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Preface

Recent advances in structural technology require greater accuracy, efficiency, and
speed in design of structural systems. It is therefore not surprising that new methods
have been developed for optimal design of real-life structures and models with
complex configurations and a large number of elements.

This book can be considered as an application of metaheuristic algorithms to
optimal design of skeletal structures. The present book is addressed to those
scientists and engineers, and their students, who wish to explore the potential of
newly developed metaheuristics. The concepts presented in this book are not only
applicable to skeletal structures and finite element models but can equally be used
for design of other systems such as hydraulic and electrical networks.

The author and his graduate students have been involved in various develop-
ments and applications of different metaheuristic algorithms to structural optimi-
zation in the last two decades. This book contains part of this research suitable for
various aspects of optimization for skeletal structures.

This book is likely to be of interest to civil, mechanical, and electrical engineers
who use optimization methods for design, as well as to those students and
researchers in structural optimization who will find it to be necessary professional
reading.

In Chap. 1, a short introduction is provided for the development of optimization
and different metaheuristic algorithms. Chapter 2 contains one of the most popular
metaheuristic known as the Particle Swarm Optimization (PSO). Chapter 3 pro-
vides an efficient metaheuristic algorithm known as Charged System Search (CSS).
This algorithm has found many applications in different fields of civil engineering.
In Chap. 4, Magnetic Charged System Search (MCSS) is presented. This algorithm
can be considered as an improvement to CSS, where the physical scenario of
electrical and magnetic forces is completed. Chapter 5 contains a generalized
metaheuristic so-called Field of Forces Optimization (FFO) approach and its
applications. Chapter 6 presents the recently developed algorithm known as Dol-
phin Echolocation Optimization (DEO) mimicking the behavior of dolphins.
Chapter 7 contains a powerful parameter independent algorithm, called Colliding
Bodies Optimization (CBO). This algorithm is based on one-dimensional collisions
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between bodies, with each agent solution being considered as the massed object or
body. After a collision of two moving bodies having specified masses and veloc-
ities, these bodies are separated with new velocities. This collision causes the agents
to move toward better positions in the search space. In Chap. 8, Ray Optimization
Algorithm (ROA) is presented in which agents of the optimization are considered as
rays of light. Based on the Snell’s light refraction law when light travels from a
lighter medium to a darker medium, it refracts and its direction changes. This
behavior helps the agents to explore the search space in early stages of the
optimization process and to make them converge in the final stages. In Chap. 9,
the well-known Big Bang-Big Crunch (BB-BC) algorithm is improved (MBB-BC)
and applied to structural optimization. Chapter 10 contains application of Cuckoo
Search Optimization (CSO) in optimal design of skeletal structures. In Chap. 11,
Imperialist Competitive Algorithm (ICA) and its application are discussed. Chaos
theory has found many applications in engineering and optimal design. Chapter 12
presents Chaos Embedded Metaheuristic (CEM) Algorithms. Finally, Chap. 13 can
be considered as a brief introduction to multi-objective optimization. In this chapter
a multi-objective optimization algorithm is presented and applied to optimal design
of large-scale skeletal structures.

I would like to take this opportunity to acknowledge a deep sense of gratitude to
a number of colleagues and friends who in different ways have helped in the
preparation of this book. Professor F. Ziegler encouraged and supported me to
write this book. My special thanks are due to Mrs. Silvia Schilgerius, the senior
editor of the Applied Sciences of Springer, for her constructive comments, editing,
and unfailing kindness in the course of the preparation of this book. My sincere
appreciation is extended to our Springer colleagues Ms. Beate Siek and
Ms. Sashivadhana Shivakumar.

I would like to thank my former and present Ph.D. and M.Sc. students,
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Mrs. N. Farhoudi, Mr. S. Massoudi, Mr. M. Khayatazad, Mr. M. Ilchi,
Mr. R. Sheikholeslami, Mr. T. Bakhshpouri, and Mr. M. Kalate Ahani, for using
our joint papers and for their help in various stages of writing this book. I would like
to thank the publishers who permitted some of our papers to be utilized in the
preparation of this book, consisting of Springer Verlag, Elsevier and Wiley.

My warmest gratitude is due to my family and in particular my wife,
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Chapter 1
Introduction

1.1 Metaheuristic Algorithms for Optimization

In today’s extremely competitive world, human beings attempt to exploit the
maximum output or profit from a limited amount of available resources. In engi-
neering design, for example, choosing design variables that fulfill all design
requirements and have the lowest possible cost is concerned, i.e. the main objective
is to comply with basic standards but also to achieve good economic results.
Optimization offers a technique for solving this type of problems.

The term “optimization” refers to the study of problems in which one seeks to
minimize or maximize a function by systematically choosing the values of variables
from/within a permissible set. In one hand, a vast amount of research has been
conducted in this area of knowledge, hoping to develop effective and efficient
optimization algorithms. On the other hand, the application of the existing algo-
rithms to real projects has been the focus of many studies.

In the past, the most commonly used optimization techniques were gradient-
based algorithms which utilized gradient information to search the solution space
near an initial starting point [1, 2]. In general, gradient-based methods converge
faster and can obtain solutions with higher accuracy compared to stochastic
approaches. However, the acquisition of gradient information can be either costly
or even impossible to obtain the minima. Moreover, this kind of algorithms is only
guaranteed to converge to local optima. Furthermore, a good starting point is quite
vital for a successful execution of these methods. In many optimization problems,
prohibited zones, side limits and non-smooth or non-convex functions should be
taken into consideration. As a result, these non-convex optimization problems
cannot easily be solved by these methods.

On the other hand other types of optimization methods, known as metaheuristic
algorithms, are not restricted in the aforementioned manner. These methods are
suitable for global search due to their capability of exploring and finding promising
regions in the search space at an affordable computational time. Metaheuristic
algorithms tend to perform well for most of the optimization problems [3, 4].

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 1
DOI 10.1007/978-3-319-05549-7_1, © Springer International Publishing Switzerland 2014



2 1 Introduction

This is because these methods refrain from simplifying or making assumptions
about the original problem. Evidence of this is their successful applications to a vast
variety of fields, such as engineering, physics, chemistry, art, economics, market-
ing, genetics, operations research, robotics, social sciences, and politics.

The word heuristic has its origin in the old Greek work heuriskein, which means
the art of discovering new strategies (rules) to solve problems. The suffix meta, also
is a Greek word, means “upper level methodology”. The term metaheuristic was
introduced by F. Glover in the paper [5].

A heuristic method can be considered as a procedure that is likely to discover a
very good feasible solution, but not necessarily an optimal solution, for a consid-
ered specific problem. No guarantee can be provided about the quality of the
solution obtained, but a well-designed heuristic method usually can provide a
solution that is at least nearly optimal. The procedure also should be sufficiently
efficient to deal with very large problems. The heuristic methods are often consid-
ered as iterative algorithm, where each iteration involves conducting a search for a
new solution that might be better than the best solution found previously. After a
reasonable time when the algorithm is terminated, the solution it provides is the best
one that was found during any iteration. A metaheuristic is formally defined as an
iterative generation process which guides a subordinate heuristic by combining
intelligently different concepts for exploring (global search) and exploiting (local
search) the search space, learning strategies are used to structure information in
order to find efficiently near-optimal solutions [5-7].

Metaheuristic algorithm has found many applications in different areas of
applied mathematics, engineering, medicine, economics and other sciences.
These methods are extensively utilized in the design of different systems in civil,
mechanical, electrical, and industrial engineering. At the same time, one of the most
important trends in optimization is the constantly increasing emphasis on the
interdisciplinary nature of the field.

1.2 Optimal Design of Structures and Goals
of the Present Book

In the area of structural engineering that is the main concern of this book, one tries
to achieve certain objectives in order to optimize weight, construction cost, geom-
etry, layout, topology and time satisfying certain constraints. Since resources, fund
and time are always limited, one has to find solutions to optimal usage of these
resources.

The main goal of this book is to introduce some well established and the most
recently developed metaheuristics for optimal design of structures. Schematic of
the chapters of the present book in one glance is shown in Fig. 1.1.

Most of these methods are either nature-based or physics-based algorithms,
Fig. 1.2. Though many design examples are included, however, the results may



[O§}

1.3 Organization of the Present Book

1 Chapter 1 Introduction

== Chapter 2 Particle Swarm Optimization

. Chapter 3 Charged System Search

— Chapter 4 Magnetic Charged System Search

— Chapter 5 Field of Forces Optimization

— Chapter 6 Dolphin Echolocation Optimization

Chapter 7 Colliding Bodies Optimization

— Chapter 8 Ray Optimization

— Chapter 9 Big Bang-Big Crunch Algorithm

— Chapter 10 Cuckoo Search Optimization

— Chapter 11 Imperialist Competitive Algorithm

|— Chapter 12 Chaos Embedded Meta-heuristic Algorithms

— Chapter 13 Multi-Objective Optimization for Large-Scale Structures

( In This Book )
ITITIITIIIrrrrrxr

Fig. 1.1 Schematic of the chapters of the present book in one glance

or may not have small constraint violations, and do not constitute the main
objective of the book.

1.3 Organization of the Present Book

After this introductory chapter, the remaining chapters of this book are organized in
the following manner:

Chapter 2 introduces the well-known Particle Swarm Optimization (PSO)
algorithms. These algorithms are nature-inspired population-based metaheuristic
algorithms originally accredited to Eberhart, Kennedy and She. The algorithms
mimic the social behavior of birds flocking and fishes schooling. Starting with a
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Based on the social
behavior of birds flocking

and fishes schooling

Particle Swarm
Optimization (PSO)

B

Based on the biological
sonar used by dolphins

Dolphin Echolocation
(DE)

X/

| Based on one of the
| theories of evolution of the
universe

Big Bang-Big Crunch
(BB-BC)

N o

Based on the behavior of
some cuckoo species

( Nature-based algorithms )

Cuckoo Search (CS)

A A A K

Imperialist Competitive

Based on a socio-
_‘ Algorithm (ICA)

politically motivated
strategy

N

Charged System Search
(CSS)

(I\-‘[eta-heuristic algoritluns)
1

By T

_{ Based on the Coulomb’s
law and Newtonian laws

Magnetic Charged
System Search (MCSS)

B #

[ Based on one-dimensional
| collisions of bodies

Colliding Bodies
Optimization (CBO)

AN

I
( Physics-based algorithms )

_{ Based on the Snell’s Ray Optimization (RO)

refraction law of light

N

Fig. 1.2 Classification of the metaheuristics presented in this book
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randomly distributed set of particles (potential solutions), the algorithms try to
improve the solutions according to a quality measure (fitness function). The improvi-
sation is preformed through moving the particles around the search space by means of
a set of simple mathematical expressions which model some inter-particle communi-
cations. These mathematical expressions, in their simplest and most basic form,
suggest the movement of each particle towards its own best experienced position
and the swarm’s best position so far, along with some random perturbations.

Chapter 3 presents the well established Charged System Search Algorithm
(CSS), developed by Kaveh and Talatahari. This chapter consists of two parts. In
the first part an optimization algorithm based on some principles from physics and
mechanics is introduced. In this algorithm the governing Coulomb law from
electrostatics and the Newtonian laws of mechanics are utilized. CSS is a multi-
agent approach in which each agent is a Charged Particle (CP). CPs can affect each
other based on their fitness values and their separation distances. The quantity of the
resultant force is determined by using the electrostatics laws and the quality of the
movement is determined using Newtonian mechanics laws. CSS can be utilized in
all optimization fields; especially it is suitable for non-smooth or non-convex
domains. CSS needs neither the gradient information nor the continuity of the
search space. In the second part, CSS is applied to optimal design of skeletal
structures and high performance of CSS is illustrated.

Chapter 4 extends the algorithm of the previous chapter and presents the
Magnetic Charged System Search, developed by Kaveh, Motie Share and Moslehi.
This chapter consists of two parts. In first part, the standard Magnetic Charged
System Search (MCSS) is presented and applied to different numerical examples to
examine the efficiency of this algorithm. The results are compared to those of the
original charged system search method. In the second part, an improved form of the
MCSS algorithm, denoted by IMCSS, is presented and also its discrete version is
described. The IMCSS algorithm is applied to optimization of truss structures with
continuous and discrete variables to demonstrate the performance of this algorithm
in the field of structural optimization.

Chapter 5 presents a generalized CSS algorithm known as the Field of Forces
Optimization. Although different metaheuristic algorithms have some differences
in approaches to determine the optimum solution, however their general perfor-
mance is approximately the same. They start the optimization with random solu-
tions; and the subsequent solutions are based on randomization and some other
rules. With the progress of the optimization process, the power of rules increases,
and the power of randomization decreases. It seems that these rules can be modelled
by a familiar concept of physics known as the fields of forces (FOF). FOF is a
concept which is utilized in physics to explain the reason of the operation of the
universe. The virtual FOF model is approximately simulated by using the concepts
of real world fields such as gravitational, magnetic or electric fields.

Chapter 6 presents the recently developed algorithm known as Dolphin Echo-
location Optimization, proposed by Kaveh and Farhoudi. Nature has provided
inspiration for most of the man-made technologies. Scientists believe that dolphins
are the second to human beings in smartness and intelligence. Echolocation is the
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biological sonar used by dolphins and several kinds of other animals for navigation
and hunting in various environments. This ability of dolphins is mimicked in this
chapter to develop a new optimization method. There are different metaheuristic
optimization methods, but in most of these algorithms parameter tuning takes a
considerable time of the user, persuading the scientists to develop ideas to improve
these methods. Studies have shown that metaheuristic algorithms have certain
governing rules and knowing these rules helps to get better results. Dolphin
Echolocation takes advantages of these rules and outperforms some of the existing
optimization methods, while it has few parameters to be set. The new approach
leads to excellent results with low computational efforts.

Chapter 7 contains the most recently developed algorithm so-called Colliding
Bodies Optimization proposed by Kaveh and Mahdavi. This chapter presents a
novel efficient metaheuristic optimization algorithm called Colliding Bodies Opti-
mization (CBO), for optimization. This algorithm is based on one-dimensional
collisions between bodies, with each agent solution being considered as the massed
object or body. After a collision of two moving bodies having specified masses and
velocities, these bodies are separated with new velocities. This collision causes the
agents to move toward better positions in the search space. CBO utilizes simple
formulation to find minimum or maximum of functions; also it is internally
parameter independent.

Chapter 8 presents the Ray Optimization (RO) Algorithm originally developed
by Kaveh and Khayat Azad. Similar to other multi-agent methods, Ray Optimiza-
tion has a number of particles consisting of the variables of the problem. These
agents are considered as rays of light. Based on the Snell’s light refraction law when
light travels from a lighter medium to a darker medium, it refracts and its direction
changes. This behaviour helps the agents to explore the search space in early stages
of the optimization process and to make them converge in the final stages. This law
is the main tool of the Ray Optimization algorithm. This chapter consists of three
parts. In first part, the standard Ray optimization is presented and applied to
different mathematical functions and engineering problems. In the second part,
RO is employed for size and shape optimization of truss structures. Finally in the
third part, an improved ray optimization (IRO) algorithm is introduced and applied
to some benchmark mathematical optimization problems and truss structure
examples.

Chapter 9 presents a modified Big Bang-Big Crunch (BB-BC) Algorithm. The
standard BB-BC method is developed by Erol and Eksin, and consists of two
phases: a Big Bang phase, and a Big Crunch phase. In the Big Bang phase,
candidate solutions are randomly distributed over the search space. Similar to
other evolutionary algorithms, initial solutions are spread all over the search
space in a uniform manner in the first Big Bang. Erol and Eksin associated the
random nature of the Big Bang to energy dissipation or the transformation from an
ordered state (a convergent solution) to a disorder or chaos state (new set of solution
candidates).

Chapter 10 presents the Cuckoo Search (CS) Optimization developed by Yang
and colleagues. In this chapter CS is utilized to determine optimum design of
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structures for both discrete and continuous variables. This algorithm is recently
developed by Yang and colleagues, and it is based on the obligate brood parasitic
behaviour of some cuckoo species together with the Lévy flight behaviour of some
birds and fruit flies. The CS is a population based optimization algorithm and
similar to many others metaheuristic algorithms starts with a random initial popu-
lation which is taken as host nests or eggs. The CS algorithm essentially works with
three components: selection of the best by keeping the best nests or solutions;
replacement of the host eggs with respect to the quality of the new solutions or
Cuckoo eggs produced based randomization via Lévy flights globally (exploration);
and discovering of some cuckoo eggs by the host birds and replacing according to
the quality of the local random walks (exploitation).

Chapter 11 presents the Imperialist Competitive Algorithm (ICA) proposed by
Atashpaz et al. ICA is a multi-agent algorithm with each agent being a country,
which is either a colony or an imperialist. These countries form some empires in the
search space. Movement of the colonies toward their related imperialist, and
imperialistic competition among the empires, form the basis of the ICA. During
these movements, the powerful Imperialists are reinforced and the weak ones are
weakened and gradually collapsed, directing the algorithm towards optimum
points.

Chapter 12 is an introduction is provided to Chaos Embedded Metaheuristic
Algorithms. In nature complex biological phenomena such as the collective behav-
iour of birds, foraging activity of bees or cooperative behaviour of ants may result
from relatively simple rules which however present nonlinear behaviour being
sensitive to initial conditions. Such systems are generally known as “deterministic
nonlinear systems” and the corresponding theory as “chaos theory”. Thus real
world systems that may seem to be stochastic or random, may present a nonlinear
deterministic and chaotic behaviour. Although chaos and random signals share the
property of long term unpredictable irregular behaviour and many of random
generators in programming softwares as well as the chaotic maps are deterministic;
however chaos can help order to arise from disorder. Similarly, many
metaheuristics optimization algorithms are inspired from biological systems
where order arises from disorder. In these cases disorder often indicates both
non-organized patterns and irregular behaviour, whereas order is the result of
self-organization and evolution and often arises from a disorder condition or from
the presence of dissymmetries. Self-organization and evolution are two key factors
of many metaheuristic optimization techniques. Due to these common properties
between chaos and optimization algorithms, simultaneous use of these concepts can
improve the performance of the optimization algorithms. Seemingly the benefits of
such combination is a generic for other stochastic optimization and experimental
studies confirmed this; although, this has not mathematically been proven yet.

Chapter 13 consists of a multi-objective optimization method to solve large-
scale structural problems in continuous search space. This method is based on the
Charged System Search, which has been used for single objective optimization in
chapter 3. In this study the aim is to develop a multi-objective optimization
algorithm with higher convergence rate compared to the other well-known methods
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to enable to deal with multi-modal optimization problems having many design
variables. In this method, the CSS algorithm is utilized as a search engine in
combination with clustering and particle regeneration procedures. The proposed
method is examined for four mathematical functions and two structural problems,
and the results are compared to those of some other state-of-art approaches.

Finally it should be mentioned that most of the metaheuristic algorithms are
attractive, because each one has its own striking features. However, the one which
is simple, less parameter dependent, easy to implement, and has a good balance
between exploration and exploitation, higher capability to avoid being trapped in
local optima, higher accuracy and applicable to wider types of problems and can
deal with higher number of variables, can be considered as the most attractive for
engineering usage.

In order to have the above features partially or collectively, sometimes it is
necessary to design hybrid algorithms. There are many such algorithms and a
successful example of this is that of Kaveh and Talatahari [8].

Finally, the author strongly believes that optimal analysis, introduced by
Kaveh [9,10], can provide an important means for optimal design of future large-
scale structures. Metaheuristic algorithms often require a large number of analyses
and optimal analysis can play an important role in reducing the computational cost
of the design.
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Chapter 2
Particle Swarm Optimization

2.1 Introduction

Particle Swarm Optimization (PSO) algorithms are nature-inspired population-
based metaheuristic algorithms originally accredited to Eberhart, Kennedy and
Shi [1, 2]. The algorithms mimic the social behavior of birds flocking and fishes
schooling. Starting form a randomly distributed set of particles (potential solu-
tions), the algorithms try to improve the solutions according to a quality measure
(fitness function). The improvisation is preformed through moving the particles
around the search space by means of a set of simple mathematical expressions
which model some inter-particle communications. These mathematical expres-
sions, in their simplest and most basic form, suggest the movement of each particle
towards its own best experienced position and the swarm’s best position so far,
along with some random perturbations. There is an abundance of different variants
using different updating rules, however.

Though being generally known and utilized as an optimization technique, PSO
has its roots in image rendering and computer animation technology where Reeves
[3] defined and implemented a particle system as a set of autonomous individuals
working together to form the appearance of a fuzzy object like a cloud or an
explosion. The idea was to initially generate a set of points and to assign an initial
velocity vector to each of them. Using these velocity vectors each particle changes
its position iteratively while the velocity vectors are being adjusted by some
random factors.

Reynolds [4] added the notion of inter-object communication to Reeves’ particle
system to introduce a flocking algorithm in which the individuals were able to
follow some basic flocking rules such as trying to match each other’s velocities.
Such a system allowed for modeling more complex group behaviors in an easier
and more natural way.

Kennedy and Eberhart [1] while trying to “graphically simulate the graceful but
unpredictable choreography of a bird flock” came across the potential optimization
capabilities of a flock of birds. In the course of refinement and simplification of their

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 9
DOI 10.1007/978-3-319-05549-7_2, © Springer International Publishing Switzerland 2014
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paradigm they discussed that the behavior of the population of agents that they were
suggesting follows the five principles of swarm intelligence articulated by Millonas
[5]. First, the proximity principle: the population should be able to carry out simple
space and time computations. Second, the quality principle: the population should
be able to respond to quality factors in the environment. Third, the principle of
diverse response: the population should not commit its activities along excessively
narrow channels. Fourth, the principle of stability: the population should not change
its mode of behavior every time the environment changes. Fifth, the principle of
adaptability: the population must be able to change behavior mode when it’s worth
the computational price. They also mentioned that they compromisingly call their
mass-less volume-less population members particles in order to make the use of
concepts like velocity and acceleration more sensible. Thus, the term particle
swarm optimization was coined.

2.2 PSO Algorithm

2.2.1 Development

As Kennedy and Eberhart [1] indicated appropriately particle swarm optimization
is probably best presented and understood by explaining its conceptual develop-
ment. Hence, the algorithms transformation process from its earliest stages to its
current canonical form is briefly reviewed in this section. Future discussion on the
main aspects and issues would be more easily done in this way.

The earliest attempt to use the concept for social behavior simulation carried out
by Kennedy and Eberhart [1] resulted in a set of agents randomly spread over a
torus pixel grid which used two main strategies: nearest neighbor velocity matching
and craziness. At each iteration a loop in the program determined for each agent
which other agent was its nearest neighbor, then assigned that agent’s X and Y
velocities to the agent in focus. As it is predictable, it has been viewed that sole use
of such a strategy will quickly settle down the swarm on a unanimous, unchanging
direction. To avoid this, a stochastic variable called craziness was introduced. At
each iteration, some change was added to randomly chosen X and Y velocities. This
introduced enough variation into the system to give the simulation a “life-like”
appearance. The above observation points out one of the most necessary features of
PSO which indicates its seemingly unalterable non-deterministic nature: incorpo-
ration of randomness.

Kennedy and Eberhart took the next step by replacing the notion of “roost”
(a place that the birds know previously) in Heppner and Grenander [6] by “food”
(for which the birds must search) and therefore converted the social simulation
algorithm into an optimization paradigm. The idea was to let the agents (birds) find



2.2 PSO Algorithm 11

an unknown favorable place in the search space (food source) through capitalizing
on one another’s knowledge. Each agent was able of remembering its best position
and knowing the best position of the whole swarm. The extremum of the mathe-
matical function to be optimized can be thought of as the food source. After a series
of minor alterations and elimination of the ancillary variables, the updating rules for
calculating the next position of a particle was introduced as:

k1 ko k k - Kk
Vi =vitarn (xbesti’j — xl-’j) + corp (xgbestj — xl-’j) (2.1)
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where x; J-k and v; Jk are the jth component of the ith particle’s position and velocity
vector respectively in the kth iteration, r; and r, are two random numbers uniformly
distributed in the range (1,0), xbest; and xgbest indicate the best positions experi-
enced so far by the ith particle and the whole swarm, respectively, c; and ¢, are two
parameters representing the particle’s confidence in itself (cognition) and in the
swarm (social behavior), respectively. These two parameters were set equal to 2 in
the initial version of the PSO presented by Kennedy and Eberhart [1] so that the
particles would overfly the target about half the time. These two parameters are
among the most important parameters of the algorithm in that they control the
balance between exploration and exploration tendencies. A relatively high value of
¢, will encourage the particles to move towards their local best experiences while
higher values of ¢, will result in faster convergence to the global best position.

Although the above formulation embodies the main concept of PSO that has
survived over time and forms the skeleton of quite all subsequent variants, it has
still been subject to amendment. Eberhart et al. [7] introduced a maximum velocity
parameter, V,,,., in order to prevent particles from leaving the search space. Shi and
Eberhart [8] discussed the role of the three terms of (2.1) and concluded that the first
term, previous velocity of the particle, has an important effect of global and local
search balance. By eliminating this term the particles can note leave their initially
encircled portion of the search space and the search space will shrink gradually over
time. This will be equivalent to a local search procedure. Alternatively, by giving
the previous velocity term relatively higher effects the particles will be reluctant to
converge to the known good positions. They will instead tend to explore unseen
regions of the search space. This could be conceived as global search tendency.
Both the local search and global search will benefit solving some kinds of problems.
Therefore, an inertia weight w is thus introduced into (2.1) in order to maintain
balance between these to effects:

Kl _ ok . ko Lk . k_ Lk
Vil =wvi e (xlbesti,j - xi’j) + cor (xgbeszj - xi’j> (2.3)
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Shi and Eberhart [8] indicated that the inertia weight can be a positive
constant or even a positive linear or nonlinear function of time. They examined
the use of constant values in the range [0, 1.4] for the benchmark problem of
Schaffer’s f6 function and concluded the range [0.9, 1.2] to be appropriate. Later,
Eberhart and Shi [9] indicated that the use of the inertia weight w, which
decreases linearly from about 0.9 to 0.4 during a run, provides improved perfor-
mance in a number of applications. Many different research works has focused
on inertia weight parameter and different strategies have been proposed ever
since. A brief discussion on these methods and strategies will be presented in the
next section.

Later, Clerc [10] indicated that the use of a constriction factor may be necessary
to insure convergence of the particle swarm algorithm and proposed an alternative
formulation for the velocity vector:

vﬁl :;([vi]fj +ciry (xlbesli’fj — x&) + cara (xgbestjk — xll‘l)] (2.4)

where ¢ =ci+ca, ¢>4 (2.5)
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Schematic movement of a particle is illustrated in Fig. 2.1.

Such a formulation was intended to impose some restriction on velocity vectors
and thus to prevent divergence. Eberhart and Shi [9] compared the use of inertia
weights and constriction factors in particle swarm optimization and concluded that
the two approaches are equivalent and could be interchangeably used by proper
parameter setting. They also indicated that the use of constriction factor does not
eliminate the need for V,,,, parameter unlike what might be assumed at the first
glance. Though the two approaches are shown to be equivalent they both survived
and have been continually used by researchers. Simultaneous utilization of inertia
weight and constriction factor can also be found in the literature (e.g. see [11]
among others).

2.2.2 PSO Algorithm

The general structure of a canonical PSO algorithm is as follows [12]:
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Fig. 2.1 Scematic xibestf‘

movement of a particle

based on (2.4) e xgbest"
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procedure Particle Swarm Optimization
begin
Initialize x;, v; and xbest; for each particle i;
while (not termination condition) do
begin
for each particle i
Evaluate objective function;
Update xbest;
end
for each i
Set g equal to index of neighbor with best xbest;;
Use g to calculate vj;
Update x; = x; + vi;
Evaluate objective function;
Update xbest;
end
end

end

2.2.3 Parameters

Like any other metaheuristic algorithm PSO’s performance is dependent on the
values of its parameters. The optimal values for the parameters depend mainly on
the problem at hand and even the instance to deal with and on the search time that
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the user wants to spend for solving the problem [13]. In fact the main issue is to
provide balance between exploration and exploitation tendencies of the algorithm.

Total number of particles, total number of iterations, inertia weight and/or
constriction factor, and cognition and social behavior coefficients (c; and c;) are
the main parameters that should be considered in a canonical PSO. The total
number of iterations could be replaced with a desired precision or any other
termination criterion. In general, the search space of an n-dimensional optimization
problem can be conceived as an n-dimensional hyper-surface. The suitable values
for a metaheuristic’s parameters depend on relative ruggedness and smoothness of
this hyper-space. For example, it is imaginable that in a smoother hyper-space
fewer number of particles and iteration numbers will be required. Moreover, in a
smoother search space there will be fewer local optimal positions and less explo-
ration effort will be needed while in a rugged search space a more through
exploration of the search space will be advisable.

Generally speaking, there are two different strategies for parameter value selec-
tion, namely offline parameter initialization and online parameter tuning [13]. In
off-line parameter initialization, the values of different parameters are fixed before
the execution of the metaheuristic. These values are usually decided through
empirical study. It should be noted that deciding about a parameter of a
metaheuristic algorithm while keeping the others fixed (i.e. one-by-one parameter
selection) may result in misleading observations since the interactions of the
parameters are not taken into account. However, it is the common practice in the
literature since examining combinations of the algorithm parameters might be very
time-consuming. To perform such an examination, when desired, a meta-
optimization approach may be performed i.e. the algorithm parameters can be
considered as design variables and be optimized in an overlying level.

The main drawback of the off-line approaches is their high computational cost
since the process should be repeated for different problems and even for different
instances of the same problem. Moreover, appropriate values for a parameter might
change during the optimization process. Hence, online approaches that change the
parameter values during the search procedure must be designed. Online approaches
may be classified in two main groups [13]; dynamic approaches and adaptive
approaches. In a dynamic parameter updating approach, the change of the param-
eter value is performed without taking into account the search progress. The
adaptive approach changes the values according to the search progress.

Attempts have been made to introduce guidelines and strategies for selection of
PSO parameter. Shi and Eberhart [14] analyzed the impact of inertia weight and
maximum allowable velocity on the performance of PSO and provided some
guidelines for selecting these two parameters. For this purpose they utilized differ-
ent combinations of w and V,,,, parameters to solve the Schaffer’s {6 test function
while keeping other parameters unchanged. They concluded that when V,,,. is
small (<= 2 for the f6 function), an inertia weight of approximately 1 is a good
choice, while when V.. is not small (> = 3), an inertia weight w = 0.8 is a good
choice. They declared that in absence of proper knowledge regarding the selection
of V.. it is also a good choice to set V,,,. equal to X,,,, and an inertia weight
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w = 0.8 is a good starting point. Furthermore if a time varying inertia weight is
employed, even better performance can be expected. As the authors indicated, such
an empirical approach using a small benchmark problem cannot be easily
generalized.

Carlisle and Dozier [15] proposed another set of guidelines based on evidence
from six experiments. They recommended to start with an asynchronous constricted
algorithm setting ; = 2.8 and r, = 1.3. However, no directives are provided in
order to progress from this initial setting.

Trelea [16] used dynamic system theory for a theoretical analysis of the algo-
rithm producing some graphical guidelines for parameter selection. A simplified
deterministic one-dimensional PSO was used for this study. Trelea indicates that
the results are predictably dependent on the form of the objective function. The
discussion is supported by experiments on five benchmark functions.

Zhang et al. [17] suggested some optimal ranges for constriction factor and V,,,,,
to X, ratio parameters based on experimental study on nine mathematical func-
tions. The optimal range for constriction factor is claimed to be [4.05, 4.3] while for
V max 10 X,y ratio the range [0.01, 1] is recommended.

More recently Pedersen [18] carried out Meta-Optimization to tune the PSO
parameters. A table is presented to help the practitioner choose appropriate PSO
parameters based on the dimension of the problem at hand and the total number of
function evaluation that is intended to be performed. Performance evaluation of
PSO is performed using some mathematical functions. As mentioned before, the
results of the above-mentioned off-line parameter tuning studies are all problem-
dependent and can not be claimed as universally optimal.

Many different online tuning strategies are also proposed for different PSO
parameters. For inertia weight, methods such as Random Inertia Weight, Adaptive
Inertia Weight, Sigmoid Increasing/Decreasing Inertia Weight, Linear Decreasing
Inertia Weight, Chaotic Inertia Weight and Chaotic Random Inertia Weight, Oscil-
lating Inertia Weight, Global-Local Best Inertia Weight, Simulated Annealing
Inertia Weight, Natural Exponent Inertia Weight Strategy, Logarithm Decreasing
Inertia Weight, Exponent Decreasing Inertia Weight are reported in the literature.
All of these methods replace the inertia weight parameter with a mathematical
expression which is either dependent on the state of the search process (e.g. global
best solution, current position of the particle etc.) or not. Bansal et al. [19] examined
the above mentioned inertia weight strategies for a set of five mathematical
problems and concluded that Chaotic Inertia Weight is the best strategy for better
accuracy while Random Inertia Weight strategy is best for better efficiency. This
shows that the choice of a suitable inertia weight strategy depends not only on the
problem under consideration, but also on the practitioner’s priorities.

Other adaptive particle swarm optimization algorithms could be found in the
literature [20].
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2.2.4 Premature Convergence

One of the main advantages of PSO is its ability to attain reasonably good solutions
relatively fast. At the same time, this is probably the algorithm’s most recognized
drawback. In fact, Angeline [21] while studying PSO versus Evolutionary optimi-
zation techniques showed that although PSO discovers good quality solutions much
faster than evolutionary algorithms, it does not improve the quality of the solutions
as the number of generations is increased. This is because of the particles getting
clustered in a small region of the search space and thus the loss of diversity
[22]. Improving the exploration ability of PSO has been an active research topic
in recent years [20].

Attempts have been made in order to improve the algorithm’s exploration
capabilities and thus to avoid premature convergence. van den Bergh and
Engelbrecht [23] introduced a Guaranteed Convergence PSO (GCPSO) in which
particles perform a random search around xgbest within a radius defined by a
scaling factor. The algorithm is reported to perform better than original PSO in
unimodal problems while producing similar results in multimodal ones. The scaling
factor however is another parameter for which prior knowledge may be required to
be optimally set.

Krink et al. [24] proposed a collision free PSO where particles attempting to
gather about a sub-optimal solution bounce away. A random direction changer, a
realistic bounce and a random velocity changer where used as three bouncing
strategies. The latter two are reported to significantly improve the exploration
capabilities of the algorithm and obtain better results especially in multimodal
problems.

Implementing diversity measures is another way to control swarm stagnation.
Riget and Vesterstrgm [25] utilized such a measure along with alternative attraction
and repulsion of the particles to and from the swarm best position. Repulsion could
be induced by inverting the velocity update rule. The approach improves the
performance in comparison to canonical PSO, especially when problems under
consideration are multimodal.

Silva et al. [26] introduced a predator-prey optimization system in which a
predator particle enforces other particles to leave the best position of the search
space and explore other regions. Improved performance is reported based on
experiments carried out on four high-dimensional test functions.

Jie et al. [27] introduced an adaptive PSO with feedback control of diversity in
order to tune the inertia weight parameter and alleviate the premature convergence.
The improvements increase the robustness and improve the performance of the
standard PSO in multimodal functions.

Wang et al. [20] proposed a self-adaptive learning based particle swarm optimi-
zation which used four PSO based search strategies on probabilistic basis according
to the algorithms performance in previous iterations. The use of different search
strategies in a learning based manner helps the algorithm to handle problems with
different characteristics at different stages of optimization process. 26 test functions
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with different characteristics such as uni-modality, multi-modality, rotation,
ill-condition, mis-scale and noise are considered and the results are compared
with eight other PSO variants.

Kaveh and Zolghadr [28] introduced a democratic particle swarm optimization
(DPSO) which uses the updating information of a particle form a more diverse set
of sources instead of using local and global best solutions merely. An eligibility
parameter is introduced which determines which particles to incorporate when
updating a specific particle. The improved algorithm is compared to the standard
one for some mathematical and structural problems. The performance is improved
for the problems under consideration.

2.2.5 Topology

While xgbest of (2.1) is considered to be the whole swarm’s global best position in
canonical PSO, this is not necessarily always the case. Different topologies have
been defined and used for inter-particle communications in PSO [29, 30]. In fact in
updating a particle’s position, xgbest could mean the best particle position of a
limited neighborhood to which the particle is connected instead of the whole
swarm. It has been shown that the swarm topologies in PSO can remarkably
influence the performance of the algorithm. Figure 2.2 shows some of the basic
PSO neighborhood topologies introduced by Mendes et al. [29]. Many other
topologies can be defined and used.

These different topologies affect the way that information circulates between the
swarm’s particles and thus can control exploration-exploitation behavior and con-
vergence rate of the algorithm. Canonical PSO uses the fully-connected topology in
which all of the particles are neighbors. Such a topology exhibits a fast (and
probably immature) convergence since all of the particles are directly linked to
the global best particle and simultaneously affected by it. Thus, the swarm does not
explore other areas of the search space and would most probably get trapped in local
optima.

Ring topology which is a usual alternative to fully-connected topology repre-
sents a regular graph with the minimum node degrees. This could be considered the
slowest way of information circulation between the particles and is supposed to
result in the slowest rate of convergence since it takes a relatively long time for
information of the best particle to reach the other end of the ring.

Other neighborhood topologies are somewhere in between. Predictably, the
effect of different neighborhood topologies on effectiveness and efficiency of the
algorithm is problem dependent and is more or less empirically studied.
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Fig. 2.2 Some topologies for PSO neighborhoods [29]. Fully-connected: where all vertexes are
connected to every other; Ring: where every vertex is connected to two others; Four clusters: with
four cliques connected among themselves by gateways; Pyramid: a triangular wire-frame pyramid,
and Square: which is a mesh where every vertex has four neighbors that wraps around on the edges
as a torus

2.2.6 Biases

It is shown that many metaheuristic optimization algorithms, including PSO, are
biased toward some specific regions of the search space. For example, they perform
best when the optimum is located at or near the center of the initialization region,
which is often the origin [31]. This is particularly true when the information from
different members of the population is combined using some sort of averaging
operator [32]. Since many of the benchmark optimization problems have their
global optimal solutions at or near the origin, such a biased behavior can make
the performance evaluation of the algorithms problematic. Different approaches
have been taken in order to expose and probably alleviate this bias while testing
PSO. Angeline [32] popularized a method called Region Scaling initially proposed
by Gehlhaar and Fogel [33]. The method, tries to let the origin outside the initial
region covered by the particles by generating the initial solutions in a portion of the
search space that does not include origin. Monson and Seppi [31] showed that
origin-seeking biases depend on the way that the positions of the particles are
updated and Region Scaling method could not be sufficient for all motion rules.
They introduced a Center Offset method in which the center of the benchmark
function under consideration was moved to a different location of the search space.
Suganthan et al. [34] also recommended the use of non-biased shifted or rotated
benchmark problems.
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Clerc [35] showed that this biased behavior can be attributed to the confinement
method used i.e. the method by which the particles are prevented from leaving the
search space. A hybrid confinement method is introduced and claimed to be useful
in terms of reducing the bias.

Attempts have also been made to propose improved non-biased variants
(e.g. Wilke et al. [36]). This is however of less generality in case of unbiased
performance comparison because it does not have any effect on the other existing
algorithms.

2.3 Hybrid Algorithms

A popular way of producing new improved algorithms is to hybridize two or more
existing ones in an attempt to combine favorable features while omitting undesir-
able aspects. Some of the best results for the real-life and classical optimization
problems are obtained using hybrid methods [37]. Numerous different hybrid
algorithms using PSO as the main or the supplementary ingredient have been
proposed usually in the context of some specific application domain for which
that hybrid is particularly well suited [38]. A selection of these methods and
approaches is briefly mentioned here along with some examples.

Hybridizing PSO with other metaheuristic algorithms seems to be one of the
most popular strategies. This is mainly because the resulting algorithm maintains
positive characteristics of metaheuristic algorithms such as global search capability,
little dependence on starting point, no need to gradient information, and applica-
bility to non-smooth or non-convex domains. The other metaheuristic algorithm
(s) to be hybridized with PSO can be either single-agent or population-based.

Simulated Annealing (SA) [39] is a single-agent metaheuristic algorithm that
has been successfully hybridized with PSO. It has been shown in the literature [40]
that SA algorithms, when subject to very low variations of temperature parameters,
and when the solution search for each temperature can reach an equilibrium
condition have very high chances of finding the global optimal solution. Moreover,
the metropolis process in SA provides an ability of jumping away from a local.
However, SA algorithms require very slow temperature variations and thus increase
the required computational effort. On the other hand, although PSO exhibits
relatively fast convergence rate, is easy to implement, and is able to find local
optimal solutions in a reasonable amount of time, it is notorious of premature
convergence i.e. getting trapped in local optima. Therefore, combining these two
algorithms in a judicious way will probably result in a hybridized algorithm with
improved performance [41]. Execution of PSO and SA algorithms can be either
alternative or sequential. In an alternative execution every member of the PSO
swarm can be considered as a SA single-agent at the end of each iteration. Instead,
in a sequential execution, the final local solution found by PSO could be considered
as a starting point for SA.
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As another single-agent metaheuristic algorithm, Tabu Search algorithm
(TS) [42, 43] can have the same effect as SA in hybridization with PSO. The global
search could be left to PSO while TS attempts to improve the suboptimal solutions
found by PSO in a local search process. In these hybridized algorithms TS alleviates
premature convergence of PSO while PSO alleviates excessive required computa-
tional effort of TS [44].

Hybridization of PSO with other population-based metaheuristic algorithms is
more popular. In this case hybridization might signify different meanings. In some
hybridized schemes some techniques are simply borrowed from other algorithms.
For example Lgvebjerg et al. [45] borrowed the breeding technique from GAs
i.e. along with standard PSO updating rules pairs of particles could be chosen to
breed with each other and produce off-springs. Moreover, to keep away from
suboptimal solutions subpopulations were introduced.

Another approach to be mentioned is to use different metaheuristics simulta-
neously. Krink and Lgvebjerg [46] introduced a lifecycle model that allowed for
use of PSO, GA or hill climber by each particle depending on the particle’s own
preference based on its memory of the best recent improvements. Kaveh and
Talatahari [47] introduced a hybridized HPSACO algorithm in which particle
swarm optimizer with passive congregation (PSOPC) was used to perform global
search task while Ant Colony Optimization (ACO) [48] was utilized for updating
positions of particles to attain the feasible solution space and Harmony Search
(HS) [49] algorithm was employed for dealing with variable constraints.

In the above-mentioned approaches the position updating rules of the original
algorithms need not to be changed. The algorithms are merely operating in combi-
nation to each other. Another hybridization approach, however, could be based on
combining the updating rules. Higashi and Iba [50] combined GA’s Gaussian
mutation with velocity and position update rules of PSO. Juang [51] incorporated
mutation, crossover and elitism. As another example, Kaveh and Talatahari [52]
introduced some of the positive aspects of PSO like directing the agents toward the
global best and the local best positions into Charged System Search (CSS) [53]
algorithm to improve its performance.

PSO could also be hybridized with techniques and tools other than metaheuristic
algorithms. Liu and Abraham [54] hybridized a turbulent PSO with a fuzzy logic
controller to produce a Fuzzy Adaptive TPSO (FATPSO). The fuzzy logic control-
ler was used for adaptively tune the velocity parameters during an optimization in
order to balance exploration and exploitation tendencies. Zahara et al. [55] hybrid-
ized Nelder-Mead simplex search and particle swarm optimization for constrained
engineering design problems. A hybrid PSO-simplex method was also used for
damage identification of delaminated beams by Qian et al. [56].
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2.4 Discrete PSO

Though PSO has been introduced and more commonly utilized for continuous
optimization problems, it can be equally applied to discrete search spaces. A simple
and frequently used method to use PSO in discrete problems is to transform the real-
valued vectors found by a continuous PSO algorithm into discrete ones. To do this
the nearest permitted discrete values could be replaced with any value selected by
agents i.e. a rounding function could be used [57]. However, many discrete and
binary PSO variants have been developed that work in discrete search space
directly.

The first discrete binary version of PSO is developed by Kennedy and Eberhart
[58]. They kept the particle position updating rule unchanged and replaced the
velocity in each vector by the probability of a bit in position vector taking the value
1. In other words, if for example v; ; = 0.20, then there is a twenty percent chance
that x; ; will be a one, and an eighty percent chance it will be a zero. In order to keep
v;j in interval [0,1] a sigmoid transformation function was used.

More recently, Chen et al. [59] have proposed a set-based PSO for discrete
optimization problems. They have replaced the candidate solutions and velocity
vectors as crisp sets and sets with possibilities, respectively. The arithmetic oper-
ators in position updating rules are replaced by the operators and procedures defined
on such sets.

2.5 Democratic PSO for Structural Optimization

2.5.1 Description of the Democratic PSO

As discussed earlier different updating strategies have been proposed for PSO
resulting in many different variants. Mendes et al. [29] have proposed a fully
informed PSO for example, in which each particle uses the information from all
of the other particles in its neighborhood instead of just the best one. It has been
shown that the fully informed PSO outperforms the canonical version in all of the
mathematical functions under consideration. In a conceptually similar work Kaveh
and Zolghadr [28] have proposed a Democratic PSO for structural optimization
problems with frequency constraints. Here a brief description of the Democratic
algorithm is presented as an improved PSO version in the field of structural
optimization. The structural optimization under consideration is then introduced
in the following section and the results are then compared to those of the canonical
PSO on the same problems reported by Gomes [60].

As indicated before, canonical PSO is notorious for premature convergence and
this can be interpreted as a lack of proper exploration capability. In fact in the
standard PSO all of the particles are just being eagerly attracted toward better
solutions. And by each particle, moving toward the best position experienced by



22 2 Particle Swarm Optimization

itself and by the whole swarm so far is thought of as the only possible way of
improvement. Naturally, such an enthusiasm for choosing the shortest possible
ways to accomplishment results in some of the better regions of the search space
being disregarded.

In a sense, it can be said that the particles of the canonical PSO are only
motivated by selfishness (their own preference) and tyranny (the best particle’s
dictation). Except for their own knowledge and that of the best particle so far, they
do not take the achievements of the other members of the swarm into account
i.e. the information is not appropriately shared between the members of the swarm.

In order to address this problem, the velocity vector of the democratic PSO is
defined as:

vfj] =y {a)vi’fj +c1ry (xlbesti/fj — xi]fj) + o (xgbestjk - x&-) + C3I‘3dk,"_,} (2.6)
in which d*; ;j 1s the jth variable of the vector D for the ith particle. The vector
D represents the democratic effect of the other particles of the swarm on the
movement of the ith particle. r; is a random number uniformly distributed in the
range (1,0). Parameter c; is introduced to control the weight of the democratic
vector. Here, the vector D is taken as:

D;=> 0y Xk — X)) (2.7)
k=1

where Q;, is the weight of the kth particle in the democratic movement vector of the
ith particle and can be defined as:

) ODjbest
Eit G35

On=—— -
ZE__ Objpest
" obj(j)

J=1

(2.8)

in which obj stands for objective function value; objy.,, is the value of the objective
function for the best particle in the current iteration; X is the particle’s position
vector; E is the eligibility parameter and is analogous to parameter P in CSS [53]. In
a minimization problem E can be defined as:

| obilk) — obi()

: ~— > rand V obj(k) < obj(i
Ey = Ob]worst - Objbesr ( )

(2.9)
0 else

where 0bj,,..s; and obj,.,, are the values of the objective function for the worst and
the best particles in the current iteration, respectively. The symbol V stands for
union.

Schematic movement of a particle is illustrated in Fig. 2.3.
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Fig. 2.3 Schmatic . X+
movement of a particle d;
based on (2.6)

xlbestl

Since a term is added to the velocity vector of PSO, the parameter y should be
decreased in order to avoid divergence. Here, this parameter is determined using a
trial and error process. It seems that a value in the range (0.4, 0.5) is suitable for the
problems under consideration.

As it can be seen, the democratic PSO makes use of the information produced by
all of the eligible members of the swarm in order to determine the new position of
each particle. In fact, according to (2.9), all of the better particles and some of the
worse particles affect the new position of the particle under consideration. This
modification enhances the performance of the algorithm in two ways: (1) helping
the agents to receive information about good regions of the search space other than
those experienced by themselves and the best particle of the swarm and (2) letting
some bad particles take part in the movement of the swarm and thus improving the
exploration capabilities of the algorithm. Both of the above effects help to alleviate
the premature convergence of the algorithm.

Numerical results show that this simple modification which does not call for any
extra computational effort meaningfully enhances the performance of the PSO.

2.5.2 Truss Layout and Size Optimization with Frequency
Constraints

In a frequency constraint truss layout and size optimization problem the aim is to
minimize the weight of the structure while satisfying some constraints on natural
frequencies. The design variables are considered to be the cross-sectional areas of
the members and/or the coordinates of some nodes. The topology of the structure is
not supposed to be changed and thus the connectivity information is predefined and
kept unaffected during the optimization process. Each of the design variables
should be chosen within a permissible range. The optimization problem can be
stated mathematically as follows:
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Find X = [x1,%2,X3, - . ., Xy]
to minimize P(X) = f(X) X fpenairy(X)
subjected to (2.10)

w; < w;* for some natural frequencies j

wy > o for some natural frequencies &

Ximin < Xi < Ximax
where X is the vector of the design variables, including both nodal coordinates and
cross-sectional areas; n is the number of variables which is naturally affected by the
element grouping scheme which in turn is chosen with respect to the symmetry and
practice requirements; P(X) is the penalized cost function or the objective function
to be minimized; f(X) is the cost function, which is taken as the weight of the
structure in a weight optimization problem; f,,¢,qi,(X) is the penalty function which
is used to make the problem unconstrained. When some constraints corresponding
to the response of the structure are violated in a particular solution, the penalty
function magnifies the weight of the solution by taking values bigger than one; w; is
the jth natural frequency of the structure and a)j* is its upper bound. w; is the kth
natural frequency of the structure and a)k* is its lower bound. x;,,;, and x;,,,,, are the
lower and upper bounds of the design variable x;, respectively.

The cost function is expressed as:

FX) = piLiA; (2.11)
i=1

where p; is the material density of member i; L; is the length of member i; and A; is
the cross-sectional area of member i.
The penalty function is defined as:

q
fpeml/ly(X) - (1 + Sl-v)gz’ V= Zvi (212)
i=1

where ¢ is the number of frequency constraints.

0 if the ith constraint is satisfied

(2.13)

Vv, = w;
! 1 —— else

i

The parameters &, and &, are selected considering the exploration and the
exploitation rate of the search space. In this study ¢, is taken as unity, and &, starts
from 1.5 linearly increases to 6 in all test examples. These values penalize the
unfeasible solutions more severely as the optimization process proceeds. As a
result, in the early stages, the agents are free to explore the search space, but at
the end they tend to choose solutions without violation.
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2.5.3 Numerical Examples

Four numerical examples from the field of truss layout and size optimization are
provided in this section in order to examine the viability of the democratic PSO and
to compare it with the canonical PSO to clarify the effect of the modifications. The
results are compared with those of the canonical version and some other methods
reported in the literature.

Parameter y is set to 0.5 in all numerical examples while parameter c3 is set to
4. A Total population of 30 particles is utilized for all of the examples. Each
example has been solved 30 times independently. In all the examples, the termina-
tion criterion is taken as the number of iterations. Total number of 200 iterations is
considered for all of the examples. The side constraints are handled using an
HS-based constraint handling technique, as introduced by Kaveh and Talatahari
[47], is used. Any other appropriate side constraint handling technique might
be used.

2.5.3.1 A 10-bar Truss

For the first example, size optimization of a 10-bar planar is considered. The
configuration of the structure is depicted in Fig. 2.4.

This is a well-known benchmark problem in the field of frequency constraint
structural optimization. Each of the members’ cross-sectional area is assumed to be
an independent variable. A non-structural mass of 454.0 kg is attached to all free
nodes. Table 2.1 summarizes the material properties, variable bounds, and fre-
quency constraints for this example.

This problem has been investigated by different researchers: Grandhi and
Venkayya [61] employing an optimality algorithm, Sedaghati et al. [62] using a
sequential quadratic programming and finite element force method, Wang et al. [63]
using an evolutionary node shift method, Lingyun et al. [64] utilizing a niche hybrid
genetic algorithm, Gomes employing the standard particle swarm optimization algo-
rithm [60] and Kaveh and Zolghadr [65, 66] utilizing the standard and an enhanced
CSS, and a hybridized CSS-BBBC with a trap recognition capability.

The design vectors and the corresponding masses of the optimal structures found
by different methods are summarized in Table 2.2.

It should be noted that a modulus of elasticity of E = 6.98 x 10'° Pa is used in
Gomes [60] and Kaveh and Zolghadr [65]. This will generally result in relatively
lighter structures. Considering this, it appears that the proposed algorithm has
obtained the best solution so far. Particularly, the optimal structure found by the
algorithm is more than 5.59 kg lighter than that of the standard PSO in spite of using
smaller value for modulus of elasticity. Using E = 6.98 x 10'° Pa DPSO finds a
structure weighted 524.70 kg which is about 13 kg lighter than that of standard
PSO. The mean weight and the standard deviation of the results gained by DPSO
are 537.80 kg and 4.02 kg respectively, while PSO has obtained a mean weight of
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Fig. 2.4 Schematic of the 9.144 m 9.144 m
planar 10-bar truss structure

9.144 m

Table 2.1 Material properties, variable bounds and frequency constraints for the 10-bar truss
structure

Property [unit] Value

E (Modulus of elasticity) [N/m?] 6.89 x 10"

p (Material density) [kg/m3] 2,770.0

Added mass [kg] 454.0

Design variable lower bound [mz] 0.645 x 107

Design variable upper bound [m?] 50 x 107

L (main bar’s dimension) [m] 9.144

Constraints on first three frequencies [Hz] ® > 7,0, > 15 03 > 20

Table 2.2 Optimized designs (cm?) obtained for the planar 10-bar truss problem (the optimized
weight does not include the added masses)

Kaveh and

Grandhi Zolghadr

and ) I
Element Venkayya Sedaghati Wang Lingyun Gomes  Standard  Democratic
number [61] etal. [62] etal. [63] etal [64] [60] CSS PSO [28]
1 36.584 38.245 32.456 42.23 37712  38.811 35.944
2 24.658 9.916 16.577 18.555 9.959 9.0307  15.530
3 36.584 38.619 32.456 38.851 40.265  37.099 35.285
4 24.658 18.232 16.577 11.222 16.788  18.479 15.385
5 4.167 4419 2.115 4.783 11.576 4.479 0.648
6 2.070 4.419 4.467 4.451 3.955 4.205 4.583
7 27.032 20.097 22.810 21.049 25.308  20.842 23.610
8 27.032 24.097 22.810 20.949 21.613  23.023 23.599
9 10.346 13.890 17.490 10.257 11.576  13.763 13.135
10 10.346 11.452 17.490 14.342 11.186  11.414 12.357
Weight (kg) 594.0 537.01 553.8 542.75 537.98 531.95 532.39

540.89 kg and a standard deviation of 6.84 kg. This means that DPSO performs
better than the standard PSO in terms of best weight, average weight, and standard
deviation.
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Table 2.3 Natural frequencies (Hz) evaluated at the optimized designs for the planar 10-bar truss

Kaveh
and
Grandhi Zolghadr
and Wang )
Frequency  Venkayya  Sedaghati et al. Lingyun  Gomes  Standard  Democratic
number [61] etal. [62] [63] etal. [64] [60] CSS PSO [28]
7.059 6.992 7.011 7.008 7.000 7.000 7.000
15.895 17.599 17.302 18.148 17.786  17.442 16.187
20.425 19.973 20.001  20.000 20.000  20.031 20.000
21.528 19.977 20.100  20.508 20.063  20.208 20.021

28.978 28.173 30.869 27.797 27776 28.261 28.470
30.189 31.029 32.666 31.281 30939  31.139 29.243
54.286 47.628 48.282  48.304 47.297  47.704 48.769
56.546 52.292 52.306  53.306 52.286  52.420 51.389

0NN R WD~

Table 2.3 represents the natural frequencies of the optimized structures obtained
by different methods.

Figure 2.5 compares the convergence curves for the 10-bar planar truss obtained
by the democratic PSO and the standard PSO.

The termination criterion is not clearly stated in reference [60]. It is just declared
that a combination of three different criteria was simultaneously employed: (1) the
differences in the global best design variables between two consecutive iterations,
(2) the differences of the global best objective function, and (3) the coefficient of
variation of objective function in the swarm. In any case, it seems no improvement
is expected from PSO after the 2,000th analysis and hence the execution is
terminated.

Comparison of the convergence curves above provides some useful points about
the differences of the two algorithms. The standard and the democratic PSO utilize
50 and 30 particles for this problem, respectively. Although the standard PSO uses
more particles which is supposed to maintain better coverage of the search space
and higher level of exploration, its convergence curve shows that the convergence
is almost attained within the first 1,000 analyses and after that the convergence
curve becomes straight. On the other hand democratic PSO reaches an initial
convergence after about 1,500 analyses and it still keeps exploring the search
space until it reaches the final result at 3,000th analysis. This can be interpreted
as the modifications being effective on the alleviation of the premature convergence
problem. It should be noted that the structure found by DPSO at 2,000th analysis is
much lighter than that found by PSO at the same analysis. In fact while the
modifications improve the exploration capabilities of the algorithm, they do not
disturb the algorithm’s convergence task.
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Fig. 2.5 Comparison of convergence curves of democratic and standard PSO algorithms recorded
in the 10-bar truss problem

2.5.3.2 A Simply Supported 37-Bar Planar Truss

A simply supported 37-bar Pratt type truss, as depicted in Fig. 2.6, is examined as
the second example.

The elements of the lower chord are modeled as bar elements with constant
rectangular cross-sectional areas of 4 x 107> m”. The other members are modeled
as bar elements. These members which form the sizing variables of the problem are
grouped with respect to symmetry. Also, the y-coordinate of all the nodes on the
upper chord can vary in a symmetrical manner to form the layout variables. On the
lower chord, a non-structural mass of 10 kg is attached to all free nodes. The first
three natural frequencies of the structure are considered as the constraints. So this is
an optimization on layout and size with nineteen design variables (14 sizing vari-
ables + five layout variables) and three frequency constraints. This example has
been studied by Wang et al. [63] using an evolutionary node shift method and
Lingyun et al. [64] using a niche hybrid genetic algorithm. Gomes [60] has
investigated this problem using the standard particle swarm algorithm. Kaveh and
Zolghadr [65] used the standard and an enhanced CSS to optimize the structure.

Material properties, frequency constrains and added masses are listed in
Table 2.4.
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Fig. 2.6 Schematic of the simply-supported planar 37-bar truss

Table 2.4 Material properties and frequency constraints for the simply supported planar 37-bar

truss

Property [unit] Value

E (Modulus of elasticity) [N/m?] 2.1 x 10"

p (Material density) [kg/m3] 7,800

Design variable lower bound [m?] 1 x 107

Design variable upper bound [m?] 10 x 107

Added mass [kg] 10

Constraints on first three frequencies [Hz] ol > 20, ®2 > 40, ®3 > 60

Final cross-sectional areas and node coordinates obtained by different methods
together with the corresponding weight are presented in Table 2.5. It can be seen
that the proposed algorithm has found the best results so far. Specifically, in
comparison to the standard PSO, the resulted structure is meaningfully lighter.

The mean weight and the standard deviation of the results obtained by DPSO are
362.21 kg and 1.68 kg respectively, while PSO has obtained a mean weight of
381.2 kg and a standard deviation of 4.26 kg. This indicates that DPSO not only
finds a better best solution but also is more stable.

Table 2.6 represents the natural frequencies of the final structures obtained by
various methods for the 37-bar simply supported planar truss.

Figure 2.7 shows the optimized layout of the simply-supported 37-bar truss as
found by DPSO. The convergence curves for the democratic PSO and the standard
PSO are shown in Fig. 2.6. The information on the convergence curve values at the
few first analyses is not available in [60] (Fig. 2.8).

2.5.3.3 A 52-Bar Dome-Like Truss

Simultaneous layout and size optimization of a 52-bar dome-like truss is considered
as the third example. Initial layout of the structure is depicted in Fig. 2.9.
Non-structural masses of 50 kg are attached to all free nodes.

Table 2.7 summarized the material properties, frequency constraints and vari-
able bounds for this example.
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Table 2.5 Optimized designs obtained for the planar 37-bar truss problem

Kaveh and

Zolghadr

[65]

Wang Lingyun Gomes Standard Democratic

Variable et al. [63] et al. [64] [60] CSS PSO [28]
Y3, Y19 (m) 1.2086 1.1998 0.9637 0.8726 0.9482
Y5, Y17 (m) 1.5788 1.6553 1.3978 1.2129 1.3439
Y7,Y15 (m) 1.6719 1.9652 1.5929 1.3826 1.5043
Y9, Y13 (m) 1.7703 2.0737 1.8812 1.4706 1.6350
Y11 (m) 1.8502 2.3050 2.0856 1.5683 1.7182
Al, A27 (cm?) 3.2508 2.8932 2.6797 2.9082 2.6208
A2, A26 (cm?) 1.2364 1.1201 1.1568 1.0212 1.0397
A3, A24 (cm?) 1.0000 1.0000 2.3476 1.0363 1.0464
A4, A25 (cm?) 2.5386 1.8655 1.7182 3.9147 2.7163
A5, A23 (cm?) 1.3714 1.5962 1.2751 1.0025 1.0252
A6, A21 (cm?) 1.3681 1.2642 1.4819 1.2167 1.5081
A7, A22 (cm?) 2.4290 1.8254 4.6850 2.7146 2.3750
A8, A20 (cm?) 1.6522 2.0009 1.1246 1.2663 1.4498
A9, A18 (cm?) 1.8257 1.9526 2.1214 1.8006 1.4499
A10, A19 (cm?) 2.3022 1.9705 3.8600 4.0274 2.5327
All, A17 (cm?) 1.3103 1.8294 2.9817 1.3364 1.2358
Al2, Al5 (cm?) 1.4067 1.2358 1.2021 1.0548 1.3528
Al3, A16 (cm?) 2.1896 1.4049 1.2563 2.8116 2.9144
Al4 (cm?) 1.0000 1.0000 3.3276 1.1702 1.0085
Weight (kg) 366.50 368.84 377.20 362.84 360.40

Table 2.6 Natural frequencies (Hz) evaluated at the optimized designs for the planar 37-bar truss

Kaveh and

Frequency Wang Lingyun Gomes Zolghadr [65] Democratic
number et al. [63] et al. [64] [60] Standard CSS PSO [28]

1 20.0850 20.0013 20.0001 20.0000 20.0194

2 42.0743 40.0305 40.0003 40.0693 40.0113

3 62.9383 60.0000 60.0001 60.6982 60.0082

4 74.4539 73.0444 73.0440 75.7339 76.9896

5 90.0576 89.8244 89.8240 97.6137 97.2222

All of the elements of the structure are categorized in 8 groups according to
Table 2.8. All free nodes are permitted to move =2 m from their initial position in a
symmetrical manner. This is a configuration optimization problem with thirteen
variables (eight sizing variables + five layout variables) and two frequency
constraints.

This example has been investigated by Lin et al. [67] using a mathematical
programming technique and Lingyun et al. [64] using a niche hybrid genetic
algorithm. Gomes [60] has analyzed this problem using the standard particle
swarm algorithm. This problem has been studied using the standard and an
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Fig. 2.7 Schematic of the optimized layout of the simply-supported planar 37-bar truss
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Fig. 2.8 Comparison of convergence curves of democratic and standard PSO algorithms recorded
in the 37-bar Pratt type planar truss

enhanced CSS [65] and a hybridized CSS-BBBC with a trap recognition
capability [66].

Table 2.9 compares the final cross-sectional areas and node coordinates found by
different methods together with the corresponding weight for the 52 bar space truss.

It can be seen that the result gained by the democratic PSO is far better than the
standard PSO. The standard PSO uses 70 particles and about 160 iterations (11,200
analyses) to reach its best result while the democratic PSO uses 30 particles and
200 iterations (6,000 analyses). Table 2.8 indicates that among all the methods
listed above the democratic PSO has obtained the best solution. The mean weight
and the standard deviation of the results gained by DPSO are 198.71 kg and
13.85 kg, respectively while PSO has obtained a mean weight of 234.3 kg and a
standard deviation of 5.22 kg. DPSO performs considerably better in terms of best
and mean weight.

Table 2.10 shows the natural frequencies of the final structures found by various
methods for the 52-bar dome-like space truss.
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Fig. 2.9 Schematic of the initial layout of the spatial 52-bar truss. (a) Top view and (b) Side view
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Table 2.7 Material properties and frequency constraints and variable bounds for the spatial

52-bar truss

Property [unit] Value

E (Modulus of elasticity) [N/m?] 2.1 x 101
p (Material density) [kg/m3 ] 7,800
Added mass [kg] 50

Allowable range for cross-sections [m?]
Constraints on first three frequencies [Hz]

0.0001 < A < 0.001
w; < 15.916, w, > 28.648

Table 2'_8 Elemen.t grouping Group number Elements
adopted in the spatial 52-bar
truss problem 1 1-4
2 5-8
3 9-16
4 1720
5 21-28
6 29-36
7 37-44
8 45-52
Table 2.9 Optimized designs obtained for the spatial 52-bar truss problem
Kaveh and
Zolghadr
[65]
Liu Lingyun Gomes Standard Democratic
Variable et al. [67] et al. [64] [60] CSS PSO [28]
Z (m) 4.3201 5.8851 5.5344 5.2716 6.1123
Xgp (m) 1.3153 1.7623 2.0885 1.5909 2.2343
Zg (m) 4.1740 4.4091 3.9283 3.7093 3.8321
Xk (m) 2.9169 3.4406 4.0255 3.5595 4.0316
Zg (m) 3.2676 3.1874 2.4575 2.5757 2.5036
Al (cm?) 1.00 1.0000 0.3696 1.0464 1.0001
A2 (cm?) 1.33 2.1417 4.1912 1.7295 1.1397
A3 (cm?) 1.58 1.4858 1.5123 1.6507 1.2263
A4 (cm?) 1.00 1.4018 1.5620 1.5059 1.3335
A5 (cm?) 1.71 1.911 1.9154 1.7210 1.4161
A6 (cm?) 1.54 1.0109 1.1315 1.0020 1.0001
A7 (cm?) 2.65 1.4693 1.8233 1.7415 1.5750
A8 (cm?) 2.87 2.1411 1.0904 1.2555 1.4357
Weight 298.0 236.046 228.381 205.237 195.351

(kg)

Figure 2.10 shows the optimized layout of the spatial 52-bar truss as found by
DPSO. The convergence curve of the best run of the democratic PSO for the 52-bar
dome-like truss is shown in Fig. 2.11. The convergence curve for the standard PSO

is not available in [60].
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Table 2.10 Natural frequencies (Hz) evaluated at the optimized designs for the spatial 52-bar

truss
Kaveh and
Frequency Liu Lingyun Gomes Zolghadr [65] Democratic
number et al. [67] et al. [64] [60] Standard CSS PSO [28]
1 15.22 12.81 12.751 9.246 11.315
2 29.28 28.65 28.649 28.648 28.648
3 29.28 28.65 28.649 28.699 28.648
4 31.68 29.54 28.803 28.735 28.650
5 33.15 30.24 29.230 29.223 28.688
Fig. 2.10 Schematic of the optimized layout of the spatial 52-bar truss
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Fig. 2.11 Convergence curve of the democratic PSO for the spatial 52-bar truss
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Table 2.11 Material properties and frequency constraints and variable bounds for the 120-bar
dome truss

Property [unit] Value

E (Modulus of elasticity) [N/m?] 2.1 x 10

p (Material density) [kg/m3 ] 7971.810

Added mass [kg] m; = 3,000, m; = 500, m, = 100
Allowable range for cross-sections [mz] 0.0001 < A <0.01293
Constraints on first three frequencies [Hz] o > 9 0, > 11

Table 2.12 Optimized

: > . Element group Standard PSO Democratic PSO
designs (cm®) obtained for the
120-bar dome truss 1 23.494 19.607
2 32.976 41.290
3 11.492 11.136
4 24.839 21.025
5 9.964 10.060
6 12.039 12.758
7 14.249 15.414
Weight (kg) 9,171.93 8,890.48
Table 2.13 Natural Frequency number Standard PSO Democratic PSO
frequencies (Hz) evaluated at
the optimized designs for the 1 9.0000 9.0001
120-bar dome truss 2 11.0000 11.0007
3 11.0052 11.0053
4 11.0134 11.0129
5 11.0428 11.0471

2.5.3.4 A 120-Bar Dome Truss

The 120-bar dome truss shown in Fig. 2.12 is considered as the last example. This
problem has been previously studied as a benchmark optimization problem with
static constraints.

This problem has been used as a size optimization problem with frequency
constraints in [65]. Non-structural masses are attached to all free nodes as follows:
3,000 kg at node one, 500 kg at nodes 2 through 13 and 100 kg at the rest of the
nodes. Material properties, frequency constraints and variable bounds for this
example are summarized in Table 2.11. The layout of the structure is kept
unchanged during the optimization process. Hence, this is a sizing optimization
problem.

This example is solved here using both the standard and democratic PSO in order
to make the comparison possible. 30 particles and 200 iterations are used for both
methods. Table 2.12 represents a comparison between the final results obtained by
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Fig. 2.13 Comparison of converge curves of democratic and standard PSO algorithms recorded in
the 120-bar dome problem

the standard and the democratic PSO. Table 2.13 shows the natural frequencies of
the final structures found by both methods.

According to Table 2.12, the result obtained by the democratic PSO is mean-
ingfully lighter than that of the standard PSO. The mean weight and the standard
deviation of the results gained by DPSO are 8,895.99 kg and 4.26 kg, respectively
while PSO has obtained a mean weight of 9,251.84 kg and a standard deviation of
89.38 kg. This shows that the Democratic PSO outperforms the standard version in
all of the above mentioned aspects. Fig. 2.13 shows the convergence curves for both
methods.
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Chapter 3
Charged System Search Algorithm

3.1 Introduction

This chapter consists of two parts. In the first part an optimization algorithm based on
some principles from physics and mechanics, which is known as the Charged System
Search (CSS) [1]. In this algorithm the governing Coulomb law from electrostatics
and the Newtonian laws of mechanics. CSS is a multi-agent approach in which each
agent is a Charged Particle (CP). CPs can affect each other based on their fitness
values and their separation distances. The quantity of the resultant force is deter-
mined by using the electrostatics laws and the quality of the movement is determined
using Newtonian mechanics laws. CSS can be utilized in all optimization fields;
especially it is suitable for non-smooth or non-convex domains. CSS needs neither
the gradient information nor the continuity of the search space.

In the second part, CSS is applied to optimal design of skeletal structures and
high performance of CSS is illustrated [2].

3.2 Charged System Search

3.2.1 Background

3.2.1.1 Electrical Laws

In physics, the space surrounding an electric charge creates an electric field, which
exerts a force on other electrically charged objects. The electric field surrounding a
point charge is given by Coulomb’s law. Coulomb confirmed that the electric force
between two small charged spheres is proportional to the inverse square of their
separation distance. The electric force between charged spheres A and B in Fig. 3.1
causes the spheres to either attract or repel each other, and the resulting motion
causes the suspended fiber to twist. Since the restoring torque of the twisted fiber is

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 41
DOI 10.1007/978-3-319-05549-7_3, © Springer International Publishing Switzerland 2014
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Fig. 3.1 Coulomb’s torsion . Suspension
balance, used to establish &L 5 head
the inverse-square law for =
the electric force between
two charges [1]

———— Fiber

proportional to the angle through which the fiber rotates, a measurement of this
angle provides a quantitative measure of the electric force of attraction or repulsion
[3]. Coulomb’s experiments showed that the electric force between two stationary
charged particles:

 is inversely proportional to the square of the separation distance between the
particles and directed along the line joining them;

* is proportional to the product of the charges ¢; and g; on the two particles;

 is attractive if the charges are of opposite sign, and repulsive if the charges have
the same sign.

From the above observations, Coulomb’s law provides the magnitude of the
electric force (Coulomb force) between the two point-charges [3] as

(3.1)

where k, is a constant called the Coulomb constant; 7;; is the distance between the
two charges.

Consider an insulating solid sphere of radius a, which has a uniform volume
charge density and carries a total positive charge g;. The electric field E;; at a point
outside the sphere is defined as
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Fig. 3.2 A plot of Ej;
versus r;; for a uniformly y
charged insulating sphere ;

[1]

Ej =k (3.2)

ij

The magnitude of the electric field at a point inside the sphere can be obtained
using Gauss’s law. This is expressed as

q.
Ej=ke 37y (3.3)

Note that this result shows that E;; — 0 as r;; — 0. Therefore, the result elim-
inates the problem that would exist at 7;; = 0if Ej;is varied as 1 /rizj inside the sphere
as it does outside the sphere. That is, if £;; oc 1 /rizj the field will be infinite at r;; = 0,
which is physically impossible. Hence, the electric field inside the sphere varies
linearly with r;. The field outside the sphere is the same as that of a point charge g,
located at 7;; = 0. Also the magnitudes of the electric fields for a point at inside or
outside the sphere coincide when r; = a. A plot of Ej; versus r; is shown in
Fig. 3.2 [3].

In order to calculate the equivalent electric field at a point (r;) due to a group of
point charges, the superposition principle is applied to fields which follows directly
from the superposition of the electric forces. Thus, the electric field of a group of
charges can be expressed as
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N
E= Y E; (3.4)
i=1,i#j

where N is the total number of charged particles and E;; is equal to

keq; .
;3’ ri  ifry<a
E;= 3.5
! ked; ifr;>a )
r; Y=

u

In order to obtain both the magnitude and direction of the resultant force on a
charge g; at position r; due to the electric field of a charge ¢; at position r;, the full
vector form is required which can be expressed as

ri—Tr;
F,‘j = E,:qu —t g (36)
[fri =]

For multiple charged particles, this can be summarized as follows:

q; . q; . r,—r; i1=1,i2:0<:>r,-j<a
F, =k.q; =rij-h+=5-bh|+— i . 3.7
/ @( A 2>Hri—r,-|! (hZ0nZ12030 6

3.2.1.2 Newtonian Mechanics Laws

Newtonian mechanics or classical mechanics studies the motion of objects. In the
study of motion, the moving object is described as a particle regardless of its size. In
general, a particle is a point-like mass having infinitesimal size. The motion of a
particle is completely known if the particle’s position in space is known at all times.
The displacement of a particle is defined as its change in position. As it moves from
an initial position r,;, to a final position r,.,,, its displacement is given by

Ar = Iy — Tl (3.3)

The slope of tangent line of the particle position represents the velocity of this
particle as

— Fyew — Told _ Fypew — Yold (39)
thew — told At

When the velocity of a particle changes with time, the particle is said to be
accelerated. The acceleration of the particle is defined as the change in the velocity
divided by the time interval during which that change has occurred:



3.2 Charged System Search 45

o View — Yold

a
At

(3.10)

Using (3.8), (3.9), and (3.10), the displacement of any object as a function of
time is obtained approximately as

1
Tpow :Ea-At2+vo,d~At+r0;d (3.11)

Another law utilized in this article is Newton’s second law which explains the
question of what happens to an object that has a nonzero resultant force acting on it:
the acceleration of an object is directly proportional to the net force acting on it and
inversely proportional to its mass

F=m-a (3.12)

where m is the mass of the object.
Substituting (3.12) in (3.11), we have

Few LS Y- + Vo - At + Ty (3.13)
2m
3.2.2 Presentation of Charged Search System

In this section, a new efficient optimization algorithm is established utilizing the
aforementioned physics laws, which is called Charged System Search (CSS). In the
CSS, each solution candidate X; containing a number of decision variables
(i.e. X; = {x;;}) is considered as a charged particle. The charged particle is affected
by the electrical fields of the other agents. The quantity of the resultant force is
determined by using the electrostatics laws as discussed in Sect. 3.2.1.1 and the
quality of the movement is determined using the Newtonian mechanics laws. It
seems that an agent with good results must exert a stronger force than the bad ones,
so the amount of the charge will be defined considering the objective function
value, fiti). In order to introduce CSS, the following rules are developed:

Rule 1 Many of the natural evolution algorithms maintain a population of solu-
tions which are evolved through random alterations and selection [4,5]. Similarly,
CSS considers a number of Charged Particles (CP). Each CP has a magnitude of
charge (¢;) and as a result creates an electrical field around its space. The magnitude
of the charge is defined considering the quality of its solution, as follows

_ fit(i) — fitworst

;= , i=12,...,N 3.14
' fitbest — fitworst ! (3.14)

where fitbest and fitworst are the so far best and the worst fitness of all particles;
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fit(i) represents the objective function value or the fitness of the agent i; and N is the
total number of CPs. The separation distance r;; between two charged particles is
defined as follows:

o [1Xi = X
DX X5)/2 = K| [+ 6

(3.15)

where X; and X are the positions of the ith and jth CPs, X, is the position of the
best current CP, and ¢ is a small positive number to avoid singularities.

Rule 2 The initial positions of CPs are determined randomly in the search space

(0)

Xpj = Ximin +rand - (Ximax — Ximin)s 1= 1,2, ...,n (3.16)

()
ij
X; max are the minimum and the maximum allowable values for the ith variable; rand
is a random number in the interval [0,1]; and # is the number of variables. The

initial velocities of charged particles are zero

where x;  determines the initial value of the ith variable for the jth CP; x; ,;, and

v =0, i=12...n (3.17)
Rule 3 Three conditions could be considered related to the kind of the attractive
forces:

e Any CP can affect another one; i.e. a bad CP can affect a good one and vice versa
(pij=1.

e A CP can attract another if its electric charge amount (fitness with revise relation
in minimizing problems) is better than other. In other words, a good CP attracts a
bad CP

1 fit(j) > fir(i)
pij = (3.18)
0 else

e All good CPs can attract bad CPs and only some of bad agents attract good
agents, considering following probability function
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fit(i) — fitbest . v
py— 7]‘1[(]) =) > rand V fit()) >ﬁt(l) (3.19)

0 else

According to the above conditions, when a good agent attracts a bad one, the
exploitation ability for the algorithm is provided, and vice versa if a bad CP attracts
a good CP, the exploration is provided. When a CP moves toward a good agent it
improves its performance, and so the self-adaptation principle is guaranteed.
Moving a good CP toward a bad one may cause losing the previous good solution
or at least increasing the computational cost to find a good solution. To resolve this
problem, a memory which saves the best so far solution can be considered.
Therefore, it seems that the third kind of the above conditions is the best rule
because of providing strong exploration ability and an efficient exploitation.

Rule 4 The value of the resultant electrical force acting on a CP is determined
using (3.7) as

4 4 j=12,....,N
Fj:qu (a—;r,:,‘-il +r—2l-i2>p,j(xi—Xj), <i1 =1,ip :0<:>I’,‘j <a
iyi#j ij i1=0,ihb=1 < Fij >a

(3.20)

where F; is the resultant force acting on the jth CP, as illustrated in Fig. 3.3.

In this algorithm, each CP is considered as a charged sphere with radius a, which
has a uniform volume charge density. In this paper, the magnitude of a is set to
unity; however for more complex examples, the appropriate value for ¢ must be
defined considering the size of the search space. One can utilize the following
equation as a general formula

a=0.10 x max ({Xmax — Ximin|i = 1,2, ...,n}) (3.21)

According to this rule, in the first iteration where the agents are far from each
other the magnitude of the resultant force acting on a CP is inversely proportional to
the square of the separation between the particles. Thus the exploration power in
this condition is high because of performing more searches in the early iterations. It
is necessary to increase the exploitation of the algorithm and to decrease the
exploration gradually. After a number of searches where CPs are collected in a
small space and the separation between the CPs becomes small say 0.1, then the
resultant force becomes proportional to the separation distance of the particles
instead of being inversely proportional to the square of the separation distance.
According to Fig. 3.4, if the first equation (F;; o 1/r?j) is used for r;; = 0.1, we have
F;; = 100 x k.q;q; that is a large value, compared to a force acting on a CP at
ri =2 (F;; = 0.25 x k.q,q;), and this great force causes particles to get farther
from each other instead of getting nearer, while the second one (Fj o ry)
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Fig. 3.3 Determining the resultant electrical force acting on a CP [1]
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Fig. 3.4 A comparison between the equation [1] (a) F;; o 1/rfj and (b) F; o< 1y whenr; < a

guaranties that a convergence will happen. Therefore, the parameter a separates the
global search phase and the local search phase, i.e. when majority of the agents are
collected in a space with radius a, the global search is finished and the optimizing
process is continued by improving the previous results, and thus the local search
starts. Besides, using these principles controls the balance between the exploration
and the exploitation.
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It should be noted that this rule considers the competition step of the algorithm.
Since the resultant force is proportional to the magnitude of the charge, a better
fitness (great ¢;) can create a bigger attract force, so the tendency to move toward a
good CP becomes more than a bad particle.

Rule 5 The new position and velocity of each CP is determined considering (3.9)
and (3.13), as follows

F:
Xj,new = rana’,-l kg L. AP + randjz -k, - Vj,(,]d - Ar+ Xj,()ld (322)
! m; y
Xj,new - Xj,ald

Vinew =
Jinew At

(3.23)

where k, is the acceleration coefficient; k, is the velocity coefficient to control the
influence of the previous velocity; and rand;; and rand;, are two random numbers
uniformly distributed in the range of (0,1). Here, m; is the mass of the CPs which is
equal to g;. At is the time step and is set to unity.

The effect of the pervious velocity and the resultant force acting on a CP can be
decreased or increased based on the values of the &, and &, respectively. Excessive
search in the early iterations may improve the exploration ability; however it must
be deceased gradually, as described before. Since £k, is the parameter related to the
attracting forces, selecting a large value for this parameter may cause a fast
convergence and vice versa a small value can increase the computational time.
In fact k, is a control parameter of the exploitation. Therefore, choosing an
incremental function can improve the performance of the algorithm. Also, the
direction of the pervious velocity of a CP is not necessarily the same as the resultant
force. Thus, it can be concluded that the velocity coefficient &, controls the
exploration process and therefore a decreasing function can be selected. Thus, k,
and k, are defined as

k, = 0.5(1 — iter [itermax ), ko = 0.5(1 + iter [itermax) (3.24)

where iter is the actual iteration number and ifer,,, is the maximum number of
iterations. With this equation, &, decreases linearly to zero while k, increases to one
when the number of iterations rises. In this way, the balance between the exploration
and the fast rate of convergence is saved. Considering the values of these parameters,
(3.22) and (3.23) can be rewritten as

Xjonew = 0.5rand;y - (1 + iter fiterumx) - > %r,-j-il +’%".i2 Py (Xi — X))

i i ij
+ O.SF(lndjz . (1 + iter/itermax) . Vi,old + Xi,ald
(3.25)
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Fig. 3.5 The movement of
a CP to the new position [1]
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Figure 3.5 illustrates the motion of a CP to its new position using this rule. The
rules 5 and 6 provide the cooperation step of the CPs, where agents collaborate with
each other by information transferring.

Rule 6 Considering a memory which saves the best CP vectors and their related
objective function values can improve the algorithm performance without increasing
the computational cost. To fulfill this aim, Charged Memory (CM) is utilized to save
a number of the best so far solutions. In this paper, the size of the CM (i.e. CMS) is
taken as N/4. Another benefit of the CM consists of utilizing this memory to guide the
current CPs. In other words, the vectors stored in the CM can attract current CPs
according to (3.20). Instead, it is assumed that the same number of the current worst
particles cannot attract the others.

Rule 7 There are two major problems in relation to many metaheuristic algo-
rithms; the first problem is the balance between exploration and exploitation in the
beginning, during, and at the end of the search, and second is how to deal with an
agent violating the limits of the variables.

The first problem is solved naturally through the application of above-stated
rules; however, in order to solve the second problem, one of the simplest approaches
is utilizing the nearest limit values for the violated variable. Alternatively, one can
force the violating particle to return to its previous position or one can reduce the
maximum value of the velocity to allow fewer particles to violate the variable
boundaries. Although these approaches are simple, they are not sufficiently efficient
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and may lead to reduced exploration of the search space. This problem has previ-
ously been addressed and solved using the harmony search-based handling
approach [4,6]. According to this mechanism, any component of the solution vector
violating the variable boundaries can be regenerated from the CM as

w.p. CMCR ==>> select a new value for a variable from CM
==> w.p. (1 —PAR) do nothing
==> w.p. PAR choose aneighboring value
w.p. (1 — CMCR) ==> select a new value randomly

Xij =

(3.27)

where “w.p.” is the abbreviation for "with the probability"; x; ; is the ith component
of the CP j; The CMCR (the Charged Memory Considering Rate) varying between
0 and 1 sets the rate of choosing a value in the new vector from the historic values
stored in the CM, and (1-CMCR) sets the rate of randomly choosing one value
from the possible range of values. The pitch adjusting process is performed only
after a value is chosen from CM. The value (1—PAR) sets the rate of doing nothing.
For more details, the reader may refer to [4,6].

Rule 8 The terminating criterion is one of the followings:

¢ Maximum number of iterations: the optimization process is terminated after a
fixed number of iterations, for example, 1,000 iterations.

e Number of iterations without improvement: the optimization process is termi-
nated after some fixed number of iterations without any improvement.

» Minimum objective function error: the difference between the values of the best
objective function and the global optimum is less than a pre-fixed anticipated
threshold.

« Difference between the best and the worst CPs: the optimization process is
stopped if the difference between the objective values of the best and the
worst CPs becomes less than a specified accuracy.

* Maximum distance of CPs: the maximum distance between CPs is less than a
pre-fixed value.

Now we can establish a new optimization algorithm utilizing the above rules.
The following pseudo-code summarizes the CSS algorithm:

Level 1: Initialization

» Step 1: [nitialization. Initialize CSS algorithm parameters; Initialize an array of
Charged Particles with random positions and their associated velocities (Rules
1 and 2).

e Step 2: CP ranking. Evaluate the values of the fitness function for the CPs,
compare with each other and sort increasingly.
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o Step 3: CM creation. Store CMS number of the first CPs and their related values
of the objective function in the CM.

Level 2: Search

» Step 1: Attracting forces determination. Determine the probability of moving
each CP toward others (Rule 3), and calculate the attracting force vector for each
CP (Rule 4).

e Step 2: Solution construction. Move each CP to the new position and find the
velocities (Rule 5).

« Step 3: CP position correction. If each CP exits from the allowable search space,
correct its position using Rule 7.

» Step 4: CP ranking. Evaluate and compare the values of the objective function
for the new CPs; and sort them increasingly.

e Step 5: CM updating. If some new CP vectors are better than the worst ones in
the CM, include the better vectors in the CM and exclude the worst ones from the
CM (Rule 6).

Level 3: Terminating criterion controlling
» Repeat search level steps until a terminating criterion is satisfied (Rule 8).

The flowchart of the CSS algorithm is illustrated in Fig. 3.6.

3.3 Validation of CSS

In order to verify the efficiency of the new algorithm, some numerical examples are
considered from literature. The examples contain 18 uni-modal and multi-modal
functions. These numerical examples are presented in Sect. 3.3.1. The performance
of the CSS to optimize these functions is investigated in Sect. 3.3.2. In Sect. 3.3.3,
some well-studied engineering design problems taken from the optimization liter-
ature are used to illustrate the way in which the proposed method works.

3.3.1 Description of the Examples

In this section a number of benchmark functions chosen from [7] are optimized
using CSS and compared to GA and some of its variations to verify the efficiency of
CSS. The description of these test problems is provided in Table 3.1. When the
dimension is selected as 2, a perspective view and the related contour lines for some
of these functions are illustrated in Fig. 3.7.
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Fig. 3.6 The flowchart of the CSS [1]

3.3.2 Results

Similar to the other met-heuristics, for the CSS a large value for the number of CPs
increases the search strength of the algorithm as well as the computational cost and
vice versa a small number causes a quick convergence without performing a
complete search. Here, the number of CPs is set to 20 and the maximum number
of the permitted iterations is considered as 200. These values seem to be suitable for
finding the optimum results. The value of HMCR is set to 0.95 and that of PAR is
taken as 0.10 [4]. The results obtained by CSS are listed in Table 3.2 along with
those obtained by GA and some of its variations, which are directly derived from
[7]. The numbers denote the average number of function evaluations from 50 inde-
pendent runs for every objective function described in Sect. 3.1. The numbers in
parentheses represent the fraction of successful runs in which the algorithm has
located the global minimum with predefined accuracy, which is taken as € = f,,;,
— final = 10~*. The absence of the parentheses denotes that the algorithm has been
successful in all independent runs. Although the GEN-S-M-LS finds good results in
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Fig. 3.7 (continued)
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Fig. 3.7 (continued)
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Fig. 3.7 A perspective view and the related contour lines for some of function when n = 2 [1]

some cases, it must be noted that GEN-S-M-LS utilizes some auxiliary mechanisms
such as an improved stopping rule, a new mutation mechanism, a repeated appli-
cation of a local search procedure. To sum up, comparison of the results demon-
strates that CSS has a faster convergence than original GA and its variations.

In order to have some general idea about the way the CSS works, Fig. 3.8 is
prepared to show the positions of the current CPs and the stored CPs in the CM for
the first example. It can be seen that in the first iterations, the CPs investigate the
entire search space to discover a favorite space (global search). When this favorite
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Table 3.2 Performance comparison for the benchmark problems

Function GEN GEN-S GEN-S-M GEN-S-M-LS CSS
AP 1,360 (0.99) 1,360 1,277 1,253 804
Bfl 3,992 3,356 1,640 1,615 1,187
Bf2 20,234 3,373 1,676 1,636 742
BL 19,596 2,412 2,439 1,436 423
Branin 1,442 1,418 1,404 1,257 852
Camel 1,358 1,358 1,336 1,300 575
Cb3 9,771 2,045 1,163 1,118 436
CM 2,105 2,105 1,743 1,539 1,563
Dejoung 9,900 3,040 1,462 1,281 630
Exp2 938 936 817 807 132
Exp4 3,237 3,237 2,054 1,496 867
Exp8 3,237 3,237 2,054 1,496 1,426
Goldstein and Price 1,478 1,478 1,408 1,325 682
Griewank 18,838 (0.91) 3,111 (0.91) 1,764 1,652 (0.99) 1,551
Hartman3 1,350 1,350 1,332 1,274 860
Hartman6 2,562 (0.54) 2,562 (0.54) 2,530 (0.67) 1,865 (0.68) 1,783
Rastrigin 1,533 (0.97) 1,523 (0.97) 1,392 1,381 1,402
Rosenbrock 9,380 3,739 1,675 1,462 1,452
Total 112,311 (96.72) 41,640 (96.77) 29,166 (98.16) 25,193 (98.16) 17,367

space containing a global optimum is discovered, the movements of the CPs are
limited to this space in order to provide more exploitation (local search).

For many heuristic algorithms it is common property that if all the agents get
gathered in a small space, i.e. if the agents are trapped in part of the search space,
escaping from this may be very difficult. Since prevailing forces for the CSS algo-
rithm are attracting forces, it looks as if the above problem has remained unsolved for
this method. However, having a good balance between the exploration and the
exploitations, and considering three steps containing self-adaptation, cooperation
and competition in the CSS, can solve this problem. As illustrated in Fig. 3.9 which
shows the positions of the CPs for the first example when all the initial agents are
located in a small part of the space, CSS can escape from this space and go toward the
favorite space.

3.4 Charged System Search for Structural Optimization

3.4.1 Statement of the Optimization Design Problem

For optimum design of structures the objective function can be expressed as
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Fig. 3.8 The positions of the current CPs and the stored CPs in the CM for the first example [1]

minimize  W(X) = Z Vi Xi-Li (3.28)

i=1

where W(X) is the weight of the structure; n is the number of members making up
the structure; y; represents the material density of member i; L; is the length of
member i; x; is the cross-sectional area of member i chosen between X,;, and X;ax;
and min is the lower bound and max is the upper bound. This minimum design also
has to satisfy inequality constraints that limit design variable sizes and structural
responses, Lee and Geem [8].

3.4.1.1 Constraint Conditions for Truss Structures

For truss structures, the constraints are as follows:
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Fig. 3.9 The positions of the CPs for the first example when the all initial agents are introduced in
a small part of the space [1]

5min S 6i S 5max = 1,2,....,m
Omin < 0j < Omax i=12,...,n (329)
o) <6, <0 i=1,2,....nc

in which m is the number of nodes; nc denotes the number of compression
elements; o; and §; are the stress and nodal deflection, respectively; af’ represents
allowable buckling stress in member i when it is in compression.

3.4.1.2 Constraint Conditions for Frame Structures
For the frame structures, according to the AISC-ASD [9] code, the constraints are as

follows:
The stress limitations:



3.4 Charged System Search for Structural Optimization 63

fa fbv fby f‘l
La p Tbe L 20y 1 For L2 <0.15 3.30
Fo Ry TRy T RS (330
Coxfox Cy
&+ Uffbx 1yfby S 1, For &>015 (331)
F (1 —f—,”)th (1 _L>F Fa
F,, F;y by
fa f by fhy fa
Tbe Ty o R 2 > 0.15 3.32
0.6F, +Fbx +Fby < or F, > ( )

The slenderness ratio limitation:

kiL;

T

kL, (3.33)
<200 For compression members

A=

< 300 For tension members

A=

ri

where f, (=P/A;) represents the computed axial stress. The computed flexural
stresses due to bending of the member about its major (x) and minor (y) principal
axes are denoted by f}, and f;,, respectively. F ;X and F Iey denote the Euler stresses
about principal axes of the member that are divided by a factor of safety of 23/12.
The allowable bending compressive stresses about major and minor axes are
designated by F, and Fy,. C,, and C,, are the reduction factors, introduced to
counterbalance overestimation of the effect of secondary moments by the amplifi-

cation factors (1 — fT) For unbraced frame members, these factors are taken as

0.85. For braced frame members without transverse loading between their ends,
these are calculated from C,, = 0.6 — 0.4M/M,, where M,/M, is the ratio of
smaller end moment to the larger end moment. Finally, for braced frame members
having transverse loading between their ends, these factors are determined from the
formula C,, = 1 + w( fa/F;) based on a rational approximate analysis outlined in
ASD-AISC [9] Commentary-H1, where  is a parameter that considers maximum
deflection and maximum moment in the member. F, stands for the allowable axial
stress under axial compression force alone, and is calculated depending on elastic or
inelastic bucking failure mode of the member according to the slenderness ratio:

2 5 34 A2
1 —— |Fy / §+8C ——5 | For 4 <Cc
F, = 2Cc c 8Cc (3.34)

127%E
Lz For A; > Cc¢
23%;

where E = the modulus of elasticity; F, = the yield stress of steel; C. =
the slenderness ratio dividing the elastic and inelastic buckling regions (C¢ =
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/2#n?E[Fy); A = the slenderness ratio (4; = kL;/r;); k = the effective length
factor; and r; = the governing radius of gyration. For an axially loaded bracing
member whose slenderness ratio exceeds 120, F, is increased by a factor of
(1.6 — L;/200r;) considering relative unimportance of the member. Equation
(23) represents the slenderness limitations imposed on all members such that
maximum slenderness ratio is limited to 300 for members under tension, and to
200 for members under compression loads.

Geometric constraints:

Geometric constraints are considered between beams and columns framing into
each other at a common joint for practicality of an optimum solution generated. For
the two beams Bl and B2 and the column shown in Fig. 3.10, the following
geometric constraints are written (Saka and Hasangebi [10]):

by, < by (3.35)
by, < (de — 2t7) (3.36)

where by, b}h and by are the flange width of the beam B1, the beam B2 and the
column, respectively, d. is the depth of the column, and #is the flange width of the
column. Equation (3.35) ensures that the flange width of the beam B1 remains
smaller than that of the column. On the other hand, (3.36) enables that flange width
of the beam B2 remains smaller than clear distance between the flanges of the
column.

Maximum lateral displacement:

Ar
— <R .
7 < (3.37)

Inter-story displacement constraints:

d.
h—ng,, i=1,2,...,ns (3.38)

where Ar is the maximum lateral displacement. H is the height of the frame
structure. R is the maximum drift index (= 1/400). d; is the inter-story drift. 4; is
the story height of the ith floor. ns represents the total number of stories. R; is the
inter-story drift index permitted by the code of the practice (= 1/400).

3.4.1.3 Design Loads for Frame Structures

The frame examples are subjected to various gravity loads in addition to lateral
wind forces. The gravity loads acting on floor slabs cover dead (D), live (L) and
snow (S) loads. All the floors excluding the roof are subjected to a design dead load
of 2.88 kN/m? and a design live load of 2.39 kN/m? The roof is subjected to a
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Fig. 3.10 Beam-column
geometric constraints [2]

|

design dead load of 2.88 kN/m? plus snow load. The design snow load is computed
using the equation (7-1) in ASCE 7-05 [11], resulting in a design snow pressure of
0.75 kN/m”. The calculated gravity loads are applied as uniformly distributed loads
on the beams using distribution formulas developed for slabs. The design wind
loads (W) are also computed according to ASCE 7-05 using the following equation:

py = (0.613K.K..K,V*I)(GC,) (3.39)

where p,, is the design wind pressure in kN/m?; K. (=1.07) is the velocity exposure
coefficient; K., (=1.0) is the topographic factor, K, (=0.85) is the wind direction-
ality factor; I (=1.15) is the importance factor; and V (=46.94 m/s) is the basic
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wind; G (=0.85) is the gust factor, and C, (=0.8 for windward face and —0.5 for
leeward face) is the external pressure coefficient. The calculated wind loads are
applied as uniformly distributed lateral loads on the external beams of the frames
located on windward and leeward facades at every floor level.

The load combination per AISC-ASD specification is considered as

(D+L+ S+ Wy).
(D+L+S+W,).

It should be noted that for wind forces in the above load combinations two cases
are considered. In the first case, the wind loading is acting along x-axis, whereas in
the second one it is applied along y-axis.

3.4.2 CSS Algorithm-Based Structural Optimization
Procedure

As defined in the previous section, there are some problem-specific constraints in
structural optimization problems that must be handled. The penalty function
method has been the most popular constraint-handling technique due to its simple
principle and ease of implementation. In utilizing the penalty functions, if the
constraints are between the allowable limits, the penalty will be zero; otherwise,
the amount of penalty is obtained by dividing the violation of allowable limit to the
limit itself. Since the CSS is independent of the type of penalty function, one can
easily utilize another approach in the application of CSS.

Detailed procedure of the proposed CSS algorithm-based method to determine
optimal design of structures is shown in Fig. 3.11. Considering the rules defined for
the CSS in Sect. 3, and utilizing the penalty functions to handle the problem-
specific constraints, the CSS algorithm-based structural optimization procedure
can be divided into the following three phases:

Phase 1: Initialization CSS algorithm parameters such as N, CMS, k,, k, and
design variable bounds are initialized. An array of CPs with random positions and
their associated velocities considering variable bounds are randomly generated that
are equal to the size of the N. The generated CPs are analyzed and the values of the
fitness function for the CPs considering the weight of the structure and the penalty
functions are evaluated. Then, CPs are ranked in an increasing order. CMS number
of the first CPs and their related values of the fitness function are stored in the CM.

Phase 2: Search Each CP moves to the new position considering the probability of
motion (3.24), the magnitude of the attracting force vector (3.25) and the motion
laws (3.26) and (3.27). If each CP exits from the allowable search space, its position
is corrected using the harmony-based algorithm. Then, the new CPs are analyzed to
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Fig. 3.11 The flowchart of the CSS for the truss structures [2]
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evaluate the fitness function and to sort them increasingly. Then, some of the good
new CPs are stored in the CM and the worst ones are excluded from the CM.

Phase 3: Terminating Criterion Controlling Search level is continued until a
terminating criterion is satisfied.

3.5 Numerical Examples

In this section, three truss and two frame structures are optimized utilizing the new
algorithm. The final results are then compared to the solutions of other advanced
heuristic methods to demonstrate the efficiency of this work. For the CSS algo-
rithm, a population of 20 CPs is used for the first and the second truss examples and
a population of 50 candidates is selected for the remaining examples. The effect of
the pervious velocity and the resultant force affecting a CP can decrease or increase
based on the values of the k, and k,. Here, k, and k, are defined as

k, =c(1— i.ter/i.termax) (3.40)
kg = c(1 + iter /itermax)

where ifer is the iteration number, and iter,,,, is the maximum number of the
iterations, ¢ is set to 0.5 and 0.2 when the population of 20 and 50 CPs are selected,
respectively. With this equation, &, decreases linearly while k, increases when the
number of iterations raises. In this way, the balance between the exploration and the
fast rate of convergence is saved.

In order to investigate the effect of the initial solution on the final result and
because of the stochastic nature of the algorithm, each example is independently
solved several times. The initial population in each of these runs is generated in a
random manner according to Rule 2. The first two truss examples are optimized by
the CSS algorithm for 50 times, while performance comparisons of the CSS method
in other examples based on 20 evaluations. The algorithms are coded in Matlab and
structures are analyzed using the direct stiffness method.

3.5.1 A Benchmark Truss

The topology and nodal numbering of a 25-bar spatial truss structure, shown in
Fig. 3.12, are known as a benchmark example in the field of structural optimization.
The material density is considered as 0.1 Ib/in’® (2767.990 kg/m’) and the modulus
of elasticity is taken as 10,000 ksi (68,950 MPa). Twenty five members are
categorized into eight groups, as follows: (1) Aj, (2) Ay—As, (3) Ag—Ag, (4) Ajo—
Aqr, (5) Aiz—Ags, (6) A=Ay, (7) Aig=Azy, and (8) Axo—Ass.
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Fig. 3.12 Schematic of a twenty five-bar spatial truss [2]

Table 3.3 Loading conditions for the 25-bar spatial truss

B 75—
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P kips (kN)

Case 1 Case 2
Node Px kips (kN) Py kips (kN) Py kips (kN) Py kips (kN) Py kips (kN)
1 0.0 20.0 (89) —5.0 (22.25) 1.0 (4.45) 10.0 (44.5)
2 0.0 —20.0 (89) —5.0(22.25) 0.0 10.0 (44.5)
3 0.0 0.0 0.0 0.5 (2.22) 0.0
6 0.0 0.0 0.0 0.5 (2.22) 0.0

—5.0 (22.25)
—5.0 (22.25)

0.0
0.0

Table 3.4 Member stress limitation for the 25-bar spatial truss

Element group Compressive stress limitations, ksi (MPa) Tensile stress limitations, ksi (MPa)

1 4 35.092 (241.96) 40.0 (275.80)
2 ArAs 11.590 (79.913) 40.0 (275.80)
3 AgAg 17.305 (119.31) 40.0 (275.80)
4 ApAn 35.092 (241.96) 40.0 (275.80)
5 A4y 35.002(241.96) 40.0 (275.80)
6  AuA;; 6759 (46.603) 40.0 (275.80)
7 AAs  6.959 (47.982) 40.0 (275.80)
8  AmAss  11.082 (76.410) 40.0 (275.80)

This spatial truss is subjected to two loading conditions shown in Table 3.3.
Maximum displacement limitations of +0.35 in (+8.89 mm) are imposed on every
node in every direction and the axial stress constraints vary for each group as shown
in Table 3.4. The range of cross-sectional areas varies from 0.01 to 3.4 in’

(0.6452 cm? to 21.94 cm?).
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Fig. 3.13 Schematic of a 120-bar dome shaped truss [2]

The CSS algorithm achieves the best solution after 7,000 searches. However, the
HBB-BC (Kaveh and Talatahari [12]) and HPSACO (Kaveh and Talatahari [4])
algorithms find the best solution after about 12,500 and 9,875 analyses respectively,
which are 50 % and 41 % more than the present work. The best weight of the CSS is
545.10 1b. Although the CSS approach has slightly worse performance than the
improved methods IACS (Kaveh et al. [13]) and HPSACO (Kaveh and Talatahari
[4]), it performs better than other algorithms (GA (Rajeev and Krishnamoorthy
[14]), PSO (Schutte and Groenwold [15]) and HS (Lee and Geem [8]) when the best
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Table 3.6 Performance comparison for the 120-bar dome truss

Optimal cross-sectional areas (inz)

Kaveh

et al. Kaveh and Talatahari Present work [2]

IACS PSOPC PSACO HPSACO HBB-BC
Element group  [13] (4] [4] [4] [12] in’ cm?
1 A 3.026 3.040 3.026 3.095 3.037 3.027 19.529
2 A, 15.06 13.149 15222  14.405 14.431 14.606  94.232
3 A; 4.707 5.646 4.904 5.020 5.130 5.044 32.542
4 Ay 3.100 3.143 3.123 3.352 3.134 3.139 20.252
5 As 8.513 8.759 8.341 8.631 8.591 8.543 55.116
6 As 3.694 3.758 3.418 3.432 3.377 3.367 21.723
7 A, 2.503 2.502 2.498 2.499 2.500 2.497 16.110

Best weight (Ib) 33320.52 33481.2 33263.9 332489 33287.9 332519 147912 N
No. of analyses 3,250 150,000 32,600 10,000 10,000 7,000

weight, the average weight or the standard deviation are compared. Table 3.5
presents a comparison of the performance of the CSS algorithm and other heuristic
algorithms.

3.5.2 A 120-Bar Dome Truss

The topology and group numbers of 120-bar dome truss are shown in Fig. 3.13. The
modulus of elasticity is 30,450 ksi (210,000 MPa), and the material density is
0.288 1b/in® (7971.810 kg/m?). The yield stress of steel is taken as 58.0 ksi
(400 MPa). The dome is considered to be subjected to vertical loading at all the
unsupported joints. These loads are taken as —13.49 kips (—60 kN) at node
1, —6.744 kips (—30 kN) at nodes 2—14, and —2.248 kips (—10 kN) at the rest of
the nodes. The minimum cross-sectional area of all members is 0.775 in” 2 sz)
and the maximum cross-sectional area is taken as 20.0 in’ (129.03 sz)_ The
constraints are considered as:

1. Stress constraints (according to the AISC-ASD (1989) code):

(3.41)

o; for 6; <0

{oj =0.6F, for 6;>0

where o} is calculated considering the slenderness ratio (3.34).

2. Displacement limitations of £0.1969 in (&5 mm) are imposed on all nodes in x,
y and z directions.

Table 3.6 illustrates the best solution vectors, the corresponding weights and

the required number of analyses for convergence in the present algorithm and
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Fig. 3.14 Convergence history of the 120-bar dome shaped truss for the CSS algorithm [2]

some of other heuristic methods. Except IACS which uses two auxiliary mecha-
nisms for searching, the CSS optimization has best convergence rates. Fig-
ure 3.14 shows the best and average convergence history for the results of the
CSS. In addition, CSS and HPSACO find the best result among the other
metaheuristics. A comparison of the allowable and existing stresses and dis-
placements of the 120-bar dome truss structure using CSS is shown in Fig. 3.15.
The maximum value for displacement is equal to 0.19689 in (5 mm) and the
maximum stress ratio is equal to 99.98 %.

3.5.3 A 26-Story Tower Space Truss

The 26-story tower space truss containing 942 elements and 244 nodes is consi-
dered as the large-scale truss example. Fifty-nine design variables are used to
represent the cross-sectional areas of 59 element groups in this structure, employing
the symmetry of the structure. Figure 3.16 shows the geometry and the 59 element
groups. The material density is 0.1 Ib/in® (2,767.990 kg/m?>) and the modulus of
elasticity is 10,000 ksi (68,950 MPa).

The members are subjected to the stress limits of +25 ksi (172.375 MPa) and the
four nodes of the top level in the X, y, and z directions are subjected to the
displacement limits of +15.0 in (38.10 cm) (about 1/250 of the total height of the
tower). The allowable cross-sectional areas in this example are selected from 0.1 to
20.0 in? (from 0.6452 cm? to 129.032 cm?). The loading on the structure consists of:

1. The vertical load at each node in the first section is equal to —3 kips (—13.344
kN);

2. The vertical load at each node in the second section is equal to —6 kips (—26.688
kN);
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Fig. 3.15 Comparison of the allowable and existing constraints for the 120-bar dome shaped truss
using the CSS [2]. (a) Displacement in the x direction, (b) displacement in the y direction,
(c) displacement in the z direction and (d) stress

3. The vertical load at each node in the third section is equal to —9 kips (—40.032
kN);

4. The horizontal load at each node on the right side in the x direction is equal to —1
kips (—4.448kN);

5. The horizontal load at each node on the left side in the x direction is equal to 1.5
kips (6.672kN);

6. The horizontal load at each node on the front side in the y direction is equal to
—1 kips (—4.448kN);

7. The horizontal load at each node on the back side in the x direction is equal to
1 kips (4.448kN).

The CSS method achieved a good solution after 15,000 analyses and found an
optimum weight of 47,371 1b (210,716 N). The best weights for the GA, PSO, BB—
BC and HBB-BC are 56,343 1b (250,626 N), 60,385 Ib (268,606 N), 53,201 1b
(236,650 N) and 52,401 1b (233,091 N), respectively. In addition, CSS has better
performance in terms of the optimization time, standard deviation and the average
weight. Table 3.7 provides the statistic information for this example. The stress
constraints are dominant in this example. The maximum value of stress ratio is
equal to 96.7 %. Figure 3.17 compares the allowable and existing stresses in the
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Fig. 3.16 Schematic of a
26-story tower truss [2]
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elements for the CSS result. The convergence history is shown in Fig. 3.18. The
final designs obtained by the CSS technique for this example is given in Table 3.8.

3.5.4 An Unbraced Space Frame

A 10-story space steel frame consisting of 256 joints and 568 members is shown in
Fig. 3.19. This problem has been formerly studied by Saka and Hasangebi [10] to
evaluate the performance of a HS-based technique in real size optimum design of
steel frameworks considering ASD-AISC as the code of the practice.

The columns in a story are collected in three member groups as corner columns,
inner columns and outer columns, whereas beams are divided into two groups as
inner beams and outer beams. The corner columns are grouped together as having
the same section in the first three stories and then over two adjacent stories
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Table 3.8 The optimum design of the CSS algorithm for the 26-story tower spatial truss

Optimal cross-sectional areas (sz)

Members  Area Members  Area Members  Area

1 A; 0.962 21 Ay 2780 41 Ay 0.417
2 Aj 2.557 22 Ap 0.430 42 Ap 0.679
3 Az 1.650 23 Aps 3.048 43 Ay 19.584
4 Ay 0.402 24 Ay 5112 44 Ay 0.533
5 As 0.657 25 Ajs 19352 45 Ay 1.640
6 Ag 18.309 26 Ay 0.476 46 Ay 0.618
7 A, 0.346 27 Ay 2.887 47 Ay 0.531
8 Ag 3.076 28 Asg 19.500 48 Ay 1.374
9 Ao 2.235 29 Ay 4772 49 Ay 19.656
10 A 3.813 30 Az 5.063 50 Ay 0.888
11 Al 0.856 31 Ay 15.175 51 Ay 4.456
12 A 1.138 32 Az 1.176 52 As; 0.386
13 Az 3.374 33 Ajs 0.839 53 As; 10.398
14 Ay 0.573 34 Ay 1.394 54 Ay 18.834
15 Ays 19.530 35 Aj;s 0.153 55  Ass 18.147
16 As 1.512 36 Asg 0.247 56 Asg 3.280
17 Ay 2.667 37 Ajy 18.673 57 As, 2.972
18 Ayg 0.478 38 Ass 0.696 58 Asg 4.927
19 Ao 17.873 39 Ajo 1.395 59 Ay 0.288
20 Az 0.335 40 Ay 0.422

Weight (N) 210716

thereafter, as are corner columns, inner columns, outer columns, inner beams and
outer beams. This results in a total of 25 distinct design groups.

The optimum design of the space frame described above is carried out using the
CSS and compared with those of the simulated annealing (SA), evolution strategies
(ESs), particle swarm optimizer (PSO), tabu search optimization (TSO), simple
genetic algorithm (SGA), ant colony optimization (ACO), and harmony search
(HS) methods (Saka and Hasancebi [10]). In each optimization technique the
number of iterations was taken as 50,000, when ASD-AISC is used as the code of
the practice. Our investigation shows that 12,500 analyses are sufficient as the
maximum number of analyses for the CSS. This shows that the CSS can reach a
similar result as the other methods with smaller number of analyses. The design
history of each run by each technique is shown in Fig. 3.20.

The optimum design attained by the CSS method for this example is
225,654.0 kg, while it is 228,588.3 kg for the ESs. Among the metaheuristic
algorithms, the adaptive harmony search algorithm is the third best which is
1.6 % heavier than the one obtained by evolutionary strategies algorithm. The
optimum result for the TSO, SA, ACO, SGA and PSO is 235,167.5 kg,
238,756.5 kg, 241,470.31 kg, 245,564.80 kg and 253,260.23 kg, respectively. The
minimum weights as well as W-section designations obtained by some of the best
algorithms are provided in Table 3.9.
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Fig. 3.20 Comparison of the convergence history for the unbraced space frame [2]

3.5.5 A Braced Space Frame

The second frame example considered in this paper is a 36-story braced space steel
frame consisting of 814 joints and 1,860 members, as shown in Fig. 3.21, Saka and
Hasancgebi [10]. An economical and effective stiffening of the frame against lateral
forces is achieved through exterior diagonal bracing members located on the
perimeter of the building, which also participate in transmitting the gravity forces.

The 1,860 frame members are collected in 72 different member groups, consid-
ering the symmetry of the structure and the practical fabrication requirements. That
is, the columns in a story are collected in three member groups as corner columns,
inner columns and outer columns, whereas beams are divided into two groups as
inner beams and outer beams. The corner columns are grouped together as having
the same section over three adjacent stories, as are inner columns, outer columns,
inner beams and outer beams. Bracing members on each facade are designed as
three-story deep members, and two bracing groups are specified in every six stories.

The minimum weight design of the frame is equal to 2,301.69 ton for the CSS
algorithm while it is 2,383.60 ton and 4,438.17 ton for the adaptive harmony search
and the simple harmony search algorithms, respectively. Figure 3.22 shows the
design history graph obtained for this example. In the optimum design process, CSS
finds the optimum design after 12,500 analyses, while ES needs 50,000 searches to
determine the optimum solution.
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Table 3.9 Optimal design for the unbraced space frame

Optimal W-shaped sections
Saka and Hasangebi (2009)

Element group SA TSO AHS ESs Present work [2]
1 W14X193 W14X193 W14X176 W14X193 W14X132
2 W8X48 W8X48 W14X48 WEX48 W21X55
3 W8X40 W8X40 W10X39 W10X39 W12X40
4 W10X22 W10X22 W10X22 W10X22 W10X33
5 W21X44 W21X50 W24X55 W21X50 W21X50
6 W12X65 W10X54 W12X65 W10X54 W12X65
7 W14X145 W14X120 W14X145 W14X109 W14X99
8 W14X145 W14X159 W14X159 W14X176 W14X120
9 W24X65 W21X44 W14X30 W18X40 W21X44
10 W24X55 W18X40 W18X40 W18X40 W21X44
11 W10X49 W10X45 W10X54 W10X49 W14X61
12 W14X90 W14X90 W14X90 W14X90 W10X88
13 W14X120 W12X120 W14X120 W14X109 W14X99
14 W16X36 W12X44 W14X34 W14X30 W18X35
15 W16X40 W16X36 W18X40 W16X36 W12X50
16 W12X40 W10X33 W8X31 W12X45 W21X68
17 W12X65 W12X65 W12X65 W12X65 W16X57
18 W12X26 W14X34 W18X35 W10X22 W24X68
19 W12X72 W12X79 W12X79 W12X79 W16X36
20 W16X36 W14X30 W14X30 W14X30 W16X31
21 Ww8X24 W10X39 W10X22 W8X35 W10X33
22 W10X49 W12X45 W10X45 W10X39 W16X31
23 W8X24 W12X35 W8X31 W8X31 WE8X28
24 W12X26 W6X20 W10X22 WS8X18 W8X18
25 W12X26 W12X26 W12X26 W14X30 W10X26
Weight (kg) 238,756.5 235,167.5 232,301.2 228,588.3 225,654.0

3.6 Discussion

3.6.1 Efficiency of the CSS Rules

Solution of a number of design examples shows the superiority of the CSS algo-
rithm to the other existing metaheuristics. To investigate the effect of some utilized
rules, a number of the CSS-based algorithms are defined as follows:

Case 1: Rule 3 is changed as:

The kind of the electric forces between two charged particles is selected
randomly.

Case 2: Rule 4 is changed as:

Any CP can act on another one; i.e. a bad CP can affect a good one and vice versa
(]?ljf = 1.

Case 3: Rule 4 is changed as:
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Fig. 3.21 Schematic of a braced space frame [2]
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Table 3.10 Investigation on the performance of various CSS-based algorithms for the 25-bar
truss in 50 runs

Case 1 Case 2 Case 3 Case 4 Case 5
Best weight (1b) 551.31 551.10 545.99 546.28 550.55
Average weight (Ib) 554.75 552.39 549.42 547.06 550.90
Std. Dev. (Ib) 1.210 0.885 1.467 0.707 0.686

Table 3.10 shows the results of the 50 runs of the first example for the each case.
Comparing the result of Case 1 with the result of the original CSS (Table 3.5)
confirms that considering repulsive forces between CPs reduces the power of the
algorithm. Although when a good agent attracts a bad one, the exploitation ability
for the algorithm is provided, and vice versa if a bad CP attracts a good CP, the
exploration is provided, however differences between the results of the Cases 2 and
3 with the original CSS indicated that when all bad agents attract good ones, a
disorder will be created and when only good CPs attract bad ones the convergence
will occur very soon and a complete search will not be performed. As a result, at
least the computational cost to reach a good solution may increase for the condition
of the Cases 2 and 3.

3.6.2 Comparison of the PSO and CSS

Both the CSS and the PSO are multi-agent algorithms in which the position of each
agent is obtained by adding the agent’s movement to its previous position; however
the movement strategies are different. In the PSO algorithm, each particle contin-
uously focuses and refocuses on the effort of its search according to both local best
and global best, while the CSS approach uses the governing laws from electrical
physics and the governing laws of motion from the Newtonian mechanics to
determine the amount and the direction of a charged particle’ movement. The
potency of the PSO is summarized to find the direction of an agent’ movement,
while the CSS method can determine not only the directions but also the amount of
movements. In the PSO, the direction of an agent is calculated using only two best
positions containing local best and global best. However, in the CSS the agent
direction is calculated based on the overall forces resulted by the best agents stored
in the CM and some of the best current CPs. CSS can distinguish finishing the
global phase and change the movement updating equation for the local phase to
have a better balance between the exploration and exploitation. While one of the
greatest disadvantages of the PSO approach is the existence of some difficulties in
controlling the balance between the exploration and exploitation due to ignoring the
effect of other agents, Kaveh and Talatahari [4].
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3.6.3 Efficiency of the CSS

CSS utilizes the Coulomb and Gauss laws to determine the direction and the
amount of the movement of each agent and uses some laws of the Newtonian
mechanics to complete the movement process. Compared to other metaheuristics,
CSS has less computing cost and can determine the optimum result with a smaller
number of analyses. Due to having a good balance between the exploration and
exploitation, the performance of the CSS in both global search stage (initial
iterations) and the local search stage (last iterations) is good. The comparison of
the CSS results with those of the other heuristics shows the robustness of the present
algorithm and demonstrates the efficiency of the algorithm to find optimum design
of structures.
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Chapter 4
Magnetic Charged System Search

4.1 Introduction

This chapter consists of two parts. In first part, the standard Magnetic Charged
System Search (MCSS) is presented and applied to different numerical examples to
examine the efficiency of this algorithm. The results are compared to those of the
original charged system search method [1].

In the second part, an improved form of the MCSS algorithm, denoted by
IMCSS, is presented and also its discrete version is described. The IMCSS algo-
rithm is applied to optimization of truss structures with continuous and discrete
variables to demontrate the performance of this algorithm in the field of structural
optimization [2].

4.2 Magnetic Charged System Search Method

One of the most recent metaheuristic algorithms is the Charged System Search
(CSS) presented in Chap. 3, which uses the Coulomb and Gauss laws from physics
and Newtonian laws from mechanics to guide the Charged Particles (CPs) to
explore the locations of the optimum [3].

In this chapter, an improved CSS algorithm which is called Magnetic Charged
System Search (MCSS) is presented. The new algorithm utilizes the governing laws
for magnetic forces, and includes magnetic forces in addition to electrical forces.
The movements of CPs due to the total force (Lorentz force) are determined using
Newtonian mechanical laws.

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 87
DOI 10.1007/978-3-319-05549-7_4, © Springer International Publishing Switzerland 2014
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4.2.1 Magnetic Laws

4.2.1.1 Magnetic Fields

There is a relation between electric and magnetic forces and these forces are called
electromagnetic forces. The region surrounding any stationary or moving charged
particle contains electric fields. In addition to electric field, the region surrounding
any moving charged particle also contains magnetic fields. The existence of the
magnetic field near the moving charged particles was Oersted’s discovery in 1819.
He has shown that a compass needle deflected by a current-carrying conductor.
Shortly after this discovery, Biot and Savart proposed a mathematical expression
so-called Biot-Savar law that provides the magnitude of magnetic field at any point
of the space in terms of the electric current that produces the field, Fig. 4.1. Biot-
Savar law is expressed [4] as:

Ho IdSXf'

dB = -

dr r (4.1)

Here, dB is the magnetic field at point P and po is a constant called the
permeability of free space, and r is the distance between ds to P.

Consider a straight wire with radius of R carrying electric current of magnitude
I which is uniformly distributed through the cross-section of the wire, Fig. 4.2a. By
utilizing Biot-Savar law, the magnetic field produced by wire at a point like
P outside the wire, can be determined as:

I
B= ’2‘—2 ~ when r >R (4.2)

The magnitude of the magnetic field inside the wire can be obtained using
Ampere’s law,

I
B = (/24—;1?) x r when r <R (4.3)

With this formulation for magnetic field, the magnitude of the field inside the
wire increases linearly from r = 0 to r = R (B « r), and outside of the wire, it is
inversely proportional to the distance (B o< 1/r), and decreases by increasing the
distance. When r = R, the (4.2) and (4.3) have an overlap, and both give identical
magnitude for the magnetic field. A plot of these two equations from [4] is shown in
Fig. 4.2b.

If there are many wires in a space, in order to calculate the total magnitude of the
magnetic field in a specified point, the equivalent magnetic field should be calcu-
lated by considering the principle of superposition, and summing the magnetic
fields produced by each wire. Therefore, the total magnetic field at a specified point
P, due to a group of wires, can be obtained as:
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Fig. 4.1 The magnitude of dB ®P
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Bp=>_ B (4.4)
i=1

where Bp is the total magnetic field at point P, n is the number of wires in the space,
and B;, is the magnetic field created by the ith wire at point P which can be
expressed as:

1
Fol for r >R
2nr
B, = (4.5)
’ ’M—OL xr forr<R
27 R?

4.2.1.2 Magnetic Forces

When a charged particle moves in a magnetic field, a magnetic force Fp will be
imposed on that moving charged particle. Experiments on charged particles moving
in a magnetic field results in the following:

» The magnitude of the magnetic force Fp exerted on the charged particle is
proportional to the charge ¢ and to the speed v of the particle.

¢ The magnitude and direction of the magnetic force Fz depend on the velocity of
the particle and magnitude and direction of magnetic field B.
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By summarizing these observations, an expression for calculating the magnetic
force is obtained [4] as:

Fz =gvxB (4.6)

where B is the magnetic field exerted on the particle. Here, the only source of the
magnetic field is the magnetic field produced by the wires. Thus, the magnitude of
the B can be calculated using (4.5).

4.2.2 A Brief Introduction to Charged System Search
Algorithm

The Charged system search (CSS) algorithm, as explained in Chap. 3, takes its
inspiration from the physic laws governing a group of charged particles, CPs. These
charge particles are sources of the electric fields, and each CP can exert electric
force on other CPs. Using the Newtonian mechanic laws, the movement of each CP
due to the electric force can be determined. The CSS algorithm is summarized in a
step-by-step form as follows:

Step 1. Initialization
The initial positions of the CPs are randomly determined using a uniform source,
and the initial velocities of the particles are set to zero. A memory is used to save
a number of best results. This memory is called the Charged Memory (CM).
Step 2. Determination of electric forces and the corresponding movements

e Force Determination. Each charged particle imposes electric forces on the
other CPs according to the magnitude of its charge. The charge of the each CP
is:

_ fit(i) — fitworst

= 4.7
fitbest — fitworst S

i

where fit(i) is the objective function value of the ith CP, fitbest and fitworst are the
so far best and worst fitness among all of the CPs, respectively.

In addition to electric charge, the magnitude of the electric forces exerted on the
CPs is depended on their separation distance that is,

. [Xi — |
T[4 X5)/2 = Xpew| | + &

(4.8)

where X; and X; are the position of the ith and jth CPs, and r;; is the separation
distance these CPs. X, is the position of the best current CP, and ¢ is a small
positive number to prevent singularity.
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The probability of the attraction of the ith CP by the jth CP is expressed as:
jit(i) — fitbest
o 0 =it

Dij = fit(j) — fit(i)

0 & else.

> rand, or.fit(j) > fit(i) (4.9)

The electric resultant force Fp;, acting on the jth can be calculated by the
following equation:

4qi 4qi
Fr;= (]jz <a3rij “Wi +N'W2> “Dji
iz i
W1=1,W2:0<=>}’,'j<R
(Xi = X)), {wi=0wy=1sr; >R (4.10)
j=12,...,N

* Movements Calculations. According to the determined forces, each CP
moves to its new position, and attain velocity as:

F.
X pew = rand;y - ko - AP+ randp - ky - Vj oia - At + X o1, (4.11)
m;
X new — X old
Vi = 00 0% 4.12
J.ne At ( )

where rand;; and rand;, are two random numbers that uniformly distributed in the
range (0, 1). k, is the acceleration coefficient, k, is the velocity coefficient, and m; is
the mass of particle that is considered equal to g;. The magnitudes of the k, and &,
are set to 0.5 which are linearly increased and decreased as:

k, = 0.5(1 + iterfiteryay), k, = 0.5(1 — iter/iteryay) 4.13)

where ifer is the current iteration number, and ifer,,,, is the maximum number of
iterations.

Step 3. Charged Memory (CM) Updating
If among all of the new CPs, there are better CP or CPs that have better objective
function value than the worst ones in the CM, these should be included in the
CM, and the worst ones in the CM are excluded from the CM.

Step 4. Checking the Termination Criteria
Steps 2 and 3 are reiterated until one of the specified terminating criteria is
satisfied.
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4.2.3 Magnetic Charged System Search Algorithm

4.2.3.1 Combination of Magnetic and Electric forces

The inspiration of the standard CSS algorithm is based on a group of charged
particles that exert electric forces on each other based on their charges and their
separation distances. After computing the electric forces, each particle moves and
its movement is calculated by using Newtonian mechanics laws. Therefore, we
have charged particles that move in the search space. In physics, it has been shown
that when a charged particle moves, it produces magnetic field. This magnetic field
can exert a magnetic force on other charged particles. Thus, in addition to the
electric forces we should consider magnetic forces. In physics, when a charged
particle moves with velocity v in the presence of both an electric field E and a
magnetic field B, experiences both an electric force gE and a magnetic force
qv x B. The total force, known as the Lorentz force [4], exerting on the charged
particle is:

> F=Fz+Fr=qvxB+qE=gq-(vxB+E) (4.14)

Where F is the Lorentz force. Thus, MCSS, considers the magnetic force as an
additional force with the purpose of making the new algorithm closer to the nature
of the movement of charged particles. From optimization point of view, this new
force records additional information about the movement of the CPs, and it
improves the performance of the standard CSS.

4.2.3.2 MCSS Algorithm

The MCSS algorithm is based on its original version, standard CSS. The difference
between these two algorithms is that CSS only considers the electric force, but
MCSS includes magnetic forces besides electric forces. The main structure of the
algorithm is the same as the standard CSS, but in MCSS changes are made in part of
the algorithm where the forces are computed. By using the aforementioned physical
laws about magnetic fields and forces, the magnetic forces are determined. Each
solution candidate X; known as CP (charged particle) contains electrical charge.
These CPs produce electric fields, and exert electric forces on each other. When a
CP moves, it creates a magnetic field in the space, and this magnetic field imposes
magnetic forces on other CPs.

As explained previously, the source of the magnetic fields is the movement of
the CPs. For computing these fields, we assumed that CPs move in virtual straight
wires with radius of R. Thus, the path of movement of each particle consists of
straight wires. These straight wires change their directions by each movement of the
CPs, but during the movement, each wire remains straight, Fig. 4.3. The places that
a wire changes its direction, is the position of the CP at the end of its movement.
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Fig. 4.3 The schematic
view of a virtual wire
(movement path of a CP),
g~ is the charge of the ith
CP at end of the kth
movement (kth iteration) [1]

When the CP starts a new movement, the direction of its movement may differ from
its previous one, so the direction of the wire which includes the CP during its
movement also changes. According to magnetic laws presented in Sect. 4.2.1, a
conducting wire carrying electric current can creates magnetic fields in the space.
Now our virtual wires contain charged particles that move on them. By each
movement of the CPs, their charges are altered, so during the movement the
magnitude of the charge is not constant, and changes during the movement. This
movement of CPs can be comprehended as an electric current in the virtual wire.
The current of a wire is the rate at which charge flows through one specified cross-
section of the wire. If Ag is the amount of charge that passes through this area in a
time interval Az, the average current /,,, will be equal to the charge that passes
through the cross-section per unit time:

Ag

v (4.15)

Lvg =

Since the time intervals of each movement are set to unity, the average current
will be equal to the variation of the charge. For computing the variation of the
charges, we consider the start and the end points of the movement of CPs. By taking
these assumptions into account, (4.15) can be written as:

(Tave) . = = q/" (4.16)

where (/) is the average current in the ith wire of ith CP in the kth movement
(iteration), and q,-k ~Land q,-k are the charges of the ith CP at the start and end of its
kth movement, respectively. Equation (4.16) shows that by this definition for the
electric current, the concept of quantity represents the variation of the objective
function of each CP in each movement. By this definition, the electric current can
be both positive and negative values. A positive one indicates that the movement
produced an improvement in the charge of the CP. In other words, since the charge
of a CP is a quantity of its quality or objective function value, a positive electric
current means an improvement and a negative electric current means an deteriora-
tion in the quality of the CP.

Charge of the CPs is defined by (4.7). This expression for computing electric
charges results in values between O to 1. This is due to normalization of the
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objective function of each CP in that expression. Therefore, the charges of the worst
and best CP are always zero and unity, respectively. Now, consider the situation
that the worst CP moves in the search space, at the end of the movement, it may
attain a better objective function value, but it may still be the worst CP, so its charge
will still be zero. This means that there may be some situations that the objective
function of a CP improves but its charge does not change because charge is a
relative quantity. It seems necessary to modify the electric current expression in a
way that the concept of electric current is saved, and the aforementioned problem is
solved. In relation with this problem, two alternative expressions for computing
electric current are proposed. The first one is:

9ik — dik—1

4.17
qik ( )

(I avg) it

Where ¢; . and g, _ | are the charge of the ith CP at the start of the kth and k — /th
iterations, respectively. This equation gives a normalized value for the variation of
the ith CP. The second proposed relation is expressed as:

] |dfik|_dfmink
Iav = sign(d i P LIS B L L
(Favg ) = sign(dfi) x G =

df i = fite(i) — fine1 i) (4.19)

(4.18)

where df; ; is the variation of the objective function in the kth movement (iteration).
Sfity (i) and fit; _ (i) are the values of the objective function of the ith CP at the start
of the kth and k — Ith iterations, respectively. The quantity df;; can attain both
positive and negative values. If we consider absolute values of df for all of the
current CPs, dfiax .« and dfmin e Will be the maximum and minimum values among
these absolute values of df, respectively. Therefore, dfiaxx and dfininx are always
positive quantities. It should be noted that here the second expression (4.18) and
(4.19) is utilized for the computation of the electric current.

For computing the magnetic field in place of each particle, one must compute the
distance of that particle from the virtual wire. This distance is assumed to be the
same as (4.8). Thus, r;; now means the distance between the ith wire and ith virtual
CP to the jth charged particle.

In the expression for computing the magnetic force, (4.6), we should consider
the velocity of the movement of CPs. In this case, due to the movements of both CPs
(CP in the virtual wire and CP in the space) the relative velocity, v,,;, is considered
as:

X; - X;
Vel = At d (420)

where X, and X; are the positions of the ith and jth CPs, the At is the time step that is
set to unity. Therefore the relative velocity can be rewritten as:
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Vil = Xj — Xj (421)

By considering these assumptions, the magnetic force Fg j; exerted on the jth CP
due to the magnetic field produced by the ith virtual wire (ith CP) can be expressed
as:

I; I;
Fgi=q;- (R—lz"ii "z +,—l : Zz) - pmji
y

y z21=1,2=0&r; <R
(Xi — X)), {21—0,22—1<:>r,-j2R (4.22)

where g; is the charge of the ith CP, R is the radius of the virtual wires, /; is the
average electric current in each wire, and pm;; is the probability of the magnetic
influence (attracting or repelling) of the ith wire (CP) on the jth CP. This term can
be computed by the following expression:

_J 1efit(i) > fit(j
prtji = {O & else ) (4.23)

where fit(i) and fit(j) are the objective values of the ith and jth CP, respectively. This
probability determines that only a good CP can affect a bad CP by the magnetic
force. This magnetic probability is slightly different from the electric probability
expressed by (4.9). The electric probability considers a chance for both good and
bad CPs to attract each other, but the magnetic probability has allocated this chance
only to good CPs. The purpose of this definition of magnetic probability is to reduce
the parasite magnetic fields and reinforce the efficiency of the magnetic forces.

Investigating different terms of the magnetic force shows how this force can help
the standard CSS algorithm. If /;, electric current in virtual ith virtual wire is
negative, according to the concept of the electric current, a negative value means
that the ith CP did not experienced an improvement in the value of its objective
function. Thus, a negative value will be multiplied by (X; — X;), so this produces a
repelling force. In this case, it is an ideal force. On the other hand, if the ith CP
experiences an improvement in its movement, it will attract the jth CP. From
optimization point of view, this kind of force can help the algorithm. It stores and
applies the information of the movement of each CP. This information is lost in the
standard CSS, but MCSS utilizes this information and increases the efficiency of
algorithm.

Now by considering the group of the charged particles, the resultant magnetic
force acting on each CP can be calculated using the following expression:
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I; I;
FB,j =dq;- Z (F"[j'ZI +F~Zz> - pmi
iy i ij
z1=1,2=0&r; <R
(Xi=X;), {z1=0,,=1s7r; >R (4.24)
j=12,...,N

where Fp is the resultant magnetic force exerted on the jth charged particle.

The quantity R is the radius of the virtual wires, and if a charged particle places
outside or inside of a virtual wire, the magnetic force that exerted on it is computed
differently. With this formulation for magnetic force, in the early iterations where
the agents are far from each other, their distances will be large values, and the
magnetic force in this case will be inversely proportional to the distances. As a
result, the magnitude of the magnetic force is relatively small, and this feature of the
algorithm provides a good situation for search ability of the CPs in the early
iterations which is ideal for optimization problems. After a number of iterations,
CPs search the search space and most of them will be gathered in a small space.
Now, the distances between CPs are decreased and a local search starts. In this case,
if the magnetic force computed based on the inverse relation between distances, the
magnitude of the forces will be increased due to decrease of the distances. These
large forces may prevent the convergence of the algorithm in the local search. One
of the solutions that can be proposed is that when the distances are relatively small,
the magnetic force should be computed using the linear formulation of magnetic
fields (4.3). This means that the formulation of the magnetic force for global and
local phases should be separated, (4.24). A suitable value for R in (4.24) can be
unity. However, by more investigating in the magnetic force formulation, it could
be understood that the aforementioned problem can be solved automatically. If the
value of the R is taken as zero, all of the magnetic fields produced by virtual wires
can be calculated based on (4.2) Using this equation for small distances gives large
values for the magnetic field, but when the values of distances are small, it means
that the CPs are collected in a small space and their movements are small (Local
Search). Thus, both X; — X; and /; are small values. By considering (4.24) for
calculating the magnetic forces, it can be noted that a large value is multiplied by
two small values, so the final value (magnetic force) is a normal value which helps
the algorithm. Due to the ease of implementation, and better convergence rate the
second solution is selected in this part and the magnetic force is revised in (4.25).

The term pmy;, in the expression for calculating the magnetic force, provides
competition ability for the CPs. According to the concept of the magnetic force in
this algorithm, when a CP experience an improvement in its value of the objective
function, should attract another CPs, regardless to its previous and current charge.
However, by considering the term pm;;, CPs with larger charges have more ten-
dency to attract other CPs. The reason is that by considering this term, the redundant
and parasite magnetic fields made by bad CPs are eliminated and it helps the
efficiency of the algorithm.
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It should be noted that in implementing the MCSS, the part of CSS algorithm
related to computing forces should be changed. Both magnetic and electric forces
should be computed, and superposed. The Lorentz force (total force) will be
expressed as:

1 gi qi
D Fi=Fpj+Fr;=q;) <;'Pmﬁ + (;rzii Wi +r7’wz> 'P,-f)
i N i
w1 :1,W2:0<=>I”,‘j<R
(Xi—=Xj), S wi=0m=1<r; >R (4.25)
i=1,2,....N

where Fj is the resultant Lorentz force (total force) acting on the jth CP.

Consider the ith CP among all of the CPs; this CP has a charge which is larger
than a number of other CPs charge. Considering the rules of the CSS, the ith CP
attracts all other CPs that have smaller charges. After computing the electric forces,
all of the CPs move around the search space. Now, the ith CPs also moved to a new
position. In this movement, the ith particle may experience deterioration in its
objective function value. Due to this decrease, the new charge of the ith particle will
be decreased, but its charge may still be larger than a number of CPs. According to
the CSS algorithm, the ith particle still attracts all other CPs with smaller charges
regardless of the failure of the ith CP in its last movement. From one perspective,
this is logical that a good CP can attract bad CPs. This feature ensures the
competition ability of the algorithm. However, from another point of view, if no
attention is paid to the success or failure of the CPs in their last movement, a lot of
useful information in optimization process will be lost. Thus, in the MCSS algo-
rithm, magnetic forces are included to prevent the loss of this kind of information
which benefits the algorithm. By this concept, the ith particle which has experi-
enced a failure in its last movement, exerts repelling magnetic forces on the other
CPs. In this situation, the direction of the magnetic forces and electrical ones that
are acted on CPs by the ith CP is opposite.

That was a special case that the magnetic and electric forces were against each
other. Most of the times, the magnetic and electric forces are in the same direction
and they reinforce the effect of each other. Consequently, the exploitation ability of
the algorithm is mostly reinforced. Because of this increase in exploitation ability,
we can slightly modify &, in (4.14) to increase the exploration ability of the
algorithm. In fact, the MCSS algorithm guides the CPs with more information
and the efficiency of the algorithm including a fast convergence is improved, and in
comparison to the standard CSS, a better exploitation and exploration are provided.
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4.2.4 Numerical Examples

In order to ensure the efficient performance of the MCSS algorithm, some numer-
ical examples are solved and the results are compared to those of the standard CSS
algorithm. The examples consist of 18 mathematical functions. The numerical
examples are presented in Sect. 5.2.4.1. In Sect. 5.2.4.2 the results of the MCSS
are presented and compared to those of the CSS and other optimization algorithms
in the literature. Finally, in Sect. 5.2.5 three well-studied engineering design
problems are solved by MCSS and the results are compared to those of the CSS.

4.2.4.1 Mathematical Benchmark Functions
Comparison Between MCSS, CSS and a Set of Genetic Algorithms

In this section, some mathematical benchmarks are chosen from [5], and optimized
using the MCSS algorithm. The description of these mathematical benchmarks is
provided in Table 4.1.

Numerical Results

In this section, the numerical results of optimization for the mathematical bench-
marks are presented. In this investigation, some parameters of the algorithm such
as, HMCR, PAR, CM size (CMS), the number of CPs, and the maximum number of
iteration are modified. For eliminating the effect of such parameters in studying the
performance of the algorithm, these parameters are considered the same as those of
[6]. It should be noted that the number of CPs is set to 20, and the maximum number
of iterations is considered as 200 for both CSS and MCSS algorithm. In Table 4.2,
the results of the MCSS are compared to the results obtained by the CSS from [6],
and GA and some of its variants derived from [5]. For a fair comparison between
MCSS and CSS, the random initial solutions of each runs are the same. The
numbers in Table 4.2 indicate the average number of function evaluation from
50 independent runs. The numbers in parenthesis, demonstrate the fraction of the
unsuccessful to successful runs. The absence of a parenthesis means that the
algorithm was successful in all of the runs. Each run of the algorithm is successful
when that run determines a local minimum with predefined accuracy, i.e., € =
[fmin — fhnal = 10~ *. The results verify the efficiency of the MCSS algorithm
compared to the CSS and other Genetic algorithms. The existence of the magnetic
forces in the MCSS provides a better exploration and exploitation for the algorithm.
Thus, the convergence is speeded up. One of the important features of the MCSS
algorithm is its ability to converge to the desired optimum with a few number of
CPs and a small value for maximum number of iterations. The difference between
the CSS algorithm and MCSS algorithm becomes more obvious when the number
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Table 4.2 Performance comparison for the benchmark problems

GEN-S-M- CSS MCSS

Function GEN GEN-S GEN-S-M LS [6] [1]

AP 1,360(0.99) 1,360 1,277 1,253 804 437
Bfl 3,992 3,356 1,640 1,615 1,187 542
Bf2 20,234 3,373 1,676 1,636 742 556
BL 19,596 2,412 2,439 1,436 423 481
Branin 1,442 1,418 1,404 1,257 852 351
Camel 1,358 1,358 1,336 1,300 575 384
Cb3 9,771 2,045 1,163 1,118 436 288
CM 2,105 2,105 1,743 1,539 1,563 538
Dejoung 9,900 3,040 1,462 1,281 630 387
Exp2 938 936 817 807 132 183
Exp4 3,237 3,237 2,054 1,496 867 317
Exp8 3,237 3,237 2,054 1,496 1,426 659
Goldstein and 1,478 1,478 1,408 1,325 682 450

Price

Griewank 18,838(0.91)  3,111(091) 1,764 1,652(0.99) 1,551 1,272
Hartman3 1,350 1,350 1,332 1,274 860 344
Hartman6 2,562(0.54) 2,562(0.54)  2,530(0.67) 1,865(0.68) 1,783 908
Rastrigin 1,533(0.97) 1,523(0.97) 1,392 1,381 1,402 1,252
Rosenbrock 9,380 3,739 1,675 1,462 1,452 1,424
Total 112,311(96.7) 41,640(96.7) 29,166(98.16) 25,193(98.16) 17,367 10,773

of CPs and the number of iterations are set to small values. Thus, another compar-
ison is performed to show the difference between the CSS and MCSS algorithm in
unsuitable situations, i.e., small number of CPs and maximum number of permitted
iterations. Therefore, the number of CPs is set to 10 and the maximum number of
permitted iterations is considered as 100. This means that the computational cost is
one quarter of the previous comparison. The results of this comparison are
presented in Table 4.3. The numbers in the Table 4.3 are the optimum found by
each algorithm. These are the average of 100 independent runs. The accuracy of the
solutions in some cases may be unsatisfactory, but it should be noted that the
number of CPs and maximum number of iterations are small. The purpose of this
comparison is to magnify the difference between the CSS and MCSS algorithm, and
verify the better performance of the MCSS in this situation. For more detailed
presentation, Fig. 4.4 illustrates the optimization process and convergence.

Statistical Test

Now in the following we want to ensure that the results of MCSS in Table 4.3 are
better than CSS algorithm. For this purpose, we apply a multi-problem analysis
using statistical tests. We apply the test on the obtained errors by each algorithm. If
we have the normality condition for our sample of results, a parametric pair #-test
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Table 4.3 Numerical comparison of CSS and MCSS algorithms

MCSS’s
Function Global minimum  CSS MCSS CSS’s error  error
AP —0.352386 —0.198721 —0.308396 0.153665 0.04399
Bfl 0.0 28.809183 0.088327  28.80918 0.088327
Bf2 0.0 8.938997 0.034876 8.938997 0.034876
BL 0.0 0.106252 6.781E-05 0.106252  6.78E-05
Branin 0.397887 3.960884 0.537231 3.562997 0.139344
Camel —1.0316 —0.866765 —1.031591 0.164835 9E-06
Cb3 0.0 0.125161 6.517E-05 0.125161 6.52E-05
CM —-04 —0.230142 —0.352661 0.169858 0.047339
Dejoung 0.0 0.166451 6.891E-05 0.166451 6.89E-05
Exp2 -1.0 —0.999366 —0.999947 0.000634  5.3E-05
Exp4 -1.0 —0.990884 —0.999818 0.009116  0.000182
Exp8 -1.0 —0.949659 —0.999686 0.050341 0.000314
Goldstein and Price 3.0 15.729613 4.620501 12.72961 1.620501
Griewank 0.0 0.342795 0.105112 0.342795 0.105112
Hartman3 —3.862782 —3.491627 —3.816318 0.371155 0.046464
Hartman6 —3.322368 —2.054548  —3.292364 1.26782 0.030004
Rastrigin -2.0 —1.875735 —1.917121 0.124265 0.082879
Rosenbrock 0.0 19.476846 3.117751 19.47685 3.117751

Number of CPs = 10, maximum number of iterations = 100

can be suitable. We first analyze a safe usage of parametric tests. We utilized two
normality tests including: Kolmogorov-Smirnov, and Shapiro-Wilk test. The
p-values of the normality tests over the sample results obtained by CSS and
MCSS are shown in Table 4.4. If we consider a significance level o = 0.05, all of
the p-values in Table 4.4 will be less than 0.05. Thus the sample results do not
follow a normal distribution. The Q-Q plot for sample results is illustrated in
Fig. 4.5, and it can be understood that the normality conditions is not satisfied in
both CSS and MCSS algorithms. This result was predictable because the sample
size (the number of problems) is small. Therefore, a parametric test such as pair #-
test is not appropriate in this case. Therefore we use Wilcoxcon test that is a
non-parametric test for pairwise comparisons. The method of this test is described
in [7]. The result of this test can be summarized as:

¢ The p-value obtained by Wilcoxcon test is 0.00. Consequently, the Wilcoxcon
test considers a difference between the performance of these two algorithms
assuming a significance level a = 0.05. Therefore, because of better mean value
of the MCSS algorithm results, MCSS outperforms its predecessor, CSS
algorithm.
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Fig. 4.4 Comparison of the convergence rate of optimizing mathematical benchmarks [1]: (a) AP,
(b) Bf1, (¢) Bf2, (d) BL, (e) Branin, (f) Camel, (g) Cb3, (h) CM, (i) Dejoung, (j) Exp2, (k) Exp4,
(1) Exp8, (m) Goldstein and price, (n) Griewank, (o) Hartman3, (p) Hartman6, (q) Rastrigin, (r)
rosenbrock
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Table 4.4 Normality tests

i Algorithm Kolmogorov-Smirnov Shapiro-Wilk
and their p-values over
multiple-problem analysis CSS 0.00 0.00
MCSS 0.00 0.00
Normal Q-Q Plot of CSS Normal Q-Q Plot of MCSS

20

. Estimated Normal

Distribution Parameters: Distribution parapemters:
Mean=4.25 o Mean=0.29
Std. Dev.=8.18 Std. Dev.=0.79
N=18 N=18

-20 T T T T -2 T T T T T

-20 -10 0 10 20 30 -2 -1 0 1 2 3 4
Observed Value Observed Value

Expected Normal Value
o
Expected Normal Value
o

Estimated Normal

Fig. 4.5 Normal Q-Q plots of the sample results of the CSS and MCSS algorithms [1]

4.2.4.2 Comparison Between MCSS and Other State-of-Art Algorithms
Description of Test Functions and Algorithms

In the following section, the set of test functions designed for Special Session on
Real Parameter Optimization organized in the 2005 I.E. Congress on Evolutionary
Computation (CEC 2005) are solved by the MCSS algorithm. The detailed descrip-
tion of test functions is presented by Suganthan et al. [8]. The set of these test
functions consists of the following functions:

¢ 5 displaceUnimodals functions (f1-f5)

» Sphere function d.

e Schewefel’s problem 1.2 displaced.

 Elliptical function rotated widely conditioned

* Schwefel’s problem 1.2 displaced with noise in the fitness.

¢ Schwefel’s problem 2.6 with global optimum in the frontier.
¢ 20 Multimodals functions (f6—f7)

« 7 basic functions

» Rosenbrock function displaced.

¢ Griewank function displaced and rotated without frontiers.

» Ackley function displaced and rotated with the global optimum in the frontier.
» Rastrigin function displaced.

» Rastrigin function displaced and rotated.

* Weierstrass function displaced and rotated.

¢ Schewefel’s problem 2.13.

» 2 expanded functions.
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e 11 hybrid functions. Each one of these has been defined through compositions of
10 out of 14 previous functions (different in each case).

The characteristics of this experiment is the same as what has been suggested by
Suganthan et al. [8]. Each function is solved by MCSS in 25 independent runs, and
the average error of the best CP is recorded. The number of CPs is set to 25. The
dimension of the test functions is set to 10 (D = 10), and algorithm performs
10,000 function evaluation. The termination criterion is either reaching the maxi-
mum number of function evaluation or achieving error less than 10~®. Table 4.5
shows the official results of the participated algorithms obtained from Garcia
et al. [9]. The description of each algorithm is given in [19]. The results of the
MCSS algorithm are added to Table 4.5. The values of Table 4.5 indicate the
average error rate of each algorithm. This value can be considered as a means for
measuring the performance of each algorithm.

Numerical Results and Statistical Test

As the results in Table 4.5 show, MCSS has a good performance and its average
error rates are good, however, there are some cases that MCSS performs slightly
weaker than some other algorithms. For a fair comparison, we have to use statistical
test to judge about the performance of MCSS in comparison to other algorithms.
We want to find out whether the results of MCSS have a significant difference in
comparison to the other algorithms. This analysis is multiple-problem analysis;
therefore, a non-parametric test is more suitable in this case. We utilized the
Welcoxon’s test. This test performs pairwise comparisons between two algorithms.
In this test, MCSS is compared to some other remaining algorithms.

Table 4.6 summarizes the results of applying the Wilcoxin test. Table 4.6
includes sum of ranking and p-value of each comparison. The method of this test
is simply described in [7]. The significance level a is considered as 0.05. In each
comparison when the corresponding p-value is less than 0.05, it means that two
compared algorithms behave differently, and the one with smaller mean value of
error rate has a better performance.

The p-value in pairwise comparison is independence from another one. If we
draw a conclusion involving more than one pairwise comparison in Wilcoxcon’s
analysis, an accumulated error which is merged up by combination of pairwise
comparisons will be obtained. In statistics terms, the Family Wise Error Rate
(FWER) will be lost. FWER is defined as the probability of making one or more
false discoveries among all the hypotheses when performing multiple pairwise tests
(Garcia et al. [9]). The true statistical significance for combining pairwise compar-
isons is given by:
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Table 4.6 The Wilcoxcon MCSS vs. R* R-

p-Value
test results
BLX-GL50 46 185 0.016
BLX-MA 6 270 0.000
CoEVO 14 239 0.000
DE 59 172 0.050
DMS-L-PSO 57 196 0.024
EDA 20 211 0.314
G-CMA-ES 70 120 0.001
K-PCX 20 233 0.025
L-CMA-ES 45 165 0.048
L-SaDE 65.5 187 0.027
SPC-PNX 52 179 0.001
i=k—1
p=1- [ (0 —pH) (4.26)

1

where £ is the number of pairwise comparisons considered, and pH; is the p-value of
each comparison. For more information, the reader may refer to [9].

Considering the values of Table 4.6, the p-value of all of the comparisons except
MCSS vs. G-CMA-ES is less than significance level a = 0.05, it cannot be con-
cluded that MCSS is better than all of algorithms except G-CMA-ES because we
have to consider FWER in making a conclusion in multiple pairwise comparisons.
The MCSS outperforms all of the algorithms except G-CMA-ES considering
independence pairwise comparisons due to the fact that the achieved p-values are
less than o = 0.05. The true p-value for multiple pairwise comparisons can be
computed using (4.26):

p=1-((1-0.16)-(1-0.0)- (1-0.0)- (1 —0.05) (1 —0.24) - (1 —0.001)
+(1-0.025) - (1 —0.048) - (1 —0.027) - (1 —0.001)) = 0.17765

(4.27)

Based on this algorithm, it can be claimed that the MCSS algorithm has a better
performance in relation with all of the algorithms except G-CMA-ES with a p-value
of 0.17765. As a result, if we consider a significance level a = 0.17765, the
confidence interval for the mentioned claim will be 100(1—o) = 82.23 %.

4.2.5 Engineering Examples

Three well-studied engineering design problems that have been solved by vari-
ous optimization methods in the literature are used to examine the efficiency of
the MCSS algorithm, and compare the results with those obtained by the CSS.
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Fig. 4.6 A tension/compression spring

For handling constrains, a simple penalty function is utilized to prevent adding
the effect of a robust constrain handling method on the performance of the
algorithm.

Example 1 A tension/compression spring design problem
This is a well-known optimization problem which has been used to evaluate the
efficiency of different optimization methods [6]. This problem is defined by
Belegundu [10] and Arora [11] as depicted in Fig. 4.6. The objective of this
optimization problem is to minimize the weight of tension/compression spring.
This minimization involves some constrains, i.e., shear stress, frequency, and
minimum deflection.

The design variables are the mean coil diameter D(=x;); the wire diameter
d(=x,), and the number active coils N(=x;). By considering these decision vari-
ables, the cost function can be formulated as:

fcost(X) = (X3 + 2))(2)612 (428)
3
X27X3
=1--—" <
X)) =1-Zms 3= 0
4)(?22 — X1X2 1
X) = —-1<0,
$2X) = 13566 (om? — ) T 5108 12 =
140.45x (4.29)
X)=1-—"l<p
g3( ) X22X3 —
X1 + X2
X) = —1<0.
84( ) 15 >
The decision variables are limited as:
0.05 <x; <2,
0.25 < x, < 1.3, (4.30)
2 S X3 S 15

This problem has been solved with various methods by different researchers,
Belegundu [10], Arora [11], Coello [12], Coello and Montes [13], He and Wang
[14], Montes and Coello [15], and Kaveh and Talathari [14,26]. The results of the
best solutions found by different methods are presented in Table 4.7. From Table 4.7
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Table 4.7 Optimum results for the tension/compression spring design

Optimal design variables

Methods x;(d) x»(D) x3(N) Jeost
Belegundu [10] 0.050000 0.315900 14.250000 0.0128334
Arora [11] 0.053396 0.399180 9.1854000 0.0127303
Coello [12] 0.051480 0.351661 11.632201 0.0127048
Coello and Montes [13] 0.051989 0.363965 10.890522 0.0126810
He and Wang [14] 0.051728 0.357644 11.244543 0.0126747
Montes and Coello [15] 0.051643 0.355360 11.397926 0.012698
Kaveh and Talatahari [16] 0.051865 0.361500 11.000000 0.0126432
Kaveh and Talathari (CSS) [6] 0.051744 0.358532 11.165704 0.0126384
Present work [1] 0.051645 0.356496 11.271529 0.0126192

Table 4.8 Statistical results of different methods for the tension/compression spring

Methods Best Mean Worst Standard deviation
Belegundu [10] 0.0128334 N/A N/A N/A

Arora [11] 0.0127303 N/A N/A N/A

Coello [12] 0.0127048 0.012769 0.012822 3.9390e-5

Coello and Montes [13] 0.0126810 0.012742 0.012973 5.9000e-5

He and Wang [14] 0.0126747 0.012730 0.012924 5.1985e-5

Montes and Coello [15] 0.012698 0.013461 0.16485 9.6600e-4

Kaveh and Talatahari [16] 0.0126432 0.012720 0.012884 3.4888e-5

Kaveh and Talathari (CSS) [6] 0.0126384 0.012852 0.013626 8.3564e-5

Present work [1] 0.0126192 0.012794 0.013962 5.3491e-5

it can be understood that the best solution found by MCSS is better than other
methods. The statistical simulation results of 30 independent runs for MCSS are
illustrated in Table 4.8 and compared to other methods.

Example 2 A welded beam design

One of the practical design problems which has been widely used as a benchmark to
test the performance of different optimization methods, is the welded beam design
problem as illustrated in Fig. 4.7. The goal of this optimization problem is to
minimize the constructing cost of a welded beam that is subjected to different
constrains, such as shear (r) and bending (o) stresses, buckling load (P.), end
deflection (6), and end side constraint. Design variables are h(= x;),l(= x,),
t(= x3) and b(= x,). By considering the set-up, welding labor, and the materials
costs, the cost function can be expressed as:

Feos(X) = 1.1047x1%x; 4 0.04811x3x4 - (14.0 + x2) (4.31)

Subjected to the following constrains:
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Fig. 4.7 A welded beam
system

4 Magnetic Charged System Search

gl(X) = T({X}) _Tmax < 0
gZ(X) = a({x}) - max < 0
g:(X) =x —x4 <0,
24(X) =0. 10471x;2 + 0.04811x3x4 - (14.0 +x2) -50<0, (4.32)
g5(X) =0.125 — x; <0,
g6(X) = 5({)(}) — Omax <0,
(X) =P —P({x}) <0.
Where
X N2 2 ’ " 2
(X) = [P +27 ¢ 2+ (7)),
/ P » MR
T =—,7 =—,
\/§X1 * X2 J
, 2
X2 X2 X1+ x2
M=P-|L+—=|,R= |—
+ 2 4 + 2 ’
2
X X1 +x 4.33
J=2{\/§x1xz[i+ 1 3 ]}’ ( )
12 2
6PL 4PL3
X) = ,0(X
o(X) X4 - X32 (X) Ex3xy
2.6
4.013E, [3%
36 x3 E
P.(X) = -2 ,
X) L? 4G

P=6,0001b, L=

And variable boundaries are:

14 in, E = 30 x 10°%psi,

G = 12 x 10°psi
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Table 4.9 Optimum results for the design of welded beam

Optimal design variables

Methods xi(h) x(1) x3(1) x4(b) Jeost
Regsdell and Phillips [17]

APPROX 0.2444 6.2189 8.2915 0.2444 2.3815
DAVID 0.2434 6.2552 8.2915 0.2444 2.3841
SIMPLEX 0.2792 5.6256 7.7512 0.2796 2.5307
RANDOM 0.4575 47313 5.0853 0.6600 4.1185
Deb [18] 0.248900  6.173000  8.178900  0.253300  2.433116
Coello [12] 0.248900  3.420500  8.997500  0.210000  1.748309
Coello and Montes [13] 0.205986  3.471328  9.020224  0.206480  1.728226
He and Wang [14] 0.202369  3.544214  9.048210  0.205723  1.728024
Montes and Coello [15] 0.199742  3.612060  9.037500  0.206082  1.737300
Kaveh and Talathari [16] 0.205700  3.471131  9.036683  0.205731  1.724918
Kaveh and Talathari (CSS) [6]  0.205820  3.468109  9.038024  0.205723  1.724866
Present work [1] 0.205729  3.470493  9.036623  0.205729  1.724853

Table 4.10 Statistical results of different methods for the design of welded beam

Methods Best Mean Worst Standard deviation
Regsdell and Phillips [17] 2.3815 N/A N/A N/A
Deb [18] 2.433116 N/A N/A N/A
Coello [12] 1.748309 1.771973 1.785835 0.011220
Coello and Montes [13] 1.728226 1.792654 1.993408 0.074713
He and Wang [14] 1.728024 1.748831 1.782143 0.012926
Montes and Coello [15] 1.737300 1.813290 1.994651 0.070500
Kaveh and Talatahari [16] 1.724918 1.729752 1.775961 0.009200
Kaveh and Talathari (CSS) [6] 1.724866 1.739654 1.759479 0.008064
Present work [1] 1.724853 1.735438 1.753681 0.009527
0.1 <x <2,
0.1 <x <10,
0.1 <x; <10, (4'34)
0.1 S X3 S 2.

This is a well-studied problem that is solved by different researchers using
different approaches. Regsdell and Phillips [17] solved it using mathematical-
based methods. Deb [18], Coello [12], and Coello and Montes [13], solved it
using GA-based algorithms. Also, He and Wang [14] solved it by CPSO, Montes
and Coello [15] by Evolutionary strategies, and Kaveh and Talathari [16] by ACO.
This problem is also solved by Kaveh and Talathari [6] utilizing the CSS algorithm.
The results of the best solution found by each method are listed in Table 4.9. The
best solution found by MCSS is better than other results in literature. The result of
the MCSS is slightly better than that of the CSS, but the speed of the convergence is
much higher compared to the CSS. The results of statistical simulation are



114 4 Magnetic Charged System Search

Fig. 4.8 A pressure vessel, and its design variables

presented in Table 4.10. Similar to the CSS algorithm MCSS has a small value for
the standard deviation.

Example 3 A pressure vessel design problem

The objective of this optimization is to minimize the cost of fabricating a pressure
vessel which is clapped at both ends by hemispherical heads as depicted in Fig. 4.8.
The construction cost consists of the cost of materials, forming and welding
[19]. The design variables are the thickness of the shell T (= x;), the thickness of
the head T}, (= x>), the inner radius R (= x3), and the length of cylindrical section of
the vessel L (= x). Ty and T, are integer multiples of 0.0625in, the available
thickness of the rolled steel plates, but R and L are continuous variables. The
mathematical expression of the cost function is:

Feos(X) = 0.6224x1x304 + 1.7781x2x3 + 3.1661x7 + 19.84x7x3, (4.35)

The constrain areas are as follows:

¢,(X) = —x; +0.0193x; < 0,
8>(X) = —x2 + 0.00954x; <0,
4
&(X) = —7 - Bxy — 37 -3 41,296,000 < 0, (4.36)
2(X) = x4 — 240 < 0.

The search space is defined as:

0<x <99,
0 < x, <99,
10 < x5 < 200,
10 < x3 < 200.

(4.37)
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Table 4.11 Optimum results for the design of welded beam

Optimal design variables

Methods x(Ts) Xo(Ty) x3(R) Xy(L) feost

Sandgren [19] 1.125000 0.625000 47.700000 117.701000 8,129.1036
Kannan and Kramer [20] 1.125000 0.625000 58.291000  43.690000 7,198.0428
Deb and Gene [21] 0.937500 0.500000 48.329000 112.679000 6,410.3811
Coello [12] 0.812500 0.437500 40.323900 200.000000 6,288.7445
Coello and Montes [13] 0.812500 0.437500 42.097398 176.654050 6,059.9463
He and Wang [14] 0.812500 0.437500 42.091266 176.746500 6,061.0777
Montes and Coello [15] 0.812500 0.437500 42.098087 176.640518 6,059.7456
Kaveh and Talatahari [16] 0.812500 0.437500 42.098353 176.637751 6,059.7258
Kaveh and Talathari (CSS) [6] 0.812500 0.437500 42.103624 176.572656 6,059.0888
Present work [1] 0.812500 0.437500 42.107406 176.525589 6,058.6233

Table 4.12 Statistical results of different methods for the design of welded beam

Methods Best Mean Worst Standard deviation
Sandgren [19] 8,129.1036 N/A N/A N/A
Kannan and Kramer [20] 7,198.0428 N/A N/A N/A

Deb and Gene [21] 6,410.3811 N/A N/A N/A
Coello [12] 6,288.7445  6,293.8432  6,308.1497 7.4133
Coello and Montes [13] 6,059.9463  6,177.2533  6,469.3220  130.9297
He and Wang [14] 6,061.0777 6,147.1332  6,363.8041  86.4545
Montes and Coello [15] 6,059.7456  6,850.0049  7,332.8798  426.0000
Kaveh and Talatahari [16] 6,059.7258 6,081.7812  6,150.1289 67.2418
Kaveh and Talathari (CSS) [6] 6,059.0888  6,067.9062  6,085.4765 10.2564
Present work [1] 6,058.6233  6,073.5931  6,108.5479 24.6712

Various types of methods have been used to solve this problem. Some of
these approaches are as: a branch and bound method [19], an augmented
Lagrangian multiplier approach [20], genetic adaptive search [21], a GA-based
algorithm [12], a feasibility-based tournament selection scheme [13], a
co-evolutionary particle swarm method [14], an evolution strategy [15], an
improved ant colony optimization [16], and the CSS algorithm [6]. The results
of the best solution found by different methods are presented in Table 4.11.
MCSS algorithm found better solution compared to other techniques and the
standard CSS. In Table 4.12 the results of statistical simulations are listed. The
mean value of the 30 independent runs for MCSS is slightly weaker than that of
the CSS, however, the best solution and speed of the convergence for MCSS is
much higher.
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Fig. 4.9 Variation of (a) PAR and (b) bw versus iteration number [2]

4.3 Improved Magnetic Charged System Search

In this part, the improved version of magnetic charged system search (IMCSS) is
presented and also utilized for optimization of truss structures. As mentioned
earlier, the standard CSS and MCSS algorithms use harmony search-based
approach for process of position correction of CPs. In this process, the CMCR
and PAR parameters help the algorithm to find globally and locally improved
solutions, respectively [22]. PAR and bw in HS scheme are very important param-
eters in fine-tuning of optimized solution vectors, and can be potentially useful in
adjusting convergence rate of algorithm to optimal solution.

The traditional HS scheme uses fixed value for both PAR and bw. Small PAR
values with large bw values can led to poor performance of the algorithm and
increase the iterations needed to find optimum solution, also on the other hand small
bw values in final iterations increase the fine-tuning of solution vectors, but in the
first iterations bw must take a bigger value to enforce the algorithm to increase the
diversity of solution vectors. Furthermore, large PAR values with small bw values
usually led to the improvement of best solutions in final iterations and converged
algorithm to optimal solution vector. To improve the performance of the HS
scheme and eliminate the drawbacks lies with fixed values of PAR and bw,
IMCSS algorithm uses an improved form of HS algorithm with varied PAR and
bw for the step of position correction. PAR and bw change dynamically with
iteration number as shown in Fig. 4.9 and expressed as follow [22]:

(PARmax — PAR i)

PAR(iter) = PARpin + - - iter (4.38)
1€Tmax
and
bw(iter) = bwmaxexp(c - iter), (4.39)
Ln (bwmin / )
c= DV ) (4.40)
1termax

where PAR(iter) and bw(iter) are the values of the PAR and bandwidth for each
iteration, respectively, Subscripts min and max denote the minimum and maximum
values for each parameter, respectively, and ifer is the current iteration number.
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4.3.1 A Discrete IMCSS

The IMCSS algorithm can be also applied to optimal design problem with discrete
variables. One way to solve discrete problems using a continuous algorithm is to
utilize a rounding function which changes the magnitude of a result to the nearest
discrete value [23], as follow:

F.
Xj pew = Fix (randjl kg L. AP+ randp - ky - V; oq - At +Xj’01d) s (4.41)
: m; g

where Fix(X) is a function which rounds each elements of vector X to the nearest
allowable discrete value. Using this position updating formula, the agents will be
permitted to select discrete values.

4.3.2 An Improved Magnetic Charged System Search
Jfor Optimization of Truss Structures with Continuous
and Discrete Variables

4.3.2.1 Statement of the Optimization Problem

The aim of size optimization of truss structures is to find the optimum values for
cross-sectional area of members A;, in order to minimize the structural weight W,
satisfying the constraints corresponding to the response of the structure. Thus, the
optimal design problem can be expressed as:

Find X = [X1,X2,X3, - - -, Xn)
to minimize Mer(X) = fpenaity (X) X W(X) (4.42)
subjectto  Omin < 6§ < Omax 1= 1,2, ...,nm ’

Omin < 0i < Omax i=1,2,...,nmn

where X is the vector containing the design variables; for a discrete optimum design
problem, the variables x; are selected from an allowable set of discrete values; n is
the number of member groups; Mer(X) is the merit function; W(X) is the cost
function, which is taken as the weight of the structure; f,.,q,(X) is the penalty
function which results from the violations of the constraints; nm is the number of
members forming the structure; nn is the number of nodes; ¢; and §; are the stress of
members and nodal displacements, respectively; min and max mean the lower and
upper bounds of constraints, respectively. The cost function can be expressed as:
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W)= p;-Ai-Li (4.43)
i=1

where p; is the material density of member i, L; is the length of member i, and A; is
the cross-sectional area of member i.
The penalty function can be defined as:

np

fpenalty(X) = (1 +eér- Z <¢(];(1) + ng(,))) > (444)

i=1

where np is the number of multiple loadings. Here ¢, is taken as unity and ¢, is set to
1.5 in the first iterations of the search process, but gradually it is increased to
3 [24]. ¢* and ¢ are the summation of stress penalties and nodal displacement
penalties for kth charged particle which are mathematically expressed as:

nm Gl
= —|—10], 4.45
b= mx([2] - 10) (4.45)
gbézimax(@ - 1,0), (4.46)
i=1 oi

where ¢;, 5; are the stress and allowable stress in member i, respectively, and o, o
are the displacement of the joints and the allowable displacement, respectively.

4.3.2.2 Numerical Examples

In this section, common truss optimization examples as benchmark problems are
used for optimization using the proposed algorithm. This algorithm is applied to
problems with both continuous and discrete variables. The final results are com-
pared to those of previous studies to demonstrate the efficiency of the present
method. The discrete variables are selected from American Institute of Steel
Construction (AISC) Code [25], listed in Table 4.13.

In the proposed algorithm, for all of examples a population of 25 CPs is used and
the value of CMCR is set to 0.95.

Example 1 A 10-bar planar truss structure
The 10-bar truss structure is a common problem in the field of structural optimiza-
tion to verify the efficiency of a proposed optimization algorithm. The geometry
and support conditions for this planar, cantilevered truss with loading condition is
shown in Fig. 4.10.

There are 10 design variables in this example and a set of pseudo variables
ranging from 0.1 to 35.0 in® (0.6452 cm? to 225.806 cm?).

In this problem two cases are considered:
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Table 4.13 The allowable

: . No. Area (inz) Area (mmz) No. Area (inz) Area (mmz)

steel pipe sections taken from

AISC code 1 0.111 71.613 33 3.84 2,477.414
2 0.141 90.968 34 3.87 2,496.769
3 0.196 126.451 35 3.88 2,503.221
4 0.25 161.29 36 4.18 2,696.769
5 0.307 198.064 37 4.22 2,722.575
6 0.391 252.258 38 4.49 2,896.768
7 0.442 285.161 39 4.59 2,961.284
8 0.563 363.225 40 4.8 3,096.768
9 0.602 388.386 41 4.97 3,206.445
10  0.766 494.193 42 5.12 3,303.219
11 0.785 506.451 43 5.74 3,703.218
12 0.994 641.289 44 7.22 4,658.055
13 1 645.16 45 7.97 5,141.925
14 1228 792.256 46 8.53 5,503.215
15  1.266 816.773 47 9.3 5,999.988
16 1457 939.998 48  10.85 6,999.986
17 1.563 1,008.385 49 115 7,419.43
18 1.62 1,045.159 50 135 8,709.66
19 18 1,161.288 51 13.9 8,967.724
20 1.99 1,283.868 52 142 9,161.272
21 2.13 1,374.191 53 155 9,999.98
22 238 1,535.481 54 16 10,322.56
23 2.62 1,690.319 55 169 10,903.2
24 2.63 1,696.771 56 18.8 12,129.01
25 2.88 1,858.061 57 199 12,838.68
26 293 1,890.319 58 22 14,193.52
27 3.09 1,993.544 59 229 14,774.16
28 1.13 729.031 60 245 15,806.42
29 338 2,180.641 61  26.5 17,096.74
30 347 2,238.705 62 28 18,064.48
31  3.55 2,290.318 63 30 19,354.8
32 3.63 2,341.931 64 335 21,612.86

Case 1, P; = 100 kips (444.8 kN) and P, = 0, and Case 2, P; = 150 kips (667.2
kN) and P, = 50 kips (222.4 kN).

The material density is 0.1 1b/in® (2,767.990 kg/m?) and the modulus of elasticity
is 10,000 ksi (68,950 MPa). The members are subjected to the stress limits of +25
ksi (172.375 MPa) and all nodes in both vertical and horizontal directions are
subjected to the displacement limits of £2.0 in (5.08 cm). Figure 4.11 shows a
comparison of the convergence history of both cases for MCSS and IMCSS
algorithms.

Tables 4.14 and 4.15 are provided for comparison of the optimal design results
with those of the previous studies for both cases. In both cases the HS algorithm
reach its best solutions after 20,000 analyses, and the PSO and PSOPC algorithms
after 3,000 iterations (150,000 analyses). The HPSACO algorithm finds the best
solution after 10,650 and 9,925 analyses, for Case 1 and Case 2, respectively.
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The MCSS and IMCSS algorithms achieve the best solutions after 355 iterations
(8,875 analyses) and 339 iterations (8,475 analyses), respectively. The best weights
of IMCSS are 5,064.6 Ib for Case 1 and 4,679.15 for Case 2.

As seen in both Tables, although the best weights of IMCSS in both cases are a
little bigger than the HPSACO, but it has lower penalty values rather than
HPSACO, and therefore IMCSS has a lower merit function than HPSACO.

Example 2 A 52-bar planar truss
The 52-bar planar truss structure shown in Fig. 4.12 has been analyzed by Lee and
Geem [27], Li et al. [28], Wu and Chow [30] and Kaveh and Talatahari [31].

The members of this structure are divided into 12 groups: (1) A1-A4, (2) A5—
A10, (3) A11-Al13, (4) A14-A17, (5) A18-A23, (6) A24-A26, (7) A27-A30,
(8) A31-A36, (9) A37-A309, (10) A40-A43, (11) A44-A49, and (12) AS0-AS52.

The material density is 7,860.0 kg/m® and the modulus of elasticity is
2.07 x 105 MPa. The members are subjected to stress limitations of 180 MPa.
Both of the loads, P, = 100kN and P, = 200kN, are considered.

Table 4.16 and Fig. 4.13 are provided for comparison of the optimal design
results with the previous studies and convergence rates for the 52-bar planar truss
structure, respectively.

Table 4.16 shows that, the best weight of MCSS and IMCSS algorithms are
1,904.05 1b and 1,902.61 1b, respectively, while for DHPSACO is 1,904.83 1b.

The MCSS and IMCSS algorithms find the best solutions after 4,225 and 4,075
analyses respectively, but the DHPSACO reach a good solution in 5,300 analyses.
As it can be seen in the results of Table 4.16, the IMCSS algorithm achieve good
optimal results than previous methods like MCSS, PSO, PSOPC, HPSO and
DHPSACO algorithms.
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Fig. 4.11 Convergence history for the 10-bar planar truss structure using MCSS, IMCSS [2]

Example 3 A 72-bar spatial truss
In the 72-bar spatial truss structure which is shown in Fig. 4.14, the material density
is 0.1 Ib/in® (2,767.990 kg/m?) and the modulus of elasticity is 10,000 ksi
(68,950 MPa). The nodes are subjected to the displacement limits of +0.25 in
(£0.635 cm) and the members are subjected to the stress limits of 425 ksi
(£172.375 MPa).

All members of this spatial truss are categorized into 16 groups using symmetry:
(1) A1-A4, (2) A5-A12, (3) A13-A16, (4) A17-A18, (5) A19-A22, (6) A23-A30,
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Table 4.15 Optimal design comparison for the 10-bar planner truss (Case 2)

Lee and Kaveh and
Element Geem [27] Lietal. [28] Talatahari [29] Present work [2]
group HS PSO PSOPC HPSO  HPSACO MCSS IMCSS
1 Al 23.25 22.935 23473 23.353 23.194 22.863  23.299
2 A2 0.102 0.113 0.101 0.1 0.1 0.120 0.1
3 A3 25.73 25.355 25.287 25.502 24.585 25719  25.682
4 A4 14.51 14373 14413 14.25 14.221 15312  14.510
5 A5 0.1 0.1 0.1 0.1 0.1 0.101 0.1
6 A6 1.977 1.99 1.969 1.972 1.969 1.968 1.969
7 A7 12.21 12346 12.362 12.363  12.489 12.310  12.149
8 A8 12.61 12.923  12.694 12.894 12925 12.934  12.360
9 A9 20.36 20.678  20.323 20.356  20.952 19.906  20.869
10 Al10 0.1 0.1 0.103 0.101 0.101 0.100 0.1
Weight(lb) 4,668.81 4,679.47 4,677.7 4,677.29 4,675.78 4,686.47 4,679.15
Displacement — - - 0 7.92E-04 0 0
constraint
Stress - - - 2.49E- 7.97E-05 0 0
constraint 05
No. of N/A 150,000 150,000 N/A 9,625 7,350 6,625
analyses

(7) A31-A34, (8) A35-A36, (9) A37-A40, (10) A41-A48, (11) A49-A52,
(12) A53-A54, (13) A55-A58, (14) A59-A66 (15), A67-A70, and (16) A71-AT72.

Two optimization cases are implemented:

Case 1: The discrete variables are selected from the set D = {0.1, 0.2, 0.3,
04, 05, 0.6, 0.7, 0.8, 09, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1,
2.2,2.3,24,25,26,27,28,209, 3.0, 3.1, 3.2} (in®) or {0.65, 1.29, 1.94, 2.58,
3.23, 3.87, 4.52, 5.16, 5.81, 6.45, 7.10, 7.74, 8.39, 9.03, 9.68, 10.32, 10.97,
12.26, 12.90, 13.55, 14.19, 14.84, 15.48, 16.13, 16.77, 17.42, 18.06, 18.71,
19.36, 20.00, 20.65} (cm?).

Case 2: The discrete variables are selected from AISC code in Table 4.13.
Table 4.17 lists the values and directions of the two load cases applied to the
72-bar spatial truss.

Tables 4.18 and 4.19 are provided for comparison the results of MCSS and
IMCSS algorithms with the results of the previous studies for both cases. The
Convergence history for both algorithms is shown in Fig. 4.15.

In Case 1, the best weight of the IMCSS and DHPSACO algorithm are 385.54 Ib
(174.88 kg), while it is 389.49 1b, 388.94 1b, 387.94 1b, 400.66 1b for the MCSS,
HPSO, HS, and GA, respectively. For the PSO and PSOPC algorithms, these
algorithms do not get optimal results when the maximum number of iterations is
reached. The IMCSS algorithm gets the best solution after 145 iterations (3,625
analyses) while it takes for MCSS and DHPSACO 216 iterations (5,400 analyses)
and 213 iterations (5,330 analyses), respectively.
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In Case 2, the best obtained weight from IMCSS is 389.60 b, but it is 393.13 Ib,
389.87 1b, 392.84 1b, 393.06 Ib and 393.38 Ib for MCSS, CS, ICA, CSS and
HPSACO algorithms, respectively. IMCSS algorithm finds the best solutions after
173 iterations (4,325 analyses), while MCSS, CS, ICA, CSS and HPSACO algo-
rithms, need 4,775, 4,840, 4,500, 7,000 and 5,330 analyses to find the best solutions.
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Table 4.16 Optimal design comparison for the 52-bar planar truss

Lee and Kaveh and

Geem Talatahari
Element [27] Li et al. [28] [31] Present work [2]
group HS PSO PSOPC  HPSO DHPSACO MCSS IMCSS
1 4,658.055 4,658.055 5,999.988 4,658.055 4,658.055 4,658.055 4,658.055
2 1,161.288 1,374.19 1,008.38 1,161.288 1,161.288 1,161.288 1,161.288
3 506.451 1,858.06 2,696.38 363.225 494.193 363.225 494.193
4 3,303.219 3,206.44 3,206.44 3,303.219 3,303.219 3,303.219 3,303.219
5 940 1,283.87 1,161.29 940 1,008.385 939.998  939.998
6 494.193  252.26 729.03 494,193  285.161 506.451  494.193
7 2,290.318 3,303.22 2,238.71 2,238.705 2,290.318 2,238.705 2,238.705
8 1,008.385 1,045.16 1,008.38 1,008.385 1,008.385 1,008.385 1,008.385
9 2,290.318 126.45 494.19 388.386  388.386 388.386  494.193
10 1,535.481 2,341.93 1,283.87 1,283.868 1,283.868 1,283.868 1,283.868
11 1,045.159 1,008.38 1,161.29 1,161.288 1,161.288 1,161.288 1,161.288
12 506.451 1,045.16 494.19 792.256  506.451 729.031  494.193
Weight (kg) 1,906.76  2,230.16 2,146.63 1,905.49 1,904.83 1,904.05 1,902.61
No. of N/A N/A N/A 50,000 5,300 4,225 4,075

analyses

Fig. 4.13 Convergence 8000 T T
history for the 52-bar planar T MCSS
truss structure using MCSS, 7000 IMESS] 1
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Example 4 A 120-bar dome shaped truss
The 120-bar dome truss was first analyzed by Soh and Yang [34] to obtain the
optimal sizing and configuration variables, but for this study only sizing variables
are considered to minimize the structural weight in this example, similar to Lee and
Geem [27] and Kelesoglu and Ulker [35].

The geometry of this structure is shown in Fig. 4.16. The modulus of elasticity is
30,450 ksi (210,000 MPa) and the material density is 0.288 1b/in® (7,971.810 kg/
m?). The yield stress of steel is taken as 58.0 ksi (400 MPa).
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Table 4.17 Loading conditions for the 72-bar spatial truss

Case 1 Case 2
Node Px kips (kN) P, kips (kN) P, kips (kN) Px kips (kN) Py kips (kN) P, kips (kN)
17 5.0 (22.25) 5.0(22.25) —5.0(—22.25) 0.0 0.0 —5.0 (—22.25)
18 0.0 0.0 0.0 0.0 0.0 —5.0 (—22.25)
19 0.0 0.0 0.0 0.0 0.0 —5.0 (—22.25)
20 0.0 0.0 0.0 0.0 0.0 —5.0 (—22.25)

The allowable tensile and compressive stresses are used according to the AISC-
ASD code [25], as follows:

o =0.6F, foro; >0
o; foro; <0

(4.47)

where o; is calculated according to the slenderness ratio
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Table 4.18 Optimal design comparison for the 72-bar truss (Case 1)

Wu and Lee and Kaveh and

Chow Geem Talatahari  Present work

[30] [27] Li et al. [28] [31] [2]
Element group GA HS PSO PSOPC HPSO DHPSACO MCSS IMCSS
Al  Al-A4 1.5 1.9 2.6 3 2.1 1.9 1.8 2
A2  A5-Al12 0.7 0.5 1.5 14 0.6 0.5 0.5 0.5
A3  Al13-Al6 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.1
A4  Al17-A18 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
A5 A19-A22 1.3 1.4 2.1 2.7 1.4 1.3 1.3 1.3
A6 A23-A30 0.5 0.6 1.5 1.9 0.5 0.5 0.5 0.5
A7 A31-A34 0.2 0.1 0.6 0.7 0.1 0.1 0.1 0.1
A8 A35-A36 0.1 0.1 0.3 0.8 0.1 0.1 0.1 0.1
A9 A37-A40 0.5 0.6 2.2 1.4 0.5 0.6 0.7 0.5
Al10 A41-A48 0.5 0.5 1.9 1.2 0.5 0.5 0.6 0.5
All A49-A52 0.1 0.1 0.2 0.8 0.1 0.1 0.1 0.1
Al12 A53-A54 0.2 0.1 0.9 0.1 0.1 0.1 0.1 0.1
Al3 A55-A58 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.2
Al4 A59-A66 0.5 0.5 1.9 1.9 0.5 0.6 0.6 0.6
Al5 A67-A70 0.5 0.4 0.7 0.9 0.3 0.4 0.4 0.4
Al6 AT1-A72 0.7 0.6 1.6 1.3 0.7 0.6 0.4 0.6
Weight (kg) 400.6 387.94 1,089.88 1,069.79 388.94 385.54 389.49 385.54
No. of analyses N/A N/A N/A 150,000 50,000 5,330 5,400 3,625

22 5 34 2
1 -2 |F, S S for 4 < C,
¥ / 3+8Cc 8C3 or A; <
(4.48)

127%E
e 5 for 4; > C.
234

where E is the modulus of elasticity, F is the yield stress of steel, C. is the

slenderness ratio (4;) dividing the elastic and inelastic buckling regions
(C. = +/27%E[Fy), 4, is the slenderness ratio (Ai = kL,/r;), k is the effective length
factor, L; is the member length and r; is the radius of gyration. The radius of
gyration (r;) can be expressed in terms of cross-sectional areas, i.e., 1; = aAf.
Here, a and b are the constants depending on the types of sections adopted for the

members such as pipes, angles, and tees. In this paper, pipe sections (a = 0.4993
and b = 0.6777) were adopted for bars [36].

All members of the dome are categorized into seven groups, as shown in
Fig. 4.16. The dome is considered to be subjected to vertical loading at all the
unsupported joints. These were taken as —13.49 kips (60 kN) at node 1, —6.744
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kips (30 kN) at nodes 2—14, and —2.248 kips (10 kN) at the rest of the nodes. The
minimum cross-sectional area of all members is 0.775 in> 2 cmz).

In this example, two cases of constraints are considered:

Case 1, with stress constraints and no displacement constraints, and Case 2, with
stress constraints and displacement limitations of +0.1969 in (5 mm) imposed on
all nodes in x- and y-directions. For two cases, the maximum cross-sectional area is
5.0 in” (32.26 cm?).

Figure 4.17 shows the convergence history for all cases and Table 4.20 gives the
best solution vectors and weights for both cases.

In Case 1, the best weights of MCSS and IMCSS are 19,607.39 1b and
19,476.92 1b, respectively, while for the Ray, HPSACO and PSOPC are
19,476.19 1b, 19,491.30 Ib and 19,618.7 1b. The MCSS and IMCSS find the best
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Fig. 4.16 Schematic of a 120-bar dome shaped truss

solutions in 314 iterations (7,850 analyses) and 299 iterations (7,475 analyses),
respectively, but for Ray and HPSACO algorithms, it takes 19,950 and 10,025
analyses to reach the best solutions, respectively.

In Case 2, the MCSS and IMCSS algorithms need 386 iterations (9,650 analyses)
and 324 iterations (8,100 analyses) to find the best solutions, respectively, while for
Ray and HPSACO algorithms 19,950 and 10,075 analyses is required. The best
weights obtained from MCSS and IMCSS algorithms are 19,928 1b and
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19,796.71 1b, respectively, but from the Ray, HPSACO and PSOPC are 20,071.9 b,
20,078 and 20,681.7 1b, respectively.

Some design examples as benchmark problems are optimized using the IMCSS
algorithm for both continuous and discrete design variables. The aim of this study is
to find the best merit function, i.e. considering both penalty and cost functions. In
comparison the results with those of the previous studies for all examples, the
IMCSS has the better merit function than all of previous algorithms, however for
few examples the best weight obtained from IMCSS algorithm is not the best in the
results. Also, the results demonstrate the effectiveness of improvement process for
MCSS algorithm to achieve a better convergence and find better solutions espe-
cially in final iterations of the improved algorithm.
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Table 4.20 Optimal design comparison for the 120-bar dome truss (two cases) optimal cross-
sectional areas (in?)

Case 1

Kaveh and Kaveh and

Talatahari ~ Khayatazad
Element Lee and Geem [27] [29] [37] Present work [2]
group HS PSO PSOPC HPSACO Ray MCSS IMCSS
1 3.295 3.147 3.235 3.311 3.128 3.1108 3.1208
2 3.396 6.376 3.37 3.438 3.357 3.3903 3.3566
3 3.874 5.957 4.116 4.147 4.114 4.106 4.111
4 2.571 4.806 2.784 2.831 2.783 2.7757 2.7811
5 1.15 0.775 0.777 0.775 0.775 0.9674 0.8055
6 3.331 13.798 3.343 3474 3.302 3.2981 3.3001
7 2.784 2.452 2.454 2.551 2.453 2.4417 2.4451
Weight (Ib) 19,707.77 32,4329 19,618.7 19,491.3 19,476.19 19,607.39 19,476.92
No. of 35,000 N/A 125,000 10,025 19,950 7,850 7,475

analyses
Case 2

Kaveh and Kaveh and

Talatahari ~ Khayatazad
Element Lee and Geem [27] [29] [37] Present work
group HS PSO PSOPC HPSACO Ray MCSS IMCSS
1 3.296 15978  3.083 3.779 3.084 3.309 3.3187
2 2.789 9.599 3.639 3.377 3.360 2.6316 2.4746
3 3.872 7.467 4.095 4.125 4.093 4.2768 4.2882
4 2.57 2.79 2.765 2.734 2.762 2.7918 2.8103
5 1.149 4.324 1.776 1.609 1.593 0.9108 0.7753
6 3.331 3.294 3.779 3.533 3.294 3.5168 3.523
7 2.781 2.479 2.438 2.539 2.434 2.3769 2.3826
Weight (Ib) 19,893.34 41,052.7 20,681.7 20,078 20,071.9 19,928 19,796.71
No. of 35,000 N/A 125,000 10,075 19,950 9,650 8,100

analyses
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Chapter 5
Field of Forces Optimization

5.1 Introduction

Although different metaheuristic algorithms have some differences in approaches
to determine the optimum solution, however their general performance is approx-
imately the same. They start the optimization with random solutions; and the
subsequent solutions are based on randomization and some other rules. With
progressing the optimization process, the power of rules increases, and the power
of randomization decreases. It seems that these rules can be modeled by a familiar
concept of physics as well-known as the fields of forces (FOF). FOF is a concept
which is utilized in physics to explain the reason of the operation of the universe.
The virtual FOF model is approximately simulated by using the concepts of real
world fields such as gravitational, magnetical or electrical fields, Kaveh and
Talatahari [1].

This chapter utilizes the concept of the FOF model to enhance the performance
of the CSS algorithm. To reach such an improved algorithm, the definition of the
iteration for the FOF model is altered. Though this change is only performed for the
CSS algorithm, however it can be easily utilized for all the above mentioned
metaheuristic. It seems the enhanced method opens a new horizon for the concept
of time or iteration for the metaheuristics.

In order to investigate the efficiently of the enhanced CSS algorithm, it is used to
the optimum configuration design of the structures. The aim of the structural
configuration optimization is to obtain optimum locations of the structural joints
and suitable cross sections for the structural elements, such that the weight of the
structure becomes a minimum. In this type of optimization problems usually a large
numbers of design variables are encountered, corresponding to a design space of
large dimension, Kaveh et al. [2]. In addition, there are many constraints such as
member stresses, buckling stresses and joint displacements, and many local opti-
mums which increase the complexity and difficulty of the problem. Therefore, the
configuration optimization is found to be a good field to examine the performance
of the new algorithm.

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 135
DOI 10.1007/978-3-319-05549-7_5, © Springer International Publishing Switzerland 2014
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The remaining sections are organized as follows: In Sect. 5.2, statement of the
configuration optimization design of structures is formulated. Fundamental con-
cepts of the fields of forces from physics are presented in Sect. 5.3. The necessary
definitions for a FOF-based model are presented in Sect. 5.4. Section 5.5 describes
the FOF-based methods as a unified general framework of metaheuristics. An
enhanced CSS algorithm is provided in Sect. 5.6. Various examples are studied in
Sect. 5.7 and conclusions are derived in Sect. 5.8.

5.2 Formulation of the Configuration Optimization
Problems

The goal of configuration optimization is to find the optimal shape of the structure
for a given topology. Therefore, decision variables of the problem include the
coordinates of certain nodes of the truss (G) in addition to the sizing variables for
its different members (A). The problem can be expressed as follows:

n
minimize  W(A,G) = Zyi A L;
=1

subjectto :  Omin < i < Omax i=12,....m
Omin < i < Omax 1= 1,29 B (51)
61b§61§0 i:1,2,...,nS

Ai,min <A; SAi,max i=1,2, e, ng
Gi,min S Gi S Gi,max i 1

where W(A,G) is the weight of the structure; 7 is the number of members making up
the structure; m denotes the number of nodes; ns is the number of compression
elements; ng is the number of groups (number of design variables); y; represents the
material density of member i; L, is the length of member i; A; is the cross-sectional
area of member i chosen between A,,;, and A,,..; G; denotes the location of the
joints; min and max are the lower and upper bounds, respectively; o; and J; are the
stress and nodal deflection, respectively; 67 represents the allowable buckling stress
in member { when it is in compression.

5.3 Fundamental Concepts of the Fields of Forces

In physics, a field is a physical quantity associated to each point of space-time,
Gribbin [3]. Space-time is a mathematical model that combines space and time into
a single construct and is usually interpreted with space being three-dimensional and
time playing the role of the fourth dimension. Particles in the space-time exert field
forces which dictate the motion of particles because of carrying the energy. There
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are many types of the fields in physics such as temperature fields, air pressure fields,
Newtonian gravitational fields, electric fields and magnetic fields, etc.

In physics, it is known that the force field between two charges, two magnetic
monopoles, or two masses all follow an inverse square law as

Fij = szgnj
e
ij
. 494
Fy=ka (5.2)
Fy =M
y r2

where G, k, and U are constants; 7;; is the distance between two objects; m is the
mass of the object; ¢ is the magnitude of charge on the particle and M is the
magnetic monopoles strength. According to (5.2), the force between two particles is
inversely proportional to the square of the separation distance between them, and
proportional to the product of the related magnitudes. Also, the force is directed
along the line joining the particles. The magnitude of the field is obtained for
particle i, by substituting a unit particle instead of m1;, ¢; or M; in the (5.2) as

m;

Ei=G—

ij ”12,

qi

E; =K, 1
/ v (5.3)

B, =M

As the second example, let us consider an insulating solid sphere of radius a,
which has a uniform volume charge density and carries a total charge of ¢;. The
electric field E;; at a point inside the space can be obtained using the Gauss’s law as

q .
E; = ke;é"ij (5.4)
The magnitude of the electric field at a point outside the sphere is as defined by
(5.3).

The magnitude of the field at a point due to a group of objects is obtained by
using the superposition principle as

E— XN: Ey (5.5)

where N is the total number of objects. In a vector form, it can be expressed as the
following
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N
E; (5.6)
=2 il

i=1,i#j

where E;; for the electric fields is given as

keq; .
;3l’u ifrij<a
E;= 5.7
! ked; ifr;>a 7
r; Y=

u

5.4 Necessary Definitions for a FOF-Based Model

Here, some principal and definitions of the FOF-based models are presented as
follows:

Probe: Each agent in the optimization algorithm is treated as a particle or probe
which can only move in the predefined search space and its location is deter-
mined in the search space in the current time and sometime in the previous times.
The location of probes is a vector of numbers in which each number represents a
dimension of the search-time and the value of the number indicates the value of
that parameter.

Space-time: The term of the space-time is used for the search space at a
determined time. The dimension of the space-time is equal to the number of
the design variables in addition to the time.

Time: In the optimization problem, the iteration term is used for the time and
thus it can be assumed that the time changes discretely. This means that the time
domain is an integer domain and the change of the space-time is performed
considering this property.

Sources of fields: In a FOF-based model, there are some sources of fields which
can create a virtual field of force and attract the probes toward themselves;
however their powers are limited. The sources cannot be located out of the
space-time.

Effective material: The power of the field sources is limited by the amount of the
effective material. The effective material can be modeled on the amount of the
mass for a particle in Newtonian gravitational fields, or the magnitude of the
charge in the electric fields. The magnitude of the effective materials may be
altered during the optimization process based on the value (or fitness) of the
objective.

Uniform field: The points of space-time under the effect of the uniform field can
be selected with a uniform probability. In the start of the algorithms, the initial
solutions are obtained randomly. This model can be utilized in this condition.
Additional instrument: The field-based model can utilize randomization as an
additional instrument. This will change some required values, such as the
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location of probes or location or the magnitude of effective material of sources,
in a random manner.

5.5 A FOF-Based General Method

Based on the definitions presented in the previous section, here a unified approach is
developed which directly utilizes the FOF concept. Before describing the properties
of the new algorithm, a pseudo-code as a general form of the FOF-based algorithms
is provided as follows:

Step 1: Initialization. For initialization of the algorithm, we have

» The assumptions and definitions are as presented in Sect. 5.4.

e The primary location of the agents must be determined (often obtained
randomly using uniform fields).

» The location and the amounts of the effective material for the sources must
also be determined.

Step 2: Solution construction.

« In this step, each agent moves toward the space-time and finds a place using
affected fields of forces created by the sources. The rules of moving is
dependent on the type of the algorithm, however, all algorithms use the
abilities of the randomization in this stage.

Step 3: Source updating.

» The amounts of the effective material for the sources must be updated; and/or
e The new locations of the sources must be obtained.

Step 4: Terminating criterion control.

» Steps 2 and 3 are repeated until a terminating criterion is satisfied. Though the
order of steps 2 and 3 may be changed, this cannot make a problem in
generality of this pseudo-code.

Figure 5.1 summarizes the flowchart of the general FOF-based model.
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Fig. 5.1 Flowchart of the FOF-based model [1]

5.6 An Enhanced Charged System Search Algorithm
for Configuration Optimization

5.6.1 Review of the Charged System Search Algorithm

The Charged System Search (CSS) algorithm is proposed by Kaveh and Talatahari
[4] and utilized for size optimization of the structures (Kaveh and Talatahari [5,
6]. The pseudo-code for the CSS algorithm is summarized as follows:

Step 1: Initialization.

» The initial positions of CPs are determined randomly in the search space and
the initial velocities of charged particles are assumed to be zero. A memory,
called Charged Memory (CM) is considered to save the best results.

Step 2: Solution construction.
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Forces determination. Each CP is a source of the field. Based on the field of CPs,
the force vectors for all CPs are calculated as

j=1,2....N

4qi . 4. . ;
Fi=q> (a—3r,-j S0y +ﬁ~12>p,;,(x,. -X)) <11 =Lib=0&r;<a (58)
iy ] Yy 11 :0,12:1<:>i‘,»]-2a

where F; is the resultant force acting on the jth CP. X; and X; are the positions of the
ith and jth CPs, respectively. g; is the effective martial of the ith CP and is defined
considering the quality of its solution. The separation distance r;; between two
charged particles is defined as follows

P ||Xf7XJ'H (5 9)
DX+ XG) /2 = Xew| | + £ '

where X, is the position of the best current CP, and ¢ is a small positive number.
In (5.8), p;; is the probability of moving each CP toward the others and is equal to

fit(i) — fitbest . ol
- 7]%(]) —Fil) > rand or fit(j) >fzt(z) (5.10)

0 else

New position creation. Each CP moves to the new position and find the
velocities as

F.
X new = randjy - kg - =L A + randpy - ky - Vi o1 - At + X o1 (5.11)
mj
X/‘,neW - Xj,old

T (5.12)

where £k, is the acceleration coefficient; k, is the velocity coefficient to control the
influence of the previous velocity; and rand;; and rand;, are two random numbers
uniformly distributed in the range of (0, 1). Then, the related objective functions for
the agents are calculated.

Step 3: CM (sources) updating.

* If some new CP vectors are better than the worst ones in the CM, in terms of
their objective function values, the better vectors are included in the CM and
the worst ones are excluded from the CM.

Step 4: Terminating criterion control.

» Steps 2 and 3 are reiterated until a terminating criterion is satisfied.
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5.6.2 An Enhanced Charged System Search Algorithm

One of the assumptions, we described in Sect. 5.4 for establishing a FOF-based
model of metaheuristics is that the time alters discretely. This means that all
alterations in space-time are performed when all agents have created their solutions.
For example, in the CSS algorithm, when the calculations of the amount of forces
are completed for all CPs, the new locations of agents are determined (step 2). Also
CM updating is fulfilled after moving all CPs to their new locations. All these
conform to discrete time concept. In the optimization problems, this is known as
iteration. In other words, the modification of the space-time for the multi-agent
algorithms is often performed when an iteration is completed and the new iteration
is not started yet. Here, we ignore this assumption for the CSS algorithm and
therefore an enhanced CSS is presented. In the enhanced CSS, time changes
continuously and after creating just one solution, all updating processes are
performed. Using this enhanced CSS, the new position of each agent can affect
on the moving process of the subsequent CPs while in the standard CSS unless an
iteration is completed, the new positions are not utilized. Based on this inference,
the enhanced CSS is as follows:

Step 1: Initialization.

e This step is similar to the one defined previously. The initial positions and
velocities of CPs as well as the CM are initialized. A number associated to
each CP is considered.

Step 2: Solution construction.

» Forces determination. The force vector for the jth CP is calculated as (5.8).

* New position creation. Each CP moves to the new position as defined in
(5.11) and (5.12). It should be noted that in order to determine the location of
each CP using (5.11), the recent location of the previous agents is utilized
instead of the previous ones and this leads to the use of the pervious
information directly after their generation. After moving the CP to its new
position, the objective function is evaluated.

Step 3: CM (sources) updating.

« If the new CP vector is better than the worst one in the CM, it is included in
the CM.

Step 4: Terminating criterion control.

e Steps 2 and 3 are repeated until a terminating criterion is satisfied.
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5.7 Design Examples

This section presents some numerical design examples to illustrate the efficiency of
the new algorithm. The two first examples chosen from literature are known as the
benchmark examples in the field of the configuration optimization problem
containing an 18-bar planar truss and a 25-bar space truss. Since the largeness of
the examples does not make much difference on the search space, the number of
CPs is set to 20 for all the studied examples. The result of the enhanced CSS is
obtained and compared to some other numerical methods. The last example is
solved by the primary and enhanced CSS to identify the superiority of the new
approach. The algorithms are coded in Matlab and a direct stiffness method is
utilized to analysis the structures.

5.7.1 An 18-Bar Planar Truss

The initial configuration of an 18-bar cantilever planar truss is shown in Fig. 5.2
which has been previously analyzed by many authors to obtain the optimal design.
The material density is 2,768 kg/m> (0.1 Ib/in’) and the modulus of elasticity is
68,950 MPa (10,000 ksi). The members are subjected to stress limitations of
+137.9 MPa (420 ksi). Also, an Euler bucking compressive stress limitation is
imposed for truss member i, according to

,  —kEA;
o] = 2

(5.13)

where E is the modulus of elasticity; and £ is a constant determined from the cross-
sectional geometry and here it is equal to 4.

Vertical downward loads of —89 N (—20 kips) at nodes 1, 2, 4, 6 and 8 are
considered. The cross-sectional areas of the members are linked into four groups, as
follows:

1. Ay, Ay, Ag, Ao, Aje;
2. Ay, A, Ao, As, Avg;
3. A3, A7, A1, Ays; and
4' A57 A9’A]37 A17'

The lower nodes, 3, 5, 7, and 9, are allowed to move in any direction in the x-y
plane. Thus, there are 12 design variables which include four sizing and eight
coordinate variables. Side constraints for geometry variable are as follows:
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Fig. 5.2 The initial geometry of the 18-bar planar truss [1]

—571.5 cm (—225in) < y3,¥5,¥7, Y9 < 622.3 cm (245 in);
1,968.5 cm (775 1in) < x3 < 3,111.5 cm (1,225 in);
1,333.5cm (525 1in) < x5 < 2,476.5 cm (975 in);

698.5 cm (275 in) < x; < 1,841.5 cm (725 in);

63.5 cm (25 in) < x9 < 1,206.5 cm (475 in).

In this example, the continuous size variables are used and the allowable bounds
on the cross-sectional areas are 22.58—129.03 cm? (3.5-20 in?).

Table 5.1 presents the best solution vectors from the CSS and other methods.
Imai and Schmit [7] and Felix [8] used the mathematical methods to find optimum
results which are equal to 20,763.8 and 25,412.7 N, respectively. GA-based
approaches (many authors including Rahami et al. [9]) are also used to solve this
example. The weights are 20,251.9, 20,158.9, 20,536.5, 20,105.9 and 20,067.7 N,
respectively. Zheng et al. [10] used a GP algorithm and find a truss with the weight
of 21,377.7 N. The HS result (Lee and Geem [11]) is equal to 20,086.4 N. The best
CSS design results in a truss weighing 20,048.7 N, which is the best among the
other approaches. Among the GA-based methods, the result of the algorithm
proposed by Rahami et al. [9] is the best and obtained after 8,000 structural analyses
and the HS algorithm (Lee and Geem [11]) converges to the optimum point after
24,805 analyses while CSS needs 4,000 FEM analyses to reach the result. Figure 5.3
shows the convergence history for the CSS results and Fig. 5.4 displays optimal
geometry of the 18-bar truss obtained by the CSS algorithm. Also, a comparison
between the allowable and existing stress values in elements for the CSS result is
shown in Fig. 5.5. In this figure, the dashed bold lines indicates the limits of the
stress constraints and it is equal to 20.00 ksi when the type of stress is tension and
the limit for elements in compression are obtained by using (5.13). The maximum
tension stress is equal to 20.00 ksi in the 16th element and the maximum compres-
sion stress is —17.0152 ksi in the last element while the allowable buckling stress
equals to —17.0154 ksi.
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Table 5.1 Performance comparison for the 18-bar truss
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Design Imai and Rahami Zheng Lee and Geem Kaveh and
variables Schmit [7] et al. [8] et al. [9] [10] Talatahari [1]
A 11.24 12.554 12.040 12.65 12.476
A, 15.68 18.029 17.847 7.22 17.831
A; 7.93 5.114 7.969 6.17 5.277
As 6.49 3.571 4.726 3.55 3.726
X3 891.10 912.969 944.882 903.10 911.698
V3 143.60 188.067 150.000 174.30 185.788
Xs 608.20 646.450 664.961 630.30 643.917
Vs 105.40 150.617 122.441 136.30 147.640
X7 381.70 416.624 414.961 402.10 414.18
y7 57.10 102.526 77.559 90.50 98.507
Xg 181.00 204.282 192.520 195.30 202.444
Yo —3.20 32.653 17.323 30.60 30.557
Best Weight (N) 20,763.8 20,067.7 21,377.7 20,086.4 20,048.7
4
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Fig. 5.3 Convergence history of the 18-bar truss for the CSS algorithm [1]

Fig. 5.4 Optimal geometry of the 18-bar truss obtained by the CSS algorithm

T
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5.7.1.1 A 25-Bar Spatial Truss

Figure 5.6 shows the initial topology of a 25-bar spatial truss structure. This
example has been frequently studied in sizing and configuration optimization
using mathematical approaches. The material density is 2,768 kg/m® (0.1 Ib/in®)
and the modulus of elasticity is 68,950 MPa (10,000 ksi). Two cases are considered:

Case 1: The cross-sectional are continuous and the bounds on the member cross-
sectional areas are 0.065-6.45 cm? (0.01-1.0 inz). The load condition for this case
is indicated in Table 5.2. All members are constrained to 275.6 MPa (40 ksi) in both
tension and compression. In addition, all members stresses are constrained to the
Euler buckling stress, as given by (5.13) with the buckling constant k = 39.274
corresponding to tubular members with a nominal diameter-to-thickness ratio 100.
Case 2: For the second case the discrete set of cross sections is considered. The list
of the available profiles are as: {0.6451 (I = 1,..., 26), 18.064, 19.355, 20.645,
21.935} ecm?or {0.11(I = 1,...,26), 2.8, 3.0, 3.2, 3.4} in” which has thirty discrete
values. Table 5.3 presents the load condition for this case. The constraints are the
nodal displacements (no more than 0.89 cm or 0.35 in) in all directions of the
coordinate system for the nodes and the stress constraint (no more than £275.6 MPa
or 40 ksi) for all members.

The structure was required to be doubly symmetric about x- and y- axe; this
condition grouped the truss members as follows: (1) Aj; (2) Ax-As; (3) A¢—Ao;
4) Ag-Aq; (5) Ajp-Ars; (6) Ag—Ary; (7) Ajg-Aszg; and (8) Axp—Ajs. For the
configuration optimization, the geometric variables are selected as coordinates x4,
Y4, Z4, Xg, and yg, with symmetry required in x—z and y—z planes. The side constraints
for the geometric variables in the second case are as follows:
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Fig. 5.6 The initial geometry of the 25-bar spatial truss

Table 5.2 Loading conditions for the 25-bar spatial truss (Case 1)
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Case 1 Case 2
Node Py kips(kN) Py kips(kN) Pz kips(kN) Py kips(kN) Py kips(kN) Pz kips(kN)
1 0.0 20.0 (89) —5.0(22.25) 1.0 (4.45) 10.0 (44.5) —5.0 (22.25)
2 0.0 —20.0 (89) —5.0(22.25) 0.0 10.0 (44.5) —5.0(22.25)
3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0
6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

Table 5.3 Loading

v Node Py kips(kN) Py kips(kN) P kips(kN)
conditions for the 25-bar
spatial truss (Case 2) 1 1.0 (4.45) —10.0 (44.5) —10.0 (44.5)
2 0.0 —10.0 (44.5) —10.0 (44.5)
3 0.5 (2.22) 0.0 0.0
6 0.6 (2.67) 0.0 0.0

50.8 cm (20 in) < x4 < 152.4 cm (60 in);

101.6 cm (40 in) < y, < 203.2 cm (80 in);

228.6 cm (90 in) < z4 < 330.2 cm (130 in);
101.6 cm (40 in) < xg <203.2cm (80in); and
254 cm (100 in) < yg < 355.6 cm (140 in).

Considering Case 1, this example was solved by different methods. Vanderplaats
and Moses [12] and Felix [7] used mathematical methods and Yang [13], Soh and
Yang [14] and Yang and Soh [15] utilized GA-based methods. In addition, Zheng
et al. [10] used a GP algorithm to solve this example. The corresponding weight of
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Table 5.4 Performance comparison for the 25-bar truss (Case 1)

Design Vanderplaats and ~ Felix Soh and Yang  Zheng Kaveh and
variables Moses [12] [8] [14] etal. [10]  Talatahari [1]
A 0.08 0.07 0.58 0.58 0.11

A, 2.67 3.14 2.84 4.97 2.33

A; 5.43 5.39 5.81 4.39 5.64

Ay 0.21 0.16 0.32 0.52 0.25

As 0.65 0.79 0.71 0.065 0.70

As 0.78 0.54 1.36 0.1 0.80

A; 4.77 4.50 4.52 3.1 5.34

Ag 3.57 3.54 3.61 3.1 3.69

X4 54.6 60.20 558 32.0 51.57

V4 122.7 1252 110.7 222.0 96.00

Z4 254.8 2482 2460 254.0 262.717

Xg 54.1 69.9 359 159.0 45.65

Vs 244.7 2449  206.1 254.0 198.71
Best Weight (N) ~ 593.8 571.6  590.9 583.8 567.5

these methods are 593.8, 571.6, 610.3, 590.9, 584.0, 583.8 N, respectively while it
is 567.5 for the solution vector of the CSS algorithm. Table 5.4 presents some of the
best results of these algorithms. CSS need 4,000 analyses to reach the optimum
result as shown in Fig. 5.7.

For Case 2, Wu and Chow [16], Kaveh and Kalatjari [17] and Rahami et al. [9]
used GA-based algorithms. Lee and Geem [11] used a harmony search algorithm.
The result of the CSS algorithm is 528.58 N which is 14.6 %, 4.35 %, 1.08 % and
4.12 % less than the previous studies, respectively. Table 5.5 summarizes the design
vectors as well as the weight of the results obtained by different algorithms.
Maximum displacement for the design of the CSS algorithm is 0.888 cm which is
less than its maximum limit. Also, its maximum stress value is equal —126.4 MPa
and so it can be seen that the displacement constraint is dominant in this case. The
optimum configurations for two cases are shown in Fig. 5.8.

In addition to previous cases, when the range of cross-sectional areas varies from
0.01 to 3.4 in* (0.6452 cm” to 21.94 cm?) and only size optimization is considered, a
statistical study on the results of different algorithms is performed. The detailed
information for constraint conditions is presented in Kaveh and Talatahari
[4]. Table 5.6 compares the performance of the presented algorithm and other
metaheuristic algorithms. Obviously, the enhanced CSS performs better than
other algorithms when the best weight, the average weight or the standard deviation
are compared.
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Table 5.5 Performance comparison for the 25-bar truss (Case 2)

Design Wu and Kaveh and Rahami Lee and Kaveh and
variables Chow [16] Kalatjari [17] et al. [9] Geem [11] Talatahari [1]
A 0.1 0.1 0.1 0.2 0.1

Az 0.2 0.1 0.1 0.1 0.1

Az 1.1 1.1 1.1 0.9 0.9

Ay 0.2 0.1 0.1 0.1 0.1

As 0.3 0.1 0.1 0.1 0.1

As 0.1 0.1 0.1 0.1 0.1

A, 0.2 0.1 0.2 0.2 0.1

As 0.9 1.0 0.8 1.0 1.0

X4 41.07 36.23 33.049 31.88 36.762

V4 53.47 58.56 53.566 83.57 56.920

7y 124.6 115.59 129.909 126.35 124.863

Xg 50.8 46.46 43.783 40.43 49.767

Vs 131.48 127.95 136.838 130.64 136.757
Best Weight (N) 605.85 551.58 534.30 550.55 528.58

5.7.1.2 A 120-Bar Dome Truss

The design of a 120-bar dome truss, shown in Fig. 5.9, is considered as the last
example to compare the practical capability of the standard and enhanced CSS
algorithms. This dome is utilized in literature to find size optimum design, however
here the aim is to obtain the optimal sizing and configuration variables. The
modulus of elasticity is 210,000 MPa (30,450 ksi), and the material density is
7971.810 kg/m3 (0.288 lb/in3). The yield stress of steel is taken as 400 MPa (58.0
ksi). The dome is considered to be subjected to vertical loading at all the
unsupported joints. These loads are taken as —60 kN (—13.49 kips) at node
1, —30 kN (—6.744 kips) at nodes 2 through 14, and —10 kN (—2.248 kips) at
the rest of the nodes. The minimum cross-sectional area of all members is 2 cm?
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Fig. 5.8 Optimal geometry of the 25-bar truss obtained by the CSS algorithm [1]: (a) Case 1; (b)
Case 2

(0.775 in?) and the maximum cross-sectional area is taken as 129.03 cm? (20.0 in?).
Due to the symmetry of the structure, the geometric variables are selected as the
height of the rings and the crown (three geometric variables). The geometric
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Fig. 5.9 The initial geometry of the 120-bar dome shaped truss

variables are allowed to move 0.50 m, based on their initial value. The stress
constraints of the structural members are calculated as per AISC [21] specifications.
Besides, the displacements of all nodes in any direction are limited to a maximum
value of 5 mm (0.1969 in).

Table 5.7 compares the result of the standard CSS and enhanced CSS. When
pure size optimization is considered, the enhanced CSS can find a better result in a
less number of analyses. The enhanced CSS needs 4,000 analyses to find the
optimum result while it is 7,000 for the standard CSS as reported by the authors
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Table 5.7 Performance comparison for the 120-bar truss
Pure size optimization Configuration optimization
Design Standard CSS (Kaveh  Kaveh and Kaveh and
variables and Talatahari [5]) Talatahari [1]  Standard CSS  Talatahari [1]
A 3.027 3.032 3.103 3.235
Ay 14.606 15.335 7.328 4.875
Az 5.044 4.767 4.350 4.303
Ay 3.139 3.030 2.731 2.764
As 8.543 8.252 1.719 2.438
Ag 3.367 3.723 3.739 3.637
A 2.497 2.502 2.452 2.505
z; - - 286.505 259.569
Z5 - - 209.295 207.017
z3 - - 107.271 106.556
Best weight (N) 147,912 147,537 100,984 98,815
Average weight(N) 151,865 149,862 102,723 101,156
Std Dev(N) 2,963 2,456 3,365 2,884

(Kaveh and Talatahari [5]). Figure 5.10 shows the convergence history for these
two CSS-based algorithms. For the configuration optimization, the enhanced CSS
algorithm can find a design with weight of 98,815 N while it is 100,984 N for the
standard CSS. Adding three geometry design variables to the problem saves the
structural martial more than 33 %.

5.8 Discussion

A model is developed to improve the performance of metaheuristics utilizing the
concept of the virtual fields of forces. This general framework of the FOF-based
algorithm contains four steps:

« Initialization, where considers some probes and sources and determines the first
location of the probes (initial solutions) using a uniform field. Also, the amounts
of the effective material for the sources based on the utilized approach are

determined.

Solution construction, in which each probe moves toward the sources and finds a

place as a new solution.

Source updating, where the location of the sources and/or the amounts of the
effective material are updated to direct the search process toward an optimum

point.

Terminating criterion control, which determines the end time of the search

process.
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Fig. 5.10 Convergence < 10°
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Using this model, an enhanced CSS algorithm is developed. Although the CSS
algorithm uses the concept of the FOF model directly, however considering the
continuous space-time for this algorithm improves its efficiency. In this algorithm,
time changes continuously and after creating just one solution, all updating pro-
cesses are performed. Using the enhanced CSS, the new position of each agent can
affect the moving process of the subsequent CPs, while in the standard CSS until the
completion the iteration, the new positions are not utilized and this change
improves the performance of the algorithm.

In this chapter, the enhanced CSS is utilized to determine the optimum config-
uration design of the truss structures. For this purpose, three examples are consid-
ered and the results are compared to the results of different algorithms and the
standard CSS. The results indicate the efficiency of the enhanced CSS for deter-
mining the optimum design of structures.

It can be postulated that further improvement of metaheuristics can be achieved
by changing the definition and/or application of some concepts used in the FOF
model. Considering the continuous space-time is the first result of such an improve-
ment. Utilizing what is defined as the continuous space-time for other metaheuristic
algorithms opens a new horizon for the concept of the time or iteration for
metaheuristics, and it is expected this continuous space-time can be expended for
other algorithms. As a future work, one can change the manner of using other
concepts of the FOF model to reach to some better optimization methods similar to
the enhanced CSS which alters the way of using the space-time term.
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Chapter 6
Dolphin Echolocation Optimization

6.1 Introduction

Nature has provided inspiration for most of the man-made technologies. Scientists
believe that dolphins are the second to humans in smartness and intelligence.
Echolocation is the biological sonar used by dolphins and several kinds of other
animals for navigation and hunting in various environments. This ability of dol-
phins is mimicked in this chapter to develop a new optimization method. There are
different metaheuristic optimization methods, but in most of these algorithms
parameter tuning takes a considerable time of the user, persuading the scientists
to develop ideas to improve these methods. Studies have shown that metaheuristic
algorithms have certain governing rules and knowing these rules helps to get better
results. Dolphin Echolocation takes advantages of these rules and outperforms
many existing optimization methods, while it has few parameters to be set. The
new approach leads to excellent results with low computational efforts [1].

Dolphin echolocation is a new optimization method which is presented in this
chapter. This method mimics strategies used by dolphins for their hunting process.
Dolphins produce a kind of voice called sonar to locate the target, doing this
dolphin change sonar to modify the target and its location. Dolphin echolocation
is depicted in Fig. 6.1. This fact is mimicked here as the main feature of the new
optimization method.

6.2 Dolphin Echolocation in Nature

The term “echolocation” was initiated by Griffin [2] to describe the ability of flying
bats to locate obstacles and preys by listening to echoes returning from high-
frequency clicks that they emitted. Echolocating animals include some mammals
and a few birds. The best studied echolocation in marine mammals is that of the
bottlenose dolphins, Au [3].

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 157
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Fig. 6.1 A real dolphin
catching its prey [1]

[

A dolphin is able to generate sounds in the form of clicks. Frequency of these
clicks is higher than that of the sounds used for communication and differs between
species. When the sound strikes an object, some of the energy of the sound-wave is
reflected back towards the dolphin. As soon as an echo is received, the dolphin
generates another click. The time lapse between click and echo enables the dolphin
to evaluate the distance from the object; the varying strength of the signal as it is
received on the two sides of the dolphin’s head enabling him to evaluate the
direction. By continuously emitting clicks and receiving echoes in this way, the
dolphin can track objects and home in on them, May [4]. The clicks are directional
and are for echolocation, often occurring in a short series called a click train. The
click rate increases when approaching an object of interest [3].

Though bats also use echolocation, however, they differ from dolphins in their
sonar system. Bats use their sonar system at short ranges of up to approximately 3—4
m, whereas dolphins can detect their targets at ranges varying from a few tens of
meters to over a hundred meters. Many bats hunt for insects that dart rapidly
to-and-fro, making it very different from the escape behavior of a fish chased by
dolphin. The speed of sound in air is about one fifth of that of water, thus the
information transfer rate during sonar transmission for bats is much shorter than
that of the dolphins. These and many other differences in environment and prey
require totally different types of sonar system, which naturally makes a direct
comparison difficult 3, 5].

6.3 Dolphin Echolocation Optimization

6.3.1 Introduction to Dolphin Echolocation

Regarding an optimization problem, it can be understood that echolocation is
similar to optimization in some aspects; the process of foraging preys using
echolocation in dolphins is similar to finding the optimum answer of a problem.

As mentioned in the previous part, dolphins initially search all around the search
space to find the prey. As soon as a dolphin approaches the target, the animal
restricts its search, and incrementally increases its clicks in order to concentrate on
the location.
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The method simulates dolphin echolocation by limiting its exploration propor-
tional to the distance from the target. For making the relationship much clear,
consider an optimization problem. Two stages can be identified: in the first stage the
algorithm explores all around the search space to perform a global search, therefore
it should look for unexplored regions. This task is carried out by exploring some
random locations in the search space, and in the second stage it concentrates on
investigation around better results achieved from the previous stage. These are
obvious inherent characteristics of all metaheuristic algorithms. An efficient
method is presented in [6] for controlling the value of the randomly created answers
in order to set the ratio of the results to be achieved in phase 1 to phase 2.

By using Dolphin Echolocation (DE) algorithm, the user would be able to
change the ratio of answers produced in phase 1 to the answers produces in phase
2 according to a predefined curve. In other words, global search, changes to a local
one gradually in a user defined style.

The user defines a curve on which the optimization convergence should be
performed, and then the algorithm sets its parameters in order to be able to follow
the curve. The method works with the likelihood of occurrence of the best answer in
comparison to the others. In other words, for each variable there are different
alternatives in the feasible region, in each loop the algorithm defines the possibility
of choosing the best so far achieved alternative according to the user determined
convergence curve. By using this curve, the convergence criterion is dictated to the
algorithm, and then the convergence of the algorithm becomes less parameter
dependent. The curve can be any smooth ascending curve but there are some
recommendations for it, which will be discussed later.

Previously it has been shown that there is a unified method for parameter
selection in metha-heuristics [6]. In the latter paper, an index called the conver-
gence factor was presented. A Convergence Factor (CF) is defined as the average
possibility of the elitist answer. As an example, if the aim is to devote some steel
profiles to a structure that has four elements, then in the first step, frequency of
modal profile of each element should be defined. CF is the mean of these frequen-
cies. Table 6.1 illustrates an example of calculating the CF for a structure
containing four elements.

6.3.2 Dolphin Echolocation Algorithm

Before starting optimization, search space should be sorted using the following
rule:

Search Space Ordering For each variable to be optimized during the process, sort
alternatives of the search space in an ascending or descending order. If alternatives
include more than one characteristic, perform ordering according to the most
important one. Using this method, for variable j, vector A; of length LA, is created
which contains all possible alternatives for the /™ variable putting these vectors next
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Table 6.1 An example for calculation of the CF [6]

Element 1 Element 2 Element 3 Element 4
Answer 1 5 41 22 15
Answer 2 3 36 22 17
Answer 3 4 39 25 16
Answer 4 3 42 22 17
Answer 5 3 41 22 19
Modal answer 3 41 22 17
Frequency of the modal answer 3 2 4 2
Proportion of the modal answer 60 % 40 % 80 % 40 %
among all answers
CF 55 %

to each other , as the columns of a matrix, the Matrix Alternatives;s+«yy is created,

in which MA is max(LA;);— . nv; with NV being the number of variables.
Moreover, a curve according to which the convergence factor should change

during the optimization process, should be assigned. Here, the change of CF is

considered to be according to the following curve:

LOOPPower -1

i

PP (Loop;) = PPy + (1 — PPy)

)Pawer —1 (6 1 )

(Loops Number

PP: Predefined probability.

PP;: Convergence factor of the first loop in which the answers are selected
randomly.

Loop;: Number of the current loop.

Power: Degree of the curve. As it can be seen, the curve in (6.1) is a polynominal
of Power degree.

Loops Number: Number of loops in which the algorithm should reach to the
convergence point. This number should be chosen by the user according to the
computational effort that can be afforded for the algorithm.

Figure 6.2 shows the variation of PP by the changes of the Power, using the
proposed formula, Eq. (6.1).

The flowchart of the algorithm is shown in Fig. 6.3. The main steps of Dolphin
Echolocation (DE) for discrete optimization are as follows:

1. Initiate NL locations for a dolphin randomly.
This step contains creating Lyz«ny matrix, in which NL is the number of
locations and NV is the number of variables (or dimension of each location).

2. Calculate the PP of the loop using (6.1).

3. Calculate the fitness of each location.
Fitness should be defined in a manner that the better answers get higher values.
In other words the optimization goal should be to maximize the fitness.
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Fig. 6.2 Sample
convergence curves, using
(6.1) for different values for
power [6]

P function value

Fig. 6.3 The flowchart of

the DE algorithm [1] Initiate the definition of the problem and predefined possibility

cwrve and select the positions of dolphin randomly

y

*.l Calculate the fitness for each location

1. Calculate the accumulative fitness by devoting the
calculated fitness to the alternatives chosen for each
dimension and its neighbors according to the dolphin rules
2. Find the best location

v

Allocate the probability of the best location equal to the
predefined probability curve value in the current loop and
distribute rest of the probability between other alternatives

according to the calculated Accumulative fitnesses

l

Select next loop locations according to the calculated
probabilities

l

Terminating
criteria

4. Calculate the accumulative fitness according to dolphin rules as follows:

(a) for i = 1 to the number of locations
for j = 1 to the number of variables
find the position of L(i,j) in /™ column of the Alternatives matrix and name
it as A.
fork = — R,toR,
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AF oy = Ri « (R, — |k|) Fitness (i) + AF s 0 (62)

J

end

end

end

Where

AF (4 . ;18 the accumulative fitness of the (A + k)th alternative (number-
ing of the alternatives is identical to the ordering of the Alternative matrix) to
be chosen for the jth variable; R,: is the effective radius in which accumu-
lative fitness of the alternative A’s neighbors are affected from its fitness.
This radius is recommended to be not more than 1/4 of the search space;
Fittness (i) is the fitness of location i.

It should be added that for alternatives close to edges (where A + kisnota
valid; A + k < 0 or A + k > LA;j), the AF is calculated using a reflective
characteristic. In this case, if the distance of an alternative to the edge is less
than R,, it is assumed that the same alternative exists where picture of the
mentioned alternative can be seen, if a mirror is placed on the edge.

(b) In order to distribute the possibility much evenly in the search space, a small
value of is added to all the arrays as AFF = AF + e. Here, € should be chosen
according to the way the fitness is defined. It is better to be less than the
minimum value achieved for the fitness.

(c) Find the best location of this loop and name it “The best location”. Find the
alternatives allocated to the variables of the best location, and let their AF be
equal to zero.

In other words:

for j = 1: Number of variables

for i = 1: Number of alternatives

if i = The best location(j)

AF; =0 (6.3)

end
end
end

5. for variable j(j = 1,..., NV), calculate the probability of choosing alternative
ii = 1,..., ALj), according to the following relationship:

AF;
Py =1 (6.4)

ZAF,;i
i=1

6. Assign a probability equal to PP to all alternatives chosen for all variables of the
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best location and devote rest of the probability to the other alternatives according
to the following formula:

for j = 1: Number of variables

for i = 1: Number of alternatives

if i = The best location(j)

Pj=PP (6.3)
Else
Pj=(1—-PP)P; (6.6)
end
end
end

Calculate the next step locations according to the probabilities assigned to
each alternative.
Repeat Steps 2 to 6 as many times as the Loops Number.

Parameters of the Algorithm Input parameters for the algorithm are as follows:

(a)

(b)

(©)

Loops Number

For an optimization algorithm it is beneficial for the user to be able to dictate the
algorithm to work according to the affordable computational cost. The answers
may obviously be dependent on the selected number of loops and will improve
by an increase in the loops number. However, the point is that one may not
achieve results as bad as those of other optimization algorithms gained in less
loops, because in this case although the algorithm quit its job much sooner than
expected, the answer is good because of convergence criteria being reached.
The number of loops can be selected by sensitivity analysis when high accuracy
is required, however, in structural optimization of normal buildings, the loops
number is recommended to be more than 50.

Convergence Curve Formula

This is another important parameter to be selected for the algorithm. The curve
should reach to the final point of 100 % smoothly. If the curve satisfies the
above mentioned criteria the algorithm will perform the job properly, but it is
recommended to start with a linear curve and try the curves that spend more
time (more loops) in high values of the PP. For example, if one is using
proposed curves of this chapter, it is recommended to start with Power =1
which usually gives good results and it is better to try some cases of the
Power < 1 to check if it improves the results.

Effective Radius (R,)

This parameter is better to be chosen according to the size of search space. It is
recommended to be selected less than % of the size of the search space.
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@) €
This parameter is better to be less than any possible fitness.

(e) Number of Locations (NL)
This parameter is the same as the population size in GA or number of ants in
ACO. It should be chosen in a reasonable way.

An Illustrative Numerical Example As an example consider the following sim-
ple mathematical function optimization problem:

N
min (h = Zx?) X EZ, —20 < x; <20 (6.7)
i=1

Considering N = 4, dolphin echolocation algorithm suggests the following
steps:

Before starting the optimization process for the changes of CF, a curve should be
selected using (6.1), utilizing Power = 1, Loops number = 8, and PP, = 0.1, as
follow:

Loop; — 1
PP =0.1+09 (%) = 0.1+ 0.9(Loop; — 1) (6.8)

It should be noted that the PP, is better to be considered as the CF of the
randomly selected generation of the first loop, which is equal to 0.11 for this
example.

Dolphin Echolocation steps to solve the problem are as follows:

1. Create the initial locations randomly, which includes the generating NL vectors
consisting of N integer numbers between —20 and 20. For example, considering
NL and N equal to 30 and 4, 30 vectors of length 4 should be selected randomly.
One possible answer for the ith location can be L; = {—10, 4, — 7, 18}.

2. Calculate the PP of the loop using (6.8).

3. Calculate fitness for each location. In this example as the objective function is
defined by (6.7), for the considered location (L;), h = (=10 + 4% + (=7)* +
182 = 489. As in DE, the fitness is used to calculate the probability. Better
fitnesses should have higher possibilities, then we can use Fitness = 1/h. It
should be added that, for this special case, as & can be equal to zero, small
value of 1 is added to the h in order to prevent the error of dividing by zero. Then
the Fitness = 1/(h + 1), and for the considered location Fitness(L;) =
1/(489 + 1) = 0.00204.

4. Calculate the Accumulative fitness, using (6.2). As discussed before the alter-
natives should be sorted in an ascending order. The Alternativesy s«ny (MA is the
number of alternatives, and NV is the number of optimization variables) is
allocated to the possible alternatives for variables. For this example, the Alter-
natives matrix is:
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[—20 —-20 —-20 —20]
-19 —-19 —-19 -19

Alternatives =
19 19 19 19
20 20 20 20

Then for sample location, L;, considering R, = 10, Eq. (6.2) becomes:

fori =1L;
forj=1to4

165

find the position of L(i,j) in the jth column of the Alternatives matrix and

name it as A.
fork = — 10to 10

AF(A+]<)] = % * (10 - ‘k|) Fitness (L,) +AF<A+/€)J<

end

end

end

Equation (6.10) can also be stated as:
forj = {1, 2, 3, 4}

L(i,j) = {-10,4, — 7,18}, then A ={11,25,14,39}
fork = — 10to 10

1

AF (114401 = E* (10 — [k]) Fitness (L) + AF (11001
AF(25+]<)2 = % * (10 - |k‘)Fl.ﬂ’l€SS (Ll) +AF(25+k)2
1

AF (14413 = 0 * (10 - ’k|)Fitness (Li) + AF (1440)3

AF (3914 = % % (10 — |k|) Fimness (L;) + AF 3941)4

end
end

(6.10)

(6.11)

Considering ¢ as the worth possible fitness, it will be ¢ = 1/(4 * 20?) and then

AF = AF + 0.000625.

In these equations, it can be seen that for example for j = 2 (the second
variable), for calculating the accumulative fitness, search space should be
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Fig. 6.4 Accumulative fitness resulted from sample location of the mathematical example [1]

divided into two regions: affected region (in effective radius) and not affected
region. Choosing R, equal to 10, alternatives with absolute distance to 4 (alter-
native 4 is chosen for the second variable) more than 10 (x < — 6 and x > 14)
are considered not affected. Also in the affected area the accumulative fitness
resulted from this sample location changes linearly in a way that its maximum
appears in x = 4. The accumulative fitness to be added for this alternative is:

9. x<78

1

Fnes i (v 16) ~6<x<a

AF (x12512 = AF (cp2512 + 4 iy Li
’”elsg( Va_y) a<x<i14 (6.12)
0 x>14

AF = AF +0.000625

Figure 6.4 shows the result of performing the explained process for all 4 vari-
ables of this location.
Performing Step 4 for all the randomly selected answers, the final Accumu-
lative fitness of the first loop is achieved.
5. For variable j(j = 1,..., 4), calculate the probability of choosing alternative
i(i = 1,..., 40), according to the following relationship:

AF;
40

> AF;
i=1

and consequently the probability will be according to Figs. 6.5 and 6.6.

6. Figure 6.5 demonstrates the accumulative fitness of variables X1, X2, X3 and
X4. The best location of the first loop is achieved by setting variables as:
X1l =—11,X2 =3, X3 = X4 = 4. On the other hand, according to (6.8),

P (6.13)
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Fig. 6.5 Accumulative fitness of all four variables in the first loop of DE in mathematical example

[1]
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Fig. 6.6 Probability curve of all four variables in the first loop of DE in mathematical example [1]

PP for the first loop is equal to 10 %, as a result all variables in their best
placement is equal to 10 % probability of the other alternatives is defined
distributing remaining value of probability equal to 90 % to the other alterna-
tives, using the following formula:

Py = (1—0.1)P; = 0.9P; (6.14)

Since the number of loops is equal to 8, Steps 2 to 6 should be repeated
8 times.

Figures 6.7, 6.8, 6.9, and 6.10 show the accumulative fitness and the proba-
bility of alternatives in loops 4 and 8§, respectively. It can be seen from these
figures that the probability changes in a way that in 8 loops DE reaches the best
answer.
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Fig. 6.7 Accumulative fitness of all four variables in the fourth loop of DE in of mathematical
example [1]
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Fig. 6.8 Probability curve of all four variables in the fourth loop of DE in mathematical example

25

20
8 i 1
= 15+
—x2
,_z 10 ESTAER i |
£ :
g === X4
< 5

0

-20 -15 -10 -5 0 5 10 15 20

Alternative

Fig. 6.9 Accumulative fitness of all four variables in the eighth loop of DE in of mathematical
example [1]
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Fig. 6.10 Probability curve of all four variables in the eighth loop of DE in mathematical example
[1]

Comparison Between the Dolphin Echolocation and Bat Inspired
Algorithm Bat inspired algorithm can be considered as a balanced combination
of the standard particle swarm optimization and the intensive local search con-
trolled by the loudness and pulse rate [7]. In this algorithm loudness and pulse
frequency are echolocation parameters that gradually restrict the search according
to pulse emission and loudness rules. This is while, in dolphin echolocation
algorithm there is no movement to the best answer. DE algorithm works with
possibilities.

6.4 Structural Optimization

In this study the structural optimization goal is to minimize the weight of the
structure that is formulated as follows:
Minimize:

M
W =p) AL, (6.15)
i=1

Subjected to:

KU-P=0
81>0.8,>0,....8,>0 (6.16)
Where gy, g2, ..., g, are constraint functions depending on the element being
used in each problem and K, U and P are the stiffness matrix, nodal displacement
and nodal force vectors, respectively. In this study, different constraints are
implemented for structural design including drift, displacement and strength. Con-
straints are clarified in numerical examples.
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Furthermore, such a constrained formulation is treated in an unconstrained form,
using a penalized fitness function as:

F=Fy—W=x(14+K,V) (6.17)

Where F| is a constant taken as zero for the class of considered examples. K, is
the penalty coefficient, and V denotes the total constraints’ violation considering all
the load combinations.

6.5 Numerical Examples

In this section three trusses and two frames are optimized using the present
algorithm and the results are compared to those of some other existing approaches.
The algorithms are coded in Matlab and structures are analyzed using the direct
stiffness method.

6.5.1 Truss Structures

In the following three trusses are optimized and the results of the present algorithm
are compared to those of different algorithm.

6.5.1.1 A 25-Bar Spatial Truss

The 25-bar spatial truss structure shown in Fig. 6.11 has been studied in [8—11]. The
material density is 0.1 1b/in® (2,767.990 kg/m®) and the modulus of elasticity is
10,000 ksi (68,950 MPa). The stress limitations of the members are 40 kpsi
(£275.80 MPa). All nodes in three directions are subjected to displacement limi-
tations of £0.35 inch (in) (£8.89 mm) imposed on every node in each direction.
The structure includes 25 members, which are divided into eight groups, as follows:
(1) A1, (2) Ax-As, (3) Ag—Ag, (4) A1o—Arr, (5) A=Az, (6) Aa—Ayg, (7) Ag—Asy
and (8) Ay,—Ajs. Two optimization cases are implemented.

Case 1: The discrete variables are selected from the set D = {0.01, 0.4, 0.8, 1.2,
1.6,2.0,2.4,2.8,3.2,3.6,4.0,4.4,4.8,5.2,5.6,6.0} (in%) or {0.065, 2.58, 5.16,
7.74, 10.32, 12.90, 15.48, 18.06, 20.65, 23.22, 25.81, 28.39, 30.97, 33.55, 36.13,
38.71} (cm?).

Case 2: The discrete variables are selected from the [12], listed in Table 6.2.
The loads for both cases are shown in Table 6.3.
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100in
[254 cm]

Fig. 6.11 Schematic of a 25-bar spatial truss

For solving this problem by the use of DE, Loops number is set to 80. Conver-
gence curve is according to (6.1) considering PP, = 0.15 and Power = 1. R, and &
are equal to 5 and 1, respectively.

According to Tables 6.4 and 6.5 and Fig. 6.12, DE achieves the best answer in
approximately 50 loops in Case 1 and near 80 loops in Case 2, while HPSACO
reaches to the same result in around 100 loops. It should be mentioned that Kaveh
and Talatahari [11] show that the HPSACO itself has better convergence rate in
comparison to GA, PSO, PSOPC and HPSO.

In addition, Fig. 6.13 shows the convergence factor history. It can be seen that
the algorithm follows the predefined linear curve as expected.

6.5.1.2 A 72-Bar Spatial Truss

For the 72-bar spatial truss structure shown in Fig. 6.14, the material density is
0.1 Ib/in® (2,767:990 kg/m3) and the modulus of elasticity is 10,000 ksi
(68,950 MPa). The members are subjected to the stress limits of £25 ksi
(£172.375 MPa). The nodes are subjected to the displacement limits of £0.25 in
(£0.635 cm).

The 72 structural members of this spatial truss are sorted into 16 groups using
symmetry: (1) A=Ay, (2) As—A12, 3) Az—Aje (4) A17-Asg, (5) Ajo—Ag, (6) Axs—
Azo, (7) Az1—Aza, (8) Azs—Ase, (9) Azr—Auo, (10) Agi—Ass, (11) Ago—Asa, (12) Asz—
Asa, (13) Ass—Asg, (14) Aso—Ags (15), Ag7—Ago, and (16) A71—A7;.

Two optimization cases are implemented.
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Table 6.2 The available No. in2 2 No. inZ mm?

cross-section areas of the

AISC code 1 0.111 (71.613) 33 3.840 (2,477.414)
2 0.141 (90.968) 34 3.870 (2,496.769)
3 0.196 (126.451) 35 3.880 (2,503.221)
4 0.250 (161.290) 36 4.180 (2,696.769)
5 0.307 (198.064) 37 4.220 (2,722.575)
6 0.391 (252.258) 38 4.490 (2,896.768)
7 0.442 (285.161) 39 4.590 (2,961.284)
8 0.563 (363.225) 40 4.800 (3,096.768)
9 0.602 (388.386) 41 4.970 (3,206.445)
10 0.766 (494.193) 42 5.120 (3,303.219)
11 0.785 (506.451) 43 5.740 (3,703.218)
12 0.994 (641.289) 44 7.220 (4,658.055)
13 1.000 (645.160) 45 7.970 (5,141.925)
14 1.228 (792.256) 46 8.530 (5,503.215)
15 1.266 816.773) 47 9.300 (5,999.988)
16 1.457 (939.998) 48 10.850 (6,999.986)
17 1.563  (1,008.385) 49 11.500 (7,419.430)
18 1.620  (1,045.159) 50 13.500 (8,709.660)
19 1.800  (1,161.288) 51 13.900 (8,967.724)
20 1.990  (1,283.868) 52 14.200 (9,161.272)
21 2.130  (1,374.191) 53 15.500 (9,999.980)
22 2380  (1,535.481) 54 16.000  (10,322.560)
23 2,620  (1,690.319) 55 16.900  (10,903.204)
24 2.630  (1,696.771) 56 18.800  (12,129.008)
25 2.880  (1,858.061) 57 19.900  (12,838.684)
26 2930  (1,890.319) 58 22.000  (14,193.520)
27 3.090 (1,993.544) 59 22900  (14,774.164)
28 1.130 (729.031) 60 24.500  (15,806.420)
29 3.380  (2,180.641) 61 26.500  (17,096.740)
30 3470  (2,238.705) 62 28.000  (18,064.480)
31 3,550  (2,290.318) 63 30.000  (19,354.800)
32 3.630  (2,341.931) 64 33,500 (21,612.860)

Table 6.3 Loading conditions for the 25-bar spatial truss

Case 1 Case 2
Node Py kips (kN) Py kips (kN) Pz kips (kN) Py kips (kN) Py kips (kN) P kips (kN)
1 0.0 20.0 (89) —5.0 (22.25) 1.0 (4.45) 10.0 (44.5) —5.0(22.25)
2 0.0 —20.0 (89) -5.0(22.25) 0.0 10.0 (44.5) —5.0 (22.25)
3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0
6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

Case 1: The discrete variables are selected from the set D = {0.1,0.2,0.3,0.4, 0.5,
0.6,0.7,08,09,1.0,1.1,1.2,13,14,15,16,1.7,18,19,2.0,2.1,2.2,2.3,2.4,
2.5,2.6,2.7,2.8,2.9,3.0,3.1,3.2} (in®) or {0.65, 1.29, 1.94, 2.58, 3.23, 3.87, 4.52,
5.16,5.81, 6.45,7.10, 7.74, 8.39, 9.03, 9.68, 10.32, 10.97, 12.26, 12.90, 13.55,

14.19, 14.84, 15.48, 16.13, 16.77, 17.42, 18.06, 18.71, 19.36, 20.00, 20.65} (cm?).
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Table 6.4 Optimal design comparison for the 25-bar spatial truss (Case 1)
Optimal cross-sectional areas (inz)
Kaveh and
Wu and Lee and Talatahari [11] Present work

Element Chow [8]Geem [9]Li et al. [10] HPSACO [1]

group GA HS PSO PSOPCHPSO in’ cm®  in? cm?

1 Ay 0.40 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.07

2 Ar— 2.00 2.00 2.00 2.00 2.00 1.60 10.32 1.60 10.32
As

3 Ag— 3.60 3.60 3.60 3.60 3.60 3.20 20.65 3.20 20.65
Ag

4 Ajo— 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 0.07
Ap

5 Ap— 0.01 0.01 040 0.01 0.01 0.01 0.07 0.01 0.07
Aps

6 Apg— 0.80 0.80 0.80 0.80 0.80 0.80 5.16 0.80 5.16
Apy

7 Ajg— 2.00 1.60 1.60 1.60 1.60 2.00 12.90 2.00 12.90
Ay

8 Ag— 2.40 2.40 240 240 240 2.40 15.48 2.40 15.48
Azs

Weight (Ib) 563.52 560.59 566.44560.59 560.59  551.6 250.2 kg551.6 250.2 kg

Table 6.5 Optimal design comparison for the 25-bar spatial truss (Case 2)

Optimal cross-sectional areas (in%)

Kaveh and

Talatahar [11] Present work
Element Wu and Chow [8] Li et al. [10] HPSACO [1]
group GA PSO  PSOPC HPSO in? em? i’ cm?
1 A 0.31 1.00 0.11 0.11 0.11 0.72 0.11 0.72
2 Ay-As 1.99 2.62 1.56 2.13 2.13 13.74 2.13  13.74
3 AgAy 3.13 2.62 3.38 2.88 2.88 18.58 2.88  18.58
4 Ajg-Ap 0.11 0.25 0.11 0.11 0.11 0.72 0.11 0.72
5 Ap-Ag 0.14 0.31 0.11 0.11 0.11 0.72 0.11 0.72
6 Asz-Ay; 0.77 0.60 0.77 0.77 0.77 4.94 0.77 4.94
7 Ag—As 1.62 1.46 1.99 1.62 1.62 1045 1.62 1045
8 Ax-Ays 2.62 2.88 2.38 2.62 2.62 1690 2.62  16.90
Weight (Ib) 556.43 567.49 567.49 551.14 551.1 24999 551.1 249.99
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Case 2: The discrete variables are selected from Table 6.2.

Table 6.6 lists the values and directions of the two load cases applied to the
72-bar spatial truss.

The problem has been solved by GA [8, 9] and DHPSO [11].

Solving the problem using DE, the Loops number is set to 200. Convergence
curve is according to (6.1) considering PP, = 0.15 and Power = 1. R, and ¢ are
equal to 5 and 1, respectively.

It can be seen from Table 6.7 that in Case 1 the best answer is achieved using DE
that is better than GA and HS and although it is the same as DHPACO, but the
penalty of the optimum answer is less than that of the DHPACO.

Moreover Table 6.8 shows that in Case 2, the DE achieves better results in
comparison to the previously published works. Figure 6.15 shows that the DE can
converge to the best answer in 200 loops, then it has higher convergence rate
compared to the other algorithms.

In addition, Fig. 6.16 shows the convergence factor history. It can be seen that
the algorithm follows the predefined linear curve as expected.
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Figure 6.17 shows the allowable and existing displacements for the nodes of the
72-bar truss structure using the DE.

6.5.1.3 A 582-Bar Tower Truss

The 582-bar tower truss shown in Fig. 6.18, is chosen from [13]. The symmetry of
the tower about x-axis and y-axis is considered to group the 582 members into
32 independent size variables.

A single load case is considered consisting of the lateral loads of 5.0 kN (1.12
kips) applied in both x- and y-directions and a vertical load of 30 kN (6.74 kips)
applied in the z-direction at all nodes of the tower. A discrete set of 140 economical
standard steel sections selected from W-shape profile list based on area and radii of
gyration properties is used to size the variables [13]. The lower and upper bounds on
size variables are taken as 6.16 in> (39.74 cm®) and 215.0 in® (1,387.09 cm?),
respectively. The stress limitations of the members are imposed according to the
provisions of ASD-AISC [12] as follows:
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Fig. 6.14 Schematic of a a P i -
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Table 6.6 Loading conditions for the 72-bar spatial truss
Case 1 Case 2

Node P, kips (kN) Py kips (kN) Pz kips (kN) Py kips (kN) Py kips (kN) Pz kips (kN)
17 5.0 (22.25) 5.0 (22.25) —5.0(22.25) 0 0 —5.0 (22.25)
18 0.0 0.0 0.0 0.0 0.0 —5.0 (22.25)
19 0.0 0.0 0.0 0.0 0.0 —5.0 (22.25)
20 0.0 0.0 0.0 0.0 0.0 —5.0 (22.25)

Table 6.7 Optimal design comparison for the 72-bar spatial truss (Case 1)

Optimal cross-sectional areas (inz)

Kaveh and Talatahari

Wu and Chow [8] Lee and Geem [9] [11]

Present work [1]

Element GA HS DHPSACO DE

group in’ in’ in’ cm? in’ cm?

1 A-A, 15 1.9 1.9 12.26 2.0 12.90
2 As-Ap, 07 0.5 0.5 3.23 0.5 3.23
3 Ap-Ap 0.1 0.1 0.1 0.65 0.1 0.65
4 Aj-Ag 0.1 0.1 0.1 0.65 0.1 0.65
5 Ap-Axp 13 1.4 1.3 8.39 1.3 8.39
6 Ayp-Az 05 0.6 0.5 3.23 0.5 3.23
7 Az-Az 0.2 0.1 0.1 0.65 0.1 0.65
8 Aszs—Aszs 0.1 0.1 0.1 0.65 0.1 0.65
9  Az7—Ay 05 0.6 0.6 3.87 0.5 3.23
10 A4—Agg 05 0.5 0.5 3.23 0.5 3.23
11 Ag-Asy 0.1 0.1 0.1 0.65 0.1 0.65
12 As3-Asy 0.2 0.1 0.1 0.65 0.1 0.65
13 Ass—Asg 0.2 0.2 0.2 1.29 0.2 1.29
14 Aso—Ags 0.5 0.5 0.6 3.87 0.6 3.87
15 A¢—A70 05 0.4 0.4 2.58 0.4 2.58
16 A;-A7, 0.7 0.6 0.6 3.87 0.6 3.87
Weight (Ib)  400.66 387.94 385.54 1749kg 38554 1749 kg

{

o

6 =0.6Fy for ;>0
- for

0; <0

Where o} is calculated according to the slenderness ratio

5 34
F. I
"N/ 3tse,
Ai > Cc

13
8C%.

for

A < Cc

(6.18)

(6.19)
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Table 6.8 Optimal design comparison for the 72-bar spatial truss (Case 2)

Optimal cross-sectional areas (inz)
Wu and Chow [8]  Kaveh and Talatahari [11] Present work [1]

GA DHPSACO DE

Element group in? in® cm? in® cm?

1 A-Ay 0.196 1.800 11.610 2.130 13.742
2 As—A, 0.602 0.442 2.850 0.442 2.852
3 Az-Ajg 0.307 0.141 0.910 0.111 0.716
4 A-Alg 0.766 0.111 0.720 0.111 0.716
5 Ajo—Ar 0.391 1.228 7.920 1.457 9.400
6 Asz—Ajzg 0.391 0.563 3.630 0.563 3.632
7 Az 1—Asy 0.141 0.111 0.720 0.111 0.716
8 Ass—Asg 0.111 0.111 0.720 0.111 0.716
9 As—Ayg 1.800 0.563 3.630 0.442 2.852
10 Ay—Asg 0.602 0.563 3.630 0.563 3.632
11 Ayo—Asy 0.141 0.111 0.720 0.111 0.716
12 Asz—Asy 0.307 0.250 1.610 0.111 0.716
13 Ass—Asg 1.563 0.196 1.270 0.196 1.265
14 Aso—Age 0.766 0.563 3.630 0.563 3.632
15 Ag—A7o 0.141 0.442 2.850 0.307 1.981
16 A7 1-Aqpn 0.111 0.563 3.630 0.563 3.632
Weight (Ib) 427.203 393.380 178.4 kg 391.329 17747 kg

Where E = the modulus of elasticity; F, = the yield stress of A36 steel;
Cc = \/2mn’E/F,; A; = the slenderness ratio (kL;r,); k = the effective length
factor; L; = the member length; and r; = the radius of gyration. The other
constraint is the limitation of the nodal displacements (no more than 8.0 cm or
3.15 in for each direction). In addition, the maximum slenderness ratio is limited
to 300 for the tension members, and this limit is recommended to be 200 for the
compression members according to the ASD-AISC [26] design code provisions.

The problem was solved later by Kaveh and Talatahari [14] and Sonmez
[15]. Two cases for analyzing are used according to [15], as follows:

Case 1: All members are selected from a set of 140 W-shaped profiles according to
[13] and the maximum number of evaluations is set to 50,000. For the DE, 25,000
evaluations are considered for this case to demonstrate the efficiency of the
algorithm.

Case 2: There is no difference between Case 1 and Case 2, but in the number
of evaluations which is set to 100,000. For the DE, 50,000 evaluations are
considered for this case to demonstrate efficiency of the algorithm.

Convergence curve is according to (6.1) considering PPy = 15% and Power =
0.2. R, and ¢ are equal to 10 and 1, respectively.

Results can be seen in Table 6.9, which shows that in Case 1, the DE outperforms
the HPSACO, ABC and PSO by 5.7 % , 2.3 % and 1 %, respectively, and in
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Fig. 6.15 The optimum answer and average answers’ convergence history for the 72-bar truss
using the DE [1]. (a) Case 1 and (b) Case 2
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Fig. 6.16 The optimum answer and the average answers’ convergence factor history for the
72-bar truss structure using the DE [1]. (a) Case 1 and (b) Case 2

Case 2, the DE results is 1.6 % better than those of ABC algorithm. In addition
comparing the results with those presented in [13], it can be seen that the optimum
answer of the DE in Case 1is 1.1 %, 1.3 %, 2.2 %, 2.7 %, 4.7 % and 6.7 % lighter
than those of the ESs, SA, TS, ACO, HS and SGA.
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Fig. 6.17 Comparison of the allowable and existing displacements for the nodes of the 72-bar
truss structure using the DE [1]

Figure 6.19 shows the comparison of the allowable and existing constrains for
the 582-bar truss using the DE. The maximum values for displacement in x, y and
z directions are 3.148 in (7.995 cm), 2.986 in (7.584 cm) and 0.931 in (2.365 cm),
respectively. The maximum stress ratio is 96.60 %. It can be seen that some
displacements and stresses are near the boundary conditions. It should be men-
tioned that there is a small difference between analysis results of Sap2000
(Hasangebi et al. [13]), C# programming language code (Sonmez [15]) and Matlab
code (present study). Then checking the results of each code with another one may
show a violation of constraints. Figure 6.19 shows according to the finite element
program coded in Matlab, there is no penalty for the best answer.

Figure 6.20 shows the convergence history of the best answer and average
results for the DE, and Fig. 6.21 illustrates the convergence factor history. It can
be seen that the algorithm follows the predefined linear curve as expected.

6.5.2 Frame Structures

The displacement and AISC combined strength constraints are the performance
constraints of the frame as follows:

(a) Maximum lateral displacement:

Ar

R 2
7 < (6.20)

Where A7 is the maximum lateral displacement of the structure (the roof lateral
displacement), H is the height of the structure, and R is the maximum drift index.
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Table 6.9 Optimal design comparison for the 582-bar spatial truss

Optimal cross-section

Case 1 Case 2

Hasancebi ~ Sonmez  Kaveh and Present Sonmez  Present

et al. [13] [15] Talatahari [14] work [1] [15] work [1]

(PSO) (ABC) (DHPSACO) (DE) (ABC) (DE)

Ready Ready Ready Ready Ready
Element group section section Ready section  section section section
1 W8X21 W8X22  W8X24 W8X21 W8X22  W8X21
2 W12X79 WI12X97 WI12X72 WI12X96 WI10X78 W27X9%4
3 W8X24 W8X25  W8X28 W8X24  W8X25 W8X24
4 W10X60 W12X59 WI12X58 WI12X58 WI14X62 WI12X58
5 W8X24 W8X24  W8X24 W8X24  W8X24  W8X24
6 W8X21 W8X21  W8X24 W8X21 W8X21  W8X21
7 W14X48 W12X46 W10X49 W12X45 WI2X51 WI2X50
8 W8X24 W8X24  W8X24 W8X24  W8X24  W8X24
9 W8X21 W8X21  W8X24 W8X21 W8X21  W8X21
10 W10X45 W12X46 W12X40 W12X45 WI0X50 WI12X45
11 W8X24 W8X22  WI12X30 W8X21 W8X25  W8X21
12 W10X68 WI12X66 WI12X72 WI12X65 WI0X69 WI2X72
13 W14X74 WI10X77 W18X76 W10X77 WI8X77 WI14X74
14 W14X438 W10X49 W10X49 W10X49 WI14X49 WI12X50
15 W18X76 W14X83 WI14X82 W14X82 WI10X78 WI10X68
16 W8X31 W8X32  W8X3l1 W8X31 W8X32  W8X31
17 W16X67 WI12X53 WI14X61 WI10X60 W21X62 WI14X61
18 W8X24 W8X24  W8X24 W8X24  W8X24  W8X24
19 W8X21 W8X21  W8X21 W8X21 W8X21  W8X21
20 W8X40 W16X36 WI12X40 WI12X45 WI14X43 W14X43
21 W8X24 W8X24  W8X24 W8X21 W8X24  W8X21
22 W8X21 W10X22 W14X22 W8X21 W8X21  W8X21
23 W10X22 W10X22 W8X31 W10X22 W8X24  W6X25
24 W8X24 W6X25  W8X28 W8X21 W8X24  W8X21
25 W8X21 W8X21  W8X21 W8X21 W8X21  W8X21
26 W8X21 W8X21  W8X21 W8X21 W8X21  W8X21
27 W8X24 W8X24  W8X24 W8X21 W8X24  W8X21
28 W8X21 W8X21  W8X28 W8X21 W8X21  W8X21
29 W8X24 W8X22  WI16X36 W8X21 W8X21  W8X21
30 W8X21 W10X23 W8X24 W8X21 W8X21  W8X21
31 W8X21 W8X25  W8X21 W8X21 W8X24  W8X21
32 W8X24 W6X26  W8X24 W8X21 W8X24  W8X21
Best (Ib) 363,795.7 368,484.1 380,982.7 360,367.8 365,906.3 360,143.3
Average (Ib) 365,124.9 370,178.6 — 364,404.7 366,088.4 362,207.1
Worst (Ib) 370,159.1 373,530.3 - 371,922.1 369,162.2 367,512.2
Evaluations (#) 50,000 50,000 8,500 25,000 100,000 50,000
Differences com- 0.95 % 2.25 % 5.72 % 1.60 %

pared to DE
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Fig. 6.19 Comparison of the allowable and existing constrains for the 582-bar truss, Case 2 using
DE [1]. (a) Displacement in the x-direction. (b) Displacement in y-direction. (¢) Displacement in
the z-direction. (d) Stress ratios
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Fig. 6.20 Convergence history of optimum result and average results for the 582-bar tower truss,
Case 2, using DE [1]
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Fig. 6.21 Convergence 100 -
factor history for the 90 -
582-bar tower truss [1], . 80
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(b) The inter-story displacements:
d; ,
= <R, j=12,...,ns (6.21)

hj

d; is the inter-story drift which is used to give the relative displacement of each
roof in comparison to its following floor; 4; is the story height of 7™ floor; ns is the
total number of stories; R; is the inter-story drift index which is equal to 1/300
according to the ANSI/AISC 360-05 (2005) [16].

(c) Element forces:

P, M, P,
+ <1 for < 0.2
29cPn o, =T P, o
P M P :
. +§ <1 for “>02
¢CPn 9¢th ¢CPn

Where P, is the required strength (tension or compression); P, is the nominal
axial strength (tension or compression); ¢, is the axial resistance factor (¢. = 0.9
for tension, ¢. = 0.85 for compression); M, is required flexural strength; M,, is
nominal flexural strength; and ¢, is the flexural resistance factor (¢, = 0.9).

6.5.2.1 A 3-Bay 15-Story Planar Frame
Figure 6.22 shows the configuration and applied loads of a 3-bay 15-story frame

structure chosen from [14]. This frame consists of 64 joints and 105 members. The
sway of the top story is limited to 23.5 cm. The material has a modulus of elasticity
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Fig. 6.22 Schematic of a
3-bay 15-story planar frame

30KN

185

w1=50 kN/m

iy

m}nmiu

10

10} 9

w1

30kN

30KN

Y

NEETEY)
11

10]

nn:}' T LN
104 9

uul":iu

10

m:imull:h

10} 9

uu:iu

m{}'&M

30kN

30kN

4

8

8 7

uu:iu

HEFEY)
11

30kN

~1

8 7

30kN

4

8
IR

Hu:mm}:'m

3 7

30KN

NEETEY)
11 4

m{}'ah&ﬂﬂ

6 5

n;g;;M

uu:in

6 5

30kN

30kN

4

Hu:iu

6

m{}'mmm

6 5

30kN

w

uu:iu

ma}'wmﬂﬂ

4 3

uu}"}’u

Hiﬁiﬂﬁﬂ_{i

30 kN

4

4 3

m{iu

unl‘:hmjﬂﬂ

w

4 3

30KN

30kN

w1 *
1YTeyy

HH:i:ihﬂjjjﬂ

30KN

Y

NFETEY)
1

mﬁm&jﬂﬂ

Wi "
ATTETE!

Hn:inmlij'u

2 1

3(@5m |

14@3.5m




186 6 Dolphin Echolocation Optimization

Table 6.10 Optimal design comparison for the 3-bay 15-story planar frame

Optimal W-shaped sections
Kaveh and Talatahari

PSOPC HPSACO Present
Element group PSO [14] [14] [14] ICA [17] CSS [7] work [1]
1 W33X118 W27X129 W21X111 W24X117 W21X147 W12X87
2 W33X263 W24X131 WI18X158 W21X147 WI18X143 W36X182
3 W24X76 W24X103 WI10X88 W27X84 WI12X87 W21X93
4 W36X256 W33X141 W30X116 W27X114 W30X108 WI18X106
5 W21X73 W24X104 W21X83 WI14X74 WI18X76 WI18X65
6 WI8X86 WI10X88 W24X103 WI18X86 W24X103 W14X90
7 WI8X65 WI14X74 W21X55 WI2X96 W21X68 W10X45
8 W21X68 W27X94 W27X114 W24X68 WI14X61 WI12X65
9 WI8X60 W21X57 WI10X33 WI0X39 WI18X35 W6X25
10 WI8X65 WI8X71 WI18X46 WI12X40 WI10X33 WI10X45
11 W21X44 W21X44 W21X44  W21X44 W21X44 W21X44
Weight (kN) 496.68 452.34 426.36 417.466  412.62 395.35
Differences com- 26 % 14 % 8 % 6 % 4 %

pared to DE

equal to £ = 200 GPa and a yield stress of F, = 248.2 MPa. The effective length
factors of the members are calculated as K, > 0 for a sway-permitted frame and the
out-of-plane effective length factor is specified as K, = 1.0. Each column is
considered as non-braced along its length, and the unbraced length for each beam
member is specified as one-fifth of the span length.

For solving this problem by DE, the Loops number is set to 100. The conver-
gence curve is according to (6.1) considering PP; = 0.15 and Power = 1. R, and &
are equal to 5 and 1, respectively.

Results of the present study and those of [7, 14, 17] are provided in Table 6.10. It
can be seen that the DE achieves results that are 26 %, 14 %, 8 %, 6 % and 4 %
lighter than the PSO, PSOPC, HPSACO, ICA and CSS, respectively.

Convergence history is depicted in Fig. 6.23. It can be seen that the present
algorithm leads to the best answer in 100 loops which is less than that of the CSS
(250 loops).

The maximum value of displacement is 14.27 cm which is less than the allow-
able limit (23.5 cm).

Figure 6.24 shows the inter-story drifts, the maximum value of which is 1.15 cm.
This is less than the allowable value (1.17 cm). It can be recognized that by
reducing the weight of structure its stiffness is reduced, then the inter-story drifts
are closer to the maximum allowable value.

In Fig. 6.25 the stress ratios of the elements are shown. The maximum stress
ratio is 99.69 %. One can see that similar to the inter-story limitation, stress ratios
are closer to the limit line.

Figure 6.26 shows the CF changes during optimization. It is clear that the CF
changes around predefined line.
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Fig. 6.23 The optimum
answer and average answer
with the convergence
history for the 3-bay
15-story frame using the DE
[1]

Fig. 6.24 Comparison of
the allowable and the
existing inter-story drift for
the 3-bay 15-story planar
frame [1]

Fig. 6.25 Comparison of
the allowable and the
existing stress ratios for the
3-bay 15-story planar frame
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6.5.2.2 A 3-bay 24-story planar frame

Figure 6.27 shows the topology and the service loading conditions for a 3-bay
24-story frame consisting of 100 joints and 168 members which is chosen from
Camp et al. [18]. The frame is designed following the LRFD specification and uses
an inter-story drift displacement constraint. The material properties are a modulus
of elasticity equal to £ = 205 GPa and a yield stress of F, = 230.3 MPa.

The effective length factors of the members are calculated as K, > 0 for the
sway-permitted frame and the out-of-plane effective length factor is specified as
K, = 1.0. All columns and beams are considered non-braced along their lengths.
Fabrication conditions are imposed on the construction of the 168-element frame
requiring that the same beam section be used in the first and third bay on all the
floors except the roof beams, resulting in four beam groups.

Beginning at the foundation, the exterior columns are combined into one group
and the interior columns are combined together in another group over three
consecutive stories. The grouping results in 16 column sections and 4 beam sections
for a total of 20 design variables. In this example, each of the four beam element
groups is chosen from all 267 W-shapes, while the 16 column element groups are
limited to W14 sections (37 W-shapes).

For solving this problem by the DE, the Loops number is set to be equal to 200.
The convergence curve is according to (6.1) considering PP, = 0.15 and Power
= 1. R, and ¢ are equal to 5 and 1, respectively.

Results of the present study and those of Camp et al. [18], Degertekin [19] and
Kaveh and Talatahari [7, 17, 20] are provided in Table 6.11. It can be seen that the
DE achieves results that are 7.5 %, 4.8 %, 6 %, 3.7 %, and 3.6 % lighter than those
of the ACO, HS, TIACO, ICA and CSS, respectively.

Convergence history is depicted in Fig. 6.28. It can be observed that DE leads to
the best answer in 200 loops which is less than that of CSS being 275 loops.

The maximum value of displacement is 26.11 cm which is less than the allow-
able limit (29.20 cm).

Figure 6.29 shows the inter-story drifts with maximum value being 1.202 cm that
is less than the allowable value (1.205 cm). It can be recognized that by reducing the
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Fig. 6.27 Schematic of a
3-bay 24-story planar frame
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Table 6.11 Optimal design comparison for the 3-bay 24-story planar frame

Optimal W-shaped sections

Camp Degertekin
et al. [18] [19] Kaveh and Talatahari
IACO Present
Element group ACO HS [20] ICA [17] CSS [7] work [1]
1 W30X90 W30X90 W30X99 W30X90 W30X90
2 W8X18 W10X22 WI16X26 W21X50 W21X50 W6X20
3 W24X55 W18X40 WI18X35 W24X55 W21X48 W21X44
4 W8X21 W12X16 W14X22 W8X28 W12X19 W6X9
5 WI14X145 WI14X176 WI14X145 WI14X109 W14X176 W14X159
6 W14X132 WI14X176 WI14X132 WI14X159 W14X145 W14X145
7 WI14X132 WI14X132 WI14X120 WI14X120 W14X109 W14X132
8 WI14X132 WI14X109 WI14X109 WI14X90 WI14X90 W14X99
9 W14X68 W14X82 W14X48 W14X74 W14X74 W14X68
10 W14X53 W14X74 WI14X48 WI14X68 WI14X61 WI14X61
11 W14X43 W14X34 WI14X34 WI14X30 WI14X34 WI14X43
12 W14X43 W14X22 W14X30 WI14X38 WI14X34 W14X22
13 WI14X145 WI14X145 WI14X159 WI14X159 W14X145 W14X109
14 WI14X145 WI14X132 WI14X120 WI14X132 W14X132 W14X109
15 W14X120 WI14X109 WI14X109 W14X99 WI14X109 W14X90
16 W14X90 W14X82 WI14X99 WI14X82 WI14X82 WI14X82
17 W14X90 W14X61 W14X82 WI14X68 W14X68 W14X74
18 W14X61 W14X48 W14X53 W14X48 W14X43 W14X43
19 W14X30 W14X30 WI14X38 WI14X34 W14X34 WI14X30
20 W14X26 W14X22 W14X26 W14X22 W14X22 WI14X26
Weight (kN) 980.63 956.13 967.33 946.25 945.02 912.26
Difference com- 7.5 % 4.8 % 6.0 % 3.7 % 3.6 %
pared to DE
Fig. 6.28 The optimum 4000 -
answer and the average 3700
answer, with the S = = = Average of the results
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convergence history for the
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Fig. 6.29 Comparison of
the allowable and the
existing inter-story drift for
the 3-bay 24-story planar
frame [1]

Fig. 6.30 Comparison of
the allowable and existing
stress ratio for the 3-bay
24-story planar frame [1]

Fig. 6.31 The optimum
answer and the average
answer with the
convergence factor history
for the 3-bay 24-story
planar frame using the DE
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weight of structure its stiffness is reduced and the inter-story drifts are quite close to
the maximum allowable value.

In Fig. 6.30 the stress ratios of the elements are shown. One can see that similar
to the inter-story limitation, the stress ratios are closer to the limitation line. The
maximum stress ratio is 98.33 %.

Figure 6.31 shows the CF changes during the optimization process. It is clear
that the CF changes around the predefined line.
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6.5.2.3 Discussion

In this study a novel optimization method is developed based on dolphin echolo-
cation. The new method has the advantage of working according to the computa-
tional effort that user can afford for his/her optimization. In this algorithm, the
convergence factor defined by Kaveh and Farhoudi [6] is controlled in order to
perform a suitable optimization.

For the examples optimized in this chapter, the DE achieves better results with
higher convergence rates compared to other existing metaheuristic algorithms such
as GA, ACO, PSO, BB-BC, HS, ESs, SGA, TS, ICA, TACO, PSOPC, HPSACO
and CSS previously applied to these problems. The authors believe that the results
achieved from metaheuristics are mostly dependent on the parameter tuning of the
algorithms. It is also believed that by performing a limited number of numerical
examples, one cannot correctly conclude the superiority of one method with respect
to the others. Dolphin echolocation is an optimization algorithm that has the
capability of adopting itself by the type of the problem in hand, having a reasonable
convergence rate, and leading to an acceptable optimum answer in a number of
loops specified by the user.
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Chapter 7
Colliding Bodies Optimization

7.1 Introduction

This chapter presents a novel efficient metaheuristic optimization algorithm called
Colliding Bodies Optimization (CBO), for optimization. This algorithm is based on
one-dimensional collisions between bodies, with each agent solution being consid-
ered as the massed object or body. After a collision of two moving bodies having
specified masses and velocities, these bodies are separated with new velocities. This
collision causes the agents to move toward better positions in the search space.
CBO utilizes simple formulation to find minimum or maximum of functions; also it
is internally parameter independent [1].

This chapter consists of two parts. In the first part the main algorithm is
developed and three well-studied engineering design problems and two structural
design problems taken from the optimization literature are used to investigate the
efficiency of the proposed approach [1]. In the second part, the CBO is applied to a
number of continuous optimization benchmark problems. These examples include
three well-known space trusses and two planar bridge structures [2].

7.2 Colliding Bodies Optimization

The main goal of this section is to introduce a simple optimization algorithm based
on the collision between objects, which is called Colliding Bodies Optimization
(CBO).

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 195
DOI 10.1007/978-3-319-05549-7_7, © Springer International Publishing Switzerland 2014
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Fig. 7.1 The collision a
between two bodies. (a)

before the collision (b) after

the collision [1] b
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7.2.1 The Collision Between Two Bodies

Collisions between bodies are governed by the laws of momentum and energy.
When a collision occurs in an isolated system (Fig. 7.1), the total momentum of the
system of objects is conserved. Provided that there are no net external forces acting
upon the objects, the momentum of all objects before the collision equals the
momentum of all objects after the collision.

The conservation of the total momentum demands that the total momentum
before the collision is the same as the total momentum after the collision, and can be
expressed by the following equation:

! !
mivy + vy = myv, + mav, (7.1)

Likewise, the conservation of the total kinetic energy is expressed as:

1 1 | O 1 ,

§m1v12+§mzvz2 :§m1v12—|—§m2v22+Q (7.2)
Where v, is the initial velocity of the first object before impact, v, is the initial
velocity of the second object before impact, \/l is the final velocity of the first object
after impact, \/2 is the final velocity of the second object after impact, m; is the mass
of the first object, m, is the mass of the second object and Q is the loss of kinetic

energy due to the impact [3].
The formulas for the velocities after a one-dimensional collision are:

V/1 _ (my — emp)vy + (my + emy) vy (73)
my + ny

v/2 _ (my — emy)va + (my + emy)v (7.4)
my + ny

Where ¢ is the Coefficient Of Restitution (COR) of the two colliding bodies, defined
as the ratio of relative velocity of separation to relative velocity of approach:
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1 ! ’
7‘V2*V1’,V
ezl _ YV

— = 7.5
[va—vi| v (7.5)

According to the coefficient of restitution, there are two special cases of any
collision as follows:

1. A perfectly elastic collision is defined as the one in which there is no loss of
kinetic energy in the collision (Q =0 and & = 1). Inreality, any macroscopic
collision between objects will convert some kinetic energy to internal energy
and other forms of energy. In this case, after collision, the velocity of separation
is high.

2. An inelastic collision is the one in which part of the kinetic energy is changed to
some other form of energy in the collision. Momentum is conserved in inelastic
collisions (as it is for elastic collisions), but one cannot track the kinetic energy
through the collision since some of it will be converted to other forms of energy.
In this case, coefficient of restitution does notequaltoone (Q #0 & e<1).
In this case, after collision the velocity of separation is low.

For the most real objects, the value of ¢ is between 0 and 1.

7.2.2 The CBO Algorithm

7.2.2.1 Theory

The main objective of the present study is to formulate a new simple and efficient
metaheuristic algorithm which is called Colliding Bodies Optimization (CBO). In
CBO, each solution candidate X; containing a number of variables (i.e. X; = {X;;})
is considered as a colliding body (CB). The massed objects are composed of two
main equal groups; i.e. stationary and moving objects, where the moving objects
move to follow stationary objects and a collision occurs between pairs of objects.
This is done for two purposes: (1) to improve the positions of moving objects; (2) to
push stationary objects towards better positions. After the collision, new positions
of colliding bodies are updated based on new velocity by using the collision laws as
discussed in Sect. 7.2.
The CBO procedure can briefly be outlined as follows:

1. The initial positions of CBs are determined with random initialization of a
population of individuals in the search space:

x? = Xmin + 7and (Xmax — Xmin), (= 1,2,...,n, (7.6)

Where, x? determines the initial value vector of the i th CB. xy,;, and X, are the


http://en.wikipedia.org/wiki/Elastic_collision#Elastic%20collision
http://en.wikipedia.org/wiki/Kinetic_energy#Kinetic%20energy
http://en.wikipedia.org/wiki/Internal_energy#Internal%20energy
http://en.wikipedia.org/wiki/Inelastic_collision#Inelastic%20collision
http://en.wikipedia.org/wiki/Momentum#Momentum
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minimum and the maximum allowable values vectors of variables; rand is a random
number in the interval [0,1]; and 7 is the number of CBs.

2. The magnitude of the body mass for each CB is defined as:

mk:%, k=1,2,....n (7.7)
2. i
Where fit(i) represents the objective function value of the agent i; # is the popula-

tion size. It seems that a CB with good values exerts a larger mass than the bad ones.
Also, for maximization, the objective function fi#(i) will be replaced by ﬂtﬁ

3. The arrangement of the CBs objective function values is performed in ascending
order (Fig. 7.2a). The sorted CBs are equally divided into two groups:
» The lower half of CBs (stationary CBs); These CBs are good agents which are
stationary and the velocity of these bodies before collision is zero. Thus:

(7.8)

» The upper half of CBs (moving CBs): These CBs move toward the lower half.
Then, according to Fig. 7.2b, the better and worse CBs, i.e. agents with upper
fitness value, of each group will collide together. The change of the body
position represents the velocity of these bodies before collision as:

Vi=Xi—Xi-1, i=2+1,...,n (7.9)

Where, v; and x; are the velocity and position vector of the ith CB in this group,
respectively; x;z is the ith CB pair position of x; in the previous group.

4. After the collision, the velocities of the colliding bodies in each group are
evaluated utilizing Eqgs. (7.3) and (7.4), and the velocity before collision. The
velocity of each moving CBs after the collision is obtained by:
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Fig. 7.2 (a) CBs sorted in a The stationary CBs The moving CBs
increasing order; (b) =
1lidi bject pairs [1
colliding object pairs [1] [ X Yoz | B X, J
b

The Pairs of Objects
m; — em;_z | vV;
, ( i i 2) i . n
V=~ i="41,....n (7.10)
m; —l—mi_% 2

Where, v; and v; are the velocity of the ith moving CB before and after the collision,
respectively; m; is mass of the i th CB; mi_g is mass of the i th CB pair. Also, the
velocity of each stationary CB after the collision is:

(m,urg + 5mi+’—2’) Vil n
Vv, = i=1,...,=
' m; + mjs ’ 2

(7.11)

Where, v;s and v; are the velocity of the i th moving CB pair before and the i th
stationary CB after the collision, respectively; m; is mass of the i th CB; Miys 1S mass

of the i th moving CB pair; ¢ is the value of the COR parameter whose law of
variation will be discussed in the next section.

5. New positions of CBs are evaluated using the generated velocities after the
collision in position of stationary CBs.

The new positions of each moving CB is:

l

’ n
X" = xi_1 +randov,, i:§+1, ceh (7.12)

Where, ¢ and v; are the new position and the velocity after the collision of the i th
moving CB, respectively; x;_s is the old position of i th stationary CB pair. Also, the
new positions of stationary CBs are obtained by:
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new
i

X' = x; + randov,, i=1, ... (7.13)

Where, x7", x; and v; are the new position, old position and the velocity after the
collision of the 7 th stationary CB, respectively. rand is a random vector uniformly
distributed in the range (—1,1) and the sign “o” denotes an element-by-element
multiplication.

6. The optimization is repeated from Step 2 until a termination criterion, such as
maximum iteration number, is satisfied. It should be noted that, a body’s status
(stationary or moving body) and its numbering are changed in two subsequent
iterations.

Apart from the efficiency of the CBO algorithm, which is illustrated in the next
section through numerical examples, parameter independency is an important
feature that makes CBO superior over other metaheuristic algorithms. Also, the
formulation of CBO algorithm does not use the memory which saves the best-so-far
solution (i.e. the best position of agents from the previous iterations).

The penalty function approach was used for constraint handling. The fit
(i) function corresponds to the effective cost. If optimization constraints are satis-
fied, there is no penalty; otherwise the value of penalty is calculated as the ratio
between the violation and the allowable limit.

7.2.2.2 The Coefficient of Restitution

The metaheuristic algorithms have two phases: exploration of the search space and
exploitation of the best solutions found. In the metaheuristic algorithm it is very
important to have a suitable balance between the exploration and exploitation. In
the optimization process, the exploration should be decreased gradually while
simultaneously exploitation should be increased.

In this paper, an index is introduced in terms of the coefficient of restitution
(COR) to control exploration and exploitation rate. In fact, this index is defined as
the ratio of the separation velocity of two agents after collision to approach velocity
of two agents before collision. Efficiency of this index will be shown using one
numerical example.

In this section, in order to have a general idea about the performance of COR in
controlling local and global searches, a benchmark function (Aluffi-Pentiny) chosen
from [4] is optimized using the CBO algorithm. Three variants of COR values are
considered. Figure 7.3 is prepared to show the positions of the current CBs in 1st, 50th
and 100th iteration for these cases. These three typical cases result in the following:

1. The perfectly elastic collision: In this case, COR is set equal to unity. It can be
seen that in the final iterations, the CBs investigate the entire search space to
discover a favorite space (global search).
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Fig. 7.3 Evolution of the positions of CBs during optimization history for different definitions of
the coefficient of restitution (Aluffi-Pentiny benchmark function) [1]

2. The hypothetical collision: In this case, COR is set equal to zero. It can be seen
that in the 50th iterations, the movements of the CBs are limited to very small
space in order to provide exploitation (local search). Consequently, the CBs are
gathered in a small region of the search space.

3. The inelastic collision: In this case, COR decreases linearly to zero and ¢ is
defined as:

iter

e=1-— (714)

itermax

where iter is the actual iteration number and iter,,,, is the maximum number of
iterations. It can be seen that the CBs get closer by increasing iteration. In this way a
good balance between the global and local search is achieved. Therefore, in the
optimization process COR is considered such as the above equation.
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7.2.3 Test Problems and Optimization Results

Three well-studied engineering design problems and two structural design prob-
lems taken from the optimization literature are used to investigate the efficiency of
the proposed approach. These examples have been previously studied using a
variety of other techniques, which are useful to show the validity and effectiveness
of the proposed algorithm. In order to assess the effect of the initial population on
the final result, these examples are independently optimized with different initial
populations.

For engineering design examples, 30 independent runs were performed for CBO,
considering 20 individuals and 200 iterations; the corresponding number of func-
tion evaluations is 4,000. The number of function evaluations set for the GA-based
algorithm developed by Coello [5], the PSO-based method developed by He and
Wang [6], the evolution strategies developed by Montes and Coello [7] is 900,000,
200,000 and 25,000, respectively. Similar to CBO, the number of function evalu-
ation for the charged system search algorithm developed by Kaveh and Talatahari
[8] is 4,000.

In the truss design problems, 20 independent runs were carried out, considering
40 individuals and 400 iterations: hence, the maximum number of structural
analyses was 16,000. The CBO algorithm was coded in MATLAB. Structural
analysis was performed with the direct stiffness method.

7.2.3.1 Example 1: Design of Welded Beam

As the first example, design optimization of the welded beam shown in Fig. 7.4 is
carried out. The welded beam design problem was often utilized to evaluate
performance of different optimization methods. The objective is to find the best
set of design variables to minimize the total fabrication cost of the structure subject
to shear stress (z), bending stress (o), buckling load (Pc), and end deflection ()
constraints. Assuming x; = h, x, = [, x3 = t, and x4 = b as the design variables,
the mathematical formulation of the problem can be expressed as:
Find

{x1,x2,X3, x4} (7.15)
To minimize
cos 7(x) = 1.10471x}x; + 0.0481 Lxsxy (14 + x5) (7.16)

Subjected to
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Fig. 7.4 Schematic of the
welded beam structure with
indication of design
variables

g1(x) = TE’? — Tmax <0

g2(x) = 0(X) — Omax S 0
g(x) =x; —x4 <0
84(x) = 0.10471x7 + 0.04811x3x4 (14 + x2) =5 <0 (7.17)

gs(x) =0.125—-x, <0
ge(x) = 5(x) — Smax <0
g7(X) =p 7pc(x) S 0

The bounds on the design variables are:

01<x <2, 01<x<10, 01<x<10, 01<xy<2 (7.18)

Where
()= J@P 420 2 (7)
= TT —
T(X T 2R
2
! P " MR 2
P S VS W R X1+
ﬂxlxz J 2 4 2
2 (7.19)
X3 X1+ X3 6PL 4P}
=22 2 : =— §(x) =
I V2nn 12 + 2 o(x) X423 (x Exixy
4.013,/E(x3x5/36) x; [E
P.(x) = 1-= [—
) 12 2L\/36)

The constants in (7.17) and (7.19) are chosen as follows:

P = 6,000 1b, L =14 in, E =30 x 106 psi, G = 12 x 106 psi, Tphax = 13,600
psi, Omax = 30,000 psi, and 8,,x = 0.25 in.

Radgsdell and Phillips [9] compared optimal results of different optimization
methods which were mainly based on mathematical optimization algorithms. Deb
[10], Coello [5] and Coello and Montes [11] solved this problem using GA-based
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Table 7.2 Statistical results from different optimization methods for the welded beam design
problem

Methods Best result  Average optimized cost ~ Worst result  Std dev
Ragsdell and Phillips [9]  2.385937 N/A N/A N/A

Deb [10] 2.433116 N/A N/A N/A
Coello [5] 1.748309 1.771973 1.785835 0.011220
Coello and Montes [11] 1.728226 1.792654 1.993408 0.074713
He and Wang [6] 1.728024 1.748831 1.782143 0.012926
Montes and Coello [7] 1.737300 1.813290 1.994651 0.070500
Kaveh and Talatahari [8]  1.724866 1.739654 1.759479 0.008064
Present work [1] 1.724662 1.725707 1.725059 0.0002437

methods. Also, He and Wang [6] used effective co-evolutionary particle swarm
optimization, Montes and Coello [7] solved this problem utilizing evolution strat-
egies, and Kaveh and Talatahari [8] employed charged system search.

Table 7.1 compares the optimized design and the corresponding cost obtained by
CBO with those obtained by other metaheuristic algorithms documented in litera-
ture. It can be seen that the best solution obtained by CBO is better than those
quoted for the other algorithms. The statistical data on 30 independent runs reported
in Table 7.2 also demonstrate the better search ability of CBO with respect to the
other algorithms: in fact the best, worst and average costs, and the standard
deviation (S.D.) of the obtained solutions are better than literature. The lowest
standard deviation achieved by CBO proves that the present algorithm is more
robust than other metaheuristic methods.

7.2.3.2 Test Problem 2: Design of a Pressure Vessel

Design optimization of the cylindrical pressure vessel capped at both ends by
hemispherical heads (Fig. 7.5) is considered as the second example. The objective
of optimization is to minimize the total manufacturing cost of the vessel based on
the combination of welding, material and forming costs. The vessel is designed for
a working pressure of 3,000 psi and a minimum volume of 750 ft* regarding the
provisions of ASME boiler and pressure vessel code. Here, the shell and head
thicknesses should be multiples of 0.0625 in. The thickness of the shell and head
is restricted to 2 in. The shell and head thicknesses must not be less than 1.1 in and
0.6 in respectively. The design variables of the problem are x; as the shell thickness
(T), x> as the spherical head thickness (7},), x; as the radius of cylindrical shell (R),
and x, as the shell length (L). The problem formulation is as follows:
Find

{21, %2, x3, 24 } (7.20)

To minimize
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Fig. 7.5 Schematic of the N L

spherical head and

cylindrical wall of the T, A
pressure vessel with
indication of design
variables = o o e o e e o onin

cos £(x) = 0.6224x3x1x4 + 1.7781x3x2 + 3.1611x3xs + 19.8621x3x7  (7.21)

Subject to

g1(x) =0.0193x3 —x; <0
g,(x) = 0.00954x3 —x, <0

g5(x) =750 x 1728 — wx3xy — gnxg <0 (7.22)
84(x) = x4 —240 <0
The bounds on the design variables are:
1125 <x <2, 0.625<x <2, 10<x3<240, 10<x4 <240 (7.23)

It can be seen from Table 7.3 that the present algorithm found the best design
overall which is about 3 % lighter than the best known design quoted in literature
(5,889.911 vs. 6,059.088 of [8]). The statistical data reported in Table 7.4 indicate
that the standard deviation of CBO optimized solutions is the third lowest among
those quoted for the different algorithms compared in this test case. Statistical
results given in Table 7.4 indicate that CBO is in general more robust than the other
metaheuristic algorithms. However, the worst optimized design and standard devi-
ation found by CBO are higher than for CSS.

7.2.3.3 Test Problem 3: Design of a Tension/Compression Spring

This problem was first described by Belegundu [15] and Arora [16]. It consists of

minimizing the weight of a tension/compression spring subject to constraints on

shear stress, surge frequency, and minimum deflection as shown in Fig. 7.6. The

design variables are the wire diameter d (= x;); the mean coil diameter D (= x,),

and the number of active coils N (= x3). The problem can be stated as follows:
Find

{x1,x2,x3} (7.24)

To minimize
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Table 7.3 Comparison of CBO optimized designs with literature for the pressure vessel problem

Methods X (Ty) X5 (Th) X3 (R) X4 (L)
Sandgren [12] 1.125000 0.625000 47.70000 117.7010
Kannan and Kramer [13] 1.125000 0.625000 58.29100 43.6900
Deb and Gene [14] 0.937500 0.500000 48.32900 112.6790
Coello [5] 0.812500 0.437500 40.32390 200.0000
Coello and Montes [11] 0.812500 0.437500 42.09739 176.6540
He and Wang [6] 0.812500 0.437500 42.09126 176.7465
Montes and Coello [7] 0.812500 0.437500 42.09808 176.6405
Kaveh and Talatahari [8] 0.812500 0.812500 0.812500 176.572656
Present work [1] 0.779946 0.385560 40.409065 198.76232

Table 7.4 Statistical results from different optimization methods for the pressure vessel problem

Methods Best result  Average optimized cost ~ Worst result  Std Dev
Sandgren [12] 8,129.103 N/A N/A N/A
Kannan and Kramer [13] 7,198.042 N/A N/A N/A
Deb and Gene [14] 6,410.381 N/A N/A N/A
Coello [5] 6,288.744 6,293.843 6,308.149 7.4133
Coello and Montes [11] 6,059.946 6,177.253 6,469.322 130.9297
He and Wang [6] 6,061.077 6,147.133 6,363.804 86.4545
Montes and Coello [7] 6,059.745 6,850.004 7,332.879 426.0000
Kaveh and Talatahari [8]  6,059.088 6,067.906 6,085.476 10.256
Present work [1] 5,889.911 5,934.201 6,213.006 63.5417
Fig. 7.6 Schematic of the ‘\ Y
tension/compression spring / /\ } , \\ /
with indication of design --:-— \ \ fa‘( f” \ /x D
variables i j \\; /
cos1(x) = (x3 + 2)xx7 (7.25)
Subject to
3
X5X3
X=1--—22_-<0
§1() 71785x) =
4x§ — X1Xp 1
&) = 3 -1<0
12566 (xpx; —x) ~ 5108x7 (7.26)
( ) 140.45x, <0 '
xX)=1——5—
&3 xx;
X1 +x
g(r) === -1<0

15 -
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The bounds on the design variables are:

005<x <2, 025<x <13, 2<x3 <15, (7.27)

This problem has been solved by Belegundu [15] using eight different mathe-
matical optimization techniques. Arora [16] also solved this problem using a
numerical optimization technique called a constraint correction at the constant
cost. Coello [5] as well as Coello and Montes [11] solved this problem using
GA-based method. Additionally, He and Wang [6] utilized a co-evolutionary
particle swarm optimization (CPSO). Recently, Montes and Coello [7], Kaveh
and Talatahari [8] used evolution strategies and the CSS to solve this problem,
respectively.

Tables 7.5 and 7.6 compare the best results obtained in this paper and those of
the other researches. Once again, CBO found the best design overall. In fact, the
lighter design found by Kaveh and Talatahari in [8] actually violates the first two
optimization constraints. The statistical data reported in Table 7.6 show that the
standard deviation on optimized cost seen for CBO is fully consistent with
literature.

7.2.3.4 Test Problem 4: Weight Minimization of the 120-Bar
Truss Dome

The fourth test case solved in this study is the weight minimization problem of the
120-bar truss dome shown in Fig. 7.7. This test case was investigated by Soh and
Yang [17] as a configuration optimization problem. It has been solved later as a
sizing optimization problem by Lee and Geem [18], Kaveh and Talatahari [8] and
Kaveh and Khayatazad [19].

The allowable tensile and compressive stresses are set according to the AISC
ASD (1989) [20] code, as follows:

o; =0.6F, fore; >0
{ o; foro; <0 (7.28)
where o; is calculated according to the slenderness ratio
A7 5 34 A
1-—%|F = - i < Ce
|37 se s
o; = . ' (7.29)
g fork; = C.

231
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Table 7.6 Statistical results from different optimization methods for tension/compression string

problem

Methods Best result  Average optimized cost Worst result  Std Dev
Belegundu [15] 0.0128334 N/A N/A N/A

Arora [16] 0.0127303 N/A N/A N/A

Coello [5] 0.0127048  0.012769 0.012822 3.9390e—5
Coello and Montes [11] 0.0126810  0.0127420 0.012973 5.9000e—5
He and Wang [6] 0.0126747  0.012730 0.012924 5.1985e—5
Montes and Coello [7] 0.012698 0.013461 0.16485 9.6600e—4
Kaveh and Talatahari [8] 0.0126384 0.012852 0.013626 8.3564e—5
Present work [1] 0.126697 0.1272964 0.128808 5.00376e—5

Fig. 7.7 Schematic of the
spatial 120-bar dome truss
with indication of design
variables and main
geometric dimensions

273.26in

(694.1cm)

s

(1250 cm)
625.59in

(1589 cm)
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where E is the modulus of elasticity, F, is the yield stress of steel, C. is

the slenderness ratio (4;) dividing the elastic and inelastic buckling regions (C.

= ,/*7E/,), A; is the slenderness ratio (}; = %), K is the effective length factor, L;

is the member length and r; is the radius of gyration.

The modulus of elasticity is 30,450 ksi (210,000 MPa) and the material density is
0.288 Ib/in® (7,971.810 kg/m?). The yield stress of steel is taken as 58.0 ksi
(400 MPa). On the other hand, the radius of gyration (r;) is expressed in terms of
cross-sectional areas as r; = aA,»b [28]. Here, a and b are constants depending on the
types of sections adopted for the members such as pipes, angles, and tees. In this
example, pipe sections (¢ = 0.4993 and b = 0.6777) are adopted for bars. All
members of the dome are divided into seven groups, as shown in Fig. 7.7. The
dome is considered to be subjected to vertical loads at all the unsupported joints.
These are taken as —13.49 kips (60 kN) at node 1, —6.744 kips (30 kN) at nodes
2 through 14, and —2.248 kips (10 kN) at the remaining of the nodes. The minimum
cross-sectional area of elements is 0.775 in’ (cmz). In this example, four cases of
constraints are considered: with stress constraints and no displacement constraints
(Case 1), with stress constraints and displacement limitations of +0.1969 in (5 mm)
imposed on all nodes in x- and y-directions (Case 2), no stress constraints but
displacement limitations of £0.1969 in (5 mm) imposed on all nodes in z-directions
(Case 3), and all constraints explained above (Case 4). For Case 1 and Case 2, the
maximum cross-sectional area is 5.0 in” (32.26 sz) while for Case 3 and Case 4 is
20.0 in” (129.03 cm?).

Table 7.7 compares the optimization results obtained in this study with previous
research presented in literature. It can be seen that CBO always designed the
lightest structure except for Cases 3 and 4 where HPSACO converged to a slightly
lower weight. CBO always completed the optimization process within 16,000
structural analyses (40 agents x 400 optimization iterations) while HPSACO
required on average 10,000 analyses (400 optimization iterations) and PSOPC
required 125,000 analyses (2,500 iterations). The average number of analyses
required by the RO algorithm was instead 19,900. Figure 7.8 shows that the
convergence rate of CBO is considerably higher than that of PSO and PSOPC.

7.2.3.5 Test Problem 5: Design of Forth Truss Bridge

The last test case was the layout optimization of the forth bridge shown in Fig. 7.9a
which is a 16 m long and 1 m high truss of infinite span. Because of infinite span, the
cross section of the bridge can be modeled as symmetric about the axis joining
nodes 10 and 11. Structural symmetry allowed the 37 elements of which the bridge
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Fig. 7.8 Convergence curves obtained for the different variants of the 120-bar dome problem [2]

is comprised to be grouped into 16 groups (see Table 7.8): hence, there are
16 independent sizing variables. Nodal coordinates were included as layout vari-
ables: X-coordinates of nodes could not vary while Y-coordinates (except those of
nodes 1 and 20) were allowed to change between —140 and 140 cm with respect to
the initial configuration of Fig. 7.9a. Thus, the optimization problem included also
10 layout variables. The cross-sectional areas (sizing variables) could vary between
0.5 and 100 cm”.

Material properties were set as follows: modulus of elasticity of 210 GPa,
allowable stress of 250 MPa, specific weight of 7.8 ton/m®. The structure is subject
to self-weight and concentrated loads shown in Fig. 7.9a.

Table 7.8 compares CBO optimization results with literature. It appears that
CBO found the best design overall saving about 1,000 kg with respect to the
optimum currently reported in literature. Furthermore, the standard deviation on
optimized weight observed for CBO in 20 independent optimization runs was lower
than for the other metaheuristic optimization algorithms taken as basis of
comparison.

The optimized layout of the bridge is shown in Fig. 7.9b. Figure 7.10 compares
the convergence behavior of CBO and RO. Although RO was considerably faster in
the early optimization iterations, CBO converged to a significantly better design
without being trapped in local optima.
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Fig. 7.9 (a) Schematic of the Forth truss bridge (b) Optimized layout of the forth bridge [2]

7.3 CBO for Optimum Design of Truss Structures
with Continuous Variables

This part considers: (1) The CBO algorithm is introduced for optimization of
continuous problems. (2) A comprehensive study of sizing optimization for truss
structures is presented. The examples are chosen from the literature to verify the
effectiveness of the algorithm. These examples are as follows: a 25-member spatial
truss with 8 design variables, a 72-member spatial truss with 16 design variables, a
582-member space truss tower with 32 design variables, a 37-member plane truss
bridge with 16 design variables, and a 68-member plane truss bridge with 4, 8 and
12 design variables. All the structures are optimized for minimum weight with CBO
algorithm, and a comparison is carried out in terms of the best optimum solutions
and their convergence rates in a predefined number of analyses. The results indicate
that the proposed algorithm is very competitive with other state-of-the-art
metaheuristic methods.

7.3.1 Flowchart and CBO Algorithm

The flowchart of the CBO algorithm is shown in Fig. 7.11. The main steps of CBO
algorithm are as follows:
Level 1: Initialization



7.3 CBO for Optimum Design of Truss Structures with Continuous Variables 215

Table 7.8 Comparison of CBO optimization results with literature for the forth bridge problem

Kaveh and Khayatazad [19]

No Design variable BB-BC PSO RO Present Work [2]
1 A 56.41 25.20 20.54 23.314

2 A, 58.20 97.60 44.62 36.867

3 Az,As 53.89 35.00 6.37 9.847

4 Ay 60.21 64.30 50.10 49.679

5 Ag 56.27 14.51 30.39 26.563

6 Ay 57.08 37.91 17.61 12.737

7 Ag 49.19 69.85 41.04 37.120

8 Ao 48.67 8.76 8.55 1.545

9 Ag, Ay 45.43 47.54 33.93 28.35

10 A 15.14 6.36 0.63 0.891

11 Ay 45.31 27.13 26.92 24.110

12 Az 62.91 3.82 23.42 9.112

13 Alg 56.77 50.82 42.06 29.071

14 Ais,A7 46.66 2.70 2.01 8.222

15 A 57.95 5.46 8.51 8.715

16 Ao 54.99 17.62 1.27 2.107

17 Ay,, Ay 6.89 140 70.88 11.093

18 Ays, Ayig 17.74 139.65 64.88 50.352

19 Ays, Ayy7 1.81 117.59 —6.99 -50.529
20 Ays, Ayie 23.57 139.70 128.31 119.315
21 Aye, Ayys 3.22 —16.51 —64.24 —124.378
22 Ay7, Ay1a 5.85 139.06 139.29 34.219
23 Ayg, Ayy3 4.01 —127.74 —109.62 —120.867
24 Ayg, Ayio 10.52 —81.03 21.82 —41.323
25 Ayio —25.99 60.16 —55.09 —115.609
26 Ay, 2.74 —139.97 2.29 —54.590
Best weight (kg) 37,132.3 20,591.9 11,215.7 10,250.9
Average weight (kg) 40,154.1 25,269.3 11,969.2 11,112.63
Std (kg) 1,235.4 2,323.7 545.5 522.54

Fig. 7.10 Convergence
curves obtained in the forth
bridge problem [2]
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Fig. 7.11 The flowchart of
the CBO [2]

Initialize N agents (CBs) with random
positions

Evaluated the CBs positions and compare with other CB
and sort in an increasing order

!

The CBs are divided two groups and the mass and old
velocity of CBs are determined

“—

s

Determine the new velocities and
new positions of the CBs

b4

Yes No
The termination
conditions

satisfied?

e Step 1: Initialization. Initialize an array of CBs with random positions and their
associated values of the objective function (Eq. 7.6).

Level 2: Search

e Step 1: CBs ranking. Compare the value of the objective function for each CB,
and sort them in an increasing order.

e Step 2: Groups creation. CBs are divided into two equal groups: (1) stationary
group, (2) moving group. Then, the pairs of CB are defined for collision
(Fig. 7.2).

o Step 3: Criteria before the collision. The value of mass and velocity of each CB
for each group are evaluated before the collision (Eqgs. 7.7, 7.8, and 7.9).

e Step 4: Criteria after the collision. The value velocity of each CB in each groups
are evaluated after the collision (Egs. 7.10 and 7.11).

» Step 5: CBs updating. The new position of each CB is calculated (Egs. 7.13 and
7.14).

Level 3: Terminating criterion control

« Step 1: Repeat search level steps until a terminating criterion is satisfied.
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7.3.2 Numerical Examples

In order to assess the effectiveness of the proposed methodology a number of
continuous optimization benchmark problems are examined. These examples
include three well-known space trusses and two planar bridge structures. The
number of design variables for the first to fifth examples are 8, 16, 32, 26, respec-
tively and for the last example 4, 8 and 12 variables are used. Similarly, the number
of Colliding Bodies or agents for these examples are considered as 30, 40, 50, 40
and 20, respectively. For all of these examples the maximum number of iteration is
considered as 400. The algorithm and the direct stiffness method for the analysis of
truss structures are coded in Matlab software.

For the sake of simplicity and to be fair in comparisons, the penalty approach is
used for the constraint handling. The constrained objective function can formally be
stated as follows:

Mer(X) = F(X) X fpenay (%) =(6) x (1 4613 max(0.5,())>  (7.30)

i=1

where X is the vector of design variables, g; is the ith constraint from 7; inequality
constraints (g;(X) <0,i = 1,2, ..., n,;), and Mer(X) is the merit function; f(X) is the
weight of structure; f,enq(X) is the penalty function which results from the
violations of the constraints corresponding to the response of the structure. The
parameters £, and &, are selected considering the exploration and the exploitation
rate of the search space. In this study, ¢, is selected as unity and &, is taken as 1.5 at
the start and linearly increases to 6.

7.3.2.1 A 25-Bar Spatial Truss

Size optimization of the 25-bar planar truss shown in Fig. 7.12 is considered. This is
a well-known problem in the field of weight optimization of the structures. In this
example, the material density is considered as 0.1 Ib/in’ (2,767.990 kg/m3) and the
modulus of elasticity is taken as 10,000 ksi (68,950 MPa). Table 7.9 shows the two
load cases for this example. The structure includes 25 members, which are divided
into eight groups, as follows: (1) Ay, (2) Ax—As, (3) Ag—Ag, (4) Aj0—A11, (5) Ajr—
Az, (6) Aa—Ayg, (7) Arg—Asg and (8) Axx—Ags.

Maximum displacement limitations of +0.35 in (8.89 mm) are imposed on every
node in every direction and the axial stress constraints vary for each group as shown
in Table 7.10. The range of the cross-sectional areas varies from 0.01 to 3.4 in”
(0.6452 to 21.94 cm?).

By the use of the proposed algorithm, this optimization problem is solved and
Table 7.11 shows the obtained optimal design of CBO, which is compared with GA
[21], PSO [22], HS [6] and RO [19]. The best weight of the CBO is 544.310 b,
which is slightly improved compared to other algorithms. It is evident from
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Fig. 7.12 Schematic of a
25-bar spatial truss

100 in
{254 cm)

Table 7.9 Loading conditions for the 25-bar spatial truss

Case 1 Case 2
Node Py kips (kN) Py kips (kN) Pz kips (kN) Px kips (kN) Py kips (kN) Pz kips (kN)
1 0.0 20.0 (89) —-5.0(22.5) 1.0(4.45) 10.0 (44.5) —5.0 (22.5)
2 0.0 —20.0 (89) —-5.0(225) 0.0 10.0 (44.5) —5.0 (22.5)
3 0.0 0.0 0.0 0.5 (22.5) 0.0 0.0
4 0.0 0.0 0.0 0.5 (22.5) 0.0 0.0

Table 7.10 Member stress limitations for the 25-bar spatial truss

Element group  Compressive stress limitations ksi (MPa)  Tensile stress limitation ksi (MPa)

1 35.092 (241.96) 40.0 (275.80)
2 11.590 (79.913) 40.0 (275.80)
3 17.305 (119.31) 40.0 (275.80)
4 35.092 (241.96) 40.0 (275.80)
5 35.092 (241.96) 40.0 (275.80)
6 6.759 (46.603) 40.0 (275.80)
7 6.959 (47.982) 40.0 (275.80)
8 11.082 (76.410) 40.0 (275.80)

Table 7.11 that the number of analysis and standard deviation of 20 independent
runs for the CBO are 9,090 and 0.294 Ib, respectively, which are much less than the
other optimization algorithms. Figure 7.13 provides the convergence diagram of the
CBO in 400 iterations.

7.3.2.2 A 72-Bar Spatial Truss Structure

Schematic topology and element numbering of a 72-bar space truss is shown in
Fig. 7.14. The elements are classified in 16 design groups according to Table 7.12.
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Table 7.11 Comparison of CBO optimized designs with literature in the 25-bar spatial truss

Optimal cross-sectional areas (inz)

Rajeev et al. Schutte et al. Lee et al. Kaveh et al.

Element group GA [21] PSO[22] HS [18] RO [19] Present work [2]
1 A 0.10 0.010 0.047 0.0157 0.0100
2 Ar-As 1.80 2.121 2.022 2.0217 2.1297
3 As—Ao 2.30 2.893 2.95 2.9319 2.8865
4 Ajo-Aq 0.20 0.010 0.010 0.0102 0.0100
5 Air-Ajs 0.10 0.010 0.014 0.0109 0.0100
6 A-Ay7 0.80 0.671 0.688 0.6563 0.6792
7 Ag—Ay 1.80 1.611 1.657 1.6793 1.6077
8 Arx—Ass 3.0 2.717 2.663 2.7163 2.6927
Best weight (Ib) 546 545.21 544.38 544.656 544.310
Average weight (Ib) N/A 546.84 N/A 546.689 545.256
Std dev N/A 1.478 N/A 1.612 0.294
No. of analyses N/A 9,596 15,000 13,880 9,090
Fig. 7.13 The convergence 700
diagram for the 25-bar
spatial truss [2] R 650

=2

-

fﬂ 600 -

]

2

550 -
500 T T T 1
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The material density is 0.1 Ib/in® (2,767.990 kg/m?) and the modulus of elasticity is
taken as 10,000 ksi (68,950 MPa). The members are subjected to the stress limits of
£25 ksi (£172.375 MPa). The uppermost nodes are subjected to the displacement
limits of +0.25 in (£0.635 cm) in both x and y directions. The minimum permitted
cross-sectional area of each member is taken as 0.10 in’ (0.6452 cmz), and the
maximum cross-sectional area of each member is 4.00 in” (25.81 cm?). The loading
conditions are considered as:

1. Loads 5, 5 and —5 kips in the x, y and z directions at node 17, respectively;
2. A load —5 kips in the z direction at nodes 17, 18, 19 and 20;

Table 7.12 summarizes the results obtained by the present work and those of the
previously reported researches. The best result of the CBO approach is 379.694,
while it is 385.76, 380.24, 381.91, 379.85 and 380.458 Ib for the GA [23], ACO
[24], PSO [25], BB-BC [26] and RO [19] algorithm, respectively. Also, the number
of analyses of the CBO is 15,600, while it is 18,500, 19,621 and 19,084 for the
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Fig. 7.14 Schematic of a seventy-two bar spatial truss

ACO, BB-BC and RO algorithm, respectively. Also, it is evident from Table 7.12
that the standard deviation of 20 independent runs for the CBO is less than the other
optimization algorithms. Figure 7.15 shows the convergence diagrams in terms of
the number of iterations for this example. Figure 7.16 shows the allowable and
existing stress values in truss member using the CBO.

7.3.2.3 A 582-Bar Tower Truss

The 582-bar spatial truss structure, shown in Fig. 7.17, was studied with discrete
variables by other researchers [27, 28]. However, here we have used this structure
with continuous sizing variables. The 582 structural members categorized as
32 independent size variables. A single load case is considered consisting of lateral
loads of 5.0 kN (1.12 kips) applied in both x- and y-directions and a vertical load of
—30 kN (—6.74 kips) applied in the z-direction at all nodes of the tower. The lower
and upper bounds on size variables are taken as 3.1 in> (20 cm?) and 155.0 in”
(1,000 cmz), respectively.

The allowable tensile and compressive stresses are used as specified by the AISC
ASD [20] code, as Eqgs. (7.28) and (7.29).

The maximum slenderness ratio is limited to 300 for tension members, and it is
recommended to be limited to 200 for compression members according to
ASD-AISC [20]. The modulus of elasticity is 29,000 ksi (203,893.6 MPa) and the
yield stress of steel is taken as 36 ksi (253.1 MPa). Other constraints are the
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Table 7.12 Comparison of CBO optimized designs with literature in the 72-bar spatial truss (in®)

Optimal cross-sectional areas (inz)

Erbatur ~ Camp Perez Camp Kaveh
et al. et al. et al. BB-BC etal. Present work
Element group GA [23] ACO [24] PSO[25] [26] RO [19] [2]
14 1.755 1.948 1.7427 1.8577 1.8365 1.9028
5-12 00.505 0.508 0.5185 0.5059 0.5021 0.5180
13-16 0.105 0.101 0.1000 0.1000 0.1000 0.1001
17-18 0.155 0.102 0.1000 0.1000 0.1004 0.1003
19-22 1.155 1.303 1.3079 1.2476 1.2522 1.2787
23-30 0.585 0.511 0.5193 0.5269 0.5033 0.5074
31-34 0.100 0.101 0.1000 0.1000 0.1002 0.1003
35-36 0.100 0.100 0.1000 0.1012 0.1001 0.1003
3740 0.460 0.561 0.5142 0.5209 0.5730 0.5240
41-48 0.530 0.492 0.5464 0.5172 0.5499 0.5150
49-52 0.120 0.1 0.1000 0.1004 0.1004 0.1002
53-54 0.165 0.107 0.1095 0.1005 0.1001 0.1015
55-58 0.155 0.156 0.1615 0.1565 0.1576 0.1564
59-66 0.535 0.550 0.5092 0.5507 0.5222 0.5494
67-70 0.480 0.390 0.4967 0.3922 0.4356 0.4029
71-72 0.520 0.592 0.5619 0.5922 0.5971 0.5504
Best weight (Ib) 385.76 380.24 381.91 379.85 380.458  379.6943
Average weight (Ib) N/A 383.16 N/A 382.08 382.553  379.8961
Std dev N/A 3.66 N/A 1.912 1.221 0.0791
No. of analyses N/A 18,500 N/A 19,621 19,084 15,600
2300 -
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Fig. 7.15 The convergence diagram of the CBO algorithm for the 72-bar spatial truss [2]
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Fig. 7.16 Comparison of the allowable and existing stresses in the elements of the 72-bar truss
structure [2]

limitations of nodal displacements which should be no more than 8.0 cm (3.15 in) in
all directions.

Table 7.13 lists the optimal values of the 32 size variables obtained by the
present algorithm. Figure 7.18 shows the convergence diagrams for the utilized
algorithms. Figure 7.19 shows the allowable and existing stress ratio and displace-
ment values of the CBO. Here, the number of structural analyses is taken as 20,000.
The maximum values of displacements in the x-, y- and z-directions are 8 cm,
7.61 cm and 2.15 cm, respectively. The maximum stress ratio is 0.47 %.

7.3.2.4 A 52-Bar Dome-Like Truss

Figure 7.20 shows the initial topology and the element numbering of a 52-bar
dome-like space truss. This example has been investigated by Lingyun et al. [29],
Gomes [30] utilized the NHGA and PSO algorithms. This has also been investi-
gated by Kaveh and Zolghadr [31] using the standard CSS. This example is
optimized for shape and configuration. The space truss has 52 bars, and
non-structural masses of m = 50 kg are added to the free nodes. The material
density is 7,800 kg/m? and the modulus of elasticity is 210, 000MPa. The structural
members of this truss are categorized into eight groups, where all members in a
group share the same material and cross-sectional properties. Table 7.14 shows
each element group by member numbers. The range of the cross-sectional areas
varies from 1 to 10 cm”. The shape optimization is performed taking into account
that the symmetry is preserved in the process of design. Each movable node is
allowed to vary +2 m. There are two constraints in the first two natural frequencies
so that w; < 15.916 HZ and w, > 28.648 HZ. This example is considered to be a
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Fig. 7.17 Schematic of a
582-bar tower truss. (a) 3D
view, (b) side view, and (c¢)
top view
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truss optimization problem with two natural frequency constraints and 13 design
variables (five shape variables plus eight size variables).

Table 7.15 compares the cross section, best weight, mean weight and standard
deviation of 20 independent runs of CBO with the results of other researches. It is
evident that the CBO is better than in term of best weight of the results. Table 7.16
shows the natural frequencies of optimized structure obtained by different authors
in the literature and the results obtained by the present algorithm. Figure 7.21
provides the convergence rates of the best result founded by the CBO.
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Table 7.13 Optimum design cross-sections for the 582-bar tower truss

Present work [2] Present work [2]
Element groups Area (sz) Element groups Area (sz)
1 20.5526 17 155.6601
2 162.7709 18 21.4951
3 24.8562 19 25.1163
4 122.7462 20 94.0228
5 21.6756 21 20.8041
6 21.4751 22 21.223
7 110.8568 23 53.5946
8 20.9355 24 20.628
9 23.1792 25 21.5057
10 109.6085 26 26.2735
11 21.2932 27 20.6069
12 156.2254 28 21.5076
13 159.3948 29 24.1394
14 107.3678 30 20.2735
15 171915 31 21.1888
16 31.5471 32 29.6669
Volume (m?) 16.1520
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Fig. 7.18 The convergence diagram of the CBO for 582-bar tower truss [2]

7.3.2.5 The Model of Burro Creek Bridge

The last example is the sizing optimization of the planar bridge shown in Fig. 7.22a.
This example has been first investigated by Makiabadi et al. [32] using the teaching-
learning-based optimization algorithm. This bridge is 680 ft long and 155 ft high
truss of the main span. Also, both upper and lower chords shapes are quadratic
parabola. Because of symmetry of this truss, one can analysis half of the structure,
Fig. 7.22b. The element groups and applied equivalent centralized loads are shown
in Fig. 7.22b. The modulus of elasticity of material is 4.2 x 10° Ib/ft*, Fy is taken
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Fig. 7.19 Comparison of the allowable and existing constraints for the 582-bar truss using the
DHPSACO [2]. (a) Stress ratio, (b) displacement in the z- direction, (c¢) displacement in the
y-direction, (d) displacement in the x-direction

as 72.0 x 10° Ib/ft* and the density of material is 495 Ib/ft>. For this example,
allowable tensile and compressive stresses are considered according to AISC ASD
(1989) [20]. According to Australian Bridge Code [33], the allowable displacement
is 0.85 ft.

Three design cases are studied according to three different groups of variables
including 4, 8 and 12 variables in the design. For three cases, the size variables are
chosen from 0.2 in? to 5.0 in”. Table 7.17 shows the full list of three different groups
of variables used in the problem.

Table 7.18 compares the results obtained of the CBO with those of the TLS
algorithm. The optimum weight of the CBO are 299,756.7, 269,839.5 and
253,871.3 Ib, while these are 368,598.1, 315,885.7, and 298,699.9 for Case I, II
and III, respectively. It can be seen that the number of analyses is much less than
that of TLS algorithm. Figure 7.23 provides a comparison of the convergence
diagrams of the CBO for three cases.

7.3.3 Discussion

CBO utilizes simple formulation to find minimum of functions and does not depend
on any internal parameter. Also, the formulation of CBO algorithm does not use the
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Fig. 7.20 Schematic of the
52-bar space truss. (a) Top
view and (b) side view

b
Table. 7.14 Element Group number Elements
grouping 1 1—4

2 5-8

3 9-16

4 17-20

5 21-28

6 29-36

7 37-44

3 45-52
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Table 7.15 Cross-sectional areas and nodal coordinates obtained by different researchers for the
52-bar space truss

Lingyun et al.  Gomes Kaveh et al.
Variable Initial GA [29] PSO [30] CSS [31] Present work [2]
Za (m) 6.000 5.8851 5.5344 5.2716 5.6523
Xg (m) 2.000 1.7623 2.0885 1.5909 1.9665
Zg (m) 5.700 4.4091 3.9283 3.7039 3.7378
Xk (m) 4.000 3.4406 4.0255 3.5595 3.7620
Zg (m) 4.500 3.1874 2.4575 2.5757 2.5741
A, (cm?) 2.0 1.0000 0.3696 1.0464 1.0009
A, (cm?) 2.0 2.1417 4.1912 1.7295 1.3326
A; (cm?) 2.0 1.4858 1.5123 1.6507 1.3751
A4 (cm?) 2.0 1.4018 1.5620 1.5059 1.6327
As (cm?) 2.0 1.9110 1.9154 1.7210 1.5521
Ag (cm?) 2.0 1.0109 1.1315 1.0020 1.0000
A; (cm?) 2.0 1.4693 1.8233 1.7415 1.6071
Ag (cm?) 2.0 2.1411 1.0904 1.2555 1.3354
Best weight (kg) 338.69  236.046 228.381 205.237 197.962
Average weight (kg) — - 234.3 213.101 206.858
Std dev - - 5.22 7.391 5.750
No. of analyses - - 11,270 4,000 4,000

Table 7.16 Natural frequencies (HZ) of the optimized 52-bar planar truss

Lingyun et al.  Gomes Kaveh et al.
Frequency number  Initial GA [29] PSO [30] CSS [31] Present work [2]
1 22.69 12.81 12.751 9.246 10.2404
2 25.17 28.65 28.649 28.648 28.6482
3 25.17 28.65 28.649 28.699 28.6504
4 31.52 29.54 28.803 28.735 28.7117
5 33.80 30.24 29.230 29.223 29.2045
Fig. 7.21 Convergence 600
history for the 52-bar truss
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Fig. 7.22 (a) Schematic of the Burro Creek Bridge. (b) finite element nodel and element

numbering of Burro Creek Bridge

memory for saving the best-so-far solution (i.e. the best position of agents from the
previous iterations). By defining the coefficient of restitution (COR), a good
balance between the global and local search is achieved in CBO. The proposed
approach performs well in several test problems both in terms of the number of
fitness function evaluations and in terms of the quality of the solutions. The results
are compared to those generated with other techniques reported in the literature.
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Table 7.18 Comparison of CBO optimized cross sectional areas (in®) with those of TLS for the
Burro Creek Bridge

Maktobi et al.
TLS [32] Present work [2]

Design variables Case | Case II Case III Case I Case II Case III

1 0.20000 0.2000 0.20000 0.20000 0.20000 0.20010
2 0.39202 0.46247 0.49843 0.35830 0.46532 0.43580
3 0.41654 0.22233 0.20000 0.20000 0.20007 0.20020
4 0.85487 0.57067 0.39476 0.78100 0.48657 0.32630
5 0.20012 0.20000 0.20000 0.20000
6 0.31227 0.42170 0.20004 0.27960
7 0.42791 0.25346 0.20001 0.20010
8 0.84160 0.63739 0.81310 0.70410
9 0.20000 0.20000
10 0.27992 0.20010
11 0.43354 0.20000
12 0.83483 0.74470
Best weight (Ib) 368,598.1 315,885.7 298,699.9 299,756.7 269,839.5 253,871.3
Number of analyses 15,000 35,000 50,000 8,000 8,000 8,000
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Chapter 8
Ray Optimization Algorithm

8.1 Introduction

In this chapter a newly developed metaheuristic method, so-called Ray Optimiza-
tion, is presented. Similar to other multi-agent methods, Ray Optimization has a
number of particles consisting of the variables of the problem. These agents are
considered as rays of light. Based on the Snell’s light refraction law when light
travels from a lighter medium to a darker medium, it refracts and its direction
changes. This behavior helps the agents to explore the search space in early stages
of the optimization process and to make them converge in the final stages. This law
is the main tool of the Ray Optimization algorithm. This chapter consists of three
parts.

In the first part Ray Optimization (RO) algorithm is developed and applied to
some benchmark functions and engineering problems [1].

In the second part, RO is employed for size and shape optimization of truss
structures. The goal function of the present optimization method is the minimiza-
tion of truss weight under the required constraints [2].

In the third part, an improved ray optimization (IRO) algorithm is presented.
This technique employs a new approach for generating solution vectors and mod-
ifies the procedure which returns the violated agents into the feasible search space.
The IRO algorithm applied to some benchmark mathematical optimization prob-
lems and truss structure examples and its numerical results are compared to those of
the standard RO and some well-known metaheuristic algorithms [3].

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 233
DOI 10.1007/978-3-319-05549-7_8, © Springer International Publishing Switzerland 2014
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8.2 Ray Optimization for Continuous Variables

The present method is inspired by transition of ray from one medium to another
from physics. Here the transition of ray is utilized for finding the global or near-
global solution. This algorithm is called Ray Optimization (RO) and uses the
Snell’s refraction law of the light.

8.2.1 Definitions and Concepts from Ray Theory

The contents of this section mainly follow the definitions and concepts presented
in [4].

Certain transparent materials so-called dielectric, refract the light. As the light
travels through these materials, its path is changed according to the Snell’s refrac-
tion law. Each transparent material has an index of refraction. Showing the index of
the refraction of the lighter material by n,, and denoting the index of the refraction
of the darker material by n,, the Snell’s law can be expressed as:

ng.sin (6) = n,. sin (¢). (8.1)

Where, € and ¢ are the angles between the normal of two surfaces, n, with
incoming ray vector and the angle between the normal with the refracted ray vector,
respectively, as shown in Fig. 8.1. Having the direction of incoming ray vector and
the index of refraction of lighter and darker mediums, one can find the direction of
refracted ray vector £.

The computation for finding ¢ is rather lengthy, but not difficult. To help us along
the way, we use Fig. 8.1, where the vectors d, n and b are unit vectors. This makes
the formula slightly less complicated. The steps for finding # in a two dimensional
space are outlined in the following:

1. We express ¢ in terms of n and b.

Let ¢, be the component of ¢ along n and £, be the component of ¢ along b. Then,
since t is a unit vector, we have

_ |lnll

Similarly,
sin (¢) = |1 (83)

Now
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Fig. 8.1 Incident and
refracted rays and their
specifications [1]

tn=—|tull.n, (8.4)
and
t, = ||tp||.b. (8.5)
Therefore,
t = —cos(¢).n+ sin(¢).b. (8.6)

2. Express b in terms of the known quantities using the fact that b is the unit length
vector parallel to the projection of d onto the perpendicular to n. Let d,, be the
component of d along n and dj, be the component of d along b, the direction
perpendicular to n. Then

d=d,+d,. (8.7)
Thus
dy=d—d,=d— (dn).n. (8.8)
Also, since d is a unit vector, we have

in = M =

Thus
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dy, d—(dn).n

b= = - 8.10
4] = sin (6) (810
3. Using (8.1), one can express everything in terms of n, d, n; and n,.
Therefore
t = —cos (¢p).n+ sin (¢).b = — cos (¢).n + sin (¢>%d(g))n =
Y (8.11)
— cos (¢).n+—=.(d— (d.n).n)

ny

Now we express cos(¢) in terms of known quantities. Using the identity, we
have

cos () = /1 — sin2(g), (8.12)

and employing Eq. (8.1), we obtain:
2
n; .,
cos (¢) = /1 ——5.sin%(0). (8.13)
n[

2
n; . n
t=—n4/1 ——‘zi.smz(ﬁ)—l——d
t "

Finally, we have
.(d— (d.n).n) (8.14)

Here, t is a normalized vector.

In tracing a ray in a 2-dimesional space, d, t, n were placed in z =0 plane. In a
3-dimensional space, it is clear that one can pass a plane through two vectors like n
and d, which intersect each other at one point. Thus the ray tracing in 3-dimensional
spaces is a special state of ray tracing in 2-dimensional spaces which occurs in a
plane with an arbitrary orientation. Now if one can find two normalized vectors that
are perpendicular to each other, like i and j, then n and d can be rewritten in terms
of these unit vectors. Finally, after finding ¢ in the new coordinate system, it can be
rearranged based on the primary coordinate system. One of these new unit compo-
nents can be n as i". The other one can be found by the following relationship:

n.d = ||n||.||d||. cos () = cos (@) (8.15)

Where w is the angle between n and d. Now if
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nd=0 (8.16)
Then w = n/2 and d will be j*, and if

0<nd<1 (8.17)

then the direction of j* will be obtained by (n — ld) since

n.

d n.d
n.(n—ﬁ>—n.n—a—l—l—0 (8.18)

And finally
s (" _ Tdd> (8.19)
norm (n — nid)

Where norm is function in MATLAB that provides the magnitude of a vector.
Similarly if

—1<nd<0 (8.20)
j can be obtained by:
4+ -4
joo =) (8.21)

n = (1,0), (8.22)
And
d = (di,dj). (8.23)

Therefore after calculating £ =(t,",t,") in a two dimensional space, ¢ in a three
dimensional space is obtained as

t=0.i+6j". (8.24)

It should be mentioned that for avoiding singularity in MATLAB, some changes
are considered as shown in Table 8.1.
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Table 8.1 The component of the new coordinate system

—0.05<n.d<0.05 0.05<n.d<l1 —1<n.d<-0.05
i n n n
i d v (1) ()
J = nnrm(n—%l) J = notAm(nJr#',,)

8.2.2 Ray Optimization Method

8.2.2.1 Scattering and Evaluation Step

Like every other metaheuristic method, the RO has also a number of agents
containing the variables of the design problem. As it was mentioned before, the
ray tracing which is the main base of the RO was addressed in two and three
dimensional spaces but it is necessary to introduce a procedure for performing the
steps of the algorithm in higher dimensional spaces.

Suppose a solution vector has four design variables. In the first step, the goal
function for this solution vector is determined. Now, this solution vector must be
moved to a new position in the search space based on the RO algorithm. To achieve
this, the solution vector is divided into two groups each group having two members
and then the corresponding agents are moved to their new positions. In other word,
we move the first group to the new position based on a 2D space and also the second
group is moved to the new position in another 2D space. Now, we have a new
solution vector with four variables which is ready for determining the goal function.

If a solution vector for another problem has seven variables, then we divide it
into two groups of two variables and one group of three variables, and repeat the
above procedure in two 2D spaces and one 3D space for the movement. After the
movements, we join them together to have a unit solution vector. For any other
number of variables the grouping into two and three elements can be performed.
Therefore by using this approach, the problem of higher dimensions is dealt with
and one can return to the first step of the algorithm. In this step, the agents must be
scattered in the search space, and this requirement is provided by:

XU = Xj,min —+ rand.(Xj,max - Xj,min) (825)

Where X;; is the jth variable of the ith agent. X;,,;, and X .. are the minimum
and maximum limits of the jth variable, and rand is a random number with its range
being between O and 1. At the end of this step, after the evaluation of the goal
function for each agent, the position of the best agent is saved as the global best and
the position of each agent is saved as its local best.
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8.2.2.2 Movement Vector and Motion Refinement Step

For each of the above mentioned agents, a groups of movement vectors should be
assigned according to their division, and if the agent has a one 3-variable group and
two 2-variable groups, it must have a one 3-variable movement vector group and
two 2-variable movement vector groups, respectively. For the first movement, these
vectors are obtained by:

vi =—1+2.rand. (8.26)

Where v;; is the jth component of the ith agent and it may belong to a 2-variable
or a 3-variable group. After finding the components of each 2 or 3-variable group,
these must be converted to normalized vectors. The reason of this action will be
presented in the subsequent steps. Now by adding the movement vector of each
agent, they move to their new positions, but there is a possibility of boundary
violation, so they must be refined. This objective is fulfilled by the following
procedure:

If an agent violates a boundary, it intersects the boundary at a specified point,
because of having definite movement vector. Now using this point and initial
position of the agent, one can make a new vector whose direction is the same as
the prior movement vector and its length is a multiple of the distance which is
between the initial position and the boundary intersection. This multiple should
naturally be less than 1. Since the best answer, especially in engineering problems,
is close to the boundaries [5], it is locked on 0.9. During the implementation of this
stage, it is found that when a movement vector is very close to a unit
one-component vector such (1,0) and (0,1) for 2-dimensional spaces and (1,0,0) ,
(0,1,0) and (0,0,1) for 3-dimensional spaces, it causes singularity in the process of
finding the intersection point at the boundary. For solving this problem, after
normalizing the movement vector, if one component of this vector is equal or
greater than 0.95, the other component(s) are not considered and upon this solitary
component, the new movement vector is made.

After motion refinement and evaluation of the goal function, again the so-far best
agent at this stage is selected as the global best and for each agent, the so-far best
position by this stage, is selected as its local best.

8.2.2.3 Origin Making and Convergent Step

Now each agent must be moved to its new position, and first the point to which each
particle moves must be determined. This point is named origin and it is specified by:

o — (ite + k)-GBz—:(ite —k).LB; (8.27)
1le

Where O/ is the origin of ith agent for the kth iteration, ife is the total number of
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iteration for the optimization process, and GB and LB; are the global best and local
best of the ith agent, respectively. As Eq. (8.27) implies, at the beginning of
iterations, the origin is approximately at the middle of the local best and global
best. Thus exploration which is an important parameter in optimization is achieved.
By progressing the iterations there is a balance between exploration and second
important parameter, known as the exploitation. By passing the mid steps of
iterations, the origin will be close to global best and the exploitation is empowered.

As it was mentioned before, the ray tracing is used for the movement and
convergent step. Each ray of light has a normalized vector with which passes the
medium. In the optimization, the movement vector is a positive multiple of this
vector. When the ray comes to a new darker medium, the direction of its vector will
be converted upon its angle between the initial direction and normal of surfaces of
mediums and the ratio of refraction index. After refraction, the new direction will
be closer to the normal than the initial direction, so one can say it converges to the
normal. Therefore if in the process of optimization, the normal is selected as a
vector whose origin is O and its end is the current position of agent, it should be
anticipated that the agent will converge to O. With refinement of O during the
optimization, the agents approach to best result.

In order to show how the agents converge the to a point, consider an agent with
arbitrary position and movement vector in the two dimensional space, like (4,5) and
(0.707, —0.707), respectively. If this particle wants to move to a predefined point
like the origin, it can be moved toward this point as illustrated in Fig. 8.2. It should
be mentioned that, some restrictions are imposed for this convergence. These
consist of a fixed ratio 0.6 as the index refraction and 200 times as the number of
iterations. In order to show how the ratio of the index refraction affects the search
procedure, see Fig. 8.3 where the above problem is solved with different values of
the index refraction ratios. As can be seen, when the index refraction ratio is a
number close to 1, the exploration is increased, but by decreasing this value the
convergence occurs rapidly.

Now, the direction of the new movement vector is determined. According to
(8.14), it is a normalized vector and it requires a logical coefficient. Thus the final
form of the movement vector after finding the new direction is given by:

Vii= Vi/ .norm(Xi; — O;,). (8.28)

Where V,‘,,Y, Xi;, O;; , and V;; are the normalized movement vector, current
position of the agent, the origin, and refined movement vector of the ith agent,
respectively, that belong to /th group.

In some cases it is possible that for an agent, O;; and its current position are the
same, so the direction of normal cannot be obtained. This problem occurs when the
agent is the so-far best one. Therefore, it is logical to permit it to move in the same
direction because of finding a more adequate answer, but the length of this vector
should be changed according to:



8.2 Ray Optimization for Continuous Variables 241

Fig. 8.2 The movement of 5
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In this equation, V,»,,k is the movement vector of the kth iteration that belongs to
Ith group of the ith agent, and V,;/‘” is the movement vector of the (k+ 1)th
iteration. Also, for a fine and stochastic search, the initial normalized vector is
multiplied by 0.001 and a random number between 0 and 1 is utilized.

One of the important features of each metaheuristic algorithm is that, it should
have a stochastic nature to find the best answer. Here, this feature is added to the RO
by adding a random change to the movement vector. In other word, there is a
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possibility like stoch that specifies whether a movement vector must be changed or
not. If this occurs, a new movement vector will be made considered as

Vit = —1+ 2.rand, (8.30)

is the jth component of the /th group that belongs to the ith agent in (k

where Vi(j]; +1)

+ I )th iteration. However, the length of this vector should be refined. Therefore the

following relationship is considered:

v, (k+1)
I ¢ A ——, (8.31)
norm(Vi,(k“)) d

Here, a is calculated by the following relationship:

_ - : N2 _J 2 for two variable groups
= ; (Ximax = Ximin)” 1 = { 3 for three variable groups

(8.32)

Where X; ., and X; ,,;, are the maximum and minimum limits of variables that
belongs to ith component of the movement vector, and d is a number that divides
a into smaller segements for effective search. It is found that if d and stoch are
chosen as 7.5 and 0.35, the best result for optimization process will be obtained.

8.2.2.4 Finish or Redoing Step

By approaching to a pre-specific criterion, the process of optimization ceases. Some
criteria are considered as

¢ Maximum number of iteration: by approaching to a predefined number of
iteration, the process of optimization will be terminated.

» Number of ineffective iteration: if by passing a predefined number of iteration,
there is no improvement in the goal function, the process of optimization will be
ceased.

» Approaching to a minimum goal function error: sometimes the best answer of a
goal function is specified, like mathematical benchmarks, so if an answer is
found with a predefined error compared to real answer, the process of optimi-
zation will be terminated.

However if one of these criteria is not fulfilled, the process of optimization will
continue and with new movement vector, the agents will move to their new
positions. This cycle is continued until a predefined criterion is fulfilled.
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Fig. 8.4 The flowchart of the RO [1]

The flowchart of the optimization is illustrated in Fig. 8.4. The movement of a
typical agent is shown in Fig. 8.5. As can be seen, in the origin making and
convergent step, because of similar global best position and local best position
that belong to agent 1, this agent moves in the same direction but with a smaller
length. The movement vector for the agent 2 is determined based on the light
refraction law. Finally, for showing the stochastic behavior of RO, agent 3 moves in
a random direction with a controlled length.

8.2.3 Validation of the Ray Optimization

In order to validate the efficiency of the RO, some mathematical examples are
considered from literature. These examples are investigated in Sect. 8.2.3.1. For
further investigation, in Sect. 8.2.3.2, some well-studied engineering design prob-
lems are also studied from the literature.

8.2.3.1 Mathematical Optimization Problems

In order to verifying the efficiency of the RO algorithm, some benchmark functions
chosen from [6] are optimized by this algorithm, Table 8.2. A perspective view and
the corresponding contour lines for these benchmarks are depicted in Figs. 8.6, 8.7,
8.8, and 8.9, where the number of variables is taken as 2. Like any other
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Movement vector and motion refinement step

Finish or redoing step

Fig. 8.5 Schematic view of the agent movement [1]

metaheuristics, considering a large number of agent causes vigorous search, but it
increases the time and cost of the optimization. Also considering a small number of
agents leads to a weak search. Therefore, for optimizing the mathematical prob-
lems, the number of agents is taken as 20. However it should mentioned we used
100 agents for the EXP16, SHEKELS, SHEKEL7, SHEKEL10. Table 8.3 shows
the result of the optimization by the present approach. In this table, the numbers in
columns specify the average number of function evaluations. In this part for
providing the stochastic behavior of metaheuristic algorithms, the number of
independent runs is chosen as 50. The numbers in the parentheses represent the
ratio of successful runs in which the algorithm has found the global minimum with a
predefined accuracy, which is taken as € =f,,,;, — fina = 10~*. The absence of the
parentheses shows that the algorithm has been successful in all independent runs.
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Fig. 8.6 A perspective view and the related contour lines for some of function when n =2 [1]: (a)
Aluffi-Pentiny, (b) Becker and lago, (¢) Bohachevsky 1

The results show that the present algorithm has a higher efficiency than GA and
some of its variants for these benchmark functions.



8.2 Ray Optimization for Continuous Variables 247

Y
ot
oy \\\\:\‘ g}&g“

e
m\\\\\}::::\.‘
R

Fig. 8.7 A perspective view and the related contour lines for some of function when n =2 [1]: (a)
Camel, (b) Branin, (c) Bohachevsky 2

8.2.3.2 Engineering Design Problems

In this section, two engineering design problems are presented to show the effi-
ciency of the RO. For the sake of simplicity, the penalty approach is used for
constraint handling. In using the penalty function, if the constraints are not violated,
the penalty will be zero; otherwise, the value of the penalty is calculated by dividing
the violation of the allowable limit to the limit itself. It should be mentioned that in
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Fig. 8.8 A perspective view and the related contour lines for some of function when n =2 [1]: (a)

Exponential, (b) Goldstein and price, (¢) Cb3

the RO, the use of this type of constraint handling is not a necessity and any other
type of constraint handling approach can be employed.
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Fig. 8.9 A perspective view and the related contour lines for some of function when n =2 [1]: (a)
Griewank, (b) Rastrigin

A Tension/Compression Spring Design Problem

Belegunda [7] and Arora [8] described this problem for the first time. The goal of
this problem is to minimize the weight of a tension/compression spring subjected to
constraints on shear stress, surge frequency, and minimum deflection as shown in
Fig. 8.10. Here, the design variables are the mean coil diameter D; the wire
diameter d, and the number of active coils. Table 8.4 shows the cost function,
constraints and the bounds of the design space.

Belegunda [7] has solved this problem using eight different mathematical
optimization techniques (only the best results are shown). Also, it has been solved
by Arora [8] using a numerical optimization technique called constraint at the
constant cost. Finally, this problem is solved by RO using 40 agents, and the results
of optimization are shown in Table 8.5. Considering these results, it can be
concluded that the RO performs better than the above-mentioned methods. The
average value and the standard deviation for 50 independents runs are 0.13547 and
0.001159, respectively.
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Table 8.3 Performance comparison for the benchmark problems

Kaveh and
FUNCTION GEN GEN-S GEN-S-M-LS Khayatazad [1]
AP 1,360(0.99) 1,360 1,253 331
Bfl 3,992 3,356 1,615 677
Bf2 20,234 3,373 1,636 582
BL 19,596 2,412 1,436 303
Branin 1,442 1,418 1,257 463
Camel 1,358 1,358 1,300 332
Cb3 9,771 2,045 1,118 262
CM 2,105 2,105 1,539 802
Dejoung 9,900 3,040 1,281 452
EXP2 938 936 807 136
EXP4 3,237 3,237 1,496 382
EXP8 3,237 3,237 1,496 1,287
EXP16 8,061 8,061 1,945 17,236(0.46)
GRIEWANK 18,838(0.91) 3,111(0.91) 1,652(0.99) 1,091(0.98)
RASTRIGIN 1,533(0.97) 1,523(0.97) 1,381 1,013(0.98)
Goldstein and Price 1,478 1,478 1,325 451
SHEKELS5 2,527(0.61) 2,507(0.61) 2,049(0.67) 3,401(0.52)
SHEKEL7 2,567(0.72) 2,500(0.72) 2,032(0.75) 3,459(0.76)
SHEKEL10 2,641(0.71) 2,598(0.71) 2,141(0.76) 4,152(0.66)
TOTAL 114,815(94.26) 49,655(94.31) 28.,759(95.63) 36,812(91.36)

Fig. 8.10 A tension/
compression spring

Table 8.4 Specifications of
the tension/compression
spring problem

f— |

- D
/
| |=d
Cost function X = (3 + 2)x0x3
1 1 Bxz
Constraint functions (X)) =1-= 728?: <0
44 —xpx. 1
8(X) = 4125662()(2;?;4[) + 51087 1<0
— 1 — 14045q
B3 =1 o t<0
g4(X) =52 120
Variable region 0.05<x <2
025<x,<1.3

2<x;< 15
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Table 8.5 Optimum results for the tension/compression spring design

Optimal design variable

Methods X (d) X,(D) X;5(N) feost

Belegunda [7] 0.050000 0.315900 14.250000 0.0128334
Arora [8] 0.053396 0.399180 9.185400 0.0127303
Kaveh and Khayatazad [1] 0.051370 0.349096 11.76279 0.0126788

A Welded Beam Design Problem

The other well-studied engineering design problem is the welded beam design
problem that is often used as a benchmark problem [9]. The goal is to find the
minimum fabricating cost of the welded beam subjected to constraints on shear
stress (1), bending stress (o), bulking load (P.), end deflection (8) and side con-
straint. The design variables are h(=x;), L(=x,), t(=x3) and b(=x4), Fig. 8.11.
Table 8.6 shows the cost function, constraints and the bounds of the design space.

This problem has been solved by Radgsdell and Philips [9] and Deb
[10]. Radgsdell and Philips compared optimal results of different optimization
methods which were mainly based on mathematical optimization algorithms.
These methods are APPROX (Griffith and Stewart’s Successive linear approxima-
tion), DAVID (Deviation-Fletcher-Powell with a penalty function), SIMPLEX
(Simplex method with a penalty function), and RANDOM (Richardson’s random
method) algorithms. Finally, RO solved this problem by using 40 agents in 50 inde-
pendents runs. The results are collected in Table 8.7 indicating that the RO has a
better solution than the above mentioned methods. The mean of the results and the
standard deviation of 50 independent runs are 1.9083 and 0.173744, respectively.

8.3 Ray Optimization for Size and Shape Optimization
of Truss Structures

In this part, Ray Optimization is employed for size and shape optimization of truss
structures. The goal function of the present optimization method is the minimiza-
tion of truss weight under the required constraints.

8.3.1 Formulation

Metaheuristic algorithms have been extensively used for solving the truss optimi-
zation. The mathematical formulation of this optimization problem can be
expressed as:
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Fig. 8.11 A welded beam
system

Table 8.6 Specifications of a welded beam design problem

Cost function AX) = 1.1047x3x5 +0.0481 1x3x4(14.0 + x7)
Constraint functions g1 X)=7X) — 1ax <0

82(X)=0(X) — 0max <0

g3X)=x; —x4<0

g4X)=0. 1047x% +0.04811x3x4(14.0+ x,) — 5.0<0

g5(X)=0.125—x; <0

g6(X) =6(X) — 6max <0

g1 X)=P—-P.(X)<0

(%) = /(&) + 207 B+ ()
' P

=gt =

M=p(55). R= e )]
J = Z{ﬂxlxz [%4_ (%)2]}

o(X) =% 5(X) = g

12,6
LI Ty
P =6000b, L= 14in
E =30 x 10%si, G=12 x 10%psi
Tmax = 13.6 X 10°psi, 6max =30 X 10°psi, Smax = 0.25in
Variable regions 0.1<x4<2
0.1 §X2‘3 S 10
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Table 8.7 Optimum results for the design of welded beam

Optimal design variables

Methods X, (h) Xo(1) X;(t) X4(b) feost
Regsdell and Philips [9]

APPROX 0.2444 6.2189 8.2915 0.2444 2.3815
DAVID 0.2434 6.2552 8.2915 0.2444 2.3841
SIMPLEX 0.2792 5.6256 7.7512 0.2796 2.5307
RANDOM 0.4575 47313 5.0853 0.6600 4.1185
Deb [10] 0.248900 6.173000 8.178900 0.253300 2.433116

Kaveh and Khayatazad [1] 0.203687 3.528467 9.004233 0.207241 1.735344

minimize W ({x}) Z%A L;(x)

subjectto @ Spin < I; < Omax» i=1,2,...,m (8.33)
Omin S O § Omax> i= 1727 e
a}’ﬁ c; <0, i=1,2,...,ns
Amin < Ai < Amax, i= 19 27 By (34

where W({x}) is the weight of the structure; # is the number of members making up
the structure; m is the number of nodes; ns is the number of compression elements;
ng is the number of groups (number of design variables); y is the material density of
the member i; L; is the length of the member i which depends on the nodal
coordinates; x; A; is cross-sectional area of the member i chosen between A,,;,
and A,,,.; min showing the lower bound and max indicating the upper bound; ¢; and
5; are the stress and nodal deflection, respectively; o,” is the allowable buckling
stress in member i when it is in compression.

8.3.2 Design Examples

In this section, three examples are optimized utilizing the new algorithm:

¢ A 200-bar spatial truss structure;
¢ A model of First of Forth bridge;
e A 37-bar simply supported truss.

After optimizing these structures, their results are compared to the solution of the
other methods to demonstrate the efficiency of the present method. For the first,
second and third examples 100, 75 and 80 agents are used, respectively. Also, for
these examples, the maximum number of iteration is considered as 400. In order to
asses the effect of the initial solution vector on the final result and because of the
random nature of the algorithm, these examples are independently optimized 20, 30
and 30 times, respectively. For the sake of simplicity, the penalty approach is used
for constraint handling. In using the penalty function, if the constraints are not
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violated, the penalty will be zero; otherwise the value of the penalty is calculated by
dividing the violation of the allowable limit to the limit itself. It should be
mentioned that in the RO, one does not necessarily need to use this type of
constraint handling and any other type of constraint handling approach can be
employed. All the algorithms, and the direct stiffness method for the analysis of
truss structures are coded in MATLAB.

8.3.2.1 A 200-Bar Planar Truss Structure

The first example considered for size optimization is the 200-bar plane truss
structure, shown in Fig. 8.12. All members are made of steel: the material density
and modulus of elasticity are 0.283 Ib/in® (7,933.410 kg/m’) and 30,000 ksi
(206,000 MPa), respectively. This truss is subjected to constraints only on stress
limitations of £10 ksi (68.95 MPa). There are three loading conditions: (1) 1.0 kip
(4.45 kN) acting in the positive x-direction at nodes 1, 6, 15, 20, 29, 43, 48, 57,
62, and 71; (2) 10 kips (44.5 kN) acting in the negative y-direction at nodes 1, 2,
3,4,5,6,8,10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24,. .., 71, 72,73, 74, and 75; and
(3) Conditions 1 and 2 acting together. The 200 members of this truss are divided
into 29 groups, as shown in Table 8.8. The minimum cross-sectional area of all
members is 0.1 in® (0.6452 sz) and the maximum cross-sectional area is 20 in’
(129.03 cm?).

The RO algorithm found the best weight as 25,193.228 b after 326 iterations
(32,600 analyses), with the standard deviation being 1,221.146 Ib. Table 8.8 com-
pares the optimal results of the PSO, PSOPC, HPSACO [5] and RO. Figure 8.13
shows the existing and allowable element stress values for Cases 1, 2 and 3. As can
be seen, the design controlling factors in this problem are Cases 1 and 2.

8.3.2.2 A Model of the First of Forth Bridge

This example was first analyzed by Gil and Andreu [11] to obtain the optimal sizing
and configuration variables. This structure is 16 m long and 1 m high truss beam of
infinite span. But in this part, for better control on the shape variables, the height of
the truss is changed to 3 m. If there are infinite span, the structure can be modeled as
is shown in Fig. 8.14a. Because of symmetry of this problem, one can analysis half
of the structure, Fig. 8.14b. Notice that it is necessary to adjust the bar cross-section
and the force which lay on the axis of symmetry by considering half of them in the
main structure and loading. In the field of shape optimization, the vertical coordi-
nates of nodes which are free vertically, are the design variables. The origins of
these nodes are those positions which are shown in Fig. 8.14b, and the range of their
variation is in between —140 cm and 140 cm. Thus there are ten variables for shape
optimization. In the field of size optimization, the cross-section of each bar, with
their areas being 0.5 cm? through 100 cm? are other design variables. In Fig. 8.14b,
the encircled numbers show the element grouping, and there are 16 groups of
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Fig. 8.12 Schematic of a . 240in. _ 240in. __ 240in. _,_ 240in.
200-bar planar truss "(609.6cm) ' (609.6cm) ' (609.6cm) ' (609.6 cm) |
structure o 4 @ » © -
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element for size optimization. The modulus of elasticity of material is 2.1 x 10%
kN/m?, the allowable stress value is 25 kN/cm? and the specific weight of material
is 7.8 ton/m”. The applied forces are self-weight and the loads shown in Fig. 8.14a.

After designing the structure, the best weight of the structure is obtained as
11,215.7 kg and the corresponding cross-sections and coordinates are as provided in
Table 8.9. The standard deviation and average weight for 30 independent runs is
545.5 kg and 11,969.2 kg, respectively. The prior work obtained 7,102 kg as the
optimal weight [11]. Figure 8.15 shows the convergence rate for this structure. The
best results obtained for the PSO and BB-BC are 20,591.9 kg and 37,132.3 kg,
respectively. The standard deviation for 30 independent runs for the latter two
methods are 2,323.7 kg and 1,235.4 kg, respectively. Finally 25,269.3 kg and
40,154.1 kg are obtained as the average weight for 30 independent runs for the
PSO and BB-BC.
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Fig. 8.13 Existing and
allowable element stress Case 1
value for the 200-bar planar —— The existing value == The allowable value
truss [2]
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Figure 8.14c shows the obtained optimal shape. Because of the support posi-
tions, the behavior of this truss is similar to that of a fixed beam. In a fixed beam
bearing concentrated loads along its length, the internal moment at the ends and
middle is greater than the other sections. Therefore for bearing this kind of loading,
the moment of inertia in these sections must be greater. As can be seen, the optimal
shape matches with this requirement.

The final result of concatenating infinite span with the optimal solution of the RO
is shown in Fig. 8.14d. This final shape is similar to the famous bridge “the First of
Forth Bridge”, Fig. 8.14e. The reason of such difference is the construction require-
ments instead of saving material.
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Fig. 8.14 (a) Problem diagram. (b) Analytical model. (¢) Optimal shape. (d) Optimized config-
uration formed by concatenating basic modules. (e) The First of Forth Bridge, built during 1883—
1890 [11]

8.3.2.3 A 37-Bar Simply Supported Truss

This example has been investigated by Wang et al. [12] using the evolutionary node
shift method and by Lingyun et al. [13] utilizing the NHGA algorithm. It is a simple
supported Pratt Type 37-bar truss as shown by Fig. 8.16a. There are non-structural
masses of m = 10 kg attached to each of the bottom nodes of the lower chord, which
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Table 8.9 Optimal cross-sections and coordinates for the model of first of forth bridge

Optimal cross-section (sz) Optimal coordinate (cm)
Element BB- Kaveh and Coordinate Kaveh and
group BC PSO Khayatazad [2] variable BB-BC PSO Khayatazad [2]
1 56.41 25.20 20.54 1 6.89 140 70.88
2 58.20 97.60 44.62 2 17.74 139.65 64.88
3 53.89 35.00 6.37 3 1.81 117.59  —6.99
4 60.21 64.30 50.10 4 23.57 139.70  128.31
5 56.27 14.51 30.39 5 3.22 —16.51 —64.24
6 57.08 3791 17.61 6 5.85 139.06  139.29
7 49.19 69.85 41.04 7 4.01 —127.74 —109.62
8 48.67 8.76 8.55 8 10.52 —81.03 21.82
9 45.43 47.54 33.93 9 —25.99 60.16 —55.09
10 15.14 6.36 0.63 10 —2.74 —139.97 2.29
11 4531 27.13 26.92
12 6291 3.82 2342
13 56.77 50.82 42.06 BB-BC PSO Kaveh and
Khayatazad
[2]
14 46.66 2.70 2.01 Best weight 37,1323 20,591.9 11,215.7
(kg)
15 5795 546 851 Average weight 40,154.1 25,269.3 11,969.2
(kg)
16 5499 17.62 1.27 Std (kg) 1,2354 23237 5455
55
50
45
-"g'- 40
-:‘-'5- 35
% 30
E 1
20
15
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Fig. 8.15 Convergence rate for the model of the First of Forth Bridge [2]

are modeled as bar elements with rectangular cross-sectional areas of 4 x 10> m?.

The other bars are modeled as simple bar elements in the field of size optimization
with the range of 1 x 10~* m? thorough 3.5 x 10~ m?. The material property for
the bar elements are selected as E=2.1 x 10'' N/m? and p =7,800 kg/m>. Also,
this example is considered as a truss shape optimization since all nodes of the upper
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Fig. 8.16 (a) A 37-bar truss structure with added masses. (b) The 37-Bar structure optimized by
the present work [12]

Table 8.10 Optimal design cross sections for different methods for the 37-bar truss structure

Variable no. Wang et al. [12] Lingyun et al. [13] PSO [14] Kaveh and Khayatazad [2]

Y3,Y 1o (m) 1.2086 1.1998 0.9637 1.0010
Ys,Y;; (m) 1.5788 1.6553 1.3978 1.3909
Y;,Y;s (m) 1.6719 1.9652 1.5929 1.5893
Yo,Y 15 (m) 1.7703 2.0737 1.8812 1.7507
Y,; (m) 1.8502 2.3050 2.0856 1.8336
A Ay (cm?)  3.2508 2.8932 2.6797 3.0124
Az Asg (cm?)  1.2364 1.1201 1.1568 1.0623
Asz,Ay (cm?)  1.0000 1.0000 2.3476 1.0005
AsArs (cm?) 25386 1.8655 1.7182 2.2647
As,Asz (cm?)  1.3714 1.5962 1.2751 1.6339
Ag, Ay (cm?)  1.3681 1.2642 1.4819 1.6717
A7,Ay (cm?)  2.4290 1.8254 4.6850 2.0591
Ag. A (cm?)  1.6522 2.0009 1.1246 1.6607
Ag,Arg (cm?)  1.8257 1.9526 2.1214 1.4941
Aip,Ap (cm?) 23022 1.9705 3.8600 2.4737
Ai,Ar cm?)  1.3103 1.8294 2.9817 1.5260
AinAs (cm?)  1.4067 1.2358 1.2021 1.4823
Ai3,Ag (cm?)  2.1896 1.4049 1.2563 2.4148
Ays (cm?) 1.0000 1.0000 3.3276 1.0034
Weight (kg)  366.50 368.84 377.20 364.04

chord are allowed to vary in the y-axis in a symmetrical manner in the range 1 m
thorough 2.5 m. There are three constraints in the first three natural frequencies as
®; =20 Hz, ;=40 Hz and w; =60 Hz. Therefore, it is considered as a truss
optimization problem with three frequency constraints and nineteen design vari-
ables (five shape variables and 14 sizing variables). Table 8.10 shows a comparison
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Fig. 8.17 Convergence history of the RO for the simply supported 37-bar truss with added masses
[2]

among the optimal design cross sections of several methods including the present
work (RO). As it can be seen, the best result for the RO, Wang et al. [12], Lingyun
etal. [13], PSO [14] are 364.04 kg, 366.5 kg, 368.84 kg and 377.20 kg, respectively.

Figure 8.16b shows the final truss shape of the design optimizations, and
Fig. 8.17 illustrates the weight convergence history for the RO algorithm for the
37-bar truss with added masses.

8.4 An Improved Ray Optimization Algorithm for Design
of Truss Structures

8.4.1 Introduction

This part develops an improved ray optimization (IRO) algorithm for solving
optimization problems. IRO employs a new approach for generating new solution
vectors which has no limitation on the number of variables, so in the process of
algorithm there is no need to divide the variables into groups like standard RO. The
procedure which returns the violated agents into feasible search space is also
modified. The Simulation results of the IRO for benchmark mathematical optimi-
zation problems and truss structures are compared to those of the standard RO and
some well-known metaheuristic algorithms, respectively. Numerical results indi-
cate the effectiveness and robustness of the proposed IRO [3].
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8.4.2 Improved Ray Optimization Algorithm

In the improved ray optimization algorithm, a memory which saves some or all the
historically best positions of agents, is considered as local best memory (LBM). If
the so far best positions of all agents are saved (especially when the number of
agents is large), the computational cost grows. Therefore in this technique, when
the number of agents are more than or equal to 25, the size of the local best memory
is considered as 25, otherwise the size of the LBM is taken as half number of agents.

When an agent violates the boundary limitations in standard RO, all the com-
ponents are changed. However in IRO, only the components that violate the
boundary are refunded. This violated component must be regenerated by the
following formula:

Xf'{j+1 = X,I; + 0.9(1111‘,:,‘ — XII;) (834)

Where X {‘}“ and X,]‘ are the refined component and component of the jth
variable for the ith agent in (k+ /)th and kth iteration, respectively. Intj; is the
intersection point of violated agent with boundary (If an agent violates a boundary,
it intersects the boundary at a specified point, because of having definite movement
vector).

The main idea of standard RO is approximating the new movement vector with a
normal vector. To achieve this aim, if the number of variables was more than three,
the proposed formula cannot be applied directly and first the main problem must be
divided into some sub-problems and after the calculation, merge the results of the
sub-problems to evaluate the goal function. When the number of variables is large
the computational cost grows considerably. Instead of this approach the following
formula (which has no limit on the number of variables) is applied to calculate the
direction of the new movement vector as illustrated in Fig. 8.18.

Tv,- = Oi —Xl‘ (835)
Vit — a.Tv + p.VE (8.36)

Where Tv; is target vector, V.**'and V¥ are movement vectors in (k + /)th and
kth iteration, respectively. O/ is the origin according to (8.27) but in this method,
LB is considered randomly from local best memory. a and f are the factors that
control the exploitation and exploration as shown in Fig. 8.19. An efficient optimi-
zation algorithm should perform good exploration in early iterations and good
exploitation in final iterations. Thus, o and f are increasing and decreasing func-
tions respectively, and are defined as:
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p=1-05 <5) (8.38)

a=1+ <k) (8.37)

ite

Finally all the V;**! vectors should be normalized.

The magnitude of movement vectors must be calculated because in the previous
formulas only the direction of the movement vector is defined.

One of the important features of each metaheuristic algorithm is its ability to
escape from the trap when agents fall into a local minimum, so in the standard RO
there is a possibility like stoch that specifies whether a movement vector must be
changed or not, therefore we have

(a) with probability like stoch,

V™ = —1+ 2.rand (8.39)

Kol V,'kJrl a
Vet = Wﬁ .rand (8.40)

(b) with probability like (1-stoch),
If norm(0 - X )=0,



8.4 An Improved Ray Optimization Algorithm for Design of Truss Structures 265

| Initialize all positions and velocities \

v
| Update LBM and GB I

Move each agent to its new position
based on its movement vector

[\’

Regenerate violating components of
agents

Vi
Update LBM and GB

Is
terminating
criterion

Find the origin and target vector

fulfilled? v
Determine the direction of movement
vector
Report the best solution found by ¢
the algorithm Find the magnitude of movement
‘ vector
Fig. 8.20 The flowchart of the IRO [3]
Vi
Vi = ———— rand.0.001 (8.41)
norm( V: )
Otherwise,
Vi = Vi norm (X — OF) (8.42)

In the case of problems that have function constraints (behavior constraints),
the following formulas are utilized instead of (8.42)

K V}“.% (8.43)

d=d+rd. (£> (8.44)
ite

Where r is a constant factor and when the number of iterations rises, the value
of d increase and it help the algorithm to handle the constraint well. a and d are
the factors that were defined in Sect. 8.2.2.3.

The flowchart of the IRO algorithm is illustrated in Fig. 8.20.
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8.4.3 Mathematical and Structural Design Examples

8.4.3.1 Standard Mathematical Functions

To test the ability of the proposed algorithm and to compare its results with those of
the standard RO, some benchmark mathematical functions are considered as in
Sect. 8.2.3.1. Each of these functions tests the optimization algorithm in special
conditions, identifying the weak points of the optimization algorithm. These func-
tions are selected by Tsoulos [6] for evaluating modifications of Genetic Algorithm
and utilized by Kaveh and Khayatazad [1] for investigating the standard RO.

The IRO method with different number of agents has been tested for some of
these functions. Assigning the number of agents as 50 in the CM, Griewank and
Rastring functions and as 10 for other ones shows a better performance. We also
have tried to tune other parameters of algorithm. From our simulations it is
recommended to set parameters as 0.35 and 700 for Stoch and d, respectively.
After implementing IRO algorithm using MATLAB, it has been run independently
50 times to carry out meaningful statistical analysis. The algorithm stops when the
variations of function values are less than a given tolerance as 10~*. Table 8.11
reports the performance of GEN-S-M-LS as the best modificationof GA [6], the
standard RO [1] and proposed IRO respectively, where the numbers are in the
format: average number of evaluations &+ one standard deviation (success rate).
Considering this table, the standard RO and the improved RO show better perfor-
mances in terms of the required number of analyses and success rate.

8.4.3.2 Continuous and Discrete Trusses

In this section, common truss optimization examples as benchmark problems are
optimized with the IRO algorithm. The final results are compared to the solutions of
other methods to demonstrate the efficiency of the IRO. In the sequel, penalty
function formula and constraint conditions for truss structures are briefly
overviewed at the first subsection then the examples are presented. The examples
contain a 25-bar transmission tower, a 72-bar spatial truss and a dome shaped space
truss. From our simulations, setting the number of agents and Stoch 25 and 0.35 are
efficient for design examples, respectively. Table 8.12 tabulates other parameters
for each case.

Optimum Design of Truss Structures

In order to handle the constraints, a penalty approach is utilized. In this method, the
aim of the optimization is redefined by introducing the cost function as:
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Table 8.11 Performance comparison for the benchmark problems

FUNCTION GEN-S-M-LS Ray optimization Kaveh et al. [3]

AP 1,253 331 253 £+38.7985(100)
Bf1 1,615 677 438 1-48.4636(100)
Bf2 1,636 582 395 £45.9674(100)
BL 1,436 303 194 £ 31.2733(100)
Branin 1,257 463 312 £81.0515(100)
Camel 1,300 332 184 4 21.0855(100)
Cb3 1,118 262 247 £+36.4549(100)
CM 1,539 802 1,290 % 65.3543(100)
Dejoung 1,281 452 213 £26.3344(100)
EXP2 807 136 90 £20.5115(100)
EXP4 1,496 382 220 £ 50.5624(100)
EXP8 1,496 1,287 512 £97.7743(100)
EXP16 1,945 17,236(0.46) 1,141 £ 142.76(100)
GRIEWANK 1,652(0.99) 1,091(0.98) 1,383 +100.3458(100)
RASTRIGIN 1,381 1,013(0.98) 1,662 £ 202.3105(100)
Goldstein and Price 1,325 451 361 £59.0105(100)
TOTAL 22,537(99.94) 25,800(96.38) 8,895(100)

Table 8.12 Algorithm

Parameter 25-bar 72-bar 120-bar
parameters for truss examples
15 15 10
r 7 7 20

Foost({X}) = (1 +£1.0)" x W({X}), =) max [0’ gj({X})} (8.45)
J=1
g({X}) <0,j =12, ....n (8.46)

Where W({x}) is the weight of the structure (Sect. 8.3.1), v denotes the sum of the
violations of the design, g;({X})denotes design constraints and n represents the
number of constraints. The constants &; and &, are selected considering the explo-
ration and the exploitation rate of the search space. Here, ¢; is set to unity, &, is
selected in a way that it decreases the penalties and reduces the cross-sectional
areas. Thus, in the first steps of the search process, ¢; is set to 1.5 and ultimately
increased to 3.

The constraint conditions for truss structures are briefly explained in the follow-
ing. The stress limitations of the members are imposed according to the provisions
of ASD-AISC [15] as follows:
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i =0.6F, fore; >0
{ o; for 6; <0 (8.47)
b 5 34 A
1-Z|F = i A > ce
o 22 | / 378 T8 fordi 2 ¢
o 1222 E
# for 2; > c.
(8.48)

Where E is the modulus of elasticity; F), is the yield stress of steel; c. denotes
the slenderness ratio (4;) dividing the elastic and inelastic buckling regions (¢, =
\/27?E[Fy); \; = the slenderness ratio (4; = kl;/r;); k= the effective length factor;
L; = the member length; and r; = the radius of gyration. The radius of gyration (r;)
can be expressed in terms of cross-sectional areas as r; =a Af . Here, a and b are the
constants depending on the types of sections adopted for the members such as pipes,
angles, and tees. In this study, pipe sections (@ = 0.4993 and b = 0.6777) are adopted
for bars [16].
The other constraint corresponds to the limitation of the nodal displacements:

6 —6/' <0 i=1,2,...,nn (8.49)

Where §; is the nodal deflection; 5" is the allowable deflection of node i; and nn is
the number of nodes.

A 25-Bar Space Truss with Discrete Variables

The 25-bar transmission tower is used widely in structural optimization to verify
various metaheuristic algorithms. The topology and nodal numbering of the truss is
shown in Fig. 8.21 [17]. The material density is considered as 0.1 Ib/in’
(2,767.990 kg/m?) and the modulus of elasticity is taken as 107 psi (68,950 MPa).
Twenty-five members are categorized into eight groups, as follows: (1) Ay, (2) A, —
As, (3) As—Ao, () A10-A11, (5) A=Az, (0) Ara—Ai7, (7) A1g—Azi, and (8) Axp—
A25.

A single load case {(kips) (kN)} is applied to the structure, at nodes 1, 2, 3 and
4 as follows: 1{(0, —10, —10) (0, —44.5, —44.5)}, 2{(1, —10, —10) (4.45, —44.5,
—44.5)}, 3{(0.6, 0, 0) (2.67, 0, 0)} and 4{(0.5, 0, 0) (2.225, 0, 0)}. The allowable
stresses and displacements are respectively 40 ksi (275.80 MPa) for each member
and £0.35 in (£8.89 mm) for each node in the x, y and z directions. The range of
discrete cross-sectional areas is from 0.1 to 3.4 in” (0.6452 to 21.94 cm?) with 0.1
in? (0.6452 cm?) increment (resulting in 34 discrete cross sections) for each of the
eight element groups [18].
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Table 8.13 Performance comparison for the 25-bar spatial truss

269

Optimal cross-sectional areas (inz)

Kaveh et al. [3]

2

2

Element group  GA [18] GA [18] ACO [19] BB-BC phases 1,2 [18] in cm

1 A 0.10 0.10 0.10 0.10 0.10  0.645

2 Ar-As 1.80 0.50 0.30 0.30 0.30 1.935

3 Ag—Ag 230 3.40 3.40 3.40 3.40 21.935

4 Ag-Ar 020 0.10 0.10 0.10 0.10  0.645

5 A-Ajs 010 1.90 2.10 2.10 2.10 13.548

6 A—Ayy 0.80 0.90 1.00 1.00 1.00 6.452

7 Ag—Ay; .80 0.50 0.50 0.50 0.50 3.226

8 Asrr—Ass 3.00 3.40 3.40 3.40 3.40 21.935

Best weight (Ib) 546.01 485.05 484.85 484.85 484.85 219.92 (kg)

Average weight N/A N/A 486.46 485.10 484.90 219.94 (kg)
(Ib)

Number of 800 15,000 7,700 9,000 925
analyses

Table 8.13 presents the performance of the IRO and other algorithms. The IRO
algorithm achieves the best solution weighted by 484.85 Ib (219.92 kg), after
925 analyses. Although, this is identical to the best design developed using BB—
BC algorithm [18] and a multiphase ACO procedure [19], it perform better than
others when the number of analyses and average weight for 50 runs are compared.
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Fig. 8.22 Schematic of a 72-bar space truss

Table 8.14 Multiple loading = cpce  Node  F, kips (kN)  F, kips (kN)  F, kips (kN)
conditions for the 72-bar truss

17 0.0 0.0 —5.0 (—22.25)
18 0.0 0.0 —5.0 (=22.25)
19 0.0 0.0 —5.0 (=22.25)
20 0.0 0.0 —5.0 (—22.25)
2 17 50(2225)  5.0(2225)  —5.0(=22.25)

A 72- Bar Space Truss with Discrete Variables

For the 72-bar spatial truss structure shown in Fig. 8.22 [20], the material density is
0.1 Ib/in® (2,767.990 kg/m>) and the modulus of elasticity is 107 psi (68,950 MPa).
The 72 structural members of this spatial truss are categorized into 16 groups using
symmetry: (1) A=A, (2) As—Aj2, (3) A13-Ass, (4) Ai7—Ads, (5) Aro— Aza, (6) Axs—
Az, (7) A31=Asa, (8) A3s—Ase, (9) A37—Aso, (10) Ag1—Ass, (11) Aso—Asr, (12) Asz—
A54, (13) A55—A58, (14) A59_A66 (15), A67_ A70, and (16) A71—A72. In this example,
designs for a multiple load cases using discrete design variables are performed. The
values and directions of the two load cases applied to the 72-bar spatial truss are
listed in Table 8.14. The members are subjected to the stress limits of £25 ksi
(£172.375 MPa). Maximum displacement limitations of +0.25 in (£6.35 mm), are
imposed on every node in every direction and on the uppermost nodes in both x and
y directions respectively.
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Table 8.15 Performance comparison for the 72-bar spatial truss with discrete variable

Optimal cross-sectional areas (inz)

Element PSOPC HPSO HPSACO ICA Kavehetal [3]

group GA[21] [21] [21] [22] [21] in® cm?

1 A-A, 0196  4.490 4.970 1.800 1.99 1.99  12.839

2 AsAp, 0602 1457 1.228 0.442 0442 0563 3.632

3 A~ 0307 0111 0.111 0.141 0.111  0.111 0716
A16

4 A~ 0766  0.111 0.111 0.111 0.141  0.111 0716
AlS

5 A 0391 2620 2.880 1.228 1228 1228 7.923
A22

6 A 0391  1.130 1.457 0.563 0.602  0.563 3.632
A30

7 Ay— 0141 0.196 0.141 0.111 0.111  0.111 0716
Asg

8 Ass— 0111 0111 0.111 0.111 0.141  0.111 0716
A36

9 Ay~ 1800 1266 1.563 0.563 0563  0.563 3.632
Ago

10 Ay— 0602 1457 1.228 0.563 0.563  0.442 2.852
Agg

11 Ap—  0.141  0.111 0.111 0.111 0.111  0.111 0716
ASZ

12 Asi— 0307  0.111 0.196 0.250 0.111  0.111 0716
Asy

13 Ass—  1.563  0.442 0.391 0.196 0.196  0.196 1265
A58

14 Aso— 0766 1457 1.457 0.563 0563  0.563 3.632
A66

15 Ag—  0.141  1.228 0.766 0.442 0307 0391 2523
A70

16 Ap— 0111 1457 1.563 0.563 0.602  0.563 3.632
A72

Weight (Ib) 427.203 941.82 933.09 39,380 392.84  389.33 176.60

(kg)
Number of  N/A 150,000 50,000 5,330 4500 17,925
analyses

In this case, the discrete variables are selected from 64 discrete values from
0.111 to 33.5 in? (71.613t021,612.860 mmz). For more information, the reader can
refer to Table 2 in Kaveh and Talatahari [21].

Table 8.15 shows the best solution vectors, the corresponding weights and the
required number of analyses for present algorithm and some other metaheuristic
algorithms. The IRO algorithm can find the best design among the other existing
studies. Although the number of required analyses by the IRO algorithm is more
than ICA algorithm, but the best weight of the IRO algorithm is 389.33 Ib
(176.60 kg) that is 3.51 1b (1.59 kg) lighter than the best result obtained by ICA
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algorithm [21].The convergence history of the best result and the average penalized
weight of 50 runs are shown in Fig. 8.23. Convergence speed in IRO is acceptable
and step-like movements in diagram of IRO performance exhibit how it escapes
from local minimum points, to find a better optimum point. It is important to note
that this case has an expended search space than is requisite. The performance of the
IRO decreased from 389.87 £ 1.1643 to 408.17 =71.2108 considering 47 and all
50 independent runs, respectively. In the other words, IRO yields to unexpected
designs in just three of 50 independent runs. Unfortunately comprehensive statis-
tical study of this case is not available in optimization literature.

Design of a 120-Bar Dome Shaped Truss with Continuous Variables

The topology, nodal numbering and element grouping of the 120-bar dome truss are
shown in Fig. 8.24. For clarity, not all the element groups are numbered in this
figure. The 120 members are categorized into seven groups, because of symmetry.
Other conditions of problem are as follows [21], the modulus of elasticity is 30,450
ksi (210,000 MPa) and the material density is 0.288 1b/in® (7,971.810 kg/m3). The
yield stress of steel is taken as 58.0 ksi (400 MPa). The dome is considered to be
subjected to vertical loading at all the unsupported joints. These loads are taken as
—13.49 kips (—60 kN) at node 1, —6.744 kips (—30 kN) at nodes 2 through 14, and
—2.248 kips (—10 kN) at the rest of the nodes. The minimum cross-sectional area of
all members is 0.775 in® ®) sz) and the maximum cross-sectional area is taken as
20.0 in” (129.032 cm?). The constraints are stress constraints [as defined by (8.47)
and (8.48)] and displacement limitations of £0.1969 in (£5 mm), imposed on all
nodes in x, y and z directions.

Table 8.16 shows the best solution vectors, the corresponding weights and the
required number of analyses for convergence of the present algorithm and some
other metaheuristic algorithms. The IRO-based algorithm needs 18,300 analyses to
find the best solution while this number is equal to 150,000, 32,600, 10,000, 10,000,
7,000 and 6,000 analyses for a PSO-based algorithm [5], a PSO and ACO hybrid
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Fig. 8.24 Schematic of a
120-bar dome shaped truss

275.59 in

(1589 cm)

algorithm [5], a combination algorithm based on PSO, ACO and HS [5], an
improved BB—BC method using PSO properties [20], the CSS algorithm [17] and
the ICA algorithm [21], respectively. As a result, the IRO optimization algorithm
only has better convergence rates than PSOPC and PSACO algorithms. Comparing
the final results of the IRO and those of the other metaheuristics shows that IRO
finds the so nearly optimum design to the best results of other efficient methods
while the difference between the result of the IRO and that obtained by the
HPSACO [5], as the first best result, is 9 1bs. A comparison of the allowable and
existing stresses and displacements of the 120-bar dome truss structure using IRO is
shown in Fig. 8.25. The maximum value for displacement is equal to 0.1969 in
(5 mm) and the maximum stress ratio is equal to 99.99 %.
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Chapter 9
Modified Big Bang-Big Crunch Algorithm

9.1 Introduction

The Big Bang-Big Crunch (BB-BC) method developed by Erol and Eksin [1]
consists of two phases: a Big Bang phase, and a Big Crunch phase. In the Big Bang
phase, candidate solutions are randomly distributed over the search space. Similar
to other evolutionary algorithms, initial solutions are spread all over the search
space in a uniform manner in the first Big Bang. Erol and Eksin [1] associated the
random nature of the Big Bang to energy dissipation or the transformation from an
ordered state (a convergent solution) to a disorder or chaos state (new set of solution
candidates).

This chapter consists of two parts. In the first part the developed Modified Big
Bang—Big Crunch (MBB-BC) optimization algorithm is employed for optimal
design of truss structures [2]. In the second part optimal design of the Schwedler
and ribbed domes is performed [3].

9.2 Modified BB-BC Method

9.2.1 Introduction to BB-BC Method

The BB-BC method developed by Erol and Eksin [1] consists of two phases: a Big
Bang phase, and a Big Crunch phase. In the Big Bang phase, candidate solutions are
randomly distributed over the search space. Similar to other evolutionary algo-
rithms, initial solutions are spread all over the search space in a uniform manner in
the first Big Bang. Erol and Eksin [1] associated the random nature of the Big Bang
to energy dissipation or the transformation from an ordered state (a convergent
solution) to a disorder or chaos state (new set of solution candidates).

The Big Bang phase is followed by the Big Crunch phase. The Big Crunch is a
convergence operator that has many inputs but only one output, which is named as

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 277
DOI 10.1007/978-3-319-05549-7_9, © Springer International Publishing Switzerland 2014
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the “center of mass”, since the only output has been derived by calculating the
center of mass. Here, the term mass refers to the inverse of the merit function value.

(k)

The point representing the center of mass that is denoted by A;" is calculated

according to:

> L 4
Mer/ !

— '
AV = =12 9.1)
Z:: Mer/

1

n
k)
-

J
where Agkd) is the ith component of the jth solution generated in the kth iteration;
N is the population size in Big Bang phase. After the Big Crunch phase, the
algorithm creates the new solutions to be used as the Big Bang of the next iteration
step, by using the previous knowledge (center of mass). This can be accomplished
by spreading new off-springs around the center of mass using a normal distribution
operation in every direction, where the standard deviation of this normal distribu-
tion function decreases as the number of iterations of the algorithm increases:

j c ¥ Am X _Amin .
ASIHI,/) :Ai(k) +i_1051( k:—1 ) i=1,2,...,ng (9'2)

where 7; is a random number from a standard normal distribution which changes for
each candidate, and «; is a parameter for limiting the size of the search space.

These successive explosion and contraction steps are carried out repeatedly until
a stopping criterion has been met. A maximum number of iterations is utilized as a
stopping criterion.

BB-BC does not require an explicit relationship between the objective function
and constraints. Instead, the objective function for a set of design variables can be
penalized to reflect any violation of the design constraints. In utilizing the penalty
functions, if the constraints are between the allowable limits, the penalty will be
zero; otherwise, the amount of penalty is obtained by dividing the violation of
allowable limit to the limit itself. After analyzing a structure, the deflection of each
node and the stress in each member are obtained. These values are compared to the
allowable limits to calculate the penalty functions as:

oM < o; < o™ = CI)S;) =0
min/max
min max () 0i — 0
o™ >0 or o< =20V =— L
i l 4 min/max
i
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op <0; <0 :>(I)(<7’2:()
6i<0 A o¢;<op :Qf"gz—a"_a” i=12,...,ns (9.4)
)
i < 6; < o = @) =0
min/max R
i . i) 0i — 0, =
G5 or N < =l =Tl i=L2....m

min/max
5i

9.5)

In optimizing structures, the main objective is to find the minimum amount of
the merit function. This function is defined as [4]:

Mer* =& - W* + & - (®F + @f + @},)" (9.6)

Mer* is the merit function for the kth candidate; €, &, and &5 are coefficients of
merit function. dbf;, d)/g and @’;h is the summation of stress penalties, summation of
nodal deflection penalties and summation of buckling stress penalties for candidate
k, respectively.

For multiple loadings, after analyzing the structure and determining the penalty
functions for each component of the load, the total penalty function is calculated
through addition of penalty functions of stress, buckling stress for each member,
and deflection for each node, as:

np €
Merk — e, - Wr + ey - Z (q>§<l.) + (D§<l-> + <I>fb<i)) (9.7)

i=1

where np is the number of multiple loadings. In this part, for a better control on
other parameters, & is set to 1. The coefficient &, is taken as the weight of the
structure and the coefficient ¢5 is set in a way that the penalties decrease. The cross-
sectional areas can also be reduced. Therefore, in the first iterations of the search
process, €3 is set to 1.5 but gradually it is increased to 3 [4].

The pseudo-code of the BB-BC algorithm can be summarized as follows:

Step 1: Generate initial candidates in a random manner (considering allowable
boundaries).

Step 2: Calculate the merit function values of all the candidate solutions
[Egs. (9.7) and (9.8)].

Step 3: Find the center of the mass (Eq. 9.2).

Step 4: Calculate new candidates around the center of the mass (Eq. 9.3).

Step 5: Return to Step 2 and repeat the process until the condition for the
stopping criterion is fulfilled.
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9.2.2 A Modified BB-BC Algorithm

The advantages of applying BB-BC algorithm for structural design are similar to
other evolutionary algorithms. BB-BC is a multi-agent and randomized search
technique that in each cycle, a number of search space points are tested. The
random selection and the information obtained in each cycle (center of mass) are
used to choose new points in subsequent cycles. The BB-BC method has the ability
to handle a mixture of discrete and continuous design variables and multiple
loading cases.

Although BB-BC performs well in the exploitation (the fine search around a
local optimum), there are some problems in the exploration (global investigation of
the search place) stage. If all of the candidates in the initial Big Bang are collected
in a small part of search space, the BB-BC method may not find the optimum
solution and with a high probability, it may be trapped in that subdomain. One can
consider a large number for candidates to avoid this defect, but it causes an increase
in the function evaluations as well as the computational costs. This chapter uses the
Particle Swarm Optimization (PSO) capacities to improve the exploration ability of
the BB-BC algorithm.

The Particle Swarm Optimization is motivated from the social behavior of bird
flocking and fish schooling which has a population of individuals, called particles,
that adjust their movements depending on both their own experience and the
population’s experience [5]. At each iteration, a particle moves towards a direction
computed from the best visited position (local best) and the best visited position of
all particles in its neighborhood (global best). The modified BB-BC approach
similarly not only uses the center of mass but also utilizes the best position of

each candidate (A”*"*?) and the best global position (A

gbest
i i
solution, as:

(k)) to generate a new

j c ebes est(k,j i Amax _Amin
Al(k+1,_;) _ azA;<k) F(1-m) (a3Af?h 1(k) (1 a3)A5b 1(1\1/)) +rja1( - )

(9.8)

where Aﬁbm(l{'j) is the best position of the jth particle up to the iteration k and Afbg‘"(k)

is the best position among all candidates up to the iteration k; a, and az are
adjustable parameters controlling the influence of the global best and local best
on the new position of the candidates, respectively.

Another improvement in the BB-BC method is employing Sub-Optimization
Mechanism (SOM) as an auxiliary tool which works as a search-space updating
mechanism. SOM, based on the principles of finite element method, was introduced
by Kaveh et al. [4, 6]. Similar to the finite element method which requires dividing
of the problem domain into many subdomains and using these patches instead of the
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main domain, SOM divides the search space into sub-domains and performs
optimization process into these patches, and then based on the resulted solutions
the undesirable parts are deleted, and the remaining space is divided into smaller
parts for more investigation in the next stage. This process continues until the
remaining space becomes less than the required size to satisfy accuracy.

This mechanism can be considered as the repetition of the following steps for
definite times, nc, (in the stage k of the repetition) [4, 6]:

Step 1: Calculating cross-sectional area bounds for each group. If Afbm(k‘wwl) is
the global best solution obtained from the previous stage (ksos; — 1) for design
variable i, then:

Aksou) __ ggbest(kson—1) —B- ( (ksou—1) _A(k§0M—1)) zA(k'sozv_l—l)

min,i i max,i min,i

min,
< i=12
A(kwM)_Agbevt(kng Dy (A ( (ksom— 1)_A(k50M71)) < Alkson=1) ksom=2,...,nc

max,i max,i min, i —“ max,i

(9.9)

where f; is an adjustable factor which determines the amount of the remaining

search space and in this research it is taken as 0.3 [6]; An]l(flf’” ) and Afﬁj‘;"f)

minimum and the maximum allowable cross-sectional areas at the stage ksoas,

are the

respectively. In stage 1, the amounts of Al(m)n, and Ar(nix, are set to:

AW —Amm,A( )

min.i max; = Amax =12, ...,ng (9.10)

Step 2: Determining the amount of increase in allowable cross-sectional areas.
In each stage, the number of permissible value for each group is considered as f,,
and therefore the amount of the accuracy rate of each variable is equal to:

(ksom) _ (ksom)
A*<kSOM) _ (Amax,i Amin,i )

! pr—1

i=1,2,...,ng (9.11)

ksow) . . . .
where Af( s4) i the amount of increase in allowable cross-sectional area; Unlike

ACO, f, (the number of subdomains) does no affect the optimization time and in
the BB-BC optimization, /3, is set to 100.

Step 3: Creating the series of the allowable cross-sectional areas. The set of
allowable cross-sectional areas for group i can be defined as:

A(kSOM) A(’WOM) +A *(ksom) A(k:sou) + (ﬂ _ 1) A *(ksom)

min,i °‘ min,i s+ min, i

= Al =1,2,...,ng (9.12)
Step 4: Determining the optimum solution of the stage kgoa,. The last step is
performing an optimization process using the BB-BC algorithm.
The stopping creation for SOM can be described as:
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determine A*, Apip and 4

max >

Initialize MBB-BC parameters, SOM parameters, and problem definition,

and set kg, =1.

v

Set k=1.

!

Evaluate the boundaries of the design variables (Eq. (9.9)).

|

Evaluate the allowable sets of the design variables (Egs. (9.11), (9.12)).
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No
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Generate initial candidates in a
random manner
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Calculate the Merit function values of all the candidate solutions (Eq. (9.7)).
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Find the center of mass (Eq. (9.1)).

!
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!

Fig. 9.1 The flowchart for the MBB-BC algorithm [2]
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A:‘(nc') <A* i=12,...,ng (9.13)
where A;.kw) is the amount of accuracy rate of the last stage; and A” is the amount of
accuracy rate of the primary problem.

Sub-Optimization Mechanism continues the search process until a solution is
obtained with the required accuracy. SOM performs as a search-space updating rule
which improves the search process with updating the search space from one stage to
the next stage. Also, SOM helps distribute the initial particles in the first Big Bang.
Another advantage of SOM is to select a small number of candidates because of
reducing the search space. The MBB—BC procedure is illustrated in Fig. 9.1.

9.3 Size Optimization of Space Trusses Using a MBB-BC
Algorithm

9.3.1 Formulation

Truss optimization is one of the most active branches of the structural optimization.
Size optimization of truss structures involves determining optimum values for
member cross-sectional areas, A;, that minimize the structural weight W. This
minimum design should also satisfy the inequality constraints that limit design
variable sizes and structural responses. The optimal design of a truss can be
formulated as:

minimize W ({x}) = Zyi AL
i1

subject to :  Omin < i < Omax i=1,2, ,m (9.14)
Gminggigamax i:1,2,...,l’l
aihgoiSO i=1,2 , NS

AminSAiSAmax i=1,2,...,ng

where W({x}) is the weight of the structure; # is the number of members making up
the structure; m is the number of nodes; s is the number of compression elements;
ng is the number of groups (number of design variables); y; is the material density of
member i; L; is the length of member i; A; is the cross-sectional area of member
i chosen between A i, and A .x; min is the lower bound and max = upper bound; o;
and §; is the the stress and nodal deflection, respectively; oﬁ’ is the allowable
buckling stress in member i when it is in compression.

In this part, the MBB-BC is implemented to solve the truss optimization
problems. The MBB-BC method consists of two phases: a Big Bang phase where
candidate solutions are randomly distributed over the search space, and a Big
Crunch phase working as a convergence operator where the center of mass is
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generated. Then new solutions are created by using the center of mass to be used as
the next Big Bang. These successive phases are carried repeatedly until a stopping
criterion has been met. This algorithm not only considers the center of mass as the
average point in the beginning of each Big Bang, but also similar to Particle Swarm
Optimization-based approaches [5], utilizes the best position of each particle and
the best visited position of all particles. As a result because of increasing the
exploration of the algorithm, the performance of the BB-BC approach is improved.
Another reformation is to use Sub-Optimization Mechanism (SOM), introduced by
Kaveh et al. [4, 6] for ant colony approaches. SOM is based on the principles of
finite element method working as a search-space updating technique. Some changes
are made to prepare SOM for the MBB-BC algorithm. Numerical simulation based
on the MBB-BC method including medium- and large-scaled trusses and compar-
isons with results obtained by other heuristic approaches demonstrate the effec-
tiveness of the present algorithm.

9.3.2 Design Examples

In this section, five truss structures are optimized utilizing the present method. Then
the final results are compared to the solutions of other advanced heuristic methods
to demonstrate the efficiency of this work. These optimization examples include:

e A 25-bar spatial truss structure;

e A 72-bar spatial truss structure;

* A 120-bar dome shaped truss;

e A square on diagonal double-layer grid;
e A 26-story-tower spatial truss.

For the proposed algorithm, a population of 50 individuals is used for the first
through third examples and a population of 100 candidates is selected for two last
examples. A* for all the examples is selected as 0.01. The algorithms are coded in
Matlab and the structures are analyzed using the direct stiffness method.

In order to investigate the effect of the initial solution on the final result and
because of the stochastic nature of the algorithm, each example is independently
solved several times. The initial population in each of these runs is generated in a
random manner. Last example is optimized by the MBB-BC optimization for
20 times, while performance comparisons of the MBB-BC method in other exam-
ples based on 50 evaluations. The performance of the present algorithm in the first
example is compared to the simple and improved heuristic approaches, it is
compared to the simple heuristic algorithms in the second example and in the
third example, some improved approaches are considered from literature. Example
4 is optimized using GA, PSO, a hybrid PSO (PSOPC [7]), BB-BC and the MBB-
BC method. Last example which has 942 members is solved by the present
algorithm and the results are compared to those of GA, PSO and the BB-BC
method.
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Fig. 9.2 Schematic of a twenty five-bar spatial truss

9.3.2.1 Twenty Five-Bar Spatial Truss

The topology and nodal numbers of a 25-bar spatial truss structure are shown in
Fig. 9.2. In this example, designs for a multiple load case are performed and
the results are compared to those of other optimization techniques employed by
[8—13]. In these studies, the material density is considered as 0.1 1b/in®
(2,767.990 kg/m3) and the modulus of elasticity is taken as 10,000 ksi
(68,950 MPa).

Twenty five members are categorized into eight groups, as follows:

(1) Ay, (2) Ax-As, (3) Ae—Ag, (4) A1g=Ar1, 5) Aiz—Ars, (6) As—Arz, (7) Ars—
Asy, and (8) Ax—Ass.

This spatial truss is subjected to two loading conditions shown in Table 9.1.
Maximum displacement limitations of £0.35 in (8.89 mm) are imposed on every
node in every direction and the axial stress constraints vary for each group as shown
in Table 9.2. The range of cross-sectional areas varies from 0.01 to 3.4 in’
(0.6452 cm? to 21.94 cm?).

Using a; = 1.0 allows an initial search of the full range of values for each design
variable. Figure 9.3 shows the effect of various values for a, and a3 on the average
weight of designs for the 25-bar truss. This figure shows that a, = 0.40 and
a3 = 0.80 are suitable values for MBB—BC algorithm. These parameter values
are used for all other examples presented.

The MBB-BC algorithm achieves the best solution after 12,500 searches.
However, the BB-BC algorithm finds the best solution after about 20,566 analyses
[14] which is 64 % more than the present work. The best weight of the MBB-BC is
545.16 1b while the best result of BB-BC is 545.38 1b. In addition, the MBB-BC



286 9 Modified Big Bang-Big Crunch Algorithm

Table 9.1 Loading conditions for the 25-bar spatial truss

Case 1 Case 2
Node Py kips (kN) Py kips (kN) Pz kips (kN) Px kips (kN) Py kips (kN) Pz kips (kN)
1 0.0 20.0 (89) —5.0(22.25) 1.0 (4.45) 10.0 (44.5) —5.0 (22.25)
2 0.0 —20.0 (89) —-5.0(22.25) 0.0 10.0 (44.5) —5.0 (22.25)
3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0
6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

Table 9.2 Member stress limitation for the 25-bar spatial truss

Element group  Compressive stress limitations ksi (MPa) Tensile stress limitations ksi (MPa)

1 A 35.092 (241.96) 40.0 (275.80)
2 ArAs 11.590 (79.913) 40.0 (275.80)
3 AgAo 17.305 (119.31) 40.0 (275.80)
4 A-An 35.092 (241.96) 40.0 (275.80)
5 A-A;s 35092 (241.96) 40.0 (275.80)
6  AuA;; 6759 (46.603) 40.0 (275.80)
7 AigAy 6959 (47.982) 40.0 (275.80)
8  Am-Ay  11.082(76.410) 40.0 (275.80)
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Fig. 9.3 Effect of MBB-BC parameters on average weight of the 25-bar truss

algorithm has better performance than the BB-BC algorithm with respect to the
average weight and standard deviation. Although the MBB-BC approach has worse
performance than the improved methods (IACS [4] and PSACO [15] and HPSACO
[16]), it performs better than other simple algorithms (GA [8], PSO [17]) when the
best weight, the average weight or the standard deviation are compared. Also, the
MBB-BC approach has smaller required number of iterations for convergence than
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Fig. 9.4 Schematic of a 72-bar spatial truss

PSACO and HS [18]. Table 9.3 presents a comparison of the performance of the
MBB-BC method and other heuristic algorithms.

9.3.2.2 Seventy Two-Bar Spatial Truss

For the 72-bar spatial truss structure shown in Fig. 9.4, the material density is 0.1 Ib/
in® (2,767.990 kg/m3) and the modulus of elasticity is 10,000 ksi (68,950 MPa).

The members are subjected to the stress limits of £25 ksi (+172.375 MPa). The
uppermost nodes are subjected to the displacement limits of £0.25 in (0.635) in
both the x and y directions. The 72 structural members of this spatial truss are sorted
into 16 groups using symmetry: (1) A=Ay, (2) As—A1z, 3) A13—Aqe, (4) Aj7—Ags,
(5) A19—Az2, (6), Azz—Aszo, (7) Az1—Azs, (8) Azs—Ase, (9) Az7—Asp, (10) Ay—Agg,
(11) Ago—Asa, (12) As3—Asa, (13) Ass—Ass, (14) Aso—Aes (15), Ae7—A70, (16) A71—
A7,. The minimum permitted cross-sectional area of each member is 0.10 in’
(0.6452 cmz), and the maximum cross-sectional area of each member is 4.00 in®
(25.81 cm?). Table 9.4 lists the values and directions of the two load cases applied
to the 72-bar spatial truss.

The best weight of the MBB—BC optimization is 379.66 1b, while it is 379.85 Ib,
380.24 1b, 381.91 and 385.76 1b for the BB-BC [14], ACO [19], PSO [20] and GA
[21], respectively. Standard deviation in the MBB-BC is 1.201 1b while standard
deviation of primary BB-BC algorithm has been reported 1.912 Ib [14]. In addition,
the required analyses for reaching a convergence is 13,200 analyses, which is 48 %
and 40 % less than the BB-BC method and ACO, respectively. Table 9.5 compares
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Table 9.4 Loading conditions for the 72-bar spatial truss
Case 1 Case 2
Node Px kips (kN) Py kips (kN) Pz kips (kN) Px Py Pz kips (kN)
17 5.0 (22.25) 5.0 (22.25) —5.0 (22.25) 0.0 0.0 —5.0 (22.25)
18 0.0 0.0 0.0 0.0 0.0 —5.0 (22.25)
19 0.0 0.0 0.0 0.0 0.0 —5.0 (22.25)
20 0.0 0.0 0.0 0.0 0.0 —5.0 (22.25)
Table 9.5 Performance comparison for the 72-bar spatial truss
Optimal cross-sectional areas (inz)
Erbatur Camp and  Perez and Kaveh and

Element et al. Bichon Behdinan Camp Talatahari [2]
group GA[21] ACO[19] PSO[20] BB-BC[14] in? cm?
1 A-Ay 1.755 1.948 1.7427 1.8577 1.9042 12.2851
2 As—Ap 0.505 0.508 0.5185 0.5059 0.5162 3.3303
3 Aj3-Ae 0.105 0.101 0.1000 0.1000 0.1000 0.6452
4 A7-Agg 0.155 0.102 0.1000 0.1000 0.1000 0.6452
5 A9-Axp 1.155 1.303 1.3079 1.2476 1.2582 8.1176
6 Ax3—Azo 0.585 0.511 0.5193 0.5269 0.5035 3.2488
7 Az1—Azy 0.100 0.101 0.1000 0.1000 0.1000 0.6452
8 Aszs—Asg 0.100 0.100 0.1000 0.1012 0.1000 0.6452
9 Asz7-Aq0 0.460 0.561 0.5142 0.5209 0.5178 3.3409
10 Ay—-Ag 0.530 0.492 0.5464 0.5172 0.5214 3.3639
11 Ag-Ass 0.120 0.100 0.1000 0.1004 0.1000 0.6452
12 Asz3-Asy 0.165 0.107 0.1095 0.1005 0.1007 0.6497
13 Ass—Asg 0.155 0.156 0.1615 0.1565 0.1566 1.0104
14 Aso—Ags 0.535 0.550 0.5092 0.5507 0.5421 3.4973
15 A¢—Ayp 0.480 0.390 0.4967 0.3922 0.4132 2.6658
16 A;-Ap 0.520 0.592 0.5619 0.5922 0.5756 3.7133
Best weight 385.76 380.24 381.91 379.85 379.66 1,689 N

(Ib)
Average N/A 383.16 N/A 382.08 381.85

weight (Ib)
Std dev (Ib) N/A 3.66 N/A 1.912 1.201
Number of N/A 18,500 N/A 19,621 13,200

analyses

the performance of the improved BB—BC algorithm with those previously reported

in the literature.
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Fig. 9.5 Schematic of a 120-bar dome shaped truss

9.3.2.3 A 120-Bar Dome Truss

Figure 9.5 shows the topology and group numbering of a 120-bar dome truss. The
modulus of elasticity is 30,450 ksi (210,000 MPa), and the material density is
0.288 Ib/in® (7,971.810 kg/m?). The yield stress of steel is taken as 58.0 ksi
(400 MPa).

The dome is considered to be subjected to vertical loading at all the unsupported
joints. These loads are taken as —13.49 kips (—60 kN) at node 1, —6.744 kips (—30
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kN) at nodes 2 through 14, and —2.248 kips (—10 kN) at the rest of the nodes. The
minimum cross-sectional area of all members is 0.775 in? 2 sz) and the maxi-
mum cross-sectional area is taken as 20.0 in® (129.03 cm?). The constraints are
considered as:

1. Stress constraints (according to the AISC ASD (1989) [22] code):

6 =0.6F, for 6;>0
{oi for 6; <0 (9-15)
where o; is calculated according to the slenderness ratio:
A 5. 3 A
1-—|F = - A < C
2z | / 318 s ) 1 ¢
o; = g (9.16)
V3
- % /I,‘ >C
2372 for 4 = Ce

where E is the modulus of elasticity; F) is the yield stress of steel; C. is the
slenderness ratio (4;) dividing the elastic and inelastic buckling regions (C¢

= /2#2E/F,); 4; is the slenderness ratio (4; = kL;/r;); k is the effective length
factor; L; is the member length; and r; is the radius of gyration.

2. Displacement limitations of £0.1969 in (5 mm) are imposed on all nodes in x, y
and z directions.

Table 9.6 illustrates the best solution vectors, the corresponding weights and the
required number for convergence in the present algorithm and some of other
heuristic methods. Except IACS which uses two auxiliary mechanisms for
searching, the MBB-BC optimization and HPSACO have best convergence rates.

9.3.2.4 A Square on Diagonal Double-Layer Grid

A double-layer grid of the type shown in Fig. 9.6 with a span of 21 m and the height
of 1.5 m is chosen from [23]. The structure is simply supported at the corner nodes
of the bottom-layer.

The loading is assumed as a uniformly distributed load on the top-layer of
intensity of 155.5 kg/m? and it is transmitted to the joints acting as concentrated
vertical loads only. The structure is assumed as pin jointed with elastic modulus of
210,000 MPa and the material density is assumed as 0.008 kg/cm® for all the
members. Member areas are linked to maintain symmetry about the four lines of
symmetry axes in the plane of the grid. Thus the problem has 47 design variables.
The maximum allowable area is considered as 22 cm” with a lower limit of 0.1 cm?.

Stress, Euler buckling and displacement constraints are considered in this
problem. All the elements are subjected to the following stress constraints:
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Table 9.6 Performance comparison for the 120-bar dome truss

Optimal cross-sectional areas (in2)

Kaveh
et al. Kaveh and Talatahari Present work [2]
Element PSOPC PSACO HPSACO
group IACS [4] [15] [15] [16] BB-BC in? cm?
1 Ay 3.026 3.040 3.026 3.095 3.026 3.037 19.596
2 A, 15.06 13.149 15.222 14.405 14276  14.431 93.010
3 As 4.707 5.646 4.904 5.020 4.986 5.130 33.094
4 Ay 3.100 3.143 3.123 3.352 3.175 3.134 20.217
5 As 8.513 8.759 8.341 8.631 8.617 8.591 55.427
6 Asg 3.694 3.758 3418 3.432 3.558 3.377 21.785
7 A, 2.503 2.502 2.498 2.499 2.510 2.500 16.129
Best 33,320.52 33,481.2 33,2639 33,2489 33,340.7 33,287.9 148,064 N
weight
(Ib)
No. of 3,250 150,000 32,600 10,000 22,000 10,000
analyses

—1,000 < 6; < 1,400 kg/cm? i=1,2,...,47 (9.17)

where i is the element number. Tubular members are considered with a diameter to
thickness ratio of 10. Thus Euler buckling is considered as:

ol = —10.1EA;/8L} i=1,2,...,47 (9.18)

In addition, displacement constraints are imposed on the vertical component of
the three central joints along the diagonal of the grid (joints 19, 20 and 22):

-15<6§<15cm i=1,23 (9.19)

This example is solved by GA, Standard PSO, PSOPC, BB-BC and the MBB—
BC algorithm. The number of required iterations for the proposed algorithm is
determined by using (9.13) (250 iterations in average), while it is considered as
500 iterations for other examples. The results are presented in Table 9.7.

The efficiency of the proposed algorithm in terms of the required optimization
time and standard deviation is better than that of other approaches. The optimiza-
tion time in the MBB-BC algorithm is 631 s while in primary BB-BC algorithm, it
is 1,249 s on a core™ 2 Duo 3.0GHz CPU. Also, the MBB-BC algorithm can find
the best result in comparison to other algorithms. Figure 9.7 shows the convergence
rate of the best and average of 50 runs for the proposed algorithm.
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9.3.2.5 A 26-Story Tower Spatial Truss

The 26-story tower space truss containing 942 elements and 244 nods is considered.
Fifty nine design variables are used to represent the cross-sectional areas of 59 ele-
ment groups in this structure, employing the symmetry of the structure. Figure 9.8
shows the geometry and the 59 element groups. The material density is 0.1 Ib/in’
(2767.990 kg/m3) and the modulus of elasticity is 10,000 ksi (68,950 MPa). The
members are subjected to the stress limits of +25 ksi (172.375 MPa) and the four
nodes of the top level in the X, y, and z directions are subjected to the displacement
limits of +15.0 in (38.10 cm) (about 1/250 of the total height of the tower).

The allowable cross-sectional areas in this example are selected from 0.1 to 20.0
in? (from 0.6452 cm?® to 129.032 cm?). The loading on the structure consists of:

1. The vertical load at each node in the first section is equal to —3 kips (—13.344
kN);

2. The vertical load at each node in the second section is equal to —6 kips (—26.688
kN);
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Table 9.7 Performance comparison for the square on diagonal double-layer grid

Optimal cross-sectional areas (sz)

Group Members GA PSO PSOPC BB-BC Present work [2]
1 1-2 0.308854  1.791978 1.012706  0.285600  0.433754
2 2-3 10.83306  3.607462  10.32799 13.55730  5.584617
3 3-4 12.16883  7.951644  11.49081 11.91084  9.799718
4 4-5 16.45846  9.300211 10.68151  9.476018 17.07508
5 10-11 15.26131 17.51948 15.02204  13.63725 16.31362
6 11-12 17.96606  20.36895 18.01115 17.20785 19.63048
7 12-13 20.41424  21.99344  19.85809 18.81188  21.28936
8 16-17 11.12362  12.35451 11.21260  13.52788 10.02678
9 17-18 12.32299  19.71894  20.56506  15.32646  12.81294
10 20-21 13.20768 1.191691  3.287622  2.815005  9.633889
11 2-10 1.041269  14.52528 1.386787  0.572246  0.609792
12 3-11 4.161487  6.035163  0.608871  0.516033  0.572243
13 4-12 2.683208 13.56488  2.498575  0.505283  7.470955
14 11-16 2.849718  4.147840 3987492  7.615556  0.685628
15 12-17 5.767594  0.793823 1.167498  1.022668 1.935885
16 17-20 0.816791  5.981349 1.297827  0.712039  1.237232
17 6-7 8.397544  9.386567 10.21764  13.75949  9.245048
18 7-8 3.72534 0.115224  0.922781  2.307911  0.949586
19 8-9 12.42663 10.02391 11.95824  2.470798  3.547774
20 6-14 1529086  11.51125 14.69415 11.44199  16.15166
21 14-8 4202762  0.924454  3.749231 1.321159  0.390444
22 8-15 1.410931  0.313266  0.564762  0.944948  5.009982
23 14-19 5.476267 1430610  0.823906  0.731927  0.805348
24 19-15 4.34482 0.100715  0.780927  0.598549  4.229839
25 19-22 8.591895 1597170  8.698821  8.818147  6.403876
26 6-1 7.833766  17.20812  8.625590 0.674610  6.961359
27 6-2 7.909819  4.294630  6.957233 13.27894  5.523857
28 6-10 18.56878  21.23205 19.22719  20.42001 19.36144
29 7-2 10.39279  4.382740  8.955598  3.643809  4.942896
30 7-3 4.534203 11.74380  7.007269  5.77340 7.867227
31 7-10 5.458530 5.204881  4.226522  7.61358 4.030943
32 7-11 5.847516  10.25399  4.42828 10.10760  3.746393
33 8-3 5.462611 3.141240  4.759653  3.036577  6.408331
34 8-4 10.16044  10.12301  6.047255 1.659517  3.18843
35 8-11 2.732264  2.647940  2.705861 2.513062  2.657439
36 8-12 2957776  2.515398  7.098940 2.603133  2.932186
37 9-4 3.832699  1.520112  1.755671 1.313180  3.347062
38 9-12 10.44930  2.155439  0.299187 12.73675  6.036277
39 14-11 1.526541 1.002402  6.212577 4.481129  0.319025
40 14-16 10.24427  9.794119 11.67664  13.48525 10.07837
41 14-10 16.04097  8.867614  10.55834  3.083517  21.97723
42 15-17 0.782389  3.801597 16.12512  5.875162  0.505746
43 15-12 0.469413 12.66615  0.964569  0.115837  0.354663
44 19-17 2.830117  3.049450 5.495865  3.872755  3.969591
45 19-20 9.576797 18.10949 11.43763 10.27249  3.8124

(continued)
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Table 9.7 (continued)

Optimal cross-sectional areas (sz)

Group Members GA PSO PSOPC BB-BC Present work [2]
46 19-16 9.393793  20.48772  6.014988  10.83278  9.327422
47 20-22 1.971953  17.67174  9.354127  14.32975  4.513447
Best weight (kg) 5236 5814 4951 4636 4413
Average weight (kg) 5614 6917 5162 4762 4508
Std dev (kg) 512.6 810.3 352.5 189.5 108.3
No. of analyses 50,000 50,000 50,000 50,000 25,000
Optimization time (s) 1,854 1,420 1,420 1,249 631
10000
9500 —— The average of 50 runs
— The best result
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Fig. 9.7 Convergence history of the square on diagonal double-layer grid for the MBB-BC
algorithm [2]

. The vertical load at each node in the third section is equal to —9 kips (—40.032

kN);

. The horizontal load at each node on the right side in the x direction is equal to —1

Kips (—4.448 kN);

. The horizontal load at each node on the left side in the x direction is equal to 1.5

kips (6.672 kN);

. The horizontal load at each node on the front side in the y direction is equal to

—1 kips (—4.448 kN);

. The horizontal load at each node on the back side in the x direction is equal to

1 kips (4.448 kN).
The MBB-BC method achieved a good solution after 30,000 analyses and found

an optimum weight of 52,401 1b. The best weights for the GA, Standard PSO and
BB-BC are 56,343 Ib, 60,385 Ib and 53,201 1b, respectively. In addition, MBB-BC
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Fig. 9.8 Schematic of a 26-story-truss tower

has better performance in terms of the optimization time, standard deviation and the
average weight. Table 9.8 provides the statistic information for this example.

Figure 9.9 compares the scattering of the particles for the 8th, 26th, 32nd, and
37th design variables in the 1st, 180th and 300th iterations (end of the optimization)
for this example. It can be seen that particles can be given any value in the
allowable space in the first iteration (Fig. 9.9a); while after 180 iterations, the
particles are concentrated on a little space of search domain (Fig. 9.9b). At the
end of optimization (Fig 9.9c), almost all candidates are concentrated around a
specific value. Figure 9.10 shows the best and average of 20 runs convergence
history for the proposed algorithm.
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Table 9.8 Performance comparison for the 26-story-tower spatial truss

GA PSO BB-BC Kaveh and Talatahari [2]
Best weight (1b) 56,343 60,385 53,201 52,401 (233,081 N)
Average weight (Ib) 63,223 75,242 55,206 53,532
Std dev (Ib) 6,640.6 9,906.6 2,621.3 1,420.5
No. of analyses 50,000 50,000 50,000 30,000
Optimization time (s) 4,450 3,640 3,162 1,926

9.3.2.6 Discussion

The comparisons of numerical results of various trusses using the MBB-BC
method with the results obtained by other heuristic approaches are performed to
demonstrate the robustness of the present algorithm. With respect to the BB-BC
approach, MBB-BC has better solutions and standard deviations. Also, MBB-BC
has low computational time and high convergence speed compared to BB-BC.
Specially, when the number of design variables increases the modified BB-BC
shows better performance. By adding the PSO principle to the BB-BC algorithm,
we increase the exploration by raising the search ability of the algorithm. As a result
contrary to the other metaheuristic techniques which present convergence difficulty
or get trapped at a local optimum in large size structures, MBB-BC performs well
in large size structures. On the other hand, increasing the exploration often causes
increasing the number of analyses. This problem is solved by using SOM which
works as a search space updating rule and reduces the number analyses for
convergence.

9.4 Optimal Design of Schwedler and Ribbed Domes Using
MBB-BC Algorithm

9.4.1 Introduction

Covering large areas without intermediate supports has always been an attractive
problem for architects and a challenging task for structural engineers. Dome
structures are lightweight and elegant structures that provide economical solutions
for covering large areas with their splendid aesthetic appearance. The joints of
dome structures are considered to be rigidly connected and the members are
exposed to both axial forces and bending moments. Therefore, bending moments
of members affect the axial stiffness of these elements because of being slender
members. Consequently, consideration of geometric nonlinearity in the analysis of
these structures becomes important if the real behavior of these structures is
intended to be obtained [24]. Furthermore, the instability of domes is also required
to be checked during the nonlinear analysis [25, 26]. Some recent researches by
Saka have shown that consideration of nonlinear behavior in the optimum design of
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Fig. 9.10 Convergence history of the 26-story-tower truss for the MBB-BC algorithm [2]

domes does not only provide more realistic results, it also produces lighter struc-
tures [27, 28].

In this part, optimum topology design algorithm based on the MBB-BC method
is developed for the Schwedler and ribbed domes. The algorithm determines the
optimum number of rings, the optimum height of crown, and sectional designations
for the members of the Schwedler domes under the external loads. Due to the
selection of the number of rings as the design variable, a simple procedure is
necessary to determine the dome configuration. In order to fulfill this aim, a simple
methodology is introduced in here. This procedure consists of calculating the joint
coordinates and the element constructions. Diagonal members are considered in the
Schwedler domes to stiffen the structure. The effect of these members on the results
of the optimization is investigated. The serviceability and the strength requirements
are considered in the design problem as specified in LRFD—-AISC [29]. The steel
pipe sections list of LRFD—AISC is adopted for the cross sections of dome members
and the nonlinear response of the dome is considered during the optimization
process.

9.4.2 Dome Structure Optimization Problems

Optimal design of Schwedler and ribbed domes consists of finding optimal sections
for elements, optimal height for the crown, and the optimum number of rings, under
the determined loading conditions. The allowable cross sections are considered as
37 steel pipe sections, as shown in Table 9.9, where abbreviations ST, EST, and
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Table 9.9 The allowable steel pipe sections taken from LRFD-AISC

Nominal diameter Weight per ft Area 1 S J Z
Type in (Ib) in? in* in® in* in®

1 ST 1/2 0.85 0.250 0.017  0.041 0.082  0.059
2 EST 12 1.09 0.320 0.020  0.048 0.096  0.072
3 ST 3/4 1.13 0.333 0.037  0.071 0.142  0.100
4 EST 3/4 1.47 0.433 0.045  0.085 0.170  0.125
5 ST 1 1.68 0.494 0.087 0.133 0.266  0.187
6 EST 1 2.17 0.639 0.106  0.161 0322 0.233
7 ST 1Y, 2.27 0.669 0.195 0.235 0470 0.324
8 ST 1, 2.72 0.799 0.310 0.326 0.652  0.448
9 EST 1, 3.00 0.881 0.242  0.291 0.582 0414
10 EST 1, 3.63 1.07 0.666  0.561 1.122  0.761
11 ST 2 3.65 1.07 0.391 0412 0.824  0.581
12 EST 2 5.02 1.48 0.868  0.731 1462  1.02
13 ST 2, 5.79 1.70 1.53 1.06 2.12 1.45
14 ST 3 7.58 2.23 3.02 1.72 3.44 2.33
15 EST A 7.66 2.25 1.92 1.34 2.68 1.87
16 DEST 2 9.03 2.66 1.31 1.10 2.2 1.67
17 ST 3, 9.11 2.68 4.79 2.39 4.78 3.22
18 EST 3 10.25 3.02 3.89 2.23 4.46 3.08
19 ST 4 10.79 3.17 7.23 3.21 6.42 4.31
20 EST A 12.50 3.68 6.28 3.14 6.28 4.32
21 DEST 2!, 13.69 4.03 2.87 2.00 4.00 3.04
22 ST 5 14.62 4.30 15.2 5.45 10.9 7.27
23 EST 4 14.98 441 9.61 4.27 8.54 5.85
24 DEST 3 18.58 5.47 5.99 3.42 6.84 5.12
25 ST 6 18.97 5.58 28.1 8.50 17.0 11.2
26 EST 5 20.78 6.11 20.7 7.43 14.86 10.1
27 DEST 4 27.54 8.10 15.3 6.79 13.58 9.97
28 ST 8 28.55 8.40 72.5 16.8 33.6 222
29 EST 6 28.57 8.40 40.5 12.2 24.4 16.6
30 DEST 5 38.59 11.3 33.6 12.1 24.2 17.5
31 ST 10 40.48 11.9 161 29.9 59.8 394
32 EST 8 43.39 12.8 106 24.5 49.0 33.0
33 ST 12 49.56 146 279 43.8 87.6 57.4
34 DEST 6 53.16 15.6 66.3 20.0 40.0 289
35 EST 10 54.74 16.1 212 39.4 78.8 52.6
36 EST 12 65.42 19.2 362 56.7 113.4 75.1
37 DEST 8 72.42 21.3 162 37.6 75.2 52.8

ST standard weight, EST extra strong, DEST double- extra strong

DEST stand for standard weight, extra strong, and double-extra strong,
respectively.

These sections are taken from LRFD-AISC [29] which is also utilized as the
code of practice. The process of the optimum design of the dome structures can be
summarized as
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Find X = [xl,xz, e ,x,,g],h,Nr
nm

5 €{di,dy, ..., dx} to minimize V(X)= x-L (9.20)
i=1
hi S5 {hmin» hmin + h*’ o ’hmax}

subjected to the following constraints:
Displacement constraint

5 <™ i=1,2,...,m (9.21)

Interaction formula constraints

ot (s Mo )<t v Locor o
.M
¢1:;n +§ <¢]leu + ¢b;,yny> <1 For % >0.2 (9.23)
Shear constraint
Vus dVa (9.24)

where X is the vector containing the design variables of the elements; 4 is the
variable of the crown height; Nr is the total number of rings; d; is the jth allowable
discrete value for the design variables; /yin, Amax and i* are the permitted mini-
mum, maximum and increased amounts of the crown height which in this part are
taken as D/20, D/2 and 0.25 m, respectively in which D is the diameter of the dome;
ng is the number of design variables or the number of groups; V(X) is the volume of
the structure; L, is the length of member i; J; is the displacement of node #; 5" is
the permitted displacement for the ith node; nn is the total number of nodes; ¢, is
the resistance factor (¢. = 0.9 for tension, ¢, = 0.85 for compression); ¢, is the
flexural resistance reduction factor (¢, = 0.90); M,, and M, are the required
flexural strengths in the x and y directions, respectively; M,, and M, are the
nominal flexural strengths in the x and y directions, respectively; P,, is the required
strength; and P, denotes the nominal axial strength which is computed as

P, = Achr (925)
where A, is the gross area of a member; and F, is calculated as following

Fo = (0.658%2) f,  For i <15 (9.26)
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0.877
Fo = (7) fy  For 2> 15 (9.27)

Here, f, is the specified yield stress; and A is obtained from

_ kL

A
" awr VE

(9.28)

where £ is the effective length factor taken as 1; / is the length of a dome member;
ris governing radius of gyration about the axis of buckling; and E is the modulus of
elasticity.

In (9.24), V, is the factored service load shear; V,, is the nominal strength in
shear; and ¢, represents the resistance factor for shear (¢, = 0.90).

In order to handle the constraints, the objective function for a set of design
variables can be penalized to reflect any violation of the design constraints. In
utilizing the penalty functions, if the constraints are satisfied, the penalty will be
zero; otherwise, the amount of penalty is obtained by dividing the violation of
allowable limit to the limit itself. After analyzing the structure and determining the
penalty functions for each constraint, the merit function is defined as

Mer* = ¢, - VE 4+ ¢, - (<I>k)63 (9.29)

where Mer* = merit function for the kth candidate; &,, &, and &3 = coeffi-
cients of merit function. ® = summation of penalty functions for the candidate .
The main objective of optimizing structures is to find the minimum amount of the
merit function. In this part, €, is set to 1. The coefficient ¢, is taken as the volume of
the structure and the coefficient 5 is set to 1.5 but gradually, it is increased to 3 [4].

9.4.3 Pseudo-Code of the Modified Big Bang—Big Crunch
Algorithm

The pseudo-code of the MBB-BC algorithm can be summarized as follows:

Step 1: Generate initial candidates in a random manner (considering allowable
set).

Step 2: Calculate the merit function values of all the candidate solutions
(Eq. 9.29).

Step 3: Find the center of the mass. The term mass refers to the inverse of the
merit function value for the dome structures. The point representing the center of

c(k)

mass that is denoted by A", is calculated according to
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B e 1 O T (9.30)

where Afk‘j ) is the ith component of the jth solution generated in the kth iteration;
N is the population size in Big Bang phase.

Step 4: Calculate new candidates around the center of the mass. The modified
BB-BC approach uses the center of mass, the best position of each candidate

(Aihe‘”(k‘j)) and the best global position (Afhm(k>) to generate a new solution as:

L ) . ar (A — A
A[(H—l"]) _ aZA,C‘(k) + (1 N (12) (a3A;gbest(k) + (1 _ a3)Aﬁhesz(kl/)> + I’jal( 11:2:(_ . mm)

i=12,...,ng
j=12,...,N

(9.31)

where 7; is a random number from a standard normal distribution which changes for
each candidate; a; is a parameter for limiting the size of the search space; Ay,
= 0.250in. % Apax = 21.31in. % Aﬁbm(k”) is the best position of the jth particle up to

the iteration k and Afbesr(k) is the best position among all candidates up to the

iteration k; a, and a3 are adjustable parameters controlling the influence of the
global best and local best on the new position of the candidates, respectively.

In order to reach a discrete solution, the new position of each agent is redefined
as the following

o N7 (Amax —Ami
Al(k+l,_1) —Fix (azAf(k) +(1 7(12) (a@AfbeSl(k) +(1 7a3)A§besz(k=])) +"jal( km:_l mn))

(9.32)

where Fix(X) is a function which rounds each elements of X to the nearest
permissible discrete value. Using this position updating formula, the agents will
be permitted to select discrete values [12].

Step 5: Return to Step 2 and repeat the process until the condition for the
stopping criterion is fulfilled.



304 9 Modified Big Bang-Big Crunch Algorithm
9.4.4 Elastic Critical Load Analysis of Spatial Structures

The dome structures are rigid structures for which the overall loss of stability might
take place when these structures are subjected to equipment loading concentrated at
the apex. Therefore, stability check is necessary during the analysis to ensure that
the structure does not lose its load carrying capacity due to instability [24] and
furthermore, considering the nonlinear behaviour in the design of domes is neces-
sary because of the change in geometry under external loads.

Details of the elastic instability analysis of a dome with rigid connections are
carried out as the following [24]:

Step 1: Set the load factor to a pre-selected initial value and assume the axial
forces in members are equal to zero.

Step 2: Compute the stability functions using the current values of axial forces in
members, as in [30].

Step 3: Set up the nonlinear stiffness matrix for each member.

Step 4: Transform the member stiffness matrices from local coordinates into the
global coordinate and assemble the overall stiffness matrix.

Step 5: Check the stability of the dome. Calculate the determinant of the overall
stiffness matrix. If it becomes negative, then the dome becomes instable and the
design process is terminated; otherwise, go to the next step.

Step 6: Analyze the dome under the factored external loads and obtain joint
displacements.

Step 7: Find the member forces.

Step 8: Replace the previous axial forces in members with the new ones.

Step 9: Repeat the steps from 2 until differences between two successive sets of
axial forces are smaller than a specific tolerance.

Step 10: Increase the load factor by pre-selected increment. If the load factor has
reached the specified ultimate value, terminate the elastic critical load analysis;
otherwise, go to Step 2.

9.4.5 Configuration of Schwedler and Ribbed Domes

The configuration of a Schwedler dome is shown in Fig. 9.11. Schwedler, a German
engineer, who introduced this type of dome in 1863, built numerous braced domes
during his lifetime. A Schwedler dome, one of the most popular types of braced
domes, consists of meridional ribs connected together to a number of horizontal
polygonal rings. To stiffen the resulting structure, each trapezium formed by
intersecting meridional ribs with horizontal rings is subdivided into two triangles
by introducing a diagonal member.

The number of nodes in each ring for the Schwedler domes is considered
constant and it is equal to ten in this part. The distances between the rings in the
dome on the meridian line are generally of equal length. The structural data for the
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Fig. 9.12 Nodal a Iy
numbering and the |
corresponding coordinate
system [3]. (a) Top view of
the dome and (b) section of
the dome
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geometry of this form of the Schwedler domes is a function of the diameter of the
dome (D), the total number of rings (IV), and the height of the crown (%). The total
number of rings can be selected 3, 4 or 5. The top joint at the crown is numbered as
first joint as shown in Fig. 9.12a (joint number 1) which is located in the centre of
the coordinate system in x-y plane. The coordinates of other joints in each ring are
obtained as
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D 360 =
X; = —— COs 2411, -1)

2N 4n, —
D 360 -
Vi = N sin 4’1[ 24}1, — 1 (9.33)

where #; is the number of ring corresponding to the node i; R = (D2 + 4h2)/(8h) is
the radius of the hemisphere as shown in Fig. 9.12b.

The member of grouping is determined in a way that rib members between each
consecutive pair of rings belong to one group, diagonal members belong to one
group and the members on each ring form another group. Therefore, the total
number of groups is equal to 3n; — 2. Figure 9.13 shows the number of groups
corresponding to rib, diagonal and ring members. The configuration of elements
contains determining the start and end nodes of each element.For the first group, the
start node for all elements is the joint number 1 and the end nodes are those on the
first ring. The start and end nodes of ring groups can be obtained using following
equations:

I=10x (m—1)+j+1 i=1,23,....9
1 Nr— 1 (9.34)
J=10x (m—1)4+j+2 \NHi=5Hol
{I_leo ’fé’:;}r)l*z m=1,2,...,Nr—1 (9.35)
Also for the rib and diagonal groups, we have
j—1
I:le(ni—l +2+FIX(T
,3,...,20
-1 <nj,—12 L Nr—1 (9:36)
J =10 x n+'j — Fix T
{j_i(o)i( o )) ni=12 ... Nr—1 (9.37)

where [ and J are the start and end nodal numbers of the elements, respectively.
Equation (9.34) determines the elements of ring groups where each element is made
up of two consecutive nodes on each ring. The element with the lower and upper
numbers on each ring also corresponds to that group, according to (9.35). Equations
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Fig. 9.13 The Schwedler
dome with the related
member grouping [3]

(9.36) and (9.37) present the total elements of the rib and diagonal groups located
between the rings n; and n; + 1. Equation (9.37) presents only one element which
connects the first node on the ring #; to the last node on the ring n; + 1.

A dome without the diagonal members is called the ribbed dome, as shown in
Fig. 9.14. For these domes Egs. (9.33), (9.34) and (9.35) are also valid to determine
the joint coordinates and the ring member constructions. However, the rib members
are assigned using the following relationship:

{110x(n[1)+.i+1 < i 12,10
1,2

J=10xn+j+1

(9.38)

9.4.6 Results and Discussion

This section presents the optimum design of the Schwedler and ribbed domes using
the MBB-BC algorithm. The modulus of elasticity for the steel is taken as 205 kN/
mm?. The limitations imposed on the joint displacements are 28 mm in the
z direction and 33 mm in the x and y directions for the 1st, 2nd and 3rd nodes,
respectively.

For the proposed algorithm, a population of 50 individuals is used. Using
a; = 1.0 allows the initial search of the full range of values for each design
variable. Previous investigations show that @, = 0.40 and a3 = 0.80 are suitable
values for MBB-BC algorithm. Here, first a comparison is made between the
Schwedler and ribbed domes, and then the efficiency of the Schwedler domes for
various diameters is investigated.
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Fig. 9.14 Schematic of a
ribbed dome [3]. (a) 3-D
view, (b) top view, (c)
side view
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9.4.6.1 Comparison of the Schwedler and Ribbed Domes

The diameter of the dome is selected as 40 m. The dome is considered to be
subjected to equipment loading at its crown. The three loading conditions are
considered:

Case 1. The vertical downward load of —500 kN;

Case 2. The two horizontal loads of 100 kN in the x and y directions;

Case 3. The vertical downward load of —500 kN and two horizontal loads of
100 kN in the x and y directions.

Table 9.10 presents the results for the Schwedler and ribbed domes. In all
loading cases, the optimum number of rings for both domes is three. The volume
of the dome structures can be considered as a function of the average cross-
sectional area of the elements (A) and the sum of the element lengths, written as

nm

VX)=4-) L (9.20)

In Case 1, A for the ribbed dome is 60 % more than the Schwedler one. Both
domes have approximately the same height; therefore, because of having less
number of elements, the ribbed dome has smaller value (64 %) for the sum of the
element lengths than the Schwedler dome. Therefore, the difference of the volume
for the domes is small and increasing the sum of element lengths for the Schwedler
dome is compensated by reduction of the average cross-sectional areas of the
elements.

Because of existing only horizontal forces in Case (2), the angles of elements
with the horizontal line in the optimum design must have the minimum value;
therefore, both domes have the minimum allowable heights. When comparing the
optimum sections for these two types of domes, it can be shown that the rib
members in the ribbed dome have much heavier sections than the rings elements,
while almost all members in the Schwedler dome are not so much different. In
addition, contrary to Case 1 and Case 3, the neighboring elements to supports in
both domes have the stronger sections than the others, while in two other cases the
elements near to the apex have the heavier members. Another interesting point is
that the stress constraints are dominant for the Schwedler dome while for the ribbed
dome, the displacement constraints are dominant. Therefore, the Schwedler dome
has better performance against the external lateral forces and has the smaller
volume.

The Schwedler dome contains more appropriate sections and lighter weight than
the ribbed dome for Case 3. In order to provide lateral stiffness, all rib members in
the ribbed domes have very strong sections, and A has a very large value; whereas
the Schwedler dome has small A because of existing diagonal elements which
provide the necessary lateral stiffness against the horizontal external loads. The
height of the ribbed dome must be selected small because of existing the horizontal
loads in one hand and in the other hand, it must have a large value to provide the
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Table 9.10 Optimum design of the Ribbed and Schwedler domes

Optimum section (Designations)

Case 1 Case 2 Case 3
Ribbed Schwedler  Ribbed Schwedler  Ribbed Schwedler
Group number dome dome dome dome dome dome
1 PIPST (8) PIPST (8) PIPST (6) PIPST (3) PIPST PIPST (10)
(12)
2 PIPST (5) PIPST (!/,) PIPST (6) PIPST (3) PIPST PIPST (3'/,)
(12)
3 PIPST (5) PIPST (5) PIPST PIPST (2'/,) PIPST PIPST (6)
(10) (10)
4 PIPST (8) PIPST (!/,) PIPST PIPST (3'/,) PIPST (8) PIPST (4)
(1)
5 PIPST (5) PIPST (5) PIPST PIPST (2'/,) PIPST (6) PIPST (5)
(1'73)
6 N/A PIPST (8) N/A PIPEST (2) N/A PIPST (8)
7 N/A PIPST (5) N/A PIPST (3) N/A PIPST (5)
Height (m) 13.5 13.5 2.00 2.00 7.25 10.75
Max. displace- 2.80 2.80 3.29 1.79 3.30 2.73
ment (cm)
Max. strength 0.79 0.81 0.63 0.95 0.82 0.92
ratio
Volume (m>) 1.33 1.38 1.16 0.74 2.42 1.94
> I; (m) 377.75 623.25 324.90 535.70 340.20 591.10
A (cm?) 35.35 22.06 35.15 13.81 71.20 32.83

necessary strength against the vertical load and to avoid instability. Thus, the
optimum height of the ribbed dome is constrained to a small range. It is obtained
7.25 m which is between the optimum heights in two previous cases. For the
Schwedler dome, the diagonal and rib elements provide the lateral and vertical
strengths, respectively. Therefore, the height of the dome can be selected from a
broad range and the algorithm has a large space to find the optimum design. To sum
up, the Schwedler domes are more appropriate than the ribbed ones against vertical
and horizontal loads.

9.4.6.2 Schwedler Domes with Different Diameters

In order to investigate the efficiency of the Schwedler domes, two other domes with
different diameters are considered: one with smaller diameter (20 m) and another
with larger diameter (60 m). The loading condition is the same as the Case 3 in
previous section. Figure 9.15 shows the normalized optimum volume of these
domes when the number of rings is altered. For all three cases, a dome with three
rings is lighter. Optimum designs for domes with five and four rings are approxi-
mately 18 % and 8 % heavier than the one with three rings in average, respectively.
Therefore, it seems that selecting a minimum number for the rings leads the better
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Fig. 9.15 The normalized
optimum volume for the - With 5 rings
Schwedler domes with 15F - With 4 rings
different number of rings |:| With 3 rings
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results unless a dome has very large diameter in which case some elements will
buckle if the number of rings is selected small.

The optimum height of crown is 5.25 m, 10.75 m and 18.5 m for domes with
20 m, 40 m and 60 m diameters and the ratio of the height to the diameter is equal to
0.26, 0.27, and 0.31, respectively. Thus, when the diameter of the dome increases,
the ratio of the height to the diameter raises slightly. It seems that the range of 0.2 to
0.4 can be utilized as a good search space for the ratio of the height to the diameter.

The convergence history for the studied Schwedler domes are shown in
Fig. 9.16, and the comparison of the optimal design of Schwedler domes with
different diameters is made in Table 9.11. In this table, the mean of the required
materials to cover the space is obtained by dividing the optimum volume of each
dome to the covered area by the dome (77.'D2/4).

In other words, this ratio can be considered as the cost of required structural
material to the space being covered. Almost for all domes, the required structural
material is the same and this shows the suitability of the Schwedler domes to cover
large areas.

9.4.7 Discussion

A Modified Big Bang—Big Crunch optimization is developed for optimal design of
geometrically nonlinear Schwedler and ribbed domes. This method consists of a
Big Bang phase where candidate solutions are randomly distributed over the search
space, and a Big Crunch phase working as a convergence operator where the center
of mass is generated. The Particle Swarm Optimization capacities are added to
improve the exploration ability of the algorithm. A simple procedure is developed
to determine the configuration of the ribbed and Schwedler domes. Using this
procedure, the joint coordinates are calculated and the elements are constructed.
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Fig. 9.16 The convergence 2
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Table 9.11 Comparison of optimal design of the Schwedler domes with different diameters

D=20m D=40m D =60m

Height (m) 5.25 10.75 18.50
Max. displacement (cm) 2.73 2.73 2.80

Max. strength ratio 0.96 0.92 0.99
Volume (m?) 0.53 1.94 4.11

> I (m) 294.25 591.10 913.27

A (cm?) 18.16 32.83 45.08
Required materials to cover the space 0.170 0.154 0.145

The domes with the diagonal elements (Schwedler domes) and without them
(ribbed domes) are optimized using the MBB—BC algorithm.

The three considered loading conditions consist of the vertical downward load,
the two horizontal loads and both of these loads acting simultaneously. In Case
1, the volume of the ribbed dome is smaller than the Schwedler one because of
having less number of elements. In Case 2, both domes have the minimum height
and the stress constraints are dominant for the Schwedler dome while for the ribbed
one, the displacement constraints are dominant. In Case 3, the Schwedler dome has
lighter weight. Despite the fact that diagonal elements increase the sum of the
element lengths, they have efficient influences against vertical and horizontal loads
and therefore, the MBB-BC algorithm is allowed to select some lighter sections for
other elements in the Schwedler domes. In addition, the efficiency of the Schwedler
domes to cover various areas is investigated. The results show that a minimum
number for rings is the best choice and selecting a ratio of the height to the diameter
from the range of [0.2, 0.4] can improve the performance of the dome. Finally, the
results reveal that the normalized required material for Schwedler domes is approx-
imately identical for small or large areas. As a result, this type of domes can be
considered as a good selection to cover large areas without intermediate columns.
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Chapter 10
Cuckoo Search Optimization

10.1 Introduction

In this chapter, a metaheuristic method so-called Cuckoo Search (CS) algorithm is
utilized to determine optimum design of structures for both discrete and continuous
variables. This algorithm is recently developed by Yang [1], Yang and Deb [2, 3],
and it is based on the obligate brood parasitic behavior of some cuckoo species
together with the Lévy flight behavior of some birds and fruit flies. The CS is a
population based optimization algorithm and similar to many others metaheuristic
algorithms starts with a random initial population which is taken as host nests or
eggs. The CS algorithm essentially works with three components: selection of the
best by keeping the best nests or solutions; replacement of the host eggs with
respect to the quality of the new solutions or Cuckoo eggs produced based random-
ization via Lévy flights globally (exploration); and discovering of some cuckoo
eggs by the host birds and replacing according to the quality of the local random
walks (exploitation) [2].

This chapter consists of two parts. In part 1, optimum design of the truss
structures is presented for both discrete and continuous variables, based on the
Cuckoo Search (CS) algorithm [4]. In order to demonstrate the effectiveness and
robustness of the present method, minimum weight design of truss structures is
performed and the results of the CS and some well-known metaheuristic algorithms
are compared for some benchmark truss structures.

In part 2, optimum design of two dimensional steel frames for discrete variables
based on the Cuckoo search (CS) algorithm is presented [5].

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 317
DOI 10.1007/978-3-319-05549-7_10, © Springer International Publishing Switzerland 2014
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10.2 Optimum Design of Truss Structures Using Cuckoo
Search Algorithm with Lévy Flights

10.2.1 Formulation

The aim of optimizing a truss structure is to find a set of design variables
corresponding to the minimum weight satisfying certain constraints. This can be
expressed as:

Find  {X} = [x,x2,...,%], N ED;

ng  nm(i)
To minimize ~W({X}) = in p;iL (10.1)
=1 =1

Subject to : g_i({X}) <0 j=12,...,n

where {X} is the set of design variables; ng is the number of member groups in
structure (number of design variables); D; is the allowable set of values for the
design variable x; ; W({X}) presents weight of the structure; nm (i) is the number of
members for the ith design variable; p; and L; denotes the material density and the
length of the member j, respectively; g;({X}) denotes design constraints; and 7 is the
number of the constraints. D; can be considered either as a continuous set or as a
discrete one. In the continuous problems, the design variables can vary continu-
ously in the optimization process.

Di = {xi|xi & [Xi,mins Xi,max] } (10.2)

where X; i, and X; 4, are minimum and maximum allowable values for the design
variables x;, respectively. If the design variables represent a selection from a set of
parts as

D; = (di»lvdis2’ R di,nm(i)) (103)

then the problem can be considered as a discrete one.
In order to handle the constraints, a penalty approach is utilized. In this method,
the aim of the optimization is redefined by introducing the cost function as:

P (X = (1 eLo) x W(XD, o= max[0g((xp]  (10.4)

where n represents the number of evaluated constraints for each individual design,
and v denotes the sum of the violations of the design. The constants &; and ¢, are
selected considering the exploration and the exploitation rate of the search space.
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Here, ¢ is set to unity, &; is selected in a way that it decreases the penalties and
reduces the cross-sectional areas. Thus, in the first steps of the search process, ¢, is
set to 1.5 and ultimately increased to 3.

The constraint conditions for truss structures are briefly explained in the follow-
ing. The stress limitations of the members are imposed according to the provisions
of ASD-AISC [6] as follows:

6 =0.6F, fore; >0
{ o7 for 6; <0 (10.5)
2 5 34 A
~Zi|\F, S A b A > e,
o 22| / 378 T8 Jor 4 2 ¢
' 1272 E
ﬁ for 4; = ¢,
(10.6)

where, £ is the modulus of elasticity; F, is the yield stress of steel; c.
denotes the slenderness ratio (4;) dividing the elastic and inelastic buckling regions
(¢cc = +/27%E/F y); A; = the slenderness ratio (1; = kl;/r;); k = the effective length
factor; L; = the member length; and r; = the radius of gyration. The radius of
gyration (r;) can be expressed in terms of cross-sectional areas as r; = a Af. Here,
a and b are the constants depending on the types of sections adopted for the
members such as pipes, angles, and tees. In this study, pipe sections (@ = 0.4993
and b = 0.6777) are adopted for bars.
The other constraint corresponds to the limitation of the nodal displacements:

§—8<0 i=12,....nn (10.7)

where §; is the nodal deflection; 6 is the allowable deflection of node i; and nn is the
number of nodes.

10.2.2 Lévy Flights as Random Walks

The randomization plays an important role in both exploration and exploitation in
metaheuristic algorithms. The Lévy flights as random walks can be described as
follows [2]:

A random walk is a random process which consists of taking a series of
consecutive random steps. A random walk can be expressed as:



320 10 Cuckoo Search Optimization

n—1

Sn:ZXi:X]+X2+...+Xn:ZX,‘+Xn:Sn—1+Xn (108)
i=1 i=1

where S, presents the random walk with n random steps and X; is the ith random
step with predefined length. The last statement means that the next state will only
depend on the current existing state and the motion or transition X,,. In fact the step
size or length can vary according to a known distribution. A very special case is
when the step length obeys the Lévy distribution; such a random walk is called a
Lévy flight or Lévy walk. In fact, Lévy flights have been observed among foraging
patterns of albatrosses, fruit flies and spider monkeys.

From the implementation point of view, the generation of random numbers with
Lévy flights consists of two steps: the choice of a random direction and the
generation of steps which obey the chosen Lévy distribution. While the generation
of steps is quite tricky, there are a few ways of achieving this. One of the most
efficient and yet straightforward ways is to use the so-called Mantegna algorithm.
In the Mantegna’s algorithm, the step length S can be calculated by:

u

where f is a parameter between [1, 2] interval and considered to be 1.5; # and v are
drawn from normal distribution as

u~N(0,6.), v~N(0,07) (10.10)
where
__ [ T+ pysin(ap/2) v L o)
Corla+p2p2Ir '

Studies show that the Lévy fights can maximize the efficiency of the resource
searches in uncertain environments. In fact, Lévy flights have been observed among
foraging patterns of albatrosses, fruit flies and spider monkeys.

10.2.3 Cuckoo Search Algorithm

This algorithm is inspired by some species of a bird family called cuckoo because of
their special lifestyle and aggressive reproduction strategy. These species lay their
eggs in the nests of other host birds (almost other species) with amazing abilities
such as selecting the recently spawned nests, and removing the existing eggs that
increase the hatching probability of their eggs. On the other hand, some of host
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birds are able to combat this parasites behavior of cuckoos, and throw out the
discovered alien eggs or build their new nests in new locations.

This algorithm contains a population of nests or eggs. For simplicity, following
representations is used; where each egg in a nest represents a solution and a Cuckoo
egg represents a new one. If the Cuckoo egg is very similar to the host’s egg, then
this Cuckoo’s egg is less likely to be discovered, thus the fitness should be related to
the difference in solutions. The aim is to employ the new and potentially better
solutions (Cuckoos’) to replace a not-so-good solution in the nests [2].

For simplicity in describing the CS, the following three idealized rules are
utilized [3]:

1. Each Cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;

2. The best nests with high quality of eggs are carried over to the next generations;

3. The number of available host nests is constant, and the egg which is laid by a
Cuckoo is discovered by the host bird with a probability of pa in the range of [0,
1]. The later assumption can be approximated by the fraction pa of the n nests is
replaced by new ones (with new random solutions).

Based on the above three rules, the basic steps of the CS can be summarized as
the pseudo code shown in Fig. 10.1.

This pseudo code, provided in the book entitled Nature-Inspired metaheuristic
algorithms, by Yang [1], is a sequential version and each iteration of the algorithm
consisting of two main steps, but another version of the CS which is supposed to be
different and more efficient is provided by Yang and Deb [3]. This new version has
some differences with the book version as follows:

In the first step according to the pseudo code, one of the randomly selected nests
(except the best one) is replaced by a new solution, produced by random walk with
Lévy flight around the so far best nest, considering the quality. But in the new
version, all of the nests except the best one are replaced in one step, by new
solutions. When generating new solutions x,**’ for the ith Cuckoo, a Lévy flight
is performed using the following equation:

A =0 s (10.12)
where a > 0 is the step size parameter and should be chosen considering the scale
of the problem and is set to unity in the CS [2], and decreases function as the
number of generations increases in the modified CS. It should be noted that in this
new version, the solutions’ current positions are used instead of the best solution so
far as the origin of the Lévy flight. The step size is considered as 0.1 in this work
because it results in efficient performance of algorithm in our examples. The
parameter S is the length of random walk with Lévy flights according to the
Mantegna’s algorithm as described in (10.9).

In the second step, the pa fraction of the worst nests are discovered and replaced
by new ones. However, in the new version, the parameter pa is considered as the
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Objective function f'(x), x = (x, X,, ..., X)) ;
Generate initial population of # host nests
x;(i=1,2,.,n);
while (stop criterion)
Get a Cuckoo randomly by Lévy flights;
Evaluate its quality/fitness F;;

Choose a nest among » (say j ) randomly;
if F, > F,
replace j by the new solution;
end
Abandon a fraction (pa) of worse nests
[and build new ones at new locations via Lévy flights]
Keep the best solutions (or nests with quality solutions);
Rank the solutions and find the current best;
end while
Post process results and visualization;

Fig. 10.1 Pseudo code of the CS [4]

probability of a solution’s component to be discovered. Therefore, a probability
matrix is produced as:

1 if rand < pa
P = { 0 if rand > pa (10.13)

where rand is a random number in [0, 1] interval and P;; is discovering probability
for jth variable of ith nest. Then all of the nests are replaced by new ones produced
by random walks (point wise multiplication of random step sizes with probability
matrix) from their current positions according to quality. In this study the later
version of the CS algorithm is used for optimum design of truss structures.

10.2.4 Optimum Design of Truss Structures Using Cuckoo
Search Algorithm

The pseudo code of optimum design algorithm is as follows:
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10.2.4.1 Initialize the Cuckoo Search Algorithm Parameters

The CS parameters are set in the first step. These parameters are number of nests
(n), step size parameter (a), discovering probability (pa) and maximum number of
analyses as the stopping criterion.

10.2.4.2 Generate Initial Nests or Eggs of Host Birds

The initial locations of the nests are determined by the set of values assigned to each
decision variable randomly as

0
nestl(»’ j> = Xj,min + rand. (xj,max — xj,min) (10.14a)
where nest,»,_,m) determines the initial value of the jth variable for the ith nest; x; .,
and X; .4, are the minimum and the maximum allowable values for the jth variable;
rand is a random number in the interval [0, 1]. For problems with discrete design

variables it is necessary to use a rounding function as

nest((y = ROUND (xj, min + rand. (xj, max — Xj, mm)) (10.14b)

10.2.4.3 Generate New Cuckoos by Lévy Flights

In this step all of the nests except for the best so far are replaced in order of quality
by new Cuckoo eggs produced with Lévy flights from their positions as

nestlwl) = nestf') +a.S. (nestl@ - nest},?s,) T (10.15)
where nest;’ is the ith nest current position; « is the step size parameter which is
considered to be 0.1; S is the Lévy flights vector as in Mantegna’s algorithm; r is a

random number from a standard normal distribution and nest,., is the position of
the best nest so far.

10.2.4.4 Alien Eggs Discovery

The alien eggs discovery is preformed for all of eggs using of the probability matrix
for each component of each solution. Existing eggs are replaced considering quality
by newly generated ones from their current position by random walks with step size
such as [7]:
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S = rand.(nests[permutel[i][j]] — nests[permute2[i][j]]) (10.16)
nest'™V) = nest') + §.*P ‘
where permutel and permute2 are different rows permutation functions applied to
the nests matrix and P is the probability matrix which was mentioned in (10.13).

10.2.4.5 Termination Criterion

The generation of new Cuckoos and the discovering of the alien eggs steps are
performed alternately until a termination criterion is satisfied. The maximum
number of structure analyses is considered as algorithm’s termination criterion.

10.2.5 Design Examples

In this section, common truss optimization examples as benchmark problems are
optimized with the CS algorithm. The final results are compared to the solutions of
other methods to demonstrate the efficiency of the CS. We have tried to vary the
number of host nests (or the population size of n) and the probability pa. From our
simulations, we found that n = 7-20 and pa = 0.15-0.35 are efficient for design
examples. The examples contain a 25-bar transmission tower and a 72-bar spatial
truss with both discrete and continuous design variables and a dome shaped space
truss with continuous search space.

10.2.5.1 A 25-Bar Space Truss

The 25-bar transmission tower is used widely in structural optimization to verify
various metaheuristic algorithms. The topology and nodal numbering of a 25-bar
space truss structure is shown in Fig. 10.2. The material density is considered as
0.1 Ib/in® (2,767.990 kg/m?) and the modulus of elasticity is taken as 107 psi
(68,950 MPa). Twenty-five members are categorized into eight groups, as follows:
(1) A1, 2) Ax-As, (3) Ag—Ao, (4) A1g-A11, (5) A1-Auz, (6) Als—Aiy, (7) Aig-Asy,
and (8) Ayy—A,s. In this example, designs for both a single and multiple load cases
using both discrete and continuous design variables are performed. The parameters
of the CS algorithm are considered to be pa = 0.15, number of nests = 10 and the
maximum number of analyses = 14,000 as the stopping criterion.
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Fig. 10.2 Schematic of a
25-bar space truss i

10.2.5.2 Design of a 25-Bar Truss Utilizing Discrete Variables

In the first design of a 25-bar truss, a single load case {(kips) (kN)} is applied to the
structure, at nodes 1, 2, 3 and 4 as follows: 1{(0, —10, —10) (0, —44.5, —44.5)},
2{(1, —10, —10) (4.45, —44.5, —44.5)}, 3{(0.6, 0, 0) (2.67, 0, 0)} and 4{(0.5, 0, 0)
(2.225, 0, 0)}. The allowable stresses and displacements are respectively 40 ksi
(275.80 MPa) for each member and +0.35 in (4-8.89 mm) for each node in the x, y
and z directions. The range of discrete cross-sectional areas is from 0.1 to 3.4 in”
(0.6452 to 21.94 cm?) with 0.1 in” (0.6452 cm?) increment (resulting in 34 discrete
cross sections) for each of the eight element groups [8].

The CS algorithm achieves the best solution weighted by 484.85 1b (2,157.58 N),
after 2,000 analyses. Although, this is identical to the best design developed using
BB-BC algorithm [8] and a multiphase ACO procedure [9], it performs better than
others when the number of analyses and average weight for 100 runs are compared.
Table 10.1 presents the performance of the CS and other heuristic algorithms.

10.2.5.3 Design of a 25-Bar Truss Utilizing Continuous Variables

In the second design of a 25-bar truss, the structure is subjected to two load cases
listed in Table 10.2. Maximum displacement limitations of £0.35 in (£8.89 mm)
are imposed on every node in every direction and the axial stress constraints vary
for each group as shown in Table 10.3. The range of cross-sectional areas varies
from 0.01 to 3.4 in® (0.06452 to 21.94 cm?) [10].

Table 10.4 shows the best solution vectors, the corresponding weights, average
weights and the required number of analyses for present algorithm and some other
metaheuristic algorithms. The best result obtained by IACS algorithm [12] in the
aspects of low weight and number of analyses. The CS-based algorithm needs 6,100
analyses to find the best solution while this number is equal to 9,596, 15,000, 9,875,
12,500 and 7,000 analyses for a PSO-based algorithm, HS algorithm [11], a
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Table 10.1 Performance comparison for the 25-bar spatial truss under single load case

Optimal cross-sectional areas (in2)
GA GA ACO BB-BC phase 1,2 Present work [4]

Element group [8] [8] 9] [8] in? cm?

1 A, 0.10 0.10 0.10 0.10 0.10 0.645

2 Ar—As 1.80 0.50 0.30 0.30 0.30 1.935

3 Ag—Ag 2.30 3.40 3.40 3.40 3.40 21.935

4 Ao-An 0.20 0.10 0.10 0.10 0.10 0.645

5 Ar-Ajs 0.10 1.90 2.10 2.10 2.10 13.548

6 A4—Apy 0.80 0.90 1.00 1.00 1.00 6.452

7 Ag—As 1.80 0.50 0.50 0.50 0.50 3.226

8 Arr—Ass 3.00 3.40 3.40 3.40 3.40 21.935

Best weight (Ib) 546.01 485.05 484.85 484.85 484.85 2,157.58 (N)
Average weight (Ib)  N/A N/A 486.46 485.10 485.01 2,158.29 (N)
Number of analyses 800 15,000 7,700 9,000 2,000

Table 10.2 Loading

Case Node F, kips (kN F, kips (kN Fz kips (kKN
conditions for the 25-bar ps (kN y Kips (kN) z kips (KN)

spatial truss 1 1.0 (4.45) 10.0 (44.5)  —5.0 (—22.25)
2 0.0 10.0 —5.0 (—22.25)
3 0.5 (2.225) 0.0 0.0
6 0.5 (2.225) 0.0 0.0
2 1 0.0 20.0 (89) —5.0 (—22.25)
2 0.0 —20.0 (=89)  —5.0 (—22.25)

Table 10.3 Member stress

JaE Element group Compression ksi (MPa) Tension ksi (MPa)
limitation for the 25-bar space

russ 1 A 35.092 (241.96) 40.0 (275.80)
2 AyAs 11.590 (79.913) 40.0 (275.80)
3 AgAo 17.305 (119.31) 40.0 (275.80)
4 AgA; 35092 (241.96) 40.0 (275.80)
5 Ai-A;z 35.092 (241.96) 40.0 (275.80)
6 Au-Apy 6.759 (46.603) 40.0 (275.80)
7 AgAy 6.959 (47.982) 40.0 (275.80)
8  AsrAss 11082 (76.410) 40.0 (275.80)

combination algorithm based on PSO, ACO and HS [13], an improved BB-BC
method using PSO properties [14] and the CSS algorithm [10], respectively. The
difference between the result of the CS and these algorithms are very small, but the
average weight obtained by the CS algorithm for 100 runs is better than others. The
convergence history for best result and average weight of 100 runs are shown in
Fig. 10.3. The important point is that although the CS requires 6,100 analyses to
achieve the 545.17 Ib (2,426.02 N), it can achieve the 545.76 1b (2,428.63 N) after
2,700 analyses, because CS uses the exploration step in terms of Lévy flights. If the
search space is large, Lévy flights are usually more efficient.
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Table 10.4 Performance comparison for the 25-bar spatial truss under multiple load cases

Optimal cross-sectional areas (inz)

Element  PSO IACS HPSACO HBB-BC (Ss  Presentwork [4]
group (10]  HS[11] [12] [13] [14] [10]  in? cm?
1 A 0.010 0.047 0.010  0.010 0.010 0.010 0.01 0.065
2 Ay-As 2.121  2.022 2.042 2.054 1.993 2.003 1979 12.765
3 Ag—Ag 2.893  2.950 3.001  3.008 3.056 3.007 3.005 19.386
4 Ajp-A;; 0.010 0.010 0.010  0.010 0.010 0.010 0.01 0.065
5 Air-A;z 0.010 0.014 0.010  0.010 0.010 0.010 0.01 0.065
6 A~A;; 0671  0.688 0.684 0.679 0.665 0.687 0.686 4.428
7 Ag-Ay  1.611  1.657 1.625 1.611 1.642 1.655 1.679 10.830
8 Ax—A,s 2717 2.663 2.672 2.678 2.679 2.660 2.656 17.134
Best weight  545.21 544.38 545.03 544.99 545.16 545.10 545.17 2,426.02
(1b) ™)
Average 546.84 N/A 545.74 545.52 545.66 545.58 545.18 2,426.05
weight (N)
(Ib)
Number of 9,596 15,000 3,254 9,875 12,500 7,000 6,100
analyses
Fig. 10.3 Convergence 560
history of the 25-bar space ssg |l - The best feaseble result
truss under multiple load B B EEREEEE The avearage penalized weight of 100 runs
cases [4] 556 -
554
=
f:fn 552+
B ssof
548 +
546
544

0 2000 4000 6000 8000 10000 12000 14000
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10.2.5.4 A 72-Bar Space Truss

For the 72-bar spatial truss structure shown in Fig. 10.4 taken from [14], the
material density is 0.1 1b/in® (2,767.990 kg/m®) and the modulus of elasticity is
107 psi (68,950 MPa). The 72 structural members of this spatial truss are catego-
rized into 16 groups using symmetry: (1) A1—Ay4, (2) As—A12, 3) A13-Als, (4) Aj7—
Ags, (5) A= Ana, (6) Aaz—Aso, (7) Az1—Asa, (8) Ass—Aze, (9) Azr—As, (10) Agy—
Ayg, (11) Ago—Asz, (12) Asz—Ass, (13) Ass—Asg, (14) Aso—Aee (15), Ag7— A70, and
(16) A7;—A+». In this example, designs for a multiple load cases using both discrete
and continuous design variables are performed. The values and directions of the
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Fig. 10.4 Schematic of a 72-bar space truss

two load cases applied to the 72-bar spatial truss for both discrete and continuous
designs are listed in Table 10.5. The members are subjected to the stress limits of
+25 ksi (£172.375 MPa) for both discrete and continuous designs. Maximum
displacement limitations of +0.25 in (£6.35 mm), are imposed on every node in
every direction and on the uppermost nodes in both x and y directions respectively
for discrete and continuous cases. In this example, the parameters of the CS
algorithm are considered to be pa = 0.15 and number of nests = 7, maximum
number of analyses = 21,000.

10.2.5.5 Design of a 72-Bar Truss Using Discrete Variables

In this case, the discrete variables are selected from 64 discrete values from 0.111 to
33.5in’ (71.613 to 21,612.860 mmz). For more information, the reader can refer to
Table 10.2 in Kaveh and Talatahari [15].

Table 10.6 shows the best solution vectors, the corresponding weights and the
required number of analyses for present algorithm and some other metaheuristic
algorithms. The CS algorithm can find the best design among the other existing
studies. Although the number of required analyses by the CS algorithm is slightly
more than ICA algorithm, but the best weight of the CS algorithm is 389.87 1b
(1,734.93 N) that is 2.97 1b (13.22 N) lighter than the best result obtained by ICA
algorithm [15].
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Table 10.5 Multiple loading a5 Node  F, kips (kN)  F, kips (kN)  F, kips (kN)
conditions for the 72-bar truss

17 0.0 0.0 —5.0 (=22.25)
18 0.0 0.0 —5.0 (=22.25)
19 0.0 0.0 —5.0 (—22.25)
20 0.0 0.0 —5.0 (=22.25)
2 17 5.0 (22.25) 5.0 (22.25) —5.0 (=22.25)

Table 10.6 Performance comparison for the 72-bar spatial truss with discrete variables

Optimal cross-sectional areas (in?)

GA PSOPC HPSO HPSACO ICA  Present work [4]
Element group [15] [15] [15] [16] [15] in® cm?

1 A—Ay 0.196 4490 4970 1.800 199  1.800 11.613

2 As—-Ap 0.602 1457  1.228 0442 0442  0.563 3.632

3 As=Agg 0307  0.111  0.111 0.141 0.111 0.111 0.716

4 A=Ag 0766  0.111  0.111 0.111 0.141 0.111 0.716

5 Aro-Ans 0391 2620 2.880 1.228 1228 1266 8.168

6 Asz—Asg 0.391 1.130 1457 0.563 0.602 0563 3.632

7 Aszi—Asy 0.141  0.196  0.141 0.111 0.111 0.111 0.716

8 Azs—Asg 0.111  0.111  0.111  0.111 0.141 0.111 0.716

9 Az—~Ay 1.800  1.266  1.563  0.563 0.563 0.563 3.632

10 As—Agg 0.602 1457  1.228 0.563 0.563 0442 2.852

11 Aso-Asy 0.141  0.111  0.111 0.111 0.111 0.111 0.716

12 As3—Asy 0.307  0.111  0.196  0.250 0.111 0.111  0.716

13 Ass—Asg 1.563 0442 0391 0.196 0.196 0.196  1.265

14 Aso—Ags 0.766 1457 1457 0.563 0.563 0.602 3.884

15 Ag—A7o 0.141 1228  0.766  0.442 0.307 0391 2523

16 Ayi—Ags 0.111 1457 1563  0.563 0.602 0563 3.632
Weight (Ib) 427203 941.82  933.09 393.380 392.84 389.87 1,734.93 (N)

Number of analyses N/A 150,000 50,000 5,330 4,500 4,840

10.2.5.6 Design of a 72-Bar Truss Using Continuous Variables

In this case the minimum value for the cross-sectional areas is 0.1 in> (0.6452 cm?)
and the maximum value is limited to 4.00 in® (25.81 cm?).

The CS algorithm achieves the best result among other algorithms in the aspects
of weight, number of required analyses and the average weight of 100 runs. The
convergence history of the best result and the average weight of 100 runs are shown
in Fig. 10.5. Notice that as shown in this figure, although the CS requires 10,600
analyses to achieve 379.63 1b (1,689.37 N), but achieves the 380 Ib (1,691 N)
possible design after 4,900 analyses. Table 10.7 compares the results of the CS to
those of the previously reported methods in the literature.

For Further studies of one of two CS parameters we have tried this example
alternatively for constant number of nests as 7 and various amounts of pa from the
[0, 1] interval with 21,000 as the maximum number of analyses. The convergence
history of the average weight for 100 runs is shown in Fig. 10.6. According to this
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Table 10.7 Performance comparison for the 72-bar spatial truss with continuous variables

Optimal cross-sectional areas (in%
GA ACO PSO BB-BC HBB-BC Present work [4]

Element group [14] [9] [14] [8] [14] in® cm?
1 A-A, 1755 1.948  1.7427 1.8577 1.9042 1.9122 12.055
2 As—A, 0.505 0.508 0.5185 0.5059 0.5162 0.5101 3.267
3 Ais-Asg 0.105  0.101  0.1000 0.1000  0.1000 0.1000 0.646
4 Aj—Ag 0.155 0.102  0.1000 0.1000  0.1000 0.1000 0.645
5 Aro-Asy 1.155 1303 13079 1.2476 1.2582 1.2577 8.487
6 Ass—Asg 0.585 0.511  0.5193 0.5269 0.5035 0.5128 3.343
7 Az1—Asg 0.100  0.101  0.1000 0.1000  0.1000 0.1000 0.645
8 Aszs—Asg 0.100  0.100  0.1000 0.1012  0.1000 0.1000 0.646
9 Az—~Asg 0460 0.561 0.5142 0.5209 0.5178 0.5229 3.197

—
(=)

Ayi—Aug 0.530 0.492 05464 0.5172 05214 0.5177 3.345

11 Ao-Asy 0.120  0.100 0.1000 0.1004  0.1000 0.1000 0.648

12 Asz—Asy 0.165 0.107 0.1095 0.1005 0.1007 0.1000 0.645

13 Ass—Asg 0.155 0.156 0.1615 0.1565 0.1566 0.1566 1.013

14 Aso—Ags 0.535 0.550 0.5092 0.5507 0.5421 0.5406 3.492

15 Ag7—A70 0480 0.390 0.4967 0.3922 0.4132 0.4152 2.839

16 A71—-Aqpn 0.520 0.592 05619 0.5922 0.5756 0.5701 3.486
Weight (Ib) 385.76 380.24 38191 379.85 379.66 379.63 1,689.37 (N)
Average weight (Ib) N/A 383.16 N/A 382.08 381.85 379.73  1,689.80 (N)
Number of analyses  N/A 18,500 N/A 19,621 13,200 10,600

figure, the values from [0.15, 0.35] are more efficient for the performance of the
algorithm and 0.15 gives the best result among others.
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10.2.5.7 Design of a 120-Bar Dome Shaped Truss

The topology, nodal numbering and element grouping of a 120-bar dome truss are
shown in Fig. 10.7. For clarity, not all the element groups are numbered in this
figure. The 120 members are categorized into seven groups, because of symmetry.
Other conditions of problem are as follows [8], the modulus of elasticity is 30,450
ksi (210,000 MPa) and the material density is 0.288 1b/in® (7,971.810 kg/m3). The
yield stress of steel is taken as 58.0 ksi (400 MPa). The dome is considered to be
subjected to vertical loading at all the unsupported joints. These loads are taken as
—13.49 kips (—60 kN) at node 1, —6.744 kips (—30 kN) at nodes 2 through 14, and
—2.248 kips (— 10 kN) at the rest of the nodes. The minimum cross-sectional area of
all members is 0.775 in® (5 cm?) and the maximum cross-sectional area is taken as
20.0 in? (129.032 cmz). The constraints are stress constraints [as defined by (10.5)
and (10.6)] and displacement limitations of +0.1969 in (5 mm), imposed on all
nodes in X, y and z directions.

In this example, the parameters of the CS algorithm are considered to be
pa = 0.15, the number of nests = 7 and the maximum number of analyses
= 21,000. Table 10.8 shows the best solution vectors, the corresponding weights
and the required number of analyses for convergence of the present algorithm and
some other metaheuristic algorithms. The CS-based algorithm needs 6,300 analyses
to find the best solution while this number is equal to 150,000, 32,600, 10,000,
10,000, 7,000 and 6,000 analyses for a PSO-based algorithm [13], a PSO and ACO
hybrid algorithm [13], a combination algorithm based on PSO, ACO and HS [13],
an improved BB-BC method using PSO properties [14], the CSS algorithm [10]
and the ICA algorithm [17], respectively. As a result, the CS optimization algorithm
has second best convergence rates among the considered metaheuristics and its
difference with the ICA is only 300 analyses. Comparing the final results of the CS
and those of the other metaheuristics shows that CS finds the second best result
while the difference between the result of the CS and that obtained by the HPSACO
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Fig. 10.7 Schematic of a
120-bar dome shaped truss
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[13], as the first best result, is very small. A comparison of the allowable and
existing stresses and displacements of the 120-bar dome truss structure using CS is
shown in Fig. 10.8. The maximum value for displacement is equal to 0.1969 in
(5 mm) and the maximum stress ratio is equal to 99.99 %.

10.2.6 Discussions

A version of cuckoo search algorithm via Lévy flights is applied to optimum design
of truss structures using both discrete and continuous design variables. Looking at
the CS algorithm carefully, one can observe essentially three components: selection
of the best, exploitation by local random walk, and exploration by randomization
via Lévy flights globally. In order to sample the search space effectively so that the
newly generated solutions be diverse enough, the CS uses the exploration step in
terms of Lévy flights. In contrast, most metaheuristic algorithms use either uniform
distributions or Gaussian to generate new explorative moves. For large search
spaces the Lévy flights are usually more efficient.
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Fig.10.8 Comparison of the allowable and existing constraints for the 120-bar dome shaped truss
using the CS [4] (a) Displacement in the x direction, (b) Displacement in the y direction, (c)
Displacement in the z direction, (d) Stresses

Unique characteristics of the CS algorithm over other metaheuristic methods are
its simplified numerical structure and its dependency on a relatively small number
of parameters to define and determine - or limit- the algorithm’s performance. In
fact, apart from the step size parameter a and the population size n, there is
essentially one parameter pa.

Three design examples consisting of two space trusses with continuous and
discrete design variables and a dome-shaped truss with continuous search space
are studied to illustrate the efficiency of the present algorithm. The comparisons of
the numerical results of these structures utilizing the CS and those obtained by other
optimization methods are carried out to demonstrate the robustness of the present
algorithm in terms of good results and number of analyses together. The most
noticeable result obtained by the CS is that the average weight of 100 runs is better
than other algorithms.

10.3 Optimum Design of Steel Frames

In this section, optimum design of two dimensional steel frames for discrete vari-
ables based on the Cuckoo search algorithm is developed. The design algorithm is
supposed to obtain minimum weight frame through suitable selection of sections
from a standard set of steel sections such as American Institute of Steel
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Construction (AISC) wide-flange (W) shapes. Strength constraints of AISC load
and resistance factor design specification and displacement constraints are imposed
on frames.

10.3.1 Optimum Design of Planar Frames

The aim of optimizing the frame weight is to find a set of design variables that has
the minimum weight satisfying certain constraints. This can be expressed as:

Find {x} = [xl X2, .... xng] XieD;
to minimize w({x}) = E pi-Xi.L (10.17)
subject to : gi({x}) < 0 j=12,

where {x} is the set of design variables; ng is the number of member groups in
structure (number of design variables); D; is the allowable set of values for the
design variable x; w({x}) presents weight of the structure; nm is the number of
members of the structure; p; denotes the material density of member 7; L; and x; are
the length and the cross sectional area of member i, respectively; g;,({x}) denotes
design constraints include strength constraints of the American Institute of Steel
Construction load and resistance factor design (AISC [18]) and displacement
constraints; and 7 is the number of the constraints. D; can be considered either as
a continuous set or as a discrete one. If the design variables represent a selection
from a set of parts as

Di - (di,l?di,Zv s 7di,r(i)) (1018)

Then the problem can be considered as a discrete one, where (i) is the number
of available discrete values for the ith design variable.

In this study, an implementation of penalty approach is used to account for
constraints. In this method, the aim of the optimization is redefined by introducing
the cost function as:

feos({X}) = (1 +21.0) x W({X}), v = Zmax [0, 8;({x})] (10.19)

where n represents the number of evaluated constraints for each individual design,
and v denotes the sum of the violations of the design. The constant &; and &, are
selected considering the exploration and the exploitation rate of the search space.
Here, ¢ is set to unity; &; is selected in a way that it decreases the penalties and
reduces the cross-sectional areas. Thus, in the first steps of the search process, €, is
set to 1.5 and ultimately increased to 3.
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Design constraints according to LRFD-AISC requirements can be summarized
as follows:
Maximum lateral displacement:

Ar
2 _R<O 10.20
LR < (10.20)
Inter-story drift constraints:
di .
h——R,gO,lzl,Z,...,ns (10.21)
Strength constraints:
PM + MM.’C + MM)’ 1 < 0 f PM <0 2
— , or .
2¢P n ¢bM nx ¢bM ny N ¢(:P n
(10.22)
P, 8 My M, P,
4= +—2 1 -1<0, for (0.2
¢(7Pﬂ 9 ¢bM’L\' ¢an}' ¢L'Pﬂ

where A7 is the maximum lateral displacement; H is the height of the frame
structure; R is the maximum drift index (1/300); d; is the inter-story drift; A; is
the story height of the ith floor; ns is the total number of stories; R; presents the
inter-story drift index permitted by the code of the practice (1/300); P, is the
required strength (tension or compression); P, is the nominal axial strength (tension
or compression); ¢, is the resistance factor (¢. = 0.9 for tension, ¢. = 0.85 for
compression); M, and M,, are the required flexural strengths in the x and
y directions, respectively; M, and M, are the nominal flexural strengths in the
x and y directions (for two-dimensional structures, M,,, = 0); and ¢,, denotes the
flexural resistance reduction factor (¢. = 0.90) The nominal tensile strength for
yielding in the gross section is computed as

P,=A,F, (10.23)
and the nominal compressive strength of a member is computed as

P, =AyF. (10.24)

For = (0.658% )Fy,  ford. < 1.5

0.877 . (10.25)
Fo= =5 |F» ford)1.5
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_u R,

.=
rmV E

A (10.26)

where A, is the cross-sectional area of a member and k is the effective length factor
determined by the approximated formula based on Dumonteil [19].

10.3.2 Optimum Design of Steel Frames Using Cuckoo
Search Algorithm

Before initiating optimization process, it is necessary to set the search space. The
steel members used for the design of steel frames, consist of 267 W-shaped sections
from the AISC-LRFD database starting from W44 x 335 to W4 x 13. These
sections with their properties are used to prepare a design pool. The sequence
numbers assigned to this pool that sorted with respect to area of sections are
considered as design variables. In other words the design variables represent a
selection from a set of integer numbers between 1 and the number of sections. The
pseudo code of optimum design algorithm is identical to that of Sect. 10.2.4.

10.3.3 Design Examples

In this section, three steel frames are optimized using the CS algorithm as bench-
mark problems. To investigate the effect of the initial solution on the final results,
each example is solved independently several times with random initial designs due
to the stochastic nature of the algorithm. The proposed algorithm is coded in
MATLAB and structures are analyzed using the direct stiffness method. The final
results are compared to the solutions of other methods to demonstrate the efficiency
of the present approach. First example is also used for adjusting algorithm param-
eters and the obtained results are used in other examples.

10.3.3.1 A One-Bay Ten-Story Frame

Figure 10.9 shows the topology, the service loading conditions and the numbering
of member groups for a one-bay ten-story frame. The element grouping results in
four beam sections and five column sections for a total of nine design variables.
Beam element groups were chosen from 267 W-sections, and column groups were
selected from only W14 and W12 sections.

The AISC-LRFD combined strength constraints and a displacement constraint
of inter-story drift < story height/300 are the performance constraints of this frame.
The material has a modulus of elasticity equal to £ = 29,000 ksi (200 GPa) and a
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yield stress of f, = 36 ksi (248.2 MPa). The effective length factors of the members
are calculated as K, > 1.0 using the approximate equation proposed by Dumonteil
[19], for a sway-permitted frame and the out-of-plane effective length factor is
specified as K, = 1.0. Each column is considered as non-braced along its length, and
the non-braced length for each beam member is specified as one-fifth of the span
length.

Based on Yang’s simulations [1], considering algorithm parameters (population
size or number of host nests (n) and probability pa) such as n = 15-25 and
pa = 0.15-0.3 is efficient for most optimization problems. In order to adjust
probability pa for the two-dimensional steel frame optimization problem, we
solve this example alternatively with a constant n equal to10 and various amounts
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Table 10.9 Performance of the CS for one-bay ten-story frame with various amounts of pa

Best run 100 runs

Min weight Min

CS parameters (Ib) Noa  Weight (Ib) Noa

Pa=0.1,n=10 62,074.368 9,320 62,195.35 4+ 188.77 (45 %) 17,400 £ 5,900 (45 %)
Pa=02,n=10 62,074.368 6,040 62,133.05 &+ 149.07 (74 %) 16,480 + 5,600 (74 %)
Pa=0.25n=10 62,074.368 6,980 62,111.01 &+ 130.74 (81 %) 14,360 + 5,360 (81 %)
Pa=03,n=10 62,074.368 7,100 62,088.25 4+ 41.66 (90 %) 14,640 £+ 4,520 (90 %)
Pa=04,n=10 62,074.368 6,280 62,110.47 &+ 60.9 (74 %) 13,780 £ 3,800 (74 %)
Pa=05,n=10 62,074.368 8,820 62,156.84 + 173.54 (63 %) 15,120 4+ 4,580 (63 %)

of pa within the [0, 1] interval with 30,000 as the maximum number of analyses.
The results are summarized in Table 10.9, where the second and third columns
contain minimum weight and minimum number of analyses (Min Noa) for best
runs, respectively. Two other columns show the results of 100 runs for the obtained
optimal weight and the number of analyses in the format: average + one standard
deviation (success rate) (Yang [1]). Therefore, 62,088.25 4+ 41.66 (90 %) means
that the average optimal weight is 62,088.25 1b with a standard deviation of
41.66 1b, and the success rate of all runs in finding the best obtained weight is
90 %. As it is shown, the amounts from 0.1 to 0.3 are efficient for algorithm and the
pa = 0.3 pa = 0.3 gives the best result.

In order to adjust the population size, we design this frame with constant pa
equal to 0.3 and various n values within the [5] interval with 30,000 as the
maximum number of analyses. Results are shown in Table 10.10 with the previous
table’s format for 100 independent runs. As it is demonstrated, considering the
number of nests from 7 to 20 is sufficient, and n» = 7 is the most efficient value
which results the minimum number of analyses despite poor performance with
respect to average optimal weight and standard deviation. The table also indicates
that CS results the same best design in all cases. Overall, it seems that choosing
Pa =03 and n =7 can give efficient performance of the CS for the
two-dimensional steel frame optimization problem. Thus, we used these values
for the present example and two subsequent ones.

This frame was studied for discrete design variables by Pezeshk et al. [20] using
GA, Camp et al. [17] using ACO and Kaveh and Talatahari [21] using IACO.
Table 10.11 lists the designs developed by these algorithms and the CS. The lighter
design with minimum number of analyses obtained by IACO algorithm. The best
design developed by CS weighted 62,074 (Ib) with 4,438 as required number of
analyses that is 0.4 % heavier than the lighter design obtained by TACO. The
average weight and standard deviation of 100 runs (Ib) are 63,308 £+ 684 and
63,279 £ 618 for ACO and IACO algorithms, respectively, and 62,923 + 1.74
for 30 runs by HS, CS results in 62,186.96 £ 240.12 for 100 runs that is better than
others.
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Table 10.10 Performance of the CS for one-bay ten-story frame with various amounts of n

Best run 100 runs

Min weight Min

CS parameters (Ib) Noa Weight (Ib) Noa
n=25,Pa=03 62,074.368 4,560 62,672.28 + 854.16 8,140 + 4,640 (41 %)
41 %)
n=7,Pa=03 62,074.368 4,438  62,186.96 + 240.12 10,528 + 3,920
(58 %) (58 %)
n = 10, 62,074.368 7,100  62,088.25 + 41.66 (90 %) 14,640 £ 4,520
Pa =03 (90 %)
n =15, 62,074.368 11,610 62,109.71 + 66.48 (76 %) 19,920 + 4,860
Pa =03 (76 %)
n = 20, 62,074.368 13,280 62,116.00 £ 66.89 (71 %) 23,320 + 3,800
Pa =03 (71 %)
n = 25, 62,074.368 16,400 62,177.38 + 137.74 24,900 + 3,250
Pa =03 45 %) (45 %)

10.3.3.2 A Three-Bay Fifteen-Story Frame

The configuration, the service loading conditions and the numbering of member
groups for a three-bay fifteen-story frame is shown in Fig. 10.10. The loads are
W = 6.75 kips and w; = 3.42 kips/ft. All 64 columns grouped into 9 groups and all
45 beams are considered as a beam element group. All element groups are chosen
from 267 W-sections. Performance constraints, material properties and other con-
ditions are the same as those of the first example. One additional constraint of
displacement control is that the sway of the top story is limited to 9.25 in (23.5 cm).
The parameters of algorithm are considered same as those of the first example. The
maximum number of analyses is 19,600.

The frame was designed by Kaveh and Talatahari using PSO algorithm [15],
hybrid PSO and BB-BC algorithm [22] and ICA algorithm [15]. Table 10.12
shows the optimal design developed by CS algorithm, a frame weighting
86,809 1b that is 7.4 % lighter than the best design obtained by ICA algorithm
as best result of three other algorithms. The average optimal weight and standard
deviation of 50 independent runs with random initial designs are 87,784 £ 942 Ib.
The convergence history for best result and penalized average weight of 50 runs
are shown in Fig. 10.11, and for clarity the upper bound of y axis limited to
120 kips. It should be noted that although the CS requires 16,170 analyses to reach
the lightest design, but achieves the 93,630 1b structure as a feasible design after
4,700 analyses. The maximum value of sway at the top story, stress ratio and
inter-story drift are 5.39 in. 99.72 % for right corner column at 10th story and 0.46
in for 4th story, respectively.
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Table 10.11 Performance comparison for the one-bay ten-story frame

Optimal W-shaped sections
Element group GA ACO HS IACO Present work [5]

1 Column1-2S WI4 x 233 W14 x 233 Wl14x 211 W14 x 233 W14 x 233
2 Column34S WI4 x 176 W14 x 176 W14x 176 W14 x 176 W14 x 176
3 Column5-6S WI4 x 159 WI14 x 145 Wl14x 145 W14 x 145 W14 x 132
4 Column7-8S WI14 x99 WI4 x99 W14 x90 WI4 x90 WI14 x 109
5 Column9-10S WI2 x79 WI2x65 W14 x61 WI2x 65 W14 x 61

6 Beam 1-3 S W33 x 118 W30 x 108 W33x 118 W33 x 118 W33 x 118
7 Beam4-6S W30 x 90 W30 x 90 W30 x 99 W30 x 90 W30 x 108
8 Beam 7-9 S W27 x 84 W27 x 54 W24 x76 W24 x76 W24 x 55

9 Beam 10 S W24 x 55 W21 x 44 WI8 x 46 W14 x 30 W18 x 40

Best weight (1b) 65,136 62,610 61,864 61,796 62,074

No. of analyses 3,000 5,100 3,690 2,500 4,438

10.3.3.3 A Three-Bay Twenty Four-Story Frame

The last example is a three-bay twenty four-story frame shown in Fig. 10.12. Camp
et al. [17], Degertekin [23], Kaveh and Talatahari [22] and Kaveh and Talatahari
[15] utilized ant colony optimization, harmony search algorithm, a hybrid PSO and
BB-BC, and Imperialist competitive algorithm to solve this problem, respectively
The frame is designed following the LRFD specifications. The inter-story drift
displacement constraint is same as the first example. The loads are W = 5,761.85

Ib, w; = 300 Ib/ft, w, = 436 1b/ft, w3 = 474 Ib/ft and w, = 408 1b/ft. The
material’s modulus of elasticity is £ =29,732 ksi (205 GPa) and its yield stress is
fy = 33.4 ksi (230.3 MPa). The element grouping results in 16 column sections and
4 beam sections for a total of 20 design variables. In this example, each of the four
beam element groups is chosen from all 267 W-shapes, while the 16 column
element groups are limited to W14 sections (37 W-shapes). The effective length
factors of the members are calculated as K, > 1.0 for a sway-permitted frame and
the out-of-plane effective length factor is specified as K, = 1.0. All columns and
beams are considered as non-braced along their lengths.

The optimum designs of the algorithms are listed in Table 10.13. The best design
of previous works is due to ICA algorithm, weights 212,640 1b with 10,500 as the
number of analyses. The lightest design of 20 independently runs for CS algorithm
weights 201,451 1b that is 5.3 % lighter than developed by ICA.

The convergence history for best result and penalized average weight of 20 runs
are shown in Fig. 10.13. For clarity the initial iterations of algorithm are eliminated.
As depicted in this figure although the best design of the CS needs 15,918 analyses,
it reaches to a feasible design of 211,979 1b with 3,528 analyses which is lighter
than the design obtained by ICA. The average optimal weight for the 20 runs is
205,096 1b, and the standard deviation is 4,533 1b. The average number of analyses
is 18,000. The optimal average weight and a standard deviation for 100 runs of
ACO and HS algorithms is 229,555 £ 4,561 Ib and 222,620 + 5,800 1b with
15,500 and 14,651 as average number of analyses, respectively.
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Fig. 10.10 Schematic of a three-bay fifteen-story frame [5]

The maximum value of sway at the top story, stress ratio and inter-story drift are
10.63 in. 80.18 % for right inner column at 2nd story and 0.48 in for 13th story,
respectively. Figure 10.14a, b shows the inter-story drift for all the stories, stress
ratio for all the members, and their upper bounds. Evidently, the inter-story drift is
the dominant constraint in the frame design so that it is more than 90 % of the
maximum drift between 2 to 17 stories.
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Table 10.12 Performance comparison for the three-bay fifteen-story frame

Optimal W-shaped sections

Element group PSO HBB-BC ICA Present work [5]
1 W33 x 118 W24 x 117 W24 x 117 W 14 x 99
2 W33 x 263 W21 x 132 W21 x 147 W27 x 161
3 W24 x 76 W12 x 95 W27 x 84 W14 x 82
4 W36 x 256 W18 x 119 W27 x 114 W 24 x 104
5 W21 x 73 W21 x 93 W14 x 74 W12 x 65
6 W18 x 86 W18 x 97 W18 x 86 W 18 x 86
7 W18 x 65 W18 x 76 W12 x 96 W 18 x 50
8 W21 x 68 W18 x 65 W24 x 68 W14 x 61
9 W18 x 60 W18 x 60 W10 x 39 W8 x 24
10 W18 x 65 W10 x 39 W12 x 40 W 14 x 40
11 W21 x 44 W21 x 48 W21 x 44 W21 x 44
Best weight (1b) 111,613 97,649 93,813 86,809
No. of analyses 50,000 9,500 6,000 16,170
Fig. 10.11 The best and 120 1
average design history of | [ The avearage penalized weight of 50 runs
the three-bay fifteen-story L5 The lightest design
frame [5] 110t

£ 105t

D 100 |
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10.3.4 Discussions

A version of Cuckoo Search algorithm via Lévy flights, which is proposed by Yang
and Deb [3], is utilized to optimum design of two dimensional steel frames. The
procedure of discrete design variables are performed according to AISC-LRFD
specifications. The CS algorithm is comprised of three major components as
following: selection of the best, exploitation by local random walk, and exploration
by randomization based on Lévy flights. In order to sample the search space
effectively so that the newly generated solutions to be diverse enough, the CS
uses the exploration step in terms of Lévy flights. In contrast, most metaheuristic
algorithms use either uniform distributions or Gaussian to generate new explorative
moves. When the search space is large, Lévy flights are usually more efficient. As
shown in convergence figures of examples, the ability of algorithm to local search is
not very efficient as its exploration.
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Fig. 10.12 Schematic of a three-bay twenty-four story frame
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Table 10.13 Performance comparison for the three-bay twenty four-story frame

Optimal W-shaped sections
Element group ACO HS HBB-BC ICA Present work [5]

1 Wl4x 145 W14 x 176 W14 x 176 W14 x 109 W14 x 159
2 W14 x 132 W14 x 176 W14 x 159 WI4 x 159 WIi4 x 132
3 Wi4 x 132 W14 x 132 W14 x 109 W14 x 120 W14 x 99
4 WIi4 x 132 W14 x 109 W14 x 90 W14 x 90 W14 x 74
5 W14 x 68 W14 x 82 WI4 x 82 WI4 x74 WI4 x 61
6 Wi4 x 53 W14 x 74 W14 x74 WI4 x 68 W14 x 53
7 W14 x 43 W14 x 34 W14 x 38 W14 x30 WI4 x 34
8 W14 x 43 W14 x22 WI4 x30 WIi4x38 Wi4 x 22
9 Wi4 x 145 W14 x 145 W14 x 159 W14 x 159 W14 x 90
10 W14 x 145 W14 x 132 WI4 x 132 W14 x 132 W14 x 99
11 W14 x 120 W14 x 109 WI4 x 109 WIi4 x99  WIi4 x 99
12 WIi4 x 90 W14 x 82 WI4 x 82 WI4 x 82 W14 x 90
13 WIi4 x 90 W14 x 61 W14 x 68 W14 x 68 W14 x 74
14 W14 x 61 W14 x 48 WI4 x 48 WI4 x 48 WI4 x 53
15 Wi4 x 30 W14 x 30 WIi4 x34 WI4 x 34 W14 x 34
16 W14 x 26 W14 x22 WI4 x26 WIi4x22 Wi4 x 22
17 W30 x 90 W30 x90 W30 x90 W30 x90 W30x 90
18 W8 x 18 WI0 x 22 W21 x 48 W21 x50 W6x15
19 W24 x 55 WI8 x40 WI8 x 46 W24 x 55 W24x55
20 W8 x 21 W12 x 16 W8 x 21 W8 x 28 W6x 8.5
Best weight (Ib) 220,465 214,860 215,933 212,640 201,451
No. of analyses ~ NA 9,924 10,500 7,500 15,918
Fig. 10.13 The best and 270 1
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Unique characteristics of the CS algorithm over other metaheuristic methods are
its simplified numerical structure and its dependency on a relatively small number
of parameters, to define and determine the algorithm’s performance. In fact, apart
from the step size parameter «, and population size n, there is essentially one
parameter pa. Simulations show that reaching the optimum designs via the later
version of CS is insensitive to parameter tuning.
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Fig. 10.14 Comparison of allowable and existing values for three-bay twenty four-bay frame
using the CS [5] (a) Inter-story drift, (b) Stress ratio

Three steel frames with various number of stories and bays, are studied to
illustrate the efficiency of the present algorithm. The comparisons of the numerical
results obtained by CS with those by other optimization methods are carried out to
demonstrate the robustness of the present algorithm in terms of reaching to best
designs. According to what has been investigated, it can be interpreted that dis-
placement constraints become dominant along the height of the structures. The
most noticeable result obtained by the CS is that the performance of the algorithm
in several independent runs is better than other algorithms.
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Chapter 11
Imperialist Competitive Algorithm

11.1 Introduction

In this chapter an optimization method is presented based on a socio-politically
motivated strategy, called Imperialist Competitive Algorithm (ICA). ICA is a
multi-agent algorithm with each agent being a country, which is either a colony
or an imperialist. These countries form some empires in the search space. Move-
ment of the colonies toward their related imperialist, and imperialistic competition
among the empires, form the basis of the ICA. During these movements, the
powerful Imperialists are reinforced and the weak ones are weakened and gradually
collapsed, directing the algorithm towards optimum points. Here, ICA is utilized to
optimize the skeletal structures which is based on [1, 2].

This algorithm is proposed by Atashpaz et al. [3, 4] and is a socio-politically
motivated optimization algorithm which similar to many other evolutionary algo-
rithms starts with a random initial population. Each individual agent of an empire is
called a country, and the countries are categorized into colony and imperialist states
that collectively form empires. Imperialistic competitions among these empires
form the basis of the ICA. During this competition, weak empires collapse and
powerful ones take possession of their colonies. Imperialistic competitions direct
the search process toward the powerful imperialist or the optimum points.

On the other hand, finding the optimum design of the skeletal structures is known
as benchmark examples in the field of difficult optimization problems due to the
presence of many design variables, large size of the search space, and many
constraints. Thus, this chapter presents an ICA-based algorithm to solve optimiza-
tion skeletal structures problems which can be considered as a suitable field to
investigate the efficiency of the new algorithm. The chapter covers both the discrete
and continuous structural design problems. Comparison of the results of the ICA
with some well-known metaheuristics demonstrates the efficiency of the present
algorithm.

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 349
DOI 10.1007/978-3-319-05549-7_11, © Springer International Publishing Switzerland 2014
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11.2 Optimum Design of Skeletal Structures

The aim of optimizing a structure is to find a set of design variables that has the
minimum weight satisfying certain constraints. This can be expressed as

Find {x} = [xl,xz, ---’xng]»
x, eD;

nm

to minimize W({x}) = Zpi xi L (11.1)
p

subject to : gj({x}) <0 j=12,...,n

where {x} is the set of design variables; ng is the number of member groups in
structure (number of design variables); D; is the allowable set of values for the
design variable x; W({x}) presents weight of the structure; nm is the number of
members of the structure; p; denotes the material density of member i; L; and x; are
the length and the cross-sectional of member i, respectively; g;({x}) denotes design
constraints; and »n is the number of the constraints.

D; can be considered either as a continuous set or as a discrete one [5]. In the
continuous problems, the design variables can vary continuously in the optimiza-
tion process

D; = {xi|xi e [xi,mimxi,max]} (112)

where X; min and X; ;. are minimum and maximum allowable values for the design
variable i, respectively. If the design variables represent a selection from a set of
parts as

D; = {dial’di,zv"'adi,r(i)} (11.3)

Then the problem is considered as a discrete one, where r(i) is the number of
available discrete values for the ith design variable.

In order to handle the constraints, a penalty approach is utilized. In this method,
the aim of the optimization is redefined by introducing the cost function as

feoot ({x}) = (Tt 21-0)" xW({x}), v= i:max[o, vl (11.4)

where n represents the number of evaluated constraints for each individual design.
The constant &, and ¢, are selected considering the exploration and the exploitation
rate of the search space. Here, €, is set to unity, &, is selected in a way that it
decreases the penalties and reduces the cross-sectional areas. Thus, in the first steps
of the search process, ¢; is set to 1.5 and ultimately increased to 3.
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This chapter investigates two types of skeletal structures consisting of trusses
and frames. The constraint conditions for these structures are briefly explained in
the following sections.

11.2.1 Constraint Conditions for Truss Structures

For truss structures, the stress limitations of the members are imposed according to
the provisions of ASD-AISC [6] as follows:

ot =0.6F, for 6;>0
{ai_ for 6; <0 (11.5)
where o, is calculated according to the slenderness ratio:
A 5 34 4
11— \F — L O - i < C
2cz )™ / 378 st ¢
c; = (11.6)
1272°E
T/I? for 2; > Cc

where E is the modulus of elasticity; F is the yield stress of steel; C. denotes the
slenderness ratio (4;) dividing the elastic and inelastic buckling regions; A, presents
the slenderness ratio.

The other constraint is the limitation of the nodal displacements:

6 <&/ i=1,2,....nn (11.7)

where §; is the nodal deflection; ¥ is the allowable deflection of node i; and nn is the
number of nodes.

11.2.2 Constraint Conditions for Steel Frames

Optimal design of frame structures is subjected to the following constrains
according to LRFD-AISC provisions [7]:
Maximum lateral displacement

A
“L<R (11.8)
H

Inter-story displacements constraints
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i=1,2,...,ns (11.9)

EE
IA
=

The strength constraints

Py + My Muy <1 F P, <02
>~ 1, or - .
2¢(>Pn ¢th.\‘ ¢thy ¢CP,1
(11.10)
P, 8 [ My M,y P,
+3 +-——| <1, For >0.2
¢an 9 ¢thx ¢thy ¢an

where Ar is the maximum lateral displacement; H is the height of the frame
structure; R is the maximum drift index (1/300); d; is the inter-story drift; 4; is the
story height of the ith floor, ns is the total number of stories; R; presents the inter-
story drift index permitted by the code of the practice (1/300); P, is the required
strength (tension or compression); P, is the nominal axial strength (tension or
compression); ¢, is the resistance factor (¢. = 0.9 for tension, ¢. = 0.85 for
compression); M,, and M,, are the required flexural strengths in the x and
y directions, respectively; M, and M,,, are the nominal flexural strengths in the
x and y directions (for two-dimensional structures, M,, = 0); and ¢,, denotes the
flexural resistance reduction factor (¢, = 0.90). The nominal tensile strength for
yielding in the gross section is computed as

P,=A,-F, (11.11)

and the nominal compressive strength of a member is computed as

Pn:Ag'F('r (1112)
Fop= (0‘65843>Fy, For A <15 (11.13)
0.877
P, = <—2> F,, For A >15
2
Ko [F

a=r 11.14
“ rzVE ( )

where A, is the cross-sectional area of a member.
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11.3 Imperialist Competitive Algorithm

ICA simulates the social-political process of imperialism and imperialistic compe-
tition. This algorithm contains a population of agents or countries. The pseudo-code
of the algorithm is as follows:

Step 1: Initialization The primary locations of the agents or countries are deter-
mined by the set of values assigned to each decision variable randomly as

(0)

xi,j = Xi,min + rand - (xi,max - xi,min) (1115)

(©)
i
and X; . are the minimum and the maximum allowable values for the ith variable;
rand is a random number in the interval [0,1]. If the allowable search space is a
discrete one, using a rounding function will also be necessary.

For each country, the cost identifies its usefulness. In the optimization process,
the cost is proportional to the penalty function. When the values of cost for initial
countries are calculated [as defined by (11.4)], some of the best countries
(in optimization terminology, countries with the least costs) will be selected to be
the imperialist states and the remaining countries will form the colonies of these
imperialists. The total number of initial countries is set to N4y~ and the number of
the most powerful countries to form the empires is equal to N;,,,. The remaining
N, of the initial countries will be the colonies each of which belongs to an empire.
In this chapter, a population of 30 countries consisting of 3 empires and 27 colonies
are used. All the colonies of initial countries are divided among the imperialists
based on their power. The power of each country, the counterpart of fitness value, is
inversely proportional to its cost value. That is, the number of colonies of an empire
should be directly proportionate to its power. In order to proportionally divide the
colonies among the imperialists, a normalized cost for an imperialist is defined as

where x; ;' determines the initial value of the ith variable for the jth country; x; i,

Cj=fat? —max (£ (11.16)

where fEZ';{' 7 is the cost of the Jth imperialist and C; is its normalized cost. The
colonies are divided among empires based on their power or normalized cost and

for the jth empire it will be as follows:

C.
NCj = Round | |5 1 Neo (11.17)

imp

e
i=1

where NCj is the initial number of colonies associated to the jth empire which are
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Fig. 11.1 Movement of a Imperialist
colonies to its new location
in the ICA [2] (a) toward
their relevant imperialist,
(b) in a deviated direction
(c) using various random
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selected randomly among the colonies. These colonies together with the jth impe-
rialist, form the empire number j.

Step 2: Colonies Movement In the ICA, the assimilation policy pursued by some
of former imperialist states, is modeled by moving all the colonies toward the
imperialist. This movement is shown in Fig. 11.1a in which a colony moves toward
the imperialist by a random value that is uniformly distributed between 0 and § x d

[3]:
{biew = {5t + U0, x d) x {V1} (11.18)

where f is a parameter with a value greater than one, and d is the distance between
colony and imperialist. # > 1 peruseds the colonies to get closer to the imperialist
state from both sides. § > 1 gradually results in a divergence of colonies from the
imperialist state, while a very close value to 1 for f reduces the search ability of the
algorithm. {V,} is a vector which its start point is the previous location of the
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colony and its direction is toward the imperialist locations. The length of this vector
is set to unity.

In order to increase the searching around the imperialist, a random amount of
deviation is added to the direction of movement. Figure 11.1b shows the new
direction which is obtained by deviating the previous location of the country as
big as 6. In this figure 4 is a random number with uniform distribution as

0=U(-y, +7) (11.19)

where y is a parameter that adjusts the deviation from the original direction. In most
of the implementations, a value of about 2 for  [3] and about 0.1 (Rad) for y, result
in a good convergence of the countries to the global minimum.

In order to improve the performance of the ICA, we change the movement step
as follow:

First: different random values are utilized for different components of the
solution vector inplace of only one value (11.18) as

{x}new = {x}old + /% d x {rand} ® {Vl} (1120)

where {V} is the base vector starting the previous location of colony and directing
to the imperialistic; {rand} is a random vector and the sign “@&)” denotes an
element-by-element multiplication. Since these random values are not necessarily
the same, the colony is deviated automatically without using the definition of 6.
However, for having a suitable exploration ability, the utilization of 8 is modified
by defining a new vector.

Second: From the above equation, it is possible to obtain the orthogonal colony-
imperialistic contacting line (denoted by {V,}). Then, deviation process is
performed by using this vector in place of using € as

{5} ew = {6} + 8 xd x {rand} @ {V,} + U(—1, + 1) x tan(0) x d
x (Va}, {Vi} - {Va} =0, |[{Va}|| =1

(11.21)

Figure 11.1c describes the performance of this movement. In order to access the
discrete results after performing the movement process, a rounding function is
utilized which changes the magnitude of the results by the value of the nearest
discrete value. Although this may reduce the exploration of the algorithm [8], as
explained in the above, however we increase this ability by considering different
random values and by defining a new deviation step.

Step 3: Imperialist Updating If the new position of the colony is better than that
of its relevant imperialist (considering the cost function), the imperialist and the
colony change their positions and the new location with a lower cost becomes the
imperialist. Then the other colonies move toward this new position.
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Step 4: Imperialistic Competition Imperialistic competition is another strategy
utilized in the ICA methodology. All empires try to take the possession of colonies
of other empires and control them. The imperialistic competition gradually reduces
the power of weaker empires and increases the power of more powerful ones. The
imperialistic competition is modeled by just picking some (usually one) of the
weakest colonies of the weakest empires and making a competition among all
empires to possess these (this) colonies. In this competition based on their total
power, each of empires will have a likelihood of taking possession of the mentioned
colonies.

Total power of an empire is mainly affected by the power of imperialist country.
But the power of the colonies of an empire has an effect, though negligible, on the
total power of that empire. This fact is modeled by defining the total cost as

NC;
col,i
S
(imp.j) i=1
TC':fcos +§ (1122)
! t NC;

where TC, is the total cost of the jth empire and £ is a positive number which is
considered to be less than 1. A small value for £ causes the total power of the empire
to be determined by just the imperialist and increasing it will add to the role of the
colonies in determining the total power of the corresponding empire. The value of
0.1 for £ is found to be a suitable value in most of the implementations [3]. Similar
to (11.16), the normalized total cost is defined as

NTC; = TC; — max (TC;) (11.23)
1

where NTC; is the normalized total cost of the jth empire. Having the normalized
total cost, the possession probability of each empire is evaluated by:

NTC;
P, = Fr— J (11.24)

Z NTC;
i=1

Step 5: Implementation When an empire loses all of its colonies, it is assumed to
be collapsed. In this model implementation, where the powerless empires collapse
in the imperialistic competition, the corresponding colonies will be divided among
the other empires.

Step 6: Terminating Criterion Control Moving colonies toward imperialists are
continued and imperialistic competition and implementations are performed during
the search process. When the number of iterations reaches to a pre-defined value or
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the amount of improvement in the best result reduces to a pre-defined value, the
searching process is stopped.

The movement of colonies towards their relevant imperialist states along with
competition among empires and also the collapse mechanism will hopefully cause
all the countries to converge to a state in which there exist just one empire in the
world and all the other countries are colonies of that empire. In this ideal new world,
colonies will have the same position and power as the imperialist.

11.4 Design Examples

In this section, the optimal design of four steel structures is performed by the
present algorithm. The final results are compared to the solutions of other methods
to demonstrate the efficiency of the present approach. The examples contain a dome
shaped truss example with continuous search space and a 72-bar spatial truss with
the discrete variables. In addition, two benchmark frames are optimized by the ICA
to find the optimum designs.

11.4.1 Design of a 120-Bar Dome Shaped Truss

The topology and elements group numbers of 120-bar dome truss are shown in
Fig. 11.2. The modulus of elasticity is 30,450 ksi (210,000 MPa), and the material
density is 0.288 Ib/in® (7,971.810 kg/m?). The yield stress of steel is taken as 58.0
ksi (400 MPa). The dome is considered to be subjected to vertical loading at all the
unsupported joints. These loads are taken as —13.49 kips (—60 kN) at node
1, —6.744 kips (—30 kN) at nodes 2 through 14, and —2.248 kips (—10 kN) at
the rest of the nodes. The minimum cross-sectional area of all members is 0.775 in?
2 cm2) and the maximum cross-sectional area is taken as 20.0 in’ (129.03 cmz).
The constraints are stress constraints [as defined by (11.5) and (11.6)] and displace-
ment limitations of £0.1969 in (£5 mm) imposed on all nodes in x, y and
z directions.

Table 11.1 shows the best solution vectors, the corresponding weights and the
required number of analyses for convergence of the present algorithm and some
other metaheuristic algorithms. ICA-based algorithm needs 6,000 analyses to find
the best solution while this number is equal to 150,000, 32,600, 10,000, 10,000 and
7,000 analyses for a PSO-based algorithm [11], a PSO and ACO hybrid algorithm
[11], a combination algorithm based on PSO, ACO and HS [11], an improved BB—
BC method using PSO properties [12] and the CSS algorithm [13], respectively. As
a result, the ICA optimization algorithm has best convergence rates among the
considered metaheuristics. Figure 11.3 shows the convergence history for the best
results of the ICA. Comparing the final results of the ICA and those of the other
metaheuristics, ICA finds the third best result while the difference between the
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Fig. 11.2 Schematic of a 120-bar dome shaped truss

result of the ICA and those obtained by the HPSACO and the CSS methods, as the
first and second best results, are very small. The maximum value for displacement
is equal to 0.1969 in (5 mm) and the maximum stress ratio is equal to 99.999 %.
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Table 11.1 Performance comparison for the 120-bar dome truss

Optimal cross-sectional areas (in2)

Element ~ PSOPC  PSACO  HPSACO  HBB-BC Present work [2]
group [10] [10] [10] [9] CSS [6] in? e’
1 Ay 3.040 3.026 3.095 3.037 3.027 3.0275 19.532
2 As 13.149 15.222 14.405 14.431 14.606  14.4596 93.288
3 As 5.646 4.904 5.020 5.130 5.044 5.2446  33.836
4 Ay 3.143 3.123 3.352 3.134 3.139 3.1413  20.266
5 As 8.759 8.341 8.631 8.591 8.543 8.4541 54.543
6 Ag 3.758 3418 3432 3.377 3.367 3.3567 21.656
7 A 2.502 2.498 2.499 2.500 2.497 24947  16.095
Best 33,481.2  33,263.9  33,248.9 33,287.9 33,251.9 33,256.2 147,931
weight N
(Ib)
No. of 150,000 32,600 10,000 10,000 7,000 6,000
required
analyses
Fig. 11.3 The convergence x 10*
for the dome shaped truss 10
obtained by the ICA [2] The best weights
b | The mean weights

Weights (1b)

3 N N N ;
0 50 100 150 200

Iteration

11.4.2 Design of a 72-Bar Spatial Truss

For the 72-bar spatial truss structure shown in Fig. 11.4, the material density is
0.1 Ib/in® (2,767.990 kg/m®) and the modulus of elasticity is 10,000 ksi
(68,950 MPa). The members are subjected to the stress limits of 25 ksi
(£172.375 MPa). The nodes are subjected to the displacement limits of £0.25 in
(£0.635 cm). The 72 structural members of this spatial truss are categorized as
16 groups using symmetry: (1) A;—Ay, (2) As—Apn, 3) Aj3-As, (4) AjA;s,
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Fig. 11.4 Schematic of a 72-bar spatial truss

(5) Ajo-Azz, (6) Az3-Asp, (7) A31-Asz4, (8) Azs—Ass, (9) Azr-Agp, (10) Ayi—Ags,
(1) Ago-Asz, (12) Asz—Ass, (13) Ass—Ass, (14) Aso—Ags (15), As7—Az, and
(16) A;;—A~,. The discrete variables are selected from Table 11.2. The values and
directions of the two load cases applied to the 72-bar spatial truss are listed in
Table 11.3.

The ICA algorithm can find the best design among the other existing studies. The
best weight of the ICA algorithm is 392.84 Ib (178.19 kg), while it is 393.38 1b
(178.43 kg), for the HPSACO [8]. The weight of the GA-based algorithm is equal to
427.203 1b (193.77 kg) [14]. The PSOPC and the standard PSO algorithms do not
find optimal results when the maximum number of iterations is reached [10]. The
HPSO and HPSACO algorithms get the optimal solution after 50,000 [10] and
5,330 [11] analyses while it takes only 4,500 analyses for the ICA. Table 11.4
compares the results of the CSS algorithm to those of the previously reported
methods in the literature. In this example, stress constraints are not dominant
while the maximum nodal displacement (0.2499 in or 0.635 cm) is close to its
allowable value.

11.4.3 Design of a 3-Bay, 15-Story Frame

The configuration and applied loads of a three-bay fifty-story frame structure [5] is
shown in Fig. 11.5. The displacement and AISC combined strength constraints are
the performance constraint of this frame. The sway of the top story is limited to
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Table 11.2 The available No. in2 2 No. in2 mm?

cross-section areas of the

AISC code 1 0.111 (71.613) 33 3.840 (2,477.414)
2 0.141 (90.968) 34 3.870 (2,496.769)
3 0.196 (126.451) 35 3.880 (2,503.221)
4 0.250 (161.290) 36 4.180 (2,696.769)
5 0.307 (198.064) 37 4.220 (2,722.575)
6 0.391 (252.258) 38 4.490 (2,896.768)
7 0.442 (285.161) 39 4.590 (2,961.284)
8 0.563 (363.225) 40 4.800 (3,096.768)
9 0.602 (388.386) 41 4.970 (3,206.445)
10 0.766 (494.193) 42 5.120 (3,303.219)
11 0.785 (506.451) 43 5.740 (3,703.218)
12 0.994 (641.289) 44 7.220 (4,658.055)
13 1.000 (645.160) 45 7.970 (5,141.925)
14 1.228 (792.256) 46 8.530 (5,503.215)
15 1.266 816.773) 47 9.300 (5,999.988)
16 1.457 (939.998) 48 10.850 (6,999.986)
17 1.563  (1,008.385) 49 11.500 (7,419.430)
18 1.620  (1,045.159) 50 13.500 (8,709.660)
19 1.800  (1,161.288) 51 13.900 (8,967.724)
20 1.990  (1,283.868) 52 14.200 (9,161.272)
21 2.130  (1,374.191) 53 15.500 (9,999.980)
22 2380  (1,535.481) 54 16.000  (10,322.560)
23 2,620  (1,690.319) 55 16.900  (10,903.204)
24 2.630  (1,696.771) 56 18.800  (12,129.008)
25 2.880  (1,858.061) 57 19.900  (12,838.684)
26 2930  (1,890.319) 58 22.000  (14,193.520)
27 3.090 (1,993.544) 59 22900  (14,774.164)
28 1.130 (729.031) 60 24.500  (15,806.420)
29 3.380  (2,180.641) 61 26.500  (17,096.740)
30 3470  (2,238.705) 62 28.000  (18,064.480)
31 3,550  (2,290.318) 63 30.000  (19,354.800)
32 3.630  (2,341.931) 64 33,500 (21,612.860)

Table 11.3 Loading conditions for the 72-bar spatial truss

Case 1 Case 2
Node Py kips (kN) Py kips (kN) P kips (kN) Px Py P kips (kN)
17 5.0 (22.25) 5.0 (22.25) —5.0 (22.25) 0.0 0.0 —5.0 (22.25)
18 0.0 0.0 0.0 0.0 0.0 —5.0 (22.25)
19 0.0 0.0 0.0 0.0 0.0 —5.0 (22.25)
20 0.0 0.0 0.0 0.0 0.0 —5.0 (22.25)

23.5 cm (9.25 in.). The material has a modulus of elasticity equal to £ = 200 GPa
(29,000 ksi) and a yield stress of Fy = 248.2 MPa (36 ksi). The effective length
factors of the members are calculated as K, > 0 for a sway-permitted frame and the
out-of-plane effective length factor is specified as K, = 1.0. Each column is
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Table 11.4 Optimal design comparison for the 72-bar spatial truss

Optimal cross-sectional areas (inz)

Element group GA [14] PSOPC [10] HPSO [10] HPSACO [11] Present work [2]
1 A ~Ay 0.196 4.490 4.970 1.800 1.99

2 As~Aj 0.602 1.457 1.228 0.442 0.442
3 A3 ~As 0.307 0.111 0.111 0.141 0.111
4 Ay ~Ag 0.766 0.111 0.111 0.111 0.141
5 Ajg~As 0.391 2.620 2.880 1.228 1.228
6 Aszz ~ Az 0.391 1.130 1.457 0.563 0.602
7 Az ~Azy 0.141 0.196 0.141 0.111 0.111
8 Azs ~ Azs 0.111 0.111 0.111 0.111 0.141
9 Asz7 ~ Ay 1.800 1.266 1.563 0.563 0.563
10 Ay ~Ayg 0.602 1.457 1.228 0.563 0.563
11 Ayo ~ As> 0.141 0.111 0.111 0.111 0.111
12 Asz ~Asy 0.307 0.111 0.196 0.250 0.111
13 Ass ~ Asg 1.563 0.442 0.391 0.196 0.196
14 Asg ~ Ags 0.766 1.457 1.457 0.563 0.563
15 Ag7 ~ Az 0.141 1.228 0.766 0.442 0.307
16 Az~ Ay 0.111 1.457 1.563 0.563 0.602
Weight (Ib) 427.203 941.82 933.09 393.380 392.84
No. of required analyses — 150,000 50,000 5,330 4,500

considered as non-braced along its length, and the non-braced length for each beam
member is specified as one-fifth of the span length.

The optimum design of the frame is obtained after 6,000 analyses by using the
ICA, having the minimum weight of 417.46 kN (93.85 kips). The optimum designs
for HBB-BC [9], HPSACO, PSOPC and PSO [5] has the weights of 434.54
(97.65kN), 426.36 (95.85), 452.34 kN (101.69 kips) and 496.68 kN (111.66 kips),
respectively. Table 11.5 summarizes the optimal designs for these algorithms. The
HBB-BC approach could find the result after 9,900 analyses [9] and the HSPACO
needs 6,800 analyses to reach a solution [5].

Figure 11.6 shows the convergence history for the result of the ICA method. The
global sway at the top story is 11.52 cm, which is less than the maximum sway. The
maximum value for the stress ratio is equal to 98.45 %. Also, the maximum drift
story is equal to 1.04 cm.

11.4.4 Design of a 3-Bay 24-Story Frame

Figure 11.7 shows the topology and the service loading conditions of a three-bay
twenty four-story frame consisting of 168 members originally designed by Davison
and Adams [15]. Camp et al. utilized ant colony optimization [16], Degertekin
developed least-weight frame designs for this structure using a harmony search [17]
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Table 11.5 Optimal design comparison for the 3-bay 15-story frame

Optimal W-shaped sections
Element group PSO [5] PSOPC [5] HPSACO [5] HBB-BC [9] Present work [2]

1 W33X118 W26X129 W21X111 W24X117 W24X117
2 W33X263 W24X131 WI18X158 W21X132 W21X147
3 W24X76 W24X103 WI10X88 W12X95 W27X84
4 W36X256 W33X141 W30X116 W18X119 W27X114
5 W21X73 W24X104 W21X83 W21X93 W14X74
6 WI18X86 WI10X88 W24X103 W18X97 W18X86
7 W18X65 WI14X74  W21X55 W18X76 W12X96
8 W21X68 W26X94 W26X114 W18X65 W24X68
9 WI18X60 W21X57 WI10X33 W18X60 W10X39
10 W18X65 WI18X71 WI18X46 W10X39 W12X40
11 W21X44 W21X44 W21X44 W21X48 W21X44
Weight (kN) 496.68 452.34 426.36 434.54 417.466
No. of required analyses 50,000 50,000 6,800 9,900 6,000
Fig. 11.6 The convergence 1000
for the three-bay fifteen- The best weights
story frame obtained by the o0 L The mean weights|
ICA [2]
. 800
2
% 700 |
o
3
600
500
400 L L L )
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and the authors utilized a hybrid PSO and BB-BC algorithm to solve this
example [9].

The frame is designed following the LRFD specification and uses an inter-story
drift displacement constraint. The material properties are: the modulus of elasticity
E = 205 GPa (29,732 ksi) and a yield stress of F, = 230.3 MPa (33.4 ksi). The
detailed information is available in [9].

Table 11.6 lists the designs developed by: the ICA, the HBB-BC algorithm [9],
the ant colony algorithm [16] and harmony search [17]. The ICA algorithm required
7,500 frame analyses to converge to a solution, while the 10,500 analyses were
required by HBB-BC [9], 15,500 analyses by ACO [16] and 13,924 analyses by HS
[17]. In this example, ICA can find the best results with 946.25 kN which is 3.67 %,
1.01 % and 1.60 % lighter than the results of the ACO [16], HS [17], and HBB-BC
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Fig. 11.7 Schematic of a
three-bay twenty four-story
frame
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Table 11.6 Optimal design comparison for the 3-bay 24-story frame

Optimal W-shaped sections
Camp et al. [16] Degertekin [17]

Element group ACO HS HBB-BC [9] Present work [2]
1 W30X90 W30X90 W30X90 W30X90
2 W8X18 W10X22 W21X48 W21X50
3 W24X55 W18X40 W18X46 W24X55
4 W8X21 W12X16 W8X21 W8X28

5 W14X145 W14X176 W14X176 W14X109
6 W14X132 W14X176 W14X159 W14X159
7 W14X132 W14X132 W14X109 W14X120
8 W14X132 W14X109 W14X90 W14X90
9 W14X68 W14X82 W14X82 W14X74
10 W14X53 W14X74 W14X74 W14X68
11 W14X43 W14X34 W14X38 W14X30
12 W14X43 W14X22 W14X30 W14X38
13 W14X145 W14X145 W14X159 W14X159
14 W14X145 W14X132 W14X132 W14X132
15 W14X120 W14X109 W14X109 W14X99
16 W14X90 W14X82 W14X82 W14X82
17 W14X90 W14X61 W14X68 W14X68
18 W14X61 W14X48 W14X48 W14X48
19 W14X30 W14X30 W14X34 W14X34
20 W14X26 W14X22 W14X26 W14X22
Weight (kN) 980.63 956.13 960.90 946.25
No. of required analyses 15,500 13,924 10,500 7,500

[9], respectively. The global sway at the top story is 25.52 cm (10.05 in.) which is
less than the maximum sway. The maximum value for the stress ratio is 99.37 %
and the maximum inter-story drift is equal to 1.215 cm (0.4784 in.). Figure 11.8
shows the values of the stress ratios for all elements of the optimum design obtained
by the ICA algorithm.

11.5 Discussions

Many of metaheuristic algorithms are proposed based on the simulation of the
natural processes. The genetic algorithms, particle swarm optimization, ant colony
optimization, harmony search and charged system search are the most well-known
metaheuristic algorithms. As an alternative to these metaheuristic approaches, this
chapter investigates the performance of a new metaheuristic algorithm to optimize
the design of skeletal structures. This method is called ICA which is a socio-
politically motivated optimization algorithm.
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In the ICA, an agent or a country can be treated as a colony or imperialist and the
agents collectively form a number of empires. This algorithm starts with some
random initial countries. Some of the best countries are selected to be the imperi-
alist states and all the other countries form the colonies of these imperialists.
Imperialistic competitions among the empires direct the search process towards
the powerful imperialist and thus to the optimum spaces. During the competition,
when weak empires collapse, the powerful ones take possession of their colonies. In
addition, colonies of an empire move toward their related imperialist. In order to
improve the ICA performance, here two movement steps are defined by using:
(1) different random values for the components of the solution vector instead of
only one value; (2) deviation by using orthogonal colony-imperialistic contacting
line instead of using 6.

Four design examples consisting of two trusses and two frames are considered to
illustrate the efficiency of the present algorithm. The comparisons of the numerical
results of these structures utilizing the ICA and those obtained by other advanced
optimization methods are performed to demonstrate the robustness of the present
algorithm in finding good results in a less number of iterations. In order to highlight
the positive characters of the ICA, a comparison of the ICA and the PSO algorithm
is provided in the following:

— In the ICA algorithm, there is no need to save the pervious location of agents
(velocity), while the PSO requires two positions saving memory (the current
position and the pervious position).

— In the ICA algorithm, {V} determines the movement direction of agents, while
in the PSO, this is performed by the global and local best vectors. The vector
{V} is the best of the empire, i.e., it is the best agent among a predefined number
of agents, while in the PSO the global best, denoted by {P,}, is the position of
the best agent of all agents. Therefore, {V;} will change for different agents
during an iteration (depending on the empire which they belong to) and this
helps the algorithm to increase the exploration ability, while {P,} is constant for
all the agents in an iteration.
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In the ICA algorithm, saving the local best position of agents is not necessary,
and instead the vector {V,} is utilized.
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Chapter 12
Chaos Embedded Metaheuristic Algorithms

12.1 Introduction

In nature complex biological phenomena such as the collective behavior of birds,
foraging activity of bees or cooperative behavior of ants may result from relatively
simple rules which however present nonlinear behavior being sensitive to initial
conditions. Such systems are generally known as “deterministic nonlinear systems”
and the corresponding theory as “chaos theory”. Thus real world systems that may
seem to be stochastic or random, may present a nonlinear deterministic and chaotic
behavior. Although chaos and random signals share the property of long term
unpredictable irregular behavior and many of random generators in programming
softwares as well as the chaotic maps are deterministic; however chaos can help
order to arise from disorder. Similarly, many metaheuristics optimization algo-
rithms are inspired from biological systems where order arises from disorder. In
these cases disorder often indicates both non-organized patterns and irregular
behavior, whereas order is the result of self-organization and evolution and often
arises from a disorder condition or from the presence of dissymmetries. Self-
organization and evolution are two key factors of many metaheuristic optimization
techniques. Due to these common properties between chaos and optimization
algorithms, simultaneous use of these concepts can improve the performance of
the optimization algorithms [1]. Seemingly the benefits of such combination is a
generic for other stochastic optimization and experimental studies confirmed this;
although, this has not mathematically been proven yet [2].

Recently, chaos and metaheuristics have been combined in different studies for
different purposes. Some of the works have intended to show the chaotic behaviors
in the metaheuristic algorithms. In some of the works, chaos has been used to
overcome the limitations of metaheuristics. Hence previous research can be classi-
fied into two types.

In the first type, chaos is inserted into the metaheuristics instead of a random
number generator, i.e., the chaotic signals are used to control the value of param-
eters in the metaheuristic’s equations. The convergence properties of metaheuristics

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 369
DOI 10.1007/978-3-319-05549-7_12, © Springer International Publishing Switzerland 2014
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are closely connected to the random sequence applied on their operators during a
run. In particular, when starting some optimizations with different random num-
bers, experience shows that the results may be very close but not equal, and require
different numbers of generations to reach the same optimal value. The random
numbers generation algorithms, on which most used metaheuristics tools rely,
usually satisfy on their own some statistical tests like chi-square or normality.
However, there are no analytical results that guarantee an improvement of the
performance indexes of metaheuristics algorithms depending on the choice of a
particular random number generator [3].

In the second type, chaotic search is incorporated into the procedures of the
metaheuristics in order to enrich the searching behavior and to avoid being trapped
in local optimums. A traditional chaos optimization algorithm (COA) which is a
stochastic search technique was proposed based on the advantages of chaos vari-
ables. The simple philosophy of the COA contains two main stages: firstly mapping
from the chaotic space to the solution space, and then searching optimal regions
using chaotic dynamics instead of random search [4]. However, COA also has some
disadvantages. For example, in the large-scale optimization problems the efficiency
of the algorithm will be very low and the COA often needs a large number of
iterations to reach the global optimum.

The main contribution of this chapter is to provide a state of the art review of the
combination of chaos theory and metaheuristics, and describes the evolution of
these algorithms along with some improvements, their combinations with various
methods as well as their applications. Also a novel metaheuristic which is called
chaotic swarming of particles (CSP) is introduced. The CSP uses chaos theory in
order to improve the convergence characteristics of the particle swarm optimization
(PSO) and to perform exploitation. This method is a kind of multi-phase optimiza-
tion technique which employs chaos theory in two phases by the use of chaotic
number generators each time a random number is needed by the classical PSO for
parameters adaptation, and chaotic local search algorithm to avoid being trapped
into local optimum.

12.2 An Overview of Chaotic Systems

In mathematic chaos is defined as “randomness” generated by simple deterministic
systems. The randomness is a result of the sensitivity of chaotic systems to the
initial conditions; it means that slight changes in the parameters or the starting
values for the data lead to vastly different future behaviors, such as stable fixed
points, periodic oscillations, bifurcations, and ergodicity. However, since the cha-
otic systems are deterministic, chaos implies order. A system can make the trans-
formation from a regular periodic system to a complex chaotic system simply by
changing one of the controlling parameters. Also a chaotic movement can go
through every state in a certain area according to its own regularity, and every
state is obtained only once [5]. An example of chaotic map is shown in Fig. 12.1.
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Fig. 12.1 An example of chaotic map (Logistic map)

Considering a discrete-time series, one can define chaos in the sense of
Li-Yorke. A one-dimensional iterated map is based on a function of a real variable
and takes the form

X1 = F(x;) (12.1)

where x(f) € R",t=1,2,3,...and F is a map from R" to itself.

Let F” denotes the composition of F with itself p > 0 times, then a point x is
called a p-periodic point of F if F P(x) = x but FXx) = x for all k such that
k < p. In particular, a point x satisfying F'(x) = x is called a fixed point of F. The &-
neighborhood N.(x) of a point x is defined by

Ne(x) = {yeR"|[lx - y|| < &} (12.2)

where LIl denotes the Euclidean norm in R”. Then, we introduce the following
definition of chaos in the sense of Li-Yorke [6]:

Definition 1 If a discrete-time series satisfies the following conditions, then it is
called chaotic:
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1. There exist a positive constant N such that for any p > N, F has a p-periodic
point.

2. There exists an uncountable set S C R”, which does not include any periodic
point of F' and satisfies the following conditions

(@ F(S)cs
(b) For any points x, y € S(x # y)

lim supHF(">(X) —F(n)()’)H >0,

and for any x € § and any periodic point y of F,

lim sup||F(") (x) — F" (y)” > 0.

n—oo
(c) There exists an uncountable subset Sy C S such that for any x, y & S,

lim inf||[F® (x) — F" (y)|| = 0

n—o00

The set S in the above definition is called the scrambled set.

Then, it is well known that the existence of a fixed point called a snap-back
repeller in a system implies that the system is chaotic in the sense of Li-Yorke
[7]. Thus a system is chaotic if it contains infinitely many periodic orbits whose
periods are arbitrarily large. This definition essentially is a result of Sarkovskii’s
theorem which was proved by the Russian mathematician Sarkovskii in 1964;
however apparently presented in a well-known paper by Li and Yorke [6] in
which the word chaos first appeared in its contemporary scientific meaning [8].

A chaotic map can be used as spread-spectrum sequence for random number
sequence. Chaotic sequences have been proven to be easy and fast to generate and
store, and therefore there is no need for storing long sequences. One needs only a
few functions (chaotic maps) and few parameters (initial conditions) for very long
sequences. Also an enormous number of different sequences can be generated
simply by altering its initial condition. In addition, these sequences are determin-
istic and reproducible. The choice of chaotic sequences can be justified theoreti-
cally by their unpredictability, corresponding to their spread-spectrum
characteristic and ergodic properties [9]. Therefore when a random number is
needed, it can be generated by iterating one step of the chosen chaotic map
(cm) being started from a random initial condition at the first iteration of the run.
The literature is rich in chaotic time series sequences, some of these are listed in
following subsections.
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12.2.1 Logistic Map

This map, whose equation appears in nonlinear dynamics of biological population
evidencing chaotic behavior (May [10])

Xk+1 = axk(l — xk) (123)
In this equation, x; is the kth chaotic number, with k denoting the iteration

number. Obviously, x; € (0, 1) under the conditions that the initial x, & (0, 1)
and that xo ¢ {0.0, 0.25, 0.5, 0.75, 1.0}. In the experiments a = 4 is utilized.

12.2.2 Tent Map

Tent map resembles the logistic map, Peitgen et al. [11]. It generates chaotic
sequences in (0, 1) assuming the following form

_ [ w/07 X < 0.7
e = { 10/3x¢(1 — x)  otherwise (12.4)

12.2.3 Sinusoidal Map
This iterator (May [10]) is represented by
X1 = axg sin (zxy) (12.5)
For a = 2.3 and x, = 0.7 it has the following simplified form:
Xpp1 = sin (@) (12.6)

It generates chaotic sequence in (0, 1).

12.2.4 Gauss Map

The Gauss map is utilized for testing purpose in the literature (Peitgen et al. [11])
and is represented by

X o 0 X = 0
17 1/gmod(1)  otherwise
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1/x;mod(1) = xik - [ﬂ (12.7)

Here, [x] denotes the largest integer less than x and acts as a shift on the
continued fraction representation of numbers. This map also generates chaotic
sequences in (0, 1).

12.2.5 Circle Map

The circle map (Zheng [12]) is represented by
Xip1 = X¢ + b — (a/2x) sin (27x;)mod (1) (12.8)

With a = 0.5 and b = 0.2, it generates chaotic sequence in (0, 1).

12.2.6 Sinus Map
Sinus map is defined as
Xpp1 = 2.3()(]()2Sin(ﬂxk) (129)

12.2.7 Henon Map

This map is a nonlinear two-dimensional map most frequently employed for testing
purposes, and it is represented by

Xep1 = 1 —axg + bxpy (12.10)

The suggested parameter values are a = 1.4 and b = 0.3.

12.2.8 Ikeda Map

An Ikeda map is a discrete-time dynamical system defined by Dressler and Farmer
[13]:
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X1 = 14+ 0.7(x, cos (0,) — v, sin (6,)),
Yngr1 = 0.7(x, sin (8,) + v, cos (6,)),

12.11
0, =04 — (12.10)

12.2.9 Zaslavskii Map

One of the interesting dynamic systems evidencing chaotic behavior is the
Zaslavskii map (Zaslavskii [14]), the corresponding equation is given by

Xip1 =X +V+ay,,; (modl) (12.12)

Yis1 = €08 (2mx) + ey, '
where mod is the modulus after division and v = 400, r = 3, a = 12.6695. In this
case, y, € [-1.0512, 1.0512].

12.3 Use of Chaotic Systems in Metaheuristics

In the artificial intelligence community, the term metaheuristic was created and is
now well accepted for general algorithms that represent a family of approximate
optimization methods which are not limited to a particular problem. There were
many attempts to give a rigorous mathematical definition of metaheuristics. Here
some of these are accompanied by explanations.

1. “They are solution methods that orchestrate an interaction between local
improvement procedures and higher level strategies to create a process capable
of escaping from local optima and performing a robust search of a solution
space.” (Glover and Kochenberger [15])

2. “These methods can be defined as upper level general methodologies that can be
used as guiding strategies in designing underlying heuristics to solve specific
optimization problems”, Talbi [16]

3. “They are a set of concepts that can be used to define heuristic methods that can
be applied to a wide set of different problems with relatively few modifications
to make them adapted to a specific problem”, Dorigo [17].

Design and implementation of such optimization methods had been at the origin
of a multitude of contributions to the literature in the last 50 years as described in
the previous chapters. Generally, a metaheuristic algorithm uses two basic strate-
gies while searching for the global optima; exploration and exploitation. The
exploration enables the algorithm to reach at the best local solutions within the
search space, and the exploitation provides the ability to reach at the global
optimum solution which may exist around the local solutions obtained. In exploi-
tation, the promising regions are explored more comprehensively, while in
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exploration the non-explored regions are visited to make sure that all the regions of
the search space are fairly explored.

Due to common properties of chaos and metaheuristic optimization algorithms,
simultaneous use of these concepts seems to improve the performance and to
overcome the limitations of metaheuristics. The previous research can be catego-
rized into two types. In the first type, chaotic system is inserted into the
metaheuristics instead of a random number generator for updating the value of
parameters; and in the second type, chaotic search is incorporated into the pro-
cedures of the metaheuristics in order to enrich the searching behavior and to avoid
being trapped in local optimums using traditional COAs.

12.4 Chaotic Update of Internal Parameters
for Metaheuristics

For simulating complex phenomena, sampling, numerical analysis, decision mak-
ing and in particular in metaheuristic optimization, random sequences are needed
with a long period and reasonable uniformity. On the other hand as mentioned
before chaos is a deterministic, random-like process found in nonlinear dynamical
system which is non-period, non-converging and bounded. The nature of chaos
looks to be random and unpredictable, possessing an element of regularity. Math-
ematically, chaos is randomness of a simple deterministic dynamical system, and
chaotic system may be considered as sources of randomness (Schuster [18]; Coelho
and Mariani [19]; Alatas [20]).

However, metaheuristics are non-typical; hence, the critical issue in
implementing metaheuristic methods is the determination of “proper” parameters
which must be established before running these algorithms. The efficient determi-
nation of these parameters leads to a reasonable solution. That is why; these
parameters may be selected chaotically by using chaotic maps. In this case,
sequences generated from chaotic systems substitute random numbers for the
parameters where it is necessary to make a random-based choice. By this way, it
is intended to improve the global convergence and to prevent to stick on a local
solution.

Alatas et al. [21] proposed different chaotic maps to update the parameters of
PSO algorithm. This has been done by using of chaotic number generators each
time a random number is needed by the classical PSO algorithm. Twelve chaos-
embedded PSO methods have been proposed and eight chaotic maps have been
analyzed in the unconstrained benchmark functions. The simulation results show
that the application of deterministic chaotic signals may be a possible strategy to
improve the performances of PSO algorithms. Also Alatas [20] presented another
interesting application. He has integrated chaos search with HS for improved
performance. Seven new chaotic HS algorithms have been developed using differ-
ent chaotic maps. A similar utilizing of chaotic sequences for artificial bee colony
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(ABC) (Alatas [22], BB-BC (Alatas [23]), ICA (Talatahari et al. [24]), and CSS
(Talatahari et al. [25]) have been performed by researchers. Based on the results
obtained from literature, it is not easy to say which chaotic map performs the best.
However, we can say that chaotic maps have a considerable positive impact on the
performance of metaheuristics.

In these studies generally unconstraint problems were considered. On the other
hand, most of the real life problems including design optimization problems require
several types of variables, objective and constraint functions simultaneously in their
formulation. In engineering design as the first attempts to analyze the performance
of metaheuristics in which chaotic maps are used for parameters updating process,
Talatahari et al. [26] combined the benefits of chaotic maps and the ICA to
determine optimum design of truss structures. These different chaotic maps were
investigated by solving two benchmark truss examples involving 25- and 56-bar
trusses to recognize the most suitable one for this algorithm. As an example, a
56-bar dome truss structure taken from [26] is shown in Fig. 12.2. Members of the
dome are categorized into seven groups. Table 12.1 shows the statistical results and
the optimum weight for the 56-bar dome truss using the ICA algorithms, where cm
is a chaotic map based on the Sinusoidal map for CICA-1, Logistic map for CICA-
2, Zaslavskii map for CICA-3 and Tent map for CICA-4. The results show that the
use of Sinusoidal map (CICA-1) results in a better performance for the chaotic ICA
than the others. Two other larger examples were also considered by Talatahari
et al. [26] to obtain more clear details about the performance of the new algorithm.
These were 200- and 244-bar trusses with 29 and 32 design variables, respectively.
Almost for all examples, the performance of the new algorithm is far better than the
standard ICA; especially when the standard deviations of the results are compared.
The standard deviation of the new algorithm is much better than the standard ICA
and this illustrates the high ability of the new algorithm.

As another attempt in optimization problems related to the engineering design, a
new improved CSS using chaotic maps was presented for engineering optimization
by Talatahari et al. [27]. They defined five different variants of the new methodol-
ogy by adding the chaos to the enhanced CSS. Then, different chaotic systems were
utilized instead of different parameters available in the algorithm. To evaluate the
performance of the new algorithm two sets of examples were considered: In the first
set four well-known benchmark examples including design of a piston lever, design
of a welded beam, design of a four-storey, two-bay frame, and design of a car side
impact were selected from literature to compare the variants of the new method. In
the second set two mechanical examples consisting of a 4 step-cone pulley design
and speed reducer design problems were utilized in order to compare the variants of
the new method with other metaheuristics. As an example, in design of a 4 step-
cone pulley the objective is to design a pulley with minimum weight using five
design variables, as shown in Fig. 12.3. Four design variables are associated with
the diameters of each step, and the fifth corresponds to the width of the pulley. In
this example, it is assumed that the widths of the cone pulley and belt are identical.
There are 11 constraints, out of which 3 are equality constraints and the remaining
are inequality constraints. The constraints are imposed to assure the same belt
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Fig. 12.2 Schematic of a 56-bar dome spatial truss structure [26]
Table 12.1 Optimal design comparison for the 56-bar dome truss
ICA CICA-1 CICA-2 CICA-3 CICA-4
Best weight (kg) 546.14 546.13 546.16 546.15 546.15
Average weight (kg) 547.91 546.21 546.31 546.24 546.34
Std dev (kg) 5.791 0.49 0.62 0.56 0.59

length for all the steps, tension ratios, and power transmitted by the belt. The 4 step
pulley is designed to transmit at least 0.75 hp (0.75-745.6998 W), with an input
speed of 350 rpm and output speeds of 750, 450, 250, and 150 rpm. This problem is
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Fig. 12.3 A 4 step-cone pulley [28]

considered to compare the chaotic CSS (CCSS) method with other metaheuristic
algorithms which was solved by using Teaching—learning-based optimization
(TLBO) and ABC, previously, Rao et al. [28]. It is observed from Table 12.2 that
CCSS gives better results than the other methods for the best, mean, and standard
deviation, Talatahari et al. [27].

Due to the simplicity and potency of these methods, it seems that they can easily
be utilized for many engineering optimization problems.

12.5 Chaotic Search Strategy in Metaheuristics

The basic idea of COA generally includes two major stages. Firstly, based on the
selected chaotic map (cm) define a chaotic number generator for generating
sequences of points then map them to a design space. Afterwards, evaluate the
objective functions with respect to these points, and choose the point with the
minimum objective function as the current optimum. Secondly, the current opti-
mum is assumed to be close to the global optimum after certain iterations, and it is
viewed as the center with a little chaotic perturbation, and the global optimum is
obtained through fine search. Repeat the above two steps until some specified
convergence criterion is satisfied, and then the global optimum is obtained, Yang
et al. [29]. The pseudo-code of COA is summarized as follows
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Table 12.2 Statistical results Method Best Mean Std dev

of the 4 step-cone pulley for

different metaheuristics TLBO 16.63451 24.0113 0.34
ABC 16.63466 36.0995 0.06
CCSS 16.41235 29.1058 0.11

Step 1: Initialization. Initialize the number N of chaotic search, different initial
value of n chaos variables ¢m,”, and the lower and upper bound of the decision
variables (X; and Xy;). Set the iteration counter as k = 1. Determine the initial
design variables as

W =X, +emd(Xy, — Xp,), i=1,2,....n (12.13)

Evaluate the objective function and set f* = ).
Step 2: Variable mapping. Map chaotic variables cm” into the variance range of the
optimization variables by the following equation

=X+ em Xy, — X)), i=1,2,...,n (12.14)

Step 3: Searching for optimal solution. Evaluate the objective function.
If £ <N, then

If f (X7 < f*, then X = X % = £ (5.
Setk =k + 1, cm* = em™, and go to step 2.

Else if k£ > N is satisfied then stop.

Due to the pseudo-randomness of chaotic motion, the motion step of chaotic
variables between two successive iterations is always big, which resulted in the big
jump of the design variables in design space. Thus, even if the above COAs have
reached the neighborhood of the optimum, it needs to spend much computational
effort to approach the global optimum eventually by searching numerous points.

Hence, the hybrid methods attracted the attention of some researchers, in which
chaos is incorporated into the metaheuristics where the parallel searching ability of
metaheuristics and chaotic searching behavior are reasonably combined. Wu and
Cheng [30] integrated GA with COA, which uses chaos sequence to generate
original population and add chaotic fine search to genetic operation which can
avoid premature convergence. Guo and Wang [31] presented a novel immune
evolutionary algorithm (IEA) based on COA to improve the convergence perfor-
mance of the IEA. Ji and Tang [32] and Liu et al. [4] suggested a hybrid method of
SA and PSO combined with chaos search, and examined its efficiency with several
nonlinear functions, respectively. Similar approaches were also presented for PSO
by Wang and Liu [33], Gao and Liu [34], He et al. [35]. Baykasoglu [36] presented
how can the performance of great deluge algorithm (GDA) be enhanced by
integrating with COA for solving constrained non-linear engineering design
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optimization problems. Such hybrid methods can save much CPU time and enhance
the computational efficiency of algorithms.

12.6 A New Combination of Metaheuristics and Chaos
Theory

CSP is a newly developed type of metaheuristic algorithms. This algorithm is
proposed by Kaveh et al. [37]. The CSP is inspired from the chaotic and collective
behavior of species such as bees, fishes, and birds in which chaos theory is used to
control the value of the parameters of PSO and to increase the local search
capability of the PSO in order to enhance search behavior and skip local optima.
The CSP approach not only performs exploration by using the population-based
evolutionary searching ability of PSO, but also performs exploitation by using the
chaotic local searching behavior. The framework of the CSP is illustrated in
Fig. 12.4. In the CLSPSO1 phase, the initial positions of the particles are deter-
mined chaotically in the search space. The values of the fitness function for the
particles are also calculated. The best particle among the entire set of particles is
treated as a global best (X,). After reaching a pre-defined number of iterations (V,),
the CLSPSOL is stopped and switched to PSO while CPVPSO applies for updating
the value of parameters in the velocity updating equation. In the second phase, the
CLSPSO?2 (updating process) is activated if PSO stops moving. CLSPSO2 causes
the particles to escape from local minima using the logistic map. After a better
solution is found by the CLSPSO2 or after a fixed number of iterations (V,), the
PSO will continue. The algorithm is terminated when the termination criterion has
been met: that is, if there is no significant improvement in the solution. The CSP
algorithm can simply be described as follows:

12.6.1 The Standard PSO

PSO involves a number of particles, which are initialized randomly in the space of
the design variables. These particles fly through the search space and their positions
are updated based on the best positions of individual particles and the best position
among all particles in the search space which in truss sizing problems corresponds
to a particle with the smallest weight in PSO, a swarm consists of N particles
moving around in a D-dimensional search space. The position of the jth particle at
the kth iteration is used to evaluate the quality of the particle and represents
candidate solution(s) for the search or optimization problems. The update moves
a particle by adding a change velocity ij” to the current position X; K as follows
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Fig. 12.4 Flowchart of the CSP algorithm [1]

Vit =wisaxrb@ (P - xf) vex @ LX) ) )
Xj/$+1 — Xjk + ij

where w is an inertia weight to control the influence of the previous velocity; *; i
and r~, ; are random numbers uniformly distributed in the range of (0,1); ¢; and ¢,
are two acceleration constants namely called cognitive and social parameter,
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respectively; ij is the best position of the jth particle up to iteration k; ng is the
best position among all particles in the swarm up to iteration k. In order to increase
PSO’s exploration ability, the inertia weight is now modified during the optimiza-
tion process with the following equation

witl = wk x D, x rand (12.16)

where D, is the damping ratio which is a constant number in the interval (0,1); and
rand is a uniformly distributed random number in the range of (0,1).

12.6.2 The CPVPSO Phase [37]

In this phase, when a random number is needed by PSO algorithm, it can be
generated by iterating one step of the chosen chaotic map (cm) being started from
arandom initial condition of the first iteration of PSO. As we mentioned before one
of the well-known chaotic maps is the Logistic map which is a polynomial map.
This map is defined by (12.3).

In order to control values of PSO parameters by using chaotic maps, r*; s 5 j» and
rand are generated from the iterations of Logistic map instead of using classical
random number generator as

Vith=whkx V4 ey x em* @ (P-k —X-k) + 2 x em* @ (PY — XF)

J J 8 J
- ; (12.17)

Wl = wh x D, x em

12.6.3 The CLSPSO Phase [37]

In this phase, COA is introduced in the PSO formulation. This is a kind of multi-
phase optimization technique because chaotic optimization and PSO coexist and are
switched to each other according to certain conditions. Here, chaotic search that
uses Logistic map for the particle is incorporated to enhance search behavior and to
skip local optima. The CLSPSO process is now described:

e CLSPSOI (First chaotic search process):

Step 1: Set t = 0. Initialize the number of the first chaotic search N, initial
value of chaos variables (cm”), the lower and upper bound of the decision
variables (X,,;, and X,,,.), and the number of particles. Determine the initial
design variables for the jth particle as

X} = Xunin + € (Xmax — Xmin) (12.18)

Step 2: Evaluate the objective function and determine X go by finding f* = min

FXP).
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Step 3: Map the chaotic variables cm’ into the variance range of the optimization
variables by the following equation:

+1 _
X=X 4 (2cm; - 1) (X;, —X;) (12.19)

Step 4: Evaluate the new position (X; .

Step 5: If the new solution is better than the initial solution f (X; "1y < fr  then
fE=FoGmh.

Step 6: Generate the next values of the chaotic variables by a chaotic map and
sett =1+ 1.

Step 7: If t < N, go to step 3, else stop the first chaotic search process and obtain
the output X, and f* as the result of the CLSPSOI.

Step 8: Set X, as the global best (P,).

e CLSPSO2 (Second chaotic search process):

Step 1: Initialize the number of the second chaotic search N, and set i =1.
Step 2: Using the PSO algorithm, generate the global best Pkg.

Step 3: Set X ', = P,

Step 4: Update the global best position of the particles using the chaotic map by
the following equation:

X = X!+ (2em’ — 1) Xiax = Ximin

. (12.20)

Step 5: If the new solution is better than the initial solution fiX giH ) < f(X;),
then f* = fiX,*') and P*, = X, *'.

Step 6: Generate the subsequent values of the chaotic variables by a chaotic map
andseti =i+ 1.

Step 7: If i < N, go to step 4, else stop the second chaotic search process and
obtain the output Pkg and f* as the result of the CLSPSO2.

12.6.4 Design Examples

In order to test the performance of the CSP method, two large-scale test problems
are adapted from Kaveh et al. [37] which previously treated by other investigators
are studied: the weight minimization 200-bar, and 942-bar truss. For all test cases,
after a sensitivity analysis, the CSP internal parameters are set to: w’ = 0.9,
damping ratio (D,) = 0.99, number of the first chaotic search (N;) = 50 and
number of the second chaotic search (N,) = 10. Also the maximum number of
iteration is set to 2,500, number of particles (N) = 100, and ¢; = 1, ¢, = 3.

The planar 200-bar truss structure shown in Fig. 12.5 is designed for minimum
weight. Truss elements are divided into 29 groups (design variables) All members
are made of steel: the material density and modulus of elasticity are 0.283 Ib/in’
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Fig. 12.5 A 200-bar truss structure [37]

(7,933.410 kg/m3) and 30 Msi (206 GPa), respectively. Element stresses must not
exceed +10 ksi (68.95 MPa). There are three independent loading conditions:
(1) 1.0 kip (4.45 kN) acting in the positive x-direction at nodes 1, 6, 15, 20,
29, 34, 43, 48, 57, 62, and 71; (2) 10 kips (44.5 kN) acting in the negative
y-direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24,
.., 71,72,73,74, and 75; and (3) conditions 1 and 2 acting together.

The minimum weight and the values of the cross sectional area obtained by CSP
and some other previous studies reported in the literature such as a modified
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Table 12.3 Comparison of optimized designs for the 200-bar truss

12 Chaos Embedded Metaheuristic Algorithms

Element group CMLPSA GA SAHS CSP
Ajy 0.1468 0.3469 0.154 0.1480
As s . 11,14, 17 0.9400 1.0810 0.941 0.9460
Ajo24 0.1000 0.1000  0.100 0.1010
Ay, 25, 56, 63, 94, 101, 132,139, 170, 177 0.1000 0.1000  0.100 0.1010
A2629.32.35.38 1.9400 2.1421 1.942 1.9461
As, 7.0, 10, 12, 13, 15, 16, 27,28, 30, 31, 33, 34, 36, 37 0.2962 0.3470  0.301 0.2979
Asosa 0.1000  0.1000 0.100  0.1010
Ay3, 46, 49, 52. 55 3.1042 3.5650 3.108 3.1072
Asy 2 0.1000 0.3470  0.100 0.1010
As4, 67, 70, 73, 76 4.1042 4.8050 4.106 4.1062
Adq, 45, 47, 48, 50, 51, 53, 54,65, 66, 68, 69, 71, 72, 74, 75 0.4034 0.4400  0.409 0.4049
Az7s0 0.1912 0.4400 0.191 0.1944
Asi, 84. 87, 90, 93 5.4284 5.9520 5.428 5.4299
Aos-100 0.1000 0.3470  0.100 0.1010
Aj02, 105, 108, 111, 114 6.4284 6.5720  6.427 6.4299
A2, 83, 85, 86, 88, 89,91, 92, 103,104, 106, 107,109, 110, 112, 113 0.5734 0.9540 0.581 0.5755
Ajrs-11s 0.1327 0.3470  0.151 0.1349
Aj9, 122, 125, 128, 131 79717 8.5250  7.973 7.9747
Arssoras 0.1000  0.1000 0.100  0.1010
A0, 143, 146, 149, 152 8.9717 9.3000 8.974 8.9747
Aj20, 121, 123, 124, 126, 127,129,130, 141, 142, 144, 145, 0.7049 0.9540 0.719 0.70648
147, 148,150, 151
Aj35-156 0.4196 1.7639  0.422 0.4225
Ajs7. 160, 163, 166, 169 10.8636  13.3006 10.892 10.8685
Ar71-176 0.1000 0.3470  0.100 0.1010
Aj7s, 181, 184. 187, 190 11.8606  13.3006 11.887 11.8684
A58, 159, 161, 162, 164, 165, 167,168, 179, 180, 182, 183, 1.0339 2.1421  1.040 1.035999
185, 186,188, 189
Aj91-194 6.6818 4.8050  6.646 6.6859
Aj9s. 197, 198, 200 10.8113  9.3000 10.804 10.8111
Aj9s, 199 13.8404  17.1740 13.870 13.84649
Best weight (1b) 25,445.6  28,533.1 25,4919 25,467.9
Average weight (Ib) N/A N/A 25,610.2 25,547.6
Std dev (Ib) N/A N/A 141.85 135.09
No. of analyses 9,650 51,360 19,670 31,700

simulated annealing algorithm (CMLPSA) (Lamberti [38]), an improved GA
(Togan and Daloglu [39]), and self adaptive HS (SAHS) (Degertekin [40]) are
presented in Table 12.3. It can be seen that the CSP algorithm found an optimum
weight of 25,467.95 1b after approximately 317 iterations and 31,700 analyses. The
optimal design obtained using the CSP algorithm showed an excellent agreement

with the previous designs reported in the literature [37].

As another example, the 26-story-tower space truss with 942 elements and
244 nodes is considered, as shown in Fig. 12.6. Fifty-nine design variables are
used to represent the cross-sectional areas of 59 element groups in this structure,
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Fig. 12.6 Schematic of a 26-story space tower (a) Side view; (b) Top view
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employing the symmetry of the structure. Figure 12.6 shows the geometry and the
59 element groups. The material density is 0.1 Ib/in® (2,767.990 kg/m?) and the
modulus of elasticity is 10 Gsi (68.950 GPa). The members are subjected to the
stress limits of £25 ksi (172.375 MPa) and the four nodes of the top level in the x, y
and z directions are subjected to the displacement limits of £15.0 in (38.10 cm)
(about 1/250 of the total height of the tower). The allowable cross-sectional areas in
this example are selected from 0.1 to 200.0 in® (from 0.6452 to 1,290.32 cm?).
Loading conditions are presented in Table 12.4.
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Table 12.4 Loading

v . Case number  Direction Load

conditions for the spatial - -

26-story tower 1 Vertical 3 kips (13.344 kN)
2 Vertical 6 kips (26.688 kN)
3 Vertical 9 kips (40.032 kN)
4 Horizontal (X direction) 1 kips (4.448 kN)
5 Horizontal (X direction) 1.5 kips (6.672 kN)
6 Horizontal (Y direction) 1 kips (4.448 kN)
7 Horizontal (Y direction) 1 kips (4.448 kN)

After 485 iterations and 48,500 analyses, CSP found an optimum weight
corresponding to the design listed in Table 12.5. The best weights are 56,343 Ib,
60,385 1b, 53,201 1b, and 52,401 1b for the GA, PSO, BB-BC and HBB-BC (Kaveh
and Talatahari [41]), respectively. In addition, CSP is more efficient in terms of
average weight and standard deviation of optimized weight. The average weight
obtained by CSP is 53,147 1b which is 15.94 %, 29.36 %, 3.73 % and 0.72 % lighter
than GA, PSO, BB-BC, and HBB-BC, respectively. Table 12.6 provides the
statistic information for this example [37].

These results clearly demonstrat the performance of the proposed method with
respect to classical and improved variants of metaheuristic algorithms. It has been
proven that coupling emergent results in different areas, like those of PSO and
complex dynamics, can improve the quality of results in some optimization prob-
lems. Furthermore, including chaotic search schemes may be an effective approach.

12.7 Discussion

As an important tool in optimization theory, metaheuristic algorithms explore the
search space of the given data in both exploration and exploitation manner and
provide a near-optimal solution within a reasonable time. Metaheuristics have
many features that make them as suitable techniques not only as standalone
algorithms but also to be combined with other optimization methods. Even the
standard metaheuristics have been successfully implemented in various applica-
tions; however, many modification and improvements to these algorithms have also
been reported in the literature. Each of them is tightly related to some aspects of
these algorithms such as parameters setting or balancing of exploration and exploi-
tation. In this chapter, we turned the attention to chaos embedded metaheuristic
algorithms and survey most of the modifications proposed in the literature.

Chaos is a bounded unstable dynamic behavior that exhibits sensitive depen-
dence on initial conditions and includes infinite unstable periodic motions in
nonlinear systems. Recently, the idea of using the benefits of chaotic systems has
been noticed in several fields. One of these fields is optimization theory. Experi-
mental studies show the performance of combining chaos and metaheuristics. Here
chaos embedded metaheuristics are classified into two general categories. First
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Table 12.5 Optimized

Members Area Members Area Members Area

designs obtained for the T = "

26-story tower h 14.0925 " 43475 Kl 0.6235
» 8.6965 5, 1.1995 44 2.9045
A, 6.1505 53 6.2555 43 12.3365
4, 0.9095 “4,, 9.2665 44 1.2195
Ay 0.6245 455 8.9865 ‘45 4.9785
A 4.6535 “5 44975 “46 1.0685
A, 1.0435 45, 29485 44 0.7465
A 13.0025 “54 42215 A4 1.4485
A, 9.4465 4, 5.9315 44 16.4445
A0 6.7035 ‘5, 9.8325 45, 1.8985
A4 0.6035 45, 13.8705 4, 5.0325
i 1.2095 45, 1.5125 45, 1.0255
A5 3.0725 A5 3.0985 A5y 11.6285
A 1.0005 454 1.1185 45, 15.4075
Als 8.2485 35 0.5965 “ss 16.6135
A, 0.7215 44, 1.6875 457 3.1965
A 8.2665 ‘35 8.0155 A 2.6845
Ao 1.0625 45 1.1215 A5 4.3205
4 6.5035 “4 4.7895

Table 12.6 Comparison of optimization results for the 26-story tower

GA PSO BB-BC HBB-BC CSp
Best weight (Ib) 56,343 60,385 53,201 52,401 52,200
Average weight (Ib) 63,223 75,242 55,206 53,532 53,147
Std dev (Ib) 6,640.6 9,906.6 2,621.3 1,420.5 1,256.2
No. of analyses 50,000 50,000 50,000 30,000 48,500

category contains the algorithms in which chaos is used instead of random number
generators. On the other hand in the second category chaotic search that uses
chaotic map is incorporated into metaheuristics to enhance searching behavior of
these algorithms and to skip local optima.

Finally a new combination of swarm intelligence and chaos theory is introduced
in which the tendency to form swarms appearing in many different organisms and
chaos theory has been the source of inspiration, and the algorithm is called CSP.
This method is a kind of multi-phase optimization technique which employs chaos
theory in two phases, in the first phase it controls the parameter values of the PSO
and the second phase is utilized for local search using COA. Compared to those of
the other metaheuristic algorithms the performance of the new method can be
concluded.
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Chapter 13
A Multi-swarm Multi-objective Optimization
Method for Structural Design

13.1 Introduction

In this chapter a multi-objective optimization algorithm is presented and applied to
optimal design of large-scale skeletal structures [1]. Optimization is a process in
which one seeks to minimize or maximize a function by systematically choosing
the values of variables from/within a permissible set. In recent decades, a vast
amount of research has been conducted in this field in order to design effective and
efficient optimization algorithms. Besides, the application of the existing algo-
rithms to engineering design problems has also been the focus of many studies
(Gou et al. [2]; Lee and Geem [3]; Gero et al. [4]). In a vast majority of structural
design applications, including previous studies (Kaveh and Talatahari [5]; Kaveh
and Talatahari [6]; Kaveh and Talatahari [7]; Kaveh and Rahami [8]), the fitness
function was based on a single evaluation criterion. For example, the total weight or
total construction cost of a steel structural system has been frequently employed as
the evaluation criterion in structural engineering applications. But in the practical
optimization problems, usually more than one objective are required to be opti-
mized, such as, minimum mass or cost, maximum stiffness, minimum displacement
at specific structural points, maximum natural frequency of free vibration, maxi-
mum structural strain energy. This makes it necessary to formulate a multi-
objective optimization problem, and look for the set of compromise solutions in
the objective space. This set of solutions provides valuable information about all
possible designs for the considered engineering problem and guides the designer to
make the best decision. The application of multi-objective optimization algorithms
to structural problems has attracted the interest of many researchers. For example,
in (Mathakari et al. [9]) Genetic algorithm is employed for optimal design of truss
structures, or in (Liu et al. [10]) Genetic algorithm is utilized for multi-objective
optimization for performance-based seismic design of steel moment frame struc-
tures, and in (Paya et al. [11]) the problem of design of RC building frames is
formulated as a multi-objective optimization problem and solved by simulated
annealing. In all these studies, some well-known multi-objective algorithms have

A. Kaveh, Advances in Metaheuristic Algorithms for Optimal Design of Structures, 393
DOI 10.1007/978-3-319-05549-7_13, © Springer International Publishing Switzerland 2014
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been applied to structural design problems. However, the approach which has
attracted the attention of many researchers in recent years is to utilize a high-
performance multi-objective optimization algorithm for structural design problems.
For example, in (Su et al. [12]) an adaptive multi-island search strategy is incor-
porated with NSGA-II for solving the truss layout optimization problem, or in
(Ohsaki et al. [13]) a hybrid algorithm of simulated annealing and tabu search is
used for seismic design of steel frames with standard sections, and in (Omkar
et al. [14]) the specific version of particle swarm optimization is utilized to solve
design optimization problem of composite structures which is a highly multi-modal
optimization problem. These are only three examples of such studies.

Similarly, the main aim of this study is to propose a new high-performance
multi-objective optimization algorithm capable of solving large-scale structural
design problems with continuous variables. The first step for proposing such an
algorithm is to recognize and investigate the characteristics of this group of
problems. By reviewing the corresponding literature, the properties of these prob-
lems can be summarized as follows:

(i) In these problems usually many design variables accompany the optimization
process.

(i1) The fitness function in these problems is usually a multi-modal function, i.e.,
there are too many local optimal points. Therefore the utilized algorithm
should be able to escape from all local optima.

(iii) In this group, the computational cost of fitness function evaluation is really
considerable, because usually each fitness function evaluation means a com-
plete analysis and design of a structure. Consequently, the utilized optimiza-
tion algorithm should be able to find global optimum with lower number of
fitness function evaluations.

The next step for proposing such an algorithm is to review the other existing
multi-objective optimization algorithms and investigate their capabilities. Over the
last decade, in the literature of evolutionary computation, a number of multi-
objective evolutionary algorithms have been suggested which are based on different
concepts. Some of which are: Multi-objective evolutionary algorithm based on
decomposition (MOEA/D) (Zhang and Li [15]), Non-dominated Sorting Genetic
Algorithm NSGA-II (Deb et al. [16]), Strength Pareto Evolutionary Algorithm
SPEA2 (Zitzler et al. [17]), Multi-objective particle swarm optimization MOPSO
(Coello et al. [18]), sMOPSO (Mostaghim and Teich [19]) and cMOPSO (Toscano
and Coello [20]) which is a multi-swarm multi-objective optimization algorithm.
Additionally, in (Toscano and Coello [20]; Fan and Chang [21]; Yen and Leong
[22]; Leong and Yen [23]) the concept of multi-swarm population is used to
improve the convergence rate of multi-objective particle swarm optimization.
Furthermore, hybrid or memetic optimization algorithms have attracted the atten-
tion of many researchers in recent years. For example in (Goh et al. [24]; Sindhya
et al. [25]) a gradient based method is incorporated with NSGA-II in order to
improve the local search ability of this method and increase its convergence rate.
It is clear that in the literature of evolutionary computation, the main approach has
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been to design an optimization algorithm that is capable of solving different kinds
of optimization problems, and reducing the number of fitness function evaluation
was not the main aim. Consequently, some of these algorithms require more than
100,000 evaluations to show their great capability in covering the Pareto fronts.

In this study, the aim is to develop a new multi-objective optimization algorithm
that is capable of solving structural design problems, with the above mentioned
features, more efficiently than the other available algorithms in the literature. In
other words, a multi-objective optimization algorithm which is capable to deal with
multi-modal optimization problems having many design variables, and capable of
covering the Pareto front with lower number of fitness function evaluation in
comparison to other available multi-objective optimization methods. To achieve
this goal, a new multi-swarm algorithm, which is composed of three main steps, is
designed. In this algorithm the search process is performed by the use of the charge
system search (CSS) (Kaveh and Talatahari [6]) procedure while a clustering
algorithm is employed for grouping the particles in the search space. Additionally,
a particle regeneration procedure is added to improve the algorithm’s ability in
escaping the local optima.

This chapter describes the proposed architecture of multi-objective optimization
algorithm and its applications. Two different groups of problems, i.e. non-constrained
with four mathematical problems and constrained with two problems of truss
and frame sizing optimization problems, are used to evaluate the performance
of the proposed algorithm. A comparison is drawn between our new algorithm
and some other well-known multi-objective optimization methods, which are
based on Genetic algorithm and particle swarm optimization. To carry out these
computations, all optimization algorithms were developed by the use of MATLAB
language. It is illustrated that the proposed algorithm, MO-MSCSS, is capable of
covering all parts of Pareto front with higher rate of convergence in comparison to
other methods [1].

13.2 Preliminaries
For a better understanding of the MOPs, the following concepts are important

(Coello et al. [26]) which are summarized here:

Definition 1 (General Multi-objective Optimization Problem). In general, multi-
objective optimization for minimization problem can be described as:
Find a vector x = (xy, X, ..., X,,) which satisfies k inequality constraints as

q;(x) <0 (i=1,2,...,k)

and / equality constraints:
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hi(x) =0 (j=1,2,...,])
and minimizes the vector function
Minico F(x) ={f1(x).f2(x), ....fn(0)} (13.1)
where (2 is a set of decision vectors and m is the number of objectives. In a word, it

aims to find vectors subjected to some constraints, which make all the objective
values as small as possible.

Definition 2 (Pareto Dominance). A vector u = (uy, uo, ..., u,) is said to be
dominate to another vector v = (vq, v, ..., v,,) (denoted by u < v) if and only if
u is partially less than v, ie., Vie {1,2,..,n 1,

w<v,ANdi€E {1,2,...n} 1w < v

Definition 3 (Pareto Optimal). A solution x € (2 is said to be Pareto Optimal
with respect to €2 if and only if there is no x > & € for which v = (fi(x ), fo(x ),

.o fu(x ")) dominates u = (f1(x), fo(x), ..., fu(x)). The phrase Pareto Optimal is
taken to mean with respect to the entire decision variable space unless otherwise
specified.

Definition 4 (Pareto Optimal Set). For a given MOP, F(x), the Pareto Optimal Set
P is defined as

P={xeQ|-IN eQF(¥)<F(x)}

Definition 5 (Pareto Optimal Front). For a given MOP, F(x), and Pareto Optimal
Set P the Pareto Front PF is defined as PF = {u = F(x)lx € P }.

A solution is said to be Pareto Optimal if it is not dominated by any other
solutions in the search space, also termed as non-dominated solution. In this
chapter, we distinguish the true Pareto Optimal front, termed PF/,,., and the final
set of non-dominated solutions obtained by a multi-objective optimization algo-
rithm, termed PFy,,,, as defined by the aim of the multi-objective optimization
algorithms is to find a well uniformly distributed PF,,,, that approximates
PF t0wn as close as possible.

13.3 Background

The specific features of the charged system search algorithm have motivated us to
utilize this method as the main engine of the search process in the MO-MSCSS. A
brief detail of this method and an introduction to k-means clustering algorithm are
presented in Sects. 13.3.1 and 13.3.2, respectively.
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13.3.1 Charged System Search

The charged system search is based on electrostatic and Newtonian mechanics laws
(Kaveh and Talatahari [6]). The Coulomb and Gauss laws provide the magnitude of
the electric field at a point inside and outside a charged insulating solid sphere,
respectively, as follows:

keq; .
;;I rij if rij<a
E; = (13.2)
ed, ifri>a
i’,’j ’

where k, is a constant known as the Coulomb constant; r; is the separation of the
centre of sphere and the selected point; g; is the magnitude of the charge; and a is
the radius of the charged sphere. Using the principle of superposition, the resulting
electric force due to N charged spheres is equal to:

N . . .
q; . q; . X; — Xj ii=1Li=0if rj<a

F, =k E *T—=ri =50 | — . ; :
/ edj P ( a3 r,-jz ||x,- _X.fH i1=0,b=1ifr;>a

(13.3)

where the magnitude of the charge ¢ is defined considering the quality of its
solution, as follows:

_ fit(i) — fitworst

= 13.4
fitbest — fitworst ( )

i

where, fitbest and fitworst are the so far best and the worst fitness of all particles, and
fit(i) represents the objective function value or the fitness of the particle i; and N is
the total number of particles. Each electrical force can be attractive or repulsive,
i.e., each particle in the search space is attracted by better particles (with higher
fitness value) and is repulsed by worse particles (with lower fitness value).
According to this rule, in the first iteration where the particles are far from each
other the magnitude of the resultant force acting on a particle is inversely propor-
tional to the square of the separation between the particles. Thus, the exploration
power in this condition is high because of performing more searches in the early
iterations. It is necessary to increase the exploitation of the algorithm and to
decrease the exploration gradually. After a number of searches where particles
are collected in a small space, the resultant force becomes proportional to the
separation distance of the particles. Therefore, the parameter a separates the global
search phase and the local search phase. According to Newtonian mechanics, we
have
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Xnew — Xold a— View — Vold
Ar At

AX = Xy — Xpid, V = (135)

where Xx,;,; and Xx,,,, are the initial and final position of a particle, respectively; v is
the velocity of the particle; and a is the acceleration of the particle. Combining the
above equations and using Newton’s second law, the displacement of any object as
a function of time is obtained as

1F;
X new = ka-_ _jAt2 + kV'Vj,old-At + Xj,0ld (136>
2 I’}’Zj

where, m; is the mass of the jth particle, which is considered equal to g; as in the
main algorithm (Kaveh and Talatahari [6]). At is the time step, and it is setto 1. k, is
the acceleration coefficient; k, is the velocity coefficient to control the influence of
the previous velocity. These coefficients can be considered fixed or adaptive during
the search process (Kaveh and Talatahari [5, 7]). Also, we have:

X » — Xj old
\J, new /> 0
Vj”lewr == T (137)

Inspired by the above electrostatic and Newtonian mechanics laws, the concept
of the CSS optimization method is organized as follows:

1. Initialization: Initialize an array of particles with random positions. The initial
velocities of these particles are taken as zero. Each particle has a charge of
magnitude (¢) defined considering the quality of its solution. The separation
distance r;; between two charged particles i and j is defined as Euclidean distance
between them (in search space).

2. Search: The attracting or repulsing force vector for each particle is determined
according to (13.3). Where in this equation F; is the resultant force affecting the
Jjth particle. After computing resultant forces acting on all particles, each particle
is moved to its new position and its velocity is updated. This procedure contin-
uous until the considered stopping criteria ends the search process.

13.3.2 Clustering

Clustering refers to the process of grouping samples so that the samples are similar
within each group, these groups are called clusters. Different clustering methods are
available in the literature and for this study one of the most prominent clustering
methods is utilized, called k-means (Haritigan [27]). In this method, first k& points
are selected as initial centroids, where £ is a user specified parameter, namely, the
number of clusters desired. Each point is then assigned to the closest centroid, and
each collection of points assigned to a centroid is a cluster. The centroid of each
cluster is then updated based on the points assigned to the cluster. The process of
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assignment and updating is repeated until no point changes clusters, or equiva-
lently, until the centroids remain the same. In this chapter, clustering is done with
respect to closeness in the search space.

13.4 MO-MSCSS

Approximation to the Pareto optimal set involves the following two distinct objec-
tives: (1) to obtain a non-dominated front that is close to the true Pareto front and
(2) to maintain the diversity of the solutions along the resulting Pareto front. For the
problems with very many design variables, application of multi-swarm strategy has
resulted in excellent results in both of these objectives, i.e. high convergence rate
and maintaining diversity (Fan and Chang [21]; Yen and Leong [22]; Leong and
Yen [23]). By employing several swarms, each swarm should cover just part of the
Pareto front and this means that for its particles the range of changes for each design
variable is limited to a smaller boundary. The great ability of this strategy is seen
more when the considered optimization problem has a high number of design
variables. On the other hand, by employing several swarms actually each swarm
works as a local optimizer. This feature provides an opportunity to utilize a
powerful local search algorithm as the search engine in each swarm.

As mentioned above, the application of gradient based algorithms as a local
optimizer has been studied by many researchers. It is clear that gradient based
algorithms have great potential to be used as local search algorithm in multi-
objective optimization algorithms. These results encouraged us to use an evolu-
tionary gradient based algorithm as the local search engine. The CSS algorithm,
introduced in Sect. 13.3.1, uses (13.3) to guide the particles in the search space. It is
seen that in CSS two terms contribute in guiding each particle in the search space.
First, the entered force of the other particles and second particles velocity in the
search space. It should be noted that the first term of (13.6) is an approximate
estimation of the gradient of the search process. In fact in (Salomon [28]) it is

proved that an acceptable estimation of the true gradient direction at point X, can be
obtained as follows:

& =Alirgoii(f(7f)—f(2)>.(7f =3 (13.8)

This function is correct when the distance of all ?i to 2, is less than a specific
value (o,). It means that all the considered points should be close to each other in the
search space. Consequently, the first term of (13.6) guides each particle in the
direction of space gradient at its location. The condition of (13.6), i.e. points should
be close to each other, is fulfilled here because usually particles of each swarm are
very close to each other. This is why CSS algorithm in a limited part of search
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space, can be categorized as an evolutionary gradient based algorithm and this is the
reason this algorithm is selected as the local search engine in the proposed
algorithm.

Employing several swarms for the search process raises the issue of information
exchange among swarms. Swarms traverse different parts of the search space and
obtain information about the space. Exchanging the information among swarms
improves search ability of all the swarms and it helps to maintain diversity of the
solutions along the Pareto front (Yen and Daneshyari [29]). Additionally as men-
tioned above, the structural optimization problems objective function are multi-
modal functions, i.e. they have lots of local optima, and employed algorithm should
be able to escape of these points. The considered solution for both of these
problems, is particle regeneration (Fan and Chang [21]). It means the particles in
each swarm are regenerated by the use of information provided by the archive
members allocated to each swarm. In this way, first it is not required to exchange
information among different swarms because in each iteration all swarms are
regenerated, second this strategy helps the algorithm to escape from local optima.
More details are presented in Sect. 13.4.1.

13.4.1 Algorithm Overview

The main algorithm of MO-MSCSS is quite similar to other multi-swarm algo-
rithms. The generic steps of MO-MSCSS are as follows. First, based upon a preset
number of swarms (kg,q,), €very swarm of particles is initialized. Second, the
members of local archive (L-archive) of each swarm are identified by the domina-
tion test and the internal iteration is reset to zero. In internal loop, the particles in
each swarm will be guided by both the particles from their L-archive and other
particles in their swarm (CSS search process). As soon as the force determination
process is completed, the particles perform the move operation. Afterward, the
L-archive of each swarm is updated. These steps are performed until they reach the
maximum internal iteration (iterlntMax). By the end of internal loop, the following
steps are performed: (1) all of the L-archives are merged into the global archive
(G-archive) (2) A clustering algorithm is applied to the G-archive to group the
non-dominated particles, where the number of groups is determined by the number
of swarms chosen, and each of these groups is assigned to a swarm as its L-archive
(3) the population-generation strategy is performed to regenerate the population of
each swarm by the use of newly assigned L-archive to the swarm. Then other
internal loop starts search process. These steps are performed until they reach the
maximum external iteration (iterExtMax). Figure 13.1 shows the pseudo-code of
the MO-MSCSS. For additional clarification, each part of the algorithm is described
further in the following sections.
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Begin
Parameters initialization for CSS search algorithm, mutation operator, population generator.
/* Population Initialization
Set no. of swarms (Kgyqm)
Set Maximum internal iteration (iterIntMax)
Set Maximum external iteration (iterExtMax)
Set internal iteration iterlnt=0. Set external iteration iterExt=0.
For each swarm
For each particle
Fitness evaluation.
EndFor
Store all found non-dominated particles as members of L-archive.
EndFor
iterExt=1,;
‘While iter Ext<iterExtMax
For each swarm
While interInt<iterIntMax
Charge_magnitude_determination()
For each particle

Determine the resultant force exerted to each particle using Eq.(10,11, 12) (CSS search
process). Move particle. Fitness evaluation.

Apply Mutation operator.
Maintain the particles within the search space.

Control the velocity of the particles (V. = Xjax)-
EndFor
EndWhile
Store all newly found non-dominated particles in L-archive.

EndFor
Combine kg, L-archives and update G-archive.
Apply clustering algorithm to group G-archive.
Assign obtained groups to swarms as their L-archive.
Population_generation_strategy()
EndWhile
End

Fig. 13.1 Pseudo-code of the MO-MSCSS [1]

13.4.2 Search Process by CSS Algorithm

In the proposed algorithm, search process is accomplished by CSS algorithm. In
this algorithm, as mentioned in Sect. 13.3.1, all particles which exist in a swarm,
with respect to their fitness and distance, contribute in guiding a particle. Better
particles attract and worse particles repulse the considered particle in the search
space. This process is performed in four steps as follows:

Step 1 The Euclidean distance between all the particles in swarm(i) and also
particles in archive(i) (in search space) are determined. Then these distances are
normalized to R,,,. This parameter is considered to overcome the effect of the
range of search variables (this parameter is set to 5 in this chapter).
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Step 2 The resultant force exerted to each particle is computed using the following
expression. This exerting force is formed from three parts:

1. A particle in the swarm is attracted by all archive members. In this case the
resultant force is as follows:

o =L =0 if
F—%Z( r,,zl+% )(x(z)—x(/)) <llllzoll";:1gf:§z (13.9)

where, x(7) and x(j) are the positions of the ith and jth particles, / is the number of
archive members in archive (i), QO is the charge magnitude (fitness value) of
archive members, ¢ is the charge magnitude of an ordinary particle in swarm(7)
and r;;is the distance between the two particles i and j. In this chapter, a is set to 1.

2. A particle is attracted by other better particles in swarm(i), i.e. a particle j is
attracted by particle 7 if and only if the charge magnitude of the particle i is
higher than that of the particle j. In this case, the exerting force on each particle is
equal to

k . . .
q; . . ih=Li=01if rj<a
Fj:qu( hjll + )(X(Z) _X(J)) <i1 =0,iy 1if l"j'>a’
- =Y, ij =

(13.10)

3. A particle is repulsed by other worse particles in swarm(i), i.e., a particle j is
repulsed by particle 7 if and only if the charge magnitude of the particle i is lower
than that of the particle j.

h=1,i=0 lfl‘,','<(1

qi . . . ) _
F; = 1 _
J QJZ < I’z/ i rij2 lz) (X(l) X(/) < =0, —=1 if ry>a ,

qi < 4q;
(13.11)

These three cases are illustrated in Fig. 13.2a, b in which for example in
Fig. 13.2a, particle P, is attracted by the archive members P';, P',, P'5, P’ and P's
and also is repulsed by P53, P, and Pg. In Fig. 13.2b the particle P, is attracted by the
archive members P';, P/, P'3, P’y and P'5 and by other better swarm particles (P,
and P,) and is repulsed by P3.

Step 3 The new position and velocity of each particle is obtained using the
following expression:
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94 B3
F2 m Archive members F2 m Archive members
e Particles e Particles
Attractive force <«— Altractive force
+—- Repulsive force «—- Repulsive force

(a swarm)
I

Fig. 13.2 Attraction and repulsion strategies in MO-MSCSS [1] (a) Case 1 (b) Case 2

FA

Xj,new = rand'm_{"_a)'vj,old +Xj,old (1312)
J

Vinew = Xj new — Xj old (1313)

where rand is a set of uniformly distributed random numbers in the range [0,1]. m; is
the mass of jth particle which is equated to g; in this chapter.

Step 4 The particles are maintained within the search space when they go beyond
their boundaries (Coello et al. [18]). When a design variable goes beyond its
boundaries, then two things are done: (1) the decision variable takes the value of
its corresponding boundary (either the lower or the upper boundary) and (2) its
velocity is multiplied by (—1) so that it searches in the opposite direction.

13.4.3 Charge Magnitude of Particles

The charge magnitudes of the particles are related to their fitness values. The
scheme which is employed in the proposed algorithm is similar to the fitness
assignment algorithm which is introduced in SPEA2 (Zitzler et al. [17]), but with
some modifications.

Here, each particle in the population is assigned a strength value, representing
the number of solutions it dominates (P, is the collection of members of population
and P, is the collection of members of the archive):
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S@)y={jlieP,+P, ni=j}| (13.14)

where, |.| denotes the cardinality of a set, + stands for multi-set union, and the
symbol > corresponds to the Pareto dominance relation. On the basis of the
S values, the raw fitness R(i) of an individual i is calculated as

Riy=">_ S0 (13.15)

jEeP 4P, j~i

According to this methodology, a particle with lower raw fitness is a better
solution than the other solutions with higher raw fitness values. In order to reverse
this pattern, the charge magnitude of each particle is determined as follows:

Rmax _Ri N\ 2
4= (71% “) (13.16)
Rimax = max(R(i)) foralli=1,2,...,N (13.17)

where ¢ is a small positive number to avoid zero value for ¢ in (13.16). According to
this definition all members of the archive have zero charge and so this method is not
verified for classifying these members. In order to provide a measure for qualifying
diversity of the archive members, the following charge magnitude is introduced:
First the crowding distance (Deb et al. [16]) for the archive members is calculated
and then members are sorted in descending order according to their crowding
distance, and the charge magnitude is determined as

1 1/2
o= (1 +m> (13.18)

where rank(archive(i)) is the rank of archive(7) in the sorted list. Figure 13.3 shows
the pseudo-code of the Charge-magnitude-determination strategy.

13.4.4 Population Regeneration

Different methods can be used for population regeneration step. In the proposed
algorithm a simple equation is utilized to generate new population. This task is done
by the use of archive members which are assigned to each swarm after clustering
phase. The pseudo-code of population-generation strategy is presented in Fig. 13.4.
In this algorithm one new particle j in a swarm is generated as follows:
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Function Charge magnitude_determination (Pop, Arch)
/* Pop= current population of swarm &
/* Arch= archive members of swarm k
Begin
For each particle in Pop and Arch
Compute the S value using Eq. 16.
EndFor
For each particle in Pop
Compute the R value using Eq. 17.
Compute the ¢ value using Eq. 18, 19.
EndFor
For each particle in Arch
Compute crowding distance
Compute Q using Eq. 20
EndFor
End

Fig. 13.3 Pseudo-code of the charge magnitude determination scheme [1]

(13.19)

iterExt
Xj = h+ W.(SWmax — SWmin) .Tandn;. (1 ey )

iterExtMax

where, randn; is a random number from a standard normal distribution which changes
for each particle, sw,,,, and sw,,,, are the minimum and maximum of all search
variables in swarm archive(i) respectively, / is one randomly selected member of the
swarm archive, and w is a parameter which increase the domain of new generated
particles. It should be mentioned that this parameter is considered so that each swarm
can cover much more space, and to enable the algorithm to escape from premature
convergence. This parameter, in this study, is set to 3 in all examples.

13.4.5 Mutation Operator

CSS is known to have a very high convergence speed (Kaveh and Talatahari [6]).
However, such convergence speed may be harmful in the context of multi-objective
optimization, because a MO-MSCSS based algorithm may converge to a false
Pareto front (i.e., the equivalent of a local optimum in global optimization).
Especially in the proposed algorithm, the best solutions found are used to generate
and guide particles of the swarms and if archive members get stuck in a local
optimum all particles of the swarm are collected around them and whole algorithm
will not be able to find the global optimum Pareto front. This drawback of the above
optimization method, motivated the development of a mutation operator that tries to
explore all of the search space. The choice of a good mutation operator is a difficult
task that has a significant impact on performance. In the proposed algorithm,
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Function Population generation (Arch)
/*Arch=L-archive members of swarm &
Begin
For each swarm k
Store the minimum and maximum of all search variables in swarm as swmin and swmax
For each particle in swarm k

Select randomly one of the particles in Arch(i)
Generate one new particle in this swarm using Eq.21.
Fitness evaluation
EndFor
Store newly generated population as particles of swarm(i)
EndFor

End

Fig. 13.4 Pseudo-code of the population-generation scheme [1]

mutation (turbulence) operator is utilized, i.e. mutation operator is applied to each
particle j with a predefined probability using the following formulation:

x! =x! + Rpx! (13.20)

where Ry is a random value in [—1,1]. For determining the probability of applying
mutation operator, a nonlinear function, introduced in (Coello et al. [18]), is utilized
as follows:

rand < (1 — iterInt iterIntMax )*/MaionRate (13.21)

where, rand is a uniformly distributed random value in range [0,1]. If this equation
is satisfied the mutation operator is applied to one of the search variables of the
selected particle. It should be mentioned that this operator is applied in each swarm
and iterlnt and iterIntMax are internal iteration index and maximum number of
internal iterations respectively.

13.4.6 Global Archive Updating Process

G-archive updating process consists of inserting all the obtained non-dominated
solutions in all L-archive(i) (i = 1, ..., k) into the G-archive and eliminating all
dominated solutions. Since the size of the external archive is limited, we apply a
secondary mechanism for keeping this limit: We adopt the concept of crowding
distance (Deb et al. [16]) in order to fix the size of the G-archive. First when
non-dominated solutions are inserted into the G-archive, the size of this archive is
considered free, After updating the G-archive we proceed to update the crowding
values of the set of archive members and sort them in descending order and we
eliminate as many members as necessary (from end of the list) in order to avoid
exceeding the allowable size of the archive.
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13.4.7 Constraint Handling

In order to handle the given constraints, a relatively simple scheme is implemented.
Whenever two individuals are compared, first they are checked for constraint
violation. If both are feasible, then the non-dominance is directly applied to decide
the winner. If one is feasible and the other is infeasible, the feasible dominates. If
both are infeasible, then the one with the lowest amount of constraint violation
dominates the other. This is the approach that has been utilized in (Deb et al. [16];
Coello et al. [18]) to handle the constraints.

13.5 Structural Optimization

In this section, the AISC-ASD (1989) [30] code is utilized as the structural
design code.

13.5.1 Statement of the Considered Optimization Design
Problem

The considered structural multi-objective optimization problem can be expressed as
follows:

minmize { W(X),U(X) }
SubjecttoC(X) <0 j=1,....h (13.22)
Xmin < X < Xmax

where X is the design variables; W(X) and U(X) are, for example, the weight and
displacement of the structure; C;(X) is the constraint; / is the number of constraints
and X, and X,.x are the lower bound and upper bounds of design variables,
respectively.

13.5.1.1 Design Constraints for Truss Structures

For truss structures, the constraints are as follows:

5min§5i§6max 1= 1,2, Loe.m
Omin < 6 < Omax i:1,2’---,n
a,.bga,-go i=1,2,...,nc

(13.23)

where m is the number of nodes; nc denotes the number of compression elements; o;
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and o, are the stress and nodal deflection, respectively; af represents allowable
buckling stress in member i when it is in compression.

13.5.1.2 Design Constraints for Frame Structures

For the frame structures, according to the AISC-ASD (1989) [30] code, the con-
straints are as follows:
The stress limitations:

foy Toe  Tov oy por fa <15 (13.24)
Fa Fbx th F(I
. Cm
%Jr C"L;fbx + jcf”y <1 For ];T >0.15 (13.25)
a ( _ﬁ:\‘)Fbx ( _ﬁ;)Fby a
fa fbt fhy fa
—L 42 4= <1 For = >0.15 13.26
0.6/,  Fpe Fpy F, ( )

where f, (=P/A;) represents the computed axial stress. The computed flexural
stresses due to bending of the member about its major (x) and minor (y) principal
axes are denoted by f;, and f,,, respectively. F,, and F,, denote the Euler stresses
about principal axes of the member that are divided by a factor of safety of 23/12.
F, stands for the allowable axial stress under axial compression force alone, and is
calculated depending on elastic or inelastic bucking failure mode of the member
according to the slenderness ratio:

2 5 34 2
1—2(:2 / §+E_8C3 F, For 4; < C¢
F,= , ¢ ¢ (13.27)
127°E
”2 Forl; > C¢
231

where E = the modulus of elasticity; Fy, = the yield stress of steel; C. = the
slenderness ratio dividing the elastic and inelastic buckling regions
(Cc = \/27°E[F,); A; = the slenderness ratio (4; = kL;/r;) and k = the effective
length factor in which for beam and bracing members, £ is taken equal to unity. For
column members, alignment charts are furnished in ASD-AISC (AISC 1989) [30]
for calculation of k values for both braced and non-braced cases. In this study,
however, the following approximate effective length formulas are used based on
(Dumonteil [31]), which are as follows:
For non-braced members:
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1.6GoGp + 4(Ga + Gp) + 7.5
k= 13.28
\/ Ga+Gp+175 ( )
For braced members:
3G 4G, 1.4(G G 0.64
_ 304Gy + 14(Ga + Gp) + (13.29)

o 3GAGp + 2(GA + GB) +1.28

Additionally, (13.30) represents the slenderness limitations imposed on all
members such that maximum slenderness ratio is limited to 300 for members
under tension, and to 200 for members under compression loads, i.e., we have:

k,‘L,‘

T

A= < 300 For tension members

(13.30)

k,‘L,‘ .
= <200 For compression members

Ai

i

13.6 Numerical Examples

In this part, the performance of the proposed algorithm is compared with the
performance of some other well-known methods. The examples are categorized
into two groups:

1. Unconstrained problems,
2. Constrained problems.

13.6.1 Unconstrained Multi-objective Problems

For this group of problems, there is no structural unconstrained problem available
in the literature. Thus the selected problems are mathematical. These problems have
been designed in a way that examines the capability of a given multi-objective
optimizer in dealing with problems having different characteristics (Coello
et al. [26]).

In this study, the number of fitness function evaluation is restricted to 25,000 for
this group of problems.
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13.6.1.1 Performance Metrics

In order to provide a quantitative assessment for the performance of an multi-
objective optimizer, three issues are often taken into consideration (Zitzlet
et al. [32]):

e The distance of the resulting non-dominated set to the Pareto-optimal front
should be minimized.

* A good (in most cases uniform) distribution of the solutions found is desirable.
The assessment of this criterion might be based on a certain distance metric.

¢ The extent of the obtained non-dominated front should be maximized, i.e., for
each objective, a wide range of values should be covered by the non-dominated
solutions.

In order to evaluate the produced Pareto front by different methods, in this group
three different qualitative measures are utilized.

Generational distance (GD) is a measure of the distance between the true
(PF.,.) and generated Pareto front (PF,,.,,).- This metric of individual distance
representing the distance is given by

Ty 1/2

1
GD=— Y "d} (13.31)
Mpr \ =1

where 7, is the number of members in PFy,,,, and d, is the Euclidean distance
between the member i in PFy,,,,, and its nearest member in PF,,,.. A smaller value
of GD implies better convergence.

The metric of spacing (S) gives an indication of how evenly the solutions are
distributed along the discovered Pareto-front:

pf

n 12
S = [ ! S (d —3)2] where E:iZd,- (13.32)

o — 145 Mpf i

where 7, is the number of members in PFy,,,, and d; is the Euclidean distance
(in the objective space) between the member i in PFy,,,,, and its nearest member in
PF tiown- A smaller value of S implies a more uniform distribution of solutions in
PF known-

The metric of maximum spread (MS) measures how “well” the PF . is covered
by the PFj,,., through hyper-boxes formed by the extreme function values
observed in the PF,,, and PFy,,,.,. It is defined as
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) 27 1/2
m s max max _ l:nlﬂ_ mln
MS = lz min £, ™) — max(f7 — ™) (13.33)
m Fmi ax_F;'mn

i=1

where m is the number of objectives, f; ™* and f; ™" are the maximum and
minimum of the ith objective in PFy,,,,, respectively, and F"** and F;“i“ are the
maximum and minimum of the ith objective in PF,,,,, respectively. A larger value
of MS implies a better spread of solutions. The actual runtime required by the
algorithm to complete a fixed number of iterations is named Computational time in
this chapter.

13.6.1.2 Comparison of the Results

In this section, extensive empirical studies are conducted to analyze the perfor-
mance of the proposed MO-MSCSS. It is compared to six of most well-known
multi-objective optimization algorithms which are as follows:

Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D-
DE) (Li and Zhang [33]), Non-dominated Sorting Genetic Algorithm II (Deb
et al. [16]), Strength Pareto Evolutionary algorithm SPEA2 (Zitzler et al. [17]),
Multi-objective Particle Swarm Optimization MOPSO (Coello et al. [18]),
sMOPSO (Mostaghim and Teich [19]) and the other method which is a Multi-
swarm multi-objective particle swarm optimization cMOPSO (Toscanoa and
Coello [20]).

For this part, four well-known benchmark problems ZDT1, ZDT3, ZDT4 and
ZDT6 (Coello et al. [26]) are selected to examine the performance of the proposed
algorithm (see Table 13.1), and in order to perform statistical analysis, each
problem is solved for 30 times by each of the considered algorithms.

In this study, MOEA/D-DE, a newly introduced multi-objective optimizer, was
run using a population size of 100, CR = 0.5, F = 0.5, T = 20 and mutation
probability of 1/n, where n is the population size. A real coded NSGA-II was run
using a population size of 100, a crossover probability of 1 (p. = 1), binary
tournament selection, a mutation rate of 1/u (where u = is the number of decision
variables), and distribution indexes for crossover and mutation operators as 7. = 20
and 7, = 20, respectively (as recommended in (Deb et al. [16])). SPEA with real
variable coding was run using a population size of 100, a crossover probability of
1 (p. = 1), binary tournament, a mutation rate of 1/u, and distribution indexes for
crossover and mutation operators as 3. = 20 and #,, = 20, respectively. MOPSO
used a population of 100 particles, an archive size of 100 particles, a mutation rate
of 0.5, and 50 divisions for the adaptive grid. sMOPSO was run with a population of
100 particles with an archive size of 100 particles and a mutation probability of
0.05. cMOPSO used 40 particles, a maximum number of generations per swarm of
5, and a total of 5 swarms.
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In the proposed algorithm, four parameters should be specified by the user,
which are as follows:

— Number of particles which contribute in search process (n): In this study
100 particles are utilized to solve optimization problems.

— Number of swarms (k): This parameter should be specified according to n. As
mentioned in Sect. 13.4, in each swarm there should be enough number of
particles that the employed equation can estimate the gradient of the space
with an acceptable precision. We assign 10 particles to each swarm and conse-
quently 7/10 swarms should be considered.

— Archive size: 100 is considered in this study.

— Maximum number of internal iterations (iterlntMax): This parameter controls
the power of the proposed algorithm in local search process and by increasing
this parameter, more computational effort is consumed for this task. This
parameter is considered as 5 in this chapter.

In this section the experimental results are presented in order to clarify the
performance of the proposed algorithm.

1. ZDT1: This problem is defined as:

x|
x) = g(x) [1 = v/x1/g(x)] (13.34)

where x; = [0, 1],i =1, 2, ..., 100. The Pareto-optimal region corresponds to
x; € [0,1] and x; =0 for i = 2,3, ..., 100. ZDT1 has convex Pareto front
which challenge the algorithms’ ability to find and produce a quality spread of
the Pareto front. Note that the number of decision variables is set to 100 for this two
objective test problem instead of the standard number, i.e., 30. This will allow us to
exploit all MOs chosen when encountering a higher number of decision variables.
The comparison of results between the true Pareto front of ZDT1 and the Pareto
front produced by considered algorithms is shown in Fig. 13.5. While the mean
value, standard deviation, maximum and minimum value of each of the considered
performance metrics are presented in Table 13.1. From the plots of the evolved
Pareto fronts in Fig. 13.5 and the results in Table 13.1, it can be observed that except
MOEA/D-DE and MO-MSCSS, all other algorithms get stuck in local Pareto
optimum and are unable of finding solutions near the global Pareto front (with
this number of fitness function evaluation). All algorithms are capable of compet-
itive results in the aspects of S metric. By regarding the MS and GD metric, it is
seen that MOEA/D-DE and MO-MSCSS are the best algorithms.
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2. ZDT3: This problem is defined as:

f1(x) =x
ZDT3 :min{ f2(x) = g(x) |1 —+/x1/g(x) —% sin (107x, ) (13.35)
gx)=1+9 (Z;zx,)/(n -1

where x; = [0, 1],i =1, 2, ..., 100. The Pareto-optimal region corresponds to
x; € [0, 1] and x; =0 for i = 2, 3, ..., 100. ZDT3 is a 100-variable problem
which possesses a non-convex and disconnected Pareto front (the number of vari-
ables is set to 100 instead of the standard number, i.e., 30). It exploits the algo-
rithms’ ability to search for all of the disconnected regions and to maintain a
uniform spread on those regions. Figure 13.5 illustrates the comparison of results
between the true Pareto front of ZDT3 and the Pareto front produced by different
considered algorithms. Also the results of different performance metrics are
represented in Table 13.1. From the obtained results it can be seen that NSGA-II,
SPEA2, MOPSO, sMOPSO, and cMOPSO have failed to find the true Pareto front
for ZDT3 within the specified number of fitness function evaluation. By consider-
ing all the performance metrics, it can be seen that the performance of MO-MSCSS
is the best among the six algorithms adopted.

3. ZDT4: This problem is defined as:

fi(x) =x
ZDT4 : min{ f2(X) = g(x) [1 —/x1/g(x)] (13.36)
g(x)=1+10(n—1) + Zlnzz [x} — 10 cos (47x;)]

where x; e [0, 1] and x; = [-5,5],i =2, 3, ..., 100. This is a 100-variable
problem which challenges the algorithm ability to deal with the problem of multi-
modality (the number of variables is set to 100 instead of the standard number, i.e.,
10). ZDT4 has 21° different local Pareto-optimal fronts in the search space, of
which only one corresponds to the global Pareto-optimal front. The Euclidean
distance in the decision space between solutions of two consecutive local Pareto-
optimal sets is 0.25. The comparison of results between the true Pareto front of
ZDT4 and the Pareto front produced by different considered algorithms is
represented in Fig. 13.5. In Table 13.1, three considered performance metrics are
represented numerically. It can be observed that all the algorithms, except
MO-MSCSS are unable to find any solutions near the global Pareto front resulting
in the relatively large GD for ZDT4 at the end of 25,000 evaluations. In this
problem, which is similar to structural problems because of its multi-modality, it
is clear that the proposed algorithm outperforms all the other considered algorithms.
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4. ZDT6: The problem is defined as:

f1x)=1- exp( — 4x1) sin6(67rx1)
ZDT6 : mind £2(x) = ¢(x) [ 1= (1(x)/2(x))’ | (13.37)
g =1+9[(D_ %)/ (n—1)]°*
where x; = [0, 1],i =1, 2, ..., 100. The Pareto-optimal region corresponds to

x; € [0,1] and x7 =0 for i =2, 3, ..., 100. This is a 100-variable problem
having a non-convex Pareto-optimal set (Number of variables is set to 100 instead
of the standard number, i.e., 10). Moreover, the density of solutions across the
Pareto-optimal region is non-uniform and the density towards the Pareto-optimal
front is also thin. For this test problem, the adverse density of solutions across the
Pareto-optimal front, coupled with the non-convex nature of the front, may cause
difficulties for many multi-objective optimization algorithms to converge to the
true Pareto-optimal front. The comparison of results between the true Pareto front
of ZDT6 and the Pareto front produced all the considered algorithms are
represented in Fig. 13.5. By considering the Table 13.1 it can be observed that
except MO-MSCSS and MOEA/D-DE, all the other algorithms have problem in
finding the global Pareto front. It is clear that considering all the performance
metrics, the proposed algorithm outperforms all the other methods.

13.6.2 Constrained Multi-objective Problems

The considered problems in this section are structural optimization problems. In
this section in order to evaluate the overall performance of the employed algorithms
in solving more complex problems, each problem is solved five times by each
algorithm. With regard to obtained results in the previous section it is clear that,
except the proposed method, MOEA/D-DE, as the method based on genetic algo-
rithm, and MOPSO, as the method based of particle swarm optimization,
outperform all other considered methods. Thus, these two methods are utilized to
perform comparative study. But unfortunately the version of MOED/D-DE (Jan and
Zhang [34]) for the constrained problems is able to solve just scaled multi-objective
problems and for solving un-scaled problems it requires some modifications.
Consequently, in this section NSGA-II is selected as the method based on genetic
algorithm, to perform the comparative study.
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13.6.2.1 The Performance Metrics

In this group of problems, the true Pareto front is not known consequently the
considered performance metrics considered in the previous section are not appli-
cable here. In order to evaluate the performance of the algorithms other perfor-
mance metric, C-metric, is utilized here for comparing the results obtained by
different algorithms. Additionally the convergence process of each algorithm is
presented graphically.

Set Coverage (C-metric): Let A and B be two approximations to the PF of a
MOP, C(A,B) is defined as the percentage of the solutions in B that are dominated
by at least one solution in A, i.e.

{u EB|EIV € A : v dominates u}’
|B|

C(A,B) = | (13.38)

C(A,B) is not necessarily equal to 1 — C(B,A). C(A,B) = 1 means that all the
solutions in B are dominated by some solutions in A, and C(A,B) = 0 means that no
solution in B is dominated by a solution in A.

13.6.2.2 A 126-Bar Truss Structure

This example is a 126-bar spatial truss structure shown in Fig. 13.6. The problem is
to find the cross-sectional areas of the members such that the total structural weight
(first objective) and the resultant stress in truss members (second objective) are
minimized concurrently. In other words, the problem second objective function is
defined as follows:

126

StressIndex = Z

i—1 Oallowable

il (13.39)

The material density is p = 2767.99 kg/m® (0.1 Ib/in’) and the modulus of
elasticity is £ = 68, 950 MPa (1 x 10* ksi). The members are subjected to the
stress limits of 4+ 172.375 MPa (£25 ksi). The upper and lower boundaries of each
truss element are 0.6452 cm? (0.1 in%) and 20.65 cm? (3.2 in%), respectively. The
126 structural members of this spatial truss are sorted into 49 groups. In each story,
we have: (1) A1—=Aq, (2) As—Ag, 3) A7=Ag, (4) Ag—Aio, (5) A=Az, (6) A3 A6,
(7) Ay17—-A 3. The applied loads at node 29 are F, = 5.0 kips (22.25 kN), F, = 5.0
kips (22.25 kN) and F, = —5.0 kips (22.25 kN).

In this example, there are 49 design variables. The search process in all the
algorithms is terminated after 30,000 fitness function evaluations. Each algorithm is
run five times and the best one is selected to present graphically. Additionally, the
results of the considered performance metric are presented in Table 13.2. The
obtained Pareto fronts from different multi-objective optimization methods are
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Fig. 13.6 Schematic of a 126-bar spatial truss

presented in Fig. 13.7. In this figure for each algorithm the obtained Pareto front in
different iterations is presented which demonstrates the search process in each of
the algorithms. Additionally the mean value and standard deviation of C-metric
obtained in different runs are presented in Table 13.3. It is seen that in this example
with 49 design variables, except the proposed algorithm, all other multi-objective
optimizers have some problems in covering the Pareto front. Although MOPSO has
acceptable convergence, it is not able to cover all parts of Pareto front and the
obtained set of solutions is not distributed uniformly. It is indicated that NSGA-II
has problems in converging to true Pareto front and also in covering all parts of
it. The obtained results by MO-MSCSS illustrate this algorithm’s ability to deal
with complex multi-objective optimizations. The convergence to true Pareto front
of the proposed algorithm and its ability in covering all parts of it is much better
than the other employed algorithms. The obtained cross section areas by
MO-MSCSS of two extreme points of Pareto front are presented in Table 13.2.
The time required for MO-MSCSS is the best with respect to the other methods.

13.6.2.3 A 36-Story Frame Structure

The second example considered in this chapter is a 36-story un-braced plane steel
frame consisting of 259 joints and 468 members, as shown in Fig. 13.8. The
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Fig. 13.7 Pareto front at different iteration of (a) NSGA-II (b) MOPSO (¢) MO-MSCSS (d) All
three considered methods of 126-bar truss example [1]

Table 13.3 Mean value and standard deviation of obtained C-metric

126-Bar truss structure 126-Bar truss structure
Mean C (A,B) 0.978 Std C (A,B) 0.00447 Mean C (A,B) 0.836 Std C (A,B) 0.04147
A: MO-MSCSS B: NSGA-II A: MO-MSCSS B: MOPSO

material density is p = 7, 850 kg/m’ (0.284 1b/in®), the modulus of elasticity is
E =203, 893.6 MPa (2.96 x 10* ksi) and the yield stress f, = 253.1
MPa (36.7 ksi).The members are subjected to the stress limits of £ 172.375
MPa (£25 ksi). The 468 frame members are collected in 60 different member
groups, considering the practical fabrication requirements. That is, the columns in a
story are collected in two member groups as inner columns and outer columns,
similarly beams are divided into three groups, each two consecutive bays in a
group.

The outer columns are grouped together as having the same section over three
adjacent stories, as are inner columns, and all beams.
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Fig. 13.8 Schematic of a 36.0m
36-story 2D frame

Cross section of beam and
column members- 4 design
variable for each section

1296 m

It should be mentioned that in this example for computing the allowable flexural
tensions it is assumed that all beams are laterally supported. The cross section of
each member is assumed to be an I-shape and for each member four design vari-
ables are considered as shown in Fig. 13.8. In fact in this example we have to
consider four design variables for each member, because for each member in
addition to cross section, the moment of inertia should be calculated. Consequently,
in this example we face with a multi-objective optimization problem with
240 design variables.

The upper and lower boundaries of design variables are 1-7 cm for #f, 0.6-2 cm
for tw, 20-70 cm for bf and 10-120 cm for d, respectively. This frame is subjected
to various gravity loads in addition to lateral wind forces. The gravity loads acting
on beams cover dead (D), live (L) and snow (S) loads.

All the floors excluding the roof are subjected to a design dead load of 17.28
kN/m and a design live load of 14.16 kN/m. The roof is subjected to a design dead
load of 17.28 kN/m plus snow load. The design snow load is computed using (7.1)
in ASCE 7-05 (ASCE 7-05 2005), resulting in a design snow pressure of 4.5
kN/m. The design wind loads (W) are also computed according to ASCE 7-05
using the following equation:
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pw = (0.613K.K..K,V°I)(GCp) (13.40)

where p,, is the design wind pressure in N/m?; K. is the velocity exposure coeffi-
cient; K., (=1.0) is the topographic factor, K; (=0.85) is the wind directionality
factor; I (=1.15) is the importance factor; and V (=46.94 m/s) is the basic wind;
G (=0.85) is the gust factor, and C, (=0.8) for windward face and —0.5 for leeward
face) is the external pressure coefficient.

The calculated wind loads are applied as concentrated lateral loads on the
external beam-column joints (nodes) located on windward and leeward facades at
every floor level. The applied loads are summarized in Table 13.4. The load
combination per AISC-ASD specification [35] is considered as

(D+L+S+W) (13.41)

At the end it should be mentioned that here the aim is to simultaneously
minimize two conflicting objective functions, structural weight and the lateral
displacement of the roof story due to wind load. In this example, there are
240 design variables and the search process for all the algorithms is terminated
after 50,000 fitness function evaluations. Each algorithm is run five times and the
best one is selected to present graphically. The obtained Pareto fronts from consid-
ered multi-objective optimization methods are presented in Fig. 13.9.

Figure 13.9 presents the Pareto fronts obtained by different algorithms in four
stages of search process. Additionally the mean value and standard deviation of
C-metric obtained in different runs are presented in Table 13.5. It can be seen that
this example is really challenging and, except the proposed algorithm, all other
multi-objective optimizers have some deficiencies. As shown in Fig. 13.9, the
proposed algorithm outperforms all other mentioned multi-objective optimization
algorithms in all different criteria. It is seen that with the specified number of fitness
function evaluation just MO-MSCSS is able to cover most parts of the true Pareto
front. The time spent by four algorithms is compared in Table 13.6. It can be seen
that in this example the time required for MO-MSCSS is approximately equal to the
time spent by other mentioned methods.

13.7 Discussions

In this chapter, a new multi-objective optimization algorithm, named as
MO-MSCSS, is proposed to deal with complex and large structural optimization
problems. These problems have some specific features, and employing general
optimization algorithms for solving such problems may cause numerical difficul-
ties, such as finding local optimum solutions instead of the global optimum solu-
tion, or taking high amount of computational time. Thus proposing an efficient
algorithm for this group of optimization problems can be valuable. In this study,
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Fig. 13.9 Pareto front at different iteration of (a) NSGA-II (b) MOPSO (¢) MO-MSCSS (d)
Pareto fronts of 2D-frame example [1]

Table 13.5 Mean value and standard deviation of obtained C-metric

2D Frame structure 2D Frame structure
MeanC(AB) 1 StdC(AB) 0 MeanC(AB) 09604 StdC (A,B) 0.061202
A: MO-MSCSS B: NSGA-II A: MO-MSCSS B: MOPSO

Table 13.6 Time spent by MOPSO, NSGA-II and MO-MSCSS in three examples (This time is
related to the search process in addition to time spent for structural analysis)

Example/algorithm MOPSO NSGA-II MO-MSCSS
126 bar truss structure 200.86 (s) 274.46 (s) 200.03 (s)
36-story frame structure 2370.13 (s) 2118.11 (s) 2401.2 (s)

first we attempt to recognize and categorize the features of structural multi-
objective optimization problems, mentioned in the literature by other researchers,
and then find the best procedures for their solutions.
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In structural optimization problems, the objective functions are multi-modal and
a good algorithm will be the one which is capable of escaping the local optima.
Additionally in this group of problems, the objective function is defined based on
very many design variables and high computational cost is required for each fitness
function evaluation. This is another problem that prevents the structural engineers
to use the optimization techniques efficiently.

MO-MSCSS algorithm is a hybrid multi-swarm multi-objective optimization
method which is based on a swarm-based local search process and the clustering
concept. The particle regeneration procedure is another component of the proposed
algorithm that helps to escape the local optima. In fact, all of the employed
sub-procedures are selected based on their performance and effectiveness in cov-
ering the above mentioned problems. The results of the solved examples, both
unconstrained and constrained, demonstrate that the proposed algorithm has out-
standing abilities in solving large scale multi-objective optimization problems.
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