge to a false

Pareto front (i.e., the equivalent of a local optimum in global optimization).

Especially in the proposed algorithm, the best solutions found are used to generate

and guide particles of the swarms and if archive members get stuck in a local

optimum all particles of the swarm are collected around them and whole algorithm

will not be able to find the global optimum Pareto front. This drawback of the above

optimization method, motivated the development of a mutation operator that tries to

explore all of the search space. The choice of a good mutation operator is a difficult

task that has a significant impact on performance. In the proposed algorithm,

Function Charge_magnitude_determination (Pop, Arch)

/* Pop= current population of swarm k
/* Arch= archive members of swarm k
Begin

For each particle in Pop and Arch

Compute the S value using Eq. 16.

EndFor
For each particle in Pop

Compute the R value using Eq. 17.

Compute the q value using Eq. 18, 19.

EndFor
For each particle in Arch

Compute crowding distance
Compute Q using Eq. 20

EndFor
End

Fig. 13.3 Pseudo-code of the charge magnitude determination scheme [1]

13.4 MO-MSCSS 405

mutation (turbulence) operator is utilized, i.e. mutation operator is applied to each

particle j with a predefined probability using the following formulation:

x ij ¼ x ij þ RTx
i
j ð13:20Þ

where RT is a random value in [�1,1]. For determining the probability of applying

mutation operator, a nonlinear function, introduced in (Coello et al. [18]), is utilized

as follows:

rand < 1� iterInt=iterIntMaxð Þ5=MutationRate ð13:21Þ

where, rand is a uniformly distributed random value in range [0,1]. If this equation

is satisfied the mutation operator is applied to one of the search variables of the

selected particle. It should be mentioned that this operator is applied in each swarm

and iterInt and iterIntMax are internal iteration index and maximum number of

internal iterations respectively.

13.4.6 Global Archive Updating Process

G-archive updating process consists of inserting all the obtained non-dominated

solutions in all L-archive(i) (i ¼ 1, . . ., k) into the G-archive and eliminating all

dominated solutions. Since the size of the external archive is limited, we apply a

secondary mechanism for keeping this limit: We adopt the concept of crowding
distance (Deb et al. [16]) in order to fix the size of the G-archive. First when

non-dominated solutions are inserted into the G-archive, the size of this archive is

considered free, After updating the G-archive we proceed to update the crowding

values of the set of archive members and sort them in descending order and we

eliminate as many members as necessary (from end of the list) in order to avoid

exceeding the allowable size of the archive.

Function Population generation (Arch)

/*Arch=L-archive members of swarm k
Begin

For each swarm k

Store the minimum and maximum of all search variables in swarm as swmin and swmax
For each particle in swarm k

Select randomly one of the particles in Arch(i)

Generate one new particle in this swarm using Eq.21.

Fitness evaluation

EndFor
Store newly generated population as particles of swarm(i)

EndFor
End

Fig. 13.4 Pseudo-code of the population-generation scheme [1]

406 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

13.4.7 Constraint Handling

In order to handle the given constraints, a relatively simple scheme is implemented.

Whenever two individuals are compared, first they are checked for constraint

violation. If both are feasible, then the non-dominance is directly applied to decide

the winner. If one is feasible and the other is infeasible, the feasible dominates. If

both are infeasible, then the one with the lowest amount of constraint violation

dominates the other. This is the approach that has been utilized in (Deb et al. [16];

Coello et al. [18]) to handle the constraints.

13.5 Structural Optimization

In this section, the AISC-ASD (1989) [30] code is utilized as the structural

design code.

13.5.1 Statement of the Considered Optimization Design
Problem

The considered structural multi-objective optimization problem can be expressed as

follows:

minmize
�
W Xð Þ,U�X��

Subject toCj Xð Þ � 0 j ¼ 1, . . . , h
Xmin � X � Xmax

ð13:22Þ

where X is the design variables; W(X) and U(X) are, for example, the weight and

displacement of the structure; Cj(X) is the constraint; h is the number of constraints

and Xmin and Xmax are the lower bound and upper bounds of design variables,

respectively.

13.5.1.1 Design Constraints for Truss Structures

For truss structures, the constraints are as follows:

δmin � δi � δmax i ¼ 1, 2, . . . ,m
σmin � σ � σmax i ¼ 1, 2, . . . , n
σ b
i � σi � 0 i ¼ 1, 2, . . . , nc

ð13:23Þ

wherem is the number of nodes; nc denotes the number of compression elements; σi

13.5 Structural Optimization 407

and δi are the stress and nodal deflection, respectively; σbi represents allowable

buckling stress in member i when it is in compression.

13.5.1.2 Design Constraints for Frame Structures

For the frame structures, according to the AISC-ASD (1989) [30] code, the con-

straints are as follows:

The stress limitations:

f a
Fa

þ f bx
Fbx

þ f by
Fby

� 1 For
f a
Fa

� 0:15 ð13:24Þ

f a
Fa

þ Cmx f bx

1� f a
F0
ex

	 ffi
Fbx

þ Cmy f by

1� f a
F0
ey

	 ffi
Fby

� 1 For
f a
Fa

> 0:15 ð13:25Þ

f a
0:6f y

þ f bx
Fbx

þ f by
Fby

� 1 For
f a
Fa

> 0:15 ð13:26Þ

where fa (¼P/Ai) represents the computed axial stress. The computed flexural

stresses due to bending of the member about its major (x) and minor (y) principal
axes are denoted by fbx and fby, respectively. Fex and Fey denote the Euler stresses

about principal axes of the member that are divided by a factor of safety of 23/12.

Fa stands for the allowable axial stress under axial compression force alone, and is

calculated depending on elastic or inelastic bucking failure mode of the member

according to the slenderness ratio:

Fa ¼
1� λ2i

2C2
C

0
@

1
A, 5

3
þ 3λi
8CC

� λ3i
8C3

C

0
@

1
A

0
@

1
AFy For λi < CC

12π2E

23λ2i
Forλi � CC

8>>>>><
>>>>>:

ð13:27Þ

where E ¼ the modulus of elasticity; Fy ¼ the yield stress of steel; Cc ¼ the

slenderness ratio dividing the elastic and inelastic buckling regions

CC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2E=Fy

p� �
; λi ¼ the slenderness ratio (λi ¼ kLi/ri) and k ¼ the effective

length factor in which for beam and bracing members, k is taken equal to unity. For
column members, alignment charts are furnished in ASD-AISC (AISC 1989) [30]

for calculation of k values for both braced and non-braced cases. In this study,

however, the following approximate effective length formulas are used based on

(Dumonteil [31]), which are as follows:

For non-braced members:

408 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

k ¼
ffi
1:6GAGB þ 4 GA þ GBð Þ þ 7:5

GA þ GB þ 7:5

s
ð13:28Þ

For braced members:

k ¼ 3GAGB þ 1:4 GA þ GBð Þ þ 0:64

3GAGB þ 2 GA þ GBð Þ þ 1:28
ð13:29Þ

Additionally, (13.30) represents the slenderness limitations imposed on all

members such that maximum slenderness ratio is limited to 300 for members

under tension, and to 200 for members under compression loads, i.e., we have:

λi ¼ kiLi
ri

� 300 For tension members

λi ¼ kiLi
ri

� 200 For compression members

8>>>><
>>>>:

ð13:30Þ

13.6 Numerical Examples

In this part, the performance of the proposed algorithm is compared with the

performance of some other well-known methods. The examples are categorized

into two groups:

1. Unconstrained problems,

2. Constrained problems.

13.6.1 Unconstrained Multi-objective Problems

For this group of problems, there is no structural unconstrained problem available

in the literature. Thus the selected problems are mathematical. These problems have

been designed in a way that examines the capability of a given multi-objective

optimizer in dealing with problems having different characteristics (Coello

et al. [26]).

In this study, the number of fitness function evaluation is restricted to 25,000 for

this group of problems.

13.6 Numerical Examples 409

13.6.1.1 Performance Metrics

In order to provide a quantitative assessment for the performance of an multi-

objective optimizer, three issues are often taken into consideration (Zitzlet

et al. [32]):

• The distance of the resulting non-dominated set to the Pareto-optimal front

should be minimized.

• A good (in most cases uniform) distribution of the solutions found is desirable.

The assessment of this criterion might be based on a certain distance metric.

• The extent of the obtained non-dominated front should be maximized, i.e., for

each objective, a wide range of values should be covered by the non-dominated

solutions.

In order to evaluate the produced Pareto front by different methods, in this group

three different qualitative measures are utilized.

Generational distance (GD) is a measure of the distance between the true

(PFtrue) and generated Pareto front (PFknown). This metric of individual distance

representing the distance is given by

GD ¼ 1

npf

Xnpf
i¼1

d2i

 !1=2

ð13:31Þ

where npf is the number of members in PFknown and di is the Euclidean distance

between the member i in PFknown and its nearest member in PFtrue. A smaller value

of GD implies better convergence.

The metric of spacing (S) gives an indication of how evenly the solutions are

distributed along the discovered Pareto-front:

S ¼ 1

npf � 1

Xnpf
i¼1

di � d
� �2" #1=2

where d ¼ 1

npf

Xnpf
i¼1

di ð13:32Þ

where npf is the number of members in PFknown and di is the Euclidean distance

(in the objective space) between the member i in PFknown and its nearest member in

PFknown. A smaller value of S implies a more uniform distribution of solutions in

PFknown.

The metric of maximum spread (MS) measures how “well” the PFtrue is covered

by the PFknown through hyper-boxes formed by the extreme function values

observed in the PFtrue and PFknown. It is defined as

410 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

MS ¼ 1

m

Xm
i¼1

min fmax
i ;Fmax

i

� ��max fmin
i � Fmin

i

� �
Fmax
i � Fmin

i

" #22
4

3
5
1=2

ð13:33Þ

where m is the number of objectives, fi
max and fi

min are the maximum and

minimum of the ith objective in PFknown, respectively, and Fmax
i and Fmin

i are the

maximum and minimum of the ith objective in PFtrue, respectively. A larger value

of MS implies a better spread of solutions. The actual runtime required by the

algorithm to complete a fixed number of iterations is named Computational time in

this chapter.

13.6.1.2 Comparison of the Results

In this section, extensive empirical studies are conducted to analyze the perfor-

mance of the proposed MO-MSCSS. It is compared to six of most well-known

multi-objective optimization algorithms which are as follows:

Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D-

DE) (Li and Zhang [33]), Non-dominated Sorting Genetic Algorithm II (Deb

et al. [16]), Strength Pareto Evolutionary algorithm SPEA2 (Zitzler et al. [17]),

Multi-objective Particle Swarm Optimization MOPSO (Coello et al. [18]),

sMOPSO (Mostaghim and Teich [19]) and the other method which is a Multi-

swarm multi-objective particle swarm optimization cMOPSO (Toscanoa and

Coello [20]).

For this part, four well-known benchmark problems ZDT1, ZDT3, ZDT4 and

ZDT6 (Coello et al. [26]) are selected to examine the performance of the proposed

algorithm (see Table 13.1), and in order to perform statistical analysis, each

problem is solved for 30 times by each of the considered algorithms.

In this study, MOEA/D-DE, a newly introduced multi-objective optimizer, was

run using a population size of 100, CR ¼ 0.5, F ¼ 0.5, T ¼ 20 and mutation

probability of 1/n, where n is the population size. A real coded NSGA-II was run

using a population size of 100, a crossover probability of 1 (pc ¼ 1), binary

tournament selection, a mutation rate of 1/u (where u ¼ is the number of decision

variables), and distribution indexes for crossover and mutation operators as ηc ¼ 20

and ηm ¼ 20, respectively (as recommended in (Deb et al. [16])). SPEA with real

variable coding was run using a population size of 100, a crossover probability of

1 (pc ¼ 1), binary tournament, a mutation rate of 1/u, and distribution indexes for

crossover and mutation operators as ηc ¼ 20 and ηm ¼ 20, respectively. MOPSO

used a population of 100 particles, an archive size of 100 particles, a mutation rate

of 0.5, and 50 divisions for the adaptive grid. sMOPSO was run with a population of

100 particles with an archive size of 100 particles and a mutation probability of

0.05. cMOPSO used 40 particles, a maximum number of generations per swarm of

5, and a total of 5 swarms.

13.6 Numerical Examples 411

T
ab

le
1
3
.1

T
h
e
re
su
lt
s
o
f
p
er
fo
rm

an
ce

m
et
ri
cs

fo
r
se
v
en

em
p
lo
y
ed

m
et
h
o
d
s
an
d
fo
u
r
ex
am

p
le

p
ro
b
le
m
s

G
D
M
et
ri
c

S
M
et
ri
c

M
S
M
et
ri
c

M
O

A
lg
o
ri
th
m

P
ro
b
le
m

Z
D
T
1

Z
D
T
3

Z
D
T
4

Z
D
T
6

M
O

A
lg
o
ri
th
m

P
ro
b
le
m

Z
D
T
1

Z
D
T
3

Z
D
T
4

Z
D
T
6

M
O

A
lg
o
ri
th
m

P
ro
b
le
m

Z
D
T
1

Z
D
T
3

Z
D
T
4

Z
D
T
6

M
O
E
A
/D

M
ea
n

0
.0
0
0
9
3

0
.0
0
0
4
8

9
.6
2
7
2
1

0
.0
1
5
6
6

M
O
E
A
/D

M
ea
n

0
.0
0
9
3
5

0
.0
1
9
5
8

0
.5
1
8
7
7

0
.0
0
5
1
3

M
O
E
A
/D

M
ea
n

0
.9
9
4
5
8
6

0
.8
7
9
5
4
5

6
6
.6
6
1
6
5

1
.0
1
5
9
1
1

S
T
D

0
.0
0
0
1
1

0
.0
0
0
0
8

2
.4
5
5
0
0

0
.0
7
0
8
6

S
T
D

0
.0
0
0
2
4

0
.0
0
1
4
3

0
.4
9
7
3
4

0
.0
0
8
8
8

S
T
D

0
.0
0
0
7
3

0
.0
7
9
7
1
6

1
7
.2
8
0
2
4

0
.2
7
2
9
4

M
ax

0
.0
0
1
1
9

0
.0
0
0
6
4

1
4
.9
4
8
8
2

0
.3
8
7
1
3

M
ax

0
.0
0
9
7
1

0
.0
2
1
2
3

2
.2
5
9
3
4

0
.0
4
2
4
1

M
ax

0
.9
9
5
9
3
3

0
.9
2
4
7
9
9

1
0
4
.4
1
4
2

2
.3
2
5
6
7
9

M
in

0
.0
0
0
7
2

0
.0
0
0
3
8

5
.0
5
8
2
4

0
.0
0
0
4
0

M
in

0
.0
0
8
8
3

0
.0
1
6
8
4

0
.0
0
0
0
0

0
.0
0
1
8
7

M
in

0
.9
9
2
9
2
4

0
.7
3
5
1
4

3
4
.5
7
2
2
6

0
.3
6
9
6
8
6

N
S
G
A
-I
I

M
ea
n

0
.0
7
3
1
4

0
.0
9
8
1
5

7
3
.9
8
5
5
0

0
.5
6
7
8
2

N
S
G
A
-I
I

M
ea
n

0
.0
0
8
3
1

0
.0
0
9
0
3

0
.5
8
1
5
8

0
.0
1
3
1
3

N
S
G
A
-I
I

M
ea
n

0
.7
3
3
6
0
1

0
.6
2
0
7
7
2

5
0
6
.4
0
4
4

4
.0
1
4
3
8
6

S
T
D

0
.0
1
1
6
3

0
.0
1
7
5
1

7
.8
4
6
6
2

0
.0
2
7
7
9

S
T
D

0
.0
0
1
6
6

0
.0
0
1
9
2

0
.8
3
0
8
6

0
.0
1
3
6
7

S
T
D

0
.0
1
8
0
9
5

0
.0
1
8
0
6
5

5
1
.6
5
5
6
7

0
.2
0
2
8
5
2

M
ax

0
.1
1
0
4
6

0
.1
2
3
3
8

8
8
.7
4
6
4
8

0
.6
2
5
8
1

M
ax

0
.0
1
2
3
4

0
.0
1
4
8
0

4
.7
0
4
9
2

0
.0
8
1
7
6

M
ax

0
.7
7
7
9
8
7

0
.6
7
5
5
9
1

6
1
1
.7
6
1
9

4
.3
8
0
3
1
9

M
in

0
.0
5
1
5
5

0
.0
5
6
4
2

6
1
.5
6
2
9
0

0
.5
1
1
2
6

M
in

0
.0
0
6
1
0

0
.0
0
6
1
1

0
.0
5
5
4
6

0
.0
0
4
8
4

M
in

0
.7
0
7
5
1
5

0
.5
9
8
8
2
8

4
2
2
.1
2
8
3

3
.5
5
7
7
8
1

S
P
E
A
2

M
ea
n

0
.0
9
9
2
1

0
.1
2
4
2
6

7
4
.7
4
0
9
4

0
.5
5
1
9
3

S
P
E
A
2

M
ea
n

0
.0
0
9
5
3

0
.0
1
1
1
8

0
.7
1
5
5
6

0
.0
1
9
3
5

S
P
E
A
2

M
ea
n

0
.7
1
1
4
0
2

0
.6
1
1
6
4
6

5
1
2
.0
6
3
5

3
.9
0
0
2
6
8

S
T
D

0
.0
1
2
7
8

0
.0
1
5
7
8

6
.4
4
8
3
1

0
.0
2
9
7
2

S
T
D

0
.0
0
2
2
9

0
.0
0
4
1
0

0
.8
4
1
7
6

0
.0
2
3
2
7

S
T
D

0
.0
1
2
8
5
9

0
.0
1
1
4
8
1

4
2
.9
4
8
3
8

0
.2
6
3
5
8
1

M
ax

0
.1
2
8
4
6

0
.1
5
2
5
3

8
7
.1
3
8
9
5

0
.6
0
0
4
3

M
ax

0
.0
1
4
3
0

0
.0
2
2
3
4

4
.5
0
1
5
4

0
.0
8
9
3
1

M
ax

0
.7
4
9
9
9
4

0
.6
4
9
5
4
1

5
9
3
.1
0
6
8

4
.3
6
1
7
1
7

M
in

0
.0
7
2
9
3

0
.0
9
0
4
1

6
5
.3
5
9
2
5

0
.4
5
5
6
3

M
in

0
.0
0
5
7
2

0
.0
0
4
9
5

0
.1
1
8
6
2

0
.0
0
5
2
7

M
in

0
.6
8
8
6
4
8

0
.5
9
8
9
6
5

4
4
9
.0
0
3
5

3
.1
7
4
6
9
8

M
O
P
S
O

M
ea
n

0
.1
0
8
1
3

0
.1
0
9
3
0

2
0
.0
6
4
3
7

0
.4
4
2
6
1

M
O
P
S
O

M
ea
n

0
.0
0
9
0
8

0
.0
1
2
9
3

0
.0
0
0
6
9

0
.0
2
1
1
2

M
O
P
S
O

M
ea
n

0
.7
1
5
3
4
9

0
.6
1
5
3
3
1

1
4
1
.8
3
1
1

3
.3
2
0
6
8
2

S
T
D

0
.0
0
4
4
2

0
.0
0
6
7
5

2
.9
9
1
5
1

0
.0
2
0
5
9

S
T
D

0
.0
0
1
0
6

0
.0
0
1
8
0

0
.0
0
1
7
4

0
.0
2
7
8
9

S
T
D

0
.0
0
5
0
4
6

0
.0
0
5
6
0
7

2
1
.1
6
9
1

0
.1
4
3
4
6
5

M
ax

0
.1
1
6
4
6

0
.1
2
4
4
0

2
7
.1
5
0
8
7

0
.4
9
8
7
1

M
ax

0
.0
1
1
9
5

0
.0
1
7
1
0

0
.0
0
7
8
5

0
.1
2
1
5
7

M
ax

0
.7
2
5
4
9
6

0
.6
3
1
3

1
9
1
.9
7
1
2

3
.6
1
0
0
1
5

M
in

0
.0
9
8
4
4

0
.0
9
2
1
6

1
5
.8
5
8
7
3

0
.4
0
0
5
6

M
in

0
.0
0
7
4
9

0
.0
0
9
7
8

0
.0
0
0
0
0

0
.0
0
0
0
0

M
in

0
.7
0
7
5
4
1

0
.6
0
5
9
7
9

1
1
2
.1
0
2
8

3
.0
1
9
0
2
4

sM
O
P
S
O

M
ea
n

0
.1
2
0
9
2

0
.1
2
5
0
6

6
6
.3
9
6
7
9

0
.6
2
9
0
9

sM
O
P
S
O

M
ea
n

0
.0
1
6
9
8

0
.0
2
0
9
0

0
.0
5
3
7
0

0
.0
0
9
5
3

sM
O
P
S
O

M
ea
n

0
.7
3
2
0
5

0
.5
8
7
1
4
5

4
5
7
.2
9
8
2

4
.6
6
2
6
9
8

S
T
D

0
.0
1
8
0
9

0
.0
2
3
8
6

6
.2
8
6
4
1

0
.0
1
4
0
3

S
T
D

0
.0
0
2
7
2

0
.0
0
6
9
3

0
.2
0
4
3
7

0
.0
1
1
0
6

S
T
D

0
.0
3
0
1
0
8

0
.0
5
7
6
9
4

4
0
.1
1
9
6
8

0
.1
0
4
6
5
2

M
ax

0
.1
6
1
0
9

0
.1
6
6
9
8

8
1
.3
6
7
2
5

0
.6
5
7
3
0

M
ax

0
.0
2
1
5
4

0
.0
3
7
7
1

0
.8
7
8
8
7

0
.0
6
1
6
6

M
ax

0
.8
0
5
3
9
3

0
.6
6
2
9
6
1

5
2
3
.6
5
1
2

4
.8
9
6
5
2
3

M
in

0
.0
8
6
0
7

0
.0
6
9
2
4

5
2
.3
0
1
5
7

0
.6
0
0
0
5

M
in

0
.0
1
1
8
1

0
.0
0
8
4
9

0
.0
0
0
0
0

0
.0
0
0
0
4

M
in

0
.6
5
7
0
5
4

0
.4
6
0
0
1
9

3
6
8
.3
3
4
2

4
.4
3
9
2
9
8

cM
O
P
S
O

M
ea
n

0
.0
5
7
5
1

0
.0
2
4
2
9

2
9
2
.7
4
7
5
5

0
.7
6
5
2
0

cM
O
P
S
O

M
ea
n

0
.0
0
2
1
0

0
.0
0
2
6
3

0
.0
0
2
0
6

0
.0
0
6
7
0

cM
O
P
S
O

M
ea
n

1
.0
4
6
5
8
3

0
.6
5
6
6
7
5

3
7
3
.0
4
0
3

5
.0
5
7
7
6
9

S
T
D

0
.0
3
0
0
9

0
.0
3
2
1
1

7
7
.9
7
3
5
5

1
.1
6
2
4
1

S
T
D

0
.0
0
0
9
0

0
.0
0
1
4
4

0
.0
1
0
0
2

0
.0
1
0
3
1

S
T
D

0
.0
6
1
8
5
9

0
.0
3
6
9
2
2

6
2
.6
7
9
7
6

0
.1
4
8
0
5
7

M
ax

0
.0
9
8
7
8

0
.0
7
7
7
7

4
6
2
.2
8
7
8
3

6
.0
1
2
2
4

M
ax

0
.0
0
5
9
7

0
.0
0
6
6
9

0
.0
5
5
0
2

0
.0
4
4
6
7

M
ax

1
.1
7
1
6
5
1

0
.7
2
6
1
6
9

5
0
8
.3
7
1
7

5
.2
7
5
7
3
2

M
in

0
.0
0
0
2
5

0
.0
0
0
1
3

1
5
6
.2
0
5
2
7

0
.2
3
9
4
3

M
in

0
.0
0
1
2
0

0
.0
0
0
9
0

0
.0
0
0
0
0

0
.0
0
0
4
8

M
in

0
.9
0
8
4
1
4

0
.5
5
8
5
7
7

1
9
1
.2
8
2

4
.6
1
5
4
7
7

M
O
- M

S
C
S
S

M
ea
n

0
.0
2
6
7
6

0
.0
0
0
3
2

0
.0
0
0
1
5

0
.0
0
0
5
8

M
O
- M

S
C
S
S

M
ea
n

0
.0
0
2
7
8

0
.0
0
4
3
3

0
.0
0
2
8
2

0
.0
0
2
9
7

M
O
- M

S
C
S
S

M
ea
n

1
0
.9
2
7
7
4
7

0
.9
9
9
7
0
1

1

S
T
D

0
.0
0
0
1
8

0
.0
0
0
0
3

0
.0
0
0
0
4

0
.0
0
0
7
5

S
T
D

0
.0
0
0
2
3

0
.0
0
0
3
1

0
.0
0
0
2
7

0
.0
0
0
7
5

S
T
D

0
0
.0
0
2
6
2
3

0
.0
0
0
4
1

0

M
ax

0
.0
2
7
0
8

0
.0
0
0
4
1

0
.0
0
0
2
3

0
.0
0
4
5
3

M
ax

0
.0
0
3
3
5

0
.0
0
4
9
0

0
.0
0
3
4
0

0
.0
0
5
3
3

M
ax

1
0
.9
2
9
2
2
2

1
1

M
in

0
.0
2
6
3
3

0
.0
0
0
2
6

0
.0
0
0
0
7

0
.0
0
0
4
0

M
in

0
.0
0
2
3
8

0
.0
0
3
6
6

0
.0
0
2
4
6

0
.0
0
1
9
9

M
in

1
0
.9
1
6
3
2
8

0
.9
9
8
4
8
9

1

412 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

In the proposed algorithm, four parameters should be specified by the user,

which are as follows:

– Number of particles which contribute in search process (n): In this study

100 particles are utilized to solve optimization problems.

– Number of swarms (k): This parameter should be specified according to n. As
mentioned in Sect. 13.4, in each swarm there should be enough number of

particles that the employed equation can estimate the gradient of the space

with an acceptable precision. We assign 10 particles to each swarm and conse-

quently n/10 swarms should be considered.

– Archive size: 100 is considered in this study.

– Maximum number of internal iterations (iterIntMax): This parameter controls

the power of the proposed algorithm in local search process and by increasing

this parameter, more computational effort is consumed for this task. This

parameter is considered as 5 in this chapter.

In this section the experimental results are presented in order to clarify the

performance of the proposed algorithm.

1. ZDT1: This problem is defined as:

ZDT1 : min

f 1 xð Þ ¼ x1
f 2 xð Þ ¼ g

�
x
�

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=g xð Þp� �

g xð Þ ¼ 1þ 9
�Xn

i¼2
xi
�
= n� 1ð Þ

8<
: ð13:34Þ

where xi ∈ [0, 1], i ¼ 1, 2, . . ., 100. The Pareto-optimal region corresponds to

x�1 ∈ [0, 1] and x�i ¼ 0 for i ¼ 2, 3, . . ., 100. ZDT1 has convex Pareto front

which challenge the algorithms’ ability to find and produce a quality spread of

the Pareto front. Note that the number of decision variables is set to 100 for this two

objective test problem instead of the standard number, i.e., 30. This will allow us to

exploit all MOs chosen when encountering a higher number of decision variables.

The comparison of results between the true Pareto front of ZDT1 and the Pareto

front produced by considered algorithms is shown in Fig. 13.5. While the mean

value, standard deviation, maximum and minimum value of each of the considered

performance metrics are presented in Table 13.1. From the plots of the evolved

Pareto fronts in Fig. 13.5 and the results in Table 13.1, it can be observed that except

MOEA/D-DE and MO-MSCSS, all other algorithms get stuck in local Pareto

optimum and are unable of finding solutions near the global Pareto front (with

this number of fitness function evaluation). All algorithms are capable of compet-

itive results in the aspects of S metric. By regarding the MS and GD metric, it is

seen that MOEA/D-DE and MO-MSCSS are the best algorithms.

13.6 Numerical Examples 413

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.5
0

0.5
1

1.5
2

2.5
3

0 0.2 0.4 0.6 0.8 1 1.2
0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 1.2
0
1
2
3
4
5
6
7
8

0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

0 0.2 0.4 0.6 0.8 1 1.2
0

100
200
300
400
500
600
700
800

0 0.2 0.4 0.6 0.8 1 1.2
0
1
2
3
4
5
6
7
8
9

0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

0 0.2 0.4 0.6 0.8 1 1.2
0

20
40
60
80

100
120
140
160
180
200

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1 1.2

ZDT1 ZDT3 ZDT4 ZDT6

d

c

b

a

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

0 0.2 0.4 0.6 0.8 1 1.2
0

100
200
300
400
500
600
700
800

0 0.2 0.4 0.6 0.8 1 1.2
0
1
2
3
4
5
6
7
8

0 0.2 0.4 0.6 0.8 1 1.2

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

0 0.2 0.4 0.6 0.8 1 1.2
-1

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2
0

50
100
150
200
250
300
350
400
450

0 0.2 0.4 0.6 0.8 1 1.2
0
1
2
3
4
5
6
7
8
9

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1 1.2

f

g

e

Fig. 13.5 The best obtained results with regard to the three performance metrics by different

algorithms for 4 test problems [1] (a) MOEA/D-DE (b) NSGA-II (c) SPEA2 (d) MOPSO (e)
sMOPSO (f) cMOPSO (g) MO-MSCSS

414 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

2. ZDT3: This problem is defined as:

ZDT3 : min

f 1 xð Þ ¼ x1

f 2 xð Þ ¼ g
�
x
�

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=g xð Þp � x1

g xð Þ sin 10πx1ð Þ
2
4

3
5

g xð Þ ¼ 1þ 9
�X n

i¼2
xi
�
= n� 1ð Þ

8>>>><
>>>>:

ð13:35Þ

where xi ∈ [0, 1], i ¼ 1, 2, . . ., 100. The Pareto-optimal region corresponds to

x�1 ∈ [0, 1] and x�i ¼ 0 for i ¼ 2, 3, . . ., 100. ZDT3 is a 100-variable problem

which possesses a non-convex and disconnected Pareto front (the number of vari-

ables is set to 100 instead of the standard number, i.e., 30). It exploits the algo-

rithms’ ability to search for all of the disconnected regions and to maintain a

uniform spread on those regions. Figure 13.5 illustrates the comparison of results

between the true Pareto front of ZDT3 and the Pareto front produced by different

considered algorithms. Also the results of different performance metrics are

represented in Table 13.1. From the obtained results it can be seen that NSGA-II,

SPEA2, MOPSO, sMOPSO, and cMOPSO have failed to find the true Pareto front

for ZDT3 within the specified number of fitness function evaluation. By consider-

ing all the performance metrics, it can be seen that the performance of MO-MSCSS

is the best among the six algorithms adopted.

3. ZDT4: This problem is defined as:

ZDT4 : min

f 1 xð Þ ¼ x1
f 2 xð Þ ¼ g

�
x
�

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=g xð Þp� �

g xð Þ ¼ 1þ 10
�
n� 1

�þXn

i¼2
x2i � 10 cos 4πxið Þ� �

8<
: ð13:36Þ

where x1 ∈ [0, 1] and xi ∈ [�5, 5], i ¼ 2, 3, . . ., 100. This is a 100-variable

problem which challenges the algorithm ability to deal with the problem of multi-

modality (the number of variables is set to 100 instead of the standard number, i.e.,

10). ZDT4 has 219 different local Pareto-optimal fronts in the search space, of

which only one corresponds to the global Pareto-optimal front. The Euclidean

distance in the decision space between solutions of two consecutive local Pareto-

optimal sets is 0.25. The comparison of results between the true Pareto front of

ZDT4 and the Pareto front produced by different considered algorithms is

represented in Fig. 13.5. In Table 13.1, three considered performance metrics are

represented numerically. It can be observed that all the algorithms, except

MO-MSCSS are unable to find any solutions near the global Pareto front resulting

in the relatively large GD for ZDT4 at the end of 25,000 evaluations. In this

problem, which is similar to structural problems because of its multi-modality, it

is clear that the proposed algorithm outperforms all the other considered algorithms.

13.6 Numerical Examples 415

4. ZDT6: The problem is defined as:

ZDT6 : min

f 1 xð Þ ¼ 1� exp
�� 4x1

�
sin 6

�
6πx1

�
f 2 xð Þ ¼ g

�
x
�

1� f 1 xð Þ=g xð Þð Þ2
h i

g xð Þ ¼ 1þ 9
��Xn

i¼2
xi
�
=
�
n� 1

��
0:25

8>><
>>: ð13:37Þ

where xi ∈ [0, 1], i ¼ 1, 2, . . ., 100. The Pareto-optimal region corresponds to

x�1 ∈ [0, 1] and x�i ¼ 0 for i ¼ 2, 3, . . ., 100. This is a 100-variable problem

having a non-convex Pareto-optimal set (Number of variables is set to 100 instead

of the standard number, i.e., 10). Moreover, the density of solutions across the

Pareto-optimal region is non-uniform and the density towards the Pareto-optimal

front is also thin. For this test problem, the adverse density of solutions across the

Pareto-optimal front, coupled with the non-convex nature of the front, may cause

difficulties for many multi-objective optimization algorithms to converge to the

true Pareto-optimal front. The comparison of results between the true Pareto front

of ZDT6 and the Pareto front produced all the considered algorithms are

represented in Fig. 13.5. By considering the Table 13.1 it can be observed that

except MO-MSCSS and MOEA/D-DE, all the other algorithms have problem in

finding the global Pareto front. It is clear that considering all the performance

metrics, the proposed algorithm outperforms all the other methods.

13.6.2 Constrained Multi-objective Problems

The considered problems in this section are structural optimization problems. In

this section in order to evaluate the overall performance of the employed algorithms

in solving more complex problems, each problem is solved five times by each

algorithm. With regard to obtained results in the previous section it is clear that,

except the proposed method, MOEA/D-DE, as the method based on genetic algo-

rithm, and MOPSO, as the method based of particle swarm optimization,

outperform all other considered methods. Thus, these two methods are utilized to

perform comparative study. But unfortunately the version of MOED/D-DE (Jan and

Zhang [34]) for the constrained problems is able to solve just scaled multi-objective

problems and for solving un-scaled problems it requires some modifications.

Consequently, in this section NSGA-II is selected as the method based on genetic

algorithm, to perform the comparative study.

416 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

13.6.2.1 The Performance Metrics

In this group of problems, the true Pareto front is not known consequently the

considered performance metrics considered in the previous section are not appli-

cable here. In order to evaluate the performance of the algorithms other perfor-

mance metric, C-metric, is utilized here for comparing the results obtained by

different algorithms. Additionally the convergence process of each algorithm is

presented graphically.

Set Coverage (C-metric): Let A and B be two approximations to the PF of a

MOP, C(A,B) is defined as the percentage of the solutions in B that are dominated

by at least one solution in A, i.e.

C A;Bð Þ ¼ u∈B
��∃v∈A : v dominates u

� ��� ��
Bj j ð13:38Þ

C(A,B) is not necessarily equal to 1 � C(B,A). C(A,B) ¼ 1 means that all the

solutions in B are dominated by some solutions in A, and C(A,B) ¼ 0 means that no

solution in B is dominated by a solution in A.

13.6.2.2 A 126-Bar Truss Structure

This example is a 126-bar spatial truss structure shown in Fig. 13.6. The problem is

to find the cross-sectional areas of the members such that the total structural weight

(first objective) and the resultant stress in truss members (second objective) are

minimized concurrently. In other words, the problem second objective function is

defined as follows:

Stress Index ¼
X126
i¼1

σij j
σallowable

ð13:39Þ

The material density is ρ ¼ 2767.99 kg/m3 (0.1 lb/in3) and the modulus of

elasticity is E ¼ 68, 950 MPa (1 � 104 ksi). The members are subjected to the

stress limits of � 172.375 MPa (�25 ksi). The upper and lower boundaries of each

truss element are 0.6452 cm2 (0.1 in2) and 20.65 cm2 (3.2 in2), respectively. The

126 structural members of this spatial truss are sorted into 49 groups. In each story,

we have: (1) A1–A4, (2) A5–A6, (3) A7–A8, (4) A9–A10, (5) A11–A12, (6) A13.A16,

(7) A17–A18. The applied loads at node 29 are Fx ¼ 5.0 kips (22.25 kN), Fy ¼ 5.0

kips (22.25 kN) and Fz ¼ �5.0 kips (22.25 kN).

In this example, there are 49 design variables. The search process in all the

algorithms is terminated after 30,000 fitness function evaluations. Each algorithm is

run five times and the best one is selected to present graphically. Additionally, the

results of the considered performance metric are presented in Table 13.2. The

obtained Pareto fronts from different multi-objective optimization methods are

13.6 Numerical Examples 417

presented in Fig. 13.7. In this figure for each algorithm the obtained Pareto front in

different iterations is presented which demonstrates the search process in each of

the algorithms. Additionally the mean value and standard deviation of C-metric

obtained in different runs are presented in Table 13.3. It is seen that in this example

with 49 design variables, except the proposed algorithm, all other multi-objective

optimizers have some problems in covering the Pareto front. Although MOPSO has

acceptable convergence, it is not able to cover all parts of Pareto front and the

obtained set of solutions is not distributed uniformly. It is indicated that NSGA-II

has problems in converging to true Pareto front and also in covering all parts of

it. The obtained results by MO-MSCSS illustrate this algorithm’s ability to deal

with complex multi-objective optimizations. The convergence to true Pareto front

of the proposed algorithm and its ability in covering all parts of it is much better

than the other employed algorithms. The obtained cross section areas by

MO-MSCSS of two extreme points of Pareto front are presented in Table 13.2.

The time required for MO-MSCSS is the best with respect to the other methods.

13.6.2.3 A 36-Story Frame Structure

The second example considered in this chapter is a 36-story un-braced plane steel

frame consisting of 259 joints and 468 members, as shown in Fig. 13.8. The

Typical story

3

15

16

(8)

(13)

(5)

(1)

(9)

(17)

(21)

(25)

(29)

(1
20

 in
ch

)
(1

60
 in

ch
)

(6
0

in
ch

)
(6

0
in

ch
)

(6
0

in
ch

)

(4
20

 in
ch

)

(6
0

in
ch

)
(6

0
in

ch
)

(6
0

in
ch

)

(120 inch)
304 cm

30
4

cm

10
66

.8
 c

m

15
2.

4
cm

15
2.

4
cm

15
2.

4
cm

15
2.

4
cm

15
2.

4
cm

15
2.

4
cm

15
2.

4
cm

(30)

(26)

(22)

(18)

(14)

(10)

(6)

(2)

4
17

9

(7)

(3)

10

1418

8

7

12
13

26

(4)

(6)

(2)

(5)

511

(1)

1

Fig. 13.6 Schematic of a 126-bar spatial truss

418 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

T
ab

le
1
3.
2

T
h
e
cr
o
ss

se
ct
io
n
ar
ea

o
f
tw
o
ex
tr
em

e
so
lu
ti
o
n
s
in

o
b
ta
in
ed

P
ar
et
o
fr
o
n
t
b
y
M
O
-M

S
C
S
S
(c
m

2
)

S
ec
ti
o
n

n
o
.

S
ec
ti
o
n

ar
ea

S
ec
ti
o
n

n
o
.

S
ec
ti
o
n

ar
ea

S
ec
ti
o
n

n
o
.

S
ec
ti
o
n

ar
ea

S
ec
ti
o
n

n
o
.

S
ec
ti
o
n

ar
ea

S
ec
ti
o
n

n
o
.

S
ec
ti
o
n

ar
ea

S
ec
ti
o
n

n
o
.

S
ec
ti
o
n

ar
ea

S
ec
ti
o
n

n
o
.

S
ec
ti
o
n

ar
ea

E
x
tr
em

e

p
o
in
t
1

M
in
im

u
m

d
is
p
la
ce
m
en
t

1
2
0
.6
5
0

8
2
0
.6
5
0

1
5

2
0
.6
5
0

2
2

2
0
.6
5
0

2
9

2
0
.6
5
0

3
6

2
0
.6
5
0

4
3

2
0
.6
5
0

2
2
0
.6
5
0

9
2
0
.6
5
0

1
6

2
0
.6
5
0

2
3

2
0
.6
5
0

3
0

2
0
.6
5
0

3
7

2
0
.6
5
0

4
4

2
0
.6
5
0

3
2
0
.6
5
0

1
0

2
0
.6
5
0

1
7

2
0
.6
5
0

2
4

2
0
.6
5
0

3
1

2
0
.6
5
0

3
8

2
0
.6
5
0

4
5

2
0
.6
5
0

4
2
0
.6
5
0

1
1

2
0
.6
5
0

1
8

2
0
.6
5
0

2
5

2
0
.6
5
0

3
2

2
0
.6
5
0

3
9

2
0
.6
5
0

4
6

2
0
.6
5
0

5
2
0
.6
5
0

1
2

2
0
.6
5
0

1
9

2
0
.6
5
0

2
6

2
0
.6
5
0

3
3

2
0
.6
5
0

4
0

2
0
.6
5
0

4
7

2
0
.6
5
0

6
2
0
.6
5
0

1
3

2
0
.6
5
0

2
0

2
0
.6
5
0

2
7

2
0
.6
5
0

3
4

2
0
.6
5
0

4
1

2
0
.6
5
0

4
8

2
0
.6
5
0

7
2
0
.6
5
0

1
4

2
0
.6
5
0

2
1

2
0
.6
5
0

2
8

2
0
.6
5
0

3
5

2
0
.6
5
0

4
2

2
0
.6
5
0

4
9

2
0
.6
5
0

E
x
tr
em

e

p
o
in
t
2

M
in
im

u
m

w
ei
g
h
t

1
3
.8
1
6

8
3
.1
9
3
1

1
5

3
.5
2
0
0

2
2

2
.1
0
1
2

2
9

3
.5
7
2
4

3
6

0
.8
6
7
6

4
3

1
.2
5
8
6

2
0
.6
5
0
0

9
0
.6
5
0
0

1
6

0
.6
5
0
0

2
3

0
.6
5
0
0

3
0

0
.6
5
0
0

3
7

0
.6
5
0
0

4
4

0
.7
9
0
0

3
0
.6
5
0
0

1
0

0
.7
0
2
0

1
7

0
.6
5
0
0

2
4

0
.6
5
0
0

3
1

0
.6
5
0
0

3
8

0
.7
1
6
2

4
5

0
.6
5
0
0

4
0
.6
5
0
0

1
1

0
.6
5
0
0

1
8

0
.6
5
0
0

2
5

0
.6
5
0
0

3
2

0
.6
5
0
0

3
9

0
.6
5
0
0

4
6

0
.6
5
0
0

5
0
.6
5
0
0

1
2

0
.6
5
0
0

1
9

0
.6
5
0
0

2
6

0
.9
0
9
7

3
3

0
.6
5
0
0

4
0

0
.6
5
0
0

4
7

1
.0
1
0
0

6
0
.6
5
0
0

1
3

0
.6
5
0
0

2
0

0
.6
5
0
0

2
7

0
.6
5
0
0

3
4

0
.6
5
0
0

4
1

0
.6
5
0
0

4
8

0
.6
5
0
0

7
0
.6
5
0
0

1
4

0
.6
5
0
0

2
1

0
.6
5
0
0

2
8

0
.6
5
0
0

3
5

0
.6
5
0
0

4
2

0
.6
5
0
0

4
9

0
.6
5
0
0

13.6 Numerical Examples 419

material density is ρ ¼ 7, 850 kg/m3 (0.284 lb/in3), the modulus of elasticity is

E ¼ 203, 893.6 MPa (2.96 � 104 ksi) and the yield stress fy ¼ 253.1

MPa (36.7 ksi).The members are subjected to the stress limits of � 172.375

MPa (�25 ksi). The 468 frame members are collected in 60 different member

groups, considering the practical fabrication requirements. That is, the columns in a

story are collected in two member groups as inner columns and outer columns,

similarly beams are divided into three groups, each two consecutive bays in a

group.

The outer columns are grouped together as having the same section over three

adjacent stories, as are inner columns, and all beams.

Fig. 13.7 Pareto front at different iteration of (a) NSGA-II (b) MOPSO (c) MO-MSCSS (d) All
three considered methods of 126-bar truss example [1]

Table 13.3 Mean value and standard deviation of obtained C-metric

126-Bar truss structure 126-Bar truss structure

Mean C (A,B) 0.978 Std C (A,B) 0.00447 Mean C (A,B) 0.836 Std C (A,B) 0.04147

A: MO-MSCSS B: NSGA-II A: MO-MSCSS B: MOPSO

420 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

It should be mentioned that in this example for computing the allowable flexural

tensions it is assumed that all beams are laterally supported. The cross section of

each member is assumed to be an I-shape and for each member four design vari-

ables are considered as shown in Fig. 13.8. In fact in this example we have to

consider four design variables for each member, because for each member in

addition to cross section, the moment of inertia should be calculated. Consequently,

in this example we face with a multi-objective optimization problem with

240 design variables.

The upper and lower boundaries of design variables are 1–7 cm for tf, 0.6–2 cm

for tw, 20–70 cm for bf and 10–120 cm for d, respectively. This frame is subjected

to various gravity loads in addition to lateral wind forces. The gravity loads acting

on beams cover dead (D), live (L) and snow (S) loads.

All the floors excluding the roof are subjected to a design dead load of 17.28

kN/m and a design live load of 14.16 kN/m. The roof is subjected to a design dead

load of 17.28 kN/m plus snow load. The design snow load is computed using (7.1)

in ASCE 7-05 (ASCE 7-05 2005), resulting in a design snow pressure of 4.5

kN/m. The design wind loads (W) are also computed according to ASCE 7-05

using the following equation:

Cross section of beam and

column members- 4 design

variable for each section

Fig. 13.8 Schematic of a

36-story 2D frame

13.6 Numerical Examples 421

T
a
b
le

13
.4

A
p
p
li
ed

w
in
d
lo
ad

to
b
ea
m
-c
o
lu
m
n
jo
in
ts

S
to
ry

k
z

W
in
d
lo
ad

(k
N
)—

w
in
d
w
ar
d
fa
ce

W
in
d
lo
ad

(k
N
)—

le
ew

ar
d

fa
ce

S
to
ry

k
z

W
in
d
lo
ad

(k
N
)—

w
in
d
w
ar
d
fa
ce

W
in
d
lo
ad

(k
N
)—

le
ew

ar
d

fa
ce

S
to
ry

k
z

W
in
d
lo
ad

(k
N
)—

w
in
d
w
ar
d
fa
ce

W
in
d
lo
ad

(k
N
)—

le
ew

ar
d

fa
ce

3
6

1
.8
4

1
7
.8
7

1
1
.1
7

2
4

1
.7
2

1
6
.6
5

1
0
.4
1

1
2

1
.5
2

1
4
.7
6

9
.2
3

3
5

1
.8
3

1
7
.7
8

1
1
.1
1

2
3

1
.7
0

1
6
.5
3

1
0
.3
3

1
1

1
.5
0

1
4
.5
4

9
.0
9

3
4

1
.8
2

1
7
.6
9

1
1
.0
6

2
2

1
.6
9

1
6
.4
0

1
0
.2
5

1
0

1
.4
8

1
4
.3
0

8
.9
4

3
3

1
.8
2

1
7
.6
0

1
1
.0
0

2
1

1
.6
8

1
6
.2
7

1
0
.1
7

9
1
.4
5

1
4
.0
4

8
.7
8

3
2

1
.8
1

1
7
.5
1

1
0
.9
4

2
0

1
.6
6

1
6
.1
3

1
0
.0
8

8
1
.4
2

1
3
.7
6

8
.6
0

3
1

1
.8
0

1
7
.4
1

1
0
.8
8

1
9

1
.6
5

1
5
.9
9

9
.9
9

7
1
.3
9

1
3
.4
4

8
.4
0

3
0

1
.7
9

1
7
.3
1

1
0
.8
2

1
8

1
.6
3

1
5
.8
4

9
.9
0

6
1
.3
5

1
3
.0
9

8
.1
8

2
9

1
.7
8

1
7
.2
1

1
0
.7
6

1
7

1
.6
2

1
5
.6
8

9
.8
0

5
1
.3
1

1
2
.6
8

7
.9
2

2
8

1
.7
6

1
7
.1
1

1
0
.6
9

1
6

1
.6
0

1
5
.5
2

9
.7
0

4
1
.2
6

1
2
.2
0

7
.6
2

2
7

1
.7
5

1
7
.0
0

1
0
.6
2

1
5

1
.5
8

1
5
.3
5

9
.5
9

3
1
.2
0

1
1
.6
0

7
.2
5

2
6

1
.7
4

1
6
.8
9

1
0
.5
5

1
4

1
.5
6

1
5
.1
6

9
.4
8

2
1
.1
1

1
0
.8
1

6
.7
6

2
5

1
.7
3

1
6
.7
7

1
0
.4
8

1
3

1
.5
4

1
4
.9
7

9
.3
6

1
0
.9
9

9
.5
8

5
.9
9

422 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

pw ¼ 0:613KzKztKdV
2I

� �
GCPð Þ ð13:40Þ

where pw is the design wind pressure in N/m2; Kz is the velocity exposure coeffi-

cient; Kzt (¼1.0) is the topographic factor, Kd (¼0.85) is the wind directionality

factor; I (¼1.15) is the importance factor; and V (¼46.94 m/s) is the basic wind;

G (¼0.85) is the gust factor, and Cp (¼0.8) for windward face and�0.5 for leeward

face) is the external pressure coefficient.

The calculated wind loads are applied as concentrated lateral loads on the

external beam-column joints (nodes) located on windward and leeward facades at

every floor level. The applied loads are summarized in Table 13.4. The load

combination per AISC-ASD specification [35] is considered as

Dþ Lþ SþWð Þ ð13:41Þ

At the end it should be mentioned that here the aim is to simultaneously

minimize two conflicting objective functions, structural weight and the lateral

displacement of the roof story due to wind load. In this example, there are

240 design variables and the search process for all the algorithms is terminated

after 50,000 fitness function evaluations. Each algorithm is run five times and the

best one is selected to present graphically. The obtained Pareto fronts from consid-

ered multi-objective optimization methods are presented in Fig. 13.9.

Figure 13.9 presents the Pareto fronts obtained by different algorithms in four

stages of search process. Additionally the mean value and standard deviation of

C-metric obtained in different runs are presented in Table 13.5. It can be seen that

this example is really challenging and, except the proposed algorithm, all other

multi-objective optimizers have some deficiencies. As shown in Fig. 13.9, the

proposed algorithm outperforms all other mentioned multi-objective optimization

algorithms in all different criteria. It is seen that with the specified number of fitness

function evaluation just MO-MSCSS is able to cover most parts of the true Pareto

front. The time spent by four algorithms is compared in Table 13.6. It can be seen

that in this example the time required for MO-MSCSS is approximately equal to the

time spent by other mentioned methods.

13.7 Discussions

In this chapter, a new multi-objective optimization algorithm, named as

MO-MSCSS, is proposed to deal with complex and large structural optimization

problems. These problems have some specific features, and employing general

optimization algorithms for solving such problems may cause numerical difficul-

ties, such as finding local optimum solutions instead of the global optimum solu-

tion, or taking high amount of computational time. Thus proposing an efficient

algorithm for this group of optimization problems can be valuable. In this study,

13.7 Discussions 423

first we attempt to recognize and categorize the features of structural multi-

objective optimization problems, mentioned in the literature by other researchers,

and then find the best procedures for their solutions.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500

D
is

p
la

ce
m

en
t

(m
)

Weight (x1000 kg)

iteration 125

iteration 250

iteration 375

iteration 500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500

D
is

p
la

ce
m

en
t

(m
)

Weight (x1000 kg)

iteration 125

iteration 250

iteration 375

iteration 500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500

D
is

p
la

ce
m

en
t

(m
)

Weight (x1000 kg)

iteration 125

iteration 250

iteration 375

iteration 500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500

D
is

p
la

ce
m

en
t

(m
)

Weight (x1000 kg)

MOPSO

NSGA-II

MO-BBCSS

dc

ba

Fig. 13.9 Pareto front at different iteration of (a) NSGA-II (b) MOPSO (c) MO-MSCSS (d)
Pareto fronts of 2D-frame example [1]

Table 13.5 Mean value and standard deviation of obtained C-metric

2D Frame structure 2D Frame structure

Mean C (A,B) 1 Std C (A,B) 0 Mean C (A,B) 0.9604 Std C (A,B) 0.061202

A: MO-MSCSS B: NSGA-II A: MO-MSCSS B: MOPSO

Table 13.6 Time spent by MOPSO, NSGA-II and MO-MSCSS in three examples (This time is

related to the search process in addition to time spent for structural analysis)

Example/algorithm MOPSO NSGA-II MO-MSCSS

126 bar truss structure 200.86 (s) 274.46 (s) 200.03 (s)

36-story frame structure 2370.13 (s) 2118.11 (s) 2401.2 (s)

424 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

In structural optimization problems, the objective functions are multi-modal and

a good algorithm will be the one which is capable of escaping the local optima.

Additionally in this group of problems, the objective function is defined based on

very many design variables and high computational cost is required for each fitness

function evaluation. This is another problem that prevents the structural engineers

to use the optimization techniques efficiently.

MO-MSCSS algorithm is a hybrid multi-swarm multi-objective optimization

method which is based on a swarm-based local search process and the clustering

concept. The particle regeneration procedure is another component of the proposed

algorithm that helps to escape the local optima. In fact, all of the employed

sub-procedures are selected based on their performance and effectiveness in cov-

ering the above mentioned problems. The results of the solved examples, both

unconstrained and constrained, demonstrate that the proposed algorithm has out-

standing abilities in solving large scale multi-objective optimization problems.

References

1. Kaveh A, Laknejadi K (2013) A new multi-swarm multi-objective optimization method for

structural design. Adv Eng Softw 58:54–69

2. Gou X, Cheng G, Yamazaki K (2001) A new approach for the solution of singular optima in

truss topology optimization with stress and local buckling constraints. Struct Multidiscip

Optim 22:364–372

3. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search

algorithm. Comput Struct 82:781–798

4. Gero MBP, Garc AB, Diaz JJDC (2006) Design optimization of 3D steel structures: genetic

algorithms vs. classical techniques. J Construct Steel Res 62:1303–1309

5. Kaveh A, Talatahari S (2009) Optimal design of skeletal structures via the charged system

search algorithm. Struct Multidiscip Optim 37:893–911

6. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search.

Acta Mech 213:267–289

7. Kaveh A, Talatahari S (2010) Charged system search for optimum grillage systems design

using the LRFD-AISC code. J Construct Steel Res 66:767–771

8. Kaveh A, Rahami H (2006) Nonlinear analysis and optimal design of structures via force

method and genetic algorithm. Comput Struct 84:770–778

9. Mathakari S, Gardoni P, Agarwal P, Raich A (2007) Reliability-based optimal design of

electrical transmission towers using multi-objective genetic algorithms. Comput Aided Civ

Infrastruct Eng 22:282–292

10. Liu M, Burns SA, Wen YK (2005) Multi-objective optimization for performance-based

seismic design of steel moment frame structures. Earthq Eng Struct Dynam 34:289–306

11. Paya I, Yepes V, Vidosa FG, Hospitaler A (2008) Multi-objective optimization of concrete

frames by simulated annealing. Comput Aided Civ Infrastruct Eng 23:596–610

12. Su RY, Wang X, Gui L, Fan Z (2010) Multi-objective topology and sizing optimization of

truss structures based on adaptive multi-island search strategy. Struct Multidiscip Optim

43:275–286

13. Ohsaki M, Kinoshita T, Pan P (2007) Multi-objective heuristic approaches to seismic design of

steel frames with standard sections. Earthq Eng Struct Dynam 36:1481–1495

References 425

14. Omkar SN, Mudigere D, Naik GN, Gopalakrishnan S (2008) Vector evaluated particle swarm

optimization (VEPSO) for multi-objective design optimization of composite structures.

Comput Struct 86:1–14

15. Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decom-

position. IEEE Trans Evol Comput 11(6):712–731

16. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic

algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

17. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary

algorithm. Swiss Federal Institute Technology, Zurich, Switzerland

18. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle

swarm optimization. IEEE Trans Evol Comput 8:256–279

19. Mostaghim S, Teich J (2004) Covering pareto-optimal fronts by subswarms in multi-objective

particle swarm optimization. In Congress on Evolutionary Computation (CEC’2004)

2:1404–1411

20. Toscano PG, Coello CAC (2004) Using clustering techniques to improve the performance of a

particle swarm optimizer. In Proceeding of genetic evolutionary computation conference,

Seattle, WA, pp 225–237

21. Fan SKS, Chang JM (2010) Dynamic multi-swarm particle swarm optimizer using parallel PC

cluster systems for global optimization of large-scale multimodal functions. Eng Optim

42:431–451

22. Yen GG, Leong WF (2009) Dynamic multiple swarms in multi-objective particle swarm

optimization. IEEE Trans Syst Man Cybern 39(4):890–911

23. Leong WF, Yen GG (2008) PSO-based multi-objective optimization with dynamic population

size and adaptive local archives. Trans Syst Man Cybern 38:1270–1293

24. Goh CK, Ong YS, Tan KC (2008) An investigation on evolutionary gradient search for multi-

objective optimization, IEEE world congress on computational intelligence, pp 3741–3746

25. Sindhya K, Sinha A, Deb K, Miettinen K (2009) Local search based evolutionary multi-

objective optimization algorithm for constrained and unconstrained problems, CEC’09 Pro-

ceeding of the eleventh congress on evolutionary computation

26. Coello CAC, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm

optimization. In Proceeding Congress on Evolutionary Computation (CEC’2002)

1:1051–1056

27. Haritigan JA (1975) Clustering algorithms. Wiley, New York, USA

28. Salomon R (1998) Evolutionary algorithms and gradient search: similarities and differences.

IEEE Trans Evol Comput 2:45–55

29. Yen GG, Daneshyari M (2006) Diversity-based information exchange among multiple swarms

in particle swarm optimization, IEEE congress on evolutionary computation, Canada, pp

1686–1693

30. ASCE 7-05 (2005) Minimum design loads for building and other structures, USA

31. Dumonteil P (1992) Simple equations for effective length factors. Eng J AISC 29(3):111–115

32. Zitzler E, Deb K, Thiele L (2000) Comparison of multi-objective evolutionary algorithms:

empirical results. Evol Comput 8(2):173–195

33. Li H, Zhang Q (2009) Multi-objective optimization problems with complicated pareto sets,

MOEA/D and NSGA-II. IEEE Trans Evol Comput 13:284–302

34. Jan MA, Zhang Q (2001) MOEA/D for constrained multi-objective optimization: some

preliminary experimental results, Comput Intell (UKCI):1–6

35. American Institute of Steel Construction (AISC) (1989) Manual of steel construction-

allowable stress design, 9th edn. American Institute of Steel Construction, Chicago, IL

426 13 A Multi-swarm Multi-objective Optimization Method for Structural Design

	Preface
	Contents
	Chapter 1: Introduction
	1.1 Metaheuristic Algorithms for Optimization
	1.2 Optimal Design of Structures and Goals of the Present Book
	1.3 Organization of the Present Book
	References

	Chapter 2: Particle Swarm Optimization
	2.1 Introduction
	2.2 PSO Algorithm
	2.2.1 Development
	2.2.2 PSO Algorithm
	2.2.3 Parameters
	2.2.4 Premature Convergence
	2.2.5 Topology
	2.2.6 Biases

	2.3 Hybrid Algorithms
	2.4 Discrete PSO
	2.5 Democratic PSO for Structural Optimization
	2.5.1 Description of the Democratic PSO
	2.5.2 Truss Layout and Size Optimization with Frequency Constraints
	2.5.3 Numerical Examples
	2.5.3.1 A 10-bar Truss
	2.5.3.2 A Simply Supported 37-Bar Planar Truss
	2.5.3.3 A 52-Bar Dome-Like Truss
	2.5.3.4 A 120-Bar Dome Truss

	References

	Chapter 3: Charged System Search Algorithm
	3.1 Introduction
	3.2 Charged System Search
	3.2.1 Background
	3.2.1.1 Electrical Laws
	3.2.1.2 Newtonian Mechanics Laws

	3.2.2 Presentation of Charged Search System

	3.3 Validation of CSS
	3.3.1 Description of the Examples
	3.3.2 Results

	3.4 Charged System Search for Structural Optimization
	3.4.1 Statement of the Optimization Design Problem
	3.4.1.1 Constraint Conditions for Truss Structures
	3.4.1.2 Constraint Conditions for Frame Structures
	3.4.1.3 Design Loads for Frame Structures

	3.4.2 CSS Algorithm-Based Structural Optimization Procedure

	3.5 Numerical Examples
	3.5.1 A Benchmark Truss
	3.5.2 A 120-Bar Dome Truss
	3.5.3 A 26-Story Tower Space Truss
	3.5.4 An Unbraced Space Frame
	3.5.5 A Braced Space Frame

	3.6 Discussion
	3.6.1 Efficiency of the CSS Rules
	3.6.2 Comparison of the PSO and CSS
	3.6.3 Efficiency of the CSS

	References

	Chapter 4: Magnetic Charged System Search
	4.1 Introduction
	4.2 Magnetic Charged System Search Method
	4.2.1 Magnetic Laws
	4.2.1.1 Magnetic Fields
	4.2.1.2 Magnetic Forces

	4.2.2 A Brief Introduction to Charged System Search Algorithm
	4.2.3 Magnetic Charged System Search Algorithm
	4.2.3.1 Combination of Magnetic and Electric forces
	4.2.3.2 MCSS Algorithm

	4.2.4 Numerical Examples
	4.2.4.1 Mathematical Benchmark Functions
	Comparison Between MCSS, CSS and a Set of Genetic Algorithms
	Numerical Results
	Statistical Test

	4.2.4.2 Comparison Between MCSS and Other State-of-Art Algorithms
	Description of Test Functions and Algorithms
	Numerical Results and Statistical Test

	4.2.5 Engineering Examples

	4.3 Improved Magnetic Charged System Search
	4.3.1 A Discrete IMCSS
	4.3.2 An Improved Magnetic Charged System Search for Optimization of Truss Structures with Continuous and Discrete Variables
	4.3.2.1 Statement of the Optimization Problem
	4.3.2.2 Numerical Examples

	References

	Chapter 5: Field of Forces Optimization
	5.1 Introduction
	5.2 Formulation of the Configuration Optimization Problems
	5.3 Fundamental Concepts of the Fields of Forces
	5.4 Necessary Definitions for a FOF-Based Model
	5.5 A FOF-Based General Method
	5.6 An Enhanced Charged System Search Algorithm for Configuration Optimization
	5.6.1 Review of the Charged System Search Algorithm
	5.6.2 An Enhanced Charged System Search Algorithm

	5.7 Design Examples
	5.7.1 An 18-Bar Planar Truss
	5.7.1.1 A 25-Bar Spatial Truss
	5.7.1.2 A 120-Bar Dome Truss

	5.8 Discussion
	References

	Chapter 6: Dolphin Echolocation Optimization
	6.1 Introduction
	6.2 Dolphin Echolocation in Nature
	6.3 Dolphin Echolocation Optimization
	6.3.1 Introduction to Dolphin Echolocation
	6.3.2 Dolphin Echolocation Algorithm

	6.4 Structural Optimization
	6.5 Numerical Examples
	6.5.1 Truss Structures
	6.5.1.1 A 25-Bar Spatial Truss
	6.5.1.2 A 72-Bar Spatial Truss
	6.5.1.3 A 582-Bar Tower Truss

	6.5.2 Frame Structures
	6.5.2.1 A 3-Bay 15-Story Planar Frame
	6.5.2.2 A 3-bay 24-story planar frame
	6.5.2.3 Discussion

	References

	Chapter 7: Colliding Bodies Optimization
	7.1 Introduction
	7.2 Colliding Bodies Optimization
	7.2.1 The Collision Between Two Bodies
	7.2.2 The CBO Algorithm
	7.2.2.1 Theory
	7.2.2.2 The Coefficient of Restitution

	7.2.3 Test Problems and Optimization Results
	7.2.3.1 Example 1: Design of Welded Beam
	7.2.3.2 Test Problem 2: Design of a Pressure Vessel
	7.2.3.3 Test Problem 3: Design of a Tension/Compression Spring
	7.2.3.4 Test Problem 4: Weight Minimization of the 120-Bar Truss Dome
	7.2.3.5 Test Problem 5: Design of Forth Truss Bridge

	7.3 CBO for Optimum Design of Truss Structures with Continuous Variables
	7.3.1 Flowchart and CBO Algorithm
	7.3.2 Numerical Examples
	7.3.2.1 A 25-Bar Spatial Truss
	7.3.2.2 A 72-Bar Spatial Truss Structure
	7.3.2.3 A 582-Bar Tower Truss
	7.3.2.4 A 52-Bar Dome-Like Truss
	7.3.2.5 The Model of Burro Creek Bridge

	7.3.3 Discussion

	References

	Chapter 8: Ray Optimization Algorithm
	8.1 Introduction
	8.2 Ray Optimization for Continuous Variables
	8.2.1 Definitions and Concepts from Ray Theory
	8.2.2 Ray Optimization Method
	8.2.2.1 Scattering and Evaluation Step
	8.2.2.2 Movement Vector and Motion Refinement Step
	8.2.2.3 Origin Making and Convergent Step
	8.2.2.4 Finish or Redoing Step

	8.2.3 Validation of the Ray Optimization
	8.2.3.1 Mathematical Optimization Problems
	8.2.3.2 Engineering Design Problems
	A Tension/Compression Spring Design Problem
	A Welded Beam Design Problem

	8.3 Ray Optimization for Size and Shape Optimization of Truss Structures
	8.3.1 Formulation
	8.3.2 Design Examples
	8.3.2.1 A 200-Bar Planar Truss Structure
	8.3.2.2 A Model of the First of Forth Bridge
	8.3.2.3 A 37-Bar Simply Supported Truss

	8.4 An Improved Ray Optimization Algorithm for Design of Truss Structures
	8.4.1 Introduction
	8.4.2 Improved Ray Optimization Algorithm
	8.4.3 Mathematical and Structural Design Examples
	8.4.3.1 Standard Mathematical Functions
	8.4.3.2 Continuous and Discrete Trusses
	Optimum Design of Truss Structures
	A 25-Bar Space Truss with Discrete Variables
	A 72- Bar Space Truss with Discrete Variables
	Design of a 120-Bar Dome Shaped Truss with Continuous Variables

	References

	Chapter 9: Modified Big Bang-Big Crunch Algorithm
	9.1 Introduction
	9.2 Modified BB-BC Method
	9.2.1 Introduction to BB-BC Method
	9.2.2 A Modified BB-BC Algorithm

	9.3 Size Optimization of Space Trusses Using a MBB-BC Algorithm
	9.3.1 Formulation
	9.3.2 Design Examples
	9.3.2.1 Twenty Five-Bar Spatial Truss
	9.3.2.2 Seventy Two-Bar Spatial Truss
	9.3.2.3 A 120-Bar Dome Truss
	9.3.2.4 A Square on Diagonal Double-Layer Grid
	9.3.2.5 A 26-Story Tower Spatial Truss
	9.3.2.6 Discussion

	9.4 Optimal Design of Schwedler and Ribbed Domes Using MBB-BC Algorithm
	9.4.1 Introduction
	9.4.2 Dome Structure Optimization Problems
	9.4.3 Pseudo-Code of the Modified Big Bang-Big Crunch Algorithm
	9.4.4 Elastic Critical Load Analysis of Spatial Structures
	9.4.5 Configuration of Schwedler and Ribbed Domes
	9.4.6 Results and Discussion
	9.4.6.1 Comparison of the Schwedler and Ribbed Domes
	9.4.6.2 Schwedler Domes with Different Diameters

	9.4.7 Discussion

	References

	Chapter 10: Cuckoo Search Optimization
	10.1 Introduction
	10.2 Optimum Design of Truss Structures Using Cuckoo Search Algorithm with Lévy Flights
	10.2.1 Formulation
	10.2.2 Lévy Flights as Random Walks
	10.2.3 Cuckoo Search Algorithm
	10.2.4 Optimum Design of Truss Structures Using Cuckoo Search Algorithm
	10.2.4.1 Initialize the Cuckoo Search Algorithm Parameters
	10.2.4.2 Generate Initial Nests or Eggs of Host Birds
	10.2.4.3 Generate New Cuckoos by Lévy Flights
	10.2.4.4 Alien Eggs Discovery
	10.2.4.5 Termination Criterion

	10.2.5 Design Examples
	10.2.5.1 A 25-Bar Space Truss
	10.2.5.2 Design of a 25-Bar Truss Utilizing Discrete Variables
	10.2.5.3 Design of a 25-Bar Truss Utilizing Continuous Variables
	10.2.5.4 A 72-Bar Space Truss
	10.2.5.5 Design of a 72-Bar Truss Using Discrete Variables
	10.2.5.6 Design of a 72-Bar Truss Using Continuous Variables
	10.2.5.7 Design of a 120-Bar Dome Shaped Truss

	10.2.6 Discussions

	10.3 Optimum Design of Steel Frames
	10.3.1 Optimum Design of Planar Frames
	10.3.2 Optimum Design of Steel Frames Using Cuckoo Search Algorithm
	10.3.3 Design Examples
	10.3.3.1 A One-Bay Ten-Story Frame
	10.3.3.2 A Three-Bay Fifteen-Story Frame
	10.3.3.3 A Three-Bay Twenty Four-Story Frame

	10.3.4 Discussions

	References

	Chapter 11: Imperialist Competitive Algorithm
	11.1 Introduction
	11.2 Optimum Design of Skeletal Structures
	11.2.1 Constraint Conditions for Truss Structures
	11.2.2 Constraint Conditions for Steel Frames

	11.3 Imperialist Competitive Algorithm
	11.4 Design Examples
	11.4.1 Design of a 120-Bar Dome Shaped Truss
	11.4.2 Design of a 72-Bar Spatial Truss
	11.4.3 Design of a 3-Bay, 15-Story Frame
	11.4.4 Design of a 3-Bay 24-Story Frame

	11.5 Discussions
	References

	Chapter 12: Chaos Embedded Metaheuristic Algorithms
	12.1 Introduction
	12.2 An Overview of Chaotic Systems
	12.2.1 Logistic Map
	12.2.2 Tent Map
	12.2.3 Sinusoidal Map
	12.2.4 Gauss Map
	12.2.5 Circle Map
	12.2.6 Sinus Map
	12.2.7 Henon Map
	12.2.8 Ikeda Map
	12.2.9 Zaslavskii Map

	12.3 Use of Chaotic Systems in Metaheuristics
	12.4 Chaotic Update of Internal Parameters for Metaheuristics
	12.5 Chaotic Search Strategy in Metaheuristics
	12.6 A New Combination of Metaheuristics and Chaos Theory
	12.6.1 The Standard PSO
	12.6.2 The CPVPSO Phase [37]
	12.6.3 The CLSPSO Phase [37]
	12.6.4 Design Examples

	12.7 Discussion
	References

	Chapter 13: A Multi-swarm Multi-objective Optimization Method for Structural Design
	13.1 Introduction
	13.2 Preliminaries
	13.3 Background
	13.3.1 Charged System Search
	13.3.2 Clustering

	13.4 MO-MSCSS
	13.4.1 Algorithm Overview
	13.4.2 Search Process by CSS Algorithm
	13.4.3 Charge Magnitude of Particles
	13.4.4 Population Regeneration
	13.4.5 Mutation Operator
	13.4.6 Global Archive Updating Process
	13.4.7 Constraint Handling

	13.5 Structural Optimization
	13.5.1 Statement of the Considered Optimization Design Problem
	13.5.1.1 Design Constraints for Truss Structures
	13.5.1.2 Design Constraints for Frame Structures

	13.6 Numerical Examples
	13.6.1 Unconstrained Multi-objective Problems
	13.6.1.1 Performance Metrics
	13.6.1.2 Comparison of the Results

	13.6.2 Constrained Multi-objective Problems
	13.6.2.1 The Performance Metrics
	13.6.2.2 A 126-Bar Truss Structure
	13.6.2.3 A 36-Story Frame Structure

	13.7 Discussions
	References

