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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage te-
chnology transfer in control engineering. The rapid development of control
technology has an impact on all areas of the control discipline. New theory,
new controllers, actuators, sensors, new industrial processes, computer met-
hods, new applications, new philosophies..., new challenges. Much of this de-
velopment work resides in industrial reports, feasibility study papers and the
reports of advanced collaborative projects. The series offers an opportunity for
researchers to present an extended exposition of such new work in all aspects
of industrial control for wider and rapid dissemination. Industrial process con-
trol usually requires process unit control and global plant-wide control. The
question is how to model and solve these often large-scale control problems. In
practice, industrial and control engineers find a way to make these processes
work and then refine and optimize the control structures. The involvement
of the academic control community in the solution of these problems is often
third-hand and usually after the process is up and running. Consequently,
the amount of teaching and research devoted to industrial process supervi-
sory control tends to be rather small when compared with activity in control
loop design. This is a pity because these higher-level problems in process con-
trol are both important and challenging.
The two seminal textbooks in this field are Theory of Hierarchical Multi-

level Systems by M.D. Mesarovic, D. Macko and Y. Takahara (Academic
Press, New York, 1970) and Control and Coordination in Hierarchical Sys-
tems by W. Findeisen, F.N. Bailey, M. Brdys, K. Malinowski, P. Tatjewski
and A. Wozniak (J. Wiley and Sons, Chichester, U.K., 1980). These books
provided the mental models and the system vocabulary to bring a concrete
framework to the engineering community tackling large-scale industrial pro-
cess control. The key concept in this ordering was the hierarchy and the key
tool was optimisation. Since these seminal texts emerged, the use of a hierar-
chical structure in industrial control is usually implicitly or explicitly present.
Many global plant control schemes are designed around a hierarchical laye-
red framework because this enables objectives, methods and operation to be
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clearly and unambiguously stated and implemented. The hierarchical struc-
ture often facilitates the easy transfer of knowledge of the plant control ob-
jectives and methods as new engineers join the operational team. Enhancing
the effectiveness of global plant control becomes an easier task if the control
is decomposed into layers that are usually time-frame decoupled, too.
Despite the passage of time, optimisation remains the key tool but what

has changed are the optimisation methods. Optimisation in the 1970s usually
meant static optimisation techniques whereas today constrained dynamic opti-
misation of complex nonlinear processes is routinely feasible. Model predictive
control methods are versatile and commonly found in the higher reaches of
the process control hierarchy, as well as providing the control designs in the
lower control-loop and set-point-changeover levels.
Piotr Tatjewski was one of the original authorial team that produced the

seminal text Control and Coordination in Hierarchical Systems. Consequently,
it comes as no surprise to find that his Advances in Industrial Control mono-
graph, Advanced Control of Industrial Processes has the sub-title Structures
and Algorithms. For what the reader will find in this exemplary monograph is
two chapters reviewing and extending the original concepts of the multi-layer
hierarchical control structure and two chapters introducing in considerable
scholarly depth the control algorithms of model fuzzy control and model pre-
dictive control. The two control algorithms can be considered for use at diffe-
rent levels and to achieve different objectives within the hierarchical control
structure. Of course, the model predictive control tool facilitates optimisation
whilst model fuzzy control can be viewed as a loop controller model devised
to achieve good nonlinear process control performance in the direct control
layer of the hierarchy.
The monograph has been written with considerable care given to the steps

of review, exposition and demonstration. Industrially relevant examples have
been chosen to demonstrate different aspects of the concepts under discussion.
The careful presentation enables both the industrial engineer and the acade-
mic researcher to appreciate the context of the ideas being discussed before
proceeding to the more challenging aspects of the exposition. Since sufficient
information has been given about many of the various examples presented,
enthusiastic readers may wish to repeat them for themselves.
Readers of all levels of attainment in industrial process control will find

something of interest in this fine monograph. It is a very welcome new title
in the Advances in Industrial Control series.

M.J. Grimble and M.A. Johnson
Glasgow, Scotland, U.K.



Preface

The subject of this book is advanced control of industrial processes. Therefore,
algorithms of advanced feedback control are mainly presented, but also on-line
set-point optimization is discussed, in appropriate structures. A starting point
for the topic defined in this way is a multilayer control structure of industrial
processes. This structure enables reasonable and safe control and management
through a decomposition and distribution of tasks and responsibilities into
a few well-defined and simpler sub-tasks of a more homogeneous character,
mutually interconnected. The basic layers of the multilayer structure are two
feedback control layers (regulatory control layers) and the optimization layer.
Feedback control is now often carried out at two layers, especially for more

complex, multivariable processes. The first and lowest one is the direct control
layer, also called the basic control layer. Its main task is to maintain the pro-
cess within desirable limits defined by the set-point values for its controllers
(direct controllers). It is usually also equipped with certain control logic res-
ponsible for overriding the control designed for normal operating conditions, if
a danger of violating constraints leading to an emergency state is encountered.
Set-points of certain direct controllers of complex processes are now more and
more often under supervisory control of advanced controllers, which can the-
refore be called the set-point controllers. They constitute a (higher) set-point
control layer, which is even more commonly called a constraint control layer,
as its controllers are usually responsible for controlling certain technological
constraints influencing product quality.
As a result of the development of electronics and computer technology,

the powerful DCS (Distributed Control System) and SCADA (Supervisory
Control and Data Acquisition) systems are now a standard, enabling advan-
ced realization of feedback control tasks. Thus, it is possible to apply, in real
time, the advanced control techniques. They are usually understood as algo-
rithms more complex than those based on the classic PID control law. These
techniques are now applied mainly at the constraint control layer, where pro-
cess nonlinearity, its multivariable nature and constraints play an important
role. However, they can also be addressed to direct control loops which are
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difficult for classic PID control, e.g., due to large delays, signal constraints or
nonlinearities.
The task of the optimization layer is to economically evaluate best set-

point values for the feedback controllers. Due to an increased computing power
it is now realistic to apply on-line optimization, that is optimal and automa-
tic adjustment of the set-points to the varying external influences. However,
frequent changes of the set-points calculated at the optimization layer require
that the feedback controllers operate not only in the vicinity of one equi-
librium point, but can cope with a wider range of variability of input and
output process values as well. Real processes are generally nonlinear, there-
fore there is a need for nonlinear control systems. Moreover, the more precise
the optimizer’s model of the process and the more precise the stabilization of
the optimal values by the feedback controllers, the higher the profits from the
optimization. Therefore, the optimization usually sets new requirements for
feedback control systems, creating a need for application of advanced control
algorithms (in the sense defined earlier).
The subject of the book is situated within the scope of the discussed pro-

blems. In the first chapter general issues related to the control in the multilayer
structure are discussed. Starting from basic control objectives, the question
of a decomposition which leads to the structure is considered. Then the tasks,
realization aspects and features of the direct control layer, the constraint con-
trol layer and the optimization layer are presented and discussed. Presentation
of the multilayer control structure is supported by a carefully chosen worked
example of a nonlinear chemical reactor, showing many aspects of the dis-
cussed topic, from a decomposition of the process dynamics to the set-point
optimization.
The second chapter is devoted to nonlinear control algorithms using fuzzy

structures of the Takagi-Sugeno (TS) type. After a short introduction to fuzzy
logic and fuzzy nonlinear modeling, design procedures for discrete-time and
continuous-time nonlinear TS fuzzy control algorithms are described, both
for state-space and input-output process models. The questions of stability
analysis of resulting nonlinear control systems are thoroughly addressed. It
is not only the author’s opinion that the TS fuzzy control is an efficient te-
chnique, relatively easy to design and convincing, since it can be treated as
a natural nonlinear generalization of the classical linear control algorithms.
In particular, it is shown to be a generalization of the well-established PID
technique to the form of a nonlinear TS fuzzy PID controller. Constituting
a systematic design alternative, the nonlinear fuzzy TS controllers are also a
good solution in places where it is necessary to move from linear to nonlinear
algorithms, without loosing the experience gathered.
Chapter 3 is devoted to predictive control algorithms, defined by a now

commonly used acronym MPC (Model Predictive Control). The MPC is one
of the advanced techniques which has achieved great, unquestionable success
in practical applications, and has recently had a dominant impact on the
direction of development of industrial control systems as well as scientific re-
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search within the area of feedback control. There are several reasons for this.
The MPC algorithms are indeed the first technique which directly takes into
account constraints on both process inputs and outputs. It generates manipu-
lated inputs while also considering internal interactions in the process, due to
the direct use of the process model. Therefore, it is efficacious in application
to multivariable processes, including those with a different number of mani-
pulated inputs and controlled outputs. Moreover, the principles of operation
and tuning of MPC algorithms are comprehensible, relatively easy to explain
to engineering and operator staff – an important aspect when introducing new
techniques to industrial practice. Needing more calculations at each sampling
instant, initially the MPC algorithms were used mainly at the set-point con-
trol layer, where longer sampling periods are typical and the key questions
are those of constraints and interactions. With increase in computing power
and reliability and decrease in prices of processors it has become possible to
apply the predictive algorithms also in direct control loops.
In Chapter 3 first linear predictive control algorithms are presented, con-

centrating on most important formulations: the DMC (Dynamic Matrix Con-
trol) algorithm, undoubtedly most popular in industrial process control prac-
tice and the GPC (Generalized Predictive Control) algorithm. Explicit ver-
sions (constraint free, leading to control laws) are discussed, as well as nume-
rical ones, when at every sampling instant a numerical task of quadratic pro-
gramming is solved on-line. Starting from linear formulations, the structures
of basic nonlinear MPC algorithms are presented, paying particular attention
to versions with linearizations, which are essential for effective applications.
It is shown that these versions can be particularly easy to implement for non-
linear fuzzy models of the TS type. Problems of stability of MPC algorithms
are also discussed, as well as questions of interpretation and adjustment of
tuning knobs.
The fourth and last chapter is devoted to algorithms for set-point optimi-

zation. After a more general discussion about steady-state optimization in a
multilayer control structure, steady-state optimization for control structures
with MPC controllers is the subject of presentation. First, attention is devoted
to a case when dynamics of disturbances can be comparable with the dyna-
mics of the controlled process. In this case, the classical multilayer approach,
with significantly different frequencies of intervention of different layers (the
higher the layer, the slower the frequency) usually fails to result in a globally
optimal control structure. However, applying an additional simplified steady-
state optimization coordinated with the MPC dynamic optimization allows
to improve the results. An interesting subject here is an algorithm integrating
set-point and MPC dynamic optimizations. In the second part of the chap-
ter, algorithms for on-line measurement-based iterative optimization (iterative
improvement) of a steady-state operating point, under significant uncertainty
caused by an imprecise model of the controlled process and/or errors in dis-
turbance estimations, are presented. These algorithms are based mainly on
the technique of integrated system optimization and parameter estimation.
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In the book several important and well-established control structures and
algorithms are presented. Starting from basic and known formulations (though
supplemented with original views of the author, such as a new, alternative for-
mulation of the GPC control law), the book also includes a series of research
results obtained by the author, including those with his PhD students, con-
cerning the nonlinear fuzzy control, the MPC algorithms and the set-point
optimization techniques. Therefore, the book is addressed both to research
staff and postgraduate students as well as to readers interested in the basic
mechanisms of the presented techniques of advanced control, including engi-
neers and practitioners. An appealing feature of the book is illustration of
the presented concepts and algorithms by many worked examples in the text,
as well as by results of many simulations based on industrial process models,
stemming primarily from petrochemical and chemical industries.
This new book is based on a text published originally by the author in

Polish in 2002, but several parts of this text have been improved or substan-
tially changed when preparing this edition. In particular, certain topics have
been deleted and new topics and research results have been included.
The author of this book is grateful to the colleagues and students from

the Institute of Control and Computation Engineering, Warsaw University
of Technology, for fruitful discussions, help and encouragement to write this
book. In particular, the author is much indebted to Professor Władysław
Findeisen, his esteemed teacher and to Professor Krzysztof Malinowski, long-
time head of the University Priority Research Program in Control, Information
Technology and Automation, supporting the author’s research activities. The
author is also very grateful to Professors P. D. Roberts from City University,
London, and M. A. Brdyś from Birmingham University, for invitations to
spend considerable time at these universities and for direct cooperation in
research on steady-state optimizing control. The author is also thankful to
his former PhD students and actual co-workers, in particular to Dr. Maciej
Ławryńczuk and Dr. Piotr Marusak for cooperation in research on predictive
control and for help in calculation of some examples and proofreading of the
manuscript.
Acknowledgments are also due to the Polish Committee of Scientific Re-

search and then the Polish Ministry of Scientific Research and Information
Technology, for supporting the author’s research from Polish budget funds in
the form of research projects, in particular the one in the last two years, which
contributed to this book.
Finally, the author is much indebted to his niece, Anna Basiukiewicz, a

specialist in English language, who agreed to read and correct the final text
of the book. Last but not least, the author owes a debt of gratitude to his
wife Magda for her patience, understanding and support during the course of
the book’s preparation.

Warsaw, Poland, Piotr Tatjewski
August 2006
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Notation

General

x, y, ... variables or constants, scalar or vector-valued
nx dimensionality of vector x, nx = dimx
A,B, ... real matrices
xT , AT transpose of vector x, of matrix A
‖x‖2R xTRx
diag{a1, ..., an} diagonal matrix with a1, ..., an on the diagonal
(x, y) ordered pair of elements x and y, also vector [xT yT ]T

A(z−1) algebraic polynomial in unit delay operator z−1

E{·} expected value operator
g(·), f(·), ... scalar or vector functions
g
′
(x) derivative of function g at point x

for g : Rn → R, g
′
(x) = [∂g(x)∂x1

· · · ∂g(x)∂xn
],

for g : Rn → R
m, g

′
(x) = {∂gi(x)∂xj

} =

⎡⎢⎢⎣
∂g1(x)
∂x1

· · · ∂g1(x)∂xn
...
. . .

...
∂gm(x)
∂x1

· · · ∂gm(x)∂xn

⎤⎥⎥⎦
∇g(x) gradient, ∇g(x) = (g′(x))T
g
′
x(x, y) partial derivative of function g with respect to x, at (x, y)

Specific

µC(·) membership function of the fuzzy set C
wi(k) activation level of i-th fuzzy inference rule at sample k
u(k) manipulated variable (process control input) at sample k
y(k) controlled variable (process controlled output) at sample k
x(k) state of dynamic system at sample k
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z(k) measured disturbance at sample k
d(k) unmeasured disturbance at process output at sample k
e(k) control error at sample k, e(k) = ysp(k)− y(k)
ysp(k) set-point for the controlled variable y(k) at sample k
c decision variable of the optimization layer, simultaneously:

set-point for controllers of lower layers (Chapters 1 and 4)
y(k + p|k) value of y predicted for sample k + p at current sample k
y0(k + p|k) free component of y(k + p|k)
�y(k + p|k) forced component of y(k + p|k)
sj j-th element of discrete unit step response
D dynamics horizon, i.e., sj = const. for j ≥ D
Tp sampling period in a discrete dynamic system
τ process time delay (defined as a number of sampling periods),

excluding a unit discretization delay (τ ≥ 0)
τ̄ overall time delay in a discrete-time model (defined as a number

of sampling periods), including the discretization delay, τ̄=τ+1
F (·) model of steady-state input-output process mapping
F∗(·) real (unknown) steady-state input-output process mapping

Parameters of model predictive controllers:

N prediction horizon (defined as a number of sampling periods)
Nu control horizon (defined as a number of sampling periods)
N1 initial time for summing control errors in the predictive controller

cost function (1 ≤ N1, usually N1 = τ + 1)
Ncw1, Ncw lower and upper bound of the constraint window (defined as

numbers of sampling periods), N1 ≤ Ncw1 < Ncw ≤ N
Ψ(p) weighting matrix for control errors predicted for sample k + p
Ψ Ψ = diag{Ψ(N1), ...,Ψ(N)}
Λ(p) weighting matrix for control input moves for sample k + p
Λ Λ = diag{Λ(0), ...,Λ(Nu − 1)}
λ scalar weighting coefficient in the case when Λ(p) = λI
γ coefficient of first-order linear filter defining reference trajectory

for controlled variables

Acronyms

ANFIS Adaptive Neuro-Fuzzy Inference System
ARMAX Auto-Regressive Moving Average with eXogenous input
ARX Auto-Regressive with eXogenous input
DCS Distributed Control System
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ISOPE Integrated System Optimization and Parameter Estimation
LMI Linear Matrix Inequalities
LP Linear Programming
MIMO Multi-Input Multi-Output
PDC Parallel Distributed Compensation
QP Quadratic Programming
SCADA Supervisory Control and Data Acquisition
SISO Single-Input Single-Output
SQP Sequential Quadratic Programming

Model predictive control algorithms:

CRHPC Constrained Receding Horizon Predictive Control
DMC Dynamic Matrix Control
FDMC Fuzzy DMC
FGPC Fuzzy GPC
FMPC Fuzzy MPC
FMPCS Fuzzy MPCS
GPC Generalized Predictive Control
IDCOM IDentification and COMmand
LSSO Local Steady-State Optimization
MAC Model Algorithmic Control
MPHC Model Predictive Heuristic Control
MPC Model Predictive Control (Model-based Predictive Control)
MPC-NO MPC with Nonlinear Optimization
MPC-NPL MPC with Nonlinear Prediction and Linearization
MPC-NPL+ MPC-NPL algorithm with additional inner iteration loop
MPC-NSL MPC Nonlinear with Successive Linearization
MPCS MPC with State-space model
PFC Predictive Functional Control
QDMC Quadratic Dynamic Matrix Control
SMOC Shell Multivariable Optimizing Controller
SSTO Steady-State Target Optimization



1

Multilayer Control Structure1

1.1 Control System

Control problems exist and arise in numerous fields of human activity. Con-
trolling a process (an object) can be defined as influencing it in such a way as
to force it to operate in accordance with certain assumed requirements. This
definition applies to all processes which undergo control. Thus, we can talk
about control of technical objects, such as airplanes, electricity generators,
technological processes in chemical reactors, distillation columns or sewage
treatment plants, processes of transfer and exchange of information in tele-
communications or computer networks, etc.We can also talk about the control
of economic processes – in a company, in a holding or in an entire branch of
economy (the word management is more commonly used here, instead of the
word control), etc.
A controlled process is always surrounded by the environment in which it

exists, undergoing controlled or uncontrolled influences of this environment.
The controlled influences are generated by a control unit, e.g., in a form of al-
gorithms executed by an automatic control computer or in a form of decisions
made by human beings. For example, an airplane is controlled by the pilot
to enforce direction, height and other flight parameters. On the other hand,
speed and direction of wind or air currents influence the flight parameters
as well, but cannot be controlled. Similarly, a control computer or a human
operator tries to achieve the desired parameters of technological processes in
a chemical reactor or in a distillation column by enforcing appropriate values
of selected process variables which influence its behavior (levels, flows, tempe-
ratures, etc.), counteracting changes in supply (raw materials, utilities) and in
ambient conditions, which disturb a desired course of the process. Many more
examples can be quoted, also within the range of economic or information

1Part of this chapter is a modified version of the text from Sections 1.1, 1.2 and
1.3 of the book Brdys, M.A. and Tatjewski, P., Iterative Algorithms for Multilayer
Optimizing Control, copyright 2005 by Imperial College Press, used by permission.
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technology processes. A significant common feature which we pay attention
to in these examples is the fact that the process is not isolated from its envi-
ronment, but rather that it undergoes external influences defined by certain
input variables. The process input variables may be at the disposal of a con-
trol unit or may be not, thereby disturbing the behavior of the process from
the point of view of the control unit. Therefore, the uncontrolled input varia-
bles are usually called disturbances. The process input variables, whose values
can be changed by the control unit are usually called the process manipulated
variables or the process control inputs.
Evaluation of the state of a controlled process, whether or not it fulfills

the assumed requirements, whether or not the influence of manipulated inputs
is correct, is done on the basis of measurements. More generally, it is done
on the basis of observations of values and features of appropriate variables
characterizing the process behavior. These variables are called process output
variables. In a case of the control of a chemical reactor or a distillation column,
examples of process outputs are parameters of a reacting or distilled mixture,
such as temperature or composition, as well as parameters characterizing the
state of technological apparatus (liquid levels, temperatures, pressures, etc.).
Knowing objectives of control and analyzing values of the process outputs
and those disturbances which are known (measured, estimated), the control
unit makes decisions whether to maintain or appropriately change values of
the control inputs. The general structure of a control system is presented in
Fig. 1.1.

Fig. 1.1. General control system structure (reproduced with modifications from
Brdys, M.A. and Tatjewski, P., Iterative Algorithms for Multilayer Optimizing Con-
trol, page 2, copyright 2005 by Imperial College Press, used by permission)

1.2 Control Objectives

The control objectives can be of variable nature. For example, the main ob-
jective of the control of a passenger airplane is the flight to a defined airport
along an assumed flight trajectory. Initially, basic objectives of the control of



1.2 Control Objectives 3

technological or economic processes in a market economy are of an economic
nature – gaining profit from a production or a commercial activity. Similarly,
the initial objective of a telecommunications network control is economic in
nature – a long-term profit from the network operation. However, in order
to achieve the basic economic objective effectively, it is essential to ensure
the realization of a set of partial objectives, which condition the possibility
of a safe realization of the basic objective and guarantee the required qua-
lity parameters of the offered products or services – all that at a lack of or
without complete information about the disturbing process inputs. Moreover,
many controlled processes are of a complex nature, with many manipulated
and disturbing inputs and many outputs, with mutual interactions between
the inputs and outputs. A complex process can be a single reactor or a disti-
llation column. Production lines consisting of several technological processes,
mutually influencing each other, are typical examples of very complex pro-
cesses. Centralized automatic control of such complex processes, although in
many cases now theoretically possible, is extremely difficult and is characteri-
zed by drawbacks practically eliminating such an option, see e.g., [40, 85, 16].
The most serious of these is the difficulty in ensuring proper safety of the
controlled process, difficulty in the necessary participation of people in the
process of supervision and reaction to unpredictable phenomena, connected
with the necessity of fast and simultaneous processing of large amounts of
data. Therefore, in control (and management) of complex processes, there has
formed over the years the practice of a hierarchical approach, especially a mul-
tilayer one, which is a practice supported by theory, see e.g., [78, 40, 16]. The
essence of the hierarchical approach is a decomposition of the primary, basic
task (objective) of the control into a set of partial, less complex and connected
tasks, from which every task processes a smaller amount of information and
is usually responsible for one partial objective.
There are two basic methods of decomposition of the overall control ob-

jective, see e.g., [40, 16] :

• Functional decomposition
• Spatial decomposition
The functional decomposition applies to a process treated as a whole and is
based on assigning a set of functionally different partial control objectives – in
a structure of vertical, hierarchical dependence, called the multilayer control
structure. A decision unit connected with each layer makes decisions concer-
ning the controlled process, but each of them makes decisions of a different
kind. On the other hand, the spatial decomposition is connected with a spatial
structure of a complex (large-scale) controlled process. It is based on a divi-
sion of the control task or a functionally partial task, e.g., within one layer of
the described multilayer structure, into local subtasks of the same functional
kind but related to individual spatially isolated parts of the entire complex
control process – subtasks of smaller dimensionality, smaller amount of the
processed information. This leads to multilevel structures [96, 41, 40, 16]. The
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subject of interest in this book are multilayer control structures of industrial
processes.
The multilayer control structure is a result of a functional decomposition

of the general basic control objective. The realization of the basic, economic
objective of the on-line control of an industrial (technological) plant can be
expressed as the realization of a number of partial objectives. The three most
important are:

1. Ensuring a safe running of the processes in the controlled plant, i.e., limi-
ting the possibility of emergency situations to an acceptable level.

2. Ensuring required features of the process outputs (quality of products,
etc.), i.e., maintaining the output variables within ranges of acceptable
values.

3. Optimization of effectiveness of the process operation, usually maximiza-
tion of the product value (under restrictions on usage of raw materials
or utilities) or minimization of production costs at an assumed level of
production, over a long time horizon.

It is not difficult to notice that the first two partial control objectives are also
of an economic nature and they are connected with the basic objective: to
maximize the economic effectiveness of the process. The occurrence of failures
or other emergency conditions usually leads to serious losses of direct and
indirect nature, connected with necessities to remove consequences of delays
or production breaks. These losses are usually more severe than the ones
resulting from a non-optimal, yet safe production running. Failing to keep to
the quality parameters leads, in the best cases, to a partial loss of the profit due
to the necessity to lower prices. It may also lead to the loss of the product, if
the one not fulfilling the quality requirements cannot find a buyer or is useless
for a further production process. Here, financial losses are usually larger than
in the case of an economically non-optimal operation of the process, but one
which ensures the quality requirements. Let us add that, as a rule, the better
the product quality (e.g., cleanliness in a distillation process), the higher the
production costs. Therefore, it is usually worth to operate closer to the limits
of quality constraints to lower the costs, but this requires more precise control
systems because it is more risky due to an ever-present uncertainty connected
with the influence of disturbances.

1.3 Control Layers

The order in which the three most important partial control objectives are
listed in the previous section is not incidental. The most important issue is the
safety of the control system, next in the sequence is to care about the quality of
the products. Only after ensuring the realization of these two aims, can there
be room for on-line economic optimization of variables determining the plant
economic objective. Exactly in this order the layers of the basic multilayer
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control structure are located, on top of the controlled process situated at the
very bottom, as presented in Fig. 1.2 [40, 16].
The direct control layer (called also basic control layer, e.g., [11, 115]) is

responsible for the safety of dynamic processes. It is usually also equipped
with certain control logic responsible for overriding the control designated
for normal operating conditions, if violating certain constraints leading to
an emergency state is encountered. Only this layer has direct access to the
plant, and can directly change the values of the control inputs (manipulated
inputs), denoted by u in Fig. 1.2. Technical realization of the task of this layer
is nowadays ensured, for industrial processes, by distributed control systems
(DCS). These are complex computer systems of measurement acquisition,
control signals generation and on-line process supervision. DCS systems are
usually equipped with SCADA (supervisory control and data acquisition) type
software used for visualization, operator and engineer supervision and archi-
vization of data. Systems of this class were first introduced in the 1970s and

Fig. 1.2. Multilayer control structure (reproduced with modifications from Brdys,
M.A. and Tatjewski, P., Iterative Algorithms for Multilayer Optimizing Control, page
5, copyright 2005 by Imperial College Press, used by permission)
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are currently offered by all major vendors on the market. The control tasks
for smaller processes can be implemented with the use of programmable logic
controllers (PLC), or individual multi-function controllers. The distinction
between these two classes of equipment is not always clear – more develo-
ped versions of PLCs enable the realization of even many control loops, while
modern multi-function controllers ensure the possibility of also implementing
many logical functions. The most recent, clearly distinguishable trend is the
application of personal computers (PCs) to control tasks, usually equipped
with specialized cards and software enabling reliable realization of control
functions in real time.
Algorithms of direct control should be safe, robust and relatively easy,

that is why classic PID algorithms are still dominant. However, computing
power of DCS systems, modern PLCs or PCs enables more demanding solu-
tions. Thus, in places where the classic PID control leads to unsatisfactory
control quality, more advanced control algorithms can be employed, especia-
lly with appropriate modifications of the PID algorithm and, recently, simple
realizations of predictive controllers. One can enumerate here the PID control
structures with direct correction of the influence of a measured disturbance –
feedback-feedforward structures, PID structures with variable gain dependent
upon a selected process variable value – gain scheduling, PI controllers with
the Smith predictor – for control loops with large delays, nonlinear fuzzy PI
or PID algorithms, unconstrained predictive algorithms, adaptive algorithms.
In the literature, one can often find presentation of the basic control , defi-

ned in this section primarily as the direct control, as opposed to the advanced
control [142]. However, it should be strongly emphasized that the generic fea-
ture distinguishing all direct control algorithms is the direct access to the
controlled process (the process manipulated inputs are outputs of the direct
(basic) controllers) and high frequency of intervention (small sampling period)
– not the kind of control algorithm employed. Therefore, we shall not keep to
this terminology in this book – we shall describe the upper-layer dynamic
feedback controllers (control algorithms) with outputs being the set-point
values for the direct controllers located below, as the set-point controllers
constituting the (dynamic) set-point control layer , or constraint controllers
constituting the (dynamic) constraint control layer [16]. The latter descrip-
tion is most often used in the literature, see e.g., an excellent industrial review
paper [115], because the task of the upper-layer feedback controllers is usually
to keep the controlled variables on constraint limits. Both descriptions will be
used alternatively throughout the book.
As has been already explained, the output variables of the controllers com-

posing the constraint control layer (set-point control layer) are not the ma-
nipulated inputs directly influencing the process, but they are the set-points
for the controllers of the direct control layer. Moreover, in control loops of the
constraint control layer frequencies of intervention are usually much smaller,
i.e., sampling periods are longer – equal to about a minute or longer, while
at the direct control layer – about a second at the most, see e.g., [115]. The
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objective of the constraint control is to appropriately influence usually slower
process variables, which mainly decide on the production quality parameters,
such as concentrations in reactors or distillation columns. For example, good
stabilization (characterized by a small variance of the control error) of the
concentration of a key pollutant in a product stream of a distillation process
allows to run the process at an operating point located closer to the maxi-
mal admissible value of that pollution concentration. The product is then still
within the admissible limits but more polluted – and thus cheaper. Therefore,
it is required that the constraint control algorithms should be characterized
by a high quality of operation (first of all small variance of the control error),
they are most frequently applied in cases of multivariable, constrained, non-
linear processes. The most typical, modern solutions applied are the receding
horizon model-based predictive control algorithms, commonly described as
MPC (Model Predictive Control) algorithms. The most popular were prima-
rily applications based on the usage of the DMC algorithm (Dynamic Matrix
Control), developed in the petrochemical industry in the 1970s.
The history and significance of the constraint control layer is directly con-

nected with the development of advanced control algorithms, mainly with
applications of the predictive control algorithms. There was no distinction
made in any previous literature between the layers of the direct (basic) con-
trol and the constraint control (advanced control), see e.g., [78, 40]. It was
only the development of the computer technology that enabled the realiza-
tion of more computationally demanding advanced control algorithms based
on process models, such as the DMC algorithm and other predictive control
algorithms, and in this way led to a separation of the advanced control layer
(set-point control layer, constraint control layer). Since that time this distinc-
tion is commonly met in the papers of many leading companies manufacturing
control equipment and software, as well as in review papers and basic text-
books, especially those devoted to process control, see e.g., [115, 85, 52, 142].
It should be mentioned that the constraint control layer does not always

occur in the control structure. It should not be distinguished in cases when
there is no need for the set-point control (constraint control) in the sense
described above. Moreover, this layer can not fully separate the direct control
layer from the optimization layer – set-point values for a certain part of direct
controllers can be directly transmitted from the optimization layer, as it is
shown in Fig. 1.2. We shall also not be too rigorous when it is reasonable,
in particular including primary controllers of the standard cascade control
loops to the direct control layer, although these controllers also act as set-
point controllers for the secondary (inner loop) controllers, but they cannot
be treated as constraint controllers.
The optimization layer is the next, located directly above the direct and

constraint control layers, see Fig. 1.2. The objective of its operation is to cal-
culate the process optimal operating point, i.e., optimal set-point values for
the controllers of directly subordinate feedback control layers. These values
usually result from the optimization of an economic objective function which
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defines the profit or running costs of the process operation. The optimization
problem to be solved is usually a static optimization problem (mathematical
programming problem). The optimal operating point should be calculated for
current values of disturbances (measured or estimated properties of raw ma-
terials, utilities, ambient conditions, etc.) and varies when these values vary.
The frequency of solving the optimization problem, i.e., the frequency of

intervention of the optimization layer is usually much lower than that of the
control layers. Moreover, the optimization layer can operate in a synchronous
or in an asynchronous mode. In the case of the latter, the optimization task
is activated by observed or estimated on-line changes of disturbing process
inputs or changes of the required production parameters, transmitted from
the top layer of the process management or production planning. Chapter 4
of the book is devoted to algorithms of the optimization layer. The question
particularly considered are relations between MPC algorithms of constraint
control and steady-state optimization algorithms. Another question of interest
is that of the calculation of an optimal operating point in a situation of signifi-
cant uncertainty revealed by having only an approximate model of the process
and/or incomplete information about current values of the disturbances.
It is interesting in recent years to observe the integration of software for

predictive constraint control (MPC algorithms) and on-line optimization of
the set-points, connected with a rapid development of capabilities of hardware
and software for complex control of industrial processes. The MPC algorithms
for complex, constrained processes usually operate solving, at every sampling
instant, a numerical optimization task. Algorithms of this type require relati-
vely large computing power and a good process model (Chapter 3 is devoted
to predictive control algorithms). That is why commercial software packages
offering multivariable MPC algorithms are usually complex and expensive,
since they usually also contain procedures for modeling and identification of
the controlled process, as well as a procedure for on-line optimization of the
operating points – directly in the package or in modules closely connected with
the package. Massive measurements of process inputs and outputs collected
on-line in the DCS can be easily transferred to the higher control layers and
used in algorithms for model identification (tuning, adaptation) as well as for
constraint control and optimization. The optimization procedure supplies the
feedback constraint control algorithms with appropriate values for the contro-
lled outputs; it is activated in an adequate way which is tuned to the entire
process operation. An interesting case, from the point of view of the integra-
tion of the constraint control and optimization, is a case when the possible
number of outputs of the predictive controller (its “manipulated variables”)
can be larger than the number of the associated controlled process outputs.
The highest layer presented in Fig. 1.2 is the plant management (or pro-

duction planning) layer. Its task is to establish operating conditions for the
optimization layer, i.e., production goals and parameters – an economic objec-
tive function and constraints. This layer operates on the brink of the process
economic environment, reacting accordingly to orders concerning an assort-
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ment and amount of production, prices, sales, etc. – coming directly from
the market environment or larger plant environment of which the controlled
process is an element. Frequency of intervention of this layer can correspond
to a period of a production shift, or even to several days. Algorithms of its
operation and employed process models are beyond the scope of this book.
The basic features distinguishing the individual control layers are separate,

isolated control objectives and different intervention frequencies. Table 1.1 lists
the basic tasks of individual layers of an industrial process control structure
and their typical intervention periods, see also e.g., [52].
Finishing the description of basic elements of the multilayer control struc-

ture, let us point out that the basic reason of its importance is the following:

A division (decomposition) of the initial overall control problem into se-
veral simpler, related subproblems simplifies the process of design, control
and supervision – simpler control systems are designed for the particu-
lar layers realizing partial control goals, not the one complex centralized
control system for the entire process.

Therefore, for complex processes the multilayer approach is not only the most
practical and effective, but often the only one possible.

Table 1.1. Basic tasks and intervention periods of control layers

Control layer Basic task Typical period
of intervention

direct control process stabilization fraction of
(basic control) (safe operation) a second, second

constraint control quality control minute, minutes
(set-point control) – advanced feedback

control of key variables
(often close to constraints)

optimization maximization of running hour, hours
economic effects

production management maximization shift, day,
of economic effects several days
for longer periods

1.4 Process Modeling in a Multilayer Structure

The multilayer control structure consisting of regulatory control and optimi-
zation layers, as presented in Fig. 1.3, will now be considered in more detail,
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Fig. 1.3.Multilayer structure of control and optimization with decomposition of the
plant dynamics (reproduced with modifications from Brdys, M.A. and Tatjewski,
P., Iterative Algorithms for Multilayer Optimizing Control, page 12, copyright 2005
by Imperial College Press, used by permission)

see also [35, 16]. A characteristic feature of this structure is a representation of
the plant dynamics in a form decomposed into a cascade of processes (subpro-
cesses) with a faster and a slower dynamics. The “fast process” is influenced
by control inputs u and by fast changing disturbances z. The output variables
of this part of the plant, denoted by yc, are inputs to the part characterized
by slower dynamics, which are directly influenced by slower disturbances w.
The output vector y = (yf , yd) consists of variables significant for the tasks of
economic constrained optimization of the controlled process. The objective of
the constraint control presented in Fig. 1.3 is to cause that certain elements
of the plant output vector y, denoted as a sub-vector yd, to be kept on values
ydr prescribed by the constrained optimization, i.e., to enforce the equality
constraint
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yd(t) = ydr

This corresponds to a practical case of a feedback control of important cons-
traints on certain output variables. An example of that is a feedback control
of the concentration of a key pollutant in a product stream of a distillation
column, keeping it on a value which is safely close to the maximum admissible
one (the maximal value of the pollutant concentration cannot be approached
too closely due to an unavoidable variance of the control error and a resulting
threat of exceeding the limit). The remaining, uncontrolled (free) components
of the process output vector y are denoted as a sub-vector yf .
The key role in the presented plant decomposition is played by a correct se-

lection of the controlled output variables yc. The set-points for these controlled
variables, denoted by c = (cf , cd) are decision variables in the optimization
problem. The choice of the controlled variables is usually a result of an ex-
perience of designers and operators of a controlled process and depends on
a formulation of the optimization task. It should be such as to ensure the
following:

• Stabilization of yc on reasonably selected values of its set-point c should
ensure safe control of the process, i.e., should uniquely define the values
of significant elements of its state vector.

• Values of the set-point c, being decision variables of the optimization task,
should allow for realization of this task. This means that they should ensure
full usage of the possibilities to influence those process output variables
which are significant for an improvement of the value of the optimized
criterion (the objective function) and for values of the constraints.

It should be emphasized that the former of these conditions always has to
be satisfied; it is the basic requirement for a correct, safe operation of the
direct control layer. If a choice of the controlled variables satisfying also the
second condition does not ensure a satisfactory realization of the optimization
goals, then the set of these variables is not properly chosen or too limited.
In this case, one should pose less ambitious optimization goals, or enrich
the process control structure with additional manipulated variables u and
corresponding additional controlled outputs yc – in this way allowing for more
possibilities in satisfactory realization of the optimization goals (in normal
operating conditions the number of controlled outputs should not be higher
than that of manipulated variables, see [40, 39]).
Let us consider the multilayer structure presented in Fig. 1.3. If direct

control systems are operating properly, then, apart from time periods directly
following fast (step) changes of the set-points c or disturbances, we can assume
that the following is true

yc(t) = c(t) (1.1)

It can then be assumed that, from a point of view of the constraint contro-
llers and optimization algorithms, only slower dynamics of the plant can be
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taken into account. An input-output relation defining these dynamics can be
described by an operator F ,

y(t) = F (c(t), w(t)) (1.2)

Therefore, for the constraint controllers and optimization algorithms, the fast
process along with the direct control layer can be treated as an actuating
system – which enforces the set-point values c(t) of the controlled variables
yc(t), i.e., enforces the equality yc(t) = c(t). The term “actuating system”
[35] has been introduced by analogy to an “actuating element” which is, for
example, a valve with a positioner. That is why the fast process in Fig. 1.3
was named an actuating process, while the slow process is called an optimized
process. Because the plant behavior characterized only by this process is seen
by the upper layers, especially by the optimization layer.
An analytical formula of the plant model operator (1.2) is rarely available.

However, it is implicitly given by the following model typically assumed for
continuous systems with lumped parameters

dxc(t)
dt
= fc(xc(t), c(t),w(t))

y(t) = gc(xc(t), c(t)) (1.3)

where xc is a state vector of the slow process, see Fig. 1.3, and the equality
yc(t) = c(t) was consequently assumed (i.e., ideal operation of the actuating
system was assumed), in this way eliminating from the model variables yc(t).
A description of the entire plant dynamics can be assumed, analogously,

in the following general form

dxu(t)
dt
= f1(xu(t), xc(t), u(t),z(t), w(t))

dxc(t)
dt
= f2(xu(t), xc(t), u(t),w(t))

y(t) = g(xu(t), xc(t), u(t)) (1.4)

where the state vector x(t) was written in a divided form corresponding to the
fast and slow states, x(t) = (xu(t), xc(t)), and consequently a lack of direct
influence of fast changing disturbances z(t) on the sub-vector of the slow state
xc(t) was assumed. A decomposition, namely a division of the whole state vec-
tor x into the sub-vectors of “fast” and “slow” states, xu and xc, is in each
case an individual question resulting from process characteristics and require-
ments concerning the controlled variables described above. Models (1.4) and
(1.3) should of course be completed by a set of appropriate initial conditions,
essential for formal analytical considerations or any numerical calculations.
Assuming the equation defining the controlled variables is in the form of

a function of the process states and inputs [40, 39]

yc(t) = h(xu(t), u(t)) (1.5)
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one can consider relations between models (1.4) and (1.3). Assuming (1.1)
holds, i.e., c(t) = yc(t), the following result is obtained

dxc(t)
dt
= fc(xc(t), h(xu(t), u(t)), w(t))

= f2(xu(t), xc(t), u(t), w(t)) (1.6)

and similarly y(t) = gc(xc(t), h(xu(t), u(t)))

= g(xu(t), xc(t), u(t)) (1.7)

In the multilayer structure each layer controls in fact the same plant, but
each one does it in a different way. The direct control layer is the only one with
direct access to the process manipulated inputs. It obtains measurements of all
available output variables which are significant for the stabilization and safe
operation of the plant, first of all the measurements of the output variables
which change faster and decide on the possibility of a quick reaction of direct
feedback control systems. The constraint control layer which intervenes and
obtains measurements more rarely perceives the process in a different way. It
sees it together with the direct control systems, for which it assigns decisions
in the form of the set-point values. Moreover, when the direct controllers
operate sufficiently quickly and precisely, then the fast-changing transients
induced by the influence of fast-changing disturbances are not significant for
the constraint control layer and can be ignored. Therefore, the constraint con-
trol layer deals then with a different “plant”, whose dynamics is determined
by the plant processes with slower dynamics. Similarly, the optimization la-
yer perceives the plant along with all subordinate feedback control systems.
Therefore, modeling the plant for control purposes with the aim of capturing
only basic dependencies significant to the control design at a given layer is
different at each layer, leading to different models. Table 1.2 presents typical,
basic features of models at particular layers.

Table 1.2. Models of the controlled plant at different control layers

Control layer Typical model

direct control fast dynamic
(basic control) (linear, rarely nonlinear)

constraint control slow dynamic
(set-point control) (linear, nonlinear)

optimization nonlinear static
(rarely dynamic)

production management linear aggregate
(balance based)
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Fig. 1.4. Modeling of the controlled plant in a multilayer structure

Let us note that the higher the layer, the less detailed and more aggregated
the model used, possessing slower dynamics, or even static. For the considered
control layer, the plant with all the lower layers is a certain “actuating sys-
tem”, which should enforce decisions of this layer. For example, in Fig. 1.3 the
“actuating system”, consisting of the plant together with the direct control
systems, forces the controlled variables yc to keep to the values c = (cd, cf ).
Figure 1.4 presents plant modeling at different control layers, clearly showing
the characteristic feature of “nesting”. The plant is modeled at a given layer
together with all the control systems of the lower layers – along with conse-
quences of their operation enabling appropriate simplification and aggregation
adequate to the task and time scale of the layer. This is, of course, a simplified
approach, but the one proven in engineering practice, enabling efficient design
and on-line operation of the process control and optimization.
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Example 1.1
Decomposition of a process model and a set-point control will be illustrated
by a simple example of a continuously-stirred tank reactor (CSTR), presented
in Fig. 1.5. The inflow to the reactor is a stream of component A with a flow

Fig. 1.5. Continuously-stirred tank reactor (CSTR), Example 1.1

rate FA [kg/min] and a temperature TA [K]. Two reactions take place in the
tank: A→ B → C with reaction rates rB [ 1min ] and rC [ 1min ], respectively. The
first reaction is endothermic and the second one is exothermic. The mixture is
heated by a heating medium flowing through a pipe heat exchanger located in
the bottom part of the reactor. The flow rate of the heating medium Fh and
the product outflow rate from the reactor F can be controlled by appropriate
valves.

The following simplifying assumptions are taken when modeling the process:

1. A perfect mixing in the tank is assumed, therefore the concentrations, CA
of component A and CB of component B, and the temperature T of the
mixture are the same in the entire tank volume.

2. The reaction rate is described by the following models

rB = k1(T )CA = k10 exp(− E1
RT
)CA (1.8)

rC = k2(T )CB = k20 exp(− E2
RT
)CB (1.9)

where
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k10 = 9000� k20 = 35000 [ 1
min
]

E1
R
= 4000 <

E2
R
= 5200 [K]

while reaction heats are known and are h1 [ Jkg ] and h2 [
J
kg ], respectively.

3. The influence of the shaft work and the heat exchange with the environ-
ment are negligible. Moreover, the same mass densities ρ [ kgm3 ] and heat
capacities cw [ JK kg ] of all mixture components and of the mixture itself
are assumed – to simplify the process modeling.

4. The mean temperature Thm of the heating medium at the input and at
the output of the heat exchanger pipe is taken as a driving force of the
heat exchange. The heat transfer through the surface of the exchanger is
assumed to be described by the following empirical formula

H = a(Fh)b(Thm − T ) (1.10)

where a and b are coefficients resulting from the construction of the heat
exchanger [85].

5. The range of variation of the flow rate Fh enables to reach and stabilize
the reactor temperature within 300÷ 360 K.

With the assumptions presented above the reactor can be treated as a process
characterized by four state variables describing mass balances of the mixture
and all its components and a heat balance. For modeling purposes we shall
assume the following state variables :
W − mass of the mixture in the tank,
CA − concentration of component A,
CB − concentration of component B,
T − temperature in the tank.

The state equations can be formulated as follows (dependence on time t is
omitted in the following equations, to simplify the notation):

– for W (the mass balance in the tank):

dW

dt
= FA − F

– for CA (the mass balance of component A):

d(WCA)
dt

=W
dCA
dt
+ CA

dW

dt
= FA − FCA −Wk1(T )CA

W
dCA
dt
= −CA(FA − F ) + FA − FCA −Wk1(T )CA
= −CAFA + FA −Wk1(T )CA
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thus
dCA
dt
=
1− CA
W
FA − k1(T )CA

– for CB (the mass balance of component B):

d(WCB)
dt

=W
dCB
dt
+ CB

dW

dt
= −FCB +Wk1(T )CA −Wk2(T )CB

W
dCB
dt
= −CB(FA − F )− FCB +Wk1(T )CA −Wk2(T )CB
= −CBFA +Wk1(T )CA −Wk2(T )CB

thus
dCB
dt
= −CB
W
FA + k1(T )CA − k2(T )CB

– for temperature T (the heat balance):

d(cwWT )
dt

= cwW
dT

dt
+ cwT

dW

dt
=

= cwFATA − cwFT + Fhch(Thin − Thout)− h1Wk1(T )CA +h2Wk2(T )CB

cwW
dT

dt
= −cwTFA + cwFATA + Fhch(Thin − Thout)− h1Wk1(T )CA+

+h2Wk2(T )CB

From among all variables occurring on the right hand side of the above equa-
tion, the output temperature of the heating medium Thout is a variable fully
determined by the input variables. Considering the simplifying assumption 4
concerning the heat exchange together with the formula (1.10), the tempera-
ture Thout can be eliminated from the heat balance equation, because there
are two dependencies for the heat transfer:

H = a(Fh)b(
Thin + Thout

2
− T )

H = Fhch(Thin − Thout)
Evaluating Thout from the second equation

Thout = − H
Fhch

+ Thin

and substituting to the first one we get

H = a(Fh)b(
1
2
(Thin − H

Fhch
+ Thin)− T )

= a(Fh)b(Thin − T )− a2 (Fh)
b H

Fhch
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This equation allows us to determine the following formula for the exchanged
heat H

H =
a(Fh)b+1

Fh +
a(Fh)b
2ch

(Thin − T ) (1.11)

Therefore, the equation describing the heat transfer can be formulated in the
form

cwW
dT

dt
= cwFA(TA − T ) +H(Thin − T, Fh)− h1Wk1(T )CA + h2Wk2(T )CB

or, equivalently,

dT

dt
=
FA
W
(TA − T ) + 1

cwW
H(Thin − T, Fh)− h1

cw
k1(T )CA +

h2
cw
k2(T )CB

where the functional dependence H(Thin − T, Fh) is given by (1.11).
In conclusion, the system of state equations of the considered reactor takes

the following form

dW

dt
= FA − F (1.12a)

dT

dt
=
FA
W
(TA − T ) + 1

cwW
H(Thin − T, Fh)− h1

cw
k1(T )CA+

+
h2
cw
k2(T )CB (1.12b)

dCA
dt
=
1− CA
W
FA − k1(T )CA (1.12c)

dCB
dt
= −CB
W
FA + k1(T )CA − k2(T )CB (1.12d)

where reaction rates k1(T ) and k2(T ) are given by (1.8) and (1.9), while the
amount of the heat delivered H(Thin − T, Fh) by (1.11).
The order in which the state equations (1.12a)-(1.12d) were positioned is

not incidental. It follows from the nature of the phenomena occurring in the
reactor, where the state variables W and T change faster than concentrations
CA and CB, when affected by changes of the manipulated or disturbing in-
puts, i.e., F and Fh or FA, TA and Thin, respectively. Moreover, stabilization
of W and T ensures safe operation of the reactor, i.e., without over-filling
or excessive emptying of the tank and without exceeding the admissible tem-
perature. Thus, decomposition of the state vector, according to (1.4), would
be:

xu = [W T ]T

xc = [CA CB]T



1.4 Process Modeling in a Multilayer Structure 19

Fig. 1.6. CSTR with direct controllers (LC - level control, TC - temperature control)

The vector of the manipulated variables u is

u= [F Fh]T

while the faster changing state variables, i.e., T and W , can be taken as
process outputs controlled by the direct control layer,

yc = [T W ]T

Figure 1.6 presents the reactor together with direct control loops of level
and temperature. The set-point values for these direct control loops, in the
terminology of Fig. 1.3, are the components T sp and W sp =Wm of the vector
c

c = [T sp Wm]T

For a design of the set-point control (constraint control) layer an ideal opera-
tion of direct controllers is assumed, i.e.,

W (t) =Wm
T (t) = T sp(t)

where particularly the former of these equalities can be relatively accurately
enforced (fast stabilization of the level by manipulating the outflow rate F ).
With these assumptions made, the dynamics of the slow process (subprocess),
see (1.3), can be described by the following equations

dCA(t)
dt

=
1− CA(t)
Wm

FA(t)− k1(T )CA(t) (1.13)

dCB(t)
dt

= −CB(t)
Wm
FA(t) + k1(T )CA(t)− k2(T )CB(t) (1.14)
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where T = T (t) = T sp(t).

Let us consider the following formulation (a) of the control objective (furt-
her on we shall discuss another formulation which will be marked with (b)):

(a) Stabilization of the concentration CB of the reactant B in the product
stream at the value CspB = 0.25, assuming a constant, maximal filling of
the tankW (t) =Wm = const. and slow changing fluctuations of the inflow
rate resulting in the residence time varying within the limits Wm/FA =
25 ± 5 [min]. It is also assumed that the concentration CB is measured
on-line by an analyzer, however with a measurement time much longer
than the control interval (sampling period) of the direct controllers of level
and temperature.

Realization of the above objective assumes keeping the controlled process in a
steady-state – the concentration CB should be stabilized. Process (1.13)-(1.14)
is in a steady-state when

dCA(t)
dt

= 0,
dCB(t)
dt

= 0,

in spite of an influence of slowly changing disturbance FA(t). The equations
defining the steady-state model of the slower part of the reactor are:

0 =
1− CA
Wm

FA − k10 exp(− E1
RT
)CA

0 = − CB
Wm
FA + k10 exp(− E1

RT
)CA − k20 exp(− E2

RT
)CB

Evaluating CA from the first equation

CA =
FA
Wm

FA
Wm
+ k10 exp(− E1RT )

and substituting to the second one we obtain

CB

(
FA
Wm
+ k20 exp(− E2

RT
)
)
= k10 exp(− E1

RT
)

FA
Wm

FA
Wm
+ k10 exp(− E1RT )

CB =
FA
Wm
k10 exp(− E1RT )(

FA
Wm
+ k10 exp(− E1RT )

) (
FA
Wm
+ k20 exp(− E2RT )

)

CB =
Wm
FA
k10 exp(− E1RT )(

1 + WmFA k10 exp(− E1RT )
)(
1 + WmFA k20 exp(− E2RT )

) (1.15)
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Fig. 1.7. Surface CB(T, WmF )

The formula (1.15) describes a steady-state model, namely the static charac-
teristics of the concentration CB ,

CB = CB(T, FA) (1.16)

in the process described by (1.13)-(1.14). In a general terminology of the
multilayer control structure, (1.16) defines the function y = F (c, w) for our
example CSTR problem, compare with (1.2).
The mapping (1.16) is easier to present in a slightly different coordinate

system, namely taking WmFA instead of FA, because the residence time
Wm
FA

(the time of filling the tank to the full contents Wm by a constant inflow FA)
is well interpretable and widely used. The shape of the surface CB(T, WmFA ),
evaluated for numerical values given at the beginning of this example problem
formulation, is shown in Fig. 1.7, whereas level sets of this surface are shown
in Fig. 1.8. It is assumed in these figures that F = FA, which results from the
assumed constant filling of the tank, W (t) =Wm.
The formulated control objective based on a stabilization of the concentra-

tion CB can be implemented by an upper-layer controller (constraint contro-
ller), as it is shown in Fig. 1.9. Let us note that using the supervisory feedback
control follows not only from slower dynamics of the concentration, but it is
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Fig. 1.8. Level sets of the surface CB(T, WmF ), with marked sets of possible tempe-
rature values being the output of the controller stabilizing CB

also forced by the time of its measurement, which is much longer than the
sampling period of the level and temperature controllers. This measurement
time defines a lower limit for the sampling period of the constraint controller.
Since dynamics of the direct control system of level and temperature is fas-

ter than the dynamics described by the model (1.13)-(1.14), then it is possible
to use this model only (which is much simpler than the model of the dyna-
mics of the entire plant) when designing the concentration controller. This,
however, should be followed by a verification of the behavior of the entire
two-layer control system, i.e., by a simulation or by a real time experiment
in the controlled plant – to correct the settings of the controller, if needed.
Let us note that the described control of the concentration CB is in fact in
a cascade control structure, but with different scan times in primary and se-
condary loops (a multi-rate control system). Figure 1.10 presents a diagram
of the control system from Fig. 1.9 in the language of multilayer structure
blocks from Fig. 1.3, with a decomposed description of the process.
It can be seen from the shape of level sets of the surface CB(T, WmF ) that

the controlled process is nonlinear and the same values of the concentration
can be achieved at different temperature values. Fig. 1.8 presents two different
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Fig. 1.9. CSTR with direct control loops (LC and TC) and constraint control (AC)
for stabilization of CB

Fig. 1.10. Decomposed block diagram of the CSTR multilayer control system for
CB control
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and separate ranges of the temperature T stabilizing the concentration on the
same value 0.25. The analysis indicating which of these ranges is more suitable
for a controller operation and how to design a controller in this situation, is
left to the reader. Let us mention only that when applying a standard linear
controller, e.g., a PID controller, we usually first identify a linear process
model at a chosen operating point and then controller settings are tuned
using this model. Certainly, a different operating point satisfying WmFA = 0.25
and a different linear model will correspond to each of the two temperature
ranges presented in Fig. 1.8. �

1.5 Optimization Layer

The task of the optimization layer is to select optimal values of set-points for
the feedback controllers of lower control layers, optimizing a defined objective
function of economic nature. Generally, optimal state of a process can be dy-
namic and the process can be operated in a dynamic mode. In this situation,
the optimization layer evaluates optimal dynamic trajectories of the controlled
variables, as trajectories of the set-points for the feedback controllers. These
result from solving the constrained dynamic optimization problem. The ob-
jective function (performance function) of such a problem can be formulated
as follows:

J(c,y) =
∫ tk
t0

Q(c(t),y(t))dt (1.17)

where tk − t0 is an optimization horizon. The objective function is optimized
with respect to several constraints:

• Equations of process dynamics (1.3),
• Inequality constraints, of physical and technological origin, on decision
variables c and output values y. These constraints can be written in a
general form, defined by certain functions g and h,

c(t) ∈ C = {c(t) : g(c(t)) ≤ 0}, t ∈ [t0 tk] (1.18)

y(t) ∈ Y = {y(t) : h(y(t)) ≤ 0}, t ∈ [t0 tk] (1.19)

In practice, these are mainly constraints on instantaneous maximum or
minimum values of particular variables,

c(t) ∈ C = {c(t): c(t) ≥ cmin, c(t) ≤ cmax }, t ∈ [t0 tk]

y(t) ∈ Y = {y(t): y(t) ≥ ymin, y(t) ≤ ymax }, t ∈ [t0 tk]
We have not considered here constraints on state variables xc, as this can
always be done by assuming that constrained components of the vector
xc are a part of the vector of outputs. This assumption seems reasonable
since for a constraint control these variables must be directly or indirectly
measured, thus they should be treated as outputs.
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Using the introduced dependencies, the task of the dynamic optimization is
to optimize the objective function (1.17) subject to equality constraints (1.3)
and inequality constraints (1.18), (1.19). In a case of a minimization, it is in
the form

min{ J(c,y) =
∫ tk
t0

Q(c(t),y(t))dt }

subj. to : dxc(t)/dt = fc(xc(t), c(t),w(t))

y(t) = gc(xc(t), c(t))

c(t) ∈ C
y(t) ∈ Y, t ∈ [t0 tk]

(1.20)

Generally, it is either a problem with a periodic solution – then the period
determines the optimization horizon, or a problem with a horizon resulting
from the dynamics of disturbances w(t) and the dynamics of the process itself.
In the latter case the formulated optimization problem is usually an element
of a control in a repetitive structure with a receding horizon. However, when
controlling continuous industrial processes, the disturbances usually do not
allow for long-term forecasts, thus optimal solutions stabilize as constant or
periodic.
A steady-state control mode dominates in industrial practice, that is a con-

trol mode when set-point values for the process feedback controllers are kept
constant during certain periods of time. Optimal constant set-point values are
obtained through the solution of the steady-state (static) optimization problem
which takes the form

minQ(c,y)

subj. to : 0 = fc(xc, c, w)

y = gc(xc, c)

c ∈ C
y ∈ Y

(1.21)

In this problem formulation actual (measured or estimated) disturbance va-
lues w are used as constant parameters. However, the disturbances are usually
varying, more or less slowly, or changing rarely but abruptly. Therefore, the
set-point values should be adapted to these changes, to keep the process close
to optimal operation. This is done by solving the optimization problem (1.21)
at regular time intervals corresponding to dynamic properties of the distur-
bances, or after each significant change of the disturbance values if these
changes are irregular but can be measured or estimated on-line. After each
solution of (1.21) the updated set-point values are transmitted to the feedback
controllers.
In a case when explicit static process model (1.2) is available, the optimi-

zation problem (1.21) takes formally a simpler form
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minQ(c,y)

subj. to : y = F (c,w)

c ∈ C
y ∈ Y

(1.22)

It may be not enough to take into account certain technological constraints
on process output values in the formulation of the constrained optimization
problem only. In cases of significant constraints determining quality para-
meters of products and being active in nominal conditions, it is common to
enforce satisfaction of these constraints by dedicated constraint controllers, de-
signing the constraint control (set-point control) layer. This method, though
more costly, has two primary advantages:

• A constraint is tightly kept not only in steady-states, but also in periods
of dynamic transients in the process, e.g., after changes of disturbances.

• Applying the feedback loop eliminates (with an accuracy of the control
error) unavoidable effects of the model mismatch and disturbance esti-
mate errors used in the optimization problem. Therefore, the possibility
of a violation of the constraints in the real process is practically elimina-
ted – which would be not the case if the constraints were present in the
optimization problem only.

Figure 1.3 in the previous section presents the control structure of this type,
where forcing the equality constraint on a sub-vector yd of the vector y of the
process outputs,

yd(t) = ydr

is implemented by application of a constraint controller. Let us observe that
in this case the necessary information sent from the optimization unit to the
subordinate controllers are optimal values of the set-points cf and ydr , although
all elements of the vector c = (cf , cd) are decision variables of the constrained
optimization problem. However, transmission of the remaining part, cd, to
the constraint controller may also be needed, as only the whole information
defines the new optimal steady-state process operating point. In particular,
when using a predictive constraint controller the case dim cd > dim yd may
happen and be reasonable – then the predictive controller should know optimal
steady-state value of cd to operate optimally (the case will be addressed in
Chapter 4).
In the static optimization problem (1.21) or (1.22), there occurs the vector

w representing uncontrolled process input values (disturbances), in particular
those which are significant for the process optimality. In classical multilayer
structure it is usually assumed that the disturbances considered at the op-
timization layer are slow-varying, when compared to the controlled process
dynamics. However, if variability of these disturbances is not so slow, in the
worst case even comparable with the process dynamics, then values of the
set-points should be updated more often. It is especially important in cases
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when predictive controllers are applied, as then specialized efficient solutions
to this problem are possible. These will be discussed in Chapter 4, which is de-
voted to the set-point optimization, after presenting model predictive control
in Chapter 3.
From a point of view of the optimization, the disturbances w are para-

meters. But the problem is that the model of the process F should describe
well the reality. Therefore, values of these disturbances should be known –
measured or estimated. Only then the solution of the steady-state optimi-
zation problem with the process model does determine the operating point
(set-point) which is optimal for the real process. More precisely, it is then
close enough to the real optimal, but not strictly optimal due to unavoidable
uncertainties and inaccuracies. If the case is not so, then the point evalua-
ted using an only rough model can be far from the optimal one for the real
process. In situations with significant uncertainty, but when the disturbances
can be treated as constant during long time intervals, much longer than the
controlled process settling time (e.g., in cases of only roughly known abrupt
but rare changes in disturbance values), there is an approach which allows to
improve optimality of the operating point. It is based on an iterative use of
an additional measurement information from the plant and results in the so-
called iterative set-point optimizing control algorithms [16]. These algorithms
will also be considered in Chapter 4.

Example 1.2
Let us go back to the previously considered CSTR reactor from Example 1.1.
This time we shall formulate a different optimization objective (b):

(b) To optimize the set-points on-line in such a way as to maximize concen-
tration CB(t) in a product stream in the situation of a slowly changing
disturbing input FA(t).

The assumption of the inflow rate FA changing slow in relation to the dyna-
mics of the controlled system allows us to use a steady-state control. For each
disturbance value FA it is possible to determine, from (1.15), a temperature
value which maximizes the concentration CB . A set of optimal temperatures
is marked by a dashed curve in Fig. 1.11, defined by points

T̂ (
Wm
FA
) = argmax

T
CB(T,

Wm
FA
)

maximizing the function (1.15).
The task of the optimization layer is an on-line evaluation of a point of

this curve corresponding to the current value of FA. The optimizer can do
this task by on-line optimization, performed each time. However, due to the
simplicity of the task it is also possible to use a different method: the entire
optimal curve T̂ (WmFA ) can be evaluated off-line by performing the optimiza-
tions for a sufficiently dense set of possible disturbance values and saved in
the optimizer’s memory, as a look-up table.
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Fig. 1.11. Level sets of the surface CB(T, WmF ) with a dashed curve indicating the
set of points maximizing CB (the set of optimal temperatures)

Fig. 1.12. Two-layer CSTR control structure with on-line set-point optimization
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Fig. 1.13. Decomposed block diagram of the CSTR multilayer control system for
on-line set-point optimization (CB maximization)

The control structure performing the control goal (b) is presented in
Fig. 1.12, while Fig. 1.13 presents a diagram of the same control system in
the language of multilayer structure blocks from Fig. 1.3, with a decomposed
description of the process. �

1.6 Supervision, Diagnosis, Adaptation

In what have now become classic publications devoted to multilayer control
of complex industrial processes, there were three basic layers distinguished,
following from a functional decomposition of the control goal: a direct control
(stabilization) layer, an optimization layer and an adaptation layer, see e.g.,
[78, 40]. This philosophy followed the engineering experience up to the 1970s,
when mechanical (pneumatic) and analog electronic single-loop feedback con-
trollers were installed in industrial control systems. Computers, expensive and
still not sufficiently reliable in those days, were being introduced to perform
tasks of higher layers, mainly for acquisition, collecting and processing the
data for purposes of operator and engineering staff support in their more or
less automated decisions. The adaptation layer was responsible for basic super-
vision and adaptation activities in a control and decision support center. This
center, on the basis of an analysis of a current process situation and external
requirements, was making decisions about changes of the process operating
points (set-points), about methods of enforcing quality requirements, about
reaction to unpredictable events, etc. – which were then transmitted to the
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functionally lower layers of direct control and optimization and implemented
often manually by the operators.
The development of microelectronics and computer technology has led to

radical changes in hardware and software of control systems. Due to an im-
mensely developing miniaturization, along with the appearance of integrated
circuits of a large and very large scale of integration, not only did the calcu-
lation possibilities rise immensely, but also prices and sizes of electronic and
microprocessor equipment dropped. Therefore, along with the appearance of
microprocessor controllers, and then distributed control systems, there came
a new age in the technique of regulatory (feedback) control, in industrial pro-
cesses control. In each of the functional and equipment layers of the control
system, and even in a single direct control loop it is now possible to install
more complex algorithms, including nonlinear algorithms and adaptive algo-
rithms with automatic adaptation to assumed requirements.
Apart from the control algorithms, it is also possible to perform, in the

same local controllers, the tasks of technical diagnosis of measurement signals
and of operation of the controllers themselves, with an automatic shift to re-
dundant units when needed. Therefore, the tasks of supervision and diagnosis
dispersed significantly. One cannot talk of a single supervision, diagnosis and
adaptation layer located on the top of the optimization layer. Along with the
still existing central tasks of supervision and diagnosis and a task of adap-
tation of structure and parameters of the optimization layer, we also have
tasks of supervision and adaptation of the direct or constraint control sys-
tems, which in large part are performed locally as local algorithms, more or
less integrated with control algorithms and safety logic. Such control struc-
tures ensure greater speed of reaction to external events and an increased
reliability – according to a general rule: information-decision loops should be
made as short and quick as possible. A multilayer control structure conside-
ring up-to-date realizations of supervision, diagnosis and adaptation tasks is
presented in Fig. 1.14 (compare with Fig. 1.2) [134, 16].
The problems of technical diagnosis are not considered in this book. The

reader interested in this topic is referred to the excellent book [65].
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Fig. 1.14. Multilayer structure with supervision, diagnosis and adaptation tasks
(reproduced with modifications from Brdys, M.A. and Tatjewski, P., Iterative Al-
gorithms for Multilayer Optimizing Control, page 10, copyright 2005 by Imperial
College Press, used by permission)
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Model-based Fuzzy Control

The task of feedback control systems is to keep controlled variables as close as
possible to their reference values (set-points), which define operating points
of the controlled process. A classical approach when selecting a feedback con-
trol algorithm is to first identify a linear process model at a given operating
point, then to design a linear controller for that model or choose settings of
a standard linear controller, usually of a PID type, see e.g., [44, 85, 3, 52].
However, a linear process model is only an approximate description of reality.
Moreover, the designed controllers should be robust against possible changes
in the characteristics of the controlled process caused by disturbances or chan-
ges of its internal features. Robust controllers should ensure stability of the
control system and basic control quality for a prescribed range of differences
between the process and its model used for the design. For example, when ap-
plying classical frequency based design, certain minimal values of amplitude
and phase margins must be preserved, assigned on the basis of frequency cha-
racteristics of the process model with the controller. These prescribed minimal
values result from many years of practical experience, to achieve a reasonable
compromise between robustness and control quality. A similar philosophy is
applied when designing controllers by other methods, such as the root-locus
method, pole placement, or popular in the process industries selection of PID
settings using Ziegler-Nichols rules or tables of settings based on simple pro-
cess models, see e.g., [38, 44, 85, 105]. Such design usually ensures a correct
operation of the control system in a certain neighborhood of an operating
point for which the controller was designed. The smaller the nonlinearities of
the process, the larger this neighborhood, in general.
Practically, however, control processes are usually nonlinear, sometimes

strongly nonlinear. If they operate in a small neighborhood of the operating
point and control quality requirements are not too high, then the presented de-
sign philosophy is usually sufficient. It had to be the case during many years
when controllers were of mechanical construction (e.g., pneumatic) as well
as later, when analog electronic controllers dominated. Bringing into control
practice computers and reliable microprocessor controllers radically changed
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the situation. Supervisory control computers enabled effective implementa-
tion of on-line optimization of the controlled process, i.e., proper adjustment
of process operating points to the current technological situation defined by
the process environment and requirements of the management layer. Moreo-
ver, microprocessor controllers allow for on-line realization of many complex
control algorithms, including multivariable control and nonlinear control. It
should be emphasized that the phenomena mentioned above condition each
other strongly – on-line optimization of the running process assumes frequent,
but always fast and reliable (thus - automatic) changes of the process ope-
rating points, implemented as changes in the set-point values for feedback
controllers. This is possible only when controllers are able to work reliably
not only in the vicinity of one set-point, but also for a range of set-points
corresponding to various changes in process input and output values – i.e.,
controllers which are able to control a nonlinear process.
Generally, the development of control algorithms capable to cope with

changing operating points and environment changes has gone in two direc-
tions: adaptive control and nonlinear control. The base of adaptive control is
an on-line adaptation of controller parameters to the changing process fea-
tures, usually using a standard linear controller (e.g., PID). Adaptation is
conducted in a direct way or in an indirect way, by on-line identification of
a linear process model corresponding to the current operating point and ap-
propriate selection of controller parameters, usually using one of the classical
methods as was described previously, see e.g., [2, 103]. Such an approach is
appropriate mainly in situations where we are not able to avoid the necessity
of on-line identification during the control system operation. However, on-line
identification carries the risk of a failure, particularly in periods of small va-
riability of measured values. Therefore, in the domain of industrial control –
in chemical, petrochemical, sugar, food etc. industries adaptive control in this
sense has so far found quite a limited application.
The essence of nonlinear control (non-adaptive) is the design of a nonlinear

controller using in a straightforward way a nonlinear process model, valid for
a wide range of variability of process input and output values. The theory of
nonlinear control is vast – see e.g., [57, 64], and its description is not the aim
of this book. This chapter will deal with the design and analysis of nonlinear
controllers on the basis of the theory of fuzzy sets and fuzzy logic, particularly
fuzzy models with the Takagi-Sugeno structure, proposed in 1985 in [131].
The idea, definitions of a fuzzy set and a fuzzy logic were proposed by L.

A. Zadeh as early as in 1964 [156], at first meeting severe criticism. Although
the first successful industrial application for control purposes took place in
1976 (at a Danish cement plant), the real boom in developing the theory and
applications of fuzzy logic for control came at the end of the 1980s and lasts
until today. It turned out that fuzzy controllers can be a strong, efficient tool,
especially in places where it is difficult to have a sufficiently adequate pure
analytical description of the controlled process – but where we do have at our
disposal empirical knowledge, experience of operators controlling such proces-
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ses, or patterns of the required behavior of the controlled processes. On the
other hand, fuzzy control of nonlinear processes turned out to be a very effi-
cient tool allowing to effectively combine elements of quality knowledge about
the process with the analytical approach. Fuzzy modeling of nonlinear proces-
ses for control purposes turned out to be, next to neural network modeling,
the most intensively developed approach which has been practically applied
from the 1990s.
It is not the intention of this book to describe the basics of the theory

of fuzzy sets and fuzzy logic together with possible applications for control
purposes, as there exist many splendid books, such as e.g., [155], where vast
information on the subject can be found. The basics of the theory of fuzzy
sets and fuzzy logic will be presented in the following section, however, only as
necessary for introduction of the Takagi-Sugeno (TS) fuzzy modeling struc-
ture. We shall then present design methods and stability analysis of fuzzy
nonlinear controllers of Takagi-Sugeno structure, also known as fuzzy multi-
regional controllers [33, 32], or multi-model controllers [22]. It is not only
the authors opinion that this is one of the most successful constructions of
nonlinear controllers, especially from a practical, application point of view.

2.1 Takagi-Sugeno (TS) Type Fuzzy Systems

2.1.1 Fuzzy Sets and Linguistic Variables

Figure 2.1 (b) presents how membership of an element x ∈ R
1 to a fuzzy

set F is defined. On the other hand, Fig. 2.1 (a) presents, for comparison,
the membership of an element x ∈ R

1 to the set C defined in a classic way,
such a set is called a crisp set in the theory of fuzzy sets. Each element of
the numerical axis R

1 belongs to the set C or not, the membership function
µC(x) of the set C can take only values 0 or 1,

µC(x) =
{
1, if x ∈ C
0, if x /∈ C

}
The membership function µF (x) of the fuzzy set F can also take any value
between 0 and 1,

µF (x) =
{∈ (0, 1], if x ∈ F
0, if x /∈ F

}
Figure 2.1 presents an example of a trapezoidal membership function µF (x)
of the fuzzy set F . Every point of the interval [d, e] belongs only to the set
F , i.e., with the membership function value (with the grade of membership)
equal to 1, just like each point of the interval [a, b] belongs to the crisp set C.
Points of intervals (c, d) and (e, f) do not belong entirely to the set F because
corresponding grades of membership are contained in the range (0, 1). In this
sense the borders of the set F are fuzzy, thus the name fuzzy set. For example,
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Fig. 2.1. (a) An example of a crisp set C, compared to (b) An example of a fuzzy
set F ; µC(x), µF (x) – membership functions of sets C and F

the point x1 depicted in Fig. 2.1 (b) belongs to the set F with the membership
function value (with the grade of membership) equal to 0.48.
The definition of a fuzzy set allows to introduce the next concept, key to

the fuzzy logic, the concept of a linguistic variable. A linguistic variable, also
known as a fuzzy variable, is an intermediate between a numerical variable
and a symbolic variable (whose values are symbols – e.g., a symbolic variable
“shape” defined as taking three values: “circle”, “square”, “triangle”). The
notion of the linguistic variable is explained in Fig. 2.2 by way of an example of
a variable “temperature”, taking values “low”, “medium” and “high”, defined
by fuzzy sets described by membership functions µL(t), µM (t), and µH(t),
respectively. For example, the temperature t1 presented in Fig. 2.2 is medium
with grade of membership equal to 0.79 and, at the same time, it is high with
the grade of membership equal to 0.21.
Figures 2.1 and 2.2 show the application of fuzzy sets with trapezoidal

membership functions. Together with triangular functions (which are special
cases of trapezoidal functions, as in Fig. 2.1 with d = e) they are the most
popular membership functions in applications where smoothness of these func-
tions is not necessary. If, however, differentiability is required as e.g., during
the design of neuro-fuzzy systems (see Section 2.1.4), then the most popular
in applications are sigmoidal functions, bell (bell-like) functions or Gaussian
functions, see e.g., [58, 155, 111].
The one-sided sigmoidal membership function (of a set Xi) is defined by

the formula
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Fig. 2.2. Illustration of a linguistic variable “temperature” assuming three values:
“low”, “medium” and “high”

µXi(x) =
1

1 + exp[−αi(x− ci)] (2.1)

where parameters αi and ci define the shape of a fuzzy set Xi. For αi < 0
the function is left-sided open, whereas for αi > 0 it is right-sided open. The
value ci describes the positioning of the function (µXi(ci) = 0.5), while αi des-
cribes the steepness of its slope. One-sided sigmoidal functions can only define
fuzzy sets corresponding to extreme values of linguistic variables. However, it
is possible to build a two-sided (closed) sigmoidal membership function by the
the use of two one-sided sigmoidal functions. Such a function, with its value
approaching zero when |x| → ∞, would represent intermediate values of a
linguistic variable. The construction can be done in two simple ways: by sub-
tracting two right-sided (or left-sided) open functions appropriately positioned
in relation to each other, or by multiplying a right-sided open function by a
left-sided open function positioned to its right (see e.g., Fuzzy Logic Toolbox
of the MATLAB� package). Figure 2.3 presents three sigmoidal membership
functions:

• sigmf1: left-sided open with parameter values αi = −30, ci = 0.2;
• sigmf2: two-sided created from subtracting function sigmf3 from a right-
sided open function with parameter values αi = 30, ci = 0.2;

• sigmf3: right-sided open with parameter values αi = 15, ci = 0.75.
The popularity of sigmoidal functions results not only from the fact that it is
easy to construct one-sided as well as two-sided sigmoidal functions, but also
from the possibility to obtain asymmetry of two-sided functions – parameters
of left and right slopes can be completely different and, at the same time,
the size of the middle area (with a function value approximate to 1) can be
shaped independently.
The generalized bell membership function is defined as follows [58, 155]

µXi(x) =
1

1 + [(x−ciαi )
2]βi
, (2.2)

where αi, βi, ci are parameters defining the shape of a fuzzy set Xi. In parti-
cular, ci defines the centre of symmetry, βi influences mainly the inclination
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Fig. 2.3. Sigmoidal membership functions

Fig. 2.4. Generalized bell membership functions

of slopes and αi influences the width of the “bell”. Figure 2.4 presents two
examples of a bell function:

• bellf1: a function with parameter values αi = 0.2, βi = 4, ci = 0.3;
• bellf2: a function with parameter values αi = 0.1, βi = 1.5, ci = 0.7.
Let us note that the bell function is symmetric with respect to the vertical
axis x = ci. In order to obtain a two-sided asymmetric function, it should
be built from two halves of bell functions with different parameters. In the
literature and software packages Gaussian membership functions can be found
as well, see e.g., [58, 155, 111].
The linguistic variables (fuzzy variables) allow to capture roughly defined

phenomena better than numerical variables, defined also as crisp variables.
For example, the description of a linguistic variable “temperature”, presented
in Fig. 2.2 can result from a survey conducted among a representative sample
of clients or communal users, e.g., in order to establish conditions of turning
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on heating appliances (when the temperature is low) or air-conditioning (when
the temperature is high).
For a specific value of a numerical variable the process of defining its lin-

guistic value together with the appropriate value of the membership function
is called fuzzyfication. The example in Fig. 2.2 shows three linguistic values
for the variable “temperature”: “low”, “medium” and “high”, while in the
process of fuzzyfication the linguistic values “medium” and “high”, with the
membership function values 0.79 and 0.21, respectively, are assigned to the
fixed temperature numerical value t1. Let us emphasize that a value of a lin-
guistic variable is defined by a membership function assigned to this linguistic
value, i.e., it is identical with the fuzzy set defined by the corresponding mem-
bership function.

2.1.2 Fuzzy Reasoning

The basic element of a fuzzy system used e.g., for modeling or control, is a
set of fuzzy inference rules also known as a knowledge base, like in expert
systems. It consists of inference rules operating on fuzzy (linguistic) variables,
thus they are described as fuzzy rules.
Each inference rule consists of two elements: the IF-part, called an antece-

dent of a rule, and the THEN-part, also called a consequent of the rule. The
structure of a single rule can thus be presented as follows:

IF <antecedent> THEN <consequent>

The antecedent defines the condition, and the consequent – the conclusion
which will be implemented if the condition is true.
The antecedent of a fuzzy rule consists, in the simplest case, of a single

condition. Then the rule takes the following form:

IF x is A THEN <consequent>

where x is a linguistic variable, while A is a fuzzy set defined by a membership
function µA(x). In the general case the rule antecedent can contain many
simple conditions connected by the operators of conjunction (and), disjunction
(or) and negation (not), e.g.,

IF x1 is A1 and x2 is (notA2) · · · or xk is Ak · · ·
THEN <consequent>

The consequent of a fuzzy inference rule can, generally, take one of the
following forms (e.g., [155]):

1. Crisp consequent:

IF <antecedent > THEN y = ya

where ya is a numerical value or a symbolic value,
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2. Fuzzy consequent:

IF <antecedent > THEN y is Yk

where y is a fuzzy variable (linguistic) and Yk is a fuzzy set,
3. Functional consequent:

IF x1 is A1 and x2 is A2 · · · and xn is An
THEN y = f(x1, x2, . . . , xn)

where f is a certain function of variables x1, x2, . . . , xn.

In this book we shall be interested only in functional consequents proposed
in 1985 by Takagi and Sugeno [131]. It turned out that using the inference
rules with functional consequents enables effective modeling of nonlinear de-
pendencies using a small number of rules. Fuzzy systems which use rules with
functional consequents are called, from the names of the authors, the Takagi-
Sugeno fuzzy systems or simply TS fuzzy systems. A term also sometimes used
is that of Takagi-Sugeno-Kang (TSK) systems, as Kang was one of Professor
Sugeno’s younger co-workers developing fuzzy systems of that structure. One
may also come across a term multiple model systems, see e.g., [22]. Let us note
that the functional consequent is reduced to a crisp one (numerical) when the
function f assumes an extreme form of a constant, f(x1, x2, . . . , xn) = a0.
The most frequently applied functional consequents are those in the form of
first order polynomials (affine functions)

f(x1, x2, . . . , xn) = a0 +
n∑
i=1

aixi

where a0, a1, . . . , an are parameters (polynomial coefficients). There are two
reasons for this: the first and most important one is that using only affine
functions is sufficient for a satisfactory precise modeling of even strongly non-
linear dependencies and with not a very large number of fuzzy sets in rule
antecedents, provided a correctly selected number and location of these sets
is chosen. Secondly, there exists a number of simple, well-established methods
of construction and identification of linear models and of design of linear con-
trollers which can be directly applied in individual sub-regions separated by
antecedents of fuzzy TS system rules. Therefore, in this chapter we shall only
use linear or affine functions of rule consequents, although the presented mo-
deling and control structures can also be applied in a more general case with
nonlinear functions.
Let us remember that a set of all inference rules of a fuzzy system, e.g.,

of a fuzzy model of a nonlinear process, is called the knowledge base of that
system. We shall assume that the knowledge base of a TS fuzzy system consists
of rules in the following form
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Ri: IF x1 is Ai1 and x2 is A
i
2 · · · and xn is Ain

THEN yi = ai0 +
n∑
j=1

aijxj (2.3)

i = 1, ..., r. Each fuzzy set Aij in the antecedent of a rule R
i is one of the

elements of a set of linguistic values (fuzzy sets) of a variable xj

Aij ∈ Xj = {Xj1, Xj2, ..., Xjrj} (2.4)

where rj is a number of elements of the set Xj , j = 1, ..., n. The presented
structure of the knowledge base of the TS fuzzy system will be illustrated by
way of an example.

Example 2.1
Let us consider modeling of a two-dimensional nonlinear dependence y =
f(x1, x2) by a TS fuzzy system, using a two-element representation of each of
the linguistic variables x1 and x2

x1 ∈ {“small”, “big”} = {X1m, X1d}
x2 ∈ {“small”, “big”} = {X2m, X2d}

The knowledge base will be the set of four rules Ri, i = 1, 2, 3, 4:

R1 : IF x1 is X1m and x2 is X2m THEN y = y1 = a10 + a
1
1x1 + a

1
2x2

R2 : IF x1 is X1m and x2 is X2d THEN y = y2 = a20 + a
2
1x1 + a

2
2x2

R3 : IF x1 is X1d and x2 is X2m THEN y = y3 = a30 + a
3
1x1 + a

3
2x2

R4 : IF x1 is X1d and x2 is X2d THEN y = y4 = a40 + a
4
1x1 + a

4
2x2

where X1m, X2m, and X1d, X2d are fuzzy sets defining “small” and “large”
values of the linguistic variables x1 i x2, while the functional consequents
are linear approximations of the modeled dependence over appropriate two-
dimensional fuzzy sets. By presenting the formulated above four general rules
in the form (2.3), we get

A11 = X1m, A
1
2 = X2m

A21 = X1m, A
2
2 = X2d

A31 = X1d, A
3
2 = X2m

A41 = X1d, A
4
2 = X2d

where the sets Ai1, i = 1, ..., 4, are elements of the set (2.4) taking the form

X1 = {X11, X12} = {X1m, X1d}
where r1 = 2, while Ai2, i = 1, ..., 4, are elements of the set (2.4) taking the
form
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Fig. 2.5. A division of a two-dimensional domain in the case of two-element lin-
guistic variables x and y

X2 = {X21, X22} = {X2m, X2d}
where r2 = 2.
An example of the discussed domain of the modeled dependence is presen-

ted in Fig. 2.5. The point (x̄1, x̄2) marked in Fig. 2.5 belongs, with non-zero
values of the membership functions, to the sets X1m ×X2d (x1 small, x2 big)
and X1d × X2d (x1 big, x2 big). Particularly, the coordinate x̄1 belongs to
the set X1m with the membership function value µX1m(x̄1) = 0.62 and to
the set X1d with the membership function value µX1d(x̄1) = 0.38, while the
coordinate x̄2 belongs only to set X2d, with the membership function value
µX2d(x̄2) = 1.0.
The presented example illustrates not only a set of rules, but it also shows

how naturally Cartesian products of fuzzy sets are created. �
A set of rules is used for the fuzzy reasoning. Generally, the fuzzy reasoning

consists of three basic stages and, for some applications, additionally of a
fourth stage (see e.g., [155]):

1. Calculation of levels (degrees) of activation of all rules, also described
as firing strengths of the rules, see e.g., [59], corresponding to current
numerical values of input variables.
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2. Evaluation of conclusions of individual rules.
3. Combining the conclusions of all rules into one final conclusion.
In the general case the (output) variable of a rule consequent is a fuzzy
variable, thus the final conclusion is fuzzy, i.e., y ∈ Y , where y is an
output variable of a fuzzy system and Y is a fuzzy set created as a result
of stages 1, 2 and 3 of the fuzzy reasoning. For certain applications, e.g.,
for control, the obtained fuzzy value of the output variable should be
further transformed into a crisp numerical form – then the following is
performed:

4. Defuzzification – transforming a fuzzy value of the output variable into a
numerical value.

The fuzzy reasoning, and in particular its third stage, is much more simpli-
fied when consequents of all rules are not fuzzy, if they are crisp or functional.
This situation occurs in the case of TS fuzzy systems, which are the subject of
our interest in this book. Therefore, we shall restrict our attention to this case
only – referring a reader interested in more general aspects of fuzzy reasoning
to the vast literature on the subject, e.g., [58, 155].

Fuzzy Reasoning in TS Structures

In the case of TS fuzzy structures fuzzy reasoning can be divided into the
following three stages:

1. Calculation of activation levels of individual inference rules corresponding
to the current numerical values of the input variables.

2. Calculation of values of functional consequents of all individual inference
rules.

3. Calculation of the final conclusion value – weighted and normalized sum
of values of the output variables obtained in the rule consequences by
considering the activation levels of the individual rules.

In the considered case of the TS fuzzy system each inference rule Ri has the
form (2.3), i = 1, ..., r, where r is the number of rules. Calculating the level
of activation wi of the i-th rule, even in the considered case of the antecedent
containing only simple conditions all connected by the conjunction operator, is
not a unique operation. The multiplication operator or the minimum operator
are frequently used here. When using the multiplication operator for the input
variable values x = [x1 x2 . . . xn]T the level of activation of the i-th rule is
given by the algebraic product

wi(x) = µAi1(x) · µAi2(x) · · · · · µAin(x), i = 1, ...r

while with the application of the minimum operator the level of activation is
given by the logical product

wi(x) = min{µAi1(x), µAi2(x), . . . , µAin(x)}, i = 1, ...r
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In the two-dimensional Example 2.1 presented in the previous section, for
the value x = x̄ = [x̄1 x̄2]T of the vector of the input variables (see Fig. 2.5)
we obtain the following values of activation levels of individual rules, when
using the minimum operator:

w1(x̄1, x̄2) = min{µX1m(x̄1) = 0.62, µX2m(x̄2) = 0} = 0
w2(x̄1, x̄2) = min{µX1m(x̄1) = 0.62, µX2d(x̄2) = 1} = 0.62
w3(x̄1, x̄2) = min{µX1d(x̄1) = 0.38, µX2m(x̄2) = 0} = 0
w4(x̄1, x̄2) = min{µX1d(x̄1) = 0.38, µX2d(x̄2) = 1} = 0.38

Further in this example, the following values of the output variable will be
the values of the consequents of individual rules:

R1 : ȳ1 = a10 + a
1
1x̄1 + a

1
2x̄2

R2 : ȳ2 = a20 + a
2
1x̄1 + a

2
2x̄2

R3 : ȳ3 = a30 + a
3
1x̄1 + a

3
2x̄2

R4 : ȳ4 = a40 + a
4
1x̄1 + a

4
2x̄2

Let us note that using the product operator in the above example leads to
the same result, which is a rather special case. Non-zero levels of activation
calculated by minimum and product operators result in different values if at
least two grades of membership occurring in a given rule are smaller than 1.
But, directly from definitions of both operators, it is clear that zero levels of
activation always occur for the same rules.
The last stage of fuzzy reasoning is a weighted, normalized sum of values of

the output variables of consequents of all individual rules. For r rules described
by (2.3) this is obtained according to the formula

y =
∑r
i=1 w

i(x) · yi∑r
l=1 w

l(x)
=

∑r
i=1 w

i(x)[ai0 +
∑n
j=1 a

i
jxj ]∑r

l=1 w
l(x)

(2.5)

where yi are values of the consequents of individual rules at a point x, and y is
the final conclusion – the value of the output variable of a TS fuzzy system at
the point x. For the value x̄ of the input variables in Example 2.1 considered
above we have

ȳ =
∑4
i=1 w

i(x̄) · ȳi∑4
l=1 w

l(x̄)
=

= 0.62 · (a20 + a21x̄1 + a22x̄2) + 0.38 · (a40 + a41x̄1 + a42x̄2)

Let us note that in the above example
∑r
l=1 w

l(x) = 1 for each value of x,
which results from the construction of the membership functions. Generally,
this condition does not have to be satisfied, thus there is a normalizing sum in
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the fraction denominator in the formula (2.5), consisting of values of activation
levels of all rules. Values

w̃i(x) =
wi(x)∑r
l=1 w

l(x)
, i = 1, ..., r (2.6)

are called normalized activation levels of the inference rules of a fuzzy model.
They always satisfy the condition

∑r
i=1 w̃

i(x) = 1.
From the point of view of the relations between the input variables x1,

x2, ..., xn and the output variable y, the TS fuzzy system can be treated as
a functional mapping with features dependent on properties of the members-
hip functions and rule consequent functions. If the membership functions are
differentiable, as it is in the case of sigmoidal functions, the functions of the
rule consequents are differentiable (they are usually affine) and, additionally,
if levels of activation are defined by the product operator, then the nonlinear
mapping generated by the TS fuzzy system will also be a continuous and dif-
ferentiable mapping. In the two-dimensional case it is convenient to present
the mapping of a TS fuzzy system in graphic form, as a surface y = ϕ(x1, x2).

Example 2.2
Figure 2.6 presents the surface of a TS fuzzy system with two input varia-
bles x1 and x2, with fuzzy sets described by sigmoidal membership functions
presented in Figures 2.7 and 2.8 and the following rule base of the general
structure (2.3):

Fig. 2.6. Surface of the TS fuzzy system in Example 2.2
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Fig. 2.7. Membership functions of fuzzy sets of the variable x1

Fig. 2.8. Membership functions of fuzzy sets of the variable x2

R1 : IF x1 is X1m and x2 is X2m THEN y = 0.2 + x1 + 2x2

R2 : IF x1 is X1m and x2 is X2d THEN y = −1 + 2x1 + 0.5x2
R3 : IF x1 is X1d and x2 is X2m THEN y = 1 + 2x1 + 2x2

R4 : IF x1 is X1d and x2 is X2d THEN y = −0.5 + 3x1 + 1x2
Let us note that in spite of simple affine consequents the obtained mapping
is strongly nonlinear. �

2.1.3 Design of TS Fuzzy Models

Design of a TS fuzzy system, especially a fuzzy model of a known or unk-
nown dependence between input and output variables, should be performed
as follows:
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1. Fuzzy partitioning: Dividing the range of variability of each input variable
xj into partly overlapping sets Xjk, k = 1, ... rj , see (2.4), i.e., defining
the number of fuzzy sets and assigning a shape and values of parameters
of the membership function of each set.

2. Defining the structure and parameters of functional consequents of indi-
vidual rules. The number of rules r should be equal to the number of
created sub-domains (multidimensional fuzzy subsets Ai1×Ai2× · · · ×Ain,
for the rules (2.3)) of the considered domain X ∈ R

n of input variables
xj , j = 1, ..., n, – one TS rule for each sub-domain.

3. Selecting the method of calculation of activation levels of individual rules:
choosing the product or the minimum operator.

The first two points are the most important, the third one is a simple technical
operation. A proper selection of fuzzy sets for input variables is a key to
success. Too small a number of these sets and wrong positioning in relation to
each other leads to unsatisfactory design of the fuzzy model, which does not
satisfy the quality requirements and is too imprecise. Assuming too large a
number of fuzzy sets leads to an oversized model with too many parameters;
the design is then more difficult and the model is slower in operation.
There exist many proposals on how to perform the process of fuzzy parti-

tioning in an automatic way, e.g., using a data base consisting of a sufficiently
representative set of values of input variables and corresponding output va-
riables representing the modeled dependence. However, in practice it is still
most efficient to take a human-made decision about the number of sets and
their initial positioning, in an interactive mode, if necessary. This is preci-
sely the place to employ empirical knowledge about the problem, about the
character of nonlinearity. Human involvement is here not a drawback of the
approach, on the contrary – it is its strong point, as the role of a human
expert is well defined. Using expert knowledge is necessary to define a very
important specific thing – proper general structure of a fuzzy system. The key
is not to precisely define each membership function, but to define the number
of these functions and their initial, approximate positioning. Precise tuning of
parameters of membership functions is usually done automatically by using
an appropriate optimization algorithm during a later phase of the design.
The way structure and parameters of functional consequents are defined

depends on an application. Usually, polynomial functions of first order are
employed. First of all, this is usually sufficient. Secondly, this leads to the
possibility of simple and profitable interpretation of the fuzzy system as a
neural network – as it will be presented later on. In a case of a fuzzy mo-
deling the consequent functions will be affine approximations of the modeled
dependence in individual sub-domains, e.g., linearizations of this dependence
at properly selected characteristic points of these sub-domains. In a case of
the design of a fuzzy system as a controller, the functional consequents will be
functions representing local control algorithms, designed for local models of
the controlled process or directly for sets of data characterizing the process.
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The selection of the type of the operator (minimum or product) for cal-
culation of the activation levels of the rules is not very significant for the
operation of a TS fuzzy system – it is arbitrary and dictated by the needs
of the design method. The product operator is differentiable (the minimum
operator is not), therefore it should be used if the nonlinear mapping repre-
sented by a TS fuzzy system should be differentiable. Especially, this situation
occurs when membership function parameters are tuned in a learning mode
of a fuzzy neural network.

2.1.4 TS System as a Fuzzy Neural Network

A TS fuzzy system can be presented in the form of a neural network struc-
ture, called a fuzzy neural network (FNN), or an ANFIS system (Adaptive
Neuro-Fuzzy Inference System), see e.g., [59, 58, 155]. Such a network can be
interpreted as a multilayer perceptron in which nonlinear neuron nodes corres-
pond to nonlinear membership functions. An example of the structure of a
fuzzy neural network will be presented for a specific simple TS fuzzy system,
where the domain of each of the two input variables x1 and x2 is divided into
three fuzzy sets (X11, X12, X13 and X21, X22, X23, respectively) defined by
three sigmoidal membership functions: left-sided, two-sided and right-sided,

µXj1(xj) =
1

1 + exp[−αj1(xj − cj1)] , αj1 < 0

µXj2(xj) =
1

1 + exp[−αj2+(xj − cj2+)] −
1

1 + exp[−αj2−(xj − cj2−)]
µXj3(xj) =

1
1 + exp[−αj3(xj − cj3)] , αj3 > 0

where αj2+ > 0, αj2− > 0, cj1 < cj2+ < cj2− < cj3, j = 1, 2. Let us
consider a rule base consisting of three rules with antecedents containing only
two simple conditions,

R1 : IF x1 is X11 and x2 is X21 THEN y1 = f1(x) = a10 + a
1
1x1 + a

1
2x2

R2 : IF x1 is X12 and x2 is X23 THEN y2 = f2(x) = a20 + a
2
1x1 + a

2
2x2

R3 : IF x1 is X13 and x2 is X22 THEN y3 = f3(x) = a30 + a
3
1x1 + a

3
2x2

where x = [x1 x2]T . We are considering three rules only for simplicity of
presentation, a full base would contain 9 rules. The multiplication (product)
operator is used for assigning levels of activation

w1(x) = µX11(x) · µX21(x)
w2(x) = µX12(x) · µX23(x)
w3(x) = µX13(x) · µX22(x)
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Fig. 2.9. Presentation of a TS fuzzy system, with two input variables and three
rules, in the form of a fuzzy neural network (the case of constant parameters of
functions fi in the consequents)

while the system output is given according to the standard formula

y =
∑3
i=1 w

i(x) · yi∑3
l=1 w

l(x)
=
3∑
i=1

w̃i(x) · yi (2.7)

where w̃i(x) denote normalized activation levels of the rules.
The structure of the described fuzzy neural network (FNN), for the case

of constant (i.e., not adjustable by the network) parameters of functions in
the rule consequents, is presented in Fig. 2.9. The network consists of eight
layers (not including the trivial layer consisting of input nodes):

• The first four layers are connected with the rule antecedents and they are
responsible for calculation of activation levels wi(x) of individual rules.
The first three layers calculate values of the membership functions, where
nodes of the second layer model nonlinear functions of the type

g(z) =
1

1 + exp[−z]
while nodes of the fourth layer, denoted by “Π”, are the multiplication
nodes.
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• Each node of the fifth layer calculates the value of the function fi(x) of
one rule consequent; these calculations can be assigned to one node for
each rule when coefficients of the functions are assumed to be constant
(not tunable) network parameters.

• The sixth, seventh and eighth layers implement the final conclusion, ac-
cording to (2.7).

In Fig. 2.9 the following convention is used: parameters cji and αji are
placed near the arches, as close to arch centers as possible – they are tuneable
network parameters, by which signals leaving the nodes are multiplied (in case
of cji parameters, cj2+ and cj2− were not shown due to lack of space, whereas
cj3 were placed closer to the beginning of the arches, j = 1, 2). Network
arches which do not have any assigned values should be treated as arches
with the value “1”. Concerning nodes transforming signals, the markings by
these nodes denote node output signals.
A fuzzy neural network can be used to adjustment (optimization) of para-

meters αji and cji of the membership functions, by employing one of the stan-
dard network learning algorithms, see e.g., [58, 155]. Certainly, it is possible in
a situation when a set of input-output type learning data is available, in our
example problem the data describing the dependence x → y. By performing
TS fuzzy modeling of a known nonlinear dependence one can generate such a
set. However, it is a typical situation when a TS fuzzy model of an unknown
dependence is constructed, based only on a set of input-output data. After
the user has selected the number of fuzzy sets, initial shapes of membership
functions and structure of rule consequents, it is possible to tune parameters
of the membership functions as well as parameters of the consequent functions
using methods of network learning. There are two methods available:

• We can extend the network replacing the function nodes “fi” by additional
network fragments presented in Fig. 2.10 – and then tune parameters of

Fig. 2.10. Fragment of the network structure implementing functions of rule con-
sequents
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the membership functions and of the rule consequents by a single, selec-
ted method of network learning, e.g., using a gradient optimization with
gradient calculation according to the back propagation algorithm.

• A hybrid optimization algorithm can be used (see [58]): the parameters of
the rule antecedents are tuned by a method of network learning (a gra-
dient optimization using the back propagation algorithm to evaluate the
gradient), alternately with tuning the parameters of the rule consequents
by the least squares method. The authors of [58] have conducted compa-
rative research which indicated better properties of the hybrid algorithm.

Example 2.3
The example will present results of fuzzy modeling of static characteristics
of a distillation column shown in Fig. 2.11, used for separation of a two-
component mixture of methanol and water. A dynamic model of the column
was constructed [67], in the form of a set of differential and algebraic equa-
tions describing physical phenomena occurring on individual shelves of the
column, in the reflux tank and in the bottom part of the column [81, 112, 46].
Models of controllers stabilizing liquid levels of the top and bottom products
by manipulating outflows of the distillate D and of the bottom product B
were then added.
Assuming all time derivatives in the model equations constant and equal

to zero, a set of nonlinear algebraic equations was obtained, which describes
static characteristics of the column. Input values (process control inputs) of

Fig. 2.11. Distillation column, Example 2.3
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these characteristics are: the reflux (a stream of recycle from the reflux tank
to the column) flow rate R and the heating steam flow rate V [kmol/h].
The outputs are concentrations xd and xb of the product (methanol) in the
distillate D and in the bottom product B, respectively. Figure 2.12 presents
original, nonlinear surfaces of the static characteristics of the column.
Starting to build a TS fuzzy model, a division of each of the domains of

the input variables R and V into two partitions (two fuzzy sets) was assumed
and sigmoidal membership functions were chosen (arbitrarily), as presented
in Fig. 2.13 (a) and Fig. 2.14 (a). In this way, four fuzzy sub-domains (four
two-dimensional fuzzy sets) were created in the domain of each of the cha-
racteristics, compare with Fig. 2.5 and with Example 2.1. In each of these
sub-domains affine models for concentrations xd and xb were assumed,

xd = aid0 + a
i
d1R+ a

i
d2V, i = 1, ..., 4

xb = aib0 + a
i
b1R+ a

i
b2V, i = 1, ..., 4

For identification of parameters aidj and a
i
bj of local models a set of data

was created for modeling purposes: in 441 (21 x 21) evenly distributed points
covering the entire range of variability of R and V the values of static charac-
teristics (these shown in Fig. 2.12) were calculated. Next, parameters of the
local models were tuned to this data using the method of minimization of the
mean square deviation. The surfaces of TS fuzzy models obtained in this way
are presented in Fig. 2.15.
Next, the model parameters were optimized using the hybrid method,

performing alternately:

• steps modifying the parameters of the membership functions, in the direc-
tion of a negative gradient (calculated by the back propagation method)

Fig. 2.12. Surfaces of the static characteristics of the plant, Example 2.3
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Fig. 2.13. Membership functions of fuzzy sets of the TS model of concentration xd:
a) initial, b) after parametric optimization

Fig. 2.14. Membership functions of fuzzy sets of the TS model of concentration xb:
a) initial, b) after parametric optimization
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Fig. 2.15. Surfaces of TS fuzzy models of static characteristics of concentrations
xd and xb, for initial values of parameters of membership functions

Fig. 2.16. Surfaces of TS fuzzy models of static characteristics of concentrations
xd and xb, for optimal values of parameters of membership functions

of the performance function representing the mean square modeling error
and

• steps tuning the parameters of the affine models (functions of the rule
consequents), by the least squares method.

There were 500 iterations performed, after that the value of the modeling
error was 8.45×10−3 for the model of xd and 7.49×10−3 for the model of xb.
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Shapes of the membership functions obtained in this way are presented in
Fig. 2.13 (b) and Fig. 2.14 (b), while surfaces of the fuzzy models are shown
in Fig. 2.16. What draws our attention is a high modeling accuracy of the
strongly nonlinear mapping obtained using a small number of fuzzy sets. �

2.2 Discrete-time TS Fuzzy Control

By a TS fuzzy control algorithm we shall describe a TS fuzzy system in which
the consequent of each rule is a function defining a control algorithm, des-
igned to control the process locally in a sub-domain (multidimensional local
fuzzy set) associated with the rule antecedent. The presented approach is also
called in the literature a parallel distributed compensation (PDC), see e.g.,
[150], a fuzzy multi-regional control algorithm [33, 32] or a multi-model control
algorithm [22].
Control algorithms of rule consequents of TS fuzzy controllers are generally

designed locally, for local models describing the process in particular sub-
domains. Generally, the local process models can be linear or nonlinear, as
can the local control algorithms. In practice, linear local models and linear
local control algorithms are applied, as they are sufficient for a nonlinear
description if only the sub-domains are properly selected in relation to the
nonlinearity of the process. When using a locally linear approach the design is
very effective; it is possible to use known and practically well verified simple
control algorithms. Thus, in this book, we shall restrict our attention to affine
or linear local models and control algorithms. The structure of the design of
rules of the TS fuzzy control algorithm in the case of a process described by
a TS fuzzy model is presented in Fig. 2.17.

Design of a TS fuzzy controller can be divided into the following stages:

1. a) Define variables occurring in the rule antecedents. Values of these va-
riables will describe the membership of the current state (operating
point) of the process to local sub-domains, in which the process can be
approximated by affine models, for control purposes.

b) Divide the range of variability of each variable xj of the rule antece-
dents into overlapping fuzzy sets Xjk (in relation to the process nonli-
nearity), defining the number rj (see (2.4)) of these sets and assigning
a shape and values of parameters of the membership function of each
set. This creates a division of the whole domain into a number of over-
lapping sub-domains (multidimensional fuzzy sets Ai1×Ai2× · · ·×Ain,
for the rules (2.3)).

c) Formulate an affine or linear process model for each sub-domain cons-
tructed so far (each sub-domain is defined by one fuzzy rule, see Exam-
ple 2.2).
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Fig. 2.17. Design of a TS fuzzy controller for a process modeled by a TS fuzzy
system

The procedure defined above means a design of a TS fuzzy model of the
considered nonlinear control process, with functional consequents which
are linear dynamic models of the process in particular local sub-domains.
The range of variability of the input and output signals should cover the
entire operation domain of the designed controller.

2. For each local affine model (sub-model) of the process design a linear
controller operating correctly in the assigned sub-domain, using a selected
technique appropriate to the applied process model, e.g., a state-feedback
controller for models in the form of state equations, a PID controller for
ARX models, etc. Create a TS fuzzy controller – a TS fuzzy system with
rule antecedents created in the previous point (division into fuzzy sets as
in the TS fuzzy model of the process) and functional consequents which
are the designed control algorithms.

3. Perform analysis of the obtained TS fuzzy algorithm using simulation and
theoretical analysis: if it is possible, check analytically whether stability
conditions are satisfied and simulate the operation of the closed-loop con-
trol system in predicted conditions. If results are not satisfactory, return
to the previous point and correct parameters of local controllers. Repeat
the simulation and theoretical analysis of the obtained control system. If
there are difficulties in obtaining the desired quality of control by means
of tuning the local controllers only, return to the first stage: modify the
fuzzy sets of the rule antecedents, i.e., the parameters of the membership
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functions, or even the number of partitions (number of fuzzy sets) into
which the ranges of individual variables occurring in the rule antecedents
were divided. Repeat the following design and analysis of the corrected
control system.

It should be noted that the last point is significant. Properties of a TS
fuzzy controller are not a simple collection of properties of local controllers.
There are examples known, see e.g., [133], when in spite of the stability of all
local controllers, the TS fuzzy nonlinear controller is unstable.
Increasing the reliability and power of computer systems together with

strong competition on the market of industrial products unavoidably lead to
the application of multilayer control with on-line optimization of the opera-
ting points. Thus, in many loops of the direct control layer it is necessary
to consider applications of nonlinear controllers, because in the situation of
current, automatic changes in values of the set-points and significant nonlinea-
rities, the frequently occurring PID linear controllers do not ensure adequate
control quality. In such cases they have to be tuned for the worst case, i.e.,
for operating points critical for stability and robustness – thus they operate
too slowly in less critical conditions. The TS fuzzy controllers, discussed in
this chapter, are appropriate not only for the set-point control layer (where
sampling periods are usually larger) but they can be widely used for the direct
feedback control. Moreover, if functions in the rule consequents of a TS fuzzy
controller are linear, e.g., describing the classical PID control algorithm, then
this controller is a natural nonlinear generalization of a linear PID controller,
a generalization which should be easily understood and accepted by the staff
operating the control system.
The time domain is natural for the TS fuzzy systems used for process

modeling or for constructing dynamic systems such as controllers, because
conditions occurring in the rule antecedents of a process model or of a contro-
ller are formulated for variables in the time domain. Therefore, in functional
consequents of fuzzy rules there occur affine or linear dynamic models which
define values of output variables of a process or a controller at a given mo-
ment. A standard, practical approach when selecting settings of an industrial
PID controller is the use of a largely simplified process model, mainly in the
form of a simple transfer function, obtained experimentally on the basis of an
output response to a step function or to a rectangular impulse – and reading
the appropriate settings from predefined tables, see e.g., [38, 44]. There is not-
hing wrong with the application of this method for the design of a fuzzy PID
controller, only local process models corresponding to individual local fuzzy
sets (sub-domains) should be presented in the form of appropriate transfer
functions and used for selection of the local PID settings.
The process of tuning the parameters of the local controllers, or even

jointly parameters of the controllers and the membership functions, can also
be done globally and in an automatic way – if we have a credible simulation
model of the controlled process at our disposal. Then, we can use optimization
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of a function formulated as an appropriate control quality index, usually also
with constraints, e.g., on the overshoot. On the other hand, if we have a set of
data representing desired behavior of the control system, then by presenting
the designed TS fuzzy controller in the form of a fuzzy neural network, it is
possible to apply an algorithm for optimization (teaching) of such a network
(see Section 2.1.4).
The discussion presented above concerns general problems of the design

of nonlinear TS fuzzy controllers. In the current state of technology these
controllers are implemented in microcomputers, so they are discrete (digital)
controllers. However, if the sampling period is small enough in relation to the
dominant process time constant, then a fully authorized method of the design
is the synthesis of a continuous control algorithm – and then application of its
digital representation only, see e.g., [44, 52]. For that reason, after presenting
design of discrete-time TS fuzzy controllers in the following sections, we shall
discuss the same problem for the continuous-time case.

2.2.1 Discrete TS Fuzzy State-feedback Controllers

The first case of a TS fuzzy controller discussed in the literature was a state-
feedback controller [133, 150], based on a TS fuzzy model with consequents
in the form of linear state equations. It was only later that output-feedback
controllers were proposed, based on input-output type models.
Let us consider a TS fuzzy discrete model of a dynamic process with the

rules of the following form:

Rip : IF x1(k) is A
i
1 and x2(k) is A

i
2 and · · · and xnx(k) is Ainx

THEN xi(k + 1) = Aix(k) +Biu(k) (2.8)

where

x(k) = [x1(k) x2(k) · · · xnx(k)]T
u(k) = [u1(k) u2(k) · · · unu(k)]T

are state and control input vectors of a dynamic process at sampling instant
k, respectively, Aij ∈ Xj = {Xj1, ..., Xjrj} are fuzzy sets of the coordinate
xj of the state vector x (see (2.4)), j = 1, . . . , nx, while Ai and Bi are the
state and control matrices of local linear models created for local fuzzy sets
(sub-domains), i = 1, ..., r.
Using a grid partition of the domain of the input variables [59] (see the

partition presented in Fig. 2.5 as an example), we obtain a fuzzy system with
the number of sub-domains (and rules) equal to

r = r1 · r2 · · · · · rnx =
nx∏
j=1

rj
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As a result of this, the number of local fuzzy sets grows rapidly with the
increase of dimensionality nx of the state vector x and the number rj of
fuzzy sets corresponding to each coordinate xj of the state vector. Thus, it is
important that the domains of individual state variables are divided into as
small a number of fuzzy sets as possible, i.e., that the numbers rj are small.
This is possible, without losing modeling accuracy, by using the TS structures
- as opposed to classic fuzzy modeling, in which the rule consequents are fuzzy
sets.
For given values of the state and control input vectors, x(k) and u(k),

the output of a fuzzy model, i.e., the state at the next sampling instant, is
calculated according to the general formula (2.5), i.e.,

x(k + 1) =
∑r
i=1 w

i(k)[Aix(k) +Biu(k)]∑r
l=1 w

l(k)
(2.9)

where wi(k) are levels of activation of individual rules (2.8) at k−th sampling
instant,

wi(k) =
nx∏
j=1

µAij (xj(k))

We have taken above the natural assumption that always
∑r
l=1 w

l(k) > 0,
i.e., for each value of the state variables from their domain the model is
well defined – at least one rule is activated. It is convenient to operate with
normalized rule activation levels, see (2.6), which from definition satisfy the
condition

∑r
i=1 w̃

i(k) = 1. Then the model of an autonomous process (with
u(k) ≡ 0)) takes the form

x(k + 1) =
r∑
i=1

w̃i(k)Aix(k) (2.10)

For such a dynamic model, using directly the Lyapunov theorem (see e.g.,
[61, 148]), it is relatively easy to derive a sufficient condition of asymptotic
stability [133].

Theorem 2.1 The equilibrium point of a dynamic system (2.10) described
by the rules (2.8) with u(k) = 0 is globally asymptotically stable, if there exists
a symmetric and positive definite matrix P, such that for the state matrix Ai
of each local model the following inequality is satisfied

ATi PAi −P < 0, i = 1, 2, ..., r (2.11)

Proof. Let us formulate a scalar function of the form

V (x(k)) = xT (k)Px(k) (2.12)

where P is a symmetric positive definite matrix. The function (2.12) satisfies
the following conditions:



60 2 Model-based Fuzzy Control

V (0) = 0

V (x(k)) > 0 for x �= 0
V (x(k))→∞ for ‖x(k)‖ → ∞

Moreover, a change of its value along a trajectory of the dynamic system
(2.10) is defined by the formula

∆V (x(k)) = V (x(k + 1))− V (x(k))
= xT (k + 1)Px(k + 1)− xT (k)Px(k)

= xT (k)

⎡⎣ r∑
i=1

w̃i(k)ATi P
r∑
j=1

w̃j(k)Aj −P
⎤⎦x(k)

=
r∑
i=1

r∑
j=1

w̃i(k)w̃j(k)xT (k)[ATi PAj −P]x(k)

=
r∑
i=1

(w̃i(k))2xT (k)[ATi PAi −P]x(k)+

+
r∑
i=1

r∑
j<i

w̃i(k)w̃j(k)xT (k)[ATi PAj +A
T
j PAi − 2P]x(k)

We have

ATi PAj +A
T
j PAi − 2P = −(Ai −Aj)TP(Ai −Aj)

+ [ATi PAi −P] + [ATj PAj −P]

and it follows from the positive definiteness of the matrix P that

−(Ai −Aj)TP(Ai −Aj) ≤ 0

Moreover,
w̃i(k) ≥ 0 for every i = 1, 2, ..., r

thus ∆V (x(k)) < 0 for x(k) �= 0 if only ATi PAi − P < 0 for every i =
1, 2, ..., r. Then the function V (x(k)) is a Lyapunov function of the nonlinear
dynamic system, which concludes the proof. �
It should be emphasized that the above theorem requires that only one matrix
P common for all local linear dynamic models xi(k + 1) = Aix(k) satisfies
the stability condition. To find a solution (or to prove it does not exist) of the
system of linear matrix inequalities

ATi PAi −P < 0, i = 1, 2, ..., r (2.13)

P > 0, P symmetric
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is not difficult now; one can use procedures from the LMI Toolbox of the
MATLAB� package (LMI - Linear Matrix Inequalities).
It is worth mentioning here that for nonsingular matrices Ai, a necessary

condition for the existence of a matrix P satisfying the Theorem 2.1 is that
each of the product matrices AiAj , i, j = 1, 2, ..., r is a matrix of an asympto-
tically stable system, i.e., that the modulus of any of its eigenvalues is smaller
than 1 [133]. Namely, it follows from the condition (2.11) that

P− (A−1j )TP(Aj)−1 < 0

Adding the above inequality and (2.11) results in

ATi PAi − (A−1j )TP(Aj)−1 < 0

which can be converted to the form

ATj A
T
i PAiAj −P < 0, i = 1, 2, ..., r

It follows from the last inequality that the matrix AiAj must be asymptotica-
lly stable. Thus, proving that one of the matrices AiAj is not asymptotically
stable determines non-existence of the matrix P satisfying the conditions of
Theorem 2.1.
Recently, a version of the Theorem 2.1 with weakened conditions has been

obtained [151], for dynamic systems with trajectories of limited transitions be-
tween different subsets of the whole operating space. To present these results,
the whole process operating state-space must be additionally partitioned into
subsets of constant activation of fuzzy rules [60, 151], which in the sequel will
be called constant activation cells, or activation cells, for brevity. The activa-
tion cells will be denoted by Sl, l = 1, ..., L, where L is the number of all cells.
Within each cell activation level of every fuzzy rule is either zero (inactive
rule) or positive (active rule - its activation level may be zero only on the cell
boundary).
The constant activation cells may be divided into those where the process

is in an operating regime and those corresponding to interpolating regimes.
The cell is with an operating regime when w̃l(x(k)) = 1 for a certain l ∈ L
and all other normalized activation levels are equal to zero. Thus, the system
dynamics is then fully defined by a local linear model being the consequent of
the fuzzy rule defining the fuzzy sub-domain containing this cell. On the other
hand, activation cells with interpolating regimes are defined as those where
0 < w̃l(x(k)) < 1 for x(k) ∈ intSl (interior of Sl) for at least two l ∈ L (at least
two, because

∑
l∈L w̃

l(x(k)) = 1 for every sampling instant k). Notice that
all activation cells are crisp and not overlapping sets, creating a partition of
the overall process state-space which is closely related to the partition of this
space into fuzzy sub-domains defined so far (see the beginning of Section 2.2),
but different, containing more elements.
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An example of a partition of the problem state-space into fuzzy sub-
domains and into cells of constant activation of fuzzy rules is shown in
Fig. 2.18, for a TS fuzzy model consisting of the following three rules

R1p : IF x1(k) is X1 THEN x(k + 1) = A1x(k) +B1u(k)

R2p : IF x1(k) is X2 THEN x(k + 1) = A2x(k) +B2u(k)

R3p : IF x1(k) is X3 THEN x(k + 1) = A3x(k) +B3u(k)

where x = (x1, x2), 0 ≤ x2 ≤ 3, Xi are fuzzy sets defined by membership
functions µXi(x1), i = 1, 2, 3, and 3 two-dimensional fuzzy sub-domains are
defined by Cartesian products Xi × [0, 3], i = 1, 2, 3.
Note that, to preserve strict mathematical correctness, the partitioning of

the process state-space into activation cells is possible only for trapezoidal
(or trapezoidal-like) membership functions, as sigmoidal, gaussian or genera-
lized bell functions have positive activation levels over the whole universe of
discourse.
Denoting, for each activation cell Sl, by K(l) a set containing indexes of all

fuzzy rules with nonzero activation level over Sl (for a cell Sl with operating
regime its corresponding K(l) contains a single element), we can describe the
autonomous (control free) fuzzy system dynamics as follows

x(k + 1) =
∑
i∈K(l)

w̃i(k)[Aix(k)], x(k) ∈ Sl, l ∈ L (2.14)

where 0 < w̃i(k) = w̃i(x(k)) ≤ 1 for each i ∈ K(l) and ∑i∈K(l) w̃i(k) = 1.
Define also, for further use, a set Ω representing all possible one-step sys-

tem state transitions between different constant activation cells Sl,

Ω = {(l,m) : x(k) ∈ Sl, x(k + 1) ∈ Sm, for every l,m ∈ L} (2.15)

Fig. 2.18. Membership functions µXi(x1) defining 3 fuzzy sets Xi, 3 fuzzy sub-
domains Xi × [0, 3] and corresponding 5 constant activation cells: 3 with operating
regimes (S1, S3, S5 – white) and 2 with interpolating regimes (S2, S4 – grey)
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where m �= l when the system transits (in one step) from a cell Sl to the cell
Sm, whereas m = l when the system stays in the same cell Sl. We are now
in a position to formulate a version of Theorem 2.1 with weakened stability
conditions, due to the use of a piecewise-quadratic Lyapunov function, instead
of a quadratic one.

Theorem 2.2 [151] The equilibrium point of a dynamic system (2.14) des-
cribed by the rules (2.8) with u(k) ≡ 0 is globally asymptotically stable, if
there exist L symmetric and positive definite matrices Pl, l ∈ L such that the
following set of inequalities is satisfied

ATi PmAi −Pl < 0, for every (l,m) ∈ Ω, i ∈ K(l) (2.16)

Proof. The reasoning is similar as in the proof of Theorem 2.1, only the system
dynamics described by (2.14) and the following piecewise-quadratic Lyapunov
function candidate

V (k) = x(k)TPlx(k), x(k) ∈ Sl, l ∈ L (2.17)

must be used, instead of the function (2.12). �

Theorems 2.1 and 2.2 state only sufficient conditions for stability – if these
conditions are not satisfied then the question of stability remains open. Ac-
cording to the best knowledge of the author, necessary and sufficient stability
conditions have yet not been formulated. Some attempts were made to ob-
tain a formulation of sufficient stability conditions on the basis of considering
properties of local state matrices Ai only, without the necessity of solving
global or partitioned sets of inequalities, such as those in (2.11) or (2.16). In
[20] conditions of this type were given, based on a direct estimate of the state
norm of the system described by (2.10)

‖x(k + 1)‖ = ‖
r∑
i=1

w̃i(k) ·Aix(k)‖

≤
r∑
i=1

w̃i(k)‖Ai‖‖x(k)‖

≤ max
1≤i≤r

‖Ai‖
r∑
i=1

w̃i(k)‖x(k)‖

= max
1≤i≤r

‖Ai‖ · ‖x(k)‖ (2.18)

where ‖A‖ denotes a norm of the matrix A, induced by the vector norm.
Thus satisfaction of the condition

r∑
i=1

w̃i(k)‖Ai‖ < 1 (2.19)
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or the slightly stronger condition

‖Ai‖ < 1, i = 1, 2, ..., r (2.20)

ensures asymptotic stability of the dynamic system (2.10). The above condi-
tions turn out to be very conservative in practice, and as such, of not much
use.
The example given below, after [133], shows that stability of individual li-

near subsystems x(k+1) = Aix(k) is generally not sufficient for the stability
of the overall nonlinear fuzzy system. Thus, in order to ensure stability, addi-
tional conditions such as that in Theorem 2.1 or Theorem 2.2, are necessary.

Example 2.4
Let us consider fuzzy sets X1 and X2 presented in Fig. 2.19 and a TS fuzzy
model consisting of the following two rules

R1p : IF x(k − 1) is X1 THEN x1(k + 1) = x(k)− 0.5x(k − 1)
R2p : IF x(k − 1) is X2 THEN x2(k + 1) = −x(k)− 0.5x(k − 1)

which are equivalent to the rules (2.8) with state matrices

A1 =
[
1 −0.5
1 0

]

A2 =
[−1 −0.5
1 0

]
corresponding to the state definition

[x1(k) x2(k) ] = [x(k) x(k − 1) ]
Eigenvalues of matricesA1 andA2 are 0.5±0.5i and −0.5±0.5i , respectively,
thus the matrices describe asymptotically stable systems. But, starting the
fuzzy system from an initial point x1 = 0.9, x2 = −0.7 we obtain a trajectory
shown in Fig. 2.20, definitely indicating non-stability of the fuzzy nonlinear
model. Assumptions of Theorem 2.1 can not be satisfied in this case. Indeed,
it is easy to check that matrix A1A2,

Fig. 2.19. Fuzzy sets of the model, Example 2.4
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Fig. 2.20. Unstable state trajectory in Example 2.4

A1A2 =
[−1.5 −0.5
−1 −0.5

]
has eigenvalues equal to λ1 = 0.134, λ2 = 1.866, thus it is not a matrix of a
stable discrete dynamic system – therefore, the matrix P satisfying assump-
tions of Theorem 2.1 does not exist. �
For each local linear dynamic model from the consequents of the rules

(2.8), that is for each of the sub-domains of a fuzzy model, a linear state-
feedback controller can be designed using a standard method. In this way we
obtain the rules of a TS fuzzy controller in the following form

Rjc : IF x1(k) is A
j
1 and x2(k) is A

j
2 and · · · and xnx(k) is Ajnx

THEN uj(k) = −Fjx(k) (2.21)

where Fj are matrices of state-feedback coefficients, j = 1, 2, ..., r. A complete
nonlinear TS fuzzy controller will be described by the following relation

u(k) = −
r∑
j=1

w̃j(k)Fjx(k) (2.22)

The structure of a control system with such a controller is presented in
Fig. 2.21.
When modeling and simulating the feedback control system we can, ge-

nerally, use for process representation in the closed-loop a nonlinear process
model different than the one used for the design of the fuzzy controller. For
example, it can be a TS fuzzy model with a different number of partitions
for certain state variables xj (with a different number and shape of fuzzy sets
corresponding to those variables), and thus with a different number and para-
meters of the rule antecedents. If the number of these rules is denoted by ro,
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Fig. 2.21. Structure of a control system with the TS fuzzy state-feedback controller

and levels of their activation by wio(k), i = 1, ..., ro, then the model output
will be given by the following formula, analogous to (2.9)

x(k + 1) =
∑ro
i=1 w

i
o(k)[Aix(k) +Biu(k)]∑ro

l=1 w
l
o(k)

=
ro∑
i=1

w̃io(k)[Aix(k) +Biu(k)]

(2.23)
where w̃io(k) are normalized rule activation levels. Of course, if the TS fuzzy
model used for process modeling in the feedback control system structure is
different than the model (2.8) used for the design of the controller, then also its
matrices Ai and Bi are generally different (although we do not introduce dif-
ferent symbols here, as it does not lead to misunderstanding: when analyzing
the closed-loop control system only matrices of the model (2.23) representing
the process in the loop and controller matrices Fj occur in the control system
description). Substituting the controller equations (2.22) into (2.23) we obtain
the description of the closed-loop system in the following form

x(k + 1) =
ro∑
i=1

r∑
j=1

w̃io(k)w̃
j(k)(Ai −BiFj)x(k) (2.24)

To examine the stability properties of the dynamic system (2.24) Theorem 2.1
can be directly used, however, only matrices Ai − BiFj , i = 1, 2, ..., ro,
j = 1, 2, ..., r, should be taken in place of matrices Ai, i = 1, 2, ..., r in its
formulation.
However, if during modeling the closed-loop control system presented in

Fig. 2.21 one uses the same TS fuzzy model for the plant description in the
loop that was used for the fuzzy controller design (i.e. with the same number
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of rules and the same rule antecedents), then the formula describing dynamics
of the closed-loop control system will have the following form

x(k + 1) =
r∑
i=1

r∑
j=1

w̃i(k)w̃j(k)(Ai −BiFj)x(k) (2.25)

Then we can obtain a more convenient, simpler formulation of the stability
conditions if we exploit the equality

w̃i(k)w̃j(k) = w̃j(k)w̃i(k), i, j = 1, 2, ..., r

resulting from the identity of the rule antecedents in the process model and
in the controller. Equation (2.25) can then be written in the form

x(k + 1) =
r∑
i=1

w̃i(k)w̃i(k)(Ai −BiFi)x(k) + 2
r∑

i,j=1,i<j

w̃i(k)w̃j(k)Dijx(k)

(2.26)
where

Dij =
1
2
[(Ai −BiFj) + (Aj −BjFi)], i < j, i, j = 1, 2, ..., r (2.27)

while the symbol
∑r
i,j=1,i<j denotes addition of terms with all pairs of indexes

i, j such that i < j, i, j = 1, 2, ..., r, e.g.,

3∑
i,j=1,i<j

Dij = D12 +D13 +D23.

Thus, directly from Theorem 2.1 we obtain

Corollary 2.3 Equilibrium point of the control system (2.25) described by the
rules of the process model (2.8) and the controller (2.21) is globally asymptoti-
cally stable, if there exists a positive definite matrix P satisfying the following
conditions

(Ai −BiFi)TP(Ai −BiFi)−P < 0, i = 1, ..., r (2.28)

DTijPDij −P < 0, i < j, i, j = 1, ..., r (2.29)

for all pairs ( i, j) except for those for which always (for every sampling instant
k) wi(k)wj(k) = 0. �
In [132] a certain weakening of the above result was achieved, the proof

runs similarly as in Theorem 2.1, with the use of the same form of the Lya-
punov function.

Theorem 2.4 Let the maximum number of rules activated at the same time
in the control system (2.25) described by the rules of the process model (2.8)
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and of the controller (2.21) be no higher than s, 1 < s ≤ r. The equilibrium
point of this system is globally asymptotically stable if there exist a positive
definite matrix P and a positive semi-definite matrix Q satisfying the condi-
tions

(Ai −BiFi)TP(Ai −BiFi)−P+ (s− 1)Q < 0, i = 1, ..., r (2.30)

DTijPDij −P−Q ≤ 0 i < j, i, j = 1, ..., r
(2.31)

for all pairs ( i, j) except for those for which wi(k)wj(k) = 0 for every sam-
pling instant k. �

Let us note that conditions (2.30) and (2.31) reduce to (2.28) and (2.29), if
Q = 0 is assumed.
Formulations of stability conditions given above rely on a global quadratic

Lyapunov function. In many cases, weaker conditions can be obtained when
a piecewise-quadratic Lyapunov function is applied instead of the global one,
as it was shown in Theorem 2.2. To apply this result to the state-feedback
case, the space of the process states partitioned into constant activation cells
Sl, l = 1, ..., L, must be used, as for the uncontrolled process before. Recalling
that K(l) denotes a set containing indexes of all fuzzy rules with non-zero ac-
tivation level within Sl, the state-feedback controller takes the form (compare
with (2.22))

u(k) = −
∑
j∈K(l)

w̃j(k)Fjx(k), x(k) ∈ Sl, l ∈ L (2.32)

The closed-loop system dynamics can then be described as follows

x(k+1) =
∑
i∈K(l)

w̃i(k)[Ai−Bi
∑
j∈K(l)

w̃j(k)Fj ]x(k), x(k) ∈ Sl, l ∈ L (2.33)

where
∑
j∈K(l) w̃

j(k) = 1. Due to this last equality, (2.33) can be written in
the form

x(k+1) =
∑
i∈K(l)

∑
j∈K(l)

w̃i(k)w̃j(k)[Ai−BiFj ]x(k), x(k) ∈ Sl, l ∈ L (2.34)

which is a partitioned form of the overall dynamics description (2.25), corres-
ponding to the partitioning of the whole process domain into L constant ac-
tivation cells Sl. Theorem 2.2 can now be directly applied to the considered
state-feedback case yielding the following result.

Corollary 2.5 Equilibrium point of the control system (2.34) described by
the rules of the process model (2.8) and of the controller (2.21) is globally
asymptotically stable, if there exists L symmetric and positive definite matrices
Pl, l ∈ L such that the following set of inequalities is satisfied
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[ATi −BiFj ]Pm[Ai −BiFj ]−Pl < 0, for every (l,m) ∈ Ω, i, j ∈ K(l)
(2.35)

where Ω denotes the set of index pairs indicating all possible one-step closed-
loop system state transitions between the activation cells Sl, see (2.15). �
The weak point of the above formulation is the necessity to define, in advance,
all possible one-step state transitions between all activation cells, i.e., to define
the set Ω. It should be emphasized that possible one-step state transitions for
the closed-loop control system may be different than those for the uncontrolled
process, and obviously the former must be taken into account in the definition
of the set Ω in the above corollary. Certainly, underestimation of this set
may be dangerous as omitted transitions may be those causing instability.
Therefore, overestimation is very likely, leading to an increased, large number
of inequalities in (2.35) – and the more inequalities the more constraining is
the stability condition.
The design and analysis presented so far was for closed-loop TS fuzzy

control systems with locally designed state-feedback matrices, as presented
in the initial part of Section 2.2. This approach seems to be a convincing
and natural generalization of the classical state-feedback design for a linear
process model at a given equilibrium point. But another, more global oriented
approach is also possible. It is based on a design of state-feedback matrices
Fi ensuring stability of the overall state-feedback control system on the basis
of a solution of a system of linear matrix inequalities, with respect to both
state-feedback and stability related (Lyapunov type) matrices. For instance,
with respect to all matrices P, Q and Fi, i = 1, ..., r given in Theorem 2.4 –
the system of nonlinear inequalities (2.30)-(2.31) is then reformulated to the
form of a system of linear matrix inequalities [132]. In [151] a similar approach
is proposed for the design of a state-feedback H∞ fuzzy controller, based on a
piecewise-quadratic Lyapunov function. The sets of linear matrix inequalities
can then be effectively solved using available packages, e.g., LMI Toolbox of the
MATLAB� package could be applied. We shall not present this approach here
in detail, as in the author’s opinion a more natural, more intuitive approach
is the decentralized design methodology of a TS fuzzy controller, based on a
number of local feedback designs. Moreover, in the case of an unsatisfactory
result of the design, not only values of the feedback coefficients should be
corrected, but first of all the number, positioning and shape of membership
functions.
In practical applications, an entire vector of state variables may not be

available for measurement. In this case the theory of state-feedback control
suggests the use of a state observer. This approach can also be applied when
designing a control system with a state-feedback TS fuzzy controller, cons-
tructing a state observer as a TS fuzzy system with the structure of rules
identical to that of the rules of the process model and of the controller –
but with rule consequents being classical formulae of linear state observers.
Because controllers with feedback from observed state have not yet found po-
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pularity in process industries, we shall omit the presentation of the design of
fuzzy state observers and stability analysis of the closed-loop control systems
with observers, asking the reader to refer to the literature [132].

Example 2.5
Let us reconsider a TS fuzzy model of a process presented in Example 2.4, but
with a control variable u added. Fuzzy sets X1 and X2 defined by trapezoidal
membership functions are presented in Fig. 2.19, while rules of the process
model can be presented in the following form

R1p : IF x2(k) is X1 THEN x
1(k + 1) = A1x(k) +Bu(k)

R2p : IF x2(k) is X2 THEN x
2(k + 1) = A2x(k) +Bu(k)

where x(k) = [x1(k) x2(k)]T ∈ R
2, u(k) ∈ R,

A1 =
[
1 −0.5
1 0

]
, A2 =

[−1 −0.5
1 0

]
, B =

[
1
0

]
It was shown in Example 2.4 that the autonomous (uncontrolled) TS fuzzy

system can generate, for certain initial conditions, unstable state trajectories.
We shall now design, for that system, a TS fuzzy controller with state-feedback
ensuring stable operation of the closed-loop control system. The controller
rules will have the following form

R1c : IF x2(k) is X1 THEN u(k) = −F1x(k)
R2c : IF x2(k) is X2 THEN u(k) = −F2x(k)

It will be most simple to assume identical placement of eigenvalues of state
matrices A1−BF1 and A2−BF2 of individual local feedback systems. Assu-
ming the eigenvalues equal to 0.5 and 0.4 the elements of vectors F1 and F2
were calculated (using the place function from the Control System Toolbox of
the MATLAB� package).

F1=
[
0.1 −0.3 ] , F2= [−1.9 −0.3 ]

The situation of identical rules in the fuzzy controller and in the process
model used for the simulation of the control system will be considered. Thus,
to examine the stability it is enough to calculate three matrices, which due to
the assumptions should have identical values

A1 −BF1 = A2 −BF2 =

= D12 =
1
2
[(A1 −BF2) + (A2 −BF1)] =

[
0.9 −0.2
1 0

]
The closed-loop TS fuzzy control system will be, therefore, described by one
equation



2.2 Discrete-time TS Fuzzy Control 71

x(k + 1) = D12x(k)

and is, of course, stable with assumed eigenvalues of the state matrices equal
to 0.5 and 0.4.
For a more elaborate illustration of the stability properties of the closed-

loop system we shall repeat the design of the controller assuming a slightly
different vector of feedback coefficients in the second subprocess, namely F2 =
[−2.1 − 0.2], which corresponds to eigenvalues of the matrix A2−BF2 equal
to 0.5 and 0.6. Now we have

A1 −BF1 =
[
0.9 −0.2
1 0

]
A2 −BF2 =

[
1.1 −0.3
1 0

]
D12 =

1
2
[(A1 −BF2) + (A2 −BF1)] =

[
1 −0.25
1 0

]
A sufficient condition of stability of the closed-loop system is, according

to the Corollary 2.3, the existence of a symmetric, positive definite matrix P
satisfying the system of inequalities

(A1 −BF1)TP(A1 −BF1)−P< 0
(A2 −BF2)TP(A2 −BF2)−P< 0

(D12)TPD12 −P< 0

Using the LMI Toolbox of the MATLAB� package it was checked that such
a matrix exists, obtaining

P =
[
1.9755 −0.7968
−0.7968 0.9459

]
�

2.2.2 Discrete TS Fuzzy Output-feedback Controllers

In control systems of technological processes linear controllers with feedback
from the output are usually used, particularly the well known PID type con-
trollers. Along with a more and more wide application of multilayer control
structures with on-line optimization of operating points, there grows a neces-
sity of applications of nonlinear controllers, which are able to operate properly
for a wide range of different set-points. Thus, in industrial applications it is
important to have a relatively simple nonlinear controller, which would idea-
lly be a nonlinear generalization of the PID controller. The construction of
a discrete TS fuzzy output-feedback controller fulfilling the above postulates
was proposed in [31], see also [33, 32], where it was called a multi-regional
controller.
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Let us consider a TS fuzzy model of a process which will be used for the
design of a fuzzy controller. We shall assume the rules of this model in the
following form

Rip : IF y(k) is A
i
0 and y(k − 1) is Ai1 and · · · and y(k − nR) is AinR
and u(k − 1) is Bi1 and · · · and u(k −mR) is BimR

THEN yi(k + 1) = ai1y(k) + a
i
2y(k − 1) + · · ·+ ainAy(k − nA + 1)+

+ bi0u(k) + b
i
1u(k − 1) + · · ·+ bimBu(k −mB) (2.36)

where i = 1, . . . , r indexes rules and related fuzzy sets (sub-domains) in the
domain of the TS fuzzy model (generally multi-dimensional), y(k) is a value of
the process output at the k-th sampling instant, u(k) is a value of the process
control input at the k-th sampling instant, Aij ∈ Yj , Bij ∈ Uj , whereas aij and
bij are coefficients of functions in the rule consequents, i = 1, ..., r. Elements
of each of the sets Yj = {Yj1, ..., Yjryj} are fuzzy sets covering the domain
of the variable y(k − j), j = 0, . . . , nR, similarly Uj = {Uj1, ..., Ujruj} for
u(k − j), j = 1, . . . ,mR.
The presented situation is the most general one; we usually have to deal

with a far simpler case, when

Y0 = · · · = YnR = Y, Y ={Y1, ..., Yry}

i.e., partitions of the domain of each of the current and past output variables,
i.e., y(k), y(k− 1), ..., y(k−nR), are the same. Similarly, the partitions of the
domain of the control input vector are usually the same, U1 = · · · = UmR = U,
U = {U1, ..., Uru}.
Dynamic linear models applied in the consequents of rules (2.36) are the

ARX-type models. These models also apply to systems with time delays equal
to several, say τ , sampling periods. Then, appropriate coefficients of the rule
consequents will only be zero, bi0 = b

i
1 = · · · = biτ = 0.

The output of a fuzzy model will be calculated according to the general
formula (2.5), i.e.,

y(k + 1) =
∑r
i=1 w

i(k) yi(k + 1)∑r
l=1 w

l(k)
(2.37)

where wi(k) are activation levels of individual rules (2.36) at sampling instant
k,

wi(k) =
nR∏
j=0

µAij (y(k − j))
mR∏
p=1

µBip(u(k − p)) (2.38)

For a model of the process described by the rules (2.36) the following rules
of a TS fuzzy controller are formulated
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Fig. 2.22. Structure of a control system with the TS fuzzy output-feedback con-
troller

Rjc : IF y(k) is A
j
0 and y(k − 1) is Aj1 and · · · and y(k − nR) is AjnR
and u(k − 1) is Bj1 and · · · and u(k −mR) is BjmR

THEN uj(k) = cj1e(k) + c
j
2e(k − 1) + · · ·+ cjnCe(k − nC + 1)+

+ dj1u(k − 1) + dj2u(k − 2) + · · ·+ djmDu(k −mD) (2.39)
where j = 1, . . . , r indexes the rules whose antecedents are identical to those in
the model (2.36), e(k) = ysp(k)− y(k) is the control error at sampling instant
k, while cjj and d

j
j are coefficients of functions in the rule consequents. The

form of the discrete control algorithm occurring in the rule consequents (2.39)
is fairly general, its special cases are algorithms of discrete PID controllers or
unconstrained (explicit) versions of predictive controllers of DMC and GPC
type (described in Chapter 3).
The controller output equation takes a standard form for TS fuzzy struc-

tures:

u(k) =

∑r
j=1 w

j(k)uj(k)∑r
l=1 w

l(k)
=

r∑
j=1

w̃j(k)uj(k) (2.40)

where wj(k) are activation levels of individual rules (2.39) at k-th sampling
instant, defined by formulae (2.38), due to the same rule antecedents as in
(2.36). The structure of a control system with the TS fuzzy output-feedback
controller described above is presented in Fig. 2.22.
Let us note that in the rule antecedents of the controller (2.39) the condi-

tion “u(k) is Bj0” does not appear, as this would lead to a logical inconsistency.
Because a control value u(k) for k-th sampling instant is to be calculated in
functional consequents of the rules of the controller, then u(k) cannot occur
at k-th sampling instant in the rule antecedents. Thus, the simplest solu-
tion is to design the antecedents of the controller rules without the condition
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“u(k) is Bj0”, as it was done in (2.39). This is natural, especially for the
widely applied discrete control with the extrapolator of a zero order. Since
we measure and thus know the value of the process output y(k) just before
calculating the control value u(k) at the k-th sampling instant (i.e., for the
sampling period beginning at that moment), but the process is still under the
influence of the control u(k − 1) when u(k) is being computed.
For simulative or analytical research of the closed-loop control system with

the fuzzy controller described by (2.39), presented in Fig. 2.22, it is possible
to use a process model different that given by the rules (2.36) and used for
the construction of the controller. In particular, it can be a slightly different
TS fuzzy model with the number of rules ro (generally ro �= r) and the rules
in the form

Ripo : IF y(k) is A
i
0 and y(k − 1) is Ai1 and · · · and y(k − nO) is AinO

and u(k) is Bi0 and u(k − 1) is Bi1 and · · · and u(k −mO) is BimO
THEN yi(k + 1) = ai1y(k) + a

i
2y(k − 1) + · · ·+ ainAy(k − nA + 1)+

+ bi0u(k) + b
i
1u(k − 1) + · · ·+ bimBu(k −mB) (2.41)

where i = 1, ..., ro, while the parameters nA and mB of the rules (2.36) and
(2.41) can be of different values. We did not introduce different descriptions
for those parameters, in order not to complicate the notation; it does not lead
to misunderstandings as in the closed-loop control system the description of
the process model (2.41) only is present. The activation levels of the rules
(2.41) will be denoted by wio(k), and their normalized values by w̃

i
o(k),

y(k + 1) =
∑ro
i=1 w

i
o(k) y

i(k + 1)∑ro
l=1 w

l
o(k)

=
ro∑
i=1

w̃io(k) y
i(k + 1) (2.42)

Let us note that in the rule antecedents of the process model (2.41) the con-
dition “u(k) is Bi0” can be present, in general. It does not lead to logical
inconsistency here, as in the consequents of these rules the process output
value for the next ((k + 1)-th) sampling instant is calculated.
However, if it is desired that in the rule antecedents of the controller the

condition “u(k) is Bj0” should be present, then it is possible provided mo-
dified consequents in the controller rules are designed. Namely, in order to
eliminate the logical inconsistency, it is necessary to apply in the rule conse-
quents control algorithms calculating the control for the next sampling period
(see [161, 32]), i.e., to use the controller rules of the following form

Rjc : IF y(k) is A
j
0 and y(k − 1) is Aj1 and · · · and y(k − nR) is AjnR

and u(k) is Bj0 and u(k − 1) is Bj1 and · · · and u(k −mR) is BjmR
THEN uj(k + 1) = cj1e(k) + c

j
2e(k − 1) + · · ·+ cjnCe(k − nC + 1)+

+ dj1u(k) + d
j
2u(k − 1) + dj3u(k − 2) + · · ·+ djmDu(k −mD + 1)

(2.43)
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It should be added that conditions containing the process control input va-
riables are often not present at all in the antecedents of the process model
rules. Therefore, consideration of the problem of occurrence of the condition
“u(k) is Bi0” in the rule antecedents is of no significance for these applications.
The key variables of the rule antecedents of a TS fuzzy model are usually the
process output variables y(k), y(k − 1), ... . Therefore, for an important class
of problems it is enough to use a process model (and thus a controller) in
which conditions of the antecedents are defined for the output variables only,
i.e., to use the following rules

Rip : IF y(k) is A
i
0 and y(k − 1) is Ai1 and · · · and y(k − nR) is AinR

THEN yi(k + 1) = ai1y(k) + a
i
2y(k − 1) + · · ·+ ainAy(k − nA + 1)+

+ bi0u(k) + b
i
1u(k − 1) + · · ·+ bimBu(k −mB) (2.44)

Let us now consider the stability of a closed-loop control system with a
TS fuzzy output-feedback controller and a process model in the form of a TS
fuzzy system. Let us begin from the general case when the model used for
describing the process in the feedback loop, although also a TS fuzzy one,
is however different than the one used for the design of the controller. This
generally results in a different number and different antecedents of process
and controller fuzzy rules. Let us assume the process model with the rules
(2.41) and the controller with the rules (2.39). To shorten the notation, in all
the formulae presented next we shall denote levels of activation of the process
and controller rules by wio, w

j instead of wio(k), w
j(k) (dropping the time

variable k), and consequently, the normalized levels of activation, see (2.6),
by w̃io, w̃

j . For the simplicity and clarity of the following algebraic expressions
we shall also assume that

nA = nC = n

mB = mD = m (2.45)

which should be understood as follows:

– n = max{nA, nC} and the missing coefficients aip (if nA < nC) or cip (if
nA > nC) are zeros; similarly

– m = max{mB ,mD} and the missing coefficients bip (if mB < mD) or dip
(if mB > mD) are zeros.

Substituting dependencies describing local process models into (2.42) we have

y(k + 1) =
ro∑
i=1

w̃io

{
nA∑
p=1

aipy(k − p+ 1) +
mB∑
q=0

biqu(k − q)
}

(2.46)

Analogously, inserting equations of local controllers (2.39) into (2.40) we ob-
tain
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u (k) =
r∑
j=1

w̃j

{
nC∑
t=1

cjte (k − t+ 1) +
mD∑
s=1

djsu (k − s)
}

=
r∑
j=1

w̃j

{
nC∑
t=1

cjty
sp (k − t+ 1)−

nC∑
t=1

cjty (k − t+ 1) +
mD∑
s=1

djsu (k − s)
}
(2.47)

Now inserting this dependence into (2.46) and taking into account that∑r
j=1 w̃

j = 1, we obtain the equation describing the closed-loop control sys-
tem

y(k + 1) =
ro∑
i=1

w̃io

r∑
j=1

w̃j

{
nA∑
p=1

aipy(k − p+ 1) +
mB∑
q=1

biqu(k − q)
}
+

+
ro∑
i=1

w̃iob
i
0

r∑
j=1

w̃j

{
nC∑
t=1

cjty
sp (k − t+ 1)−

nC∑
t=1

cjty (k − t+ 1)+

+
mD∑
s=1

djsu (k − s)
}

Applying now the assumption (2.45) which allows for a consistent and clear
notation we can, after proper grouping of the terms, present the obtained
equation in the following form

y(k + 1) =
r∑
i=1

w̃io

r∑
j=1

w̃j

{
n∑
p=1

(aip − bi0cjp)y(k − p+ 1)+

+
m∑
q=1

(biq + b
i
0d
j
q)u (k − q) +

n∑
t=1

bi0c
j
ty
sp (k − t+ 1)

}
(2.48)

Let us now define a state vector x(k) ∈ R
n+m−1 describing the dynamics

given by (2.48) and (2.47) as follows

x(k) = [y(k) y(k−1) · · · y(k−n+1) u(k−1) u(k−2) · · · u(k−m)]T (2.49)
Furthermore, in order to have the following expressions concise, let us define
the parameters

aci,jp = a
i
p − bi0cjp, p = 1, ..., n

bdi,jq = b
i
q + b

i
0d
j
q, q = 1, ...,m

Then, taking into account that (2.47) is equivalent to the equation

u(k) =
ro∑
i=1

w̃io

r∑
j=1

w̃j

{
n∑
t=1

cjt [y
sp (k − t+ 1)− y (k − t+ 1)]+

+
m∑
s=1

djsu (k − s)
}
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the description of the closed-loop control system can be presented in the form

x (k + 1) =
ro∑
i=1

r∑
j=1

w̃iow̃
jAijx(k) +

ro∑
i=1

r∑
j=1

w̃iow̃
j
n∑
t=1

Eij ỹsp(k) (2.50)

where

Aij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aci,j1 ac
i,j
2 · · · aci,jn−1 aci,jn bdi,j1 bdi,j2 · · · bdi,jm−1 bdi,jm

1 0 · · · 0 0 0 0 · · · 0 0
0 1 · · · 0 0 0 0 · · · 0 0
...
...
. . .

...
...
...
...
. . .

...
...

0 0 · · · 1 0 0 0 · · · 0 0
−cj1 −cj2 · · · −cjn−1 −cjn dj1 dj2 · · · djm−1 djm
0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0
...
...
. . .

...
...
...
...
. . .

...
...

0 0 · · · 0 0 0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.51)

Eij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bi0c
j
1 b
i
0c
j
2 · · · bi0cjn−1 bi0cjn

0 0 · · · 0 0
0 0 · · · 0 0
...
... · · · ...

...
0 0 · · · 0 0
cj1 cj2 · · · cjn−1 cjn
0 0 · · · 0 0
0 0 · · · 0 0
...
...
...

...
...

0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.52)

and ỹsp(k) is defined as

ỹsp(k) = [ysp(k) ysp(k − 1) · · · ysp(k − n+ 1)]T (2.53)

Dynamics of the autonomous system is described by the equation

x (k + 1) =
ro∑
i=1

r∑
j=1

w̃io(k)w̃
j(k)Aijx(k) (2.54)

Applying now to (2.54) the Lyapunov theorem we can obtain a result analo-
gous to Theorem 2.1, which can also be treated as a direct application of this
theorem, provided all matrices Aij with indexes for which wio(k)w

j(k) = 0
are always excluded:
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Corollary 2.6 The equilibrium point of a TS fuzzy system described by (2.54)
is globally asymptotically stable, if there exists a symmetric positive definite
matrix P such that for each matrix Aij the following equation is fulfilled

ATijPAij −P < 0 (2.55)

for all pairs ( i, j), i = 1, 2, ..., ro, j = 1, 2, ..., r except for those for which
always wio(k)w

j(k) = 0. �
If we assume that the number of rules and the rule antecedents in a model

used for the description of the process in a closed-loop control system and in
the controller description are identical, then the following equalities are true:
ro = r, w̃io(k) = w̃

i(k), i = 1, ..., r and w̃i(k)w̃j(k) = w̃j(k)w̃i(k), for every
value of i, j = 1, 2, ..., r. Using this last equality it is possible to diminish the
number of matrices Aij occurring in (2.55), proceeding analogously as in the
previous section. Namely, the dynamics (2.54) can be then presented in the
form

x (k + 1) =

⎡⎣ r∑
i=1

w̃i(k)w̃i(k)Aii + 2
r∑

i,j=1, i<j

w̃i(k)w̃j(k)Aij

⎤⎦x(k) (2.56)

where

Aij =
Aij +Aji
2

, i < j, i, j = 1, 2, ..., r

while
∑r
i,j=1, i<j denotes addition of all terms with pairs of indexes i, j such

that i < j. In stability conditions (2.55) it is now enough to consider, instead
of matrices Aij , i, j = 1, 2, ..., r, only the matrices Aii, i = 1, ..., r and
Aij , i < j, i, j = 1, 2, ..., r. Conditions (2.55) can in this case be made
slightly weaker, by application of Theorem 2.4 to the dynamic system (2.56).

Corollary 2.7 Let the maximum number of rules activated at the same sam-
pling instant be no higher than s, 1 < s ≤ r. Then the equilibrium point
of the dynamic system described by (2.56) is globally asymptotically stable, if
there exist a positive definite matrix P and a positive semi-definite matrix Q,
satisfying the following conditions

AiiTPAii −P+ (s− 1)Q < 0, i = 1, 2, ..., r
Aij
T
PAij −P−Q ≤ 0, i < j, i, j = 1, 2, ..., r

for all pairs ( i, j) except those for which wi(k)wj(k) = 0 for every value of
k. �
The performed stability analysis does not directly include the case of a

control system with a controller defined by rules (2.43), whose antecedents
additionally contain the condition “u(k) is Bj0”, and thus consequents are
defined by slightly different formulae – compare (2.39) with (2.43). A stability
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analysis of such a control system can be conducted in a way identical as was
done above, obtaining analogous results – only matrices Aij and Eij will be
defined by slightly different formulae. These formulae can be obtained directly
from those already mentioned, only a modification of the coefficients of the
controller rule consequents is necessary, from the form

uj(k + 1) = cj1e(k) + c
j
2e(k − 1) + · · ·+ cjnCe(k − nC + 1)+
+ dj1u(k) + d

j
2u(k − 1) + · · ·+ djmDu(k −mD + 1)

to the form

uj(k) = c̄j1e(k) + c̄
j
2e(k − 1) + · · ·+ c̄jn̄Ce(k − n̄C + 1)+
+ dj1u(k − 1) + dj2u(k − 3) + · · ·+ djmDu(k −mD)

where n̄C = nC + 1, c̄
j
1 = 0, c̄

j
p = c

i
p−1, p = 2, ..., nC + 1. Moreover, w

j(k − 1)
should be, consequently, inserted to all formulae in place of wj(k), j = 1, ..., r.

Example 2.6
Let us consider a process model described by the following fuzzy rules in the
form (2.44)

R1p : IF y(k) isY1 THEN y
1(k + 1) = 0.7y(k) + 0.8u(k) (2.57)

R2p : IF y(k) isY2 THEN y
2(k + 1) = 0.3y(k) + 0.2u(k) (2.58)

Fig. 2.23 (a) presents fuzzy sets Y1 and Y2, while Fig. 2.23 (b) presents step
responses of local processes as described by consequents of the rules (2.57)
and (2.58). Comparison of these responses shows that the considered process,
despite its simple structure, is strongly nonlinear – nonlinear is in its statics

Fig. 2.23. a) sigmoidal membership functions, b) step responses, of local processes
in Example 2.6
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(gain) as well as in dynamics (time constant). On the other hand, it is not ea-
sily controlled, due to its time constant being relatively small when compared
to the sampling period.
Discrete PI controllers were designed for process models from the rule

consequents (2.57) and (2.58), in a version with integration implemented by
the method of trapezoids, i.e., in the following form

u(k) = u(k − 1) + kp(1 + Tp2TI )e(k) + kp(−1 +
Tp
2TI
)e(k − 1)

where kp is the controller gain and TI is its integral time. Values of these
parameters were selected by Ziegler-Nichols rules (see e.g., [3]), followed by
slight corrections, resulting in

k1p = 0.9, T
1
I = 3

k2p = 2.0, T
2
I = 1

Individual PI controllers operate very well in vicinities of their operating
points, but poorly within the whole domain of the output variable. Figure 2.24
presents trajectories in the control system with a nonlinear process and, sub-
sequently, with the first PI controller designed for the operating point y = −1
and with the second PI controller designed for the operating point y = +1.
The first controller is definitely too slow in the range of positive values of y.

Fig. 2.24. Controlled variable trajectories in control systems with a nonlinear fuzzy
process and the PI controller designed for the operating point y = −1 (upper figure)
and for the operating point y = +1 (lower figure)
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The second, in turn, is too aggressive, its trajectories are too oscillating not
only for negative values of the controlled variable y, but also in the vicinity of
its zero value. Moreover, Fig. 2.24 presents a trajectory which is too aggressive
even in the vicinity of its own operating point y = +1, if a step change of the
set-point from zero is followed. Therefore, before going on to the construction
of a TS fuzzy controller the gain of the second controller was decreased to
k2p = 1.5.
Assuming antecedents such as in the process model and consequents in

the form of the discussed local PI controllers we obtain the following rules of
a TS fuzzy controller

R1c : IF y(k) isY1 THEN u
1(k) = u(k − 1) + 1.05e(k)− 0.75e(k − 1)

(2.59)

R2c : IF y(k) isY2 THEN u
2(k) = u(k − 1) + 2.25e(k)− 0.75e(k − 1)

(2.60)

Figure 2.25 presents trajectories of the process output and the control input
in the closed-loop system with the designed TS fuzzy controller, for a fairly
wide range of changes of the set-point, while Fig. 2.26 presents trajectories of
the output variable in a slightly narrower, but critical range of changes of the
set-point between −1 and 1. In the lower part of Fig. 2.26 a trajectory for the
case k2p = 2 is presented, namely without the previously mentioned damping
of the gain k2p. As could be expected, increasing gain coefficient k

2
p slightly

Fig. 2.25. Trajectories of the process output and input variables in the control
system with the TS fuzzy controller
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Fig. 2.26. Trajectories of the output variable in the control system with the PI
fuzzy controller: with k2p = 1.5 (upper trajectory), k

2
p = 2 (lower trajectory)

speeds up the operation of a control system in the range of positive output
values. Unfortunately, at the same time the overshoot increases with changes
of the set-point in the direction of negative values, which can clearly be seen
for a set-point step from zero to −1. Therefore, it justifies the damping of k2p
carried out previously. In Chapter 3 we shall present that the described conflict
can be significantly reduced by employing a nonlinear predictive controller,
with faster operation for positive output values and a simultaneous reduction
of the overshoot for the negative values.
To perform stability analysis of the obtained nonlinear fuzzy control sys-

tem (with k2p = 1.5) we shall use Corollary 2.7, resulting from Theorem 2.4.
In order to do this, matrices Aij (2.51) must be evaluated. The extended
state vector in the considered example is: x(k) = [y(k) y(k − 1) u(k − 1)]T ,
where dimensions n = 2 and m = 1 result from the form of the process and
controller rule consequents. Thus, the matrices Aij are of dimension 3, and of
the following general form

Aij =

⎡⎣ai1 − bi0cj1 ai2 − bi0cj2 bi1 + bi0dj11 0 0
−cj1 −cj2 dj1

⎤⎦ , i, j = 1, 2
Assuming, for a theoretical verification of stability conditions, the process
modeled by (2.57), (2.58), i.e., the same rule antecedents in the process and
in the controller, it is enough to take into account matrices A11, A22 and A12.
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They have the following form

A11 =

⎡⎣−0.14 0.6 0.81 0 0
−1.05 0.75 1

⎤⎦

A22 =

⎡⎣−0.15 0.15 0.21 0 0
−2.25 0.75 1

⎤⎦
A12 =

⎡⎣−0.5050 0.3750 0.51 0 0
−1.65 0.75 1

⎤⎦
Using the LMI Toolbox of the MATLAB� package it was checked that a
system of linear matrix inequalities

(A11)TPA11 −P < 0
(A22)TPA22 −P < 0
(A12)TPA12 −P < 0

−P < 0

has a solution

P = 103

⎡⎣ 5.4140 −2.8931 −3.0451−2.8931 2.2731 2.1858
−3.0451 2.1858 2.5867

⎤⎦
Thus, it follows from Corollary 2.7 (with Q = 0) that sufficient conditions of
stability of the considered nonlinear control system are satisfied. The conduc-
ted analysis applies to stability of a nominal system, there only remains to
examine the robustness of the designed control system. It was checked that
the system operates correctly even under quite significant deviations of its
parameters. �

As mentioned previously, the form of the discrete TS fuzzy controller con-
sidered in this chapter also covers cases of predictive controllers of DMC and
GPC type (in explicit, unconstrained versions). In Chapter 3 a design of nonli-
near predictive controllers for the process from the example just shown above
will be presented, including a GPC type controller.

2.3 Continuous-time TS Fuzzy Control

Until now, a discrete-time description of a process, and consequently, of con-
trollers were assumed in our considerations. In practice, a discrete-time des-
cription is applied mainly to a situation when the sampling period in a control
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system is not radically shorter than the dominant time constants of the pro-
cess. For very small sampling periods we obtain, e.g.,, discrete step responses
with a very large number of significant elements or difference equations of a
high order, which unnecessarily makes the process of the design of control
systems more difficult. On the other hand, as a result of the development of
the microprocessor technology, controllers with a large computational power
are widely available, which enables the use of small sampling periods even
with more complex control algorithms. Thus, it is more common to use small
sampling periods in direct control loops. Especially, because this approach
enables a direct transfer from analog to digital technology – without the need
to change the settings of the controllers.
In a situation when the sampling period in a control loop is small enough

in relation to process dynamics, a fully authorized approach is to design a
continuous-time control system, and then a digital realization of the obtained
continuous-time controller by one of the emulation methods, see e.g., [44, 52].
For that reason, in this section we shall be concerned with questions of the
design and analysis of continuous (i.e., continuous-time) TS fuzzy controllers.
First of all, local control algorithms of such a controller will be defined as
continuous. We should also mention that a verification of a control system by
simulations can be conducted by formulating its description in a continuous
time domain (e.g., using the Simulink� program), or better yet, in a hybrid
environment with a continuous realization of the process modeled by a set
of differential equations integrated using an appropriate small step size and
discrete-time controller realization.
Structures of continuous-time TS fuzzy algorithms are analogous to those

for the discrete-time presented in the previous section. Therefore, conside-
ring design methods for continuous controllers and stability conditions of the
obtained control systems we shall do it briefly, concentrating mainly on for-
mulations and features distinguishing the two cases. Particularly, the first part
of Section 2.2 was written in a general way, and thus refers to process mode-
ling and to the design of TS fuzzy control algorithms, both in discrete and
continuous versions.

2.3.1 Continuous TS Fuzzy State-feedback Controllers

Let us consider a dynamic process with the following state and control vectors

x(t) = [x1(t) x2(t) · · · xnx(t)]T

u(t) = [u1(t) u2(t) · · · unu(t)]T

described by a TS fuzzy model with rules in the following form

Rip : IF x1(t) is A
i
1 and x2(t) is A

i
2 and · · · and xnx(t) is Ainx

THEN ẋi(t) = Aix(t) +Biu(t) (2.61)
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where Aij ∈ Xj = {Xj1, ..., Xjrj} are fuzzy sets of components xj of the state
vector x (see (2.4)), j = 1, . . . , nx, while Ai and Bi are state and control
matrices of local linear models designed for individual fuzzy sub-domains of
the model domain, i = 1, ..., r. When using a grid partition of the domain of
the state variables we obtain a fuzzy system with a number of sub-domains
(and rules) equal to r = r1r2 · · · rnx =

∏nx
j=1 rj .

For given values x(t) and u(t) the output of the fuzzy process model is
calculated according to the standard formula, i.e.,

ẋ(t) =
∑r
i=1 w

i(t)[Aix(t) +Biu(t)]∑r
l=1 w

l(t)
(2.62)

where wi(t) are activation levels of individual rules (2.61),

wi(t) =
nx∏
j=1

µAij (xj(t)).

We have taken a natural assumption that always
∑r
i=1 w

i(k) > 0, i.e., for
each value of the state variables from their domain the model is well defined
– at least one rule is activated.
The model of an autonomous process (with u(t) ≡ 0) can be written in

the form

ẋ(t) =
r∑
i=1

w̃i(t)Aix(t) (2.63)

where w̃i(t) denote normalized activation levels of the rules. For such a dy-
namic model, the following sufficient condition of asymptotic stability follows
directly from the Lyapunov theorem.

Theorem 2.8 The equilibrium point of the dynamic system (2.63) is globally
asymptotically stable if there exists a symmetric positive definite matrix P
such that for the state matrix Ai of each local model the following inequality
is satisfied

ATi P+PAi< 0, i = 1, 2, ..., r (2.64)

Proof. It can be conducted similarly as that of Theorem 2.1. We define a
scalar function

V (x(t)) = xT (t)Px(t) (2.65)

where P is a symmetric positive definite matrix. The function (2.65) from
definition satisfies all prerequisites to be a Lyapunov function except for ne-
gativity of its derivative along trajectories of (2.63). The latter will be proven
now. Namely,

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)Pẋ(t)
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= xT (t)

[
r∑
i=1

w̃i(t)ATi P+
r∑
i=1

w̃i(t)PAi

]
x(t)

=
r∑
i=1

w̃i(t)xT (t)
[
ATi P+PAi

]
x(t)

Because

w̃i(t) ≥ 0 for every i = 1, 2, ..., r
r∑
i=1

w̃i(t) > 0

then V̇ (x(t)) < 0 for x(t) �= 0, if only (2.64) is satisfied. Thus, the function
V (x(t)) is a Lyapunov function for the nonlinear dynamic system (2.63). �
It was shown in [141] that a necessary condition for existence of a matrix

P satisfying (2.64) is that each of the sums Ai + Aj , i, j = 1, 2, ..., r (ac-
tually, each sum of matrices from among Ai, i = 1, 2, ..., r) is a matrix of
an asymptotically stable system (all its eigenvalues have negative real parts).
This results directly from addition of inequalities (2.64) for i = i and i = j.
Namely, if P is positive definite and (Ai + Aj)TP + P(Ai + Aj)< 0, then
Ai + Aj is an asymptotically stable matrix. Thus, finding that any of the
sums Ai +Aj is not such a matrix indicates non-existence of the matrix P
satisfying conditions of Theorem 2.8.
The existence of one common positive definite matrix P satisfying ine-

qualities (2.64) is a sufficient condition of stability. However, necessary and
sufficient conditions are as yet unknown. Conditions (2.64) are of global na-
ture, they do not take into account fuzzy structure of the system (location and
shapes of membership functions). That is why attempts were undertaken to
derive weaker conditions by the use of a more structured Lyapunov function.
The most natural construction would be the following

V (x(t)) = xT (t)P(x(t))x(t) = xT (t)[
r∑
i=1

w̃i(t)Pi]x(t) (2.66)

where Pi are symmetric positive definite matrices. This function has nice pro-
perties, it is continuous, differentiable and positive definite. Unfortunately, to
the best knowledge of the author the attempts to derive clear and reasonable
conditions assuring its derivative is negative along the trajectory of the sys-
tem (2.63) have not been successful. The reason is the dependence of P(x(t))
on x(t), which results in an additional term (stemming from the time deri-
vative of P(x(t))) in the expression for V̇ (x(t)), which makes it difficult to
obtain constructive conditions assuring this derivative is negative along the
system trajectories, see [23, 21, 10]. So far, the obtained conditions are either
not constructive enough (a priori assumption that a norm of the derivative of
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the state vector is appropriately bounded [21])), or are formulated in a too
complex form, of unclear usefulness at actual stage of knowledge [10]. There-
fore, they shall not be quoted here, referring an interested reader to the cited
papers.
A theoretically more successful, although leading to a constrained and

significantly more complex construction of the Lyapunov function, occurred
to be the approach using a piecewise-quadratic Lyapunov function of the form

V (x(t)) = xT (t)Plx(t), x(t) ∈ Sl, l = 1, ..., L (2.67)

where Sl, l = 1, ..., L constitute a partition of the process state-space into
non-overlapping subsets of constant activation of all fuzzy rules (each rule is
active or not within a subset) – called constant activation cells and constructed
precisely in the same way as defined and explained in Section 2.2.1 for a
discrete-time case.
However, the difficulty in a design of the function (2.67) as a Lyapunov

function is the requirement of continuity when crossing boundaries of neigh-
boring cells – the matrices Pl should be constructed in a way assuring this
continuity. In [60] a design of such a continuous function was proposed, based
on structuring matrices Pl as follows

Pl = FTl TFl, l = 1, ..., L (2.68)

whereT is a symmetric matrix and matrices Fl satisfy the following conditions

Flx = Fmx for x ∈ Sl ∩ Sm, l,m ∈ L (2.69)

In [60], see also [116], a way of construction of the matrices Fl for the case
of trapezoidal membership functions was given, where the matrices are fully
determined by the shape (by the corner points) of the membership functions.
The stability of the autonomous fuzzy system

ẋ(t) =
∑
i∈K(l)

w̃i(t)[Aix(t)], x(t) ∈ S(l), l ∈ L (2.70)

can then be proven provided a matrix T can be found such that matrices
(2.68) are positive definite and the condition

ATi Pl +PlAi< 0, i ∈ K(l), l = 1, ..., L (2.71)

holds, where K(l) denotes a set containing indexes of all fuzzy rules with
nonzero activation levels within Sl, l = 1, ..., L. For a detailed design and
analysis the reader is referred to [60], as the design is difficult, leading to large
sets of linear matrix inequalities (in fact, condition (2.71) in an augmented,
more complex but slightly weakened form was there formulated). Moreover, a
practical importance of the discussed stability conditions and their relation to
the global result given by Theorem 2.8 seems to be not sufficiently understood
yet (note that a global matrix T is to be designed as well).
In [22] a completely different formulation of sufficient stability conditions

for a dynamic system (2.63) was given.
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Theorem 2.9 The equilibrium point of a fuzzy dynamic system (2.63) is glo-
bally asymptotically stable if

λmax(Ai +ATi ) < 0, i = 1, 2, ..., r (2.72)

where λmax(Ai+ATi ) denotes the maximal eigenvalue of a symmetric matrix
Ai +ATi . �
The above theorem is quoted here without proof (see. [22]), as the given
stability condition (2.72), although of a quite different nature than the one
from Theorem 2.8 and formulated in terms of local matrices, is difficult to
interpret and generally turns out to be very conservative, thus of not much
use.
For each local linear dynamic model from the rule consequents (2.61), i.e.,

for each sub-domain of a TS fuzzy model, a linear state-feedback controller
can be designed, using a classical method. This way the rules of a TS fuzzy
controller are obtained, in the form

Rjc : IF x1(t) is A
j
1 and x2(t) is A

j
2 and · · · and xnx(t) is Ajnx

THEN uj(t) = −Fjx(t) (2.73)

where Fi are matrices of state-feedback coefficients, j = 1, 2, ..., r. A nonlinear
TS fuzzy controller is described by

u(t) = −
r∑
j=1

w̃j(t)Fjx(t) (2.74)

where normalized levels of rule activation are the same as in the process model
(2.61) used for the design of the controller.
To represent a process in the closed-loop control system, it is generally

possible to use a TS fuzzy model different than the one used for the design
of the fuzzy controller, i.e., with a different number and/or shape of the rules
(analogously as it was discussed in Section 2.2.1). The number of rules of
this model is denoted by ro, and their activation levels by wio(k), i = 1, ..., ro.
Substituting now the description of the controller (2.74) into the fuzzy process
model (2.62) – but with ro rules with activation levels wio(k) – we obtain a
formula describing the closed-loop control system

ẋ(t) =

∑ro
i=1

∑r
j=1 w

i
o(t)w

j(t)(Ai −BiFj)x(t)∑ro
l=1

∑r
p=1 w

l
o(t)wp(t)

=
ro∑
i=1

r∑
j=1

w̃io(t)w̃
j(t)(Ai −BiFj)x(t) (2.75)

Of course, if a model used to represent the process in the closed-loop control
system is different than the model (2.61)-(2.62) which was used for the design
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of the controller, then its matrices are, generally, also different. However, in
the control system description (2.75) only the model with matrices Ai and Bi
representing the process in the closed loop occurs.
In order to examine stability of a dynamic system described by (2.75)

it is possible to directly apply Theorem 2.8 or Theorem 2.9, only matrices
Ai − BiFj , i = 1, ..., ro, j = 1, ..., r instead of the matrices Ai, i = 1, ..., r
must be considered. However, if the number of rules and its antecedents used
to describe a process in the closed-loop control system are the same as in the
fuzzy description of the controller (thus ro = r and wio(k) = w

i(k)), then
(2.75) can be simplified – in an analogous way as it was done in Section 2.2.1
with the formula (2.25) for systems with discrete time. Namely, applying equa-
lities wi(k)wj(k) = wj(k)wi(k), i, j = 1, 2, ..., r, (2.75) can be transformed to
the form

ẋ(t) =
r∑
i=1

w̃i(t)w̃i(t)(Ai −BiFi)x(t) + 2
r∑

i,j=1,i<j

w̃i(t)w̃j(t)Dijx(t) (2.76)

where

Dij =
1
2
[(Ai −BiFj) + (Aj −BjFi)], i < j, i, j = 1, 2, ..., r (2.77)

Sufficient stability conditions can now be formulated in the following form,
see [132].

Theorem 2.10 Let the maximum number of rules activated simultaneously
in the control system (2.76) described by the rules of the process model (2.61)
and controller (2.73) be no higher than s, 1 < s ≤ r. Then the equilibrium
point of this system is globally asymptotically stable, if there exist a positive de-
finite matrix P and a positive semi-definite matrix Q satisfying the following
conditions

(Ai −BiFi)TP+P(Ai −BiFi) + (s− 1)Q < 0, i = 1, 2, ..., r
DTijP+PDij−Q < 0, i < j, i, j = 1, 2, ..., r

except for pairs (i, j) for which always wi(t)wj(t) = 0. �
In particular, for Q = 0 we obtain a slightly sharper formulation of the sta-
bility conditions which can be used for initial stability verification. In [140]
a further, rather slight weakening of the assumptions of Theorem 2.10 was
obtained, using the same Lyapunov function V (x(t)) = xT (t)Px(t). The ob-
tained conditions in a form of a set of LMIs (Linear Matrix Inequalities) are
however much more complex.
It is also possible to try to use Theorem 2.9 for the case of a closed-loop

control system, then we obtain

Corollary 2.11 The equilibrium point of a dynamic system (2.76) is globally
asymptotically stable if
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λmax([Ai −BiFj ] + [Ai −BiFj ]T ) < 0, i, j = 1, 2, ..., r
except for pairs (i, j) for which always wi(t)wj(t) = 0. �
If it is necessary to reconstruct the state vector, it is possible to use a

nonlinear state observer in the form of a TS fuzzy system with a rule structure
and antecedents identical to those of the process model and the controller,
but with functional consequents of the rules which are classical state observer
equations, see [132].

Example 2.7
The task of stabilization of an inverted pendulum attached to a cart, presented
in Fig. 2.27, will be considered. Equations describing process dynamics are as
follows (see e.g., [106, 141])

ẋ1 = x2 (2.78a)

ẋ2 =
g sinx1 − aml(x2)2 sin(2x1)/2− a cos(x1)u

4l/3− aml cos2 x1 (2.78b)

where x1 denotes the angle between actual position of the pendulum arm and
vertical direction (0 [rad] corresponds to the vertical position of the pendu-
lum), hence ẋ1 = x2 denotes angular velocity. Masses of the pendulum and the
cart are denoted byM andm, respectively, 2l is its length and a = 1/(M+m).
A force imposed on the cart is the control variable u, g = 9.81 [m/sec2] is the
gravity acceleration. The following numerical values are assumed: m = 2 [kg ],
M = 8 [kg ], 2l = 1 [m] (as in [150, 141], where the control of the presented
process is also investigated).
It is known that stabilization of the pendulum in the vertical position by a

linear controller works correctly for a limited range of angular deviations. We
shall design a simple TS fuzzy controller consisting of only two rules, operating
more efficiently and for a wider range of deviations. The first operating region
will be around the zero position, denoted by X1 and defined by a two-sided
sigmoidal membership function in the following form

Fig. 2.27. Inverted pendulum on a cart
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sigmf1(x) =
1

1 + exp[−15(x1 − π/8)] −
1

1 + exp[−15(x1 + π/8)] (2.79)

and the second region will be around the positions x1 = ±π/4, denoted by
X2 and defined by the membership function

sigmf2(x) = 1− sigmf1(x) (2.80)

In order to design a fuzzy controller we shall make an approximation of the
nonlinear description (2.78a)-(2.78b) by a TS fuzzy model with the rules

R1p : IF x1(t) is X1 THEN ẋ1(t) = A1x(t) +B1u(t) (2.81a)

R2p : IF x1(t) is X2 THEN ẋ2(t) = A2x(t) +B2u(t) (2.81b)

where matrices Ai and Bi will now be designed.
First linear model will be designed for the first region around the equili-

brium point [0 0]. Performing a standard linearization we obtain

A1 =
[

0 1
g

4l/3−aml 0

]
=
[
0 1

17.3118 0

]
B1 =

[
0
−a

4l/3−aml

]
=
[
0

−0.1765
]

However, performing a standard linearization (based on Taylor series ex-
pansion) of the original nonlinear model (2.78a)-(2.78b) at a non-zero point
[π/4, 0], we would obtain an affine model, not a linear one which is used for
construction of a local state-feedback matrix. A possible solution is to use a
slightly different way of linearization, as proposed in [141]. We shall proceed
along these lines, using the general structure of our nonlinear model, namely

ẋ(t) = f(x(t)) +G(x(t))u(t)

It is required that the linear model ẋ(t) = A2x(t) + B2u(t) approximates a
nonlinear description, in the vicinity of the point x0 = [π/4 0], in such a way
that

f(x) +G(x)u ≈ A2x+B2u
and

f(x0) +G(x0)u = A2x0 +B2u, u ∈ R

It follows directly from these conditions that

B2= G(x0)

Thus, what remains to be fulfilled is

f(x) ≈ A2x and f(x0) = A2x0
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Let us denote by a2j rows of the matrices A2, j = 1, 2. It was shown in [141]
that to satisfy the conditions formulated above the rows a2j should result
from the solution of the following optimization problem

min
a2j
{0.5‖∇fj(x0)− a2j‖22}

subj. to: aT2jx0 = fj(x0)

where f = [f1 f2]T . An analytical solution of the formulated quadratic opti-
mization problem is given by the formula

a2j = ∇fj(x0) + fj(x0)− x
T
0∇fj(x0)

‖x0‖2 x0, x0 �= 0

Using the above reasoning we obtain the following matrices A2 and B2:

A2 =

[
0 1

4g sin(π/4)
π[4l/3−aml cos2(π/4)] 0

]
=
[
0 1

14.3223 0

]

B2 =

[
0

−a cos(π/4)
4l/3−aml cos2(π/4)

]
=
[
0

−0.1147
]

A TS fuzzy controller will be described by the rules

R1c : IF x1(t) is X1 THEN u1(t) = −F1x(t)
R2c : IF x1(t) is X2 THEN u2(t) = −F2x(t)

and the final inference formula

u(t) = w1(t)u1(t) + w2(t)u2(t)

where w1(t) and w2(t) are activation levels of the rules (let us note that
it follows from the construction of membership functions (2.79) and (2.80)
that w1(t) + w2(t) = 1). Matrices F1 and F2 will be obtained in a standard
way, assuming appropriate placement of eigenvalues of matrices Ai − BiFi,
i = 1, 2. If we require that for both linear models these values should be −2
and −2.5, then using the command place from the Control Systems Toolbox
of the MATLAB� package, we obtain

F1 = [−126.4125 − 25.4958]
F2 = [−168.4595 − 39.2328]

For simulations of the closed-loop control system the original nonlinear
process model (2.78a)-(2.78b) was used and the designed TS fuzzy controller,
which generated the control signal according to

u(t) = −w1(t)F1 x(t)− w2(t)F2 x(t)
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Selected trajectories of state variables x(t) for initial conditions x1(0) equal to
0.25, 0.5 and 1.0 [rad] and x2(0) = 0 [rad/sec] are presented in Fig. 2.28. For a
comparison, Fig. 2.29 presents trajectories in the control system with the fuzzy
controller and a linear controller designed for the first area (u(t) = −F1x(t)),
for initial state x1(0) = 0.5, x2(0) = 0. Generally, the further the pendulum
position from a vertical one the faster the operation of the nonlinear fuzzy
controller. Moreover, it regulates the pendulum to a vertical position from a
wider range of initial states. It still operates starting from x1(0) = 1.0, while
the linear controller is already unstable for x1(0) = 0.85.
In order to check the quality of fuzzy modeling of the considered strongly

nonlinear process, simulations were also conducted for the control system
with the process represented by the TS fuzzy model given by (2.81a)-(2.81b).
Trajectories obtained in this control system are shown by dashed lines in
Fig. 2.30, where trajectories corresponding to the control system with the
original nonlinear process are also shown (solid lines). In the range of smaller
angular deviations the coincidence of these two types of trajectories is very
good (the trajectories for x1(0) = 0.25 are almost undistinguishable).
The above analysis is interesting since we can apply theoretical stability

criteria when both the process and the controller are described by fuzzy models
in the control system loop. Applying Theorem 2.10 with Q = 0, it can be
concluded that the sufficient stability condition is satisfied, with the matrix

Fig. 2.28. Trajectories in the control system with the TS fuzzy controller, for various
initial conditions
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Fig. 2.29. Trajectories in the control system with the TS fuzzy controller (solid
line) and with the linear controller (dashed line)

Fig. 2.30. Trajectories in control systems with the TS fuzzy controller and the
original nonlinear process model (solid lines), and with the TS fuzzy process model
(dashed lines)
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P =
[
1.2529 0.1025
0.1025 0.1461

]
It was also investigated that the control system is stable with different (pertur-
bed) state-feedback matrices Fi, corresponding to eigenvalues of the matrices
Ai −BiFi from the range −1 to −4.
If credibility of this sort of analysis should be increased, it would be ne-

cessary to construct a more precise TS fuzzy model, with a larger number of
rules.
Applying Corollary 2.11 to the stability analysis of the considered control

system does not lead to a constructive result, unfortunately – the matrices
inspected have positive eigenvalues. This confirms the author’s opinion about
a conservative character of assumptions of Theorem 2.9 and about limited
and unclear, so far, range of usefulness of this theorem. �

2.3.2 Continuous TS Fuzzy Output-feedback Controllers

In practice of industrial process control the most important role is played
by controllers with feedback from process outputs and with settings based
on an approximate process model, as a state vector is usually not available
for current measurements and we rarely have a precise model of the process
dynamics at our disposal. Especially, in direct control loops PID controllers are
still dominant. As mentioned in the introduction to this chapter, in situations
of frequent changes of operating points and significant nonlinearities, the PID
linear controllers do not always ensure appropriate quality of the control.
One of the most effective solutions then is to apply a TS fuzzy control with
feedback from measured process outputs. In Section 2.2.2 problems of the
design and analysis of discrete-time TS fuzzy output-feedback controllers were
presented. In this section we shall deal with continuous TS fuzzy output-
feedback controllers, designed for a continuous-time process description. The
obtained continuous control algorithm is then transformed into a discrete one
by one of the emulation methods and implemented in a digital controller,
with the sampling period sufficiently small in relation to the dynamics of the
controlled process.
The considerations will be limited to the case of a PID controller which is

the most important one in practice. The methodology of the design will be,
however, of a general type, applicable to any linear dynamic control algorithm.
The basic question when starting a design of a continuous TS fuzzy con-

troller, analogously as it was in the case of a discrete controller, is the choice
of variables for antecedents of the controller rules and a design of fuzzy sets
for these variables. That is, a partitioning of domains of these variables into
mutually overlapping fuzzy sets defining altogether overlapping sub-domains
(multivariable fuzzy sets) of the whole process domain. This should be done
in such a way that in each of these sub-domains the process can be controlled
by an appropriately selected linear controller, designed for an operating point
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central for the sub-domain. Process operating points are related to certain
values of process states, therefore the variables occurring in the rule ante-
cedents of a TS fuzzy model will be, first of all, state variables describing
nonlinear behavior of the process. These will be mainly the controlled varia-
ble and its derivatives. The variables of the rule antecedents will be denoted
by x1(t), ..., xn(t), and fuzzy sets describing the partitioning of the domain of
each of them will be denoted by Aij , j = 1, ..., nx.
Having defined the fuzzy sub-domains of the process operational space

and its central points (process operating points), in each of them a local
continuous PID controller is tuned, e.g., using one of the known, standard
tuning methods. In this way a continuous TS fuzzy PID (FPID) controller
has been obtained, defined by the rules

Rjc : IF x1(t) is A
j
1 and x2(t) is A

j
2 and · · · and xnx(t) is Ajnx

THEN uj(t) = kjP

[
e(t) +

1

T jI

∫ t
0
e(τ)dτ + T jD

de(t)
dt

]
(2.82)

where j = 1, . . . , r indexes rules (and at the same time local operating sub-
domains), e(t) = ysp(t)− y(t) is the control error at time t, whereas settings
of the local PID controllers: gain kjP , integral time constant T

j
I and derivative

time constant T jD are coefficients of the functions of the rule consequents.
The output signal of the controller takes a standard form, for TS fuzzy

structures,

u(t) =

∑r
j=1 w

j(t)uj(t)∑r
l=1 w

l(t)
=

r∑
j=1

w̃j(t)uj(t) (2.83)

where wj(t) are activation levels of individual rules (2.82) at time t,

wj(t) =
nx∏
p=1

µAjp(xp(t)) (2.84)

and w̃j(t) are their normalized values.
Implementing (2.82) and (2.83) in a simulation environment, such as

Simulink�, we obtain a realization of a continuous TS fuzzy PID contro-
ller. In order to perform simulations of the entire system it is also necessary
to have a nonlinear model of the dynamic process itself, formulated in a form
accepted by the employed simulation environment. If we want to support the
simulation experiments by a theoretical analysis of stability of the control sys-
tem, then we currently have methods of such an analysis using process and
controller models formulated in the form of state equations. State equations
describe the dynamics directly in the time domain, a domain which is natu-
ral for formulation of nonlinear fuzzy models and for analysis of stability of
their equilibrium points. The basic tool for this analysis is the Lyapunov met-
hod, see e.g., [61, 148, 132, 141, 21, 140], but almost all publications concern
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systems with controllers with linear state-feedback (only in [23] an output-
feedback controller is considered). In the sequel, we shall present an analysis
of stability of a continuous control system with a TS fuzzy controller, limiting
the derivation of appropriate equations to the case of a PI type controller.
To describe the dynamics of a closed-loop control system it is necessary to

have a TS fuzzy process model, using a model with the same rule antecedents
as in controller rules (2.82) will simplify the analysis. Obviously, it can also
be a fuzzy model with a different number of rules and different form of their
antecedents, in general. Similarly as in the description of control systems in
previous sections, we shall denote the number of process model rules by ro �= r.
A functional consequent of each rule is a local linear process model given in
the form of the following state equations

ẋi(t) = Aix(t) +Biu(t)

yi(t) = Cxi(t)

i = 1, 2, ..., ro. Denoting normalized activation levels of the process model
rules by w̃io(k) we obtain equations of the entire nonlinear process model in
the form

ẋ(t) =
ro∑
i=1

w̃io(t)[Aix(t) +Biu(t)] (2.85)

y(t) = Cx(t) (2.86)

We shall add to these equations dynamics of the integrator of the control error

q̇(t) = ysp −Cx(t)

The rules of a PI controller have the following form

Rjc : IF x1(t) is A
j
1 and x2(t) is A

j
2 and · · · and xnx(t) is Ajnx

THEN uj(t) = kjP e(t) +
kjP
T jI
q(t) (2.87)

j = 1, 2, ..., r, where e(t) = ysp(t)−Cx(t). The controller output is given by

u(t) =
r∑
j=1

w̃j(t)[kjP e(t) +
kjP
T jI
q(t)]

= −
r∑
j=1

w̃j(t)kjPCx(t) +
r∑
j=1

w̃j(t)
kjP
T jI
q(t) +

r∑
j=1

w̃j(t)kjP y
sp(t) (2.88)

Substituting this equation into (2.85) we obtain
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ẋ(t) =
ro∑
i=1

w̃io(t)

⎧⎨⎩[Ai −Bi
r∑
j=1

w̃j(t)kjPC]x(t)

+Bi
r∑
j=1

w̃j(t)
kjP
T jI
q(t) +Bi

r∑
j=1

w̃j(t)kjP y
sp(t)

⎫⎬⎭
=
ro∑
i=1

r∑
j=1

w̃io(t)w̃
j(t)

{
[Ai −BikjPC]x(t) +Bi

kjP
T jI
q(t) +Bik

j
P y
sp(t)

}

If we introduce now the following extended state vector

v(t) = [x(t)T q(t)]T (2.89)

then, using the equalities
∑ro
i=1 w̃

i
o(t) =

∑r
j=1 w̃

j(t) = 1, we can write equa-
tions of the dynamics of the closed-loop control system in the following form

v̇(t) =
ro∑
i=1

r∑
j=1

w̃io(t)w̃
j(t)

{[
Ai −BikjPC Bi

kjP
T jI−C 0

]
v(t) +

[
Bik

j
P

1

]
ysp(t)

}

=
ro∑
i=1

r∑
j=1

w̃io(t)w̃
j(t)

{
[Ãi −Gij ]v(t)

}
+
ro∑
i=1

r∑
j=1

w̃io(t)w̃
j(t)B̃ijysp(t)

where

Ãi=
[
Ai 0
−C 0

]
, Gij =

[
Bik

j
PC −Bi k

j
P

T jI
0 0

]
, B̃ij =

[
Bik

j
P

1

]
Without loos of generality we can assume that ysp(t) = 0. Then equations of
the dynamics of our system take the following form

v̇(t) =
ro∑
i=1

r∑
j=1

w̃io(t)w̃
j(t)[Ãi −Gij ]v(t) (2.90)

which is identical to the dynamics of the state-feedback control system con-
sidered in the previous section described by (2.75), where matrices Ai and
BiFj in (2.75) correspond to matrices Ãi and Gij in (2.90). To examine sta-
bility of the dynamic system described by (2.90) it is possible to apply directly
Theorem 2.8 or Theorem 2.9, only matrices Ãi−Gij , i = 1, ..., ro, j = 1, ..., r
should be considered instead of matrices Ai, i = 1, ..., r.
Moreover, if we assume that the number and antecedents of the rules in

the process model and in the controller are the same, then defining the matrix

D̃ij =
1
2
[(Ãi −Gij) + (Ãj −Gji)], i < j, i, j = 1, 2, ..., r (2.91)
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analogous to the matrix Dij (2.77), we obtain (2.90) in a transformed form

v̇(t) =
r∑
i=1

wi(t)wi(t)(Ãi −Gii)v(t) + 2
r∑

i,j=1,i<j

wi(t)wj(t)D̃ijv(t) (2.92)

corresponding to (2.76). Thus, to analyze stability of the dynamic system
(2.92) it is possible to apply directly Theorem 2.10 (also Corollary 2.11), only
matrices Ai, BiFi and Dij occurring there should be replaced with matrices
Ãi, Gii and D̃ij .
The method of an analysis of a continuous control system with an output-

feedback controller was presented above by way of the example of a PI contro-
ller. In a similar way, we can treat another cases with linear dynamic output-
feedback controllers.
Let us note that due to linearity of the rule consequents (2.82) the depen-

dence (2.83) can be written in the following form:

u(t) =
r∑
j=1

w̃j(t) · kjP
[
e(t) +

1

T jI

∫ t
0
e(τ)dτ + T jD

de(t)
dt

]

=
r∑
j=1

w̃j(t)kjP · e(t) +
r∑
j=1

w̃j(t)
kjP
T jI
·
∫ t
0
e(τ)dτ +

r∑
j=1

w̃j(t)kjPT
j
D ·
de(t)
dt

(2.93)

Therefore, the considered fuzzy controller can be treated as a nonlinear PID
controller, with the parameters varying in a nonlinear way, continuously adap-
ting to the changes in the process operating point, because w̃j(t) = w̃j(x(t)),
see (2.84). This feature, together with the relative simplicity and clarity of the
design method, has been decisive in the success of TS fuzzy controllers and
especially of TS fuzzy PID (TS-FPID) controllers. The above interpretation
indicates also that in the case of an identical structure of linear consequents in
all rules of a TS fuzzy controller, as in the considered case of the TS-FPID con-
troller, on-line changing its settings can be treated as applying a kind of gain
scheduling technique, see e.g., [2]. However, it is performed in a completely
different way: not by using a nonlinear function approximating an inverse of
the process nonlinearity, but by using a more general and simpler mechanism
of fuzzy reasoning.

Example 2.8
A nonlinear control of pH value of a mixture in a continuous-flow reactor
presented in Fig. 2.31 will be considered.
Dynamics of the reactor is described by the following equations:
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Fig. 2.31. Structure of pH and level control in a continuous-stirred tank reactor,
Example 2.8

dV ξ

dt
= F1C1 − (F1 + F2)ξ (2.94)

dV ψ

dt
= F2C2 − (F1 + F2)ψ (2.95)

dV

dt
= F1 + F2 − F (2.96)

[
H+

]3
+ (Ka + ψ)

[
H+

]2
+ (Ka (ψ − ξ)−Kw)

[
H+

]−KaKw = 0 (2.97)
where

ξ ∼ [HAC] + [AC−],
ψ ∼ [Na+],
pH = − log10 [H+],
C1 = 0.32 [moll ] – acid concentration in the inflow F1,

C2 = 0.05005 [moll ] – acid concentration in the inflow F2,

V = 1000 [l] – volume of the mixture,

Ka i Kw – equilibrium constants of acid and water,

Ka = 1.8× 10−5, Kw = 1.0× 10−14,
and the following nominal values of the inflow rates were assumed:

F1(0) = 81 [ lmin ], F2(0) = 512 [
l
min ] .

There are two feedback control loops in the system, see Fig 2.31:

• Control of the volume V (level control), where the outflow rate F is the
manipulated variable,

• Concentration of pH, where the inflow rate F1 is the manipulated variable,
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Fig. 2.32. Static dependence of pH versus F1

Fig. 2.33. Membership functions of the fuzzy pH controller

while the inflow rate F2 is a disturbance (uncontrolled process input).
The first feedback control loop is standard and a typical linear controller

easily ensures a sufficient control quality. However, controlling the pH value
turns out to be very difficult, which results from a strongly nonlinear static de-
pendence of pH concentration versus the inflow F1, as it is shown in Fig. 2.32.
Moreover, the operating point of interest (pH = 8.7) is located in the area of
strongest nonlinearity, which makes it impossible to select one PI controller
for the entire domain of the control. A controller operating correctly in the
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area of high process gain (pH = 7.5 ÷ 10) operates unacceptably slowly in
both areas of smaller gain, i.e., for small and large values of pH . On the other
hand, a controller operating better (faster) in these areas becomes unstable
in the middle area of high gain. Therefore, a nonlinear TS fuzzy controller
was designed. The only variable present in the antecedents of the controller
rules is the pH value. A partition of the pH domain into three fuzzy sets was
assumed, with sigmoidal membership functions presented in Fig. 2.33. The
PI controllers were designed for each of the fuzzy sets, with settings given in
Table 2.1.

Table 2.1. Parameters of local PI controllers

controllerj kjp T jI

j = 1 -20 1.57
j = 2 -1 1.7
j = 3 -20.2 1.55

The controller algorithm was applied in the form (2.93), i.e.,

Fig. 2.34. Output trajectory in the pH control system with the TS fuzzy PI con-
troller
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u(t) =
3∑
j=1

w̃j(t)kjP · e(t) +
3∑
j=1

w̃j(t)
kjP
T jI
·
∫ t
0
e(τ)dτ +

3∑
j=1

w̃j(t)kjPT
j
D ·
de(t)
dt

where
e(t) = pH(t)sp − pH(t)

and w̃j(t) are normalized activation levels of the rules with antecedents in the
form : “pH(t) is pHj”, where pHj , j = 1, 2, 3 are linguistic values “small”,
“medium” and “high” of the linguistic variable “pH value”, corresponding to
three fuzzy sets described by the membership functions shown in Fig. 2.33.
A chosen result of the control system simulation, corresponding to step

changes of the set-point and of the disturbance (inflow rate F2) is presented
in Fig. 2.34. This is the result of a simulation with a continuous process and
a discretized controller, with the sampling period Tp = 0.02min. �

2.4 Feedforward Compensation, Automatic Tuning

Measured Disturbance and Feedforward Compensation

A designer of control systems should always obey the well-known general prin-
ciple that the influence of measured disturbances, i.e., uncontrolled but measu-
red inputs, should be compensated in a feedforward structure – if only influence
of disturbances on the controlled variables is significant and dynamics of the
process enables effective realization of the feedforward path (roughly, influence
of the manipulated input on the controlled output should not be slower then
influence of the disturbance). Feedforward control is a control in an open-loop
structure, therefore it is faster and more effective than in the closed-loop struc-
ture provided its mentioned applicability conditions are satisfied. Then, for
control in the feedback loop, there remains reduction of influences of unmea-
sured disturbances and errors caused by inaccuracies in the process models
used for the design of the feedback controller and feedforward compensator.
The feedback control structure with measured disturbance compensation in
the feedforward path is presented in Fig. 2.35.
The feedforward compensation of disturbances operates independently of

the closed-loop feedback control, it does not influence the closed-loop stability
conditions. The control signal u consists of a feedback controller signal uc and
feedforward compensator signal uf . The design of a compensator algorithm
is independent of the design of a feedback controller algorithm. Nonlinear TS
fuzzy controllers considered in this chapter, both in their discrete and conti-
nuous versions, generate the control signal uc. Control structures with these
controllers can be easily supplemented by modules realizing compensation of
the measured disturbances, as shown in Fig. 2.35. The design of a compensator
algorithm is based on generation of a signal uf compensating the influence
of the disturbance z on the process output y. If G and Gz denote transfer
functions of the control path and of the disturbance path, respectively, i.e.,
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Fig. 2.35. Feedback-feedforward control structure with measured disturbance com-
pensation in the feedforward path

y = Gu+Gzz

then the output signal of an ideal compensator should be equal to

uf = −G−1Gzz (2.98)

Certainly, a difficulty in a the design of a compensator results from the fact
that the inverse of the transfer function G should be stable and the transfer
function of the compensator must be physically implementable. Most impor-
tant condition for a successful compensation is that time delay in the control
path should not exceed the one in the disturbance path and that the transfer
function of the control path must not have unstable zeros, see e.g., [45, 3, 52].
Moreover, accuracy of the process model used for compensator design is im-
portant for quality of compensation – but this aspect is not critical for the
structure from Fig. 2.35, as inaccuracies of compensation can be reduced or
eliminated in the feedback loop.
To design a compensator it is necessary to have a process model. In this

chapter nonlinear processes described by TS fuzzy models were considered.
In the presence of measured disturbances significantly influencing the process
behavior, the TS fuzzy models will also depend on these variables. The dis-
turbances will therefore be present in the formulations of rule antecedents
and consequents. Let us consider a case of discrete-time models described
by difference equations. Denoting the value of a disturbance measured at k-th
sampling instant by z(k), the rules of a TS fuzzy model used for the design of a
fuzzy controller with disturbance compensation can be written in the following
very general form (compare with (2.36)):

Rip : IF y(k) is A
i
0 and y(k − 1) is Ai1 and · · · and y(k − nR) is AinR

and z(k) is Zi0 and z(k − 1) is Zi1 and · · · and z(k − pR) is ZipR
and u(k − 1) is Bi1 and · · · and u(k −mR) is BimR



2.4 Feedforward Compensation, Automatic Tuning 105

THEN yi(k + 1) = ai1y(k) + a
i
2y(k − 1) + · · ·+ ainAy(k − nA + 1)+

+ bi0u(k) + b
i
1u(k − 1) + · · ·+ bimBu(k −mB)+

+ f i0z(k) + f
i
1z(k − 1) + · · ·+ f ipF z(k − pF ) (2.99)

where i = 1, . . . , r indexes the rules (and corresponding fuzzy sets) in the
domain of a TS model, y(k), z(k) and u(k) are values of output, disturbance
and control input at k-th sampling instant, Aij ∈ Yj , Bij ∈ Uj , Z

i
j ∈ Zj , and

aij , b
i
j and f

i
j are coefficients of functions in the rule consequents. Elements of

each set Yj = {Yj1, ..., Yjryj} are fuzzy sets covering the domain of the variable
y(k − j), j = 0, . . . , nR, analogously Uj = {Uj1, ..., Ujruj} for u(k − j), j =
1, . . . ,mR and Zj = {Zj1, ..., Zjrzj} (see comments after (2.36)). The form
of the rule antecedent (2.99) looks rather complicated due to the assumed
generality. However, in many applications there are only a few conditions
there, in particular delayed variables are often not present, if there are process
outputs y then there are no process inputs u, etc.
The output of a fuzzy model is calculated according to the general formula

y(k + 1) =
∑r
i=1[w

i(k)yi(k + 1)]∑r
l=1 w

l(k)
(2.100)

wherte wi(k) are activation levels of individual rules (2.99) at sampling instant
k,

wi(k) =
nR∏
j=0

µAij (y(k − j))
pR∏
j=0

µZij (z(k − j))
mR∏
j=1

µBij (u(k − j)) (2.101)

For each linear model in the rule consequents (2.99) both a feedback con-
troller algorithm as well as a feedforward compensator algorithm are designed.
Design of a controller was considered in Section 2.2.2 – the only difference cau-
sed by the presence of a measured disturbance can be an enlarged number of
rules, due to a nonlinear dependence on an additional disturbance variable.
Every local compensator algorithm is designed according to the general law of
feedforward compensation, shortly recalled in (2.98). For the considered fuzzy
modeling method it will be in the form of a difference equation. This way, we
obtain the following rules of a discrete, nonlinear TS fuzzy compensator

Rif : IF y(k) is A
i
0 and y(k − 1) is Ai1 and · · · and y(k − nR) is AinR

and z(k) is Zi0 and z(k − 1) is Zi1 and · · · and z(k − pR) is ZipR
and u(k − 1) is Bi1 and · · · and u(k −mR) is BimR

THEN uif (k) = g
i
1uf (k − 1) + gi2uf (k − 2) + · · ·+ gimGuf (k −mG)+
+ hi0z(k) + h

i
1z(k − 1) + · · ·+ hipHz(k − pH) (2.102)
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where i = 1, . . . , r indexes rules, while gij and h
i
j are coefficients of functions

of the rule consequents describing local compensators. The nonlinear compen-
sator output signal assumes a standard form for TS fuzzy structures

uf (k) =
r∑
i=1

w̃i(k)uif (k) (2.103)

where w̃i(k) are normalized activation levels of the rules (2.102). Compensa-
tion of the disturbance by each of the r local compensators is linear, but due
to the fuzzy reasoning the entire TS fuzzy compensator defined by (2.102)
and (2.103) is of course nonlinear.

Automatic Tuning of a TS-FPID Controller

In modern industrial PID controllers it is now the standard to have a software
for automatic tuning (auto-tuning, self-tuning) installed, operating on the
basis of a certain, previously programmed active experiment, usually a relay
control phase, a pulse response or a multi-frequency response. By activating
this software option the user automatically obtains settings calculated by the
controller at the current operating point of the process, the user does not have
to know the algorithm or assumed process model used for doing that.
If one applies the mentioned self-tuning of linear controllers, then in the

first stage of the design of a TS fuzzy controller it will not be necessary to
have local process models needed for a design of the rule consequents of a
fuzzy controller. It will, however, be necessary to perform fuzzy partitioning
and allocate positions of operating points in appropriately chosen centers of
the obtained fuzzy sets (sub-domains). Then, self-tuning will be performed at
each of these points.
In a case of a confidence in the settings of the PID controllers obtained

by the automatic self-tuning procedure, sufficiently dense fuzzy partitioning
(in relation to the process nonlinearity) and confidence in the reliability of
the controller software implementing fuzzy reasoning, it is possible to test the
TS-FPID controller straight on a real application. Such a solution was imple-
mented in certain fuzzy controllers, e.g., it was the case in EFTRONIK XF
controller manufactured by PNEFAL company [114]. The user of this contro-
ller defines the number and position of operating points (up to ten), at each
of them a self-tuning is activated by the user and on the basis of obtained
parameters of local PID controllers a TS-FPID controller is created automa-
tically, in its final, discrete form. Certainly, an important design parameter is
also the controller sampling period.



3

Model-based Predictive Control

Model-based predictive control (MPC) is the only one among the so-called ad-
vanced control techniques (usually understood as techniques more advanced
than a standard PID control) which was tremendously successful in practical
applications in recent decades, exerting a great influence on directions of de-
velopment of industrial control systems as well as research in this area, see
e.g., [98, 1, 36, 94, 82, 115, 123, 11]. There are several reasons for this success.
Firstly, the MPC algorithms can directly take into account constraints on
both process inputs and outputs which often decide on the quality, effective-
ness and safety of production. Secondly, they generate process inputs taking
into account internal interactions within the process, due to the direct use of
a model. Thus, they can be applied to processes with difficult dynamics and
to multivariable control, even when numbers of manipulated and controlled
variables are uneven. Thirdly, the principle of operation of these algorithms
is comprehensible and relatively easy to explain to engineering and operator
staff, which is a very important aspect when introducing new techniques into
industrial practice.

3.1 The Principle of Predictive Control

The general principle of predictive control can be described as follows:
At each consecutive sampling instant k (i.e., at a continuous time kTp, where
Tp denotes the controller sampling period), k = 0, 1, ..., having:

• a dynamic process model together with an assumed model of disturbances
(uncontrolled process inputs) and models of constraints,

• measurements of current and past process outputs, together with past
values of control inputs (manipulated variables),

• known or assumed trajectories of set-points for the controlled variables
(controlled process outputs) for an assumed horizon of prediction,

the control inputs u(k) = u(k|k), u(k+1|k), . . . , u(k+Nu−1|k) are calculated,
assuming u(k + p|k) = u(k +Nu − 1|k) for p ≥ Nu, where Nu is the control
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horizon. The applied notation “u(k+ p|k)” means a prediction of the control
inputs for the future sampling instant k+ p, performed at the current instant
k. The control inputs are calculated in such a way as to minimize differences
between the predicted controlled outputs y(k + p|k) and the required refe-
rence values, the future set-points ysp(k + p|k), over the prediction horizon
N (p = 1, 2, ..., N). Minimization of differences is understood in the sense of
minimizing a selected criterion of control quality. Then, only the first element
of the calculated sequence of control inputs is applied to the process, i.e.,
the control input u(k) = u(k|k). At the next sampling instant (k + 1) there
occurs a new measurement of the process outputs and the whole procedure
is repeated, with the prediction horizon of the same length N , but shifted by
one step forward. Thus, the principle of a receding horizon is used, called also
the repetitive control principle, see e.g., [37]).
The principle of the predictive control, for the case of a SISO (single-

input single-output) process, is presented in Fig. 3.1, where the horizontal
axis represents the discrete time with k being a current sampling instant
at which a decision about the current process input signal u(k) = u(k|k)
is to be taken (with value constant over the whole sampling time interval
[kTp, (k+1)Tp) ). The variables which are needed for calculation of the input
value u(k) are presented as appropriate trajectories of the process control
input and controlled output. The figure presents two controlled output and
two control input trajectories and a trajectory of the set-point, in particular:

• A predicted controlled output trajectory y0(k+p|k), p = 1, 2, ..., N , corres-
ponding to the situation where the process input is kept constant over the
entire prediction horizon, with the value u(k − 1) calculated at the prece-
ding sampling instant, i.e., u(k+ p− 1) = u(k− 1) for each p = 1, 2, ..., N .
Trajectories corresponding to this case, of both the output and the input,
have been presented as dashed lines. The trajectory y0(k+ p|k) defined in
this way presents the future outputs as dependent on the previous inputs
only, we have no influence on this trajectory at a current sampling ins-
tant k. Therefore, it is often described as a free component of the predicted
output trajectory (in short: a free output trajectory).

• A predicted controlled output trajectory y(k+p|k) dependent both on past
and future control inputs, i.e., on past inputs up to the last one u(k − 1)
and future inputs u(k + p − 1|k), p = 1, 2, ..., N − 1 which are calculated
at a current sampling instant k. It is assumed that the control horizon Nu
(precisely: horizon of process control input variability) can be shorter than
the prediction horizon N, Nu ≤ N . The trajectories listed are presented
as continuous curves in Fig. 3.1. Thin fragments of the curves denote
predicted parts of the input and output trajectories, whereas thick parts
denote the output trajectory which has already been realized (measured)
and the input trajectory applied earlier together with the last element
being applied to the plant at the current sampling instant.
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Fig. 3.1. Illustration of the principle of predictive control

• A known or foreseen trajectory of the set-points for the controlled output
ysp = ysp(k + p|k), p = 1, 2, ..., N , presented as a thicker dashed line. The
set-point for the process output presented in Fig. 3.1 underwent a step
change at sampling instant k and then remains constant. Generally, it can
be varying over the prediction horizon.

A model of the process used for calculation of the future process control inputs
is usually only an approximation of reality. Further, there is uncertainty in the
uncontrolled inputs, which can be inaccurately measured or not measured at
all. Therefore, the output predictions usually differ from the (later) measured
values. This fact is depicted in Fig. 3.1 as an unmeasured disturbance d(k),
d(k) = y(k)−y(k|k−1), occurring at the process output at sampling instant k,



110 3 Model-based Predictive Control

where y(k|k−1) is the process output value predicted for the sampling instant
k at the preceding one, (k−1). The dependence of the trajectory of the process
output (evaluated at sampling instant k) on the currently measured value
y(k), and not on the value y(k|k − 1), means that a discrete output-feedback
is applied in the control system.
Determination of the control inputs for the present sampling instant k and

for the future instants k + p in the control horizon, p = 1, ..., N , is realized
in the predictive algorithms on the basis of a process model, by minimizing
a selected cost function describing the control quality over the prediction ho-
rizon. A prime component of this function is the cost of deviations of the
predicted outputs from the set-points, i.e., the cost of predicted control errors.
Moreover, it is also typical to include into the cost function penalties for con-
trol input changes. Considering the two mentioned components, the following
most commonly used quadratic cost function (objective function) of the predic-
tive control can be formulated and used for calculation of the optimal process
input trajectory over the control horizon:

J(k) =
N∑
p=N1

(ysp(k + p|k)− y(k + p|k))TΨ(p)(ysp(k + p|k)− y(k + p|k))

+
Nu−1∑
p=0

�u(k + p|k)TΛ(p)�u(k + p|k)

=
N∑
p=N1

‖ysp(k + p|k)− y(k + p|k)‖2Ψ(p) +
Nu−1∑
p=0

‖�u(k + p|k)‖2Λ(p)
(3.1)

where vectors ysp(k + p|k) and y(k + p|k) are of a dimensionality ny = dim y
(the number of the controlled outputs), while the vector of input increments
�u(k + p|k) is of a dimensionality nu = dimu.
In (3.1) the differences ysp(k+p|k)−y(k+p|k) between the set-points and

the predicted outputs are considered, starting from k + N1 until the end of
the prediction horizon N , where 1 ≤ N1 ≤ N. A value N1 > 1 is reasonable
if there is a delay in the process causing a lack of reaction of the outputs
at first N1 − 1 sampling instants, k + 1, ..., k + N1 − 1, to the change of the
control input at instant k. Of course, assuming N1 = 1 is not an error also
in the situation with a delay – only the first N1 − 1 components of the first
sum in the cost function (3.1) will then be unnecessarily calculated during the
optimization process, not being dependent on the calculated inputs. However,
sometimes in the literature N1 = 1 is assumed for uniformity of the notation,
which does not lead to loss of correctness, as it has just been mentioned. The
length of the control horizonNu must satisfy the constraints 0 < Nu ≤ N . It is
usually assumed that Nu < N , as this results in a decreased dimensionality of
the controller optimization problem, and thus leads to smaller computational
load.
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The matrix Ψ(p) is a matrix of weights enabling scaling of the influence of
different components of the error vector ysp(k + p|k)− y(k + p|k) in the cost
function, it is a diagonal matrix. If matrices Ψ(p) are different for different
values of p (i.e., for different future sampling instants), then there is also
a scaling over the prediction horizon. If scaling of the control errors is not
needed at all, then the simplest case is obtained, Ψ(p) = I, where I is a unity
matrix of a dimension ny × ny. The role of the matrix Λ(p) is, in turn, not
only to introduce a scaling of individual components of the vector of control
input moves, but first of all to introduce a scaling of the whole second sum
in (3.1) against the first one representing the predicted control errors. In the
simplest case without scaling over the prediction horizon as well as between
individual components of the vector of the input moves, we obtain Λ(p) = λI,
where I is a unity matrix of a dimension nu×nu. In a case when Ψ(p) = I and
Λ(p) = λI, the cost function (3.1) takes the following simpler and commonly
met form (see e.g., [123]):

J(k) =
N∑
p=N1

‖ysp(k + p|k)− y(k + p|k)‖2 + λ
Nu−1∑
p=0

‖�u(k + p|k)‖2 (3.2)

where the scalar λ ≥ 0 defines in fact a ratio of the weight attributed to dam-
ping of the input moves versus the (unity) weight attributed to a reduction of
the control errors. Let us emphasize that assuming λ = 0 is possible, but when
there are no constraints on values and rate of changes of the process inputs
this often leads to practically unacceptable controller properties, particularly
to huge input changes and insufficient robustness against modeling errors.
A different, additional mechanism of damping the input increments and

enforcing a desired, more calm trajectory of the outputs is to apply a reference
trajectory yref (k + p|k) in the cost function (3.1), in place of the trajectory
of the set-points ysp(k + p|k). The reference trajectory constitutes a certain
intermediate trajectory between the currently measured value of the controlled
outputs y(k) and a trajectory of the set-points. It will be discussed in more
detail in Section 3.6.2.
Among the values present in the cost function (3.1), or its simplified and

often sufficient form (3.2), there are (see also Fig. 3.1):

• known or directly forecasted vectors of the set-points for the controlled
variables ysp(k + p|k),

• process inputs increments �u(k+ p|k) which constitute decision variables
of the controller optimization task,

• predicted values of the controlled variables y(k + p|k) dependent on pre-
vious outputs and inputs and on actually calculated future input incre-
ments �u(k + p|k).
To calculate the values y(k+p|k) in the prediction horizon, p = N1, ...,N , it

is necessary to have a process model. Generally, this can be a nonlinear model.
So far, the MPC algorithms with linear process models have had the biggest
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importance. First of all, a range of direct applications of these algorithms is
fairly wide. Secondly, they constitute a basis of a construction of relatively
simple and efficient nonlinear algorithms with linearized models, as it will be
presented in further parts of this chapter.
In a linear case, applying the principle of superposition, it is possible to

present the trajectory of predicted outputs y(k+p|k) in the form of a sum of a
free trajectory y0(k+p|k) dependent only on the realized (past) process inputs
and a trajectory�y(k+p|k) dependent only on the decision variables (current
and future inputs u(k+p|k)). Thus, the trajectory �y(k+p|k), p = N1, ..., N
is called a forced output trajectory (precisely, it is a forced component of the
predicted output trajectory). Thus we have

y(k + p|k) = y0(k + p|k) +�y(k + p|k), p = N1, ..., N. (3.3)

The above partition is convenient, though not necessary for a realization of a
predictive control algorithm, because the values y0(k+p|k), as dependent only
on the past of the process, are calculated by the control algorithm at a current
sampling instant k only once, they remain then as fixed parameters in the
further optimization of the input changes. On the other hand, the increments
�y(k+p|k), as dependent on the current and future input changes�u(k+p|k),
are calculated many times in the process of the numerical optimization. In
fact, a model of a dependence of these increments on input changes is used,
having the functional form of the dependence of �y(k + p|k) on �u(k +
j|k), p = N1, ..., N, j = 0, 1, ...,min{p,Nu} − 1. Considering the presented
decomposition of the predicted trajectory of the outputs, the cost function
(3.1) can be rewritten in the following form:

J(k) =
N∑
p=N1

∥∥[ysp(k + p|k)− y0(k + p|k)]−�y(k + p|k)∥∥2Ψ(p)+
+
Nu−1∑
p=0

‖�u(k + p|k)‖2Λ(p) (3.4)

and the cost function (3.2) in the form

J(k) =
N∑
p=N1

∥∥[ysp(k + p|k)− y0(k + p|k)]−�y(k + p|k)∥∥2+
+ λ

Nu−1∑
p=0

‖�u(k + p|k)‖2 (3.5)

Let us denote linear models, i.e., matrices (since a linear mapping between
two finite dimensional vector spaces can always be presented as a matrix), used
for the prediction of the elements �y(k+p|k) of the forced output trajectory,
by Mp,
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�y(k + p|k) =Mp[�u(k|k)T �u(k + 1|k)T · · · �u(k + p− 1|k)T ]T ,
p = 1, ...,Nu

�y(k + p|k) =Mp[�u(k|k)T �u(k + 1|k)T · · · �u(k +Nu − 1|k)T ]T ,
p = Nu + 1, ..., N (3.6)

Due to linearity of the models (3.6), the minimization of (3.4), or of (3.5),
is a minimization of a convex quadratic function, strictly convex if Λ(p) > 0
and Ψ(p) ≥ 0 (e.g., if λ > 0 when Λ(p)=λI and Ψ(p)= I). Therefore, this is
a problem which has a unique, global minimum. Moreover, this problem can
easily be solved analytically if there are no additional inequality constraints –
or can be relatively fast and reliably (most important for on-line applications)
computed numerically when such constraints occur.
If, however, a nonlinear process model is used for the prediction of the

controlled outputs y(k + p|k), p = N1, ..., N , then the situation is more diffi-
cult. The free trajectory y0(k + p|k) can also be computed relatively easy, by
assuming zero increments of the current and future inputs to the nonlinear
process model. However, in general it is not possible to decompose a nonli-
near model into independent components generating a free output trajectory
and a forced output trajectory. Therefore, the nonlinear dependence of the
predicted output trajectory y(k+ p|k) on the decision variables �u(k+ p|k),
p = 0, 1, ..., Nu − 1, is a crucial problem. Nonlinearity of this dependence
implies that the minimization of the controller cost function becomes a non-
linear, non-convex optimization problem, in general. For such problems it is
generally not possible to find an analytical solution even in cases without
additional inequality constraints. Moreover, the process of numerical optimi-
zation is more difficult and much less effective – it is common to encounter
local minima, it is difficult to estimate the time needed for the optimization
and the result, in the form of a minimizing point found, is not guaranteed.
The questions of predictive control algorithms with nonlinear process models
used will be discussed in more detail in Section 3.5.
In the first years of the development of the MPC algorithms linear process

models were used, only later the nonlinear ones – but the latter primarily
for prediction of free trajectories of the outputs, y0(k + p|k). Commercial
MPC programs did use linear models and still do mainly use such models for
modeling the dependencies of �y(k + p|k) as functions of �u(k + p|k).
An optimal sequence of process input increments, �u(k|k), �u(k + 1|k),

�u(k + 2|k), ..., �u(k + Nu − 1|k), is obtained in predictive control algo-
rithms by minimization of the cost function (3.1). During the initial stage of
development of the MPC algorithms it was usually optimization without ad-
ditional explicit constraints, but also an additional mechanism of influencing
the shape of a solution trajectory was used, by applying a reference trajectory
(see Section 3.6.2). For a linear process model (3.6), the optimization without
constraints leads to an analytical solution, to a formula possible for implemen-
tation and calculation in real time using the control equipment of even fairly
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small computing power. Development of the microprocessor technology and
the following increase of calculation possibilities enabled real time numerical
solutions of linear-quadratic optimization problems with additional inequa-
lity constraints. This became one of the main reasons for a development and
a significant increase of the number of industrial applications of the predictive
control algorithms.
The following constraints are important in applications and are possible

to be considered directly in the MPC algorithms:

• Constraints on values (amplitudes) of process control inputs:
umin ≤ u(k + p|k) ≤ umax, p = 0, 1, ..., Nu − 1 (3.7)

• Constraints on increments of process control inputs:
−�umax ≤ �u(k + p|k) ≤ �umax, p = 0, 1, ..., Nu − 1 (3.8)

• Constraints on values of controlled outputs, which in a concise form can
be written as

ymin ≤ y(k + p|k) ≤ ymax, p = N1, N1 + 1, ..., N (3.9)

Constraints on controlled outputs are sometimes imposed not for the en-
tire prediction window [N1, N ], but only for a narrower constraint window
[Ncw1, Ncw], whereN1 ≤ Ncw1 < Ncw ≤ N . This is one of methods to prevent
the admissible set of the optimization problem from becoming empty, which
can happen when it is not possible to satisfy the constraints on a certain out-
put at first steps of the prediction horizon, e.g., if the currently measured value
of the output does significantly exceed the constraints due to a violent change
in a disturbance value. We shall return to this question in Section 3.6.2, where
the use of the concept of a constraint window will be explored.
The form (3.9) presents the most general case of two-sided constraints,

known also as band constraints or range constraints. Of course, one-sided cons-
traints constitute a special case, such as e.g.,

y(k + p|k) ≤ ymax, p = N1, N1 + 1, ..., N
The constraining values can also be time-dependent, a situation encountered
in the case of output constraints. The dependence on time can be either in
the sense of a position in the prediction horizon, defined as dependence on p,
e.g., ymax = ymax(p), p = N1, N1 + 1, ...,N, or as dependence on the current
time k (this last case leads to a non-stationary predictive control algorithm).
In applications there are also constrained, but uncontrolled output varia-

bles, which are also called constraint variables, see e.g., [11]. Denoting these
variables by yct(k), the constraints on them can be formulated in a general
form analogous to (3.9):

yctmin ≤ yct(k + p|k) ≤ yctmax, p = N1, N1 + 1, ..., N (3.10)
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The uncontrolled outputs yct(k) with constrained values must be directly or
indirectly measured, since their predicted values yct(k + p|k) must be cal-
culated using appropriate models, in the same way as the values y(k + p|k)
are calculated. In this chapter controlled and uncontrolled output variables
will not be distinguished until necessary, in order to avoid an unnecessary
complication of the resulting notation.
We have thus defined all elements of the optimization problem which is

solved at any step k of a general MPC algorithm (with constraints), in order
to evaluate an optimal trajectory of the process inputs over the control horizon
Nu. For a linear process model this optimization problem can be formulated
in the following way:

min
�u(k|k),...,�u(k+Nu−1|k)

{
N∑
p=N1

‖[ysp(k + p|k)− y0(k + p|k)]+

−�y(k + p|k)‖2Ψ(p) +
Nu−1∑
p=0

‖�u(k + p|k)‖2Λ(p)}

subj. to: the constraints (3.6), (3.7), (3.8), (3.9) (3.11)

An important problem when solving the optimization problem (3.11), a
problem with inequality constraints on values of control inputs and controlled
outputs, is the possibility that at certain sampling instants k the set of its
feasible solutions (feasible set) can become empty. This means that it would
then be impossible to satisfy, simultaneously, the constraints (3.7), (3.8), (3.9)
and the model equations (3.6), for certain current and previous values of the
process outputs, inputs and disturbances. Let us notice that such a situation
can occur only when there are constraints on the process outputs. Constraints
on values and rates of change of the process inputs themselves cannot cause
the feasible set to become empty. Certainly, only if these constraints are not
initially formulated in a way leading to a contradiction, which is an erroneous
formulation requiring a correction. Situations with a lack of admissible solu-
tions should be avoided in practical implementations of the MPC algorithms,
perhaps except for specially treated isolated cases. We shall return to the ques-
tion of feasibility of the controller optimization problem (i.e., non-emptiness
of the set defined by its constraints) in Section 3.6.2.
From a historical perspective, the first practical applications of predictive

control algorithms with a receding horizon took place in the 1970s, developed
independently at different sites – although the idea itself was in fact formula-
ted earlier [76], see [94]. Dates of first publications are not very authoritative
in this case, as predictive algorithms were proposed and implemented prima-
rily in the industry, where successful applications of new ideas often precede
their publication. The first algorithms, based on a common general rule of the
predictive control, differed mainly in the way the process was modeled, also
different were details of formulations of the cost function and of the optimiza-
tion task, methods of solving it, and approaches to treating the constraints.
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First publications concerning an industrial application of an MPC algo-
rithm were written by Richalet et al. [119, 120], concerning the algorithm
called Model Predictive Heuristic Control (MPHC), implemented in a com-
mercial software under the name IDCOM (IDentification and COMmand),
more commonly known as a MAC algorithm (Model Algorithmic Control).
For prediction of the controlled outputs, a linear process model was used in
the form of a finite impulse response; the cost function was formulated as a
sum of squared deviations of the predicted trajectory from a reference tra-
jectory. The latter is an “intermediate” trajectory between the free response
trajectory of a model and a set-point trajectory, it begins at the currently
measured values of the outputs and converges to the trajectory of the set-
points over the prediction horizon, its dynamics is usually of first order, see
Section 3.6.2. The constraints were taken into account in the MAC algorithm,
the process inputs were calculated by a heuristic iterative algorithm. Large
emphasis was placed on a simplicity of tuning of the algorithm.
The Dynamic Matrix Control (DMC) algorithm, developed in the early

1970s by staff at Shell Oil and with an initial application in 1973, was also
one of the first, being published later along with information about successful
applications [29, 113]. This algorithm became very popular in commercial
applications of predictive control algorithms. The DMC algorithm uses a linear
process model in the form of a step response and a quadratic cost function with
penalty components for changes of the process control inputs (as in (3.5)).
It is considered that the IDCOM and DMC algorithms represent the first

generation of the MPC algorithms, see e.g., [1, 52, 82]. These algorithms exer-
ted an enormous influence on the development of practice and theory of the
industrial control. In these algorithms the control inputs were not yet compu-
ted on-line by a numerical solving of a constrained optimization problem at
each sampling instant.
The main drawback of the MPC algorithms of the first generation was

treating the constraints in an approximate, heuristic way. In the DMC algo-
rithm this disadvantage was removed proposing its version under the name
Quadratic Dynamic Matrix Control (QDMC) [48]. At every step of the al-
gorithm the process control inputs are calculated as a numerical solution of
a minimization problem of a quadratic cost function (the same as in DMC)
subject to linear constraints on process inputs and outputs, i.e., the quadratic
programming problem. The DMC algorithm in a QDMC version is conside-
red to be a representative of the second generation of the MPC algorithms. A
characteristic feature of these algorithms is an on-line numerical solving of a
quadratic programming problem, ensuring direct consideration of inequality
constraints.
The Generalized Predictive Control (GPC) algorithm proposed much later

by Clark et al. turned out to be very popular [27, 26], it used a process
model in the form of discrete transfer functions (or, equivalently, difference
equations). This method of modeling allowed the consideration of a wider class
of disturbance models, in comparison to those used in the DMC and MPHC
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algorithms. An interesting development of the GPC algorithm is the CRHPC
(Constrained Receding Horizon Predictive Control) proposed by Clark and
Scattolini, it is one of the first formulations of the predictive control algorithms
with a finite, receding horizon and with a theoretically established stability of
the feedback control loop [28].
The Shell Multivariable Optimizing Controller (SMOC) [86] was the first

to employ a process model in the form of state equations – an approach which
is currently dominant in research studies concerning the MPC algorithms. A
state observer (Kalman filter) was used for the estimation of state variables
and unmeasured disturbances. Moreover, a differentiation between controlled
and measured process outputs was introduced.
The SMOC is already an example of a modern, third generation MPC

algorithm, just like the algorithms IDCOM-M by Setpoint, RMPCT by Ho-
neywell, 3dMPC by ABB and others. A short review of selected commercial
implementations of the MPC algorithms can be found in [82], a comprehensive
survey is given in an excellent paper [115].
In the development conducted over the last years and presently, in the

research and in applications of the MPC algorithms, the problems that domi-
nate are those of considering nonlinear process models, stability, robustness to
uncertainty. It can be said that these topics distinguish the MPC algorithms
of the fourth generation.
In the following sections of this chapter selected predictive control algo-

rithms will be presented. The choice was done taking into account, first of
all, practical importance. First we shall present in detail the construction and
basic features of a predictive control algorithm with a linear process model,
on an example of the famous DMC algorithm. This choice was dictated also
by the fact that on the basis of a process model used in the DMC algorithm,
in the form of a step response, it is easy and also most natural to derive and
interpret dependencies describing the predictive control. The step response
model is formulated in the time domain, which is natural for formulation of
the MPC algorithms. The DMC algorithm was developed in the petrochemi-
cal industry, it was one of the first successfully applied in practice, and then
became a very popular solution. Moreover, software packages employing the
DMC philosophy are still commonly distributed in industrial applications, as
identification of the process model in the form of its step responses is one of
the simplest, and yet most efficient, methods. We shall also present the GPC
algorithm in detail, it uses the process model in the form of linear difference
equations (which are equivalent to discrete transfer functions). The MPC al-
gorithm with the process model in the form of linear state equations will also
be considered. However, it will be presented emphasizing common features
and differences between the earlier introduced and more thoroughly discussed
DMC and GPC algorithms.
The predictive control algorithms with a linear process model will be a

starting point to the presentation of the MPC algorithms using nonlinear
process models. In this area, after presenting a general approach, we shall
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concentrate mainly on algorithms using on-line repetitive linearizations of a
nonlinear model – as this approach leads to fast and reliable implementations,
and at the same time is very efficient for a wide range of nonlinear processes.
These algorithms will be discussed in more detail for the case of processes
described by nonlinear Takagi-Sugeno fuzzy models, as it is then particularly
easy to develop and implement nonlinear algorithms with linearizations.
The questions of stability of the predictive control algorithms and that of

suitable modifications which guarantee stability will also shortly be presented.
We shall touch on an important question of the parameter tuning, as well as
the specific and important question of the design which ensures non-emptiness
of the admissible solution set of the MPC controller optimization problem.

3.2 Dynamic Matrix Control (DMC) Algorithm

3.2.1 Output Predictions Using Step Response Models

Single-input Single-output (SISO) Processes

In the DMC algorithm the process dynamics is modeled by discrete step res-
ponses which describe reactions of the process outputs on unit step changes
of process inputs. Using a response of a process output on an input step is
in many applications a convenient way of modeling the dynamics. Figure 3.2
presents an example of a step response of a first order process with a delay,
where the delay τ = 2Tp (Tp – the sampling period). Both a real measured
response is given, as well as a response after perfect filtering of a measure-
ment noise (thick curve). Knowing the discrete step response of the process
output in the form of a set of the coefficients {s1, s2, s3, ...} it is possible to
model a discrete response of the output on any discrete control input signal

Fig. 3.2. Example of a response of the output y on a step change in the input u
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Fig. 3.3. A representation of a discrete signal as a sum of step signals with different
amplitudes ∆u(k).

(with zero-order hold). It is because such a signal can be treated as a sum
of steps beginning at consecutive sampling instants, with amplitudes equal to
changes in the input signal – as it is presented in Fig. 3.3. Therefore, using
the principle of superposition we can write:

y(1) = y(0) + s1�u(0)
y(2) = y(0) + s2�u(0) + s1�u(1)
y(3) = y(0) + s3�u(0) + s2�u(1) + s1�u(2)
y(4) = y(0) + s4�u(0) + s3�u(1) + s2�u(2) + s1�u(3)

and so on, for the following steps. Therefore, for any given k = 1, 2, 3, ... we
obtain the following dependence

y(k) = y(0) +
k∑
j=1

sj�u(k − j) (3.12)

Using (3.12), we can write for the sampling instant k + p

y(k + p) = y(0) +
k+p∑
j=1

sj�u(k + p− j) (3.13)

The formula (3.13) will be used for derivation of the prediction equations
in the DMC algorithm. As earlier, we will denote by y(k+ p|k) a value of the
output predicted at the current sampling instant k for a future instant k+ p.
Analogously, �u(k + p|k) denotes a value of the input change evaluated at
sampling instant k for a future instant k + p. The prediction y(k + p|k) is
equal to the output value evaluated from the model (3.13) supplemented by a
disturbance value d(k + p|k), forecasted for the same sampling instant k + p,

y(k+ p|k) = y(0)+
p∑
j=1

sj�u(k+p− j|k)+
k+p∑
j=p+1

sj�u(k+ p− j)+d(k+p|k)
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The disturbance value at sampling instant k is assumed to be equal to the
difference of the measured output value y(k) and the value calculated from
the model

d(k) = y(k)−
⎡⎣y(0) + k∑

j=1

sj�u(k − j)
⎤⎦ (3.14)

In the DMC algorithm a lack of knowledge about future changes of the dis-
turbances on a prediction horizon is assumed, therefore the following model is
used (called the constant output disturbance model, or the DMC disturbance
type model, see e.g., [82])

d(k + 1|k) = d(k + 2|k) = · · · = d(k +N |k) = d(k)
i.e., in the prediction horizon the disturbance value is assumed to be cons-
tant and equal to the value (3.14) determined at sampling instant k. Observe
that this disturbance prediction corresponds to the optimal prediction of the
integrated white noise added to the process output, d(k) can be treated as an
integrated white noise signal (Wiener process).
Joining the equations obtained above we get the following formula for the

output predictions

y(k + p|k) = y(k) +
p∑
j=1

sj�u(k + p− j|k)+

+
k+p∑
j=p+1

sj�u(k + p− j)−
k∑
j=1

sj�u(k − j), p = 1, ..., N

where y(k) is the output value measured at sampling instant k, and �u(k−1),
�u(k−2), ... are the control input changes determined and applied to the plant
at preceding instants. Performing further manipulations we get

y(k + p|k) =
p∑
j=1

sj�u(k + p− j|k)+

+ y(k) +
k∑
j=1

sj+p�u(k − j)−
k∑
j=1

sj�u(k − j)

=
p∑
j=1

sj�u(k + p− j|k) + y(k) +
k∑
j=1

(sj+p − sj)�u(k − j)

The first sum on the right hand side of the obtained equation depends
on current and future control input changes, �u(k|k), �u(k+ 1|k), ..., which
are decision variables of the controller optimization problem. Therefore, we
call this part of the predicted output trajectory a forced component of this
trajectory:
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�y(k + p|k) =
p∑
j=1

sj�u(k + p− j|k), p = 1, 2, ..., N (3.15)

The remaining part of the predicted output trajectory is a free component
dependent only on the previous changes of the control input and is given by
the formula

y0(k + p|k) = y(k) +
k∑
j=1

(sj+p − sj)�u(k − j), p = 1, 2, ..., N (3.16)

For stable processes without integrated or runaway responses (i.e., for
asymptotically stable processes, with self-regulating outputs) the output sta-
bilizes, after a step change in the input, at a certain value s∞, limk→∞ sk =
s∞, see Fig. 3.2. Therefore, it is enough to know a finite number, say D, of
coefficients of the step response, i.e., the number of steps after which the va-
lue of the step response can be treated as constant (and equal to the static
process gain km since the input was assumed to be a unit step starting from
zero value). Thus, D will be called a horizon of the process dynamics. The
following estimation usually proves correct

D ∼= (T0 + (3÷ 4)T )/Tp
where T0 is a process time delay and T a process dominant time constant. If
sj = km for j ≥ D, then (3.16) takes the following form

y0(k + p|k) = y(k) +
D−1∑
j=1

(sj+p − sj)�u(k − j), p = 1, 2, ..., N (3.17)

because sj+p − sj = 0 for j ≥ D. The presented method of process modeling
in the form of finite step responses is applicable for asymptotically stable
processes. However, in the industrial practice an important role is played
by stable processes with integration. For this class of processes it is easy to
generalize the considered method of modeling – by using an incremental step
response instead of the standard step response considered above. Namely,
dependence of increments of the process outputs �y(k) = y(k) − y(k − 1),
k = 1, 2, 3, ... on increments of the process inputs will be modeled. Assuming a
steady state for k < 0 and a unit step in the control input at sampling instant
k = 0, �u(0) = 1, we have

�y(1) = y(1)− y(0) = s̃1 = s1
�y(2) = y(2)− y(1) = s̃2 = (s2 − s1)
�y(3) = y(3)− y(2) = s̃3 = (s3 − s2)

...
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where s̃k denote elements of the incremental step response, and sk elements
of the previously introduced standard step response. For a stable plant with
a single integration, differences between the subsequent output values in the
standard step response become constant after the disappearance of a transient
process corresponding to the dynamics horizon D – then the final constant
value of the incremental step response is achieved, a speed gain k̃m. For any
given discrete control input signal treated as a sum of steps we obtain the
following formula (corresponding to (3.12) in the previous standard case)

�y(k) =
k∑
j=1

s̃j�u(k − j) (3.18)

All considerations which will further be presented, concerning the design of
the MPC algorithm for an asymptotically stable process modeled by the step
response, can easily be extended onto a process with single integration, mo-
deled by an incremental step response.

Multivariable (MIMO) Processes

Consider now a multivariable, multi-input multi-output (MIMO) process, with
ny controlled outputs and nu control inputs. Let us consider first a process
model in the form of a set of ny ·nu finite step responses {sijl , l = 1, 2, ..., D},
where i indexes controlled outputs, i = 1, 2, ..., ny, and j indexes process
control inputs, j = 1, 2, ..., nu. Therefore, components of the vector sij =
[sij1 s

ij
2 ... s

ij
D] are elements of a step response of the i-th output to a unit step

on the j-th input (when all other inputs are kept constant). The dynamics
horizon D is taken as common for all responses, i.e., it can be assumed that
sijl = const. for l ≥ D.
The presented modeling of a multivariable process in the form of ny · nu

vectors of finite step responses [sij1 s
ij
2 ... s

ij
D], i = 1, 2, ..., ny, j = 1, 2, ..., nu is

natural. In practice, it is a natural and basic method of identification of the
step responses to perform a step change of one input (with all other inputs
kept unchanged) and to register the subsequent output values – repeating this
procedure, consequently, for all process inputs, j = 1, 2, ..., nu. However, it is
convenient to transform the presented multivariable model consisting of a set
of vectors of step responses into a different, equivalent form, which will make
the design of a DMC controller more clear and the resulting formulae much
simpler. In order to do this we shall define the following matrices

Sl =

⎡⎢⎢⎢⎢⎢⎣
s11l s12l s13l · · · s1nul
s21l s22l s23l · · · s2nul
s31l s32l s33l · · · s3nul
...
...
...
. . .

...
s
ny1
l s

ny2
l s

ny3
l · · · snynul

⎤⎥⎥⎥⎥⎥⎦ , l = 1, 2, ..., D (3.19)
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Each matrix Sl consists of coefficients s
ij
l of all the step responses at the

same sampling instant l, i = 1, 2, ..., ny, j = 1, 2, ..., nu. Therefore, the plant
dynamics can be represented by D matrices Sl of dimension ny × nu, instead
of ny · nu vectors of length D.
The set of matrices Sl can be treated as a multivariable (matrix) step res-

ponse {S1,S2, ...,SD}. This model representation makes it possible to directly
apply all the formulae obtained so far for the SISO processes to the case of a
MIMO process, only the matrices Sl must be inserted in places of the scalar
coefficients sl of a single-step response, l = 1, 2, ..., D. The formula (3.12),
basic for the step response modeling, takes then the following vector-matrix
form

y(k) = y(0) +
k∑
j=1

Sj�u(k − j) (3.20)

where the process outputs and the process inputs changes are now vectors
y(k) ∈ R

ny , �u(k − j) ∈ R
nu . Analogously, the formula describing the pre-

dicted outputs becomes

y(k+p|k) =
p∑
j=1

Sj�u(k+p− j|k)+ y(k)+
D−1∑
j=1

(Sj+p−Sj)�u(k− j) (3.21)

Thus, the formulae for elements of free and forced trajectories of predicted
outputs have the following vector-matrix forms

�y(k + p|k) =
p∑
j=1

Sj �u(k + p− j|k), p = 1, 2, ..., N (3.22)

y0(k + p|k) = y(k) +
D−1∑
j=1

(Sj+p − Sj)�u(k − j), p = 1, 2, ..., N (3.23)

3.2.2 Unconstrained Explicit DMC Algorithm

Let us define vectors

Ysp(k) =

⎡⎢⎣ y
sp(k +N1|k)

...
ysp(k +N |k)

⎤⎥⎦ , Y0(k) =
⎡⎢⎣y
0(k +N1|k)
...

y0(k +N |k)

⎤⎥⎦

∆Y(k) =

⎡⎢⎣�y(k +N1|k)...
�y(k +N |k)

⎤⎥⎦ , ∆U(k) =
⎡⎢⎣ �u(k|k)

...
�u(k +Nu − 1|k)

⎤⎥⎦
Ypred(k) = Y0(k) +∆Y(k) = [ y(k +N1|k)T · · · y(k +N |k)T ]T
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and matrices

Ψ =

⎡⎢⎢⎢⎣
Ψ(N1) 0 · · · 0
0 Ψ(N1 + 1) · · · 0
...

...
. . .

...
0 0 · · · Ψ(N)

⎤⎥⎥⎥⎦ (3.24)

Λ =

⎡⎢⎢⎢⎣
Λ(0) 0 · · · 0
0 Λ(1) · · · 0
...

...
. . .

...
0 0 · · · Λ(Nu − 1)

⎤⎥⎥⎥⎦ (3.25)

Then the cost function (3.4) can be written in the following form

J(k) =
∥∥[Ysp(k)− Y0(k)]−∆Y(k)∥∥2Ψ + ‖∆U(k)‖2Λ (3.26)

If, however, additionally Ψ= I and Λ=λI, like in (3.5), then the cost function
takes the form

J(k) =
∥∥[Ysp(k)− Y0(k)]−∆Y(k)∥∥2 + λ ‖∆U(k)‖2 (3.27)

Additionally, let us define vectors

Y(k) =

⎡⎢⎣ y(k)...
y(k)

⎤⎥⎦ , ∆UP (k) =
⎡⎢⎣ �u(k − 1)

...
�u(k − (D − 1))

⎤⎥⎦
where dimY(k) = nY = ny · (N −N1 + 1), dim∆UP (k) = nu · (D − 1).
Let us assume initially, for notation simplicity, that the control process

is one-dimensional (SISO), i.e., ny = nu = 1. The vectors Y0(k), Y(k) and
∆Y(k) are then of a dimension nY = N−(N1−1). These vectors are evaluated
in the DMC algorithm on the basis of a process model in a form of a finite
step response {sl, l = 1, 2, ..., D, sl = sD = km for l > D}. This means that
asymptotically stable processes are considered. Using (3.17) we can write the
formula describing a free component of the predicted output trajectory in the
following form

Y0(k) = Y(k) +MP∆UP (k) (3.28)

where the matrix MP is of dimension nY × (D − 1) and for N1 = 1 takes a
characteristic form

MP =

⎡⎢⎢⎢⎢⎢⎣
s2− s1 s3− s2 s4− s3 · · · sD− sD−1
s3− s1 s4− s2 s5− s3 · · · sD+1− sD−1
s4− s1 s5− s2 s6− s3 · · · sD+2− sD−1
...

...
...

. . .
...

sN+1− s1 sN+2− s2 sN+3− s3 · · · sN+D−1− sD−1

⎤⎥⎥⎥⎥⎥⎦ (3.29)
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The general from for N1 > 1 is obtained by dropping the first N1 − 1 rows,
i.e.,

MP =

⎡⎢⎢⎢⎣
s1+N1− s1 s2+N1− s2 s3+N1− s3 · · · sD−1+N1− sD−1
s2+N1− s1 s3+N1− s2 s4+N1− s3 · · · sD+N1− sD−1

...
...

...
. . .

...
sN+1− s1 sN+2− s2 sN+3− s3 · · · sN+D−1− sD−1

⎤⎥⎥⎥⎦ (3.30)

The superscript “P” of this matrix was introduced to show that it is used for
calculations of the output predictions depending only on past (“P” – “Past”)
increments of the process control input. Of course, sl = s∞ = km for each
element sl with the index l ≥ D. For example, for N = D = 6 and N1 = 2
(which is a standard value for the delay τ = 1, i.e., equal to one sampling
period Tp) we obtain

MP =

⎡⎢⎢⎢⎢⎣
s3− s1 s4− s2 s5− s3 km− s4 km− s5
s4− s1 s5− s2 km− s3 km− s4 km− s5
s5− s1 km− s2 km− s3 km− s4 km− s5
km− s1 km− s2 km− s3 km− s4 km− s5
km− s1 km− s2 km− s3 km− s4 km− s5

⎤⎥⎥⎥⎥⎦ (3.31)

On the other hand, using (3.15) we can write the forced component of the
predicted output trajectory in the following form

∆Y(k) =M∆U(k) (3.32)

where M is called the dynamic matrix, it is of dimension nY × n∆U (for a
SISO process, nY = N −N1 + 1, n∆U = Nu) and has the following form

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sN1 sN1−1 · · · s1 0 · · · 0
sN1+1 sN1 · · · s2 s1 · · · 0
...

...
...

...
...

. . .
...

sNu sNu−1 · · · sNu−N1+1 sNu−N1 · · · s1
sNu+1 sNu · · · sNu−N1+2 sNu−N1+1 · · · s2
...

...
...

...
...

. . .
...

sN sN−1 · · · sN−N1+1 sN−N1 · · · sN−Nu+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.33)

For example, for N = 6, Nu = 3 and N1 = τ + 1 = 2, we have

M =

⎡⎢⎢⎢⎢⎣
s2 0 0
s3 s2 0
s4 s3 s2
s5 s4 s3
s6 s5 s4

⎤⎥⎥⎥⎥⎦ (3.34)
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Generally, for the standard value N1 = τ+1, where τ is the process time delay
and, therefore, first τ = N1 − 1 coefficients of the step response are zeroes,
the matrix M takes a characteristic form

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sN1 0 0 0 · · · 0
sN1+1 sN1 0 0 · · · 0
sN1+2 sN1+1 sN1 0 · · · 0
sN1+3 sN1+2 sN1+1 sN1 · · · 0
...

...
...

...
. . .

...
sNu+N1−1 sNu+N1−2 sNu+N1−3 sNu+N1−4 · · · sN1
sNu+N1 sNu+N1−1 sNu+N1−2 sNu+N1−3 · · · sN1+1
...

...
...

...
...

...
sN sN−1 sN−2 sN−3 · · · sN−Nu+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.35)

Let us now consider the general case of a multi-input multi-output (MIMO)
process. Using the model in the form of a matrix step response {S1,S2, ...,SD},
we obtain equivalents of (3.28) and (3.32) in the same form

Y0(k) = Y(k) +MP∆UP (k) (3.36)

∆Y(k) =M∆U(k) (3.37)

only matrices Sj are now elements of the matrices MP and M, instead of
scalars sj . Thus we have

MP =

⎡⎢⎢⎢⎣
S1+N1− S1 S2+N1− S2 · · · SD−1+N1− SD−1
S2+N1− S1 S3+N1− S2 · · · SD+N1− SD−1

...
...

. . .
...

SN+1− S1 SN+2− S2 · · · SN+D−1− SD−1

⎤⎥⎥⎥⎦ (3.38)

and

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SN1 SN1−1 · · · S1 0 · · · 0
SN1+1 SN1 · · · S2 S1 · · · 0
...

...
...

...
...

. . .
...

SNu SNu−1 · · · SNu−N1+1 SNu−N1 · · · S1
SNu+1 SNu · · · SNu−N1+2 SNu−N1+1 · · · S2
...

...
...

...
...

. . .
...

SN SN−1 · · · SN−N1+1 SN−N1 · · · SN−Nu+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.39)

According to definitions of the vectors Y0(k), ∆Y(k), ∆UP (k) and ∆U(k) the
dimension of the matrixMP is nY×n∆UP = ny·(N−N1+1)× nu·(D−1), while
the dynamic matrixM is of dimension nY×n∆U = ny·(N−N1+1) × nu·Nu.
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With the dynamic matrixM, we can write the cost function (3.26) in the
following form

J(k) =
∥∥[Ysp(k)− Y0(k)]−M∆U(k)∥∥2Ψ + ‖∆U(k)‖2Λ (3.40)

Under the assumed properties of the weighting matrices the cost function is
strictly convex. Therefore, a necessary and sufficient condition of a minimum
(without constraints) is zeroing of the gradient, i.e.,

−MTΨ[Ysp(k)− Y0(k)−M∆U(k)] +Λ∆U(k) = 0 (3.41)

[MTΨM+Λ]∆U(k)−MTΨ[Ysp(k)− Y0(k)] = 0 (3.42)

From this equation the vector of optimal control input increments ∆Û(k) can
be easily obtained

∆Û(k) = [MTΨM+Λ]−1MTΨ[Ysp(k)− Y0(k)]
= K[Ysp(k)− Y0(k)] (3.43)

where
K =[MTΨM+Λ]−1MTΨ (3.44)

is a matrix of dimension n�U ×nY . For the case Ψ= I and Λ=λI this matrix
takes the form

K =[MTM+λI]−1MT (3.45)

Let us denote

K =

⎡⎢⎢⎢⎣
K1
K2
...
KNu

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
K1,1 K1,2 · · · K1,N−N1+1
K2,1 K2,2 · · · K2,N−N1+1
...

...
. . .

...
KNu,1 KNu,2 · · · KNu,N−N1+1

⎤⎥⎥⎥⎦ (3.46)

where each sub-matrix Ki is of dimension nu × nY = nu × ny · (N −N1 + 1),
and each sub-matrix Ki,j is of dimension nu × ny.
In a predictive control algorithm only input increments evaluated for the

current sampling instant k are actually applied to the plant, i.e., the optimal
vector �û(k|k) consisting of the first nu elements of the entire vector (3.43).
We shall denote this value by �û(k),

�û(k) = �û(k|k) = K1[Ysp(k)− Y0(k)] (3.47)

Therefore, the obtained control law is a linear feedback from the difference
between the set-point trajectory and the predicted free trajectory.
We shall now present the DMC control law in a form showing a direct

dependence of the optimal controller output on the past process inputs (i.e.,
past controller outputs) and on the process outputs. Using (3.36) we have
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�û(k) = K1[Ysp(k)− Y(k)−MP�UP (k)]
Presenting the matrix MP as

MP =
[
MP1 M

P
2 · · · MPD−1

]
where dimension of each sub-matrixMPj is nY ×nu = ny· (N −N1+1)×nu,
and exploiting the structure (3.46) of the matrix K we can write

�û(k) = K1[Ysp(k)− Y(k)]−
D−1∑
j=1

(K1MPj )�u(k − j)

=
N∑
p=N1

K1,p−N1+1[y
sp(k + p|k)− y(k)]−

D−1∑
j=1

Kuj�u(k − j) (3.48)

where
Kuj = K1M

P
j , j = 1, 2, ..., D − 1 (3.49)

Formula (3.48) presents the structure of the DMC control law designed analy-
tically in the case without inequality constraints, or when the existence of
these constraints has been consciously neglected during the design. Thus, this
controller can be referred to as an unconstrained, explicit DMC controller, the
description analytical DMC controller can also be met [134]. The structure
of such a controller is illustrated in Fig. 3.4, where the box with a diagonal
matrix of discrete transfer functions

1
1− z−1 I (3.50)

stands for a discrete multivariable integration – a summation of consecutive
increments of the process input vector in order to transform the control input
increments into the control input values. Further, the box in the internal
feedback loop fed by consecutive values of the controller output increments
�u(k) should be treated as performing all which is necessary to implement
the formula written in there, i.e., also keeping in its memoryD−1 last control
input increments.

Fig. 3.4. Structure of the explicit, unconstrained DMC control law



3.2 Dynamic Matrix Control (DMC) Algorithm 129

Fig. 3.5. Structure of the explicit, unconstrained DMC control law, for constant
set-point trajectory over the prediction horizon

Let us note that the explicit, unconstrained DMC controller is a linear
controller and matrices of its coefficients K1,p, p = 1, ..., N −N1+1 and Kuj ,
j = 1, ...,D − 1 are calculated only once, during the design phase (off-line).
Performing stabilization tasks of the continuous process control, one usua-

lly does not know when changes in the set-point values will occur in the future,
i.e., in the prediction horizon. Therefore, it is a common practice in the design
of the MPC algorithms for the stabilization tasks to assume that the set-points
will be constant over the prediction horizon and equal to the current values

ysp(k +N1|k) = ysp(k +N1 + 1|k) = · · · = ysp(k +N |k) = ysp(k) (3.51)
Then the control law (3.48) can be simplified to the form

�û(k) =
N∑
p=N1

K1,p−N1+1[y
sp(k)− y(k)]−

D−1∑
j=1

Kuj�u(k − j)

= Ke[ysp(k)− y(k)]−
D−1∑
j=1

Kuj�u(k − j) (3.52)

where Ke =
N∑
p=N1

K1,p−N1+1 (3.53)

The structure of the linear control law (3.52) is illustrated in Fig. 3.5.
Let us rewrite (3.52) as follows

�u(k) +
D−1∑
j=1

Kuj z
−j�u(k) = Kee(k),

where e(k) = ysp(k) − y(k), while z−1 denotes a unit time delay operator.
Further, let us rewrite the above formula to the form

�u(k) = [I+
D−1∑
j=1

Kuj z
−j ]−1Kee(k)



130 3 Model-based Predictive Control

In the case of a SISO control system, matrices Ke and Kuj are scalars k
e and

kuj , thus the obtained formula can be written as a single transfer function of
a discrete, one-dimensional controller (in an incremental form)

�u(k)
e(k)

=
ke

1 + ku1 z−1 + k
u
2 z
−2 + · · ·+ kuD−1z−(D−1)

(3.54)

For a specific application, having a discrete linear process model and a DMC
controller designed for it in the form (3.54), it is possible to investigate pro-
perties of the closed-loop control system, such as location of poles, stability
margins, etc. – depending on chosen values of the controller parameters. This
can give a significant insight into the basic properties of the DMC controller,
primarily in the considered situation without constraints. It can be also sig-
nificant for practically more important cases with constraints, although then
the control system becomes nonlinear and a direct use of the indicated method
for its analysis is not possible.

Example 3.1
Let us consider a simple single-input single-output process described by the
model in the form of the following step response

s1 s2 s3 s4 s5 s6
0 0 0.2 0.5 0.6 0.62

(3.55)

where D = 6. Let us assume that N = 6, Nu = 3 and N1 = 3 due to a delay
by two sampling periods clearly visible in the step response.
Prediction of the process outputs dependent on the past control inputs,

Y0(k) = Y(k) +MP∆UP (k), takes the form⎡⎢⎢⎣
y0(k + 3|k)
y0(k + 4|k)
y0(k + 5|k)
y0(k + 6|k)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
y(k)
y(k)
y(k)
y(k)

⎤⎥⎥⎦+MP
⎡⎢⎢⎢⎢⎣
�u(k − 1)
�u(k − 2)
�u(k − 3)
�u(k − 4)
�u(k − 5)

⎤⎥⎥⎥⎥⎦
where

MP =

⎡⎢⎢⎣
0.5 0.6 0.42 0.12 0.02
0.6 0.62 0.42 0.12 0.02
0.62 0.62 0.42 0.12 0.02
0.62 0.62 0.42 0.12 0.02

⎤⎥⎥⎦ =
=
[
MP1 M

P
2 M

P
3 M

P
4 M

P
5

]
The dynamic matrix takes the following form

M =

⎡⎢⎢⎣
0.2 0 0
0.5 0.2 0
0.6 0.5 0.2
0.62 0.6 0.5

⎤⎥⎥⎦ (3.56)
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Let us assume that Ψ= I and Λ=λI, then

MTM+λI =

⎡⎣ 1.0344 + λ 0.772 0.43
0.772 0.65 + λ 0.4
0.43 0.4 0.29 + λ

⎤⎦
Thus, for λ = 0.01 we obtain

K=(MTM+λI)−1MT

=

⎡⎣ 1.7171 1.5996 −0.4519 0.0678
−2.6932 −0.9300 2.5508 −0.6326
1.1297 −1.0529 −2.0868 2.4130

⎤⎦ =
⎡⎣K1K2
K3

⎤⎦
Assuming (3.51), i.e., ysp(k + 3|k) = · · · = ysp(k + 6|k) = ysp(k), the control
law in the form (3.52) is as follows

�û(k) = (
6∑
p=3

k1,p−2)(ysp(k)− y(k))−
5∑
j=1

(K1MPj )�u(k − j)

= ke(ysp(k)− y(k))−
5∑
j=1

kuj�u(k − j)

where
ke = 2.9327, ku =

[
1.5802 1.7839 1.2317 0.3519 0.0587

]
For λ = 0.05 the values of the controller parameters are

ke = 2.0787, ku =
[
1.1622 1.2715 0.8730 0.2494 0.0416

]
and for λ = 0.1

ke = 1.7201, ku =
[
0.9774 1.0546 0.7225 0.2064 0.0344

]
Chosen trajectories of the process output and input obtained in the closed-

loop control system with the designed DMC unconstrained controller are pre-
sented in Figures 3.6, 3.7, 3.8 and 3.9. Figures 3.6, 3.7 and 3.8 show how a
decrease in the value of λ accelerates changes in the output, by using higher
amplitudes of the control input signal – and conversely, how an increase in the
value of λ smoothes the trajectory of the input signal slowing down changes
of the output. This is important if overly high values of the control input
signal are generated by the controller, exceeding transmission possibilities of
the actuator and leading to a saturation of the actuator’s output signal. This
usually leads to a significant decrease of the control quality, due to the fact
that the constraints have not been considered during the design of the con-
troller. Such a case is presented in Fig. 3.9, where the dotted curve marks the
signal at the controller output (integrated signal), and the continuous curve
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Fig. 3.6. Explicit controller, unconstrained trajectories, λ = 0.1

Fig. 3.7. Explicit controller, unconstrained trajectories, λ = 0.05

Fig. 3.8. Explicit controller, unconstrained trajectories, λ = 0.01
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Fig. 3.9. Explicit controller, trajectories with active constraints on the controller
output amplitude ignored during the controller structure design, λ = 0.01

marks the input signal actually affecting the process after passing through a
nonlinear actuator constraining the amplitude of the process input signal to
a value umax = 2 (compare with Fig. 3.8).
Moreover, the controllers designed with higher values of λ are usually more

robust against inaccuracies in process modeling or changes of plant parameters
during the operation of the control system. �
It should be strongly emphasized that the optimal solution (3.43) to the

controller unconstrained optimization problem, and hence the coefficients of
the resulting control law, should not be obtained by a direct calculation of the
inverse of the matrix MTΨM+Λ (by directly inverting this matrix). The
reason is that this matrix can easily be ill-conditioned, especially for smaller
values of diagonal entries of Λ, see e.g., [82, 74].
According to state of the art in numerical analysis, if a desired solution

can be obtained by solving a set of linear equations instead of by an inversion
of a matrix, it should always be done in the former way for two reasons: the
resulting solution is then more stable (smaller numerical errors) and more
efficiently computed (less elementary mathematical operations). Therefore,
if only the vector of optimal input increments is required, then it could be
calculated as a solution to the set of linear equations (see (3.42))

[MTΨM+Λ]∆U(k) =MTΨ[Ysp(k)− Y0(k)] (3.57)

using an appropriate numerical method. However, this may not be the best
and sufficient solution, since the reason of ill-conditioning of the matrix
MTΨM is a possible ill-conditioning (or even rank-deficiency) of M, espe-
cially for multivariable problems. Therefore, squaring up M, i.e., directly
computing MTΨM should then be avoided.
A way to overcome the discussed difficulty is to treat the controller opti-

mization problem as a least-squares problem, as indicated e.g., in [82]. Since
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matrices Ψ and Λ are positive semi-definite, as diagonal with all non-negative
entries, then they can be immediately represented in a squared form

Ψ = STΨSΨ (3.58)

Λ = STΛSΛ (3.59)

Recall that the diagonal matrix Λ is positive definite if all input increments
over the control horizon are penalized, and the diagonal matrix Ψ is positive
definite when all control errors over the prediction horizon enter the objective
function – else these matrices are positive-semidefinite.
Now, the objective function (3.40) can be written in the following form

J(k) =
∥∥∥∥[SΨ (Ysp(k)−M∆U(k)− Y0(k))SΛ∆U(k)

]∥∥∥∥2 (3.60)

The optimal solution to the controller unconstrained optimization problem
can now be obtained as a least-squares solution to the vector equation[

SΨ (Ysp(k)−M∆U(k)− Y0(k))
SΛ∆U(k)

]
= 0 (3.61)

or written in the form[
SΨM
SΛ

]
∆U(k) =

[
SΨ (Ysp(k)− Y0(k))

0

]
(3.62)

The solution can be evaluated as

∆U(k) = P
[
SΨ (Ysp(k)− Y0(k))

0

]
(3.63)

where 0 is a vector of length nu · Nu, and the matrix P is calculated as a
Moore-Penrose pseudoinverse, using SVD decompositionVΣUT of the matrix[
SΨM
SΛ

]
, i.e.,

P =
[
SΨM
SΛ

]+
= UΣ−1VT = [ P1 P2 ] (3.64)

where matrices P1 and P2 are of dimensions nu·Nu × ny· (N −N1+1) and
nu ·Nu × nu ·Nu, respectively (for SVD decomposition, see e.g., [51]).
Then not only the optimal input vector is computed, but also the controller

gain matrix K (3.44) can be more securely calculated as

K = P1SΨ (3.65)

Remember that the unconstrained controller gain matrix is calculated only
once, off-line during the design phase.
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3.2.3 Constraining the Controller Output by Projection

In real control systems there always exist constraints on process input signals
which result from physical limits of actuators. These constraints cannot be
exceeded – consequently, they are known as hard constraints. Moreover, there
can occur constraints on process output signals, which are usually of a tech-
nological nature and can physically be exceeded, although this may be risky
and lead to such consequences as damage of the apparatus or incorrect pro-
duct parameters. Therefore, these constraints can generally be treated as soft
constraints, namely those whose temporary violation is possible. In Section 3.1
constraints on process control inputs and controlled outputs were presented
when describing the principle of predictive control (see (3.7), (3.8), (3.9)), the
question will also be discussed in Section 3.6.2.
Classical controllers, especially the PID controllers, most commonly met

in industrial applications, are designed (tuned) without consideration of cons-
traints. Precisely, a controller is designed to operate only for small signal
variations, in a sufficiently small vicinity of a working point. Nevertheless, in
many practical situations the PID controllers also operate in quite a satisfac-
tory way in situations when the generated control signal exceeds constraints
on its possible amplitude or rate of change, provided the basic structure of the
PID control law is augmented in an appropriate way. Namely, a system pre-
venting integration of the controller output signal is added, becoming active
if this signal gets constrained, which is checked using a model of the actua-
tor’s nonlinearity or directly the measured signal from actuator’s output (the
so-called anti-windup structures), see e.g., [52].
Deriving in the previous section the unconstrained, explicit control law of

the DMC controller, in the form (3.48) or (3.52), we ignored the constraints –
in this way such a formula could be efficiently derived analytically. However,
there is the question of how such a control system with the unconstrained
DMC control law would operate in situations when the generated controller
output signal �û(k) has a higher amplitude or rate of change than are pos-
sible to be transmitted by an actuator, i.e., a signal which violates physical
constraints of the actuator. It turns out that only if the structure of the un-
constrained DMC control law is correctly complemented using a model of the
actuator’s constraints, then such a controller will operate in quite a satisfac-
tory way in many situations, especially for processes with most commonly
met, relatively simple dynamics [88].
Figure 3.10 presents an incorrect, wrong application of the unconstrained

DMC control law in a situation when information about constraints on am-
plitudes of the process input signals is available. This structure is incorrect
and can have severe negative consequences for the control quality. The main
reason is that the controller internal feedback loop is fed back with previous
increments of the controller output signal as calculated by the DMC control
law, i.e., with the values �û(k−j) following from (3.48), and not with the in-
crements �u(k−j) corresponding to the process input signals u(k−j) which,
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Fig. 3.10. Control structure with the explicit, unconstrained DMC controller igno-
ring constraints on process input signals – a wrong structure

Fig. 3.11. Control structure with explicit, unconstrained DMC controller augmen-
ted by projection of its output onto constraints on the amplitudes of the process
input signals, and by additional anti-windup loop

after passing through the constraining elements, really affected the process.
The effects of the application of such an incorrect structure for a SISO system
are presented in Figure 3.9 (within Example 3.1).
A correct control structure is presented in Fig. 3.11, where z−1I denotes a

unit delay (a delay by one sampling period) of the controller output/process
input vector, while the nonlinear block should also be understood as a vector of
nu = dimu constraints on amplitudes of individual components of the process
input. This structure contains also an additional feedback loop constraining
the controller signal integration (correcting the state of the integrator) in
a way which is similar to an anti-windup scheme used in structures of the
PID controller, see e.g., [3, 52]. Applying the additional anti-windup loop
introduces full correction of the state of the integrator, with a unit delay – at
a sampling instant k the controller output signal �û(k) is added to the signal
u(k− 1) which actually affected the process at the previous sampling instant,
i.e., to the signal uint(k−1) after passing through the amplitude constraining
element. An algorithmic realization of the presented structure, for a SISO
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process control loop, is given below:

�û(k) = ke(ysp(k)− y(k))−∑D−1j=1 k
u
j�u(k − j)

uint(k) = u(k − 1) +�û(k)
if uint(k) ≥ umax
u(k) = umax

else u(k) = max{uint(k), umin}
end

�u(k) = u(k)− u(k − 1)

(3.66)

Functionally, the above algorithm performs a projection of the controller out-
put signal onto the admissible set

umin ≤ u(k) ≤ umax (3.67)

its action can also be described as cutting off the controller output signal.
In the structure shown in Fig. 3.11 and in the corresponding algorithm

(3.66) values of the previous increments �u(k− j) used in the DMC feedback
loop are those which have been modified in a correct way by passing through
the constraints of the actuator. Thus, the general rule of a design of control
structures implementing process input constraints is preserved: past signals
influencing the controller state should be the constrained signals, actually ap-
plied to the controlled plant, see [52]. Fig. 3.12 presents trajectories obtained
for an explicit DMC controller from Example 3.1 implemented in the struc-
ture from Fig. 3.11, but without the anti-windup feedback loop correcting the
integrator state, while Fig. 3.13 presents analogous trajectories with this loop
included. Comparison of these trajectories with those from Fig. 3.9 indica-
tes significant improvement even in the case without the anti-windup loop,
implementation of this loop further improves the controller operation.

Fig. 3.12. Trajectories in the control system with the unconstrained DMC controller
and projection onto the amplitude constraints, but without the anti-windup loop
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Fig. 3.13. Trajectories in the control system with the unconstrained DMC controller
and projection onto the amplitude constraints, with the additional anti-windup loop

Except for constraints on process input amplitudes (3.67), there are also
constraints on rates of change of the process input signals. As the DMC al-
gorithm generates the process input signal increments, then these constraints
are easy to satisfy. Fig. 3.14 presents the control structure taking into ac-
count constraints on both amplitudes and rates of change of the process input
signals. The latter are realized by a nonlinear block located before the integra-
tor, and saturation values in this block are the limiting values of the following
inequality constraints

−�umax ≤ �u(k) ≤ �umax
Figure 3.15 presents trajectories of the input and output variables obtained
for the process from Example 3.1, in the control system presented in Fig. 3.10,
i.e., with an analytical DMC controller which does not use information about

Fig. 3.14. Control structure with the unconstrained DMC controller and its output
projected onto the constraints on amplitudes and rates of change of the process
inputs, with the additional anti-windup loop
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Fig. 3.15. Trajectories in the control system with the unconstrained DMC algo-
rithm, with active amplitude (≤ 2) and rate of change (≤ 0.5) constraints not taken
into account in the controller structure

Fig. 3.16. Trajectories in the control system with the unconstrained DMC algo-
rithm, with its output projected onto active constraints on the amplitude and rate
of change of the process inputs, with the additional anti-windup loop

constraints – but in a situation when the actuator enforces active constraints
(saturations) on amplitude and rate of change of process inputs. On the other
hand, Fig. 3.16 presents trajectories obtained for identical conditions, but
with the DMC controller taking into account the constraints, in the control
structure from Fig. 3.14. It is worth to compare these trajectories with those
presented in Fig. 3.12 and in Fig. 3.13. The differences are caused by the added
constraint on the rate of change of the process input signal, �umax = 0.5.

3.2.4 DMC Algorithm in Numerical Version

Treating the constraints on the controller output signal (i.e., on the process
input variable) as presented in the previous section is generally suboptimal,
though often leads to results close to optimal. Moreover, it is much more
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difficult to take into account in this way constraints on the process outputs
(controlled and/or uncontrolled) – it is then necessary to make a transforma-
tion of these constraints into equivalent constraints on corresponding process
inputs, using the process model, see [90].
The general principle of model predictive control was presented in Sec-

tion 3.1. Its central element is a calculation of the process input signal as a
solution of the constrained optimization problem (3.11), at each sampling ins-
tant. For a linear process model and without constraints, this problem has an
explicit, analytical solution, which largely simplifies the implementation of the
algorithm, as it was shown for the DMC algorithm. However, a great advan-
tage from using the general formulation of the predictive control algorithm,
with a numerical solution of a constrained optimization problem at each step,
is that the constraints on process inputs and outputs can be taken into ac-
count in a direct and optimal way. If the process model is linear and so are the
constraints, then the optimization problem is a quadratic programming (QP)
problem. For such problems there exist effective and reliable optimization
procedures which enable efficient implementations of the predictive control
algorithms.
In the DMC algorithm the process model is given in the form of a step

response, the controller cost function for such a model has already been for-
mulated in the form (3.40). There remains only to formulate the constraints
in an adequate way, as functions of the vector of decision variables, ∆U (k).
It is most simple for constraints on rate of change,

−�umax ≤ �u(k + p|k) ≤ �umax, p = 0, 1, ..., Nu − 1

Defining the vector ∆Umax of dimensionality nu ·Nu,

∆Umax =

⎡⎢⎣�umax...
�umax

⎤⎥⎦
we can write the constraints on rate of change in the following form

−∆Umax ≤ ∆U(k) ≤ ∆Umax
The procedure is slightly more complicated for the amplitude constraints,

umin ≤ u(k + p|k) ≤ umax, p = 0, 1, ..., Nu − 1

To this end, let us define first the following vectors of lower and upper bounds,
of dimensionality nu ·Nu,

Umin =

⎡⎢⎣umin...
umin

⎤⎥⎦ , Umax =
⎡⎢⎣umax...
umax

⎤⎥⎦



3.2 Dynamic Matrix Control (DMC) Algorithm 141

Then it remains to express values of the signals by their increments. Applying
the equations

u(k + p|k) = u(k − 1) +
p∑
j=0

�u(k + j|k), p = 0, 1, ..., Nu − 1

we can write the constraints on amplitude values in the following form

Umin ≤ U(k − 1) + J∆U(k) ≤ Umax
where

U(k − 1) =

⎡⎢⎢⎢⎣
u(k − 1)
u(k − 1)
...

u(k − 1)

⎤⎥⎥⎥⎦ , J =

⎡⎢⎢⎢⎣
Iu 0 · · · 0
Iu Iu · · · 0
...
...
. . .
...

Iu Iu Iu Iu

⎤⎥⎥⎥⎦
and the length of U(k − 1) is Nu · nu, whereas every identity matrix Iu is
of dimensionality nu × nu. Finally, it is necessary to formulate correctly the
constraints on process outputs (3.9)

ymin ≤ y(k + p|k) ≤ ymax, p = N1, N1 + 1, ..., N (3.68)

Defining, analogously to the vectors Umin and Umax, the vectors Ymin and
Ymax, each of dimensionality ny·(N−N1+1), and applying (3.37), the output
constraints can be written in the following form

Ymin ≤ Y0(k) +M∆U(k) ≤ Ymax
where Y0(k) is given by (3.36).
In conclusion, at every sampling instant the following quadratic optimiza-

tion problem of the DMC algorithm in a numerical version (numerical DMC
algorithm) is solved:

min
∆U(k)

{∥∥[Ysp(k)− Y(k)−MP∆UP (k)]−M∆U(k)∥∥2Ψ + ‖∆U(k)‖2Λ}
subj. to : −∆Umax ≤ ∆U(k) ≤ ∆Umax

Umin ≤ U(k − 1) + J∆U(k) ≤ Umax
Ymin ≤ Y0(k) +M∆U(k) ≤ Ymax

(3.69)

The problem (3.69) can easily be written in an equivalent form which is stan-
dard for quadratic programming, e.g., in the form required by the QUAD-
PROG (Quadratic Programming) procedure of the MATLAB� package

min{J(x) = 1
2
xTHx+fTx}

subj. to: xmin ≤ x ≤ xmax
Ax ≤ b

(3.70)
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It is easy to check that problems (3.69) and (3.70) are equivalent, if

x = ∆U (k) , xmin = −∆Umax, xmax = ∆Umax
H = 2(MTΨM+Λ)

f = −2MTΨ(Ysp(k)− Y(k)−MP∆UP (k))

A =

⎡⎢⎢⎣
−J
J

−M
M

⎤⎥⎥⎦ , b =
⎡⎢⎢⎣
−Umin + U(k − 1)
Umax − U(k − 1)
−Ymin + Y0(k)
Ymax − Y0(k)

⎤⎥⎥⎦
Currently, numerical algorithms from the group of active set methods and from
the group of interior point methods are considered to be the most effective in
solving the quadratic programming problems, see e.g., [18, 1, 82, 115].
A numerical DMC controller, which calculates at each sampling instant

the control input increment solving the presented quadratic programming
problem, was also applied to control the process presented in Example 3.1, for
the same operating conditions as those applied for the explicit DMC controller
in the structure from Fig. 3.14. The obtained trajectories were identical as
those obtained there and presented in Figures 3.13 and 3.16 – therefore we
shall not quote them here. These facts confirm also the hypothesis that the
explicit controller in the structure shown in Fig. 3.14 works often well, even
in a way close to optimal. The author is not aware whether there exists a
rigorous theoretical analysis indicating when the analytical controller in the
structure from Fig. 3.14 operates as an (optimal) numerical controller.
As it was mentioned, the quadratic programming problem (3.69) can be

precisely and effectively solved – however, on the condition that there is a
solution to this problem, namely that the feasible set defined by all inequa-
lity constraints is not empty (that constraints are not contradictory). We have
touched on this problem already in Section 3.1, when discussing general formu-
lation of the control optimization problem in the predictive control algorithm
with a finite receding horizon. The problem (3.69) is a special case of this
general formulation and all comments made in Section 3.1 apply here. Let us
remind here only that the feasible set can happen to be empty when there
exist constraints on process outputs, (3.68). The first point of Section 3.6.2
is devoted to the question how to ensure that the feasible set is always not
empty.

3.2.5 Model Uncertainty, Disturbances

A linear model used for prediction of the process output values in a DMC
algorithm is a certain approximation of a real process input-output mapping,
usually due to a structural uncertainty (the assumption of linearity) and a
parametric uncertainty (inaccurate coefficient values). Moreover, a process is
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usually affected by uncontrolled inputs, i.e., disturbances. One can distinguish
measurable (measured) and unmeasurable disturbances.

Uncertainty, Unmeasurable Disturbances

A typical way of proceeding is to treat prediction errors which result from
inaccuracies in process modeling and influence of not measured disturbances
together, as a combined effect of influence of certain unmeasurable distur-
bances. In the DMC algorithm these disturbances are treated as integrated
white noises acting additively on the process outputs. At the current sampling
instant k, the effect of their action d(k) is calculated as a difference between
the process output values currently measured, y(k), and the output values
predicted for the current sampling instant at the previous one, y(k|k − 1) –
as it was described in Section 3.2.1 when defining the constant output distur-
bance prediction model in the DMC algorithm. This model is based on the
assumption that the unmeasured disturbances can be treated as integrated
zero-mean white noises, which results in optimal predictions constant in the
entire prediction horizon and equal to the value d(k) calculated at the current
sampling instant.
The assumed disturbance model works well for situations typical for in-

dustrial process control applications. Moreover, it ensures zero steady-state
control errors – just like classical feedback controllers with integration, PI or
PID. This fact can easily be explained assuming that a control system with
a DMC controller is asymptotically stable and there exists such a feasible
process input value usp that

ysp = Kpusp

where ysp denotes set-point values for the controlled outputs, and Kp the
matrix of static gains of the process. Under constant set-points and distur-
bances, the asymptotically stable closed-loop control system always stabilizes
at certain equilibrium point (steady-state point). Let us denote process input
and output signals at this state by u∞ and y∞, of course these values satisfy

y∞ = Kpu∞

In the steady-state all increments of the controller outputs, i.e., past (over
a process dynamics horizon) and future optimal (over a prediction horizon)
increments are zero, so at every sampling instant k the optimal value of the
cost function in (3.69) is

J(k)opt = ‖Ysp(k)− Y(k)‖2Ψ =
N∑
p=N1

‖ysp − y∞‖2Ψ(p)

Therefore, in a steady-state the equality y∞ = ysp must be fulfilled, because
otherwise at each sampling instant k there would exist non-zero controller
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output increments which would change the values u∞ towards usp in order to
decrease the value of the cost function (because, from the assumption, ysp =
Kpusp)). This would obviously contradict the fact that optimal increments of
the controller outputs are equal to zero in the steady-state.
In the figures presented so far, showing trajectories in the DMC control

system for a process from Example 3.1, it can easily be seen that the control
error tends to zero, after a step change of the set-point from zero to one.
Fig. 3.17 presents trajectories for the same process, but with a change of an
unmeasurable disturbance d(k) starting in the second step of the simulation,
where the influence of the disturbance on the process output was described by
an autoregressive model in the form d(k+1) = ad(k)+0.45 for k ≥ 1 (d(k) = 0
for k ≤ 1), with a = 0.2676, the value corresponding to the autoregression
coefficient of the process step response. Fig. 3.18 presents the same situation,

Fig. 3.17. Trajectories in the control system with the explicit DMC controller and
constraints taken into account, after a change of the unmeasurable disturbance

Fig. 3.18. Trajectories in the control system with the explicit DMC controller and
constraints taken into account, after a change of the unmeasurable disturbance and
with the process gain increased by 40% (leaving process model unchanged)
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but with the process gain (in the control channel) increased by 40%, leaving
the model unchanged. So, the controller had to deal additionally with large
modeling errors. The trajectories are worse, as it could be expected, but the
controller effectively zeroes the control error.

Compensation of Measured Disturbances

When designing control systems the following well-known general rule should
be followed: the influence of measured disturbances, i.e., uncontrolled but mea-
sured process inputs, on the process outputs should be compensated in an
open-loop structure – if only this influence is significant and dynamics of dis-
turbance and control channels and available process models enable an efficient
realization of the compensation. Control in the open-loop structure, called
the feedforward control, is then faster and more effective than in a closed-loop
structure. What remains for control in the feedback loop is a reduction of
influences of the remaining disturbances and inaccuracy of the compensation.
The above design rule should of course also be obeyed in predictive control.

For compensation of measured disturbances in an open-loop it is necessary to
have a model of an influence of these variables on the controlled outputs.
In a DMC algorithm this model should be created in the same form as the
basic process model of the control channel, i.e., in the form of step responses.
Let us denote by z the vector of measured disturbances, of dimensionality
nz = dim z, and by {Szl , l = 1, 2, 3, ...} a sequence of matrix step responses
of the process outputs on unit steps in z, analogously as {Sl, l = 1, 2, 3, ...}
denotes a sequence of matrix step responses of the process outputs on steps
in control inputs, as described in Section 3.2.1. According to the principle of
superposition, the process model can then be written as an extension of (3.20)

y(k) = y(0) +
k∑
j=1

Sj�u(k − j) +
k∑
j=1

Szj�z(k − j) (3.71)

where �z(k − j) = z(k − j)− z(k − j − 1), j = 1, ..., k.
The prediction equations resulting from (3.71) depend on the disturbance

inputs only if no increments of the control inputs are assumed, and can be
derived identically as it was done for the control inputs, see Section 3.2.1. In
this way we obtain the following dependence

y(k + p|k) = y(k) +
p−1∑
j=1

Szj�z(k + p− j|k) + Szp�z(k)+

+
Dz−1+p∑
j=p+1

Szj�z(k + p− j)−
Dz−1∑
j=1

Szj�z(k − j)

and after a simple rearrangement
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y(k + p|k) =
p−1∑
j=1

Szj�z(k + p− j|k)+

+ y(k) + Szp�z(k) +
Dz−1∑
j=1

(Szj+p − Szj )�z(k − j) (3.72)

where Dz denotes the horizon of disturbance dynamics, i.e., for j ≥ Dz Szj =
SzDz is assumed. In the obtained formula, the first sum represents the influence
of the predicted values of the measured disturbances, while the remaining
components represent the influence of values which have been measured.
Joining the components from the second line of (3.72) with (3.23) we

obtain a formula describing a free component of the predicted trajectory of
the controlled outputs, dependent on past control input values and past and
present values of the measured disturbances

Y0(k) = Y(k) +MP∆UP (k) +MzP∆ZP (k) (3.73)

In (3.73), ∆ZP (k) is a vector of past disturbance increments,

∆ZP (k) =

⎡⎢⎢⎢⎣
�z(k)
�z(k − 1)
...

�z(k − (Dz − 1))

⎤⎥⎥⎥⎦
while the matrix MzP is given by the formula

MzP =

⎡⎢⎢⎢⎢⎣
SzN1 Sz1+N1− Sz1 Sz2+N1− Sz2 · · · SzDz−1+N1− SzDz−1
SzN1+1 S

z
2+N1− Sz1 Sz3+N1− Sz2 · · · SzDz+N1− SzDz−1

...
...

...
. . .

...

SzN SzN+1− Sz1 SzN+2− Sz2 · · · SzN+Dz−1− SzDz−1

⎤⎥⎥⎥⎥⎦
(3.74)

Let us note that structure of the matrixMzP is similar to the structure of the
matrixMP , compare with (3.38). The only difference is thatMzP is extended
by the additional first column, corresponding to the first column of the matrix
M, compare with (3.39). This results from the fact that at sampling instant
k the vector �z(k) represents already realized (and measured) disturbance
values, while �u(k|k) belongs to decision variables.
The predicted process output values are influenced not only by past control

inputs and measured disturbance values, but also by actual and future control
input values u(k + p|k), p = 0, 1, ...,Nu − 1 calculated at sampling instant k
and by future values of disturbances z(k + p|k), p = 1, 2, ..., N − 1. The
control inputs u(k + p|k), p = 0, 1, ..., Nu − 1 are decision variables, while
the future disturbance inputs z(k + p|k) should be forecasted at sampling
instant k, in an appropriate way. The simplest way is to assume that the
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future disturbance values are equal to the current value in the prediction
horizon, namely z(k + p|k) = z(k), p = 1, ..., N − 1, therefore �z(k + p|k) =
z(k+p|k)−z(k+p−1|k) = 0, p = 1, ...,N −1. The above assumption has led
to the disturbance model used in (3.73) which assumes a lack of information
about possible future changes of the measured disturbances.
However, having in hand the mechanism of predictive control, it is possible

to consider the future influence of measured disturbances in a more sophisti-
cated way, if the trajectories of these disturbances indicate significant changes
in time windows comparable to the control horizon or to the prediction ho-
rizon, and are of a continuous, smooth character. Then, using the gathered
data it may be reasonable to construct a disturbance predictor, e.g., a simple
model of autoregressive (AR) structure with parameters calculated by one of
standard identification methods. Let us note that most important for correct
operation of a predictive controller is the disturbance prediction for the first
part of the prediction horizon, as at each of the following sampling instants
the entire process of control calculation will be repeated. Thus an AR model
can be of a relatively low order. Moreover, for longer prediction horizons N it
may be reasonable to introduce a disturbance horizon Nz < N , i.e., to assume
that z(k + p|k) = z(k +Nz|k), p = Nz + 1, ..., N − 1.
Denoting by z(k + p|k), p = 1, ..., N − 1, future values of the measured

disturbances, forecasted at sampling instant k on the basis of their past values
z(k− j), j = 0, 1, ... by a linear disturbance predictor, let us define the vector

∆Z(k) =

⎡⎢⎣ �z(k + 1|k)...
�z(k +Nz|k)

⎤⎥⎦
Instead of (3.73), we can now use a formula which defines predicted values
of the controlled outputs as depending on past control inputs, past measured
disturbance values and forecasted measured disturbance values, as follows

Y0(k) = Y(k) +MP∆UP (k) +MzP∆ZP (k) +Mz∆Z(k), (3.75)

where the matrixMz, of dimension nY × n�Z = ny · (N −N1 + 1)× nz ·Nz,
is of the form

Mz=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SzN1−1 S
z
N1−2 · · · Sz1 0 · · · 0

SzN1 S
z
N1−1 · · · Sz2 Sz1 · · · 0

...
...

...
...

...
. . .

...

SzNz S
z
Nz−1 · · · SzNz−N1+2 SzNz−N1+1 · · · Sz1

SzNz+1 S
z
Nz
· · · SzNz−N1+3 SzNz−N1+2 · · · Sz2

...
...

...
...

...
. . .

...

SzN−1 S
z
N−2 · · · SzN−N1+1 SzN−N1 · · · SzN−Nz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.76)
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The structure of this matrix is similar to the structure of the dynamic matrix
M, compare with (3.39). The differences are due to the fact that vectors
∆Z(k) and ∆U(k) are shifted by one sampling period in relation to each
other: the vector ∆Z(k) consists of Nz sub-vectors �z(k + p|k) indexed by
p = 1, 2, ..., Nz, while the vector ∆U(k) consists of Nu sub-vectors �u(k+p|k)
indexed by p = 0, 1, ..., Nu − 1.
Denote by Z a matrix representing a linear disturbance predictor, descri-

bing the relation between future and past disturbance values, i.e.,

∆Z(k) = Z∆ZP (k)

We can now transform (3.75) to the following form

Y0(k) = Y(k) +MP∆UP (k) +MzP∆ZP (k) +MzZ∆ZP (k)
= Y(k) +MP∆UP (k) + [MzP +MzZ]∆ZP (k)
= Y(k) +MP∆UP (k) + ZP∆ZP (k) (3.77)

where ZP =MzP +MzZ (3.78)

Equality (3.77) defines the free component of the predicted outputs trajectory
which is an extension of (3.36) to the case with measured disturbances. The
entire reasoning leading to the derivation of the explicit unconstrained DMC
control law presented in Section 3.2.2 can now be repeated, using only (3.77)
instead of (3.36). That is why only the final result will now be presented,
which corresponds to (3.47)

�û(k) = K1[Ysp(k)−Y(k)]−K1MP∆UP (k)−K1ZP∆ZP (k) (3.79)

Partitioning now the matrix ZP like we did previously with the matrix MP ,
as

ZP = [ZP0 Z
P
1 Z

P
2 · · · ZPDz−1]

and using structure of the matrix K presented in (3.46), we obtain

�û(k) =
N∑
p=N1

K1,p−N1+1[y
sp(k + p|k)− y(k)]−

D−1∑
j=1

(K1MPj )�u(k − j)+

−
Dz−1∑
j=0

(K1 ZPj )�z(k − j)

=
N∑
p=N1

K1,p−N1+1[y
sp(k + p|k)− y(k)]−

D−1∑
j=1

Kuj�u(k − j)+

−
Dz−1∑
j=0

Kzj�z(k − j) (3.80)
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Fig. 3.19. Structure of the explicit DMC control law with feedforward compensation
of measured disturbances

where
Kzj = K1 Z

P
j , j = 0, 1, ..., Dz − 1

The formula (3.80) presents the structure of the explicit DMC control
law which is an extension of (3.48), to the case with feedforward compensa-
tion of measured disturbances. The structure of the controller is illustrated
in Fig. 3.19 (compare with Fig. 3.4 and see the comments there). Applying
the explicit DMC algorithm with disturbance compensation for cases with
constraints on the process input signals, this structure should be appropria-
tely supplemented, analogously to the way it was presented in Fig. 3.11 and
Fig. 3.14 for the structure without compensation of disturbances.
For the considered case with disturbance compensation the structure of

the quadratic optimization problem of the numerical DMC control algorithm
does not alter, only the cost function should be extended to

J(k) =
∥∥[Ysp(k)− Y(k)−MP∆UP (k)− ZP∆ZP (k)]−M∆U(k)∥∥2Ψ+

+ ‖∆U(k)‖2Λ
where the matrix ZP is given by (3.78). In cases when disturbance prediction
is not applied within the prediction horizon, the matrix ZP will get reduced
to the matrix MzP , (3.74).

3.3 Generalized Predictive Control (GPC) Algorithm

First commercial MPC algorithms were based on process models in the form
of a discrete impulse response – Model Algorithmic Control (MAC) algorithm
[119], and a discrete step response – Dynamic Matrix Control algorithm. The
latter was presented in detail in the previous section. An MPC algorithm ap-
plying a model in the form of an impulse response is very similar, the impulse
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and step responses of a dynamic process are very closely related. We decided
to present the DMC algorithm as the first and basic one in this book, as the
step response is a more natural description of the process dynamics. First of
all, it is easier to be directly obtained in an on-line identification experiment
– thus the popularity of commercial products based on the DMC algorithm.
We shall not present the approach which uses the process model in the form
of an impulse response. Its significance seems to be smaller, moreover, all for-
mulae based on the step response can be transformed into the corresponding
formulae using the impulse response, using the well-known relationship

sk =
k∑
j=0

hj

where {sj} and {hj} are sequences of the step response and impulse response
coefficients, respectively.
The GPC (Generalized Predictive Control) algorithm turned out to be one

of the most popular predictive control algorithms, it was proposed slightly
later than algorithms based on non-parametric models of step or impulse res-
ponses. The GPC algorithm uses a process model in the form of a discrete
difference equation describing the process input-output relation (equivalently,
a discrete transfer function) [27], see also [17, 18]. In this section we shall pre-
sent the GPC algorithm referring to general features of the MPC algorithms
presented earlier, particularly when presenting the DMC algorithm in detail
in the previous section.
In the formulation of the cost function of the GPC algorithm a reference

trajectory yref (k + p|k), p = N1, ..., N, is often considered, in place of the
set-point trajectory only. It is usually defined in the following way

yref (k+ p|k) = γyref (k+ p− 1|k) + (1− γ)ysp(k+ p|k), p = 1, ..., N (3.81)

with yref (k|k) = y(k), and usually also ysp(k + p|k) = ysp(k), p = 1, ..., N
(constant set-point over the prediction horizon), see e.g., [17, 18]. In the above
formula γ, 0 ≤ γ < 1, is a parameter defining how quick the reference tra-
jectory should approach the set-point trajectory, starting from the currently
measured process output value y(k). For γ = 0 the reference trajectory be-
comes the set-point trajectory, increasing γ slows down the dynamics of the
reference trajectory, makes it smoother – thus resulting in less stringent requi-
rements for the controller output signal. The role and meaning of the reference
trajectory will be discussed in more detail in Section 3.6.2, when discussing
the role and tuning of parameters of predictive controllers. A reference trajec-
tory can be used in every MPC algorithm as a certain filter of the difference
between y(k) and ysp(k + p|k), occurring in the cost function and all the
following formulae exactly in place of the set-point trajectory ysp(k + p|k).
Having the above statement in mind, we shall use further on the set-point
trajectory in all formulae, consequently.
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In the GPC algorithm a process model in the form of a discrete difference
equation is used. In a general case of a multivariable process with nu control
inputs and ny controlled outputs it is a model in the form

A(z−1)y(k) = B(z−1)u(k − 1) +C(z−1) ε(k)� (3.82)

where A, B and C are polynomial matrices

A(z−1) = 1+A1z−1 +A2z−2 + · · ·+AnAz−nA (3.83a)

B(z−1) = B0 +B1z−1 +B2z−2 + · · ·+BnBz−nB (3.83b)

C(z−1) = 1+C1z−1 +C2z−2 + · · ·+CnCz−nC (3.83c)

z−1 denotes the operator of a unit time delay, ε(k) is a vector of white noises
with zero mean value, while � = 1 − z−1 denotes the backward-difference
operator (thus 1/� denotes integration). If z is treated as a complex variable
of the Z transform then the model used can be considered as a discrete transfer
function between the process inputs and outputs.
The model (3.82) is often described as an ARIMAXmodel (Auto-Regressive

Integrated Moving Average with eXogenous Input), see e.g., [103], it is called
also a CARIMA model (Controlled Auto-Regressive Integrated Moving Ave-
rage), see e.g., [18]. In this model the white noise ε(k) undergoes integration,
thus in effect the disturbances are non-stationary. If C(z−1) = 1 then the sys-
tem is influenced by integrated white noises, if C(z−1) �= 1 then the integrated
noises are colored.
For C(z−1) = 1 the process description (3.82) takes the following form

A(z−1)y(k) = B(z−1)u(k − 1) + ε(k)� (3.84)

This case is very important from a practical point of view. First of all, because
identification of the polynomial C is usually difficult: parameter estimates do
not converge or converge slowly [103]. Thus, this polynomial is usually treated
in a different way: not as a part of the model, but as a filter with parameters
undergoing a tuning process, to improve certain properties of the controller
[18, 82, 123]. Moreover, in the case with C(z−1) = 1 it is easier to derive
formulae describing output predictions and thus the explicit GPC control law
in cases without constraints. That is why many authors consider the GPC
controllers solely for this case. We shall also proceed along this lines, referring
an interested reader to the book [18], devoted mainly to the GPC control
algorithm in its multiple versions, see also [123].

3.3.1 GPC Algorithm for a SISO Process

Consider first a single-input single-output (SISO) process. Due to the higher
complexity of the transformations needed to derive output predictions and
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thus the explicit control law than in the case of the DMC controller, this will
allow for easier understanding of the reasoning. The obtained results will then
be extended to the multi-input multi-output case.
In the case of a SISO process its model (3.84) is reduced to the equation

A(z−1)y(k) = B(z−1)u(k − 1) + ε(k)� (3.85)

where A(z−1), B(z−1) are polynomials of z−1, respectively

A(z−1) = 1 + a1z−1 + a2z−2 + · · ·+ anAz−nA
B(z−1) = b0 + b1z−1 + b2z−2 + · · ·+ bnBz−nB

In the above model we do not treat the delay τ separately, apart from a
unitary delay connected with the discretization of the process model as a
causal system. If there is a delay in the process, then first τ coefficients bj of
the polynomial B, corresponding to this delay, will be zero.
With the same general formulation of the cost function, various linear

MPC algorithms differ by the way the predicted trajectories of the outputs
y(k + p|k), p = 1, ..., N are evaluated, see Fig. 3.1. In the GPC algorithm
these values are evaluated on the basis of the process model (3.85), see e.g.,
[17, 18]. For this purpose, let us consider the Bézout identity (Diophantine
equation with C(z−1) = 1)

Ep(z−1)A(z−1) + Fp(z−1)z−p = 1 (3.86)

where
A(z−1) = �A(z−1)

while polynomials Ep and Fp are of degree p − 1 and nA, respectively.
They can be obtained by dividing 1 by A(z−1) until the rest takes the form
Fp(z−1)z−N , see e.g., [3]. The following formulae for coefficients of polyno-
mials Ep and Fp follow directly:

initial values: e1,0 = 1, f1,i = −āi+1, i = 0, ..., nA
and recurrent formulae for p = 2, ...,N :

ep,i =

{
ep−1,i for i = 0, ..., p− 2
fp−1,0 for i = p− 1

fp,i =

{−fp−1,0āi+1 + fp−1,i+1 for i = 0, ..., nA − 1
−fp−1,0āi+1 for i = nA

Multiplying both sides of the process model equation (3.85) by Ep(z−1)zp we
obtain
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Ep(z−1)A(z−1)y(k + p) = Ep(z−1)B(z−1)�u(k + p− 1) +Ep(z−1)ε(k + p)

Writing the Bézout identity (3.86) in the form

Ep(z−1)A(z−1) = 1− Fp(z−1)z−p

and inserting it into the previous equation we obtain

(1− Fp(z−1)z−p)y(k + p) = Ep(z−1)B(z−1)�u(k + p− 1) +Ep(z−1)ε(k + p)

It can be written in the form

y(k + p) = Fp(z−1)y(k) +Ep(z−1)B(z−1)�u(k + p− 1) +Ep(z−1)ε(k + p)

Because the polynomial Ep is of degree at most p − 1, then the term
Ep(z−1)ε(k+ p) represents only future values of the disturbance noise. In the
GPC controller a minimum-variance prediction is used, it is obtained when

y(k + p|k) = E{y(k + p)|k}

where E{· |k} denotes a conditional expected value, under conditions of in-
formation available at sampling instant k, see e.g., [27, 26, 18, 3]. The term
Fp(z−1)y(k) contains only known (present and past) output values. Further,
the terms defined by Ep(z−1)B(z−1)�u(k+p−1|k) contain only deterministic
control input increments:

�u(k + p− 1|k) =
{�u(k + p− 1|k), p− 1 ≥ 0 − decision variables

�u(k + p− 1), p− 1 < 0 − past values
(3.87)

Taking into account these statements and the fact that the mean value of a
sum is equal to a sum of mean values, we obtain

y(k + p|k) = Fp(z−1)y(k) +Ep(z−1)B(z−1)�u(k + p− 1|k)+
+ E{Ep(z−1)ε(k + p)}

Because the term Ep(z−1)ε(k+p) represents only future values of a zero mean
white noise, then E{Ep(z−1)ε(k + p)} = 0. Thus, we obtain a minimum-
variance predictor in the following form

y(k + p|k) = Fp(z−1)y(k) +Ep(z−1)B(z−1)�u(k + p− 1|k)
= Fp(z−1)y(k) +Gp(z−1)�u(k + p− 1|k) (3.88)

where
Gp(z−1) = Ep(z−1)B(z−1) (3.89)

Because the degree of the polynomial Gp is nB + (p− 1), then there are both
future and past values of process input signal increments in (3.88), back up
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to the sampling instant k+ p− 1−nB − (p− 1) = k−nB, and nA+1 known
output values, from y(k) back to y(k − nA).
Each sum Gp(z−1)�u(k+ p− 1|k), p = 1, ...,N can be divided into a part

dependent on present and future input increments, and a part dependent on
past input increments, as follows

Gp(z−1)�u(k + p− 1|k) = GFGp (z)�u(k|k) +GPGp (z−1)�u(k − 1) (3.90)
where the order of each polynomial GPGp (z

−1) is no higher than nB . Let us
recall, for convenience, definitions of the vectors Ysp(k), ∆Y(k), Y0(k) and
∆U(k) and define vectors ∆UPG(k) and YPG(k), as follows

Ysp(k) =

⎡⎢⎣ y
sp(k +N1|k)

...
ysp(k +N |k)

⎤⎥⎦ , ∆Y(k) =
⎡⎢⎣�y(k +N1|k)...
�y(k +N |k)

⎤⎥⎦

Y0(k) =

⎡⎢⎣ y
0(k +N1|k)
...

y0(k +N |k)

⎤⎥⎦ , ∆U(k) =
⎡⎢⎣ �u(k|k)

...
�u(k +Nu − 1|k)

⎤⎥⎦

∆UPG(k) =

⎡⎢⎣ �u(k − 1)...
�u(k − nB)

⎤⎥⎦ , YPG(k) =
⎡⎢⎣ y(k)

...
y(k − nA)

⎤⎥⎦
We can now write (3.90) in the following form

Gp(z−1)�u(k + p− 1|k) = gFGp ∆U(k) + gPGp ∆UPG(k), p = N1, ..., N
where gFGp and g

PG
p are (row) vectors consisting of coefficients of the polyno-

mials GFGp and GPGp (complemented with zeroes if necessary). Denoting

GFG =

⎡⎢⎣g
FG
N1
...
gFGN

⎤⎥⎦ , GPG =
⎡⎢⎣g
PG
N1
...
gPGN

⎤⎥⎦
we can write the forced and free components of the output prediction in the
following form

∆Y(k) = GFG∆U(k) (3.91)

Y0(k) = FYPG(k) +GPG∆UPG(k) (3.92)

It follows from the form of the forced component equation (3.91) that the
equality

GFG =M

must be true, whereM is the dynamic matrix (3.33), derived in Section 3.2.2,
for N1 = τ+1 taking the characteristic form (3.35). Thus, it can be concluded
that
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GPGτ+1(z
−1) = (Gτ+1(z−1)− sτ+1)z1

GPGτ+2(z
−1) = (Gτ+2(z−1)− sτ+1 − sτ+2z−1)z2
...

GPGτ+j(z
−1) = (Gτ+j(z−1)− sτ+1 − sτ+2z−1 − · · · − sτ+jz−j+1)zj

for j = 1, 2..., N − τ , where sτ+1 is the first non-zero coefficient of the process
step response, and sτ+2, sτ+3, ... are the following coefficients. Rows of the
matrix F consist of coefficients of polynomials Fp,

Fp = fp,0 + fp,1z−1 + · · ·+ fp,nAz−nA , p = N1, ..., N

F =

⎡⎢⎢⎢⎣
fN1,0 fN1,1 · · · fN1,nA
fN1+1,0 fN1+1,1 · · · fN1+1,nA
...

...
. . .

...
fN,0 fN,1 · · · fN,nA

⎤⎥⎥⎥⎦
Using the derived formulae, the cost function of the controller optimization

problem can be written in the form (3.40)

J(k) =
∥∥[Ysp(k)− Y0(k)]−M∆U(k)∥∥2Ψ + ‖∆U(k)‖2Λ (3.93)

identical as the one formulated for the DMC algorithm in Section 3.2.2 – only
the free component Y0(k) will now be in the form (3.92), in place of (3.28).
Reasoning which leads to an explicit, analytical from of the GPC control law
(with inequality constraints not considered) will thus be the same as it was
in Section 3.2.2 for the DMC controller. In this way we obtain the vector of
optimal increments of the controller output signal in the form

∆Û(k) = K[Ysp(k)− (FYPG(k) +GPG∆UPG(k))] (3.94)

and the explicit, unconstrained GPC control law

�û(k) = �û(k|k) = K1[Ysp(k)− (FYPG(k) +GPG∆UPG(k))] (3.95)

in a typical form of a linear dependence relating the optimal control increments
to the difference between a set-point trajectory and a free output trajectory,
where K1 denotes the first row of the matrix K, see (3.44), (3.46), (3.65).
We shall present now the GPC control law in a form showing a direct de-

pendence of the current optimal controller output�û(k) on past process input
increments (i.e., past controller outputs) and on process outputs. Denoting

F =
[
F0 F1 · · · FnA

]
GPG =

[
GPG1 GPG2 · · · GPGnB

]
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Fig. 3.20. Structure of the explicit unconstrained GPC control law

where Fj and GPGj are columns of the matrices F and GPG, and using the
structure (3.46) of the matrix K we can write

�û(k) =
N∑
p=N1

k1,p−N1+1y
sp(k + p|k)+

−
nA∑
j=0

(K1Fj)y(k − j)−
nB∑
j=1

(K1GPGj )�u(k − j)

=
N∑
p=N1

k1,p−N1+1y
sp(k + p|k)+

−
nA∑
j=0

kyj y(k − j)−
nB∑
j=1

kuj�u(k − j) (3.96)

where, due to the considered case of a SISO system, the appropriate controller
gains k1p, k

y
j and k

u
j are scalars. The obtained structure of the unconstrained,

explicit version of the GPC control law is presented in Fig. 3.20.
In a practically important case with the set-point constant in the entire

prediction horizon, i.e., ysp(k+1|k) = · · · = ysp(k+N |k) = ysp(k), the GPC
control law (3.96) reduces to the form

�û(k) = keysp(k)−
nA∑
j=0

kyj y(k − j)−
nB∑
j=1

kuj�u(k − j) (3.97)

where
ke =

N∑
p=N1

k1,p−N1+1

The structure of the GPC control law (3.96), or (3.97), corresponds to the
one met in the literature, see e.g., [18]. However, it is not very convenient for
certain comparisons and analyses. Therefore, it will now be transformed to a
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slightly different form. To this end, a lemma presenting the detailed structure
of the matrix F must be proven first. Recall that rows of the matrix F consist
of coefficients of polynomials Fp(z−1), p = N1, ..., N , obtained from solutions
of the Bézout identities (3.86).

Lemma 3.1 Each polynomial

Fp(z−1)− 1 = fp,0 − 1 + fp,1z−1 + · · ·+ fp,nAz−nA , p = 1, 2, ..., N

can be divided by � = 1− z−1.
Proof. The thesis will be proven using the principle of mathematical induc-
tion. For p = 1 the Bézout identity (3.86) takes the form

E1(z−1)A(z−1) + F1(z−1)z−1 = 1

Subtracting z−1 from both sides we obtain

E1(z−1)�A(z−1) + (F1(z−1)− 1)z−1 = �

because, from the definition, A(z−1) = �A(z−1). Thus, if the polynomial
F1(z−1) is a solution to the Bézout identity, then the polynomial F1(z−1)− 1
must be divisible by �.
Assume now that for a certain p ≥ 1 the polynomial Fp(z−1)−1 is divisible

by �. The following recurrent formula is a direct consequence of the fact that
the polynomials Ep and Fp were obtained as a result of the division of 1 by
the polynomial A(z−1):

Fp+1(z−1)z−1 = Fp(z−1)− fp,0A(z−1)

Subtracting z−1 from the left side of this equality and z−1 = z−1 − 1 + 1
from its right side we obtain

(Fp+1(z−1)− 1)z−1 = (Fp(z−1)− 1) + (1− z−1)− fp,0A(z−1)

Because A(z−1) = �A(z−1), then if Fp(z−1) − 1 is divisible by �, then
Fp+1(z−1)− 1 must be divisible by �, too. This completes the proof. �
Using the lemma, each polynomial Fp(z−1) can be presented in the fo-

llowing form

Fp(z−1) = 1 + F̄p(z−1)�
= 1 + f̄p,1�+ f̄p,2z−1�+ · · ·+ f̄p,nAz−nA+1� (3.98)

where

f̄p,1 = fp,0 − 1
f̄p,,j+1 = fp,j + f̄p,j , j = 2, ..., nA − 1
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Therefore, the following alternative representation of the product FYPG(k)
follows directly

FYPG(k) = I y(k) +

⎡⎢⎢⎢⎢⎣
f̄N1,1 f̄N1,2 · · · f̄N1,nA
f̄N1+1,1 f̄N1+1,2 · · · f̄N1+1,nA
...

...
. . .

...

f̄N,1 f̄N,2 · · · f̄N,nA

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

�y(k)
�y(k − 1)
...

�y(k − nA + 1)

⎤⎥⎥⎥⎥⎦
= I y(k) + F̄�YPG(k) (3.99)

where�YPG(k) = [�y(k) �y(k−1) · · · �y(k−nA+1)]T . Denoting columns
of the matrix F̄ by F̄j ,

F̄ = [F̄1 · · · F̄nA ]
the GPC control law (3.96) can now be transformed to the form

�û(k) =
N∑
p=N1

k1,p−N1+1(y
sp(k + p|k)− y(k))+

−
nA∑
j=1

(K1F̄j)�y(k − j + 1)−
nB∑
j=1

kuj�u(k − j)

=
N∑
p=N1

k1,p−N1+1(y
sp(k + p|k)− y(k))+

−
nA∑
j=1

k̄yj�y(k − j + 1)−
nB∑
j=1

kuj�u(k − j) (3.100)

which in the case of the set-points constant in the entire prediction horizon
reduces to

�û(k) = ke(yspk − y(k))−
nA∑
j=1

k̄yj�y(k − j + 1)−
nB∑
j=1

kuj�u(k − j) (3.101)

Figures 3.21 and 3.22 illustrate the obtained alternative structure of the GPC
control law.
In cases with constraints on the process input signal, it is necessary to

complement the structure of the GPC explicit unconstrained controller, analo-
gously as it was done for the DMC controller – adding to the controller struc-
ture nonlinear elements implementing constraints on controller output incre-
ments and amplitudes and adding the anti-windup loop. An example of such
a structure, being an extension of Fig. 3.22, is presented in Fig. 3.23 (compare
with Fig. 3.14).
The GPC control law presented in the form (3.100), or (3.101) for a cons-

tant set-points prediction, is easy to compare with the DMC control law given
by the formula (3.48), or (3.52), respectively. Analogously, we can compare
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Fig. 3.21. Alternative structure of the unconstrained GPC control law

Fig. 3.22. Alternative structure of the unconstrained GPC control law for the set-
point constant in the prediction horizon

Fig. 3.23. Structure of the unconstrained GPC control law from the previous figure,
supplemented by elements performing projection of its output onto constraints on
amplitude and rate of change of process inputs, with additional anti-windup loop
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Figures 3.21 and 3.22 illustrating the structure of the explicit GPC controller
with Figures 3.4 and 3.5 which present the structure of the explicit DMC
controller. In the DMC controller structure, there is one feedback from the
process output (only current output value y(k) is fed back) and feedbacks from
D − 1 values of past process input increments (where D denotes a dynamics
horizon of the process). In the GPC controller, there are feedbacks from the
current process output value and last nA past values of the output increments,
and from last nB past values of the process input increments, where nA and
nB are degrees of polynomials of the process model (3.85).
If the sampling period is short in comparison with the dynamics horizon

of the process, then the step response contains a large number of elements,
it is “long”. At the same time, it can be often well described by a discrete
transfer function with polynomials of a relatively low order. Then D � nA
and D � nB and a model used in the GPC algorithm has a much more effi-
cient representation, the number of feedbacks in the structure of the control
law is much smaller. However, remember that a model in the form of a step
response is non-parametric, obtained most often on the basis of a direct, sim-
ple and comprehensive identification experiment on the process. To obtain a
model used in the GPC algorithm it is necessary to perform an appropriate
identification procedure both of its structure and parameters.

Example 3.2
To illustrate the design method and to present the form of the GPC control
law, it will be calculated for the process from Example 3.1, modeled there by
a discrete step response (3.55). Assume, as in the mentioned example, that
N1 = 3, Nu = 3, N = 6 and Ψ= I, Λ=λI. For the GPC control algorithm,
the process will be described by a model in the form of a discrete difference
equation

y(k) + ay(k − 1) = b2u(k − 3) + b3u(k − 4) + ε(k)/�

which describes dynamics with the process time delay τ equal to two sam-
pling periods (see the process step response in Example 3.1), and thus the
corresponding input time delay in the difference equation τ̄ = 3. Fitting, for
ε(k) = 0, the model parameters to the points of the step response (by the
least squares method) we obtain

(1− 0.2676z−1)y(k) = (0.1989z−2 + 0.2552z−3)u(k − 1) (3.102)

i.e.,
A(z−1) = 1− 0.2676z−1
B(z−1) = 0.1989z−2 + 0.2552z−3

The Bézout identity in the considered case takes the following form

Ep(z−1)(1− 1.2676z−1 + 0.2676z−2) + Fp(z−1)z−p = 1
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where
1− 1.2676z−1 + 0.2676z−2 = A(z−1)(1− z−1) = A(z−1)

The solutions to the Bézout identity for subsequent values of p = 1, 2, ..., 6,
obtained by a division of 1 by A(z−1), are presented in Table 3.1. In the last
column of the table polynomials F̄p(z−1) which are transformed forms (3.98)
of the polynomials Fp(z−1), are also given.

Table 3.1. Polynomial solutions to the Bézout identity

p Ep(z−1) Fp(z−1) F̄p(z−1)

1 1 1.2676− 0.2676z−1 0.2676
2 1 + 1.2676z−1 1.3392− 0.3392z−1 0.3392
3 1 + 1.2676z−1 + 1.3392z−2 1.3584− 0.3584z−1 0.3584
4 1 + 1.2676z−1 + 1.3392z−2+
+1.3584z−3 1.3635− 0.3635z−1 0.3635

5 1 + 1.2676z−1 + 1.3392z−2+
+1.3584z−3 + 1.3635z−4 1.3649− 0.3649z−1 0.3649

6 1 + 1.2676z−1 + 1.3392z−2+
+1.3584z−3 + 1.3635z−4+
+1.3649z−5 1.3652− 0.3652z−1 0.3652

Next, calculating polynomials Gp(z−1) = Ep(z−1)B(z−1), the searched for-
mulae (3.88) for predictions y(k + p|k), p = 3, 4, 5, 6 are obtained. We write
these formulae in a vector form (3.91) and (3.92) below, separately for the
forced component ∆Y(k) and for the free component Y0(k)⎡⎢⎢⎣

�y(k + 3|k)
�y(k + 4|k)
�y(k + 5|k)
�y(k + 6|k)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0.1989 0 0
0.5073 0.1989 0
0.5899 0.5073 0.1989
0.6120 0.5899 0.5073

⎤⎥⎥⎦
⎡⎣ �u(k|k)
�u(k + 1|k)
�u(k + 2|k)

⎤⎦
i.e., ∆Y(k) =M∆U(k)

⎡⎢⎢⎣
y0(k + 3|k)
y0(k + 4|k)
y0(k + 5|k)
y0(k + 6|k)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0.5073 0.5899 0.3418
0.5899 0.6120 0.3467
0.6120 0.6183 0.3485
0.6183 0.62 0.3483

⎤⎥⎥⎦
⎡⎣�u(k − 1)�u(k − 2)
�u(k − 3)

⎤⎦+

+

⎡⎢⎢⎣
1.3584 −0.3584
1.3635 −0.3635
1.3649 −0.3649
1.3652 −0.3652

⎤⎥⎥⎦[ y(k)y(k − 1)
]

i.e., Y0(k) = GPG∆UPG(k) + FYPG(k)
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A careful reader should note certain differences in values of elements of
the dynamic matricesM, the one obtained above and that from Example 3.1
(compare with (3.56)). The differences are caused by the fact that the matrix
obtained above consists of elements of the step response of the dynamic system
described by (3.102), and not of the elements of the original step response
(3.55).
A solution to the GPC optimization problem is given by the formula (3.94),

where matrices K are, for the same values of λ, very close to those obtained
in Example 3.1, with differences resulting from slightly different matricesM.
Assuming that ysp(k + 3|k) = · · · = ysp(k + 6|k) = ysp(k) we obtain the
control law in the form (3.96)

�û(k) =
4∑
p=1

k1py
sp(k)−

1∑
j=0

(K1Fj+1)y(k − j)−
3∑
j=1

(K1GPGj )�u(k − j)

= keysp(k)−
1∑
j=0

kyj y(k − j)−
3∑
j=1

kuj�u(k − j)

where K1 is the first row of the matrix K, while Fj and GPGj are columns of
the matrices F and GPG.
For λ = 0.01 we obtain the following parameters of the GPC control law:

ke = 2.8618, [ky0 k
y
1 ] = [3.8933 − 1.0314],

[ku1 k
u
2 k

u
3 ] = [1.5454 1.7131 0.9835],

for λ = 0.05 these parameters are

ke = 2.0653, [ky0 k
y
1 ] = [2.8177 − 0.7464],

[ku1 k
u
2 k

u
3 ] = [1.1484 1.2453 0.7120],

and for λ = 0.1 they are equal to

ke = 1.7153, [ky0 k
y
1 ] = [2.3362 − 0.6208],

[ku1 k
u
2 k

u
3 ] = [0.9678 1.0381 0.5922].

Let us note that absolute values of feedback coefficients ke, kuj and k
y
j decrease

along with the increase of the value of the weight (penalty) coefficient λ, as it
was in the case of the DMC algorithm.
The control system with the designed GPC algorithm was first simulated

without constraints. We shall not present the obtained trajectories, as they
are practically identical to those presented in Example 3.1, obtained with
the DMC algorithm, see Fig. 3.6, Fig. 3.7 and Fig. 3.8. Similar trajectories
to those obtained with the DMC algorithm were also obtained for the case
with constraints on amplitude and rate of change of the process input signal,
applying the structure presented in Fig. 3.23, see Fig. 3.13 and Fig. 3.16, as
well as for a change of the disturbance, see Fig. 3.17 and Fig. 3.18.
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Fig. 3.24. Trajectories in a control system with the unconstrained GPC controller
with the reference trajectory, for γ = 0.3

Fig. 3.25. Trajectories in a control system with the unconstrained GPC controller
with the reference trajectory, for γ = 0.6

Trajectories presented in Fig. 3.24 and Fig. 3.25 were obtained using a
reference trajectory (3.81), instead of the constant set-point trajectory, in the
the GPC algorithm with λ = 0.1. They illustrate the influence of the reference
trajectory, with γ = 0.3 and γ = 0.6, respectively, on the behavior of the GPC
control system (compare also with Fig. 3.6 corresponding to γ = 0).
Application of the reference trajectory causes smoother changes of the

controlled variable, the greater the value of γ the longer the time needed
to approach the constant set-point by the controlled variable. This result
could of course be achieved only as a result of an appropriate shaping of the
process input trajectory, by smoothing its variability. However, the influence
of the reference trajectory on the controller output signal seems to be weaker
than that caused by the weighting coefficient λ. The nature of the reference
trajectory will be discussed in more detail at the end of this chapter. �

Comparing Examples 3.2 and 3.1, concerning the same process but with
the GPC and DMC controllers, it should be emphasized that the considered
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step response of the process (3.55) is very short, it contains only 6 elements
(D = 6). Thus the number of coefficients of this step response and the number
of parameters of the corresponding discrete transfer function model are simi-
lar. This is a result of a large sampling period, in comparison to the process
dynamics. This is usually not the case – in typical situations the number of
elements of a step response model is larger than the number of coefficients of
a discrete transfer function model (a difference equation model).
The fact that practically identical trajectories were obtained in simulations

of both GPC and DMC control systems does need to be commented upon.
The output predictor in the GPC algorithm has been derived as a minimum
variance one, for the model (3.85) with the disturbance in the form of an inte-
grated zero-mean white noise ε(k). However, this can be equivalently written
in the form

A(z−1)y(k) = B(z−1)u(k − 1) + d(k) (3.103)

where d(k) is governed by the difference equation

d(k) = d(k − 1) + ε(k) (3.104)

and is precisely the disturbance model used in the DMC algorithm, as optimal
prediction of d(k), as defined by (3.104), is the constant output disturbance
prediction. Therefore, the GPC algorithm can also be derived using directly
the model (3.103), as it will be shown in the next section, other formulae for
prediction than those in the DMC algorithm stemming from a different linear
modeling of the same process. Thus, with the same form of the cost function
identical simulation results must have been obtained in Examples 3.1 and 3.2,
for the same simulation conditions with exact process models assumed.
However, in cases when during a control system simulation there is a dif-

ference between a process description and its model used for the controller
design, the results obtained with DMC and GPC controllers can differ. A li-
near model is usually only an approximate description of a nonlinear process
at an operating point. Therefore, if disturbances or changes of set-points lead
the process out of the range of a good linear approximation, then the effects
of inaccurate modeling become visible, usually in different ways depending
on the type of the linear controller applied. To check this effect, the control
system was simulated with the unconstrained GPC controller from Exam-
ple 3.2 in the structure where the controller output signal is not projected
on process input constraints, under conditions identical to those assumed for
the unconstrained DMC controller presented in Figures 3.9 and 3.15. In the
first case, when an amplitude constraint is active, trajectories obtained with
the GPC algorithm are presented in Fig. 3.26. First parts of the trajectories
are quite similar to those presented in Fig. 3.9, but then the differences be-
come significant. Further, in Fig. 3.27 trajectories for a case with additional
and active constraint on the rate of change of the process input signal are
presented. Comparing with the trajectories from Fig. 3.15, corresponding to
the same situation but with the DMC controller, significant differences can
be observed.
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Fig. 3.26. Trajectories in the control system with the unconstrained GPC controller,
with the controller output not projected onto the active amplitude constraint

Fig. 3.27. Trajectories in the control system with the unconstrained GPC controller,
with the controller output not projected onto active amplitude (≤ 2) and rate of
change (≤ 0.5) constraints

The GPC algorithm, like the DMC algorithm, ensures zero steady-state
control errors. This fact can easily be shown, reasoning analogously as we
did for the DMC algorithm in the first part of Section 3.2.5. The prediction
equations used should only be in the alternative form

y(k + p|k) = y(k) +
nA∑
j=1

f̄p,j�y(k − j + 1) +
nB∑
j=1

gPGp,j �u(k − j)+

+
t∑
j=1

gFGp,j �u(k + t− j|k), t = min{p, Nu}, p = N1, ..., N

which in the vector notation takes the following form

Ypred(k) = Y(k) + F̄∆YPG(k) +GPG∆UPG(k) +M∆U(k)
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Now, it should only be noted that in a steady-state all increments of process
inputs and outputs are zero.
A more significant difference between the GPC and DMC algorithms re-

sults from the fact that a step response model can only describe asymptotically
stable processes (self-regulating processes), with integration at most, when in-
cremental step response model must be used, see Section 3.2.1. On the other
hand, a transfer function model can also describe unstable processes, with uns-
table poles of a discrete transfer function. To ensure a correct operation of the
GPC controller in such cases, it is important to make an appropriate selection
of control and prediction horizons. They have to be sufficiently long, such as
to suppress influence of unstable process modes within a time interval which
does not exceed the length of the prediction horizon, see [125, 82].

3.3.2 GPC with Constant Output Disturbance Prediction

The presented design method of the GPC algorithm, based on application
of a diophantine equation (Bézout identity), is general and allows for a full
formulation and analysis – but it is fairly complicated. The formulae defining
the GPC algorithm can be derived in a simpler way, when assuming the pro-
cess and disturbance models in the form (3.103)-(3.104), with the resulting
constant output disturbance prediction, as in the DMC algorithm. This design
method will now be presented.
Assuming a unitary step change in the input signal and using an ARX-type

process model

y(k) = − a1y(k− 1) · · · − anAy(k−nA)+ b0u(k− 1)+ · · ·+ bnBu(k−nB − 1)
(3.105)

it is possible to evaluate directly the sequence of the step response coefficients
{s1, s2, . . .}. They are then given by the following formula:

sk = −
min{k−1,nA}∑

i=1

aisk−i +
min{k−1,nB}∑

i=0

bi (3.106)

The dynamic matrixM consists of the elements of the step response, it is used
to calculate the forced component of the predicted output trajectory (3.91).
To calculate elements y0(k + p|k) of the free component of the predicted

output trajectory, it is assumed that the process input is constant over the
prediction horizon and equal to the value u(k − 1), calculated and applied in
the process during the last sampling period,

u(k + p|k) = u(k − 1), p = 0, 1, ..., N − 1 (3.107)

Assuming these input signal values we shall calculate y0(k+ p|k) sequentially
for p = 1, ..., N , from the formula

y0(k + p|k) = y(k + p) + d(k) (3.108)
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where subsequent values y(k + p) will be calculated from the model (3.105)
applied for k = k+p, but for k+p− j > k taking, in place of unknown future
values y(k + p − j), their previously calculated predictions y0(k + p − j|k).
To the outputs predicted in this way a constant output disturbance estimate
is added, with a value d(k) equal to that calculated at the current sampling
instant k,

d(k) = y(k)− y(k|k − 1)

= y(k)− [−
nA∑
i=1

aiy(k − i) +
nB∑
i=0

biu(k − 1− i)] (3.109)

The presented method leads to the following formula for elements of the free
output response

y0(k + p|k) = −
min{nA,p−1}∑

i=1

aiy
0(k + p− i|k)−

nA∑
i=min{nA,p−1}+1

aiy(k + p− i)

+
min{nB ,p}∑
i=0

biu(k − 1) +
nB∑

i=min{nB ,p}+1
biu(k − 1 + p− i) + d(k) (3.110)

p = 1, 2, ..., N, where the disturbance value d(k) is given by (3.109).
Note that the formula (3.110) is recurrent. It does not give a general,

explicit form of the dependence of the free output response trajectory on past
process inputs and outputs, thus it cannot be directly used to formulate the
control law. It can, however, be used during implementation of a numerical
version of the GPC algorithm, where at each step the free output response is
first calculated and then the quadratic optimization problem is solved. It is
also possible to evaluate an explicit dependence of the free output response
trajectory on past inputs and outputs only, by a recurrent application of the
formula (3.110). This will be demonstrated in an example below.

Example 3.3
For the process from Example 3.2, we shall show how to derive formulae for
the free output trajectory using (3.110).
The process model is given by (3.102), i.e.,

a1 = −0.2676, nA = 1
b0 = b1 = 0, b2 = 0.1989, b3 = 0.2552, nB = 3

From (3.109) we get

d(k) = y(k) + a1y(k − 1)− b2u(k − 3)− b3u(k − 4)

For p = 1, we obtain from (3.110)
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y0(k + 1|k) = −a1y(k) + b2u(k − 2) + b3u(k − 3)+
+ y(k) + a1y(k − 1)− b2u(k − 3)− b3u(k − 4)

= 1.2676y(k)− 0.2676y(k − 1)+
+ 0.1989u(k − 2) + 0.0563u(k − 3)− 0.2552u(k − 4)

Further, for p = 2 we have from (3.110)

y0(k + 2|k) = −a1y0(k + 1|k) + b2u(k − 1) + b3u(k − 2)+
+ y(k) + a1y(k − 1)− b2u(k − 3)− b3u(k − 4)

Inserting the formula for y0(k + 1|k) obtained earlier into this equality we
obtain

y0(k + 2|k) = 1.3392y(k)− 0.3392y(k − 1)+
+ 0.1989u(k − 1) + 0.3084u(k − 2)− 0.1838u(k − 3)− 0.3235u(k − 4)

Analogously, for p = 3 we have

y0(k + 3|k) = −a1y0(k + 2|k) + b2u(k − 1) + b3u(k − 1)+
+ y(k) + a1y(k − 1)− b2u(k − 3)− b3u(k − 4)

and inserting the formula for y0(k+2|k) obtained earlier into this equality we
obtain

y0(k + 3|k) = 1.3584y(k)− 0.3584y(k − 1)+
+ 0.5073u(k − 1) + 0.0825u(k − 2)− 0.2481u(k − 3) + 0.3418u(k − 4)

As can easily be compared, the obtained expression is equivalent to the for-
mula calculated in Example 3.2, given by the first row of the matrix depen-
dence describing Y0(k) obtained there. Derivation of the remaining formulae,
describing y0(k+4|k), y0(k+5|k) and y0(k+6|k), can be done in an analogous
way, the calculations are left to the reader. �

3.3.3 GPC Algorithm for a MIMO Process

In the case of a multi-input multi-output (MIMO) process, with nu control
inputs and ny controlled outputs, the process model is given by (3.84)

A(z−1)y(k) = B(z−1)u(k − 1) + ε(k)� (3.111)

The analysis based on application of the Bézout identity and leading to the
derivation of formulae for output prediction and GPC control laws, performed
for a SISO process, applies directly also to the case of a MIMO process. The
Bézout identity now has a matrix form (compare with (3.86))
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Ep(z−1)A(z−1) + Fp(z−1)z−p = 1

where A(z−1) = �A(z−1). Reasoning analogously as it was done in the SISO
case we obtain the following formula for output predictions

y(k + p|k) = Fp(z−1)y(k) +Ep(z−1)B(z−1)�u(k + p− 1|k)
= Fp(z−1)y(k) +Gp(z−1)�u(k + p− 1|k)

where Gp(z−1)�u(k+p−1|k) can be divided into a term which is dependent
on current and future increments of process inputs (i.e., decision variables of
the controller) and a term dependent on previous increments of process inputs,
in this way obtaining formulae for output predictions in the form identical to
(3.91) and (3.92)

∆Y(k) =M∆U(k) (3.112)

Y0(k) = FYPG(k) +GPG∆UPG(k) (3.113)

Now, ∆Y(k), Y0(k) etc., consist of vectors (not scalars) corresponding to the
particular samples. The structure of the matrix F is also analogous, defined
by Lemma 3.1, thus

FYPG(k) = Iy(k) + F̄∆YPG(k)
The structures of explicit GPC control laws will also be the same. Figures
illustrating this structure will be analogous to Figures (3.20) and (3.21) –
only in all formulae scalar coefficients of controller gains should be replaced by
matrices of coefficients, just like blocks of the discrete integrator and one-step
delay (compare with related figures for the DMC control law in Section 3.2.2,
all presented for the MIMO case there).
A detailed presentation and discussion of the GPC control algorithm for a

multivariable process is beyond the scope of this book, especially because we
have full analogy with the SISO case mentioned before. We refer an interested
reader to the book [18], devoted mainly to the GPC algorithm. However, one
will not find there the GPC control law given by the alternative formulae
(3.100) or (3.101), as well as formulae for a direct, recurrent calculation of
elements of a MIMO free output response, which will therefore now be given.
Assuming a constant output disturbance model for each process output, it

is possible to generalize (3.106) and (3.110), which were derived directly from
the model equations, onto the MIMO case – thus defining elements of the step
responses and, in a recurrent way, free components of the predicted output
trajectories. We shall consider a diagonal matrix A(z−1) only, denoting by
Am(z−1) and Bm,j(z−1) component polynomials of the polynomial matrices
A(z−1) and B(z−1), which define a response of the m-th output on nu control
inputs

ym(k) = −
nA∑
i=1

ami ym(k − i) +
nu∑
j=1

nB∑
i=0

bm,ji uj(k − 1− i) (3.114)
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m = 1, ..., ny (it is assumed that each polynomial is of the same degree,
nmA = nA, n

m,j
B = nB, without loss of generality). From the above dependence

we immediately obtain a formula for elements of the step response, for each
pair (j-th input)–(m-th output),

sm,jk = −
min{k−1,nA}∑

i=1

ami s
m,j
k−i +

min{k−1,nB}∑
i=0

bm,ji (3.115)

m = 1, ..., ny, j = 1, ..., nu (compare with (3.106)). Knowing the elements of a
multivariable step response we can immediately formulate the corresponding
dynamic matrix (see Section 3.2.1), and thus forced trajectories of the outputs
in a prediction horizon.
Reasoning analogously as in the SISO case we can also easily obtain re-

current formulae for elements of free trajectories of the predicted outputs in
the prediction horizon, which are equivalents of (3.110) for the MIMO case,
in the form

y0m(k + p|k) = −
min{nA,p−1}∑

i=1

ami y
0
m(k + p− i|k)+

−
nA∑

i=min{nA,p−1}+1
ami ym(k + p− i) +

nu∑
j=1

⎡⎣min{nB ,p}∑
i=0

bm,ji uj(k − 1)+

+
nB∑

i=min{nB ,p}+1
bm,ji uj(k − 1 + p− i)

⎤⎦+ dm(k) (3.116)

p = 1, ..., N , where

dm(k) = ym(k)−
⎡⎣− nA∑

i=1

ami ym(k − i) +
nu∑
j=1

nB∑
i=0

bm,ji uj(k − 1− i)
⎤⎦

are constant output disturbances calculated at current sampling instant k,
m = 1, ..., ny.
The design method presented above will be illustrated in Example 3.4 in

Section 3.3.4, where a control system with the GPC algorithm, both in explicit
and numerical versions, is demonstrated for an example two-input two-output
process.

3.3.4 GPC Algorithm in Numerical Version

The formulations of quadratic optimization problems for different predictive
control algorithms with linear process models differ in methods of calculation
of the predicted values of the controlled outputs over the prediction horizon,
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first of all the free component Y0(k) of the predicted output trajectory. That
is also the difference between the quadratic optimization problem in the nu-
merical GPC algorithm, when compared to the analogous problem (3.69) in
the DMC algorithm.
The quadratic optimization problem solved at each step of the GPC algo-

rithm in the numerical version has the following form

min
∆U(k)

{∥∥[Ysp(k)− Y0(k)]−M∆U(k)∥∥2Ψ + ‖∆U(k)‖2Λ}
subj. to : −∆Umax ≤ ∆U(k) ≤ ∆Umax

Umin ≤ U(k − 1) + J∆U(k) ≤ Umax
Ymin ≤ Y0(k) +M∆U(k) ≤ Ymax

(3.117)

where the free output trajectory Y0(k) is calculated from (3.113)
Y0(k) = FYPG(k) +GPG∆UPG(k)

All the values occurring in the above formulation were introduced previously
in Section 3.2.4, where the numerical DMC algorithm was presented. The dis-
cussion given there concerning the formulation of the quadratic optimization
problem in a standard form, feasibility of solutions etc., remains of course
valid also for the GPC algorithm.

Example 3.4
To illustrate a MIMO GPC algorithm, both in explicit and numerical versions,
we shall present results of simulations for a two-dimensional linear process
model given by the following transfer function matrix

[
Y1(s)

Y2(s)

]
=

⎡⎢⎢⎣
1

1 + 0.7s
5

1 + 0.3s
1

1 + 0.5s
2

1 + 0.4s

⎤⎥⎥⎦
[
U1(s)

U2(s)

]

representing a small-signal model of a continuous flow reactor at an operating
point ([18], p. 143).
Assuming the sampling period Tp = 0.03 min we obtain the following

discrete representation of the model

[
y1(k)

y2(k)

]
=

⎡⎢⎢⎣
0.041951z−1

1− 0.958048z−1
0.475812z−1

1− 0.904837z−1
0.058235z−1

1− 0.941764z−1
0.144513z−1

1− 0.927743z−1

⎤⎥⎥⎦
[
u1(k)

u2(k)

]

Converting elements of each of the two rows of the above matrix to a form
with a common denominator we obtain the model in the form
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A(z−1)y(k) = B(z−1)u(k − 1)
where

A(z−1) =

[
1 + a11z

−1 + a12z
−2 0

0 1 + a21z
−1 + a22z

−2

]

=

[
1− 1.862885z−1 + 0.866877z−2 0

0 1− 1.869508z−1 + 0.873715z−2

]

B(z−1) =

[
b1,10 + b

1,1
1 z

−1 b1,20 + b
1,2
1 z

−1

b2,10 + b
2,1
1 z

−1 b2,20 + b
2,2
1 z

−1

]

=

[
0.041951− 0.037959z−1 0.475812− 0.455851z−1
0.058235− 0.054027z−1 0.144513− 0.136097z−1

]

The following values for the horizons were assumed: prediction horizon N = 3
and control horizon Nu = 2, also N1 = 1 (time delays do not occur). Using
(3.115) one calculates elements of step responses and finally the dynamic
matrix

M =

⎡⎣S1 0S2 S1
S3 S2

⎤⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.04195 0.47581 0 0

0.05824 0.14451 0 0

0.08214 0.90635 0.04195 0.47581

0.11308 0.27858 0.05824 0.14451

0.12065 1.29591 0.08214 0.90635

0.16473 0.40297 0.11308 0.27858

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The formula for the output prediction, Y(k) = Y0(k)+M∆U(k), takes in the
considered case the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(k + 1|k)
y2(k + 1|k)
y1(k + 2|k)
y2(k + 2|k)
y1(k + 3|k)
y2(k + 3|k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y01(k + 1|k)
y02(k + 1|k)
y01(k + 2|k)
y02(k + 2|k)
y01(k + 3|k)
y02(k + 3|k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+M

⎡⎢⎢⎢⎣
�u1(k|k)
�u2(k|k)
�u1(k + 1|k)
�u2(k + 1|k)

⎤⎥⎥⎥⎦

The free output response Y0(k) can be calculated in a recurrent way using
(3.116):
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y01(k + 1|k) = −a11y1(k)− a12y1(k − 1) + b1,10 u1(k − 1)+
+ b1,11 u1(k − 1) + b1,20 u2(k − 1) + b1,21 u2(k − 1) + d1(k)

y02(k + 1|k) = −a21y2(k)− a22y2(k − 1) + b2,10 u1(k − 1)+
+ b2,11 u1(k − 1) + b2,20 u2(k − 1) + b2,21 u2(k − 1) + d2(k)

y01(k + 2|k) = −a11y01(k + 1|k)− a12y1(k) + b1,10 u1(k − 1)+
+ b1,11 u1(k − 1) + b1,20 u2(k − 1) + b1,21 u2(k − 1) + d1(k)

etc., until

y02(k + 3|k) = −a21y02(k + 2|k)− a22y02(k + 1|k) + b2,10 u1(k − 1)+
+ b2,11 u1(k − 1) + b2,20 u2(k − 1) + b2,21 u2(k − 1) + d2(k)

where estimates of the disturbances are calculated as differences between the
measured process outputs at sampling instant k and model outputs for this
instant calculated at the previous one, k − 1:

d1(k) = y1(k)− [−a11y1(k − 1)− a12y1(k − 2)+
+ b1,10 u1(k − 1) + b1,11 u1(k − 2) + b1,20 u2(k − 1) + b1,21 u2(k − 2)]

d2(k) = y2(k)− [−a21y2(k − 1)− a22y2(k − 2)+
+ b2,10 u1(k − 1) + b2,11 u1(k − 2) + b2,20 u2(k − 1) + b2,21 u2(k − 2)]

It was assumed that Ψ = I and Λ =λI, with λ = 0.075. Simulations of
the control system with the presented GPC algorithm were performed for the
following two situations:

1. Unconstrained, explicit GPC algorithm. In this case the solution vector of
the quadratic optimization problem is given analytically by the formula

∆Û(k) = K[Ysp(k)− Y0(k)]

where

K =

⎡⎢⎢⎢⎣
−0.04364 0.45453 −0.20244 0.76346 −0.32797 1.05657
0.90230 0.22863 0.44040 0.04689 0.02006 −0.12258
−0.12893 −0.11711 −0.15232 0.35308 −0.15013 0.79786
−1.27727 −0.39466 −0.19277 −0.11970 0.78629 0.13457

⎤⎥⎥⎥⎦
while two first elements of the solution vector are used as the actual
process control inputs at sampling instant k, �û1(k) = �û1(k|k) and
�û2(k) = �û2(k|k).
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2. Numerical GPC algorithm, with the following constraints on amplitudes
and rates of change of the process inputs

−2.5 ≤ u1 ≤ 2.5
−0.6 ≤ u2 ≤ 0.6
−0.5 ≤ ∆u1 ≤ 0.5
−0.3 ≤ ∆u2 ≤ 0.3

where at each step of the algorithm a constrained quadratic optimization
problem is solved.

Selected results of simulations with the unconstrained controller are pre-
sented in Fig. 3.28 (trajectories of set-points and controlled variables) and in
Fig. 3.29 (trajectories of controller outputs/process inputs), while results of a
simulation with the numerical controller are given in Fig. 3.30 and in Fig. 3.31,
respectively. The trajectories are presented for a time interval corresponding
to 250 algorithm steps (sampling periods). Within this interval, changes of the
set-points took place at steps 10, 110 and 160, while at steps 50 and 200 chan-
ges of disturbances with an amplitude 0.2 occurred, at the first and second
output, respectively.
In both situations good decoupling properties of the predictive controller

can easily be seen. In the case of the unconstrained controller, approaching

Fig. 3.28. Set-points and controlled outputs in the control system with unconstrai-
ned GPC controller (no constraints on process inputs)
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Fig. 3.29. Process inputs in the control system with unconstrained GPC controller

Fig. 3.30. Set-points and controlled outputs in the control system with numerical
GPC controller (with constraints on process outputs)
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Fig. 3.31. Process inputs in the control system with numerical GPC controller

the set-points by the controlled variables (process outputs) is faster, but ac-
companied by larger amplitudes and changes of the process input signals. In a
case with constraints the controller output trajectories are much more calm.
Of course, smaller (but optimal for the considered case) amplitudes and rates
of change of the process input signals result in longer rise times after step
changes of the set-points and in weaker attenuation of the disturbances.

�

3.4 MPC with State-space Process Model

First generations of predictive control algorithms were based on linear input-
output type models, in the form of pulse or step responses, and later in the
form of discrete difference equations (see Section 3.1). Such models are do-
minant in process control applications, and thus in the area where the MPC
algorithms were first derived and applied with a great success. These algo-
rithms, particularly in a numerical version where at each sampling instant a
quadratic programming problem is solved by a numerical optimization pro-
cedure, require quite a large amount of computations as compared to ear-
lier on-line feedback controllers. Thus, it was most natural and easier to ap-
ply the MPC algorithms first for supervisory control of industrial processes,
where longer sampling periods are usually used (see Chapter 1). Moreover,
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appearance and wide application of electronic distributed control systems in
industrial installations created a natural environment for implementations of
more computationally demanding supervisory algorithms, such as feedback
constraint control and optimization of set-points.
Introduction of predictive control algorithms with a process model in the

form of a set of linear state-space equations occurred later, after further sig-
nificant increase in computing power and reliability of computer control har-
dware, and at the same time when its dimensions and prices decreased. It
became possible to use the MPC algorithms for direct digital control of small
size processes, often isolated and well modeled by state-space equations, such
as e.g., electromechanical objects. Moreover, a process description in the form
of state-space equations turned out to be more convenient for a theoretical
analysis. In the 1990s the development and increase of popularity of predictive
control algorithms based on state-space equations could be well recognized.
For example, the Model Predictive Control Toolbox of the MATLAB� pa-
ckage, released in 1995, contains procedures for development and testing of
MPC algorithms which can be based on either form of the process model: a
step response or a set of linear state-space equations [99].
Formulation of the process model in the form of state-space equations

is a more general approach, convenient for a theoretical analysis of MPC
algorithms [82], especially for stability analysis. Moreover, it enables a natural
generalization to cases with nonlinear models. However, in many industrial
applications, where the input-output type modeling is dominant, a model in
the state-space form can be not natural, especially in a typical situation when
the full state vector is unavailable for measurement. Moreover, it is known that
a MPC algorithm based on a description of the process by a system of linear
state-space equations can have worse numerical properties, especially in cases
of long prediction horizons and large dimensionality of the state vector. The
MPC algorithm with the process model in the form of state-space equations
will be referred to as the MPCS algorithm (Model Predictive Control with
State-space equations) in this book, for notation simplicity.

3.4.1 Algorithms with Measured State

Consider the following form of the process state-space equations

x(k + 1) = Ax(k) +Bu(k) + v(k) (3.118)

y(k) = Cx(k) (3.119)

where x(k) is a state vector of a dimension nx which is assumed to be measured
and v(k) is a state disturbance which can also represent state modeling errors.
We shall now derive formulae defining predicted values of the state variables
assuming a constant state disturbance prediction model (which corresponds to
modeling the disturbances as integrated white noises). That is,
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v(k) = x(k)− [Ax(k − 1) +Bu(k − 1)] (3.120)

v(k) = v(k + 1|k) = · · · = v(k +N − 1|k) (3.121)

Denoting by x(k+p|k) a value of the state vector predicted at sampling instant
k for the future instant k + p in the prediction horizon, and proceeding in a
recurrent way, we obtain

x(k + 1|k) = Ax(k) +Bu(k|k) + v(k)
= Ax(k) +B(�u(k|k) + u(k − 1)) + v(k)

x(k + 2|k) = Ax(k + 1|k) +B(�u(k + 1|k) +�u(k|k) + u(k − 1)) + v(k)
= A2x(k) +AB(�u(k|k) + u(k − 1)) +Av(k)

+B(�u(k + 1|k) +�u(k|k) + u(k − 1)) + v(k)
= A2x(k) + (A+ I)B�u(k|k) +B�u(k + 1|k)+

+(A+ I)Bu(k − 1) + (A+ I)v(k)

x(k + 3|k) = Ax(k + 2|k) +B(�u(k + 2|k) +�u(k + 1|k) +
+�u(k|k) + u(k − 1)) + v(k)

= A3x(k) + (A2+A+ I)B�u(k|k) + (A+ I)B�u(k + 1|k)+
+B�u(k + 2|k) + (A2+A+ I)Bu(k − 1) + (A2 +A+ I)v(k)

...

x(k +Nu|k) = Ax(k +Nu − 1|k) +B(�u(k +Nu − 1|k) + · · ·+
+�u(k|k) + u(k − 1)) + v(k)

= ANux(k) + (ANu−1 + · · ·+A+ I)B�u(k|k)+
+(ANu−2 + · · ·+A+ I)B�u(k + 1|k)+

+ · · ·+B�u(k +Nu − 1|k)+
+(ANu−1 + · · ·+A+ I)Bu(k − 1) + (ANu−1 + · · ·+A+ I)v(k)

x(k +Nu + 1|k) = Ax(k +Nu|k) +B(�u(k +Nu − 1|k) + · · ·+
+�u(k|k) + u(k − 1))

= ANu+1x(k) + (ANu + · · ·+A+ I)B�u(k|k)+
+(ANu−1 + · · ·+A+ I)B�u(k + 1|k)+

+ · · ·+ (A+ I)B�u(k +Nu − 1|k)+
+(ANu + · · ·+A+ I)Bu(k − 1) + (ANu + · · ·+A+ I)v(k)

...
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x(k +N |k) = ANx(k) + (AN−1+ · · ·+A+ I)B�u(k|k)+
+ (AN−2+ · · ·+A+ I)B�u(k + 1|k) + · · ·+
+(AN−Nu + · · ·+A+ I)B�u(k +Nu − 1|k)+

+(AN−1+ · · ·+A+ I)Bu(k − 1) + (AN−1+ · · ·+A+ I)v(k)
Defining a vector X (k) and recalling the definition of �U(k),

X (k) =

⎡⎢⎣ x(k + 1|k)...
x(k +N |k)

⎤⎥⎦ , ∆U (k) =
⎡⎢⎣ �u(k|k)

...
�u(k +Nu − 1|k)

⎤⎥⎦
the obtained formulae can be put together into a matrix form

X (k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
A2
...
ANu

ANu+1
...
AN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(k)+

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B · · · 0
(A+ I)B · · · 0
...

. . .
...

(ANu−1+ · · ·+A+ I)B · · · B

(ANu+ · · ·+A+ I)B · · · (A+ I)B
...

. . .
...

(AN−1+ · · ·+A+ I)B · · · (AN−Nu + · · ·+A+ I)B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∆U(k)+

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
A+ I
...

ANu−1+ · · ·+A+ I
ANu+ · · ·+A+ I

...
AN−1+ · · ·+A+ I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bu(k − 1) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
A+ I
...

ANu−1+ · · ·+A+ I
ANu+ · · ·+A+ I

...
AN−1+ · · ·+A+ I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
v(k)

i.e., denoting matrices in the above equation by Ã, Mx and V,

X (k) = Ãx(k) +Mx∆U(k) +VBu(k − 1) +Vv(k) (3.122)

Observe that N1 = 1 was assumed, without loss of generality, as cases with
N1 > 1 can easily be obtained by removing an appropriate number of first
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rows from the presented prediction equations. Defining the matrix C̃ of di-
mension N · ny ×N · nx

C̃ =

⎡⎢⎢⎢⎣
C 0 · · · 0
0 C · · · 0
...
...
. . .
...

0 0 · · · C

⎤⎥⎥⎥⎦
the equation describing the trajectory of predicted outputs is obtained

Ypred(k) = C̃X (k)
=
[
C̃Ãx(k) + C̃VBu(k − 1) + C̃Vv(k)

]
+ C̃Mx∆U(k)

= Y0(k) +∆Y(k) (3.123)

or equivalently, as separate formulae for subsequent future sampling instants:

y(k + p|k) = CApx(k) +C [
p−1∑
j=0

Aj ]Bu(k − 1) +C [
p−1∑
j=0

Aj ] v(k)+

+C
p−1∑
i=0

[
p−1−i∑
j=0

Aj ]B�u(k + i|k), for p ≤ Nu

y(k + p|k) = CApx(k) +C [
p−1∑
j=0

Aj ]Bu(k − 1) +C [
p−1∑
j=0

Aj ] v(k)+

+C
Nu−1∑
i=0

[
p−1−i∑
j=0

Aj ]B�u(k + i|k), for p > Nu

where the last sums are elements of a forced component of the predicted
outputs trajectory, ∆Y(k) = C̃Mx∆U (k).
Certainly, the equality C̃Mx = M must hold, where M is the dynamic

matrix (3.39). Note that the matrix C̃Mx is defined by a fairly complicated
formula, but its elements are simply coefficients of the step responses. Note
also that the formulae given above become numerically more complicated
for larger dimensionalities nx of the state vector and for longer prediction
horizons. It is particularly inconvenient when the number of the controlled
outputs ny is much smaller than nx.
Assuming the same form of the cost function as in the DMC algorithm, see

(3.40), and lack of inequality constraints on process inputs and outputs, we
obtain a solution to the MPCS controller optimization problem as a solution
to the set of linear equations (3.42). Its explicit, analytical form is given by
(3.43), i.e.,

∆Û(k) = K[Ysp(k)− Y0(k)]
= K[Ysp(k)− C̃Ãx(k)− C̃VBu(k − 1)− C̃Vv(k)] (3.124)
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where the matrix K, although easily given by (3.44), should be calculated
with great care, see the discussion and reasoning leading to the numerically
better formula (3.65).
Only elements of the optimal control vector corresponding to current sam-

pling instant are applied to the process, this results in the following explicit
unconstrained MPCS control law:

�û(k) = K1[Ysp(k)− C̃Ãx(k)− C̃VBu(k − 1)− C̃Vv(k)] (3.125)

where K1 is the first row sub-matrix of the matrix K, see (3.46).
Assuming constant set-point over the prediction horizon, see (3.51), and

exploiting structures of matrices Ã, V and C̃, the control law (3.125) can be
written in the form

�û(k) =
N∑
p=1

K1,p [ysp(k)−CApx(k)−CVpBu(k − 1)−CVp v(k)] (3.126)

where K1,p are sub-matrices (in the SISO case scalars) of K1 (see (3.46), for
N1 = 1),

K1 = [K1,1 K1,2 · · · K1,N ]

and Vp are sub-matrices of V,

Vp =
p−1∑
j=0

Aj , p = 1, ..., N

Defining Ke as in (3.53),

Ke =
N∑
p=1

K1,p

the control law (3.126) can be written as

�û(k) = Keysp(k)−
N∑
p=1

K1,p [CA
px(k) +CVp (Bu(k − 1) + v(k))] (3.127)

where disturbance estimate v(k) is given by (3.120),

v(k) = x(k)− [Ax(k − 1) +Bu(k − 1)] (3.128)

The structure of the obtained MPCS control law is illustrated in Fig. 3.32.
It is a linear feedback from the current (measured) state x(k) and the last
process input value u(k − 1). The structure of the state disturbance estimate
is shown in Fig. 3.32 as well, within the dashed-line block.
The process model can be often formulated in the form of difference equa-

tions, as it was described in the case of the GPC algorithm, see (3.84). Assume
the model in this form (with disturbances omitted)
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Fig. 3.32. Structure of the unconstrained explicit MPCS control law, with measured
state and constant state disturbance prediction (exact output equation assumed)

A(z−1)y(k) = B(z−1)u(k − 1) (3.129)

where polynomial matrices A(z−1) and B(z−1) are given by (3.83a) and
(3.83b), respectively. A state-space representation of this process model can
easily be constructed, defining the following state vector consisting of past
process outputs and inputs:

x(k) = [y(k)T y(k − 1)T · · · y(k − nA + 1)T u(k − 1)T · · · u(k − nB + 1)T ]T
(3.130)

Matrices A,B,C of the state-space model (3.118)-(3.119) corresponding to
the state definition (3.130) are as follows

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A1 −A2 · · · −AnA−1 −AnA B1 · · · BnB−1 BnB
Iy 0 · · · 0 0 0 · · · 0 0
0 Iy · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · Iy 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 Iu · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · Iu 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B = [BT0 0 0 · · · 0 Iu 0 · · · 0 ]T

C = [ Iy 0 0 · · · 0 0 0 · · · 0 ]
where dim Iy = ny × ny, dim Iu = nu × nu. The presented approach to state-
space modeling leads often to a non-minimal state representation, but it is an
important practical case when the state vector is measured.
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When the entire state is measured, the output equation (3.119) is usually
a precise one, the output variables being a part or a linear combination of the
state variables. However, it may happen that the original output equation is
nonlinear, as it is e.g., in the case of a nonlinear state-space model of a poly-
merization reactor in Example 3.8 in Section 3.5. Using then an approximate,
linearized form of the output equations introduces additional modeling error.
Using the additive state disturbances only is then not sufficient for offset-free
feedback control. To eliminate the offset, a bias signal must be added, such
that at the equilibrium point (in the steady-state) values of the original out-
put equation, y = g(x), and the linearized one, y = Cx + d, are equal, i.e.,
g(xss) = Cxss+d(ysp), where xss is the equilibrium state value corresponding
to the set-point value ysp. As indicated, the bias value depends on the set-
point value, therefore it should be adopted on-line to the set-point changes.
A simple way to do it is to add to the set-point the required difference, given
by

d(k) = −Cx(k) + g(x(k)) (3.131)

An alternative approach is to treat the difference between the original and
model output equations, resulting from modeling inaccuracies, as unmeasured
additive output disturbances, with constant predictions over the prediction
horizon (as it was introduced in the DMC algorithm). The disturbance model
would than be

d(k) = y(k)− y(k|k − 1)
= y(k)−Cx(k|k − 1)
= y(k)−C[Ax(k − 1) +Bu(k − 1) + v(k − 1)] (3.132)

where y(k) = g(x(k)), and d(k) should be added to the prediction equations
(3.123). This results in a change of the free output trajectory to the form

Y0(k) = C̃Ãx(k) + C̃VBu(k − 1) + C̃Vv(k) + Ĩyd(k) (3.133)

where Ĩy = [Iy Iy · · · Iy]T , dim Ĩy = N· ny × ny (for N1 = 1 ). The resulting
explicit, unconstrained MPCS control law then is

�û(k) = Ke[ysp(k)− d(k)]−
N∑
p=1

K1,p [CA
px(k) +CVp (Bu(k − 1) + v(k))]

(3.134)
compare with (3.127).

Example 3.5
In order to illustrate the design of a MPCS controller with measured state,
such a design will be performed for the process from Examples 3.1 and 3.2,
described by a discrete difference equation (3.102)

(1− 0.2676z−1)y(k) = (0.1989z−2 + 0.2552z−3)u(k − 1) (3.135)
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As previously, it is assumed that N1 = 3, Nu = 3, N = 6 and Ψ(p)= I,
Λ(p)=λI.
The state will now be defined in the form (3.130), as follows

x(k) = [ y(k) u(k − 1) u(k − 2) u(k − 3) ]

Using this definition, the following set of state and output equations is the
representation of the discrete transfer function (3.135)

x(k + 1) =

⎡⎢⎢⎣
0.2676 0 0.1989 0.2552
0 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦x(k) +
⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦u(k) + v(k)
y(k) =

[
1 0 0 0

]
x(k)

where v(k) are state disturbances introduced as in (3.118), which are used
to counteract influences of outer disturbances and modeling errors. In can be
easily checked that the obtained model is one of possible minimal state-space
representations (compare with the state-space model in the next example).
For the assumed process the unconstrained MPCS control law (3.127),

(3.128) was computed and the control system was simulated, in the structure
taking into account constraints both on the amplitude and rate of change of
the process input (u(k) ≤ 2, |�u(k)| ≤ 0.5), by projection of the controller
output signal on the feasible set and with the anti-windup structure added,
similarly as it was shown in the controller structure presented in Fig. 3.14 for
the DMC controller. Tests were conducted for the process output disturbed by
an additive step signal changing its value from 0 to 0.45 at sampling instant
k = 2, for the model equal to the process and for differences in the gain of the
process and its model.

Fig. 3.33. Response to a disturbance step in the control system with explicit MPCS
controller, with measured state and without modeling errors
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Fig. 3.34. Response to a disturbance step in the control system with explicit MPCS
controller with measured state, with the gain in the process (but not in the model)
increased by 40%

Fig. 3.35. Response to a disturbance step in the control system with explicit MPCS
controller with measured state, with the gain in the process (but not in the model)
increased by 40% and increased penalty for control input moves

Three selected figures are presented which illustrate the obtained results.
Fig. 3.33 presents the case without modeling errors. The obtained trajectory
is fast, almost identical to that in Fig. 3.17 for the DMC controller – certainly,
the first two control input moves are identical due to activity of the rate of
change constraint (|�u(k)| ≤ 0.5), therefore differences can be seen in the
further part of the trajectories only. Fig. 3.34 presents trajectories with the
process gain increased by 40%, but the model unchanged. The control system
remains stable, but the response becomes oscillatory. To damp oscillations
the value of λ was increased to 1, the resulting trajectories are presented in
Fig. 3.35. �
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3.4.2 Algorithms with Estimated State

The entire state vector is often unavailable for measurements, the cases with
measured state consisting of past process outputs and inputs, as discussed in
the previous section, constitute a special class, see also e.g., [82].
In general, it may be necessary to use a state observer. For a process

described by the state-space and output equations (3.118)-(3.119), the state
observer (Luenberger observer) can be presented in the following form

x̂(k + 1|k) = Ax̂(k|k − 1) +Bu(k) + Lp[y(k)−Cx̂(k|k − 1)] (3.136)

where x̂(k|k − 1) denotes an estimate of the state vector x(k) evaluated on
the basis of information available at the previous sampling instant k−1, while
Lp is a gain matrix defining the observer dynamics. Observability of a linear
dynamic system described by matrices A and C is a sufficient condition for
any positioning of poles of the state matrix A− LpC of the observer (3.136),
performed by a suitable selection of the matrix Lp, see e.g., [45, 3]. The
matrix A− LpC is also a matrix of the dynamics of the estimation error
x(k)− x̂(k|k − 1).
The observer given by (3.136) is called a predictive observer or a predictive

estimator [45], as it generates a state estimate for the next sampling instant
on the basis of the current state estimate x̂(k|k−1) evaluated at the previous
instant and a current measurement information. Thus, at the current sampling
instant we have only a state estimate x̂(k|k − 1) evaluated on the basis of
the past measurement information y(k − 1), that is on the basis of delayed
information. If the time of calculation of the control signal is significantly
shorter than the sampling period, then it is better to have at the current
sampling instant a state estimate based on the current information. A state
observer which fulfills this requirement is called current [45] and is usually used
as a standard state observer (state estimator). Its equations are as follows:

x̂(k|k) = x̂(k|k − 1) + L[y(k)−Cx̂(k|k − 1)] (3.137)

x̂(k + 1|k) = Ax̂(k|k) +Bu(k) (3.138)

and after inserting the first equation into the second one we obtain

x̂(k + 1|k) = Ax̂(k|k − 1) +Bu(k) +AL[y(k)−Cx̂(k|k − 1)] (3.139)

Note that the above equation is identical with (3.136), provided Lp = AL.
Design of the dynamics of the current observer can be conducted calculating
first values of the gain matrix Lp according to the chosen pole positions of a
predictive observer, and next calculating elements of the matrix L [45].
Not only original process state variables, but also additional state varia-

bles which represent dynamics of uncontrolled inputs (disturbances with a
significant deterministic component) should be estimated. According to the
internal model principle a compensation of disturbances which do not decay
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in an autonomous way is possible only if the model of their dynamics is a
properly used element of the controller dynamics, and state estimation is an
integral part of the controller, see e.g., [154, 3, 52].
The augmented state-space model of a process including its persistent

disturbances affecting the state can be generally formulated in the following
form, see e.g., [82],[

x(k + 1)
v(k + 1)

]
=
[
A Xv
0 Av

] [
x(k)
v(k)

]
+
[
B
0

]
u(k)

where v(k) is a state vector of the disturbances. The disturbances described
in this way can be of various nature, e.g., can be periodic. A suitable observer
should be designed for the augmented model. For this topic, the reader is
referred to the literature, in particular to the book [82], devoted mainly to
predictive control with state-space process models.
An important case is modeling the disturbances as affecting additively the

process output, then the process dynamics is described as follows

x(k + 1) = Ax(k) +Bu(k) (3.140)

y(k) = Cx(k) + d(k) (3.141)

Most important, from a practical point of view, is the case with disturbances
d(k) modeled as integrated white noise added to the process output, which
results in a constant output disturbance prediction – as it was originally as-
sumed in the DMC algorithm and discussed in the GPC algorithm. Dynamics
of disturbances is then of the form

d(k + 1) = d(k) + ε(k) (3.142)

where ε(k) is a zero-mean white noise. Combined equations of the process and
disturbance dynamics are then[

x(k + 1)
d(k + 1)

]
=
[
A 0
0 I

] [
x(k)
d(k)

]
+
[
B
0

]
u(k) +

[
0
I

]
ε(k)

y(k) =
[
C I

] [x(k)
d(k)

]
and the observer equations are[
x̂(k|k)
d̂(k|k)

]
=
[
x̂(k|k − 1)
d̂(k|k − 1)

]
+
[
L
Ld

]
[y(k)− [C I ] [ x̂(k|k − 1)

d̂(k|k − 1)
]
] (3.143a)[

x̂(k + 1|k)
d̂(k + 1|k)

]
=
[
A 0
0 I

] [
x̂(k|k)
d̂(k|k)

]
+
[
B
0

]
u(k) (3.143b)

where L̃ = [LT LTd ]
T is the observer gain matrix. This results in the combined

form of the observer dynamics
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x̂(k + 1|k)
d̂(k + 1|k)

]
=
[
A 0
0 I

] [
x̂(k|k − 1)
d̂(k|k − 1)

]
+
[
B
0

]
u(k)+

+
[
A 0
0 I

] [
L
Ld

]
[y(k)− [C I ] [ x̂(k|k − 1)

d̂(k|k − 1)
]
] (3.144)

On the other hand, an estimate of disturbances affecting the process output
at sampling instant k, d̂(k|k), should be equal to the difference of the measu-
red output value and the output value predicted for this instant one sample
behind, i.e.,

d̂(k|k) = y(k)−Cx̂(k|k − 1)
It follows from the assumed disturbance model that a current disturbance
estimate is the optimal prediction for future sampling instants,

d̂(k + 1|k) = d̂(k|k) = y(k)−Cx̂(k|k − 1)

Such an estimate will be obtained by the observer (3.144) if

Ld = I (3.145)

Moreover, if we assume L = 0, then equations of the observer dynamics reduce
to the following form[

x̂(k + 1|k)
d̂(k + 1|k)

]
=
[
A 0
−C 0

] [
x̂(k|k − 1)
d̂(k|k − 1)

]
+
[
B
0

]
u(k) +

[
0
I

]
y(k)

Eigenvalues of the state matrix of such an observer which correspond to the
states of the disturbance vector are equal to zero, while the remaining eigen-
values are equal to the eigenvalues of the matrix A. This corresponds to the
estimation of disturbances in a finite number of steps (a deadbeat-type esti-
mation). The presented design method of a controller (observer), see [100, 82],
ensures zero control errors in steady-states and a fast estimation. However,
it significantly constrains a choice of pole positions of the observer dynamics.
Particularly, it can only be used for stable processes. However, it turns out
that it is only a special case of design of a MPCS predictive control system
ensuring zero steady-state control errors, for the constant output disturbance
model. This will now be discussed.
Assume that an MPCS control system with an observer (3.144) is asymp-

totically stable and that there exists a feasible process input which ensures
that in a steady-state the process output values are equal to the assumed set-
point values ysp and that the prediction horizon is sufficiently long to enable
the predicted outputs to stabilize safely at ysp, after expected changes of set-
points or disturbances. Let us denote by y∞, x∞ and d∞ steady-state limits
of values of the outputs, process state estimates and disturbance estimates,
namely y∞ = limk→∞ y(k), x∞ = limk→∞ x̂(k+1|k), d∞ = limk→∞ d̂(k+1|k)
(in a steady-state estimation errors converged to zero). From the bottom part
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of (3.144), which corresponds to estimates of the disturbances, we obtain in a
steady-state

Ld[y∞ − (Cx∞+d∞)] = 0
Thus, if only the matrix Ld is non-singular,

detLd �= 0 (3.146)

then y∞ = Cx∞+d∞. On the other hand, a predictive controller minimizes
the cost function which in a steady-state takes the following value

J∞ =
N∑
p=N1

‖ysp − (Cx∞+d∞)‖2Ψ(p)

Since we assumed the existence of process control inputs which ensure that in
the steady-state the process outputs are equal to ysp, i.e., the smallest possible
value (zero) of the cost function is achieved, then ysp = Cx∞+d∞ must hold.
On the other hand, Cx∞+d∞ = y∞ if the condition (3.146) holds. Thus, the
equality y∞ = ysp should be true, i.e., the equality of steady-state values of the
process outputs and values of the set-points – resulting in steady-state control
errors equal to zero. In real situations the process model is often uncertain,
not known accurately. Elements of the matrix of the observer gains are then
usually treated as additional tuning parameters of the controller during the
design phase and the possibility of its proper, less constrained selection can
be useful.
If the state-space model (3.140)-(3.141) is assumed, than the state predic-

tions must be appropriately modified, as there are no disturbances directly
affecting the state equations. As a result, the term involving v(k) will disap-
pear from the state predictions, but the disturbance estimate d̂(k|k) will be
added to the output equations. Thus, the formula for the state prediction will
now be, compare with (3.122),

X (k) = Ãx̂(k|k) +Mx∆U(k) +VBu(k − 1) (3.147)

and output prediction will be given by, compare with(3.123),

Ypred(k) = C̃X (k) + Ĩyd̂(k|k)
=
[
C̃Ãx̂(k|k) + C̃VBu(k − 1) + Ĩyd̂(k|k)

]
+ C̃Mx∆U(k)

= Y0(k) +∆Y(k) (3.148)

where Ĩy = [Iy Iy · · · Iy]T , dim Ĩy = N· ny × ny (for N1 = 1 ) and x̂(k|k) and
d̂(k|k) are state and disturbance estimates obtained from the joint current
observer (3.143a)-(3.143b).
Under the same assumptions and reasoning as before, solving the contro-

ller unconstrained optimization problem, one arrives finally at the following
explicit unconstrained MPCS control law, analogous to (3.127),
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Fig. 3.36. Structure of the unconstrained, explicit MPCS control law, with estima-
ted state and output disturbance

�û(k) = Ke[ysp(k)− d̂(k|k)]−
N∑
p=1

K1,p [CA
px̂(k|k) +CVpBu(k − 1)]

(3.149)
The obtained control law is a linear feedback from the estimated process state,
estimated output disturbances, and also from the last process input values,
which is illustrated in Fig. 3.36.
When there are constraints on amplitudes or rates of change of the pro-

cess input signals, the presented control structures with the unconstrained
explicit feedback control laws should be appropriately augmented to take the
constraints into account, in the same way as it was presented for the control
structures with the unconstrained DMC algorithm.
In cases with stochastic disturbances affecting the process states and out-

puts, it is common to use a Kalman filter for the state estimation, also for a
joint state including disturbances of a deterministic type, e.g., step disturban-
ces affecting inputs or outputs of the process model, see e.g., [100, 45, 3, 82].

Example 3.6
In order to illustrate the design of a MPCS controller with state observer, the
process from Example 3.5 will further be considered, described by the discrete
difference equation (3.135).
As in the previous examples, it is assumed that N1 = 3, Nu = 3, N = 6

and Ψ(p)= I, Λ(p)=λI and constraints on the amplitude and rate of change
of the process input are applied, |u(k)| ≤ 2, |�u(k)| ≤ �0.5. The constraints
are taken into account by projection of the controller output onto the feasible
set, the anti-windup loop is also used.
As can easily be proven, the following set of state and output equations is

one of possible minimal representations corresponding to the discrete transfer
function (3.135)
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x(k + 1) =

⎡⎢⎢⎣
0.2676 0.5 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦x(k) +
⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦u(k)
y(k) =

[
0.61685 0.1989 0 0

]
x(k) + d(k)

In the above output equation a disturbance d(k) was added to the output,
since a constant output disturbance prediction is assumed, as it was in pre-
vious examples with the DMC and GPC algorithms.
Since the last three components of the state vector correspond to the time

delay, then the observer of the combined state (3.143a)-(3.143b) with the
observer matrix L̃ in the form

L̃ = [LT LTd ]
T = [ l1 0 0 0 ld ]

T

is assumed.
For the assumed process and disturbance models the unconstrained MPCS

control law was computed and the control system was simulated. Tests were
conducted for a change in the disturbance value from 0 to 0.45 at sampling
instant k = 2, for the model equal to the process and for cases with diffe-
rences between the process and its model, in the gain and in the structure.
Four selected figures are presented which illustrate the obtained results, where
dashed lines present trajectories of the disturbance estimate d̂(k|k).
Fig. 3.37 presents the case without modeling error and with observer para-

meters l1 = 0 and ld = 1, which correspond to the eigenvalues of the observer
state matrix α1 = 0.2676 and α5 = 0 (the remaining eigenvalues are struc-
turally equal to zero). The obtained trajectory is fast, practically identical
to that in Fig. 3.33 obtained in the case with measured state. The control
system was also tested with l1 = −0.305 and ld = 1.188, corresponding to

Fig. 3.37. Response to a disturbance step in the control system with the explicit
MPCS controller, with state estimation, but without modeling errors
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Fig. 3.38. Response to a disturbance step in the control system with the explicit
MPCS controller, with the gain in the process increased by 40%

Fig. 3.39. Response to a disturbance step in the control system with the explicit
MPCS controller, with the process gain increased by 40% and with damped dynamics
of the state observer

α1 = 0.13 and α5 = 0, obtaining trajectories almost identical to those pre-
sented in Fig. 3.37, only minimally faster – therefore, they will not be given.
Fig. 3.38 presents trajectories with the process gain increased by 40%, but

the model unchanged, including the observer parameters. The control system
remains stable, but the response becomes oscillatory, and a longer time pe-
riod is needed for the disturbance estimate to reach the steady-state. To damp
oscillations of the disturbance estimate, dynamics of the state observer was
changed by taking α1 = 0.13, α5 = 0.6, which results in values l1 = 0.378,
ld = 0.475. The resulting trajectories are presented in Fig. 3.39. Finally, in
Fig. 3.40 results for the process with the gain increased by 40% and, additio-
nally, an unmodeled dynamics added are presented, with the same observer
parameters and, of course, the model unchanged. The process with the un-
modeled dynamics was described by the following difference equation
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Fig. 3.40. Response to a disturbance step in the control system with the explicit
MPCS controller, with the process gain increased by 40%, unmodeled dynamics
added and damped state observer dynamics

(1−0.2676z−1+0.05z−2−0.03z−3)y(k) = 1.4(0.1989z−2+0.2552z−3)u(k−1)
compare with (3.135). �

In this section, devoted to MPC with linear state-space process models,
the cases with measured state with additive state disturbances and with esti-
mated state with additive output disturbances were mainly considered. Alt-
hough more general disturbance models are possible and were mentioned as
well, attention was focused on additive disturbances modeled as zero-mean
integrated white noises, as of prime importance for industrial applications,
delivering zero steady-state errors. Our attention was devoted mainly to pre-
diction equations, disturbance modeling and observer design. Having that, the
MPC controller optimization problem is fully defined and can be solved, as an
unconstrained or a constrained problem. The structures of the unconstrained
MPCS controllers (control laws) have just been derived. A general formula-
tion of the numerical MPCS constrained optimization problem is analogous to
those given in the previous sections devoted to DMC and GPC algorithms,
namely

min
∆U(k)

{
∥∥∥[Ysp(k)− Y0(k)]− C̃Mx∆U(k)∥∥∥2

Ψ
+ ‖∆U(k)‖2Λ}

subj. to : −∆Umax ≤ ∆U(k) ≤ ∆Umax
Umin ≤ U(k − 1) + J∆U(k) ≤ Umax
Ymin ≤ Y0(k) + C̃Mx∆U(k) ≤ Ymax

(3.150)

where Y0(k) is given as in (3.123) or by (3.133) or as in (3.148).
This optimization problem can easily be transformed to a standard form

of a QP problem, as it was discussed previously in Section 3.2.4.



194 3 Model-based Predictive Control

When comparing the MPCS with the DMC and GPC algorithms, first of
all a different approach to unmeasured disturbances draws our attention. In
the DMC and GPC algorithms certain assumptions are made concerning the
disturbance models, and under those assumptions formulae were derived for
the output prediction. In the DMC algorithm the assumption of a constant
output disturbance estimate on a prediction horizon is used, which corres-
ponds to zero-mean integrated white noise added to the output. In the GPC
algorithm the model of disturbances can also be in the form of integrated
colored noises, although parameters of the coloring filters are usually used as
additional tuning parameters. The assumed models are simple and correspond
to typical situations in industrial control, and both DMC and GPC algorithms
ensure zero control errors in steady-states.
In the MPCS algorithm the model of the process state dynamics can be

extended by a model of disturbance dynamics, thus a wider class of distur-
bances can be modeled – but it is often necessary to design a state observer (a
combined one, for states of the process and of disturbances). In the book [82],
devoted almost exclusively to predictive control algorithms with state-space
models, one can find design examples of MPCS algorithms with different kinds
of disturbance models, e.g., periodical.
The necessity to design a state observer can be treated as a drawback,

but, on the other hand, it gives additional possibilities in the design of the
controller dynamics, as it was shown in Example 3.6. Modeling the dynamics
by a set of state-space equations is natural e.g., in the case of many electrome-
chanical objects. But for typical complex industrial processes, where models
for control purposes are constructed mainly with the use of input-output type
structures, it is rather not a typical solution. In the MPCS algorithm, cal-
culations leading to predicted values of the outputs in a prediction horizon
are performed, consequently, on the basis of the state equations. This leads
to computationally complex formulae with quite disadvantageous numerical
properties, especially when the dimension of the state vector is significantly
higher than that of the vector of the controlled outputs and when the pre-
diction horizon is long. This may be especially dangerous for unstable plants.
A possible remedy is to pre-stabilize the plant using e.g., a linear state-space
feedback, and to design the MPC algorithm for the pre-stabilized system, see
e.g., [124, 123].

3.4.3 Explicit Piecewise-affine MPCS Constrained Controller

Let us start now with a slightly different form of the the quadratic optimization
problem (3.150), putting into it the detailed form of the free output prediction
trajectory. The simplest case with measured state and without disturbances
will also be assumed, to make the presentation of the main idea of the explicit
constrained MPC controller with the linear state-space process model more
clear. The optimization problem is then in the following form



3.4 MPC with State-space Process Model 195

min
∆U(k)

{
∥∥∥Ĩyysp(k)− C̃Ãx(k)− C̃VBu(k − 1)− C̃Mx∆U(k)∥∥∥2

Ψ
+ ‖∆U(k)‖2Λ}

subj. to : −∆U(k) ≤ ∆Umax
∆U(k) ≤ ∆Umax
−J∆U(k) ≤ −Umin + Ĩuu(k − 1)
J∆U(k) ≤ Umax − Ĩuu(k − 1)
C̃Mx∆U(k) ≤ −Ymin + C̃Ãx(k) + C̃VBu(k − 1)
C̃Mx∆U(k) ≤ Ymax − C̃Ãx(k)− C̃VBu(k − 1)

(3.151)

where Ĩu = [Iu Iu · · · Iu]T , dim Ĩu = Nu·nu×nu. The problem (3.151) can be
reformulated to the following equivalent form

min
∆U(k)

{J(k) = 1
2
∆U(k)TH∆U(k) + [x(k)T u(k − 1)T ysp(k)T ]F∆U(k) }

subj. to : G∆U(k) ≤ w +E
⎡⎣x(k)u(k − 1)
ysp(k)

⎤⎦ (3.152)

where entries of matrices H, F, G, E and of the vector w depend on entries
of matrices and vectors in (3.151), and [x(k)T u(k− 1)T ysp(k)T ] is treated as
a vector of parameters.
If a characterization of the solution to the above optimization problem for

a full range of its parameter values is sought, i.e., as a function of these
parameters, than the problem is qualified as a multi-parametric quadratic
programming (mp-QP) problem. The mp-QP approach to the MPCS design
was thoroughly investigated in [7], a short description in this section follows
the idea presented there.
First, changing the vector of the decision variables,

z(k) = ∆U(k) +H−1FT [x(k)T u(k − 1)T ysp(k)T ]T (3.153)

the problem (3.152) is further reformulated to a simpler form, with the para-
meter vector appearing only on the right hand side of the constraints,

min
z(k)
{ Jz(k) = 12z(k)

THz(k) }

subj. to : Gz(k) ≤ w +W
⎡⎣x(k)u(k − 1)
ysp(k)

⎤⎦ (3.154)

where
W = E+GH−1FT
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and the difference between both objective functions is in a parameter-dependent
term only,

Jz(k) = J(k)+
1
2
[x(k)T u(k−1)T ysp(k)T ]FH−1FT [x(k)T u(k−1)T ysp(k)T ]T

In [7] results of a thorough theoretical analysis of the mp-QP problems of
type (3.154) are presented. It is proved that for every set of the same active
inequality constraints the solution to (3.154) is an unique affine function of
the parameters, i.e., as long as activity of the constraints does not change,
the constrained MPCS control law is an affine function of the parameter vec-
tor. This result could have been awaited, as resulting from the structure of
the problem, and was previously known, e.g., [157]. However, to apply it in
practice, a computable characterization of all subsets of the parameter space,
over which the different affine control laws are defined, must be known. This
characterization is the main result of the paper [7].
It is shown in [7] that the whole parameter space can be divided into

polyhedral regions of activity of the same constraints. A representation of
these regions is given, based on checking signs of Lagrange multipliers corres-
ponding to the active constraints. Based on these results, an algorithm is
proposed for partitioning the parameter space. It will not be given here since
it is quite complicated, and the presentation would have to be precise to be
useful. Moreover, in [143, 144] improved algorithms for parameter space parti-
tioning were proposed, leading to smaller numbers of polyhedral regions. The
interested reader is referred to the cited literature and references therein.
The main advantage of the explicit piecewise-affine MPCS algorithm is

that an on-line numerical solution of the QP problem is avoided, thus the
algorithm can potentially be applied to constrained processes with faster dy-
namics, without any loss in optimality. The main computational burden is
shifted to off-line calculations, to the design phase.
Certainly, the algorithm is more complicated than a suboptimal explicit

unconstrained control law with a projection onto the constraint set and anti-
windup scheme added, because the collection of all affine control laws together
with descriptions of corresponding polyhedral regions must be stored, and a
selection mechanism must be applied on-line – but the algorithm is optimal.
The discussion shows that a critical factor for applicability of the explicit

piecewise-affine MPCS controller is the possibly large number of polyhedral
regions dividing the parameter space. This number depends directly on the
number of inequality constraints in (3.151). This, in turn, depends on dimen-
sionality of the input vector u(k) and on the length of the control horizon Nu.
Further, if constraints on the output vector y(k) are present, their number de-
pends on dimensionality of y(k) and on the length of the prediction horizon N ,
if the outputs are constrained at every sampling instant over this horizon. To
diminish the number of the output constraints, the use of a shorter constraint
horizon Nc < N is proposed to be used if possible, or a narrower constraint
window [Ncw1, Ncw], N1 ≤ Ncw1 < Ncw ≤ N , as defined in Section 3.1.
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Notice also that the simplest case, with measured state and without dis-
turbances, has been considered so far. Both measured and unmeasured dis-
turbances must be added to the parameter vector (usually estimated together
with the state vector by an observer, as discussed earlier in the proceeding
sections), thus enlarging dimensionality of the parameter space of the mp-QP
problem. But, as claimed in [7], this should not enlarge significantly the num-
ber of polyhedral regions, because adding disturbances do not introduce new
explicit inequality constraints.
Undoubtedly, the explicit MPCS controller is an appealing alternative,

especially for processes with fast dynamics and when much simpler subop-
timal unconstrained explicit control laws supplemented by projections onto
constraint sets and anti-windup schemes cannot be accepted, especially in
cases with constraints on process outputs. On the other hand, the still in-
creasing power of industrial controllers makes applications of numerical MPC
algorithms, with an on-line QP optimization, possible to still wider classes of
plants. As well, the design and tuning of these algorithms is much simpler,
especially when input-output type models are available. Moreover, in cases
of a large number of regions finding the right one may take more time than
solving a QP problem. Last but not least, there is always uncertainty in pro-
cess modeling, especially in process control. When model-reality differences
are significant, then the explicit piecewise-affine control law will also be ap-
proximate, suboptimal. Analysis and comparison of different MPC algorithms
in this situation is an appealing question.

3.5 Nonlinear Predictive Control Algorithms

3.5.1 Structures of Nonlinear MPC Algorithms

Numerous industrial applications of predictive control algorithms with linear
process models were undeniably a milestone in the development of theory and
practice of feedback control. Real control processes are, however, usually non-
linear and a linear feedback controller designed for a vicinity of the assumed
operating point is not always sufficient. Especially, for optimal control in a
multilayer structure, when the optimizer changes operating points on-line to
adjust them to current values of uncontrolled inputs, there is often a need for
a nonlinear control, see Chapters 1 and 4. Another case often calling for a
nonlinear approach is the control of batch processes, where dynamic set-point
trajectories are typical. Thus, already in the 1980s attempts to formulate MPC
algorithms for nonlinear process models appeared, especially within the com-
munity connected with development and applications of the DMC algorithm
in chemical industries. The dominant approach was that using successive li-
nearizations, started by Garcia [47], see [8, 55]. The decade of the 1990s was
a period of growing research on nonlinear control algorithms, see the review
articles [55, 1, 94, 115].
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Applications of MPC algorithms with a full nonlinear model used in the
controller optimization problem, solved at every sampling instant, have so far
found a limited application, but are the important subject of a research. Such
algorithms can be applied mainly for slow but strongly nonlinear processes,
when aggressive control can be expected. Basic problems connected with the
design and implementation of algorithms with a nonlinear optimization at
each sampling instant will be described briefly in the first part of this section.
A clearly visible tendency in publications connected with practical applica-

tions, is to applyMPC algorithms with nonlinear model linearizations, if there
is a need for nonlinear modeling and control. M.Morari and J.H.Lee wrote in
a review paper [98] that linearization is the only mehod which found a wider
application in industry, except for demonstration projects. For industry there
must be a clearly justified need for on-line solving of nonlinear dynamic tasks,
and so far there have been no examples indicating such a need in a convincing
way.
Using the linearization we usually aim at a formulation of the MPC al-

gorithm such that at each sampling instant a convex quadratic programming
problem is appropriately constructed and solved, once or even a few times in
a computational loop, in this way adapting the algorithm to the model non-
linearity. The following algorithmic solutions using a general nonlinear model
in a MPC structure by its appropriate linearization at each sampling instant
should be quoted here, see [79, 50, 77, 101, 95, 137], in the review paper [55]
one can also find a more extensive bibliography.
Many publications appeared in the last decade concerning stability analy-

sis of many different predictive control algorithms using a general nonlinear
model. However, it should be noted that there are very few such publications
in the area of algorithms with linearizations. This view is also shared by M.
Morari and J.H. Lee, who wrote in the mentioned review paper that theoreti-
cal purists tend to stay away from linearization approaches. Certainly, one of
the basic reasons for this situation is the fact that algorithms with lineariza-
tions are suboptimal – and algorithms of this type are much more difficult for
a formal theoretical analysis. However, from the very beginning of the era of
the MPC algorithms, a lack of theoretical analysis has not been and still is
not a decisive factor in their development and application.
Structures of nonlinear, suboptimal MPC algorithms using appropriate

linearizations of a nonlinear process model will be the main subject of consi-
deration in this section.

3.5.2 MPC-NO (MPC with Nonlinear Optimization)

At a first glance, the idea how to generalize a linear to a nonlinear predic-
tive control seems fairly straightforward: leaving the design unchanged, one
should only use a nonlinear, instead of a linear, process model for predicting
the outputs over a prediction horizon. This leads to the formulation of the
controller optimization problem in the following form (compare with (3.11))
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min
�u(k|k),...,�u(k+Nu−1|k)

{
N∑
p=N1

‖ysp(k + p|k)− y(k + p|k)‖2Ψ(p)+

+
Nu−1∑
p=0

‖�u(k + p|k)‖2Λ(p)}

subj. to: (3.7), (3.8) and (3.9), where

the dependence of y(k + p|k) on past process outputs and inputs
and on decision variables �u(k + p|k), p = 0, ..., Nu − 1,
is given by a nonlinear model.

(3.155)

We shall describe a full nonlinear MPC algorithm, with the prediction of the
entire output trajectory based on a nonlinear model, as the MPC-NO (MPC
with Nonlinear Optimization) algorithm. The structure of this algorithm is
illustrated in Fig. 3.41, where Ysp(k) = [ysp(k +N1|k)T · · · ysp(k +N |k)T ]T
represents a trajectory of the set-points.
However, a seemingly small difference when a nonlinear process model is

used instead of a linear one, is fundamental. A nonlinear dependence of pre-
dicted outputs y(k + p|k) on decision variables causes the fact that the opti-
mization problem (3.155) becomes non-quadratic and, generally, non-convex.
There are no universal optimization procedures for solving such problems
which would ensure finding a solution reliably and quickly, i.e., with a gua-
ranteed accuracy and within an a priori prescribed time interval. Moreover,
more effective gradient optimization procedures usually find only local mi-
nima. Therefore, in spite of many research results concerning the subject, ap-
plications of the MPC algorithms with a nonlinear model in the optimization
problem, which is solved at every sampling instant by a selected procedure of

Fig. 3.41. Structure of full nonlinear model predictive control, with both prediction
and optimization based on a nonlinear model – a MPC-NO structure
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nonlinear programming, found so far very limited application. They are des-
igned mainly for strongly nonlinear processes with slower dynamics. Henson,
in his review article [55], gives a list of examples of simulations of predictive
control algorithms with nonlinear models, and a much shorter list of true
experimental applications.
It is worth noting that one of the promising research directions in the area

of nonlinear predictive control is the application of neural models with certain
structures, see e.g., [108, 72, 71, 73, 67, 136]. This topic will be addressed later
on in this chapter. Another interesting approach is an attempt to use a branch-
and-bound method for a nonlinear, global optimization of a suitable modified
optimization problem, at each sampling instant of the MPC-NO algorithm
[128]. To apply the branch-and-bound method it was necessary to discretize
each of the decision variables �u(k + p|k), p = 0, 1, ..., Nu − 1. As a result, a
suboptimal algorithm was obtained, with the level of suboptimality as well as
the computational burden depending on the accuracy of this discretization. In
order to obtain an acceptable amount of calculations, in [147] discretization
was restricted to only selected subsets of possible control input values, located
around the previously calculated ones, additionally scaled adaptively with the
use of fuzzy logic. This approach, though claimed as successful, turned out to
require still too high amount of calculations.
Finally, let us emphasize that most attention of the control theorists is

devoted exactly to the MPC-NO algorithms. A number of different structures
of such algorithms was proposed and still there appear concepts of this type,
often together with a stability analysis. We shall go back to this subject in
Section 3.6.1, devoted to stability analysis of predictive control algorithms.

3.5.3 MPC-NSL (MPC Nonlinear with Successive Linearization)

When considering linear MPC algorithms, it was emphasized that differen-
ces between them result from using different process models for prediction of
the output values in a prediction horizon. This led to various structures and
forms of formulae for the free component of the predicted outputs trajectories
and only different representations of the same formula for the forced compo-
nent, defined by the dynamic matrix. In the case of a nonlinear process model,
nonlinear equations define the predicted trajectory of the controlled outputs
y(k+p|k), p = 1, 2, ..., N . Because then the principle of superposition does not
hold, it is generally impossible to decompose this trajectory, without a loss of
optimality, into nonlinear forced and free components: the forced one depen-
dent on decision variables (process input increments to be found) and the free
one dependent on past process input and output values. However, inserting
the process input increments equal to zero over the prediction horizon into
nonlinear equations describing the process input-output model, we transform
these equations into a nonlinear model of a free trajectory of the predicted
outputs, y0(k+p|k), p = 1, 2, ..., N . This way of proceeding will not, however,
be constructive if we are not able to derive independent and simple formulae
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Fig. 3.42. Structure of a nonlinear MPC algorithm with successive linearizations
of the process model (MPC-NSL algorithm)

for a forced component of the predicted outputs trajectory. The reason is that,
when minimizing the cost function in (3.155), it will still be necessary to use
full nonlinear equations to calculate the values y(k + p|k), p = 1, 2, ..., N , as
dependent on the decision variables �u(k+ p|k), p = 0, ..., Nu − 1, after each
change of values of these variables by a numerical optimization procedure.
The simplest solution which enables a natural generalization of well-known

good practical properties of linear predictive algorithms (i.e., with linear pro-
cess models) to nonlinear predictive control, are algorithms which at each
sampling instant perform a linearization of the nonlinear model , at a current
process state, and then calculate the control inputs using a linear MPC al-
gorithm with the linearized model, see e.g., [55, 95, 4, 89, 137, 75]. This is a
suboptimal approach, but the one which enables to keep a fundamental, for
practical applications, feature of a control reliability, i.e., a guarantee that
at each of the successive algorithm steps an optimal solution of the (quadra-
tic) optimization problem will be found, and always within a predefined time.
The discussed structure of a suboptimal nonlinear MPC control with mo-
del linearizations will be called MPC-NSL (MPC Nonlinear with Successive
Linearizations). It is presented in Fig. 3.42.
For weakly nonlinear processes, or operating close to certain equilibrium

points during longer time periods and under slowly-varying disturbances, the
linearization may not be necessary at each sampling instant. It may then
be sufficient to perform it more rarely, e.g., only after a defined number of
samples. Such an example is given in [82]. On the other hand, the presented
MPC-NSL algorithm may occur to be not sufficiently nonlinear for stronger
nonlinearities, for situations when a quick transfer to a distant set-point is
needed or for dynamic transients after strong and rapid changes of disturban-
ces. In these cases it may be reasonable to apply MPC algorithms which more
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directly base on the nonlinear model. This leads, first of all, to algorithms
with a nonlinear prediction and linearization, which will be presented in the
next section.

3.5.4 MPC-NPL (MPC with Nonlinear Prediction and
Linearization)

A structurally more precise algorithmic solution than the MPC-NSL algorithm
presented above, and at the same time still simple in implementation and pre-
serving the required good properties of a quadratic programming optimization
problem, is to use a linearized model only in the optimization problem, i.e.,
with only a forced trajectory of controlled outputs linearly depending on de-
cision variables, but evaluating the free trajectory of predicted outputs from a
nonlinear model, at each sampling instant, see [47, 50, 55, 95, 147, 89, 137, 73].
This structure will be called MPC-NPL (MPC with Nonlinear Prediction and
Linearization).
In fact, there is no reason to give up a nonlinear prediction of a free output

trajectory having a nonlinear process model. This is a relatively easy task,
performed only once at each sampling instant of the MPC controller. Thus, it
does not significantly affect the total amount of calculations performed at each
sampling instant, which is first of all determined by a numerical solution of the
optimization problem, even if it is a quadratic programming problem. Thus,
the MPC-NPL algorithms should be preferred to the MPC-NSL algorithms.
Of course, not in cases when our knowledge about the problem or results of
simulation tests show that it is quite sufficient to use an MPC-NSL algorithm.
Particularly, in a situation when it is enough to perform the linearization only
once every several sampling instants.
To calculate the free component Y0(k) of a trajectory of predicted outputs

on a prediction horizon it is necessary to have not only values of the already
applied (past) process input and output signals, but also to assume certain
(initial) values of future process inputs in the prediction horizon. We shall
denote the trajectory of these future process input values by U0(k). Proceeding
identically as in the case of MPC algorithms with linear models, in order to
evaluate the free output trajectory we can assume zero increments of process
input signals in a prediction horizon, i.e., process inputs constant and equal
to u(k − 1),

U0(k) =

⎡⎢⎢⎢⎣
u0(k|k)
u0(k + 1|k)

...
u0(k +N − 1|k)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
u(k − 1)
u(k − 1)
...

u(k − 1)

⎤⎥⎥⎥⎦ (3.156)

This is not the only possible approach. It is also possible to define U0(k) using
an optimal control trajectory evaluated at the previous algorithm step, in the
following way
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U0(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0(k|k)
u0(k + 1|k)

...
u0(k +N − 3|k)
u0(k +N − 2|k)
u0(k +N − 1|k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

û(k|k − 1)
û(k + 1|k − 1)

...
û(k +N − 3|k − 1)
û(k +N − 2|k − 1)
û(k +N − 2|k − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.157)

Note that in the case of a linear process model, using (3.157) in place of
(3.156) leads to the same solution of the optimization problem, due to linearity
of both free and forced output responses. Therefore, a simpler formulation
(3.156) is used. However, it is not equivalent when a nonlinear process model
is used, application of (3.157) may then lead to different results, although the
difference is usually not very significant [87].
In an MPC-NPL algorithm elements of the predicted trajectory of the

controlled variables at sampling instant k are evaluated as follows

y(k + p|k) = y0(k + p|k) +�y(k + p|k)
= y0(k + p|k) +Mp(k)∆U(k), p = N1, ..., N

where y0(k + p|k) are elements of the free output trajectory Y0(k), while the
forced trajectory ∆Y(k) is calculated as follows

∆Y(k) =

⎡⎢⎣�y(k +N1|k)...
�y(k +N |k)

⎤⎥⎦

=M(k)�U(k) =

⎡⎢⎣MN1(k)...
MN (k)

⎤⎥⎦
⎡⎢⎣ �u(k|k)

...
�u(k +Nu − 1|k)

⎤⎥⎦ (3.158)

Thus, the quadratic programming problem will have the following form

min
∆U(k)

{∥∥[Ysp(k)− Y0(k)]−M(k)∆U(k)∥∥2Ψ + ‖∆U(k)‖2Λ}
subj. to : −∆Umax ≤ ∆U(k) ≤ ∆Umax

Umin ≤ U0(k) + J∆U(k) ≤ Umax
Ymin ≤ Y0(k) +M(k)∆U(k) ≤ Ymax

(3.159)

compare with (3.69) and (3.155). In this problem, the input increments ∆U(k),
and thus the output increments ∆Y(k), are evaluated with reference to the
nonlinear trajectory Y0(k), while M(k) denotes a matrix of a linear map-
ping evaluated as a current, local linear approximation (linearization) of the
nonlinear model. Of course, elements of this matrix are coefficients of the
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Fig. 3.43. Structure of the MPC algorithm with nonlinear prediction of the free
output trajectory and current nonlinear model linearization to get linear forced
output trajectory (MPC-NPL algorithm)

step response of the linearized model. The structure of the MPC-NPL control
algorithm is presented in Fig. 3.43.
We have already explained that the smaller control input increments eva-

luated as a solution of the quadratic optimization problem, the better the
MPC-NPL algorithm should operate. Therefore, it may deliver almost opti-
mal behavior even for strongly nonlinear processes and for transitions to dis-
tant operating points, as long as the trajectories are smooth and realized with
small process input changes. If, however, fast and large changes in operating
points are required, or a fast reaction to step disturbances of large amplitudes
is required, then using even the MPC-NPL algorithm may not be satisfactory.
In the literature, it is possible to find suggestions on how to improve features
of nonlinear MPC algorithms still maintaining a linear-quadratic form of the
current optimization problem and at a cost of a limited increase of computatio-
nal burden. The main indication is to apply iterative, nonlinear corrections of
the free response trajectory and of the quadratic programming problem, at
every controller step (sampling instant) [79, 77, 101, 55, 30].
A conceptually clear and relatively easy method of improving the nonli-

near features of the MPC-NPL algorithm when larger changes of the control
input signal occur is to repeat, once or a few times, a computational loop
consisting of the evaluation of a free output trajectory over the prediction
horizon and then a resulting quadratic programming problem. This method
is not beyond present levels of the computing power of modern industrial pro-
cessors. Repeating a numerical solution of a small – or even moderate-size –
quadratic programming problem in a small fraction of one sampling period
should not be a problem, especially for processes with slower dynamics.
The most important is to improve nonlinear features of the MPC-NPL

algorithm at the first sampling instant of the control horizon, where the first
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control input increment �û(k|k) is calculated. There are two reasons for this:
first of all, after a larger change of a set-point or a disturbance, the algorithm
reacts stronger usually at this first moment, i.e., choosing then the largest
change of the control input. Secondly, only the first element of a control input
trajectory becomes the actual process control input signal, the following ones
will be calculated anew according to the general rule of the receding horizon.
Therefore, a relatively simple, yet effective way of improving nonlinear

features of the MPC-NPL algorithm can be proposed as iterative corrections
of the nonlinear free output response and of the resulting quadratic program-
ming problem. This will be done by means of an iterative loop modifying the
optimized process input and output values at sampling instant k. From now
on, we shall refer to such an extension of the MPC-NPL algorithm as to the
MPC-NPL+ algorithm.
The structure of the MPC-NPL+ algorithm calculations, performed for

one sampling interval, is as follows:

1. Using a nonlinear model, on the basis of previous process output and input
values and an initial trajectory of the process control inputs U 0(k) (3.156)
calculate the free trajectory of the predicted outputs Y0(k). Calculate the
dynamic matrix of the linearized model M(k). Set the index of internal
iterations j = 0, set ∆U 0(k) = 0.

2. Solve the quadratic programming problem

min
∆U(k)

{∥∥[Ysp(k)− Yj(k)]−M(k)∆U(k)∥∥2Ψ + ∥∥∆U j(k) +∆U(k)∥∥2Λ}
subj. to : −∆Umax ≤ ∆U j(k) +∆U(k) ≤ ∆Umax

Umin ≤ U j(k) + J∆U(k) ≤ Umax
Ymin ≤ Yj(k) +M(k)∆U(k) ≤ Ymax

(3.160)

obtaining optimal increments �ûj+1(k + p|k), p = 0, ..., Nu − 1.
3. If

‖�ûj+1(k|k)−�ûj(k|k)‖ < ε‖�ûj(k|k)‖
(where �û0(k|k) = u0(k|k) − u(k − 1) = 0, see (3.156)) then terminate
and transmit the final first control input increment, �û(k),

�û(k) = �ûj+1(k|k) + uj(k|k)− u(k − 1)

to the controlled process. Otherwise go to Step 4.
4. Perform a correction of the free output trajectory: using the nonlinear mo-
del calculate the trajectory of predicted outputs Yj+1(k), consisting of
elements yj+1(k + p|k), p = 1, ..., N , calculated for the past outputs and
inputs and future inputs computed for the prediction horizon and correc-
ted by increments �ûj(k|k) calculated in Step 2. Thus, the trajectory
Yj+1(k) is calculated for the following vector of process inputs
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U j+1(k) =

⎡⎢⎢⎢⎣
uj+1(k|k)
uj+1(k + 1|k)

...
uj+1(k +N − 1|k)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
uj(k|k) +�ûj+1(k|k)
uj(k|k) +�ûj+1(k|k)

...
uj(k|k) +�ûj+1(k|k)

⎤⎥⎥⎥⎦
where u0(k|k) = u(k − 1). Further, calculate

∆Uj+1(k) =

⎡⎢⎢⎢⎣
uj+1(k|k)− u(k − 1)

0
...
0

⎤⎥⎥⎥⎦
set j = j + 1 and go back to Step 2.

Having modified the free output trajectory in Step 4, it is necessary to
correct the quadratic programming problem, thus in Step 2 a modified problem
(3.160) is solved, which reduces to (3.159) for j = 0 (first optimization).
Control input increments are now calculated in the optimization problem with
reference to the modified free output trajectory. At the same time, the penalty
terms for the input increments in the cost function and in the constraints
must contain the total input increments, calculated with reference to the last
applied process input u(k − 1), thus the occurrence of vectors ∆U j(k) and
Uj(k) in the cost function and in the constraints.
The value of the coefficient ε occurring in the termination criterion for

internal iterations in Step 3 of the algorithm should not be too small, because
only for a significant difference a repetition of prediction and optimization
should take place. Theoretically, iterating process can require several steps.
However, due to the necessity to finish all computations needed to evaluate the
final control increment in a predefined time period, the maximum number of
iterations is usually additionally arbitrarily limited to a very few repetitions.
The more so, because the convergence of this type of iterations (though usually
fast convergent) is generally not guaranteed. Thus, when allowing multiple
iterations, a protection mechanism should be implemented which interrupts
iterations if necessary.
The structure of the MPC-NPL+ algorithm is presented in Fig. 3.44. Note

that its iterative loop can also be treated as built-in extension of the MPC-
NPL algorithm, activated only at sampling periods when strongly nonlinear
behavior of the process must be taken into account.
Another question which needs to be discussed is that of obtaining a linear

model approximation at each sampling instant, i.e., the problem of calculation
of the dynamic matrixM(k) which defines linear dependence between process
input and output increments, needed in the quadratic programming problem.
In the MPC-NSL algorithm, at each sampling instant a linear approximation
of the nonlinear model at a current process state is calculated first. Then, for
the obtained linear model, the optimal control input increment is calculated
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Fig. 3.44. Improved MPC-NPL algorithm structure with iterative improvement of
the prediction and optimization added (MPC-NPL+ algorithm)

by a selected linear MPC algorithm, usually one of the previously described
algorithms: DMC, GPC or MPCS. Thus, the matrix M(k) is calculated as a
dynamic matrix of the applied linear model, using a formula corresponding to
the chosen MPC algorithm.
In the case of the MPC-NPL algorithm the situation is not so obvious,

as a predicted free output trajectory is calculated in a nonlinear way. Conse-
quently, during its calculation the predicted process state will change when
moving from the beginning to the end of the prediction horizon, generally
in a nonlinear way. Therefore, a linear process approximation at each of the
subsequent points within the prediction horizon can be different, and can be
obtained by performing a sequence of linearizations (a linearization around a
nonlinear free output trajectory). As a result, the matrix M(k), see (3.158)
will consist of sub-matrices (in cases of a scalar output y – rows)Mp(k) calcu-
lated for slightly different linear models corresponding to individual sampling
instants of the prediction horizon, p = 1, ..., N . In the case of the MPC-NPL+
algorithm considered, the calculation of the dynamic matrix can be additio-
nally repeated after each modification of the free output trajectory in Step 4.
However, the calculation of this matrix should then be transferred from Step
1 to the beginning of Step 2 of the MPC-NPL+ algorithm, it will also then
be an indexed matrixMj(k).
The published results of simulations [147, 89, 87], though fragmentary for

obvious reasons, and the author’s experience, indicate that the nonlinear met-
hod presented above for the calculation of the matrix M(k) does not usually
lead to a significant improvement. Thus, it can be considered only in strongly
nonlinear cases. Further, since the influence of first steps of the prediction ho-
rizon is most important, therefore the described nonlinear modifications can
be limited only to an initial fragment of the prediction horizon.
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The MPC-NPL+ structure is the most developed one from amongst the
nonlinear predictive methods using a linear process model in the optimization
problem, it is addressed to strongly nonlinear problems and more demanding
situations, when it is necessary to use appropriate control reactions to large
and fast changes of set-points or disturbances. Moreover, it is possible to try
to make this structure even more elaborated, two rather obvious extensions
are possible:

• Instead of a constant initial process input trajectory (3.156), the calcula-
tions can be based on the initial trajectory (3.157).

• The vector of future process inputs can be corrected by a full trajectory of
input increments calculated in the quadratic programming problem, and
not only by its first element �ûj+1(k|k).

A fairly obvious formulation of the MPC-NPL+ algorithm including one or
both extensions given above, is left to the reader.
The presented structures of nonlinear MPC control algorithms: the opti-

mal structure (MPC-NO) and the suboptimal ones (MPC-NSL, MPC-NPL)
are fairly general, they do not limit possible forms of nonlinear models. The
control problem can be with constraints, at each step of an MPC algorithm a
nonlinear optimization problem (in MPC-NO) or a quadratic convex optimi-
zation problem (in MPC-NSL and MPC-NPL) is solved, with constraints.
A special and important case, from an application point of view, is that

of a nonlinear process modeled by a TS (Takgi-Sugeno) fuzzy system with
linear functional consequents in the fuzzy rules, see Section 2.1. For such a
nonlinear model it is easy to generate local linear models which are needed
at consecutive sampling instants of nonlinear MPC algorithms with lineariza-
tions. Moreover, in cases when a controller without constraints is designed, it
is possible to use a general nonlinear TS fuzzy control structure with output-
feedback or state-feedback, see Section 2.2. We define then consequents of the
rules of a nonlinear controller as linear, explicit MPC control laws. It is worth
remembering that analytical versions of the MPC control laws implemented
correctly in anti-wind-up structures are of practical importance. Moreover,
when designing the MPC controllers, it is sometimes recommended to design
first a controller without constraints, see e.g., [49, 99]. It is then often easier to
select suitable controller parameters which influence dynamics and robustness
of the control system.
For notation simplicity, we shall define MPC algorithms with nonlinear TS

fuzzy process models as FMPC (Fuzzy Model Predictive Control) algorithms.
The presented so far nonlinear MPC algorithms will be described in more
detail for the TS fuzzy models in Sections 3.5.7 and 3.5.8.

Example 3.7
Consider an example of a process model dynamics described by a nonlinear
function g : R3 → R

y(k + 1) = g(y(k), u(k − 1), u(k − 2)) (3.161)
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assuming also an additive, constant output disturbance model. We shall now
demonstrate how to construct free output trajectories and the matrix M(k)
which defines a forced output trajectory in the algorithms with linearizations,
MPC-NSL and MPC-NPL. Assume the lengths of control and prediction ho-
rizons Nu = 4 and N = 6. There is a time delay τ = 1 in the process, thus
N1 = 2 is assumed.
Define the vector x(k) ∈ R

3, x(k) = [y(k) u(k− 1) u(k − 2)]T . Denote the
linearization point by xL(k), xL(k) = [yL(k) uL(k − 1) uL(k − 2)]T , where
yL(k) is a measurement y(k) of the output at sampling instant k, whereas
uL(k − 1) and uL(k − 2) are process input signals u(k − 1) and u(k − 2) at
previous instants. Moreover, denote

a1(xL(k)) = − ∂g
∂x1
(yL(k), uL(k − 1), uL(k − 2)) (3.162a)

b1(xL(k)) =
∂g

∂x2
(yL(k), uL(k − 1), uL(k − 2)) (3.162b)

b2(xL(k)) =
∂g

∂x3
(yL(k), uL(k − 1), uL(k − 2)) (3.162c)

A linearized form of the dynamics equation at the point xL(k) is the following

y(k + 1) = g(xL(k))− a1(xL(k))[y(k)− yL(k)]+
+b1(xL(k))[u(k − 1)− uL(k − 1)] + b2(xL(k))[u(k − 2)− uL(k − 2)]

(3.163)

For a concise notation, let us further denote:

a1(k) = a1(xL(k)), b1(k) = b1(xL(k)), b2(k) = b2(xL(k))

• MPC-NSL algorithm
The MPC-NSL algorithm will be a standard formulation of a linear MPC

algorithm designed for the linearized model (3.163). For this purpose we can
use one of the design methods presented in previous sections, e.g., for the
GPC algorithm. For the needs of the considered example we shall use directly
the equation (3.163), to calculate recurrently elements y0(k + p|k) of the free
component of a predicted output trajectory. As in all linear algorithms, we
calculate this trajectory assuming control input increments equal to zero in
the prediction horizon, u(k|k) = u(k + 1|k) = · · · = u(k + 5|k) = uL(k − 1):
y0(k + 1|k) = g(xL(k)) + d(k)
y0(k + 2|k) = −a1(k)[y0(k + 1|k)− yL(k)] + b2(k)[u(k − 1)− uL(k − 2)]+

+ g(xL(k)) + d(k)

...

y0(k + 6|k) = −a1(k)[y0(k + 5|k)− yL(k)] + b2(k)[u(k − 1)− uL(k − 2)]+
+ g(xL(k)) + d(k)



210 3 Model-based Predictive Control

where d(k) is a disturbance estimate

d(k) = y(k)− y(k|k − 1)
where y(k|k − 1) is the output value predicted for sampling instant k on the
basis of information from the previous instant (k − 1), using the linearized
model.
To evaluate the dynamic matrix it is convenient to calculate coefficients of

the step response of the linearized model, and then to use the formula (3.35).
To calculate the step response we use the linearized equation of the dynamics
(3.163) in the incremental form

�y(k + 1) = −a1(k)�y(k) + b1(k)�u(k − 1) + b2(k)�u(k − 2) (3.164)

where
�y(k + 1) = y(k + 1)− g(xL(k))
�y(k) = y(k)− yL(k)

�u(k − 1) = u(k − 1)− uL(k − 1)
�u(k − 2) = u(k − 2)− uL(k − 2)

It is most convenient to use the formulae (3.106). For the considered model
we obtain 5 non-zero coefficients of the step response (s1 = 0)

s2 = b1(k)

s3 = −a1(k)s2 + b1(k) + b2(k)
s4 = −a1(k)s3 + b1(k) + b2(k)
s5 = −a1(k)s4 + b1(k) + b2(k)
s6 = −a1(k)s5 + b1(k) + b2(k)

and the dynamic matrixM(k) (of dimensions 5×4) is calculated from (3.33).
The forced component of the predicted outputs trajectory in the prediction
horizon, ∆Y(k), is given by ∆Y(k) =M(k)∆U(k), where

∆U(k) = [∆u(k|k) ∆u(k + 1|k) ∆u(k + 2|k) ∆u(k + 3|k)]T

• MPC-NPL algorithm
The method of calculation of a nonlinear free output trajectory will first be

presented. Assuming an initial trajectory of future control inputs in the form
(3.156), elements of the nonlinear free output trajectory Y0(k), calculated
directly from the model (3.161), are given by

y0(k + 1|k) = g(y(k), u(k − 1), u(k − 2)) + d(k)
y0(k + 2|k) = g(y0(k + 1|k), u(k − 1), u(k − 1)) + d(k)

...

y0(k + 6|k) = g(y0(k + 5|k), u(k − 1), u(k − 1)) + d(k)
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where d(k) is a constant output disturbance estimate

d(k) = y(k)− g(y(k − 1), u(k − 2), u(k − 3))
The dynamic matrix M(k), which corresponds to the incremental linearized
model (3.164), is the same as in the MPC-NSL algorithm. �

3.5.5 MPC Algorithms Using Artificial Neural Networks

The use of artificial neural networks (ANNs) to modeling and control is now
widely used and acknowledged. The ANNs are used first of all as universal
nonlinear approximators to the construction of nonlinear process models, but
also as nonlinear controllers [118]. It is not our aim in this book to present
foundations and applications of ANNs; there is vast literature on the subject,
see e.g., [54]. Our goal is to describe the role of ANN modeling in construction
of nonlinear predictive controllers, as originally presented in [136].
As discussed in the previous sections, the main problem in application of

predictive controllers with nonlinear process models is the effectiveness and
robustness of the nonlinear optimization procedure which, in turn, depends
mainly on the properties of the process model used. Comprehensive process
models, static and dynamic, are usually available as simulation models, i.e.,
complex program packages delivering values of process outputs for submitted
values of inputs. Optimization with such models is itself a complicated task,
by no means suitable for on-line applications. In this situation, a proven way
of proceeding is to approximate the simulation model by another one, with
simpler structure and better numerical properties (complexity, continuity, dif-
ferentiability, etc.). One of the best choices here is using simplified models
built as ANNs. These models can then be used either as nonlinear process
models in MPC-NO algorithms, or for linearization purposes in MPC-NSL or
MPC-NPL algorithms. Both cases will be discussed in this section.
Let the single-input single-output process under consideration be described

by the following nonlinear discrete-time equation of the form (3.85)

y(k) = g(u(k − τ̄), . . . , u(k − nB), y(k − 1), . . . , y(k − nA)) (3.165)

where g is a continuously differentiable function and τ̄ ≤ nB represents time
delay (including the discretization delay, i.e., τ̄ = τ + 1). In the sequel it is
assumed that the feedforward neural network with one hidden layer and linear
output [54] is used as the function g in (3.165). The structure of the neural
network is depicted in Fig. 3.45. Output of the model can be expressed as

y(k) = w2(0) +
K∑
i=1

w2(i)vi(k) = w2(0) +
K∑
i=1

w2(i)ϕ(zi(k)) (3.166)

where zi(k) is the sum of inputs and vi(k) is the output of the i-th hidden
node, respectively, ϕ is a scalar nonlinear transfer function, K is the number
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Fig. 3.45. Structure of the neural network

of hidden nodes. Recalling the input arguments of the general nonlinear model
(3.165) one has

zi(k) = w1(i, 0)+
Iu∑
j=1

w1(i, j)u(k− τ̄+1−j)+
nA∑
j=1

w1(i, Iu+j)y(k−j) (3.167)

The weights of the network are denoted by w1(i, j), i = 1, . . . ,K, j =
0, . . . , nA+nB − τ̄ +1, and w2(i), i = 0, . . . ,K, for the first and the second la-
yer, respectively. The number of the network’s input nodes depending on input
signal u is Iu = nB−τ̄+1. Total number of weights is (nA+nB−τ̄+2)K+K+1.

MPC Algorithms with Nonlinear Optimization and ANN Model
In general, there are two methods of using neural models in MPC schemes with
nonlinear optimization. In the first approach gradients of the cost function
J(k) are approximated numerically and the nonlinear optimization problem
is solved on-line. In the second approach the structure of the neural network
model is exploited [67, 72, 71, 118].
For simplicity of notation, the analysis will be shown for the cost func-

tion (3.2), i.e., with one scalar weighting coefficient λ. Recall the vector of
controller outputs/process control inputs over the control horizon U(k),

U(k) =

⎡⎢⎣ u(k|k)
...

u(k +Nu − 1|k)

⎤⎥⎦
The cost function (3.2) in the form with control inputs U(k) instead of con-
trol input moves �U(k) will now be more convenient (see Section 3.2.2 for
definitions of other vectors)
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J(k) = ‖Ysp(k)− Y(k)‖2 + λ ∥∥(I+ JNO)U(k) + UNO∥∥2 (3.168)

where the matrices I and JNO are of dimension Nu ×Nu, the vector UNO is
of length Nu,

JNO =

⎡⎢⎢⎢⎣
0 · · · 0 0
−1 · · · 0 0
...
. . .
...
...

0 · · · −1 0

⎤⎥⎥⎥⎦ , UNO =
⎡⎢⎢⎢⎣
−u(k − 1)
0
...
0

⎤⎥⎥⎥⎦
Differentiating (3.168) with respect to U(k) results in

∂J(k)
∂U(k) = 2

(
∂Y(k)
∂U(k)

)T
[Y(k)− Ysp(k) ]+2λ (I+ JNO)T[ (I+JNO)U(k)+UNO]

(3.169)
The matrix of dimension (N −Nu+1)×Nu, containing partial derivatives of
the predicted outputs with respect to future control inputs is

∂Y(k)
∂U(k) =

⎡⎢⎢⎢⎢⎢⎣
∂y(k +N1|k)
∂u(k|k) · · · ∂y(k +N1|k)

∂u(k +Nu − 1|k)
...

. . .
...

∂y(k +N |k)
∂u(k|k) · · · ∂y(k +N |k)

∂u(k +Nu − 1|k)

⎤⎥⎥⎥⎥⎥⎦ (3.170)

The predictions y(k + p|k) for p = N1, . . . ,N are calculated from the general
prediction equation

y(k + p|k) = y(k + p) + d(k) (3.171)

where the quantities y(k + p) are calculated from the model. The above for-
mulation assumes constant prediction of unmeasured disturbance d(k) over
the prediction horizon, as it was the case in the previous sections. Its value is
estimated from the equation

d(k) = y(k)− y(k|k − 1) (3.172)

= y(k)−
(
w2(0) +

K∑
i=1

w2(i)vi(k)

)

From the neural model (3.166) one has

y(k + p) = w2(0) +
K∑
i=1

w2(i)ϕ(zi(k + p)) (3.173)

Considering the prediction over the horizon N , the quantities zi(k + p), and
consequently y(k + p), will depend on some past process control inputs, on
future control inputs, i.e., decision variables of the controller optimization
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problem, on measured values of the process outputs and on future output
predictions. From (3.167) we have

zi(k + p) = w1(i, 0) +
Iuf (p)∑
j=1

w1(i, j)u(k − τ̄ + 1− j + p|k) +

+
Iu∑

j=Iuf (p)+1

w1(i, j)u(k − τ̄ + 1− j + p) +

+
Iyp(p)∑
j=1

w1(i, Iu + j)y(k − j + p|k) +

+
nA∑

j=Iyp(p)+1

w1(i, Iu + j)y(k − j + p) (3.174)

where Iuf (p) = max{min{p−τ̄+1, Iu}, 0} is the number of the network’s input
nodes depending on future control input signals and Iyp(p) = min{p− 1, nA}
is the number of the network’s input nodes depending on output predictions.
Because typically Nu < N , it can be noticed that

Iuf (p)∑
j=1

u(k−τ̄+1−j+p|k) =
INu (p)∑
j=1

u(k+Nu−1|k)+
Iuf (p)∑

j=INu (p)+1

u(k−τ̄+1−j+p|k)

(3.175)
where INu(p) = min{max{p− τ̄−Nu+1, 0}, Iu}. Taking into account (3.175),
the equation (3.174) can be written as

zi(k + p) = w1(i, 0) +
INu (p)∑
j=1

w1(i, j)u(k +Nu − 1|k) +

+
Iuf (p)∑

j=INu (p)+1

w1(i, j)u(k − τ̄ + 1− j + p|k) +

+
Iu∑

j=Iuf (p)+1

w1(i, j)u(k − τ̄ + 1− j + p) +

+
Iyp(p)∑
j=1

w1(i, Iu + j)y(k − j + p|k) +

+
nA∑

j=Iyp(p)+1

w1(i, Iu + j)y(k − j + p) (3.176)

Taking into account (3.171) and (3.173), the entries of the matrix ∂Y(k)∂U(k) given
by (3.170), i.e., partial derivatives of the predicted output signal with respect
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to future control inputs, are calculated from

∂y(k + p|k)
∂u(k + r|k) =

K∑
i=1

w2(i)
dϕ(zi(k + p))
dzi(k + p)

∂zi(k + p)
∂u(k + r|k) (3.177)

Obviously
∂zi(k + p)
∂u(k + r|k) =

∂y(k + p|k)
∂u(k + r|k) = 0 r ≥ p− τ̄ + 1 (3.178)

It can be noted that decision variables of the algorithm affect only the first,
the second and the fourth sum in (3.176). It can also be noted that only some
of the output predictions are influenced by future inputs. Hence

∂zi(k + p)
∂u(k + r|k) =

INu (p)∑
j=1

w1(i, j)
∂u(k +Nu − 1|k)
∂u(k + r|k) +

+
Iuf (p)∑

j=INu (p)+1

w1(i, j)
∂u(k − τ̄ + 1− j + p|k)

∂u(k + r|k) +

+
Iypf (p)∑
j=1

w1(i, Iu + j)
∂y(k − j + p|k)
∂u(k + r|k) (3.179)

where Iypf (p) = max{min{p− τ̄ , nA}, 0} is the number of the network’s input
nodes depending on output predictions which are affected by future process
control inputs. Obviously

∂u(k + p|k)
∂u(k + r|k) =

{
0 p �= r
1 p = r

whereas the derivatives of predicted output signals with respect to future
control inputs have to be calculated recursively.
The discussed method of calculating gradients of the predicted output

trajectory with respect to the future process control inputs is used not only for
obtaining the gradients of the cost function J(k), but also for finding gradients
of output constraints if they have to be taken into account. In some nonlinear
optimization algorithms, for example SQP [5], the analytical Hessian matrix
can be used. Unfortunately, this requires much more computational effort
than calculating the gradients. That is why in the presented solution the
optimization routine is provided with analytical gradients while the Hessian
should be approximated, as it is done in most SQP practical implementations.
The extension of the presented MPC-NO algorithm with neural networks

to MIMO systems is discussed in [67] and [71]. As the model of the process,
ny = dim y MISO (multi-input single-output) nonlinear models (neural ne-
tworks) are used.
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Linearization-based MPC Algorithm with ANN Model
As discussed earlier in this chapter, one of the most effective combinations is
a nonlinear prediction of the free output trajectory together with the use of a
linearized model for on-line optimization of future process input moves in the
QP problem, i.e., the MPC-NPL algorithm.
Defining a linearization point as the vector composed of past process input

and output values

x(k) = [u(k − τ̄) . . . u(k − nB − 1) y(k − 1) . . . y(k − nA)]T (3.180)

the linearized model has the form

y(k) = g(x(k)) +
nB+1∑
l=1

bl−1(x(k))(u(k − l)− u(k − l)) +

−
nA∑
l=1

al(x(k))(y(k − l)− y(k − l)) (3.181)

Taking into account the structure of the neural model and corresponding
equations (3.166) and (3.167), the coefficients of the linearized model are
calculated from

al(x(k)) = − ∂g(x(k))
∂y(k − l) = −

K∑
i=1

w2(i)
dϕ(zi(x(k)))
dzi(x(k))

w1(i, Iu + l), l = 1, . . . , nA

(3.182)

bl−1(x(k)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, l = 1, . . . , τ̄ − 1
∂g(x(k))
∂u(k − l) =

K∑
i=1

w2(i)
dϕ(zi(x(k)))
dzi(x(k))

w1(i, l − τ̄ + 1),
l = τ̄ , . . . , nB + 1

(3.183)

Let
al(k) = al(x(k))

bl(k) = bl(x(k))
(3.184)

and redefine the variables

y(k) = y(k)− g(x(k)) (3.185)

y(k − l) = y(k − l)− y(k − l), l = 1, . . . , nA
u(k − l) = u(k − l)− u(k − l), l = 1, . . . , nB + 1

then the linear approximation of the model (3.165), obtained at sampling
instant k, can be expressed as

A(k, z−1)y(k) = B(k, z−1)u(k) (3.186)

where, consequently, as the total time delay τ̄ ≥ 1 is used
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A(k, z−1) = 1 + a1(k)z−1 + . . .+ anA(k)z
−nA (3.187)

B(k, z−1) = b0(k)z−1 + . . .+ bnB (k)z
−nB−1

It can be noted that the linearization point given by (3.180), and hence the
coefficients al(k) and bl(k), are not influenced by the most recent output value
y(k), which is available as current measurement. It may be crucial in the case
of fast processes. Therefore, it is then recommended to use the linearization
point

x(k) = [u(k − τ̄ + 1) . . . u(k − nB) y(k) . . . y(k − nA + 1)]T (3.188)

If τ̄ = 1, for linearization purposes u(k) = u(k − 1) or u(k) = u(k|k − 1) can
be chosen. The MPC-NPL algorithm using the linearization point (3.180) will
be denoted MPC-NPL1, whereas the one which uses (3.188) MPC-NPL2.
The nonlinear free output trajectory y0(k+p|k), p = 1, . . . , N , is calculated

recursively from the general prediction equation (3.171), taking into account
the output of the neural model given by (3.173) and the constant output
disturbance prediction (3.172)

y0(k + p|k) = w2(0) +
K∑
i=1

w2(i)ϕ(z0i (k + p)) + d(k) (3.189)

The quantities z0i (k + p) are determined from (3.174) assuming no changes
in control input signal from sampling instant k to the end of the prediction
horizon, and replacing predicted output signals by corresponding values of the
free output trajectory,

u(k + p|k) = u(k − 1) p ≥ 0
y(k + p|k) = y0(k + p|k) p ≥ 1

hence

z0i (k + p) = w1(i, 0) +
Iuf (p)∑
j=1

w1(i, j)u(k − 1) +

+
Iu∑

j=Iuf (p)+1

w1(i, j)u(k − τ̄ + 1− j + p) +

+
Iyp(p)∑
j=1

w1(i, Iu + j)y0(k − j + p|k) +

+
nA∑

j=Iyp(p)+1

w1(i, Iu + j)y(k − j + p) (3.190)

The extension of the presented MPC-NPL algorithm with neural networks
to MIMO systems is discussed in [67].
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The stability of the presented MPC-NPL and MPC-NO algorithms with
neural models can be achieved by properly tuning the weighting coefficient
λ in the cost function J(k). Both these algorithms can be combined with
the stabilising dual-mode approach [74], [67], originally developed by H. Mi-
chalska and D.Q. Mayne [97]. Stability of MPC algorithms will be discussed
in Section 3.6.1.
To reduce the computational complexity of the nonlinear MPC algorithm,

several original neural-network based solutions have been suggested. In gene-
ral, these approaches can be divided into two groups:

• Special structures of ANN models designed to make the on-line MPC con-
troller optimization problem computationally simpler [152, 80, 110].

• Approximate explicit (without on-line optimization) MPC algorithms
combined with neural networks [109, 108, 107, 56, 53, 149].

Presentation of these, often specific approaches is beyond the scope of this
book, the interested reader is referred to [136] for a review.

3.5.6 Comparative Simulation Studies

In this section three simulation studies will be presented, illustrating applica-
tions of different nonlinear MPC algorithms, including also cases with process
modeling by neural networks. Comparisons with linear MPC algorithms will
also be given.

Example 3.8
Predictive control of a jacketed continuously-stirred tank reactor with poly-
merization reaction described in [34] will be considered. The reaction under
consideration is the free-radical polymerization of methyl methacrylate with
azo-bis-isobutyronitrile as initiator and toluene as solvent. Under certain sim-
plifying assumptions, see [34] (ideal mixing, constant volume, constant tem-
perature equal to 335 K, constant heat capacity, etc.), the following reactor
equations were obtained:

ẋ1 = 10(6− x1)− 2.4568x1√x2
ẋ2 = 80u− 10.1022x2
ẋ3 = 0.0024121x1

√
x2 + 0.112191x2 − 10x3

ẋ4 = 245.978x1
√
x2 − 10x4

y = x4/x3

where x1 = Cm is the monomer concentration, x2 = C1 is the initiator concen-
tration, and the controlled output y is the NAMV (number-average molecular
weight [kg/kmol]), which is a quotient of the fourth and third state variable,
y = x4/x3. The initiator flow rate FI is the process manipulated input u. A
diagram of the reactor control system is presented in Fig. 3.46.
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Fig. 3.46. The polymerization reactor control structure

The presented process is strongly nonlinear, with nonlinear statics and
dynamics. Let us assume an operating point as in [34]: x10 = 5.50677, x20 =
0.132906, x30 = 0.0019752, x40 = 49.3818, u0 = 0.016783, thus y0 = 25000.
Constraints on process input amplitude umin = 0, 0035, umax = 0.0336 should
also be considered.
Simulations of the control system with the following three predictive con-

trollers were investigated:

• A linear GPC controller in a numerical version (with on-line optimization)
designed for the given operating point.

• A MPC-NPL controller, with a nonlinear prediction of the free output
trajectory calculated using a discretized version of the original nonlinear
model and quadratic optimization with a linearized model, at each sam-
pling instant.

• A full nonlinear MPC-NO controller, with both prediction and optimiza-
tion using a discretized nonlinear model.

The following parameters were assumed for the controllers:

- prediction horizon N = 10,
- control horizon Nu = 2,
- weighting coefficients Ψ(p) = I, Λ(p) = λI, with λ = 700,
- sampling period Tp = 1.8 [min].

Selected results of simulation experiments [67], performed using programs of
the REGZA package [68] are shown in Figures 3.47 - 3.50.
Figures 3.47 and 3.48 present trajectories obtained for the step-change in

the set-point to the value 28000. Differences in the operation of the controllers
are already visible, especially in the trajectories of the process control input
signal. The change of the operating point is in the direction of a larger pro-
cess gain, thus the GPC controller, designed for the operating point with the
smaller gain value, shows the fastest operation, but still operates in a stable
and acceptable way.
Figures 3.49 and 3.50 show trajectories after a larger step-change in the

set-point value, to 32000. Differences in the operation of the controllers are
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Fig. 3.47. Trajectories of the output variable in the polymerization reactor control
systems for a step-change in the set-point to 28000

Fig. 3.48. Trajectories of the control input signal in the polymerization reactor
control systems for a step-change in the set-point to 28000
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Fig. 3.49. Trajectories of the output variable in the polymerization reactor control
systems for a step-change in the set-point to 32000

Fig. 3.50. Trajectories of the control input signal in the polymerization reactor
control systems for a step-change in the set-point to 32000
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now very distinct, both in trajectories of the controlled variable and of the
control input signal. The system with the GPC controller became unstable,
while the system with the simplest version of the MPC-NPL control algorithm
operates slower than with the MPC-NO one, yet in a stable and quite efficient
way. �

Example 3.9
Selected results of simulation experiments with two-dimensional predictive
control of a nonlinear distillation column presented earlier in Example 2.3 in
Section 2.1 will be given.
Concentrations xd and xb of the product in the distillate D and in the

bottom flow B, respectively, are the controlled variables (controlled outputs)
y. The process control inputs u are the reflux flow rate R and the heating
steam flow rate V . Assuming the sampling period Tp = 10 [min] two predictive
controllers were designed [67]:

• A linear GPC controller with the structure of the models (3.114),

y1(k) = −a11y1(k − 1) + b1,10 u1(k − 1) + b1,20 u2(k − 1)
y2(k) = −a21y2(k − 1) + b2,10 u1(k − 1) + b2,20 u2(k − 1)

designed for an operating point defined by the values

R0 = 33.34 [kmol/h]

V0 = 83.34 [kmol/h]

where

y = [xd xb]T , u = [R V ]T .

• A MPC-NO controller, with a nonlinear prediction and optimization using
the full nonlinear model of the column.

It was assumed that Ψ(p) = I, Λ(p) = λI. Simulation tests were perfor-
med for different prediction horizons and different values of λ. Representative
trajectories obtained for both algorithms for N = 6, Nu = 2 and λ = 0.05 are
presented in Figures from 3.51 to 3.54.
It follows from the comparison that in spite of the nonlinearity of the

column, which is obvious when looking at the static characteristics presen-
ted in Example 2.3, the GPC controller operates quite well. The MPC-NO
controller (with full nonlinear optimization) is slightly quicker and suppresses
interactions between the outputs in a better way.
It was assumed in the presented simulations, unlike in other simulation

examples, that the predictive controllers know in advance about future chan-
ges of the set-point values which are to happen in the prediction horizon.
An anticipative character of the control is then clearly visible, the controllers
react ahead to the changes which are about to occur.
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Fig. 3.51. Output trajectories in the GPC control system of the column

Fig. 3.52. Input trajectories in the GPC control system of the column
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Fig. 3.53. Output trajectories in the MPC-NO control system of the column

Fig. 3.54. Input trajectories in the MPC-NO control system of the column �
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Example 3.10
The plant under consideration is a high purity, high pressure (1, 93MPa)
ethylene-ethane distillation column shown in Fig. 3.55, [67, 136]. The feed
stream consists of ethylene (approx. 80%) ethane (approx. 20%) and traces of
hydrogen, methane and propylene. The product of the distillation is ethylene
which can contain up to 1000 [ppm] (parts per million) of ethane. The main
problem is to develop a constraint controller which would be able to increase
the impurity level relatively fast when the composition changes in the feed
stream are relatively small. Reducing the purity of the product, of course
taking into account the technological limit, results in decreasing energy con-
sumption. The production scale is very big; the nominal value of the product
stream flow rate is 43 [tons/h]. The column has 121 trays, the feed stream is
delivered to tray number 37.
Two fast single-loop PID controllers (denoted as LC) are used to maintain

the levels in reflux tank and bottom product tank. Yet another PID controller
(denoted as TC) is also used to control the temperature on the tray number 13.
The PID controllers comprise the basic control layer. As far as the supervisory
constraint MPC controller is concerned, the control loop has one process input
variable r, which is the ratio r = RP , where R is the reflux stream flow rate
delivered to the column by the top tray and P is the product stream flow
rate taken from the tray number 110. There is one output variable z, which
represents the impurity level in the product (ethylene). Sampling interval of

Fig. 3.55. High-purity high-pressure ethylene-ethane distillation column control
system structure, Example 3.10
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the MPC algorithm is relatively long (slow composition analyzer), equal to
Tp = 40 [min].
Four models of the plant were used. The first and most accurate one was

used as the process representation in the closed-loop during the simulations
and was based on technological considerations [67]. An identification proce-
dure was carried out, as a result two linear models for different operating
points and a nonlinear neural network model were obtained. For the empiri-
cal models nA = 1, τ = nB = 3. The horizons were set to N = 10, Nu = 3,
the weighting coefficient λ = 2. In all the simulations it was assumed that at
sampling instant k = 1 the set-point value is changed from 100 [ppm] to 350,
600 and 850 [ppm], respectively. Due to technological reasons the following
constraints were imposed on the reflux ratio: rmin = 4.051, rmax = 4.4571.
First, the algorithms based on two linear models were developed. The first

linear model is valid for a “low” impurity level and the resulting control algo-
rithm works well in this region, but exhibits unacceptable oscillatory behavior
for medium and large set-point changes, as it is shown in Fig. 3.56. On the
contrary, the second linear model captures the process properties for a “high”
impurity level and the closed-loop response is fast enough for the biggest
set-point change but is very slow for smaller ones, as it is shown in Fig. 3.57.
Simulation results with the MPC-NPL algorithms with a neural network

model are depicted in Fig. 3.58. Both algorithms work well for all three set-
point changes, the NPL1 algorithm is slightly slower than NPL2 (recall these
algorithms differ slightly in a way the linearization points are chosen, see the
preceding section). Simulation results with the MPC-NO algorithm with the
neural network model are shown in Fig. 3.59. In comparison with suboptimal
linearization-based algorithms, the nonlinear optimization leads to slightly
faster closed-loop responses.
In practice, big changes in the input variable r are not allowed because of

technological and safety reasons (high pressure, big production scale). That

Fig. 3.56. Simulation results of the ethylene distillation column with MPC algo-
rithm based on a linear model for “low” impurity level
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Fig. 3.57. Simulation results of the ethylene distillation column with MPC algo-
rithm based on a linear model for “high” impurity level

Fig. 3.58. Simulation results of the ethylene distillation column with MPC-NPL1
(dashed line) and MPC-NPL2 (solid line) algorithms with neural network model

Fig. 3.59. Simulation results of the ethylene distillation column with MPC-NO
algorithm with neural network model
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Fig. 3.60. Simulation results of the ethylene distillation column with MPC-NPL2
(dashed) and MPC-NO (solid) algorithms, neural network model and ∆rmax = .03

Fig. 3.61. Simulation results of the ethylene distillation column with MPC-NPL2
algorithm with neural network model and unmeasured disturbances

is why an additional constraint ∆rmax = 0.03 was used. Fig. 3.60 compa-
res simulation results of the MPC-NPL2 and MPC-NO algorithms, with the
neural network model. Although the constraint significantly slows down the
closed-loop responses, the MPC-NO algorithm is still somewhat faster.
Simulation results of the MPC-NPL2 algorithm and with unmeasured sto-

chastic disturbances added to the process are presented in Fig. 3.61. Such
disturbances are unavoidable in industry. �

3.5.7 Fuzzy MPC (FMPC) Numerical Algorithms

A Takagi-Sugeno (TS) fuzzy model is an example of a nonlinear model. If
we use this model in the structure of the MPC-NO algorithm (which can
then be called the FMPC-NO algorithm), then at each sampling instant the
optimization problem (3.155) is solved, the problem with a nonlinear objective
function, linear constraints on process inputs and nonlinear constraints on
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controlled outputs, if such exist. The predicted trajectory of controlled outputs
is then calculated using the nonlinear TS fuzzy model.
The key problem here is a right selection of a numerical optimization pro-

cedure, so as to ensure its reliable and sufficiently fast operation. Formulation
of the recommendations is not easy here, only general indications concer-
ning a choice of minimization procedures corresponding to specific features
of nonlinear problems can be given, known from theory and practice of op-
timization, see e.g., [43, 9, 129]. Numerical SQP-type (Sequential Quadratic
Programming) procedures are the ones which are most frequently recommen-
ded. In a simpler case of one-dimensional control the problem of selection
of the optimization procedure becomes less critical, see e.g., [42]. A discus-
sion concerning applications of optimization methods in nonlinear predictive
control algorithms can be found e.g., in [1, 82]. For stability analysis of the
FMPC-NO algorithms, it is possible to use general approaches proposed in
the literature for nonlinear models, which will be discussed further on, in
Section 3.6.1.
The situation is much more advantageous in cases of nonlinear FMPC

suboptimal algorithms, at each sampling instant performing linearization and
using a linearized form of the fuzzy model for prediction and on-line optimiza-
tion (FMPC-NSL algorithms), or performing prediction on a nonlinear model
and optimization on its current linearized version (FMPC-NPL algorithms).
This explains a large practical significance of these solutions, more so because
differences in the operation of control systems resulting from suboptimality
of the controllers can often be not very significant, especially in cases where a
nonlinear prediction of the free output trajectory is used (the NPL structure).
It will be presented now that for the FMPC suboptimal algorithms using

linearized models, it is important to have the TS fuzzy process model with
identical structure of all the consequents of the fuzzy rules. Denoting the vector
of variables of a general process model by x, x = [x1, x2, . . . , xn]T , where
elements of x can consist of state variables or process inputs and outputs
(current and delayed), the rules Ri of a TS fuzzy model can be written is the
following form (see Chapter 2)

Ri : IF x1(k) is Ai1 and · · · and xn(k) is Ain
THEN yi(k + 1) = ai0 + a

i
1x1(k) + · · ·+ ainxn(k)

The output of the fuzzy model is given by the formula

y(k + 1) =
∑r
i=1 w

i(k)yi(k + 1)∑r
l=1 w

l(k)
=

r∑
i=1

w̃i(k)[ai0 +
n∑
j=1

aijxj(k)] (3.191)

where r denotes the number of rules, wi(k) - levels of activation of the fuzzy
model at sampling instant k (at a point x(k)), while w̃i(k) denote normalized
levels of activation, see Section 2.1.2. Due to affinity and identical structure
of all consequents of the rules we can present (3.191) as follows
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y(k + 1) = a0(k) +
n∑
j=1

aj(k)xj(k) (3.192)

where aj(k) =
r∑
i=1

w̃i(k)aij , j = 0, ..., n (3.193)

In this way we obtain a fuzzy model in the form of an affine model with variable
coefficients, with values depending on a current process state. If at the current
sampling instant the process state is x(k), then the simplest and most natural
way of generating a local linear model, to be used in the optimization problem
of a predictive control algorithm, is to take the model with the coefficients as
in (3.192), with actual values of these coefficients corresponding to levels of
activation of fuzzy rules, calculated for the current process state.

FMPC-NSL (Fuzzy MPC-NSL) Algorithms
For a TS fuzzy model with all rule consequents of identical structure, realiza-
tion of a FMPC-NSL algorithms is natural and relatively easy. At each step of
the algorithm a linear model stemming from (3.192) is calculated. Depending
on the assumed method of modeling it will be, e.g., a model defined by coef-
ficients of step responses, a model in the form of discrete difference equations
or linear state equations. As a result, at each sampling instant the control
input signal will be generated as in the linear MPC algorithm chosen, DMC,
GPC or MPCS, respectively – leading to nonlinear algorithms which can be
called FDMC-NSL, FGPC-NSL or FMPSC-NSL, respectively. Formulae defi-
ning elements of free and forced output trajectories will be as in the DMC,
GPC or MPCS algorithms, but with variable coefficients changing from one
sampling instant to the next, corresponding to the changing coefficients of a
linear model used.
Consider first the FDMC-NSL algorithm. According to the assumed struc-

ture of fuzzy modeling, the model domain will be divided into r fuzzy sub-
domains (multivariable fuzzy sets, in general). One local linear process model
will correspond to each of these sub-domains, given by coefficients of the step
response sij , j = 1, ...,D, i = 1, ..., r, where D is a common, for all linear
models, number of elements of the step responses (see Section 3.2.1). The
only elements of the DMC algorithm connected with the model are matrices
MP andM, which are used to define the free and forced output trajectories,
see (3.38) and (3.39) in Section 3.2.2. In the case of the considered fuzzy al-
gorithm, they will be built from elements of the step response, with values
dependent on the current sampling instant k, sj = sj(k) =

∑r
i=1 w̃

i(k)sij ,
where w̃i(k) denote normalized activation levels of fuzzy rules. At each sub-
sequent sampling instant k the control input increments will be generated on
the basis of the DMC algorithm with matricesMP =MP (k) andM =M(k),
built from elements sj(k) (in a MIMO case: Sj(k)).
In the FGPC-NSL algorithm, values aj = aj(k) and bj = bj(k) of coeffi-

cients of difference equations modeling the process will depend on activation
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levels of fuzzy rules of a fuzzy model at sampling instant k. On the basis
of these equations matrices F = F(k) and GPG = GPG(k) will be construc-
ted, which are used for calculation of a free output trajectory in the GPC
algorithm, and the dynamic matrixM =M(k) (= GFG(k)) needed to calcu-
late a forced output trajectory, see Section 3.3. Elements of the free output
trajectory can also be calculated recurrently using (3.110).

Similarly, in the FMPCS-NSL algorithm coefficients of matrices of linear
state and output equations will depend on activation levels of fuzzy rules at
each sampling instant, A = A(k), B = B(k), C = C(k). These matrices are
then further used to construct matrices Ã = Ã(k), V = V(k) and Mx =
Mx(k) needed for state and output predictions at each sampling instant k,
see Section 3.4. However, the full state vector is usually unavailable, therefore
these predictions then depend on estimated state and disturbance values. In a
nonlinear case, a nonlinear state observer should be used. The design of such
observers is not as simple as in the linear case. However, if we use a nonlinear
TS fuzzy process model based on local models in the form of linear state
equations, then a nonlinear fuzzy state observer constructed in an analogous
way, as a TS fuzzy system based on local linear observers, can be recommended
[132]. An efficient way of an observer design can also be the application an an
extended Kalman filter [77].

FMPC-NPL (Fuzzy MPC-NPL) Algorithms

Let us now move on to FMPC-NPL algorithms, with nonlinear prediction
of the free output trajectory and linearized models used for optimization of
the forced output trajectory. These algorithms are slightly more difficult in
implementation than the FMPC-NSL ones. Let us begin with the case of linear
models in the form used in the GPC algorithm.

FGPC-NPL Algorithm
A SISO process case will now be considered, as in Section 3.3.1. Assume that
a fuzzy process model consists of r rules, and that all rule consequents are
linear models in the form of discrete difference equations corresponding to the
structure (3.105). A fuzzy model for a nonlinear output prediction can then
be written in the form of a set of rules

Ri : IF y(k) is Ai0 and y(k − 1) is Ai1 and · · · and y(k − nR) is AinR
and u(k) is Bi0 and u(k − 1) is Bi1 and · · · and u(k −mR) is BimR

THEN yi(k + 1) = −ai1y(k)− · · · − ainAy(k − nA + 1)+
+ bi0u(k) + b

i
1u(k − 1) + · · ·+ binBu(k − nB) (3.194)

where i indexes rules and at the same time sub-domains (fuzzy sets, multi-
variable in general) of the TS model, Aij ∈ Yj , Bij ∈ Uj , while aij and b

i
j are

coefficients of functions in rule consequents, i = 1, ..., r, and u(k) = u(k|k).
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Elements of each of the sets Yj = {Yj1, ..., Yjryj} are fuzzy sets covering the
area of the variable y(k− j), j = 0, . . . , nR, analogously Uj = {Uj1, ..., Ujruj}
for u(k − j), j = 0, . . . ,mR. The presented description is most general, we
frequently have Y0 = · · · = YnR = Y, Y = {Y1, ..., Yry}, i.e., partitions of the
domain of y(k) are the same, independent on time delays, and analogously
U1 = · · · = UmR = U, U = {U1, ..., Uru} (see Sections 2.1.2 and 2.2.2).
The set of rules is complemented by the standard formula for a final con-

clusion, namely for the model output

y(k + 1) =
r∑
i=1

w̃i(k)yi(k + 1) (3.195)

where w̃i(k) are normalized activation levels of the rules (3.194). Note that
activation levels of the rules at sampling instant k depend on values of nR+1
outputs (y(k), y(k − 1), ..., y(k − nR) and mR + 1 inputs u(k), u(k − 1), ...,
u(k −mR). Precisely, they depend on grades of membership of these outputs
and inputs to the fuzzy sets Aij and B

i
j , where, in general, nR �= nA and

mR �= nB.
A concise description of the model (3.194), (3.195), compliant with the

general formula (3.192), is

y(k + 1) = −a1(k)y(k)− · · · − anA(k)y(k − nA + 1)+
+b0(k)u(k) + b1(k)u(k − 1) + · · ·+ bnB (k)u(k − nB) (3.196)

where
aj(k) =

r∑
i=1

w̃i(k)aij , bj(k) =
r∑
i=1

w̃i(k)bij (3.197)

Assuming a constant output disturbance model, with a disturbance esti-
mate d(k)

d(k) = y(k)−
⎡⎣− nA∑

j=1

aj(k − 1)y(k − j) +
nB∑
j=0

bj(k − 1)u(k − 1− j)
⎤⎦

we can start with formulating rules of the nonlinear prediction.
The output y0(k + 1|k) predicted at sampling instant k for the instant

k+1 can be evaluated directly from (3.194) and (3.195), or equivalently from
(3.196). Thus we obtain

y0(k + 1|k) = −a1(k)y(k)− · · · − anA(k)y(k − nA + 1)+
+b0(k)u0(k|k) + b1(k)u(k − 1) + · · ·+ bnB (k)u(k − nB) + d(k)

(3.198)

where u0(k|k) = u(k− 1) is the first element of an initial trajectory of control
inputs over the control horizon U0(k), see (3.156).
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Output values predicted for the next sampling instants will be calculated
using, recurrently, the one-step ahead prediction based on (3.194) and (3.195).
Therefore, the output predicted for sampling instant k + 2 will be evaluated
from the formulae

IF y0(k + 1|k) is Ai0 and y(k) is Ai1 and · · · and y(k − nR + 1) is AinR
and u0(k + 1|k) is Bi0 and u0(k|k) is Bi1 and · · ·

· · · and u(k −mR + 1) is BimR
THEN y0i(k + 2|k) = −ai1y0(k + 1|k)− ai2y(k)− · · · − ainAy(k − nA + 2)+
+ bi0u

0(k + 1|k) + bi1u0(k|k) + · · ·+ binBu(k − nB + 1) + d(k) (3.199)

y0(k + 2|k) =
r∑
i=1

w̃i(k + 1|k)y0i(k + 2|k)

where u0(k + 1|k) = u0(k|k) = u(k − 1), while w̃i(k + 1|k) are normalized
activation levels of the rules (3.199). The above formulae can be written in a
concise form

y0(k + 2|k) = −a1(k + 1|k)y0(k + 1|k)− · · · − anA(k + 1|k)y(k − nA + 2)+
+ b0(k + 1|k)u0(k + 1|k) + · · ·+ bnB (k + 1|k)u(k − nB + 1) + d(k) (3.200)

where
aj(k + 1|k) =

r∑
i=1

w̃i(k + 1|k)aij , bj(k + 1|k) =
r∑
i=1

w̃i(k + 1|k)bij

Predictions of the free outputs for next sampling instants k + p, p = 3, ..., N ,
can be performed in an analogous way. The general form of the prediction
formula, for p = 1 and p = 2 yielding (3.198) and (3.200), is the following

y0(k + p|k) = −
min{nA,p−1}∑

j=1

aj(k + p− 1|k)y0(k + p− j|k)+

−
nA∑

j=min{nA,p−1}+1
aj(k + p− 1|k)y(k + p− j)+

+
min{nB+1,p}−1∑

j=0

bj(k + p− 1|k)u0(k + p− 1− j|k)+

+
nB∑

j=min{nB+1,p}
bj(k + p− 1|k)u(k + p− 1− j) + d(k) (3.201)

where
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aj(k + p− 1|k) =
r∑
i=1

w̃i(k + p− 1|k)aij (3.202)

bj(k + p− 1|k) =
r∑
i=1

w̃i(k + p− 1|k)bij (3.203)

and aj(k|k) = aj(k), bj(k|k) = bj(k), see (3.197), where w̃i(k + p − 1|k)
are normalized activation levels of the rules of the fuzzy model, evaluated at
sampling instant k for the future instant k+p−1, while u0(k+j|k) = u(k−1)
for j ≥ 0.
To calculate the forced component of the output trajectory in the pre-

diction horizon, it is necessary to calculate the dynamic matrix. Knowing
coefficients (3.197) of a linear (linearized) model at sampling instant k, we
can evaluate elements of the step response of this model, sj(k), j = 1, 2, ... ,
directly from (3.106)

sj(k) = −
min{j−1,nA}∑

i=1

ai(k)sj−i(k) +
min{j−1,nB}∑

i=0

bi(k) (3.204)

Dynamic matrixM(k) can be calculated according to (3.33), inserting values
sj(k) obtained above in place of sj , j = N1, ..., N .
A nonlinear method for evaluation of the matrix M(k) remains only to

be discussed, possible to be applied when generating this matrix for needs of
optimization of the control input increments, see (3.158). As it was generally
presented when discussing the construction of the MPC-NPL algorithms in
the previous section, the subsequent lines of the matrixM(k) are adjusted to
elements y0(k + p|k) of a free trajectory of the predicted outputs, generated
successively. Thus, the matrix will have the following form (compare with
(3.33))

M(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s
(N1−1|k)
N1

· · · s(N1−1|k)1 0 · · · 0
s
(N1|k)
N1+1 · · · s

(N1|k)
2 s

(N1|k)
1 · · · 0

...
...

...
...

. . .
...

s
(Nu−1|k)
Nu

· · · s(Nu−1|k)Nu−N1+1 s
(Nu−1|k)
Nu−N1 · · · s

(Nu−1|k)
1

...
...

...
...

. . .
...

s
(N−1|k)
N · · · s(N−1|k)N−N1+1 s

(N−1|k)
N−N1 · · · s(N−1|k)N−Nu+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.205)

where s(p|k)j = sj(k+ p|k) are elements of the step response of a linear model
with coefficients aj(k + p|k) and bj(k + p|k), see (3.202) and (3.203).
Having calculated the free output trajectory Y0(k) = [y0(k + N1|k) · · ·

y0(k+N |k)]T and dynamic matrixM(k), necessary for evaluation of the forced
trajectory ∆Y(k) =M(k)∆U(k), it is possible to perform optimization of the
control inputs solving a quadratic programming problem. This concludes the
operation of the FGPC-NPL algorithm at sampling instant k.
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In case of the MPC-NPL+ algorithm, subsequent iterations of the free
output trajectory are calculated in the same way, only initial sequence of
process control inputs U j(k) should be used in place of U0(k). The control
input increments should be then calculated as a solution to the optimization
problem (3.160).

FDMC-NPL Algorithm
For the FDMC-NPL algorithm the way of proceeding is analogous as in the
FGPC-NPL case discussed above. Only different formulae will occur in con-
sequents of the fuzzy rules, the ones which correspond to the process model
based on step response coefficients, see Section 3.2.1.
A fuzzy model for nonlinear prediction of a free output trajectory will be

written in the form of a set of r rules with antecedents in a general form such
as above in the FGPC algorithm, and with consequents in the form

y0i(k + p|k) = y(0) +
k+p∑
j=p+1

sij�u(k + p− j) + d(k)

compare with (3.13), where sij denotes j−th element of the step response of
a linear model occurring in the i-th rule consequent, i = 1, .., r. Disturbance
d(k) is assumed to be constant in the prediction horizon and equal to

d(k) = y(k)−
⎡⎣y(0) + k∑

j=1

sj(k − 1)�u(k − j)
⎤⎦

where sj(k− 1) are coefficients of the step response of the linear model used
at sampling instant k − 1. Combining the above two equations we obtain

y0i(k + p|k) = y(k) +
D−1∑
j=1

[sij+p − sj(k − 1)]�u(k − j)

where D denotes horizon of the step response dynamics, see Section 3.2.1.
Therefore, the nonlinear prediction of the free output trajectory, performed
at sampling instant k for the prediction horizon N , is realized by subsequent
(recurrent) application of the following rules, for p = 1, 2, ..., N ,

Ri : IF y0(k + p− 1|k) is Ai0 and · · · and y0(k + 1|k) is Aip−2
and y(k) is Aip−1 and · · · and y(k + p− 1− nR) is AinR

and u0(k + p− 1|k) is Bi0 and · · · and u0(k|k) is Bip−1
and u(k − 1) is Bip and · · · and u(k + p− 1−mR) is BimR

THEN y0i(k + p|k) = y(k) +
D−1∑
j=1

[sij+p − sj(k − 1)]�u(k − j)
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together with the conclusion of the fuzzy reasoning

y0(k + p|k) =
r∑
i=1

w̃i(k + p− 1|k)y0i(k + p|k)

where w̃i(k+p−1|k) are normalized activation levels of the rules at sampling
instant (k + p − 1|k), while u0(k|k) = · · · = u0(k + N − 1|k) = u(k − 1) are
components of the initial trajectory U0(k) of predicted control inputs (3.156).
Denoting

sj(k + p|k) =
r∑
i=1

w̃i(k + p|k)sij , j = 1, 2, ...

the last formula can be written in the following form

y0(k + p|k) = y(k) +
D−1∑
j=1

[sj+p(k + p− 1|k)− sj(k − 1)]�u(k − j) (3.206)

It should be emphasized that calculation of the components of the nonlinear
free output trajectory should be performed subsequently, recurrently – be-
cause for evaluation of the value y0(k + p|k) it is necessary to evaluate first
levels of activation w̃i(k+ p− 1|k) dependent on previous elements of the free
output trajectory, due to their presence in the antecedents of the fuzzy rules.
Since we know values of the coefficients sj(k) of the step response of the

linear (linearized) model used at sampling instant k, hence we have directly the
dynamic matrix M(k) needed for calculation of the forced output trajectory
in the prediction horizon. We can also immediately calculate, if necessary, its
nonlinear version (3.205).

Example 3.11
This is an example for a simple illustration of the design and analysis of a fuzzy
predictive controller for a process model already considered in Example 2.6
in Chapter 2. The model is described by the following fuzzy rules

R1 : IF y(k) is Y1 THEN y1(k + 1) = 0.7y(k) + 0.8u(k) (3.207)

R2 : IF y(k) is Y2 THEN y2(k + 1) = 0.3y(k) + 0.2u(k) (3.208)

Fuzzy sets Y1 and Y2 are defined by sigmoidal membership functions

µY1(y(k)) =
1

1 + exp(6y(k))

µY2(y(k)) = 1− µY1(y(k))

presented in Figures 2.23 (a). Linear models occurring in rule consequents
(3.207) and (3.208) have indeed different gains and dynamics, which can be
easily seen looking at their step responses presented in Fig. 2.23 (b).
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The form (3.192) of the fuzzy model is in the case of our example problem
the following

y(k + 1) = µY1(y(k))[0.7y(k) + 0.8u(k)] + µY2(y(k))[0.3y(k) + 0.2u(k)]

= −a1(k)y(k) + b0(k)u(k) (3.209)

where

−a1(k) = 0.7µY1(y(k)) + 0.3µY2(y(k))
b0(k) = 0.8µY1(y(k)) + 0.2µY2(y(k))

and activation levels of the fuzzy rules are given by the formulae

w1(k) = µY1(y(k))

w2(k) = µY2(y(k)) = 1− µY1(y(k))
The presented model is indeed nonlinear and it is not possible to design a
linear controller which would operate well in the entire control domain. This
fact was checked by designing linear GPC controllers for operating points
corresponding to the output values y = −1, y = +1 and y = 0. The first
two controllers operated correctly in neighborhoods of their operating points,
but were unacceptable globally (instability or very slow operation in the more
distant area). The third controller, designed for a middle operating point
(y = 0) turned out to be slightly better, but still did not fulfil expectations
– this is shown by trajectories of the output and input signals presented in
Fig. 3.62.
For the presented process the following nonlinear controllers were designed

and compared: NSL, NPL (also NPL+) and NO (with nonlinear optimization),
assuming N = 6, Nu = 3, N1 = 1, Ψ(p) = I, Λ(p) = λI.
The NSL algorithm is evaluated at each sampling instant k as a linear

GPC algorithm for the linear (linearized) model

y(k) = −a1(k)y(k − 1) + b0(k)u(k − 1)
The design can be performed applying one of the methods presented in Sec-
tion 3.3.1.
In the NPL algorithm we calculate a nonlinear prediction of the free output

trajectory assuming control input increments equal to zero in the prediction
horizon and applying the following formulae

y0(k + 1|k) = −a1(k)y(k) + b0(k)u(k − 1) + d(k)

y0(k + p|k) = −a1(k + p− 1)y0(k + p− 1|k)+
+b0(k + p− 1|k)u(k − 1) + d(k), p = 2, ..., N
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where

−a1(k + p− 1|k) = 0.7µY1(y0(k + p− 1|k)) + 0.3µY2(y0(k + p− 1|k))

b0(k + p− 1|k) = 0.8µY1(y0(k + p− 1|k)) + 0.2µY2(y0(k + p− 1|k)),
p = 2, ..., N

d(k) = y(k)− [−a1(k − 1)y(k − 1) + b0 (k − 1)u(k − 1)] (3.210)

The easiest way to calculate the dynamic matrixM(k), which is necessary
to evaluate the forced output trajectory, is to calculate coefficients of the step
response of a linearized model using (3.106).
Let us consider, for a moment, the following design method: first to cal-

culate, off-line using (3.106), elements of step responses of linear models oc-
curring in rule consequents (3.207), (3.208) and then, for each step response,
corresponding dynamic matrices M1 and M2. Then, during the on-line ope-
ration of the algorithm, dynamic matrixM(k) is calculated at each sampling
instant k from the formula

M(k) = µY1(y(k))M
1 + µY2(y(k))M

2

It should be pointed out that the above method is not equivalent to the
one when the matrix M(k) is calculated on-line, at each sampling instant k,
on the basis of a step response of a linearized model. It generally leads to

Fig. 3.62. Trajectories of the process input and output in the feedback control
system with the GPC controller designed for y = 0
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different results, though a predictive control algorithm constructed in such a
way usually operates in a similar way.
Using the NPL+ algorithm we calculate subsequent free output trajecto-

ries yj(k+p|k), p = 1, ..., N identically as the trajectory y0(k+p|k) above, only
instead of the control input u(k − 1) it is necessary to use the value uj(k|k)
(see description of the algorithm in Section 3.5.1). Moreover, it is necessary
to remember about an appropriate modification of the controller optimization
problem, to the form (3.160).
In an NO type algorithm at each step a nonlinear optimization is per-

formed, elements of the trajectory of the predicted outputs over a prediction
horizon are calculated using a nonlinear model (3.209), supplemented by a dis-
turbance estimate given by (3.210). The procedure is recurrent, subsequent
formulae look as follows:

y(k + 1|k) = −a1(k)y(k) + b0(k)[u(k − 1) +�u(k|k)] + d(k)

y(k + 2|k) = −a1(k + 1|k)y(k + 1|k) + b0(k + 1|k)[u(k − 1) +�u(k|k)+
+�u(k + 1|k)] + d(k)

y(k + 3|k) = −a1(k + 2|k)y(k + 2|k) + b0(k + 2|k)[u(k − 1) +�u(k|k)+
+�u(k + 1|k) +�u(k + 2|k)] + d(k)
...

y(k + 6|k) = −a1(k + 5|k)y(k + 5|k) + b0(k + 5|k)[u(k − 1) +�u(k|k)+
+�u(k + 1|k) +�u(k + 2|k)] + d(k)

In this case coefficients of the model are calculated based on full predicted
trajectory of the outputs (and not only its free part), i.e.,

−a1(k + p− 1|k) = 0.7µY1(y(k + p− 1|k)) + 0.3µY2(y(k + p− 1|k))

b0(k + p− 1|k) = 0.8µY1(y(k + p− 1|k)) + 0.2µY2(y(k + p− 1|k)),
p = 2, ..., 6

Therefore, they depend on the vector of decision variables of the nonlinear
optimization problem, ∆U(k) = [�u(k|k) �u(k + 1|k) �u(k + 2|k)]T .
Simulation studies were performed for the presented algorithms and diffe-

rent values of the coefficient λ. Figures from 3.63 to 3.66 present trajectories
of the obtained process outputs and inputs, with λ = 0.1, by the following
algorithms: linear GPC and nonlinear NSL, NPL, NPL+ and NO.
The FGPC-NSL algorithm turned out to be slightly better in the conside-

red situation than the best linear one, namely the GPC algorithm designed
for a medium point of nonlinearity (y = 0), mainly by decreasing the settling
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Fig. 3.63. Trajectories of the process input and output in the feedback control
system with the FGPC-NSL controller

Fig. 3.64. Trajectories of the process input and output in the feedback control
system with the FMPC-NPL controller
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Fig. 3.65. Trajectories of the process input and output in the feedback control
system with the FMPC-NPL+ controller

Fig. 3.66. Trajectories of the process input and output in the feedback control
system with the FMPC-NO controller
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time for a range of positive output values. Application of the FMPC-NPL
algorithm (with a comparable complexity of calculations !) improved the con-
trol system properties, further reducing the settling time in the area y ≥ 0
and practically eliminating a quite strong, disadvantageous overshoot present
for negative values of y (observed after a step change of the set-point value
to −1). Applying the NPL+ algorithm has already caused an insignificant
improvement.
It is worth noting that trajectories obtained with the NPL and NPL+

algorithms are similar to those obtained with a much more calculation-
demanding FMPC-NO algorithm, with nonlinear optimization performed at
each sampling instant (using a procedure from theOptimization Toolbox of the
MATLAB� package). Moreover, in the case of the NPL+ and NO algorithms
the trajectories are almost identical.
It is also interesting to compare the obtained results with the results for

the control system with a PI fuzzy TS controller, presented in Example 2.6
in Section 2.5 �

3.5.8 Fuzzy MPC (FMPC) Explicit Unconstrained Algorithms

If only a linear process model is used and no constraints on values of process
inputs and outputs are considered in the MPC optimization problem, then it
has an unconstrained analytical solution, resulting in an unconstrained linear
MPC control law. Such control laws were formulated for DMC, GPC and
MPCS algorithms in Sections 3.2, 3.3 and 3.4, respectively. In the described
situation it is possible to design FMPC algorithms in a different way than it
was presented in previous sections, devoted to constrained numerical versions.
The design procedure can than be as follows:

• First, explicit unconstrained predictive controllers are designed (as linear
control laws), one for each fuzzy sub-domain corresponding to its asso-
ciated fuzzy rule, having in its consequent a local linear process model,
describing the process for control purposes in this sub-domain.

• Next, all the designed linear predictive control laws, supplemented by fuzzy
reasoning, result in an overall nonlinear unconstrained fuzzy predictive
control law.

The essence of the approach is an application of the general structure of
the design of a nonlinear TS fuzzy controller, presented in Section 2.2. Since
linear models were used for the design of local predictive controllers and the
fuzzy control law is modified at each step of the algorithm, then the obtained
nonlinear control algorithm is very similar to the FMPC-NSL type. However,
it is not identical, as fuzzy reasoning applied to the local MPC control laws
is not, in general, fully equivalent to the FMPC-NSL design procedure: fuzzy
reasoning applied to local process models only to get a current linearization
of the fuzzy model, with the following calculation (at each sampling instant)
of the MPC control law for this model.
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At the first stage, as always with fuzzy systems, antecedents and conse-
quents of inference rules of a TS fuzzy model of the process are designed (see
Chapter 2). This stage is based on defining the variables which describe ope-
rating points and on divisions of their variability ranges into fuzzy sets, such
that in each of the created sub-domains the process can be well approximated
by a local linear model. Next, for each sub-domain (i.e., for each rule of the
fuzzy model) a local unconstrained linear predictive control law is designed.
Depending on the method of modeling and design, it will be a DMC, GPC or
MPCS control law – if linear MPC algorithms presented earlier in this chapter
are considered. The final nonlinear fuzzy MPC TS controller will be obtained
as a combination of local controllers, by means of fuzzy reasoning.
Consider now the design of an explicit unconstrained FMPC controller

taking as an example a FDMC explicit controller for a SISO process – with
local linear DMC predictive control laws [89]. Assume that the first stage of
the design was completed resulting in r fuzzy sub-domains defined by rule
antecedents of a TS fuzzy process model, where in each sub-domain a linear
process model was chosen in the form of a step response of a finite length. It
can be assumed, without loss of generality, that each of these step responses is
of the same length, as all shorter responses can be appropriately lengthened.
Next, assume that for each local model a DMC control law was designed.
Assuming also that the set-point value for the controlled variable does not
change over the prediction horizon, each of the local control laws will be given
by (3.52). As a result, we obtain the explicit FDMC controller described by
the following set of rules

Ric : IF y(k) is A
i
0 and y(k − 1) is Ai1 and · · · and y(k − nR) is AinR
and u(k − 1) is Bi1 and · · · and u(k −mR) is BimR

THEN �ui(k) = (ke)ie(k)−
D−1∑
q=1

(kuq )
i�u(k − q) (3.211)

where i = 1, ..., r, indexes fuzzy rules, and thus local DMC control laws, while
e(k) = ysp(k) − y(k) denotes the control error. The controller output signal
takes the form standard for the fuzzy TS structures

�u(k) =
∑r
i=1 w

i(k)�ui(k)∑r
l=1 w

l(k)
=
r∑
i=1

w̃i(k)�ui(k) (3.212)

where w̃i(k) are normalized activation levels of individual rules (3.211). Struc-
ture of the obtained FDMC explicit controller is presented in Fig. 3.67, where
dotted lines visualize the fuzzy reasoning block and signals leading to it.
Of course, for applications where the process input signal can access the ac-

tuator’s constraints on amplitude or rate of change, the structure in Fig. 3.67
should be modified by supplementing it with projection and anti-windup ele-
ments, in the same way as it was done for the DMC controller in Section 3.2.2,
see Fig. 3.14.
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Fig. 3.67. Structure of the unconstrained explicit FDMC controller (the case with
the set-point value constant in the prediction horizon)

Formulating the rules (3.211) we assumed a general form of their ante-
cedents, the same as the one used in Section 2.2.2 devoted to discrete TS
fuzzy output-feedback controllers. The presented FDMC explicit controller is
a special case of the controller considered there, with rules (2.39), for nC = 1,
mD = D and

cj1 = (k
e)j

dj1 = 1− (ku1 )j
djq = (k

u
q−1)

j − (kuq )j , q = 2, ..., D − 1
djD = (k

u
D−1)

j (3.213)

where D is the length of step responses used during the design of local DMC
controllers. Therefore, it is possible to use Corollary 2.6 formulated in Sec-
tion 2.2.2, for stability analysis of the control system with the FDMC explicit
controller [91, 92].
The analysis concerns a control system with a process modeled also by

a TS fuzzy system, therefore a model of the controlled process in the same
general form as in Section 2.2.2 will be assumed. Namely, in the form of a
set of the following ro rules (generally ro �= r and antecedents can also be
different than in the controller rules)

Rip : IF y(k) is A
i
0 and y(k − 1) is Ai1 and · · · and y(k − nO) is AinO

and u(k) is Bi0 and u(k − 1) is Bi1 and · · · and u(k −mO) is BimO
THEN yi(k + 1) = ai1y(k) + a

i
2y(k − 1) + · · ·+ ainAy(k − nA + 1)

+ bi0u(k) + b
i
1u(k − 1) + · · ·+ bimBu(k −mB) (3.214)
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where i = 1, ..., ro. Activation levels of the rules (3.214) are denoted by wio(k)
and their normalized values by w̃io(k). Therefore, the output of the process
model is given by

y(k + 1) =
∑ro
i=1 w

i
o(k) y

i(k + 1)∑ro
l=1 w

l
o(k)

=
ro∑
i=1

w̃io(k) y
i(k + 1) (3.215)

Notice a slight difference when comparing notation used in (3.214) with the
general form of the ARX type model applied in this section, compare with
(3.105). Namely, in consequents of the rules (3.214) mB is used in place of nB
– to be consistent with the notation used in Chapter 2, as we shall use the
results presented in that chapter in the following considerations.
According to the Corollary 2.6, a sufficient stability condition for a control

system with an explicit FDMC controller and the model (3.214), (3.215) is
the existence of a positive definite matrix P, such that for each matrix Aij
the equation ATijPAij − P < 0 is fulfilled, for all pairs (i, j), i = 1, ..., ro,
j = 1, ..., r except those for which always wio(k)w

j(k) = 0. Matrices Aij are
given by (2.51), and in the considered case of our FDMC controller elements of
the (n+1)-st row of these matrices result directly from (3.213), while elements
of the first row are expressed by

aci,j1 = a
i
1 − bi0(ke)j

aci,jp = a
i
p, p = 2, ..., nA

bdi,j1 = b
i
1 + b

i
0[1− (ku1 )j ]

bdi,jq = b
i
q + b

i
0[(k

u
q−1)

j − (kuq )j ], q = 2, ..., D − 1
bdi,jD = b

i
D + b

i
0(k
u
D−1)

j (3.216)

where n = nA and m = D was assumed, i.e., D ≥ mB, as the number of
elements in the step response is not smaller than the number of elements
dependent on the process input variable in the ARX model (a model based
directly on the step response is a limiting case). If mB < D, then biq = 0 for
mB < q ≤ D should be assumed in the above formulae.
In cases of identical rule antecedents both in the process model assumed

for the design of the controller and in the process description for the control
system simulation, we have r = ro, wio(k) = w

i(k), i = 1, ..., r. Then it is
possible to lower the number of matrices Aij and to use the formula in the
form given in Corollary 2.7 for stability analysis, see Section 2.2.2.

A FGPC fuzzy explicit controller, with local unconstrained linear GPC
control laws, can be designed in an analogous way. Instead of rules (3.211) we
only have rules with consequents corresponding to (3.97)
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Ric : IF y(k) is A
i
0 and y(k − 1) is Ai1 and · · · and y(k − nR) is AinR
and u(k − 1) is Bi1 and · · · and u(k −mR) is BimR

THEN �ui(k) = (ke)iysp(k)−
nAR∑
q=0

(kyq )
iy(k − q)−

mBR∑
q=1

(kuq )
i�u(k − q)

(3.217)

i = 1, ..., r, where nAR and mBR correspond to parameters nA and nB of
polynomials A(z−1) and B(z−1) of the process model (3.85) taken for the
design of a GPC controller in Section 3.3.1. We have introduced here different
symbols nAR and mBR, because values nAR and mBR present in consequents
of rules (3.217) (i.e., in local GPC control laws) and values nA and mB in
consequents of rules (3.214) representing the process in the control system
structure can generally be different (a case of different process models used
for controller design and for process representation in the feedback loop).
For stability analysis of a feedback control system with a FGPC controller

and a process model in the form (3.214) we can also use Theorem 2.1, and
precisely Corollary 2.6 presented in Section 2.2.2. However, notice that the
formulae of local GPC controllers occurring in consequents of rules (3.217)
are of a slightly different form than formulae of consequents of rules (2.39)
in Section 2.2.2 – outputs of local controllers there depend on control errors
and not directly on process outputs as in (3.217). This does not constitute
an obstacle for the stability analysis, as the theses of both Theorem 2.1 and
Corollary 2.6 do not depend on the signal ysp. Therefore, it can be assumed,
without loss of generality, that ysp(k) = ysp(k − 1) = · · · = 0. Then the GPC
control laws occur to be special cases of control laws from consequents of the
rules (2.39), for nC = nAR + 1, mD = mBR + 1 and

cjp = (k
y
p−1)

j , p = 1, ..., nAR + 1

dj1 = 1− (ku1 )j
djq = (k

u
q−1)

j − (kuq )j , q = 2, ...,mBR
djmBR+1 = (k

u
mBR)

j (3.218)

Assuming n = max{nAR + 1, nA}, m = max{mBR + 1,mB}, we obtain the
following formulae for elements of first rows of matrices Aij (2.51) from Coro-
llary 2.6:

aci,jp = a
i
p − bi0(kyp−1)j , p = 1, ..., n

bdi,j1 = b
i
1 + b

i
0[1− (ku1 )j ]

bdi,jq = b
i
q + b

i
0[(k

u
q−1)

j − (kuq )j ], q = 2, ...,m (3.219)

In the above formulae:
– if nAR + 1 > nA, then aip = 0 for p > nA should be assumed, and if
nAR + 1 < nA then (k

y
p−1)

j = 0 for p > nAR + 1, and analogously
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– if mBR + 1 > mB then biq = 0 for q > mB should be assumed, and always
(kuq )

j = 0 for q > mBR.
Formulae for elements of (n + 1)-st row of matrices Aij follow directly from
(3.218).

Design of FMPCS fuzzy unconstrained explicit controllers, using a fuzzy
process model based on local process models in the form of linear state equa-
tions, can be performed in a quite analogous way. However, an additional de-
sign stage may be present here and should be commented on. Namely, there
may be estimated state and disturbance variables in both antecedents and
consequents (the latter being explicit MPCS control laws) of the fuzzy rules
of the FMPCS explicit controller. These variables will be estimated using an
observer, as discussed in Section 3.4.2 for linear processes. However, the pro-
cess and its model are now nonlinear. Therefore, a nonlinear observer should
be applied. As it was mentioned in Section 3.5.7, design of such observers
is not as simple as in the linear case. It was also mentioned that it can be
recommended to apply a nonlinear state observer in the form of a fuzzy TS
system constructed on the basis of local linear observers [132], or an extended
Kalman filter [77]. Discussing these questions is beyond the scope of this book.

Example 3.12
Let us consider a control system with the process from Example 3.11 and
with the FGPC explicit unconstrained controller. The controller is obtained
by designing local linear explicit unconstrained GPC control laws combined
with fuzzy reasoning.
Assuming parameters established in Example 3.11, i.e., N = 6, Nu = 3,

N = 1 and λ = 0.1, for local linear models occurring in consequents of rules
(3.207) and (3.208), the explicit GPC control laws being consequents of the
following rules of the FGPC controller are obtained

R1c : IF y(k) is Y1

THEN u1(k) = 1.0012ysp(k)− 1.7904y(k) + 0.7892y(k − 1) (3.220)
R2c : IF y(k) is Y2

THEN u2(k) = 2.1948ysp(k)− 2.9854y(k) + 0.7906y(k − 1) (3.221)

Assuming the same membership functions as in Example 3.11 and denoting
by w1(k) and w2(k) their activation levels (it is not necessary to normalize
these values as from the construction w1(k) + w2(k) = 1), the FGPC control
law can be written in the following form

u(k) = w1(k)u1(k) + w2(k)u2(k)

= [1.0012w1(k) + 2.1948w2(k)]ysp(k)− [1.7904w1(k)+

+ 2.9854w2(k)]y(k) + [0.7892w1(k) + 0.7906w2(k)]y(k − 1)
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Trajectories obtained in the feedback control system with the designed con-
troller are very similar to those shown in Figure 3.63 in Example 3.11, where
a FGPC-NSL controller in a situation without activity of constraints was
presented. Therefore, they will not be presented here.
For stability analysis of the feedback control system with the process model

given by rules (3.207), (3.208) and the designed explicit FGPC controller the
Corollary 2.7 with Q = 0 can be used. In order to do this it is necessary to
evaluate matrices Aij (2.51). In the considered example we have n = 2 and
m = 1, thus matrices Aij are of dimension 3, of a general form

Aij =

⎡⎣acij1 acij2 bdij11 0 0
−cj1 −cj2 dj1

⎤⎦ , i, j = 1, 2
with elements given by (3.218) and (3.219), where non-zero values of parame-
ters of the local process models and controllers are

a11 = 0.7, b
1
0 = 0.8, (k

y
1)
1 = 1.7904, (ky2)

1 = −0.7892
a21 = 0.3, b

2
0 = 0.2, (k

y
1)
2 = 2.9854, (ky2)

2 = −0.7906
According to the thesis of Corollary 2.7, it is enough to consider matricesA11,
A22 and A12 = (A12 +A21)/2, which in the analyzed case are

A11 =

⎡⎣−0.7496 0.6361 0.80001 0 0
−1.8120 0.7951 1

⎤⎦

A22 =

⎡⎣−0.3169 0.1626 0.20001 0 0
−3.0846 0.8131 1

⎤⎦
A12 =

⎡⎣−0.9150 0.4048 0.50001 0 0
−2.4483 0.8041 1

⎤⎦
Using the MATLAB� package, it was checked that the obtained system of
linear matrix inequalities

(A11)TPA11 −P < 0
(A22)TPA22 −P < 0
(A12)TPA12 −P < 0

−P < 0
has a solution in the form of the following symmetric matrix P

P =

⎡⎣ 12.1556 −5.8906 −5.6196−5.8906 4.2805 3.4626
−5.6196 3.4626 3.4601

⎤⎦
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Therefore, due to Corollary 2.7, sufficient stability conditions for the conside-
red nonlinear control system are satisfied. �

In [91, 92, 87] examples of design and stability analysis of explicit uncons-
trained FDMC controllers can be found, in particular for the process conside-
red in the last example, for concentration control in an ethylene distillation
column and for MIMO control of a vaporizer.

3.6 Stability, Constraint Handling, Parameter Tuning

3.6.1 Stability of MPC Algorithms

It is an interesting phenomenon that predictive control algorithms with a
finite receding horizon have been successfully applied in industrial practice
for several years, before theoretical results concerning their stability analy-
sis appeared. Moreover, this fact did not constitute an obstacle in their de-
velopment, in production of commercial products with good properties and
practical popularity. Analysis based on computer simulations and experience
gathered in subsequent applications turned out to be sufficient. Today, we
know a lot more about conditions of stability of the MPC algorithms, and
first of all about the methods of their formulation or modifications which
guarantee stability. This knowledge, however, is used not only for designing
algorithms with a guaranteed nominal stability, but first of all it helps to
achieve a better understanding of the mechanism of operation of the predic-
tive control and provides guidelines for a better justified selection of elements
of their structure and parameter values. In face of the complexity of the MPC
algorithms, especially in a situation of multiple constraints both on process
input and output variables, the problem of stability is important, but it is
not the only one. Ensuring non-emptiness of the set of feasible solutions at
each sampling instant is just as important. Heuristic approaches and analysis
based on computer simulations still play an important role.
Basic, selected results concerning stability of the MPC algorithms, especia-

lly those with linear models, will be presented in this section. The presentation
has no pretence to be complete or rigorous mathematically – this would ex-
ceed the scope of this book. If a reader is interested in more extensive studies
on the subject, we recommend an excellent review article by Mayne et al. [94]
and publications listed in its bibliography, see also [98, 1, 82, 123, 115]. The
purpose of considerations of this section is, first of all, a presentation of basic
mechanisms which influence stability and resulting indications which explain
both directions of modifications of the controller structure and guidelines how
to select values of the controller parameters.
The question of stability has been touched on already in this chapter – in

cases of explicit, unconstrained formulations of MPC algorithms as explicit
feedback control laws, which were possible to be obtained when the constraints
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on input and output variables were not considered. For controllers with linear
process models, as DMC, GPC or MPCS algorithms, the control law is a linear
output-feedback or state-feedback, see Sections 3.2, 3.3 and 3.4. Stability of a
control system with such a controller can be analyzed using methods known
in linear control theory. Using a specific structure of nonlinear TS fuzzy mo-
dels, it was also possible to derive an analytical way of formulating sufficient
stability conditions of nonlinear predictive controllers with such models, of
course also in the case of a design without constraints, see Section 3.5.8.
Let us emphasize that considering a situation without constraints consti-

tutes a recommended stage of the design procedure of a predictive controller,
also when its operation in the presence of constraints is foreseen. That is be-
cause working points may be located inside the controller admissible set, and
because we have a better understanding of stability of the feedback control
loop in a situation without constraints. However, in cases with constraints
only on control input values, an explicit controller implemented in the correct
feedback and anti-windup structure can operate quite well, see Section 3.2.
Certainly, this does not change the fact that the main problem and challenge
is the question of stability of the MPC algorithms in numerical versions, with
the optimization problem with constraints solved numerically at every sam-
pling instant.

Basic Mechanisms Ensuring Stability

Two elements in the formulation of an MPC algorithm have a key significance
for the stability of the resulting control system:

• A constraint on terminal state, i.e., a constraint on state variables at the
end of the prediction horizon,

• Length of the prediction horizon N .
Enforcing a certain state value at the end of the prediction horizon is suf-
ficient to guarantee stability even in the general nonlinear case – but under
assumption of feasibility only, i.e., when the set of admissible control input
values (decision variables in the controller optimization problem) is nonempty
at each step of the predictive algorithm. The proof is relatively easy, if we ap-
ply reasoning based on the Lyapunov function, as it was shown in the original
papers by Chan and Shaw [24], for a control system with continuous time, see
also [104], or by Keerthi and Gilbert [63] for a system with discrete time.
Namely, let us consider a process described by a nonlinear difference equa-

tion
x(k + 1) = f(x(k), u(k)) (3.222)

assuming that the state (x, u) = (0, 0) is its equilibrium point. For simplicity,
assume also that prediction and control horizons are equal, i.e., Nu = N , and
denote, as before in this book, by x(k + p|k) the state predicted at sampling
instant k for the future instant k+p, using the above model and control input
values u(k + p− 1|k), p = 1, ..., N . Next, consider a cost function in the form
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J(k) =
N∑
p=1

h(x(k + p|k), u(k + p− 1|k)) (3.223)

where h(x, u) ≥ 0 and h(x, u) = 0 if and only if x = 0 and u = 0. Additio-
nally, let us take into account the following constraints

u(k + p|k) ∈ U, p = 0, 1, ..., N − 1 (3.224a)

x(k + p|k) ∈ X, p = 1, 2, ..., N − 1 (3.224b)

x(k +N |k) = 0 (3.224c)

The last constraint is precisely the mentioned terminal state constraint. To
calculate next control inputs we shall use a general rule of predictive control,
i.e., at each sampling instant the cost function (3.223) is optimized under all
mentioned constraints, (3.222) and (3.224a)-(3.224c), while for controlling the
process only the first element û(k) = û(k|k) of the calculated optimal vector
[û(k|k) · · · û(k +N − 1|k)]T is taken.
Denote by Ĵ(k) the optimal value of the cost function at sampling instant k

(under the constraints formulated above), similarly, by Ĵ(k+1) optimal value
of the cost function at the next sampling instant k+1. Denote by x̂(k+ p|k),
p = 1, 2, ..., N the optimal state trajectory evaluated at sampling instant k,
corresponding to the optimal value Ĵ(k). One can then write

Ĵ(k + 1) = min
u(k+1),...,u(k+N)

N∑
p=1

h(x(k + 1 + p|k + 1), u(k + p))

= min
u(k+1),...,u(k+N)

{
N∑
p=1

h(x(k + p|k + 1), u(k + p− 1)) +

− h(x(k + 1|k + 1), u(k)) + h(x(k + 1 +N |k + 1), u(k +N))}

≤ Ĵ(k)− h(x̂(k + 1|k), û(k|k)) +
+ min
u(k+N)

h(x(k + 1 +N |k + 1), u(k +N)) (3.225)

because the vector

[û(k + 1|k) · · · û(k +N − 1|k) u∗(k +N |k + 1)]T

cannot be better at sampling instant k + 1 than the optimal vector for this
instant (N−1 first elements of the above vector are components of the optimal
vector for the previous sampling instant k, while u∗(k+N |k+1) is the value
which minimizes the last component of inequality (3.225)). As the constraint
x(k + N |k) = 0 is satisfied after optimization at sampling instant k, and
the point (0, 0) is the equilibrium point, then u∗(k + N |k + 1) = 0, as then
x(k + 1 + N |k + 1) = 0 and the last component on the right-hand side of
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the inequality (3.225) takes the smallest possible value equal to zero. Thus we
obtain

Ĵ(k + 1)− Ĵ(k) ≤ −h(x̂(k + 1|k), û(k|k)) ≤ 0
and if we take function Ĵ(k) as a Lyapunov function, then there follows from
the Lyapunov theorem that the control system with the considered predictive
controller is stable.
The possibility to prove the above very strong result follows, first of all,

from the assumption that the algorithm feasible set defined by the set of
constraints (3.224) is not empty at each sampling instant. Moreover, there is
an implicit assumption that after each optimization (at each sampling instant)
a global minimum of the cost function J(k) is obtained – which for linear
models and typical quadratic cost functions is a natural and always fulfilled
assumption, while for nonlinear models it is difficult to be guaranteed. No
doubt, the key assumption is that of a non-emptiness of the feasible set,
which is, generally, strongly constrained due to the additional requirement
x(k +N |k) = 0.
Using the idea of enforcing the terminal state to obtain stability, Clarke

and Scattolini proposed a version of an explicit, unconstrained GPC algo-
rithm with a constraint of this type added, called the CRHPC (Constrained
Receding-Horizon Predictive Control) [28] algorithm. In [126] this formulation
was extended to the case of a numerical algorithm, with inequality constraints
on process inputs. The formulation of the optimization problem of the CRHPC
algorithm is an extension of the optimization problem of the GPC algorithm
(see Section 3.3), by adding additional constraints

y(k +N + j|k) = ysp(k +N), j = 1, ...,m (3.226)

In [126] stability of the CRHPC algorithm was shown, for Nu = N − τ + 1
and Nu ≥ m, for m = max{nA, nB− τ +1}+1, where nA and nB are degrees
of polynomials A(z−1) and B(z−1) in the process model used in the GPC
algorithm, see Section 3.3, while τ is a delay in the process control path. Of
course, it is also necessary to have non-emptiness of the feasible set as an
assumption – i.e., the assumption that inequality constraints together with
the equality constraints (3.226) can be satisfied at each sampling instant. Let
us notice that prediction of the output values is in fact performed over a
horizon of the length N +m. The constraints should be considered until the
instant k + N +m, even though in the cost function summing is only up to
N . Additional equality constraint is forced not at one, but at m subsequent
sampling instants in order to ensure stabilization of the entire process state.
And finally, observe that a long control horizon Nu is used, as this minimizes
the risk that the constraint set given by (3.226) becomes empty. The authors
recommend the CRHPC algorithm for difficult processes, when applications
of GPC are troublesome or there are troubles with the stability.
Consider now a standard GPC algorithm, but with the control horizon

equal to the prediction horizon, Nu = N . Observe now, that if the influence
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of coefficients of the cost function, expressed by matrices Ψ(p) and Λ(p), does
not decrease along with an increase in p (e.g., Ψ(p) = ψI and Λ(p) = λI, are
not dependent on p) the prediction horizon is sufficiently long and inequality
constraints do not contradict achieving the desired, constant set-point, then
process outputs should stabilize on the set-point values at the end of the
prediction horizon , i.e., ŷ(k + N + j|k) = ysp(k + N), j = 1, ...,m should
be true, with a sufficient accuracy. Thus, we obtain a situation enforced in
the CPHPC algorithm by the additional constraint (3.226), without imposing
this constraint, but only extending the length of the horizons. Thus it can
be concluded that a hypothesis that extending the length of the horizons has
stabilizing properties, may be true.
For infinite prediction and control horizons (N = Nu = ∞) nominal sta-

bility of control systems follows directly from the general rule of operation
of predictive controllers. For a proof, it is enough to consider the Bellman
optimality principle (in brief, for additive objective functions: each terminal
interval of an optimal trajectory is also, starting from its initial point, an op-
timal trajectory). It follows from this principle that, if the external conditions
(trajectory of set-point values) remain unchanged and there are no modeling
errors, then the system with a predictive controller will move exactly along the
optimal trajectory [û(0|0) û(1|0) û(2|0) ...]T calculated at the initial sampling
instant, i.e., û(k|k) = û(k|0), k = 0, 1, 2, .... Therefore, the control system will
be stable. This situation is shown in Fig. 3.68 (a). To compare, Fig. 3.68 (b)
presents possible trajectories occurring when a finite prediction horizon is
used.
In practical applications of predictive control algorithms, the length of

prediction and control horizons, and particularly the length of the control
horizon, strongly influences the computation time necessary to calculate the
control input trajectory at each sample. The longer the horizon, the longer
the calculation time, and too long a calculation time required may be critical
in practical applications. Therefore, to obtain a guaranteed stability, with a
sufficient safety margin, by means of significant lengthening of the horizons
can not be acceptable as a general way of proceeding. On the other hand, it
is precisely the case of shorter horizons when the application of an alternative
stabilizing approach, by enforcing the terminal state, may easily result in
impossibility to reach this state, due to the resulting emptiness of the feasible
set. Therefore, it is also generally not acceptable as a too restrictive way
of proceeding. Fortunately, it is easy to show that the key factor for better
stability is the infinite prediction horizon, not the control horizon.
Consider the case of a stable, nonlinear process (3.222) which should be

regulated to its zero equilibrium point, assuming the output equation y(k) =
g(x(k)). Let the cost function be defined on an infinite horizon, with matrices
of weighting coefficients not depending on time, Ψ(p) = Ψ and Λ(p) = Λ,
and with both control input increments and control input values taken into
account [100]
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Fig. 3.68. Example process output trajectories when using predictive control with:
(a) infinite prediction and control horizons; (b) finite prediction and control horizons
equal to N (assuming ideal process model)

J(k) =
∞∑
p=1

(
‖y(k + p|k)‖2Ψ + ‖�u(k + p− 1|k)‖2Λ + ‖u(k + p− 1|k)‖2R

)
(3.227)

where matrices Ψ and Λ are positive semidefinite, matrix R is positive defi-
nite. Assume also a finite control horizon of length Nu ≥ 1, i.e.,

�u(k + p|k) = 0 for p ≥ Nu, k = 0, 1, ... (3.228)

As previously, denote by Ĵ(k) optimal value of the cost function obtained by
its optimization with respect to the vector [�u(k|k) �u(k+1|k) · · · �u(k+
Nu − 1|k)]T , under additional constraints on state or control input, assuming
that the feasible set is nonempty. Then we have

Ĵ(k) =
∞∑
p=1

‖ŷ(k + p|k)‖2Ψ +
Nu−1∑
p=0

(
‖�û(k + p|k)‖2Λ + ‖û(k + p|k)‖2R

)
(3.229)

because û(k + Nu − 1|k) = 0 must be true – otherwise the value of J(k)
would be infinite. In the above formula û(k + p − 1|k), p = 1, ..., Nu denote
optimal control input values calculated at sampling instant k, and ŷ(k+ p|k),
p = 1, 2, ... the corresponding output values. As in the previous case of an ad-
ditional terminal state constraint, taking Ĵ(k) as a candidate for a Lyapunov
function, we can write
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Ĵ(k + 1) =
∞∑
p=1

‖ŷ(k + 1 + p|k + 1)‖2Ψ+

+
Nu−1∑
p=0

(
‖�û(k + 1 + p|k + 1)‖2Λ + ‖û(k + 1 + p|k + 1)‖2R

)
≤ Ĵ(k)− ‖ŷ(k + 1|k)‖2Ψ − ‖�û(k|k)‖2Λ − ‖û(k|k)‖2R

because optimal control input values evaluated at sampling instant k cannot
give, at the next sampling instant (k + 1), better result than optimal ones
evaluated for that instant. Thus we obtain Ĵ(k+1)−Ĵ(k) ≤ 0, and because the
sequence of values Ĵ(k) is constrained from the bottom, then it is convergent.
It follows directly from this reasoning that

‖ŷ(k + 1|k)‖2Ψ + ‖�û(k|k)‖2Λ + ‖û(k|k)‖2R → 0 (3.230)

and positive definitness of R implies that û(k|k) = u(k)→ 0. The assumption
of process stability implies then that x(k) → 0, i.e., implies stability of the
predictive control system. Recall also that assumptions: that the feasible set
in the optimization problem is nonempty, and that global minimum of this
problem is found, must be satisfied at each sampling instant.
The result proven suggests that increasing the length of a prediction ho-

rizon while keeping the control horizon finite stabilizes the operation of the
predictive control system. Certainly, to guarantee stability in this way a prac-
tical problem of how to effectively calculate the value of the cost function over
an infinite horizon should be solved. The solution to this problem, for linear
process models, was proposed in [117, 100].

Control with a Linear Model and an Infinite Prediction Horizon

A starting point for the considerations is a description of the process by a set
of linear, stable state equations

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

and stating the control problem as a regulation to the zero equilibrium point.
Before we pass to the problem how to calculate the cost function on an

infinite horizon, observe that in typical formulations of MPC algorithms with
input-output type linear process models, as in the case of DMC or GPC, there
are usually no components in the cost function representing squares of con-
trol input values, i.e., there is R = 0. However, the reasoning presented at the
previous point is still correct for R = 0, if only Ψ > 0 and y(k) → 0 implies
x(k) → 0, i.e., there are not process modes unobservable by the controlled
outputs Remember that nominal stability is considered, i.e., the case with
a precise model and without disturbances, then with Ψ > 0 it follows from
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(3.230) that ŷ(k + 1|k) = y(k + 1) → 0. Let us comment also that in algo-
rithms using input-output process descriptions only, such as DMC or GPC,
the considered process model represents only a controllable and observable
part. Therefore, stability is considered in the sense of a stable behavior of the
process outputs, i.e., for controllable and observable modes only.
To give an effective method of calculating the first (infinite) sum in (3.227),

it will be divided into two components

∞∑
p=1

‖y(k + p|k)‖2Ψ =
Nu−1∑
p=1

‖y(k + p|k)‖2Ψ +
∞∑
p=Nu

‖y(k + p|k)‖2Ψ

Then the second sum can be presented in the form

∞∑
p=Nu

‖y(k + p|k)‖2Ψ =
∞∑
p=Nu

x(k + p|k)TCTΨCx(k + p|k)

= x(k +Nu|k)T
[ ∞∑
i=0

(AT )iCTΨCAi
]
x(k +Nu|k)

because, as we have shown above, there must be û(k+p−1|k) = 0 for p ≥ Nu.
Thus

y(k +Nu|k) = Cx(k +Nu|k)

y(k +Nu + 1|k) = CAx(k +Nu|k)

y(k +Nu + 2|k) = CA2x(k +Nu|k), etc. (3.231)

The matrix
Ψ∞ =

∞∑
i=0

(AT )iCTΨCAi

exists for a matrix A of a stable process and can be obtained from a solution
of a discrete Lyapunov equation

ATΨ∞A+CTΨC = Ψ∞

because

Ψ∞ = CTΨC+
∞∑
i=1

(AT )iCTΨCAi = CTΨC+ATΨ∞A

In conclusion, the optimization problem of a predictive controller with
an infinite prediction horizon can be presented in the following form of a
problem with a finite horizon and a penalty component for the terminal state
(at sampling instant k +Nu), defined by the matrix Ψ∞,
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J(k) = x(k +Nu|k)TΨ∞x(k +Nu|k) +
Nu−1∑
p=1

‖y(k + p|k)‖2Ψ+

+
Nu−1∑
p=0

(
‖�u(k + p|k)‖2Λ + ‖u(k + p|k)‖2R

)
If there are no state constraints (implied by, e.g., output constraints) which
are to be satisfied on an infinite horizon, then it should be accepted that Nu
is the prediction horizon N , since there is no need to evaluate state values
x(k+p|k) for p > Nu. If, however, such constraints exist, then they should be
considered in the formulation of the optimization problem, over a horizon of
length N ≥ Nu, where N is the smallest natural number such that satisfying
constraints on the prediction horizonN will ensure their satisfaction for all the
subsequent sampling instants k + p > k +N . It was shown in [117] that such
a finite number exists. In the presented situation the case N > Nu can easily
happen, especially for smaller values of Nu. Of course, an effective prediction
horizon which requires calculation of predicted outputs, is then N .
In practice, set-point values for outputs are usually non-zero, correspon-

ding to non-zero equilibrium points. It is then necessary to use a cost function
in the form

J(k) = [x(k +Nu|k)− xss]TΨ∞[x(k +Nu|k)− xss]+

+
Nu−1∑
p=1

‖y(k + p|k)− ysp‖2Ψ+

+
Nu−1∑
p=0

(
‖�u(k + p|k)‖2Λ + ‖u(k + p|k)− uss‖2R

)
(3.232)

where uss and xss are process input and state values which correspond to the
set-point value ysp in a steady-state [100]. These values should be calculated
from equations of process statics,

0 = Axss +Buss

ysp = Cxss

Until now only stable processes have been considered. For an unstable pro-
cess described by state equations it is necessary to perform a Jordan decom-
position of the state matrix A of the process model, into stable and unstable
parts. Further, the controller optimization problem must be supplemented by
an equality constraint enforcing zeroing of unstable process modes at the end
of the prediction horizon N . Then, the infinite sum can be calculated only for
stable modes, in an identical way as it is done for a stable process (unstable
modes remain zero for k + p > k +N). A reader interested in more details is
asked to refer to [117, 100, 82].
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Formulation (3.232) is a general one, ensuring nominal stability by intro-
ducing a penalty component corresponding to the omitted part of the infinite
prediction horizon. ForR = 0, we obtain a case which corresponds to the form
of the cost function most frequently used in MPC controllers. The mentioned
penalty component for the terminal state is defined by process state varia-
bles, it was calculated using the process model in the form of state equations,
see (3.231). Therefore, if we want to apply the presented approach directly to
MPC algorithms using input-output type models (DMC, GPC), it is necessary,
in order to calculate the penalty component, to apply a process description
by state variables or an equivalent one.
Analyzing a DMC algorithm, it is easy to note that, due to the finite

length D of step responses, the predicted output values become stabilized
after Nu +D − 1 sampling instants. It follows from (3.23) and (3.22) that

y0(k + p|k) = y(k) +
D−1∑
j=1

(SD − Sj)�u(k − j) = y0∞(k), p ≥ D − 1

�y(k + p|k) =
Nu∑
j=1

SD�u(k +Nu − j|k) = �y∞(k), p ≥ Nu +D − 1

Therefore, denoting y∞(k) = y0∞(k) +�y∞(k), we have

J(∞) =
Nu+D−2∑
p=N1

∥∥[ysp(k + p|k)− y0(k + p|k)]−�y(k + p|k)∥∥2Ψ+
+ lim
p→∞[p− (Nu +D − 2)] ‖[y

sp∞(k)− y∞(k)‖2Ψ+

+
Nu−1∑
p=0

‖�u(k + p|k)‖2Λ

where we assumed

ysp(k + p|k) = const. = ysp∞(k), p ≥ Nu +D − 1
It follows from the obtained dependence that the control input which mini-
mizes the cost function J(∞) must ensure equality y∞(k) = ysp∞(k), as long
as such feasible control input exists and Ψ > 0.
Therefore, an equivalent formulation of the DMC algorithm with an infi-

nite prediction horizon would be:

• to take in the optimization problem the cost function with a finite predic-
tion horizon equal to N = Nu +D − 2 and

• to add to the set of constraints the equality constraint y∞(k) = ysp∞(k),
i.e., the constraint

y0(k +Nu +D − 1|k)] +�y(k +Nu +D − 1|k) = ysp∞(k)
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In situations of shorter dynamics horizons D, the proposed formulation
can turn out to be not practical, from a point of view of robust calculations.
When there are constraints on process control inputs, then adding the above
output constraint may cause the feasible set of the optimization problem be-
comes empty, at certain sampling instants. Special measures should then be
undertaken to cope with such events (see next chapter). One such measure
is to introduce the critical constraint into the cost function, in the form of a
penalty term, e.g., using cost function in the following form

Jρ(∞) =
Nu+D−2∑
p=N1

∥∥[ysp(k + p|k)− y0(k + p|k)]−�y(k + p|k)∥∥2Ψ+
+ ρ ‖[ysp∞(k)− y∞(k)‖2Ψ +

Nu−1∑
p=0

‖�u(k + p|k)‖2Λ

where penalty coefficient value ρ should be selected in a way to ensure satis-
faction of the equality y∞(k) = ysp∞(k) with a desired accuracy. Assuming
Ψ(p) = Ψ for p = 1, ...Nu +D − 2, Ψ(Nu +D − 1) = ρΨ the cost function
formulated above can be presented in an equivalent form, which is standard
for the DMC algorithm (see Section 3.2)

Jρ(∞) =
Nu+D−1∑
p=N1

∥∥[ysp(k + p|k)− y0(k + p|k)]−�y(k + p|k)∥∥2Ψ(p)+
+
Nu−1∑
p=0

‖�u(k + p|k)‖2Λ (3.233)

Observe that the proposed methods of calculating the value of the cost func-
tion with an infinite horizon in the DMC algorithm leads to larger dimensio-
nality of matrices MP and M, see (3.38) and (3.39), in cases of large values
of the process dynamics horizon D. These matrices are calculated for a finite
prediction horizon N = Nu +D − 1. Therefore, a selection of possibly large
sampling period is important, as this results in a smaller value of D.
The GPC algorithm with an infinite prediction horizon, called GPC∞,

was analyzed by Scokaert in [125]. He defined the prediction horizon as N =
max{Nu + nB, nA, nC}, where nB, nA and nC are parameters of the model
used in the GPC algorithm, see (3.82). And as a state error (corresponding
to x(k + p|k) − xss) he proposed to take a vector of control errors ysp −
y(k + p|k) in n̄A subsequent sampling instants, beginning from (k + N |k),
where n̄A is the degree of a stable part of the polynomial A(z−1), present
in the process model. The adopted way of the state definition led Scokaert
to a quite complex formulation of an algorithm on a finite horizon, with an
additional equality constraint. The reader interested in details of realization
of the GPC∞ algorithm is asked to refer to [125].
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It should be emphasized that the design of MPC algorithms which gua-
rantee nominal stability has allowed, first of all, to gain better justification
and understanding of mechanisms influencing stability of the resulting feed-
back control loop. These mechanisms are, as already observed empirically, a
lengthening of the prediction horizon and an introduction of constraints on
terminal state. Results which concern stability have also affected modifica-
tions or augmentations of later versions of commercial products, which have
been used successfully for many years.

Stable MPC Algorithms with Nonlinear Models and Constraints

As it was discussed in the introduction, presentation of stability issues of
predictive control is intentionally limited to basic mechanisms influencing the
stability, first of all for applications in the algorithms presented earlier in this
book. Thus, this is by no means a full review of all aspects of this subject,
which is very broad, especially when nonlinear process models are considered.
We have already presented and explained basic mechanisms which ensure

nominal stability: introduction of terminal constraints on the process state
enforcing its value at the end of the prediction horizon, and extension of
the prediction horizon to infinity. Explanations, concerning both linear and
nonlinear processes, were general. We have drawn attention to the fact that
enforcing terminal state values may often be too restrictive, especially in the
case of shorter horizons. On the other hand, when extending the prediction
horizon to infinity, it is necessary to have an effective method of calculating the
value of the cost function on such a horizon. The calculation method, based on
replacing the cost corresponding to the terminal infinite section of the horizon
with a suitable cost of the terminal state, has been given for linear process
models, in the form of state equations. Unfortunately, for nonlinear proces-
ses the problem is much more difficult. Thus, there is a series of proposals
of nonlinear algorithms, of different levels of complexity, using the following
basic mechanisms, in different configurations, to obtain nominal stability and
numerical feasibility:

• an additional set constraining terminal states – a relaxed version of the
condition enforcing a specified terminal state values at the end of the
prediction horizon,

• a cost of the terminal state – an equivalent of the value of the cost function
calculated from the end of a final prediction horizon to infinity,

• a stabilizing linear state-feedback, designed for a considered equilibrium
point of the nonlinear process, usually for a linear approximation of the
process at this point.

A survey of all stable predictive algorithms for nonlinear processes with
constraints on process inputs and states (outputs) is far beyond the scope
of this book. A reader interested in the subject should refer to a brilliant
and extensive review article by Mayne et al. [94] containing full bibliography
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of the topic, see also [98, 1, 82, 123, 115]. In the following, we shall only
briefly comment on a few selected papers, which are, in the author’s opinion,
representative for the development of the subject and are formulating new
concepts.
Undoubtedly, papers [66, 24, 63] are pioneering. It was shown there that

enforcing the value of the terminal state guarantees stability (in the last of
them, concerning discrete-time control, additional constraints on both inputs
and state were considered). An interesting analysis of stability and basic fea-
tures of predictive control systems is also contained in [104].
In [97] Michalska and Mayne proposed an algorithm where, instead of

enforcing the terminal state, a set of admissible terminal states Wα was in-
troduced, being a certain neighborhood of the process equilibrium point. The
concept of the algorithm is as follows: first, using a predictive algorithm with a
finite horizon bring the state of the process, in a finite number of steps, to the
set Wα; then, within this set, the control is switched to linear state-feedback,
bringing the process to the desired equilibrium state – thus the name given
by the authors: “dual mode algorithm”. In the algorithm discussed, the length
of the finite prediction horizon is variable, constantly updated.
Chen and Allgöwer [25] proposed an algorithm with a quasi-infinite hori-

zon (for continuous time, similarly as in [97]), where all three above mentioned
mechanisms of ensuring stability are used. The control input signal is calcula-
ted on-line, by solving an optimization problem on a finite horizon, containing
both terminal state constraints and a quadratic penalty term for the terminal
state in the cost function. This term is calculated as an upper-bound of the
cost function value on the horizon from the terminal state to infinity, with the
control input signal generated by a linear state-feedback. As a result of such
off-line calculations, the matrix of the quadratic penalty term is evaluated. An
interesting feature of the algorithm is that it provides stability, even if a global
minimum is not found by the optimization. However, it is necessary to find
an admissible solution at every sampling instant – a feature called “feasibility
implies stability”. This feature has been originally proven in [127], for subop-
timal versions of the classical discrete-time algorithm with a terminal state
constraint and for the dual-mode algorithm [97], at every sampling instant
assuming feasibility of solutions and requiring only a certain improvement of
the cost function.
A discrete-time algorithm of a structure almost analogous to the one con-

sidered in [25] was analysed in a series of papers by De Nicolo, Magni and
Scattolini, see, e.g., [102]. The value of the penalty term for the terminal state
is here, however, obtained by a direct calculation of a sum of the cost function
values starting from the terminal timeN and up to some arbitrary (sufficiently
remote) timeM , with control input signal evaluated over this time interval by
a linear state-feedback. The disadvantages of this approach are a larger cal-
culation effort and arbitrariness in the selection of the value of M . In [83] the
algorithm features were improved by giving a recipe for the value of M and
lowering the calculation effort by introduction of the control horizon Nu ≤ N ,
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analogously as in typical MPC algorithms with linear models. Over the time
interval from the current sampling instant k to k +Nu − 1 the control input
signal is evaluated as a solution of an associated optimization problem, and
over the time interval from k+Nu to k+N − 1 the control input is given by
a linear state-feedback, designed off-line.
A quite effective algorithm, in terms of calculations which are necessary

to be performed on-line, is described in [19], for a problem with constraints
imposed on control input values only. The idea is to use an optimal linear state-
feedback on the whole prediction horizon and to perform on-line optimization
in order to calculate corrections to the obtained control inputs only, needed
to ensure feasibility. This is in fact an application of the pre-stabilization
concept, see [124, 123].
The concise review, presented above, shows that predictive control algo-

rithms based on constrained optimization of nonlinear process models, create
a very interesting field of scientific activity. In spite of the fact that basic
mechanisms of ensuring nominal stability have already been identified, this
algorithms have not yet gone beyond the stadium of theoretical investigations,
illustrated by examples of computer simulations. They have not yet reached
the stage that would allow to convince potential users to serious, industrial
applications.
In this situation, it is most reasonable to put into practice algorithms,

which are direct extensions of the industrially proven algorithms with linear
models, such as the algorithms with on-line linearizations of nonlinear models,
discussed in Section 3.5. They are intuitively convincing and well verified by
many simulation experiments. Theoretical analysis of these algorithms is not
easy, because they are suboptimal. However, after extending basic structures
of these algorithms by adding terminal constraint sets and additional impro-
vement tests, and using the ideas from [127], it occurred possible to obtain
nominal stability results: in [93] for an extended nonlinear fuzzy DMC algo-
rithm, and in [74] for a dual-mode type algorithm with a nonlinear process
model. In both algorithms only quadratic programming problem, stemming
from current linearization of the nonlinear model, is solved at each sampling
instant.

3.6.2 Feasibility of Constraint Sets, Parameter Tuning

Feasibility of Constraint Sets

In Section 3.1 different classes of constraints which may be present in predic-
tive control algorithms were discussed: constraints on values and on increments
of process control inputs, (3.7) and (3.8), constraints on controlled outputs
(3.9) and on constraint outputs (3.10). In cases when both input and output
constraints are present, it may happen that the set of solutions of the contro-
ller optimization problem becomes empty, at certain sampling instants. For
example, after a strong change in a disturbance value it may not be possible,
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while keeping constraints on the control inputs preserved, to bring the process
output to a value satisfying constraints earlier than after several sampling ins-
tants, i.e., it may be impossible to satisfy the output constraint (3.9) or (3.10)
at sampling instant k +N1 and at some subsequent ones. A possible way to
deal with this issue is to use the concept of the so-called constraint window.
Using the constraint window consists in considering, when calculating the

control input at sampling instant k, the output constraints only over a sub-
interval [Ncw1 Ncw] of the prediction horizon, where values Ncw1 and Ncw,
N1 < Ncw1 < Ncw ≤ N , define the width of the constraint window. An
appropriately large value Ncw1 should ensure satisfaction of all constraints at
each sampling instant over the constraint window, and the value Ncw should
be such such that to ensure satisfaction of all the constraints to the end of
the prediction horizon (even outside the window). For a stable linear process
Rawlings and Muske proved in [117] existence of such vales Ncw1 and Ncw,
that for control input constraints Gu(k + p|k) ≤ g, p = 0, 1, ..., the output
constraints Hx(k + p|k) ≤ h (represented equivalently by state variables) are
satisfied for p = Ncw1, ..., Ncw and for p > Ncw, where G and H are matrices
defining the constraint functions. Of course, a constraint window type strategy
does not remove constraint violations at first instants of the prediction horizon
and can be applied, if such uncontrolled violations over short time periods are
unavoidable and can be tolerated in the process.
A frequently used practical approach to solve the problem of ensuring that

the constraint set of the controller optimization problem becomes non-empty
is to treat all or some of the constraints on output values as soft constraints.
Such constraints can be violated, but this violation is appropriately penalized
by penalty components added to the cost function, in such a way that it
actually occurs only in situations when the constraint set becomes empty.
Recall the predictive controller optimization problem, formulated in the

form (3.70), standard for numerical methods – but with matrix A, which de-
fines the inequality constraints, divided into two parts: the one corresponding
to constraints on control inputs and the other corresponding to constraints
on outputs, respectively:

min{J(x) = 1
2
xTHx+fTx}

subj. to : xmin ≤ x ≤ xmax
Aux ≤ bu
Ayx ≤ by

(3.234)

where AT=[ATu A
T
y ]
T = [−JT JT −MT MT ]T , bT = [bTu bTy ]T , compare with

(3.70). Relaxing the constraints Ayx ≤ by can be obtained by formulating the
optimization problem (3.234) in the following form
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min
x,v
{J(x) = 1

2
xTHx+fTx+ ρi

nv∑
i=1

v2i }

subj. to : xmin ≤ x ≤ xmax
Aux ≤ bu
Ayx ≤ by + v
v ≥ 0

(3.235)

where v = [v1 · · · vnv ]T is a vector of additional variables of dimension nv
equal to the number of relaxed constraints, nv = dim by, while ρi > 0 are
penalty coefficients, which can be generally different for different constraints.
Penalty terms need not to be quadratic, instead of

∑nv
i=1 v

2
i it is possible to use∑nv

i=1 vi – which is a formulation of the exact penalty function. This function
becomes exact, i.e., constraints are not exceeded for finite, appropriately large
values of penalty coefficients ρi, in cases when the constraint set is non-empty.
But the choice of appropriate values of the penalty coefficients is more difficult.
Since, in practice, the importance of satisfying individual constraints on

outputs can differ, then it is also possible to use appropriate sequencing of the
constraints in the order of their importance, i.e., a prioritization of the cons-
traints. An example of such a simple prioritization would be an introduction
of different penalty coefficients for different constraints in the formulation of
a relaxed optimization problem (3.235). In certain problems it may be rea-
sonable to treat only constraints of lower priorities as soft constraints, or
sequencing within soft constraints properly classified. This can be organized
by subsequent checking if the constraint set is non-empty, starting treating all
the constraints as hard, and then relaxing some of them beginning with those
with lowest priorities, until the constraint set of the resulting optimization
problem becomes feasible (non-empty) [146].

Parameter Tuning

The question of importance and selection of appropriate values for basic para-
meters of the predictive control algorithms will now be discussed. This should
be quite satisfactory for algorithms with linear models, like the DMC, GPC
and MPCS algorithms discussed in previous sections of this chapter (for the
MPCS algorithm, coefficients of the state observer matrix are also tunable pa-
rameters, see Section 3.4). In cases of algorithms with nonlinear models there
are usually additional parameters connected with the type of a considered
algorithm, such as, e.g., number of fuzzy sets and their parameters, present in
rule antecedents of TS fuzzy predictive controllers, as discussed in Section 3.5.
Basic parameters of a general MPC algorithm, generating control input

values as a result of an optimization of the cost function (3.1), are:

• N — prediction horizon,
• Nu — control horizon, Nu ≤ N ,
• Ψ(p),Λ(p) — matrices of weighting coefficients in the cost function,
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• Ncw1,Ncw — limits of the constraint window (or other parameters defining
a strategy ensuring that the feasible set is non-empty at every sampling
instant, e.g., penalty coefficient values ρi in (3.235)),

• Tp — sampling period (time between two subsequent controller interven-
tions),

• γ — coefficient of a linear filter defining the shape of the reference trajec-
tory.

It is also generally possible to treat the value N1, N1 ≥ 1, as an additional
algorithm parameter. It defines a beginning of a (sub)interval of the prediction
horizon over which the predicted control error is taken into account, in the
first sum in the cost function. Usually N1 = τ+1 is assumed, where τ denotes
a delay in the process step response, given as a number of sampling periods
(number of first coefficients of discrete step response equal to zero). Selection
of N1 < τ + 1 does not lead to errors – but does not make much sense, as
predictions of process outputs for first τ instants (i.e., for k+p ≤ k+τ) do not
depend on decisions (actual and future control inputs) evaluated at sampling
instant k. Values N1 > τ + 1 are also possible, this is related to the concept
of the constraint window discussed in the previous point.
The value N describes the length of the prediction horizon. The infinite

horizon ensures nominal stability for all values of the remaining parameters,
provided the solution set of the optimization problem is always non-empty, as
it was presented in Section 3.6.1. If the prediction horizon N is long enough,
when compared to the process dynamics and the feedback control system
operates in a correct way, then further enlargement of N usually does not
lead to improvements – properties of the control system become insensitive
to the value of N .
Sensitivity of a control system to the length of the control horizon Nu is

relatively low, as long as this horizon is not too short [98, 123]. Since the value
Nu decides on the number of decision variables in the optimization problem
(equal to Nu · nu), then it is a good practice to take relatively small values of
Nu. This is especially significant in case of NO type algorithms (with on-line
nonlinear optimization). Extremely small values are possible, up to Nu = 1,
as it is demonstrated in an example below (a discussion of such cases can be
found e.g., in [82, 123]).

Example 3.13
Consider again the example of a strongly nonlinear reactor with a polymeri-
zation process, presented in Example 3.8. It will be demonstrated now how
operation of the control system with the MPC-NO algorithm changes when
the length of the prediction horizon N and the length of the control horizon
Nu are varied.
Figures 3.69 and 3.70 present trajectories of process output and input

variables for the control horizonNu = 2 and prediction horizons, subsequently,
N = 2, 3, 5 and 10. A small difference between trajectories for N = 5 and for
N = 10 attracts attention. The result for N = 10 was given as an example



266 3 Model-based Predictive Control

Fig. 3.69. Trajectories of the controlled output y for different values of the predic-
tion horizon N , for the control horizon Nu = 2

Fig. 3.70. Trajectories of the control input u for different values of the prediction
horizon N , for the control horizon Nu = 2
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Fig. 3.71. Trajectories of the controlled output y for different values of the control
horizon Nu, for the prediction horizon N = 10

Fig. 3.72. Trajectories of the control input u for different values of the control
horizon Nu, for the prediction horizon N = 10
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of the prediction horizon large enough to make the control system insensitive
to increase of N . Behavior of the system with larger values of N was also
examined, but the obtained trajectories were practically the same as those for
N = 10.
The presented results of simulation experiments clearly show a stabilizing

effect of longer prediction horizons. They also explain why in Example 3.8 the
value N = 10 was assumed, while much shorter control horizon Nu = 2 was
taken.
Figures 3.71 and 3.72 present trajectories of process output and control

input variables for the prediction horizon N = 10 and for control horizons
Nu = 1, 2, 3, 5. There is clearly a qualitative difference between trajectories
obtained for Nu = 1 and for higher values. There is only a quantitative diffe-
rence between trajectories obtained for Nu = 2 and Nu = 3, and a not very
large one. There are practically no differences between trajectories for Nu = 3
and for higher values – trajectories for Nu = 3 and, as an example of higher
values, for Nu = 5 differ only slightly. The control system for several larger
values of Nu was also simulated, obtaining results which are undistinguishable
from those obtained for Nu = 5.
The presented results are rather typical: they indicate that it is enough,

generally, to take relatively small values of Nu, as trajectories in predictive
control systems quickly become insensitive to an increase in the length of the
control horizon. �

The basic parameters affecting dynamics of a predictive feedback control
system, and particularly its stability and robustness for a finite length of the
prediction horizon, are values of elements of the weighting matrices Ψ(p) and
Λ(p). These matrices are usually assumed in a diagonal form and in most
cases they do not depend on p, Ψ(p) = Ψ and Λ(p) = Λ. Relations between
values ψii of entries of the matrix Ψ define relative weights of control errors
corresponding to individual controlled outputs. On the other hand, entries
λii of the matrix Λ define relative weights of individual control inputs. The
most important, however, are relations between elements of matrices Ψ and
Λ, as they define relative cost of control errors as compared to the cost of
control input moves. Increasing values of λii, while keeping values ψii cons-
tant, causes damping of control input signals, i.e., leads to a slower but more
fluent operation of control systems. Thus, it diminishes the risk of possible
activity of inequality constraints, increases stability margins and robustness
of control loops. In the simplest and often encountered case when Ψ(p) = I
and Λ(p) = λI, corresponding to the cost function (3.5), there remains λ as a
single scalar tuneable parameter. For the operation of algorithms with linear
models (DMC, GPC or MPCS) it is the basic tuneable parameter, see, e.g.,
[18, 123]. The influence of values of λ on step responses in a DMC control
system was analyzed in Example 3.1 in Section 3.2.2.
Selection of an appropriate value of the sampling period Tp is important

and closely connected with the length of horizons. It is most evident in the
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case of the DMC algorithm. Selecting too small value for Tp results in a large
number of elements of the (finite) step response, i.e., in a long horizon D
of process dynamics. This, in turn, leads to larger matrices MP and M, see
Section 3.2. Thus, we get larger dimensionality, and thus memory requirements
and calculation time, of the optimization task, if we want to maintain a similar
ratio of prediction and control horizons to the process dynamics horizon. On
the other hand, taking too large value of Tp will result in introduction of a too
large sampling delay and too rare changes in the control signal, thus leading
to poorer behavior of the feedback control loop.
In each MPC algorithm, it is possible to use in the cost function a reference

trajectory yref (k + p|k), p = N1, ..., N , in place of a set-point trajectory,
ysp(k + p|k), p = N1, ..., N . The reference trajectory was already used in the
Model Predictive Heuristic Control (MPHC) algorithm [119, 120], known later
under the name of MAC (Model Algorithmic Control). A first-order reference
trajectory can be generally defined as follows

yref (k + p|k) = γyref (k + p− 1|k) + (1− γ)ysp(k + p|k), p = 1, ..., N
where yref (k|k) = y(k), 0 ≤ γ < 1, see e.g., [17, 18].
For the most important case when a constant set-point value is assumed

over the whole prediction horizon, ysp(k + p|k) = ysp(k), p = 1, ..., N , at
every sampling instant the entire reference trajectory is uniquely defined by
the current values y(k) and ysp(k), and thus it can be presented in a slightly
more convenient form

yref (k + p|k) = (1− γp)ysp(k) + γpy(k)
= ysp(k)− γp[ysp(k)− y(k)], p = 1, ..., N (3.236)

where ysp(k) − y(k) is the control error. It can be easily seen from (3.236)
that the control error is required to be reduced to zero exponentially over the
prediction horizon, with the exponent defined by γ. An example of such a
reference trajectory is presented in Fig. 3.73.
When applying the reference trajectory, the cost function of the MPC

algorithm takes the form

J(k) =
N∑
p=N1

∥∥yref (k + p|k)− y(k + p|k)∥∥2Ψ(p) + Nu−1∑
p=0

‖�u(k + p|k)‖2Λ(p)
(3.237)

where values y(k + p|k) constitute the trajectory of predicted outputs and
�u(k + p|k) are decision variables, compare with (3.1). Application of the
reference trajectory transforms, initially, the trajectory of set-points to a con-
tinuous, smoother form changing as the exponential pattern, defined by γ.
The value of γ, 0 ≤ γ < 1, is a tuneable parameter of the algorithm, for
γ = 0 the reference trajectory becomes the set-point trajectory ysp(k + p|k),
p = 1, ..., N . Along with the increase in γ, convergence of the reference tra-
jectory to the required set-point value becomes slower, smoother – thus re-
quirements for control signal changes become relaxed. A similar effect could



270 3 Model-based Predictive Control

Fig. 3.73. Illustration of the concept of a reference trajectory, for the set-point
value constant over the prediction horizon

be obtained without a reference trajectory, only with a right selection of ele-
ments of the weighting matrices Ψ(p) and Λ(p). Especially, as we are tuning
relations between control errors and control input increments over the pre-
diction and control horizons, it would be enough to assume Ψ(p) = ψ(p)I,
Λ(p) = λ(p)I, and to select appropriate values of λ(p) versus ψ(p). Using the
reference trajectory may be slightly simpler, we only need one parameter γ
for tuning.
In case of a step change in the set-point value, using a reference trajectory

leads initially to effects similar to those obtained when filtering the set-point
values by a first order filter, in a classical feedback control loop with two
degrees of freedom, as shown in Fig. 3.74. However, these are not equiva-
lent structures: filtering the set-point value in the system shown in Fig. 3.74
means operation in an open-loop system, while using the reference trajectory
in a MPC control system results in the introduction of an additional feedback
loop. This is presented in Fig. 3.75, which is valid for any MPC controller
(e.g., DMC, GPC, MPCS, nonlinear controllers) using the reference trajec-
tory in the cost function, instead of the trajectory of set-points. The difference
between initial set-point filtering and the reference trajectory can be especia-
lly clearly seen in the case of a disturbance change, assumed to act on the

Fig. 3.74. Classical feedback control loop with two degrees of freedom
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Fig. 3.75. Structure of MPC feedback control loop with reference trajectory applied
(assuming the set-point constant over the prediction horizon)

process output. In this case, the set-point filter has no influence on trajec-
tories resulting in the control system shown in Fig. 3.74, but the use of the
reference trajectory influences the trajectories resulting in the control system
from Fig. 3.75
The reference trajectory, treated as one of the practical ways of shaping the

behavior of MPC algorithms, is currently rather rarely met in the literature.
It is of smaller significance for algorithms with constraints, implemented in
a numerical version, with on-line optimization. There are usually no rational
reasons to slow down reduction of control errors in the situation of full control
over constraints on amplitudes and rates of change of process control inputs.
On the other hand, the behavior of the control system itself, its stability and
robustness, are affected mainly by a right selection of horizons and weighting
coefficients, first of all elements of the matrix Λ (see Example 3.2).



4

Set-point Optimization

4.1 Steady-state Optimization in Multilayer Process
Control Structure

The task of set-point optimization in a multilayer control structure is to pro-
vide the directly subordinate feedback controllers of the lower layers with best
possible set-point values, see Fig. 1.2 in Chapter 1 and the discussion therein.
“The best possible set-point values” means optimal dynamic trajectories or
optimal constant (steady-state) values of the set-points leading to maximal
achievable values of the prescribed economic criteria of the process operation,
while keeping the process variables within safe operation limits and satisfying
certain additional constraints of a technological nature. The case of steady-
state (static) optimization will be considered in this chapter, as it dominates
in practice in process industries, for a number of well-known reasons, see e.g.,
[16].
The controllers under supervision of the optimization unit are the advan-

ced controllers of the constraint control layer and certain controllers of the
direct control layer. The location of the subordinate feedback controllers is
not essential for the task of the optimization layer, as from this layer the
plant is seen together with all feedback controllers, the feedback controlled
plant is being optimized. However, the information sent from the optimiza-
tion layer to the constraint controllers is different than that sent to the direct
controllers only, from the point of view of the kind of process variables.
Therefore, consider first the case without the constraint control layer, with

direct control and optimization layers only, as depicted in Fig. 4.1 (compare
with Fig. 1.2).
The steady-state optimization problem can now be formulated as (1.21)

or in an equivalent, but formally simpler form (1.22), which is repeated here
for convenience
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P R O C E S S (P L A N T)

DIRECT CONTROL
(BASIC CONTROL)

OPTIMIZATION

disturbances

measurements

control inputs

Feedback controlled plant

c y

w

Fig. 4.1. Feedback controlled plant as an object for set-point optimization in the
two-layer structure (without the constraint control layer)

minQ(c,y)

subj. to : y = F (c, w)

c ∈ C
y ∈ Y

(4.1)

In the above description, F describes the steady-state process model, c deno-
tes the vector of decision variables of the optimization problem, being in the
considered case the set-points for the controlled variables – to be optimized, y
denotes the vector of process outputs significant for the process economics and
constraint satisfaction and C, Y are constraint sets, see Section 1.5. Usually
Q(c, y) represents instantaneous net production profit. Assuming linear depen-
dence of costs of individual materials on their prices and control (stabilization)
of energy streams and certain raw material streams, the performance function
(to be minimized) can be formulated in the following simple linear form

Q(c, y) =
nJ∑
j=1

pjcj −
mJ∑
j=1

qjyj (4.2)

where pj denote prices of the mentioned input streams, whereas qj prices
of output products and nJ is the number of controlled input streams. The
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output variables y may represent production rates of both products and waste
materials. In the latter case the prices could have negative sign. There may
also exist components of the output vector y not entering the performance
function, but important for formulation of the process constraints, like product
concentration in the output stream. These process output variables are called
constraint variables, see Section 3.1 and e.g., [142]. Therefore, the situation
when mJ < dim y is possible and encountered.
In complex processing plants, the feedback (regulatory) control consists

now of a direct (basic) dynamic control layer operating usually with PID
controllers and a hierarchically higher dynamic constraint control layer (set-
point control layer) – called also advanced control layer or MPC control layer,
as model predictive control (MPC) algorithms are usually applied there, see
Chapter 1 and [62, 134, 11, 115, 16]. Set-points for the constraint controllers
are the desired steady-state values of constrained, feedback controlled process
outputs, see Fig. 1.3 in Chapter 1, where the vector of these process outputs
was denoted by yd (being, in general, a sub-vector of the overall output vector
y), and where the vector of decision variables of the optimization problem was
divided into two parts, c = (cf , cd). The first sub-vector represents set-points
for direct controllers, while the second optimal steady-state values of variables
corresponding to the outputs of constraint controllers – both calculated on
the basis of the steady-state process model used at the optimization unit,
including the available information about current values of disturbances w.
The steady-state optimization problem (4.1) can in this case be rewritten in
a more detailed form, as follows

minQ(cf , cd, yf , yd)

subj. to : (yf , yd) = F (cf , cd, w)

cf ∈ Cf , cd ∈ Cd
yf ∈ Y f , yd ∈ Y d

(4.3)

After every solution of the optimization problem, the optimal value of the
feedback constrained outputs yd is transmitted to the constraint controller,
as its set-point. Transmission of optimal values of cd is not necessary if dim cd

= dim yd, as there is then no freedom in the constraint controller operation,
although this information may be useful when changing the operating points.
Therefore, it was marked by a dashed arrow in Fig. 4.2, where the described
structure is presented (compare with Fig. 1.3 and Fig. 4.1). However, if the
MPC constraint controller has more degrees of freedom, i.e., dim cd > dim yd,
then this knowledge will be necessary for its economically optimal operation.
In the static optimization problem (4.1) (and (4.3)) there occurs the vector

w representing uncontrolled process input values (disturbances), in particu-
lar those which are significant for the process optimality. In reality, not all
disturbances can be measured. Moreover, measurements even if available, are
corrupted by errors. Therefore, disturbances must be appropriately modeled
and only certain estimates of their values are available. The kind of these
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Fig. 4.2. Feedback controlled plant as an object for set-point optimization in the
multilayer structure with both direct control and constraint control layers

estimates can be different, depending on disturbance nature and available
knowledge. In particular, most widely used disturbance models are deter-
ministic, stochastic or set-bounded. We will not present this topic here, as
deterministic description is dominating in process control models for on-line
steady-state optimization purposes. However, the interested reader is referred
to [16], where this subject is covered in more detail.
In a classical multilayer structure it is usually assumed that the distur-

bances considered at the optimization layer are slow-varying, when compared
to the controlled process dynamics. Then the steady-state optimization pro-
blem can be solved with a frequency much lower than the sampling frequency
of directly subordinate feedback controllers, and the time interval between
two successive optimizations is much longer than the time of a step-response
transient processes in the controlled plant.
However, if variability of the disturbances significant for the process op-

timality is not so slow, in the worst case even comparable with the process
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dynamics, then the values of the set-points should be updated more often.
It is especially important in cases when predictive controllers are applied, as
then efficient solutions to this problem are possible. This topic will be covered
in the next section.
From a point of view of the optimization, the disturbances w are para-

meters. But the problem is that the model of the process F should describe
the reality well. Therefore, values of these disturbances should be known –
measured or estimated. Only then the solution of the steady-state optimi-
zation problem with the process model does determine the operating point
(set-point) which is optimal for the real process. More precisely, it is then
close enough to the real optimal, but not strictly optimal due to unavoidable
uncertainties and inaccuracies. If the case is not so, then the point evaluated
using an (only rough) process model can be far from the optimal one for the
real process. In situations with significant uncertainty, but when the distur-
bances can be treated as constant during longer time intervals (significantly
longer than the controlled process settling time), the approach based on an
iterative use of additional measurement information from the plant allows to
improve optimality of the set-points, see e.g., [16]. This will also be discussed
in this chapter.

4.2 Steady-state Optimization for Model Predictive
Control

In complex processing plants the task of optimization usually splits into more
than one layer – it consists of a higher global plant-wide optimization and se-
veral lower local steady-state optimizations (LSSOs) connected with individual
technological units of the plant. Each layer operates at a different frequency,
a typical sampling interval of the basic control is about a second, of the MPC
control (constraint control) about a minute, while LSSO may be repeated
every hour and global plant-wide optimization every day, see e.g., [115].
The local steady-state optimizer uses a comprehensive nonlinear steady-

state model of the underlying process, performing constrained optimization of
an economic objective function. It adjusts set-point values taking into account
changes in slowly (or rarely but abruptly) varying disturbances and in requi-
rements of the higher layer (plant-wide optimization). Such an approach is
reasonable and leads to process operation close to optimal if variability of dis-
turbances that influence economic effectiveness of the process is much slower
than the dynamics of the feedback controlled process itself. However, for many
processes this condition is not fulfilled at all or during significant part of the
time, due to variability of process disturbances, like flow rates and properties
of feed and energetic streams. Operation in the classical hierarchical structure
can then result in a significant loss of economic effectiveness.
On the other hand, application of MPC algorithms is becoming more and

more popular, they dominate at the constraint control layer, which is therefore
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even called the MPC layer [62]. In general, an MPC algorithm computes at
every sampling instant, using a dynamic process model, a sequence of optimal
adjustments of its future output variables, in order to minimize predicted
control errors over certain prediction horizon. Then only the first element of
the sequence is actually applied, as the whole procedure is repeated at the
next sampling instant, see Chapter 3.
To evaluate predicted control errors, the MPC algorithm must be supplied

with desired set-points, which can be called target set-points [62]. When the
disturbances vary slowly or rarely and thus the process can operate at un-
changed optimal steady-states over longer time periods, this target set-points
come directly from LSSO. However, this is not the case for many processes,
as stated earlier. Then keeping the set-point constant over many sampling
instants, waiting for the next calculation of LSSO despite changes in dis-
turbances, would lead to economic losses. Certainly, the most obvious and
successful approach would be to perform the LSSO as often as needed, even
at each sampling instant of the MPC controllers. However, recall that the
LSSO uses a comprehensive nonlinear steady-state model of the process, thus
it performs a nonlinear constrained optimization. This may be a difficult and
time-consuming task, not possible to be executed on-line at each or even at
every few sampling instants. Therefore, a simpler approach became an indus-
trial practice: the use of an additional steady-state target optimization coupled
with the MPC algorithm, see e.g., [62, 11, 115]. The resulting control struc-
ture is depicted in Fig. 4.3, where direct influence of the optimization unit
on the direct control layer is omitted, as it does not lead to loss of generality
and is a common case. As usual in a multilayer structure, each control unit
(functional block) calculates its output with a different frequency, the higher
the block in the structure the lower the frequency (MPC steady-state target
optimization and MPC dynamic optimization constitute one control unit).
The goal of MPC steady-state target optimization (SSTO) is to recalculate

the steady-states available from the local steady-state optimization (LSSO)
every time the MPC controller executes. Since the SSTO runs with the fre-
quency of the MPC, it must use a simple process model, in practice it is usually
a linear model. In most cases a steady-state version of the linear dynamic mo-
del (i.e., the gains matrix) used in the MPC algorithm is recommended and
reported to be used [62, 11, 115]. This solution is simple and results in a linear
programming (LP) problem, if the economic objective function is linear, as it
is in most cases. The LP problem can be solved at each sampling instant, but
the approach may lead to losses of economic optimality, since the mentioned
linear model may be significantly different from the comprehensive one used
in the LSSO, for most of the operating points. The problem has been recogni-
zed, e.g., in [62] it is proposed to estimate and treat explicitly uncertainty in
the steady-state gain matrix, in the framework of a robust target steady-state
calculation.
On the other hand, Qin and Badgwell [115] report solutions using linea-

rizations of the comprehensive nonlinear model instead of the gain matrix of
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Fig. 4.3. Control structure with MPC constraint control layer with steady-state
target optimization (recalculation)

the dynamic one and applications of quadratic programming (QP) instead of
LP. Further, in [138] process models resulting from a quadratic and from a
piecewise-linear approximations of the comprehensive nonlinear model at each
sampling instant are proposed to be used in target steady-state optimizations
(the latter occurred to be the only successful in a reported example problem).
The described approaches are based on the reasonable argument that the
steady-state process models used for the MPC SSTO should be consistent
with the comprehensive nonlinear model used in the LSSO, rather than with
the linear dynamic model from the MPC algorithm. This is also combined
with the recognition that increase in computational power of microprocessors
makes it possible to use more computationally demanding algorithms for MPC
SSTO. The best solution would certainly be, as mentioned before, to repeat
the nonlinear local steady-state optimization every time the MPC controller
executes, thus eliminating the need for steady-state target recalculation. This
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solution may now be possible, but still only in rather limited cases, for very
slow processes with relatively simple nonlinear steady-state models.

4.2.1 MPC Steady-state Target Optimization

Consider first a most standard situation when numbers of controlled variables
y and manipulated variables u of the MPC controller are equal, i.e., dim cd =
dim yd = dim ysp, where ysp denotes set-points for y in the MPC controller
formulation (see Chapter 3). Certainly, dim u = dim cd, as they correspond to
the same physical variables. Denoting, as in Chapter 3, the prediction horizon
by N , the control horizon by Nu, by y(k + p|k) prediction of the output y
for a future sampling instant k + p, computed at a current instant k using
a linear dynamic plant model, and assuming linear inequality constraints,
the MPC dynamic optimization problem can be formulated in the following
typical quadratic programming (QP) form (see (3.11) in Chapter 3)

min
�u(k|k),...,�u(k+Nu−1|k)

{
N∑
p=N1

‖[ysp(k + p|k)− y0(k + p|k)]+

−�y(k + p|k)‖2Ψ(p) +
Nu−1∑
p=0

‖�u(k + p|k)‖2Λ(p)}

subj. to : �u(k + p|k) ∈ U�
u(k + p|k) ∈ U, p = 0, ..., Nu − 1
y(k + p|k) ∈ Y, p = N1, ..., N

(4.4)

where Ψ(p) and Λ(p) are diagonal weighting matrices of appropriate dimen-
sions, and constraint sets are assumed of box type (i.e., upper- and lower-
bound type, see Section 3.1)

U� = {�u(k) : −�umax ≤ �u(k) ≤ �umax} (4.5)

U = {u(k) : umin ≤ u(k) ≤ umax} (4.6)

Y = {y(k) : ymin ≤ y(k) ≤ ymax} (4.7)

Due to linearity of the model, the predicted output trajectory {y(k+p|k), p =
N1, ..., N} is decomposed in (4.4) into a free part {y0(k+ p|k), p = N1, ..., N}
depending on the known current and past signals (calculated with u(k+p|k) =
u(k − 1) over the prediction horizon), and a forced part {�y(k + p|k), p =
N1, ..., N} depending only on decision variables �u(k+p|k), p = 0, ...,Nu−1,

y(k + p|k) = y0(k + p|k) +�y(k + p|k), p = N1, ..., N. (4.8)

The set-point trajectory over the prediction horizon, {ysp(k + p|k), p =
N1, ..., N}, is directly or indirectly related to the desired optimal steady-state,
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as calculated by the steady-state optimization algorithm, either the SSTO or
the LSSO, at sampling instants when this information is used. Denoting this
steady-state by yss (yss = yd, when it stems from LSSO), two typical cases
can be distinguished:

• The set-point trajectory is constant over the prediction horizon , then
ysp(k + p|k) = yss, p = N1, ..., N (4.9)

• The set-point trajectory is a reference trajectory (see Section 3.6.2 in
Chapter 3). Then it is usually defined as follows

ysp(k + p|k) = γysp(k + p− 1|k) + (1− γ)yss, p = N1, ..., N (4.10)

where ysp(k|k) = y(k), the value of the process output measured at sam-
pling instant k, and γ is a design parameter, 0 ≤ γ < 1 . This means that
a prescribed continuous trajectory approaching the required steady-state,
defined by a first-order filter, is applied as a set-point trajectory within
the MPC algorithm.

As discussed in the previous section, the best solution would be to always
obtain the optimal steady-state from the LSSO problem, as frequently as nee-
ded to follow moves of the true optimal steady-state caused by disturbance
changes or new input information from the operator. The nonlinear LSSO
problem corresponds in the considered case (set-points for a constraint con-
troller are only considered and dim cd = dim yd) to the simplified version of
(4.3), having a general form

minQ(cd, yd)

subj. to : yd = F (cd, w)

cd ∈ Cd
yd ∈ Y d

(4.11)

The corresponding MPC-SSTO problems will now be presented, in the order of
increasing complexity. Since the SSTO algorithm must run at every sampling
instant, before the MPC dynamic optimization, it uses a simpler steady-state
model than the LSSO.

Linear MPC Steady-state Target Optimization

The simplest, standard approach to the MPC-SSTO, applied in industrial
practice, see e.g., [62, 142], is based on a linear steady-state process model
derived from the dynamic model used in the MPC dynamic optimization,
i.e., the gains matrix G corresponding to this model. Assuming a linear form
(4.2) of the economic objective function and linear inequalities (4.6) and (4.7)
defining the sets Cd = U and Y d=Y , as it occurs in most cases in practice,
the discussed standard SSTO problem can be formulated in the following LP
form
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min{−qT�yss + pT�uss}
subj. to : �yss = G�uss

yss = y0(k +N |k) +�yss
uss = u(k − 1) +�uss
umin ≤ uss ≤ umax
ymin ≤ yss ≤ ymax

(4.12)

where q and p are vectors of prices (see (4.2)), y0(k + N |k) is the value of
predicted free output trajectory at the end of the prediction horizon and
u(k − 1) is the controller output signal generated at the previous sample.
With the SSTO applied, the following calculations are performed by a

MPC constraint controller-optimizer at each sampling instant:

1. Acquisition of the output measurements y(k).
2. Prediction of the free output trajectory to calculate y0(k +N |k).
3. Solution of the LP SSTO problem (4.12), to get the steady-state targets
for the dynamic optimization problem.

4. Solution of the QP dynamic optimization problem (4.4), to obtain the
current controller output u(k) as the first element of the calculated optimal
control input trajectory.

It should be pointed out that the calculation of the free output prediction
y0(k +N |k) is an important element of the above strategy – this is the only
element in the formulations of both the SSTO problem (4.12) and the MPC
dynamic optimization problem (4.4) which undergoes significant changes from
one sampling instant to the other, as a result of disturbances influencing the
output measurements or directly affecting the process model, if measurements
of ceratin disturbances are available and explicitly used in the model, see
Section 3.2.5 in Chapter 3.
If one wants to require that the steady-state yss calculated from (4.12)

should be achievable over a single prediction horizon using the control gene-
rated by the MPC optimization problem (4.4), then the following additional
constraint should be added to (4.12)

−Nu · �umax ≤ �uss ≤ Nu · �umax (4.13)

It can happen that for certain values of u(k−1) and y0(k+N |k) the SSTO
problem (4.12) becomes infeasible, a case unacceptable in real-time control. To
avoid the infeasibility, a commonly used measure analogous to that applied in
MPC dynamic optimization can also be applied here, i.e., recasting the hard
output constraints ymin ≤ yss ≤ ymax as soft constraints, by adding slack
variables vm ≥ 0 and vM ≥ 0 that allow for some violation of the constraints
(see Section 3.6.2 in Chapter 3). Then the SSTO problem (4.12) becomes
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min{−qT�yss + pT�uss + ρT1 vm + ρT2 vM}
subj. to : �yss = G�uss

yss = y0(k +N |k) +�yss
uss = u(k − 1) +�uss
umin ≤ uss ≤ umax
−vm + ymin ≤ yss ≤ ymax + vM
vm ≥ 0, vM ≥ 0

(4.14)

where ρ1 and ρ2 are coefficients of linear penalty terms, penalizing violations
of the softened constraints.
In the formulations (4.12) and (4.14) presented so far, the gains matrix

G obtained from the dynamic linear model used in the MPC dynamic op-
timization problem (4.4) was applied. As discussed previously, this may not
be sufficient for more nonlinear processes, since this gains matrix could be
then often far from gains corresponding to a current point of the nonlinear
steady-state model. A more reasonable option would then be to use a suc-
cessive linearization approach, i.e., to use in SSTO the gains matrix G(k)
calculated from the comprehensive nonlinear model F (u,w) used in the local
steady-state optimization (LSSO) problem (4.11), at every sampling instant
or after every few sampling instants of the MPC dynamic controller. The form
of the linear SSTO problem is then analogous to (4.12):

min{−qT�yss + pT�uss}
subj. to : �yss = G(k)�uss

yss = F (u(k − 1), w) +�yss
uss = u(k − 1) +�uss
umin ≤ uss ≤ umax
ymin ≤ yss ≤ ymax

(4.15)

To avoid possible infeasibility problems, extended formulation analogous to
(4.14) can be applied, as well.
Certainly, in the described case the perhaps simplest nonlinear approach,

the gain-scheduling approach, to the MPC itself would also be reasonable.
That is, the gains of the linear dynamic model used in the MPC output pre-
diction and dynamic optimization should be recalculated at the same sampling
instants, to have this model better coinciding with the actual operating point,
and the MPC dynamic optimization and MPC SSTO problems consistent.
So far, the problem with the MPC constraint controller having the same

number of controlled outputs and control inputs was considered, i.e., it was
assumed in (4.4) that dim ysp = dimu. It is often not the case in practice. The
important and interesting case is when there are more control inputs u than
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controlled process output variables, dimu > dim ysp. Then the solution of
the MPC optimization problem may be not unique, and the controller should
use additional degrees of freedom to force economically better solutions. This
could be enforced by adding the following additional constraint to the MPC
dynamic optimization problem

u(k +Nu − 1|k) = uss (4.16)

But a practically better way could be to treat this constraint as a soft one,
by formulating the MPC dynamic optimization problem as follows

min
�u(k|k),...,�u(k+Nu−1|k)

{
N∑
p=N1

‖[ysp(k + p|k)− y0(k + p|k)]+

−�y(k + p|k)‖2Ψ(p) +
Nu−1∑
p=0

‖�u(k + p|k)‖2Λ(p)+

+ ‖uss − u(k +Nu − 1|k)‖2R}
subj. to : −�umax ≤ �u(k + p|k) ≤ �umax

umin ≤ u(k + p|k) ≤ umax, p = 0, ..., Nu − 1
ymin ≤ y(k + p|k) ≤ ymax, p = N1, ..., N

(4.17)

where an additional term with weighting matrix R is added to the objective
function, to force the decision variables to the optimal steady-state values uss

at the end of the control horizon. Having freedom, as dimu > dim ysp, this
does not contradict the basic requirement that steady-state values yss should
be achieved by the controlled outputs at the end of the prediction horizon.
It is because the values uss and yss are related to each other in the same
way as stabilizing values of input and output variables in MPC, provided the
same gains matrices are used in both the MPC dynamic optimization and
MPC-SSTO problems.
In general, there may also be in the considered case additional measured

process outputs entering the constraints only, called the constraint outputs,
see Section 3.1 and, e.g., [142]. The formulation (4.17) then remains formally
unchanged, only a part of the elements of the vector of predicted process
outputs enters the performance function, the remaining ones entering the
constraints on outputs only.

Linear-quadratic MPC Steady-state Target Optimization

The successive linearization discussed in the previous point is a kind of adap-
tive approach, with the aim to adapt the linear model used in the linear SSTO
problem to nonlinearity of the problem, to its linearized features at successive
operating points. However, one can imagine a representation of nonlinearity
in the SSTO problem itself. Then, the first step in this direction would be
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to use the successive quadratic approximation of the comprehensive nonlinear
steady-state process model. The quadratic model can be then written as

yss = F (u(k − 1), w) +G(k)�uss + 0.5(�uss)TB(k)�uss (4.18)

although in general the quadratic term can be recalculated more rare, not at
every sampling instant, but, e.g., after every predefined number of sampling
instants, or even globally (then G(k) = G, is a constant matrix) – depending
on the kind of nonlinearity of the original steady-state process model.
Now, wanting the SSTO problem be at most linear-quadratic (for quick

and robust calculation), i.e., with linear constraints only, it should be formu-
lated as follows

min{−qT [G(k)�uss + 0.5(�uss)TB(k)�uss] + pT�uss}
subj. to : yss = F (u(k − 1), w) +G(k)�uss

uss = u(k − 1) +�uss
umin ≤ uss ≤ umax
ymin ≤ yss ≤ ymax

(4.19)

Observe that the quadratic approximation is used in (4.19) only in the objec-
tive function, because linear approximation must be applied to input-output
mappings which describe constrained outputs, to keep the constraints in the
optimization problem linear.
Linear approximation of the mappings entering the inequality constraints

is the weakest point of this approach, since in many applications optimal
solution is constrained (located at constraint limits) and more accurate ap-
proximation of the output mappings for the constraints can be more crucial
than for the objective function. Despite this weak point, the use of (4.19) can
generally lead to better results than the pure linear approach or successive
linearization only, especially if only process inputs are constrained. Factors
important for the success are nonlinearities well approximated by quadratic
functions and design of an efficient quadratic approximation method, if it is
to be used at every sampling instant or after every few sampling instants.
It should also be mentioned that there are cases when the original

economic-type objective function is not linear, being e.g., quadratic, then the
use of a linear-quadratic SSTO problem is natural and recommended.

Piecewise-linear MPC Steady-state Target Optimization

The possible weakest point of the just discussed linear-quadratic approach to
SSTO was the necessity to use a linear process model in the formulation of
the output constraints, as these constraints are often crucial, being active at
the optimum. Thus, a question arises of how to design an efficient, robust
SSTO problem, but with a nonlinear approach to process modeling. Having



286 4 Set-point Optimization

a linear economic objective function, an answer to this question may be a
piecewise-linear approximation of the nonlinear steady-state process model,
performed locally at each sampling instant, after every few sampling instants,
or even once, globally – depending on the dimensionality and nonlinearity of
the problem. For local approach, the approximation bases on a limited number
of points in a current operating region.
Piecewise-linear approximation of a nonlinear function is a well-known

concept in mathematical programming, especially in separable programming,
see e.g., [153]. The idea is explained on an example function approximation in
Fig. 4.4. The basis of the approximation is a number of grid points, connected
by straight line portions building the approximation, namely points 0(0,0),
A(x1, y1), B(x2, y2) and C(x3, y3). One of the ways to do the approximation,
called the λ-form [153], is to introduce an additional non-negative variable
λi for each grid point (which value can then be interpreted as a weight of
the point in the function approximation), and additional constraints for new
variables, as follows:

x = 0λ0 + x1λ1 + x2λ2 + x3λ3 (4.20)

y = 0λ0 + y1λ1 + y2λ2 + y3λ3 (4.21)

λ0 + λ1 + λ2 + λ3 = 1 (4.22)

λi ≥ 0, i = 0, 1, 2, 3 (4.23)

Moreover, the set of new variables {λ0, λ1, λ2, λ3} must be the so-called SOS2
set (special ordered set of type 2), i.e., at most two and adjacent variables
can be non-zero. The SOS2 condition can be modeled as an additional set of
linear inequalities, especially with 0-1 (integer) additional variables, leading
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Fig. 4.4. An example piecewise-linear approximation of a nonlinear function
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to a mixed linear programming problem [153]. But it is not necessary if the
applied linear programming procedure allows simply for declarations of SOS2
sets, treating them algorithmically (internally), thus making the modeling
easier for the user.
Formulation of a piecewise-linear approximation of a function of two or

more variables in a form of a set of linear conditions is more difficult, but can
also be made using a number of grid points, introducing additional variables
and SOS2 sets. It will not be presented here, the interested reader is referred
to e.g., [153]. One of the reasons is that a simpler, more approximate but
more practical approach (of a “brute force” type) can also be proposed here
and has been found successful in a two-dimensional simulation study, see
[138] and Example 4.2 in Section 4.2.4. The basis of this local approach is to
use a mesh of grid points in a current operating region and simply to check
values of the objective function and nonlinear output constraints at these
points only, selecting in this way the best feasible one. Due to linearity of
the objective function, the finer, exact solution to the piecewise-linear SSTO
problem based on the used mesh points must be located on one of the line
fragments connecting the found best point with the unfeasible adjacent ones.
But it seems rather not reasonable to look for a finer solution point basing on
the used grid mesh (i.e., along the mentioned line fragments), as the problem
is itself only an approximate one. If higher accuracy is needed, the search
can be repeated with finer grid mesh around the found point, i.e., using a
finer piecewise-linear approximation. In fact, the presented approach can be
regarded from another point of view: as a simplified, approximate version of
the full nonlinear local steady-state optimization (LSSO), performed more
frequently and locally, over a smaller region around the operating point.

4.2.2 Integrated Approach to MPC and Steady-state Optimization

So far, the need to calculate the steady-state targets for MPC dynamic op-
timization (MPC-DO) more frequently than it is done at a higher control
layer of local steady-state optimization (LSSO) was realized by introduction
of a separate SSTO problem, performed at every sampling instant of the MPC
controller. Thus, two optimization problems, MPC-DO and MPC-SSTO, were
solved sequentially at the MPC constraint control layer. The question arises,
whether or not it is possible and reasonable to integrate these two optimiza-
tion problems into one. Moreover, one can even imagine to integrate the LSSO
and the MPC-DO problems into one optimization problem – such attempts
can be met in the literature, usually for concrete processes with specific featu-
res [145, 158, 159]. Certainly, the problem is difficult, considering its nonlinear
nature and requirements of on-line applications.
Therefore, integration of MPC-DO with MPC-SSTO should first be con-

sidered. This could be reasonable and lead to faster calculations first of all if
structures of both problems are the same or similar, and if the MPC-SSTO
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taken as a separate problem is efficacious. Therefore, if this problem formu-
lated as a LP problem (4.12) (or (4.15) if successive linearization is used) is
sufficiently efficacious, then it is rather unreasonable to integrate it with the
MPC-DO QP problem. Passing further, to more involved MPC target opti-
mization, we can see that (4.4) and (4.19) are both standard QP problems,
therefore the following integrated QP problem can be proposed:

min
�u(k|k),...,�u(k+Nu−1|k),�uss

{
N∑
p=N1

‖[yss − y0(k + p|k)]+

−�y(k + p|k)‖2Ψ(p) +
Nu−1∑
p=0

‖�u(k + p|k)‖2Λ(p)+

+ρ[−qT [G(k)�uss + 0.5(�uss)TB(k)�uss] + pT�uss]}

subj. to : −�umax ≤ �u(k + p|k) ≤ �umax
umin ≤ u(k + p|k) ≤ umax, p = 0, ..., Nu − 1
ymin ≤ y(k + p|k) ≤ ymax, p = N1, ..., N
yss = F (u(k − 1), w) +G(k)�uss
uss = u(k − 1) +�uss
umin ≤ uss ≤ umax
ymin ≤ yss ≤ ymax

(4.24)

where ρ is a weighting coefficient prescribing the relation between the cost
function of the MPC-DO problem and the economic objective function. In the
above problem, the relation (4.9) between the steady-state value yss and the
set-point trajectory {ysp(k+N1), ..., ysp(k+N)} has been assumed (constant
set-point over the prediction horizon). The approximation of the nonlinear
steady-state model used in the problem (4.24), i.e., matrices G(k) and B(k),
can be adjusted after every or after a few sampling instants, as required and
possible depending on the kind of nonlinearity of the original steady-state
process mapping.
Generally, a useful integrated QP problem may also result in other cases

when the MPC-SSTO is a QP problem. First of all, when the process model
used there is linear, stemming from a linear dynamic one used in MPC-DO,
or from linearization of the steady-state nonlinear model, but the original
economic objective function is quadratic.
As discussed earlier, one can even imagine integrating MPC-DO and non-

linear LSSO problems into one nonlinear optimization problem. This can be
done when the LSSO problem can be effectively and robustly calculated at
each sampling instant of the MPC constraint controller, which usually occurs
if it is relatively simple and dynamics of the controlled process is sufficiently
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slow (e.g., a case considered in [159]). Then, still assuming constant set-point
over the prediction horizon, (4.9), the integrated nonlinear dynamic optimi-
zation problem can be formulated in the following form

min
�u(k|k),...,�u(k+Nu−1|k),uss

{
N∑
p=N1

‖[yss − y0(k + p|k)]+

−�y(k + p|k)‖2Ψ(p) +
Nu−1∑
p=0

‖�u(k + p|k)‖2Λ(p) + ρQ(uss, yss)}

subj. to : −�umax ≤ �u(k + p|k) ≤ �umax
umin ≤ u(k + p|k) ≤ umax, p = 0, ..., Nu − 1
ymin ≤ y(k + p|k) ≤ ymax, p = N1, ..., N
yss = F (uss, w)

umin ≤ uss ≤ umax
ymin ≤ yss ≤ ymax

(4.25)

where Q(uss, yss) is the economic objective function, which can be fairly ge-
neral, linear or nonlinear. The properties of (4.25) are usually dominated by
the nonlinearity of the steady-state output mapping F (·, w). If this mapping
is given by a complex numerical procedure, than a recommended efficacious
practical approach is to approximate it by a fuzzy-neural or a neural network
model constructed for optimization purposes – to obtain better computational
properties of the optimization problem, see [69].
If dim uss > dim yss, then the constraint (4.16) should also be added to

the problem (4.24) or (4.25), as a hard or a soft constraint.
Certainly, the necessity to choose an appropriate value of the weighting

coefficient ρ is a drawback of the integrated approach. Too small value will
force the solution to be less economically efficient, while too large can lead
to undervalued dynamic optimization and numerical difficulties. Of course,
a relation between ρ and weighting coefficients being entries of matrices Ψ
and Λ counts, thus one could assume ρ = 1 and then choose only entries of
these matrices, in general. But, in practice it is usually more convenient to
design first the MPC dynamic controller and than the integrated controller,
appropriately adjusting the value of ρ. The problem will be addressed further
on, when presenting and discussing simulation studies.

4.2.3 Adaptive MPC Integrated with Steady-state Optimization

An interesting approach to integrated steady-state optimization and MPC
dynamic optimization has been proposed in [6], in the framework of adaptive
model predictive control with state-space model.
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The algorithm requires an instantaneous on-line identification of a linear
state-space model, after an initial time interval of several sampling periods
needed to start the identification procedure. In fact, the following ARMAX
input-output type model is proposed to be identified in [6] (see also (3.82))

A(z−1)y(k) = B(z−1)u(k − 1) +C(z−1)ε(k) + b (4.26)

using a non-iterative moving data window procedure, and the model para-
meters are updated after every few sampling instants (in the two simulation
examples reported it was after 5 and 20 samples, respectively). Then, the
following state-space representation is used (see Section 3.4.1)

x(k) = [y(k)T y(k−1)T ... y(k−nA+1)T u(k−1)T ... u(k−nB+1)T ]T (4.27)
Formulating the identified linear state-space model in the incremental form

and using notation adopted in this book, the integrated dynamic MPC opti-
mization problem is as follows

min
�u(k|k),...,�u(k+N−1|k)

{0.5�x(k +N |k)TΨN�x(k +N |k) +

+
N−1∑
p=1

0.5�x(k + p|k)TΨp�x(k + p|k) +

+
N−1∑
p=0

[0.5�u(k + p|k)TΛp�u(k + p|k) + Q(u(k + p|k), y(k + p|k))]}

subj. to : �x(k + p+ 1|k) = A(k)�x(k + p|k) +B(k)�u(k + p|k)
�y(k + p|k) = C(k)�x(k + p|k)
−�umax ≤ �u(k + p|k) ≤ �umax
umin ≤ u(k + p|k) ≤ umax, p = 0, ..., N − 1
ymin ≤ y(k + p|k) ≤ ymax, p = 1, ..., N

(4.28)

where Q(u, y) is the economic objective function and ΨN, Ψp, Λp are weigh-
ting matrices. Observe that in (4.28) the economic objective function is taken
into account at every sampling instant over the prediction horizon and is not
multiplied by a weighting coefficient. Observe also that the control horizon is
assumed to be equal to the prediction horizon.
Note that, as usual with adaptive systems based on current model iden-

tification, the process input signal must have sufficient persistent excitation
properties to get acceptable robustness and quality of the identification. The-
refore, in simulation studies presented in [6], an additional PRBS (pseudo-
random binary sequence) signal added to the controller output was applied.
A proof of the optimality of a process equilibrium point (steady-state

(ȳ, ū)) obtained under the presented integrated algorithm is given in [6], un-
der several assumptions. Not going into more technical ones (the reader is
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referred to the cited paper for more detailed information), let us only mention
the more important assumptions:

• The prediction horizon N is infinite.
• Matrices A(k), B(k) and C(k) of the adaptive linear state-space model
stabilize (at values, say, A, B and C) when approaching the steady-state
under stabilizing (constant) disturbances, i.e., the adaptive control system
is assumed to be asymptotically stable.

• Derivative of the stabilized linear model is equal to the derivative of the
real steady-state input/output process mapping y = F∗(u,w) at the equi-
librium point (ȳ, ū), i.e.,

C(I−A)−1B =
[
∂F ∗(ū, w)
∂u

]
(4.29)

Under the assumed conditions, it is proved in [6] that the steady-state point
(ȳ, ū) satisfies necessary optimality conditions of the real process steady-state
optimization problem

minQ(u,y)

subj. to : y = F∗(u,w)
u ∈ U
y ∈ Y

(4.30)

Note that the problem (4.30) is the steady-state optimization problem
(4.1), but with the real input-output process mapping F∗ in place of its mo-
del F . Certainly, the real mapping F∗ cannot be known in practice, only its
(approximate) model F is known, therefore the knowledge of F∗ cannot be
assumed. But, assuming (4.29), it is possible to attain the true optimal point
(precisely, a point satisfying necessary optimality conditions of the true op-
timum). And this assumption is more realistic, although not easy to be met
in practice. It means that steady-state properties of every state-space linear
dynamic model identified during the operation of the algorithm must coin-
cide with the true input-output steady-state process mapping at the point
of identification, when considering the first order derivatives. It is difficult
in practice, as linear dynamic models are usually identified to obtain a good
match of dynamic properties of the modeled process. To obtain good static
properties, special measures must be taken, like appropriate low-pass filtering
of input and output signals used for identification purposes.
The problem (4.30) will be called the steady-state optimizing control pro-

blem in Section 4.3.1, to distinguish from the steady-state model optimization
problem. In fact, a quite fortunate combination of the philosophy of integrated
system optimization and parameter estimation (ISOPE) approach, with the
MPC technique, is behind the construction of the discussed algorithm. The
ISOPE methodology will be discussed briefly in Section 4.3.1.
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4.2.4 Comparative Example Results

Example 4.1
Control of a jacketed continuously-stirred tank reactor with polymerization
reaction described in [34, 84] and considered earlier in Example 3.8 in Chapter
3, see Fig. 3.46, will now be considered. But now, our interest will be the
structure consisting not only of a feedback MPC control, but containing also
a combined set-point optimization. Different realizations of SSTO together
with different frequencies of intervention of the LSSO will be considered [70].
Differential equations describing the process are almost the same, with the

initiator inflow rate as the control input u = FI , but now the main distur-
bance input, the monomer and solvent feed flow rate F will not be constant.
Therefore the set of difference equations is now (compare with Example 3.8)

ẋ1 = 10(6− x1)− 2.4568x1√x2
ẋ2 = 80u− (0.1022 + 10F )x2
ẋ3 = 0.0024121x1

√
x2 + 0.112191x2 − 10x3

ẋ4 = 245.978x1
√
x2 − 10x4

y = x4/x3

The nominal operating conditions are the same as stated in Example 3.8,
with the same constraints on the control input u. The predictive controller
applied to keep the process at desired set-points was the GPC controller, see
also Example 3.8. However, it is not important now which MPC controller
is applied, provided it operates well for the considered range of the set-point
values. The output variable y is NAMW (number-average molecular weight),
controlled by manipulating the inlet initiator flow rate FI (u = FI).
The controlled process behavior will now be driven by changes in the

disturbance input

F (k) = F0 − 0.5(sin(0.0145k)− sin(0.145))

where F0 = 1 [m3/h]. The economic objective is to minimize the NAMW,
Q(c, y) = y.
Three different control system structures were considered, with the fo-

llowing realizations of the on-line set-point optimization task:

• LSSO – with nonlinear steady-state optimization at the optimization layer
only,

• LSSO+SSTO – with LSSO and steady-state target optimization (SSTO),
in three versions (see Section 4.2.1):

– LSSO+SSTOLc – SSTO with a constant gain matrix G (linear static
model) from the linear dynamic model used in the GPC algorithm, see
(4.12),
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– LSSO+SSTOLa – SSTO with an adaptive gain matrix G(k) (linear
static model) from on-line successive linearizations of the comprehen-
sive nonlinear steady-state model used at the optimization layer (in
LSSO), see (4.15),

– LSSO+SSTOQ – SSTO with a quadratic static model from on-line
successive approximations of the nonlinear steady-state model used in
LSSO, see (4.19),

• LSSO+SSTOQiMPC – with LSSO and integrated optimization problem
combining SSTO and GPC dynamic optimization, as described in Sec-
tion 4.2.2.

Selected simulation results obtained with the presented control-optimization
structures are shown in Figures 4.5, 4.6, 4.7 and 4.8, for intervention period
of the comprehensive economic optimization (LSSO) TLSSO = 30 (30T p).
In Figures 4.5 and 4.6 results obtained in control-optimization structu-

res LSSO, LSSO+SSTOLc and LSSO+SSTOLa are shown. It can clearly be
seen that the introduction of the SSTO leads to significant improvement, and
results obtained for adaptive static process gain stemming from on-line li-
nearizations of the nonlinear steady-state model (LSSO+SSTOLa structure)
were, for the considered plant, almost identical to those with a constant gain;
only a slight difference between process input trajectories can be seen.
In Figures 4.7 and 4.8 the results obtained in control-optimization struc-

tures LSSO, LSSO+SSTOQ and LSSO+SSTOQiMPC are shown. The appli-
cation of SSTO with quadratic approximations yielded in the considered case
results with performance slightly worse than that obtained for linear models.
The application of an integrated approach was also investigated. It improves
the results when compared with the LSSO case only, but they are worse than
those for separate SSTO with quadratic approximation. It should be remem-
bered that in the integrated case an additional separate optimization (SSTO)
is not needed.
The influence of different values of TLSSO on the economic performance

was also investigated. The results, calculated for the whole simulation interval,
are shown in Figure 4.9, for the applied control-optimization structures (since
both cases of SSTO with linear models led to almost the same results, only one
is depicted). The best result, as expected, was for the (rather not realistic)
case with LSSO repeated at every sampling instant of the GPC controller,
i.e., for TLSSO = 1. To get the presentation clearer, relative values Jrel of the
objective function are shown, related to this best result with TLSSO = 1, i.e.,

Jrel = (J − JTLSSO=1) · 10−4

For TLSSO significantly larger than 1, using the LSSO only leads to bad results.
It is evident, that application of the SSTO working with sampling frequency of
the MPC algorithm is important, and best practical results are for combined
LSSO+SSTO structure. With the increase of TLSSO the results deteriorate in
the considered problem, however slower for larger intervention periods.
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Fig. 4.5. Trajectories of NAMW for structures without and with SSTO implemen-
ted as LP problem

Fig. 4.6. Trajectories of process control input for structures without and with SSTO
implemented as LP problem
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Fig. 4.7. Trajectories of NAMW for structures without and with SSTO implemen-
ted as QP problem, including integrated approach

Fig. 4.8. Trajectories of process control input for structures without and with SSTO
implemented as QP problem, including integrated approach
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Fig. 4.9. Dependence of the loss of the relative performance on the intervention
period of the LSSO optimization

The considered example problem has a rather smooth, regularly changing
and not very strong nonlinearity of the steady-state model. The obtained re-
sults show, that in this case the application of the SSTO with a linear model
leads to good results, even using a linear model with a constant gain ma-
trix. This confirms practical experience, where in many cases this well-known
simple approach can be successful, see e.g., [115, 11]. However, the linear ap-
proach can not be sufficient in cases with sharply changing nonlinearities, as
it will be shown in the next example. �

Example 4.2
A methanol-water distillation column described earlier in Example 2.3 in
Chapter 2 will be considered, but now with the MPC constraint controller
added, as it is shown in Fig. 4.10. The top product consists mainly of metha-
nol (95%), whereas the bottom product contains only traces of alcohol (less
than 5%). The feed flow rate is denoted by F , the flow rates of the top and
bottom products are denoted by D and B, respectively. Concentrations of
methanol in the feed, top and bottom streams, are denoted by xf , xd and xb,
respectively. The plant has two manipulated variables: R - reflux stream flow
rate and V - vapor stream flow rate. The operating point is: R0 = 33.3634
[kmol/h], V0 = 83.3636 [kmol/h], xd0 = 0.95, xb0 = 0.05 and F0 = 100
[kmol/h], xf0 = 0.5 (compositions are in mole fractions).
Two fast single-loop PID controllers, denoted as LC, are used to maintain

the levels in reflux and bottom product tanks. Similar controllers, denoted
as FC, are used to control the actual flow rates of R and V . The direct
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Fig. 4.10. Methanol-water distillation column feedback control structure

control layer comprises all LC and FC controllers. In order to stabilize the
concentrations xd and xb in top and bottom products, a supervisory MPC
constraint controller is used. It treats the column as a two-input (R, V )
two-output (xd, xb) process, the parameters of the input stream (F , xf ) are
disturbances. The sampling interval of this algorithm is equal to 10 [min].
A GPC realization was chosen for the MPC controller, with prediction

and control horizons set to N = 10 and Nu = 5 , with weighting matrices
Ψ=diag{10, 5} and Λ = λI, where λ = 1. In the GPC dynamic optimization
problem the following amplitude and rate of change constraints on the input
variables were imposed (for p = 0, ..., Nu − 1):

Rmin ≤ R(k + p|k) ≤ Rmax
Vmin ≤ V (k + p|k) ≤ Vmax

−�Rmax ≤ �R(k + p|k) ≤ �Rmax
−�Vmax ≤ �V (k + p|k) ≤ �Vmax

where Rmin = R0 − 20, Rmax = R0 + 20, Vmin = V0 − 20, Vmax = V0 + 20,
�Rmax = 5, �Vmax = 5 (all flow rates in [kmol/h]). It was also assumed that
F = F0 and that changes in feed stream composition xf (main disturbance)
are given by the following equation (for k ≥ 10)

xf (k) = xf0 + 0.1(sin(0.029k)− sin(0.29))
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The steady-state (set-point) optimization problem was formulated as follows

min{−cDDss + cBBss + cRRss + cV V ss}
subj. to : Rmin ≤ Rss ≤ Rmax

Vmin ≤ V ss ≤ Vmax
xssd ≥ 0.95
xssb ≤ 0.05

(4.31)

where cD=2.5, cB=0.5, cR=1 and cV=1 are appropriate prices. The last two
constraints in the optimization problem (4.31) result from technological requi-
rements: the top-product has to be sufficiently purified whereas the bottom
product has to contain only traces of methanol.
The first-principles (fundamental) dynamic model was used as the process

representation during the simulations [81]. It was also deployed to generate
the data and to carry out an identification procedure of a dynamic black-box
linear model to be used in the GPC algorithm. In fact, the objective function
in (4.31) is linear, since at steady-states bottom and top product flows result
from balance equations

Dss = V ss −Rss

Bss = Rss + F ss − V ss

However, to calculate the concentrations xssd and x
ss
b , present in the last two

inequality constraints in (4.31), a first-principles static model has to be used,

xssd = f
d(Rss, V ss, xssf , F

ss)

xssb = f
b(Rss, V ss, xssf , F

ss)

Therefore, the optimization problem is nonlinear.
Results of applications of LSSO combined with SSTO, in the presented

control structure, were originally presented in [138]. First, the SSTO with
a linear model was considered. The obtained results, see Fig. 4.11, were far
from satisfactory, due to the strong nonlinear shape of the steady-state cha-
racteristics. The operating points obtained were in each iteration close to
xssd =0.95 and x

ss
b =0, whereas the optimal set-point for the process is located

close to xssd =0.95 and x
ss
b =0.05 (as it was checked using the nonlinear model).

Unfortunately, the same problem occurred when SSTO with successive linea-
rizations was applied, and the SSTO with quadratic approximations could not
be used because the nonlinearity is located in constraints, see Section 4.2.1.
Therefore, a SSTO with piecewise-linear approximations was tried, see

Section 4.2.1. Because dimensionality of the problem is small, it can be relati-
vely quickly solved using a straightforward procedure which calculates values
of the objective function and checks the fulfilment of the nonlinear constraints
for a predefined set (a mesh) of possible steady-state points – certainly, with
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Fig. 4.11. Trajectories of process inputs and set-points obtained for SSTO with
linear process model only

the accuracy corresponding to differences between function values at neighbo-
ring mesh points. During simulations a mesh consisting of only 25 candidate
grid points was used. The last steady-state operating point determined by
the nonlinear optimization layer (LSSO) was the central point of the mesh.
The obtained results, see Fig. 4.12, led to much better values of the objective
function than those received using the linear approach [138].
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Fig. 4.12. Trajectories of process inputs and set-points obtained for SSTO with
piecewise-linear process model �

4.3 Measurement-based Iterative Set-point Optimization
under Uncertainty

In a classical multilayer structure it is usually assumed that disturbances con-
sidered at the optimization layer are varying slowly or in an abrupt manner but
rarely, when compared to the controlled process dynamics, see e.g., [40, 16].
Then the steady-state optimization problem can be solved with a frequency
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much lower than the sampling frequency of directly subordinate feedback con-
trollers; the time between two successive optimizations can be much longer
than the duration of step-response transient processes in the controlled plant.
This case will be assumed in this section.
From the point of view of the steady-state optimization, the disturbances

w are parameters. To have the model of the process F describing the reality
well, values of these disturbances should be known – measured or estimated.
Only then the solution of the steady-state optimization problem with the pro-
cess model does determine the operating point (set-point) which is optimal
for the real process. More precisely, it is then close enough to the real optimal
point. It is not strictly optimal due to unavoidable uncertainties in distur-
bance measurement or estimation and inaccuracies in modeling. Otherwise,
the point evaluated using an (only rough) process model can be far from the
optimal one for the real process. But, the situation that the uncertainty, alt-
hough unknown, can be assumed constant over longer periods of time (much
longer than the controlled process settling time) can be exploited for iterative
improvement of the model-optimal point, based on successive use of steady-
state measurement information. This leads to iterative methods, the most
important being methods of integrated system optimization and parameter
estimation (ISOPE), see [16].

4.3.1 Integrated System Optimization and Parameter Estimation
(ISOPE)1

The ISOPE method was proposed by Roberts [121], see also [122], it was ori-
ginally called a modified two-step method. However, it gained popularity under
the name ISOPE, that is now usually used. The feature that makes the met-
hod so attractive is that it is able to generate a series of set-points converging
to the plant real optimal steady-state point (not only model-optimal point), in
spite of the uncertainty in the process model and disturbance estimates.
To explain the idea of the method and the basic ISOPE algorithm, we

shall consider in this section the case without constraints on process outputs,
leaving this more complex case to the next section. The constraints on process
inputs will be described in a general compact form

c ∈ C = {c : g(c) ≤ 0} (4.32)

Further on, because disturbances can be assumed to be constant during a
single run of any ISOPE algorithm and the process model is assumed to
be rough, it will be defined in the form with certain model parameters α
representing the uncertainty, namely

1This section is a shortened and modified version of Sections 4.1 and 4.4 from the
book Brdys, M.A. and Tatjewski, P., Iterative Algorithms for Multilayer Optimizing
Control, copyright 2005 by Imperial College Press, used by permission.
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y = F (c, α) (4.33)

Now, using the introduced assumptions and notation, let us write the
steady-state model optimization problem (MOP) (4.1) in the form

min
c
Q(c, y)

subj. to : y = F (c, α)

g(c) ≤ 0
(4.34)

and the steady-state optimizing control problem (OCP) (4.30) as

min
c
Q(c, y)

subj. to : y = F∗(c, w)
g(c) ≤ 0

(4.35)

with the optimal solution (optimal steady-state point for the real process)
denoted by ĉ∗.
To derive the ISOPE basic algorithm, let us convert the OCP problem

(4.35) to an equivalent form with the output variables y eliminated

min
c,α
Q(c, F (c, α))

subj. to : F (c, α) = F∗(c, w)
g(c) ≤ 0

(4.36)

and next, still preserving full equivalence, to the form with additional variables
ci representing a current steady-state point (at which parameter adaptation
will be performed, the superscript “i” will index algorithm iterations)

min
c,ci,α
{Q(c, F (c, α)) + ρ‖ci − c‖2}

subj. to : F (ci, α) = F∗(ci, w)
g(c) ≤ 0
ci = c

(4.37)

where the last constraint has been added to maintain equivalence and a
convexifying quadratic term has also been added to the objective function
Q(c, F (c, α)). The augmented problem is, certainly, equivalent, and the aug-
mentation leads to better applicability conditions of the resulting algorithm,
see [13, 16], and provides the designer with a useful additional parameter ρ
(penalty coefficient).
Writing now the Lagrange function for the problem (4.37),

L(ci, c, α, λ, ξ, µ) = q(c, α) + ρ‖ci − c‖2+
+ λT (ci − c) + ξT (F (ci, α)− F∗(ci, w)) + µT g(c) (4.38)



4.3 Measurement-based Iterative Set-point Optimization under Uncertainty 303

where
q(c, α) = Q(c, F (c, α)) (4.39)

the necessary optimality conditions for (4.37) can be written as:

q
′
c(c, α)

T − 2ρ(ci − c)− λ+ g′(c)Tµ = 0 (4.40a)

g(c) ≤ 0, µ ≥ 0, µT g(c) = 0 (4.40b)

2ρ(ci − c) + λ+ [F ′c(ci, α)− (F∗)
′
c(c
i, w)]T ξ = 0 (4.40c)

q
′
α(c, α)

T + F
′
α(c
i, α)T ξ = 0 (4.40d)

F (ci, α)− F∗(ci, w) = 0 (4.40e)

ci − c = 0. (4.40f)

Eliminating now from (4.40c) and (4.40d) the Lagrange multipliers ξ, the
following equivalent formulation of these necessary optimality conditions is
obtained

q
′
c(c, α)

T − λ(ci, α)− 2ρ(ci − c) + g′(c)Tµ = 0 (4.41a)

g(c) ≤ 0, µ ≥ 0, µT g(c) = 0 (4.41b)

F (ci, α)− F∗(ci, w) = 0 (4.41c)

ci − c = 0 (4.41d)

where
λ(ci, α)T = Q

′
y(c
i, F (ci, α)) · [F ′c(ci, α)− (F∗)

′
c(c
i, w)] (4.42)

For a full, rigorous derivation and a more elaborate discussion the reader is
referred to [16].
The ISOPE algorithms can be treated as those finding, in an iterative way,

a point satisfying the necessary optimality conditions (4.41a)–(4.42). First, let
us assume that also parameters α are iterated, writing αi instead of α, and
define the modified model optimization problem MMOP (compare with the
model optimization problem MOP, (4.34)):

min
c
{q(c, αi)− λ(ci, αi)T c+ ρ‖ci − c‖2}

subj. to : g(c) ≤ 0 (4.43)

Notice that (4.41a)–(4.41b) with α = αi are precisely the necessary optimality
conditions for the MMOP (4.43).
We shall not provide the reader with a full analysis of applicability con-

ditions of the ISOPE method, it can be found elsewhere, see e.g., [16] and
references therein. Let us only mention that an important assumption is that
the model F (·, ·) should be point parametric on its feasibility set C, see [12, 16],
i.e.,
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for every c̄ ∈ C there is ᾱ ∈ R
s such that F∗(c̄, w) = F (c̄, ᾱ) (4.44)

The above assumption can be regarded as a standard requirement for the
model to be well-defined. It states that it is possible to make the model output
equal to the plant output, at any point in the feasible set associated with the
original problem (4.35), by an appropriate choice of the parameters α. The
assumption is, e.g., always satisfied when the model is additive with respect
to a subset, say αa, of the parameters, i.e.,

F (c, α) = F (c, αn) + αa, α = (αn, αa), αa ∈ R
m (4.45)

where m = dim y.
The parameter estimation problem (PEP) will be defined as a problem of

adapting the model parameters α at an operating point (set-point) c under
the constraint (4.41c)

F (ci, α)− F∗(ci, w) = 0 (4.46)

PEP is well-defined, for every ci ∈ C, if the model is point-parametric on C.
In particular, if the model has the structure (4.45), then condition (4.46) can
always be satisfied by adapting only the additive parameters αa, in fact by a
simple substitution

αia = F∗(c
i, w)− F (ci, αn) (4.47)

Generally, there are also non-additive parameters αn, and if both subsets of
parameters are adapted the PEP may have not a unique solution. However, as
it will be clear from the presentation to follow, it is not necessary to adjust the
non-additive parameters αn at every iteration of the ISOPE (at every PEP
solution). These parameters may even be kept constant during a single run
of the algorithm, if it is reasonable, i.e., if there is not sufficient additional
measurement information gathered to perform new full parameter adaptation
during a single run.
We are now ready to formulate the ISOPE algorithms.

ISOPE Basic Algorithm
The ISOPE basic algorithm can be formulated as follows:

Start. Given initial point c0, relaxation coefficient kc, 0 < kc ≤ 1, and solu-
tion accuracy ε > 0. Set i = 0.

Step 1. Apply ci as the controlled plant set-point and measure yi = F∗(ci, w),
in the steady-state. Perform additional linearly independent perturba-
tions around ci and measure corresponding values of the plant outputs, in
steady-states. Based on this measurements find a finite difference appro-
ximation of the process input-output mapping derivative (F∗)

′
c(c
i, w).

Step 2. Using the obtained new measurements update parameters α under
the restriction that the model outputs match the actual process outputs
at ci (parameter estimation problem). This yields αi = α̂(ci) satisfying

yi = F (ci, αi) = F∗(ci, w) (4.48)
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Step 3. For α = αi solve the modified model optimization problem MMOP
(4.43), let ĉim = ĉm(c

i, αi) be the solution.
Step 4. Set

ci+1 = ci + kc(ĉim − ci) (4.49)

If
‖ci − ci+1‖ ≤ ε (4.50)

then terminate (equality (4.41d) satisfied – solution found). If not, then
increase i by one and continue from Step 1.

It can easily be seen that the algorithm is constructed in such a way
that when it terminates, the necessary optimality conditions (4.41a)–(4.41d)
for the optimizing control problem are satisfied. Equalities (4.41a), (4.41b)
and (4.41c) are fulfilled at each iteration after solving the PEP and MMOP
problems in Steps 2 and 3. When the algorithm terminates equation (4.41d)
is satisfied with the prescribed accuracy ε > 0.
The presented ISOPE algorithm can be regarded as of fix point type, since

the set-points c are iterated in such a way as to fulfill the equation (4.41d),
which in the algorithm realization takes the form

ĉm(c, α̂(c)) = c (4.51)

The iterative formula (4.49) is a simple adjustment rule for finding a fix point
of (4.51); it is called the iteration of a relaxation type and the parameter kc
is called the relaxation coefficient. Observe that if kc = 1 then this formula
becomes a direct substitution rule ci+1 = ĉim. The formula (4.49) possesses a
very important practical property: if the feasible set C is convex, the initial
point c0 ∈ C and 0 < kc ≤ 1, then c1 ∈ C and, consequently, each point ci of
the generated sequence is feasible (belongs to C).
Full theoretical analysis of optimality and convergence properties of the

presented algorithm can be found elsewhere [13, 16]. Let us only mention that
it has been proven, under reasonable technical conditions, that

• If a point ci from the generated sequence does not satisfy the optimality
conditions, then

Q(ci+1, F∗(ci+1, w)) < Q(ci, F∗(ci, w)) (4.52)

for every kc from a certain interval, 0 < kcmin ≤ kc ≤ kcmax ≤ 1 (values
kcmin and kcmax being problem dependent), i.e., the value of the process
real (not model-based) objective function is improved.

• There is at least one cluster point of the sequence {ci} and this point satis-
fies (4.51), i.e., it satisfies necessary optimality conditions of the optimizing
control problem (OCP).

It should be pointed out that at each iteration of the ISOPE algorithm
the real process mapping derivative (F∗)

′
c(c
i, w) must be evaluated (approxi-

mated), in order to compute the modifier λ, see (4.42), which is necessary for
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the MMOP formulation. This derivative must be evaluated based on process
measurements only, locally at a current set-point, since the model of the pro-
cess mapping is assumed to be too uncertain to be used for that. The way
this derivative is evaluated is one of the key-points of each ISOPE algorithm,
important for its practical features and effectiveness. In the basic ISOPE algo-
rithm structure given above, this derivative is calculated in Step 1 using finite
difference approximations based on output measurements from n, n = dim c,
additional set-point perturbations around the current value ci. This is the
simplest approach originally suggested in [121] and utilized in many later pa-
pers, see e.g., [122, 14, 13, 139]. However, it means n additional transient
processes in the plant at each iteration of the ISOPE algorithm, in addition
to the single transient process associated with the set-point transition from
ci−1 to ci. Therefore, this procedure is highly time and cost expensive.
Therefore, attempts have been made to overcome this drawback of the

ISOPE approach, to find more time-effective ways of calculating the derivative
(F∗)

′
c(c
i, w). In [160] it is proposed to identify first a linear dynamic model of

the controlled process around each iteration point ci, actively from a sequence
of dynamic measurements resulting from a sequence of perturbations around
the current set-point. Then, the obtained linear dynamic model is used to
calculate the required derivative of the steady-state process mapping, in a way
explained in Section 4.2.3, when this approach has been incorporated into the
integration of the basic idea to the ISOPE with an adaptive MPC algorithm.
The discussed active dynamic identification approach is an alternative, but
has a number of practical drawbacks, as discussed in Section 4.2.3.
In [15] a novel ISOPE dual algorithm was proposed, based also on active

approach to derivative approximation, but applied only to the generated se-
quence of steady-states (set-points) ci. This should be, when compared to the
previous dynamic identification approach, clearly advantageous, as measure-
ment noise can be much easier filtered out from steady-state measurements.
At each iteration of the dual algorithm, the next set-point ci+1 is gene-

rated in such a way that not only the ISOPE task to optimize the economic
objective function is performed, but also, simultaneously, it is assured that
ci+1 is appropriately located for the purpose of future derivative approxima-
tion. This may lead to some loss of current optimality, but at the same time
it anticipates future measurement needs. This is, obviously, a dual structure
in the sense of control duality, as defined in the control theory. Therefore, the
resulting algorithm is called the ISOPE Dual (ISOPED) algorithm.

ISOPE Dual Algorithm

The derivative approximation is based on the collection of last n+1 set-points
ci, ci−1, . . . , ci−n which must be such that all vectors

sik =ci−k − ci, k = 1, ..., n (4.53)

are linearly independent. Then the following matrix Si,
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Si = [ci−1− ci ci−2−ci · · · ci−n−ci]T (4.54)

is nonsingular.
If the j-th plant output mapping F∗j has continuous partial derivatives in

a neighborhood of ci, then its directional derivative DF∗j(ci, w; sik) at a point
ci and in a direction sik = ci−k − ci can be computed as

DF∗j(ci, w; sik) =
1
‖sik‖ (s

ik)T ∇cF∗j(ci, w) (4.55)

which can be written in the form∥∥sik∥∥DF∗j(ci, w; sik) = (sik)T ∇cF∗j(ci, w). (4.56)

Writing the above n equations, i.e., for n directions sik, k = 1, . . . , n, in a
matrix form we get

Si∇cF∗j(ci, w) =

⎡⎢⎣
∥∥si1∥∥DF∗j(ci, w; si1)

...∥∥sin∥∥DF∗j(ci, w; sin)
⎤⎥⎦ , j = 1, . . . ,m. (4.57)

If the points ci−k are close enough to ci, then the following approximation
can be applied

DF∗j(ci, w; sik) ∼= F∗j(c
i + sik, w)−F∗j(ci, w)

‖sik‖ (4.58)

The set of equations (4.57) can now be expressed in the approximate form

Si∇cF∗j(ci, w) ∼=

⎡⎢⎣ F∗j(c
i−1, w)− F∗j(ci, w)

...
F∗j(ci−n, w)− F∗j(ci, w)

⎤⎥⎦ , j = 1, . . . ,m (4.59)

In the ISOPED algorithm the consecutive points ci are generated in such a
way that the derivative estimation (4.59) of the process input-output mapping
can be effectively applied, at each iteration.
Calculation of the required derivative approximations from (4.59) will be

practically useful only if the matrix Si is not only nonsingular, but also suf-
ficiently well-conditioned. The reason is that the right-hand side of (4.59) is
corrupted not only by the method error (approximation of the right-hand side
of (4.57)), but also by plant output measurement errors. Good conditioning
can be achieved only by enforcing appropriate location of the consecutive
set-points in R

n. It is achieved in the dual ISOPE algorithms by introdu-
cing a new inequality constraint to the modified model optimization problem
MMOP, see (4.43), called the conditioning constraint , in the form

d(ci+1(c), ci, . . . , ci−n+1) =
σmin(Si+1(c))
σmax(Si+1(c))

≥ δ (4.60)
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where
ci+1(c) = ci + kc(c− ci) (4.61)

Si+1(c) = [ci− ci+1(c) · · · ci−n+1− ci+1(c)]T (4.62)

and σmin(Si+1(c)), σmax(Si+1(c)) denote minimal and maximal singular va-
lues of Si+1(c). The value of δ, 0 < δ < 1 , defines the required conditioning of
the matrix Si+1(c). Notice that σmin(S

i+1(c))
σmax(Si+1(c))

is the reciprocal of the standard
condition number of the matrix Si+1(c).

The ISOPE Dual algorithm (ISOPED algorithm) can now be formulated:

Start. Given initial point c0, parameter of the conditioning constraint δ > 0,
relaxation coefficient kc, 0 < kc ≤ 1, solution accuracy ε > 0.

Step 0 (initial phase). Set c−n = c0. Choose n points c−n+1, c−n+2, . . . , c0

such that the matrix S0 is sufficiently well conditioned. Apply, consecu-
tively, ci as the controlled plant set-points and measure F∗(ci, w), i =
−n+ 1,−n+ 2, . . . ,−1. Set i = 0.

Step 1. Apply ci as the controlled plant set-point and measure F∗(ci, w), in
the steady-state. Calculate (F∗)

′
c(c
i, w) according to (4.59), i.e., solve m

sets of n linear equations

Si ·(F∗j)′c(ci, w)T =

⎡⎢⎣ F∗j(c
i−1, w)− F∗j(ci, w)

...
F∗j(ci−n, w)− F∗j(ci, w)

⎤⎥⎦ , j = 1, . . . ,m. (4.63)
Step 2. Using the obtained measurements update the parameters α of the
model F under the restriction to match the process and model outputs at
ci (parameter estimation problem). This yields αi = α̂(ci) satisfying

yi = F (ci, αi) = F∗(ci, w) (4.64)

Step 3. Solve the modified model optimization problem MMOP (4.43) deno-
ting its solution by ĉim0.

Step 4. Set ci+10 = ci + kc(ĉim0 − ci). If
‖ci+10 − ci‖ ≤ ε (4.65)

then terminate (solution found).

Step 5. If
d(ci+10 , c

i, . . . , ci−n+1) ≥ δ (4.66)

then set ci+1 = ci+10 , increase i by one and continue from Step 1.
If not, then solve the conditioned modified model optimization problem
(CMMOP) defined as follows:

min
c
{Q(c, F (c, αi))− λ(ci, αi)T c+ ρ‖ci − c‖2}

subj. to : c ∈ C ∩Di (4.67)
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where
Di = {c ∈ R

n : d(ci+1(c), ci, . . . , ci−n+1) ≥ δ} (4.68)

and ci+1(c) is given by (4.61). Denote the solution by ĉim.
Step 6. Set

ci+1 = ci + kc(ĉim − ci) (4.69)

increase i by one and continue from Step 1.

The first four steps of the presented ISOPED algorithm correspond to the
ISOPE basic algorithm, with the addition of an initial phase and different
way of derivative approximation. The initial task in Step 5 is to check if
ci+10 satisfies the additional conditioning constraint. If it does, then it can
be taken as the next set-point (for the next algorithm iteration), without
any change in the basic algorithm and, therefore, without any current loss of
optimality. If it does not, then it is suitably modified to satisfy the conditioning
constraint. This constraint reduces the feasible set of the modified model
optimization problem. Hence, it might be that a current loss of optimality
will be observed. However, the new set-point generated in this way anticipates
approximation requirements of the next iteration, which in turn should lead
to better optimality of the set-point generated next. This can be described as
active gathering of suitable measurement information, incorporated into the
optimizing control algorithm, thus resulting in a dual-goal algorithm.
For analysis of the presented algorithm, in particular of the properties of

the conditioning set, the reader is referred to [16]. The more efficient version
with optimized initial phase (optimized procedure to perform Step 0) can be
also found there.

Simulation Results

Extensive simulation results of control systems with both ISOPE basic and
dual algorithms, the latter with standard and optimized initial phase, for a
few problems can be found in [16]. We shall present here only selected results
for a distillation column example.

Example 4.3 2

A distillation column depicted in Fig. 4.13 will be considered, where ethylene
is distilled from a mixture containing mainly ethane and ethylene.
The output vector y = [y1 y2]T represents values (in steady-states) of

concentrations of ethane in the product stream P , measured in ppm (parts
per million) and of ethylene in the bottom product W , given as a molar
fraction. The vector of decision variables c = [c1 c2]T represents set-points for
feedback controllers stabilization:

2Shortened version of Example 4.4 from the book Brdys, M.A. and Tatjewski, P.,
Iterative Algorithms for Multilayer Optimizing Control, copyright 2005 by Imperial
College Press, used by permission.
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Fig. 4.13. Distillation column for Example 4.3 (reproduced from Brdys, M.A.
and Tatjewski, P., Iterative Algorithms for Multilayer Optimizing Control, page 117,
copyright 2005 by Imperial College Press, used by permission)

c1 – ratio of reflux flow R to product flow P (forced by the manipulation
of P with respect to measured value of R),
c2 – ethylene concentration on the control shelf.

Models of the column which were considered during simulations have been
taken from [130], where on the basis of input-output data records two models
have been developed: a “real plant” model for simulation purposes and a
simplified model for control purposes. The real plant model will serve as a
real plant mapping during the simulations, it is of the form

y1 = F∗1(c1, c2) = exp(−s11(c1 − c̄11)) · exp(−s12(c2 − c̄12)) (4.70a)

y2 = F∗2(c1, c2) = exp(−s21(c1 − c̄21)) · exp(−s22(c2 − c̄22)) (4.70b)

where

s11 = 12.7049, c̄11 = 4.6816

s12 = 0.2536, c̄12 = 0.3252

s21 = 0.3340, c̄21 = 2.5544

s22 = −5.3719, c̄22 = 1.1838.

The simplified model (for control purposes) is of the form

y1 = F1(c1, c2, a) = m1(c1 − c̄11m)4 · (c2 − c̄12m)4 + αa1 (4.71a)

y2 = F2(c1, c2, a) = m21c1 +m22c2 + αa2 (4.71b)

where
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m1 = 999.9923, c̄11m = 4.6261, c̄12m = 2.6481, αa1 = 0

m21 = −0.0016, m22 = 0.0254, αa2 = 0.0043
and αa = [αa1, αa2] is the vector of additive model parameters. These parame-
ters will be updated when performing a parameter estimation (PEP) during
runs of the ISOPE algorithms. It is assumed that it is enough to update ot-
her (non-additive) model parameters αn = (m1, c̄11m, c̄12m, m21, m22) before
initialization of the ISOPE algorithm and that they are kept constant during
its single run.
The goal of the set-point optimization is to achieve desired steady-state

values yr1 and yr2 of the plant outputs. Therefore, the objective function is
formulated as

Q(c, y) = Q(y) = µ1(y1 − yr1)2 + µ2(y2 − yr2)2 (4.72)

where µ1 = 2 · 10−5 and µ2 = 106 are scaling coefficients needed due to very
different scales of the outputs y1 (hundreds) and y2 (in the range to 10×10−3).
Typical desired set-point values are yr1 = 500, yr2 = 0.005, and these values
were assumed in the simulations. The set-points c ∈ R

2 are constrained to the
set

C = { c ∈ R
2 : 4.1 ≤ c1 ≤ 4.6, 0.2 ≤ c2 ≤ 0.4 } (4.73)

The presented objective function (4.72) has an indirect economical sense. Na-
mely, the more polluted the product the cheaper its production (less energy
consumed for distillation). Therefore, it is optimal to run the distillation at
the desired value yr1 (ethane concentration), located as close as possible to
the largest admissible value, but at a distance of a safety zone of a width
resulting from the uncertainty level in the control system. On the other hand,
losses of ethylene should not be too high in the bottom product — therefore,
a soft constraint on its concentration in this product, expressed as a desired
value yr2.
First, the objective function (4.72) was optimized subject to the model

constraints (4.71a), (4.71b) and inequality constraints, yielding the model-
optimal point (ĉm1, ĉm2) = (4.2685, 0.2964). The corresponding values of the
plant mapping (4.70a), (4.70b) are F∗(ĉm1, ĉm2) = [191.6 0.0048]T – and are
obviously far from the desired values yr1 = 500, yr2 = 0.005, especially from
the first one. Then, simulations of the optimizing control using the ISOPED
algorithm were performed. The conditioned modified model optimization pro-
blem (CMMOP) takes for the presented problem the form

min
c
{Q(F (c, αi))− λ(ci, αi)T c+ ρ‖ci−c‖2}

subj. to : 4.1 ≤ c1 ≤ 4.6
0.2 ≤ c2 ≤ 0.4
d(ci+1(c), ci, ci−1) = σmin(S

i+1(c))
σmax(Si+1(c))

≥ δ

(4.74)
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where c = [c1 c2]T , ci+1(c) = ci + kc(c− ci) and

Si+1(c) =

[
ci1 − ci+11 (c) ci−11 − ci+11 (c)
ci2 − ci+12 (c) ci−12 − ci+12 (c)

]T
(4.75)

Further, in the formulation of the CMMOP we have :

Q(F (c, αi)) = µ1(F1(c, αi)− yr1)2 + µ2(F2(c, αi)− yr2)2 (4.76)

λ(ci, αi)T = [2µ1(F1(ci, αi)− yr1) 2µ2(F2(ci, αi)− yr2)]×

×
⎛⎝⎡⎣ ∂F1∂c1 (ci, αi) ∂F1∂c2 (ci, αi)

∂F2
∂c1
(ci, αi) ∂F2∂c2 (c

i, αi)

⎤⎦−
⎡⎣ ∂F∗1∂c1 (ci) ∂F∗1∂c2 (ci)
∂F∗2
∂c1
(ci) ∂F∗2∂c2 (c

i)

⎤⎦ ⎞⎠ (4.77)

where

αi1 = F∗1(c
i)−m1(ci1 − c̄11m)4 · (ci2 − c̄12m)4 (4.78)

αi2 = F∗2(c
i)−m21ci1 +m22ci2 (4.79)

because only the additive parameters were assumed to be updated during the
runs of the ISOPED algorithm. The partial derivatives of the model mapping
needed for (4.77) are calculated directly from the formulae (4.71a) i (4.71b),
whereas vectors of the “real plant” input-output mapping derivatives

(F∗j)
′
(ci) =

[
∂F∗j
∂c1
(ci)

∂F∗j
∂c2
(ci)

]
, j = 1, 2

are calculated, during the runs of the algorithm, from solutions of linear equa-
tions

Si

⎡⎣ ∂F∗j∂c1 (ci)
∂F∗j
∂c2
(ci)

⎤⎦ = [F∗j(ci−1)− F∗j(ci)
F∗j(ci−2)− F∗j(ci)

]
, j = 1, 2 (4.80)

where
Si =

[
ci−1− ci ci−2− ci ]T (4.81)

Simulations of the optimizing control using the ISOPED algorithm were
performed for the presented plant description and its model. The results
shown in Figures 4.14 and 4.15 present trajectories generated by the algorithm
starting from the set-point equal to the model-optimal one, (ĉm1, ĉm2) =
(4.2685, 0.2964), i.e., from the solution to the MOP problem. The following
algorithm parameters were assumed: ρ = 100, kc = 1, ε = 0.001. A relati-
vely small value of ε was assumed intentionally, to investigate convergence in
a small neighborhood of the optimum (in practical optimizing control appli-
cations this value should be larger, adjusted to output measurement errors
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Fig. 4.14. Real objective function trajectory (reproduced with modifications from
Brdys, M.A. and Tatjewski, P., Iterative Algorithms for Multilayer Optimizing Con-
trol, page 122, copyright 2005 by Imperial College Press, used by permission)

Fig. 4.15. Trajectory of set-points (reproduced with modifications from Brdys,
M.A. and Tatjewski, P., Iterative Algorithms for Multilayer Optimizing Control,
page 122, copyright 2005 by Imperial College Press, used by permission)
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and differences). In Fig. 4.14 trajectories of the real objective function value
Q(ci, F∗(ci)) are presented, whereas in Fig. 4.15 trajectories of the decision
variables (set-points), plotted against a background consisting of contour lines
(dotted lines) of the performance function Q(c, F∗(c)). In the latter figure the
initial phase (Step 0) of the dual algorithm can well be seen, consisting of two
first set-point changes in directions of the space versors.
Further simulation results, in particular for other initial points and when

using ISOPED algorithm with optimized initial phase, can be found in [16].
�

4.3.2 ISOPE for Problems with Output Constraints

In complex processing plants usually many output variables are constrained
and constraint controllers (see Fig. 4.2) are designed to keep the important
constraints satisfied, as discussed in Chapter 1 and in the introductory part of
this chapter. Set-points for the constraint controllers are the desired steady-
state values of constrained, feedback controlled process outputs, see Fig. 1.3
in Chapter 1, where the vector of these process outputs was denoted by yd –
being, in general, a sub-vector of the overall output vector y = (yf , yd). The
vector of the decision variables c of the optimization problem was similarly
there divided into two parts, c = (cf , cd). The first sub-vector represents set-
points for direct controllers, while the second one represents optimal steady-
state values of variables corresponding to outputs of constraint controllers –
see also Fig. 1.3 – both sub-vectors calculated on the basis of the steady-
state process model used at the optimization unit, including the available
information about current values of disturbances w.
We shall assume a constant structure of the constraint controller during

every single run of the ISOPE algorithm, i.e., that the same outputs are
constrained at the same required values ydr , see Fig. 1.3. In practice, an even
more stringent situation often takes place, when the same vital constraints on
process outputs are required to be satisfied over longer periods of time, e.g.,
required concentrations in product streams.
To explain in a simple way how the ISOPE method can be applied in a

structure with constraint controllers, we shall also consider the simplified case
with feedback constrained outputs only, i.e., y = yd, as this does not lead to
loss of generality.
The steady-statemodel optimization problem (4.3) then takes the following

simplified form, with model parameters α representing parametric uncertainty,
as in the previous section,

min
cf ,cd
Q(cf , cd, yd)

subj. to : yd = F (cf , cd, α)

yd = ydr
g(cf ) ≤ 0

(4.82)
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Inequality constraints on free set-points cf have only been assumed in (4.82).
This means, in practice, that the control system designer has managed to
select such components cd out of the vector c that do not enter their constraint
limits during the process operation. This does not always occur in practice,
but simplifies the presentation to follow.
The optimizing control problem (OCP) corresponding to the model opti-

mization problem (4.82) is the following

min
cf ,cd
Q(cf , cd, yd)

subj. to : yd = F∗(cf , cd, w)
yd = ydr
g(cf ) ≤ 0

(4.83)

Applying a given constant value of cf to the controlled system results in
a corresponding steady-state, in a certain steady-state value of the constraint
controller output, and thus in a corresponding steady-state value of cd =
cdr + δc

d, if the structure of Fig. 1.3 with the constraint controller acting as a
“correction controller” is applied. Therefore, due to the feedback action of the
constraint controller, from the point of view of the steady-state optimizer, the
set-points cd are in fact dependent variables, fully dependent on cf (which
is emphasized by the superscript d). This functional relation between the
steady-state values of cd and cf will be denoted by P∗,

cd = P∗(cf , ydr , w) (4.84)

Observe that P∗ is a mapping implicitly hidden in the equality

F∗(cf , cd, w) = ydr (4.85)

and the vector of dependent set-points cd is usually chosen in such a way that
P∗ is a well-defined mapping. This will be assumed in this section, implying
also that the constraint controller operates well, in a unique way.
Using the introduced mapping (4.84), the OCP problem (4.83) can be

transformed to the following form

min
cf
Q(cf , cd, ydr )

subj. to : cd = P∗(cf , ydr , w)
g(cf ) ≤ 0

(4.86)

The mapping P∗ is certainly unknown, as stemming from the real process
input-output mapping. It is possible to build a model of P∗ from the data
only, but an alternative is to build first a model of the input-output process
mapping

yd = F (cf , cd, α) (4.87)
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where α are adjustable model parameters, see (4.82). A model P of P∗ can
then be obtained as a solution, with respect to cd, of the implicit system of
equations

F (cf , cd, α) = ydr (4.88)

Certainly, in more involved cases the explicit form of P may be difficult to
derive, then the set of equations (4.88) can be treated as the required model in
an implicit numerical form, yielding for every given “input” cf the “output”
cd calculated numerically, as a solution to the set of equations. Further, after
collecting a number of such input-output data a simplified explicit form of the
model P can be constructed.
The model optimization problem (MOP) corresponding to the optimizing

control problem (4.86) is

min
cf
Q(cf , cd, ydr )

subj. to : cd = P (cf , ydr , α)
g(cf ) ≤ 0

(4.89)

Comparing the steady-state optimizing control and model optimization pro-
blems (4.35) and (4.34) considered in the previous section with (4.86) and
(4.89), it can easily be seen that formulations of both pairs of problems have
precisely the same structure, only in the latter pair there is P∗ and P in place
of F∗ and F , and cf in place of c (ydr being an additional constant parameter).
Thus, the derivation and formulation of ISOPE algorithms presented in Sec-
tion 4.3.1 can be directly applied here, with the mentioned obvious differences.
Therefore, it will not be presented here. For a full, detailed presentation, in
the general case with both unconstrained and feedback constrained process
outputs, the interested reader is referred to [135, 16]. Results of an example
application to a complex styrene production plant consisting of three distilla-
tion columns working in series are also presented there.
Formulations of ISOPE algorithms for problems with inequality constrai-

ned process outputs in control structures without dynamic feedback constraint
controllers are also possible. These constraints must then be treated algorith-
mically, leading to more involved ISOPE algorithms. The reader is referred to
[16] for an explanation and further references.
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actuating
processes 12
system 12
adaptation 29
advanced control 6
ANFIS 48
antecedent 39
anti-windup 136
artificial neural network see neural

network
ARX model 166
multivariable 169

Bézout identity 152
basic control 6
branch-and-bound method 200

CMMOP see conditioned modified
model optimization problem

conditioned modified model optimiza-
tion problem 308

conditioning constraint set 309
consequent 39
constraint control layer 6
objective 7, 10
constraint controller 6
constraint set
for process inputs 301
constraint window 114, 263
constraints 24, 114
inequality 24
on control inputs 114, 301
hard 135
on controlled outputs

one-sided 114
soft 135
two-sided 114
on increments of control inputs 114
on outputs 24
prioritization 264
relaxation 264
soft 263
on set-points 24
on terminal state 250
on uncontrolled outputs 114
control 1
advanced 6, 107
basic 6
duality 306
layer 4
objective 2, 9
decomposition 4
predictive 107
principle of 107
repetitive
principle of 108
system 2
control algorithm
fuzzy TS (Takagi-Sugeno) 55
optimizing 27
predictive
non-stationary 114

control horizon 108
value selection 265
control inputs 2
control structure
cascade 22
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multilayer 3, 5
multilevel 3
of MPC with reference trajectory
270

with disturbance compensation 145
with feedforward path 103
with two degrees of freedom 270
controlled process 5
controlled variables 11
conditions of choice 11
controller
continuous TS fuzzy
PID 96
state-feedback 88
discrete TS fuzzy
output-feedback 71
state-feedback 65

cost function
of predictive control 110–112
with infinite horizon 253
with reference trajectory 269

CRHPC algorithm 117, 252

decomposition 3
functional 3
spatial 3
defuzzification 43
diagnosis 30
direct control 5
algorithms 6
layer 5
distillation column 51, 222, 225, 296
distributed control system 5
disturbance horizon 147
disturbances 2
measured
compensation 145
predictor 147
unmeasurable 143
DMC algorithm 116
disturbance model 120
explicit 123
control law 127, 129
control structure 128, 129
control structure with constraints
136, 138
least-squares solution 134
explicit with disturbance compensa-
tion 149

control structure 149
forced output trajectory 125
free output trajectory 124
infinite prediction horizon 258
numerical 139
quadratic programming problem
141

steady-state control error 143
dual-mode predictive algorithm 261
dynamic matrix
for MIMO process 126
for SISO process 125
nonlinear 207, 234
dynamics
fast 10
slow 10

FDMC algorithm see fuzzy DMC
algorithm

feedforward control 103
FGPC algorithm see fuzzy GPC

algorithm
FMPC algorithm see fuzzy MPC

algorithm
FMPCS algorithm see fuzzy MPCS

algorithm
forced output trajectory 112, 120, 125,

180
free output trajectory 108, 112, 121,

124, 146
frequency of intervention 6, 9
fuzzy
logic 34
set 34, 35
fuzzy DMC algorithm
explicit 243
control structure 243
discrete TS fuzzy 243
stability conditions 245

fuzzy DMC-NPL algorithm 235
fuzzy DMC-NSL algorithm 230
fuzzy GPC algorithm
explicit 245
discrete TS fuzzy 245
stability conditions 246

fuzzy GPC-NPL algorithm 231
fuzzy GPC-NSL algorithm 230
fuzzy inference rule
see: inference rule, 39
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fuzzy MPC algorithm 208
explicit 243
fuzzy MPC-NO algorithm 228
fuzzy MPC-NPL algorithm 231
fuzzy MPC-NSL algorithm 230
fuzzy MPCS algorithm 247
explicit 247
fuzzy MPCS-NSL algorithm 231
fuzzy neural network 48
optimization algorithm 51
hybrid 51

fuzzy system 39
Takagi-Sugeno (TS) 40
fuzzyfication 39

GPC algorithm 116, 150
constant output disturbance
prediction 166

explicit 155
alternative control law 158
alternative control structure 158
control law 155, 156
control structure 156
least-squares solution 134
forced output trajectory 154
free output trajectory 154, 167, 170
infinite prediction horizon 259
MIMO process model 151
numerical 171
quadratic optimization problem 171
SISO process model 152
steady-state control error 165
grade of membership 35

horizon
of process dynamics 121

IDCOM 116
impulse response 149
inference rule 39
activation level
normalized 45
antecedent 39
conclusion 43
minimum operator 43
multiplication operator 43
consequent 39
crisp 39
functional 40

fuzzy 40
level of activation 42
inference rules
of continuous TS fuzzy
PID controller 96
state-feedback controller 88
state-space model 84
of discrete TS fuzzy
compensator 105
model with ARX consequents 72,
74, 75
output-feedback controller 72, 74
state-feedback controller 65
state-space model 58

input variables 2
internal model principle 186
ISOPE 301
basic algorithm 304
conditioning constraint 307
direct substitution rule 305
dual algorithm 306
fixed-point algorithm 305
relaxation iterative formula 305
set-point perturbations 306
ISOPE dual algorithm 308
initial phase 308
ISOPED algorithm see ISOPE dual

algorithm

Kalman filter
extended 231
knowledge base 39
of TS fuzzy system 40

Lagrange function 302
least-squares problem 133
linearization 201, 283
around nonlinear trajectory 207
linguistic variable 36
LMI 61
local steady-state optimization problem

see steady-state optimization
problem

Lyapunov
function 60, 252
theorem 59, 252

MAC algorithm 116, 149
management 1
manipulated variables 2
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mapping between free and dependent
set-points 315

matrix
of weights on control errors 111
selection 268
of weights on control input increments
111
selection 268

matrix condition number 308
matrix step response 123
membership function 35
bell generalized 37
trapezoidal 35
triangular 36
MMOP see modified model optimiza-

tion problem
model
dynamic 12
dynamic state-space 12
model optimization problem 302, 316
modified model optimization problem

303
MOP see model optimization problem
MPC algorithm
control structure with reference
trajectory 270

cost function 110, 111
for least-squares problem 134
with infinite horizon 253
feasible set 115
least-squares solution to optimization
problem 134

linear model
infinite horizon 255
nonlinear 197
with neural network model 211,
212

nonlinear with linearizations 198
with neural network model 216
optimization problem see op-
timization problem of MPC
algorithm

parameter tuning 264
stability basic mechanisms 250, 260
with quasi-infinite horizon 261
MPC SSTO see MPC steady-state

target optimization
MPC steady-state target optimization
linear problem with

adaptive gain matrix 283
constant gain matrix 281
relaxed constraints 282
piecewise-linear 285
QP problem 285
MPC-NO algorithm 199
control structure 199
optimization problem 198
MPC-NPL algorithm 203, 204
forced output trajectory 203
nonlinear free output trajectory 203
quadratic optimization problem 203
MPC-NPL+ algorithm 205
control structure 206
quadratic optimization problem 205
MPC-NSL algorithm 201
control structure 201
MPCS algorithm 177
explicit
least-squares solution 134
explicit constrained piecewise-affine
194
mp-QP optimization problem 195
optimization problem 194
forced output trajectory 180
numerical 193
optimization problem 193
process model 177
steady-state control error 188
conditions 189
with estimated state 186
explicit control law 189
explicit control structure 190
predicted output trajectory 189
state prediction 189
with measured state 177
explicit control law 181, 183
explicit control structure 181
free output trajectory 183
predicted output trajectory 180
state prediction 179

MPHC 116
multi-parametric QP 195

necessary optimality conditions
for MMOP 303
for OCP 303
neural network 211
structure 211
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nonlinear control 34
nonlinear optimization
SQP method 229

objective function 24
of predictive control 110
OCP see optimizing control problem
operating point
optimal 301
optimization
dynamic 25
static 25
optimization layer 7, 24
optimization problem
of MPC algorithm 115, 280
integrated nonlinear 289, 290
integrated QP 288
steady-state input dependent 284
of MPC-NO algrithm 198
quadratic 263
of MPC-NPL algorithm 203
of MPC-NPL+ algorithm 205
with constraint relaxation 263

optimized processes 12
optimizing control problem 302
output variables 2
outputs
controlled 11
uncontrolled (free) 11

parallel distributed compensation
(PDC) 55

parameter estimation problem 304,
308

penalty function 264
PEP see parameter estimation

problem
performance function 24
piecewise-linear approximation 286
plant management layer 8
point parametric model 303
polymerization reactor 218, 292
predicted output trajectory
decomposition 112
forced component 112, 120, 125, 180
free component 108, 112, 121, 124,
146

predicted trajectory
of the set-point 109

prediction horizon 108
infinite
DMC algorithm 258
GPC algorithm 259
quasi-infinite 261
value selection 265
predictive control algorithm see MPC

algorithm
prioritization of the constraints 264
process model
continuous TS fuzzy
state-space 84
discrete TS fuzzy 229
for nonlinear prediction 231
state-space 58
with ARX consequents 72
linear with variable coefficients 230
process steady-state mapping 301, 315
derivative 304, 305
estimation in ISOPE dual algorithm
307

projection of the controller output 137

QDMC algorithm 116

receding horizon 108
reference trajectory 111, 150, 269
relaxation
coefficient 305
residence time 21

sampling period
selection 268
SCADA 5
set
crisp 35
fuzzy 35
set-point
control layer 6
controller 6
optimal 7, 301
perturbations 304
set-point optimization 273
task 273
set-points
for controlled variables 111
singular value 308
SMOC 117
soft constraints 263
SQP method 229
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SSTO see MPC steady-state target
optimization

stability conditions
of continuous TS fuzzy
autonomous model 85, 87
PID control 98
state-feedback control 89
of discrete TS fuzzy
model 59
output-feedback control 77, 78
state-feedback control 67, 68
of explicit fuzzy DMC algorithm
245

of explicit fuzzy GPC algorithm 246
stability of MPC algorithm
basic mechanisms 250, 260
state disturbance 177
prediction model 177
state equations 177
state observer 186
current 186, 187

predictive 186
TS fuzzy 231
steady-state control 25
steady-state control error
of DMC algorithm 143
of GPC algorithm 165
of MPCS algorithm 188
steady-state optimization problem

273, 275, 281
linear performance function 274
step response 118
incremental 121
of ARX model 166
multivariable 170
of MIMO plant 122
superposition 119
supervision 30

Tanaka theorem 59

uncertainty 301




