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PREFACE

The field of Digital Signal Processing has developed so fast in the last two
decades that it can be found in the graduate and undergraduate programs of
most universities. This development is related to the growing available techno-
logies for implementing digital signal processing algorithms. The tremendous
growth of development in the digital signal processing area has turned some
of its specialized areas into fields themselves. If accurate information of the
signals to be processed is available, the designer can easily choose the most
appropriate algorithm to process the signal. When dealing with signals whose
statistical properties are unknown, fixed algorithms do not process these signals
efficiently. The solution is to use an adaptive filter that automatically changes
its characteristics by optimizing the internal parameters. The adaptive filtering
algorithms are essential in many statistical signal processing applications.

Although the field of adaptive signal processing has been subject of research
for over three decades, it was in the eighties that a major growth occurred in
research and applications. Two main reasons can be credited to this growth,
the availability of implementation tools and the appearance of early textbooks
exposing the subject in an organized form. Presently, there is still a lot of
activities going on in the area of adaptive filtering. In spite of that, the theor-
etical development in the linear-adaptive-filtering area reached a maturity that
Justifies a text treating the various methods in a unified way, emphasizing the
algorithms that work well in practical implementation. This text concentrates
on studying on-line algorithms, those whose adaptation occurs whenever a new
sample of the environment signals is available. The so-called block algorithms,
those whose adaptation occurs when a new block of data is available, are not
directly presented here in our view this subject requires a book for itself. Be-
sides, block algorithms require implementation resources that are distinct of the
on-line algorithms. The theory of nonlinear adaptive filters based on high-order
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statistics is probably the most important complement to the subject treated in
this book. Although this subject is not treated here, the understanding of the
material presented is fundamental for studying this still growing field.

The 1dea of writing this book started while teaching the adaptive signal pro-
cessing course at the graduate school of the Federal University of Rio de Janeiro
(UFRJ). The request of the students to cover as many algorithms as possible
made me think how to organize this subject such that not much time is lost
in adapting notations and derivations related to different algorithms. Another
common question was which algorithms really work in a finite-precision imple-
mentation. These issues made me believe that a new text on this subject could
be written with these objectives in mind. Also, considering that most graduate
and undergraduate programs include a single adaptive filtering course, this book
should not be lengthy. Another objective to seek is to provide an easy access
to the working algorithms for the practicing engineer.

It was not until I spent a sabbatical year and a half at University of Victoria,
Canada, that this project actually started. In the leisure hours, I slowly star-
ted this project. Parts of the early chapters of this book were used in short
courses on adaptive signal processing taught in different institutions, namely:
Helsinki University of Technology, Espoo, Finland; University Menendez Pelayo
in Seville, Spain; and at the Victoria Micronet Center, University of Victoria,
Canada. The remaining parts of the book were written based on notes of the
graduate course in adaptive signal processing taught at COPPE (the graduate
engineering school of UFRJ).

The philosophy of the presentation is to expose the material with a solid theoret-
ical foundation, while avoiding straightforward derivations and repetition. The
idea was to keep the text with a manageable size, without sacrificing clarity and
without omitting important subjects. Another objective is to bring the reader
up to the point where implementation can be tried and research can begin. A
number of references are included in the end of the chapters in order to aid the
reader to proceed on learning the subject.

It is assumed the reader has previous background on the basic principles of di-
gital signal processing and stochastic processes, including: discrete-time Fourier-
and Z-transforms, finite impulse response (FIR) and infinite impulse response
(ITIR) digital filter realizations, random variables and processes, first- and second-
order statistics, moments, and filtering of random signals. Assuming that the
reader has this background, I believe the book is self contained.
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Chapter 1 introduces the basic concepts of adaptive filtering and sets a gen-
eral framework that all the methods presented in the following chapters fall
under. A brief introduction to the typical application of adaptive filtering is
also presented.

In Chapter 2, the basic concepts of discrete-time stochastic processes are re-
viewed with special emphasis to the results that are useful to analyze the beha-
vior of adaptive filtering algorithms. In addition, the Wiener filter is presented,
establishing the optimum linear filter that can be sought in stationary environ-
ments. The concept of mean-square error surface is then introduced, another
useful tool to analyze adaptive filters. The classical Newton and steepest-
descent algorithms are briefly introduced. Since the use of these algorithms
would require a complete knowledge of the stochastic environment, the adapt-
ive filtering algorithms introduced in the following chapters come into play.
Practical applications of the adaptive filtering algorithms are revisited in more
detail at the end of Chapter 2.

Chapter 3 presents the analysis of the LMS algorithm in some depth. Several
aspects are discussed, such as convergence behavior in stationary and non-
stationary environments, and quantization effects in fixed- and floating-point
arithmetics.

Chapter 4 deals with some algorithms that are in a sense related to the LMS
algorithm. In particular, the algorithms introduced are the quantized-error
algorithms, the LMS-Newton algorithm, the transform-domain algorithm, and
the normalized LMS algorithm. Some properties of these algorithms are also
discussed in Chapter 4.

Chapter 5 introduces the conventional recursive least-squares (RLS) algorithm.
This algorithm minimizes a deterministic objective function, differing in this
sense from the LMS-based algorithms. Following the same pattern of present-
ation of Chapter 3, several aspects of the conventional RLS algorithm are dis-
cussed, such as convergence behavior in stationary and nonstationary environ-
ments, and quantization effects in fixed- and floating-point arithmetics. The
results presented, except for the quantization effects, are also valid to the RLS
algorithms presented in the following chapters.

In Chapter 6, a family of fast RLS algorithms based on the FIR lattice real-
ization is introduced. These algorithms represent an interesting alternative to
the computationally complex conventional RLS algorithm. In particular, the
unnormalized, the normalized and the error-feedback algorithms are presented.
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Chapter 7 deals with the fast transversal RLS algorithms, which are very at-
tractive due to their low computational complexity. However, these algorithms
are known to face stability problems in practical implementation. As a con-
sequence, special attention is given to the stabilized fast transversal RLS al-
gorithm.

Chapter 8 is devoted to a family of RLS algorithms based on the QR decom-
position. The conventional and two fast versions of the QR-based algorithms
are presented in this chapter.

Chapter 9 addresses the subject of adaptive filters using IIR digital filter real-
izations. The chapter includes a discussion of how to compute the gradient and
how to derive the adaptive algorithms. The cascade, the parallel, and the lattice
realizations are presented as interesting alternative to the direct-form realiza-
tion for the IIR adaptive filter. The characteristics of the mean-square error
surface, for the IIR adaptive filtering case, are also discussed in this chapter.
Algorithms based on alternative error formulations, such as the equation-error
and Steiglitz-McBride methods are also introduced.

I decided to use some standard examples to present a number of simulation
results, in order to test and compare different algorithms. This way a lot of
repetition was avoided while allowing the reader to easily compare the perform-
ance of the algorithms.
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INTRODUCTION TO ADAPTIVE
FILTERING

1.1 INTRODUCTION

In this section we define the kind of signal processing systems that will be treated
in this text.

In the last thirty years significant contributions have been made in the signal
processing field. The advances in digital circuit design have been the key tech-
nological development that sparkled a growing interest in the field of digital
signal processing. The resulting digital signal processing systems are attractive
due to their reliability, accuracy, small physical sizes, and flexibility.

One example of a digital signal processing system is called filtering. Filtering
is a signal processing operation whose objective is to process a signal in order
to manipulate the information contained in the signal. In other words, a filter
is a device that maps its input signal in another output signal facilitating the
extraction of the desired information contained in the input signal. A digital
filter is the one that processes discrete-time signals represented in digital format.
For time-invariant filters the internal parameters and the structure of the filter
are fixed, and if the filter is linear the output signal is a linear function of
the input signal. Once prescribed specifications are given, the design of time-
invariant linear filters entails three basic steps, namely: the approximation of
the specifications by a rational transfer function, the choice of an appropriate
structure defining the algorithm, and the choice of the form of implementation
for the algorithm.

An adaptive filter is required when either the fixed specifications are unknown or
the specifications cannot be satisfied by time-invariant filters. Strictly speaking

P. S. R. Diniz, Adaptive Filtering
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an adaptive filter is a nonlinear filter since its characteristics are dependent on
the input signal and consequently the homogeneity and additivity conditions
are not satisfied. However, if we freeze the filter parameters at a given instant
of time, the adaptive filter considered in this text is linear in the sense that its
output signal is a linear function of its input signal.

The adaptive filters are time-varying since their parameters are continually chan-
ging in order to meet a performance requirement. In this sense, we can interpret
an adaptive filter as a filter that performs the approximation step on-line. Usu-
ally the definition of the performance criterion requires the existence of a refer-
ence signal that is usually hidden in the approximation step of fixed-filter design.
This discussion brings the feeling that in the design of fixed (nonadaptive) fil-
ters a complete characterization of the input and reference signals is required in
order to design the most appropriate filter that meets a prescribed performance.
Unfortunately, this is not the usual situation encountered in practice, where the
environment is not well defined. The signals that compose the environment are
the input and the reference signals, and in cases where any of them is not well
defined, the design procedure is to model the signals and subsequently design
the filter. This procedure could be costly and difficult to implement on-line.
The solution to this problem is to employ an adaptive filter that performs on-
line updating of its parameters through a rather simple algorithm, using only
the information available in the environment. In other words, the adaptive filter
performs a data-driven approximation step.

The subject of this book is adaptive filtering, which concerns the choice of
structures and algorithms for a filter that has its parameters (or coefficients)
adapted, in order to improve a prescribed performance criterion. The coefficient
updating is performed using the information available at a given time.

The development of digital very large scale integration (VLSI) technology al-
lowed the widespread use of adaptive signal processing techniques in a large
number of applications. This is the reason why in this book only discrete-time
implementations of adaptive filters are considered. Obviously, we assume that
continuous-time signals taken from the real world are properly sampled, i.e.,
they are represented by discrete-time signals with sampling rate higher than
twice their highest frequency. Basically, it is assumed that when generating
a discrete-time signal by sampling a continuous-time signal, the Nyquist or
sampling theorem is satisfied [1]-[8].
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1.2 ADAPTIVE SIGNAL PROCESSING

As previously discussed, the design of digital filters with fixed coefficients re-
quires well defined prescribed specifications. However, there are situations
where the specifications are not available, or are time varying. The solution
in these cases is to employ a digital filter with adaptive coefficients known as
adaptive filters [9]-[15].

Since no specifications are available, the adaptive algorithm that determines the
updating of the filter coefficients, requires extra information that is usually given
in the form of a signal. This signal is in general called a desired or reference
signal, whose choice is normally a tricky task that depends on the application.

Adaptive filters are considered nonlinear systems, therefore their behavior ana-
lysis is more complicated than for fixed filters. On the other hand, because the
adaptive filters are self designing filters, from the practitioner’s point of view
their design can be considered less involved than in the case of digital filters
with fixed coefficients.

The general set up of an adaptive filtering environment is illustrated in Fig.
1.1, where k is the iteration number, z(k) denotes the input signal, y(k) is the
adaptive filter output signal, and d(k) defines the desired signal. The error
signal e(k) is calculated as d(k) — y(k). The error signal is then used to form a
performance (or objective) function that is required by the adaptation algorithm
in order to determine the appropriate updating of the filter coefficients. The
minimization of the objective function implies that the adaptive filter output
signal is matching the desired signal in some sense.

The complete specification of an adaptive system, as shown in Fig. 1.1, consists
of three items:

1) Application: The type of application is defined by the choice of the signals
acquired from the environment to be the input and desired-output signals. The
number of different applications in which adaptive techniques are being success-
fully used has increased enormously during the last decade. Some examples are
echo cancellation, equalization of dispersive channels, system identification, sig-
nal enhancement, adaptive beamforming, noise cancelling, and control [13]-[17].
The study of different applications is not the main scope of this book. However,
some applications are briefly considered.
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d(k)
& . y(k)
x(k) Ad.a ptive +
filter
e(k)
Adaptive <
algorithm

Figure 1.1 General adaptive filter configuration.

2) Adaptive Filter Structure: The adaptive filter can be implemented in a
number of different structures or realizations. The choice of the structure can
influence the computational complexity (amount of arithmetic operations per
iteration) of the process and also the necessary number of iterations to achieve
a desired performance level. Basically, there are two major classes of adapt-
ive digital filter realizations, distinguished by the form of the impulse response,
namely the finite-duration impulse response (FIR) filter and the infinite-duration
impulse response (IIR) filters. FIR filters are usually implemented with nonre-
cursive structures, whereas IIR filters utilize recursive realizations.

®  Adaptive FIR filter realizations: The most widely used adaptive FIR fil-
ter structure is the transversal filter, also called tapped delay line, that
implements an all-zero transfer function with a canonic direct form real-
ization without feedback. For this realization, the output signal y(k) is a
linear combination of the filter coefficients, that yields a quadratic mean-
square error (MSE = E[|e(k)|?]) function with a unique optimal solution.
Other alternative adaptive FIR realizations are also used in order to ob-
tain improvements as compared to the transversal filter structure, in terms
of computational complexity, speed of convergence, and finite wordlength
properties as will be seen later in the book.
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®  Adaptive IIR filter realizations: The most widely used realization of ad-
aptive IIR filters is the canonic direct-form realization [4], due to its simple
implementation and analysis. However, there are some inherent problems
related to recursive adaptive filters which are structure dependent, such as
pole-stability monitoring requirement and slow speed of convergence. To
address these problems, different realizations were proposed attempting to
overcome the limitations of the direct form structure. Among these altern-
ative structures, the cascade, the lattice, and the parallel realizations are
considered because of their unique features as will be discussed in Chapter

9.

3) Algorithm: The algorithm is the procedure used to adjust the adaptive
filter coefficients in order to minimize a prescribed criterion. The algorithm
is determined by defining the search method (or minimization algorithm), the
objective function, and the error signal nature. The choice of the algorithm
determines several crucial aspects of the overall adaptive process, such as ex-
istence of sub-optimal solutions, biased optimal solution, and computational
complexity.

1.3 INTRODUCTION TO ADAPTIVE
ALGORITHMS

The basic objective of the adaptive filter is to set its parameters, 8(k), in such
way that its output tries to minimize a meaningful objective function involving
the reference signal. Usually, the objective function F is a function of the input,
the reference, and adaptive filter output signals, i.e., F = F[z(k),d(k), y(k)]. A
consistent definition of the objective function must satisfy the following proper-
ties:

®  Non-negativity: F[z(k),d(k),y(k)] > 0,Vy(k), z(k), and d(k);
s Optimality: F[z(k),d(k),d(k)] = 0.

One may understand that in an adaptive process, the adaptive algorithm at-
tempts to minimize the function F, in such a way that y(k) approximates d(k),
and as a consequence, 8(k) converges to 8,, where 8, is the optimum set of
coefficients that leads to the minimization of the objective function.
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Another way to interpret the objective function is to consider it a direct function
of a generic error signal e(k), which in turn is a function of the signals z(k),
y(k), and d(k),i.e., F = Fle(k)] = F[e(z(k), y(k),d(k))]. Using this framework,
we can consider that an adaptive algorithm is composed of three basic items:
definition of the minimization algorithm, definition of the objective function
form, and definition of the error signal. These issues are discussed below

1) Definition of the minimization algorithm for the function F: This
item is the main subject of Optimization Theory [19], and it essentially affects
the speed of convergence and computational complexity of the adaptive pro-
cess. The most commonly used optimization methods in the adaptive signal
processing field are:

®  Newton’s method: This method seeks the minimum of a second-order ap-
proximation of the objective function using an iterative updating formula
for the parameter vector given by

8(k +1) = 8(k) — uHg ' {Fle(k)]}Vo{Fle(k)]} (1.1)

where p is a factor that controls the step size of the algorithm, i.e., it
determines how fast the parameter vector will be changed. The matrix
of second derivatives of Fle(k)], Hg{F[e(k)]} is the Hessian matrix of
the objective function, and Vg{F[e(k)]} is the gradient of the objective
function with respect to the adaptive filter coefficients;

®  Quasi-Newton methods: This class of algorithms is a simplified version
of the method described above, as it attempts to minimize the objective
function using a recursively calculated estimate of the inverse of the Hessian
matrix, i.e.,

O(k+ 1) = (k) — uP(k)Vg{Fle(k)]} (1.2)
where P (k) is an estimate of Hél{F[e(k)]}, such that
Jim P(k) = Hy'{F[e(k)]}

A usual way to calculate the inverse of the Hessian estimate is through the
matrix inversion lemma (see, for example [18] and some chapters to come).
Also, the gradient vector is usually replaced by a computationally efficient
estimate.

®  Steepest-descent method: This type of algorithm searches the objective
function minimum point following the opposite direction of the gradient
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vector of this function. Consequently, the updating equation assumes the
form

8k +1) = 6(k) — uVg{Fle(k)]} (1.3)

Here and in the open literature, the steepest-descent method is often also
referred to as gradient method.

In general, gradient methods are easier to implement, but on the other hand,
the Newton method usually requires a smaller number of iterations to reach a
neighborhood of the minimum point. In many cases, Quasi-Newton methods
can be considered a good compromise between the computational efficiency of
the gradient methods and the fast convergence of the Newton method. However,
the Quasi-Newton algorithms are susceptible to instability problems due to the
recursive form used to generate the estimate of the inverse Hessian matrix. A
detailed study of the most widely used minimization algorithms can be found
in [19].

It should be pointed out that with any minimization method, the convergence
factor p controls the stability, speed of convergence, and some characteristics
of residual error of the overall adaptive process. Usually, an appropriate choice
of this parameter requires a reasonable amount of knowledge of the specific
adaptive problem of interest. Consequently, there is no general solution to
accomplish this task. In practice, computational simulations play an important
role and are, in fact, the most used tool to address the problem.

2) Definition of the objective function F[e(k)]: There are many ways to
define an objective function that satisfies the optimality and non-negativity prop-
erties formerly described. This definition affects the complexity of the gradient
vector and the Hessian matrix calculation. Using the algorithm’s computational
complexity as a criterion, we can list the following forms for the objective func-
tion as the most commonly used in the derivation of an adaptive algorithm:

®  Mean-Square Error (MSE): Fle(k)] = E[le(k)|?];
®  Least Squares (LS): Fle(k)] = k—i—l Z?:o le(k — 1) |?;

m  Weighted Least Squares (WLS): Fle(k)] = Zf:o Xle(k — )%, A is a con-

stant smaller than 1;

®  Instantaneous Squared Value (ISV): Fle(k)] = |e(k)]?.
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The MSE, in a strict sense, is only of theoretical value, since it requires an
infinite amount of information to be measured. In practice, this ideal objective
function can be approximated by the other three listed. The LS, WLS, and
ISV functions differ in the implementation complexity and in the convergence
behavior characteristics; in general, the ISV is easier to implement but presents
noisy convergence properties, since it represents a greatly simplified objective
function. The LS is convenient to be used in stationary environment, whereas
the WLS is useful in applications where the environment is slowly varying.

3) Definition of the error signal e(k): The choice of the error signal is
crucial for the algorithm definition, since it can affect several characteristics
of the overall algorithm including computational complexity, speed of conver-
gence, robustness, and most importantly for the IIR adaptive filtering case, the
occurrence of biased and multiple solutions.

The minimization algorithm, the objective function, and the error signal as
presented give us a structured and simple way to interpret, analyze, and study
an adaptive algorithm. In fact, almost all known adaptive algorithms can be
visualized in this form, or in a slight variation of this organization. In the
remaining parts of this book, using this framework, we present the principles
of adaptive algorithms. It may be observed that the minimization algorithm
and the objective function affect the convergence speed of the adaptive process.
An important step in the definition of an adaptive algorithm is the choice of
the error signal, since this task exercises direct influence in many aspects of the
overall convergence process.

1.4 APPLICATIONS

In this section, we discuss some possible choices for the input and desired signals
and how these choices are related to the applications. Some of the classical
applications of adaptive filtering are system identification, channel equalization,
signal enhancement, and prediction.

In the system identification application, the desired signal is the output of the
unknown system when excited by a broadband signal, in most cases a white-
noise signal. The broadband signal is also used as input for the adaptive filter
as illustrated in Fig. 1.2. When the output MSE is minimized, the adaptive
filter represents a model for the unknown system.
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The channel equalization scheme consists of applying the originally transmitted
signal distorted by the channel as the input signal to an adaptive filter, whereas
the desired signal is a delayed version of the original signal as depicted in Fig.
1.3. This delayed version of the input signal is in general available at the receiver
in a form of standard training signal. The minimization of the MSE indicates
that the adaptive filter represents an inverse model (equalizer) of the channel.

In the signal enhancement case, a signal z(k) is corrupted by noise n,(k), and
a signal ny(k) correlated to the noise is available (measurable). If ny(k) is used
as an input to the adaptive filter with the signal corrupted by noise playing the
role of the desired signal, after convergence the output error will be an enhanced
version of the signal. Fig. 1.4 illustrates a typical signal enhancement setup.

Finally, in the prediction case the desired signal is a forward (or eventually a
backward) version of the adaptive filter input signal as shown in Fig. 1.5. After
convergence, the adaptive filter represents a model for the input signal, and can
be used as a predictor model for the input signal.

Further details regarding the applications discussed here will be given in the
following chapters.

Unknown
system
d(k)
x(k) o—p—] e(k)
y(k)
Adaptive
filter

Figure 1.2 System identification.
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V4
(&) d(k)
y(k)
x(k) o Channel Adﬁa}g:“ ] e(k)
Figure 1.3 Channel equalization.
x(k) + n,(k) *
n(k) e—p—{ Adaptive e(k)

Figure 1.4 Signal enhancement (n; (k) and n2 (k) are noise signals correlated
to each other).
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y(k)

X(k) ® 2t Adfﬁtpet:ve g + e(k)

Figure 1.5 Signal prediction.

Example 1.1

Before concluding this chapter we present a simple example in order to illus-
trate how an adaptive filter can be useful in solving problems that lie in the
general framework represented by Fig. 1.1. We chose the signal enhancement
application illustrated in Fig. 1.4.

In this example the reference (or desired) signal consists of a discrete-time
triangular waveform corrupted by a colored noise. Fig. 1.6 shows the desired
signal. The adaptive filter input signal is a white noise correlated with the the
noise signal that corrupted the triangular waveform. In Fig. 1.7 is shown the
input signal.

The coefficients of the adaptive filter are adjusted in order to keep the average
value of the output error as small as possible. As can be noticed in Fig. 1.8,
as the number of iterations increase the error signal resembles the discrete-time
triangular waveform shown in the same figure (dashed curve).
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Figure 1.6 Desired signal.
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Figure 1.7 Input signal.
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VI

0 20 40 60 80 100 120
Iterations, k

Error signal and triangular waveform

Figure 1.8 Error signal and triangular waveform.
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FUNDAMENTALS OF ADAPTIVE
FILTERING

2.1 INTRODUCTION

This chapter includes a brief review of deterministic and random signal rep-
resentations. Due to the extent of those subjects our review is limited to the
concepts that are directly relevant to adaptive filtering. The properties of the
correlation matrix of the input signal vector are investigated in some detail,
since they play a key role in the statistical analysis of the adaptive filtering
algorithms.

The Wiener solution that represents the minimum mean-square error (MSE)
solution of discrete-time filters realized through a linear combiner is also intro-
duced. This solution depends on the input signal correlation matrix as well as
on the the cross-correlation between the elements of the input signal vector and
the reference signal. The values of these correlations form the parameters of the
MSE surface, which is a quadratic function of the adaptive filter coefficients.
Motivated by the importance of the properties of the MSE surface, we analyze
them using some results related to the input signal correlation matrix.

In practice the parameters that determine the MSE surface shape are not avail-
able. What is left is to directly or indirectly estimate these parameters using the
available data and to develop adaptive algorithms that use these estimates to
search the MSE surface such that the adaptive filter coefficients converge to the
Wiener solution in some sense. The starting point to obtain an estimation pro-
cedure is to investigate the convenience of using the classical searching methods
of optimization theory [1]-[2] to adaptive filtering. The Newton and steepest-
descent algorithms are investigated as possible searching methods for adaptive
filtering. Although both methods are not directly applicable to practical ad-

P. S. R. Diniz, Adaptive Filtering
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aptive filtering, smart reflections inspired on them led to practical algorithms
such as the least-mean-square (LMS) [3]-[4] and Newton-based algorithms. The
Newton and steepest-descent algorithms are introduced in this chapter, whereas
the LMS algorithm is treated in the next chapter.

Also, in the present chapter, the main applications of adaptive filters are revis-
ited and discussed in greater detail.

2.2 SIGNAL REPRESENTATION

In this section we briefly review some concepts related to deterministic and ran-
dom discrete-time signals. Only specific results essential to the understanding of
adaptive filtering are reviewed. For further details on signals and digital signal
processing we refer to [5]-[12].

2.2.1 Deterministic Signals

A deterministic discrete-time signal is characterized by a defined mathematical
function of the time index k !, with k = 0,41,42,43,.... An example of a
deterministic signal (or sequence) is

z(k) = e~ ** cos(wk) + u(k) (2.1)
where u(k) is the unit step sequence.

The response of a linear time-invariant filter to an input z(k) is given by the
convolution summation, as follows [6]:

y(k) = z(k)xh(k)= Y z(n)h(k-n)
= Z h(n)x(k — n) = h(k) x z(k) (2.2)

n=-00

where h(k) is the impulse response of the filter.

1The index k can also denote space in some applications.
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The Z-transform of a given sequence z(k) is defined as

o0}

Z{z(k)} = X(z) = ) x(k)z7* (2.3)

k=—00

If the Z-transform is defined for a given region of the Z-plane, in other words
the summation above converges in that region, the convolution operation can
be replaced by a product of the Z-transforms as follows [6]:

Y(2) = H(z) X(z) (2.4)

where Y(z), X(z), and H(z) are the Z-transforms of y(k), z(k), and h(k),
respectively. Considering only waveforms that start at an instant £ > 0 and
and have finite power, their Z-transforms will always be defined outside the
unit circle.

For finite-energy waveforms it is convenient to use the discrete-time Fourier
transform defined as

[oe]

Fla(k)} = X(¢¥) = Y (ke (2.5)

k=—o0

Although the discrete-time Fourier transform does not exist for a signal with
infinite energy, however if the signal has finite-power, a generalized discrete-time
Fourier transform exists and is largely used for deterministic signals [15].

2.2.2 Random Signals

A random variable X is a function that assigns a number to every outcome of
a given experiment denoted by g. A stochastic process is a rule to describe the
time evolution of the random variable depending on g, therefore it is a function of
two variables X(k, g). The set of all experimental outcomes, i.e., the ensemble,
is the domain of . We denote z(k) as a sample of the given process with o
fixed, where in this case if k is also fixed, (k) is a number. When any statistical
operator is applied to z(k) it is implied that k is fixed and g is variable. In this
book z(k) represents a random signal.

Random signals do not have a precise description of their waveforms. What is
possible is to characterize them via measured statistics or through a probabilistic
model. For random signals the first- and second-order statistics are sufficient
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most of the time for characterization of the stochastic process. The first- and
second-order statistics are also convenient for measurements. In addition, the
effect on these statistics caused by linear filtering can be easily accounted for.

Let’s consider for the time being that the random signals are real. The expected
value, or mean value, of the process is defined by

mg (k) = E[z(k)] (2.6)

The definition of the expected value is expressed as

oo

Elz(k)] = / e 27)

-0

where p;(x)(y) is the probability density function (pdf) of (k) at the point y.
In order to interpret the pdf we need to define the distribution function of a
random variable as

Py(x)(y) = probability of z(k) being smaller or equal toy

or
y
Pz(k)(y) :/ P:c(k)(z)dl (28)
The derivative of the distribution function is the pdf
dP;x\(y
peii) = T2 29)

The autocorrelation function of the process (k) is defined by

(k) = Ble®20l= [ [ vpawenvdduds (210

where pz (k) z(1)(¥, 2) is the joint probability density of the random variables z (k)
and z(l) defined as

82Px k),z(l (y,z)
pz(k),z(l)(ya Z) = —(a)?;‘a_(‘z)_'— (211)

where
Pz(k),z()(y, 2) = probability of {z(k) < y and z(l) < z}
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The autocovariance function is defined as
a2 (k1) = El(a(k) — mg(k))(2(1) — ms(1))] = r=(k, 1) — mo(k)ms (1) (2.12)

where the second equality follows from the definitions of mean value and auto-
correlation. For k = [, 0%(k,l) = %(k) which is the variance of z(k).

The most important specific example of probability density function is the Gaus-
sian density function, also known as normal density function [13]-[14]. The
Gaussian pdf is defined by

1 _!x—m!“k“g
' = ————e  29:(k) 2.13
p (k)(y) 211_03(“ ( )

where m; (k) and o2 (k) are the mean and variance of z(k), respectively.

One justification for the importance of the Gaussian distribution is the central
limit theorem. Given a random variable z composed by the sum of n independ-
ent random variables z; as follows:

n

= Zm; (2.14)

i=1

the central limit theorem states that under certain general conditions, the prob-
ability density function of = approaches a Gaussian density function for large
n. The mean and variance of = are given respectively by

my = my, (2.15)

i=1
n
02=Y"0o2 (2.16)
i=1
Considering that the values of the mean and variance of y can grow, define
' z— Mg
= 2.17
- 217

In this case, for n = oo it follows that

1 _ 2
Py (y) = =7 (2.18)
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In a number of situations we require the calculation of conditional distributions,
where the probability of a certain event to occur is calculated assuming that
another event B has occurred. In this case, we define

P({z(k) <y} N B)

55) (2.19)

Pok)(ylB) =

probability of z(k) < y assuming B has occurred

This joint event consists of all outcomes ¢ € B such that X(g) < y. The
definition of the conditional mean is given by

meya(k) = Bla(R|B] = [ " e (ulB)dy (2.20)

— 00

where pg(x)(y|B) is the pdf of z(k) conditioned on B.

The conditional variance is defined as

o2p(k) = E[(z(k) — myp(k))?|B] = /_00 (y — ma15(k)) 2Pk (y| B)dy (2.21)

There are processes such that the mean and autocorrelation functions are shift
(or time) invariant, i.e.,

mg(k — i) = mgy(k) = E[z(k)] = m, (2.22)
rz(k, 1) = Elz(k — j)x(i — j)] = ro(k — @) = rz (1) (2.23)

and as a consequence

o2(l) = rp(I) — m?2 (2.24)

These processes are said to be wide-sense stationary (WSS). If the nth-order
statistics of a process is shift invariant, the process is said to be nth-order
stationary. Also if the process is nth-order stationary for any value of n the
process is stationary in strict sense.

Two processes are considered jointly WSS if and only if any linear combination
of them is also WSS. This is the same as:

y(k) =k .’l?l(k) + ko .’L'z(k) (225)

must be WSS, for any constants ki and k2, if z1 (k) and z2(k) are jointly WSS.
This property implies that both (k) and z3(k) have shift-invariant means and
autocorrelations and that their cross-correlation is also shift invariant.
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For complex signals where z(k) = z,(k)+jzi(k), y = y- +jyi, and z = z, +jz,
we have the following definition of the expected value

o0 [e.0]
k)] = / / YPo, (k),z:(k) (Yr, ¥i)dyr dy; (2.26)
—o0 J—o0

where pz, (k),0:(k)(¥r, %) is the joint probability density function (pdf) of z, (k)
and z;(k).

The autocorrelation function of the complex random signal z(k) is defined by

ro(k,1) = Elz(k)z*(1)]

/ / / / Y2 Do, (k),2i(k), 2 (1), 2: (1) (Yr > Uiy 2r, 2i) dYr dy; dzr dz;

(2.27)

where * denotes complex conjugate, since we assume for now that we are dealing
with complex signals, and pg (k) z;(k),z,(1),2:(1) (Yr, ¥, Zr, zi) is the joint probab-
ility density function of the random variables z(k) and z(1).

For complex signals the autocovariance function is defined as

oz (k1) = B((z(k) — mz (k))(2(1) = mo(1))"] = ra(k,1) — mg (k)ym3 (1) (2.28)

Autoregressive Moving Average Process

The process resulting from the output of a system described by a general linear
difference equation given by

N

M
y(k) = Z biw(k—j)+ Y aiy(k — i) (2:29)

i=1

where z(k) is a white noise, is called autoregressive moving average (ARMA)
process. The coefficients a; and b; are the parameters of the ARMA process.
The output signal y(k) is also said to be a colored noise since the autocorrelation
function of y(k) is nonzero for a lag different from zero, i.e., r(I) # 0 for some

140.

For the special case where b; = 0 for j = 1,2,..., M the resulting process is
called autoregressive (AR) process. The terminology means that the process
depends on the present value of the input signal and on a linear combination
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of past samples of the process. This indicates the presence of a feedback of the
output signal.

For the special case where a; = 0 for i = 1,2,..., N the process is identified as
a moving average (MA) process. This terminology indicates that the process
depends on a linear combination of the present and past samples of the input
signal. In summary, an ARMA process can be generated by applying a white
noise to the input of a digital filter with poles and zeros, whereas for the AR
and MA cases the digital filter is an all-pole and all-zero filter, respectively.

Markov Process

A stochastic process is called a Markov process if its past has no influence in the
future if the present is specified [13], [15]. In other words, the present behavior
of the process depends only on the most recent past, all behavior previous to
the most recent past is not required. A first-order AR process is a first-order
Markov process, whereas an Nth-order AR process is considered an Nth-order
Markov process. Take as an example the sequence

y(k) = ay(k — 1) + n(k) (2.30)

where n(k) is a white noise process. The process represented by y(k) is de-
termined by y(k — 1) and n(k), and no information before the instant k — 1 is
required. We conclude that y(k) represents a Markov process. In the previous
example, if a = 1 and y(—1) = 0 the signal y(k), for k > 0, is a sum of white
noise samples, usually called random walk sequence.

Formally, an mth-order Markov process satisfies the following condition: for all
k > 0, and for a fixed m, it follows that

Py (ylz(k = 1), 2(k - 2),...,2(0))
= Py (ylz(k - 1),2(k—2),...,z(k — m)) (2.31)

Wold Decomposition

Another important result related to any wide-sense stationary process z(k) is
the Wold decomposition, which states that z(k) can be decomposed as

z(k) = 2, (k) + z, (k) (2.32)

where z, (k) is a regular process that is equivalent to the response of a stable,
linear, time-invariant, and causal filter to a white noise [15], and z,(k) is a
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perfectly predictable (deterministic or singular) process. Also, z,(k) and z, (k)
are orthogonal processes, i.e., E[z,(k)zp(k)] = 0. The key factor here is that the
regular process can be modeled through a stable autoregressive model [19] with
a stable and causal inverse. The importance of Wold decomposition lies on the
observation that a WSS process can in part be represented by an AR process
of adequate order, with the remaining part consisting of a perfectly predictable
process. Obviously the perfectly predictable process part of z(k) also admits
an AR model with zero excitation.

Power Spectral Density

Stochastic signals that are wide-sense stationary are persistent and therefore are
not finite-energy signals. On the other hand, they have finite-power such that
the generalized discrete-time Fourier transform can be applied to them. When
the generalized discrete-time Fourier transform is applied to a WSS process it
leads to a random function of the frequency [15]. The autocorrelation functions
of most practical stationary processes have discrete-time Fourier transform.
Therefore, the discrete-time Fourier transform of the autocorrelation function
of a stationary random process can be very useful in many situations. This
transform, called power spectral density, is defined as

[ee]

Ro(e) = Y ro(l)e ! = Flr,(1)] (2.33)

l=—00

where r;(l) is the autocorrelation of the process represented by z(k). The
inverse discrete-time Fourier transform allows us to recover r,(l) from R, (e/*)
by employing the relation

™

rz(l) = 51; i R (e?*)e? tdw = F~ R, (e'%)) (2.34)

It should be mentioned that R,(e?“) is a deterministic function of w, and can
be interpreted as the energy of the random process at a given frequency in the
ensemble, i.e., considering the average outcome of all possible realizations of the
process. In particular, the mean squared value of the process represented by
z(k) is given by
n
r:(0) = L R, (e7“)dw (2-35)

2r J_ .

If the random signal representing any single realization of a stationary process
is applied as input to a linear and time-invariant filter with impulse response
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h(k), the following equalities are valid and can be easily verified:

yk) = > z(n)h(k—n) = z(k)  h(k) (2.36)
ryb(l) = r,(l).*rh(l) . (2.37)
Ry(¢¥) = Ru(e)|H ()P (2.38)
ryz(l) = ro(1) *h(1) = E[z(l)y" ()] (2.39)
Rys(€’¥) = Ro(e’*)H(e'*) (2.40)

where 7, (1) = h(l) * h(=1), Ry(e’“) is the power spectral density of the output
signal, ry;(k) is the cross-correlation of z(k) and y(k), and Ry;(e’“) is the
cross-power spectral density.

The main feature of the spectral density function is to allow a simple analysis
of the average behavior of WSS random signals processed with linear time-
invariant systems. As an illustration, suppose a white noise is applied as input
to a lowpass filter with impulse response h(k) and sharp cutoff at a given fre-
quency w;. The autocorrelation function of the output signal y(k) will not be a
single impulse, it will be h(k) * h(—k). Therefore, the signal y(k) will look like a
band-limited random signal, in this case, a slow-varying noise. Some properties
of the function R, (e’“) of a discrete-time and stationary stochastic process are
worth mentioning. The power spectrum density is a periodic function of w,
with period 2w, as can be verified from its definition. Also, since for stationary
and complex random process we have r;(—1) = r(l), Ry(e’“) is real. Despite
of the usefulness of the power spectrum density function in dealing with WSS
processes, it will not be widely used in this book since usually the filters con-
sidered here are time varying. However, it should be noted its important role
in areas such as spectrum estimation [20]-[21].

If the Z-transforms of the autocorrelation and cross-correlation functions exist,
we can generalize the definition of power spectral density. In particular, the
definition of equation (2.33) corresponds to the following relation

[o 0]

Z[ro(k)] = Ra(2) = Y ra(k)z™* (2.41)

k=—o00

As discussed before, if the random signal representing any single realization of
a stationary process is applied as input to a linear and time-invariant filter with
impulse response h(k), the following equalities are valid:

Ry(2) = Ry (2)H(2)H(z™") (2.42)
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and

Ryz(z) = Ry(2)H(2) (2.43)
where H(z) = Z[h(l)]. If we wish to calculate the cross-correlation of y(k) and
z(k), namely ry;(0), we can use the inverse Z-transform formula as follows:

Bl (9] = 5 § Ruele) 2

1 dz
= %fH(z)Rz(z)? (2.44)

where the integration path is a counterclockwise closed contour in the region of
convergence of Ryz(z). The contour integral equation above is usually solved
through the Cauchy’s residue theorem [7].

2.2.3 Ergodicity

In the probabilistic approach, the statistical parameters of the real data are
obtained through ensemble averages (or expected values). The estimation of
any parameter of the stochastic process can be obtained by averaging a large
number of realizations of the given process at each instant of time. However, in
many applications only a few or even a single sample of the process is available.
In these situations, we need to find out in which cases the statistical parameters
of the process can be estimated by using time average of a single sample (or
ensemble member) of the process. This is obviously not possible if the desired
parameter is time varying. The equivalence between the ensemble average and
time average is called ergodicity [13], [15].

The time average of a given stationary process represented by z(k) is calculated
by

N
1
Mgy = k 2.45
e = a3, 2 *) (2.45)
If
ey = Jim E{|fsy —ms[*} =0

the process is said to be mean-ergodic in the mean-square sense. Therefore, the
mean-ergodic process has time average that approximates the ensemble average
as N — oo. Obviously, i, is an unbiased estimate of m, since

N

LS Blm)=m. (2.46)

Elian] = o517 .
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Therefore, the process will be considered ergodic if the variance of 7, tends

to zero (othN — 0) when N — oo. The variance o*;"mN can be expressed after
some manipulations as
i 2N M
2 2
,  _ _ 9.47
e = w57, 2 0 (1-5571) (247

where o2(l) is the autocovariance of the stochastic process z(k). The variance

of Mg, tends to zero if and only if

1 X
lim — Y o2(1) >0
N l—)oo N z( )
=0
The condition above is necessary and sufficient to guarantee that the process is
mean-ergodic.

The ergodicity concept can be extended to higher order statistics. In particular,
for second-order statistics we can define the process

zi(k) = z(k + D)z* (k) (2.48)

where the mean of this process corresponds to the autocorrelation of z(k), i.e.,
rz(l). Mean-ergodicity of z;(k) implies mean-square ergodicity of the autocor-
relation of z(k).

The time average of z;(k) is given by

N

1
m —_— E 2.
TN 2N 1 . Z’}(k) ( 49)

that is an unbiased estimate of r;(l). If the variance of i, , tends to zero as
N tends to infinity, the process z(k) is said to be mean-square ergodic of the
autocorrelation, i.e.,

Jim E{ling, = ra()*} = 0 (2.50)

The condition above is satisfied if and only if

N
IJi_ﬁr;o%Z;E{x(k+l)x‘(k)x(k+l+i):c*(k+i)}—rf.(l):0 (2.51)

where it is assumed that z(n) has stationary fourth-order moments. The concept
of ergodicity can be extended to nonstationary processes [15], however, that is
beyond the scope of this book.
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2.3 THE CORRELATION MATRIX

Usually, adaptive filters utilize the available input signals at instant k in their
updating equations. These inputs are the elements of the input signal vector
denoted by

x(k) = [zo(k)z1(k) ... zn (K)]T

As will be noted, the characteristics of the correlation matrix R = E[x(k)x (k)]
plays a key role in the understanding of properties of most adaptive filtering
algorithms. As a consequence, it is important to examine the main properties
of the matrix R. Some properties of the correlation matrix comes from the
statistical nature of the adaptive filtering problem, whereas other properties
derive from the linear algebra theory.

For a given input vector, the correlation matrix is given by

Ellzo(®)?]  Eleo(R)ai(k)] - Efzo(k)aiy(k)]
o | @l Ea®F - B @)
Elan(K)zy(k)] Elen(R)zi(k)] - Elan (k)]

= E[x(k)x (k)] (2.52)

where xf (k) is the Hermitian transposition of x(k), that means transposition
followed by complex conjugation or vice versa.

The main properties of the R matrix are listed below:

1. The matrix R is positive semidefinite.
Proof:

Given an arbitrary complex weight vector w, we can form a signal given
” y(k) = wix(k)
The magnitude squared of y(k) is
y(k)y* (k) = ly(k)|* = wx(k)x" (k)w > 0
The mean-square (MS) value of y(k) is then given by
MS[y(k)] = Elly(¥)"] = wH Epx(k)x (k)}w = wHRw > 0
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Therefore, the matrix R is positive semidefinite.
m]

Usually, the matrix R is positive definite, unless the signals that compose
the input vector are linearly dependent. Linear dependent signals are rarely
found in practice.

2. For WSS processes z;(k), the matrix R is Hermitian, i.e.,

R=RY (2.53)

Proof:

R = E[(x(k)x" (k))"] = E[x(k)x" (k)] = R
[m]

3. A matrix is Toeplitz if the elements of the main diagonal and of any sec-
ondary diagonal are equal. When the input signal vector is composed of
delayed versions of the same signal taken from a WSS process, matrix R
1s Toeplitz.

Proof:

For the delayed signal input vector, with z(k) WSS, matrix R has the
following form

rz(Oi rz(1) 7'A,.;\§N)1
R = rZ(:_) rsz) T ( :— ) (2.54)
ro(=N) ra(=N+1) - 15(0)

By examining the right-hand side of the equation above, we can easily
conclude that R is Toeplitz.

m]

Note that r}(:) = r;(—1), what also follows from the fact that the matrix R is
Hermitian.

If matrix R given by equation (2.54) is nonsingular for a given N, the input
signal is said to be persistently exciting of order N + 1. This means that the
power spectral density R;(e’“) is different from zero at least at N 4 1 points
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in the interval 0 < w < 2m. It also means that a nontrivial Nth-order FIR
filter (with at least one nonzero coefficient) cannot filter z(k) to zero. Note
that a nontrivial filter, with z(k) as input, would require at least N + 1 zeros
in order to generate an output with all samples equal to zero. The absence of
persistence of excitation implies the misbehavior of some adaptive algorithms
[16], [17]. The definition of persistence of excitation is not unique, and it is
algorithm dependent (see the book by Johnson [16] for further details).

From now on in this section, we discuss some properties of the correlation matrix
related to its eigenvalues and eigenvectors. A number X is an eigenvalue of the
matrix R, with a corresponding eigenvector q, if and only if

det(R—- M) =0 (2.55)
and
Rq = \q (2.56)

where I is the (N + 1) by (N + 1) identity matrix. Equation (2.55) is called
characteristic equation of R, and has (N + 1) solutions for \. We denote the
(N +1) eigenvalues of R by Ao, A1,...,A\n. Note also that for every value of
A, the vector q = 0 satisfies equation (2.56), however we consider only those
particular values of A that are linked to a nonzero eigenvector q.

Some important properties related to the eigenvalues and eigenvectors of R,
that will be useful in the following chapters, are listed below.

1. The eigenvalues of R™ are A", for i = 0,1,2,..., N.
Proof:
By premultiplying equation (2.56) by R™~!, we obtain
R™Rq; = R™ '\q; = \R™ 2Ry
/\,‘Rm_zA;qi = A?Rm_qui
= .= \gq, (2.57)
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2. Suppose R has N +1 linearly independent eigenvectors q,; then if we form
a matrix Q with columns consisting of the q;’s, it follows that

"X 0 - 0 ]
0 X\ :
Q'RQ=| : ¢ ... : |=A (2.58)
0
[0 0 - ]

Proof:

RQ = Rqq; - -qn]=[hoqg M1q; - -ANay]

X 0 -+ 0 7
0 X\
=Qf : o ... ' |=QA
Do 0
L 0 0 - Ay

Therefore, since Q is invertible because the q;’s are linearly independent,
we can show that

Q 'RQ=A
a
. The nonzero eigenvectors qq, q;, - - -q, that correspond to different eigen-
values are linearly independent.
Proof:
If we form a linear combination of the eigenvectors such that
aoqo+al‘h ++aNqN =0 (259)

By multiplying the equation above by R we have

aoRqy+a1Rq; + - -+anRay = aphogqg+a1r1q;, +- - -+anvAngy (2.60)
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Now by multiplying equation (2.59) by An and subtracting the result from
equation (2.60), we obtain

ao(Ao — AN)qo +a1(A = An)q; + -+ anv-1(Av-1 — An)qy_; =0

By repeating the steps above, i.e., multiplying the equation above by R
in one instance and by Ay_; on the other instance, and subtracting the
results, it yields

ao(Ao = AN) (Ao — AN-1)qp + a1 (A1 = AN) (A1 = Av-1)qy
4+ tan_2(AN-2 = AN-1)qn_2 =0

By repeating the same steps above several times, we end up with
ao(Ao — AN) (Ao = An-1) - (Ao — A1)qp =0

Since we assumed Ao # A1, Ao # A2, ... Ao # A, and q, was assumed
nonzero, then ag = 0.

The same line of thought can be used to show that ag = ay = a3 = --- =
ay = 0 is the only solution for equation (2.59). Therefore, the eigenvectors
corresponding to different eigenvalues are linearly independent.

0

Not all matrices are diagonalizable. A matrix of order (N + 1) is diagonal-
izable if it possesses (VN + 1) linearly independent eigenvectors. A matrix
with repeated eigenvalues can be diagonalized or not, depending on the lin-
ear dependency of the eigenvectors. A nondiagonalizable matrix is called
defective [18].

4. Since R is a Hermitian matrix, i.e., R = R, its eigenvalues are real and
equal to or greater than zero.

Proof:
First note that given an arbitrary complex vector w, (WHRw)¥ =
wHRH(wH)H = wHRw. Therefore, wHRw is a real number. Assume

now that ); is an eigenvalue of R corresponding to the eigenvector q;, i.e.,
Rq; = \iq;. By premultiplying this equation by qf, it follows that

Q.HR‘L' = ’\i‘LH‘L' = ’\i“(h“2

where the operation ||a||? = |ag|?>+ |a1[?+- - -+ |an|? is the Euclidean norm
squared of the vector a, that is always real. Since the term on the left hand
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is also real and R is positive semidefinite, we can conclude that A; is real
and nonnegative.

g
Note that Q is not unique since each q; can be multiplied by an arbit-
rary nonzero constant, and the resulting vector continues to be an eigen-

vector. For practical reasons, we consider only normalized eigenvectors
having length one, that is

qf‘{qizl fortr=0,1,...,N (261)

. If R is a Hermitian matrix with different eigenvalues, the eigenvectors are

orthogonal to each other. As a consequence, there is a diagonalizing matrix
Q that is unitary, i.e., QHQ =L

Proof:

Given two eigenvalues ); and J;, it follows that
Rg; = Aiq;
and
Rq; = Ajq; (2.62)
Using the fact that R is Hermitian and that A; and A; are real then
afR = \iqf
and by multiplying this equation on the right by q;, we get
a”Rq; = \iqfq;
Now by premultiplying equation (2.62) by qf’ , it follows that
(l.HR(lj = q{{qj'

Therefore,
/\iQ{IQj = j‘LHq]‘

Since A; # JA;, it can be concluded that

affq; =0 fori#j

If we form matrix Q with normalized eigenvectors, matrix Q is a unitary
matrix. 0
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An important result is that any Hermitian matrix R can be diagonalized by
a suitable unitary matrix Q, even if the eigenvalues of R are not distinct.
The proof is omitted here and can be found in [18]. Therefore, for Hermitian
matrices with repeated eigenvalues it is always possible to find a complete
set of orthonormal eigenvectors.

A useful form to decompose a Hermitian matrix that results from the last
property is
N
R =QAQ" =) Nqqf (2.63)
1=0
that is known as spectral decomposition. From this decomposition, one can
easily derive the following relation

N N
wHRw = ZA;quiquw = Z)\; |wH q; |2 (2.64)

1=0 i=0

In addition, since q; = A\;R™'q;, the eigenvectors of a matrix and of its
inverse coincide, whereas the eigenvalues are reciprocals of each other. As
a consequence,

Z 349 qz (265)

1=0 '

Another consequence of the unitary property of Q for Hermitian matrices
is that any Hermitian matrix can be written in the form

V2oql
VA

=
f

[\/E‘lo \/)‘_ﬂh ---\/EQN]

VAnaH
= LL¥ (2.66)

6. The sum of the eigenvalues of R is equal to the trace of R, and the product
of the eigenvalues of R is equal to the determinant of R..

Proof:
tr[Q"'RQ] = tr[A]
where, tr[A] = Y1V a;;. Since tr[A’A] = tr[AA'], we have

tr[Q™'RQ)] = tr[RQQ ™! = tr[RI] = ZA
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Also det[Q ™! R Q] = det[R] det[Q] det[Q '] = det[R] = det[A] = [T, A
m]

. The Rayleigh’s quotient defined as

wHRw

WHW

R = (2.67)

of a Hermitian matrix is bounded by the minimum and maximum eigen-
values, i.e.,

Amin <R < Amaz (2.68)

where the minimum and maximum values are reached when the vector w is
chosen to be the eigenvector corresponding to the minimum and maximum
eigenvalues, respectively.

Proof:

Suppose w = Qw’, where Q is the matrix that diagonalizes R, then

wHQH RQw’
WIH QH Qw’
wHAw
w/Hw/
N 2
dizo Niw)

- N 2
Zi:O w:

It is then easy to show that the minimum value for the equation above
occurs when w; = 0 for 7 # j and J; is the smallest eigenvalue. Identically,
the maximum value for R occurs when w; = 0 for i # I, where ) is the
largest eigenvalue.

R

(m}

There are several ways to define the norm of a matrix. In this book the
norm of a matrix R, denoted by ||R||, is defined by

Rwl|? HRHR.
IR = mag [T = g W B R
w0 |[|w| wzo wiw

(2.69)

Note that the norm of R is a measure of how a vector w grows in magnitude,
when it is multiplied by R..

When the matrix R is Hermitian, the norm of R is easily obtained by using
the results of equations (2.57) and (2.68). The result is

”R“ = Amaz (270)
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where Ap,q5 is the maximum eigenvalue of R.

A common problem that we encounter in adaptive filtering is the solution
of a system of linear equations such as

Rw=p (2.71)

In case there is an error in the vector p, originated by quantization or
estimation, how does it affect the solution of the system of linear equations?
‘For a positive definite Hermitian matrix R it can be shown [18] that the
relative error in the solution of the above linear system of equations is
bounded by

lAw]| < Amaz ||AP|

Iwll = Amin Il
where Aoz and Ay, are the maximum and minimum values of the eigen-
values of R, respectively. The ratio A\yaz/Amin is called condition number
of a matrix, that is

(2.72)

A1’1’ld$ -—
C=5__=IR{IR il (2.73)

The value of C influences the convergence behavior of a number of adaptive
filtering algorithms, as will be seen in the following chapters. Large values
of C' indicate that the matrix R is ill-conditioned and that errors introduced
by the manipulation of R may be largely amplified. When C = 1 the matrix
is perfectly conditioned. In case R represents the correlation matrix of
the input signal of an adaptive filter, with the input vector composed by
uncorrelated elements of a delay line (see Fig. 2.1.b, and the discussions
around it), then C = 1.

Example 2.1

Suppose the input signal vector is composed by a delay line with a single input
signal, i.e.,

x(k) = [z(k)z(k-1)...z(k — N)]T

Given the following input signals:

(a)
z(k) = n(k)

(b)
z(k) = acoswok + n(k)
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z(k) = —ajz(k — 1) + n(k)
(e)

z(k) = ael(Woktn (k)

where n(k) is a white noise with zero mean and variance o2.

Calculate the autocorrelation matrix R for N = 3.
Solution:

(a) In this case, we have that E[z(k)z(k — )] = 024(l), where §(I) denotes an
impulse sequence. Therefore,

10 ---0
01 .--0
R = E[x(k)xT(k)]=02] . . .
00 - 1

(b) In this example, n(k) is zero mean and uncorrelated with the deterministic
cosine. The autocorrelation function can then be expressed as

r(l) = E[a®cos(wok) cos(wok — wol) + n(k)n(k —1)]

= a’E[cos(wok) cos(wok — wol)] + c26(1)
2

= %[cos(wol) — cos(2wok — wol)] + 024(1)

where é(l) again denotes an impulse sequence.

(c) By exploring the fact that n(k) is a white noise, we can perform the following
simplifications:

M-l M
rl) = Blz(k)z BLY D bbjn(k —in(k — 1 - j)]
7=0 i=0
M- M
= bibig Eln(k —1— j)] = 02 ) " bjbiy;
=0 7j=0
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For M = 3, the correlation matrix has the following form

Zz—o b2 Yigbibiar Yo bibisa bobs
R = o2 thﬂ bibi+1 E. =0 b} Z?:g bibit1 2,2:0 bibiy2
" Zi:o bibito Z;:o bibi 1 Zi:o b? Zi:o bibiy1
bobs Yicobibisz Yoiiobibiyr  Yomg b?

(d) By solving the difference equation, we can obtain the correlation between
z(k) and z(k — 1), that is

-1
z(k) = (—a)'z(k - 1) + Z(—al)jn(k —
Jj=0

Multiplying z(k —1) on both sides of the equation above and taking the expected
value of the result, we obtain

Elz(k)z(k = 1)] = (~a1)' E[z*(k — 1)]
since z(k — ) is independent of n(k — j) for j <1 —1.

For I = 0, just calculate z?(k) and apply the expectation operation to the result.
The partial result is

E[z*(k)] = a{ B[z®(k — 1)] + E[n* (k)]

therefore,
Elz2(k %
SOE
The elements of R are then given by
[
= T8

l—a1

(e) In this case, we are interested in calculating the autocorrelation of a complex
sequence, that is

r(l) = Elz(k)z"(k-1)]

— aZE[e—j(wl—n(k)+n(k-l))] —a e—](wl)é()
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where in the second equality it was considered the fact that we have two ex-
ponential functions with white noise as exponents. These exponentials are
nonorthogonal only if [ = 0.

m]

In the remaining part of this chapter and in the following chapters, only real sig-
nals will be addressed, in order to keep the notation simple. The derivations of
the adaptive filtering algorithms for complex signals are usually straightforward,
and are left as exercises.

2.4 WIENER FILTER

One of the most widely used objective function in adaptive filtering is the mean-
square error (MSE) defined as

F(e(k)) = &(k) = Ele*(k)] = E[d(k) — 2d(k)y(k) + 3 (k)] (2.74)

Suppose the adaptive filter consists of a linear combiner, i.e., the output signal is
composed by a linear combination of signals coming from an array as depicted
in Fig. 2.1.a. In this case,

y(k) = Z w;(k)z:(k) = w (k)x (k) (2.75)

where x(k) = [zo(k)z1(k)...zn(k)]T and w(k) = [wo(k)wy (k) ... wn(k)]T are
the input signal and the adaptive filter coefficient vectors, respectively.

In many applications, each element of the input signal vector consists of a
delayed version of the same signal, that is: zo(k) = z(k),zi(k) = =z(k —
1),...,zn(k) = z(k — N). Note that in this case signal y(k) is the result
of applying an FIR filter to the input signal z(k). Since most of the analyses
and algorithms presented in this book apply equally to the linear combiner and
the FIR filter cases, we will consider the latter case throughout the rest of the
book. The main reason for this decision is that the fast algorithms for the
recursive least-squares solution, to be discussed in the forthcoming chapters,
explore the fact that the input signal vector consists of the output of a delay
line with a single input signal, and, as a consequence, are not applicable to the
linear combiner case.
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The most straightforward realization for the adaptive filter is through the direct
form FIR structure as illustrated in Fig. 2.1.b, with the output given by

N
y(k) = Z wi(k)z(k — 1) = wT (k)x(k) (2.76)
where x(k) = [z(k)z(k—1)...2(k—N)]T, and w(k) = [wo(k)w1(k) ... wn(k)]T

are the input and tap-weight vectors, respectively.

In both the linear combiner and FIR filter cases, the objective function can be
rewritten as

Ele*(k)] = &(k)

= E[d*(k) — 2d(k)wT (k)x(k) + w7 (k)x(k)xT (k)w (k)]
= E[d*(k)] - 2E[d(k)w” (k)x(k)] + E[w” (k)x(k)x" (k)w(k)]
(2.77)
For a filter with fixed coefficients the MSE function is given by
& = E[d*(k)] — 2wT E[d(k)x (k)] + wT E[x(k)xT (k)]w
E[d*(k)] - 2wTp + wTRw (2.78)

where p = E[d(k)x(k)] is the cross-correlation vector between the desired and
input signals, and R = E[x(k)xT (k)] is the input signal correlation matrix. As
can be noted, the objective function ¢ is a quadratic function of the tap-weight
coefficients which would allow a straightforward solution for w, if vector p and
matrix R are known. Note that matrix R corresponds to the Hessian matrix of
the objective function defined in the previous chapter.

If the adaptive filter is implemented through an IIR filter, the objective func-
tion is a nonquadratic function of the filter parameters, turning the minimization
problem much more difficult. Local minima are likely to exist, rendering some
solutions obtained by gradient-based algorithms unacceptable. Despite its dis-
advantages, adaptive IIR filters are needed in a number of applications where
the order of a suitable FIR filter is too high. Typical applications include data
equalization in communication channels and cancellation of acoustic echo.

The gradient vector of the MSE function related to the filter tap-weight coeffi-
cients is given by
f - %060 o
w ow 611)0 6w1 o a’U)N
= —2p+2Rw (2.79)
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Figure 2.1 (a) Linear combiner; (b) Adaptive FIR filter.

CHAPTER 2
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By equating the gradient vector to zero and assuming R is nonsingular, the op-
timal values for the tap-weight coefficients that minimizes the objective function

can be evaluated as follows:
w,=R7!p (2.80)

This solution is called the Wiener solution. Unfortunately, in practice, precise
estimations of R and p are not available. When the input and the desired
signals are ergodic, one is able to use time averages to estimate R and p, what
is implicitly performed by most adaptive algorithms.

If we replace the optimal solution for w in the MSE expression, we can calculate
the minimum MSE provided by the Wiener solution:

min = E[dz(k)] — 2pr + wZRR_lp
= E[d*(k)]-wip (2.81)

The equation above indicates that the optimal set of parameters removes part
of the power of the desired signal through the cross-correlation between z(k)
and d(k), assuming both signals stationary. If the reference signal and the
input signal are orthogonal, the optimal coefficients are equal to zero and the
minimum MSE is E[d?(k)]. This result is expected since nothing can be done
with the parameters in order to minimize the MSE if the input signal carries no
information about the desired signal. In this case, if any of the taps is nonzero,
it would only increase the MSE.

An important property of the Wiener filter can be deduced if we analyze the
gradient of the error surface at the optimal solution. The gradient vector can
be expressed as follows:

_ JE[e?(k)] Oe(k)
Bw = ow ow

With the coefficients set at their optimal values, i.e., at the Wiener solution, the
gradient vector is equal to zero, implying that

= E[2e(k) | = —E[2e(k)x(k)] (2.82)

Ele(k)x(k)]=0 (2.83)

or
Ele(k)z(k—1)] =0 (2.84)
fort=0,1,..., N. This means that the error signal is orthogonal to the elements

of the input signal vector. In case either the error or the input signal has zero
mean, the orthogonality property implies that e(k) and z(k) are uncorrelated.
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The orthogonality principle also applies to the correlation between the output
signal y(k) and the error e(k), when the tap weights are given by w = w,. By
premultiplying the equation (2.83) by w’, the desired result follows, e.g.,

Ele(k)w7 x(k)] = Ele(k)y(k)] = 0 (2.85)

2.5 MEAN-SQUARE ERROR SURFACE

The mean-square error is a quadratic function of the parameters w. Assuming
a given fixed w, the MSE is not a function of time and can be expressed as

E=02-2wTp+w'Rw (2.86)

where ¢ is the variance of d(k) assuming it has zero-mean. The MSE is a
quadratic function of the tap-weights forming a hyperparaboloid surface. The
MSE surface is convex and has only positive values. For two weights, the
surface is a paraboloid. Fig. 2.2 illustrates the MSE surface for a numerical
example where w has two coefficients. If the MSE surface is intersected by a
plane parallel to the w plane, placed at a level superior to £min, the intersection
consists of an ellipse representing equal MSE contours as depicted in Fig. 2.3.
Note that in this figure we showed three distinct ellipses, corresponding to
different levels of MSE. The ellipses of constant MSE are all concentric.

In order to understand the properties of the MSE surface, it is convenient to
define a translated coefficient vector as follows:
Aw=w—~w, (2.87)
The MSE can be expressed as a function of Aw as follows:
§ = 0'3 — w?;p + wfp —2wTp + wTRw

= émin — AW p - w'Rw, + wRw

= &min — Apr + wlRAwW

= &min — W RAW+ wTRAW

= émin + AWTRAW (2.88)
The corresponding error surface contours are depicted in Fig. 2.4.

By employing the diagonalized form of R, the last equation can be rewritten as
follows:

€ = min+ AWTQAQT AW
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Figure 2.2 Mean-square error surface.

= fmin + VTAV

N
= Lmin + Y _ Aiv} (2.89)
=0

where v = QTAw are the rotated parameters.

The above form for representing the MSE surface is an uncoupled form in the
sense that each component of the gradient vector of the MSE with respect to
the rotated parameters is a function of a single parameter, that is

va = [2)\0’!)0 2)\1’!)1 2/\N’UN]T

This property means that if all v;’s are zero except one, the gradient direc-
tion coincides with the nonzero parameter axis. In other words, the rotated
parameters represent the principal axes of the hyperellipse of constant MSE,
as 1llustrated in Fig. 2.5. Note that since the rotated parameters are the result
of the projection of the original parameter vector Aw on the eigenvectors q;
direction, it is straightforward to conclude that the eigenvectors represent the
principal axes of the constant MSE hyperellipses.
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Figure 2.3 Contours of the MSE surface.

The matrix of second derivatives of ¢ as related to the rotated parameters is A.
We can note that the gradient will be steeper in the principal axes corresponding
to larger eigenvalues. This is the direction, in the two axes case, where the
ellipse is narrow.

2.6 BIAS AND CONSISTENCY

The correct interpretation of the results obtained by the adaptive filtering al-
gorithm requires the definitions of bias and consistency. An estimate is con-
sidered unbiased if the following condition is satisfied

E[w(k)] = w, (2.90)

The difference E[w(k)] — w, is called the bias in the parameter estimate.
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Figure 2.4 Translated contours of the MSE surface.
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Figure 2.5 Rotated contours of the MSE surface.
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An estimate is considered consistent if
w(k) = w, as k = o0 (2.91)

Note that since w(k) is a random variable, it is necessary to define in which sense
the limit is taken. Usually, the limit with probability one is employed. In the
case of identification, a system is considered identifiable if the given parameter
estimates are consistent. For a more formal treatment on this subject refer to

[17].

2.7 NEWTON ALGORITHM

In the context of the MSE minimization discussed in the previous section, the
coefficient-vector updating using the Newton method is performed as follows:

w(k +1) = w(k) — uR™ gy (k) (2.92)

Assuming the true gradient and the matrix R are available, the coefficient-vector
updating can be expressed as

w(k+1) = w(k) — pR™'(=2p + 2Rw(k)) = (I — 2ul)w(k) + 2uw, (2.93)

where if 4 = 1/2, the Wiener solution is reached in one step.

The Wiener solution can be approached using a Newton-like search algorithm,
by updating the adaptive filter coefficients as follows:

A -1 N

wik+1) = w(k) = R (£)g (k) (2.94)

where Rq(k) is an estimate of R™! and g (k) is an estimate of gy, both at
instant k. The parameter u is the convergence factor that regulates the con-
vergence rate. Newton-based algorithms present, in general, fast convergence.
However, the estimate of R™! is computationally intensive and can become nu-
merically unstable if special care is not taken. These factors made the steepest-
descent-based algorithms more popular in adaptive filtering applications.

2.8 STEEPEST-DESCENT ALGORITHM

In order to get a practical feeling of a problem that is being solved using the
steepest-descent algorithm, we assume that the optimal coefficient vector, i.e.,
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the Wiener solution, is w,, and that the reference signal is not corrupted by
measurement noise.

The main objective of the present section is to study the rate of convergence, the
stability, and the steady-state behavior of an adaptive filter whose coefficients
are updated through the steepest-descent algorithm. It is worth mentioning
that the steepest-descent method can be considered an efficient gradient-type
algorithm, in the sense that it works with the true gradient vector, and not with
an estimate of it. Therefore, the performance of other gradient-type algorithms
can at most be close to the performance of the steepest-descent algorithm.
When the objective function is the MSE, the difficult task of obtaining the
matrix R and the vector p impairs the steepest-descent algorithm from being
useful in adaptive filtering applications. Its performance, however, serves as a
comparison pattern for gradient-based algorithms.

The steepest-descent algorithm updates the coefficients in the following general
form

w(k+1) = w(k) — pgw(k) (2.95)
It is worth noting that several alternative gradient-based algorithms available
replace gy (k) by an estimate g (k), and they differ in the way the gradient
vector is estimated. The true gradient expression is given in equation (2.79)
and, as can be noted, it depends on the vector p and the matrix R, that are
usually not available.

Substituting equation (2.79) in equation (2.95), we get
w(k+1) =w(k) — 2uRw(k) + 2up (2.96)

Now some of the main properties related to the convergence behavior of the
steepest-descent algorithm in stationary environment are described. First, an
analysis is required to determine the influence of the convergence factor x in
the convergence behavior of the steepest-descent algorithm.

The error in the adaptive filter coefficients when compared to the Wiener solu-
tion is defined as

Aw(k) = w(k) —w, (2.97)
The steepest-descent algorithm can then be described in an alternative way,
that is:

Aw(k+1) = Aw(k) - 2u(Rw(k) — Rw,)
= Aw(k) - 2uRAW(k)
= (I-2pR)Aw(k) (2.98)
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where the relation p = Rw, (see equation (2.80)) was employed. It can be
easily shown from the equation above that

Aw(k + 1) = (I - 2uR)**1 Aw(0) (2.99)

w(k+1) = w, 4+ (I - 2uR)*+1(w(0) — w,) (2.100)

The last equation premultiplied by Q7, where Q is the unitary matrix that
diagonalizes R through a similarity transformation, yields

QTAw(k+1) = (I-2:Q"RQ)Q" Aw(k)

= v(k+1)
= (I-2pA)v(k)
1 —2uAo 0 S 0
0 0 1—2uln
(2.101)

In the equation above v(k + 1) = QT Aw(k + 1) is the rotated coefficient-vector
error. Using induction, equation (2.101) can be rewritten as

vik+1) = (I-2pA)+iv(0)
(1= 2pXg)kt? 0 e 0
- k+1 :
0 0 (1 —2udy)kt?
(2.102)

This equation shows that in order to guarantee the convergence of the coeffi-
cients, each element 1 — 2u); must have an absolute value less than one. As a
consequence, the convergence factor of the steepest-descent algorithm must be
chosen in the range

0<pu< (2.103)

)‘max
where Anq; is the largest eigenvalue of R. In this case, all the elements of
the diagonal matrix in equation (2.101) tend to zero as k — oo, resulting in
v(k + 1) — 0 for large k.
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The p value in the range above guarantees that the coefficient vector approaches
the optimum coefficient vector w,. It should be mentioned that if matrix R
has large eigenvalue spread, the convergence speed of the coefficients will be
primarily dependent on the value of the smallest eigenvalue. Note that the
slowest decaying element in equation (2.101) is given by (1 — 2pAmin)F 1.

The MSE presents a transient behavior during the adaptation process, that can
be analyzed in a straightforward way if we employ the diagonalized version of
R. Recalling from equation (2.88) that

E(k) = Emin + AWT (K)RAW(E) (2.104)
the MSE can then be simplified as follows:

E(k) = Emin + AwWT(E)QA QT Aw(k)
fmz'n + VT(k)A V(k)

N
= &min+ > Niv(F) (2.105)
=0

If we apply the result of equation (2.101) in equation (2.105), it can be shown
that the following relation results

EK) = Emin+ VT (k= 1)(1— 2uA)A (T 2A)v(k ~ 1)
N
= &min + Z ’\1(1 - 2/“)‘1')2,‘”1'2(0) (2106)

i=0

The analyses presented in this section show that before the steepest-descent
algorithm reaches the steady-state behavior, there is a transient period where
the error is usually high and the coefficients are far from the Wiener solution. As
can be seen from equation (2.101), in the case of the adaptive filter coefficients,
the convergence will follow (N + 1) geometric decaying curves with ratios r,; =
(1—2pX;). Each of these curves can be approximated by an exponential envelope
with time constant 7,,; as follows [4]:

r =1 1 1 i 1 +
i = eTwi — _—— —_— P
wh Twi 2!7‘3)1-

(2.107)
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In general, ry,; is slightly smaller than one, specially in the cases of slowly
decreasing modes that correspond to small values A; and p. Therefore,

1

rui = (1= 2u0) & 1 — — (2.108)
Twi
then
‘ 1
Twi = 2#/\1

fori=0,1,...,N.

For the convergence of the MSE, the range of values of  is the same to guarantee
the convergence of the coefficients. In this case, due to the exponent 2k in
equation (2.106), the geometric decaying curves have ratios given by re; = (1 —
4p);), that can be approximated by exponential envelopes with time constants
given by

1
el N —— 2.109
by (2.109)
for i = 0,1,...,N. In the convergence of both the error and the coefficients,

the time required for the convergence depends on the ratio of the eigenvalues of
the input signal. Further discussions on convergence properties that apply to
gradient-type algorithms can be found in Chapter 3.

Example 2.2

The matrix R and the vector p are known for a given experimental environment:

1 0.4045
R = [0.4045 1 ]

p = [00.2939]"

E[d*(k)] = 0.5

(a) Deduce the equation for the MSE.
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(b) Choose a small value for g, and starting the parameters at [0 — 2]7 plot
the convergence path of the steepest-descent algorithm in the MSE surface.

(c) Repeat the previous item for the Newton algorithm.
Solution:

(a) The MSE function is given by
¢ = E[d*(k)]-2w"p+w Rw

o 0. 1 0.4045 wy
= 03— 2[w; wy) [ 0.2939 + (w1 wy] 0.4045 1 W2

After performing the algebraic calculation we obtain the following result

€& = 0.5+ w?+wk+0.8090w,wy — 0.5878w,

(b) The steepest-descent algorithm was applied to minimize the MSE using a
convergence factor g = 0.1/An4z, where Apar = 1.4045. The convergence path
of the algorithm in the MSE surface is depicted in Fig. 2.6. As can be noted,
the path followed by the algorithm first approaches the main axis (eigenvector)
corresponding to the smaller eigenvalue, and then follows toward the minimum
in a direction increasingly aligned with this main axis.

(c) The Newton algorithm was also applied to minimize the MSE using a con-
vergence factor u = 0.1/Apmaz. The convergence path of the Newton algorithm
in the MSE surface is depicted in Fig. 2.7. The Newton algorithm follows a
straight path to the minimum.

2.9 APPLICATIONS REVISITED

In this section, we give a brief introduction to the typical applications where the
adaptive filtering algorithms are required, including a discussion of where in
the real world these applications are found. The main objective of this section
is to illustrate how the adaptive filtering algorithms, in general, and the ones
presented in the book, in particular, are applied to solve practical problems.
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Figure 2.7 Convergence path of the Newton algorithm.
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It should be noted that the detailed analysis of any particular application is
beyond the scope of this book. Nevertheless, a number of specific references
are given for the interested reader. The distinctive feature of each application
is the way the adaptive filter input signal and the desired signal are chosen.
Once these signals are determined, any known properties of them can be used
to understand the expected behavior of the adaptive filter when attempting to
minimize the chosen objective function (for example, the MSE, ¢).

2.9.1 System Identification

The typical set up of the system identification application is depicted in Fig.
2.8. A common input signal is applied to the unknown system and to the
adaptive filter. Usually, the input signal is a wideband signal, in order to allow
the adaptive filter to converge to a good model of the unknown system.

Unknown
system
d(k)
x(k) o—p— e(k)
y(k)
Adaptive
filter

Figure 2.8 System identification.

Assume the unknown system has impulse response given by h(k), for k =
0,1,2,3,...,00 and zero for k < 0. The error signal is then given by

e(k) = d(k)—y(k)

ihl):c —z)-zw, (2.110)

=0 1=0

where w; (k) are the coefficients of the adaptive filter.
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Assuming that z(k) is a white noise, the MSE for a fixed w is given by

& = E[(thoo(k) - WTXN+1 (k))z]
= B[h" xeo (k) x5, (k)b — 20" %00 (k)X K1, (k)W + Wk 41 (k)X Ty 1 () W]
= vighz(i) — 20207 [ I"g“ }w+wTRN+1w (2.111)

where X (k) and xn41(k) are the input signal vector with infinite and finite
lengths, respectively.

By calculating the derivative of £ with respect to the coefficients of the adaptive
filter, it follows that

wo = hyy (2.112)

where

I
hh,, = hT[ "6“] (2.113)

If the input signal is a white noise, the best model for the unknown system is
a system whose impulse response coincides with the N + 1 first samples of the
unknown system impulse response. In the cases where the impulse response
of the unknown system is of finite length and the adaptive filter is of sufficient
order (i.e., it has enough number of parameters), the MSE becomes zero if
there is no measurement noise (or channel noise). In practical applications
the measurement noise is unavoidable, and if it is uncorrelated with the input
signal, the expected value of the adaptive filter coefficients will coincide with the
unknown-system impulse response samples. The output error will of course be
the measurement noise. We can observe that the measurement noise introduces
a variance in the estimates of the unknown system parameters.

Some real world applications of the system identification scheme include mod-
eling of multipath communication channels [30], control systems [23], seismic
exploration [31], and cancellation of echo caused by hybrids in some communic-
ation systems [32]-[36], just to mention a few.

2.9.2 Signal Enhancement

In the signal enhancement application, the reference signal consists of a desired
signal z(k) that is corrupted by an additive noise n (k). The input signal of
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the adaptive filter is a noise signal ny(k) that is correlated with the interference
signal nq(k), but uncorrelated with z(k). Fig. 2.9 illustrates the configuration
of the signal enhancement application. In practice, this configuration is found in
acoustic echo cancellation for auditoriums [39], hearing aids, noise cancellation
in hydrophones [38], cancelling of power line interference in electrocardiography
[23], and in other applications. The cancelling of echo caused by the hybrid
in some communication systems can also be considered a signal enhancement
problem [23].

x(k) + n,(k) e

) s Mgl 2z

Figure 2.9 Signal enhancement (n; (k) and ny (k) are noise signals correlated
to each other).

In this application, the error signal is given by

N
e(k) = z(k) + ni(k) = Y wing(k = 1) = o(k) + n (k) —y(k)  (2.114)
=0
The resulting MSE is then given by

Ele*(k)] = E[2*(k)] + E[(ny (k) — y(k))?] (2.115)

where it was assumed that z(k) is uncorrelated with n;(k) and ny(k). The
equation above shows that if the adaptive filter, having nz(k) as the input signal,
is able to perfectly predict the signal n;(k), the minimum MSE is given by

Emin = E[z?(k))] (2.116)

where the error signal, in this situation, is the desired signal z(k).

The effectiveness of the signal enhancement scheme depends on the high cor-
relation between n,(k) and ny(k). In some applications, it is useful to include
a delay of L samples in the reference signal or in the input signal, such that
their relative delay yields a maximum cross-correlation between y(k) and n; (k),
reducing the MSE. This delay provides a kind of synchronization between the
signals involved. An example exploring this issue will be presented in the fol-
lowing chapters.
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2.9.3 Signal Prediction

In the signal prediction application, the adaptive filter input consists of a delayed
version of the desired signal as illustrated in Fig. 2.10. The MSE is given by

€ = E[(z(k) — wTx(k — L))?] (2.117)
_ y(k)
W — (6

Figure 2.10 Signal prediction.

The minimization of the MSE leads to an FIR filter, whose coefficients are the
elements of w. This filter is able to predict the present sample of the input signal
using as information old samples such as z(k— L), z(k—L—1),...,z(k—L—N).
The resulting FIR filter can then be considered a model for the signal (k) when
the MSE is small. The minimum MSE is given by

r(L)
r(L+1)

Emin = 7(0) — W? : (2.118)

| r(L-‘i-N) |

where w, is the optimum predictor coefficient vector and r(l) = E[z(k)z(k —1)]
for a stationary process.

A typical predictor’s application is in linear prediction coding of speech signals
[37], where the predictor’s task is to estimate the speech parameters. These
parameters w are part of the coding information that is transmitted or stored
along with other informations inherent to the speech characteristics, such as
pitch period, among others.

The adaptive signal predictor is also used for adaptive line enhancement (ALE),
where the input signal is a narrowband signal (predictable) added to a wideband
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signal. After convergence the predictor output will be an enhanced version of
the narrowband signal.

Yet another application of the signal predictor is the suppression of narrowband
interference in a wideband signal. The input signal, in this case, has the same
general characteristics of the ALE. However, we are now interested in removing
the narrowband interferer. For such an application, the output signal of interest
is the error signal [39].

2.9.4 Channel Equalization

As can be seen from Fig. 2.11, channel equalization or inverse filtering con-
sists of estimating a transfer function to compensate for the linear distortion
caused by the channel. From another point of view, the objective is to force a
prescribed dynamic behavior for the cascade of the channel (unknown system)
and the adaptive filter, determined by the input signal. The first interpretation
is more appropriate in communications, where the information is transmitted
through dispersive channels {29], [35]. The second interpretation is appropri-
ate for control applications, where the inverse filtering scheme generates control
signals to be used in the unknown system [23].

(k) (k)

y(k)

x(k) Channel Adﬁaltpetﬁve e(k)

Figure 2.11 Channel equalization.

In the ideal situation, where n(k) = 0 and the equalizer has sufficient order, the
error signal is zero if

W(2)H(z) =z~ (2.119)

where W (z) and H(z) are the equalizer and unknown system transfer functions,
respectively. Therefore, the ideal equalizer has the following transfer function

W(z) = (2.120)
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From the equation above, we can conclude that if H(z) is an IIR transfer func-
tion with nontrivial numerator and denominator polynomials, W (z) will also be
IR. If H(z) is an all-pole model, W(z) is FIR. If H(z) is an all-zero model,

W (2) is an all-pole transfer function.

By applying the inverse Z-transform to equation (2.119), we can conclude that
the optimal equalizer impulse response convolved with the channel impulse re-
sponse producing as a result an impulse. This means that for zero additional
error in the channel, the output signal y(k) restores z(k — L) and, therefore, one
can conclude that a deconvolution process took place.

The delay in the reference signal plays an important role in the equalization
process. Without the delay, the desired signal is z(k), whereas the signal y(k)
will be mainly influenced by old samples of the input signal, since the unknown
system is usually causal. As a consequence, the equalizer should also perform
the task of predicting z(k) simultaneously with the main task of equalizing the
channel. The introduction of a delay alleviates the prediction task, leaving the
equalizer free to invert the channel response. A rule of thumb for choosing the
delay was proposed and analyzed in [23], where it was conjectured that the
best delay should be close to half the time span of the equalizer. In practice the
reader should try different delays.

In the case the unknown system is not of minimum phase, i.e., its transfer
function has zeros outside the unit circle of the Z plane, the optimum equal-
izer is either stable and noncausal, or unstable and causal. Both solutions are
unacceptable. The noncausal stable solution could be better approximated by
a causal FIR filter when the delay is included in the desired signal. The delay
forces a time shift in the ideal impulse response of the equalizer, allowing the
time span, where most of the energy is concentrated, to be in the causal region.

If channel noise signal is present and is uncorrelated with the channel’s input
signal, the error signal and y(k) will be accordingly noisier. However, it should
be noticed that the adaptive equalizer, in the process of reducing the MSE,
disturbs the optimal solution by trying to reduce the effects of n(k). Therefore,
in a noisy environment the equalizer transfer function is not exactly the inverse

of H(z).

In practice, the noblest use of the adaptive equalizer is to compensate for the
distortion caused by the transmission channel in a communication system. The
main distortions caused by the channels are high attenuation and intersymbol
interference (ISI). The ISI is generated when different frequency components of
the transmitted signals arrive at different times at the receiver, a phenomenon
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caused by the nonlinear group delay of the channel [29]. For example, in a di-
gital communication system, the time-dispersive channel extends a transmitted
symbol beyond the time interval allotted to it, interfering in the past and future
symbols. Under severe ISI, when short symbol space is used, the number of
symbols causing ISI is large.

The channel impulse response is a time spread sequence described by h(k) with
the received signal being given by

k+J
re(k+J) =z(k)h(J)+ Y. e(Ohk+J ) +n(k+J)  (2121)
l=—00, Ik

where J denotes the channel time delay (including the sampler phase). The first
term of the equation above corresponds to the desired information, the second
term is the interference of the symbols sent before and after (k). The third
term accounts for channel noise. Obviously only the neighboring symbols have
significant influence in the second term of the equation above. The elements of
the second term involving z(l), for I > k, are called pre-cursor ISI since they
are caused by components of the data signal that reach the receiver before their
cursor. On the other hand, the elements involving z(l), for | < k, are called
post-cursor ISI.

In many situations, the ISI is reduced by employing an equalizer consisting of
an adaptive FIR filter of appropriate length. The adaptive equalizer attempts
to cancel the ISI in the presence of noise. In digital communication, a decision
device is placed after the equalizer in order to identify the symbol at a given
instant. The equalizer coefficients are updated in two distinct circumstances
by employing different reference signals. During the equalizer training period,
a previously chosen training signal is transmitted through the channel and a
properly delayed version of this signal, that is prestored in the receiver end, is
used as reference signal. The training signal is usually a pseudo-noise sequence
long enough to allow the equalizer to compensate for the channel distortions.
After convergence, the error between the adaptive filter output and the decision
device output is utilized to update the coefficients. The resulting scheme is
the decision-directed adaptive equalizer. It should be mentioned that in some
applications no training period is available. Usually, in this case, the decision-
directed error is used all the time.

A more general equalizer scheme is the decision-feedback equalizer (DFE) il-
lustrated in Fig. 2.12. The DFE is widely used in situations where the channel
distortion is severe [29], [40]. The basic idea is to feed back, via a second FIR
filter, the decisions made by the decision device that is applied to the equalized
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signal. Assuming the decisions were correct, we are actually feeding back the
symbols z(l), for [ < k, of equation (2.121). The DFE is able to cancel the
post-cursor ISI for a number of past symbols (depending on the order of the
FIR feedback filter), leaving more freedom for the feedforward section to take

care of the remaining terms of the ISI. Some known characteristics of the DFE
are [29]:

®  The signals that are fed back are symbols, being noise free and allowing
computational savings.

®  The noise enhancement is reduced, if compared with the feedforward-only
equalizer.

®  Short time recovery when incorrect decisions are made.

®  Reduced sensitivity to sampling phase.

Error

/ Error
Symbol

+ output

Forward tai
o A e O I >

Error J’ Training
5( sequence

Feedback
filter

/

Figure 2.12 Decision-feedback equalizer.

2.9.5 Digital Communication System

For illustration, a general digital communication scheme over a channel con-
sisting of a subscriber line (telephone line, for example) is shown in Fig. 2.13.
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In either end the input signal is first coded and conditioned by a transmit fil-
ter. The filter shapes the pulse and limits in band the signal that is actually
transmitted. The signal then crosses the hybrid to travel through a dual du-
plex channel. The hybrid is an impedance bridge used to transfer the transmit
signal into the channel with minimal leakage to the near-end receiver. The im-
perfections of the hybrid cause echo that should be properly cancelled. In the
channel, the signal is corrupted by white noise and crosstalk (leakage of signals
being transmitted by other subscribers).

Oata ouput
nput

Figure 2.13 General digital communication transceiver.

After crossing the channel and the far-end hybrid, the signal is filtered by the
receive filter that attenuates high-frequency noise and also acts as an antialiasing
filter. Subsequently, we have a joint DFE and echo canceller, where the forward
filter and echo canceller outputs are subtracted. The result after subtracting
the decision feedback output is applied to the decision device. After passing
through the decision device, the symbol is decoded.

Other schemes for data transmission in subscriber line exist [35]. The one shown
here is for illustration purposes, having as special feature the joint equalizer and
echo canceller strategy. The digital subscriber line (DSL) structure shown here
has been used in integrated services digital network (ISDN) basic access, that
allows a data rate of 144 Kbits/s [35]. Also, a similar scheme is employed in the
high bit rate digital subscriber line (HDSL) [34], [41] that operates over short
and conditioned loops [42], [43].

2.10 CONCLUDING REMARKS

In this chapter, we described some of the concepts underlying the adaptive
filtering theory. The material presented here forms the basis to understand the
behavior of most adaptive filtering algorithms in a practical implementation.
The basic concept of the MSE surface searching algorithms was briefly reviewed,
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serving as a starting point for the development of a number of practical adaptive
filtering algorithms to be presented in the following chapters. The theory and
practice of adaptive signal processing is also the main subject of some excellent
books such as [22]-[28].
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Problems

1.

Supposing the input signal vector is composed by a delay line with a single
input signal. Compute the correlation matrix for the following input signals:

z(k) = sin(%k) + cos(gk) + n(k)
b)
z(k) = any (k) cos(wok) + na(k)
)
z(k) = any (k) sin(wok + na(k))
d)

z(k) = —arz(k - 1) — agz(k — 2) + n(k)

4
z(k) =) 0.25n(k — i)

f) ‘
z(k) = an(k)el“ok

In all cases, n(k),ni(k), and ny(k) are white noise with uniform distribu-
tion, with zero mean and with variances 02, o2 , and o2 , respectively.
These random signals are considered independent.
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2. For the correlation matrices given below, calculate their eigenvalues, eigen-

vectors, and the conditioning numbers.

a)
4321
134332
R = 212 3 4 3
1 234
b)
1 0.95 0.9025 0.857375
. 0.95 1 095  0.9025
0.9025 095 1 0.95
0.857375 0.9025 0.95 ]
c)
1 09899 098 0.970
L1 0989 1 09899 098
R = 500n| 098 09809 1  0.9899
0.970 098 0.9899 1
d)

1 0.5 0.25 0.125
0.5 1 05 025
025 05 1 0.5
0.125 0.25 0.5 1

For the correlation matrix given below, calculate its eigenvalues, eigen-
vectors, and form the matrix Q.

R = 1[01 02]
41 a2 a

. Generate the ARMA processes z(k) described below. Calculate the vari-

ance of the output signal and the autocorrelation for lags 1 and 2. In all
cases, n(k) is a white noise with variance 0.1.

a)
z(k) = 1.9368z(k— 1) — 0.9519z(k — 2) + n(k)
— 1.8894n(k—1)+n(k—-2)
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z(k) = —1.9368z(k — 1) — 0.95192(k — 2)
+ n(k) +1.8894n(k— 1)+ n(k —2)

Hint: For white noise generation consult for example [13], [14].

5. Generate the AR processes z(k) described below. Calculate the variance
of the output signal and the autocorrelation for lags 1 and 2. In all cases,
n(k) is a white noise with variance 0.05.

a)
z(k) = —0.8987x(k — 1) — 0.9018z(k — 2) + n(k)

b)
z(k) = 0.057z(k — 1) + 0.889z(k — 2) + n(k)

6. Generate the MA processes x(k) described below. Calculate the variance
of the output signal and the autocovariance matrix. In all cases, n(k) is a
white noise with variance 1.

a)
z(k) = 0.0935n(k)+ 0.3027n(k — 1) + 0.4n(k — 2)
+ 0.3027n(k — 4) + 0.0935n(k — 5)

b)
z(k) =n(k) —n(k— 1)+ n(k — 2) — n(k — 4) + n(k - 5)

c)
(k) = n(k) + 2n(k — 1) + 3n(k — 2) + 2n(k — 4) + n(k — 5)

7. Show that a process generated by adding two AR processes is in general
an ARMA process.

8. Determine if the following processes are mean ergodic:
z(k) = any (k) cos(wok) + na(k)
z(k) = any (k) sin(wok + ny(k))

z(k) = an(k)eiwok

In all cases, n(k),ni(k), and ny(k) are white noise with uniform distribu-
tion, with zero mean and with variances o2, 0',2“, and 032, respectively.
These random signals are considered independent.
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9. Suppose the matrix R and the vector p are known for a given experimental
environment. Compute the Wiener solution for the following cases:

a)
4321
113 43 2
R_Z 2 3 4 3
123 4
_[r321)”
P = 8 8 8
b)

1 0.8 0.64 0.512
0.8 1 08 0.64
064 08 1 0.8
0.512 0.64 0.8 1

p = i[0.4096 0.512 0.64 0.8]"

1 3 -2 1
R = 3 -2 3 -2
1 -2 3

T
1
= |-21 -=
p =[]

10. For the environments described in the previous problem, derive the updat-
ing formula for the steepest-descent method. Considering that the adaptive
filter coefficients are initially zero, calculate their values for the ten first it-
erations.

11. Repeat the previous problem using the Newton method.

12. Calculate the spectral decomposition for the matrices R of problem 9.
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13.

14.

15.
16.

17.

18.
19.

20.

Calculate the minimum MSE for the examples of problem 9 considering
that the variance of the reference signal is given by o2.

Calculate the time constants of the MSE and of the coefficients for the
examples of problem 9 considering that the steepest-descent algorithm was
employed.

For the examples of problem 9, describe the equations for the MSE surface.

Using the spectral decomposition of a Hermitian matrix show that for N

even
N

X
RY = QAVQY = 3" AN q;qf
1=0
The gradient with respect to a complex parameter has not been defined.
For our purposes the complex gradient vector can be defined as

_ OF (e(k)) ; OF (e(k))
Ore[6(k)] 0im[6(k)]

Vo{F(e(k)}

where re[-] and #m[] indicate real and imaginary parts of [] respectively.
Note that the partial derivatives are calculated for each element of 8(k).

Derive the complex steepest-descent algorithm.
Derive the Newton algorithm for complex signals.

In a signal enhancement application, assume that ni(k) = na(k) * h(k),
where h(k) represents the impulse response of an unknown system. Also,
assume that some small leakage of the signal z(k), given by h'(k) % z(k),
1s added to the adaptive filter input. Analyze the consequences of this
phenomenon.

In the equalizer application, calculate the optimal equalizer transfer func-
tion when the channel noise is present.



THE LEAST-MEAN-SQUARE (LMS)
ALGORITHM

3.1 INTRODUCTION

The least mean-square (LMS) is a search algorithm in which a simplification of
the gradient vector computation is made possible by appropriately modifying
the objective function [1]-[2]. The LMS algorithm, as well as others related
to it, is widely used in various applications of adaptive filtering due to its
computational simplicity [3]-[7]. The convergence characteristics of the LMS
algorithm are examined in order to establish a range for the convergence factor
that will guarantee stability. The convergence speed of the LMS is shown to
be dependent of the eigenvalue spread of the input-signal correlation matrix
[2]-[6]. In this chapter, several properties of the LMS algorithm are discussed
including the misadjustment in stationary and nonstationary environments [2]-
[9], tracking performance, and finite wordlength effects [10]-[12].

The LMS algorithm is by far the most widely used algorithm in adaptive fil-
tering for several reasons. The main features that attracted the use of the LMS
algorithm are low computational complexity, proof of convergence in stationary
environment, unbiased convergence in the mean to the Wiener solution, and
stable behavior when implemented with finite-precision arithmetic.

3.2 THE LMS ALGORITHM

In the previous chapter we derived the optimal solution for the parameters of the
adaptive filter implemented through a linear combiner, which corresponds to the
case of multiple input signals. This solution leads to the minimum mean-square
P. S. R. Diniz, Adaptive Filtering

© Springer Science+Business Media New York 1997
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error in estimating the reference signal d(k). The optimal (Wiener) solution is
given by

w,=R7!p (3.1)
where R = E[x(k)xT (k)] and p = E[d(k)x(k)], assuming that d(k) and x(k)

are jointly wide-sense stationary.

If good estimates of matrix R, denoted by R(k), and of vector p, denoted by
p(k), are available, a steepest-descent-based algorithm can be used to search
the Wiener solution of equation (3.1) as follows:

wik+1) = w(k) - pgw(k)
= w(k) + 2u(p(k) - R(k)w(k)) (3.2)

for k =0,1,2,..., where gw (k) represents an estimate of the gradient vector of
the objective function with respect to the filter coefficients.

One possible solution is to estimate the gradient vector by employing instant-
aneous estimates for R and p as follows:

R(k) = x(k)xT(k)
d(k)x(k) (3.3)

=
k-
I

The resulting gradient estimate is given by

gw(k) = —2d(k)x(k) + 2x(k)x" (k)w(k)
= 2x(k)(=d(k) + xT (k)w(k))
= —2¢(k)x(k) (3.4)

Note that if the objective function is replaced by the instantaneous square error
e?(k), instead of the MSE, the gradient estimate above represents the true
gradient vector since

de(k) de(k) de (k) de(k) 1T
v e(k) Fwo (k) 2e(k) Fon(k) 2e(k) 6wN(k)]
= —2e(k)x(k)
= gwlk) (3.5)

The resulting gradient-based algorithm is known, because it minimizes the mean
of the squared error, as the least-mean-square (LMS) algorithm, whose updating
equation is

w(k+ 1) = w(k) + 2pe(k)x(k) (3.6)
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Algorithm 3.1

LMS Algorithm

Tnitialization
x(0) = w(0)=[00 ... 0T
Do for k > 0
e(k) = d(k) — xT (K)w(k)

w(k + 1) = w(k) + 2ue(k)x(k)

where the convergence factor y should be chosen in a range to guarantee con-
vergence.

Fig. 3.1 depicts the realization of the LMS algorithm for a delay line input
x(k). Typically, one iteration of the LMS requires N + 2 multiplications for
the filter coefficient updating and N + 1 multiplications for the error generation.
The detailed description of the LMS algorithm is shown in the table denoted
Algorithm 3.1.

It should be noted that the initialization is not necessarily performed as de-
scribed in Algorithm 3.1, where the coefficients of the adaptive filter were ini-
tialized with zeros. For example, if a rough idea of the optimal coefficient value
is known, these values could be used to form w(0) leading to a reduction in the
number of iterations required to reach the neighborhood of w,.
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x(k) X
\ 4 w,(k)
z-l
! d(k)
d yhy A ek)
_’

Figure 3.1 LMS adaptive FIR filter.

3.3 SOME PROPERTIES OF THE LMS
ALGORITHM

In this section, the main properties related to the convergence behavior of the
LMS algorithm in a stationary environment are described. The information
contained here is essential to understand the influence of the convergence factor
p in various convergence aspects of the LMS algorithm.
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3.3.1 Gradient Behavior

As shown in the previous chapter, see equation (2.79), the ideal gradient direc-
tion to perform a search on the MSE surface for the optimum coefficient vector
solution is

gw(k) = 2(E[x(k)x" (k)] w(k) — E[d(k)x(k)))
= 2(Rw(k) - p) (3.7)

In the LMS algorithm instantaneous estimates of R and p are used to determine
the search direction, i.e.,

Bw (k) = 2 [x(k)xT (K)w(k) — d(k)x(k)] (3.8)

As can be expected, the direction determined by equation (3.8) is quite different
from that of equation (3.7). Therefore, by using the more computationally
attractive gradient direction of the LMS algorithm, the convergence behavior is
not the same as that of the steepest-descent algorithm.

In average, it can be said that the LMS gradient direction has the tendency to
approach the ideal gradient direction since for a fixed coefficient vector w

Elgw(k)] = 2(E[x(k)xT (k)] w — E [d(k)x(k)])
= 8w (3.9)

hence, vector gw (k) can be interpreted as an unbiased instantaneous estimate
of gw. If for a fixed w vector gy (k) is calculated for a large number of inputs
and reference signals, the average direction tends to gy, i.e.,

M
.1 . .
A}l_r)“w oM ;_1: gw(k+1) = gw (3.10)

3.3.2 Convergence Behavior of the Coefficient
Vector

Assume that an unknown FIR filter with coefficient vector given by w, is being
identified by an adaptive FIR filter of the same order, employing the LMS
algorithm. Measurement white noise n(k) with zero mean and variance o2 is
added to the output of the unknown system.
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The error in the adaptive filter coefficients as related to the ideal coefficient
vector w,, in each iteration, is described by the N + 1 vector

Aw(k) = w(k) —w, (3.11)
With this definition, the LMS algorithm can alternatively be described by
wk+1) = Aw (k) + 2pe(k)x(k
= Aw(k) + 2ux(k) (xT (k)w, + n(k) — xT (k)w(k))
= Aw ) + 2ux(k) (eo(k) (k)Aw(k))
= (I-2px(k)xT (k) Aw +2,ueo(k)x(k) (3.12)

where e, (k) is the minimum output error given by

eo(k) d(k) — wTx(k)
wlx(k) + n(k) — wlx(k)

= n(k) (3.13)

It

The expected error in the coefficient vector is then given by
E[Aw(k + 1)] = E[(I - 2ux(k)xT (k))Aw (k)] + 2uE[e, (k)x(k)] (3.14)

If it is assumed that the elements of x(k) are statistically independent of the
elements of Aw(k) and e,(k), equation (3.14) can be simplified as follows:

ElAw(k+1)] = (I-2uE[x(b)x (k)]) E[Aw(k)]
= (I-2uR)E[Aw(k)] (3.15)

The first assumption is justified if we assume that the deviation in the para-
meters is dependent of previous input-signal vectors only, whereas the second
assumption means that the error signal at the optimal solution is orthogonal to
the elements of the input-signal vector. The expression above leads to

E[Aw(k +1)] = (I - 2uR)* ! E[Aw(0)] (3.16)

Equation (3.15) premultiplied by QT , where Q is the unitary matrix that diag-
onalizes R through a similarity transformation, yields

E [QT Aw(k + 1)] = (I-2uQTRQ)E [QTw(k)]
E[AW (k +1)]
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(I- 24A)E [AW (k)]

=2 0 - 0

_ 0 1=k E[AW' (k)]
0 0 1—-2ulN

(3.17)

where Aw/(k + 1) = QT Aw(k + 1) is the rotated-coefficient error vector. The
applied rotation yielded an equation where the driving matrix is diagonal, mak-
ing easier to analyze the equation dynamic behavior. Alternatively, the above
relation can be expressed as

E[AW'(k+1)] = (I-2uA)*TE[AW (0)]

(1 = 2uXp)k 1 0 e 0
- 0 (1= 2pA)FH! :
0 0 (1= 2pAy)Ft?
x E[Aw(0)] (3.18)

This equation shows that in order to guarantee convergence of the coefficients
in the mean, the convergence factor of the LMS algorithm must be chosen in
the range

O<pu< (3.19)

A‘IYI.GI
where Ap,q; is the largest eigenvalue of R. Values of y in the range guarantees
that all elements of the diagonal matrix in the equation (3.18) tend to zero as
k — co. As a result E[Aw’(k + 1)] tends to zero for large k.

The choice of p as explained above ensures that the mean value of the coefficient
vector approaches the optimum coefficient vector w,. It should be mentioned
that if the matrix R has a large eigenvalue spread, it is advisable to choose a
value for y much smaller than the upper bound. As a result, the convergence
speed of the coefficients will be primarily dependent on the value of the smallest
eigenvalue, responsible for the slowest mode in equation (3.18).

The key assumption for the analysis above is the so-called independence theory
[4], which considers all vectors x(i), for i = 0,1,..., k, statistically independ-
ent. This assumption allowed us to consider Aw(k) independent of x(k)xT (k)
in equation (3.14). Such an assumption, despite not being rigorously valid es-
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pecially when x(k) represents the elements of a delay line, leads to theoretical
results that are in good agreement with the experimental results.

3.3.3 Coefficient-Error-Vector Covariance
Matrix

In this subsection, we derive the expressions for the second-order statistics of
the errors in the adaptive filter coefficients. Since the mean value of Aw(k) is
zero, the covariance of the coefficient-error vector is defined as

cov[Aw(k)] = E[Aw(k)AwT (k)] = E [(w(k) — w,)(w(k) — w,)T]  (3.20)
By replacing the equation (3.12) in (3.20) it follows that

covfAw(k+1)] = E[(I-2pux(k)xT(k))Aw(k)AwT (k) (I - 2ux(k)xT (k))T
+(I = 2px(k)xT (k))2peo (k)xT (k)

+2ueo (k)x(k)AwT (k) (I — 2ux(k)xT (k)T
e (k)x (k)xT (k)] (3.21)

By considering e, (k) independent of Aw(k) and orthogonal to x(k), the second
and third terms of the right-hand side of the above equation can be eliminated.
The details of this simplification can be carried out by describing each element
of the eliminated matrices explicitly. In this case,

cov[fAw(k +1)] = cov[Aw(k)] + E[-2ux(k)xT (k)Aw(k)AwT (k)
—2ulAw(k)AwT (k)x(k)xT (k)
+4u?x (k)xT (k) Aw (k) AwT (k)x(k)xT (k)
+4ue?(k)x (k)xT (k)] (3.22)

In addition, assuming that Aw(k) and x(k) are independent, the equation (3.22)
can be rewritten as

cov[Aw(k + 1)] cov[Aw(k)] — 2uE[x(k)xT (k)| E[Aw(k)AwT (k)]
—2uE[Aw(k)AwT (k) E[x(k)xT (k)]
+4u? E[x(k)xT (k) Aw (k) AwT (k)x(k)xT (k)]
+4p? E[e3 (k) E[x(k)x" (k)]
= cov[Aw(k)] — 2uR cov[Aw(k)]
—2p cov[Aw(k)|R + 4p* A + 44%02R (3.23)
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The calculation of A = E[x(k)xT (k)Aw(k)AwT (k)x(k)xT (k)] involves fourth-
order moments and the result can be obtained by expanding the matrix inside
the operation E[-] as described in [4] and [13] for jointly Gaussian input-signal
samples. The details are not shown here since similar derivation is shown in
equation (3.92). The result is

A = 2R cov[Aw(k)] R + R tr[R cov[Aw(k)]] (3.24)

where tr[-] denotes trace of [-]. Equation (3.23) is needed to calculate the excess
of mean-square error caused by the noisy estimate of the gradient employed by
the LMS algorithm. As can be noted, cov[Aw(k + 1)] does not tend to 0 as
k — 00, due to the last term in equation (3.23) that provides an excitation in
the dynamic matrix equation.

A more useful form for the equation (3.23) can be obtained by premultiplying
and postmultiplying it by QT and Q respectively, yielding
QTcov[Aw(k +1)]Q = QT cov[Aw(k)] Q
—2uQ"RQQ" cov[Aw(k)]Q
-2uQ" cov[Aw(k)]QQTRQ
+81’QTRQQT cov[Aw(k)]QQ"RQ
+44°Q"RQQ" trRQQ” cov[Aw(K)]]Q
+4,%02QTRQ (3.25)
where we used the equality Q7 Q = QQT = I. Using the fact that QT tr[B]Q =
tr[QTBQ] for any B,
cov[AwW/(k +1)] = cov[Aw (k)]
—2pA cov[AW (k)] — 2u cov[AW (k)]A
+8u2A cov[Aw’ (k)]A
+4p2 A tr[A cov[AW (k)]] + 4p’0ZA (3.26)

where cov[Aw (k)] = E[QT Aw(k)AwT (k)Q].

As will be shown in section 3.3.5, only the diagonal elements of cov[Aw’(k)]
contribute to the excess of MSE in the LMS algorithm. By defining v’(k) as
a vector with elements consisting of the diagonal elements of cov[Aw’(k)], and
A as a vector consisting of the eigenvalues of R, the following relation can be
derived from the equations above

Vk+1) = (I-4pA+8uA% + 4> 2TV’ (k) + 4p02 A
= Bv'(k) +4p%c2) (3.27)
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where the elements of B are given by

1—4pX; +8u?)? +4p2)? fori=j
bij = (3.28)
4p? i A for i # j

The value of the convergence factor u must be chosen in a range that guarantees
the convergence of v’(k). A sufficient condition to guarantee convergence is
to force the sum of the elements in any row of B to be kept in the range
-1< Zjvzo bij < 1. Since

N N
D b= 1—dphi + 820 + 44 ) ) (3.29)

j=0 7=0

the critical values of y are those which the equation above approaches 1, as for
any p the expression is always positive. This will occur only if the last three
terms of equation (3.29) approach zero, that is

N
—4pdi + 8uPA] + 47X Y A~ 0

7=0

After simple manipulation the stability condition obtained is

1 1 1
O<pu< g

< =
2X + Zj:o Aj E;vzo )‘j tr[R]

(3.30)

where the last and simpler expression is more widely used in practice.

The obtained upper bound for the value of y is important from the practical
point of view, because it gives us an indication of the maximum value of p that
could be used in order to achieve convergence of the coefficients. However, the
reader should be advised that the given upper bound is somewhat optimistic
due to the approximations and assumptions made. In most cases, the value of
p should not be chosen close to the upper bound.

3.3.4 Behavior of the Error Signal

In this subsection, the mean value of the output error in the adaptive filter
1s calculated, considering that the unknown system model has infinite impulse



The Least-Mean-Square (LMS) Algorithm 81

response and there is measurement noise. The error signal, when an additional
zero-mean measurement noise is accounted for, is given by

e(k) = d'(k) — wT (k)x(k) + n(k) (3.31)

where d’(k) is the desired signal without measurement noise. For a given known
input vector x(k), the expected value of the error signal is

Elw" (k)x(k)] + E[n(k)]

Ele(k)] = E[d'(k)] (
Tx(k) + E[n(k)] (3.32)

= E[d(k)]-w
where w, is the optimal solution, i.e., the Wiener solution for the coefficient
vector. Note that the input-signal vector was assumed known in the above
equation, in order to expose what can be expected if the adaptive filter converges
to the optimal solution. If d’(k) was generated through an infinite impulse
response system, a residue error remains in the subtraction of the first two

terms due to undermodeling, i.e.,

[ee]

Ele(k)] = E [ > gk — i)

i=N+1

+ E[n(k)] (3.33)

where wo; are the coefficients of the process that generated the part of d’(k) not
identified by the adaptive filter. If the input signal and n(k) have zero mean,
then Ele(k)] = 0.

Now, the minimum MSE is calculated for undermodeling situations (adaptive
FIR filter with insufficient number of parameters) and in the presence of addi-
tional noise. The minimum mean-square error that can be obtained, assuming
the input signal is a white noise uncorrelated with the additional noise signal is
given by

bmin = El’(K)lmin = ) ©%E[(k—i)] + E[n’(k)]
i=N+1
= Y dkol+o? (3.34)

1=N+41

This minimum error is achieved when it is assumed that the adaptive filter
multiplier coefficients are frozen at their optimum values. In case the adaptive
filter has sufficient order to model the process that generated d(k), the minimum
MSE that can be achieved is equal to the variance of the additional noise.
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3.3.5 Excess of Mean-Square Error and
Misadjustment

The result of the previous subsection assumes that the adaptive filter coeffi-
cients converge to their optimal values, but in practice this is not so. Although
the coefficient vector in average converges to w,, the instantaneous deviation
Aw(k) = w(k) — w, generates an excess of MSE. The excess of MSE can be
quantified as described in the present section. The output error at instant k is
given by

e(k) = d(k)—wl(k)x(k) — AwT (k)x(k)
= e,(k) — AwT (k)x(k) (3.35)

®
[
—_
o~
~
1l

e2(k) — 2eo(k)AwT (k)x(k) + AwT (k)x(k)xT (k)Aw(k)  (3.36)

The so-called independence theory assumes that the vectors x(k), for all k, are
statistically independent, allowing a simple mathematical treatment for the LMS
algorithm. As mentioned before, this assumption is in general not true, espe-
cially in the case where x(k) consists of the elements of a delay line. However,
even in this case the use of the independence assumption is justified by the
agreement between the analytical and the experimental results. With the in-
dependence assumption, Aw(k) can be considered independent of x(k), since
only previous input vectors are involved in determining Aw(k). By using the
assumption and applying the expected value operator to the equation (3.36), we
have

E[e* (k)]
= &min — 2E[AWT (k)] E[eo(k)x (k)]
+E[AwT (k) E[x(k)xT (k)] Aw (k)] (3.37)
Since R = E[x(k)xT (k)] and by the orthogonality principle E[e,(k)x(k)] = 0,

the equation above can be simplified as follows:

E(k) = Emin + E[AWT (k) RAW(k)] (3.38)

£(k)

The excess in the MSE is given by

AE(R) 2 £(K) = Emin = E[AWT (k)RAW(K)]

= E[tr(RAw(k)AwT (k))]
= tr[E[RAw(k)Aw” (k)]] (3.39)
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where in the second equality we used the property tr[A - B] = tr[B - A]. By
using the fact that QQT = I, the following relation results

Ag(k) = tr[E[QQTRQQT Aw(k)Aw" (K)QQT]]
tr[QA cov(Aw'(k))QT] (3.40)
Therefore,
A¢(k) = tr[A cov(Aw'(k))] (3.41)

From equation (3.27), it is easy to show that

N
Ag(k) = (k) = ATv(k) (3.42)
=0
Since
vi(k+1) = (1—4p +8u°\2)vj(k)
N
H4PN D Nl (k) + 4pP ol (3.43)
=0

and vj(k + 1) ~ v}(k) for large k, we can apply a summation operation to the
above equation in order to obtain

)y B Sico X+ 2 Tito Mu (k)
S oNvik) = ~
=0 1—p Ej:o Aj
#0721 E;V:o Aj
l-p Z;'Vzo Aj
2
poitr[R]
1= atr[R] (3.44)

where the term 2u Z;V:O AZv}(k) was considered very small as compared to the

remaining terms of the numerator. This assumption is not easily justifiable, but
is valid for small values of p.

The excess of mean-square error can then be expressed as

2
Eexc: hm A{(k)"‘ Hffntr[R]
k— o0

o (3.45)

This equation, for very small y, can be approximated by

eve ~ potr[R] = u(N + 1)o?o? (3.46)
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where 02 is the input-signal variance and ¢2 is the additional-noise variance.

The misadjustment M, defined as the ratio between the &,;. and the minimum
MSE, is a common parameter used to compare different adaptive signal pro-
cessing algorithms. For the LMS algorithm the misadjustment is given by

A Eerc _ ptr[R]
M= i~ 1 — ptr[R] (347

3.3.6 Transient Behavior

Before the LMS algorithm reaches the steady-state behavior, a number of it-
erations are spent in the transient part. During this time, the adaptive filter
coefficients and the output error change from their initial values to values close
to that of the corresponding optimal solution.

In the case of the adaptive filter coefficients, the convergence in the mean will
follow (N + 1) geometric decaying curves with ratios ry; = (1 — 2u);). Each of
these curves can be approximated by an exponential envelope with time constant
Twi as follows (see equation (3.18)) [2]:
cefr=1o g ] 3.48

o= e = 1 (3.48)
where for each iteration, the decay in the exponential envelope is equal to the
decay in the original geometric curve. In general, ry; is slightly smaller than
one, especially in the case of the slowly decreasing modes corresponding to small
A; and p. Therefore,

1
Twi = (1 =2uX\)~ 1 - — (3.49)

Twi

then
1
Twi =
Q,u)\,‘

for i = 0,1,...,N. Note that in order to guarantee convergence of the tap

coefficients in the mean, y must be chosen in the range 0 < g < 1/Amaz (see
equation (3.19)).

According to equation (3.30), for the convergence of the MSE the range of
values for 4 is 0 < p < 1/tr[R], and the corresponding time constant can
be calculated from matrix B in equation (3.27), by considering the terms in
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p? small as compared to the remaining terms in matrix B. In this case, the
geometric decaying curves have ratios given by r.; = (1 — 4p\;) that can be
fitted to exponential envelopes with time constants given by

1
Apd;

Tei = (3.50)
for : = 0,1,...,N. In the convergence of both the error and the coefficients,
the time required for the convergence depends on the ratio of eigenvalues of the
input signal correlation matrix. For example, if p is chosen to be approximately
1/Amaz the corresponding time constant for the MSE is given by

A by
mazr maxr . 1
D S Do (3:51)

A
Tei =

Since the mode with the highest time constant takes longer to reach conver-
gence, the rate of convergence is determined by the slowest mode given by
Temae = Amaz/(4Amin). Suppose the convergence is considered achieved when
the slowest mode provides an attenuation of 100, i.e.,

eremaz = (.01

this requires the following number of iterations in order to reach convergence:

)\ma:r
k=~4.
64/\m:'n

The situation above is quite optimistic because y was chosen to be high. As
mentioned before, in practice we should choose the value of u much smaller
than the upper bound. For an eigenvalue spread approximating one, x should
be smaller than 1/(N + 1)\ In this case, the LMS algorithm will require
at least

(N + 1) Ao

k~4.6
4/\min

iterations to achieve the convergence.

The analytical results presented in this section are valid for stationary envir-
onments. The LMS algorithm can also operate in the case of nonstationary
environments, as shown in the following section.
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3.4 LMS ALGORITHM BEHAVIOR IN
NONSTATIONARY ENVIRONMENTS

In practical situations, the environment in which the adaptive filter is embedded
may be nonstationary. In these cases, the input-signal autocorrelation matrix
and/or the cross-correlation vector, denoted respectively by R(k) and p(k),
are/is varying with time. Therefore, the optimal solution for the coefficient
vector is also a time-varying vector given by w, (k).

Since the optimal coefficient vector is not fixed, it is important to analyze if the
LMS algorithm will be able to track changes in w,(k). It is also of interest to
learn how the tracking error in the coefficients given by E[w(k)] — w,(k) will
affect the output MSE. It will be shown later that the excess of MSE caused by
lag in the tracking of w, (k) can be separated from the excess of MSE caused by
the measurement noise, and therefore, without loss of generality, in the following
analysis the additional noise will be considered zero.

The coefficient-vector updating in the LMS algorithm can be written in the
following form

w(k+1) = w(k)+2ux(k)e(k)
= w(k) + 2ux(k)(d(k) — xT (k)w(k)) (3.52)

Since

d(k) = xT (k)w, (k) (3.53)

the coeflicient updating can be expressed as follows:
w(k+ 1) = w(k) + 2ux(k) (xT (k)w, (k) — xT (k)w(k)) (3.54)

Now assume that an ensemble of a nonstationary adaptive identification process
has been built, where the input signal in each experiment is taken from the same
stochastic process. The input signal is considered stationary and ergodic. The
first assumption results in a fixed R matrix, and the nonstationarity is caused
by the desired signal that is generated by applying the input signal to a time-
varying system. With these assumptions, by using the expected value operation
to the ensemble, with the coefficient updating in each experiment given by
equation (3.54), and assuming that w(k) is independent of x(k) yields

Blw(k+1)] = E[w(k)] + 2uEx(k)x (k)]wo (k)
~2uE[x(k)xT (k)] E[w(k)]
E[w(k)] + 2uR(wo(k) - Ew(K)])  (3.55)
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If the lag in the coefficient vector is defined by
lw(k) = E[w(k)] — wo(k) (3.56)
equation (3.55) can be rewritten as

lw(k +1) = (I - 2uR)lw (k) — wo (k + 1) + wo (k) (3.57)

In order to simplify our analysis, we can premultiply the equation above by QT
resulting in a decoupled set of equations given by

Vo (k + 1) = (I— 2uA)y (k) — W, (k + 1) + W' (k) (3.58)

where the vectors with superscript are the original vectors projected onto the
transformed space. As can be noted, each element of the lag-error vector is
determined by the following relation

L(k+1) = (1= 2pN)l (k) — wh;(k+ 1) + wl, (k) (3.59)

where I} (k) is the ith element of Iy (k). By properly interpreting the equation
above, we can say that the lag is generated by applying the transformed instant-
aneous optimal coefficient to a first-order discrete-time filter denoted lag filter,
le.,

z—1 ,

Li(z) = —————— W' (z 3.60

1( ) Z—1+2uAg os() ( )
The discrete-time filter transient response converges with a time constant of the
exponential envelope given by

1

3.61
TRy (3.61)

=

which is of course different for each individual tap. Therefore, the tracking
ability of the coefficients in the LMS algorithm is dependent on the eigenvalues
of the input-signal correlation matrix.

The lag in the adaptive filter coefficients leads to an excess of mean-square error.
In order to calculate the excess of MSE, suppose that each element of the optimal
coefficient vector is modeled as a first-order Markov process. This nonstationary
situation can be considered somewhat simplified as compared with some real
practical situations. However, it allows a manageable mathematical analysis
while retaining the essence of handling the more complicated cases. The first-
order Markov process is described by

Wo(k) = Awwo(k — 1) + nw (k) (3.62)
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where nw (k) is a vector whose elements are zero-mean Gaussian noise processes
with variance 0%, and Aw < 1. Note that (1 — 2u)\;) < Aw < 1, for i =
0,1,..., N, since the optimal coefficients values must vary slower than the filter
tracking speed, i.e., ﬁ < I—_—}\—‘; This model may not represent a real

system when Aw — 1, since the cov[w,(k)] will have unbounded elements if,
for example, nw (k) is not exactly zero mean. A more realistic model would
include a factor (1 — Aw)%, for p > 1, multiplying nw (k) in order to guarantee
that cov[w, (k)] is bounded. In the following discussions, this case will not be
considered since the corresponding results can be easily derived.

From equations (3.59) and (3.60), we can infer that the lag-error vector elements
are generated by applying a first-order discrete-time system to the elements of
the unknown system coefficient vector, both in the transformed space. On the
other hand, the coefficients of the unknown system are generated by applying
each element of the noise vector nw(k) to a first-order all-pole filter, with the
pole placed at Aw. For the unknown coefficient vector with the model above,
the lag-error vector elements can be generated by applying the elements of
the transformed noise vector niy (k) = Q nw (k) to a discrete-time filter with
transfer function
—(z—-1)z

(z = 14 2uX)(z — \w)

This transfer function consists of a cascade of the lag filter with the all-pole filter
representing the first-order Markov process as illustrated in Fig. 3.2. Using the
inverse Z-transform, the variance of the elements of the vector Iy (k) can then
be calculated by

H(z) = (3.63)

E[l*(k)] = 2—711_; H(z)H(z ok 27! dz

1 2
<1—)\w—2,u/\;)

;1/\,' 1- /\w 4(1 - /\w),u/\; 0_2
L—ph  14+dw 1= Aw+2udwh| W

I

(3.64)

If Aw is considered very close to 1, it is possible to simplify the equation above

as
2

Bl (k)] = Wa—m (3.65)

Any error in the coefficient vector of the adaptive filter as compared to the
optimal coefficient filter generates an excess of MSE (see equation 3.38). Since
the lag is one source of error in the adaptive filter coefficients, then the excess
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n k) e— Lk o L(K)
w i z-Aw ¢

Figure 3.2 Lag model in nonstationary environment.

of MSE due to lag is given by

fag = Elly(k)Rlw(k)]
= E[tr(Rlw (k)1%
= tr(RE[w (k)i
= t,r(AE[l’ (k)KE

= Z,\iE[l?(k)]

2 N
Ow 1
= X 3.66
4“ 1=0 1~ N/\t ( )

(k)]
(k)])
(k)])

If p is very small, the MSE due to lag tends to infinity indicating that the LMS
algorithm, in this case, cannot track any change in the environment. On the
other hand, for u appropriately chosen the algorithm can track variations in
the environment leading to an excess of MSE. This excess of MSE depends
on the variance of the optimal coefficient disturbance and on the values of the
input-signal autocorrelation matrix eigenvalues, as indicated in equation (3.66).

Now we analyze how the error due to lag interacts with the error generated by
the noisy calculation of the gradient in the LMS algorithm. The overall error
in the taps is given by

Aw(k) = w(k) — wo(k) = (w(k) — E[w(k)]) + (E[w(k)] — wo(k))  (3.67)

where the first error in the equation above is due to the additional noise and the
second is the error due to lag. The overall excess of MSE can then be expressed
as

Srorat = E[(w(k) = wo(k))TR(w (k) — wo(k))]
~ EB((w(k) - E[w(k))"R(w(k) — E[w(k)])]
+E[(Elw(k)] — wo(k))TR(E[w(k)] ~ w,(k))]  (3.68)

since 2E[(w(k) — E[w(k)])TR(E[w(k)] — w,(k))] = 0, if we consider the fact
that w, (k) is kept fixed in each experiment of the ensemble. As a consequence,
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an estimate for the overall excess of MSE can be obtained by adding the results
of equations (3.45) and (3.66), i.e

poltr[ R]
it Chind b B E 3.69
Stotat 1 — ptr R] 1- ;4/\ ( )

If small p is employed, the above equation can be simplified as follows:
o2
Etotal ~ poltr[R] + —‘Z(N +1) (3.70)

Differentiating the equation above with respect to p and setting the result to
zero yields an optimum value for p given by

N +1)d?

v =\ Gl .
The pop: is supposed to lead to the minimum excess of MSE. However, the
user should bear in mind that the pop: can only be used if it satisfies stability
conditions, and if its value can be considered small enough to validate equation
(3.70). Also this value is optimum only when quantization effects are not taken
into consideration, where for short wordlength implementation the best y should
be chosen following the guidelines given in the following section. It should also
be mentioned that the study of the misadjustment due to nonstationarity of
the environment is considerably more complicated when the input signal and
the desired signal are simultaneously nonstationary [8], [10]-[15]. Therefore,
the analysis presented here is only valid if the assumptions made are valid.
However, the simplified analysis provides a good sample of the LMS algorithm
behavior in a nonstationary environment and gives a general indication of what
can be expected in more complicated situations.

3.5 QUANTIZATION EFFECTS

The results of the analysis of the previous sections are obtained assuming that
the algorithm is implemented with infinite precision. However, the widespread
use of adaptive filtering algorithms in real-time requires their implementation
with short wordlength, in order to meet the speed requirements. When im-
plemented with short-wordlength precision the LMS algorithm behavior can be
very different from what is expected in infinite precision. In particular, when
the convergence factor p tends to zero it is expected that the minimum mean-
square error is reached in steady state; however, due to quantization effects the
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MSE tends to increase significantly if 4 is reduced below a certain value. In
fact, the algorithm can stop updating some filter coefficients if p is not chosen
appropriately. In this section, several aspects of the finite-wordlength effects in
the LMS algorithm are discussed for the case of implementation in fixed- and
floating-point arithmetics [16]-[18].

3.5.1 Error Description

All scalars and vector elements in the LMS algorithm will deviate from their
correct values due to quantization effects. The error generated in any individual
quantization 1s considered to be a zero-mean random variable that is independ-
ent of any other errors and quantities related to the adaptive filter algorithm.
The variances of these errors depend on the type of quantization and arithmetic
that will be employed in the algorithm implementation.

The errors in the quantities related to the LMS algorithm are defined by

ne(k) = e(k) —e(k)q (3.72)
nw(k) = w(k)-w(k)o (3.73)
ny(k) = y(k)—y(k)g (3.74)

where the subscript @) denotes the quantized form of the given value or vector.

It is assumed that the input signal and desired signal suffer no quantization,
so that only internal computation quantizations are taken into account. The
effects of quantization in the input and desired signals can be easily taken into
consideration separately from other quantization error sources. In the case of
the desired signal, the quantization error can be added to the measurement
noise, while for the input signal the basic effect at the output of the filter is an
additional noise as will be discussed later.

The following relations describe the computational errors introduced in the LMS
algorithm implemented with finite wordlength:

ekl = d(k)—xT(K)w(k)q - ne(k) (3.75)
wik+1)g = w(k)q + 2pe(k)ox(k) - nwik) (3.76)
where n.(k) is the noise sequence due to quantization in the inner product

xT(k)w(k)q, the additional measurement noise n(k) is included in d(k), and
nw (k) is a noise vector generated by quantization in the product 2ue(k)gx(k).
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Algorithm 3.2

LMS Algorithm Including Quantization

Initialization
x(0) = w(0)=[00 ... 0]T
Do for k > 0
e(k)g = (d(k) - xT (K)w(k)g)q

wik+1)g = (w(k)g + 2ue(k)gx(k))q

The generation of quantization noise as described applies for fixed-point arith-
metic, whereas for floating-point arithmetic the addition also introduces quant-
ization error that should be included in n.(k) and nw (k).

The objective now is to study the LMS algorithm behavior when internal com-
putations are performed in finite precision. Algorithm 3.2 describes the LMS
algorithm including quantization and with presence of additional noise.

Define
AW(k)Q = W(k‘)Q — Wy (377)

where w, is the optimal coefficient vector, and considering that
d(k) = xT (k)w, + n(k) (3.78)

it then follows that

ekl = (d(k) —xT (k)w(k)q)q
—xT(k)Aw(k)q — ne(k) + n(k) (3.79)
and from equation (3.76)
Awlk+1)q = Aw(k)q +2x(k) [—xT (k) Aw(k)q — ne(k) + (k)]

—nw (k) (3.80)
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This equation can be rewritten as
Aw(k + 1)q = [I— 2ux(k)xT (k)] Aw(k)q + ni (k) (3.81)
where
ny (k) = 2ux(k)(n(k) — ne(k)) — nw (k) (3.82)

For the sake of illustration and completeness, the solution of the equation (3.81)
1s

k
Aw(k +1)g HI—2ux T(i)] Aw(0)g

+ Z{ IT [1- 2ux(5)x7 (5)] n (3) (3.83)

1=0 j=14+1

where we define that for j = k + 1 in the second product, ]_[J k41l =

3.5.2 Error Models for Fixed-Point
Arithmetic

In the case of fixed-point arithmetic, with rounding assumed for quantization,
the error after each product can be modeled as a zero-mean stochastic process,
with variance given by [19]-[20]
) 2—26

where b is the number of bits after the sign bit. Here it is assumed that the
number of bits after the sign bit for quantities representing signals and filter
coefficients are different and given by by and b., respectively. It is also assumed
that the internal signals are properly scaled, so that no overflow occurs during
the computations and that the signal values lie between -1 and +1 all the time.
The error signals consisting of the elements of n. (k) and nw (k) are all uncorrel-
ated and independent of each other. The variance of n.(k) and the covariance
of nw(k) are given by

EnX(k)] = o2 (3.85)
Elnw(knd (k)] = o}l (3.86)

respectively. If distinction is made between data and coefficient wordlengths,
the above mentioned variances are given by

2—264

(3.87)
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2—2bc

12
where 4/ = 4 = 1 if the quantization is performed after addition, i.e., products
are performed in full precision and only after all the additions in the inner
product are finished is the quantization applied. For quantization after each
product, ¥ = N + 1 where N + 1 is the number of partial products. Those not
familiar with the results of the equations above should consult a basic digital
signal processing textbook such as [19] or [20].

2 _
U'W—")’

(3.88)

Note that 0% depends on how the product 2ue(k)x(k) is performed. In the
equation above, it was assumed that the product was available in full precision,
and then a quantization to b. bits in the fractional part was performed, or
equivalently, the product 2ue(k) in full precision was multiplied by x(k), and
only in the last operation quantization was introduced. In case of quantization
of partial results, the variance 0%, is increased due to the products of partial

errors with the remaining product components.

3.5.3 Coefficient-Error-Vector Covariance
Matrix

Obviously, internal quantization noise generated during the operation of the
LMS algorithm affects its convergence behavior. In this subsection, we discuss
the effects of the finite wordlength computations on the second-order statistics
of the errors in the adaptive filter coefficients. First, we assume that the quant-
ization noise n.(k) and the vector nw (k) are all independent of the data, of
the filter coefficients, and of each other. Also, these quantization errors are all
considered zero-mean stochastic processes. With these assumptions, the cov-
ariance of the error in the coefficient vector, defined by E[Aw(k)oAwT (k)q],
can be easily derived from equations (3.81) and (3.82):

cov[Aw(k +1)g] = E[Aw(k+ 1)oAwT (k+ 1)g]
= E{[I- 2px( )T (k)] Aw(k)QAwT (k)q
[T — 2px(k)xT (k)]}
+4p> E[x(k)x" (k)] E[n® ()]
+4p? E[x(k)xT (k)] E[n? (k)]
+E[nw (k)ng (k)]

Each term in the right hand side of the above equation can be approximated in
order to derive the solution for the overall equation. The only assumption made

(3.89)
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is the independence between x(k) and Aw(k)q that is reasonably accurate in
practice.

The first term in equation (3.89) can be expressed as

T, = cov[Aw(k)q] — 2ucov[Aw(k)o]E[x(k)xT (k)]
—2uE[x(k)x” (k)]cov[Aw(K)c]
+4p’E {x(k)xT (k)cov[Aw(k)g]x(k)xT (k) } (3.90)

The element (7, j) of the last term in the equation above is given by

4p2E {x(k)xT (k)cov[Aw(k)g]x(k)xT (k)}..

1]
N N

= 4u? cov[AW(k)Qlm 1 Elzi(k)zm (k)zi(k)z;(k)] (3.91)

m=0 [=0

where z;(k) represents the ith element of x(k). If it is assumed that the elements
of the input-signal vector are jointly Gaussian, the following relation is valid

Elzi(k)zm(k)zi(k)z;j(k)] = RimRij +RmiRij+Rm;Riy (3.92)

where R;; is the element (7,j) of R. Replacing this expression in equation
(3.91), it can be easily shown that

N N

Y Y cov[Aw(k)Qlm i Elzi(k)zm (k)i ()= (k)]

m=0 =0

= 2{Rcov[Aw(k)q]R}, ; + R jtr {Rcov[Aw(k)q]} (3.93)
Using this result in the last term of T, it follows that

T1 = cov[Aw(k)g] — 2u(Rcov[Aw(k)g] + cov[Aw(k)g]R)
+44? (2Rcov[Aw(k)g]R + Rtr {Rcov[Aw(k)o]}) (3.94)

Since the remaining terms in equation (3.89) are straightforward to calculate,
replacing equation (3.94) in (3.89) yields
cov[Aw(k +1)g] = (I-2uR)cov[Aw(k)g]— 2ucov[Aw(k)q]R
+4p*Ritr {Rcov[Aw(k)o]} + 8u’Reov[Aw(k)g]R
+4p2%(02 + )R + 0%1 (3.95)

Before reaching the steady state, the covariance of Aw(k + 1)g presents a
transient behavior that can be analyzed in the same form as equation (3.26).
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It is worth mentioning that the condition for convergence of the coefficients
given in equation (3.30) also guarantees the convergence of the equation above.
In fact, equation (3.95) is almost the same as equation (3.26) except for the
extra excitation terms o2 and o% that account for the quantization effects,
and, therefore, the behavior of the coefficients in the LMS algorithm in finite
precision must resemble its behavior in infinite precision, with the convergence
curve shifted up in the finite precision case.

In most cases, the norm of Rcov[Aw(k)g]R is much smaller than the norm
of Rtr {Rcov[Aw(k)g]} and can be eliminated from equation (3.95). Now,
by considering in equation (3.95) that in the steady state cov[Aw(k)g] =~
cov[Aw(k + 1)g] and applying the trace operation in both sides, it is easy
to conclude that

oa + a2)tr[R] + (N + 1oy

tr {Reov[Aw(k)q]} = 2 ( 4y — 4p?tr[R]

(3.96)

This expression will be useful to calculate the excess of MSE in the finite-
precision implementation of the LMS algorithm.

If z(k) is considered a Gaussian white noise with variance o2, it is possible to
calculate the expected value of [|Aw(k)q||?, defined as the trace of cov[Aw(k)g],
from equations (3.95) and (3.96). The result is

plol +02)(N +1) (N +1)o%y
T—p(N+1)02 " 2uo2(1— u(N + 1)o2)

Elllaw(k)q|l’] = (3.97)

As can be noted, when p is small, the noise in the calculation of the coefficients
plays a major role in the overall error in the adaptive filter coefficients.

3.5.4 Algorithm Stop

The adaptive filter coefficients may stop updating due to limited wordlength
employed in the internal computation. In particular, for the LMS algorithm, it
will occur when

[2pe(k)gx(k)|; < 2701 (3.98)

where | - |; denotes the modulus of the ith component of . The condition above
can be stated in an equivalent form given by

2—2bc
4

42(02 + 02)02 < 42 E[eX(k)q] Elz?(k)] < (3.99)
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where in the first inequality it was considered that the variances of all elements
of x(k) are the same, and that ¢% + o2 is a lower bound for E[e? (k)] since the
effect of misadjustment due to noise in the gradient is not considered. If p is

chosen such that
270

d0,\/02 + o2

the algorithm will not stop before convergence is reached. If p is small such that
the convergence is not reached, the MSE at the output of the adaptive system
will be totally determined by the quantization error. In this case, the quant-
ization error is usually larger than the expected MSE in the infinite-precision
implementation.

p> (3.100)

3.5.5 Mean-Square Error

The mean-square error of the conventional LMS algorithm in the presence of
quantization noise is given by

£(k)q = Ele*(k)q) (3.101)
By recalling that e(k)g can be expressed as
e(k)g = —xT (k)Aw(k)g — ne(k) + n(k) (3.102)
it then follows that

£(k)q

E[xT(k)Aw(k) xT(k)Aw(k)g] + o2 + o2
E {tr[x(k)xT (k) Aw (k) QAW (K)ol} + o7 + o,
= tr{Rcov[Aw(k)g]} + 02 + o2 (3.103)

If we replace the equation (3.96) in (3.103), the MSE of the adaptive system is
given by

ploat+o)tR]  (N+Dogy 5
k — n e
{E)e 1= pul[R] * du(T—peR)) e
ol + a7 (N +1)oy

1—ptr[R] * 4p(1 - ptr[R)])

(3.104)

This formula is valid as long as the algorithm does not stop updating the coeffi-
cients. However, the MSE tends to increase in a form similar to that determined
in equation (3.104) when p does not satisfy equation (3.100).
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In case the input signal is also quantized, a noise with variance o7 is generated
at the input, causing an increase in the MSE. This noise will have a direct gain
to the output given by (see problem 18)

o (I1wol|* + tr {cov[Aw(k)q]}) ~ o7 |lw,||*

corresponding to the noise transfer function from the adaptive filter input to
the output. However, the result of this term being fedback in the algorithm
through the error signal generates an extra term in the MSE with the same gain
as the measurement noise that is approximately given by

;wztr[ R] 2
ﬂtl’[ ]” 0“

Therefore, the total contribution of the input signal quantization is

[Iw,||*?

Ty (3.105)

&~

where in the analysis above it was considered that the terms with 02 -0%;, 0202,

and ¢? - o2 are small enough to be neglected.

3.5.6 Floating-Point Arithmetic
Implementation

A succinct analysis of the quantization effects in the LMS algorithm when im-
plemented in floating-point arithmetic is presented in this section. Most of the
derivations are given in the Appendix and follow closely the procedure of the
fixed-point analysis.

In floating-point arithmetic, quantization errors occur after addition and multi-
plication operations. These errors are respectively modeled as follows [21]:

flla+d] = a+b—(a+bd)n, (3.106)
flla-b) = a-b—(a-b)n, (3.107)

where n, and n, are zero-mean random variables that are independent of any
other errors. Their variances are respectively given by

n

ok ~0.18 -27% (3.108)

and
oh, <ok (3.109)
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where b is the number of bits in the mantissa representation.

The quantized error and the quantized filter coefficients vector are given by
e(k)g = d(k)—xT(kyw(k)q — ne(k) (3.110)
w(k+1)q w(k)qg + 2ux(k)e(k)q — nw(k) (3.111)
where n.(k) and nw(k) represent computational errors, and their expressions
are given in the Appendix. Since nw (k) is a zero-mean vector, it is shown in

the Appendix that in the average w(k)g tends to w,. Also, it can be shown
that

Aw(k+1)g = [I- 2ux(k)x" (k) + Naw (k]Aw(k)
+N! (k)wo + 2ux(k)[n(k) — ne(k)] (3.112)

where Naw (k) combines several quantization-noise effects as discussed in the
Appendix, and N/, (k) is a diagonal noise matrix that models the noise generated
in the vector addition required to update w(k+1)qg. The error matrix N aw (k)
can be considered negligible as compared to (I —2ux(k)x7 (k)) and therefore is
eliminated in the analysis below.

By following a similar analysis used to derive equation (3.95) in the case of
fixed-point arithmetic, we obtain

tr {Rcov[Aw(k)q]}

_ W+ ouR]+ lIwolPoy, + tr{coviaw(bboh, oo
- 4y — 4p2tr[R] ’

where it was considered that all noise sources in matrix N’ (k) have the same
variance given by 0,21“.

If z(k) is considered a Gaussian white noise with variance o2, it is straightfor-
ward to calculate E[||w(k)q||?]. The expression is given by

ploz +o2)(N +1)
1 —u(N +1)o2
llwoll*o7,
dpoi(1 - p(N +1)o2)
o2 o2(N +1)
402(1 — u(N +1)02)?
where tr{cov[Aw(k)]} is given in the Appendix. For small values of p, the

quantization of addition in the updating of w(k)g may be the dominant source
of error in the adaptive filter coefficients.

Ef|lw(k)ll”] =

(3.114)
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The MSE in the LMS algorithm implemented with floating-point arithmetic is
then given by

E(k)g = tr{Reov[Aw(k)Q]} + 02 + 02
(02 +02)  |lwo|*s2, + tr{cov[Aw(k)]}o2.
1 — utr[R] 4u(1 — ptr[R]) (3.115)

For 4 « tr[R], and again considering z(k) a Gaussian white noise with variance
02, the equation above can be simplified as follows:

A 2.2 N 1 2.2
woll?o3, | (N +1)o202, 5.116)

k — 42 2

The ith coefficient of the adaptive filter will not be updated in floating-point
implementation if

[2pe(k)qx(k)|i < 2%~ |w(k)s (3.117)

where |- |; denotes the modulus of the ith component of -, and b, is the number
of bits in the fractional part of the addition in the coefficient updating. In the
steady state we can assume that o2 + o2 is a lower bound for E[e?(k)q] and
equation (3.117) can be equivalently rewritten as

2—-260

44*(02 + 02)02 < 447 Bl (K)Ql BlaF(K)] < T —u, (3.118)

The algorithm will not stop updating before the convergence is achieved if u is
chosen such that

2~ w’,
1 (o2 +U§)0§ (3.119)

B>

In case p does not satisfy the condition above, the MSE is determined by the
quantization error.

3.6 EXAMPLES

In this section a number of examples are presented in order to illustrate the use
of the LMS algorithm as well as to verify theoretical results presented in the
previous sections.
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3.6.1 Analytical Examples

Some analytical tools presented so far are employed to characterize two inter-
esting types of adaptive filtering problems. The problems are also solved with
the LMS algorithm.

Example 3.1

A Gaussian noise with unit variance colored by a filter with transfer function

1
H; =
)= =53
is transmitted through a communication channel with model given by
1
H =
o(2) 2108

and with the channel noise being Gaussian with variance o2 = 0.1.

Fig. 3.3 illustrates the experimental environment. Note that z’(k) is generated
by first applying a Gaussian noise with variance 02, = 1 to a filter with trans-
fer function H;n(z). The result then is applied to a communication channel
with transfer function H.(z), and then a Gaussian channel noise with variance
02 = 0.1 is added. On the other hand, d(k) is generated by applying the same
Gaussian noise with variance 02, = 1 to the filter with transfer function H;,(2),
with the result delayed by L samples.

(a) Determine the best value for the delay L.
(b) Compute the Wiener solution.

(c) Choose an appropriate value for p and plot the convergence path for the
LMS algorithm on the MSE surface.

(d) Plot the learning curves of the MSE and the filter coefficients in a single run
as well as for the average of 25 runs.

Solution:
(a) In order to determine L, we will examine the behavior of the cross-correlation

between the adaptive filter input signal denoted by z’(k) and the reference signal
d(k).



102 CHAPTER 3

@) d(k)

Adaptive Y0
xtk) —— H, () H () s > e(k)

x (k)

Figure 3.3 Channel equalization of Example 3.1.

The cross-correlation between d(k) and 2'(k) is given by

p(i) = E[d(k)z'(k —1)]
1 - i - -1 2d2
= 5 P Hin(@)e ™ Hin (e Hele ™)l

1 f 1 _Li Z z 5 dz
= — 27"z ol —
2r) ) z—0.5 1-05214+0.8z *" 2

where the integration path is a counterclockwise closed contour corresponding
to the unit circle.

The contour integral of the equation above can be solved through the Cauchy’s
residue theorem. For L = 0 and L = 1, the general solution is
1 1
_ / — 2 -L+1_ - =
where in order to obtain p(0), we computed the residue at the pole located at
0.5. The values of the cross-correlation for L = 0 and L = 1 are respectively
p(0) = 0.47619

p(0) = 0.95238

For L = 2, we have that
1 1
0.751.4

where in this case we computed the residues at the poles located at 0.5 and at
0, respectively. For L = 3, we have

p(0) =. o7 [0.57FH 2] = —0.09522

_ 05Tt
P0) = ofl~5— —34]= —0.4095
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From the analysis above, we see that the strongest correlation between z’(k)
and d(k) occurs for L = 1. For this delay, the equalization is more effective. As
a result, from the calculations above, we can obtain the elements of vector p as

follows:
_ | p(0) | _ [ 0.9524
P =1 pa) | 7| 0.4762
Note that p(1) for L = 1 is equal to p(0) for L = 0.

The elements of the correlation matrix of the adaptive filter input signal are
calculated as follows:

r(i)) = El'(k)z'(k—i)]
= 2711_] Hm( ) ( )Z_iHin(Z_l)Hc(z“l) d +a‘2(§()

_ 1 1 1 —i z z zdz 2/
= 27r]fz—0.5z+0.82 1-05z1+ 0.8z +ond (i)

where again the integration path is a counterclockwise closed contour corres-
ponding to the unit circle, and §(¢) is the unitary impulse. Solving the contour
integral equation, we obtain

r(0) = E[z"%(k)]
1051 -1-08 1
— 2 S T =
Sl 307514 T 1 3 T4 036 T on = 1.6873

where the in order to obtain r(0) we computed the residues at the poles located

at 0.5 and —0.8, respectively. Similarly, we have that
r(1) = E[z'(k)z'(k —1)]
1 1 1 -11 1
_ 2 LN S S DU
= nli30m1at 1314036 = 0797

where again we computed the residues at the poles located at 0.5 and —0.8,
respectively.

The correlation matrix of the adaptive filter input signal is given by

R:[ 1.6873 —0.7937]

-0.7937  1.6873
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(b) The coefficients corresponding to the Wiener solution are given by

W, = R_lp

0.45106[ 1.6873 0.7937] [ 0.9524 ]

0.7937 1.6873 0.4762
0.8953
0.7034

where for calculating the inverse we utilized the result

R-! - 1 [7'22 _7'12]

711722 —T12721 | —T21  T11

where r;; is the element of row ¢ and column j of the matrix R.

(c) The LMS algorithm was applied to minimize the MSE using a convergence
factor 4 = 1/40tr[R], where tr[R] = 3.3746. The value of u was 0.0074.
This small value of the convergence factor allows a smooth convergence path.
The convergence path of the algorithm on the MSE surface is depicted in Fig.
3.4. As can be noted, the path followed by the LMS algorithm looks like a
noisy steepest-descent path. It first approaches the main axis (eigenvector)
corresponding to the smaller eigenvalue, and then follows toward the minimum
in a direction increasingly aligned with this main axis.

(d) The learning curves of the MSE and the filter coefficients, in a single run are
depicted in Fig. 3.5. The learning curves of the MSE and the filter coefficients,
obtained by averaging the results of 25 runs, are depicted in Fig. 3.6. As can
be noted, these curves are less noisy than in the single run case. m]

The adaptive filtering problems discussed so far assumed that the signals taken
from the environment were stochastic signals. Also, by assuming these signals
were ergodic, we have shown that the adaptive filter is able to approach the
Wiener solution by replacing the ensemble average by time averages. In con-
clusion, we can assume that the solution reached by the adaptive filter is based
on time averages of the cross-correlations of the environment signals.

For example, if the environment signals are periodic deterministic signals, the
optimal solution depends on the time average of the related cross-correlations
computed over one period of the signals. Note that in this case, the solution
obtained using an ensemble average would be time varying since we are dealing
with a nonstationary problem. The following examples illustrate this issue.
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Figure 3.4 Convergence path on the MSE surface.

Example 3.2

Suppose in an adaptive filtering environment, the input signal consists of

z(k) = cos(wok)
The desired signal is given by
d(k) = sin(wok)
where wg = 27 In this case M = 7.
Compute the optimal solution for a first-order adaptive filter.
Solution:
In this example, the signals involved are deterministic and periodic. If the

adaptive filter coefficients are fixed, the error is a periodic signal with period
M. In this case, the objective function that will be minimized by the adaptive
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Figure 3.6 (a) Learning curve of the MSE (b) Learning curves of the coeffi-
cients. Average of 25 runs. a - first coefficient, b - second coefficient, ¢ - optimal
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filter is the average value of the squared error defined by

~ 1 M-1
Bk = a2 Y [k —m)]
m=0
= E[d*(k)]-2wTp+w Rw (3.120)
where
R = . E[cos?(wok)] Elcos(wok) cos(wo (k — 1)]
E[cos(wok) cos(wo(k — 1)] Elcos?(wok)]
p = [E[sin(wok)cos(wok)] E[sin(wok)cos(wok — 1)]]T

The expression for the optimal coefficient vector can be easily derived.

W, = R_lf)

Now the above results are applied to the problem described. The elements of
the vector p are calculated as follows:

_ 1UE T d(k = m)ze(k —m)
P = Mz[d(k—m)z(k—m—n]

1 [ sin(wo (k — m)) cos(wo(k — m)) ]
0

sin(wo(k — m)) cos(wo(k —m — 1))

- [ Sin?‘*’ﬂ) ]

1
2
_ 0
= [ 0.3909

The elements of the correlation matrix of the adaptive filter input signal are
calculated as follows:

#(i) = E[z(k)z(k—1)]

1 M=

= a7 Z [cos(wo (k — m)) cos(wo(k — m — 1))]

m=0

-
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where

#(0) = Elcos*(wo(k))] =0.5
E[cos(wo(k)) cos(wo(k —1))] = 0.3117

=

=y
=

=
I

The correlation matrix of the adaptive filter input signal is given by

- 05  0.3117
R—[0.3117 0.5 ]

The coeflicients corresponding to the optimal solution are given by

w, = P
—0.

R
N 7972
= | 1.2788

Example 3.3

(a) Assume the input and desired signals are deterministic and periodic with
period M. Study the LMS algorithm behavior.

(b) Choose an appropriate value for p in the previous example and plot the
convergence path for the LMS algorithm on the average error surface.

Solution:

(a) It is convenient at this point to recall the coefficient updating of the LMS
algorithm

wik+1) = wik)+2ux(k)e(k)
= wik) + 2ux(k) [d(k) - x (k)w (k)]

This equation can be rewritten as

w(k + 1) = [I—2ux(k)x” (k)] w(k) + 2ud(k)x(k) (3.121)
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The solution of the equation (3.121), as a function of the initial values of the
adaptive filter coefficients, is given by

wik+1) = ] [1-2x(@x"()] w(0)
+3 ¢ ] [1-2px(3)x"(5)] 2pd(i)x(i) }  (3.122)
1=0 {j=1+1

where we define that H;zk +1[] = 1 for the second product.

Assuming the value of the convergence factor u is small enough to guarantee
that the LMS algorithm will converge, the first term on the righthand side of
the equation above will vanish as k — oco. The resulting expression for the
coefficient vector is given by

k k
wk+1) = Z{ [T (1 26x(i)x" (3)] 2yd(i)x(i)}

1=0 | j=i4+1

The analysis of the above solution is not straightforward. Following an alternat-
ive path based on averaging the results in a period M, we can reach conclusive
results.

Let us define the average value of the adaptive filter parameters as follows:

1 M-1
wk+1) = Hmzz:ow(k—}-l—m)
Similar definition can be applied to the remaining parameters of the algorithm.

Considering that the signals are deterministic and periodic, we can apply the
average operation to equation (3.121). The resulting equation is

1 M-1
wk+1) = Y (1 - 2ux(k — m)xT (k — m)] w(k — m)
v
+ 3 2pd(k — m)x(k — m)

3
1l
<)
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= [I—2px(k)xT (k)] w(k) + 2pd(k)x(k) (3.123)

For large k and small 4, it is expected that the parameters converge to the neigh-
borhood of the optimal solution. In this case, we can consider that w(k + 1) =
w(k) and that the following approximation is valid

x(k)xT (k)w(k) ~ x(k)xT (k) w(k)

since the parameters after convergence wander around the optimal solution.
Using these approximations in (3.123), the average values of the parameters in
the LMS algorithm for periodic signals are given by

w(k) =~ x(k)xT (k) d(k)x(k) =R

(b) The LMS algorithm was applied to minimize the squared error of the prob-
lem described in Example 3.2 using a convergence factor u = 1/100¢r[R], where
tr[R] = 1. The value of s was 0.01. The convergence path of the algorithm
on the MSE surface is depicted in Fig. 3.7. As can be verified, the parameters
generated by the LMS algorithm approach the optimal solution.

Figure 3.7 Convergence path on the MSE surface.
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3.6.2 System Identification Simulations

In this subsection, a system identification problem is described and solved by
using the LMS algorithm. In the following chapters the same problem will be
solved using other algorithms presented in the book. For the FIR adaptive
filters the following identification problem is posed:

Example 3.4

An adaptive filtering algorithm is used to identify a system with impulse re-
sponse given below.

h=[010300 —02 —04 —0.7 —04 —0.2)7

Consider three cases for the input signal: colored noises with variance o2 = 1
and eigenvalue spread of their correlation matrix equal to 1.0, 20, and 80, re-
spectively. The measurement noise is a Gaussian white noise uncorrelated with
the input and with variance 02 = 10~%. The adaptive filter has 8 coefficients.

(a) Run the algorithm and comment on the convergence behavior in each case.

(b) Measure the misadjustment in each example and compare with the theoret-
ical results where appropriate.

(c) Considering that fixed-point arithmetic is used, run the algorithm for a set
of experiments and calculate the expected values for ||Aw(k)g]||? and £(k)q for
the following case:

Additional noise: white noise with variance 02 =0.0015
Coefficient wordlength: b = 16 bits
Signal wordlength: bs = 16 bits

Input signal: Gaussian white noise with variance o2 = 1.0

(d) Repeat the previous experiment for the following cases
b. = 12 bits, by = 12 bits.
b. = 10 bits, bg = 10 bits.

c
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(e) Suppose the unknown system is a time-varying system whose coefficients
are first-order Markov processes with Aw = 0.99 and o2, = 0.0015. The
initial time-varying-system multiplier coefficients are the ones described above.
The input signal is a Gaussian white noise with variance o2 = 1.0, and the
measurement noise is also a Gaussian noise independent of the input signal and
of the elements of nw(k), with variance 62 = 0.01. Simulate the experiment
described, measure the total excess of MSE, and compare to the calculated
results.

Solution:

The colored input signal was generated by applying a Gaussian noise, with
variance o2, to a first-order filter with transfer function

z

H(z)=

zZ—a

As can be shown from the example 2.1.d, the input-signal correlation matrix in
this case is given by

1 a a’

o2 a 1 a®
R = - ..
1 - a2 . .

a” af 1

The proper choice of the value of a, in order to obtain the desired eigenvalue
spread, is not a straightforward task. Some guidelines are now discussed. For
example, if the adaptive filter was of first order, the matrix R would be two by
two with eigenvalues

o
/\maz = 1—_—(12(1 + a)

and

o2

—(1-a)

Amin = 70

respectively. In this case, the choice of a is straightforward.

For a very large order adaptive filter, the eigenvalue spread approaches

Amaz ~ IHmax(ejw)lz - {l+a}2
Amin IHmin(ejw)lz l—a
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where the details to reach this result can be found in Haykin [6].

Using the relations above as guidelines, we reached the correct values of a.
These values are a = 0.6894 and a = 0.8702 for eigenvalue spreads of 20 and
80, respectively.

Since the variance of the input signal should be unitary, the variance of the
Gaussian noise that produces z(k) should be given by

2 _ 2
o,=1—-a

For the LMS algorithm, we first calculated the upper bound for g (gmaz) to
guarantee the algorithm stability, and ran the algorithm for py0z, ftmaz/5, and

ﬂmaz/10~

In this example, the LMS algorithm did not converge for g = pmaer =~ 0.1.
The convergence behavior for fimaz/5 and pmaz /10 are illustrated through the
learning curves depicted in Fig. 3.8, where in this case the eigenvalue spread was
1. Each curve was obtained by averaging the results of 200 independent runs.
As can be noticed the reduction of the convergence factor leads to a reduction
in the convergence speed. Also note that for 4 = 0.02 the estimated MSE
was plotted only for the first 400 iterations, enough to display the convergence
behavior. In all examples the tap coefficients were initialized with zero. Fig.
3.9 illustrates the learning curves for the various eigenvalue spreads, where in
each case the convergence factor was fimaz /5. As expected the convergence rate
1s reduced for a high eigenvalue spread.

The misadjustment was measured and compared with the results obtained from
the following relation

y = P+ 1)o7
1— p(N +1)oZ

Also, for the present problem we calculated the time constants 7,; and 7.;, and
the expected number of iterations to achieve convergence using the relations

.
wz~2p/\i

1
Tei R ———
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Figure 3.8 Learning curves for the LMS algorithm with convergence factors
Urma:r/s and #ma::/lo.
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Figure 3.9 Learning curves for the LMS algorithm for eigenvalue spreads: 1,
20, and 80.
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k~r,,, In(100)

Table 3.1 illustrates the obtained results. As can be noted the analytical results
agree with the experimental results, especially those related to the misadjust-
ment. The analytical results related to the convergence time are optimistic as
compared with the measured results. This discrepancy are mainly due to the
approximations in the analysis.

Table 3.1 Evaluation of the LMS Algorithm

Misadjustment Temas || Twmae || lt€rations
7 %‘\-’:ﬂf Experiment ” Theory
0.02 1 0.2027 0.1905 || 12.5 25 15
0.01280 20 0.1298 0.1141 || 102.5 || 205 473
0.01024 80 0.1045 0.0892 || 338.9 || 677.5 1561
0.01 1 0.0881 0.0870 | 25 50 29
0.006401 || 20 0.0581 0.0540 || 205 410 944
0.005119 || 80 0.0495 0.0427 || 677.5 || 1355 3121

The LMS algorithm was implemented employing fixed-point arithmetic using
16, 12, and 10 bits for data and coefficient wordlengths. The chosen value
of p was 0.01. The learning curves for the MSE are depicted in Fig. 3.10.
Fig. 3.11 depicts the evolution of ||Aw(k)q||?> with the number of iterations.
The experimental results show that the algorithm still works for such limited
precision. In Table 3.2, we present a summary of the results obtained from
simulation experiments and a comparison with the results predicted by the
theory. The experimental results were obtained by averaging the results of 200
independent runs. The relations employed to calculate the theoretical results
shown in Table 3.2 are repeated here for convenience:

(62 4+ d2)(N +1) (N + 1)o3
1—p(N+1)o2  4po2(1—p(N +1)02)

Ellaw(k)ql?) = £

024l N +1)o2
E(k)g = 5+ (_ Jow ;
1—pu(N+1)o2  4p(l - p(N +1)0)
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Figure 3.10 Learning curves for the LMS algorithm implemented with fixed-
point arithmetic and with x4 = 0.01.
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Figure 3.11 Estimate of ||Aw(k)g|[? for the LMS algorithm implemented
with fixed-point arithmetic and with . = 0.01.
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Table 3.2 Results of the Finite Precision Implementation of the LMS Al-

gorithm
£(k)g Ef[[Aw(k)oll’]
No. of bits || Experiment || Theory Experiment [| Theory
16 1.6291073 [[ 163010~ || 1.316 10~ % | 1.304 10~*
12 1.63210~3 ] 1.631 103 || 1.309 10-* || 1.315 10~*
10 1.6631073 [ 1.648 103 || 1.46510~% || 1.477 10~

The results of Table 3.2 confirm that the finite-precision implementation analysis
presented is accurate.

The performance of the LMS algorithm was also tested in the nonstationary
environment described above. The excess of MSE was measured and depicted
in Fig. 3.12. For this example yo,¢ was found to be greater than gmaz. The

value of p used in the example was 0.05. The excess of MSE in steady state
predicted by the relation

ftotal ~

poitr(R] 4 W ﬁr: 1
L—putr[R]  4p —1—pki

was 0.124, whereas the measured excess of MSE in steady state was 0.118. Once
more the results obtained from the analysis are accurate.

3.6.3 Channel Equalization Simulations

In this subsection an equalization example is described. This example will be
used as pattern for comparison of several algorithms presented in this book.

Example 3.5

Perform the equalization of a channel with the following impulse response

h(k) = 0.1 (0.5%)
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Figure 3.12 The excess of MSE of the LMS algorithm in nonstationary en-
vironment, u = 0.05.

for k = 0,1,...8. Use a known training signal that consists of independent
binary samples (-1,1). An additional Gaussian white noise with variance 10~2
is present at the channel output.

(a) Find the impulse response of an equalizer with 50 coefficients.

(b) Convolve the equalizer impulse response at a given iteration after conver-
gence, with the channel impulse response and comment the result.
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Figure 3.13 Equalizer impulse response; LMS algorithm.

Solution:

We have applied the LMS algorithm to solve the equalization problem. We
used fimag /5 for the value of the convergence factor. In order to obtain p,qz,
the values of Apqz = 0.04275 and 02 = 0.01650 were measured and applied in
equation (3.30). The resulting value of u was 0.2197.

The appropriate value of L was found to be round(2£3%) = 30. The impulse
response of the resulting equalizer is shown in Fig. 3.13. By convolving this
response with the channel impulse response, we obtain the result depicted in
Fig. 3.14 that clearly approximates an impulse. The measured MSE was 0.3492.

0

3.7 CONCLUDING REMARKS

In this chapter, we studied the LMS adaptive algorithm that is certainly the
most popular among the adaptive filtering algorithms. The attractiveness of
the LMS algorithm is due to its simplicity and accessible analysis under ideal-
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Figure 3.14 Convolution result; LMS algorithm.

ized conditions. As demonstrated in the present chapter, the noisy estimate of
the gradient that is used in the LMS algorithm is the main source of loss in per-
formance for stationary environments. Further discussions on the convergence
behavior of the LMS algorithm have been reported in the open literature, see
for example [22]-[24].

For nonstationary environments we showed how the algorithm behaves assum-
ing the optimal parameter can be modeled as first-order Markov process. The
analysis allowed us to determine the conditions for adequate tracking and ac-
ceptable excess of MSE. Further analysis can be found in [25].

The quantization effects on the behavior of the LMS algorithm was also presen-
ted. The algorithm is fairly robust against quantization errors, and this is
for sure one of the reasons for its choice in a number of practical applications

[26]-[29).

A number of simulation examples with the LMS algorithm was presented in
this chapter. The simulations included examples in system identification and
equalization. Also a number of theoretical results derived in the present chapter
were verified, such as the excess of MSE in stationary and nonstationary envir-
onments, the finite-precision analysis etc.
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Appendix

In this appendix we derive the expressions for the quantization errors generated
in the implementation of the LMS algorithm using floating-point arithmetic.

The error in the output error computation is given by

ne(k) = —na(k)[d(k) - x" (k)w(k)c]

npo(k) 0 0 - 0
T ) N O
0 0 npy ()
— g’”“‘ -
z2

_[nax (k) ndz(k) naN(k)] =0

N
Zm(’c —wi(k)g

1=0 J

= —na(k)e(k)g — xT (k)N, (k)w(k — 1) — na(k)si(k)

where n,, (k) accounts for the noise generated in the products z(k — i)w;(k)q
and ng4, (k) accounts for the noise generated in the additions of the product
xT (k)w(k). Note that the error terms of second- and higher-order have been
neglected.

Using similar assumptions one can show that

nw(k) = —2un(k)e(K)ox(k) — 24N, (K)e(k)ox(k)
N, (K)W(k)q + 2ue(k)ox(K)] (3.124)
where
ny. (k) 0 0
I O
o
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n, (k) 0 0

0 n, (k) 0

Na(k) = .
0 n, . (k)

and n,, (k) accounts for the quantization of the product 2u by e(k)q, considering
that 2u is already available. Matrix N;'(k) models the quantization in the
product of 2ue(k)g by x(k), while N’ (k) models the error in the vector addition
used to generate w(k + 1)g.

If we substitute the expression for e(k)g in equation (3.79) in nw (k) given in
(3.124), and use the result in equation (3.82), it can be easily shown that
Aw(k+1)g = [I-2ux(k)x" (k)]Aw(k)q
+2px(k)(n(k) — ne(k)) — nw (k)
o (k)T (8) Ryl ()
+2uN7 (k)x(k)xT (k) + 2uN7 (k)x(k)xT (k)
+Ng (k)]Aw(k)q + NG (k)w, + 2ux (k) (n(k) — ne(k))

where the terms corresponding to products of quantization errors were con-
sidered small enough to be neglected.

Finally, the variance of the error noise can be derived as follows:

N
= ohE(Ma+ o, 3 Ruscoutwlk + gk

=0

1 2
oz, { (D z(k — wi(k)Q)’] + BI(Y =(k — i)wi(k)q)?]
1=0 1=0

N
+- +E[Zx (k—2)w;(k )2]}

1=0

2

where o, was considered equal to o7 , and []; ; means diagonal elements of

[]. The second term can be further simplified as follows:

N

tr{Reov[w(k + 1)o]} ~ ) Ri;wk +Ricov[Aw(k + 1))
1=0
+irst- and higher-order terms - - -
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Since this term is multiplied by 0,21?, any first- and higher-order terms can be
neglected. The first term of 02 is also small in the steady state. The last term
can be rewritten as

1 2
0.-'2“ {E[(Zm(k_i)wm +E[ZJ} —1 woz +

=0

N
+E(Y (k- i)wof)zl}

1=0

N
- oZa {ZZR,‘],‘COV[AW(’C-}- 1)]i,i}

Jj=1:i=0

where terms of order higher than one were neglected, z(k) was considered un-
correlated to Aw(k+1), and cov[Aw(k + 1)] was considered a diagonal matrix.
Actually, if 2(k) is considered a zero-mean Gaussian noise, from equation (3.23)
it can be shown that

p*(N + 1)olo21
1 - u(N +1)o2
poil
1= u(N +1)o2

cov[Aw(k)] = ;wzl+

Since this term will be multiplied by oza and aﬁp, it can also be disregarded.
In conclusion,

N J

Z ~ 2 {E[Z Zx —1 w05)2]}+0nPZR4 1wos

j=1 i=0 =0

This equation can be further simplified when z(k) is as described above and

2 g2 — g2
Ong = 0n, =04

N
o}~ oi[) (N —i+2)Riw) — Ryjw}]
1=1

N
= o3o2) (N —i+ 2wl - w}]
i=1
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Problems

1.

The LMS algorithm is used to predict the signal z(k) = cos(wk/3) using
a second-order FIR filter with the first tap fixed at 1, by minimizing the
MSE of y(k). Calculate an appropriate p, the output signal, and the filter
coefficients for the first 10 iterations. Start with w7 (0) = [1 0 0].

. The signal

z(k) = —0.85z(k — 1) + n(k)
is applied to a first-order predictor, where n(k) is a Gaussian white noise
with variance 02 = 0.3.
(a) Compute the Wiener solution.

(b) Choose an appropriate value for u and plot the convergence path for
the LMS algorithm on the MSE error surface.

(c) Plot the learning curves for the MSE and the filter coefficients in a
single run as well as for the average of 25 runs.

. Use the LMS algorithm to identify a system with the transfer function

given below. The input signal is a uniformly distributed white noise with
variance 02 = 1, and the measurement noise is a Gaussian white noise
uncorrelated with the input with variance 02 = 10~3. The adaptive filter

has 12 coefficients.
1= z—lZ
H(z) = ———
(z) 1—2-1
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(a) Calculate the upper bound for g (gmaz) to guarantee the algorithm
stability.

(b) Run the algorithm for pimaz/2, pmaz/10, and pimaes/50. Comment on
the convergence behavior in each case.

(c) Measure the misadjustment in each example and compare with the
results obtained by the equation (3.47).

(d) Plot the obtained FIR filter frequency response in any iteration after
convergence is achieved and compare with the unknown system.

4. Repeat the previous problem using an adaptive filter with 8 coefficients and
interpret the results.

5. Repeat problem 2 in case the input signal is a uniformly distributed white
noise with variance o2 = 0.5 filtered by an all-pole filter given by

6. Perform the equalization of a channel with the following impulse response
h(k) = ku(k) — (2k — 9u(k — 5) + (k — 9)u(k — 10)

Using a known training signal that consists of a binary (-1,1) random signal,
generated by applying a white noise to a hard limiter (the output is 1 for
positive input samples and -1 for negative). An additional Gaussian white
noise with variance 1072 is present at the channel output.

(a) Apply the LMS with an appropriate ¢ and find the impulse response of
an equalizer with 100 coefficients.

(b) Convolve one of the equalizer’s impulse response after convergence with
the channel impulse response and comment on the result.

7. Under the assumption that the elements of x(k) are jointly Gaussian vector,
show that equation (3.24) is valid.

8. In a system identification problem the input signal is generated by an
autoregressive process given by

z(k) = —1.2z(k — 1) — 0.81z(k — 2) + ng (k)

where n;(k) is a zero-mean Gaussian white noise with variance such that
02 = 1. The unknown system is described by

H(z)=1+ 09271 +0.1272 4+ 0.2.73

The adaptive filter is also a third-order FIR filter, and the additional noise
is a zero-mean Gaussian noise with variance o2 = 0.04. Using the LMS
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10.

11.

12.

13.

14.

algorithm:

(a) Choose an appropriate g, run an ensemble of 20 experiments, and plot
the average learning curve.

(b) Plot the curve obtained using the equations (3.38), (3.42), and (3.43),
and compare the results.

(c) Compare the measured and theoretical value for the misadjustment.
(d) Calculate the time constants 7,,; and 7.;, and the expected number of
iterations to achieve convergence.

. In a nonstationary environment the optimal coefficient vector is described

by
Wo(k) = —=Aiwo(k — 1) — Aawo(k — 2) + nw(k)

where nw (k) is a vector which has the elements that are zero-mean Gaus-
sian processes with variance 0% . Calculate the elements of the lag-error
vector.

Repeat the previous problem for
Wo(k) = AuWo(k — 1) + (1 — Ay )nw(k)

The LMS algorithm was applied to identify a 7th-order time-varying un-
known system whose coefficients are a first-order Markov process with
Aw = 0.999 and ¢%, = 0.001. The initial time-varying-system multiplier
coeflicients are

w

T
[0.03490 — 0.011 —0.06864 0.22391 0.55686 0.35798 — 0.0239 — 0.07594]

The input signal is a Gaussian white noise with variance ¢2 = 0.7, and the
measurement noise is also a Gaussian noise independent of the input signal
and of the elements of nw (k), with variance ¢2 = 0.01.

(a) For g = 0.05, compute the excess of MSE.

(b) Repeat (a) for pu = 0.01.

(c) Compute piop¢ and comment if it can be used.

Simulate the experiment described in problem 11, measure the excess of
MSE, and compare to the calculated results.

Reduce the value of Aw to 0.97 in the problem 11, simulate, and comment
on the results.

Suppose a 15th-order filter FIR digital filter with multiplier coefficients
given below was identified through an adaptive FIR filter of the same order
using the LMS algorithm.
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(a) Considering that fixed-point arithmetic was used, compute the expected
values for ||Aw(k)g]|| and £(k)q, and the probable number of iterations
before the algorithm stops updating, for the following case:

Additional noise: white noise with variance 02 =0.0015
Coeflicient wordlength: b. = 16 bits
Signal wordlength: bqg = 16 bits
Input signal: Gaussian white noise with variance o2 = 0.7
p=0.01

Hint: Utilize the formulas for the time constant in the LMS algorithm and
equation (3.99).

(b) Simulate the experiment and plot the learning curves for the finite- and
infinite-precision implementations.

(c) Compare the simulated results with those obtained through the closed
form formulas.

wl = [0.0219360 0.0015786 — 0.0602449 — 0.0118907 0.1375379
0.0574545 — 0.3216703 — 0.5287203 — 0.2957797 0.0002043 0.290670
—0.0353349 — 0.068210 0.0026067 0.0010333 — 0.0143593]

15. Repeat the problem above for the following cases
(a) o2 = 0.01, b = 12 bits, bg = 12 bits, 62 = 0.7, u = 2.0 1073,
(b) 02 = 0.1, b. = 10 bits, by = 10 bits, 02=08,u=1.0 10~%
(c) o2 =0.05, b = 14 bits, by = 14 bits, ¢2 = 0.8, p = 2.0 1073,

16. Find the optimal value of p (y,) that minimizes the excess of MSE given
in equation (3.104), and compute the expected values of ||Aw(k)g]|| and
&(k)q for the examples described problem 15.

17. Repeat problem 14 in the case the input signal is a first-order Markov
process with Ax = 0.95.

18. Include the input-signal quantizer noise in the analysis of the cov[Aw(k +
1)@] and show that its effect in the MSE is given by equation (3.105).

19. A digital channel model can be represented by the following impulse re-
sponse:

(—0.001 —0.002 0.002 0.2 0.6 0.76 0.9 0.78 0.67 0.58
0.450.30.20.120060 —0.2 =1 —2 —100.1]

The channel is corrupted by a Gaussian noise with power spectrum given
by
IS(er)lz = kw32
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20.

21.

where k' = 1015, The training signal consists of independent binary
samples (-1,1).

Design an FIR equalizer for this problem and use the LMS algorithm. Use
a filter of order 50 and plot the learning curves.

For the previous problem, using the maximum of 51 adaptive filter coef-
ficients, implement a DFE equalizer and compare the results with those
obtained with the FIR filter. Again use the LMS algorithm.

Implement with fixed-point arithmetic the DFE equalizer of problem 20,
using the LMS algorithm with 12 bits of wordlength for data and coeffi-
cients.



LMS-BASED ALGORITHMS

4.1 INTRODUCTION

There are a number of algorithms for adaptive filters which are derived from
the conventional LMS algorithm discussed in the previous chapter. The object-
ive of the alternative LMS-based algorithms is either to reduce computational
complexity or convergence time. In this chapter, four LMS-based algorithms
are presented and analyzed, namely, the quantized-error algorithms [1]-[10], the
frequency-domain (or transform-domain) LMS algorithm [11]-[13], the normal-
ized LMS algorithm [14], and the LMS-Newton algorithm [15]-[16]. Several
algorithms that are related to the main algorithms presented in this chapter are
also briefly discussed.

The quantized-error algorithms reduce the computational complexity of the
LMS algorithms by representing the error signal with short wordlength or by a
simple power-of-two number.

The convergence speed in the LMS-Newton algorithm is independent of the
eigenvalue spread of the input signal correlation matrix. This improvement
is achieved by using an estimate of the inverse of the input signal correlation
matrix leading to a substantial increase in the computational complexity.

The normalized LMS algorithm utilizes a variable convergence factor that min-
imizes the instantaneous error. Such a convergence factor usually reduces the
convergence time but increases the misadjustment.

In the frequency-domain algorithm, a transform is applied to the input signal
in order to allow the reduction of the eigenvalue spread of the transformed

P. S. R. Diniz, Adaptive Filtering
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signal correlation matrix as compared to the eigenvalue spread of the input
signal correlation matrix. The LMS algorithm applied to the better conditioned
transformed signal achieves faster convergence.

4.2 QUANTIZED-ERROR ALGORITHMS

The computational complexity of the LMS algorithm is mainly due to multi-
plications performed in the coefficient updating and in the calculation of the
adaptive filter output. In applications where the adaptive filters are required to
operate in high speed, such as echo cancellation and channel equalization, it is
important to minimize hardware complexity.

A first step to simplify the LMS algorithm is to apply quantization to the er-
ror signal, generating the quantized-error algorithm which updates the filter
coeflicients according to

wik +1) = w(k) + 21Qle(k)]x(k) (4.1)

where Q[.] represents a quantization operation. The quantization function is dis-
crete valued, bounded, and nondecreasing. The type of quantization identifies
the quantized-error algorithm.

If the convergence factor p is a power-of-two number, the coefficient updating
can be implemented with simple multiplications, basically consisting of bit shifts
and additions. In a number of applications, such as the echo cancellation in full-
duplex data transmission [2] and equalization of channels with binary data [3],
the input signal z(k) is a binary signal, i.e., assumes values +1 and -1. In this
case, the adaptive filter can be implemented without any intricate multiplication.

The quantization of the error actually implies a modification in the objective
function that is minimized, denoted by F[e(k)]. In a general gradient-type
algorithm coefficient updating is performed by

wk+1) = w(k)- ya—aF—v%E(g:)—)]
= wik) - y%ﬂgj(% (4.2)
For a linear combiner the equation above can be rewritten as
w(k+1)=w(k)+ ywx(k) (4.3)

de(k)
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Therefore, the objective function that is minimized in the quantized-error al-
gorithms is such that

OF [e(k)]

— =9 k 4.4

0 (49

where F[e(k)] is obtained by integrating 2Q[e(k)] with respect to e(k). Note that
the chain rule applied in equation (4.3) is not valid at the points of discontinuity
of Q[.] where F[e(k)] is not differentiable [6].

The performances of the quantized-error and LMS algorithms are obviously
different. The analyses of some widely used quantized-error algorithms are
presented in the following subsections.

4.2.1 Sign-Error Algorithm

The simplest form for the quantization function is the sign (sgn) function defined

by

1, >0
sgn[b] = 0, =0 (4.5)
-1, <0

The sign-error algorithm utilizes the sign function as the error quantizer, where
the coeflicient vector updating is performed by

w(k +1) = w(k) + 2u sgnle(k)] x(k) (4.6)

Fig. 4.1 illustrates the realization of the sign-error algorithm for a delay line in-
put x(k). If 4 is a power-of-two number, one iteration of the sign-error algorithm
requires N + 1 multiplications for the error generation. The total number of ad-
ditions is 2N + 2. The detailed description of the sign-error algorithm is shown
in Algorithm 4.1. Obviously, the vectors x(0) and w(0) can be initialized in a
different way from that described in the algorithm.

The objective function that is minimized by the sign-error algorithm is the
modulus of the error multiplied by two, i.e.,

Fle(k)] = 2le(k)] (4.7)

Note that the factor two is included only to present the sign-error and LMS
algorithms in a unified form. Obviously, in real implementation this factor can
be merged with convergence factor p.
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Figure 4.1 Sign-error adaptive FIR filter: Q[e(k)] = sgn[e(k)].

Some of the properties related to the convergence behavior of the sign-error al-
gorithm in a stationary environment are described, following the same procedure
used in the previous chapter for the LMS algorithm.

Steady-State Behavior of the Coefficient Vector

The sign-error algorithm can be alternatively described by

Aw(k + 1) = Aw(k) + 2p sgnle(k)] x(k) (4.8)
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Algorithm 4.1

Sign-Error Algorithm

Initialization
x(0) = w(0) =[0...0)T
Do for k > 0
e(k) = d(k) — xT (k)w(k)
p = sgnle(k)]
w(k +1) = w(k) + 2upx(k)

where Aw(k) = w(k) — w,. The expected value of the coefficient-error vector
is then given by

E[Aw(k +1)] = E[Aw(k)] + 2uE[sgn[e(k)] x(k)] (4.9)

The importance of the probability density function of the measurement noise
n(k) on the convergence of the sign-error algorithm is a noteworthy character-
istic. This is due to the fact that E{sgn[e(k)] x(k)} = E{sgn[-AwT (k)x(k) +
n(k)]x(k)}, where the result of the sign operation is highly dependent on the
probability density function of n(k). In [1], the authors present a convergence
analysis of the output MSE, i.e., E[e?(k)], for different distributions of the ad-
ditional noise, such as Gaussian, uniform, and binary distributions.

A closer examination of equation (4.8) indicates that even if the error signal
becomes very small, the adaptive filter coefficients will be continually updated
due to the sign function applied to the error signal. Therefore, in a situation
where the adaptive filter has a sufficient number of coefficients to model the
desired signal, and there is no additional noise, Aw(k) will not converge to
zero. In this case, w(k) will be convergent to a balloon centered at w,, when
p is appropriately chosen. The mean absolute value of e(k) is also convergent
to a balloon centered around zero, that means |e(k)| remains smaller than the
balloon radius r [6].
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Recalling that the desired signal without measurement noise is denoted as d'(k),
if it is considered that d’(k) and the elements of x(k) are zero mean and jointly
Gaussian and that the additional noise n(k) is also zero mean, Gaussian, and
independent of x(k) and d’'(k), the error signal will also be a zero-mean Gaussian
signal conditioned on Aw(k). In this case, using the results of the Price theorem
described in [18] and in Papoulis [19], the following result is valid

E{sgnle(k)] x(k)} ~ | [ —==E[x(k)e(k)] (4.10)

2
¢ (k)
where (k) is the variance of e(k) assuming the error has zero mean. The

approximation above is valid for small values of p1. For large 4, e(k) is dependent
on Aw(k) and conditional expected value on Aw(k) should be used instead [3]-

[5].

By applying (4.10) in (4.9) and by replacing e(k) by e,(k) + AwT (k)x(k), it
follows that

Elaw(k+1)] = {1 2 Zz S Bl(k)x ()]} Elaw(k)]

+ 2 Eleo(k)x(k)] (4.11)

2
m(k)
From the orthogonality principle we know that E[e,(k)x(k)] = 0, so that the
last element of the above equation is zero. Therefore,

2
¢ (k)

Following the same steps for the analysis of E[Aw(k)] in the traditional LMS
algorithm, it can be shown that the coefficients of the adaptive filter implemented
with the sign-error algorithm converge in the mean if the convergence factor is
chosen in the range

ElAw(k+1)] = [I -2 R] E[Aw(k)] (4.12)

1 [n€(k)

Ve (4.13)
where Apqq 1s the largest eigenvalue of R.. It should be mentioned that in case
%’“’- is large, the convergence speed of the coefficients depends on the value of
)\mm that is related to the slowest mode in equation (4.12). This conclusion can
be drawn by following the same steps of the convergence analysis of the LMS
algorithm, where by applying a transformation to the equation (4.12) we obtain
an equation similar to (3.17).

O<pu<
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A more practical range for u, avoiding the use of eigenvalue, is given by

1 [mE(k)
0<#<tr[—R] 9

(4.14)

Note that the upper bound for the value of u requires the knowledge of the MSE,
ie., &(k).

Coefficient-Error-Vector Covariance Matrix

The covariance of the coefficient-error vector defined as
cov[Aw(k)] = E [(w(k) = wo) (w(k) - w,)" | (4.15)

1s calculated by replacing (4.8) in (4.15) following the same steps used in the
LMS algorithm. The resulting difference equation for cov[Aw(k)] is given by

cov[Aw(k +1)] = cov[Aw(k)] + 2uE[sgn[e(k)]x(k)AwT (k)]
+2uE[sgnle(k)]AwT (k)x (k)] + 44°R. (4.16)

The first term with expected value operation in the equation above can be
expressed as

Elsgnle(k)]x(k)AwT (k)]
= Elsgnleo(k) — Aw" (k)x(k)]x(k) AwT (k)]
= E{E[sgnle(k) — AwT (k)x(k)]x (k)| Aw (k)] AwT (k) }

where E[a|Aw(k)] is the expected value of a conditioned on the value of Aw (k).
In the first equality, e(k) was replaced by the relation d(k) — w7 (k)x(k) —
AwTx(k) + AwTx(k) = e,(k) — AwT (k)x(k). In the second equality, the
concept of conditioned expected value was applied.

Using the Price theorem and considering that the minimum output error e, (k)
is zero-mean and uncorrelated with x(k), the following approximations result

E{E[sgnle, (k) — Aw™ (k)x(k)]x(k)|Aw(k)]Aw" ()}

FE ‘ , -—-——2 FEle X — X X AW AW AW
{ ﬂé(k) [ O(k) (k) (k) (k) (k)l (k)] (k)}
{ v ﬂf(k) (k) (k)}
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= —f g(k)Rcov[Aw( )] (4.17)

Following similar steps to derive the equation above, the second term with the
expected value operation in (4.16) can be approximated as

E [sgnle(k)]AwT (k)z(k)] ~ — 1/ ﬁ(k)cov[Aw( )R (4.18)

Substituting equations (4.17) and (4.18) in equation (4.16), we can calculate
the vector v’(k) consisting of diagonal elements of cov[Aw’(k)], using the same
steps employed in the LMS case (see equation (3.26)). The resulting dynamic
equation for v’(k) is given by

v(k+1) = (1 4“1/ ) ) v'(k) + 4uA (4.19)

The value of x must be chosen in a range that guarantees the convergence of
v’(k), which is given by

L [E (4.20)

0<u<2/\max 2

A more severe and practical range for u is

O<pu< St [R] (4.21)
For k — oo each element of v’(k) tends to
7€ (00
vi(00) = p —-6—(2—) (4.22)

Ezcess of Mean-Square Error and Misadjustment

The excess of MSE can be expressed as a function of the elements of v’(k) b,

N
Ag(k) =D Mvi(k) = ATv'(k) (4.23)

1=0
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Substituting (4.22) in (4.23) yields

Z/\\/ﬂf(k k— o0
#Z/\ / 6mm+§e.cc (424)

since limg_y 00 (k) = &min + Eexe. Therefore,

e = 1 (Z’\) (M ”55“) (4.25)
=0

There are two solutions for £2,, in the equation above, where only the positive
one is valid. The meaningful solution for &;., when p is small, is approximately

given by
by min
gez‘c ] V E Z /\

1=0
= m/ 15.;_" tr[R) (4.26)

By comparing the excess of MSE predicted by the equation above with the
corresponding equation for the LMS, it can be concluded that both can generate
the same excess of MSE if p in the sign-error algorithm is chosen such that

2
B =prmsy ;ﬁmm (4.27)

The misadjustment in the sign-error algorithm is

fezc

tr[R] (4.28)

M=y

2 min

Equation (4.26) would leave the impression that if there is no additional noise
and there is sufficient parameters in the adaptive filter, the output MSE would
converge to zero. However, when £(k) becomes small, || E[Aw(k +1)]|| in equa-
tion (4.11) can increase, since the condition of equation (4.13) will not be satis-
fied. This is the situation where the parameters reach the convergence balloon.
In this case, from (4.8) we can conclude that

llAw(k + 1)|1” — ||Aw(k)||> = ~4p sgnle(k)] e(k) + 4> ||x(F)||*  (4.29)
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from where it is easy to show that a decrease in the norm of Aw(k) is obtained
only when

le(k)] > ullx(k)]I? (4.30)

For no additional noise, first transpose the vectors in equation (4.8) and post-
multiply each side by x(k). Next, squaring the resulting equation and applying
the expected value operation on each side, the obtained result is

Ele*(k +1)] = E[e*(k)] - 4uE(le(k)| |1x(k)|["] + 4u’EllIx(k)||"]  (4.31)
After convergence E[e?(k + 1)] ~ E[e?(k)]. Also, considering that
Efle(k)] [1x(k)II*] = Elle(k)| 1E[lIx(k)]|]

and
EIRIE e
E[x(®)2 ~ E(|[x(k)|I%]
we conclude that
Elle(k)|] % pE[||z(k)|[*], k = oo (4.32)

For a zero-mean Gaussian e(k), the following approximation is valid

Elle(k)|] = \/gae(k), k— oo (4.33)
therefore, the expected variance of e(k) is
o2(k) ~ g,ﬂ tr2[R], k — 0o (4.34)

where we used the relation ¢r[R] = E[||x(k)||?]. This relation gives an estimate
of the variance of the output error when no additional noise exists. As can be
noted, unlike the LMS algorithm, there is an excess of MSE in the sign-error
algorithm caused by the nonlinear device, even when ¢2 = 0.

If frequently n(k) has large absolute values as compared to —Aw7T (k)x(k), then
for most iterations sgn[e(k)] = sgn[n(k)]. As a result, the sign-error algorithm
is fully controlled by the additional noise. In this case, the algorithm does not
converge.

Transient Behavior

The ratios ry,, of the geometric decaying convergence curves of the coefficients in
the sign-error algorithm can be easily derived from equation (4.18) by employing
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an identical analysis of the transient behavior for the LMS algorithm. The ratios

are given by
2
Fw, = | 1= 2y [ ——X 4.35
< M mE® ) (4.35)

for ¢ =0,1,...,N. If u is chosen as suggested in equation (4.27), in order to
reach the same excess of MSE of the LMS algorithm, then

4 gmin
Tw, = [ 1= —pr i 4.36
( M\ k) ) (4.36)
By recalling that r,,; for the LMS algorithm is (1 —2uparsA;), since %, / 5{6‘7")‘ <

1, it is concluded that the sign-error algorithm is slower than the LMS for the
same excess of MSE.

Example 4.1

Suppose in an adaptive filtering environment that the input signal consists of
z(k) = e?“°* 4 n(k)
and that the desired signal is given by
d(k) = efwelk=1)

where n(k) is a uniformly distributed white noise with variance o2 = 0.1 and
wo = 12‘4—" In this case M = 8.

Compute the input-signal correlation matrix for a first-order adaptive filter.
Calculate the value of pi,,4, for the sign-error algorithm.

Solution:

The input-signal correlation matrix for this example can be easily calculated as
shown below:

[ 1402  edwo
R_[ eI 14 g2

Since in this case tr[R] = 2.2 and &min = 0.1, we have

éexc ~ #V —‘—Trgf;in tT[R] = 087”
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The range of values of the convergence factor is given by

”(gmin + £ezc)
5tr[R] 3

O<p<

From the expression above it is straightforward to calculate the upper bound
for the convergence factor that is given by

fmaz ~ 0.132

4.2.2 Dual-Sign Algorithm

The dual-sign algorithm attempts to perform large corrections to the coefficient
vector when the modulus of the error signal is larger than a prescribed level. The
basic motivation to use the dual-sign algorithm is to avoid the slow convergence
inherent to the sign-error algorithm that is caused by replacing e(k) by sgn[e(k)]
when |e(k)| is large.

The quantization function for the dual-sign algorithm is given by

_ [ vsgnla], |a|>p
ds["]‘{ snla], o] <p (4.37)

where v > 1 is a power of two. The dual-sign algorithm utilizes the function
described above as the error quantizer, and the coefficient updating is performed
as

w(k +1) = w(k) + 2u ds[e(k)]x(k) © (4.38)

The objective function that is minimized by the sign-error algorithm is given
by

- (O Bz

where the constant 2p(y — 1) was included in the objective function to make
it continuous. Obviously the gradient of F[e(k)] with respect to the filter coef-
ficients is 2u ds[e(k)]x(k) except at points where ds[e(k)] is nondifferentiable

The same analysis procedure used for the sign-error algorithm can be applied
to the dual-sign algorithm except for the fact that the quantization function
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is now different. The alternative quantization leads to particular expectations
of nonlinear functions whose solutions are not presented here. The interested
reader should refer to the work of Mathews [7]. The choice of v and p determine
the convergence behavior of the dual-sign algorithm [7]; typically, a large v
tends to increase both convergence speed and excess of MSE. A large p tends to
reduce both the convergence speed and the excess of MSE. If limy _, o0 £ (k) < p?,
the excess of MSE of the dual-sign algorithm is approximately equal to the one
given by (4.26) for the sign-error algorithm [7], since in this case |e(k)| is usually
much smaller than p. For a given MSE in steady state, the dual-sign algorithm
is expected to converge faster than the sign-error algorithm.

4.2.3 Power-of-Two Error Algorithm

The power-of-two error algorithm applies to the error signal a quantization
defined by

sgn[b], lb] > 1
pe[b] = ¢ 2intlleg2lbll ggn[p], 2704+l < |p| < 1 (4.40)
Tsgn[b], |b] < 27bat!

where int[.] indicates integer part of [.], by is the data wordlength excluding the
sign bit, and 7 is usually 0 or 2%,

The coefficient updating for the power-of-two error algorithm is given by
w(k+ 1) = w(k) + 2u pele(k)]x(k) (4.41)

For 7 = 27%_ the additional noise and the convergence factor can be arbitrarily
small and the algorithm will not stop updating. For 7 = 0, when |e(k)| <
27ba+1 the algorithm reaches the so-called dead zone, where the algorithm stops
updating if |e(k)| is smaller than 27%¢*! most of the time [4], [8].

A simplified and somewhat accurate analysis of this algorithm can be performed
by approximating the function pe[e(k)] by a straight line passing through the
center of each quantization step. In this case, the quantizer characteristics can
be approximated by pele(k)] ~ Ze(k) as illustrated in Fig. 4.2. Using this
approximation, the algorithm analysis can be performed exactly in the same
way as the LMS algorithm. The results for the power-of-two error algorithm
can be obtained from the results for the LMS algorithm, by replacing p by
% p. It should be mentioned that such results are only approximate, and more
accurate ones can be found in [8].
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pele(k)] 4

Approximation

3
T
y

A

Figure 4.2 Transfer characteristic of a quantizer with 3 bits and = = 0.

4.2.4 Sign-Data Algorithm

The algorithms discussed in this subsection cannot be considered as quant-
ized error algorithms, but since they were proposed with similar motivation we
decided to introduce them here. An alternative way to simplify the computa-
tional burden of the LMS algorithm is to apply quantization to the data vector
x(k). One possible quantization scheme is to apply the sign function to the
input signals, giving rise to the sign-data algorithm whose coefficient updating
is performed as

w(k + 1) = w(k) + 2pe(k) sgn[x(k)] (4.42)

where the sign operation is applied to each element of the input vector.
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The quantization of the data vector can lead to a decrease in the convergence
speed, and possible divergence. In the LMS algorithm, the average gradient dir-
ection follows the true gradient direction (or steepest descent direction), whereas
in the sign-data algorithm only a discrete set of directions can be followed. The
limitation in the gradient direction followed by the sign-data algorithm may
cause updates that result in frequent increase in the squared error, leading to
instability. Therefore, it is relatively easy to find inputs that would lead to the
convergence of the LMS algorithm and to the divergence of the sign-data al-
gorithm [6], [9]. It should be mentioned, however, that the sign-data algorithm
is stable for Gaussian inputs, and, as such, has been found useful in certain
applications.

Another related algorithm is the sign-sign algorithm that has very simple im-
plementation. The coefficient updating in this case is given by

w(k +1) = w(k) + 2p sgn[e(k)] sgn[x(k)] (4.43)

The sign-sign algorithm also presents the limitations related to the quantized-
data algorithm.

4.3 THE LMS-NEWTON ALGORITHM

In this section, the LMS-Newton algorithm incorporating estimates of the second-
order statistics of the environment signals is introduced. The objective of the
algorithm is to avoid the slow convergence of the LMS algorithm when the input
signal is highly correlated. The improvement in the convergence rate is achieved
at the expense of an increased computational complexity.

Nonrecursive realization of the adaptive filter leads to a MSE surface that is a
quadratic function of the filter coefficients. For the direct form FIR structure,
the MSE can be described by

Ek+1) = &) +gw’ (k) (w(k+1)—w(k)
+(wk+1)—wkE) R(wk+1)—w(k) (4.44)

(k) represents the MSE when the adaptive filter coefficients are fixed at w(k)
and gy (k) = —2p+2Rw(k) is the gradient vector of the MSE surface as related
to the filter coefficients at w(k). The MSE is minimized at the instant k + 1 if

_1

w(k+1)=w(k) 3

R lgw (k) (4.45)
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This equation is the updating formula of the Newton method. Note that in
the ideal case, where matrix R and gradient vector gy, (k) are known precisely,
w(k4+1) = R™!p = w,. Therefore, the Newton method converges to the optimal
solution in a single iteration, as expected for a quadratic objective function.

In practice, only estimates of the autocorrelation matrix R and of the gradient
vector are available. These estimates can be applied to the Newton updating
formula in order to derive a Newton-like method given by

w(k+1) = wik) = R (k)gw (k) (4.46)

The convergence factor p is introduced so that the algorithm can be protected
from divergence, originated by the use of noisy estimates of R and gw (k).

For stationary input signals, an unbiased estimate of R is

k
R(k) = ;1—1 (i (i)

+
ko 1
= H—lR(k—1)+k+—1x(k)xT(k) (4.47)
. 1 &
E[R(k)] = mZE[X(i)xT(i)l
- R (4.48)

However, this is not a practical estimate for R, since for large k any change on
the input signal statistics would be disregarded due to the infinite memory of
the estimation algorithm.

Another form to estimate the autocorrelation matrix can be generated by em-
ploying a weighted summation as follows:

R(k) = ax(k)xT(k)+ (1 - a)R(k 1)

k-1
ax(k)xT (k) + a 2(1 — a)Fix(9)x7 (4) (4.49)

where in practice, a is a small factor chosen in the range 0 < a < 0.1. This
range of values of a allows a good balance between the present and past input
signal information. By taking the expected value on both sides of the equation
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above and assuming that k — oo, it follows that

k
ER(K)] = o) (1-a)* Ex(i)x" ()]
=0

Therefore, the estimate of R of equation (4.49) is unbiased.

In order to avoid inverting R(k), which is required by the Newton-like al-
gorithm, we can use the so-called matrix inversion lemma given by

[A+BCD]"!=A"!'- A" 'B[DA'B+C7!|"!DA"! (4.51)

where A, B, C and D are matrices of appropriate dimensions, and A and C
are nonsingular. The relation above can be proved by simply showing that the
result of premultiplying the expression in the right hand side by A + BCD 1is
the identity matrix (see problem (19)). If we choose A = (1 — a) R(k — 1),
B = DT = x(k), and C = o, it can be shown that

R = ! R-l(k_l)_R_l(k—l)x(k)?(i(k)ﬁ_l(k—l)
e 4 xT(k)R (k- 1)x(k)

— (4.52)

. . ~ -1 .
The resulting equation to calculate R (k) is less complex to update (of order
N? multiplications) than the direct inversion of R.(k) at every iteration (of order
N3 multiplications).

If the estimate for the gradient vector used in the LMS algorithm is applied in
equation (4.46), the LMS-Newton algorithm results with the following coefficient
updating formula

w(k+1)=w(k) +2pek) R (k)x(k) (4.53)

The complete LMS-Newton algorithm is outlined in Algorithm 4.2. It should
be noticed that alternative initialization procedures to the one presented in
Algorithm 4.2 are possible.

As previously mentioned, the LMS gradient direction has the tendency to ap-
proach the ideal gradient direction. Similarly, the vector resulting from the
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Algorithm 4.2

LMS-Newton Algorithm

Initialization
R (—1) = 6I (4 asmall positive constant)

w(0) = x(-1) =[0...0]7
Do for k>0
e(k) = d(k) — xT (k)w(k)
a7t 51 R (k- 1)x(k)xT (k)R (k=1
R (=R (k-1 - (k—1)X(k)X" (k)T (k—1)
()= g [R7 (- 1) - B Ltxd Rt

w(k+1) = w(k)+2pe(k) R (k)x(k)

multiplication of R_l(k) to the LMS gradient direction tends to approach the
Newton direction. Therefore, we can conclude that the LMS-Newton algorithm
converges in a more straightforward path to the minimum of the MSE surface.
It can also be shown that the convergence characteristics of the algorithm is
independent of the eigenvalue spread of R.

The LMS-Newton algorithm is mathematically identical to the recursive least-
squares (RLS) algorithm if the forgetting factor () in the latter is chosen such
that 24 = o = 1 — A [32]. Since a complete discussion of the RLS algorithm
is given later, no further discussion of the LMS-Newton algorithm is included
here.

4.4 THE NORMALIZED LMS
ALGORITHM

If one wishes to increase the convergence speed of the LMS algorithm without
using estimates of the input signal correlation matrix, a variable convergence
factor is a natural solution. The normalized LMS algorithm usually converges
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faster than the LMS algorithm, since it utilizes a variable convergence factor
aiming the minimization of the instantaneous output error.

The updating equation of the LMS algorithm can employ a variable convergence
factor pk in order to improve the convergence rate. In this case, the updating
formula is expressed as

w(k + 1) = w(k) + 2uke(k)x(k) = w(k) + Aw'(k) (4.54)

where px must be chosen with the objective of achieving a faster convergence.
A possible strategy is to reduce the instantaneous squared error as much as
possible. The motivation behind this strategy is that the instantaneous squared
error is a good and simple estimate of the MSE.

The instantaneous squared error is given by

e?(k) = d?(k) + w7 (k)x(k)xT (k)w(k) — 2d(k)wT (k)x(k) (4.55)

If a change given by w'(k) = w(k) + Aw’(k) is performed in the weight vector,
the corresponding squared error can be shown to be
e’ (k) e2(k) + 2Aw'” (k)x(k)xT (k)w (k)
+ AW (k)x(k)xT (k) AW (k)
2d(k)Aw'T (k)x(k) (4.56)

It then follows that

Ac(k) £ (k) —e2(k)

= —2AwT (k)x(k)e(k) + Aw' (k)x(k)xT (k) Aw' (k) (4.57)

In order to increase the convergence rate, the objective is to maximize the
squared error reduction by appropriately choosing p.

By replacing Aw’(k) in the equation above it follows that
Ae?(k) = —apge® (k)xT (k)x(k) + dpie’ (k) [x" (k)x (k)] (4.58)

The value of puy such that ?—Aai:fﬂ =0 1s given by

1

e = ST R (4.59)
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Algorithm 4.3

The Normalized LMS Algorithm

Initialization
x(0) = w(0) = [0...0]T
choose py, in the range 0 < p, < 2
~ = small constant
Do for k>0
e(k) = d(k) — xT (k)w(k)
w(k +1) = w(k) + sy e(k) x(k)

This value of p leads to a negative value of Ae?(k), and, therefore, it corres-
ponds to a minimum point of Ae?(k).

Using this variable convergence factor, the updating equation for the LMS al-
gorithm is then given by

e(k)x(k)

(4.60)

Usually a fixed convergence factor p,, is introduced in the updating formula
in order to control the misadjustment, since all the derivations are based on
instantaneous values of the squared errors and not on the MSE. Also a parameter
v should be included, in order to avoid large step sizes when xT (k)x(k) becomes
small. The coefficient updating equation is then given by

= ——u"———e X .
Wik 1) = W)+ s (k) X(K) (4.61)

The resulting algorithm is called the normalized LMS algorithm, and is sum-
marized in Algorithm 4.3.
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The range of values of y,, to guarantee stability can be easily derived by first
considering that E[xT (k)x(k)] = tr[R] and that

e(k)x(k) T Ele(k)x(k)
E[ (k)x(k)] BT (k)x(k)]

Next, consider that the average value of the convergence factor actually applied
to the LMS direction 2e(k)x(k) is ;t':—f'm Finally, by comparing the updat-

ing formula of the standard LMS algorithm with that of the normalized LMS
algorithm, the desired upper bound result follows:

_ _Hn 1
</A—T[R']<m (462)

or 0 < pup < 2.

4.5 THE TRANSFORM-DOMAIN LMS
ALGORITHM

The transform-domain algorithm is another technique to increase the conver-
gence speed of the LMS algorithm when the input signal is highly correlated.
The basic idea behind this methodology is to modify the input signal to be
applied to the adaptive filter such that the conditioning number of the corres-
ponding correlation matrix is improved.

In the transform-domain LMS algorithm, the input signal vector x(k) is trans-
formed in a more convenient vector s(k), by applying an orthonormal (or unit-
ary) transform [10]-[12], i.e.,

s(k) = Tx(k) (4.63)

where TTT = I. The MSE surface related to the direct form implementation
of the FIR adaptive filter can be described by

(k) = &min + AWT (F)RAW(k) (4.64)

where Aw(k) = w(k) — w,. In the transform-domain case, the MSE surface
becomes

E(k) = Emin + AWT (k)E[s(k)sT (k)] Aw (k)
= €min + AW (k) TRTT Aw (k) (4.65)
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Figure 4.3 Transform-domain adaptive filter.

where W(k) represents the adaptive coefficients of the transform-domain filter.
Fig. 4.3 depicts the transform-domain adaptive filter.

The effect of applying the transformation matrix T to the input signal is to rotate
the error surface as illustrated in the numerical examples of Figs. 4.4 and 4.5.
It can be noticed that the eccentricity of the MSE surface remains unchanged
by the application of the transformation, and, therefore, the eigenvalue spread
is unaffected by the transformation. As a consequence, no improvement in the
convergence rate is expected to occur. However, if in addition each element of
the transform output is power normalized, the distance between the points where
the equal-error contours meet the coefficient axes and the origin are equalized.
As a result, a reduction in the eigenvalue spread is expected, specially when
the coefficient axes are almost aligned with the principal axes of the ellipses.
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Fig. 4.6 illustrates the effect of power normalization. The perfect alignment and
power normalization means that the error surface will become a hyperparaboloid
spheric, with the eigenvalue spread becoming equal to one. Alternatively, it
means that the transform was able to turn the elements of the vector s(k)
uncorrelated. Fig. 4.7 shows another error surface which after properly rotated
and normalized is transformed in the error surface of Fig. 4.8.
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Figure 4.4 Contours of the original MSE surface.
The autocorrelation matrix related to the transform-domain filter is given by
R, = TRTY (4.66)

therefore if the elements of s(k) are uncorrelated, matrix R, is diagonal, meaning
that the application of the transformation matrix was able to diagonalize the
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Figure 4.5 Rotated contours of the MSE surface.

autocorrelation matrix R. It can then be concluded that TT, in this case,
corresponds to a matrix whose columns consist of the orthonormal eigenvectors
of R. The resulting transformation matrix corresponds to the Karhunen-Loéve
Transform (KLT)[17].

The normalization of s(k) and subsequent application of the LMS algorithm
would lead to a transform-domain algorithm with the limitation that the solu-
tion would be independent of the input signal power. An alternative solution,
without this limitation, is to apply the normalized LMS algorithm to update
the coefficients of the transform-domain algorithm. We can give an interpret-
ation for the good performance of this solution. Assuming the transform was
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efficient in the rotation of the MSE surface, the variable convergence factor is
large in the update of the coefficients corresponding to low signal power. On the
other hand, the convergence factor is small if the corresponding transform out-
put power is high. Specifically, the signals s;(k) are normalized by their power
denoted by ¢Z(k) only when applied in the updating formula. The coefficient
update equation in this case is

ik +1) = (k) + —Ly ()i (4) (4.67)

w; = W ————e(k)s; .

' ST m

where o (k) = as?(k)+ (1—a)o? (k- 1), a is a small factor chosen in the range
0 < o <£0.1, and ¥ is also a small constant to avoid that the second term of the
update equation becomes too large when (k) is small.

In matrix form the updating equation above can be rewritten as
w(k + 1) = W(k) + 2ue(k)o~%(k)s(k) (4.68)

where o~2(k) is a diagonal matrix containing as elements the inverse of the
power estimates of the elements of s(k) added to +.
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It can be easily shown that if y is chosen appropriately, the adaptive filter
coefficients converge to

W, = R, 'p, (4.69)

where R, = TRTY and P, = Tp. As a consequence, the optimum coefficient

vector 1s .
W, = (TRTT)” Tp=TR 'p = Tw, (4.70)

The convergence speed of the coefficient vector W(k) is determined by the ei-
genvalue spread of o~2(k)R,.
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The requirements on the transformation matrix are that it should be invert-
ible. If the matrix T is not square (number of columns larger than rows), the
space spanned by the polynomials formed with the rows of T will be of dimen-
sion N + 1, but these polynomials are of order larger than N. This subspace
does not contain the complete space of polynomials of order N. In general, ex-
cept for very specific desired signals, the entire space of Nth-order polynomials
would be required. For an invertible matrix T there is one-to-one correspond-
ence between the solutions obtained by the LMS and transform-domain LMS
algorithms. Although the transformation matrix is not required to be unitary,
it appears that no advantages are obtained by using nonunitary transform [12].
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The best unitary transform for the transform-domain adaptive filter is the KLT.
However, the KLT is a function of the input signal, it cannot be efficiently
computed in real time. An alternative is to choose a unitary transform that
is close to the KLT of the particular input signal. By close is meant that
both transforms perform nearly the same rotation of the MSE surface. In any
situation, the choice of an appropriate transform is not an easy task. Some
guidelines can be given, such as: i) Since the KLT of a real signal is real, the
chosen transform should be real for real input signals; ii) For speech signals
the discrete-time cosine transform (DCT) is a good approximation for the KLT
[17]; 1ii) Transforms with fast algorithms should be given special attention.

A number of real transforms such as DCT, discrete-time Hartley transform,
and others, are available [17]. Most of them have fast algorithms or can be
implemented in recursive frequency-domain format. In particular, the outputs

of the DCT are given by

1 N
sok) = s ;::(k-l) (4.71)

and

M=

si(k) = /——

Nl z(k — 1) cos [WM] (4.72)

"NF1)

~
1
=]

From Fig. 4.3, we observe that the delay line and the unitary transform form

a single-input and multiple-output preprocessing filter. In case the unitary

transform is the DCT, the transfer function from the input to the outputs of

the DCT preprocessing filter can be described in a recursive format as follows:
[N - (1))~ 1)

ko
Ti(2) = 4.7
(2) N+1 T N[22 — (2cos27)z + 1] (4.73)

where

poo [ V2 if i=0
°=1 2 if i=1,..,N

and 7 = 2(1\;_+1)

The derivation details are not given here, since they are beyond the scope of
this text.

For complex input signals, the discrete-time Fourier transform (DFT) is a nat-
ural choice due to its efficient implementations.
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Algorithm 4.4

The Transform-Domain LMS Algorithm

Initialization
x(0) = w(0) = [0...0]T
v = small constant
0<a<0.1
Do for each z(k) and d(k) given for k£ > 0
s(k) = Tx(k)
e(k) = d(k) — sT(k)w(k)
Wik + 1) = Ww(k) + 2 p e(k) o2 ()s(k)

Although no general procedure is available to choose the best transform when
the input signal is not known a priori, the decorrelation performed by the trans-
form, followed by the power normalization, is sufficient to reduce the eigenvalue
spread for a broad class (not all) of input signals. Therefore, the transform-
domain LMS filters are expected to converge faster than the standard LMS
algorithm in most applications [12].

The complete transform-domain LMS algorithm is outlined on Algorithm 4.4.

Example 4.2

Repeat the equalization problem of example 3.1 of the previous chapter using
the transform-domain algorithm.

(a) Compute the Wiener solution.

(b) Choose an appropriate value for u and plot the convergence path for the
transform-domain algorithm on the MSE surface.
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Solution:

(a) In this example, the correlation matrix of the adaptive filter input signal is
given by

R [ 16873 —0.7937
= | —0.7937 1.6873

and the cross-correlation vector p is

[ 0.9524
P = 1 0.4762

For square matrix R of dimension 2, the transformation matrix corresponding
to the cosine transform is given by

4 ﬁ]

T = 2 2
V2 _ 2
2 2

For this filter order, the transformation matrix above coincides with the KLT.

The coefficients corresponding to the Wiener solution of the transform-domain
filter are given by

w, = (TRTT)'Tp

_ [oe3: O 1.0102
B 0 5ae5 | | 0.3367

1.1305
0.1357

(b) The transform-domain algorithm was applied to minimize the MSE using a
small convergence factor p = 1/300, in order to obtain a smoothly converging
curve. The convergence path of the algorithm in the MSE surface is depicted
in Fig. 4.9. As can be noted, the transformation aligned the coefficient axes
with the main axes of the ellipses belonging to the error surface. The reader
should notice that the algorithm follows an almost straight path to the min-
imum and that the effect of the eigenvalue spread is compensated by the power
normalization. The convergence in this case is faster than for the LMS case.

[m]
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Figure 4.9 Convergence path of the transform-domain adaptive filter.

From the transform-domain algorithm point of view, we can consider that the
LMS-Newton algorithm attempts to utilize an estimate of the KLT through

. =1 X
R (k). On the other hand, the normalized LMS algorithm utilizes an identity
transform with an instantaneous estimate of the input signal power given by

xT (k)x(k).

4.6 SIMULATION EXAMPLES

In this section, some adaptive filtering problems are described and solved by
using some of the algorithms presented in this chapter.
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Example 4.3: Transform-Domain Algorithms

Use the transform-domain LMS algorithm to identify the system described in
the example 3.4 of the previous chapter. The transform is the DCT.

Solution:

All the results presented here for the transform-domain LMS algorithm were
obtained by averaging the results of 200 independent runs.

We run the algorithm with a value of y = 0.01, with & = 0.05 and v = 107,
With this value of u, the misadjustment of the transform-domain is about the
same as that of the LMS algorithm with ¢ = 0.02. In Fig. 4.10, the learning
curves for the eigenvalue spreads 20 and 80 are illustrated. First note that the
convergence speed 1s about the same for different eigenvalue spreads, showing
the effectiveness of the rotation performed by the transform in this case. If we
compare these curves with those of Fig. 3.9 for the LMS algorithm, we conclude
that the transform-domain algorithm has better performance than the LMS al-
gorithm for high eigenvalue spread. For an eigenvalue spread equal to 20, the
transform-domain algorithm required around 200 iterations to achieve conver-
gence, whereas the LMS required at least 500 iterations. This improvement is
achieved without increasing the misadjustment as can be verified by comparing
the results of Tables 3.1 and 4.1.

The reader should bear in mind that the improvements in convergence of the
transform-domain algorithm can be achieved only if the transformation is ef-
fective. In this example, since the input signal was colored using a first-order
all-pole filter, the cosine transform is known to be effective because it approx-
imates the KLT.

The finite-precision implementation of the transform-domain LMS algorithm
presents similar performance to that of the LMS algorithm, as can be verified
by comparing the results of Tables 3.2 and 4.2. An eigenvalue spread of one was
used in this example. The value of p was 0.01, while the remaining parameter
values were ¥ = 27% and a = 0.05. The value of y in this case was chosen the
same as for the LMS algorithm.
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Table 4.1 Evaluation of the Transform-Domain LMS Algorithm

[ }f:‘f lr Misadjustment

1 0.2027
20 0.2037
80 0.2093

Table 4.2 Results of the Finite-Precision Implementation of the Transform-
Domain LMS Algorithm

€(k)e Efl|Aw(k)ol%]
No of bits || Experiment Experiment
16 1.627 10—3 1.313 104
12 1.640 103 1.409 10~%
10 1.648 10~3 1.536 10~

4.6.1 Signal Enhancement Simulation

In this subsection a signal enhancement simulation environment is described.
This example will also be employed in some of the following chapters.

In a signal enhancement problem, the reference signal is

r(k) = sin(0.27k) + n,(k)
where n, (k) is a zero-mean Gaussian white noise with variance o2 = 10. The
input signal is given by n, (k) passed through a filter with the following transfer

function
04

22 —1.362+0.79

H(z) =

The adaptive filter is a 20th-order FIR filter. In all examples, a delay L = 10
was applied to the reference signal.
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Figure 4.10 Learning curves for the transform-domain LMS algorithm for
eigenvalue spreads: 20 and 80.

Example 4.4: LMS-Based Algorithms

Using the sign-error, power-of-two error with b; = 12, and normalized LMS
algorithms:

(a) Choose an appropriate g in each case and run an ensemble of 50 experiments.
Plot the average learning curve.

(b) Plot the output errors and comment on the results.

Solution:

The maximum value of p for the LMS algorithm in this example is 0.005. The
values of u for the sign-error and power-of-two LMS algorithms were chosen
0.001. The coefficients of the adaptive filter were initialized with zero. For the
normalized LMS algorithm p,, = 0.4 and 4y = 10~% were used. Fig. 4.11 depicts
the learning curves for the three algorithms. The results show that the sign-error
and power-of-two error algorithms present a similar convergence speed, whereas
the normalized LMS was faster to converge. The reader should notice that the
MSE after convergence is not small since we are dealing with an example where
the signal to noise ratio is low.
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The DFT with 128 points of the input signal is shown in Fig. 4.12 where the
presence of the sinusoid cannot be noted. In the same figure the DFT of the
error and the error signal itself for the experiment using the normalized LMS
algorithm are shown. In the cases of DFT, the result presented is the magnitude
of the DFT outputs. As can be verified, the output error tends to produce a
signal with the same period of the sinusoid after convergence and the DFT shows
clearly the presence of the sinusoid. The other two algorithms lead to similar
results.

4.6.2 Signal Prediction Simulation

In this subsection a signal prediction simulation environment is described. This
example will also be used in some of the following chapters.

In a prediction problem the input signal is
z(k) = —V/2 sin(0.27k) + V2 sin(0.057k) + n, (k)

where n; (k) is a zero-mean Gaussian white noise with variance o2 = 1. The
adaptive filter is a fourth-order FIR filter.

(a) Run an ensemble of 50 experiments and plot the average learning curve.
(b) Determine the zeros of the resulting FIR filter and comment on the results.

Example 4.5: LMS-Based Algorithms

We solved the problem above using the sign-error, power-of-two error with
by = 12, and normalized LMS algorithms.
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Solution:

In the first step, each algorithm was tested in order to determine experimentally
the maximum value of p in which the convergence was achieved. The choice of
the convergence factor was piy,q5/5 for each algorithm. The values of p for the
sign-error and power-of-two LMS algorithms were chosen 0.0028 and 0.0044,
respectively. For the normalized LMS algorithm, g, = 0.4 and y = 10~° were
used. The coefficients of the adaptive filter were initialized with zero. In all
cases, we noticed a strong attenuation of the predictor response around the
frequencies of the two sinusoids. See, for example, the response depicted in Fig.
4.13 obtained by running the power-of-two LMS algorithm. The learning curves
for the three algorithms are depicted in Fig. 4.14. The zeros of the transfer
function from the input to the output error were calculated for the power-of-two
algorithm:

—0.3939; —0.2351 + j0.3876; —0.6766 + j0.3422

Notice that the predictor tends to place its zeros at low frequencies, in order to
attenuate the two low-frequency sinusoids.

In the experiments, we noticed that for a given additional noise, smaller con-
vergence factor leads to higher attenuation at the sinusoid frequencies. This is
an expected result since the excess of the MSE is smaller. Another observation
is that the attenuation also grows as the signal to noise ratio is reduced, again
due to the smaller MSE.

4.7 CONCLUDING REMARKS

In this chapter, a number of adaptive filtering algorithms were presented de-
rived from the LMS algorithm. There were two basic directions followed in the
derivation of the algorithms: one direction is to search for simpler algorithms
from the computational point of view, and the other is to sophisticate the LMS
algorithm looking for improvements in performance. The simplified algorithms
lead to low-power, low-complexity and/or high-speed integrated circuit imple-
mentations [20], at a cost of increasing the misadjustment and/or of losing con-
vergence speed among other things [21]. The simplified algorithms discussed
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Figure 4.13 Magnitude response of the FIR adaptivefilter at a given iteration
after convergence using the power-of-two LMS algorithm.

here are the quantized-error algorithms. There are several other algorithms re-
lated to the LMS algorithm that were not presented here, and the interested
reader can refer, for example, to [22]-[23].

We also introduced the LMS-Newton algorithm, whose performance is inde-
pendent of the eigenvalue spread of the input-signal correlation matrix. This
algorithm is related to the RLS algorithm which will be discussed in the fol-
lowing chapter, although some distinctive features exist between them [32].
Newton-type algorithms with reduced computational complexity are also known
[33]-[34], and the main characteristic of this class of algorithms is to reduce the
computation involving the inverse of the estimate of R.
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In the normalized LMS algorithm, the straightforward objective was to find the
step size that minimizes the instantaneous output error. There are many papers
dealing with the analysis [24]-[26] and applications [27] of the normalized LMS
algorithm. The idea of using variable step size in the LMS and normalized LMS
algorithms can lead to a number of interesting algorithms [28]-[30], that in some
cases are very efficient in tracking nonstationary environments [31].

The transform-domain algorithm aimed to reduce the eigenvalue spread of the
input signal correlation matrix. Several frequency-domain adaptive algorithms,
which are related in some sense to the transform-domain algorithm, have been
investigated in the recent years [35]. Such algorithms exploit the whitening
property associated with the normalized transform-domain algorithm, and most
of them update the coefficients at a rate lower than the input sampling rate.
One of the resulting structures, presented in [36], can be interpreted as a direct
generalization of the transform-domain LMS algorithm and is called generalized
adaptive subband decomposition structure. Such structure consists of a small-
size fixed transform, which is applied to the input sequence, followed by sparse
adaptive subfilters which are updated at the input rate. In high-order adaptive
filtering problems, the use of this structure with appropriately chosen transform-
size and sparsity factor can lead to significant convergence rate improvement
for colored input signals when compared to the standard LMS algorithm. The
convergence rate improvement is achieved without the need for large transform
sizes.

Frequency-domain adaptive filtering algorithms which employ block processing
in order to reduce the computational complexity associated with high-order
adaptive filters have also been suggested [37]. Such algorithms utilize FFTs to
implement convolutions (for filtering) and correlations (for coefficient updating).
More general block algorithms, in which the block size can be smaller than the
order of the adaptive filter, have also been investigated [38].

Other adaptive filtering structures based on multirate techniques have been
suggested in [39]-[43]. In such structures, the input signal is decomposed in
subbands by an analysis filter bank, and the resulting signals are downsampled
and filtered by adaptive filters. Each of these adaptive filters has order smal-
ler than the equivalent full-band adaptive filter (by a factor of approximately
the downsampling factor). Several adaptive subband structures have been sug-
gested. One early approach used pseudo-QMF banks with overlapping filter
banks and critical subsampling [39], resulting in the appearance of undesirable
aliased components in the output, which caused severe degradation. A second
approach used QMF banks with critical subsampling [40] and, in order to avoid
aliasing problems resulting from the channel modifications, suggested the use
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of additional adaptive cross terms between the subbands. These cross terms,
however, increase the computational complexity and reduce the convergence rate
of the adaptive algorithm. Another approach used an auxiliary, non-decimated
channel [41], which also resulted in increased complexity and was shown to be
useful particularly for the adaptive line enhancement applications. A last ap-
proach [42]-[43] employed a reduction in the sampling rate of the filtered signals
by a factor smaller than the critical subsampling factor (or number of bands)
to avoid aliasing problems, with a consequent increase in the computational
complexity. In all of the subband structures described above, the convergence
rate can be improved for colored input signals by using a normalized gradient
algorithm in the update of the coefficients of each of the subband filters.

Several simulation examples involving the LMS-based algorithms were presen-
ted in this chapter. These examples aid the reader to understand what are the
main practical characteristics of the LMS-based algorithms.
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Problems

1. From equation (4.16) derive the difference equation for v’(k) given by equa-
tion (4.19).

2. Prove the validity of equation (4.27).

3. The sign-error algorithm is used to predict the signal z(k) = sin(mk/3)
using a second-order FIR filter with the first tap fixed at 1, by minimizing
the MSE of y?(k). This is an alternative way to interpret how the predictor
works. Calculate an appropriate p, the output signal y(k), and the filter
coefficients for the first 10 iterations. Start with w7 (0) = [1 0 0].

4. Use the sign-error algorithm to identify a system with the transfer function
given below. The input signal is a uniformly distributed white noise with
variance 02 = 1, and the measurement noise is a Gaussian white noise
uncorrelated with the input with variance o2 = 10~3. The adaptive filter

has 12 coefficients.

1— 2712

HE) =T

(a) Calculate the upper bound for g (fmar) to guarantee the algorithm
stability.

(b) Run the algorithm for pmaz/2, pmaz/5, and pmaz/10. Comment on
the convergence behavior in each case.

(c) Measure the misadjustment in each example and compare with the
results obtained by the equation (4.28).

(d) Plot the obtained FIR filter frequency response in any iteration after
convergence is achieved and compare with the unknown system.
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5. Repeat the previous problem using an adaptive filter with 8 coefficients and
interpret the results.

6. Repeat problem 4 when the input signal is a uniformly distributed white
noise with variance o2 = 0.5, filtered by an all-pole filter given by

7. In problem 4, consider that the additional noise has the following variances
(a) ¢2 =0, (b) 02 = 1. Comment on the results obtained in each case.

8. Perform the equalization of a channel with the following impulse response
h(k) = ku(k) — (2k — 9)u(k — 5) + (k — 9)u(k — 10)

using a known training signal consisting of a binary (-1,1) random signal.
An additional Gaussian white noise with variance 10~2 is present at the
channel output.

(a) Apply the sign-error with an appropriate x4 and find the impulse re-
sponse of an equalizer with 15 coefficients.

(b) Convolve the equalizer impulse response at an iteration after conver-
gence, with the channel impulse response and comment on the result.

9. In a system identification problem, the input signal is generated by an
autoregressive process given by

z(k) = -1.2z(k — 1) — 0.81z(k — 2) + ny (k)

where ng(k) is a zero-mean Gaussian white noise with variance such that
02 = 1. The unknown system is described by

H(z) =14092z7' 4+0.127240.2.73

The adaptive filter is also a third-order FIR filter. Using the sign-error
algorithm:

(a) Choose an appropriate g, run an ensemble of 20 experiments, and plot
the average learning curve.

(b) Measure the excess of MSE and compare the results with the theoretical
value.

(c) Compare the measured and theoretical value for the misadjustment.

10. In the previous problem, calculate the time constant 7,,; and the expected
number of iterations to achieve convergence.
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11. The sign-error algorithm was applied to identify a 7th-order time-varying
unknown system whose coefficients are first-order Markov processes with
Aw = 0.999 and ¢%, = 0.001. The initial time-varying system multiplier
coefficients are

wT =1[0.03490 —0.011 —0.06864 0.22391 0.55686 0.35798 —0.0239 —0.07594]

The input signal is a Gaussian white noise with variance 02 = 0.7, and the
measurement noise is also a Gaussian noise independent of the input signal
and of the elements of nw (k), with variance o2 = 0.01.

For p = 0.01, simulate the experiment described and measure the excess
MSE.

12. Reduce the value of Aw to 0.95 in the problem 11, simulate, and comment
on the results.

13. Suppose a 15th-order filter FIR digital filter with multiplier coefficients
given below, was identified through an adaptive FIR filter of the same
order using the sign-error algorithm. Use fixed-point arithmetic and run
simulations for the following case.

Additional noise: white noise with variance 02 =0.0015
Coefficient wordlength: b. = 16 bits
Signal wordlength: bs = 16 bits
Input signal: Gaussian white noise with variance o2 = 0.7

i =001

wl = [0.0219360 0.0015786 — 0.0602449 — 0.0118907 0.1375379
0.0574545 — 0.3216703 — 0.5287203 — 0.2957797 0.0002043 0.290670
—0.0353349 — 0.068210 0.0026067 0.0010333 — 0.0143593]

Plot the learning curves of the estimates of E[||Aw(k)q||] and &(k)q ob-
tained through 25 independent rums, for the finite- and infinite-precision
implementations.

14. Repeat the problem above for the following cases
(a) o2 = 0.01, b = 12 bits, bg = 12 bits, 62 = 0.7, p = 10~%.
(b) 02 = 0.1, b = 10 bits, bg = 10 bits, 02 = 0.8, p = 2.0 1075,
(c) 02 =0.05, b, = 14 bits, by = 16 bits, 02 = 0.8, u = 3.5 10~*.

15. Repeat problem 13 in the case the input signal is a first-order Markov
process with Ax = 0.95.

16. Repeat problem 4 for the dual-sign algorithm given y = 16 and p = 1, and
comment on the results.
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17.

18.

19.
20.

21.
22.

23.

24.

Repeat problem 4 for the power-of-two error algorithm given b4 = 6 and
7 = 27%+1 and comment on the results.

Repeat problem 4 for the sign-data and sign-sign algorithms and compare
the results.

Show the validity of the matrix inversion lemma defined in equation (4.51).

For the setup described in problem 6, choose an appropriate x4 and run the
LMS-Newton algorithm.

(a) Measure the misadjustment.

(b) Plot the frequency response of the FIR filter obtained after convergence
is achieved and compare with the unknown system.

Repeat problem 6 using the normalized LMS algorithm.

Repeat problem 6 using the transform-domain LMS algorithm with DCT.
Compare the results with those obtained with the standard LMS algorithm.

For the input signal described in problem 6, derive the autocorrelation
matrix of order one (2 x 2). Apply the DCT and the normalization to R

in order to generate R = o~ 2TRTT. Compare the eigenvalue spreads of
R and R.

Repeat the previous problem for R with dimension 3 by 3.
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CONVENTIONAL RLS ADAPTIVE
FILTER

5.1 INTRODUCTION

Least-squares algorithms aim at the minimization of the sum of the squares
of the difference between the desired signal and the model filter output [1]-
[2]. When new samples of the incoming signals are received at every iteration,
the solution for the least-squares problem can be computed in recursive form
resulting in the recursive least-squares (RLS) algorithms. The conventional
version of these algorithms will be the topic of the present chapter.

The RLS algorithms are known to pursue fast convergence even when the eigen-
value spread of the input signal correlation matrix is large. These algorithms
have excellent performance when working in time-varying environments. All
these advantages come with the cost of an increased computational complexity
and some stability problems, which are not as critical in LMS-based algorithms

[3)-[4).

Several properties related to the RLS algorithms are discussed including mis-
adjustment, tracking behavior, and finite-wordlength effects [3)-[10].

5.2 THE RECURSIVE LEAST-SQUARES
ALGORITHM

The objective here is to choose the coefficients of the adaptive filter such that
the output signal y(k), during the period of observation, will match the desired

P. S. R. Diniz, Adaptive Filtering

© Springer Science+Business Media New York 1997
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signal as closely as possible in the least-squares sense. The minimization process
requires the information of the input signal available so far. Also, the objective
function we seek to minimize is deterministic.

The generic FIR adaptive filter realized in the direct form is shown in Fig 5.1.
The input-signal information vector at a given instant k is given by

x(k) = [z(k) z(k—1) ...z(k - N)]T (5.1)

where N is the order of the filter. The coefficients w;(k), for j = 0,1,..., N,
are adapted aiming at the minimization of a given objective function. In the
case of least-squares algorithms, the objective function is deterministic and is
given by

k
k) = PN

2

- ZA"’ (i) - x" (i) wik)] (5.2)

where () is the output error at instant { and w(k) = [w,(k) w1 (k) ..., wn(k)]T
is the adaptive filter coefficient vector. The parameter A is an exponential
weighting factor that should be chosen in the range 0 <« A < 1. This parameter
is also called forgetting factor since the information of the distant past has an
increasingly negligible effect on the coefficient updating.

As can be noted, each error consists of the difference between the desired signal
and the filter output, using the most recent coeflicients w(k). By differentiating
&4(k) with respect to w(k), it follows that

d
‘% I’: :—22/\"’ —xT (i)w(k)] (5.3)

By equating the result to zero, it is possible to find the optimal vector w(k)
that minimizes the least-squares error, through the following relation:

0
0

k k
- 2 Ae=ix(i)xT (i) w(k) + Z AF=ix(d)d(i) =
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Figure 5.1 Adaptive FIR filter.

The resulting expression for the optimal coefficient vector w(k) is given by

w(k)

k -1y
[Z Ak—fx(i)xT(i)] > " Xix(i)d(s)

=0 1=0

= Rp'(K)pp(k) (5-4)

where Rp (k) and pp (k) are called the deterministic correlation matrix of the
input signal and the deterministic cross-correlation vector between the input
and desired signals, respectively.
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In equation (5.4) it was assumed that Rp (k) is nonsingular. However if Rp (k)
is singular a generalized inverse [1] should be used instead in order to obtain
a solution for w(k) that minimizes £¢(k). Since we are assuming that in most
practical applications the input signal has persistence of excitation, the cases
requiring generalized inverse are not discussed here. It should be mentioned
that if the input signal is considered to be zero for k < 0 then Rp(k) will
always be singular for ¥ < N, i.e., during the initialization period. During this
period, the optimal value of the coefficients can be calculated for example by
the backsubstitution algorithm to be presented in subsection 8.2.1.

The straightforward computation of the inverse of Rp (k) results in an algorithm
with computational complexity of O[N3]. In the conventional RLS algorithm
the computation of the inverse matrix is avoided through the use of the matrix
inversion lemma [1], first presented in the previous chapter for the LMS-Newton
algorithm. Using the matrix inversion lemma, see equation (4.51), the inverse
of the deterministic correlation matrix can then be calculated in the following
form

Sp(k — 1)x(k)xT(k)Sp(k — 1)
A+ xT(k)Sp(k — 1)x(k)

The complete conventional RLS algorithm is described in Algorithm 5.1.

Sp(k) = Rp}(k) = % [sD(k -1) - (5.5)

An alternative way to describe the conventional RLS algorithm can be obtained
if equation (5.4) is rewritten in the following form

k k-1
[Z Ak-"x(i)xT(i)] w(k) =\ [Z AF=i=1x(3)d(i)
1=0

1=0

+x(k)d(k)  (5.6)

By considering that Rp(k — 1)w(k — 1) = pp(k — 1), it follows that

k
[Z )\"‘ix(i)xT(i)} w(k) = App(k—1)+x(k)d(k)
1=0

= )\RD(k — 1)W(k - ].) + X(k)d(k)

[E Ae=ix (4)xT (i) — x(k)xT(k)] w(k —1)

x(k)d(k) (5.7)

where in the last equality the matrix x(k)x7 (k) was added and subtracted inside
square bracket on the right side of equation (5.7). Now, define the a priori error

I
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Algorithm 5.1

Conventional RLS Algorithm

Initialization
Sp(—1) =461

where § can be the inverse of the input-signal power estimate
pp(=1)=x(=1)=[00 ... 0)T

Do for k> 0:

1 Sp(k=1)X(k)XT (k)Sp(k-1)
Sp(k) = x[Sp(k - 1) - D)\+xT(k)SD(k—1)xD(k) )

pp (k) = App(k — 1) + d(k)x(k)
w(k) = Sp(k)pp (k)
If necessary compute
y(k) = w7 (k)x(k)
e(k) = d(k) — y(K)

e'(k) = d(k) — xT (k)w(k — 1) (5.8)

By expressing d(k) as a function of the a priori error and replacing the result
in equation (5.7), after few manipulations, it can be shown that

w(k) = w(k — 1)+ ¢'(k)Sp (k)x(k) (5.9)

With equation (5.9), it is straightforward to generate an alternative conventional
RLS algorithm as shown in Algorithm 5.2.

In Algorithm 5.2, ¥(k) is an auxiliary vector required to reduce the computa-
tional burden. Further reduction in the number of divisions is possible if it is

used an additional auxiliary vector defined as ¢(k) = ﬁ‘g{%m This vector

can be used to update Sp(k) as follows:

Sp(k) = % [So(k = 1) - ® (k)67 (k)] (5.10)

As will be discussed, the relation above can lead to stability problems in the
RLS algorithm.




188

CHAPTER 5

Algorithm 5.2

Alternative RLS Algorithm

Initialization
Sp(-1) =4I
where § can be the inverse of an estimate of the input signal power
x(-1)=w(=1)=[00 ... 0]
Do for k> 0
e'(k) = d(k) — xT (k)w(k — 1)
W (k) = Sp(k — 1)x(k)
T
Sp(k) = §[Sp(k - 1) - el
w(k) = w(k — 1) + ¢'(k)Sp(k)x(k)
If necessary compute
y(k) = w7 (k)x(k)
e(k) = d(k) — y(k)

5.3 PROPERTIES OF THE

LEAST-SQUARES SOLUTION

In this section, some properties related to the least-squares solution are dis-
cussed in order to give some insight to the algorithm behavior in several situ-
ations to be discussed later on.

5.3.1 Orthogonality Principle

Define the matrices X(k) and d(k) that contain all the information about the
input signal vector x(k) and the desired signal vector d(k) as follows:

X(k) =

z(k) A 22k —1) s AE=D26(1) ARI22(0)
gk—1)  AV2z(k-2) ... AE-D/250) 0

z(k—=N) M/ 2g(k-N-1) ... 0 0
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[x(k) AY2x(k —1) --- M/2x(0)] (5.11)
d(k) = [d(k) \Y2d(k—1) --- X/24(0))T (5.12)

Il

where X(k) is (N +1) x (k+ 1) and d(k) is (k + 1) x (1).

By using the matrices defined above it is possible to replace the least-squares
solution of equation (5.4) by the following relation

X(k)XT (k)w(k) = X (k)d(k) (5.13)

The product X7 (k)w(k) forms a vector including all the adaptive filter outputs

when the coefficients are given by w(k). This vector corresponds to an estimate
of d(k). Hence defining

y(k) = XT(k)w(k) = [y(k) A 2y(k = 1) --- X¥/2y(0)]" (5.14)
it follows from equation (5.13) that
X(k)XT (k)w (k) — X(k)d(k) = X(K)[y(k) — d(k)] = 0 (5.15)

This relation means that the weighted-error vector given by

e(k)
A2e(k —1)
e(k) = _ = y(k) — d(k) (5.16)

Mk12¢(0)

is in the null space of X(k), i.e., the weighted-error vector is orthogonal to all
row vectors of X (k). This justifies the fact that (5.13) is often called normal
equation. A geometrical interpretation can easily be given for a least-squares
problem solution with a single coefficient filter.

Example 5.1

Suppose that A = 1 and that the following signals are involved in the least-
squares problem
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The optimal coeflicient is given by

o -] ] iwo =0 -a |07 ]

After performing the calculations the result is

w(l) = —%

The output of the adaptive filter with coefficient given by w(1) is

Note that
Xm0 -ami=n -2 3] =0

Fig. 5.2 illustrates the fact that y(1) is the projection of d(1) in the X(1)
direction. In the general case we can say that the vector y(k) is the projection
of d(k) onto the subspace spanned by the rows of the X(k).

5.3.2 Relation Between Least-Squares and
Wiener Solutions

When A = 1 the matrix ;37Rp(k) for large k is a consistent estimate of the
input signal autocorrelation matrix R, if the process from which the input signal
was taken is ergodic. The same observation is valid for the vector k—1+—1p p (k)

related to p if the desired signal is also ergodic. In this case,

. 1 N T . 1
R klggok+lié_0 x(1)x" () kllglok+1RD(k) (5.17)
and
L
= —_— ] = 1
P dim E x(i)d(i) = lim ——pp (k) (5.18)
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Figure 5.2 Geometric interpretation of least-square solution.

It can then be shown that
w(k) =Rp' (k)pp(k) =R 'p=w, (5.19)

when k tends to infinity. This result indicates that the least-squares solution
tends to the Wiener solution if the signals involved are ergodic and stationary.
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The stationarity requirement is due to the fact that the estimate of R given by
equation (5.17) is not sensitive to any changes in R for large values of k. If the
input signal is nonstationary Rp(k) is a biased estimate for R. Note that in
this case R is time-varying.

5.3.3 Influence of the Deterministic
Autocorrelation Initialization
The initialization of Sp(—1) = dI causes a bias in the coefficients estimated by

the adaptive filter. Suppose that the initial value given to Rp(k) is taken into
account in the actual RLS solution as follows:

k
Z Ae=ix (i)xT (i)w (k) [ZAk-*x(z)xT Iw(k)

i = po(k) (5.20)

By recognizing that the deterministic autocorrelation matrix leading to an un-
biased solution does not include the initialization matrix, we now examine the
influence of this matrix. By multiplying Sp (k) = RBl(k) on both sides of
(5.20), and by considering k — 00, it can be concluded that

k+1

k+1

W(k) + Sp (k)w(k) =W, (5.21)

The bias cansed by the initialization of Sp (k) is approximately
/\k+1

]

For A < 1 it is straightforward to conclude that the bias tends to zero as k
tends to infinity. On the other hand, when A = 1 the elements of Sp(k) get
smaller when the number of iterations increase, as a consequence this matrix
approaches a null matrix for large k.

w(k)—w, ~ — Sp(k)w, (5.22)

The RLS algorithm would reach the optimum solution for the coefficients after
N + 1 iterations if no measurement noise is present and the influence of the
initialization matrix Sp(—1) is negligible at this point. This result follows
from the fact that after N + 1 iterations the input signal vector has enough
information to allow the adaptive algorithm to identify the coefficients of the
unknown system. In other words, enough information means the tap delay line
is filled with information of the input signal.
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5.3.4 Steady-State Behavior of the
Coefficient Vector

In order to understand better the steady-state behavior of the adaptive filter
coefficients, suppose that an FIR filter with coefficients given by w, is being
identified by an adaptive FIR filter of the same order employing an LS algorithm.
Also assume that a measurement noise signal n(k) is added to the desired signal
before the error signal is calculated as follows:

d(k) = wlx(k) + n(k) (5.23)

where the additional noise is considered to be a white noise with zero mean and
variance given by o2.

Given the adaptive-filter input vectors x(k), for k = 0,1, ..., we are interested
in calculating the average values of the adaptive filter coefficients w;(k), for
t=0,1,..., N. The desired result is the following equality valid for k > N.

Elw(k)] = E { [X(k)XT (k): - X(k)d(k)}
= E{[X(k)xT(k): X (k)X (k)w, +n(k))}
= E { [X(k)XT(k); B X(k)XT(k)wa} = w, (5.24)

where n(k) = [n(k) AY2n(k — 1) An(k —2) ... A¥/2n(0)]7 is the noise vector,
whose elements were considered orthogonal to the input signal. The equation
above shows that the estimate given by the LS algorithm is an unbiased estimate
when A < 1.

A more accurate analysis reveals the behavior of the adaptive filter coefficients
during the transient period. The error in the filter coefficients can be described
by the following (N + 1) x 1 vector

Aw(k) = w(k) —w, (5.25)

It follows from equation (5.7) that

Rp (k)w(k) = ARp (k — )w(k — 1) + x(k)d(k) (5.26)
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Defining the minimum output error as
eo(k) = d(k) - xT (b)w, (5.27)
and replacing d(k) in equation (5.26), it can be easily deduced that
Rp(k)Aw(k) = ARp(k — 1)Aw(k — 1) + x(k)e, (k) (5.28)
where it was used the following straightforward relation

Rp(k) = A\Rp(k — 1) + x(k)xT (k) (5.29)
The solution of equation (5.28) is given by

Aw(k) = MF1Sp(k)Rp(—-1)Aw(—1) +Sp(k E,\"’

(5.30)

By replacing Rp(—1) by I and taking the expected value of the resulting
equation, it follows that

/\k+1
Blaw(k)] = S B[Sp(K)Aw(-1)

k
k) Z Me=ix(1)e, (1)) (5.31)

Since Sp(k) is dependent on all past input signal vectors, becoming relatively
invariant when the number of iterations increase, the contribution of any indi-
vidual x(7) can be considered negligible. Also, due to the orthogonality prin-
ciple, e,(i) can also be considered uncorrelated to all elements of x(i). This
means that the last vector in equation (5.31) cannot have large element values.
On the other hand, the first vector in equation (5.31) can have large element
values only during the initial convergence, since as k — oo, A¥*! — 0 and
Sp(k) is expected to have a nonincreasing behavior, i.e., Rp (k) is assumed to
remain positive definite as k — co and the input signal power does not become
too small. The above discussion leads to the conclusion that the adaptive fil-
ter coefficients tend to the optimal values in w, almost independently from the
eigenvalue spread of the input signal correlation matrix.

If we consider the spectral decomposition of the matrix E[Sp (k)] (see equation
(2.65)), the dependency on the eigenvalues of R can be easily accounted for in
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the simple case of A = 1. Applying the expected value operator to the relation
of equation (5.17), we can infer that

R—l

E[Sp (k)] ~ Ty

(5.32)

for large k. Now consider the slowest decaying mode of the spectral decompos-
ition of E[Sp (k)] given by

T
AminAmi
- min imin 3
SDmaz /\m,n(k-f- 1) (5 3)

where An;n is the smallest eigenvalue of R and q_,;,, 1s the corresponding eigen-
vector. Applying this result to equation (5.31), with A = 1, we can conclude that
the value of the minimum eigenvalue affects the convergence of the filter coeffi-
cients only in the first few iterations, because the term k + 1 in the denominator
reduces the values of the elements of Sp___.
Further interesting properties of the coefficients generated by the LS algorithm
are:

®  The estimated coefficients are the best linear unbiased solution to the iden-
tification problem [1], in the sense that no other unbiased solution generated
by alternative approaches has lower variance.

m  If the additive noise is normally distributed the LS solution reaches the
Cramer-Rao lower bound, resulting in a minimum-variance unbiased solu-
tion [1]. The Cramer-Rao lower bound establishes a lower bound to the
coefficient-error-vector covariance matrix for any unbiased estimator of the
optimal parameter vector w,.

5.3.5 Coefficient-Error-Vector Covariance
Matrix

So far, we have shown that the estimation parameters in the vector w(k) con-
verge in average to their optimal value of the vector w,. However, it is essential
to analyze the coefficient-error-vector covariance matrix in order to determine
how good is the obtained solution, in the sense that we are measuring how far
the parameters wander around the optimal solution.
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Using the same convergence assumption of the last section it will be shown here
that the coeflicient-error-vector covariance matrix is given by

cov[Aw(k)] = E [(w(k) — w,)(w(k) — wo)T] = 02Sp (k) (5.34)
for A= 1.

Proof

First note that by using equations (5.4) and (5.13), the following relations are
verified

wik)=w, = Sp(k)pp(k) — Sp(k)S5! (t)we
= [XWXT®)] 7 X0k [alk) - X7 (kw,]
- [X(k)XT(k)]_IX(k)n(k)
where n(k) = [n(k) A\Y2n(k — 1) An(k = 2) ... A*/2n(0)]T.

Applying the last equation to the covariance of the coefficient-error-vector it
follows that

cov[Aw(k)]

[X(XT ()] X (k) Eln(kn” )X () [X(DXT ()]
= 0.Sp(k)X(k)AX" (K)Sp (k)

where X(k) was considered to be known and

A= A2

)‘k
where for A = 1, A = I. In this case,

cov[Aw(k)] = o2Sp(k)X(k)XT (k)Sp(k)
= o2Sp(k)Rp(k)Sp(k)
= 0o2Sp(k)
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Therefore, when A = 1, the coefficient-error-vector covariance matrix tends
to decrease its norm as time progresses since Sp (k) is also norm decreasing.
The variance of the additional noise n(k) influences directly the norm of the
covariance matrix.

5.3.6 Behavior of the Error Signal

It is important to understand how the error signal behaves in the RLS algorithm.
When a measurement noise is present in the adaptive filtering process, the error
signal is given by

e(k) = d'(k) — wT (k)x(k) + n(k) (5.35)

where d’(k) is the desired signal without measurement noise.

Again if the input signal is considered known (conditional expectation), then

Ele(k)] = E[d'(k)] - Ew" (k)]x(k) + E[n(k)]
= E[d'(K)] - w, (k) + E[n(k)]
= E[n(k)] (5.36)

assuming that the adaptive filter order is sufficient to model perfectly the desired
signal.

From equation (5.36) it can be concluded that if the noise signal has zero mean
then
E [e(k)] =0

It is also important to access the minimum mean value of the squared error that
1s reachable using an RLS algorithm. The minimum mean-square error (MSE)
in the presence of external uncorrelated noise is given by

min = E[e2(k)] = E[n?(k)] = o2 (5.37)

where it is assumed that the adaptive-filter multiplier coefficients were frozen
at their optimum values and that the number of coefficients of the adaptive
filter is sufficient to model the desired signal. It should be noted, however,
that if the additive noise is correlated with the input and the desired signal, a
more complicated expression for the MSE results, accounting for the referred
correlation.
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Example 5.2

Repeat the equalization problem of Example 3.1 of Chapter 3 using the RLS
algorithm.

(a) Using A = 0.99, run the algorithm and save the matrix Sp (k) at the iteration
500 and compare with the the inverse of the input signal correlation matrix.

(b) Plot the convergence path for the RLS algorithm on the MSE surface.
Solution:

(a) The inverse of matrix R, as computed in the Example 3.1, is given by

0.7611 0.3580

- [ 0.3580 0.7611 ]

L 1.6873 0.7937
R! = 0.45106[0.7937 1.6873]

The initialization matrix Sp(—1) was a diagonal matrix with the diagonal ele-
ments equal to 0.1. The matrix Sp(k) at the 500th iteration, obtained by
averaging the results of 30 experiments, was

_ 0.0078 0.0037
Sp(500) = [ 0.0037 0.0078 ]
Also, the obtained values of the deterministic cross-correlation vector was
95.05
pp(500) = [ 46.21 ]

Now if we divide each element of the matrix R™! by

1= )‘k+1
— =99.34
T 99.3
The resulting matrix is
1 0.0077 0.0036
99.34 - 0.0036 0.0077

as can be noted the values of the elements of the above matrix are close to the
average values of the corresponding elements of matrix Sp (500).
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Similarly, if we multiply the cross-correlation vector p by 99.34, the result is

94.61
99.34p = [47.31]

The values of the elements of this vector are also close to the corresponding
elements of pp (500).

(b) The convergence path of the RLS algorithm on the MSE surface is depicted
in Fig. 5.3. The reader should notice that the RLS algorithm approaches the
minimum using large steps when the coefficients of the adaptive filter are far
away from the optimum solution.

7

-1

-2

-3r

Figure 5.3 Convergence path of the RLS adaptive filter.
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5.3.7 Excess of Mean-Square Error and
Misadjustment

In a practical implementation of the recursive least-squares algorithm, the best
estimation for the unknown parameter vector is given by w(k), whose expected
value is w,. However, there is always an excess of MSE at the output caused
by the error in the coefficient estimation, namely Aw(k) = w(k) — w,. The
mean-square error for a given coefficient vector (see equation (3.38))

E(K) = Emin+ (W(k) —Wo) T R(w(k) — W,)
o + AwT (k)RAw(k) (5.38)

Now considering that Aw;(k) for j = 0,1, ..., N are random variables with zero
mean and independent of x(k), then by employing equations (5.34) and (5.18),
the ensemble average of the MSE can be calculated as follows

El(k)] = of+ E[AwWT (k)RAwW(k)]
= o2+ E[tr(RAw(k)AwT (k)]

ol +tr(RE[Aw(k)AwT (k)])

On a number of occasions it is interesting to consider the analysis for A = 1
separated from that for A < 1.

Excess of MSE for A =1

From the results of equations (5.34) and (5.17) we can infer that

E[¢(k)] = ok +ohtr(RSp(k))
-1

k+1
N+1

2 e ——

W+ 177

= oi(l+tr(R )) for k — oo

for A = 1. As can be noted the minimum MSE can be reached only after the
algorithm has operated in a number of samples larger than the filter order.
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Excess of MSE for A < 1

Again assuming that the mean-square error surface is quadratic as considered
in equation (5.38), the expected excess in the MSE is then defined by

A¢(k) = E[AwT (k)RAW(K)) (5.39)

The objective now is to calculate and analyze the excess of MSE when X < 1.
From equation (5.28) one can easily show that

Aw(k) = ASp (K)Rp (k — )Aw(k — 1) + R (k)x(k)e, (k) (5.40)

By applying equation (5.40) to (5.39), it follows that

E[AWT (F)RAW (k)] = p1 + p2 + p3 + pa (5.41)
where
pi = MNE[AwT(k—1)Rp(k —1)Sp (k)RSp(k)Rp(k — 1)Aw(k — 1)]
p2 = AE[AWT(k - 1)Rp(k — 1)Sp (k)RSp (k)x(K)e, ()]

ps = ME[xT(k)Sp(k)RSp(k)Rp(k — 1)Aw(k — 1)e, (k)]
ps = E[x"(k)Sp(k)RSp(k)x(k)el(k)]

o

Now each term in equation (5.41) will be evaluated separately.
1- Evaluation of p;

First note that as k — oo, it can be assumed that Rp(k) =~ Rp(k — 1), then
p1 AN E[AWT (k — 1)RAw(k — 1)] (5.42)

2- Evaluation of p,

Since each element of Rp (k) is given by

k
rag(k) = Y Nzl - i)l - j) (5.43)

=0
for 0 <4, j < N. Therefore,

k

Elra (k)] = Y M E[e(l - i)z(l - j)]

=0
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If z(k) is stationary, r(i — j) = E[z(l — )z (l — j)] is independent of the value ,
then
D L ()

rags(k) = rli — ) oy~ B (5.44)
Equation (5.44) allows the conclusion that
E[Rp(k)] = ——_I——XE[x(k)xT (k)] = i—_l—)-\R (5.45)
In each step, it can be considered that
Rp(k) = LR + AR(k) (5.46)

1-2A

where AR(k) is a symmetric error matrix with zero-mean stochastic entries
that are independent of the input signal. From equations (5.45) and (5.46), it
can be concluded that

Sp(kA)R~ (1 -A)[I-(1-NRAR(K)] (5.47)

where in the last relation Sp (k) AR(k) was considered approximately equal to
(1 - A)R™'AR(k), by disregarding second-order errors.

In the long run, it is known that E[Sp (k)R] = (1 — A)I, that means the second
term inside the square bracket in equation (5.47) is a measure of the perturbation
caused by AR(k) in the product Sp(k)R. Denoting the perturbation by AI(k),
it can be concluded that

p2 & M1-XNE[AwT (k- 1)(I — AI(k))x(k)e(k)]
~ M1 =XNE[AwWT (k- 1)]E[x(k)e, (k)] = 0 (5.48)
where it was considered that Aw” (k) is independent of x(k) and e, (k), AI(k)
was also considered an independent error matrix with zero mean, and finally it
was used the fact that x(k) and e, (k) are orthogonal.

3- Following a similar approach it can be shown that p3 = 0.

4- Evaluation of py4

ps = E[xT(k)Sp(k)RSp (k)RR x(k)e(k)]
(1= X)2E[xT (k)(I - AI(K))*R™'x(k)émin (5.49)
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where equation (5.47) was used and e,(k) was considered independent of x(k)
and AI(k). By using the property that

E[xT (k) (I — AI(k))?R™'x(k)] = trE[(I — AL(k))*R ™ "x(k)x7 (k)]

and recalling that AI(k) has zero mean and is independent of x(k), then equation
(5.49) is simplified to

pa = (1= X)*tr{I+ E[AL (k)]}min (6.50)
where tr[-] means trace of [].

By using equations (5.42), (5.48), and (5.50), it follows that

E[AWT (k)RAw(K)] = ME[AwT (k- 1)RAw(k — 1)]
+(1 = N 2r{I+ E[AT()]}min  (5.51)

Asymptotically, the solution of the equation above is

_1-2 2 .
6eze = oy tr{T+ EIAT (6] min (5.52)

Note that the term given by E[AI?(k)] is not easy to estimate and is dependent
on fourth-order statistics of the input signal. However, in specific situations,
it is possible to compute an approximate estimate for this matrix. In steady
state, it can be considered for white noise input signal that only the diagonal
elements of R and AR are important to the generation of excess of MSE. Even
when the input signal is not white, this diagonal dominance can be considered
a reasonable approximation in most of the cases. From the definition of AI(k),

E[Ar§ (k)]

E[Alﬁ(k)] = (1 - )‘) [0_2]2

(5.53)

where 02 is variance of z(k). By calculating AR(k) —AAR(k—1) using equation

(5.46), we show that
A’I’,‘,‘(k) = /\AT,‘,‘(k - 1) + Z(k - 2):C(k — Z) — P4 (554)

Squaring the equation above, applying the expectation operation, and using the
independence between Ar;;(k) and z(k), it follows that

E[Arfi(k)] = ME[Ar(k-1)]
+E[(z(k — )z (k — i) — i) (5.55)
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Therefore, asymptotically

1 1
E[Ar (k)] = 1_—/\20§2(k_i) = 1—_—‘/\—2032 (5.56)
By substituting equation (5.56) in (5.53), it becomes
BlAR] = LoA%e _1-Ap (5.57)

1+/\tr2 1+

2
where K = 0—:23 is dependent on input signal statistics. For Gaussian signals,

K =219

Returning to our main objective, the excess of MSE can then be described as
1-A 1-
14

beze = (N+ )75+ 755

IC){mm (5.58)

If A is approximately one and K is not very large then

1-AX
Ceze = (N + 1) ) fmm (559)

this expression can be reached through a simpler analysis [8]. However, the more
complete derivation shown here can give more insight to the interpretation of
the results obtained by using the RLS algorithm, mainly when A is not very
close to one.

The misadjustment formula can easily be deduced from equation (5.58)

6610 (N + 1)

M=
€min 1+)\

(1 41 IC) (5.60)

1+

As can be noted the decrease of A from one brings a fourth-order statistics term
into the picture by increasing the misadjustment. Then, the fast adaptation of
the RLS algorithm, that corresponds to smaller A, brings a noisier steady-state
response. Therefore, when working in a stationary environment the best choice
for A would be one, if the excess of MSE in the steady state is unacceptable.
However, other problems such as instability due to quantization noise are prone
to occur in this case.
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5.4 BEHAVIOR IN NONSTATIONARY
ENVIRONMENTS

In cases where the input signal and/or the desired signal are nonstationary, the
optimal values of the coefficients are time variant and described by w, (k). That
means the autocorrelation matrix R(k) and/or the cross-correlation vector p(k)
are time variant. For example, typically in a system identification application
the autocorrelation matrix R(k) is time invariant while the cross-correlation
matrix p(k) is time variant, because in this case the designer can choose the
input signal. On the other hand, in equalization, prediction, and signal en-
hancement applications both the input and the desired signal are nonstationary
leading to time-varying matrices R(k) and p(k).

The objective in the present section is to analyze how close the RLS algorithm
is able to track the time-varying solution w, (k). Also, it is of interest to learn
how the tracking error in w(k) affects the output MSE [9]. Here, the effects of
the measurement noise are not considered, since only the nonstationary effects
are desired. Also, both effects on the MSE can be added since, in general, they
are independent.

Recall from equations (5.8) and (5.9) that
w(k) = w(k — 1) + Sp (k)x(k)(d(k) — xT (k)w(k — 1)) (5.61)
and
d(k) = xT (k)w,(k — 1) + €. (k) (5.62)

The error signal e, (k) is the minimum error at iteration k being generated by the
nonstationarity of the environment. One can replace equation (5.62) in (5.61)
in order to obtain the following relation

wik) = wlk— 1)+ Sp(B)x(R)xT (k) wa(k — 1) — w(k - 1)]
+Sp(k)x(k)e! (k) (5.63)

By taking the expected value of equation (5.63), considering that x(k) and €, (k)
are approximately orthogonal, and that w(k — 1) is independent of x(k), then

Elw(k)] = E[w(k—-1)]
B[S (k)x(R)xT (B)] {wa(k 1) — Bfw(k — 1)]} (5.64)
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It is now needed to compute E[Sp(k)x(k)xT (k)] in the case of nonstationary
input signal. From equations (5.43) and (5.45), one can show that

k
Rp(k) =Y N'R(l) + AR(k) (5.65)
1=0

k
since E[Rp (k)] = Z/\k_lR(l). The matrix AR(k) is again considered a sym-

=0
metric error matrix with zero-mean stochastic entries that are independent of

the input signal.

If the environment is considered to be varying in a slower pace than the memory
of the adaptive RLS algorithm then

Rop (k) ~ 1—1—)\R(k) + AR(k) (5.66)

Considering that (1 — A)||[R™!(k)AR(k)|| < 1 and using the same procedure to
deduce equation (5.47), we obtain
Sp(k) =~ (1= AR (k) = (1 = AR (k)AR(K)R ™ (k) (5.67)
it then follows that
Elw(k)] = E{w(k - 1)] + {(1 - ) E[R™" (k)x(k)x" ()]
= (1=X0’ER7 (k) AR(K)R™' (k)x(k)xT (k)]} [Wo(k — 1) — Efw(k — 1)]]
~ Efwk— 1]+ (1 =) [wo(k—1) - E[w(k —1)]] (5.68)

where it was considered that AR(k) is independent of x(k) and has zero expec-
ted value.

Now defining the lag-error vector in the coefficients as
lw(k) = Efw(k)] - wa(k) (5.69)
From equation (5.68) it can be concluded that
lw (k) = Alw(k — 1) — wo(k) + wo(k — 1) (5.70)

Equation (5.70) is equivalent to say that the lag is generated by applying the
optimal instantaneous value w,(k) through a first-order discrete-time filter as

follows:
z—1

ZTXWoi(z) (5.71)

Lw,‘(z) = —
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The discrete-time filter transient response converges with a time constant given
by
-1 5.72)
=1 (5.
The time constant is of course the same for each individual coefficient. Note
that the tracking ability of the coefficients in the RLS algorithm is independent

of the input-signal correlation-matrix eigenvalues.

The lag in the coefficients leads to an excess of MSE. In order to calculate
the MSE suppose that the optimal coefficients values are first-order Markov
processes described by

Wo(k) = Aww,o(k — 1) + nw(k) (5.73)

where nw (k) is a vector whose elements are zero-mean Gaussian noise processes
with variance 0%, and Aw < 1. Note that A < Aw < 1, since the optimal
coefficients values must vary slower than the filter tracking speed, that means

1 1
< .
I S Ty

The excess of MSE due to lag is then given by (see the derivations around
equation (3.38))

Elli (k)Rlw (k)]
= Eltr(Rlw(k)ly(k))]
= tr(RE[lw (k)% (k)]) (5.74)

&ag

For Aw not close to one, it is a bit more complicated to deduce the excess of
MSE due to lag than for \w ~ 1. However, the effort is worth it because the
resulting expression is more accurate. From equation (5.71), we can see that the
lag-error vector elements are generated by applying a first-order discrete-time
system to the elements of the unknown system coefficient vector. On the other
hand, the coefficients of the unknown system are generated by applying each
element of the noise vector nw(k) to a first-order all-pole filter, with the pole
placed at Aw. For the unknown coefficient vector with the model above, the
lag-error vector elements can be generated by applying the elements of the noise
vector nw (k) to a discrete-time filter with transfer function

—(z = 1)z
(z=N(z—= Aw)

This transfer function consists of a cascade of the lag filter with the all-pole
filter representing the first-order Markov process. The solution for the variance

H(z) = (5.75)
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of the lag terms [; can be computed through the inverse Z-transform as follows:

1 _ -
E[}(k)] = e H(z)H(z Yo%zt dz
The integral above can be solved using the residue theorem as previously shown
in the LMS case.

Using the solution for the variance of the lag terms for values of Aw < 1, it can
be easily shown that

(N +1)02,02 (1—,\ 1-,\w> (5.76)

5’“9“,\w(1+,\2)—,\(1+,\3v) 1+A 14w

If A\ =1 and Aw = 1, the MSE due to lag tends to infinity indicating that the
RLS algorithm in this case cannot track any change in the environment. On
the other hand, for A < 1 the algorithm can track variations in the environ-
ment leading to an excess of MSE that depends on the variance of the optimal
coefficient disturbance and on the input signal variance.

For Aw ~ 1 and A = 1, it is possible to rewrite equation (5.76) as
2

€iag ~ (N + D5

ol (5.77)

The total excess of MSE accounting for the lag and finite memory is given by

1-A 0¥l
€total ~ (N + 1) [mfmm + m (578)

By differentiating the above equation with respect to A and setting the result
to zero, an optimum value for A can be found that yields minimum excess of

MSE.

l _ O“lo;p
_ 20,
Aopt - 1 + 012%:: (5.79)

In the equation above 0, = v/&mnin. Note that the optimal value of A does
not depend on the adaptive filter order N, and can be used when it falls in
an acceptable range of values for A\. Also this value is optimum only when
quantization effects are not important and the first-order Markov model is a
good approximation for the nonstationarity of the desired signal.
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5.5 QUANTIZATION EFFECTS

When implemented with finite-precision arithmetic, the conventional RLS al-
gorithm behavior can differ significantly from what is expected under infinite
precision. A series of inconvenient effects can show up in the practical imple-
mentation of the conventional RLS algorithm, such as divergence and freezing
in the updating of the adaptive filter coefficients. In this section, several aspects
of the finite-wordlength effects in the RLS algorithm are discussed for the cases
of implementation with fixed- and floating-point arithmetic [3]-[6], [11]-[14].

5.5.1 Error Descriptions

All the elements of matrices and vectors in the RLS algorithm will deviate from
their correct values due to quantization effects. The error generated in any
individual quantization is considered to be a zero-mean random variable that
is independent of any other error and quantities related to the adaptive filter
algorithm. The variances of these errors depend on the type of quantization
and arithmetic that will be applied in the algorithm implementation.

The errors in the quantities related to the conventional RLS algorithm are
defined by

ne(k) = €' (k) —¢€'(k)q (5.80)
ng (k) = Sp(k-1)ox(k) - [Sp(k - 1)ex(k)le (5.81)
Ng, (k) = Sp(k)-Sp(k)q (5.82)
nw(k) = w(k)-w(k)o (5.83)
ny(k) = y(k) —y(k)g (5.84)
ne(k) = e(k)—e(k)g (5.85)

where the subscript Q denotes the quantized form of the given matrix, vector,
or scalar.

It is assumed that the input signal and desired signal suffer no quantization,
so only quantizations of internal computations are taken into account. With
the definitions above, the following relations describe the computational error
in some quantities of interest related to the RLS algorithm:

ek)g = d(k)—xT(k)yw(k—1)q — ne (k) (5.86)
w(kle = w(k—1)q+Sp(k)ox(k)e'(k)q — nw(k) (5.87)
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where n. (k) is the noise sequence due to quantization in the inner product
xT (k)w(k — 1)g and nw (k) is a noise vector due to quantization in the product

Sp(k)ex(k)e'(k)q-

The development here is intended to study the algorithm behavior when the
internal signals, vectors, and matrices are available in quantized form as happens
in a practical implementation. This means that, for example in Algorithm 5.2,
all the information needed from the previous time interval (k —1) to update the
adaptive filter in the instant k is available in quantized form.

Now we can proceed with the analysis of the deviation in the coefficient vector
generated by the quantization error. By defining

Aw(k)g = w(k)q - w, (5.88)
and considering that
d(k) = xT (k)w, + n(k)
then it follows that
¢'(k)g = —x" (K)Aw(k — 1)q — ne (k) +n(k) (5.89)
and

Aw(k)g = Aw(k—1)g
+8p (k)gx(k)[~x" (k) Aw(k — 1)q — ner(k) + n(k)]
—nw(k) (5.90)
Equation (5.90) can be rewritten as follows:
Aw(k)q = [I - Sp(k)gx(k)xT (k)]JAw(k — 1)g + n'w(k) (5.91)
where
n'w (k) = Sp(k)ox(k)[n(k) — ne (k)] — nw (k) (5.92)
The solution of equation (5.91) can be calculated as

k
Aw(klg = [[[1-So()ex()x" ()] Aw(-1)q

i=0

k k
+E{ II o- SD(J')QX(j)xT(j)]} n'w(i) (5.93)

i=0 |j=i+1
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Algorithm 5.3

RLS algorithm including quantization

Initialization

Sp(—1) =4I

where d can be the inverse of an estimate of the input signal power.
x(-1)=w(=1)=[00 ... 0T

Do for k >0

€' (k)q = d'(k) — xT (k)w(k — 1)q — ner (k) + n(k)

¥ (k) = Sp(k — 1)ox(k) — ng, (k) .

So(klg = } [Sp(k - 1)g - 2 ] _ ng, 1
w(k)g =w(k = 1)q +¢'(k)qSp (k)ox(k) — nw (k)

If necessary compute

y(k)q = w” (k)ox(k) — ny (k)

e(k)g = d(k) — yq (K)

where in the last term of the equation above for i = k, we consider that

Now, if we rewrite Algorithm 5.2 taking into account that any calculation in the
present updating generates quantization noise, we obtain Algorithm 5.3 that
describes the RLS algorithm with quantization and additional noise taken into

account. Notice that Algorithm 5.3 is not a new algorithm.
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5.5.2 Error Models for Fixed-Point
Arithmetic

In the case of fixed-point arithmetic, with rounding assumed for quantization,

the error after each product can be modeled as a zero-mean stochastic process,
with variance given by [15]

2—2b

2 _ —_—

12

where b is the number of bits after the sign bit. Here it is assumed that the

number of bits after the sign bit for quantities representing signals and filter

coefficients are different and given by b4 and b., respectively. It is also assumed

that the internal signals are properly scaled, so that no overflow occurs during

the computations, and that the signal values are between —1 and +1. If in

addition independence between errors is assumed, each element in equations

(5.80) to (5.85) is in average zero. The respective covariance matrices are given

by

(5.94)

E[nl(k)] = E[ni(k)]=o? (5.95)
E[Ng_(k)NTg_(k)] = 0§ I (5.96)
Elnw(k)ny (k)] = Rl (5.97)
E(®(k)¥T (k)] = ol (5.98)
E[Rl(k)] = o} (5.99)

If distinction is made between data and coefficient wordlengths, the noise vari-
ances of data and coefficients are respectively given by

2 ) _ 277

Te = 0y =7y (5.100)
2 /2_2bc

w = 75 (5.101)

where 4/ = 4 = 1 if the quantization is performed after addition, i.e., the
products are performed in full precision and the quantization is applied only
after all the additions in the inner product are finished. For quantization after
each product, then vy = N + 1 and 4/ = N + 2, since each quantization in the
partial product generates an independent noise, and the number of products
in the error computation is N + 1 whereas in the coefficient computation it is
N +2.
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As an illustration, it is shown how to calculate the value of the variance a%D
when making some simple assumptions. The value of O%D depends on how the
computations to generate Sp (k) are performed. Assume the multiplications and
divisions are performed with the same wordlength and that the needed divisions
are performed once, followed by the corresponding scalar matrix product. Also,
assuming the inner product quantizations are performed after the addition, each
element of the matrix Sp (k)¢ requires five multiplications considering that 1/A
is prestored. The diagonal elements of equation (5.96) consist of N + 1 noise
autocorrelations, each with variance 503). The desired result is then given by

0§, =5(N+1)o? (5.102)

where ai is the variance of each multiplication error.

5.5.3 Coeflicient-Error-Vector Covariance
Matrix

Assume that the quantization signals n./(k), n(k), and the vector nw (k) are all
independent of the data, filter coefficients, and of each other. Also, assuming that
these errors are all zero-mean stochastic processes, the covariance matrix of the
coefficient-error vector given by
E[Aw(k)QAwT (k)q] can be easily derived from equations (5.91) and (5.92)

cov[Aw(k)q] = E[Aw(k)oAwT (k)]
= E{[I—SD( )ox(k)xT (k)JAw(k — 1)oAwT (k — 1)q
[ - x(k)xT (k)S (k)Q]}
+E[SD(k) x(k)x” (k)Sp (k)g]E[n 2(k)]
+E([Sp(k)q () T(k)Sp(k)QlE[nZ (k)]
+E[nw (k)ny (k)] (5.103)

The above equation can be approximated in the steady state, where each term
in the right-hand side will be considered separately. It should be noted that
during the derivations it is implicitly assumed that the algorithm follows closely
the behavior of its infinite precision counterpart. This assumption can always
be considered as true if the wordlengths used are sufficiently long. However,
under short wordlength implementation this assumption might not be true as
will be discussed later on.
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Term 1:

The elements of Aw(k — 1) can be considered independent of Sp(k)q and
x(k). In this case, the first term in equation (5.103) can be expressed as

T, = cov[Aw(k — 1)g] — cov[Aw(k — 1)Q] E[x(k)x" (k)Sp (k)]
~ B[So (k)gx(K)xT (Blcor[ Aw(k — 1)g]
+E{Sp(K)gx(k)xT (K)coulAw(k — 1)Jx(R)xT (k)Sp (K)o}
(5.104)

If it is recalled that Sp(k)q is the unquantized Sp(k) matrix disturbed by a
noise matrix that is uncorrelated to the input signal vector, then in order to
compute the second and third terms of T it suffices to calculate

E[Sp(k)x(k)x” (k)] =~ E [Sp (k)] E [x(k)x (k)] (5.105)

where the approximation is justified by the fact that Sp (k) is slowly varying as
compared to x(k) when A — 1. Using equation (5.44) it follows that

1-2

E [Sp (k)x(k)x" (k)]

Now we need to use stronger assumptions for Sp(k) than those considered in
the equation above. If the matrix E[Sp(k)q] is assumed to be approximately
constant for large k (see the discussions around equation (5.43)), the last term
in T; can be approximated by

E{Sp (k)ox(k)x” (k)cov[Aw(k + 1)o]x(k)x" (k)Sp (k)q}
~ E[Sp (k)] E{x(k)x” (k)cov[Aw(k — 1)q]x(k)x" (k)]} E[Sp (k)¢
(5.107)

If it is further assumed that the elements of the input signal vector are jointly
Gaussian, then each element of the middle term in the last equation can be
given by

E{x(k)xT(k)cov[Aw(k — 1)Q]x(k)xT (k)}ij

N N
= D) cov[Aw(k — 1)Qlmi Elzi(k)em (k)i (k)x; (k)]
m=0 (=0
= 2{Rcov[Aw(k — 1)g]R}i ; + [R]i jtr{Rcov[Aw(k — 1)g]}
(5.108)
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where [-]; ; denotes the ith, jth element of the matrix [-]. It then follows that

E{x(k)xT (k)cov[Aw(k — 1)g]x(k)xT (k)}
= 2Rcov[Aw(k — 1)g]R + Rtr{Rcov[Aw(k — 1)g]}  (5.109)

The last term of T; in equation (5.104) , after simplified, yields
1-x2)°

2
+ (11_;;“) tr{Reov[Aw(k — 1)g]}R"!
+E{Ng_ (k)x(k)x" (k)cov[Aw(k — 1)q]x(k)x" (k)Ng_(k)}

(5.110)

After a few manipulations, it can be shown that the third term in the equa-
tion above is nondiagonal because Ng_ (k) is symmetric for the RLS algorithm
described in Algorithm 5.3. On the Other hand, if the matrix R is diagonal
dominant, that is in general the case, the third term of (5.110) becomes approx-
imately diagonal and given by

Ts(k) » (N +1)og_ogtr{cov[Aw(k — 1)q]}1 (5.111)

where o2 is the variance of the input signal. This term, which is proportional
to a quantization noise variance, can actually be neglected in the analysis, since
it has in general much smaller norm then the remaining terms in T};.

Terms 2 and 3:

Using the same arguments applied before, such as Sp(k) is almost fixed as
A — 1, then the main result required to calculate the terms 2 and 3 of equation
(5.103) is approximately given by

EISp(k)gx(k)xT (K)Sp(K)e]
~  E[Sp(K]RE[Sp (k)] + E[Ng,, (KRNg_ ()]

1-x \?__,

where the term E[NS (k)RNS (k)] can be neglected because it is in general
much smaller than the remaining term. In addition, it will be multiplied by
a small variance when equation (5.112) is replaced back in equation (5.103).
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From equations (5.103), (5.107), (5.112), (5.95), (5.97), and (5.101) it follows
that

cov[Aw(k)g] = [1-2 (%) +2 (%) 2]cov[Aw(k —1)q]

+ (i)2tr{Rcov[Aw(k - 1)g]}R™!

1 — Akl
-2\’ 2 Qp-1 2
1z NEH (07 +0)R™" + oyl (5.113)

Now, by considering in equation (5.113) that in the steady state cov[Aw(k)q] =
cov[Aw(k —1)g], multiplying the resulting expression by R, and calculating the
trace of the final equation, it can be shown that

(1= N2(N +1)(07 + 02) + oitr(R)

tr{Rcov[Aw(k — 1)g]} =~ (1 =XN[2A = (1 = A)(N +1)]

(5.114)

where it was considered that A¥*!' — 0. Replacing the equation (5.114) in
(5.113), and computing the steady-state solution the following equation results

(I=MN(ea+0a) o
cov[Aw(k)g] = (- NN+ 1)R
(1=MNtr(R)R™ 4+ 20— (1= NN + DT ,
- AAZA-(1- NN +1)] ¥
(5.115)

Finally, if the trace of the above equation is calculated considering that z(k) is
a Gaussian noise with variance 02, and that 2X > (1 — A\)(N + 1) for A — 1,
the resulting expected value of ||Aw(k)g||? is

(1=X)(N +1) 2 + o2 (N +1)o%,

Blllaw(k)ql") & g el 4 S

(5.116)

As can be noted if the value of A is very close to one, the square errors in
the tap coefficients tend to increase and to become more dependent of the tap
coeflicient wordlengths. On the other hand, if A is not close to one, in general
for fast tracking purposes, the effects of the additive noise and data wordlength
become more disturbing to the coefficient square errors. The optimum value for
A, as far as quantization effects are concerned, can be derived by calculating
the derivative of E||Aw(k)q||%] with respect to A and setting the result to zero

Ao=1— — N0z (5.117)

) 2
oi+ o}
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By noting that ; )\k + should be replaced by =+ + when A = 1, it can be shown
from equation (5 113) that the algorithm tends to diverge when A =1, since in
this case ||cov[Aw(k)g]|| is growing with k.

5.5.4 Algorithm Stop

In some cases the adaptive filter tap coefficients may stop adapting due to quant-
ization effects. In particular, the conventional RLS algorithm will freeze when
the coefficient updating term is not representable with the available wordlength.
This occurs when its modulus is smaller than half the value of the least signi-
ficant bit, i.e.,

€' (k)gSp (K)gx(k)l; < 2% (5.118)

where | |; denotes the modulus of the ith component. Equivalently it can be
concluded that updating will be stopped if

E(e'(k)3)E[ISp (k)x(k)x" (k)Sp (k)qli]

1-X 202-}-02 —9b.—2
™ <1_/\k+1> "Zn<2 ° (5.119)

where z(k) was considered a Gaussian white noise with variance o2, and the
following approximation was made El[e’ (k)é] ~ ol 402

For a given coeflicient wordlength b, the algorithm can always be kept updating
if

Oz
/o2 2
o +o;

On the other hand, if the condition above is not satisfied, it can be expected
that the algorithm will stop updating in

2
b YOt Tighn (5.121)

Oz

A< 1—=27%"1 (5.120)

iterations for A = 1, and

P G D )
~ - -1 (5.122)

iterations for A < 1.
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In the case A = 1 the algorithm always stops updating. If o2 and b. are not
large, any steady-state analysis for the RLS algorithm when A = 1 does not
apply, since the algorithm stops prematurely. Because of that, the norm of the
covariance of Aw(k)g does not become unbounded.

5.5.5 Mean-Square Error

The MSE in the conventional RLS algorithm in the presence of quantization
noise is given by
E(k)q = E[¢*(K)q] (5.123)
By recalling that e(k)q can be expressed as
e(k)g = —xT (k)Aw(k)q — ne(k) + n(k) (5.124)
it then follows that

£(k)q

E[x" (k) Aw(k)gx" (k)Aw(k)q] + o7 + o7
E{trix(k)x" (k) Aw(k)oAw” (k)ol} + 02 + o7
= tr{Rcov[Aw(k)o]} + o2 + o2 (5.125)

By replacing equation (5.114) in (5.125), it can be concluded that

0o A=+ 1)) 1 iR
(k) = I=NRA= (1= +1)]

+ 02 +0? (5.126)

If it is again assumed that z(k) is a Gaussian noise with variance ¢2 and that
2A> (1 = A)(N +1) for A — 1, the MSE expression can be simplified to

(N + )ogo?

Y (5.127)

£(k)g ~ ol + 02+

5.5.6 Fixed-Point Implementation Issues

The implementation of the conventional RLS algorithm in fixed-point arithmetic
must consider the possibility of occurrence of overflow and underflow during the
computations. In general, some scaling must be performed in certain quantities
of the RLS algorithm to avoid undesired behavior due to overflow and underflow.
The scaling procedure must be applied in almost all computations required in
the conventional RLS algorithm [6], increasing the computational complexity
and/or implementation control by a large amount. A possible solution is to leave
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enough room in the integer and fractional parts of the number representation,
in order to avoid frequent overflows and underflows and also avoid the use of
cumbersome scaling strategies. In other words, a fixed-point implementation
does require a reasonable number of bits to represent each quantity.

The error propagation analysis can be performed by studying the behavior of
the difference between each quantity of the algorithm calculated in infinite pre-
cision and finite precision. This analysis allows the detection of divergence of
the algorithm due to quantization error accumulation. The error propagation
analysis for the conventional RLS algorithm reveals divergence behavior linked
to the fact that Sp(k) loses the positive definiteness property [6]. The main
factors contributing to divergence are:

- Large maximum eigenvalue in the matrix R that amplifies some terms in
propagation error of the Sp(k) matrix. In this case, Sp(k) might have a
small minimum eigenvalue, being as consequence “almost” singular.

— A small number of bits used in the calculations increases the roundoff noise
contributing to divergence.

— The forgetting factor when small, turns the memory of the algorithm short,
making the matrix Sp (k) deviate from its expected steady-state value and
more likely to lose the positive definiteness property.

Despite these facts, the conventional RLS algorithm can be implemented without
possibility of divergence if some special quantization strategies for the internal
computations are used [6]. These quantization strategies, along with adapt-
ive scaling strategies, must be used when implementing the conventional RLS
algorithm in fixed-point arithmetic with short wordlength.

5.5.7 Floating-Point Arithmetic
Implementation

In this section, a succinct analysis of the quantization effects in the conven-
tional RLS algorithm when implemented in floating-point arithmetic is presen-
ted. Most of the derivations are given in the appendix and follow closely the
procedure of the fixed-point analysis.
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In floating-point arithmetic, quantization errors are injected after multiplication
and addition operations, and are modeled as follows [16]:

flla+d = a+b—(a+b)n, (5.128)
flla-b) = a-b—a-b-n, (5.129)

where n, and n, are zero-mean random variables that are independent of any
other errors. Their variances are given by

ok ~0.1827% (5.130)

n

and
ok, <0k (5.131)

where b is the number of bits in the mantissa representation.

The quantized error and the quantized coefficient vector are given by

ek)g = d(k)—xT(k)w(k—1)g — ne (k) + n(k) (5.132)
w(kle = w(k—1)g+Sp(k)ex(k)e'(k)q —nw(k)  (5.133)

where n. (k) and nw(k) represent computational errors and their expressions
are given in the appendix. Since nw(k) is a zero-mean vector, it is shown in
the appendix that in average w(k)g tends to w,. Also, it can be shown that

Aw(k)g = [I-Sp(k)ox(k)xT (k) + Naw(k)]Aw(k — 1)
+N'4(k)w, + Sp(k)ox(k)[n(k) — ne: (k)] (5.134)
where N aw (k) combines several quantization noise effects as discussed in the

appendix and N',4(k) is a diagonal noise matrix that models the noise generated
in the vector addition required to update w(k)g.

The covariance matrix of Aw(k)q can be calculated through the same procedure
previously used in the fixed-point case, resulting in

(=N (o2 + AR

covfAwlkle] ~ TNV T )
(L= VR~ tr{Rdiagfu ]} + [2A = (1= N)(N + )diaglu?] ,
21— NAZA— (1= A + 1] "

(5.135)

where Ng (k) of equation (5.82) and Naw (k) were considered negligible as
compared to the remaining matrices multiplying Aw(k — 1) in equation (5.134),
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and o2, is given by equation (5.131). The term diag[w?;] represents a diagonal
matrix formed with the squared elements of w,.

The expected value of ||Aw(k)g||? in the floating-point case is approximately
given by
N(N +1)02 402 1

ol 202, 13
A o7t ooy lvellon,  (5.136)

Elllaw(k)ql] ~ 1

where it was considered that z(k) is a Gaussian noise with variance o2 and that
2A > (1-A)(N+1) for A — 1. If the value of A is very close to one, the squared
errors in the tap coefficients tend to increase. Notice that the second term on
the right-hand side of the equation above turns these errors more dependent
on the precision of the vector addition of the taps updating. For A not very
close to one, the effects of the additive noise and data wordlength become more
pronounced. In floating-point implementation, the optimal value of A as far as
quantization effects are concerned is given by
g nf_‘ax

o= 1= vl (5.137)
where this relation was obtained by calculating the derivative of equation (5.136)
with respect to A, and equalizing the result to zero in order to reach the value
of A that minimizes the E[||Aw(k)g||%]. For A = 1, like in the fixed-point case,
[lcov[Aw(k)g]|| is also a growing function that can make the conventional RLS
algorithm diverge.

The algorithm may stop updating if
e’ (k)@Sp (k)x(k)|i < 2%~ w;(k) (5.138)

where | |; is the modulus of the ith component and b, is the number of bits in
the mantissa of the coefficients representation. Following the same procedure to
derive equation (5.119), we can infer that the updating will be stopped if

I1-A 203/4"’2 —~2b,—2 2
(1—)\k+1) 0’,2, m 2T lwo,‘l (5139)

where w,; 1s the :th element of w,.

The updating can be continued indefinitely if

Uzlwoil

/o2 2
o, +o;

A<1—27b1 (5.140)
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In the case A does not satisfy the condition above, the algorithm will stop
updating the ith tap in approximately

2 2
PRA i (5.141)

az|woi|
iterations for A = 1, and

2 +02
In[(A — 1)3@2-”0—1 +1]
k~ 1Wos -1 5.142
In )\ ( )

iterations for A < 1.

Following the same procedure as in the fixed-point implementation, it can be
shown that the MSE in the floating-point case is given by

E(k)e = tr{Rcov[Aw(k)Q]} +0? + 02
(1= X*(N +1)(0% + 02) + o}, tr{Rdiag[w]} ,
~ T NPA—(L-NN+1)] e+ m
(5.143)

where 02 was considered equal to 2. If z(k) is a Gaussian noise with variance
o2 and 2X > (1 — A)(N +1) for A = 1, the MSE can be approximated by

2 .2
n;ax

2A(1= )

[Iw, [

E(k)gr o2+ a2+ (5.144)

Note that 02 has a somewhat complicated expression that is given in the ap-
pendix.

Finally, it should be mentioned that in floating-point implementations the matrix
Sp(k) can also lose its positive definite property [13]. In [6], it was mentioned
that if no interactions between errors is considered, preserving the symmetry of
Sp(k) is enough to keep it positive definite. However, interactions between er-
rors do exist in practice, so the conventional RLS algorithm can become unstable
in floating-point implementations unless some special quantization procedures
are employed in the actual implementation. An alternative is to use numerically
stable RLS algorithms that will be discussed later on.
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5.6 SIMULATION EXAMPLES

In this section, some adaptive filtering problems described in the last two
chapters are solved using the conventional RLS algorithm presented in this
chapter.

Example 5.3: System Identification Simulations

The conventional RLS algorithm was employed in the identification of the system
described in the subsection (3.6.2). The forgetting factor was chosen A = 0.99.

Solution:

In the first test, we address the sensitivity of the RLS algorithm to the eigenvalue
spread of the input signal correlation matrix. The measured simulation results
were obtained by ensemble averaging 200 independent runs. The learning curves
of the mean-squared a priori error are depicted in Fig. 5.4, for different values
of the eigenvalue spread. Also, the measured misadjustment in each example is
given in Table 5.1. From these results, we conclude that the RLS algorithm is
insensitive to the eigenvalue spread. It is worth mentioning at this point that the
convergence speed of the RLS algorithm is affected by the choice of A, since a
smaller value of A leads to faster convergence while increasing the misadjustment
in stationary environment. In Table 5.1, the misadjustment predicted by theory
calculated using the relation repeated below is given. As can be seen from this
table the analytical results agree with those obtained through simulations.
1-A 1-X

Table 5.1 Evaluation of the RLS Algorithm

Misadjustment
-i—‘f;ff Experiment “ Theory
1 0.04211 0.04020

20 0.04211 0.04020
80 0.04547 0.04020

The conventional RLS algorithm was implemented with finite-precision arith-
metic, using fixed-point representation with 16, 12, and 10 bits respectively.
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Figure 5.4 Learning curves for RLS algorithm for eigenvalue spreads: 1, 20,
and 80; A = 0.99.

The results presented were measured before any sign of instability was noticed.
Table 5.2 summarizes the results of the finite-precision implementation of the
conventional RLS algorithm. Note that in most cases there is a close agreement
between the measurement results and those predicted by the equations given
below.

(1-N(N+1)e2+02 (N+1)o%

Blllaw(k)o|lf] ~ =3 S e

(N +1)o% 0?2

k)o ~ 0% + o2
g( )Q on+ae+ 2/\(1_/\)

For the simulations with 12 and 10 bits, the discrepancy between the measured
and theoretical estimates of E[||Aw(k)g||?] are caused by the freezing of some
coefficients.

If the results presented here are compared with the results presented in Table 3.2
for the LMS, we notice that both the LMS and the RLS algorithms performed
well in the finite-precision implementation. The reader should bear in mind
that the conventional RLS algorithm requires an expensive strategy to keep the
deterministic correlation matrix positive definite.
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Table 5.2 Results of the Finite Precision Implementation of the RLS Al-
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gorithm
€(k)o Ef[[Aw(k)ol*]
No. of bits || Experiment || Theory Experiment [| Theory
16 1.566 10=° [[ 1.500 10=° [ 6.013 10> |[ 6.061 10>
12 1.52210-3 [ 1.502 10~° || 3.128 10~° || 6.261 10~°
10 1.566 102 [ 1.532 10~ || 6.97910~> |[ 9.27210°°

The simulations related to the experiment described for nonstationary environ-
ments were also performed. From the simulations we measured the total excess
of MSE, and then compared the results to those obtained with the expression
below.
1-A 1-2A

(N + 1)1+_/\(1 + H—A’C)ﬁmm

(N +1)oZ,02 1-2 1-)w
,\w(1+)\2)—,\(1+)\%v)(1+)\ 14w

Ceve =

+

)

An attempt to use the optimal value of A was made. The predicted optimal
value however was too small and as a consequence A = 0.99 was used. The
measured excess of MSE was 0.0254, whereas the theoretical value predicted by
the equation above was 0.0418. Note that the theoretical result is not as accurate
as all the previous cases discussed so far, due to a number of approximations
used in the analysis. However, the equation above provides a good indication of
what is expected in the practical implementation. By choosing a smaller value
for A a better tracking performance is obtained, with the equation above is not
as accurate.

Example 5.4: Signal Enhancement Simulations

We solved the same signal enhancement problem described in the subsection
(4.6.1) with the conventional RLS and LMS algorithms.

Solution:
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For the LMS algorithm, the convergence factor was chosen pmas /5. The res-
ulting value for p in the LMS case is 0.001, whereas A = 1.0 was used for the
RLS. The learning curves for the algorithms are shown in Fig. 5.5, where we
can verify the faster convergence of the RLS algorithm. By plotting the output
errors after convergence, we noted the large variance of the MSE for both al-
gorithms. This result is due to the small signal to noise ratio, in this case. Fig.
5.6 depicts the output error and its DFT with 128 points for the RLS algorithm.
In both cases, we can clearly detect the presence of the sinusoid.

5.7 CONCLUDING REMARKS

In this chapter, we introduced the conventional RLS algorithm and discussed
various aspects related to its performance behavior. Much of the results ob-
tained herein through mathematical analysis are valid for the whole class of RLS
algorithms to be presented in the following chapters, except of course the finite-
precision analysis since that depends on the form the internal calculations of each
algorithm are performed. The analysis presented here is far from being com-
plete. However, the main aspects of the conventional RLS have been addressed,
such as: convergence behavior, tracking capabilities, and finite-wordlength ef-
fects. The interested reader should consult [17]-[19] for some further results.

From the analysis presented, one can conclude that the computational complex-
ity and the stability in finite-precision implementations are two aspects to be
concerned. When the elements of the input signal vector consist of delayed ver-
sions of the same signal, it is possible to derive a number of fast RLS algorithms
whose computational complexity is of order N per output sample. Several dif-
ferent classes of these algorithms are presented in the following chapters. In
all cases, their stability conditions in finite-precision implementation are briefly
discussed.

For the general case where the elements of the input signal vector have different
origins the QR-RLS algorithm is a good alternative to the conventional RLS
algorithm. The stability of the QR-RLS algorithm can be easily guaranteed.

The conventional RLS algorithm is fully tested in a number of simulation results
included in this chapter. These examples were meant to verify the theoretical
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Figure 5.5 Learning curves for the (a) LMS and (b) RLS algorithms.

results discussed in the present chapter and to compare the RLS algorithm with

the LMS algorithm.
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Figure 5.6 (a) Output error for the RLS algorithm and (b) DFT of the output

€error.
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Appendix

The error in the a priori output error computation is given by

ne(k) ~ —ng(k)[d(k) - xT (k)w(k - 1)q]

np, (k) 0 o .- 0
0 mp(k) - -0
~xT (k) : w(k—1)g
0 0 o o mpy(R)
Zz(k —uwi(k - 1)q

2

z(k — Dw;(k-1)
ey (K)ay (K) . . Ty (K)] E( Juitk=De

N

> (k- dywi(k —1)q

L 1=0 -

= —na(k)e'(K)g — xT ()N, (K)w(k — 1)q — na(k)si(k)

where n,, (k) accounts for the noise generated in the products z(k —t)w;(k—1)g
and ng,(k) accounts for the noise generated in the additions of the product
xT(k)w(k — 1). Please note that the error terms of second- and higher-order
have been neglected.

Using similar assumptions one can show that

nw (k) = —{nsz(k)e' (k) + Sp(k)N'y (k)x(k)e' (k)q
+N', (k)Sp (k) gx(k)e (k) g + N'a(k)[w(k — 1) + Sp (k) gx(k)e' ()]}

where
- N p
Y onh (k)Y Sp, (k)qz(k —i)
ji=1 1=0
ngx(k) =
N

> Mg, (F) Z SDnyrs (K)o (k — 1)

Jj=1
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[ n, (k) 0 0
Nak) = | 0 el

| o (k) |

"l () 0 7
Nlp(k) = n;‘(k) .

[ 0 n;,N(k) ]

Fonl (k) nl (k) nt (k)
N (k) = paa(B) g, (K) :

L n;,’N+;’l (k) - . ngN+1,;~r+1 (k)

The vector ng; (k) is due to the quantization of additions in the matrix product
Sp(k)x(k), while the matrix N';, (k) accounts for product quantizations in the
same operation. The matrix N';(k) models the error in the vector addition to
generate w(k)g, while N, (k) models the quantization in the product of e’(k)

by Sp(k)gx(k).

By replacing d’(k) by xT(k)w, in the expression of €/(k)g given in equation
(5.86), it follows that

¢'(k)g = —x" (k) Aw(k — 1)q — (k) + n(k)

By using in the equation above the expression of w(k)q of equation (5.87),
subtracting w, in each side of the equation, and neglecting the second- and
higher-order errors, after some manipulations the following equality results

Aw(k)q = [I - Sp(k)gx(k)xT (k) +nsaxT (k) + Sp (K)oN'p (k)x(k)xT (k)
+N', (k)Sp (k) @x(k)x" (k) + N'a(k)Sp (k) @x(K)x" (k) + N'a()]
Aw(k —1)q + N's(k)w, + Sp (k) ox(k)[n(k) — n¢ (k)]

Since all the noise components in the above equation have zero mean, in aver-

age the tap coefficients will converge to their optimal values because the same
dynamic equation describes the evolution of Aw(k) and Aw(k)q.
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Finally, the variance of the a priori error noise can be derived as follows:

N

0'3, = 0'3 = Uzaﬁ(k)q + 012;, ZR,‘_,’COU[W(IC)Q],’_,'
1=0

+o2. {E [(Zx(k — Dw;(k — I)Q) :I
1=0

+E [(Z z(k — i)wi(k — 1)Q) }

1=0

N 2
+-+E [(Zx(k—i)w,-(k—nq) ]}

where 0, = o/ was used and [];; means diagonal elements of []. The second

n’.
term can be further simplified as follows:

N N
tr{Rcov[w(k)g]} =~ ZR.-,.-wZ;+ZR.-,.-cov[AW(k)]f,i
1=0 1=0

+first — and higher — order terms ---

Since this term is multiplied by 0',2,‘,, any first- and higher-order terms can be

neglected. The first term of o2 is also small in the steady state. The last term
can be rewritten as

oa, {E [(g z(k — i)wo;)z} +E [(g z(k — ,-)wo,.)z] 4o

N 2 N j
+E [(Z z(k - i)wm‘) } } =0}, {ZZRi,i[COU(AW(k))]f,f}

1=0

where terms of order higher than one were neglected, z(k) was considered un-
correlated to Aw(k), and cov(Aw(k)) was considered a diagonal matrix. Actu-
ally, if z(k) is considered a zero-mean Gaussian noise from the proof of equation
(5.34) and equation (5.44), it can be shown that

cov[Aw(k)] =~ 21

liqw I :Squ
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Since this term will be multiplied by o7 and o7 , it can also be disregarded.
In conclusion

N j N
a'zzofla{E[Z Zx — 1) wy) 2]}—{-0’ ERn“’m
j=1 i=0 i=0

This equation can be simplified further when z(k) is as described above and

2 _ .2 a2
ona—anp_ad

N

N
o, N [Z —i+2)R; ;0w - Rl,lwfl]

N
a'da' [Z —i+ 2w —w31]

i=1
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Problems

1. The RLS algorithm is used to predict the signal z(k) = cos ’;—k using a

second-order FIR filter with the first tap fixed at 1. Given A = 0.98,
calculate the output signal y(k) and the tap coefficients for the first 10
iterations. Note that we aim the minimization of E[y?(k)].

Start with w”(0) = [1 0 0] and § = 100.
2. Show that the solution in equation (5.4) is a minimum point.
3. Show that Sp(k) approaches a null matrix for large k, when A = 1.

4. Suppose that the measurement noise n(k) is a random signal with zero-
mean and the probability density with normal distribution. In a sufficient-
order identification of an FIR system with optimal coefficients given by w,,
show that the least-squares solution with A = 1 is also normally distributed
with mean w, and covariance Sp (k)a’f‘.

5. Prove that equation (5.37) is valid. What is the result when n(k) has zero
mean and is correlated to the input signal z(k)?

Hint: You can use the relation E[e?(k)] = E[e(k)])? + o%[e(k)]. where o2[]
means variance of [-].

6. Consider that the additive noise n(k) is uncorrelated with the input and
the desired signals and is also a nonwhite noise with autocorrelation matrix
R,. Determine the transfer function of a prewhitening filter that applied to
d’'(k) + n(k) and z(k) generates the optimum least-squares solution w, =
R~ !p for k — co.

7. Show that if the additive noise is uncorrelated with d’(k) and z(k), and
nonwhite, the least-squares algorithm will converge asymptotically to the
optimal solution.

8. In problem 4, when n(k) is correlated to z(k), is w, still the optimal solu-
tion? If not, what is the optimal solution?

9. Show that in the RLS algorithm the following relation is true
£4(k) = A%k — 1) + (k)€ (k)
where e’(k) is the a priori error as defined in equation (5.8).

10. Prove the validity of the approximation in equation (5.67).
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11.

12.
13.

14.

15.

Show that for an input signal with diagonal dominant correlation matrix
R the following approximation related to equations (5.107) and (5.111) is
valid.

E{Ng,, (k)x(k)x" (k)cov[Aw(k — 1)q]x(k)x” (k)Ng , (k)}
~ o%D(rzcov[Aw(k —1)q]

Derive the equations (5.114), (5.115), and (5.116).

The conventional RLS algorithm was applied to identify a 7th-order time-
varying unknown system whose coefficients are first-order Markov pro-
cesses with Aw = 0.999 and %, = 0.033. The initial time-varying system
multiplier coefficients are

T
[

[0.03490 — 0.01100 — 0.068640.223910.556860.35798 — 0.02390 — 0.07594]

w

The input signal is a Gaussian white noise with variance 02 = 1 and the
measurement noise is also a Gaussian noise independent of the input signal
and of the elements of nw (k), with variance o2 = 0.01.

(a) For A = 0.97, compute the excess of MSE.
(b) Repeat (a) for A = Aoy

(c) Simulate the experiment described, measure the excess of MSE, and
compare to the calculated results.

Reduce the value of Aw to 0.97 in the problem 13, simulate, and comment
on the results.

Suppose a 15th-order FIR digital filter with multiplier coefficients given
below was identified through an adaptive FIR filter of the same order using
the conventional RLS algorithm. Consider that fixed-point arithmetic was
used.

Additional noise : white noise with variance 02 =10.0015
Coefficient wordlength: b, = 16 bits
Signal wordlength: by = 16 bits
Input signal: Gaussian white noise with variance o2 = 0.7
A=A,

wT =[0.0219360 0.0015786 -0.0602449 -0.0118907 0.1375379 0.0574545
-0.3216703 -0.5287203 -0.2957797 0.0002043 0.290670 -0.0353349
-0.0068210 0.0026067 0.0010333 - 0.0143593]
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(a) Compute the expected values for ||Aw(k)g|| and £(k)q for the following
case.

(b) Simulate the identification example described and compare the simu-
lated results with those obtained through the closed form formulas.

(c) Plot the learning curves for the finite- and infinite-precision implement-
ations. Also, plot ||Aw(k)||? versus k in both cases.
16. Repeat the problem above for the following cases
(a) 02 = 0.01,b. = 9 bits, bg = 9 bits, 62 = 0.7, = X,.
(b) 02 =0.1,b. = 10 bits, by = 10 bits, 02 =08,A=),.
(c) o2 =0.05,b, = 8 bits, bg = 16 bits, 02 = 0.8, A = A,.
17. In the problem 16 above, compute (do not simulate) E[||Aw(k)o]|2],£(k)q,

and the probable number of iterations before the algorithm stop updating
for A=1,A=10.980,A = 0.960, and X = A,.

18. Repeat problem 15 in the case the input signal is a first-order Markov
process with Ax = 0.95.

19. A digital channel model can be represented by the following impulse re-
sponse:

[—0.001 —0.002 0.002 0.2 0.6 0.76 0.9 0.78 0.67 0.58
0.450.30.20.120060 —0.2 —1 —2 —100.1]

The channel is corrupted by a Gaussian noise with power spectrum given
by .

IS(er)lz — KIwB/Z
where &' = 10715, The training signal consists of independent binary
samples (-1,1).

Design an FIR equalizer for this problem and use the RLS algorithm. Use
a filter of order 50 and plot the learning curve.

20. For the previous problem, using the maximum of 51 adaptive filter coef-
ficients, implement a DFE equalizer and compare the results with those
obtained with the FIR equalizer. Again use the RLS algorithm.



ADAPTIVE LATTICE-BASED RLS
ALGORITHMS

6.1 INTRODUCTION

There are a large number of algorithms that solve the least-squares problem in
a recursive form. In particular, the algorithms based on the lattice realization
are very attractive because they allow modular implementation and require a
reduced number of arithmetic operations (of order N) [1]-[7]. As a consequence,
the lattice recursive least-squares (LRLS) algorithms are considered fast imple-
mentations of the RLS problem.

The LRLS algorithms are derived by solving the forward and backward linear
prediction problems simultaneously. The lattice-based formulation provides the
prediction and the general adaptive filter (joint-process estimation) solutions of
all intermediate orders from 1 to N simultaneously. Consequently, the order of
the adaptive filter can be increased and decreased without affecting the lower
order solutions. This property allows the user to activate or inactivate sections
of the lattice realization in real time according to performance requirements.

Unlike the RLS algorithm previously discussed which requires only time-recur-
sive equations, the lattice RLS algorithms use time-update and order-update
equations.

The performance of the LRLS algorithms when implemented with infinite-
precision arithmetic is identical to any other RLS algorithm. However, in finite-
precision implementation each algorithm will perform differently.

In this chapter, several forms of the LRLS algorithm are presented. First, the
standard LRLS algorithm based on a posteriori errors is presented, followed by

P. S. R. Diniz, Adaptive Filtering

© Springer Science+Business Media New York 1997
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the normalized version. The algorithms with error feedback are also derived.
Then, we develop the LRLS algorithm based on a priori errors.

6.2 RECURSIVE LEAST-SQUARES
PREDICTION

The solutions of the RLS forward and backward prediction problems are essen-
tial to derive the order-updating equations inherent to the LRLS algorithms. In
both cases, the results are derived following the same derivation procedure of
the conventional RLS algorithm, since the only distinct feature of the prediction
problems is the definition of the reference signal d(k). For example, in the for-
ward prediction case we have d(k) = z(k) whereas the input signal vector has
the sample z(k — 1) as the most recent data. For the backward prediction case
d(k) = z(k — i — 1), where the index i defines the sample in the past which we
wish to predict, and the input signal vector has z(k) as the most recent data. In
this section, these solutions are studied and the results show how informations
can be exchanged between the forward and backward predictor solutions.

6.2.1 Forward Prediction Problem

The objective of the forward prediction is to predict a future sample of a given
input sequence using the currently available information of the sequence. For
example, one can try to predict the value of z(k) using past samples z(k — 1),
z(k —2)..., through an FIR prediction filter with ¢ + 1 coefficients as follows:

yr(k,i+1)=w}(k,i+1)x(k—1,i+1) (6.1)
where y;(k,i+ 1) is the predictor output signal,
wy(k,i+1) = [wro(k) wpr(k) .. wgi (k)]
1s the FIR forward prediction coefficient vector, and
x(k—1Li+1)=[ek-1zk-2)...ck—i-1)]T

is the available input signal vector. The second variable included in vectors of
equation (6.1) is to indicate the vector dimension, since it is required in the
order-updating equations of the LRLS algorithm. This second variable will be
included where needed in the present chapter.
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The instantaneous a posteriori forward prediction error is given by

er(k,i+1) = z(k) —wj (k,i+ 1)x(k—1,i+1) (6.2)

For the RLS formulation of the forward prediction problem, define the weighted
forward prediction error vector as follows:

ep(k,i+1)=%(k) = XT(k—1,i4+ D)ws(k,i+1) (6.3)

where
x(k) = [2(k) A\ 2z(k — 1) Az(k — 2) ... A¥/2g(0)]T
€ (ki+1)=[es(k,i+1) A 2es(k—1,i41) Aes(k—2,i4+1) ... A\*/2e,(0,i+1)]T

and

z(k-1) AM2g(k—2) .. Ak=D/2g1)  AK=D/250) ¢
X(kotit1) :c(k‘—2) AYV25(k=3) .. ,\“‘-2)'/%(0) 0 0

x(k—.i—l) x1/2x(1;—i—2) 0 0 0

It is straightforward to show that e;(k, i+ 1) can be rewritten as

es(kyi+1) = XT(k,i+2) [ ——wf(kl,i+l)] (6.4)

The objective function that we want to minimize in the least-squares sense is
the forward prediction error given by

§(ki+1) = ef(ki+1)es(k,i+1)

k
= Y Mt (1i41)
1=0

k
= Y XN z) - xT( - 1,i+ )wy(k,i+1)]>  (6.5)
=0
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By differentiating {}'(k, i+1) with respect to w(k,i41) and equating the result
to zero, we can find the optimum coefficient vector that minimizes the objective
function, namely,

-1

k
wy(k,i+1) DNk~ 1i+ D)xT(I-1,i+1)
1=0

Ol 1,i+ De(l)
=0
= X(k-1,i+)XT(k-1,i4+ 1)) X (k- 1,5+ 1)%(k)
= Rpi(k—1,i+1)pps(k,i+1) (6.6)

where Rp;(k—1,i+1) is equal to the deterministic correlation matrix Rp (k—1)
of order ¢ + 1, and pp(k,i + 1) is the deterministic cross-correlation vector
between z(I) and x(I — 1,7+ 1).

The exponentially weighted sum of squared errors can be written as (see equa-
tion (6.5)):

k
{?(k,i-{-l) = Z)\""[xz(l)—Zx(l)xT(l—1,i+1)wf(k,i+1)
1=0
+(XT(1-1,i+1)W;(k,i+1))?]
k
= ) W) —s()XT (-1t )W, (k,i+1)]
1=0
k
+EA*-'[-x(z)+x7’(:_1,;+1)w,(k,;+1)]xT(z-1,.'+1)w,(k,i+1)
1=0
k
= ZA"_'x(l)[x(l)—xT(l—1,i+1)w,(k,i+1)]
=0

+ [Zf:o AR ()X T (I=1,i+1)

+WT (k,i+1) Zf:o ,\"-'x(z-l,i+1)xT(z-1,f+1)]w,(k,;+1)

(6.7)

If we replace equation (6.6) in the second term of the last relation above, it can
be shown by using the fact that Rp (k — 1) is symmetric that this term is zero.
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Therefore, the minimum value of £f(k, i+ 1) 1 is given by

k
& kit1) = Y Nta)[z() - xT(1 - 1i+ Dwy(k,i+1)]
1=0
k
= Y MNZ20) —phy(k,i+ Dwy (ki +1)
1=0
= o}(k)—wT(k,i+1)pps(k,i+1) (6.8)

By combining equation (6.6) for w (k, %) and (6.8) for £ __ (k,i+1) the following
matrix equation can be obtained

o7 (k) PPy (ki+1) 1 = | G ki)
Pp,(ki+1) Rps(k-1,i+1) — W, (k,it+1) 0

(6.9)

Since o (k) = Sk o Ak=ig2(1) and Pps(k,i+1) = S G AIx(I= 1,0+ 1)z(l),
it is easy to conclude that the left most term of equation (6.9) can be rewritten
as

Yoro AT () S AT (- 1,i41)2 (1)
SoE ATIX(-Li4D)e() S ARTIX(-1,i41)XT (1-1,i41)

1=0 =0

=3k kel [ - _“’l(f)“r y J [e() xT(1—1,i+1)]
=Rp(k,i+2) (610)
Therefore,

Rp (ki +2) [ —w,(kl,i-}-l) ] _ [ 5}’min(1;,i+1) ]

where Rp(k,i + 2) corresponds to Rp(k) used in the previous chapter with
dimension i+ 2. The equation above relates the deterministic correlation matrix
of order i + 2 to the minimum least-squares forward prediction error. The
appropriate partitioning of matrix Rp(k,7 + 2) enables the derivation of the
order-updating equation for the predictor tap coefficients, as will be discussed
later.

! Notice that no special notation was previously used for the minimum value of the RLS
objective function, however, when deriving the lattice algorithms this definition is necessary.
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6.2.2 Backward Prediction Problem

The objective of the backward predictor is to generate an estimate of a past
sample of a given input sequence using the currently available information of
the sequence. For example, sample z(k—¢—1) can be estimated from x(k,i+1),
through an FIR backward prediction filter with 7 4 1 coefficients as follows:

w(k,i4+1) =wi (k,i+ 1)x(k,i+1) (6.11)
where yy(k,7 + 1) is the backward predictor output signal, and
w;;r(k,i+ 1) = [weo(k)we1 (k) - .. wb;(k)]T
is the FIR backward prediction coefficient vector.

The instantaneous a posteriori backward prediction error is given by

ep(k,i+1)=z(k—i—1)—w] (k, i+ 1)x(k,i+ 1) (6.12)

The weighted backward prediction error vector is defined as follows:
ep(ki+1)=%(k—i—1)—XT(k,i+ Dwy(k,i+1) (6.13)
where

x(k—i—1)=[zk—i—1)AY2z(k—i—2) ... \E==D/220)0...0]T

ep(k,i+1) = [ep(k, i+ 1) A 2ep(k — 1,i+1) ... X¥/2,(0,i+ 1)]T

and
z(k) AV2g(k—1) - AG=D/2g0)  AK/25(0)
z(k—1)  AYV2g(k-2) .. Ak=D/2g(0) 0
X(k,i+1) = ) ) )
z(k—i) AY2glk—i-1) .. 0 0

The error vector can be rewritten as

(6.14)

ep(k,i+1) = XT(k,i+2) [ ‘W"(kl’” D ]
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The objective function to be minimized in the backward prediction problem is
given by

Eki+1) = ebT(k i+ 1)ep(k,i+1)
= E,\"' (i+1)

= ZAk“’[x(l —i—1)=xT(l, i+ 1)ws(k,i + 1)]* (6.15)
=0

The optimal solution for the coefficient vector is

k

wo(k,i+1) = |> N 'x(li+ D)xT(li+1)
=0
k
Y NI i 4 1)zl - i - 1)
=0
= [X(k,i+ D)XT(k,i+ 1)) X (k,i + )x(k —1—1)
= Rpy(k,i+1)pps(k,i+1) (6.16)

where Rpy(k, i+ 1) is equal to the deterministic correlation matrix Rp (k) of
order ¢+1, and pp,(k,i+1) is the deterministic cross-correlation vector between
z(l—4i—1) and x(I,7 4+ 1).

Using the same procedure to derive the minimum least-squares solution in the
RLS problem, it can be shown that the minimum value of £2(k) is given by

k
ﬁmm(k i+1) = ZA"":c(l—z'—1)[:c(l——i——1)—xT(I,i+1)Wb(k,z'+1)]
=0
k
= Z,\""xZ(l—i—1)—p7l;b(k,i+1)wb(k,i+1)
=0
= oZ(k)-WT (ki+1)Pp, (k,i+1) (6.17)

By combining equations (6.16) and (6.17), the following matrix equation results

[ Rps(k,i+1) ppy(k,i+1) ] [ —wy(k,i+1) ]
Pho(k,i+1) a3 (k) 1
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- Zf:o)"‘_'x(l»i+1)XT(1,i+1) Zfzﬂx*—‘x(z,i+1)z(l—i—1)
- Zf:o AIXT (it 1) (1-i-1) Z;;O Ak=lg2(1—i-1)
[ —wo(k,i+1) ]
1

—Wb(kl,i—i— 1) ]

=[ £§’m,n(1?,i+ 1) ] (6.18)

where Rp(k, i+ 2) is equal to Rp(k) of dimension ¢ + 2. The equation above
relates the deterministic correlation matrix of order ¢+ 1 to the minimum least-
squares backward prediction error. The equation is important in the derivation
of the order-updating equation for the backward predictor tap coefficients. This
issue is discussed in the following section.

:RD(k,i+2) [

6.3 ORDER-UPDATING EQUATIONS

The objective of this section is to derive the order-updating equations for the
forward and backward prediction errors. These equations are the starting point
to generate the lattice realization.

6.3.1 A New Parameter §(k,1)

Using the results of equations (6.9) and (6.10), and the decomposition of Rp (k, i+
2) given in equation (6.18), we can show that

1
i —wilki) | = | Bo(ki+1) ppy(ki+1)
Rp(k,i+2) [ fO(k, )| = [pITJb(k,i+1) 22 0k) ]

1
[ '—Wf(k,l) :I
0

5}'"" (k; l)

0
prkz+l [ —w;(k ]
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[ &4 (k) J
_ 0 (6.19)
8; (k. 3)

where relation (6.9) was employed in the second equality,
k
§(kyi) = Y Nle)e(l-i-1)
=0

k
=Y N —i— )X~ 1, 8wy (k, 4)

1=0

k k
= Y Mzl -i-1) =Y Nl —i— 1)y (L)
=0

=0
k
= > Mte i)l —i-1)
1=0

and yy(l,7) = xT(I -1, 1)wy(k, 1) is the output of a forward prediction filter of
order ¢ — 1. Note that the parameter d;(k, ) can be interpreted as the determ-
Inistic cross-correlation between the forward prediction error ef(l, ) with the
coefficients fixed at wy(k,7) and the desired signal of the backward predictor
filter (1 — ¢ — 1).

Similarly, using the results of equations (6.17) and (6.18) it can be shown that

0 .
. . Uz(k) 7 (k,l—-}-l)

1
0
. ’: —Wb(k— l,i) :l
1

i pﬂ,;,(k,i+1)[ _wb(kl— 1,4) ]

= 0
i & . (k—1,3)
[ 6u(k,d)

- 0 (6.20)
L &‘f,,.m (k - I)i)
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where in the second equality we applied the result of equation (6.18), and

k k

So(k,i) = D M a(l—i—1)al) = > MaO)xT( -1, we(k — 1,4)
l.—l;() l:kO
= Y Ml —i-Da@) - D N aw(l - 1,9)
1=0 =0
k
= Z/\k"eb(l—l,i)z(l)
1=0

where y,(I—1,7) = xT (11, {)wy(k—1, i) is the output of a backward prediction
filter of order i — 1 with input data of instant ! — 1, when the coefficients of
the predictor are wy(k — 1,7). The parameter d(k,¢) can be interpreted as the
deterministic cross-correlation between the backward prediction error e, (I —1, 7)
and the desired signal of the forward predictor filter z(!).

In equations (6.19) and (6.20) two new parameters were defined, namely &y (k, ©)
and dy(k, 7). In the following derivations we will show that these parameters are
equal. If Rp(k,i+2) is premultiplied by [0 —w7 (k—1,1) 1] and postmultiplied
by [l —wy(k,i) 0]7, it can be shown that

1
[0 —wl(k—1,4) 1] RD(k,i+2)[—wf(k,z‘)} = §;(kd) (6.21)
0

By transposing the first and last terms of equation (6.20) the following relation
is obtained

[0 —wj(k—1,9) 1] Rp(k,i+2) = [d(k,i) OT & (k-1,i)]
(6.22)

By substituting this result in equation (6.21) it follows that

1
[Bo(k,3) 0T &  (k—1,9)] [—wfo(k,i)} = 6&;(k,i)  (6.23)

Therefore, from equation (6.23) we conclude that

85 (k, i) = 6k, i) = 5(k, ) (6.24)
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In conclusion, the deterministic cross-correlations between ey (l, ) and z(/—i—1)
and between e, (! — 1,7) and z(l) are equal.

6.3.2 Order Updating of ¢ (k,i) and wy(k, i)

The order updating of the minimum LS error and the tap coefficients for the
backward predictor can be deduced by multiplying equation (6.19) by the scalar

5(k,i) /€2 (ki), ie.,

1 J(kx l)

o(k,1) 0
d—’—_—RD(k,i-f- 2) —Wf(k,i) = . (6.25)
&8 (k, 1) 5% (ki

Imin 0 INCE)

Subtracting equation (6.20) from this result yields
8(k,i

€9 (k)
Rp(k,i+2) _wf(k,i)ft;—‘s(%-}-wb(k—l,i)
-1
0
= [ _fgm;n(k'l’i)*'?;‘ﬁ_%?ﬂ J (6.26)

Comparing equations (6.18) and (6.26) we conclude that
62(k, 1)

& kit 1) =€ (k—1,i)— TG (6.27)
fmin )
and
. 0 5(k, i) 1
wy(k,i+1) = [ wa(k — 1,4) ] - f—?mm(k,i) [ w; (k. i) ] (6.28)

6.3.3 Order Updating of {} (ki) and wy(k,1)

Similarly, by multiplying equation (6.20) by é(k, i)/fgmm(k —1,1), we get
0 } 82(k,i)

ki & (k-11)
kD) Ro(ki+2) [ —wo(k — 1,1) bmin

R 1 = 0 (6.29)

8(k, 4
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Subtracting equation (6.29) from (6.19), it follows that

[ 1
8(k,i) . .
Rp(k,i+2) | & (k—l,i)wb(k = 1,1) —wy(k,q)

_d(k)
£bm.in (k_l")

r g . 82(k,i
= | Gmn ) — a1y (6.30)

Comparing this equation with (6.9) we conclude that

2k, i
€ (kit1) =€l (ki)— 572‘((%_)-1—) (6.31)
and
) — w (k)z) 6(,‘7’2) w (k— l,i)
wy(k,i+1) = [ fo ]—é————gm(k_l)i)[ ] ] (6.32)

6.3.4 Order Updating of Prediction Errors

The order updating of the a posteriori forward and backward prediction errors
can now be derived as follows:

er(ki+1) = xﬂhi+m[_

1
= xT(k,i+2) [ —wy(k, i) }

e k-1,9) i

min

. 0
J(k,l) xT(k,i+2) Wb(k_lai) :I

= ep(k,i) — ry(k,i)es(k —1,7) (6.33)

where in the second equality we employed the order-updating equation for the

forward prediction coefficients (6.32). The coefficient & (k,7) = F% is

bmin

the so-called forward reflection coefficient.
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The order updating of the a posteriori backward prediction error is obtained by
using equation (6.28) as follows:

eo(k,i+1) = xT(k,i+2)[ —Wb(kl,i+ 1) ]

0
= xT(k,i+2) [ —wy(k — 1,1) :l
1

o
g.‘;min(k’z) O

= ek —1,i) — kp(k, i)es (k,4) (6.34)

. -1
k8 7k it9) { w;(k, i) }

where in the second equality we employed the order-updating equation for the

backward prediction coefficients (6.28). The coefficient y(k,i) = Fﬂk—(’kL{S is
Tmin "’

the backward reflection coefficient.

The equations (6.33) and (6.34) above can be implemented with a lattice sec-
tion as illustrated in Fig. 6.1(a). An order-increasing lattice-based forward and
backward predictor can be constructed as illustrated in Fig. 6.1(b). The coef-
ficients kp(k,?) and kf(k, ) are often called reflection coefficients of the lattice
realization.

In the first section of the lattice, the forward and backward prediction errors
are equal to the input signal itself since no prediction is performed before the
first lattice section, therefore

es(k,0) = es (k, 0) = z(k) (6.35)

consequently

k
& (k,0) = & (k,0) = Mle?(l) = 22(k) + Al (k~1,0)
=0

(6.36)

A closer look at equations (6.9) and (6.18) leads to the conclusion that the
backward and forward predictors utilize the same information matrix Rp (k, i+
2). This result was key to derive the expressions for the a posterior: forward
and backward prediction errors of (6.33) and (6.34). A hidden importance of
these expressions is that they can be shown to be independent of the predictor
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e (k,N+1)

e (k,N) ﬁ

e, (k,N)
—] !
e/ (k1) e (k2) € (k3)
! / L7 (k.N)
x(k) Section Section Section o Section
—_ 1 e, (k1) 2 e, (k2) 3 e, (k3) (N+1) e, (kN)
b — —

(b)

Figure 6.1 Least-squares lattice-based predictor.

tap coefficients. This result will be proved in the following section, where it will
be presented an updating formula for é(k, ?) that is not directly dependent of
wy(k,7) and wy(k — 1,17).

Now that all order-updating equations are available, it is necessary to derive
the time-updating equations to allow the adaptation of the lattice predictor
coeflicients.

6.4 TIME-UPDATING EQUATIONS

The time-updating equations are required to deal with the new incoming data
that becomes available. Recall that in this text we are studying adaptive filtering
algorithms utilizing the new incoming data as soon as they become available. In
this section the time-updating equations for the internal quantities of the lattice
algorithm are derived.
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6.4.1 Time Updating for Prediction
Coefficients

From equation (6.6), the time updating of the forward prediction filter coeffi-
cients is given by

wy(k, i) SD(k—l,i)pr(k,i)

= Rp'(k-1,)pp,(k,i) (6.37)

where this is the standard expression for the computation of the optimal coeffi-
cient vector leading to the minimization of the LS objective function, adapted
to the forward prediction case.

The updating formula of Sp (k,7) based on the matrix inversion lemma derived
in the previous chapter (see Algorithm 5.2) for the conventional RLS algorithm
can be used in equation (6.37). The resulting equation is given by

Wi-1,0 P  (k=-1,9) ] )
. : ki)
A+\I’T(k—1,i)X(k—1,.‘) pD!(
‘I'(k—l,i)xT(k—l,i)SD(k—2,i):|
AT (o1, X (k—1,0)

[Appy (k= 1,4) + z(k)x(k — 1,3)]

—1,0)XT (k—1,i) W, (k—1,i) .
= w,(k—l,i)—‘p(k LOXT (k-1 W, (k210 | 2 ¢ (6.38)
,\+'~I’ (k=1,1)X(k-1,1)

wy(k,i) = {[Sp(k—zi)—-

= -}[Sp(k—zi)—

where in the second equality we have applied the time-recursive updating for-
mulaof pp, ,(k, 1), and in the second term of the last expression we have replaced
Sp(k—2,9)pps(k —1,7) by ws(k — 1,7). Vector c is given by

U(k—1,9)xT(k—1,9)Sp (k- 2,i)x(k — 1,%)
A+ 8T (k- 1,9)x(k—1,1)

¢ = Sp(k—2,9)x(k—1,1)—

ASp(k—2,i)x(k—1,9)
A48T (k—1,)x(k — 1,9)

Also, it is convenient at this point to recall that ®(k—1,i) = Sp(k—2,i)x(k—
1,1).

The last term in equation (6.38) can be simplified if we apply the following
definition

W(k—1,i)
A+ T (k- 1,9)x(k - 1,49)

Bk —1,i) = (6.39)
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where ¢(k — 1,1) is redefined here, including now the order index i. Using this
definition in the second and third terms of the last expression of equation (6.38),
it can be shown that

wy(k,i) = wy(k—1,4)+ ok —1,i)[z(k) — w} (k= 1,9)x(k — 1,7)]
= wy(k—1,9) + ok~ 1,i)e}(k,i) (6.40)

where €/, (k, i) is the so-called a priori forward prediction error of a predictor of
order i — 1, because it utilizes the tap coefficients of the previous instant k£ — 1.

Following similar steps to derive equation (6.40), we can show that the time
updating for the backward predictor filter is given by

T
Wy (ki) = i-[Sp(k—l,i)—l‘(l’f.’rﬁ—‘l-’Aﬂ)—:l[,\pr(k—l,i)+x(k,i):c(k—i)]
A4 (k)X (k,1)

Wi (k—1,i)—@D(k,i)XT (ki)W (k—1,i)+D(k,i)z(k—i)
W (k—1,8)+¢(k,i)el (ki) (6.41)

1]

where e, (k,1) is the a priori backward prediction error of a predictor of order
i—1.

6.4.2 Time Updating for (k,?)

From the computational point of view, it would be interesting to compute the
prediction errors without explicitly using the predictor’s tap coefficients. In
order to achieve this goal a time-updating expression for d(k, ) is derived. A
byproduct of this derivation is the introduction of a new parameter, namely
v(k, ) that is shown to be a conversion factor between a priori and a posteriort
errors.

Recall from (6.19) the definition of parameter d(k, 1)

5(k,i) = pf)b(k,i-i-l)[_wfl(k,i)] (6.42)

where pp,(k,i+ 1) can be expressed in a recursive form as

k
Poo(kii+1) = Y Nx(i+)e(l-i-1)
=0

= x(k,i+1D)z(k—i—1)+Appy(k—1,i+1) (6.43)
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Substituting equations (6.40) and (6.43) in (6.42), it follows that

1

e A i [T P
= As(k—l,i)+>\P:T>b("‘1'i+1)[ _¢(k—1?i)e',(k:‘) ]
+x(k—i—1)XT(""+l)[ ~Wy(k-1,)
+z(k—i—1)xT(kv*+1)[ _d)(k—l(?i)e}(k,i) ] o

where the equality of (6.42) for the order index i — 1 was used to obtain the first
term of the last equality.

We now derive two relations which are essential to obtain a time-updating
equation for d(k, 7). The resulting equation is efficient from the computational
point of view. From the definitions of ¢(k — 1,7) and ¥(k — 1, 1), see equation
(6.39) and the comments after equation (6.38) respectively, it can be shown that
the following relation is valid:

pgb(k“lyi+1) [ ¢(k81,1.) ] = p%b(k—2,i)¢(k—1,i)

pgb(k -2, i)‘I’(k — l,i)

A+ 9T (k—1,9)x(k —1,1)

ph,(k—2,9)Sp(k — 2,i)x(k — 1,1)
A+ 0T (k- 1,9)x(k - 1,9)
wi(k—2,i)x(k —1,4)

A+ 0T (k—1,i)x(k - 1,9)

k=1 —x(k—i-1)

6.45
A+ 9T (k- 1,9)x(k - 1,1) (6.45)
Also, again using equation (6.39) it is easy to obtain the relation
T(1._ 1 Y g
xT(k,i+1) [ 0 ] ] _ x (K 1,;‘)51)(/6 2,0)x(k—1,7)
¢(k—1,1) A+ P (k—l,i)x(k—l,i)
T . .
k-1 k—

2 (o1 ixk—1,9 (6.46)

A+ 0T (k- 1,0)x(k—1,1)
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If we recall that the a priori forward prediction error can be computed in the
following form

xTMJ+J)[_wA;_1J)]:eﬂhﬂ

and by substituting equations (6.45) and (6.46) in equation (6.44), after some
straightforward manipulations we obtain the following time-updating equation
for 8(k, 1)

Aey(k —1,0)e) (k, i)
A+ 0T (k- 1,9)x(k - 1,4)
AS(k —1,4) + v(k — 1,4)ey(k — 1,4)e (K, ) (6.47)

8(k,i) = M(k—1,9)+

where
A
A+ 0T (k- 1,0)x(k - 1,9)
= 1-¢T(k—1,i)x(k—-1,i) (6.48)

v(k-1,i) =

and the last relation follows from the definition of ¢(k — 1,7). Parameter
v¥(k — 1,7) is key to relate the a posteriori and a prior: prediction errors, as
will be following exposed.

Since, the first lattice-based algorithm we want to derive is based on a posteriori
errors, the relationship between the a priori and a posteriori errors is now
derived. The a posteriori forward prediction error is related to the a prior:
forward prediction error as follows:

er(k,i) = z(k)—wy(k,i)x(k—1,5)
= z(k)—wj(k _1nﬂk-Ln-¢Uk—Lnﬂk-La4mJ)
= eff(k,z)[l— (k—1,9)x(k — 1,1)]
= e}(k i)y(k —1,7) (6.49)

Similarly, the relationship between a posteriori and a priori backward prediction
errors can be expressed as
ep(k,i) = z(k—1i-

= x(k i—

= €

T
b
w,ll;( 1 ) ( 7i)_¢T(k7i)x(k)i)e;>(k’i)

= e

(
(k,z)'y(k,z) (6.50)
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Parameter vy(k, 7) is often called conversion factor between a priori and a pos-
teriori errors.

Using equations (6.49) and (6.50), equation (6.47) can be expressed as

eb(k - l,z')ef(k,i)
Ak —1,7)

S(k, i) = A6(k — 1,i) + (6.51)

As arule each variable of the lattice-based algorithms requires an order-updating
equation. Therefore, an order-updating equation for y(k, ) is necessary. This
is the objective of the derivations in the following subsection.

6.4.3 Order Updating for v(k,)
Variable y(k — 1,7) is defined by
yk—1,4) = 1-¢T(k=1,)x(k -1,

where ¢(k — 1,7) = Sp(k — 1,i)x(k — 1,7). By multiplying the expression of
¢(k — 1,7) by Rp(k — 1,7) on both sides, we obtain the following relation.

Rp(k—1,)(k—1,i) = x(k-1,i) (6.52)

With this equation, we will be able to derive an order-updating equation for
¢(k — 1,1), with the aid of an appropriate partitioning of Rp(k — 1,1).

By partitioning matrix Rp(k — 1, ¢) as in equation (6.19), it follows that

Rp(k—1,i) [ ¢(k‘(1)”'—1) ]

_ [ Rp(k—1,i—1) pp,(k—1,i—1) ] [ o(k—1,i—1) ]
pr.(k—1,i—1) oi(k-1) 0
_ [ Rps(k—1,i—1)p(k—1,i—1) ]
T PEk=1,i-1)p(k—1,i—1)

We can proceed by replacing ¢(k — 1,7 — 1) using equation (6.52) in the last
element of the vector above, that is

Rp(k—1,9) [ d’(k‘é’i* 1) ]
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Rps(k—1,i—1)p(k —1,i—1)
pl.(k—1,i—1)Sps(k—1,i— )x(k—1,i—1)

[ Rpo(k—1,i=1)ep(k —1,i—1)
‘[ wl(k—1,i—1)x(k—1,i—1) ]

= [ z(k _’gkfe,,l(’;f:i)i_ 1) ]
:x(k—l,i)—[eb(k_?’i_l)] (6.53)

By multiplying the above equation by Sp(k — 1, 1), we have

[ ¢(k—(1],i—1) ] = é(k—1,) = Sp(k - 1,9) [ eb(k—(l),i—l) ] (6.54)

Applying the relation above in the definition of the conversion factor, we deduce
that

yk=1,4) = 1-¢T(k—1,i)x(k—1,9)
= y(k—=1,i—1)=[0T ey(k — 1,4)]7Sp(k — 1,9)x(k — 1,4)
(6.55)

This equation can be modified to a more useful form by using the following

result:
Soth-14) = [8 SD(k(iz,i—l)]
+€?m,,(“+‘-‘)[ —W,(kl—l,i—l) ][ ~Wi(k-1i-1)]
(6.56)
Proof.
Since

o

Rp(k—1,i) = [0 RD(k 02,-1)]

ph,(k—2,i-1)

+ [ Pp;( k 2 i— l) 0i_1,i-1

(6.57)
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By assuming equation (6.56) is valid and using (6.57), it is easily seen that

Rop(k-1,1)Sp(k-1,i)

1o o7 0 P}, (k-2,i-1)Sp(k-2,i-1)
“lo L *lo 07

-1,i—-1

1
-W;(k—1,i-1)

1o o7 0 WT(k-1,-1)
= +
0 I.‘_l,.'_l 0 0:’—2,:’-—2

4 (k-1,i-1 ‘
+m[ 61"‘"‘(0 1) ][1 -WT (k-1,i-1)]

A .
+—————€d (k_l"_l)RD(k—l,z)[
n

][1 -W7T(k-1,i-1)]
Imi

7

_| 0 Wi(k-1i-1) + ! ~W}q(k"1,i—1) =1,
0 Ig‘-—-l‘é-l 0 Oi—l,i '

a

By applying equation (6.56) in (6.55), the following expression for y(k,:+ 1) is
easily derived

y(k,i+1) = 1-@7(k,i+)x(k,i+1)

(k~1,4) k9 (6.58)
= ‘Y p— ,l —_— - )

é}imt'n (k’ l)
Following a similar way to derive (6.56), it can also be shown that

. Sp(k-1,i-1) 0,_,
Sp(k-1,i) = [ D(O'{_lz 1) . ]
+‘Z TRy [ _Wb(kl_lli_l) ][—Wf(k—l,i—ln]
(6.59)

Now by replacing equation above in equation (6.55) we can show that

k-1, = y(k—-1,i-1)
er(k—1,i—1)
e (k-1i-1)
ef(k—1,i—1)
S (k-1,i-1)

[-wl(k—1,i—1) 1] x(k 1,5

= y(k-1,1-1) (6.60)
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The last equation completes the set of relations required to solve the backward
and forward prediction problems. In the following section, the modeling of a
reference signal (joint-processor estimation) is discussed.

6.5 JOINT-PROCESS ESTIMATION

In the previous sections, we considered only the forward and backward predic-
tion problems exploring some common features in their solutions. In a more
general situation the interest is to predict the behavior of one process represen-
ted by d(k) through measurements of a related process contained in x(k — 1, 1).
Therefore, it is important to derive an adaptive lattice-based realization to
match a desired signal d(k) through the minimization of the weighted squared
error function given by

k
Eki+1) = Y APt 1)
1=0
k
= YO - wT (ki + Dx(Li+ D)2 (6.61)
=0

where y(k,i + 1) = wT(k,i + 1)x(k,i + 1) is the adaptive filter output signal,
and e(l,7+ 1) is the a posteriori error at a given instant ! if the adaptive filter
coefficients were fixed at w(k,i+ 1). The minimization procedure of £4(k,i+1)
is often called joint-process estimation.

The prediction lattice realization generates the forward and backward prediction
errors and requires some feedforward coefficients to allow the minimization of
&4(k,i+1). In fact, the lattice predictor part in this case works as a signal
processing building block which improves the quality of the signals (in the sense
of reducing the eigenvalue spread of the autocorrelation matrix) that are inputs
to the output taps. The question is where the taps should be placed. We give
some statistical arguments for this choice here. First, we repeat, for convenience,
the expression of the backward prediction error

en(ki+1) = xT(k,i+2) [ —wp(k,i+ 1) }

1

From the orthogonality property of the RLS algorithm, for £ — co, we can infer
that

E[eb(k, 1+ 1)1‘(’6 — l)] =90
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for I =0,1,...,7+ 1. From this equation, it is easy to show that
Eles(k,i + 1)xT (ki +2)] = 0T

If we postmultiply the equation above by [—wy(k,7) 1 0]7, the following result
is obtained

—Wb(k,i)
E es(k,i+ 1)xT(k,i+2) 1 = Eles(k,i+ 1)es(k,i)] = 0
0

This result shows that backward prediction errors of consecutive orders are
uncorrelated. Using similar arguments one can show that Efey(k, i+1)es(k,1)] =
0,forl=0,1,...,14.

In problem 4, it is also shown that backward prediction errors are uncorrelated
with each other in the sense of time averaging, as a consequence they should be
naturally chosen as inputs to the output taps. The objective function can now
be written as

k
Elki+1) = Y MteP(li+1)
=0
k
= Y XA —ef (ki + 1) v(l, i+ 1)) (6.62)
1=0

where &] (k,i+1) = [es(k,0) ep(k, 1) . .. ev(k,1)] is the backward prediction error
vector and vT(k,i+ 1) = [vo(k) vi(k) ... vi(k)] is the feedforward coefficient
vector.

The main objective of the present section is to derive a time-updating formula
for the output tap coefficients. From equations (6.61) and (6.62), it is obvious
that the lattice realization generates the optimal estimation by using a para-
meterization different from that related to the direct form realization. We can
derive the updating equations for the elements of the forward coefficient vec-
tor using the order-updating equation for the tap coefficients of the direct form
realization. Employing equation (6.59), the equivalent optimal solution with the
direct form realization can be expressed as

w(k,i+1) = Sp(k,i+1)pp(k,i+1)

4 e
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1 [ —wy(k, ) ] [—w{ (k,3) 1pp(k,i+ 1)

+W ]
[ e] e
where
op(k,i) = [~w, (k,9) lpp(k,i+1)
and
k
pp(k,i+1) = Y N~'x(l,i+1)d(l)
=0
Since
pp(k,i+1)=App(k—1,i+ 1) + d(k)x(k,i + 1)
and

wy(k, i) = wo(k — 1,4) + ¢(k, i)el (k, )

and following the same steps to deduce the time update of §(k,¢) in equation
(6.47), we can show that

e(k,?)ep(k, 1)

Sp(k,i) = Mp(k—1,i)+ D

(6.64)

By calculating the output signal of the joint-process estimator using the order-
updating equation (6.63) for the direct form realization, we can show that

wl(k, i+ D)x(k,i+1) = [wT(k,q) 0]x(k,i+ 1)

dp(k,1) T/ - .
+———"—[-w,; (k,2) 1]x(k,i+ 1) (6.65)
égmin(k,z)[ b ( ) ] ( ) (
This equation can be rewritten as follows:
) ) dp (k,7) )
k 1) = k ————ep(k 6.66
y( i+ ) y( vl)+§gmm(k,i)eb( J) ( )

where it can now be noticed that the joint-predictor output y(k,z + 1) is a
function of the backward prediction error ey(k,¢). This was the motivation for
using in equation (6.63) the decomposition of Sp (k,7 + 1) given in (6.59).



Adaptive Lattice-Based RLS Algorithms 261

The feedforward multiplier coefficients can be identified as

5p(k,3)
&, (k)

and the a posteriori output error of the adaptive filter of order ¢ from 1 to N
are obtained simultaneously, where

vi(k) (6.67)

e(k,i+1) = e(k,i) —vi(k)es(k,1) (6.68)

The result above was derived by subtracting d(k) on both sides of equation
(6.66). The resulting lattice realization is depicted in Fig 6.2.

We have now available all the relations required to generate the lattice recurs-
ive least-squares adaptive filtering algorithm based on a posterior: estimation
errors. The algorithm is described in Algorithm 6.1.

6.6 TIME RECURSIONS OF THE
LEAST-SQUARES ERROR

In this section, we provide a set of relations for the time updating of the minimum
LS error of the prediction problems. These relations allow the derivation of two
important equations involving the ratio of conversion factor of consecutive order
prediction problems, namely 72’2;1' f)l) and :”E',:fﬂ% . The results provided in
this section are required for the derivation of some alternative lattice algorithms
such as the error feedback, as well as for the fast RLS algorithms of the following

chapter.

By replacing each term in the definition of the minimum weighted least-squares
error for the backward prediction problem by their time updating equation, we
have (see equations (6.16), (6.17))

134

min

(ki) = op(k)=Wy (k,i))Pp, (ki)
(k)= IWT (k= 1,i)+e4 (ki)D" (k,D)INP py (k= 1,6) 42 (k=i)X(k i)
= oF(k)=AWT (k=1,5)Pp, (k=1,i)~2(k—i)WT (k~1,i)X(k,i)
—Xep (ki) (k,i)Pp, (k—1,i)—el(k,i) DT (k,i)X(k,i)o(k—i)
= (k=) 4o (k=1)=AWT (k~1,0)Pp, (k—1,8)—z(k—i)W] (k—1,i)X(k,i)
—xeb(k,i)DT (k)P py (k=1,8)—eh(k i) (k,i)X(k i)z (k—i) (6.69)
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Algorithm 6.1
Lattice RLS Algorithm Based on A Posteriori Errors
Initialization
Do for:=0,1...,N
5(-1,7) = 6p(-1,t) = 0 (assuming z(k) = 0 for k < 0)
5‘; (-1,7) = {‘; ~ (—1,t) = ¢ (a small positive constant)
v(=1,7) =1
eb(——l,i) =0
End
Do for k > 0
~¥(k,0) =1
ep(k,0) = eg(k,0) = z(k) (6.35)
¢ (k0)=¢2 (k0)=22(k)+ e (k-1,0) (6.36)
e(F.0) = d(k)
For each k > 0,dofori=0,1...,N
. . k—1,i)e; (ki
5(kyi) = A8(k — 1,4) + i 0er (k) (6.51)
PR
Y(kyi+1) = y(k,i) - fTeh%J (6.60)
bmin '
. 5(k,i
wolkd) = g My
ws(kyi) = ™k,
" € i (1)
Cb(k, 1 + 1) = eb(k - l,i) - K,b(k, l)Ef(k‘t) (6.34)
ef(kyi+1) =egp(k,i) — sg(k,t)ep(k — 1,7) (6.33)
€ kit =¢d (k-1 - gt (6.27)
min min Tomin K1
. . 82 (k,5)
Gpm Bt D =87 (k1) — =¥ (6:31)
Feedforward Filtering
§p(k,i) = Mp(k — 1,i) + 2lsfealhs) (6.64)
vi(k) = _f}.‘zﬁﬁL (6.67)
Ebmin (k1)
e(kyi +1) = e(k, i) - vilk)es(k, ) (6.68)
End
End
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By combining the second and third terms we get

Ao (k—1) —wy (k= 1,i)ppy(k — 1,9)] = X5, (k= 1,9)

Similarly, by combining the first, fourth and sixth terms we obtain

z(k —i)[z(k — 1) — w] (k — 1,49)x(k, 1) — e} (k, )" (k,i)x(k, )]
= Z(k )[6 (k,’t) - e;;(k)i ¢T(k>i)x(k> 2)]
= a(k — i)ej(k, )1 — 7 (k,i)x(k, 1)]

Now by applying these results in equation (6.69), we can show that

Eomin (k1) = X (k= 1,4) + a(k —i)ej (K, i)[1 — @7 (k, i)x(k, i)]
— ey (k, i)¢T(k’i)PDb(k -1,9)
= /\fbmm( —1,3) + z(k — i), (K, ©)
—ep(k, )@ (k,)[z(k — i)x(k,i) + Appy(k — 1,4)]

If we apply the definition of ¢(k,:) and the equation (6.16) for the backward
prediction problem we obtain

& (ki) = XS (k—1,4) + z(k — i)ep (k, ) — e} (k, ))dT (k, i)ppy(k, )
= X (k=1,0) + z(k — i)ej (k, 1)
—ey(k,3)xT (k,1)Sp(k — 1,i)pp,(k, 1)

= Mp . (k= 1,4) + ep(k, ) [=(

= /\fbmm( —1,7) + ey (k, i)ep(k, 1)
2
AU)

= A (k- 1,0) + 2D (6.70)
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ek, N+1)

e(k,N)

elk,3)

efk.2)

e(k,1)

x (k) ——

Figure 6.2 Joint-process estimation lattice realization.
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Following similar steps to prove the equation above, we can show that

) ) el(k,q)
é}imin (k,5) = )‘ffmm(k -1+ W (6.71)

From the last two equations, we can easily infer the following relations that are
useful to derive alternative lattice-based algorithms, namely the normalized and
error-feedback algorithms.

Mg (k=2,i) e2(k —1,4)
G k=13 = (k-1 (k-1
o oy(k=1,i+1)
T Tak-1) (6.72)
and
M =13 2 (k, )
ef (ki) T (k=197 (k9
_ kit 1)
T oak-1,9) (6.73)

where equations (6.60) and (6.58) were used in the derivation of the right-hand-
side expressions of the equations above, respectively.

6.7 NORMALIZED LATTICE RLS
ALGORITHM

An alternative form of the lattice RLS algorithm can be obtained by applying
a wise normalization to the internal variables of the algorithm, keeping their
magnitude bounded by one. The normalized lattice is specially suitable for
fixed-point arithmetic implementation. Also, this algorithm requires fewer re-
cursions and variables than the unnormalized lattices, i.e., only three equations
per prediction section per time sample.
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6.7.1 Basic Order Recursions

A natural way to normalize the backward and forward prediction errors is to
divide them by the square root of the corresponding weighted least-squares
error. However, it will be shown that a wiser strategy leads to a reduction
in the number of recursions. At the same time, we must think of a way to
normalize variable §(k,7). In the process of normalizing ey (k,1), es(k, ), and
d(k, 1), we can reduce the number of equations by eliminating the conversion
variable y(k,7 + 1). Note that y(k,7 + 1) is originally normalized. These goals
can be reached if the normalization of é(k, ¢) is performed by

(6.74)

(
_ d(k, 1)
Ve (kg | (k—1,i)

By noting that the conversion variable y(k — 1,1) appears dividing the product
e (k,7)es(k—1,17) in the time-updating formula (6.51), we can easily devise a way
to perform the normalization of the prediction errors leading to its elimination.
The appropriate normalization of the forward and backward estimation errors
are respectively performed as follows:

e (k,i) = es(k,9) (6.75)
Vi =Lk (ki)
a(k,i) = (k. ) (6.76)

y(k,i)eg ., (k,d)

where the terms , /E‘fimm (k,?) and 4 /fgmn(k, 1) perform the power normalization
whereas \/y(k — 1,1) and y/7(k,?) perform the so-called angle normalization,

since v(k, ) is related to the angle between the spaces spanned by x(k — 1,1)
and x(k,1).

From the equation above and (6.51), we can show that

3(ki)\fEf . (DEE(k=1) = z)\/éf Lk =108 (k—2,9)

+ep(k — 1,4)es (k \/Efmm k,i éb (k—1,1)
(6.77)
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Therefore,

£ . (k—1,9¢  (k—2,i)

¢ (kiEd  (k—1,9) +e(k — 1,0)Es(k, 1)

5(k,3) = Mo(k — 1,1‘)J

(6.78)

We show now that the term under the square root in the equation above can be
expressed in terms of the normalized errors. That is

Mipn k=20 y(k—1,i+1)
fg,,.;,,(k - 1) l) a 7(k - 1:’)
1 eZ(k—1,9)
y(k -1, i){gmm(k - 1,1)
= 1-g(k-1,9) (6.79)
and
Mf (k=149 kit
é}lmm(k>i) B 7(k - 1,1)
B e;(k,i)
B 7(k - 1’1.)6,‘;""':1 (k,l)
= 1- E}(k, i) (6.80)

Applying the last two equations in (6.78), we can easily show that

B(k,i) = 8(k—1,0)\/(L—eb(k— 1,0))(1 - € (k,)) + &(k — 1, )2 (k, i)
(6.81)

Following a similar procedure to derive the time-updating equation for &(k, 1),
one can derive the order-updating equation of the normalized forward and back-
ward prediction errors. In the case of the forward prediction error the following
order-updating relation results

- . — N T/ \— . 3 (k) —1,i
e,(k,t-}-l):[e!(k,z)—é(k,z)ez,(k—1,:)] fd!m"(lk o /7&‘(':1'1‘4)1)
Imin ’

(6.82)
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Here again, we can express the terms under the square roots in terms of the
normalized variables. Using equations (6.31), (6.74), and (6.80), it can be easily
shown that
gs(k,i) — 8(k,d)ep(k — 1,4
gkit1) = —L ’? (k 2ok — 1,7) (6.83)
1— 8" (k,i)\/1—€k(k —1,4)

If the same steps to derive €;(k,i + 1) are followed, we can derive the order-
updating equation for the backward prediction error

a(kitl) = e (k — 1,1) — 8(k, 9)es (k, 1) (6.84)

13" (ki) /1 - &(k, i)

6.7.2 Feedforward Filtering

The procedure to generate the joint-processor estimator is repeated here, but
using normalized variables. Define
- k.1
3p(k,i) = Sp(k,9) (6.85)
Vi (kDG (ki)

and
. e(k, 1)
e(k,i) = 6.86

Using a similar approach to derive equation (6.31), one can show that
83 (k, )

6.87
& . (k1) (687

Edin(k, i+ 1) = €3 (k) —

The same procedure used to derive the order-updating equations for the nor-
malized prediction errors and the parameter §(k, 7) can be followed to derive the
equivalent parameters in the joint-process estimation case. For the a posteriori
output error the following equation results

(1 ; _ v(k,9) Edin(kd) o
ek, i+1) = \/’y(k,i—kl)\/fﬁlin(k,i-kl) [e(k,z)—ép(k,z)eb(k,z)]
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_ L L [elk,i) = Bo(k, en(k, i)]

VI-ZE) /18 k)

(6.88)

The order-updating equation of dp (k, ) is

_— A2 gin(k = 1,008 (k—1,4) N
dp(k,i) = \/ ;il,-,,(k,i)ﬁ,‘,’im(k,i) dp(k —1,7) + €(k,t)es(k, 1)

V(U =220k, ) (1 = (k)5 (k — 1,) + &k, i) (k, i)

(6.89)
where it was used the fact that
n—:—-— = 1 — € k, 1 690)
b ) 9 (

The normalized lattice RLS algorithm based on a posteriori errors is described
in Algorithm 6.2.

Notice that in the updating formulas of the normalized errors, the terms in-
volving the square root operation could be conveniently implemented through
separate multiplier coefficients, namely 7y (k, 1), ns(k, %), and np(k,i). In this
way, one can perform the order updating by calculating the numerator first and
proceeding with a single multiplication. These coefficients are given by

ny(k,i+1) = ! (6.91)

1-3°(k,i)/T—2(k 1,3

m(k,i+1) = (6.92)
1- 68 (k, i)y /1 — & (k,1)

mp(k,i+1) = = (6.93)
1—e2(k,i)\/1—3p(k, i)
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Algorithm 6.2

Normalized A Posteriori Error LRLS Algorithm

Initialization

Do fori=0,1...,N
§(—1,i) =0 (assumingz(k) = d(k) = 0fork < 0)

Sp(-L,7)=0
e(-1,1) =0
End

02(-1) = Ao%(~1) = ¢ (e small positive constant)
Do fork >0
o2(k) = Mo2(k — 1) 4+ z2(k) (Input signal energy)
02(k) = Mo%(k — 1) 4 d?(k) (Reference signal energy)
& (k,0) = g1 (k,0) = z(k)/02(k)
&(k,0) = d(k)/oa(k)

For each k > 0,do fori =0,1...,N

8(k,3) = 3(k - 1,4), /(1 =& (k= 1,0))(1 = E(k, i) + Eo(k — 1,9)E7 (k,9) (6.81)
kit 1) = Sy (k—1,6) =5 (k,i) ey (K,i) (6.84)
’ V=8 (5,0 (1=83 (k,3)
kit 1) = T (ki) =8 (k,i) e (k—1,i) (6.83)
V(132 (k,1)) (1-22 (k—1,i))
Feedforward Filter
8p(k,i) = 8p(k = 1,i)y/(1 = €2(k,1))(1 — €2(k, ) + &(k, i)Eo(k, ) (6.89)
a(k,i+1) = - [(k, ) = 5p (K, )y (k,6)] (6.88)
V(1=22(k,) (1= (k,3))
End
End
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With these multipliers it is straightforward to obtain the structure for the joint-
processor estimator depicted in Fig. 6.3.

The unique feature of the normalized lattice algorithm is the reduced number of
equations and variables, at the expense of employing a number of square root
operations. These operations can be costly to be implemented in most types
of hardware architectures. Another interesting feature of the normalized lattice
algorithm is that the forgetting factor A does not appear in the internal updating
equations, it appears only in the calculation of the energy of the input and
reference signals. This property may be advantageous from the computational
point of view in situations where there is a need to vary the value of \.

6.8 ERROR-FEEDBACK LATTICE RLS
ALGORITHM

The reflection coefficients of the lattice algorithm were so far updated in an
indirect way, without time recursions. This section describes an alternative
form to update the reflection coefficients using time updating. These updating
equations are recursive in nature and are often called direct updating, since the
updating equations used for «4(k,¢) and &¢(k,1) in Algorithm 6.1 are depend-
ent exclusively of quantities other than past reflection coefficients. Algorithms
employing the recursive time updating are called error-feedback lattice RLS al-
gorithms. These algorithms have better numerical properties than their indirect
updating counterparts [3].

6.8.1 Recursive Formulas for the Reflection
Coefficients

The derivation of a direct updating equation for k;(k,i) starts by replacing
d(k, %) by its time-updating equation (6.51)

d(k, 1)
fgmm (k - l’i)
A(k — 1,7) es(k — 1,1)es (k, 3)
& =13 2lk—10gL (k- 1,9)

min

ky(k,i) =
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Figure 6.3 Joint-process estimation normalized lattice realization.
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By multiplying and dividing the first term by ﬁgm_n(k — 2,1) and next using
equation (6.72) in the first and second terms, we obtain

S(k—1,9) Mg (k—2,9) ev(k — 1,9)es(k, 1)

ky(k,i) = g ok=2,0) &  (k—1,9)  y(k-1,9¢ (k—1,1)
_ k=10 +1) | ey(k—1,9)ep(k,d)y(k —1,i+1)
= ks(k—1,7) Y= 1,9) 72(k_1)i)’\§gm.n(k_2’i)
S(k=1,i+1) ev(k — 1 i)es (k)

SF =19 [m(k— 1,4) + TE- LN (k _2)2,)} (6.94)

Similarly, using equations (6.51) and (6.73) it is straightforward to show that

y(k,i+1)

kp(k,i) = ———= [Kb(k —-1,7) + . eo(k —1,49)es (k1)

(k= 1,95 (k—1,9)

E—TH }(6.95)

The feedforward coefficients can also be time updated in a recursive form, by
appropriately combining equations (6.64), (6.67), and (6.72). The time-recursive
updating equation for v;(k) is

y(k, i+ 1)
v(k, 1)

e(k,i)ep(k, 1)

vi (k) (k, )8 (k—1,1)

[U,’(k ~1)+ - } (6.96)

The error-feedback LRLS algorithm described in Algorithm 6.3 employs the
equations (6.94), (6.95), and (6.96). This algorithm is directly derived from
Algorithm 6.1.

Alternative a posterior: LRLS algorithms can be obtained if we replace equa-
tions (6.27) and (6.31) by (6.70) and (6.72) in Algorithms 6.1 and 6.3, re-
spectively. These modifications as well as others possible do not change the
behavior of the LRLS algorithm when implemented with infinite precision (long
wordlength). Differences exist in computational complexity and in the effects
of quantization error propagation.
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Algorithm 6.3

Error-Feedback LRLS Algorithm Based on A Posteriori Errors

Initialization

Do fori =0,1...,N
kp(—1,7) = kg(—=1,7) = vi(—1) = §(-1,4) = 0,v(-1,i) =1
fgmin(—2,i) = {gmm(—l,i) = 5}‘"“.“(—1,2') = ¢ (a small positive constant)

Eb(—l,i) =0

End

Do for k >0
ep(k,0) = eg(k,0) = z(k) (6.35)
€7 . (k0)=¢f  (k,0)=a2(k)+ 2§ | (k~1,0) (6.36)
e(F\0) = d(k)

For each k > 0,dofor:=0,1...,N

5(kyi) = A6(k = 1,4) + elizpder(ed) (6.51)
2(k,i

AWkyi+1) =2k i) - G2 (6.60)
o a(k—1,i41) 1. ep(k—1,i)eq (k,i)

Ky(k,i) = ~(k=1,)) ky(k—1,3) + ‘Y(k_l’i)'\fgmm o—2.9) (6.94)
o — (ki+1) _ . ep(k=1,i)ey (ki)

rolk i) = STy [Re(k = 1,4) + F=1RE] — (k=1,7) (6.95)

eb(k,i + l) = eb(k - l,i) - ﬂb(k,i)ef(k,i) (6.34)

s (ki +1) = egk,i) = ry (ks en(k — 1,1) (6.33)

. . § [
€ i+ 1) =€ (ki) = 0l (6:31)
Gkt )= (k-1i) - g0 (6.27)

Feedforward Filtering

. _ (k,i+1) Ak e(k,i)ep(k,i
vwilk) = 0en [v‘(k 1)+7(k,i))\¢3 (k—1,7) (6.96)

e(k,i+1) = e(k,1) — vi(k)ep(k, 1) (6.68)
End

End
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6.9 LATTICE RLS ALGORITHM BASED
ON A PRIORI ERRORS

The lattice algorithms presented so far are based on a posterior: errors, however
alternative algorithms based on a priort errors exist and one of them 1s derived
in this section.

The time updating of the quantity é(k, 7) as a function of the a priori errors was
previously derived, see equation (6.47), and is repeated here for convenience.

S(k,i) = M(k—1,8)+v(k—1,d)eh(k — 1,0)e} (ki) (6.97)

The time updating of the forward prediction a priori error can be obtained by
using equation (6.32) as follows:

/ . _
er(k,i+1) = k2+2[ —_ _12+1)]

= kz+2|:—wf —lzjl

(k= 1,2) °

-1
Lo d(k—-1,9) |, .
= ek, i) - Q(Uc——gﬂeb(k—l’l)
= ej(k,i) —kr(k—1,0)ep(k—1,3) (6.98)

With equation (6.28), we can generate the time-updating equation of the back-
ward prediction a priori error as follows:

0
ep(k,i+ 1) xT (k,i+2) { —wp(k — 2,1) }

1
5(k —1,i) . "
—'WXT(k,Z-{-Q) l: Wf(k-— 1,2) }

dk-1,9) ,, .
Ej‘imm(k _ 172-)6f(k)1)

= ey(k—1,3) — ry(k — 1,3)e} (k, 1) (6.99)

0

= e(k—1,i) -
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The order updating of y(k—1, ¢) can be easily derived by employing the relations
of equations (6.50) and (6.60). The result is

v2(k —1,9)ey (k —1,9)
éd (k_lvz)

bmin

yk-1,i+1) = y(k-1,3) - (6.100)

The updating of the feedforward coefficients of the lattice realization based on
a priort errors is performed by the equations below.

Sp(k,i) = Mp(k—1,4)+v(k,i)e,(k,i)e (ki) (6.101)

e'(k,i+1) = € (ki) —vi(k—1)ey(k,1) (6.102)
dp(k—1,i

The derivations are omitted since they follow the same steps of the predictor
equations.

An LRLS algorithm based on a prior: errors is described in Algorithm 6.4.
The normalized and error-feedback versions of the LRLS algorithm based on a
priori errors also exist and their derivations are left as problems.

6.10 QUANTIZATION EFFECTS

A major issue related to the implementation of adaptive filters is their behavior
when implemented with finite-precision arithmetic. In particular, the roundoff
errors arising from the quantization of the internal quantities of an algorithm
propagate internally and can even cause instability. The numerical stability and
accuracy are algorithm dependent. In this section, we summarize some of the
results obtained in the literature related to the LRLS algorithms [3], [7]-[8].

One of the first attempts to study the numerical accuracy of the lattice al-
gorithms was reported in [7]. Special attention was given to the normalized
lattice RLS algorithm, since this algorithm is suitable for fixed-point arithmetic
implementation, due to its internal normalization. In this study, it was shown
that the bias error in the reflection coefficients was more significant than the
variance of the estimate error. The bias in the estimated reflection coefficients
1s mainly caused by the quantization error associated with the calculation of the
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Algorithm 6.4

LRLS Algorithm Based on A Priori Errors

Initialization

Do fori=0,1...,N
6(-1,7) = ép(-1,i{) =0 (assumingz(k) = 0fork < 0)
’y(—l,i) =1
{gm‘_n(—l,z) ff . (=1,7) = € (a small positive constant)

ep(-1,7) =0
End
Do fork >0
~v(k,0) =1
eb(k 0) =¢ (k 0) = z(k)
(k 0) (k,O):x"’(k)-{-/\{? _(k-1,0)

Foreachlc>0 dofori=0,1...,N
§(k,1) = )\5(1:—- 1,4) +~v(k — 1 z)eb(k—l z)e!(k 1)

'Y(kri‘*' 1) = ‘Y(k") - %ﬁ%;(;ﬁ.)
K,f(k— l,i) = E—ba-i(k—?:t')zy

. BlE—1,i
kp(k -1, z): (:"1')

eb(k z+1)—eb(k—l 1) — kp(k —1,4)e f(k 1)
(k 1+1)—e (ky3) — rp(k—1, z)eb(k—l 1)

fmin(k)i-‘_ 1)= fmin(k,z) 2 = (’;‘ 1,1)
ki) =g (o1, - g

rin (59
Feedforward Filtering

6p(k,i) = Xp(k — 1,7) + v(k, i)e} (k, 1)e’ (k,1)

v(k—1)= —Dl—l—ﬁd "(; .

e'(ki+1)= e""l'c',i) — vi(k = 1) (k,4)
End
End

(6.47)

(6.100)

(6.99)
(6.98)

(6.31)

(6.27)

(6.101)
(6.103)

(6.102)
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square roots of [1 — & (k — 1,1)] and [1 — &% (k, )] assuming they are calculated
separately. An upper bound for this quantization error is given by

meq =270 (6.104)

assuming that b is the number of bits after the sign bit and that quantization
is performed through rounding. In the analysis, the basic assumption that
1 — XA > 2751 was used. The upper bound of the bias error in the reflection
coefficients is then given by [7]

2705k, d)

Ad(k, i) = > (6.105)

Obviously, the accuracy of this result depends on the validity of the assumptions
used in the analysis [7], however it is a good indication of how the bias is
generated in the reflection coefficients. It should also be noted that the result
above is valid as long as the updating of the related reflection coefficient does
not stop. An analysis for the case the updating stops is also included in [7].

The bias error of a given stage of the lattice realization propagates to the suc-
ceeding stages and its accumulation in the prediction errors can be expressed
as

i =2
0 (k1
AR (ki+1) = A (ki + 1) m2tt2 Yy B0 (6.106)
=0 1 — ¢ (k1)
fori=0,1,..., N. This equation indicates that whenever the value of the para-

meter Sz(k,l) is small, the corresponding term in the summation is also small.
On the other hand, if the value of this parameter tends to one the corresponding
term of the summation is large. Also note that the accumulated error tends to
grow as the number of sections of the lattice is increased. In a finite-precision
implementation, it is possible to determine the maximum order that the lattice
can have such that the error signals at the end of the realization still represent
actual signals and not only accumulated quantization noise.

The lattice algorithms remain stable even when using quite short wordlength
in fixed- and floating-point implementations. In terms of accuracy the error-
feedback algorithms are usually better than the conventional LRLS algorithms
[3]. The reduction in the quantization effects of the error-feedback LRLS al-
gorithms is verified in [3], where a number of examples show satisfactory per-
formance for implementation with less than 10 bits in fixed-point arithmetic.
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Another investigation examines the finite-wordlength implementation employ-
ing floating-point arithmetic of the unnormalized lattice with and without error
feedback [8]. As expected, the variance of the accumulated error in the reflec-
tion coeflicients of the error-feedback algorithms are smaller than that for the
conventional LRLS algorithm. Another important issue relates to the so-called
self-generated noise, that originates in the internal stages of the lattice realiz-
ation when the order of adaptive filter is greater than necessary. In the cases
where the signal-to-noise ratio is high in the desired signal, the internal signals
of the last stages of the lattice realization can reach the quantization level and
start self-generated noise, leading to an excess of mean-square error and pos-
sibly to instability. The stability problem can be avoided by turning off the
stages after the one where the weighted forward and backward squared errors
are smaller than a given threshold.

Example 6.1

The system identification problem described in Chapter 3 (subsection 3.6.2) is
solved using the lattice algorithms presented in the present chapter. The main
objective is to compare the performance of the algorithms when implemented
in finite precision.

Solution:

We present here the results of using the unnormalized, the normalized and
error-feedback a posteriori lattice RLS algorithms in the system identification
example. All results presented here were obtained by running 200 independent
experiments and calculating the average of the quantities of interest. We con-
sider the case of eigenvalue spread 20, and A = 0.99. Parameter ¢ was 0.1, 0.01,
and 0.1 for the unnormalized, the normalized, and the error-feedback lattice
filters, respectively. The measured misadjustments of the lattice algorithms are
given in Table 6.1. As expected, the results are close to those obtained by the
conventional RLS algorithm, where in the latter the misadjustment was 0.0421.
Not included is the result for the normalized lattice because the a posteriori
error is not available, in this case the measured normalized MSE was 0.00974.

Table 6.2 summarizes the results obtained by the implementation of the lattice
algorithms with finite precision. Parameter e in the finite-precision implementa-
tion was 0.1, 0.04 and 0.5 for the unnormalized, normalized and error-feedback
lattices, respectively. These values of ¢ assured a good convergence behavior of
the algorithms in this experiment. In short wordlength implementation of the
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lattice algorithms, it is advisable to test if the denominator expressions of the
algorithm steps involving division are not rounded to zero. In case of detection
of a zero denominator, replace its value by the value of the least significant bit.
Table 6.2 shows that for the unnormalized and error-feedback lattices, the mean-
squared errors are comparable to the case of the conventional RLS previously
shown in Table 5.2. The normalized lattice was found more sensible to quantiz-
ation errors due to its higher computational complexity. The errors introduced
by the calculations to obtain w(k)q from the lattice coefficients was the main
reason for the increased values of E[||Aw(k)q||?] shown in Table 6.2. There-
fore, this result should not be considered as an indication of poor performance
of the normalized lattice implemented in finite precision.

m}
Table 6.1 Evaluation of the Lattice RLS Algorithms
| Algorithm [[ Misadjustment |
Unnorm. 0.0416
Error Feed. 0.0407
Table 6.2 Results of the Finite-Precision Implementation of the Lattice RLS
Algorithms
£(k) g E[||aAW (k) g 1?]
No. of bits Unnorm. ” Norm. ” Error Feed. Unnorm. J[ Norm. ” Error Feed.
16 1.563 10~3 8.081 10~ 3 1.555 1073 9.236 10~ 2.043 1073 9.539 10~ *
12 1.545 103 8.096 10~3 1.567 1072 || 9.31710™* 2.201 1073 9.271 10~ *
10 1.587 103 10.095 10~32 1.603 10~3 || 9.34710—¢ 4.55010~3 || 9.872 10—
Example 6.2

The channel equalization example first described in subsection 3.6.3 is used in
simulations using the lattice RLS algorithm with error feedback. In the present
example use a 25th-order equalizer.

Solution:

Applying the error-feedback lattice RLS algorithm, using A = 0.99, with a 25th-
order equalizer, we obtained after 100 iterations the equalizer whose impulse
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response is shown in Fig. 6.4. The appropriate value of L for this case was 18.
The algorithm was initialized with € = 0.1.

The convolution of this response with the channel impulse response is depicted
in Fig. 6.5, which clearly approximates an impulse. In this case, the measured
MSE was 0.3056, a value comparable with that obtained with the LMS algorithm
in the example of subsection 3.6.3. Note that in the LMS case a 50th-order
equalizer was used.

O
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Figure 6.4 Equalizerimpulseresponse, lattice RLS algorithm with error feed-
back.

6.1 CONCLUDING REMARKS

In this chapter, a number of alternative RLS algorithms based on the lattice
realization were introduced. These algorithms consist of stages where growing-
order forward and backward predictors of the input signal are built from stage
to stage. This feature makes the lattice-based algorithms attractive in a number
of applications where information about the statistics of the input signal, such
as the order of the input-signal model, are useful. Another important feature
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Figure 6.5 Convolution result, lattice RLS algorithm with error feedback.

of the lattice-based algorithms is their good performance when implemented in
finite-precision arithmetic.

Also, their computational complexity of at least 16 N multiplications per output
sample is acceptable in a number of practical situations. However, by starting
from the lattice formulation without making extensive use of order updating, it
is possible to derive the fast transversal RLS algorithms, that can reduce the
computational complexity to orders of 7N multiplications per output sample.
The derivation of these algorithms is the subject of the following chapter.

Several interesting topics related to the lattice formulation of adaptive filters
have been addressed in the open literature [9]-[13]. The geometric formulation
of the least-squares estimation problem can be used to derive the lattice-based
algorithms [9] in an elegant way. Also, an important situation that we usually
find in practice is when the input data cannot be considered zero before the first
iteration of the adaptive algorithm. The derivation of the lattice algorithms that
account for nonzero initial condition for the input data is found in [10]. Another
important problem is the characterization of the conditions under which the
stability of the lattice algorithm is maintained when perturbations to the normal
operation occur [11]. There is also a family of lattice-based algorithms that
employ gradient type updating equations, these algorithms present reduced
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computational complexity and good behavior when implemented with finite-
precision arithmetic [12]-[13].

A number of simulation examples involving the lattice algorithms were presen-
ted in this chapter. These examples evaluated the performance of the lattice
algorithm in different applications as well as in finite-precision implementations.
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Problems

1. Deduce the time-updating formula for the backward predictor coefficients.

2. Given a square matrix P partitioned as follows:
A B
e - [e 3]

where A and D are also square matrices. The inverse of P can be expressed

as follows:
p- _ [AT'I+B(D-CA™'B)"'CA™'] -A™'B(D-CA™'B)"!
N ~-(D-CcA™'B)-lcA™! (D - CA™'B)~!
(A-BD~!C)! —(A-BD"!C)"'BD"!
-D'C(A-BD!C)"! D !'[I+C(A-BD!C)"!BD}]

(a) Show the validity of this result.

(b) Use the appropriate partitioned forms of Rp(k — 1,7) to derive the
partitioned forms of Sp(k — 1, ¢) of equations (6.56) and (6.59).

3. Derive the time-updating formula of ép (k, 7).

4. Demonstrate that the backward a posteriori prediction errors ep(k, ) and
ep(k, j) for i # j are uncorrelated when the average is calculated over time.
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10.
11.
12.
13.

14.

15.

16.

17.

. Justify the initialization of £ . (0) and £f . (0) in the lattice RLS al-

gorithm.

. Derive the a posteriori lattice RLS algorithm for complex input signals.
. Prove equation (6.71).

. Derive the order-updating equation of the normalized forward and back-

ward errors.

. Prove the validity of the order-updating formula of the weighted least-

squares error of the joint-process estimation described in equation (6.88).
Derive equation (6.89).

Derive the error-feedback LRLS algorithm based on a priori errors.
Derive the normalized LRLS algorithm based on a priori errors.

The lattice RLS algorithm based on a posteriori errors is used to predict
the signal z(k) = sin ZX. Given A = 0.99, calculate the error and the tap
coefficients for the first 10 iterations.

The normalized lattice RLS algorithm based on a posteriori errors is used
to predict the signal z(k) = sin Z&. Given A = 0.99, calculate the error and

the multiplier coefficients for the first 10 iterations.

The error-feedback LRLS algorithm was applied to identify a 7th-order
time-varying unknown system whose coefficients are first-order Markov
processes with A\w = 0.999 and 0% = 0.033. The initial time-varying
system multiplier coefficients are

wl = [0.03490 — 0.01100 — 0.068640.223910.556860.35798 — 0.02390 —

o
0.07594]
The input signal is a Gaussian white noise with variance o2 = 1, and the
measurement noise is also a Gaussian white noise independent of the input
signal and of the elements of nw(k), with variance o2 = 0.01.

Simulate the experiment described above and measure the excess MSE, for
A=0.97 and A = 0.99.

Repeat the experiment described in problem 15, using the normalized lat-
tice algorithm.

Suppose a 15th-order FIR digital filter with multiplier coefficients given
below was identified through an adaptive FIR filter of the same order using
the unnormalized LRLS algorithm. Considering that fixed-point arithmetic
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was used, simulate the identification problem described using the following

specifications.
Additional noise : white noise with variance 02 =0.0015
Coefficients wordlength: b. = 16 bits
Signal wordlength: bs = 16 bits
Input signal: Gaussian white noise with variance o2 = 0.7
A=0.98

wl' =[0.0219360 0.0015786 -0.0602449 -0.0118907 0.1375379 0.0574545
-0.3216703 -0.5287203 -0.2957797 0.0002043 0.290670 -0.0353349
-0.0068210 0.0026067 0.0010333 - 0.0143593]

Plot the learning curves for the finite- and infinite-precision implementa-

tions. Also plot ||Axy(k,0)||? and ||Aks(k,0)||? versus k, in both cases.
18. Repeat the problem above for the following cases

(a) 62 = 0.01,b. = 9 bits, by = 9 bits, 02 = 0.7, A = 0.98.

(b) 62 = 0.1,b. = 10 bits, by = 10 bits, 02 = 0.8, A = 0.98.

(c) 02 =0.05,b, = 8 bits, by = 16 bits, 2 = 0.8, A = 0.98.

19. In the problem 17 above, rerun the simulations for A = 1,A = 0.940.
Comment on the results.

v 3

N

20. Repeat the problem 18 above, using the normalized and error-feedback
LRLS algorithms. Compare the results for the different algorithms.

21. Repeat problem 17 in the case the input signal is a first-order Markov
process with Ax = 0.98.

22. Given a channel with impulse response given by
h(k) = 0.9 + 0.4

for k = 0,1,2,...,25, design an adaptive equalizer. The input signal is
white noise with unit variance and the adaptive filter input signal-to-noise
ratio is of —30dB. Use the unnormalized lattice algorithm of order 35.

23. The unnormalized lattice algorithm is used to perform the forward predic-
tion of a signal z(k) generated by applying a white noise with unit variance
to the input of a linear filter with transfer function given by

0.5

H(z) = (1 - 1.512z71 +0.827z2)(1 — 1.8z + 0.87z72)

Calculate the zeros of the resulting predictor and compare with the poles
of the linear filter.
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24. Determine the computational complexity of the Algorithms 6.1, 6.2, 6.3
and 6.4.



FAST TRANSVERSAL RLS
ALGORITHMS

7.1 INTRODUCTION

Among the large number of algorithms that solve the least-squares problem in a
recursive form, the fast transversal recursive least-squares (FTRLS) algorithms
are very attractive due to their reduced computational complexity [1]-[7].

The FTRLS algorithms can be derived by solving simultaneously the forward
and backward linear prediction problems, along with two other transversal filters
consisting of the joint-process estimator and an auxiliary filter whose desired
signal vector has one as its first (i.e., d(0)) and unique nonzero element. Unlike
the lattice-based algorithms, the FTRLS algorithms require only time-recursive
equations. However, a number of relations required to derive some of the FTRLS
algorithms can be taken from the previous chapter on LRLS algorithms. The
FTRLS algorithm can also be considered as a fast version of the transversal
adaptive filter for the solution of the RLS problem, since a fixed-order update for
the transversal adaptive filter coefficient vector is computed in each iteration.

The relations derived for the backward and forward prediction in the lattice-
based algorithms can be used to derive the FTRLS algorithms. The resulting
algorithms have computational complexity of order N, making them especially
attractive for practical implementation. As compared to the lattice-based al-
gorithms, the computational complexity of the FTRLS algorithms is lower due to
the absence of order-updating equations. Particularly, FTRLS algorithms typ-
ically require an order of 7N to 11N multiplications and divisions per output
sample, as compared to the 14N to 29N for the LRLS algorithms. Therefore,
FTRLS algorithms are considered as the fastest implementation solutions of the
RLS problem [1]-[7].

P. S. R. Diniz, Adaptive Filtering

© Springer Science+Business Media New York 1997
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Several alternative FTRLS algorithms were proposed in the literature. The
so-called fast Kalman algorithm [1], that is certainly one of the earlier fast
transversal RLS algorithms, has computational complexity of 11N multiplica-
tions and divisions per output sample. In a later stage of research development
in the area of fast transversal algorithms, the fast a posteriori error sequen-
tial technique (FAEST) [2], and the fast transversal filter (FTF) [3] algorithms
were proposed, both requiring an order of 7N multiplications and divisions per
output sample. The FAEST and FTF algorithms have the lowest complexity
known for RLS algorithms, for problems where the input vector elements con-
sist of delayed versions of a single input signal. Unfortunately, these algorithms
are very sensitive to quantization effects and become unstable if certain actions

are not taken [5]-[7], [9].

In this Chapter, a particular form of the FTRLS algorithm is presented, where
most of the derivations are based on those presented for the lattice algorithms.
It is well known that the quantization errors in the FTRLS algorithms present
exponential divergence [1]-[7]. Since the unstable behavior of the FTRLS al-
gorithms when implemented with finite-precision arithmetic is undesirable, we
discuss the implementation of numerically stable FTRLS algorithms, providing
the description of a particular algorithm [8]-[10].

7.2 RECURSIVE LEAST-SQUARES
PREDICTION

All fast algorithms explore some structural property of the information data in
order to achieve low computational complexity. In the particular case of the
fast RLS algorithms discussed in this text, the reduction in the computational
complexity is achieved for the cases where the input signal consists of consec-
utively delayed samples of the same signal. In this case, the pattern of the fast
algorithms are similar in the sense that the forward and backward prediction
filters are essential parts of these algorithms. The predictors perform the task
of modeling the input signal, which as a result allows the replacement of matrix
equations by vector and scalar relations.

In the derivation of the FTRLS algorithms, the solutions of the RLS forward
and backward prediction problems are required in the time-update equations.
In this section, these solutions are reviewed emphasizing the results that are
relevant to the FTRLS algorithms. As previously mentioned, we will borrow
a number of derivations from the previous chapter on lattice algorithms. It is
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worth mentioning that the FTRLS could be introduced through an independ-
ent derivation, however the derivation based on the lattice is probably more
insightful, and certainly more straightforward at this point.

7.2.1 Forward Prediction Relations

The instantaneous a posteriori forward prediction error for an Nth-order pre-
dictor is given by

er(k,N) = a(k)—w}(k,N)x(k—1,N)

I

(7.1)

xT (k, N + 1) [ _wf(lk,N) }

The relationship between a posteriori and a priori forward prediction error,
first presented in equation (6.49) and repeated here for convenience, is given by

ef(k,N)

N =Sk N)

(7.2)

A simple manipulation of equation (6.73), leads to the following relation for the
time updating of the minimum weighted least-squares error, which will be used
in the FTRLS algorithm

& . (k,N)= AES . (k= 1,N)+ €} (k,N)es(k, N) (7.3)

From the same equation (6.73), we can obtain the following equality that will
also be required in the FTRLS algorithm

,\g‘ffm(k —~1,N)

N+ = =

y(k = 1,N) (7.4)

The updating equation of the forward prediction tap-coefficient vector can be
performed through equation (6.40) of the previous chapter, i.e.,

wy(k,N)=ws(k—1,N)+¢(k—1,N)es(k,N) (7.5)

where ¢(k —1,N) = Sp(k — 1, N)x(k — 1, N).
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As will be seen, the updating of vector ¢(k — 1, N) to ¢(k, N + 1) is needed
to update the backward predictor coefficient vector. Also, the last element
of ¢(k, N + 1) is used to update the backward prediction a priori error and to
obtain y(k, N). Vector ¢(k, N+1) can be obtained by post-multiplying equation
(6.56), at instant k and for order N, by x(k, N 4+ 1) = [z(k) xT(k — 1, N)]T.
The result can be expressed as

0 1 1
¢(k,N+l)= [ d)(k—l,N) ] +m[ —Wf(k,N) ]Cf(k,N) (76)

However, it is not convenient to use the equation above in the FTRLS algorithm
because when deriving the backward prediction part, it would lead to extra
computation. The solution is to use an alternative recursion involving (}S(k, N+
1) = %%g—:ll% instead of ¢(k, N + 1), see problem 7 for further details. The
resulting recursion can be derived after some algebraic manipulations of the
equation (7.6) above and equations (7.3) to (7.5).

ok, N+1) = [J,(k_ol,N)]

1 1
+Ag;fm(k —1,N) [ -wy(k—1,N

) ] ¢ (k, N) (7.7)

The forward prediction tap-coefficient vector should then be updated using
¢(k — 1, N) as follows:

wy(k,N) =wj(k—1,N)+d(k—1,N)es(k,N) (7.8)

7.2.2 Backward Prediction Relations

In this subsection, the relations involving the backward prediction problem that
are used in the FTRLS algorithm are derived.

The relationship between a posteriori and a priori backward prediction errors
can be expressed as

es(k, N) = ch(k, N)y(k, N) (7.9)
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It is also known, see equation (6.79) of the previous chapter, that the ratio of
conversion factors for different orders is given by

7(ka+1) _ ’\fgmm(k_ 11N)

= 7.10
y(k, N) fgmm(k, N) (7.10)
We rewrite for convenience the last equality of equation (6.70)
2
d d ey (k, N)
kE,N)y=X (k—1,N)+ 7.11
ébmtn( ) €bmtn( ) 7(k, N) ( )
The equation above can be rewritten as follows:
2(k, N ¢ (k,N
1+ (k. N) L, (7.12)

(kMg (k=1,N) e (k=1,N)

Now we should recall that the time updating for the backward predictor filter
is given by

wo(k,N) = wy(k—1,N)+¢(k,N)ey(k,N)
wy(k —1,N) 4 ¢(k, N)es(k, N) (7.13)

Il

Following a similar path used to derive equation (7.6), by first post-multiplying
equation (6.59), at instant k and for order N, by x(k, N +1) = [x7 (k, N) z(k—
N)]T, and using relations (7.10), (7.11), and (7.13), we have

[‘2’(’“(;]")]=«2>(k,1v+1)

1 -wy(k—1,N) | ,
X (k—1,N) [ 1 ] es(k, N) (7.14)

Note that in this equation the last element of qAS(k, N +1) was already calculated
in equation (7.6). In any case, it is worth mentioning that the last element of

¢(k, N + 1) can alternatively be expressed as

&N-f-l(k,N + 1) = eb(k»N)

=T (7.15)



294 CHAPTER 7

By applying equations (7.9), (7.15), and (7.10) in equation (7.12), we can show
that

1+ Gy (b, N + Dey(k, N) = 77(“’) (7.16)

(k,N+1)

We are now in a position to derive an updating equation which is used in the
FTRLS algorithm, by substituting equation (7.9) into the equation above. The
resulting relation is

v (k,N) =571k, N + 1) — pp1(k, N + 1)ej(k,N) (7.17)

The updating equations related to the forward and backward prediction prob-
lems and for the conversion factor y(k, N) are now available. We now proceed
with the derivations to solve the more general problem of estimating a related
process represented by the desired signal d(k), known as joint-process estima-
tion.

7.3 JOINT-PROCESS ESTIMATION

As for all previously presented adaptive filters algorithms, it is useful to derive a
FTRLS algorithm that can match a desired signal d(k) through the minimization
of the weighted squared error. Starting with the a priori error

e'(k,N) = d(k) —wT (k—1,N)x(k, N) (7.18)
we can calculate the a posteriori error as follows:

e(k,N) =€ (k,N)y(k,N) (7.19)

Like in the conventional RLS algorithm, the time updating for the output tap
coefficients of the joint-process estimator can be performed by

w(k,N) = w(k—1,N)+ ¢(k,N)e'(k,N)
= w(k—1,N)+ ¢k, N)e(k,N) (7.20)

All the updating equations are now available to describe the fast transversal RLS
algorithm. The FRLS algorithm consists of equations (7.1)-(7.3), (7.6)-(7.8),
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and (7.4) related to the forward predictor; equations (7.15), (7.17), (7.9), (7.11),
(7.14), and (7.13) related to the backward predictor and the conversion factor;
and (7.18)-(7.20) related to the joint-process estimator. The FTRLS algorithm
is described in Algorithm 7.1. The computational complexity of the FTRLS
algorithm is 7(N) + 14 multiplications per output sample. The key feature of
the FTRLS algorithm is that it does not require matrix multiplications, that
is why the implementation of the FTRLS algorithm has complexity of order N
multiplications per output sample.

The initialization procedure consists of setting the tap coefficients of the back-
ward prediction, forward prediction, and joint-process estimation filters to zero,

namely
wi(—1,N)=wy(-1,N)=w(-1,N)=0 (7.21)

Vector ¢( —1, N) is set to 0 assuming the input and desired signals are zero for
k < 0, i.e., prewindowed data. The conversion factor should be initialized as

follows:
v(-1L,N)=1 (7.22)

since no difference between a priori and a posteriori errors exists during the
initialization period. The weighted least-square errors should be initialized
with a positive constant ¢

& (LN =€ (-1,N)=¢ (7.23)

in order to avoid division by zero in the first iteration. The reason to introduce
this initialization parameter suggests that it should be a small value. However
for stability reasons the value of € should not be small (see the examples at the
end of this chapter).

It should be mentioned that there are exact initialization procedures for the fast
transversal RLS filters, aiming the minimization of the objective function at all
instants during the initialization period [3]. These procedures explore the fact
that during the initialization period the number of data samples in both d(k)
and z(k) is less than N + 1, therefore the objective function can be made zero
since there are more parameters than needed. The exact initialization procedure
of [3] replaces the computationally intensive backsubstitution algorithm and is
rather simple when the adaptive filter coefficients are initialized with zero. The
procedure can also be generalized to the cases where some nonzero initial values
for the tap coefficients are available.
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Algorithm 7.1

Fast Transversal RLS Algorithm

Initialization
ws(—1,N) = wp(-1,N) = w(-1,N) =0
$(-1,N) = 0, v(-1,N) =1
ﬁgmi (-1,N) = f? _ (=1,N) = ¢ (a small positive constant)

Prediction Part

Do for each k£ > 0,

¢/, (k,N) = xT(k, N + 1) [ ——wf(kl— L) }

ef(k,N) = e} (k,N)y(k —1,N) (7.2)

€ . (E,N) =2 (k—1,N)+ e} (k,N)es(k,N) (7.3)

ws(k,N)=wys(k—1,N)+ (k- 1,N)es(k,N) (7.8)

- 0 1 ]

@d(k,N +1) = (}(k—l,N) +W [ —w(k - 1,N) ef(k,N) (7.6)

,\g;' (k—1,N)

v(k,N +1) = NG ~¥(k-1,N) (7.4)

ey(k, N)=2é¢  (k—1,N)dn4q (kN +1) (7.15)

Y (k,N) = v~ (k,N + 1) = dn41(k, N + 1)l (k,N) (7.17)

es(k, N) = e} (k, N)v(k,N) (7.9)

¢l . (B N)=2ed  (k=1,N)+ey(k, N)ep(k,N) (7.11)
@k N) ] = (6N +1) = b N 1) [ TRE LN ] (7.14)

wi(k, N) = wy(k — 1,N) + @(k, N)ey(k, N) (7.13)

Joint-Process Estimation

e'(k,N) = d(k) — wT (k — 1,N)x(k,N) (7.18)

e(k, N) = ¢'(k, N)y(k, N) (7.19)

w(k,N) = w(k —1,N) + ¢(k, N)e(k,N) (7.20)

End
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As previously mentioned several fast RLS algorithms based on the transversal
realization exist; the one presented here corresponds to the so-called FTF pro-
posed in [3]. A number of alternative algorithms are introduced in the problems.

7.4 STABILIZED FAST TRANSVERSAL
RLS ALGORITHM

Although the fast transversal algorithms proposed in the literature provide a
nice solution to the computational complexity burden inherent to the conven-
tional RLS algorithm, these algorithms are unstable when implemented with
finite-precision arithmetic. Increasing the wordlength does not solve the in-
stability problem. The only effect of employing a longer wordlength is that
the algorithm will take longer to diverge. FEarlier solutions to this problem
consisted of restarting the algorithm when the accumulated errors in chosen
variables reached prescribed thresholds [3]. Although the restart procedure
would consider past information, the resulting performance is suboptimal due
to the discontinuity of information in the corresponding deterministic correlation
matrix.

The explanation for the unstable behavior of the fast transversal algorithms is
the existence of an inherent positive feedback mechanism. This explanation
led to the idea that if some specific measurements of the numerical errors were
available, they could conveniently be fed back in order to make the negative
feedback dominant in the error propagation dynamics. Fortunately, some meas-
urements of the numerical errors can be obtained by introducing computational
redundancy in the fast algorithm. The computational redundancy consists of
calculating a given quantity using two different formulas. In finite-precision im-
plementation, the resulting values for the quantity calculated by these formulas
are not equal, and their difference is a good measurement of the accumulated
errors in that quantity. This error can then be fed back in attempt to stabilize
the algorithm. The key problem is to find out what are the quantities where the
computational redundancy should be introduced such that the error propaga-
tion dynamics can be stabilized. In the early proposed solutions [6]-[7] only a
single quantity was chosen to introduce the redundancy, later it was shown that
at least two quantities are required in order to guarantee the stability of the
FTRLS algorithm [9]. Another relevant question is to where should the error
be fed back inside the algorithm. Note that any point could be chosen without
affecting the behavior of the algorithm when implemented with infinite preci-
sion, since the feedback error is zero. A natural choice is to feed the error back
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into the expressions of the quantities that are related to it. That means for each
quantity that the redundancy is introduced, its final value is a combination of
the two forms of computing it.

The FTRLS algorithm can be seen as a discrete-time nonlinear dynamic sys-
tem [9], and when finite precision is used in the implementation, quantization
errors will rise. In this case, the internal quantities will be perturbed when
compared with the infinite-precision quantities. A nonlinear system modeling
the error propagation can then be described, which if properly linearized allows
the study of the error propagation mechanism. Using an averaging analysis
which is meaningful for stationary input signals, it is possible to obtain a sys-
tem characterized by its set of eigenvalues, whose dynamic behavior is similar
to the error propagation behavior when k& — oo and (1 — A) — 0. Through
these eigenvalues it is possible to determine the feedback parameters as well as
the quantities to choose for the introduction of redundancy. The objective here
is to modify the unstable modes through the error feedback in order to turn
them stable [9]. Fortunately, it was found in [9] that the unstable modes can be
modified and stabilized by the introduced error feedback. The unstable modes
can be modified by introducing redundancy in vy(k, N) and ej(k, N). These
quantities can be calculated using different relations, and to distinguish them
an extra index is included in their description.

The a priori backward error can be described in a number of alternative forms
such as:

Cé(k, Na 1) = Aégmm (k - la N)&N{-l(k: N + 1) (724)

ep(k,N,2) = [-wT (k—1,N) 1] x(k, N +1) (7.25)

and

1l

e;’i(k,N, 3) ey(k, N,2)k; + ey (k, N, 1)[1 — k]

ep(k, N, 1) + ki[ey(k, N, 2) — ey (k, N, 1)] (7.26)

I

where the first form was employed in the FTRLS algorithm, and the second form
corresponds to the inner product implementation of the a prior: backward error.
The third form corresponds to a linear combination of the first two forms, where
the numerical difference between these forms is fed back to determine the final
value of e}, ;(k, N,3) which will be used in the stabilized algorithm at different
places. For each k;,7 =1,2,3, we have a different value that is chosen in order
to guarantee that the related eigenvalues are less than one.

The conversion factor y(k, N) is probably the first parameter to show signs
that the algorithm is becoming unstable. This parameter can also be calculated
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through different relations. These alternative relations are required to guarantee
that all modes of the error propagation system become stable. The first equation
is given by
5}‘11“'1: (k’ N)
Aé.t;"un(k - 1’ N)
e'f (k,N)es(k,N)
’\6}1"",, (k - 11 N)
e} (k,N)
Af}‘mm (k—1,N)
= v (k= 1,N,3)+ ¢o(k, N + 1)ej(k, N) (7.27)

YUk N+11) = T (k-1,N,3)

v lk-1,N,3) |1+

It

v 1(k—1,N,3)+

where @ (k, N + 1) is the first element of ¢(k, N + 1). The equalities above are
derived from equations (7.4), (7.3), (7.2) and (7.6), respectively. The second

expression for the conversion factor is derived from equation (7.14), being given
by

7_1(k1N72) :7_1(k)N+1’1)—(}SN+1(k1N+l)eé,S(k)N)3) (728)

The third expression is

Y1k, N,3) = 1+ & (k, N)x(k, N) (7.29)

In equation (7.27), the conversion factor was expressed in different ways, one of
them first presented in the FTRLS algorithm of [9]. The second form already
uses an a priort backward error with redundancy. The third form can be derived
from equation (6.48) for the lattice RLS algorithms, see problem 10.

An alternative relation utilized in the stabilized fast transversal algorithm in-
volves the minimum forward least-squares error. From equations (7.3) and
(7.6), we can write

e (k,N)es(k, N)
S (k=1,N)Ed (K, N)
ok, N)es(k, N)
& . (k,N)

[6f (B, NITY = ATHed  (k—1,N))

AT (k= LN

From (7.6), we can deduce that
ef (k, N)

W = ¢o(k,N) = ¢o(k, N)y(k, N +1,1)



300 CHAPTER 7

With this relation we can obtain the desired equation

€4 (kN7 = AN eS| (k= 1, M) = y(k, N + 1, 1)ebg (k, N + 1)
(7.30)

where the choice of y(k, N 41, 1) for the equation above results from the scheme
to keep the error-system modes stable [9].

Using the equations for the conversion factor and for the a priori backward error
with redundancy, we can obtain the stabilized fast transversal RLS algorithm
(SFTRLS) whose equations are shown on Algorithm 7.2. The parameters «; for
t = 1,2,3 were determined through computer simulation search [9], where the
optimal values found were k; = 1.5, k3 = 2.5, and k3 = 1. It was also found
in [9], that the numerical behavior is quite insensitive to values of k; around
the optimal, and that optimal values chosen for a given situation work well for
a wide range of environments and algorithm setup situations (for example, for
different choices of the forgetting factor).

Another issue related to the SFTRLS algorithm concerns the range of values for
A such that stability is guaranteed. Results of extensive simulation experiments
[9] indicate that the range is

1
l—-— <A« 7.31
SN+ = (7:31)
where N is the order of the adaptive filter. It was also verified that the optimal
numerical behavior is achieved when the value of X is chosen as

0.4
A=l— —— 7.32
N+1 (7:32)
The range of values for A as well as its optimal value can be very close to one for
high-order filters. This can be a potential limitation for the use of the SFTRLS
algorithm, especially in nonstationary environments where smaller values for A
are required.

The computational complexity of the SFTRLS algorithm is of order 9N multi-
plications per output sample. There is an alternative algorithm with computa-
tional complexity of order 8 N (see problem 9).

Before leaving this section, it is worth mentioning a nice interpretation for
the fast transversal RLS algorithm. The FTRLS algorithm can be viewed as
four transversal filters working in parallel and exchanging quantities with each



Fast Transversal RLS Algorithms

301

Algorithm 7.2

Stabilized Fast Transversal RLS Algorithm

Initialization

YV/(—I,N) = wb(—l,N) =w(-1,N)=0
&(-1,N) = 0, (~1,N,3) = 1
Egmm(—l,N) = f? _(—1,N) = € (a small positive constant)

Ky = 1.5,K2 = 2.5,N3 =1
Prediction Part

Do for each k > 0,

! — T 1
e} (k,N) = x (k,N+1)[ —w(k—1,N) ]
es(k,N)= e'f(k,N)'y(k —-1,N,3)
5 _ Y 1 1 '
ENIN=] bk-1v) | g _mm [ —w(k - 1,N) ]‘ff(k’N)
Y7 (kN +1,1) = y7' (k= 1,N,3) + & (k, N + 1)¢/, (k, N)
(€7, . N7V = A7 ES (k= 1,N)]" = 4(k,N + 1,1) g (k, N + 1)
Wf(k,N) = Wf(k - l,N) + ¢(‘{C - l,N)ef(k,N)
ey(k, N, 1) = Mg (k= 1,N)dpy1 (kN +1)
ep(k,N,2) = [-w] (k= 1,N) 1] x(k, N + 1)
ez’i(k,N,B) = eé(k,N,?)n,‘ + eé(k,AN,l)[l — K] fori=1,2,3
Y kN, 2) =7 kN +1,1) — @y (b, N + ey 5(k, N, 3)
ep,; (k,N,3) = e;’] (k,N,3)v(k,N,2) j=1,2
& . (kN)= Xy (k=1,N) +epa(k,N,3)e} ,(k, N,3)

—wy(k - 1,N) }

¢(k6N) ] :&;(k,N+1)~$N+1(k,N+1)[ )

w(k, N) = wy(k — 1, N) + d(k, N)ep1(k, N,3)
v1(k,N,3) =1+ & (k, N)x(k, N)
Joint-Process Estimation

e'(k,N) = d(k) — wT (k- 1,N)x(k, N)

e(k,N) = €'(k,N)v(k,N,3)

w(k,N) = w(k = 1,N) + ¢(k, N)e(k,N)

End

(7.2)
(7.6)

(7.27)
(7.30)

(7.8)
(7.15)
(7.25)
(7.25)
(7.28)

(7.11)
(7.14)

(7.13)
(7.29)

(7.18)
(7.19)
(7.20)
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other, as depicted in Fig. 7.1. The first filter is the forward prediction filter
that utilizes x(k — 1, N) as input signal vector, with wy(k, N) as the coefficient
vector, and provides quantities es (k, N), e}(k, N), and f}im... (k, N) as outputs.
The second filter is the backward prediction filter that utilizes x(k, N) as input
signal vector, with wy(k, N) as the coeflicient vector, and provides quantities
es(k, N),ey(k,N), and £ (k,N) as outputs. The third filter is an auxili-
ary filter whose coefficients are given by —g})(k, N), the input signal vector is
x(k, N), and the output parameter is y~1(k, N). For this filter the desired sig-
nal vector is constant and equal to [1 0 0...0]T. The fourth and last filter is the
Jjoint-process estimator whose input signal vector is x(k, N), and the coeflicient
vector is w(k, N), providing the quantities e(k, N), and €'(k, N) as outputs.

x (k)
x (k1) ——> ¢, (kN)
w,(kN) |—> €, kN
& i (BN
——» ¢, (kLN)
> w,(kN) |—> ¢, (kN)
x (k)  &..&N
:‘> N |y ¥ &N
x (k-N+1)
x (-N) > e (kN)
A w(kN)
— ¢ (k,N)
Figure 7.1 Fast transversal RLS algorithm: block diagram.
Example 7.1

The system identification problem described in subsection 3.6.2 is solved using
the stabilized fast transversal algorithm presented in this chapter. The main
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objective is to check the stability of the algorithm when implemented in finite
precision.

Solution:

According to equation (7.31) the lower bound for A in this case is 0.9375. A value
= 0.99 was chosen. The stabilized fast transversal algorithm was applied to
solve the identification problem and the measured MSE was 0.0432.

Using € = 2, we ran the algorithm with finite precision and the results are sum-
marized in Table 7.1. No sign of instability was found for A = 0.99. These are
results generated by ensemble averaging 200 experiments. A comparison of the
results of Table 7.1 with those of Tables 5.2 and 6.2 shows that the SFTRLS al-
gorithm has similar performance compared to the conventional and lattice-based
RLS algorithms, in terms of quantization error accumulation. The question is
which algorithm remains stable in most situations. Regarding the SFTRLS, for
large-order filters we are left with a limited range of values to choose . Also,
it was found in our experiments that the choice of the initialization parameter ¢
plays an important role in the performance of this algorithm when implemented
in finite precision. In some cases, even when the value of X is within the recom-
mended range the algorithm does not converge if € is small. By increasing the
value of € we increase the usual convergence time while keeping the algorithm
stable.

Table 7.1 Results of the Finite-Precision Implementation of the SFTRLS

Algorithm
£(k)g Ell|Aw(k)oll]
No of bits || Experiment Experiment
16 1.545 10~3 6.089 10~°
12 1.521 1073 3.163 10—
10 1.562 10~3 6.582 10~°
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Example 7.2

The channel equalization example described in subsection (3.6.3) was also used
in simulations to test the SFTRLS algorithm. We used a 25th-order equalizer
and a forgetting factor A = 0.99.

Solution:

In order to solve the equalization problem the stabilized fast transversal RLS
algorithm was initialized with ¢ = 0.5. The results presented here were gener-
ated by ensemble averaging 200 experiments. The resulting learning curve of
the MSE is shown in Fig. 7.2, and the measured MSE was 0.2973. The overall
performance of the SFTRLS algorithm for this particular example is as good as
any other RLS algorithm, such as lattice-based algorithms.

Estimated MSE, dB

L
0 100 200 300 400 500 600
Iterations, k

Figure 7.2 Learning curves for the stabilized fast transversal RLS algorithm.
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7.5 CONCLUDING REMARKS

In this chapter we have presented some fast transversal RLS algorithms. This
class of algorithms is computationally more efficient than conventional and
lattice-based RLS algorithms. A number of alternative FTRLS algorithms as
well as theoretical results can be found in [3]. The derivation of normalized
versions of the FTRLS is also possible and was not addressed in the present
chapter, for this result refer to [4]. The most computationally efficient FTRLS
algorithms are known to be unstable. The error-feedback approach was briefly
introduced that allows the stabilization of the FTRLS algorithm. The complete
derivation and justification for the error-feedback approach is given in [9].

In nonstationary environments, it might be useful to employ a time-varying
forgetting factor, therefore it is desirable to obtain FTRLS algorithms allowing
the use of variable A\. This problem was first addressed in [11]. However a
computationally more efficient solution was proposed in [8], where the concept
of data weighting was introduced to replace the concept of error weighting.

The FTRLS algorithm has potential for a number of applications. In particu-
lar, the problem where the signals available from the environment are a noisy
version of a transmitted signal and a noisy and filtered version of the same
transmitted signal is an interesting application. In this problem, both the delay
and unknown filter coefficients have to be estimated. The weighted squared
errors have to be minimized considering both the delay and the unknown sys-
tem parameters. This problem of joint estimation can be elegantly solved by
employing the FTRLS algorithm [12].

Some simulation examples were included where the SFTRLS was employed.
The finite-wordlength simulations are of special interest for the reader.
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Problems

1

. Show that

¢(k,N) = Sp(k,N)x(k,N)
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Sp(k— 1, N)x(k, N)
A+xT(k,N)Sp(k— 1, N)x(k, N)

Hint: Use the matrix inversion lemma for Sp(k, N).

2. Show that
wyn(k)es(k, N) _ —es(k, N)
¢ (k,N) & _(kN)

én(k—1,N) - = ¢y (kN +1)

where wy v (k) represents the last element of wy(k, N).

3. Using a proper mixture of relations of the lattice RLS algorithm based on
a posteriort and the FTRLS algorithm, derive a fast exact initialization
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