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Preface

Nowadays, mathematical and numerical modeling has become an essential compo-
nent of the general scientific process. Ever since the 1960s, numerical analysis and
scientific computation have made up the most rapidly growing part of mathemat-
ics. One of the challenging problems in this area is the creation of fully reliable
computer simulation methods, which could become an adequate complement to ex-
perimental sciences. This book aims to give an overview of mathematical methods
and computer technologies focused on reliable verification of computed solutions
and present recently developed methods. We hope that it will be useful for an audi-
ence much larger than just advanced specialists in numerical analysis and computer
simulation methods. In actuality, the book can be used in three different ways.

For engineers and specialists in natural sciences interested in quantitative analy-
sis of mathematical models, it is best to concentrate on algorithms and prescriptions,
which explain how to measure the accuracy of a numerical solution. In Chap. 2, we
discuss various error indicators, which are used in mesh adaptive numerical algo-
rithms in order to achieve proper restructuring (refinement) of the computational
mesh (or changing the set of trial functions). We suggest a unified approach to this
question and discuss different error indicators. Chapter 3 is concerned with the ques-
tion: “how can guaranteed and computable bounds of errors associated with approx-
imations of differential equations be derived?”. We tried to explain this in simple
terms without a deep excursion into the mathematical background. In other words,
the reader whose main purpose is to use the results (estimates) will find the corre-
sponding detailed recommendations. Certainly, they are given for a limited amount
of typical problems. Other cases can be found in the literature cited or require addi-
tional analysis (in the latter case, a good understanding of the mathematical theory
is necessary).

For advanced specialists interested in the development of new error estimation
methods, Chaps. 3–5 are the most interesting. Here, we discuss mathematical tech-
nologies that provide guaranteed error control and applications to analysis of prob-
lems with uncertain data. These chapters essentially use materials exposed in the
books P. Neittaanmäki and S. Repin [NR04] and S. Repin [Rep08] (in [NR04] the
reader can find a complete set of a posteriori error estimation theory generated by
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vi Preface

the variational duality approach and [Rep08] is mainly devoted to the method using
transformations of integral identities, which define generalized solutions of bound-
ary value problems). We recommend them for further study of the mathematical
theory of a posteriori error estimation. However, in this book (unlike the above-
mentioned publications) we pay more attention to computational aspects and try
to supply the reader with practical prescriptions. Chapter 5 is devoted to a special
but important topic: analysis of effects caused by indeterminacy (incomplete knowl-
edge) of problem data. It contains many new results. We show that studying prob-
lems with incompletely known data leads to conceptions and methods, which differ
from those used in “classical” error analysis. In particular, they lead to the notion
of an a priori limited accuracy, which leads to a new perspective on quantitative
analysis of mathematical models. Chapter 5 and Sects. 4.1.2 and 4.1.3 (related to
beams) use materials of the Ph.D. thesis of O. Mali [Mal11]. The material exposed
in Chaps. 4 and 5 may be especially interesting for specialists in computational me-
chanics interested in finding bounds of the accuracy generated by approximation
errors and data indeterminacy.

The entire book (maybe with the exception of Chaps. 4–6) can also be consid-
ered as a textbook for undergraduate and postgraduate students studying applied
mathematics and mathematics of computations. For these reasons, we append three
chapters (Appendices A, B, and C), in which basic mathematical knowledge is sum-
marized. These chapters present a concise lecture course “Numerical analysis of
differential equations” (which has been developed by the authors for graduate and
undergraduate students of the University of Jyväskylä). It discusses the main meth-
ods used for quantitative analysis of partial differential equations. Chapters 2 and 3
are also written in the textbook style. Here, we have used materials from lecture
courses on a posteriori error estimation methods that have been delivered to un-
dergraduate and postgraduate students by S. Repin in Jyväskylä, Radon Institute of
Computational and Applied Mathematics in Linz, Helsinki University of Technol-
ogy, and University of Saarbrucken.

We would like to express our gratitude to the University of Jyväskylä and to the
Academy of Finland for their support.

We are especially grateful to I. Anjam and S. Matculevich for contributions to
the material exposed in the book, discussions, and proofreading and to M.-L. Ranta-
lainen for her help in preparing the electronic version of our book.

Many materials related to theoretical justification and practical implementation
of new a posteriori error estimation methods are results of joint research exposed in
joint publications with our colleagues, which are referred to in the respective parts
of the book. We express sincere gratitude to all of them for the cooperation and
interesting discussions. Finally, we would like to thank Springer-Verlag publishing
group for the friendly cooperation.

Olli Mali
Pekka Neittaanmäki

Sergey Repin

Jyväskylä, Finland
2013
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↪→ compact embedding
�→ continuous embedding
:= equals by definition
�= not equal
≡ logical equivalence
∀ for all
‖ · ‖div norm in space H(Ω,div)
‖ · ‖Div norm in space H(Ω,Div)
‖ · ‖curl norm in space H(Ω, curl)
‖ · ‖m,p,Ω norm in space Wm,p

‖ · ‖∞,Ω norm in L∞(Ω)
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‖w‖A (
∫
Ω
Aw ·wdx)1/2

‖w‖A−1 (
∫
Ω
A−1w ·wdx)1/2

‖ · ‖α norm in Lα(Ω)

‖ · ‖α,ω norm in Lα(ω)

‖| · ‖| energy norm
‖[(·, ·)]‖ combined primal-dual norm
|[w]|(γ,δ) (
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| · | norm of a vector
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℘(T ) aspect ratio of a simplex T
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C∞(Ω) space of all infinitely differentiable functions with compact

supports in Ω

Ck(Ω) spaces of k-times differentiable scalar-valued functions
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boundary
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Chapter 1
Errors Arising in Computer Simulation Methods

Abstract The goal of this introductory chapter is to discuss in general terms differ-
ent classes of errors arising in computer simulation methods and to direct the reader
to the chapters and sections of the book where these errors are analyzed. Moreover,
we describe the error estimation methodology applied in this book.

1.1 General Scheme

Mathematical modeling and computer simulation allows us to perform virtual ex-
periments without costly physical equipment, construct predictions based on our
assumptions, investigate events from the past, investigate prototypes of industrial
objects, etc. However, without proper understanding and estimation of errors gen-
erated during the modeling process, there is a risk of drawing wrong conclusions
based on unreliable numerical results.

The modeling process consists of several stages. First, physical (or biological,
financial, etc.) reality is described using mathematical relations, which generate the
respective mathematical model. Then, we obtain a mathematical problem, which in
general terms is as follows: Find u ∈ V such that

Lu= f,

where the set V , the operator L, and the source term f are defined in accor-
dance with the features of the problem. A mathematical model always represents
an “abridged” version of a physical object, so that the error of the mathematical
model is always greater than zero. This error is the difference between u and the
corresponding physical function, which we denote by ε1.

Approximation error arises when continual (differential) models are replaced by
a finite dimensional (discrete) problem: Find uh ∈ Vh such that

Lhuh = fh,

where uh ∈ Vh ⊂ V and h is the mesh size parameter. A certain norm of the differ-
ence between u and uh is the approximation error ε2.

Numerical errors arise because finite dimensional problems are also solved ap-
proximately, using numerical integration, iteration procedures, and operations per-
formed with a limited amount of digital numbers. For this reason, instead of uh we
obtain ũh. A norm of uh − ũh is denoted by ε3 (see Fig. 1.1).

O. Mali et al., Accuracy Verification Methods,
Computational Methods in Applied Sciences 32, DOI 10.1007/978-94-007-7581-7_1,
© Springer Science+Business Media Dordrecht 2014
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2 1 Errors Arising in Computer Simulation Methods

Fig. 1.1 Errors in
mathematical modeling

This book is devoted to the quantitative estimation of these errors. This is nec-
essary not only for the sake of reliability, but also because it provides information
that can be used to improve mathematical and/or discrete models. Chapters 3 and 4
consider guaranteed and computable estimates of errors encompassed in ũh. We ex-
plain how to construct computable upper and lower bounds of errors. We emphasize
that the error estimation functionals (minorants and majorants) do not depend on
the applied discrete model (in particular they do not depend on the parameter h) and
are valid for any approximation in V . In particular, we do not assume that uh is the
exact solution of the corresponding discrete problem (so that it may not satisfy the
Galerkin orthogonality property). Thus, they measure the numerical error ε3 as well
and satisfy the following general relation:

M(̃uh)≤ ε2 + ε3 ≤ M(̃uh).

The benefits of these estimates are as follows:

• Estimates are always guaranteed (not only in the asymptotic sense as h→ 0).
• Computation of the estimates can be performed in many different ways and de-

pending on the circumstances, we can balance between the computational cost
and the accuracy of the estimates. For linear problems, we can prove that two-
sided error estimates can be computed with any desired accuracy (i.e., the esti-
mates have no gaps).

• Finally, the estimates depend explicitly on the problem data, providing us with an
efficient mathematical tool to investigate modeling errors and errors generated by
the incompletely know data.

Now, we discuss different types of errors in more detail and refer to particular
parts of the book in which the corresponding error estimates are considered.
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1.2 Errors of Mathematical Models

Let U be a physical quantity that characterizes some phenomenon or process. In
mathematical modeling, it is described by a certain mathematical model, the exact
solution of which is u (depending on a model u may be a vector, a function, or a
collection of functions dependent on spatial variables and time). Then, the quantity

ε1 = |U − u|
represents the error generated by the mathematical model (henceforth, we call it the
modeling error). Here the symbol | · | is understood in a broad sense: it may denote
a suitable norm in the corresponding functional space or some special (e.g., local)
quantity used to estimate the difference between the results of physical experiments
and the numbers generated by a mathematical model.

A mathematical model always represents an “abridged” version of a physical
object, so that ε1 is always greater than zero.

The evaluation of modeling errors is one of the most difficult problems in quantita-
tive analysis of mathematical models, which in the vast majority of cases is yet to
be solved.

Typical sources of modeling errors are the following:

• A mathematical model neglects some of the really existing effects (physical rela-
tions, dependencies, influences).

• Physical data involved in the mathematical model are defined with limited preci-
sion.

• The problem is solved using a simplified geometric description or dimension re-
duction.

In this book, we first of all focus our attention on the second case, i.e., on errors gen-
erated by incomplete knowledge of data, which are studied in Chap. 5. In Sect. 6.6
the reader will also find an overview of results related to modeling errors of other
types.

1.3 Approximation Errors

Approximation errors arise when continual (differential) models are replaced
by finite dimensional (discrete) models.

Usually finite dimensional problems are created with the help of meshes, which
cover the corresponding domain (set in R

d ). Let Th be such a mesh, and let h denote
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the “character” (mean) distance between neighboring elements of the mesh. By uh
we denote an approximate solution computed on Th. Obviously, uh encompasses
the approximation error

ε2 = |u− uh|.
In modern scientific computing, the major attention is usually paid to ε2. Classi-

cal a priori error analysis aims to construct estimates of the type

ε2 ≤ Chk‖f ‖,
which indicate that the solution provided by the discrete model converges to the
one of the exact model by O(hk) convergence rate as h → 0. Thus, the method to
obtain the discrete model is well justified. In Appendix C, we shortly discuss a priori
asymptotic methods with the paradigm of elliptic partial differential equations. This
topic is well studied, and a priori error estimates qualified in terms of mesh size
parameter(s) have been derived for many problems. The goal of the chapter is to
explain the main principles of a priori error analysis in the context of conforming
variational methods and mixed approximations of PDEs. The reader interested in
further investigation of the subject is provided with necessary references.

A posteriori indicators of approximation errors are considered in Chap. 2, where
we present a unified outlook on this question, which leads to a clear classification
of different error indication methods.

Guaranteed bounds of approximation errors can be computed with the help of
methods discussed in Chaps. 3 and 4. Some generalizations to nonlinear problems
are presented in Chap. 6, which ends with a list of challenging problems arising
within the framework of fully reliable modeling conception.

1.4 Numerical Errors

Numerical errors arise because finite dimensional problems are solved ap-
proximately, using numerical integration, iteration procedures, and operations
performed with a limited amount of digital numbers.

In general, computers cannot perform elementary mathematical operations abso-
lutely accurately, so that instead of uh we obtain ũh. The quantity

ε3 = |uh − ũh|
shows the error of numerical operations performed by a concrete computer. Typ-
ically, this error includes errors arising in iteration processes, errors of numerical
integration, and roundoff errors. Errors associated with various quadrature (cuba-
ture) formulas are well studied (we direct the reader to, e.g., [PTVF07]). Errors of
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iteration processes are considered in Sect. 6.7 and roundoff errors are briefly dis-
cussed in Sect. 6.8.

It remains to comment on errors caused by defects (bugs) in numerical codes.
They create a special class of errors arising in large codes with complicated logical
structures. Certainly, rough errors in a code usually lead to evident discrepancies and
are easily detectable. However, experienced numerical analysts know that in some
cases code bugs may produce relatively small effects (which are not easy to recog-
nize in a particular numerical test) and much bigger effects in other cases (which
may seriously corrupt results of expensive numerical experiments). The latter situ-
ation is rather dangerous because may lead to misleading conclusions. In principle,
two different methods can be used to discover defects in codes. The first method
suggests the theory of algorithms in the mathematical logic and theoretical comput-
ing (see, e.g., [CLRS01, GK90, Knu97]). Another method follows from a posteriori
error estimation theory. In particular, estimates considered in Chaps. 3 and 4 include
such type errors (if they indeed exist). If the corresponding error majorant does not
decrease and shows relatively big errors even for fine meshes, then this fact may
indicate that the algorithm is not quite correct and generates solutions containing
some essential and nondecreasing errors.



Chapter 2
Indicators of Errors for Approximate Solutions
of Differential Equations

Abstract Error indicators play an important role in mesh-adaptive numerical al-
gorithms, which currently dominate in mathematical and numerical modeling of
various models in physics, chemistry, biology, economics, and other sciences. Their
goal is to present a comparative measure of errors related to different parts of the
computational domain, which could suggest a reasonable way of improving the fi-
nite dimensional space used to compute the approximate solution. An “ideal” error
indicator must possess several properties: efficiency, computability, and universal-
ity. In other words, it must correctly reproduce the distribution of errors, be indeed
computable, and be applicable to a wide set of approximations. In practice, it is
very difficult to satisfy all these requirements simultaneously so that different error
indicators are focused on different aims and stress some properties at the sacrifice
of others. We discuss the mathematical origins and algorithmic implementation of
the most frequently used error indicators. Our goal is twofold: to discuss the main
types of error indicators, which have already gained high popularity in numerical
practice, and to suggest a unified conception, which covers practically all methods
used in error indication.

For differential equations, we discuss indicators of two types. Indicators of the
first type show the distribution of errors in the whole computational domain. An-
other group of indicators is focused on the so-called goal-oriented error functionals
typically associated with some subdomains (“zones of interest”), where the accu-
racy of an approximate solution is especially important. Usually, the indicators of
the latter type use solutions of adjoint boundary value problems. We discuss some
new forms of these indicators, which do not exploit extra regularity of solutions and
special properties of respective approximations (such as, e.g., superconvergence).
Indicators that follow from a posteriori error majorants of the functional type are
discussed in Chap. 3.

2.1 Error Indicators and Adaptive Numerical Methods

Adaptive numerical methods are based on the conception that efficient approxima-
tions should be constructed by means of a sequence of consequently refined finite
dimensional spaces {Vk}, k = 1,2, . . . such that the amount of linearly indepen-
dent trial functions in Vk+1 is larger than in Vk (i.e., dimVk+1 > dimVk). Typically,

O. Mali et al., Accuracy Verification Methods,
Computational Methods in Applied Sciences 32, DOI 10.1007/978-94-007-7581-7_2,
© Springer Science+Business Media Dordrecht 2014
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the structure of these spaces is a priori unknown. Within the framework of the adap-
tive modeling conception, the generation of Vk+1 is based upon the information
encompassed in the approximation uk associated with Vk . For this reason, it is nec-
essary to have computable quantities that furnish information on the error e pre-
sented in terms of a certain error measure (e.g., in terms of the energy norm). Such
quantities are called Error Indicators. Throughout the book, we denote them by the
symbol EI (which is generated by the initial letters E and I ). Error indicators play
an important role in mesh-adaptive numerical algorithms, which follow the formal
scheme

V1
EI(u1)−→ V2

EI(u2)−→ · · ·Vk EI(uk)−→ Vk+1.

A “good” error indicator must be easily computable and must correctly reproduce
the distribution of errors. It is also desirable that an indicator be applicable to a wide
set of approximations and imply quantities that provide a realistic presentation on
the overall (global) error. In practice, it is very difficult to satisfy all these require-
ments simultaneously, so that different error indicators are focused on different aims
and stress some properties at the expense of the others.

In this chapter, we discuss the general principles of error indication and examples
of error indicators with the paradigm of finite element approximations of elliptic
partial differential equations.

2.1.1 Error Indicators for FEM Solutions

Let Ts , s = 1,2, . . . ,N be elements (subdomains) associated with the mesh Th (with
characteristic size h), and let uh be an approximate solution computed on this mesh.
Henceforth, the corresponding finite dimensional space is denoted by Vh, so that
uh ∈ Vh. Then, the true error is e = u − uh. Denote by ms(e) the value of the er-
ror measure m associated with Ts . Usually, the error measure ms(e) is defined as
a certain integral of u− uh related to Ts . For example, local error measures of ap-
proximate solutions to linear elliptic problems are often presented by the integrals

(∫

Ts

|u− uh|2 dx

)1/2

or

(∫

Ts

∣
∣∇(u− uh)

∣
∣2 dx

)1/2

.

The components of the vector

m(e)= {m1(e),m2(e), . . . ,mN(e)
}

are nonnegative numbers, which may be rather different.
If the overall error encompassed in uh is too big, then a new approximate solution

should be computed on a new (refined) mesh Thref . Comparative analysis of ms(e)

suggests where to add new degrees of freedom (new trial functions). However, in
real life computations the vector m(e) is not known and, therefore, an error indicator
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EI(uh) is used. The corresponding approximate values of errors EIs associated with
the elements form the vector

EI(uh)= {EI 1,EI 2, . . . ,EIN },
which is used instead of m(e). If the vector EI(uh) is close to m(e), i.e.,

m(e)≈EI(uh), (2.1)

then a new mesh Thref can be efficiently constructed on the basis of comparative
analysis of EIs . However, the fact that the adaptive procedure is efficient depends on
how accurately the condition (2.1) is satisfied and how efficiently the information
encompassed in EI(uh) is used to improve approximations.

2.1.2 Accuracy of Error Indicators

Certainly, the condition (2.1) looks vague unless a formal definition of the sign
≈ is given. Despite the huge amount of publications focused on error indication,
to the best of our knowledge no commonly used definition has yet been accepted.
Different authors may claim (explicitly or implicitly) different things, so the words
“good error indicator” may take on a variety of meanings.

Below we suggest definitions, which can be used for a reasonable qualification
of error indicators. They define “strong” and “weak” meanings of ≈, respectively.

Definition 2.1 The indicator EI(uh) is ε-accurate on the mesh Th if

M
(
EI(uh)

) := |m(e)−EI(uh)|
|m(e)| ≤ ε. (2.2)

The value of M(EI(uh)) is the strongest quantitative measure of the accuracy of
EI(uh).

This definition imposes strong requirements on EI(uh). Indeed, (2.2) guarantees
that inaccuracies in the error distribution computed by EI(uh) are much smaller (pro-
vided that ε is a small number) than the overall error. Therefore, an indicator should
be regarded as “accurate” if it meets (2.2) with relatively coarse ε.

From (2.2) it follows that the so-called efficiency index

Ieff
(
EI(uh)

) := |EI(uh)|
|m(e)| ≤ 1 +M

(
EI(uh)

)
(2.3)

is close to 1, which means that |EI(uh)| provides a good evaluation of the overall
error |m(e)|.

The efficiency of EI(uh) may be different for different meshes and approximate
solutions. It is desirable that the indicator is accurate for a sufficiently wide class
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Fig. 2.1 Typical
h-refinement and
p-refinement

of approximations and meshes. The wider the class of approximations served by an
indicator, the better it is from the computational point of view.

The majority of indicators suggested for finite element approximations are
applicable only to Galerkin approximations (or to approximations that are
very close to Galerkin solutions). Properties of the mesh used are also very
important, and theoretical estimates of the quality of error indicators usually
involve constants dependent on the aspect ratio of finite elements.

2.1.2.1 Marking Procedures

In adaptive finite element schemes, subsequent approximations are often con-
structed on nested meshes, where a refined mesh is obtained by “splitting” ele-
ments (h-refinement) or by increasing the amount and order of basis functions (p-
refinement) of the current mesh. In Fig. 2.1, we depict typical refinement strategies
for a linear triangular element, the degrees of freedom of which are function val-
ues at nodes. A detailed discussion on refinement methods can be found in, e.g.,
[BGP89, Dem07]. Alternative procedures intended to increase the set of basis func-
tions lead to nonconforming methods (cf. Appendix B).

Typical adaptive schemes consists of solving the problem several times on a se-
quence of improving subspaces. In this type of practice, error indicators are used
together with a certain marker that marks elements (subdomains) where errors are
excessively high. A new subspace Vhref is constructed in such a way that these errors
are diminished.

Let B denote the Boolean set {0,1} (we can assign the meaning “NO” to 0 and
“YES” to 1). By BN we denote the set of Boolean valued arrays (associated with
one-, two- or multidimensional meshes) of total length N . If b = {�1, �2, . . . , �N } ∈
BN , then �s ∈ B for any s = 1,2, . . . ,N . It is assumed that in the new mesh the
elements (subdomains) marked by 1 should be refined, while those marked by 0
should be preserved (see Fig. 2.2). Note that the refined mesh in Fig. 2.2 contains
the so-called “hanging nodes”. In order to avoid them it is often necessary to refine
also some neighboring subdomains marked by 0.

Remark 2.1 Modern mesh adaptation algorithms often make coarsening of a mesh
in subdomains where local errors are insignificant (see, e.g., [BNP10, BS12, KM10,
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Fig. 2.2 Marking procedure and a refined mesh

Algorithm 2.1 Marking based on comparison with the average value

Input: EI(uh) ∈R
N {vector of errors indicated by EI}, N {number of elements}

ẼI = 1
N

∑N
i=1 EIi {Averaged value of the error on mesh elements}

for i = 1 :N do
if EIi ≥ ẼI then
�i = 1

else
�i = 0

end if
end for
Output: b {Marking of elements}

PPB12, Rhe80, SDW+10, SMGG12] and the references cited therein). In this case,
elements of BN may attain three values: {−1,0,1}. The elements marked by −1
should be further aggregated in larger blocks.

From the mathematical point of view, marking is an operation performed by a
special operator.

Definition 2.2 Marker M is a mapping (operator) acting from the set RN+ (which
contains estimated values of local errors) to the set BN .

Different markers generate different selection procedures, which are applied
to the array of errors evaluated by an indicator EI(uh) in order to obtain a
boolean array b. Further refinement is performed with the help of data en-
compassed in b.

Example 2.1 Algorithm 2.1 determines the simplest marker, which classifies the
components of e into two groups by comparing with the average value.

Example 2.2 As before, EI(uh) is a vector with nonnegative components containing
indicated errors and θ ∈ (0,1) is a parameter (which determines the percentage of
refined elements). Algorithm 2.2 ranks the values of EIi (from minimal to maximal
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Algorithm 2.2 Marking based on a predefined amount of elements to be refined

Input: EI ∈R
N {vector of errors}, N {number of elements}, θ ∈ (0,1)

icut = floor((1 − θ)N)

{EI sorted, I} = sort(EI)
for i = 1 to N do

if i < icut then
�(I(i))= 1

else
�(I(i))= 0

end if
end for
Output: b {Marking of elements}

values) and assigns 1 to the largest θN values. All other elements are marked by 0.
In the formal description of the algorithm, we use a “sorting procedure” sort, which
input is the array EI and output is the array EI sorted containing local errors sorted
in the descending order (i.e., EI sorted(j) ≥ EI sorted(j + 1)), and the array I, which
contains natural numbers (indexes of sorted elements) in the original vector, i.e., for
any j = 1,2, . . . ,N , EI sorted(j) = EI(I(j)). Algoritmization of such a procedure is
a technical task, which we are not focused on. The procedure floor(z) selects the
largest integer not greater than z.

Example 2.3 In the literature related to adaptive procedures, a selection method
called the “bulk criterion” is often used. In it, we select by a certain method a set
of elements for which the summed indicated error is greater than some “bulk” of
the total indicated error (one of the first papers related to this method is [Dör96];
see also [BCH09]). Algorithm 2.3 forms the subset of elements which contains the
highest indicated errors. The process stops when the error accumulated on previous
steps exceeds the “bulk” level. This is sometimes referred to a “greedy” algorithm.

In order to demonstrate the performance of the above-discussed marking proce-
dures, we consider the following diffusion problem:

−Δu= 1, in Ω := (0,1)2 \ ([0.5,1] × [0,0.5]),
u= 0, on Γ.

We compute uh by the finite element method using piecewise affine approxima-
tions (Courant elements), and use the indicator EI(uh) generated by the gradient-
averaging method (see Sect. 2.2.2.1). We apply both Algorithms 2.1 and 2.2. In
Fig. 2.3 the mesh and elements marked by a certain method are depicted (above) and
the histogram of indicated errors and the marked elements are presented (below). In
general, Algorithms 2.1 and 2.2 may suggest to refine rather different amount of
elements.
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Algorithm 2.3 Marking based on the bulk criterion
Input: EI(uh) {vector of errors}
θ ∈ (0,1) {bulk factor}
{EI sorted, I} = sort(EI)
EI tot =∑N

i=1 EIi {total error}
EI bulk = θEI tot {value of the “bulk” error}
i = 1
EI tmp = 0 {temporary value of accumulated error}
while EI bulk ≥EI tmp do
�(I(i))= 1
EI tmp =EI tmp +EI sorted(i)

i = i + 1
end while
Output: b {Marking of elements}

Fig. 2.3 Marking by Algorithms 2.1 (left) and 2.2 (right), marked elements (�i = 1) are colored
darker. Above are meshes and below the histograms of element-wise errors

Remark 2.2 We note that the marking of elements with the highest errors makes
sense only if the errors differ significantly. If they have close values, then any rank-
ing is not really motivated. For example, consider an almost uniform error distri-
bution and two markings presented in Fig. 2.4. It is obvious that in this the case
refining only the shadowed elements mesh is a rather disputable strategy because
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Fig. 2.4 Algorithms 2.1 (left) and 2.2 (right) are applied to mark elements of almost uniform error
distribution, elements to be refined are darker

Table 2.1 Logical operation ≡ in Definition 2.3

a b a ≡ b

0 0 1

1 0 0

0 1 0

1 1 1

M(m(e)) = [1 0 0 0 1 1 0 0 1 1]
M(EI)(uh) = [0 1 1 0 1 1 1 0 1 0]

(M(m(e))≡ M(EI)(uh)) = [0 0 0 1 1 1 0 1 1 0]

every element makes almost equal contribution to the overall error. In this situation,
the uniform refinement of all elements would be more adequate.

Remark 2.3 In principle, one can use the information provided by an indicator
without any ranking procedure and construct a completely new mesh where ele-
ment sizes are related to respective errors. Moreover, in adaptive hp-FEM, the ele-
ment size and the order of basis functions can be varied simultaneously (see, e.g.,
[AS99, Dem07]).

To compare different error indicators in the context of element-wise marking,
we introduce two operations with Boolean valued arrays. Let a = {ai} and b = {bi}
be elements of BN . By []a[] we denote the sum

∑N
i=1 ai and ≡ denotes the logical

equivalence rule (see Table 2.1, left).

Definition 2.3 An indicator EI(uh) is ε-accurate on the mesh Th with respect to the
marker M if

M
(
EI(uh),M

) := 1 − []M(m(e))≡ M(EI(uh))[]
N

≤ ε. (2.4)

This definition is illustrated by Table 2.1 (right). We see that the operation ≡
counts the cases in which markings based on the true error measure and on EI(uh)

coincide. In the array of N = 10 elements the number of coincides is 5. Hence, in
this example M(EI(uh),M) = 1 − 5

10 = 0.5. This quantity shows that the indicator
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Fig. 2.5 True error distribution e for a set of nine elements and local errors generated by two
indicators EI 1 and EI 2

is unacceptably coarse. If in another example we have an array containing, e.g.,
10000 elements and the number of inconveniences (with respect to M(m(e))) is
8, then M(EI(uh),M) = 1 − 9992

10000 = 0.0008. This shows the high accuracy of the
indicator.

It is easy to see that the accuracy measure M(EI(uh),M) is much weaker than the
measure introduced in Definition 2.1. For example, in Fig. 2.5 we depict the exact
distribution of local errors (left) and two distributions generated by two indicators
(which are rather different). However, a marker designed to select three elements
with the highest errors would select the same elements (shadowed). This example
shows the difference between the accuracy measures (2.2) and (2.4). We see that the
indicator EI 2 may be accurate in the sense of (2.4), but do not provide a true idea of
the values of errors. This situation is quite typical. Often error indicators are based
on heuristic argumentation and have no mathematical justification (in the best case
they can be justified only in the above weak sense). Nevertheless, numerical analysts
and engineers use them. Customarily they motivate this by saying that in some tests
performed with the help of a marking procedure the indicator manages to properly
mark the elements. In general, these arguments are not convincing because there is
no guarantee that similar results will be obtained in other computations.

If EI(uh) is not accurate in the strong sense (i.e., it does not show actual values
of the error), then the quality of marking may be good for one marker (mesh)
and quite bad for another. Therefore, we believe that the indicators suggested
for reliable numerical experiments should satisfy Definition 2.1.

It is clear that direct accuracy verification for an error indicator can be performed
only in test examples where the exact solutions are known (so that we can find e).
In other cases, the validity of an indicator is usually motivated by some indirect ar-
guments (e.g., by those based on a priori regularity and asymptotic analysis). Some
of the most popular motivations are considered below.
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2.2 Error Indicators for the Energy Norm

To present various error indicators related to energy norms of linear elliptic equa-
tions within the framework of a unified scheme, we consider the classical Poisson’s
problem

−Δu = f in Ω, (2.5)

u = 0 on Γ, (2.6)

where Ω is an open bounded connected subset in R
d with Lipschitz continuous

boundary Γ and f ∈ L2(Ω).
The generalized solution (see Sect. B.1) satisfies the relation

∫

Ω

∇u · ∇w dx =
∫

Ω

fw dx, ∀w ∈ V0 := ◦
H 1(Ω). (2.7)

Let v ∈ V0 be an approximation of u. We are interested in evaluation of the global
error norm ‖∇e‖ = ‖∇(u− v)‖ and local errors ms(e) associated with subdomains
(elements).

Note that

sup
w∈V0

{∫

Ω

(∇(u− v) · ∇w
)

dx − 1

2
‖∇w‖2

}

≤ sup
τ∈L2(Ω,Rd )

∫

Ω

(

∇(u− v) · τ − 1

2
|τ |2

)

dx = 1

2

∥
∥∇(u− v)

∥
∥2
.

On the other hand,

sup
w∈V0

∫

Ω

(

∇(u− v) · ∇w − 1

2
|∇w|2

)

dx ≥ 1

2

∥
∥∇(u− v)

∥
∥2
.

Thus,

∥
∥∇(u− v)

∥
∥2 = sup

w∈V0

∫

Ω

(
2∇(u− v) · ∇w − |∇w|2)dx

= sup
w∈V0

{

−‖∇w‖2 − 2
∫

Ω

(∇v · ∇w − fw)dx

}

,

and we conclude that

∥
∥∇(u− v)

∥
∥2 = sup

w∈V0

{−‖∇w‖2 − 2�v(w)
}
, (2.8)
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where

�v(w) :=
∫

Ω

(∇v · ∇w − fw)dx

is the residual functional. This relation serves as a basis for various error estimation
methods.

It is easy to show that the variational problem on the right-hand side of (2.8) has
a unique solution and this solution is w = u− v. Indeed,

�v(u− v)=
∫

Ω

(∇v · ∇(u− v)− ∇u · ∇(u− v)
)

dx = −∥∥∇(u− v)
∥
∥2
,

and we see that the right-hand side coincides with the left-hand one. Hence, (2.8)
implies

∣
∣�v(u− v)

∣
∣= ∥∥∇(u− v)

∥
∥2
. (2.9)

We can use (2.9) to indicate the error ‖∇(u−v)‖ and classify the following three
principal ways:

A: Estimate �v(u−v) in (2.8) from the above, and use the computable part(s)
of the estimate as error indicator(s).

B: Replace �v in (2.8) by a close functional, which leads to a directly com-
putable estimator.

C: Solve the problem (2.8) numerically.

Below we discuss several error indicators, which are based on the approaches (A),
(B), or (C).

2.2.1 Error Indicators Based on Interpolation Estimates

Error estimators of this type can be referred to the group (A). They originate from
the papers [BR78b, BR78a]. In the literature, they are often called “residual type
a posteriori error estimators”. Various modifications and advanced forms have been
discussed in numerous publications (see, e.g., [AO92, AO00, BS01, BWS11, Car99,
CV99, DR98, EJ88, JH92, Ver96]). Let the approximate solution v = uh be the
Galerkin approximation computed on V0h ⊂ V0, i.e.,

∫

Ω

∇uh · ∇wh dx =
∫

Ω

fwh dx, ∀wh ∈ V0h. (2.10)

With the help of (2.10), we can deduce an upper bound of the residual functional
and suggest error indicators associated with computable parts of the estimate.
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We represent the residual functional in the form

�uh(w)=
∫

Ω

(∇uh · ∇(w − πhw)− f (w − πhw)
)

dx,

where πh : V0 → V0h denotes an interpolation operator. Assume that Ω consists of
subdomains (e.g., simplexes Tk , which form the mesh Th), and uh is sufficiently
regular on each subdomain. Then, we integrate by parts and obtain

�uh(w)=
N∑

k=1

∫

Tk

(Δuh + f )(πhw −w)dx

+
N∑

l,s=1
l>s

∫

Els

[∇uh · nls](w − πhw)ds, (2.11)

where [ ] denotes the jump, Els is the common boundary (edge) of Tl and Ts (bound-
ary edges do not have this term), and nls is the unit normal vector to Els outward to
Tl if l > s (we recall that the integral over Els is assumed to be equal to zero if the
elements l and s have no common edge).

It is easy to see that
∫

Tk

(Δuh + f )(πhw −w)dx ≤ ‖Δuh + f ‖Tk‖w − πhw‖Tk ,
∫

Els

[
∂uh

∂n

]

(w − πhw)ds ≤
∥
∥
∥
∥

[
∂uh

∂n

]∥∥
∥
∥
Els

‖w − πhw‖Els
.

Now, we need to bound ‖w − πhw‖Tk and ‖w − πhw‖Els
by ‖∇w‖, i.e., we need

interpolation estimates associated with the operator πh. The derivation of such es-
timates is more difficult than for the operator Πh considered in Sect. C.2. It is clear
that the estimates must rely on geometrical features of Tk and properties of V0h. In
the case of piecewise affine continuous approximations, a polygonal Ω ⊂ R

2, and
a simplicial mesh, the corresponding interpolation operator πh :H 1(Ω)→ V0h has
been studied in [Clé75].

Let v ∈ ◦
H 1(Ω) and Xj be an inner node of the triangulation Th. We define the

set

ωj := {x ∈ Tt |Xj ∈ T t , t = 1,2, . . . ,N},
which contains all the elements having common node Xj . Define pj (x) ∈ P 1(ωj )

by the relation
∫

ωj

(v − pj )q dx = 0, ∀q ∈ P 1(ωj ). (2.12)

This definition means that pj is the L2-projection of v on ωj . Now, πh is defined
by setting
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Fig. 2.6 The sets �(Tk) and
�(Els) on a regular mesh

πhv(Xj ) = p(Xj ), ∀Xj ∈ intΩ, (2.13)

πhv(Xj ) = 0, ∀Xj ∈ Γ. (2.14)

This mapping is linear, continuous, and is subject to the relations (see, e.g., [Ver96])

‖v − πhv‖2,Tk ≤ Cint
1k diamTk‖v‖1,2,�(Tk), (2.15)

‖v − πhv‖2,Els
≤ Cint

2ls |Els |1/2‖v‖1,2,�(Els ), (2.16)

where the sets (patches) associated with Tk and Els are defined as follows:

�(Tk) := {x ∈ T t | T t ∩ T k �= ∅, t = 1,2, . . . ,N},
�(Els) := {x ∈ T t | T t ∩Els �= ∅, t = 1,2, . . . ,N}.

See Fig. 2.6 for a clarifying illustration.
The constants Cint

1k and Cint
2ls depend on the structure of the mesh, and the factors

diam(Tk) and |Els |1/2 depend on the mesh size parameter h. We have

N∑

k=1

∫

Tk

(Δuh + f )(w − πhw)dx

≤
N∑

k=1

‖Δuh + f ‖2,Tk‖w − πhw‖2,Tk

≤
N∑

k=1

‖Δuh + f ‖2,TkC
int
1k diamTk‖w‖1,2,�(Tk)

≤
(

N∑

k=1

(
Cint

1k

)2
(diamTk)

2‖Δuh + f ‖2
2,Tk

)1/2√
ιT (w), (2.17)

where ιT (w)=∑N
k=1 ‖w‖2

1,2,�(Tk)
. It is easy to see that

ιT (w)≤ C2
T (Th)‖w‖2

1,2,Ω, (2.18)
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where CT (Th) depends on the topological structure of the mesh. We note that since
one and the same element Tk occurs in several different patches � , the constant is
greater than one (it depends on the maximal amount of elements in a patch).

Analogously,

N∑

l,s=1
l>s

∫

Els

[∇uh · nls](w − πhw)ds

≤
N∑

l,s=1
l>s

∥
∥[∇uh · nls]

∥
∥

2,Els
Cint

2ls |Els |1/2‖w‖1,2,�(Els)

≤
(

N∑

l,s=1
l>s

(
Cint

2ls

)2|Els |
∥
∥[∇uh · nls]

∥
∥2

2,Els

)1/2√
ιE(w), (2.19)

where

ιE(w)=
N∑

l,s=1
l>s

‖w‖2
1,2,�(Els )

.

We have

ιE(w)≤ C2
E(Th)‖w‖2

1,2,Ω, (2.20)

where CE(Th) also depends on the mesh.
By (2.17) and (2.19), we find that

∣
∣�uh(w)

∣
∣ ≤

(

CT

(
N∑

k=1

(
Cint

1k

)2
(diamTk)

2‖Δuh + f ‖2
2,Tk

)1/2

+CE

(
m∑

l,s=1
l>s

(
Cint

2ls

)2|Els |
∥
∥[∇uh · nls]

∥
∥2

2,Els

)1/2)

‖w‖1,2,Ω . (2.21)

Let C = max{CT ,CE}
√

1 +C2
FΩ . Then,

∣
∣�uh(w)

∣
∣≤ CEI(uh)‖∇w‖, (2.22)

where
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EI(uh)=
(

N∑

k=1

(
Cint

1k

)2
(diamTk)

2‖Δuh + f ‖2
2,Tk

)1/2

+
(

N∑

l,s=1
l>s

(
Cint

2ls

)2|Els |
∥
∥[∇uh · nls]

∥
∥2

2,Els

)1/2

.

By (2.8), we obtain

∥
∥∇(u− uh)

∥
∥2 ≤ sup

w∈V0

{−‖∇w‖2 + 2CEI(uh)‖∇w‖}≤ C2EI 2(uh).

Hence,
∥
∥∇(u− uh)

∥
∥≤ CEI(uh). (2.23)

We can represent this estimate in a slightly different form
∥
∥∇(u− uh)

∥
∥≤ ĈÊI (uh), (2.24)

where the indicator

ÊI (uh) =
(

N∑

k=1

(
Cint

1k

)2
(diamTk)

2‖Δuh + f ‖2
2,Tk

+
N∑

l,s=1
l>s

(
Cint

2ls

)2|Els |
∥
∥[∇uh · nls]

∥
∥2

2,Els

)1/2

is a sum of locally defined quantities.
It is worth outlining that in the process of deriving (2.23) and (2.24), we several

times considerably overestimated the right-hand side, so that the equality sign in
(2.8) and (2.11) is irretrievably lost. For this reason, the estimates obtained with the
help of the above mathematical arguments may overestimate the error even if we
manage to find and use sharp values of the interpolation constants Cint

1k and Cint
2ls .

However, the latter task is not easy (especially for nonuniform meshes, which arise
in the process of mesh adaptation). Indeed, to find Cint

1k we must solve the problem

sup
w∈V0

‖w − πhw‖2,�(Tk)

‖w‖1,2,�(Tk)

, (2.25)

which is an infinite dimensional problem. In some publications, it is suggested to
find the constant approximately (e.g., by using a finite dimensional space formed
by low order polynomial functions w). In this case, the true value of sup in (2.25)
may be not achieved and, therefore, the overall estimate looses reliability. More-
over, solving a large number of local problems (2.25) (even for finite dimensional
spaces) requires considerable numerical efforts. The corresponding computational
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Fig. 2.7 Two patches of a
nonuniform mesh

expenditures must be taken into account. After each mesh refinement, new constants
associated with patches of the new mesh must be recomputed. Patches of highly
nonuniform meshes may contain a different number of elements and complicated
geometry (especially in 3D). For example, in Fig. 2.7 bold lines show boundaries
of two patches P1 and P2 associated with two elements T1 and T2 of a nonuniform
plane mesh. In real life computations, adaptive methods may generate meshes with
much higher irregularities than those depicted in Fig. 2.7. In the case of highly ir-
regular mesh, it is impossible to compute all the constants within the framework
of a certain unified procedure similar to that we use for the constants in H 2 → C0

interpolation estimates, which can be fairly easily evaluated by interpolation esti-
mates on the basic (etalon) simplex (see Sect. C.2). Thus, sharp computations of all
the constants Cint

1k and Cint
2ls for thousands of different patches lead to high compu-

tational expenditures.
In view of these reasons, getting realistic and guaranteed error bounds with the

help of (2.23) and (2.24) is rather challenging even for relatively simple elliptic
equations (see, e.g., [CF00a], where these questions are systematically studied with
the paradigm of boundary value problems in L-shaped domains).

A true meaning of the indicator ÊI is that it suggests easily computable quanti-
ties associated with elements, which can be used as error indicators. The standard
argument for this is as follows. Assume that we use a quasi-uniform mesh. Then,
we may assume that all (or almost all) constants Cint

1k have approximately the same
value, and can be replaced by a single constant Cint

1 . If the constants Cint
2ls are also

replaced by a single constant Cint
2 , then (2.21) implies an estimate

ÊI (uh)≈ Ĉ

(
N∑

k=1

η2(Tk)

)1/2

, (2.26)
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where

η2(Tk) = (
Cint

1

)2
(diamTk)

2‖Δuh + f ‖2
2,Tk

+ (Cint
2 )2

2

∑

Els∈T k

|Els |
∥
∥[∇uh · nls]

∥
∥2

2,Els
. (2.27)

The multiplier 1/2 arises in the second term because any interior edge is common
for two elements.

Remark 2.4 Sometimes only the last term containing jumps is used as an efficient
error indicator (in many cases it dominates, see, e.g., [CV99]).

2.2.2 Error Indicators Based on Approximation of the Error
Functional

Assume that the functional �v in (2.8) can be efficiently approximated by another
functional, i.e., �v � �̃v , and, moreover, for the new functional we have the estimate

∣
∣�̃v(w)

∣
∣≤Q(v)‖∇w‖, (2.28)

where Q(v) is a computable nonnegative functional. Then, (cf. (2.8))

∥
∥∇(u− v)

∥
∥2 = sup

w∈V0

{−‖∇w‖2 − 2�v(w)
}� sup

w∈V0

{−‖∇w‖2 − 2�̃v(w)
}

≤ sup
w∈V0

{−‖∇w‖2 + 2Q(v)‖∇w‖}=Q2(v). (2.29)

This relation shows the general idea of generating indicators of the group (B) and
motivates the indicator Q(v). Certainly, the quality of such an error indicator de-
pends on the closeness of �v and �̃v .1 The functional �̃v can be constructed by a
certain post-processing procedure.

Post-processing is a computational procedure that adjusts computed data to
some a priori knowledge on properties of the exact solution. This procedure
should be fairly simple, being compared with the expenditures required for
computing the approximate solution.

Below, we describe several post-processing procedures.

1In general, the functionals must be close in the sense of H−1(Ω).
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2.2.2.1 Averaging of Gradients (Fluxes)

Gradient averaging procedures are often used to post-process gradients (fluxes,
stresses) computed by finite element approximations of elliptic boundary value
problems. Among first publications in this direction we mention the papers [ZZ87,
ZZ88], which generated an interest in gradient recovery methods. Similar methods
were investigated in numerous publications (see, e.g., [AO92, BC02, BR93, BS01,
HTW02, Ver96, Wan00, WY02, ZBZ98, ZN05]). Mathematical justifications of the
error indicators obtained in this way follow from the superconvergence phenomenon
(see, e.g., [KN84, KNS98, Wah95]). Superconvergence arises on regular (quasireg-
ular) meshes and, in simple terms, means that some components of approximate
solutions obtained by inexpensive post-processing procedures converge to the cor-
responding components of the exact solution with a rate higher than the rate that
can be predicted by standard a priori estimates. One of the most widely known re-
sults justified by superconvergence claims that a relatively simple averaging of ∇uh
yields a vector-valued function, which approximates ∇u much better than ∇uh. As-
sume that in our problem this phenomenon takes place, and the gradient ∇u can be
successfully represented by Gh(∇uh), where Gh is a certain post-processing oper-
ator. Then,

∫

Ω

(∇uh · ∇w − fw)dx �
∫

Ω

Z(uh) · ∇w dx,

where Z(uh) := ∇uh −Gh(∇uh) (and (2.28) holds if we set Q(uh)= ‖Z(uh)‖).
We recall (2.8) and deduce the relation

‖∇e‖2 � sup
w∈V0

{

−‖∇w‖2 − 2
∫

Ω

Z(uh) · ∇w dx

}

≤ ∥∥Z(uh)
∥
∥2
,

which means that

‖∇e‖ � ∥∥Z(uh)
∥
∥.

This relation suggests the idea to use the function Z(uh) as an error indicator and
set

EIs(uh)= ∥∥Z(uh)
∥
∥
Ts
.

So far we did not define particular forms of the operator Gh, which can be con-
structed by many different methods. Some of them are discussed below. At this
point, we only note that

Various post-processing procedures (averaging, smoothing, regularization)
lead to various error indicators.
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Fig. 2.8 A patch ωi

associated with the node Xi .
Iωi = {s, j, k,p, l, q, z}

2.2.2.2 Averaging of Fluxes in H 1

In the majority of cases, post-processing is performed by local averaging proce-
dures. Consider the patch ωi associated with the node Xi (see Fig. 2.8)

ωi =
⋃

j∈Iωi
T j ,

where Iωi contains indexes of simplexes in ωi .
Define g(i) as the vector-valued function in P k(ωi,R

d) solving the minimization
problem:

inf
g∈Pk(ωi ,R

d )

∫

ωi

|g − ∇uh|2 dx. (2.30)

Using g(i), we can define values of an averaged gradient at the node Xi .
Consider the simplest case k = 0 and assume that uh is a piecewise affine contin-

uous function. Then, the components of ∇uh are constants on Tj . We denote them
by (∇uh)j and find g(i) ∈ P 0(ωi,R

d) such that
∫

ωi

∣
∣g(i) − ∇uh

∣
∣2 dx = inf

g∈P 0(ωi ,R
d )

∫

ωi

|g − ∇uh|2 dx. (2.31)

It is easy to see that

g(i) =
∑

j∈Iωi

|Tj |
|ωi | (∇uh)j . (2.32)

We set G(∇uh)(Xi)= g(i). Repeat this procedure for all nodes and define the vector-
valued function yG := G(∇uh) by the piecewise affine extrapolation of these values.
This vector-valued function belongs to H 1 and in many cases approximates ∇u

much better then the original (numerical) flux ∇uh. This fact is justified by the
superconvergence phenomenon (see, e.g., [KNS98, Wah95]).

Various averaging formulas of this type are represented in the form

g(i) =
∑

j∈Iωi
λj (∇uh)j ,

∑

j∈Iωi
λj = 1, (2.33)
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where the quantities λj are weight factors. In (2.32), we set

λj = |Tj |
|ωi | .

If the mesh is regular and all the quantities |Tij | are equal, then (2.32) reads

g(i) = 1

M

∑

j∈Iωi
(∇uh)j , (2.34)

where M is the number of elements in ωi . For internal nodes, the factors λij may
also be defined by the rule

λj = |γj |
2π

,

where |γj | is the radian measure of the angle of Tj associated with the node Xi .
However, if a node belongs to the boundary, then it is better to choose special
weights. Their values depend on the mesh and on the boundary type (see, e.g.,
[HK87]).

Another way of defining g(i) is to solve the problem

inf
g∈Pk(ωi ,Rd )

mi∑

s=1

∣
∣g(xs)− ∇uh(xs)

∣
∣2,

where the points xs ∈ ωi are so-called superconvergent points (see, e.g., [KN87,
KNS98]).

If k = 0, then by similar arguments we obtain

g(i) = 1

mi

mi∑

s=1

∇uh(xs). (2.35)

As in the previous case, we define the vector-valued function Gh(∇uh) by the piece-
wise affine extrapolation of these values.

2.2.2.3 Averaging of Fluxes in H(Ω,div)

Post-processing operators for fluxes can be based on Raviart–Thomas elements of
the lowest order (see, e.g., in [BF86, RT91]). The corresponding averaging operator
GRT generates an averaged flux in the space H(Ω,div) by averaging normal compo-
nents of fluxes. Since the true flux belongs to this space (provided that f ∈ L2(Ω)),
this way of averaging is quite natural.

Consider a patch formed by two elements Ti and Tj having a common edge
Eij (see Fig. 2.9). If uh is constructed by P 1-approximations, then (∇uh)|Ti and
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Fig. 2.9 Patch related to Eij

and averaged flux yij

(∇uh)|Tj are constant vectors. In general, their normal components on Eij are dif-
ferent. We define the (common) normal flux on Eij as follows:

(y · nij )|Eij
= (κij (∇uh)|Ti + (1 − κij )(∇uh)|Tj

) · nij ,
where κij ∈ (0,1) is the weight factor associated with Eij . In the simplest case,
κij = 1/2. Another option (which takes into account the sizes of the elements) is

κij = |Ti |
|Ti | + |Tj | .

For the boundary edges, we use the only one existing flux. Thus, three normal fluxes
on three sides of each element are determined. The field inside the element is ob-
tained by the standard RT0-extension of normal fluxes. As a result, we have an
averaged flux

yRT = GRT(∇uh) ∈H(Ω,div).

Similar averaging procedures can be constructed in the case of 3D approximations,
e.g., by averaging normal fluxes over the faces of a tetrahedron.

2.2.2.4 Averaging of Fluxes with Partial Equilibration

Since the exact flux p must satisfy the equilibrium (balance) equation divp+f = 0,
it is sensible to post-process it in such a way that the residual of this equation is
minimal (e.g., in the integral sense). There are methods that produce equilibrated
(or almost equilibrated) fluxes (see, e.g., [AO00, Bra07, LL83]). Sometimes these
methods are rather sophisticated and use solutions of local Neumann type problems
on patches. We have no space to properly discuss them here more systematically
and, therefore, refer the reader to the above-mentioned and many other publications
cited therein.

We conclude by describing a simple relaxation type algorithm, which allows to
quasi-equilibrate yRT.
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Consider two neighboring elements with common edge Eij . Our goal is to select
the quantity γij = y · nij in such a way that

∫

Ti

(
(divy)|Ti + f

)2
dx +

∫

Tj

(
(divy)|Tj + f

)2
dx → min .

We use the identity
∫
Ti

divy dx = ∫
∂Ti

y · ni dx and the fact that (divy)|Ti and
(divy)|Tj are constant on Ti and Tj , respectively. Then, the corresponding value
of γij is explicitly defined by the relation (see [Rep08])

γij = μj |Ti | −μi |Tj | + |Ti ||Tj |({f }Tj − {f }Ti )
|Eij |(|Ti | + |Tj |) , (2.36)

where {f }Tj is the mean value of f on Tj .
Using the same idea, we recompute normal fluxes for all edges. At each step of

this procedure the value of ‖divy + f ‖2
Ω decreases. After several cycles of mini-

mization we obtain a vector-valued field, which is equilibrated much better than the
original one.

2.2.2.5 Global Averaging

In many cases, an efficient averaging operator is obtained if local minimization prob-
lems on patches are replaced by a global problem (this method may generate es-
sential computational expenditures). Consider the following problem: Find ḡh in a
certain (global) set Uh(Ω), which minimizes the quantity

∑
i

∫
Ti

|gh − ∇uh|2 dx
among all gh ∈ Uh(Ω). Very often ḡh is a better image of ∇u than the func-
tions obtained by local procedures. Moreover, mathematical justifications of the
methods based on global averaging procedures can be performed under weaker as-
sumptions, which makes them applicable to a wider class of problems (see, e.g.,
[CB02, CF00b, HTW02]).

2.2.2.6 Averaging by Least Squares Surface Fitting

In [Wan00], it was suggested a different recovery procedure, which is efficient for
problems with sufficiently smooth solutions. The analysis is based on the represen-
tation

u−Qτuh = (u−Qτu)+Qτ(u− uh), (2.37)

where u is the exact solution of a linear elliptic problem, uh is the Galerkin approx-
imation computed on a mesh Th, and Qτ is the L2-projection operator on the finite
dimensional space constructed on a mesh Tτ with the help of piecewise polynomial
functions of the order r ≥ 0. The key estimate is

‖Qτu−Qτuh‖ ≤ Chs−1+αmin{0,2−s}‖u− uh‖H 1, (2.38)
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where α ∈ (0,1) is a parameter that connects h and τ in the way τ = hα . The origi-
nal problem is assumed to be Hs -regular with 1 ≤ s ≤ k + 1, and k is the degree of
polynomials used in the Galerkin approximation. From (2.38) it follows that

‖u−Qτuh‖ ≤ Chβ(h,τ,r,k) (2.39)

provided that u ∈ Hk+1(Ω) ∩Hr+1(Ω0) ∩ V0. In (2.39), the rate β depends on h,
τ , r , and k, and is greater than 2, provided that u is regular enough, and the space
Vτ is selected appropriately (i.e., it is sufficiently rich). The constant C depends on
the norm of u. Concrete values of the convergence rate for various k, r , and α are
presented in the paper [Wan00].

2.2.2.7 Error Indicators Based on Solutions of Local Subproblems

The splitting of the error functional �uh(w) into a number of functionals (defined
by solutions of local subproblems (see, e.g., [Ain98, AO00] and further develop-
ments in [AR10]) generates another class of error indicators, which can be assigned
to the group (B). Below we present a sketch of the underlying ideas. For a con-
sequent study, we address the reader to the above-cited literature and many other
publications cited therein.

Let Ω be a union of nonoverlapping domains (elements) Ωi , i = 1,2, . . . ,N .
Denote the common edge of Ωi and Ωj by Γij and Γ0i := ∂Ωi ∩Γ and assume that
for each Ωi we know a function ui such that

�uh(w)=
N∑

i=1

∫

Ωi

∇ui · ∇w dx. (2.40)

Consider a function ū : Ω → R that coincides with ui(x) if x ∈ Ωi . Assume that
the functions ui preserve continuity on the boundaries Γij and the function ū(x)

belongs to H 1(Ω). Then, (2.40) reads
∫

Ω

∇(ū+ uh) · ∇w dx =
∫

Ω

fw dx, ∀w ∈ V0(Ω). (2.41)

The relation (2.41) means that u= ui + uh on Ωi . Therefore, ui = u− uh, and we
know the errors.

One way to determine ui is to use solutions of local subproblems with Neumann
(or Dirichlet–Neumann) type boundary conditions. For each Ωi we solve the fol-
lowing problem: Find ui ∈H 1(Ωi) such that ui = 0 on Γi0 and

∫

Ωi

∇ui · ∇w dx ∼=
∫

Ωi

fw dx +
N∑

j=1

∫

Γij

ζij gw ds

−
∫

Ωi

∇uh · ∇w dx, ∀w ∈ V0(Ωi), (2.42)
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where g is a reconstruction of ∇uh (in the simplest case this reconstruction can be
performed by averaging of ∇uh · nij associated with two neighboring elements).
The space V0(Ωi) is defined as follows. If Γ0i �= ∅, then V0(Ωi) is a subspace of
H 1(Ωi), which contains the functions vanishing on Γi0. If Γ0i = ∅, then the local
problem is considered with Neumann conditions and V0(Ωi) is the subspace of
H 1(Ωi) containing functions with zero mean. The weight ζij is equal to zero if
i = j . If i > j , then it is equal to 1, and ζij = −1 in the opposite case. It is easy
to see that each internal boundary Γij generates two integrals with equal absolute
values and opposite signs. Therefore, the sum of all integrals does not contain such
terms, and we obtain

N∑

i=1

∫

Ωi

∇ui · ∇w dx =
∫

Ω

fw dx −
∫

Ω

∇uh · ∇w dx

= �uh(w), ∀w ∈ V0(Ω), (2.43)

which shows that the relation (2.40) holds.
This simple procedure may contain certain technical difficulties. One of them is

that for internal domains the function g (which defines the Neumann type boundary
conditions of the local subproblems) cannot be taken arbitrarily. This follows from
the fact that the Neumann problem may be unsolvable if the external data do not
satisfy an additional condition. For the problem (2.42) this condition is as follows:

∫

Ωi

f dx +
N∑

j=1

∫

Γij

ζij g ds = 0. (2.44)

Therefore, a special equilibration procedure that transforms g in order to satisfy
(2.44) on each element is required. After that, exact solutions ui of local problems
must be found. Except special cases, this problem cannot be solved exactly and,
therefore, instead of ui some approximations ũi of local solutions are often used.
Then, �uh(w) is replaced by a directly computable functional

�̃uh(w)=
N∑

i=1

∫

Ωi

∇ũi · ∇w dx. (2.45)

It generates the quantities EIi(uh) = ‖∇ũi‖Ωi
, which can be used to indicate local

errors, and the quantity |EI(uh)| = (
∑

i (EI i(uh))
2)1/2, which serves as an indicator

of the global error. Accuracy of such an estimate depends on the choice of g and on
the accuracy of the computed approximations ũi .

2.2.3 Error Indicators of the Runge Type

Consider again the case v = uh, where uh is the Galerkin approximation on
V0h ⊂ V0. We can try to get an error indicator by solving the variational problem



2.2 Error Indicators for the Energy Norm 31

in (2.8) numerically using a certain finite dimensional subspace V0href instead of V0
(cf. (2.7)), i.e., by applying the relation

∥
∥∇(u− uh)

∥
∥2 ≥ sup

w∈V0href

{−‖∇w‖2 − 2�uh(w)
}
. (2.46)

Thus, in our classification, estimators of this group belong to the class (C). It should
be noted that this procedure makes sense only if the space V0href is essentially richer
than V0h (if V0href = V0h then �uh(w) = 0, for any w ∈ V0href and, therefore, the
value of sup in (2.46) is zero).

Assume that

V0h ⊂ V0href , dimV0href > dimV0h. (2.47)

The function whref maximizing the right-hand side of (2.46) satisfies the relation
∫

Ω

∇whref · ∇w dx =
∫

Ω

(fw − ∇uh · ∇w)dx, ∀w ∈ V0href , (2.48)

which is equivalent to
∫

Ω

∇(whref + uh) · ∇w dx =
∫

Ω

fw dx, ∀w ∈ V0href . (2.49)

Hence, uhref =whref + uh, where uhref is the Galerkin solution on V0href . We have

∥
∥∇(u− uh)

∥
∥2 ≥ −∥∥∇(uhref − uh)

∥
∥2 − 2�uh(uhref − uh).

Since

�uh(uhref − uh) =
∫

Ω

(∇uh · ∇(uhref − uh)− f (uhref − uh)
)

dx

=
∫

Ω

(∇uh · ∇(uhref − uh)− ∇uhref · ∇(uhref − uh)
)

dx

= −∥∥∇(uh − uhref)
∥
∥2
,

we conclude that the quantity ‖∇(uh − uhref)‖ estimates ‖∇e‖ from below. If V0href

is much wider than V0h, then ‖∇(uh − uhref)‖ can be used to measure the global
error, and the corresponding contributions EIs can be used for indication of element-
wise errors. It is easy to see that this type error indicator always underestimates the
error. In fact, it coincides with the indicator suggested by C. Runge at the beginning
of the 20th century. In the simplest form, it reads as follows: if the difference between
two approximate solutions computed on a coarse mesh Th and on a certain refined
mesh Thref (e.g., href = h/2) has become small, then both uhref and uh are probably
close to the exact solution u.

In other words, this rule suggests the use of global or local norms of uh − uhref

as error indicators. Henceforth, we denote it by EIRunge(uh). This indicator is simple
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Fig. 2.10 The subspaces Vh,
Wh, and Vhref , the exact
solution u and solutions uh
and uhref , from the respective
subspaces

and looks very natural. For these reasons, it was easily accepted by engineers, who
often consider it as a self-evident criterion. However, it is not difficult to find exam-
ples showing that this heuristic rule may be wrong. In particular, EIRunge(uh) may
lead to misleading conclusions if the space Vh has been refined “improperly”, i.e.,
if new (appended) trial functions do not really improve the approximation. In that
case, uh and uhref may be quite close to each other but not close to u. We note that
a correct form of the Runge’s rule, which indeed provides guaranteed upper bounds
of approximation errors, follows from error majorants of the functional type (see
Sect. 3.6 of [Rep08] and Sect. 3.5.1 of this book).

Below we discuss hierarchically based error indication methods, where error
indicators are constructed with the help of auxiliary problems on enriched finite
dimensional subspaces (local or global) (see, e.g., [Ago02, DLY89, DMR91, DN02]
and the references therein). Thus, in principle they invoke the same idea as does the
Runge indicator, but in a more economical way.

Assume that the spaces Vh and Vhref are constructed in such a way that

Vhref = Vh ⊕Wh.

In Fig. 2.10, we schematically depict the space V , the subspaces Vh, Wh, and Vhref

and the corresponding approximate solutions uh and uhref . It is easy to see that
∫

Ω

∣
∣∇(u− uh)

∣
∣2 dx =

∫

Ω

∣
∣∇(u− uhref)

∣
∣2 dx +

∫

Ω

∣
∣∇(uh − uhref)

∣
∣2 dx

+ 2
∫

Ω

∇(u− uhref) · ∇(uhref − uh)dx,

where
∫

Ω

∇(u− uhref) · ∇(uhref − uh)dx

=
∫

Ω

f (uhref − uh)dx −
∫

Ω

fuhref dx +
∫

Ω

f uh dx = 0.

Hence,
∥
∥∇(u− uh)

∥
∥2 = ∥∥∇(u− uhref)

∥
∥2 + ∥∥∇(uh − uhref)

∥
∥2

= ∥∥∇(u− uhref)
∥
∥2 + ∥∥EIRunge(uh)

∥
∥2
.
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Further analysis is based on the so-called saturation assumption

∥
∥∇(u− uhref)

∥
∥≤ λ

∥
∥∇(u− uh)

∥
∥, λ≤ 1, (2.50)

which formalizes a rather natural condition: uhref is closer to u than uh. Usually,
the space Wh is constructed by locally based approximations of higher order (e.g.,
by “bubble-functions”). In this case, the asymptotic relation λ∼ hq is often consid-
ered as a justification of the saturation property. However, in general, proving this
inequality (with an explicit λ < 1) is a difficult task.

With the help of (2.50), we obtain

(
1 − λ2)∥∥∇(u− uh)

∥
∥2 = ∥∥EIRunge(uh)

∥
∥2 ≤ ∥∥∇(u− uh)

∥
∥2
. (2.51)

This inequality can be used for error control, provided that λ is known, but even in
that case, the computation of uhref may be too expensive. Since Vhref differs from Vh
only by the orthogonal complement Wh, the difference uhref − uh = ŵh belongs to
this subspace. This fact suggests the idea to compute the correction function with the
help of a subsidiary problem defined on Wh (instead of Vhref ). However, in general,
the projection of uhref onto Vh does not coincide with uh and the true projection ûh
is unknown. Instead, an approximation of uhref is sought in the form uh +wh, where
wh is defined as an element minimizing the distance from uh+ w̃h to u, which leads
to the problem

inf
wh∈Wh

1

2

∫

Ω

∣
∣∇(u− uh −wh)

∣
∣2 dx.

It is easy to see that the latter problem is equivalent to

inf
wh∈Wh

{
1

2
‖∇wh‖2 −

∫

Ω

∇(u− uh) · ∇wh dx

}

or

inf
wh∈Wh

{
1

2
‖∇wh‖2 −

∫

Ω

fwh dx +
∫

Ω

∇uh · ∇wh dx

}

.

We arrive at the following problem: Find w̃h ∈Wh such that

∫

Ω

∇w̃h · ∇wh dx =
∫

Ω

fwh dx −
∫

Ω

∇uh · ∇wh dx, ∀wh ∈Wh. (2.52)

The following questions rise: how large is the difference between w̃h and ŵh, and
when w̃h can be used instead of ŵh (we recall that uhref = ûh + ŵh). To answer
them, we first recall that u satisfies the integral relation

∫

Ω

∇u · ∇w dx =
∫

Ω

fw dx, ∀w ∈ V, (2.53)
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uh and uhref are Galerkin solutions, i.e.,
∫

Ω

∇uh · ∇wh dx =
∫

Ω

fwh dx, ∀wh ∈ Vh,

∫

Ω

∇uhref · ∇whref dx =
∫

Ω

fwhref dx, ∀whref ∈ Vhhref
⊂ V,

and
∫

Ω

(∇uhref − uh) · ∇wh dx = 0, ∀wh ∈ Vh. (2.54)

Also, we assume that the spaces Vh and Wh are such that the strengthened Cauchy
inequality

∣
∣
∣
∣

∫

Ω

∇vh · ∇wh dx

∣
∣
∣
∣≤ γ

(∫

Ω

∇vh · ∇vh dx

)1/2(∫

Ω

∇wh · ∇wh dx

)1/2

(2.55)

holds, where γ ∈ (0,1) is a constant independent of h. In this case,
∥
∥∇(u− uh)

∥
∥≤ Cλγ ‖∇w̃h‖. (2.56)

To prove this fact, we argue as follows. By the Galerkin orthogonality (cf. (2.54)),
we have

∫

Ω

∇(uhref − uh) · ∇ (̂uh − uh)dx = 0. (2.57)

In view of (2.52),
∫

Ω

∇w̃h · ∇ŵh dx =
∫

Ω

f ŵh dx −
∫

Ω

∇uh · ∇ŵh dx =
∫

Ω

∇(uhref − uh) · ∇ŵh dx,

whence
∫

Ω

∇(uhref − uh − w̃h) · (∇ŵh)dx = 0. (2.58)

From (2.57) and (2.58), we conclude that

0 =
∫

Ω

∇(uhref − uh − w̃h) · ∇ŵh dx +
∫

Ω

∇(uhref − uh) · ∇ (̂uh − uh)dx

=
∫

Ω

∇(uhref − uh) · ∇(ŵh + ûh − uh)dx −
∫

Ω

∇w̃h · ∇ŵh dx

= ‖uhref − uh‖2 −
∫

Ω

∇w̃h · ∇ŵh dx.

Thus,
∥
∥∇(uhref − uh)

∥
∥2 =

∫

Ω

∇w̃h · ∇ŵh dx. (2.59)
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Note that
∥
∥∇(uhref − uh)

∥
∥2 = ∥∥∇(uhref − ûh)

∥
∥2 + ∥∥∇ (̂uh − uh)

∥
∥2

+ 2
∫

Ω

∇(uhref − ûh) · ∇ (̂uh − uh)dx.

Here ûh − uh ∈ Vh and uhref − ûh = ŵh ∈Wh, so that we use (2.55) and obtain

∥
∥∇(uhref − uh)

∥
∥2 ≥ ‖∇ŵh‖2 + ∥∥∇ (̂uh − uh)

∥
∥2 − 2γ ‖∇ŵh‖

∥
∥∇ (̂uh − uh)

∥
∥

≥ (1 − γ 2)‖∇ŵh‖2.

From this relation and (2.59), we find that

‖∇ŵh‖2 ≤ 1

1 − γ 2

∥
∥∇(uhref − uh)

∥
∥2 = 1

1 − γ 2

∫

Ω

∇w̃h · ∇ŵh dx. (2.60)

Thus, we see that the true correction function ŵh is subject to w̃h:

‖∇ŵh‖ ≤ 1

1 − γ 2
‖∇w̃h‖. (2.61)

Now, we recall that ‖∇(u − uh)‖2 = ‖∇(u − uhref)‖2 + ‖∇(uh − uhref)‖2 and use
(2.59). We have

∥
∥∇(u− uh)

∥
∥2 = ∥

∥∇(u− uhref)
∥
∥2 +

∫

Ω

∇w̃h · ŵh dx

≤ λ2
∥
∥∇(u− uh)

∥
∥2 + ‖∇w̃h‖‖∇ŵh‖

≤ λ2
∥
∥∇(u− uh)

∥
∥2 + 1

1 − γ 2
‖∇w̃h‖2.

From here, we conclude that

∥
∥∇(u− uh)

∥
∥2 ≤ 1

(1 − λ2)(1 − γ 2)
‖∇w̃h‖2, (2.62)

which shows that ‖∇e‖ � ‖∇w̃h‖ and motivates using ‖∇w̃h‖ as an error indicator.

2.3 Error Indicators for Goal-Oriented Quantities

Evaluation of approximation errors in terms of special “goal-oriented” quantities is
very popular in engineering computations. A consequent exposition can be found
in [BR03] and in numerous publications devoted to goal-oriented a posteriori error
estimates and applications of them to various problems (see, e.g, [BR12, BR96,
HRS00, KM10, MS09, OP01, PP98, Ran00, RV10, SO97, SRO07]). In this method,



36 2 Indicators of Errors for Approximate Solutions of Differential Equations

estimates are derived for the quantity 〈�,u−uh〉, where � is a given linear functional
and uh is a conforming approximation. In general, � belongs to the dual energy space
V ∗

0 . Typically, � is focused on some special properties of approximate solutions. For
example, if � is an integral type functional (e.g., � ∈ L2(Ω)) localized in a certain
subdomain ω ⊂Ω , then |〈�,u− uh〉| characterizes the quality of uh in ω. A way of
evaluating this quantity is based on the following idea, which we discuss with the
example of the basic elliptic problem: Find u ∈ V0 := ◦

H 1(Ω) such that
∫

Ω

A∇u · ∇w dx =
∫

Ω

fw dx, ∀w ∈ V0, (2.63)

where A is a positive definite matrix with bounded coefficients.
Let A� be the matrix adjoint to A and u� the solution of the respective adjoint

problem
∫

Ω

A�∇u� · ∇w dx = 〈�,w〉, ∀w ∈ V0. (2.64)

From (2.63) and (2.64), it follows that

〈�,u− uh〉 =
∫

Ω

A�∇u� · ∇(u− uh)dx (2.65)

=
∫

Ω

(f u� −A∇uh · ∇u�)dx =: I�(u�, uh). (2.66)

Hence, 〈�,u− uh〉 is equal to the functional I�(u�, uh) and can be easily estimated,
provided that u� is known (we note that finding u� amounts to solving another
boundary value problem having the same complexity as (2.63)). In the majority
of cases, u� is unknown and, therefore, it is replaced by an approximation u�τ com-
puted on an adjoint mesh Tτ (which does not necessarily coincide with Th). Then,
the non-computable quantity I�(u�, uh) is approximated by the computable quantity
I�(u�τ , uh).

If u�τ is a sharp approximation of u� (in general, it should be sharper than uh),
then the quantity |EI�(u�τ , uh)| := |I�(u�τ , uh)| serves as an indicator of the goal-
oriented error |〈�,u− uh〉|. However, getting a sharp approximation of u� may lead
to essential additional expenditures. In order to minimize them, one can apply dif-
ferent modifications (generalizations) of (2.65), which the reader can find in the
publications mentioned at the beginning of Sect. 2.3.

2.3.1 Error Indicators Relying on the Superconvergence of
Averaged Fluxes in the Primal and Adjoint Problems

Henceforth, for the sake of simplicity we assume that A is a symmetric matrix. We
rewrite I� in the form

I�(uh,u�τ )= I�1(uh,u�τ )+ I�2(uh,u�τ ;u,u�), (2.67)



2.3 Error Indicators for Goal-Oriented Quantities 37

where

I�1(uh,u�τ ) :=
∫

Ω

(f u�τ −A∇uh · ∇u�τ )dx

is a directly computable functional and

I�2(uh,u�τ ;u,u�) :=
∫

Ω

A(∇u− ∇uh) · (∇u� − ∇u�τ )dx

involves unknown u and u�, i.e., the exact solutions of (2.63) and (2.64), respec-
tively. Note that if uh is a Galerkin approximation and Tτ coincides with Th, then
I�1(uh,u�τ )= 0.

Estimate (2.67) is a source of various indicators. One of them is based on the idea
of replacing unknown fluxes

p :=A∇u and p� := ∇u�

by Ghph and Gτp�τ , where ph :=A∇uh, p�τ :=A∇u�τ , and Gh and Gτ are some
suitable averaging operators associated with the primal and adjoint meshes, respec-
tively. In [KNR03, NR04], it is proved that under the standard assumptions (which
guarantee superconvergence of averaged fluxes computed for the primal and adjoint
problems) such a replacement generates errors of a higher order (with respect to h

and τ ). In view of this fact, the quantity

EI�(uh,u�τ ) := I�1(uh,u�τ )+EI�2(uh,u�τ ), (2.68)

where

EI�2(uh,u�τ ) :=
∫

Ω

A−1(Ghph − ph) · (Gτp�τ − p�τ )dx

is used instead of I�(uh,u�τ ). However, such an indicator is justified only if both
problems (primal and adjoint) are sufficiently regular, so that uh and u�τ possess
superconvergent fluxes. This fact imposes rather obligatory conditions on Tτ , which
may be difficult to satisfy. Typically, the mesh Th generated by commonly used
solvers is sufficiently regular (so that one can await the superconvergence of ph, at
least in the major part of Ω). For the adjoint mesh Tτ , such a regularity is difficult to
guarantee. Indeed, this mesh should satisfy two conditions, which in fact contradict
each other. On the one hand, dimVτ should not significantly exceed dimVh (other-
wise the adjoint problem is computationally much more expensive than the primal
one). On the other hand, Tτ should be “sufficiently dense” in the vicinity of ω. This
observation motivates attempts at finding other error indicators which are not based
on the superconvergence of adjoint fluxes.
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2.3.2 Error Indicators Using the Superconvergence of
Approximations in the Primal Problem

An error indicator that does not attract the superconvergence of averaged gradients
in the adjoint problem was suggested in [NRT08]. The idea behind is to represent
the term I�2(uh,u�τ ;u,u�) in a new form, namely:

I�2(uh,u�τ ;u,u�)

:=
∑

Ti∈Tτ

∫

Ti

(∇u− ∇uh) · (p� − p�τ )dx

=
∑

Ti∈Tτ

(∫

Ti

(uh − u)R(p�τ )dx +
∫

∂Ti

(u− uh)(p� − p�τ ) · νi ds

)

= I�21(uh,p�τ ;u)+ I�22(uh,p�τ ;u,p�),
where νi is a unit outward normal to ∂Ti and

R(p�τ ) := divp�τ + �.

Since u, uh, and p� are continuous on interelement boundaries, we find that

I�22(uh,p�τ ;u,p�)=
∑

Ti∈Tτ

∫

∂Ti

(u− uh)(p� − p�τ ) · νi ds

=
∑

Eij∈Eτ

∫

Eij

(uh − u)[p�τ · νij ]Eij
ds.

Here, Eτ is the set of edges in the adjoint mesh, νij is the unit normal to the edge
Eij (common for Ti and Tj ), which is external to Ti if i < j . Since uh and u sat-
isfy the same Dirichlet boundary conditions, Eτ contains only internal edges. In this
functional, the exact solution of the adjoint problem is completely excluded. There-
fore, the justification of the estimator is not connected with superconvergence in the
adjoint problem, and we may hope that it is insensitive with respect to adjoint mesh
structure. To obtain a computable error indicator, in [NRT08] the superconvergent
post-processing of the function uh (by the operator Qτ ; see (2.37)–(2.39)) and a
regularization of the adjoint flux p�τ (which eliminates the jumps [p�τ · νij ]Eij

)
were used. Below, the corresponding regularization operator is denoted by Gτ and
the Wang projection operator by W . In particular, such an operator can be con-
structed with the help of Hsieh–Clough–Tocher finite element approximations (see,
e.g., [BH81, Cia78b]). Then, I�22 = 0 and I�21 is replaced by

EI�21(uh,u�τ ;u) :=
∫

Ω

(
uh −W(uh)

)
R
(
Gτ(p�τ )

)
dx,
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and we arrive at the indicator

〈�,u− uh〉 ≈EI�(uh) := I�1(uh,u�τ )+
∫

Ω

(
uh −W(uh)

)
R
(
Gτ (p�τ )

)
dx. (2.69)

Another representation of I�2 leads to a somewhat different error indicator. Let q
be a vector-valued function in H(Ω,div). Then,

I�2(uh,u�τ ;u,u�)

:=
∫

Ω

(∇u− ∇uh)(p� − p�τ )dx

=
∫

Ω

(∇u− ∇uh)(q − p�τ )dx +
∫

Ω

(u− uh)(divq + �)dx

=
∫

Ω

A−1(p − ph) · (q − p�τ )dx +
∫

Ω

(u− uh)(divq + �)dx. (2.70)

In this relation, u� is excluded from the right-hand side without a regularization
of q�τ . This relation implies an error indicator if one reconstructs p and u with the
help of the recovery operators Gh and W , respectively.

We have

〈�,u− uh〉 ≈ EI�(uh,p�τ )

:= I�1(uh,u�τ )

+
∫

Ω

A−1(Gh(ph)− ph
) · (q − p�τ )dx

+
∫

Ω

(
uh −W(uh)

)
(divq + �)dx, (2.71)

where q is an arbitrary vector valued function. If q is equilibrated (or almost equili-
brated), then the last term can be ignored and we obtain a simpler indicator

EI�(uh,p�τ ) := I�1(uh,u�τ )+
∫

Ω

A−1(Gh(ph)− ph
) · (q − p�τ )dx. (2.72)

It is clear that properties of EI�(uh,p�τ ) depend on superconvergence properties of
averaged fluxes in the primal problem and on the difference between q and p�τ .
Numerical examples and asymptotic exactness of the above-introduced indicators
are discussed in [NRT08]. One of the examples is presented below.

Example 2.4 We consider the following elliptic type problem:

Δu+ 1 = 0 in Ω, u= 0 on ∂Ω, (2.73)

and define

〈�,u− uh〉 =
∫

Ω

�ω(u− uh)dx, (2.74)
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Fig. 2.11 The meshes T1 (315 nodes) (left), T2 (193 nodes) (middle), and T3 (451 nodes) (right)
used in the test; the region of interest ω is shadowed

where

�ω(x)=
{

1, if x ∈ ω ⊂Ω,

0, otherwise.
(2.75)

Both primal and adjoint problems are solved with the help of piecewise linear finite
element approximations. As usual, the efficiency index is defined by the relation

ieff := EI�(uh)

|〈�,u− uh〉| .

The primal problem is solved on the mesh T1 (see Fig. 2.11). It is known that the
corresponding exact solution u has singularity in the re-entrant corner. The adjoint
problem was solved on T1, on a rather coarse regular mesh T2 and on the mesh
T3 adapted to the configuration of the domain ω (shadowed). Numerical results
are summarized in Table 2.2, where we compare the indicators (2.68), (2.69), and
(2.71). We see that error indicators based on (2.69) and (2.71) demonstrate bet-
ter performance than (2.68). Other tests in [NRT08] for problems with regular and
rather irregular solutions confirm advantages of (2.69) and especially of (2.71).

2.3.3 Error Indicators Based on Partial Equilibration of Fluxes in
the Original Problem

First, we prove one principal result, which yields another (in a sense more conve-
nient) form of the functional I�2(uh,u�τ ;u,u�).

Proposition 2.1 The term I�2(uh,u�τ ;u,u�) is equal to the quantity
∫

Ω

A−1(PQf
(ph)− ph

) · (η� −A∇u�τ )dx := I�2(ph,u�τ , η�), (2.76)

where η� is an arbitrary function in the set



2.3 Error Indicators for Goal-Oriented Quantities 41

Table 2.2 Efficiency of the
estimators in Example 2.4 Indicator Nnod Tτ I�1 EI�2 EI� ieff

(2.68) 315 T1 0.00000 0.00264 0.00264 1.58

193 T2 0.00119 0.00138 0.00257 1.54

451 T3 0.00184 0.00040 0.00223 1.34

Indicator Nnod Tτ I�1 EI�21 EI� ieff

(2.69) 315 T1 0.00163 0.00051 0.00213 1.28

193 T2 0.00189 0.00064 0.00253 1.51

451 T3 0.00181 0.00013 0.00193 1.16

Indicator Nnod Tτ I�1 EI�21 EI� ieff

(2.71) 315 T1 0.00108 0.00055 0.00163 0.98

193 T2 0.00126 0.00053 0.00179 1.07

451 T3 0.00178 0.00000 0.00178 1.06

Q�(Ω) := {q ∈H(Ω,div) | divq + �= 0
}
,

and the operator PQf
:Q→Qf is defined by the relation

∥
∥q − PQf

(q)
∥
∥
A−1 ≤ ‖q − qf ‖A−1, ∀qf ∈Qf . (2.77)

Proof Let η0 be a solenoidal vector-valued function. Then,

I�2(uh,u�τ ;u,u�)=
∫

Ω

(∇u− ∇uh) · (A∇u� + η0 −A∇u�τ )dx.

Since A∇u� ∈Q�, we conclude that

I�2(uh,u�τ ;u,u�)=
∫

Ω

A−1(p − ph) · (η� −A∇u�τ )dx,

where η� is an arbitrary element of Q�. From (2.77) with q = ph, it follows that
∫

Ω

A−1(ph − PQf
(ph)

) · η0 dx = 0, ∀η0 ∈Q0. (2.78)

Since p and PQf
(ph) belong to Qf (Ω), we conclude that (p− PQf

(ph)) ∈Q0.
In view of (2.78), we obtain

0 =
∫

Ω

A−1(ph − PQf
(ph)

) · (p − PQf
(ph)

)
dx

=
∫

Ω

A−1(ph − p + p − PQf
(ph)

) · (p − PQf
(ph)

)
dx
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=
∫

Ω

(∇uh − ∇u) · (p − PQf
(ph)

)
dx + ∥∥p − PQf

(ph)
∥
∥2
A−1

= ∥∥p − PQf
(ph)

∥
∥2
A−1,

and the relation (2.76) follows. �

We note that the term I�2(ph,u�τ , η�) does not contain the exact solution of
the adjoint problem. The only difficulty in computing I�2(ph,u�τ , η�) consists of
the projection to Qf . A computable error indicator arises if the exact projection
PQf

(ph) is replaced by an approximate p̃h (which can be constructed with the help
of a certain quasi-equilibration procedure). Then, we replace I�2(ph,u�τ , η�) by the
term

EI�2(ph, p̃h, u�τ , η�) :=
∫

Ω

A−1(p̃h − ph) · (η� −A∇u�τ )dx (2.79)

and find that

〈�,u− uh〉 = I�1(uh,u�τ )+EI�2(ph, p̃h, u�τ , η�)+R(ph, p̃h, u�τ , η�), (2.80)

where the first two terms are explicitly computable and the remainder term is defined
by the relation

R(ph, p̃h, u�τ , η�) :=
∫

Ω

A−1(PQf
(ph)− p̃h

) · (η� −A∇u�τ )dx.

An upper bound of this term can be explicitly evaluated.

Proposition 2.2 The remainder term is subject to the estimate

∣
∣R(ph, p̃h, u�τ , η�)

∣
∣

≤
(

‖ph − p̃h‖A−1 + CFΩ

c1
‖div p̃h + f ‖

)

‖η� −A∇u�τ‖A−1 := μhτ . (2.81)

Proof We have

∣
∣R(ph, p̃h, u�τ , η�)

∣
∣≤ ∥∥PQf

(ph)− p̃h
∥
∥
A−1‖η� −A∇u�τ‖A−1 .

It is easy to see that

∥
∥PQf

(p̃h)− PQf
(ph)

∥
∥
A−1 ≤ ‖p̃h − ph‖A−1 .

This fact follows from the relation
∫

Ω

A−1(ph − p̃h − PQf
(ph)+ PQf

(p̃h)
) · η0 dx = 0, ∀η0 ∈Q0,
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Fig. 2.12 Actual domains Ω
and sample domains Ωe

if we set η0 = PQf
(p̃h)− PQf

(ph) ∈Q0. Hence,

∥
∥PQf

(ph)− p̃h
∥
∥
A−1 ≤ ‖ph − p̃h‖A−1 + ∥∥PQf

(p̃h)− p̃h
∥
∥
A−1 .

Since

∥
∥PQf

(p̃h)− p̃h
∥
∥
A−1 = inf

qf ∈Qf

‖p̃h − qf ‖A−1 ≤ CFΩ

c1
‖div p̃h + f ‖,

we arrive at (2.81). �

Remark 2.5 From (2.80) and (2.81), it follows that

I�1(uh,u�τ )+EI�2(ph, p̃h, u�τ , η�)−μhτ

≤ 〈�,u− uh〉 ≤ I�1(uh,u�τ )+EI�2(ph, p̃h, u�τ , η�)+μhτ ,

which yields guaranteed error bounds. Certainly these bounds are sensible only if
the quantity μhτ is small compared to the first two terms. Since μhτ is directly
computable, this requirement can be verified in practical computations.

Finally, we discuss a particular form of the above-introduced error indicator
based on solutions of specially constructed sample problems. In (2.80), the function
u�τ can be replaced by any conforming approximation v� of u� (in the derivation of
this relation the Galerkin orthogonality of u�τ was not used). Therefore,

〈�,u− uh〉 = I�1(uh, v�)+EI�2(ph, p̃h, v�, η�)+R(ph, p̃h, v�, η�). (2.82)

A way of constructing v� and η� is to use the exact solution of an adjoint problem for
a close domain Ωe having a simple geometric form. In Fig. 2.12 (left), this domain
is presented by a dashed rectangular and ω is the domain (zone) of interest, in which
� is nonzero. In Fig. 2.12 (right), this domain is a circle. In the simplest form, the
idea of the method is as follows (see [NR09] for more details). Consider the problem
(2.63) with the boundary condition u0 = 0. Let Ω ⊂Ωe. Assume that we know the
functions pe ∈H(Ωe,div) and ue ∈ V0(Ωe) such that

∫

Ωe

pe · ∇w dx =
∫

Ωe

�w dx, ∀w ∈ V0(Ωe), (2.83)
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and
∫

Ωe

(pe −A∇ue) · η dx = 0, ∀η ∈Q(Ωe). (2.84)

It is easy to see that ue and pe represent the solution of the adjoint problem in Ωe

and the respective flux. If Ωe has a simple form (e.g., it is a rectangular, a cube
or a sphere) then these functions can be found either analytically or numerically
with a high accuracy (since Ωe has a simple form, sharp approximations can be
constructed with the help of, e.g., spectral methods or other methods adapted to
such type domains).

Let φ be a continuous function such that

φ = 0 on Γ, 0 ≤ φ(x)≤ 1 in Ω,

φ(x)= 1 in Ω1, ∇φ ∈ L∞(Ω,Rd).

Set η� = pe and v� = φue . Since φue ∈ V0(Ω), we can use it in the indicator. Then,
A∇v� = φA∇ue + ueA∇φ, η� = A∇ue and the remainder term has the following
form:

R(ph, p̃h, v�, η�) :=
∫

Ω\Ω1

A−1(PQf
(ph)− p̃h

) · ((1 − φ)pe − ueA∇φ
)

dx.

If the flux p̃h is almost equilibrated in the boundary strip Ω \Ω1, then the remainder
term is very small so that the two first computable terms in (2.82) dominate and
represent the major part of 〈�,u− uh〉. Therefore, the quality of the error indicator

〈�,u− uh〉 ≈EI�(uh, p̃h, v�,φ,Ωe) := I�1(uh, v�)+EI�2(ph, p̃h, v�, η�)

depends mainly on the equilibration properties of p̃h in the boundary strip.



Chapter 3
Guaranteed Error Bounds I

Abstract In this chapter, we discuss foundations of new error control methods de-
veloped during the last 10–12 years. First, we consider the simplest boundary value
problems generated by ordinary differential equations and show that proper trans-
formations of the corresponding integral identity yield a guaranteed bound of the
difference between the exact solution and any conforming approximation. Subse-
quently, this method is extended to partial differential equations of the elliptic type.

Our goal is not only to explain how fully reliable error bounds are derived but
also discuss their main properties, which are as follows:

• the estimates are guaranteed,
• they do not contain mesh-dependent constants, and
• the estimates are valid for any conforming approximation of a problem.

The theory provides a way of creating new error estimation algorithms. First, we
present them with the paradigm of the stationary diffusion problem. In subsequent
sections, the error control techniques and step-by-step algorithms are discussed for
several main classes of linear elliptic problems.

3.1 Ordinary Differential Equations

We begin with the boundary value problem

−(a(x)u′(x)
)′ + b(x)u(x) = f (x) x ∈Ω := (ξ1, ξ2), (3.1)

u(ξ1) = u1, (3.2)

u(ξ2) = u2, (3.3)

generated by the Sturm–Liouville operator with bounded coefficients a and b satis-
fying the conditions

a(x)≥ a0 > 0, b(x)≥ 0, and f ∈ L2(Ω).

Problem (3.1)–(3.3) is one of the most simple boundary value problems, which can
be solved by different numerical methods. Let

v ∈H 1(Ω), v(ξ1)= u1, v(ξ2)= u2

O. Mali et al., Accuracy Verification Methods,
Computational Methods in Applied Sciences 32, DOI 10.1007/978-94-007-7581-7_3,
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be a function computed by some method. Our goal is to obtain a guaranteed (fully
reliable) estimate of u− v in terms of the energy norm

‖|u− v‖|2 :=
∫ ξ2

ξ1

(
a
(
u′ − v′)2 + b(u− v)2

)
dx.

A function u ∈H 1(Ω) satisfying the boundary conditions is a generalized solution
of (3.1)–(3.3) if it meets the relation

∫ ξ2

ξ1

(
au′w′ + buw

)
dx =

∫ ξ2

ξ1

fw dx (3.4)

for any trial function w ∈ V0, where V0 contains the functions from H 1(Ω) vanish-
ing at ξ1 and ξ2 (see Sect. B.1).

3.1.1 Derivation of Guaranteed Error Bounds

In order to deduce a computable upper bound of u − v, we rewrite (3.4) in the
equivalent form

∫ ξ2

ξ1

(
a(u− v)′w′ + b(u− v)w

)
dx =

∫ ξ2

ξ1

(
fw − av′w′ − bvw

)
dx. (3.5)

Let y(x) be an arbitrary function in H 1(Ω). Since

∫ ξ2

ξ1

(yw)′ dx = (yw)

∣
∣
∣
∣

ξ2

ξ1

= 0, ∀w ∈ V0, (3.6)

we rewrite the right-hand side of (3.5) as follows:

∫ ξ2

ξ1

(
fw − av′w′ − bvw

)
dx =

∫ ξ2

ξ1

((
f + y′ − bv

)
w − (av′ − y

)
w′)dx.

Now, we set w = u− v and obtain

‖|u− v‖|2 =
∫ ξ2

ξ1

((
f + y′ − bv

)
(u− v)− (av′ − y

)
(u− v)′

)
dx. (3.7)

If b is strictly positive, then

∫ ξ2

ξ1

(
f +y′−bv

)
(u−v)dx ≤

(∫ ξ2

ξ1

1

b

∣
∣f +y′−bv

∣
∣2 dx

)1/2(∫ ξ2

ξ1

b|u−v|2 dx

)1/2

.
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Analogously,

∫ ξ2

ξ1

(
av′ − y

)
(u− v)′ dx ≤

(∫ ξ2

ξ1

1

a

∣
∣av′ − y

∣
∣2 dx

)1/2(∫ ξ2

ξ1

a
∣
∣u′ − v′∣∣2 dx

)1/2

.

By means of the algebraic inequality λ1δ1 + λ2δ2 ≤
√
λ2

1 + λ2
2

√
δ2

1 + δ2
2 , we find

that

‖|u− v‖|2 =
∫ ξ2

ξ1

((
f + y′ − bv

)
(u− v)− a

(
v′ − y

)
(u− v)′

)
dx (3.8)

≤
(∫ ξ2

ξ1

(
1

b

∣
∣f + y′ − bv

∣
∣2 + 1

a

∣
∣y − av′∣∣2

)

dx

)1/2

‖|u− v‖|. (3.9)

Thus, we arrive at the estimate

‖|u− v‖|2 ≤
∫ ξ2

ξ1

(
1

b

∣
∣f + y′ − bv

∣
∣2 + 1

a

∣
∣y − av′∣∣2

)

dx =: M
2
1(v, y), (3.10)

the right-hand side of which is a nonnegative functional depending on v and prob-
lem data. It presents a guaranteed upper bound of the error and does not involve u.
Henceforth, such type functionals are called a posteriori estimates of functional
type, or error majorants.

The method used in the process of deriving (3.10) is based on the idea to split
the residual functional by means of the integration by parts formula, which involves
a “free function” y. Originally, this method was introduced in [Rep01b]. In subse-
quent sections, we show that it can be extended to a wide spectrum of boundary
value problems.

Since y is an arbitrary function in H 1(Ω), we find that

‖|u− v‖| ≤ inf
y∈H 1(Ω)

M1(v, y). (3.11)

It is easy to show that (3.11) holds as equality. Indeed, if we set y = au′, then

1

b

∣
∣f + y′ − bv

∣
∣2 = 1

b

∣
∣b(u− v)

∣
∣2,

1

a
|y|2 + a

∣
∣v′∣∣2 − 2yv′ = a

(
u′ − v′)2

and

M1(v, y)=
(∫ ξ2

ξ1

(
b|u− v|2 + a

(
u′ − v′)2)dx

)1/2

= ‖|u− v‖|.
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Another estimate follows from (3.7) if we apply the simplest Friedrichs inequal-
ity

∫ ξ2

ξ1

|w|2 dx ≤ CF

∫ ξ2

ξ1

a
∣
∣w′∣∣2 dx, (3.12)

where w is a function in H 1((ξ1, ξ2)) such that w(ξ1)=w(ξ2)= 0 and

CF ≤ C̄F := ξ2 − ξ1

π
ess sup

x∈Ω
a(x).

Then,
∫ ξ2

ξ1

(
f + y′ − bv

)
(u− v)≤ C̄F

∥
∥f + y′ − bv

∥
∥‖|u− v‖|,

and we find that

‖|u− v‖| ≤
(∫ ξ2

ξ1

1

a

∣
∣y − av′∣∣2 dx

)1/2

+ C̄F

∥
∥f + y′ − bv

∥
∥=: M2(v, y).

Moreover,

‖|u− v‖| ≤ inf
y∈H 1(Ω)

M2(v, y). (3.13)

It is easy to see that M1(v, y) and M2(v, y) vanishes if and only if the functions
y and v are such that

y = av′ (3.14)

and

y′ − bv + f = 0. (3.15)

Since v satisfies the boundary conditions, these two relations imply that v coincides
with u and y with au′.

The majorants M1(v, y) and M2(v, y) provide the guaranteed upper bounds of
the overall error ‖|u − v‖|. They are nonnegative functionals, which depend
on the problem data (a, f , Ω), approximate solution v, and a function y,
which can be considered as an approximation of au′. We emphasize that y is
completely at our disposal, and the majorants provide the guaranteed upper
bound with any y.



3.1 Ordinary Differential Equations 49

In practical computations, we can use both majorants and select the best estimate.
However, since M2(v, y) does not contain b−1, it is more convenient to use it if b
attains small (or zero) values. A method to derive more efficient (advanced) forms
of the majorants is discussed in the next section with the paradigm of a boundary
value problem generated by a partial differential equation.

3.1.2 Computation of Error Bounds

Assume that approximate solution is a piecewise affine continuous function de-
fined by nodal values on a regular mesh with N intervals and h = ξ2−ξ1

N
. Such

type approximation can be viewed as the simplest finite element approximation (cf.
Sect. B.4.3). We denote it by vh, and the corresponding finite dimensional space by
Vh. From the computational point of view, it is convenient to slightly modify the
estimate. We square M2(vh, y), use (A.4), and obtain

‖|u−vh‖|2 ≤
∫ ξ2

ξ1

(
1 + β

a

∣
∣y−av′

h

∣
∣2 +C̄F

(

1+ 1

β

)
∣
∣f +y′−b(x)vh

∣
∣2
)

dx, (3.16)

where β is an arbitrary positive number and y is an arbitrary differentiable function.

We denote the right-hand side of (3.16) by M
2
2(vh, y,β) and two parts of it by

M
D
2 (vh, y) :=

(∫ ξ2

ξ1

1

a

∣
∣y − av′

h

∣
∣2 dx

)1/2

and

M
Eq
2 (vh, y) :=

(∫ ξ2

ξ1

∣
∣f + y′ − bvh

∣
∣2 dx

)1/2

.

Clearly, they are related to violations of (3.14) and (3.15), respectively. We note that
(3.14) is the simplest form of the duality relation (cf. (A.44)) and (3.15) is a simple
equilibrium (balance) equation.

The right-hand side of (3.16) contains only known functions, namely, vh, a, and
b are given and y and β are in our disposal (they are changeable). We outline that
no special conditions are imposed on vh, so that the estimate can be applied to any
function vh regardless of the way used to construct it. However, getting a good upper
bound needs a rational selection of the “free” function y and “free” parameter β . The
latter task is easy: if y is given, then the best β is easy to find by the relation

βopt(vh, y) := C̄F

M
Eq
2 (vh, y)

M
D
2 (vh, y)

(3.17)

provided that the numerator does not equal to zero (if it is zero, then the majorant
contains only one term with the factor 1 instead of 1 + 1/β).

To construct a suitable yh, we can use different methods. One of the most simple
is as follows. Using vh, we compute a rough approximation of the flux au′ presented
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Fig. 3.1 Piecewise constant
function av′

h and averaged
Gh(av

′
h)

by a piecewise constant function qh := {|a|}kv′
h (where {|a|}k is the mean value

of a on the interval number k). This function is non-differentiable and therefore
we cannot use it in the majorant. However, we can construct another function
y
(0)
h = Ghqh, where the operator Gh averages values of qh at the nodal points

(where qh has jumps), assigns these mean values to the nodal points, and extends
to the internal points of the intervals by the affine extension. The functions av′

h and

Gh(av
′
h) are depicted in Fig. 3.1. Since y(0)h = Ghqh is differentiable, we compute

M
Eq
2 (vh, y

(0)
h ) and M

D
2 (vh, y

(0)
h ). Then, we select β(0) in accordance with (3.17) and

compute the majorant M2(vh, y
(0)
h , β(0)), which provides a coarse (but guaranteed)

upper bound of the error. Further improvements of the majorant can be performed
by different iteration procedures, which minimize the majorant with respect to y.

In Algorithm 3.1, this part is presented in the simplest form (as a cycle with m

steps). The minimization method is not specified. In fact many different methods
can be used for this relatively simple quadratic minimization problem (from direct
minimization methods solving the problem approximately to multigrid type solvers
of linear systems able to get the exact minimizer over some predefined subspace).
In general, the choice of a particular method depends on preferences of a computer
analyst and on the quality of error bounds one wishes to obtain.

Example 3.1 Consider the problem (3.1)–(3.2), where a(x) = 1, b(x) = 0,
f (x) = 2, ξ1 = 0, ξ2 = 1, and u1 = 0u2 = 0. In this case, CF = 1/π2, and the
exact solution and the flux are known:

u= −x(x − 1) and p = −2x + 1.

We generate approximation v by interpolating a perturbed exact solution. Then,
we apply Algorithm 3.1, where the minimization of the majorant with respect to y

(y belongs to piecewise linear functions) is performed by the function fminunc
from the optimization toolbox of Matlab. In Table 3.1, we present the estimates
obtained by minimizing y for k iteration steps. The efficiency index of the majorant
is defined by the formula

Ieff := M2(v, y,β)

‖|u− v‖| .

For comparison, on the bottom line we also present the values obtained by substi-
tuting the exact flux p to the majorant.



3.1 Ordinary Differential Equations 51

Algorithm 3.1 Estimation of approximation errors
Input: vh ∈ Vh {piecewise affine approximation defined on a certain mesh},

m {number of iterations}
i = 0
y
(0)
h =Gh(av

′
h) {averaged approximation of the flux}

Compute M
D
2 (vh, y

(0)
h ) and M

Eq
2 (vh, y

(0)
h )

Compute β(0) := βopt(vh, y
(0)) by (3.17).

Compute M2(vh, y
(0)
h , β(0)) {Coarse upper bound of the error}

while i ≤m do
Find y

(i+1)
h ∈ Yh such that M2(vh, y

(i+1)
h , β(i)) < M2(vh, y

(i)
h , β(i))

{exact or approximate minimization of the majorant with β(i)}
Compute M

D
2 (vh, y

(i+1)
h ) and M

Eq
2 (vh, y

(i+1)
h )

Compute β(i+1) := βopt(vh, y
(i+1)) by (3.17).

Compute M2(vh, y
(i+1)
h , β(i+1)) {error majorant on the iteration i + 1}

i = i + 1
end while
Output: y(m) {an approximation of the flux}

M2(vh, y
(m)
h ,β(m)) {error majorant computed after m iterations}

end

Table 3.1 Application of Algorithm 3.1

k Ieff M2(vh, y
(k), β(k)) M

D
2 (vh, y

(k)) M
Eq
2 (vh, y

(k)) β(k)

0 3.9757 0.059433 0.005926 0.15635 2.6733

5 1.9800 0.029598 0.005946 0.06434 1.0962

10 1.8935 0.028305 0.005994 0.06024 1.0182

20 1.6970 0.025369 0.006780 0.04833 0.7223

40 1.4406 0.021535 0.009472 0.02816 0.3012

80 1.1316 0.016916 0.014131 0.00537 0.0385

150 1.0017 0.014975 0.014952 0.00004 0.0003

Ieff M2(vh,p,0) M
D
2 (vh,p) M

Eq
2 (vh,p) β

1.0000 0.014949 0.014949 8.5047e-015 5.7644e-014

As we can see from Table 3.1, the majorant provides a guaranteed upper bound.
Moreover, the bound becomes sharper if we invest more to the computation of a
suitable y. It is easy to see that the parts of the majorant (as well as the whole
majorant) converges toward the values obtained by substituting p (actually, one can
show that p is the exact minimizer of the majorant).
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Fig. 3.2 Interval-wise values

of integrals M
D
2 (v, y

(k)) after
k iterations steps and the
respective interval-wise
values of the exact error
distribution ‖|v − u‖|2

The selection of y in M(v, y) is at our disposal. There is a wide spectrum of
methods to obtain an approximation of y. For example, one possibility is to compute
the minimizer of the majorant directly, from the necessary conditions. This approach
is discussed in detail in Sect. 3.3.1 in the framework of partial differential equations.
The general rule is that the more computational power you invest in computing y,
the sharper is the value of the majorant.

Finally, we note that numerical efficiency of the error majorant for boundary
value problems generated by ordinary differential equations was firstly tested in
[Rep99b]. The dependence of the effectiveness of a posteriori estimation of an ap-
proximate solution of an elliptic boundary value problem on the input data and the
algorithm parameters has been systematically studied in [BMP09].

Example 3.2 Several error indication methods have already been discussed in
Chap. 2. Here and in Sect. 3.4 we show that the majorant can be used for the same
purpose. As Table 3.1 shows, for a “good” y, M

Eq
2 ≈ 0 and M

D
2 accurately repre-

sents the error. This motivates us to use M
D
2 computed on each interval in order to

obtain an error indicator and identify the intervals where the error ‖|u− v‖| is large
compared with other errors.

In Fig. 3.2, we depict the exact interval-wise error distribution and the error dis-
tribution indicated by M

D
2 . In Table 3.2 we measure the performance of the error

indicator EI(k) := M
D
2 (v, y(k)) in the strong sense (with respect to Definition 2.1)

and by applying various marking procedures and Definition 2.3. M1 is based on
comparison with the average indicated error (Algorithm 2.1), M2 marks 40 % of
the intervals where the error is largest (Algorithm 2.2), and M3 selects intervals of
highest indicated error, until the selected elements contain 40 % of the “error mass”
(Algorithm 2.3). It is easy to see that after a sufficient number of iterations, the
indicated error distribution approaches the exact one. In other words, the indicator
becomes sharp in the sense of Definition 2.1.
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Table 3.2 Accuracy of error indicator EI(k) measured in the strong sense and with respect to vari-
ous markers

k M(EI (k)) M(EI (k),M1) M(EI (k),M2) M(EI (k),M3)

0 0.9247 0.4040 0.4040 0.3232

5 0.9229 0.3838 0.4040 0.3232

10 0.9200 0.3737 0.4040 0.3232

20 0.8777 0.2020 0.3434 0.1818

40 0.6901 0.2424 0.2424 0.0808

80 0.1012 0.0707 0.0404 0.0101

150 0.0011 0 0 0

However, weaker measures strongly depend on the marker. They may be rather
small, even tough the error distribution computed by EI differs considerably from the
exact error. On the other hand, if the strong measure is small, than all weak measures
are also small. This observation confirms our conclusion that reliable error indica-
tion should be based on indicators which are able to produce realistic measurements
of errors in the strong sense.

3.2 Partial Differential Equations

Now, we extend the method presented in Sect. 3.1 to linear partial differential equa-
tions. Consider the system

−divp + �2u = f in Ω, (3.18)

p = A∇u in Ω, (3.19)

u = u0 on Γ, (3.20)

where A is a symmetric matrix satisfying the condition Az ·z≥ c1|z|2 for any z ∈ R
d

and � is a nonnegative function of x (this system is often used as a model of a sta-
tionary reaction diffusion process, where A is the diffusion matrix and ρ describes
a reaction).

The generalized solution u ∈ V0 + u0 of (3.18)–(3.20) is defined by the integral
identity

∫

Ω

(
A∇u · ∇w + �2uw

)
dx =

∫

Ω

fw dx, w ∈ V0. (3.21)

It minimizes the functional

I (w)=
∫

Ω

(
1

2
A∇w · ∇w + �2

2
|w|2 − fw

)

dx (3.22)

on the set V0 + u0.
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3.2.1 Maximal Deviation from the Exact Solution

Let v ∈ V0 + u0. By (3.21) we deduce the relation

∫

Ω

A
(∇(u− v) · ∇w + �2(u− v)w

)
dx =

∫

Ω

(
fw − �2vw − ∇v · ∇w

)
dx,

which holds for any w ∈ V0. Since w vanishes at the boundary, we rewrite this
relation as follows:

∫

Ω

(
A∇(u− v) · ∇w + �2(u− v)w

)
dx

=
∫

Ω

((
f − �2v + divy

)
w + (y −A∇v) · ∇w

)
dx, (3.23)

where y ∈H(Ω,div). It is easy to see that

∫

Ω

(y −A∇v) · ∇w dx ≤ ‖y −A∇v‖A−1‖∇w‖A, (3.24)

∫

Ω

(
f − �2v + divy

) ·w dx ≤
∥
∥
∥
∥

1

�

(
f − �2v + divy

)
∥
∥
∥
∥‖�w‖, (3.25)

∫

Ω

(
f − �2v + divy

) ·w dx ≤ C
∥
∥f − �2v + divy

∥
∥‖∇w‖A, (3.26)

where

‖y‖2
A :=

∫

Ω

Ay · y dx and ‖y‖2
A−1 :=

∫

Ω

A−1y · y dx

are the norms equivalent to the natural norm of the space Q(Ω) := L2(Ω,Rd) and
C is a constant in the inequality

‖w‖ ≤ C‖∇w‖A, ∀w ∈ V0. (3.27)

In view of (A.28), we find that C ≤ c
−1/2
1 CFΩ (thus, if the constant CFΩ or a com-

putable upper bound of it are known, then the constant C is easily computable).
By (3.23), (3.24), and (3.25), we deduce the estimate

‖|u− v‖| ≤ M1(v, y)

:=
(

‖A∇v − y‖2
A−1 +

∥
∥
∥
∥

1

�

(
f − �2v + divy

)
∥
∥
∥
∥

2)1/2

, (3.28)
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where

‖|w‖|2 := ‖∇w‖2
A + ‖�w‖2

is the energy norm related to the problem.
From (3.23), (3.24), and (3.26), we obtain another estimate

‖|u− v‖| ≤ M2(v, y) := ‖A∇v − y‖A−1 + C
∥
∥f − �2v + divy

∥
∥. (3.29)

Note that the majorants M1(v, y) and M2(v, y) are generalizations of the majorants
M1(v, y) and M2(v, y) derived in the previous section. It is easy to show that

inf
y∈H(Ω,div)

M1(v, y)= ‖|u− v‖|.

This fact follows from the relation

M
2
1(v,p) = ∥

∥A∇(v − u)
∥
∥2
A−1 +

∥
∥
∥
∥

1

�

(
f − �2v + divp

)
∥
∥
∥
∥

2

= ∥
∥∇(v − u)

∥
∥2
A

+
∫

Ω

�(u− v)2 dx = ‖|u− v‖|2,

where p =A∇u.
However, M1(v, y) has an essential drawback: if � is small, then the second term

has a large multiplier, which makes the whole estimate sensitive with respect to the
residual

R(v, y) := f − �2v + divy.

In those problems where � has small (or zero) values in one part of Ω and large in
the other one, the majorant M1(v, y) may lead to a considerable overestimation of
the error. In an opposite case, M2(v, y) is robust with respect to small � but it may
have an inherent gap between the left and right-hand sides of (3.29).

In order to overcome the above difficulties and obtain an estimate that possesses
positive features of the above estimates, we apply another modus operandi for the
deviation of an upper bound of ‖u− v‖ suggested in [RS06].

Let us represent the first integral on the right-hand side of (3.23) as follows
∫

Ω

R(v, y)w dx =
∫

Ω

αR(v, y)w dx +
∫

Ω

(1 − α)R(v, y)w dx,

where α ∈ L∞[0,1](Ω) := {α ∈ L∞(Ω) | 0 ≤ α(x) ≤ 1} is a weight function at our
disposal. Then, we have

∣
∣
∣
∣

∫

Ω

R(v, y)w dx

∣
∣
∣
∣≤

∥
∥
∥
∥
α

�
R(v, y)

∥
∥
∥
∥‖�w‖ + C

∥
∥(1 − α)R(v, y)

∥
∥‖∇w‖A.
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By setting w = u− v we arrive at the estimate

‖|u− v‖|2 ≤ (C∥∥(1 − α)R(v, y)
∥
∥+ ‖A∇v − y‖A−1

)2 +
∥
∥
∥
∥
α

�
R(v, y)

∥
∥
∥
∥

2

. (3.30)

We denote the right-hand side of (3.30) by M
2
α(v, y). It is easy to see that (3.28) and

(3.29) are particular cases of (3.30).
Squaring both parts of (3.25) and (A.6) yields

‖|u− v‖|2 ≤ C(1 + β)
∥
∥(1 − α)R(v, y)

∥
∥2

+ 1 + β

β
‖A∇v − y‖2

A−1 +
∥
∥
∥
∥
α

�
R(v, y)

∥
∥
∥
∥

2

, (3.31)

where β is an arbitrary positive number.
Minimization of the right-hand side of (3.31) with respect to α is reduced to the

following auxiliary variational problem: find α̂ ∈ L∞[0,1](Ω) such that

Υ (̂α)= inf
α∈L∞[0,1](Ω)

Υ (α), (3.32)

where

Υ (α) :=
∫

Ω

(
α2P(x)+ (1 − α)2Q(x)

)
dx,

and P and Q are nonnegative integrable functions, which do not vanish simultane-
ously. It is easy to find that for almost all x

α̂(x)= Q

P +Q
∈ [0,1], Υ (̂α)= PQ

P +Q
.

In our case, P = ρ−2R2(v, y) and Q= C2(1 + β)R2(v, y). Therefore, we obtain

‖|u− v‖|2 ≤
∫

Ω

C2(1 + β)

C2�2(1 + β)+ 1
R2(v, y)dx + 1 + β

β
‖A∇v − y‖2

A−1

:= M
2
α̂(v, y,β). (3.33)

The majorant M
2
α̂(v, y,β) is robust with respect to small values of ρ and, at the same

time, it remains sharp. To prove the latter fact, we note that

M
2
(v,p,β)=

∫

Ω

(
C2(1 + β)

C2�2(1 + β)+ 1
�4(v − u)2 + 1 + β

β

∣
∣∇(v − u)

∣
∣2
)

dx
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and the majorant tends to the exact error norm if β → +∞. Therefore,

inf
y∈H(Ω,div),

β>0

M
2
(v, y,β)≤ inf

β>0
M

2
α̂(v,p,β)= ‖|u− v‖|2,

and we see that the estimate (3.33) has no “gap”. The structure of the first term of
(3.33) is such that it is not sensitive with respect to small values of �.

It is easy to see that for any β > 0 the majorant vanishes if and only if

y =A∇v and R(v, y)= 0.

Since v satisfies the boundary conditions, these relations mean that v = u. Hence,
we arrive at the following conclusion.

Mα̂(v,p,β) is a guaranteed upper bound of the distance between u and a
function v ∈ V0 + u0. It vanishes if and only if v coincides with u and y

coincides with the exact flux p = A∇u. Different y and β lead to different
upper bounds. By selecting these parameters, we can find an upper bound of
the error arbitrarily close to the exact value of the error.

3.2.2 Minimal Deviation from the Exact Solution

Now, we wish to find a guaranteed lower bound of the distance between the exact
solution and a given function. In many cases, such type estimates also contain im-
portant information. They allow us to verify the efficiency of error majorants and
are important in analysis of modeling errors and errors generated by indeterminate
data. In this section, we consider a way of deriving such error estimates.

The simplest method of deriving error minorants is based on the relation (B.72),
which holds for problems with quadratic energy functionals. In our case, this func-
tional is J (w)= 1

2‖|w‖|2 − ∫
Ω
fw dx, and it is easy to show that

1

2
‖|u− v‖|2 = J (v)− J (u), (3.34)

where v is an arbitrary function in V0 + u0. Since u is the minimizer of I , we know
that J (u)≤ J (v +w) for any w ∈ V0. Therefore,

1

2
‖|u− v‖|2 ≥ J (v)− J (v +w)

= 1

2
‖v‖2

A + ρ

2
‖v‖2 −

∫

Ω

f v dx
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− 1

2
‖v +w‖2

A − ρ

2
‖v +w‖2 +

∫

Ω

f (v +w)dx

= −1

2
‖w‖2

A − ρ

2
‖w‖2 −

∫

Ω

(A∇v · ∇w + ρvw)dx +
∫

Ω

fw dx.

Hence, we find that for any w ∈ V0,

‖|u− v‖|2 ≥ −2
∫

Ω

(A∇v · ∇w + ρvw)dx + 2
∫

Ω

fw dx − ‖|w‖|2

=: M2(v,w). (3.35)

If we set w = u− v, then
∫

Ω

fw dx =
∫

Ω

(
A∇u · ∇(u− v)+ ρu(u− v)

)
dx,

and (3.35) holds as the equality. This fact means that the minorant M(v,w) is the-
oretically sharp, and for any v there exists w such that the minorant coincides with
the exact error.

Error minorant M2(v,w) shows a guaranteed lower bound of the error for any
function w ∈ V0. It involves only known data and, therefore, is fully com-
putable. By a proper selection of w, we can find a lower bound arbitrarily
close to the exact error.

3.2.3 Particular Cases

If � = 0, then the problem (3.18)–(3.20) has the form

−divA∇u = f in Ω, (3.36)

u = u0 on Γ, (3.37)

and estimates (3.29) and (3.33) have simplified forms

∥
∥∇(u− v)

∥
∥
A

≤ ‖A∇v − y‖A−1 + C‖f + divy‖ := MdivA∇(v, y) (3.38)
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and

∥
∥∇(u− v)

∥
∥2
A

≤ C2(1 + β)‖f + divy‖2 + 1 + β

β
‖A∇v − y‖2

A−1

:= M
2
divA∇(v, y,β), (3.39)

respectively. For the problem (3.36)–(3.37), the minorant has the form

∥
∥∇(u− v)

∥
∥2
A

≥ 2
∫

Ω

(fw −A∇v · ∇w)dx − ‖|w‖|2 := M2
divA∇(v,w). (3.40)

If A= I , then we arrive at the Poisson problem

Δu+ f = 0 in Ω, (3.41)

u = u0 on Γ, (3.42)

for which two-sided bounds of the error are presented by the relations

M2
Δ(v,w)≤ ∥∥∇(u− v)

∥
∥2 ≤ M

2
Δ(v, y,β), ∀w ∈ V0, y ∈H(Ω,div), (3.43)

where β is an arbitrary positive number,

M2
Δ(v,w) :=

∫

Ω

(
2fw − 2∇v · ∇w − |∇w|2)dx, (3.44)

and

M
2
Δ(v, y,β) := C2

FΩ(1 + β)‖f + divy‖2 + 1 + β

β
‖∇v − y‖2

A. (3.45)

Also, we can use the estimate
∥
∥∇(u− v)

∥
∥
A

≤ MΔ(v, y) := CFΩ‖f + divy‖ + ‖∇v − y‖. (3.46)

It is easy to prove that the exact lower bound of the majorant MΔ(v, y) (and of

M
2
Δ(v, y,β)) with respect to y is attained on a subspace of H(Ω,div). Indeed, for

any v ∈ V0 (and any β > 0) the majorant is convex, continuous, and coercive on
H(Ω,div). By known results in the calculus of variations (e.g., see Theorem B.5),

we conclude that a minimizer ȳ(v) exists. Since M
2
Δ(v, y,β) is a quadratic func-

tional, the corresponding minimizer ȳ (which depends on v and β) is unique.

Lemma 3.1 Let ȳ be such that

MΔ(v, ȳ)= inf
y∈H(Ω,div)

MΔ(v, y). (3.47)

There exists w̄ ∈ V0 such that ȳ = ∇w̄.
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Proof For any y0 from the set of solenoidal fields S(Ω), we have

‖∇v − ȳ‖ +CFΩ‖div ȳ + f ‖ ≤ ‖∇v − y0 − ȳ‖ +CFΩ‖div ȳ + f ‖.

From the above, we conclude that for any y0,

∫

Ω

ȳ · y0 dx + 1

2
‖y0‖2 ≥ 0.

This inequality holds if and only if

∫

Ω

ȳ · y0 dx = 0, ∀y0 ∈ S(Ω). (3.48)

Recall that ȳ ∈ L2(Ω,Rd) admits the decomposition ȳ = ∇w̄ + τ0, where w̄ ∈ V0

and τ0 is a solenoidal field. Set y0 = τ0. From (3.48), it follows that ‖τ0‖ = 0. Thus,
ȳ = ∇w̄. �

Remark 3.1 If Yk is a sequence of finite dimensional subspaces of H(Ω,div), which
is limit dense in this space, then a sequence of the corresponding minimizers {yk}
converges to the exact flux (see [Rep08, RSS03]). In view of this fact, the integrand

of M
2
Δ(v, y,β) can be used as an error indicator.

3.2.4 Problems with Mixed Boundary Conditions

Diffusion problems are often considered with the mixed boundary conditions. Con-
sider the problem

−div(A∇u) = f in Ω, (3.49)

u = u0 on ΓD, (3.50)

n ·A∇u+ κ(x)u = F on ΓN, (3.51)

where κ(x) ≥ 0 and F ∈ L2(ΓN). For this case, estimates of the deviation from u

can be derived from the integral identity

∫

Ω

(
A∇u · ∇w + �2uw

)
dx +

∫

ΓN

κuw ds

=
∫

Ω

fw dx +
∫

ΓN

Fw dx, ∀w ∈ V0 := {w ∈H 1(Ω) |w = 0 on ΓD
}

(3.52)

by the method discussed in the previous section (see also Sect. 4.2 in [Rep08]).
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Let v ∈ V0 + u0. Then, (3.52) infers the relation
∫

Ω

(
A∇(u− v) · ∇w + �2(u− v)w

)
dx +

∫

ΓN

κ(u− v)w ds

=
∫

Ω

(
fw − �2vw −A∇v · ∇w

)
dx −

∫

ΓN

(κv − F)w ds

=
∫

Ω

R(v, y)w dx +
∫

Ω

(y −A∇v) · ∇w dx −
∫

ΓN

(y · n+ κv − F)w ds,

(3.53)

where R(v, y)= f − �2v + divy. Set w = u− v, then (3.53) implies the estimate

‖|u− v‖| ≤
(

‖A∇v − y‖2
A−1 +

∥
∥
∥
∥
R(v, y)

�

∥
∥
∥
∥

2

+
∥
∥
∥
∥
y · n+ κv − F√

κ

∥
∥
∥
∥

2

ΓN

)1/2

, (3.54)

where

‖|w‖|2 := ‖∇w‖2
A + ‖�w‖2 + ‖√κw‖2

ΓN
. (3.55)

The right-hand side of (3.54) presents the simplest error majorant for the problem
with mixed Dirichlét–Robin (or Dirichlet–Neumann) boundary conditions. How-
ever, if κ and/or � vanish (or attain very small values), then (3.54) cannot be applied.
To avoid this drawback, we apply the estimates

∫

Ω

R(v, y)w dx ≤ CFΩ

c1

∥
∥R(v, y)

∥
∥‖∇w‖A,

and
∫

ΓN

(y · n+ κv − F)w ds ≤ Ctr

c1
‖y · n+ κv − F‖‖∇w‖A,

where CF and Ctr come from the inequalities (see Sects. A.2.2 and A.3.2)

‖w‖ ≤ CFΩ‖∇w‖, ∀w ∈ V0, (3.56)

and

‖w‖ΓN ≤ Ctr‖∇w‖, ∀w ∈ V0. (3.57)

Then, we obtain another upper bound:

∣
∣[u− v]∣∣≤ ‖|A∇v − y‖|∗ + CFΩ

c1

∥
∥R(v, y)

∥
∥+ Ctr

c1
‖y · n+ κv − F‖ΓN , (3.58)

which is not sensitive with respect to small values of � and κ .

Remark 3.2 By combining the methods used for the derivation of (3.54) and (3.58),
one can deduce a more general estimate (an analog of (3.30)) valid for the case of
mixed Dirichlét–Robin boundary condition.
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3.2.5 Estimates of Global Constants Entering the Majorant

We note that the constants CFΩ and Ctr in (3.56) and (3.57) (or suitable upper
bounds of them) must be known. If Γ = ΓN , then an upper bound of CFΩ is easy
to find (e.g., by taking the lowest eigenvalue of the operator Δ in the rectangular
domain encompassing Ω ; cf. (A.30)).

In general, this problem is equivalent to finding a lower bound of the minimal
eigenvalue associated with the corresponding differential operator. It is well-known
that upper bounds of the eigenvalues can be computed fairly easily with the help of
Rayleigh quotients. However, the problem of finding explicitly computable lower
bounds for the minimal eigenvalue of a selfadjoint differential operator in an ar-
bitrary domain is a complicated problem which still awaits a complete solution.
Several methods have been suggested to find the lower bound of the minimal posi-
tive eigenvalue. One group of methods, (see, e.g., [FW60, Gou57]) is mainly based
on various extensions of the set of admissible functions. If the smallest eigenvalue
of the extended problem is known (or computable), then we obtain a certain lower
bound.

Another group of methods uses the so-called positive (positone) solutions and
the following statement (see, e.g., [KC67]).

Theorem 3.1 Let Lu= −divA∇u+a0u be a uniformly elliptic operator with con-
tinuously differentiable coefficients and boundary conditions αu+ β∇u · n = 0 on
Γ , where n is the unit outward normal to Γ . Assume that we have a positive function
ρ(x) ∈ C(Ω) and a function φ(x) ∈ C2(Ω) such that Bφ = 0 on Γ (where B is the
operator of boundary conditions) and

Lφ − λρφ > 0 in Ω. (3.59)

Then, φ(x) > 0 if and only if λ < λ1, where λ1 is the minimal eigenvalue of the
problem

Lφ − λρφ > 0 in Ω, (3.60)

Bφ = 0 on Γ. (3.61)

This theorem opens a way of finding guaranteed minorants of eigenvalues. How-
ever, in practice this way is difficult to realize because it is necessary to construct a
function in C2 which simultaneously satisfies (3.59) and the strict positivity condi-
tion. For nonconvex domains with piecewise smooth boundaries this may be a very
complicated task.

Another method was suggested in [KS78, KS84], where it was shown that if λ∗
and u∗ are approximations of an eigenvalue and an eigenfunction and w is the exact
solution of the problem

Δw =Δu∗ + λ∗u∗ in Ω (3.62)

with the boundary condition w = u∗ of Γ , then
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min
l

∣
∣
∣
∣
λl − λ∗
λl

∣
∣
∣
∣≤

‖w‖2
Ω

‖u∗‖2
Ω

. (3.63)

Practical application of this method also leads to difficult problems. First, we need
the exact solution of the auxiliary problem (3.62). Certainly, there is an obvious
idea to bypass this difficulty, using an approximate solution w̃ of (3.62) instead of w.
Since the error ‖∇(w̃−w)‖ is controlled by the error majorant (3.45), we can easily
obtain a certain lower bound of the eigenvalue. However, there is another condition:
we must guarantee that λ1 is the eigenvalue closest to λ∗. For problems in geometri-
cally complicated (e.g., multiconnected) domains, this condition can hardly be guar-
anteed, so that the corresponding estimates cannot be considered as fully reliable.

Below we discuss a simple practical algorithm by which a suitable value of the
constant CFΩ can be found numerically with the help of standard minimization
methods developed for convex functionals. Certainly, this method also does not gen-
erate fully reliable bounds of the constant, but in the vast majority of cases gives
approximate bounds, the accuracy of which is quite sufficient for engineering com-
putations.

To find a bound of CFΩ we consider the functional

Gμ(w) :=
∫

Ω

(|∇w|2 −μ|w|2)dx.

It is clear that if μ< λ1, where λ1 = 1/C2
FΩ , then the functional Gμ(w) is coercive

and nonnegative on V0. This fact suggests a way of finding approximate values of
CFΩ by minimizing Gμ(w) on some subspace(s) of V0h (the latter subspaces can
be constructed by, e.g., finite element or spectral approximations). In the process of
minimization, we can obtain either a sequence of positive numbers (which tends to
zero) or a sequence that tends to −∞. In the latter case, on some step Gμ attains
negative values which shows that μ>μ1.

The algorithm starts with some small μ = μ0 and minimizes Gμ on V0h (e.g.,
with the help of a gradient or relaxation type method). If the minimal value is zero,
then we increase μ with the step μinc. If minimization generates negative values of
the functional, then the value of μ0 must be diminished. We increase the value of μ
with smaller steps until the minimization process generates a negative value again.
The previous value of μ is taken as an approximation of λ1. The initial value μ0 can
be taken as κλ̃1, where 0 < κ � 1 and λ̃1 is a coarse estimate of the first eigenvalue
(which is computed, e.g., with the help of Rayleigh quotients). This simple algo-
rithm usually generates quite good values of the constant CFΩ (which is inverse to√
μ). Similar constants arising in functional inequalities associated with other dif-

ferential operators can be approximately evaluated by the same method. Also, we
can use well-known numerical methods for eigenvalues supplied with error indica-
tors and mesh adaptation (see, e.g., [HWZ10]).

Recently, two new methods have been developed. In [KR13, Kuz09], guaran-
teed lower bounds for eigenvalues are derived within the framework of a domain
decomposition method using overlapping domains. A different method based on in-
tegration by parts relations for adjoint differential operators is presented in [Rep12].
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3.2.6 Error Majorants Based on Poincaré Inequalities

Now we consider another method, which allows us to deduce fully computable and
guaranteed error bounds. It uses Poincaré type inequalities for subdomains. For the
sake of simplicity, we discuss it in application to the problem

divA∇u+ f = 0 in Ω, (3.64)

u = u0 on ΓD, (3.65)

∇u · n = F on ΓN. (3.66)

A more detailed discussion of this error estimation method and examples related to
convection-diffusion, elasticity, and general linear elliptic problems is presented in
[Rep08] (see Sects. 3.5.3, 4.3.3, and 7.1.2).

Similarly to previous cases, we use the relation
∫

Ω

A∇(u− v) · ∇w dx =
∫

Ω

(fw −A∇v · ∇w)dx +
∫

ΓN

Fw ds

=
∫

Ω

(divy + f )w dx +
∫

Ω

(y −A∇v) · ∇w dx

−
∫

ΓN

(y · n− F)w ds, (3.67)

which follows from the integral identity and contains a “free” function y ∈
H(Ω,div). Let y be selected such that y · n = F on ΓN (usually this condition
is easy to satisfy). Consider the first term on the right-hand side of (3.67). Assume
that Ω is decomposed into a set T of subdomains Ωi (in particular, Ωi may coincide
with finite elements) with Lipschitz continuous boundaries (see Fig. 3.3), i.e.,

Ω =
⋃

i=1,...,N

Ωi, and Ωi ∩Ωj = ∅, if i �= j.

It is not difficult to see that

∫

Ω

(divy + f )w dx =
N∑

i=1

∫

Ωi

(divy + f )w dx

=
N∑

i=1

(∫

Ωi

(
divy + f − {|divy + f |}Ωi

)
w dx

+ {|divy + f |}Ωi

∫

Ωi

w dx

)

. (3.68)

If we impose the conditions

{|divy + f |}Ωi
= 0, ∀i = 1,2, . . . ,N, (3.69)
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Fig. 3.3 Decomposition of
Ω into subdomains

then

∫

Ω

(divy + f )w dx =
N∑

i=1

∫

Ωi

(divy + f )w dx

=
N∑

i=1

∫

Ωi

(divy + f )
(
w − {|w|}Ωi

)
dx. (3.70)

We recall that by (A.19),
∥
∥w − {|w|}Ωi

∥
∥
Ωi

≤ CPΩi
‖∇w‖Ωi

. (3.71)

From (3.70) and (3.71), we deduce the estimate

∫

Ω

(divy + f )w dx ≤
N∑

i=1

CPΩi
‖divy + f ‖Ωi

‖∇w‖Ωi

≤
(√√
√
√

N∑

i=1

‖divy + f ‖2
Ωi
C2
PΩi

)

‖∇w‖. (3.72)

The term
∫
Ω
(y−A∇v) ·∇w dx is estimated by (3.24). We set w = u−v, use (3.67)

and obtain

∥
∥∇(u− v)

∥
∥
A

≤ ‖A∇v − y‖A−1 + 1√
c1

√√
√
√

N∑

i=1

C2
PΩi

‖divy + f ‖2
Ωi
. (3.73)

Instead of the constant CFΩ , this estimate involves constants CPΩi
associated with

the subdomains Ωi .
Consider a special but important case, where Ωi are convex. Then, CPΩi

is esti-
mated from the above by diamΩiπ

−1 and we obtain

∥
∥∇(u− v)

∥
∥
A

≤ ‖A∇v − y‖A−1 + 1√
c1

√√
√
√

N∑

i=1

(diamΩi)2

π2
‖divy + f ‖2

Ωi
. (3.74)
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For example, let the subdomains be associated with a simplicial decomposition Th
such that

μ1h≤ diamTi ≤ μ2h, ∀i = 1,2, . . . ,N, (3.75)

for any simplex Ti ∈ Th. Define the constant

CmaxP = max
i

{CPΩi
} = μ2h

π
.

For regular triangulations, the constant CmaxP is of the same order as all other con-
stants CPΩi

, so that without a significant overestimation we can replace all these
constants by CmaxP . Then, we arrive at the error majorant

∥
∥∇(u− v)

∥
∥
A

≤ ‖A∇v − y‖A−1 + μ2h

π
√
c1

‖divy + f ‖. (3.76)

We recall that such type estimates provide guaranteed upper bounds provided that
the conditions (3.69) are satisfied together with the Neumann condition y · n = F

on ΓN . If N is not large, then this integral balancing of the flux can be performed
fairly easily.

However, if Ωi = Ti , where Ti are finite elements, then N may be very large. In
this case, exact satisfaction of all conditions (3.69) may generate a technical prob-
lem. For relatively simple elliptic problem (3.64)–(3.66), these difficulties can be
overcame within the framework of the dual mixed method (see below). However,
in general the satisfaction of a large amount of integral type conditions may be an
obstacle. One way of solving it is discussed below.

Assume (for the sake of simplicity only) that Γ = ΓD . Then, the desired flux y

can be constructed by the dual mixed method (see Sect. B.4.4.2), which gives a pair
of functions (̂uh, p̂h) ∈ V̂h × Q̂Fh, satisfying the system

∫

Ω

(
A−1p̂h · q̂h + ûh div q̂h

)
dx = g(u0, q̂h), ∀q̂h ∈ Q̂0h, (3.77)

∫

Ω

(div p̂h + f )̂vh dx = 0, ∀v̂h ∈ V̂h. (3.78)

Here Vh contains piecewise constant functions (ph = const on Th), and Qh is con-
structed with the help of Raviart–Thomas elements of the lowest order. We assume
that the finite element mesh satisfies (3.75). From (3.78) we find that

∫

Th

(div p̂h + f )dx = 0, ∀Th.

This means that p̂h satisfies (3.69) (if we identify Ωi with elements). We use p̂h
instead of y, apply (3.76) and deduce the estimate

∥
∥∇(u− v)

∥
∥
A

≤ ‖A∇v − p̂h‖A−1 + μ2h

π
‖div p̂h + f ‖, (3.79)
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which is valid for any conforming approximation v ∈ V0 + u0. Obviously, ûh can-
not be considered as a conforming approximation. Let Gh : V̂h → V0 + u0 be a
smoothing operator. It is easy to construct such an operator using, e.g., the methods
discussed in the context of gradient-averaging. Then, we obtain the estimate

∥
∥∇(u−Ghûh)

∥
∥
A

≤ ‖A∇Ghûh − p̂h‖A−1 + μ2h

π
‖div p̂h + f ‖, (3.80)

which gives a computable upper bound for the dual mixed approximation.

3.2.7 Estimates with Partially Equilibrated Fluxes

If we manage to find a vector-valued function yf such that divyf + f = 0 and yf
is close (in L2) to the exact flux p, then the estimates (3.39), (3.58), and (3.74) are
reduced to the hypercircle estimate

∥
∥∇(u− v)

∥
∥
A

≤ ‖A∇v − yf ‖A−1 . (3.81)

However, even in this rather simple elliptic problem, getting an exactly equilibrated
flux close to the exact one may not be a simple task. In more difficult problems (lin-
ear elasticity, models with convection and diffusion, nonlinear elliptic equations)
such requirements are too demanding to be satisfied in real life computations. Nev-
ertheless, various procedures have been invented in order to construct partially equi-
librated (balanced) fields (see, e.g., [LL83]). Being used in (3.81) they lead to error
indicators (which are often very efficient). Such procedures can be easily used in er-
ror majorants, e.g., in (3.39), where they (unlike (3.81)) result in guaranteed upper
bounds of errors. In this section, we briefly discuss estimates of this type.

Assume that we have a vector-valued function yf̄ such that

divyf̄ + f̄ = 0, (3.82)

where f̄ is close to f in L2-norm. In this case, we say that yf̄ is almost (or partially)

equilibrated. Set y = yf̄ + τ0, where τ0 ∈ S(Ω). Then, divy + f̄ = 0. Using y in
(3.39), we arrive at the estimate

∥
∥∇(u− v)

∥
∥
A

≤ ‖A∇v − τ0 − yf̄ ‖A−1 + C‖f − f̄ ‖. (3.83)

In particular, if we represent τ0 in the form τ0 = curlη (where η is an arbitrary
vector-valued function in H(Ω, curl)), then we obtain

∥
∥∇(u− v)

∥
∥
A

≤ ‖τ − curlη‖A−1 + C‖f − f̄ ‖, (3.84)

where τ = ∇v − yf̄ is the given vector-valued function. This estimate has practi-

cal sense, provided that ‖f − f̄ ‖ is significantly smaller than the tolerance level
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accepted for approximations. Then, finding a sharp upper bound is reduced to the
problem

min
η∈H(Ω,curl)

‖τ − curlη‖A−1, (3.85)

which can be solved numerically using a suitable finite dimensional subspace for η
of H(Ω, curl).

A modification of (3.74) follows similar ideas. Let f̄ denote the function defined
by mean values of f on the subdomains Ωi , i.e., fi(x)= {|f |}Ωi

if x ∈Ωi . Assume
that we have yf̄ satisfying (3.82) and such that

{|divyf̄ + f̄ |}Ωi
= 0, i = 1,2, . . . ,N. (3.86)

Then,
∥
∥∇(u− v)

∥
∥
A

≤ ‖∇v − τ0 − yf̄ ‖A−1 + e(f̄ ), (3.87)

where

e(f̄ ) := 1√
c1

(∑

i

C2
P (Ωi)‖f − fi‖2

Ωi

)1/2

.

Since the term e(f̄ ) is easily computable, minimization of the error majorant is
reduced to (3.85). In particular, we can apply this estimate to approximations of u
and p computed by the dual mixed method (see Sect. B.4.4).

It is easy to show that e(f̄ ) represents the error generated by local averaging
of f . Indeed, let ū be the exact solution of the problem with f̄ . Then,

∫

Ω

A∇(u− ū) · ∇w dx =
∫

Ω

(fw −A∇ū · ∇w)dx =
∫

Ω

(f − f̂ )w dx.

Hence,

∥
∥∇(u− ū)

∥
∥2
A

=
N∑

i=1

∫

Ωi

(f − fi)(u− ū)dx.

Since
∫

Ωi

(f − fi)dx = 0, ∀i = 1,2, . . . ,N,

we find that

N∑

i=1

∫

Ωi

(f − fi)(u− ū)dx =
N∑

i=1

∫

Ωi

(f − fi)(u− ū− ci)dx,
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where ci are arbitrary constants. We set ci = {|u − ū|}Ωi
and apply the estimate

(A.23), which yields

‖u− ū− ci‖Ωi
≤ CPΩi

∥
∥∇(u− ū)

∥
∥
Ωi

≤ CPΩi√
c1

∥
∥∇(u− ū)

∥
∥
A,Ωi

.

Then,

∥
∥∇(u− ū)

∥
∥2
A

≤ 1

c1

N∑

i=1

CPΩi
‖f − fi‖Ωi

∥
∥∇(u− v)

∥
∥
A,Ωi

≤ 1

c1

(
N∑

i=1

C2
PΩi

‖f − fi‖2
Ωi

)1/2
∥
∥∇(u− v)

∥
∥
A

and, therefore,
∥
∥∇(u− ū)

∥
∥2
A

≤ e(f̄ ). (3.88)

If all the subdomains are convex, then e(f̄ ) is an easily computable quantity, which
can be computed a priori (in principle, we can view e(f̄ ) as a modeling error gen-
erated by simplification of f ). Depending on the desired accuracy ε, we may have
two different situations.

If ε � e(f̄ ), then the boundary value problem with f̄ can be efficiently used
instead of the original one. In the context of finite element approximations, the value
of e(f̄ ) on a particular mesh is easy to compute. Since this quantity is proportional to
h, we can always detect when the mesh is so fine that we can ignore local oscillations
of f within the accepted tolerance level.

On the other hand, if e(f̄ ) is of the order ε or larger, then the estimate (3.87)
cannot estimate the error efficiently because it contains an irremovable gap (which
value is unacceptably large). In this case, we advise the use of the basic estimates
(3.38) or (3.74).

3.3 Error Control Algorithms

Error majorants M1(v, y), M2(v, y), Mα̂(v, y), MdivA∇(v, y) and analogous majo-
rants for other elliptic boundary value problems can be used in two different ways:

(a) Finding sharp error bounds by minimization of the majorant.
(b) Getting a preliminary (coarse) error bound with minimal expenditures.

If we really need a profound investigation of errors encompassed in the numer-
ical solution (in terms of global and local norms), then it is necessary to select the
method (a). In this case, error control is reduced to a quadratic type minimization
problem, the efficient solution of which requires special methods (some of them are
discussed below).
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If we need only preliminary knowledge on the accuracy of a computed solution,
then we may apply computationally light procedures and obtain coarse (but guaran-
teed) error bounds within the framework of (b). Below we discuss both ways.

3.3.1 Global Minimization of the Majorant

The sharpest estimates of the error can be obtained if the majorant is minimized
with respect to y over a certain subspace Yτ ⊂ H(Ω,div). We discuss this method
with the paradigm of the Poisson problem (3.64)–(3.66). In general, Yτ may be
constructed using a mesh Tτ that differs from Th. Then,

∥
∥∇(u− uh)

∥
∥≤ inf

yτ∈Yτ
{‖∇uh − yτ‖ +CFΩ‖divyτ + f ‖}.

The wider Yτ is, the sharper the upper bound obtained. A detailed discussion of
the minimization methods and numerical results can be found in [FNR03, NR04,
Rep99b, RSS03] and some other publications cited therein. We emphasize that the
motivation to spend resources for the minimization with respect to y is not solely
to find a sharp upper bound for the error, but to obtain a good approximation of the
flux itself. Typically, reconstructions of the flux obtained by this method are close
to the best possible on a given mesh (generating the subspace Yτ ).

If we intend to define yτ by minimization of the majorant, then it is preferable to
represent the problem in the quadratic form:

min
β>0

min
yτ∈Yτ

M
2
Δ(v, yτ ;β),

where

M
2
Δ(v, yτ ;β)= (1 + β)‖∇v − yτ‖2 +

(

1 + 1

β

)

C2
FΩ‖divyτ + f ‖2.

We recall that two terms of the error majorant are related to the decomposed form of
the equation. The first part evaluates violations of the relation (3.18) where A = I .
We denote it

M
D
Δ := ‖y − ∇v‖2. (3.89)

The second part represents the error in the balance equation, i.e., (3.18), where
� = 0. We denote this part by

M
Eq
Δ (yτ ) := ‖divyτ + f ‖2. (3.90)

Therefore, in the process of minimization we also obtain information about these
two physically meaningful parts of the error.
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If the majorant is minimized with respect to the positive scalar β , then the mini-
mum is attained at

βmin :=
(
C2
FΩ‖f + divy‖2

‖y − ∇v‖2

)1/2

.

If β is fixed, then the necessary condition for the minimizer y can be computed as
follows. Consider the variation of MΔ, namely,

M
2
Δ(v, y+ tμ;β)=

(

1+ 1

β

)

C2
FΩ‖f +divy+ t divμ‖2

V + (1+β)‖y+ tμ−∇v‖2,

where μ ∈H(div,Ω). It is easy to see that

1

2

dM
2
Δ(v, y + tμ;β)

dt
=
(

1 + 1

β

)

C2
FΩ

∫

Ω

(f + divy + t divμ)divμdx

+ (1 + β)

∫

Ω

(y + tμ− ∇v) ·μdx

and the condition

dM
2
Δ(v, y + tμ;β)

dt

∣
∣
∣
∣
t=0

= 0

means that

C2
FΩ

∫

Ω

divy divμdx + β

∫

Ω

y ·μdx

= −C2
FΩ

∫

Ω

f divμdx + β

∫

Ω

∇v ·μdx. (3.91)

Assume that y ∈ span{φ1, φ2, . . . , φN } =: Yτ ⊂ H(div,Ω), i.e., y = ∑N
i=1 γiφ

i .
The condition (3.91) leads to a system of linear equations,

N∑

i=1

γi

(

C2
FΩ

∫

Ω

divφi divφj dx + β

∫

Ω

φi · φj dx

)

= −C2
FΩ

∫

Ω

f divφj dx + β

∫

Ω

∇v · φj dx, j = {1, . . . ,N}.

Let

{Sij }Ni,j=1 =
∫

Ω

divφi divφj dx, {Kij }Ni,j=1 =
∫

Ω

φi · φj dx, (3.92)

{zj }Nj=1 = −
∫

Ω

f divφj dx, and {gj }Nj=1 =
∫

Ω

∇v · φj dx. (3.93)
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Then, the system can be written in the matrix form

(
C2
FΩ

c1
S + βK

)

γ = C2
FΩ

c1
z+ βg, (3.94)

where γ is the vector of the unknown coefficients. We define γ and compute the
corresponding value of the majorant.

M
2
Δ(v, y,β) =

(

1 + 1

β

)

C2
FΩ

(
γ T Sγ − 2γ T z+ ‖f ‖2)

+ (1 + β)
(
γ T Kγ − 2γ T g + ‖∇v‖2).

These observations motivate Algorithm 3.2, in which the majorant is minimized by
means of an iteration procedure. It begins with assigning β a certain value (e.g.,
one). Then, the majorant is minimized with respect to y (which amounts to solv-
ing (3.94)). Using this solution, we recompute both parts of the majorant and find
new β by minimizing the majorant with respect to this parameter. Then, the process
is repeated. In the algorithm, the amount of iteration steps is limited by the number
Imax. In practice, other stopping criteria can be used (e.g., iterations are terminated
if relative changes between the values of the majorant on two consequent steps be-
come insignificant or if the value of the majorant has become smaller than some
predefined tolerance level). Numerical experiments show that usually five or six it-
eration steps are quite enough to obtain a very good approximation of the minimizer
y ∈ Yτ . Moreover, the required number of iterations is independent of N .

We recall that Yτ ⊂ H(Ω,div) can be constructed by standard piecewise affine
approximations of vector-valued functions. This is well motivated if Tτ coincides
with the mesh Th and v is a finite element approximation computed on this mesh.

Of course, any conforming subspaces of H(Ω,div) and V0 can be used. One can
use, e.g., higher order polynomials, local mesh refinements, etc. Moreover, all the
standard methods used to improve the quality of approximation and to accelerate
the solution process can be applied to (3.91), e.g., domain decomposition, multigrid
methods (see [Val09]), and isogeometric elements (NURBS, Non-Uniform Rational
B-spline; see [KT13]).

Example 3.3 Consider the model problem

−div(A∇u) = f in Ω, (3.95)

u = 0 on Γ, (3.96)

where

Ω := ((−1,1)× (0,1)
) \ ([−0.5,0.5] × [0,0.5]). (3.97)

We set A= I and consider the problem with the solution

u(x1, x2)= x2(x1 − 1)(x1 + 1)(x1 − 0.5)(x1 + 0.5)(x2 − 1)(x2 − 0.5).



3.3 Error Control Algorithms 73

Algorithm 3.2 Global minimization of the majorant
Input: v {Approximate solution}

φi {Basis functions}
Imax {Number of iteration steps}

Compute ‖f ‖2 and ‖∇v‖2.
Assemble matrices S and K , and vectors z and g as in (3.92)–(3.93)
β1 = 1
for k = 1 to Imax do

Solve the system

(
C2
FΩ

c1
S + βkK

)

γk+1 = C2
FΩ

c1
z+ βkg.

Compute two parts of the majorant:

M
Eq
Δ = γ T

k+1Sγk+1 − 2yTk+1z+ ‖f ‖2

M
D
Δ = γ T

k+1Kγk+1 − 2yTk+1g + ‖∇v‖2

Compute new value of β:

βk+1 =
(
C2
FΩM

Eq
Δ

M
D
Δ

)1/2

end for
M

2
Δ = (1 + 1

β
)C2

FM
Eq
Δ + (1 + β)M

D
Δ {Compute the majorant}

y =∑N
i=1 γiφi {Find the flux}

Output: M
2
Δ {Guaranteed upper bound of the error}

y {Reconstruction of the flux}

The approximation v is computed on an initial mesh, which generates the space
V 0

0 ⊂ V0 of piecewise affine functions (i.e., the space generated by first order
Courant elements) with dim(V 0

0 ) = 280. Spaces V k
0 ⊂ V0 are generated by mesh

refinements. The subspaces Y k ⊂ H(Ω,div) are created by means of the lowest
order Raviart–Thomas elements using the same mesh as for V k

0 .
The resulting upper bound is

MdivA∇
(
v, ykglo

)= inf
y∈Y k

MdivA∇(v, y),

and the lower bound is computed in accordance with the relation

‖|u− v‖|2 ≥ 2
(
J (v)− J (w)

)=: M2
divA∇(v,w), ∀w ∈ V0.
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Fig. 3.4 Efficiency of the
majorant and minorant, when
y and w are found in
consequently refined
subspaces

The approximate solution of the original problem on V k+1
0 we denote by wk+1

glo . In
Fig. 3.4 the corresponding efficiency indexes

I
(M,k)
eff := MdivA∇(v, ykglo)

‖|u− v‖| and I
(M,k)

eff := MdivA∇(v,wk+1
glo )

‖|u− v‖|
are depicted. It is easy to see that both of them tend to one, as the subspaces for y
and w are improved.

Other details are shown in Table 3.3. This example illustrates the “sharpness
property” of the majorant and minorant, which can be proved theoretically (see,
e.g., [NR04]). In other words, it shows that the majorant (minorant) converges to
the exact error from the above (below), if we increase computational efforts.

3.3.2 Getting an Error Bound by Local Procedures

Let V0h ⊂ V0 be a finite dimensional space constructed with the help of finite ele-
ment approximations. For example, V0h may contain piecewise affine finite element
approximations generated by the triangulation Th. Assume that vh ∈ V0h is an ap-
proximate solution of the problem Δu+f = 0 with the boundary condition u= u0.

Table 3.3 Refinement of subspaces of y and w

k

0 1 2 3 4

dim(V k+1
0 ) 1047 4045 15897 63025 250977

dim(Y k) 767 2998 11852 47128 187952

MdivA∇(v, ykglo) 0.0229 0.0154 0.0120 0.0105 0.0097

MdivA∇(v,wk+1
glo ) 0.0078 0.0087 0.0090 0.0090 0.0090

I
(M,k)
eff 2.5282 1.6982 1.3283 1.1586 1.0779

I
(M,k)

eff 0.8621 0.9671 0.9918 0.9980 0.9995
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In particular, vh may coincide with the Galerkin approximation uh ∈ V0h + u0 de-
fined by the relation

∫

Ω

∇uh · ∇wh dx =
∫

Ω

fwh dx, ∀wh ∈ V0h. (3.98)

Also, it may be any other approximation which differs from uh owing to the pres-
ence of a numerical integration, roundoff, or other errors. Using vh, we find a rough
approximation of the flux

ph := ∇vh ∈ L2(Ω,Rd
)
. (3.99)

Generally, ph does not belong to H(Ω,div), and we cannot directly substitute
y = ph in the majorant MΔ(uh, y). For this reason, it is necessary to regularize ph
by a post-processing operator Gh : L2(Ω,Rd) → H(Ω,div). After that, we obtain
a vector-valued function Ghph, which yields an easily computable estimate

∥
∥∇(u− uh)

∥
∥≤ ‖∇uh − Ghph‖ +CFΩ‖div Ghph + f ‖. (3.100)

The quality of the upper bound given by (3.100) depends on the properties of
the post-processing operator used. In Sect. 2.2.2, we have discussed main classes
of post-processing (gradient-averaging) operators. Any of them can be applied to
improve ph. In particular, we recommend gradient-averaging based on low order
Raviart–Thomas elements.

If the value of the term ‖div GRTph + f ‖ is too large (in comparison with the
term ‖∇uh − GRTph‖), then we can apply partial minimization of the majorant
in order to reduce it (e.g., with the help of a relaxation procedure, which uses
normal fluxes on edges as free parameters). However, in general, substituting a
post-processed gradient does not give a very accurate upper bound. Numerical ex-
periments have shown that if Ghph is constructed with the help of simple patch-
averaging on the same mesh, then the upper bound given by the right-hand side
of (3.100) is rather coarse. More sophisticated averaging procedures or additional
post-processing usually lead to better estimate.

Example 3.4 We consider the problem (3.95)–(3.97). Let v ∈ V h
0 ⊂ V0 be an ap-

proximation computed by piecewise affine Courant type elements. The correspond-
ing numerical flux

y0 :=A∇v

is a piecewise constant vector-valued function. One way is to use the patch-
averaging procedure (see Sect. 2.2.2.1) and compute

yG := Ghy0.

Another option is to use edge-averaging and Raviart–Thomas elements (see
Sect. 2.2.2.3) and compute

y0
RT := GRTy0.
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Fig. 3.5 Development of the
majorant during the iteration
of approximate flux

We apply the iterative quasi-equilibration procedure, denoted by the operator PRT
(one cycle of local equilibration treating patches related to every edge). The proce-
dure is described in Sect. 2.2.2.4. Subsequent iterations produce functions

y
j
RT := PjRTy

0
RT, j = {1,2,3, . . . }. (3.101)

Each approximate flux y generates the respective upper bound MdivA∇(v, y). The
resulting upper bounds are compared with the globally minimized value

MdivA∇(v, yglo)= inf
y∈Yh

MdivA∇(v, y) (3.102)

and the exact error in Fig. 3.5. After several iterations of local minimization we can
obtain practically the same value as by global minimization of the majorant.

In Table 3.4, the efficiency indexes of the upper bounds are depicted, i.e.,

I
(j)

eff := MdivA∇(v, yjRT)

‖∇(u− v)‖ and I
(glo)
eff := MdivA∇(v, yglo)

‖∇(u− v)‖ .

In these tests, approximate solutions are piecewise affine finite element approxima-
tions with 280, 26118, and 53383 degrees of freedom, respectively. In all of these
cases, after sufficient minimization cycles the globally minimized majorant and the
one improved by the local iteration cycles have almost the same value.

Table 3.4 Efficiency indexes of majorant for different approximations

# nodes Iteration, I (j)eff I
(glo)
eff

1 2 3 4 5 7 9 14 19 31

280 6.83 3.34 2.64 2.59 2.59 2.58 2.58 2.58 2.58 2.58 2.53

26118 43.2 12.2 5.07 3.53 3.05 2.74 2.64 2.57 2.55 2.53 2.49

53383 60.8 16.9 6.62 4.26 3.49 2.94 2.75 2.61 2.57 2.54 2.49
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Moreover, the efficiency index of the globally minimized majorant does not de-
pend on the size of the mesh generating V h

0 . Instead, it depends on the relation
between spaces V h

0 and RT0 and the problem considered.

Remark 3.3 We note that the method of minimizing the upper bound presented here
is only one of many options. In particular, all other post-processing methods dis-
cussed in this book (as well as in others) can be used together with error majorants
in order to generate computable and reliable bounds of approximation errors.

3.4 Indicators Based on Error Majorants

Guaranteed upper bounds of errors considered in previous sections imply new error
indicators that can be used in marking and mesh refinement procedures. We discuss
this subject with the paradigm of the problem (3.64)–(3.66). We are interested in
approximation of the error function E(x) :=A∇(u− v) · ∇(u− v). The majorant

MdivA(v, y) := ‖A∇v − y‖A−1 + C‖f + divy‖
indeed suggests a way of finding a function close to E(x). It is based on the fol-
lowing argumentation. Let yτ be a vector-valued function found by minimization of
MdivA(v, y) with respect to y on a certain finite dimensional space Yτ . An efficient
minimization procedure leads to a situation in which the first term of the majorant
dominates and contains the major part of the error. Then, it is natural to use the
function

EIM(v, yτ )=A∇v · ∇v +A−1yτ · yτ − 2∇v · yτ (3.103)

as an indicator of E(x). Since

E(x)−EIM(v, yτ ) = A∇u · ∇u−A−1yτ · yτ + 2∇v · (yτ −A∇u)

= A−1p · p −A−1yτ · yτ + 2∇v · (yτ − p), (3.104)

we see that the indicator EIM(v, yτ ) is close to E(x) if yτ is close to p.
In the classification of Chap. 2, this indicator belongs to the group (B) because it

is generated by the relation

∥
∥∇(u− v)

∥
∥2
A

= sup
w∈V0

{−‖∇w‖2
A − 2�v(w)

}
, (3.105)

where

�v(w)=
∫

Ω

(A∇v · ∇w − fw)dx =
∫

Ω

A∇(v − u) · ∇w dx.

Since
∣
∣�v(w)

∣
∣≤ (‖yτ −A∇v‖A−1 + C‖divyτ + f ‖)‖∇w‖A
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and we assume that the first term dominates, it is reasonable to use (3.103).
Let v = uh, where uh is a finite element approximation computed on Th. As-

sume that {yτk } is a sequence of fluxes computed by minimization of MdivA(v, y)

on expanding spaces {Yτk }, which are limit dense in H(Ω,div). In this case,

MdivA(v, yτk )→ ∥
∥∇(u− v)

∥
∥
A
. (3.106)

Hence, the sequence {yτk } is bounded in H(Ω,div), and a weak limit ỹ of this
sequence exists. Since MdivA(uh, y) is convex and continuous with respect to y, we
know that

∥
∥∇(u− uh)

∥
∥
A

= lim
k→+∞ MdivA(uh, yτk )≥ MdivA(uh, ỹ)

= ‖∇uh − ỹ‖A−1 + C‖div ỹ + f ‖ ≥ ∥∥∇(u− uh)
∥
∥
A
. (3.107)

Thus, we conclude that

‖∇uh − ỹ‖A−1 + C‖div ỹ + f ‖ = ∥∥∇(u− uh)
∥
∥
A

and, therefore, ỹ minimizes the functional MdivA(uh, y). Using the same arguments
as in [Rep08], we conclude that yτk tends to p. Then, (3.104) shows that EIM(v, yτk )

is close to E(x). Note that yτk tends to p, so that the second term of the majorant
decreases and tends to zero. The first term remains finite and tends to the exact error.
Therefore, we have an easily verifiable criterion of that EIM is indeed close to E(x),
namely:

If further minimization of MdivA(uh, y) with respect to y does not essentially
decrease the majorant and the term ‖yτ − A∇v‖A−1 is much larger than the
second term of the majorant, then EIM(v, yτ ) is close to the function E(x) and
shows the distribution of local (element-wise) errors.

The indicator EIM was verified in numerous tests for diffusion models, linear
elasticity, viscous flow problems, and problems related to the Maxwell equa-
tion (where certain analogs of EIM(v, yτ ) were used). Experiments (see, e.g.,
[AMM+09, FNR02, FNR03, GNR06, Gor07, Rep99b]) have confirmed its effi-
ciency and stability with respect to approximations of different types. Some of these
results are discussed in Chap. 4.

Example 3.5 Below we present results of several numerical tests for the problem
(3.95)–(3.97), where f = 1 and the coefficients are strongly discontinuous, namely,

A=
[

1 0
0 10

]

in Ω1 and A=
[

5 0
0 1

]

in Ω2,

where the subdomains Ω1 and Ω2 are depicted in Fig. 3.6. Approximate solutions
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Fig. 3.6 Domain Ω

were computed by linear Courant type elements. In order to compare errors obtained
by different error indicators with the true error, we precomputed the corresponding
reference solutions using second order Courant type elements on a very fine mesh
with 196608 elements. In the tests, we compare true error distributions with distri-
butions computed by the following error indicators:

• EIM(v, yG), where yG is obtained by a commonly used gradient-averaging proce-
dure on patches associated with nodes (see Sect. 2.2.2.2).

• EIM(v, y
0
RT), where y0

RT is obtained by edge-wise averaging of normal fluxes (see
Sect. 2.2.2.3).

• EIM(v, y
j
RT), where y

j
RT is obtained from y0

RT by means of the iterative quasi-
equilibration procedure (see (3.101) and Sect. 2.2.2.4).

• EIM(v, yglo), where yglo is obtained by global minimization of the majorant (see
Algorithm 3.2 and (3.102)).

• EI(ηRF ) (full residual type indicator), where element-wise error contribution is
(see (2.27))

ηRF,T :=
(

h2
T ‖fT ‖2

T + 1

2

∑

E∈Eh(T )/Eh,∂Ω
|E|∥∥[nE ·A∇uh]E

∥
∥2
E

)1/2

. (3.108)

• EI(ηRJ ) (residual type indicator containing only jump terms), where elementwise
error contribution is (see (2.27) and Remark 2.4)

ηRJ,T :=
(

1

2

∑

E∈Eh(T )/Eh,∂Ω
|E|∥∥[nE ·A∇uh]E

∥
∥2
E

)1/2

. (3.109)

In Fig. 3.7, the true error distribution and indicated element-wise error distributions
are depicted for a finite element approximation computed on a regular mesh with
N = 3072 elements. We see that all indicators manage to locate errors associated
with corner singularities and the points where the line of discontinuity of diffusion
coefficients intersects with the boundary (we note that the necessity of mesh adap-
tation in this area is clear a priori). However, the values of EI(ηRF ) and EI(ηRJ )

are substantially larger. This is also seen on histograms in Fig. 3.8, which provide
another view on these results. Here, all element-wise errors are ranked in the de-
creasing order in accordance with the true error distribution. Thus, the very first
(left) vertical bar corresponds to the element with the largest error (the number of
which is 1) and the very last one to the element with the smallest error (the number
of which is N ). Then, the order of elements exposed along the horizontal axis is
fixed and all other distributions are presented in the same order. It is clear that if EI
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Fig. 3.7 Contour lines of true and indicated error distributions for the approximation computed
on a regular mesh with 3072 elements

is accurate in the strong sense (and can be called fully reliable, see Definition 2.1),
then the corresponding histogram must resemble the histogram generated by the true
error. We see that not all indicators meet this condition. Similar tests have been made
using finer meshes with 12288 and 49152 elements. They generate approximations
with 7 % and 4 % of relative error, respectively. The corresponding histograms of
the indicated errors on meshes are depicted in Figs. 3.9 and 3.10.

In Table 3.5, Table 3.6, and Table 3.7, we measure accuracy of indicators. We use
the accuracy measure in Definition 2.1. Also, the accuracy of error indicators in the
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Fig. 3.8 Histograms of true and indicated error distributions for the approximation computed on
a regular mesh with 3072 elements
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Fig. 3.9 Histograms of true and indicated error distributions for the approximation computed on
a regular mesh with 12288 elements
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Fig. 3.10 Histograms of true and indicated error distributions for approximation computed on a
regular mesh with 49152 elements
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Table 3.5 Comparison of indicators on a regular mesh with 3072 elements

Indicator M(EI) M(EI,M1) M(EI,M2) M(EI,M3) Ieff

EIM(v, yglo) 0.4988 0.1204 0.0703 0.0654 1.4220

EIM(v, yG) 0.6877 0.1156 0.1029 0.1110 16.351

EIM(v, y
0
RT) 0.5534 0.1243 0.0957 0.0846 24.443

EIM(v, y
5
RT) 0.5487 0.1234 0.0755 0.0700 2.3728

EIM(v, y
10
RT) 0.5643 0.1250 0.0742 0.0687 2.0144

EI(ηRF ) 6.9200 0.2692 0.2617 0.1634 –

EI(ηRJ ) 5.5587 0.2767 0.2617 0.1104 –

Table 3.6 Comparison of indicators on a regular mesh with 12288 elements

Indicator M(EI) M(EI,M1) M(EI,M2) M(EI,M3) Ieff

EIM(v, yglo) 0.4994 0.1281 0.0672 0.0545 1.4275

EIM(v, yG) 1.0027 0.1192 0.0685 0.0987 32.556

EIM(v, y
0
RT) 0.5617 0.1245 0.0788 0.0692 48.364

EIM(v, y
5
RT) 0.5650 0.1303 0.0675 0.0601 3.4817

EIM(v, y
10
RT) 0.5833 0.1305 0.0669 0.0595 2.6653

EI(ηRF ) 6.9584 0.2636 0.2614 0.1515 –

EI(ηRJ ) 5.8981 0.2719 0.2614 0.0977 –

Table 3.7 Comparison of indicators on a regular mesh with 49152 elements

Indicator M(EI) M(EI,M1) M(EI,M2) M(EI,M3) Ieff

EIM(v, yglo) 0.5208 0.1313 0.0653 0.0525 1.4501

EIM(v, yG) 1.3685 0.1337 0.0406 0.1000 68.656

EIM(v, y
0
RT) 0.5807 0.1251 0.0671 0.0610 102.01

EIM(v, y
5
RT) 0.6059 0.1285 0.0622 0.0550 5.9855

EIM(v, y
10
RT) 0.6280 0.1295 0.0620 0.0544 4.1468

EI(ηRF ) 7.0463 0.2581 0.2623 0.1465 –

EI(ηRJ ) 6.2373 0.2665 0.2623 0.0925 –

sense of Definition 2.3 is evaluated with respect to three different markings: based
on the average error value (M1, see Algorithm 2.1); selection of 30 % elements
with the highest error (M2, see Algorithm 2.2); bulk criterium, where 40 % of the
“error mass” is selected (M3, see Algorithm 2.3). Additionally, we compute the
efficiency index of the majorant for computed approximations of the flux. We see
that an indicator can be accurate in a weak sense with respect to a certain marker but
inaccurate in the strong sense. However, in this case it might be much less accurate
with respect to another marker.
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3.5 Applications to Adaptive Methods

Adaptive strategies are aimed to generate sequences of meshes which provide suf-
ficiently accurate approximations with the minimal amount of unknowns (degrees
of freedom). The success depends on the applied error indication method, marking
procedure, geometry of the domain, and on the differential problem itself. More-
over, the computational cost of producing the “optimal” mesh should be consid-
ered also. This is a special and important problem studied by many authors (see,
e.g, [AS99, BR03, DLY89, Dör96, EJ88, JH92, JS95, PP98, Ran02, Ran00, Rhe80,
RV12, SO97, SRO07, Ver96, ZBZ98, ZZ88]).

In this section, we discuss applications of various error control methods to adap-
tive numerical schemes. Our goal is to present algorithms which not only provide ef-
ficient adaptation but also generate approximations with a guaranteed a priori given
accuracy.

3.5.1 Runge’s Type Estimate

The simplest way of applying the above-discussed error estimates to mesh-adaptive
numerical schemes is the following. Let uh1 , uh2 , . . . , uhk , . . . be a sequence of
approximations on consequently refined meshes Thk . Compute phk := ∇uhk and
average it by an averaging operator Ghk acting on Thk . Then, the accuracy of the
approximation uhk−1 can be measured by the estimate

∥
∥∇(u− uhk−1)

∥
∥≤ ‖∇uhk−1 − Ghkphk‖ +CFΩ‖div Ghkphk + f ‖. (3.110)

This estimate involves approximate solutions computed on two consequent
meshes Thk−1 and Thk . Thus, it follows the same strategy as the Runge’s indica-
tor. Unlike the latter indicator, the majorant is mathematically justified and provides
a guaranteed upper bound for any pair of consequent meshes. In Algorithm 3.3, we
apply (3.110) to construct an adaptive method on nested meshes.

3.5.2 Getting Approximations with Guaranteed Accuracy by an
Adaptive Numerical Algorithm

First, we describe a general numerical scheme, which exploits a certain solver and
two-sided error estimates in order to obtain an approximate solution of a boundary
value problem with an a priori given accuracy e.

Assume that {Vk} ⊂ V is a sequence of finite dimensional subspaces which are
limit dense in V (see Definition B.3) and let vk be the Galerkin approximation asso-
ciated with Vk . If the original problem and its discrete analogs are well-posed, then
the respective sequence of approximate solutions {vk} tends to the exact solution u

as k tends to infinity.
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Algorithm 3.3 Adaptive method based on the correct form of the Runge’s rule
Input: v {Approximate solution}

Imax {Number of refinements, Imax ≥ 2}
Th1 {Initial mesh}
ε {Tolerance}

Compute uh1 on mesh Th1 .
EI 1 = ∇uh1 − Gh1∇uh1

MRunge1
= ‖∇uh1 − Gh1∇uh1‖ +CFΩ‖div Gh1∇uh1 + f ‖.

k = 1
while MRungek > ε and k ≤ Imax do

Refine Thk to Thk+1 by means of the indicator EIk .
Compute uhk+1 on mesh Thk+1 .
MRungek = ‖∇uhk − Ghk+1∇uhk+1‖ +CFΩ‖div Ghk+1∇uhk+1 + f ‖.
EIk+1 = ‖∇uhk − Ghk+1∇uhk+1‖
k = k + 1

end while
Output: uhk−1 {Approximate solution}

MRungek−1
{Error estimate}

For each approximation, we compute Mk and use the stopping criteria

Mk

‖|vk‖| ≤ e. (3.111)

If e exceeds the normalized majorant normalized by the energy norm, then the de-
sired accuracy is achieved. In a schematic form, this procedure is presented by Al-
gorithm 3.4.

Since vk → u and the majorant is sharp, Algorithm 3.4 ends with finding a proper
approximation vk . However, any particular computer has a certain limited power, so
that any problem can be solved only if e ≥ e0, where e0 depends on the problem,
computer and numerical method used.

Certainly, Algorithm 3.4 is rather schematic and can be viewed only as a skele-
ton of reliable numerical algorithms to be used in practice. Such type algorithms
should include numerous improvements focused first of all on accelerating the pro-
cess of computations. For example, in intermediate steps it may be efficient to make
refinements with the help of simple indicators and perform a sharp computation of
the majorant on some selected steps. Moreover, computation of the majorant can be
accelerated by using iterative local procedures, which we have discussed.

It could happen that computations must be terminated by time limitations. In
this case, the very last value of the majorant shows the best accuracy achieved,
which gives an idea of the required power of the computer to be used for finding an
approximate solution with the tolerance e.

Finally, it seems worthwhile to add one more remark. Finding sharp lower and
upper bounds requires solving variational problems, so that one may ask about the
sensitivity of the algorithm with respect to the inaccuracy of their solutions. To clar-
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Algorithm 3.4 Computing approximate solution of a BVP with a guaranteed accu-
racy

Input: e {Tolerance}
V1 {Initial space}

Solve problem P on the space V1 and find v1.
Select a space Y1 for the dual variable.
Compute Mk = miny∈Y1 MP (v1, y) {Minimization by Algorithm 3.2}
k = 1.
while e<

Mk‖|vk‖| do
k = k + 1.
Refine space Vk from Vk−1 using EIMk−1

as an error indicator.

Solve problem P on the space Vk and find vk .
Select Yk .
Compute Mk = miny∈Yk MP (vk, y).

end while
Output: vk {Approximate solution}

yk {Approximate flux, minimizer of MP (vk, y)}
Mk {Error bound}

ify this point, we recall that M(vk, y,β) provides an upper bound of the error for any
y ∈ Y and M(vk,w) provides a lower bound for any w ∈ V . For this reason, exact
solutions of these variational problems are, in general, not required. For example,

it may occur that on some stage of the minimization procedure the value of Mk‖|vk‖|
becomes less than e. Then, computations may be terminated even if y∗ does not
minimize Mk .

3.6 Combined (Primal-Dual) Error Norms and the Majorant

In modern numerical technologies (such as, e.g., mixed finite element methods dis-
cussed in Sect. B.4.4), approximations are generated for both primal and dual com-
ponents of the solution. From the physical point of view, this approach is well mo-
tivated. Consider, for example, the stationary diffusion problem in Ω . The corre-
sponding mathematical model consists of two physical relations

−divp = f ∈ L2(Ω), (3.112)

p = A∇u (3.113)

supplied with boundary conditions u = u0 on ΓD and p · n = 0 on ΓN . These re-
lations include the functions u and p, which have a clear physical meaning (e.g.,
the temperature and the heat flux). Similar formulations arise in the elasticity the-
ory, where the corresponding pair of functions presents the displacement and stress,
respectively (see Sect. 4.1.6).
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Within the framework of this conception, we should measure the deviation of the
(computed) pair (v, y) from the exact solution (u,p). In this case, it is natural to
use combined primal-dual norms. To this end, different equivalent norms associated
with the space H 1(Ω) × H(Ω,div) can be used. For this purpose, we select the
norm

∥
∥
[
(u,p)− (v, y)

]∥
∥ := ∥∥∇(u− v)

∥
∥
A

+‖p− y‖A−1 + CFΩ

c1

∥
∥div(p− y)

∥
∥, (3.114)

the last term of which can be equivalently rewritten as CFΩ

c1
‖divy + f ‖. Obviously,

it represents the deviation of y from the space of equilibrated fluxes, Qf . There are
other equivalent norms, e.g.,

∥
∥
[
(u,p)− (v, y)

]∥
∥
(2) :=

√∥
∥∇(u− v)

∥
∥2
A

+ ‖p − y‖2
A−1 + ∥∥div(p − y)

∥
∥2
.

We can use other weights for terms related to different components of the error norm
and consider other equivalent norms.

In [RS05, RSS07], it was shown that the error majorant

MdivA∇(v, y)= ‖A∇v − y‖A−1 + CFΩ

c1
‖divy + f ‖

is equivalent to the deviation measured in the combined norm (3.114). Moreover,

MdivA∇(v, y)≤ ∥∥[(u,p)− (v, y)
]∥∥≤ 3MdivA∇(v, y). (3.115)

Indeed, by (3.112), (3.113), and (3.38) we see that

MdivA∇(v, y) = ‖A∇v −A∇u+A∇u− y‖A−1 + CFΩ

c1
‖divy + f ‖

≤ ∥
∥A∇(v − u)

∥
∥
A−1 + ‖p − y‖A−1 + CFΩ

c1
‖divy − divp‖

= ∥
∥[(u,p)− (v, y)

]∥∥.

On the other hand
∥
∥
[
(u,p)− (v, y)

]∥
∥ = ∥

∥∇(v − u)
∥
∥
A

+ ‖p −A∇v +A∇v − y‖A−1

+ CFΩ

c1
‖divy − divp‖

≤ ∥
∥∇(v − u)

∥
∥
A

+ ∥∥A∇(v − u)
∥
∥
A−1 + ‖A∇v − y‖A−1

+ CFΩ

c1
‖divy − divp‖
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= 2
∥
∥∇(v − u)

∥
∥
A

+ ‖A∇v − y‖A−1 + CFΩ

c1
‖divy + f ‖

≤ 3MdivA∇(v, y). (3.116)

The relation (3.115) states that the corresponding efficiency index

Ieff := 3MdivA∇(v, y)
‖[(u,p)− (v, y)]‖

is always within the interval [1,3]!

This fact shows that the majorant is a reliable and efficient measure of the er-
ror in combined primal-dual norms for any pair (v, q) ∈ (V0 + u0) × H(Ω,div).
In [Rep08], similar equivalence results have been proved for other problems re-
lated to partial differential equations of the divergent form (e.g., for the convection-
diffusion, elasticity, Stokes, and other models).

Another important conclusion that comes out of this analysis is that efficient
reconstruction of the flux in the space H(Ω,div) is equivalent to the minimization
of MdivA∇(v, y). Indeed, the best reconstruction in H(Ω,div) must minimize the
difference y − p in the norm of this space. In view of (3.115), this minimization is
equivalent to minimization of MdivA∇(v, y).

Remark 3.4 In many numerical methods (e.g., in the classical variational difference
method or in the finite difference method) the major efforts are focused on finding v
with minimal error in H 1(Ω), the corresponding y being subsequently computed by
the relation (3.113). Often this approach provides a poor approximation of the flux.
To overcome this drawback, one can use the post-processing methods discussed in
Sect. 2.2.2.3.

Example 3.6 We consider the test problem (3.95)–(3.97) and discuss error estima-
tion in terms of the combined norm (3.114).

Again, we compute a sequence of successive approximations vk ∈ Vk , where Vk
is a space generated by linear nodal triangular elements. Yk is the space formed by
Raviart–Thomas elements on the same mesh. We compare two ways to compute
approximate flux: ykG (see Sect. 2.2.2.2) obtained by nodal gradient-averaging on a
mesh generating Vk , and ykglo (see (3.102)) obtained by global minimization of the
majorant on the same mesh.

Values of the majorants MdivA(vk, y
k
G) and MdivA(vk, y

k
glo) are computed on a

sequence of uniformly refined meshes. The exact deviation of (vk, ykG) and (vk, ykglo)

from (u,p) and the respective error bounds found by the majorants are depicted in
Fig. 3.11 and Table 3.8, where the efficiency indexes

I
(G,k)
eff,⊕ = 3MdivA(v

k, ykG)

‖[(u,p)− (vk, ykG)]‖
and I

(G,k)
eff,� = MdivA(v

k, ykG)

‖[(u,p)− (vk, ykG)]‖
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Fig. 3.11 Exact error in the
combined norm (3.114) and
two-sided bounds (3.115)
computed on a sequence of
uniformly refined meshes

are presented.
As one could predict, ykglo is a much better approximation of the flux than ykG.

This is easy to observe if we compare the fourth and ninth lines of Table 3.8.
For k = 1, the accuracy of the pair (vk, ykG) is two times less than that of the pair

Table 3.8 Error control in combined norm

k

1 2 3 4 5 6

dim(V k
0 ) 280 1047 4045 15897 63025 250977

dim(Y k) 767 2998 11852 47128 187952 750688

3MdivA(v
k, ykG) 0.1489 0.1020 0.0684 0.0466 0.0321 0.0223

‖[(u,p)− (vk, ykG)]‖ 0.0557 0.0363 0.0237 0.0158 0.0108 0.0075

MdivA(v
k, ykG) 0.0496 0.0340 0.0228 0.0155 0.0107 0.0074

I
(G,k)
eff,⊕ 2.6733 2.8093 2.8926 2.9424 2.9699 2.9846

I
(G,k)
eff,� 0.8911 0.9364 0.9642 0.9808 0.9900 0.9949

3MdivA(v
k, ykglo) 0.0686 0.0347 0.0174 0.0087 0.0044 0.0022

‖[(u,p)− (vk, ykglo)]‖ 0.0278 0.0140 0.0070 0.0035 0.0018 0.0009

MdivA(v
k, ykglo) 0.0229 0.0116 0.0058 0.0029 0.0015 0.0007

I
(glo,k)
eff,⊕ 2.4638 2.4698 2.4713 2.4716 2.4717 2.4717

I
(glo,k)
eff,� 0.8213 0.8233 0.8238 0.8239 0.8239 0.8239
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Fig. 3.12 Exact error in the
combined norm (3.114) and
two-sided bounds (3.115)
computed on a sequence of
adaptively refined meshes

(vk, y
k
glo). For k = 5, the norm is about five times more accurate, and for k = 6 this

difference is even larger. It is worth noting that although the error related to (vk, ykG)
is higher the efficiency of the respective bounds generated by the majorant does not
deteriorate. This was expected, due to the equivalence relation (3.115).

We repeat the experiment by using an adaptive method. The entire majorant is
used as an error indicator and the bulk marking with θ = 0.5 is applied. We use the
above-discussed methods to reconstruct the flux. The resulting error bounds together
with the exact error in the combined norm are depicted in Fig. 3.12.

We observe that for non-uniform meshes generated by consequent local refine-
ments, the method of generating the approximate flux by means of Gh is not ad-
equate if we wish to have a good reconstruction in H(Ω,div). Figure 3.12 shows
how the majorant captures defects of the flux generated by the gradient-averaging
scheme. It provides guaranteed error bounds in the sense of the combined norm in
all cases due to the equivalence (3.115).

All components of the exact error are depicted in Fig. 3.13, which clearly indi-
cates that the flux yG computed by simple averaging fails to satisfy the equilibrium
condition. In contrast, the flux yglo obtained by global minimization of the majorant
behaves correctly.

This phenomenon is rather typical and can be seen in many other examples. It
implies conclusions related to mesh adaptation procedures. Namely, if we wish to
create a sequence of meshes such that the corresponding flux reconstructions are
well-balanced, then using error indicators based on simple averaging is not the best
way. In Fig. 3.13, v1 denotes the finite element solution computed on a sequence
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Fig. 3.13 Error components
of approximation pairs
(v1, yG) and (v2, yglo)

computed on a sequence of
adaptively refined meshes

of meshes generated by the averaging indicator, and v2 denotes solutions computed
on meshes constructed by means of the majorant. We see that the fluxes computed
within the framework of the first adaptation method converge in L2, but do not con-
verge in H(Ω,div). The second method generates fluxes which satisfy the equation
of the balance with increasing accuracy. We note that instead of yglo a simpler re-
construction can be used. For example, we project yG to the RT-space and perform
several rounds of iteration steps described in Sect. 2.2.2.4. This method generates
fluxes with approximation properties close to those yglo has.



Chapter 4
Guaranteed Error Bounds II

Abstract In Chap. 3, we discussed the main ideas of fully reliable error control
methods and the corresponding numerical algorithms with the paradigm of simple
elliptic type problems. This chapter is intended to show a deep connection between
a posteriori estimates of the functional type and physical relations generating the
problem. Also, the goal of this chapter is to consider a wider set of problems arising
in various applications and explain things in terms of computational mechanics. For
this purpose, we begin with a simple class of mechanical problems (straight beams)
and after that consider curvilinear beams and more complicated models of contin-
uum mechanics (linear elasticity, viscous fluids, Maxwell type problem). At the end
of the chapter we consider a generalized mathematical model, which includes al-
most all earlier discussed problems as particular cases.

4.1 Linear Elasticity

4.1.1 Introduction

We start an overview of models describing elastic bodies with models of elastic
beams. They lead to ordinary differential equations and allow us to discuss the main
ideas in the most transparent form.

A domain can be considered as a beam, if its long and slender, i.e., if it’s length in
one dimension is substantially larger than in two others (see Fig. 4.1). The simplest
beam model studies only an axial deformation of the beam and includes only loads
acting parallel to the beam. We use it to demonstrate close relations between the
fundamental physical laws generating the problem and components of the respective
error majorant.

We assume that the cross section perpendicular to the load does no deform, i.e.,
the beam elongates only with respect to the x-axis. The displacement (elongation)
of the beam is denoted by function u.

The linearized relation between the strain and elongation is simple,

ε = u′. (4.1)

O. Mali et al., Accuracy Verification Methods,
Computational Methods in Applied Sciences 32, DOI 10.1007/978-94-007-7581-7_4,
© Springer Science+Business Media Dordrecht 2014
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Fig. 4.1 Axially distributed load and stresses on an interval of length Δx of an elastic beam

Strain describes a “density” or “intensity” of the deformation. Equation (4.1) is the
kinematic relation between the strain and displacement.

Here we assume that the normal stress σ is uniformly distributed over the cross
section, and its resultant over the cross section (of area A) is σA. Consider a beam
under an axially distributed load f . In Fig. 4.1, we depict the interval [x, x +Δx],
and assume that over it f , σ , and A change linearly, i.e, f (x +Δx)= f (x)+Δf ,
σ(x +Δx)= σ(x)+Δσ , and A(x +Δx)=A(x)+ΔA. The equation of equilib-
rium for the beam section is

∫ x+Δx

x

f (t)dt + (σ(x)+Δσ
)(
A(x)+ΔA

)− σ(x)A(x)= 0.

Taking only linear terms, we arrive at the incremental relation Δ(σA)+ f (x)Δx =
0, which yields the differential equation

−(Aσ)′ = f. (4.2)

The material behavior of the beam is described by the Hooke’s law

σ =Eε, (4.3)

where E is the Young’s modulus (Elastic modulus) of the material of the beam.
We note that (4.1), (4.2), and (4.3) are the basic relations defining the problem.

Combining them yields the differential equation

−(EAu′)′ = f, (4.4)

which together with the boundary conditions generates a boundary value problem.
The boundary conditions define the displacement u or axial stress EAu′ (or their
linear combination) on both ends of the beam. In particular, u = 0 means that end
is fixed, and EAu′ = 0 means that the end is not subjected to load. The boundary
conditions must be defined in such a manner that the beam is statically determined,
i.e., no rigid body motion can occur.
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Fig. 4.2 Loads and
displacement of the
Euler–Bernoulli beam

It is easy to see that (4.4) (together with the boundary conditions u(0) = 0 and
u(l) = 0, i.e., both ends of the beam are fixed) is a particular form of (3.1). Using
the results of Chap. 3 we obtain the estimate

‖|u− v‖| ≤
(∫ l

0

1

EA

(
y −EAv′)2 dx

)1/2

+C

(∫ l

0

(
f + y′)2 dx

)1/2

, (4.5)

where the energy norm is defined as

‖|w‖| =
(∫ l

0
EA

(
u′)2 dx

)1/2

,

and the constant C satisfies the inequality ‖w‖ ≤ C‖w′‖ for all w, which satisfy the
boundary conditions and possess a square summable derivative.

Two terms of the majorant (4.5) penalize violations of two fundamental rela-
tions (4.1) and (4.2), respectively. Moreover, the inequality holds as the equal-
ity if y :=EAu′, i.e., y is the normal stress.

4.1.2 Euler–Bernoulli Beam

The Euler–Bernoulli beam model is one of the most used beam model in engineer-
ing. Model examples can be found in numerous textbooks (see, e.g., [TG51, TY45]).
The model describes vertical deflection of the beam (see Fig. 4.2) under a given
load f . On both ends of the beam, a bending moment M or shear force F may be
given.

The energy of the beam is presented by the functional

J (w) :=
∫ l

0

(
1

2
EI
(
w′′)2 − fw

)

dx − Fw

∣
∣
∣
∣

l

0
+Mw′

∣
∣
∣
∣

l

0
,

where E is Young’s modulus and I is the second moment of the cross section, i.e.,
I := ∫

A
y2dA, where y is the distance from the centroid axis.
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The solution u minimizes the energy, i.e.,

J (u)≤ J (w), ∀w ∈ V0,

where V0 contains functions satisfying the kinematic boundary conditions (i.e.,
those related to u or u′; for simplicity we consider beams for which the kinematic
boundary conditions are homogeneous.). Since the energy functional contains sec-
ond derivatives, we must restrict the set of admissible functions and assume they
have second generalized derivatives (see Sect. A.2.1). Formally, this means that

V0 := {w ∈H 2((0, l)
) |w satisfies the kinematic boundary conditions

}
.

A beam can be supported in multiple ways, generating many different boundary
conditions. The boundary conditions should be such that the beam is statically de-
termined, i.e., the boundary conditions do not allow any rigid body motion to occur.

It is not difficult to see that the function u minimizing the energy must satisfy the
relation

∫ l

0
EIu′′w′′ dx =

∫ l

0
fw dx + Fw

∣
∣
∣
∣

l

0
−Mw′

∣
∣
∣
∣

l

0
, ∀w ∈ V0. (4.6)

If the solution has derivatives up to the fourth order, then we obtain the classical
form of the Euler–Bernoulli beam problem, i.e.,

(
EIu′′)′′ = f (4.7)

and the respective boundary conditions. This equation can be decomposed into two
physically motivated relations

−M ′′ = f (4.8)

−EIu′′ = M, (4.9)

where (4.8) is the equilibrium relation of the beam and (4.9) is a linearized form of
the law that relates the curvature and the bending moment. Relation (4.9) is based
on several assumptions concerning the deformation: (a) cross sections of the beam
remain perpendicular to the neutral axis, i.e., there is no “twisting” of the cross
section, (b) beam is in the state of pure bending, i.e., the deformation occurs due
to the bending moment of the beam and the effects of shear force are neglected,
and (c) the elongation of the beam is neglected. Moreover, we define the space of
admissible bending moments

Q0 := {y ∈H 2((0, l)
) | y satisfies natural boundary conditions

}
,

i.e., y =M and y′ = F at the endpoints of the beam.

Theorem 4.1 Let v ∈ V0, then

‖|u− v‖|2 ≤ M
2
BE(v, y,β), ∀y ∈Q0, β > 0,
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where

M
2
BE(v, y,β) := (1 + β)

∥
∥
∥
∥

1√
EI

(
y +EIv′′)

∥
∥
∥
∥

2

+ 1 + β

β

CKL

α

∥
∥y′′ + f

∥
∥2
,

where α := minx∈[0,l]E(x)I (x), CKL is from (4.20), and the energy norm for the
problem is

‖|w‖|2 :=
∫ l

0
EI
(
w′′)2 dx.

Proof Note that by integration by parts formulae,

∫ l

0
y′′w dx =

∫ l

0
yw′′ dx + y′w

∣
∣
∣
∣

l

0
− yw′

∣
∣
∣
∣

l

0
, ∀y,w ∈H 2((0, l)

)
. (4.10)

From (4.6) and (4.10),

∫ l

0
EI
(
u′′ − v′′)w′′ dx = −

∫ l

0
EIv′′w′′ dx +

∫ l

0
fw dx + Fw

∣
∣
∣
∣

l

0
−Mw′

∣
∣
∣
∣

l

0

+
∫ l

0
y′′w dx −

∫ l

0
yw′′ dx − y′w

∣
∣
∣
∣

l

0
+ yw′

∣
∣
∣
∣

l

0
.

We can reorganize it as follows:

∫ l

0
EI
(
u′′ − v′′)w′′ dx = −

∫ l

0

(
y +EIv′′)w′′ dx +

∫ l

0

(
y′′ + f

)
w dx

+ (F − y′)w
∣
∣
∣
∣

l

0
− (M − y)w′

∣
∣
∣
∣

l

0
.

Assume that y ∈Q0. Since w ∈ V0 the terms on the second line vanish. Then,

∫ l

0
EI
(
u′′ − v′′)w′′ dx ≤

∥
∥
∥
∥

1√
EI

(
y +EIv′′)

∥
∥
∥
∥
∥
∥
√
EIw′′∥∥+ ∥∥y′′ + f

∥
∥‖w‖.

By (4.20) we find that

∫ l

0
EI
(
u′′ − v′′)w′′ dx ≤

(∥
∥
∥
∥

1√
EI

(
y +EIv′′)

∥
∥
∥
∥+ CKL

α

∥
∥y′′ + f

∥
∥
)
∥
∥
√
EIw′′∥∥,

where α := minx∈[0,l]EI . Substituting w := u− v and dividing by ‖|u− v‖| yields
the estimate

‖|u− v‖| ≤
∥
∥
∥
∥

1√
EI

(
y +EIv′′)

∥
∥
∥
∥+ CKL

α

∥
∥y′′ + f

∥
∥.

Squaring both sides and applying (A.5) leads to the statement. �
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Fig. 4.3 Kirchhoff–Love arch

We see that the majorant MBE has the same structure as the majorants we have
studied before. It consists of the terms, which are measures of violations of the
relations (4.8) and (4.9).

Remark 4.1 The Reissner–Mindlin plate (see Sect. 4.1.5) can be viewed as a two-
dimensional analog of the Timoshenko beam. We address the reader interested in
Timoshenko beams to the material exposed in that section.

4.1.3 The Kirchhoff–Love Arch Model

We consider a plane arch with a constant cross section and assume that the character
size of it is small compared to the length of the arch. Following [Cia78a], the arch
and all related functions are presented in a parameterized form. The ψ : [0,1] → R

2

is a smooth parameterized non-self-intersecting curve that defines the shape of the
arch. The displacement vector u = (u1, u2) and the exterior load f = (f1, f2) are
presented in a local coordinate system (a1, a2), which varies along the arch. Here
a1 is the tangential and a2 is the normal direction. The angle between the horizontal
axis and a1 is denoted as θ . On both ends of the beam, other external loads may oc-
cur. N denotes the normal force, F is the shear force and M is the bending moment
(see Fig. 4.3).

A systematic exposition of the classical beam theory can be found, e.g., in [TG51,
TY45] and a more advanced one in [NST06, TV05], where regularity requirements
for ψ are substantially relaxed.

The constitutive relation of the curved beam is
{
EA(u′

1 − cu2)= p1,

EI (cu1 + u′
2)

′ = p2,
(4.11)



4.1 Linear Elasticity 99

Table 4.1 Boundary
conditions of the
Kirchhoff–Love arch

Kinematic Natural

u1 (tangential disp.) N (tangential stress)

u2 (normal disp.) F (shear force)

u′
2 (rotation) M (bending moment)

where c : [0,1] → R,

c(s) := ψ ′′
2 (s)ψ

′
1(s)−ψ ′′

1 (s)ψ
′
2(s)

(ψ1(s)′2 +ψ2(s)2)3/2
(4.12)

is the curvature of the arch, p1 is the tangential stress, and p2 is the bending moment.
E is the Young’s modulus of the material, A is the area of the cross section, and I

is the second moment of inertia of the cross section.
The equilibrium conditions are presented by the equations:

{
−p′

1 − cp′
2 = f1,

−cp1 + p′′
2 = f2.

(4.13)

These relations present the physical laws governing the beam problem. For the
straight beam (c = 0), (4.11) and (4.13) imply (4.4) and (4.7), respectively.

The boundary conditions are defined at the end points s = 0 and s = 1. They
are listed as pairs in Table 4.1. Kinematic boundary conditions restrict displacement
components or rotation and natural boundary conditions define tangential stresses,
shear forces or bending moments. Below, we assume that the kinematic boundary
conditions are homogeneous. This is performed only for the sake of simplicity. Prob-
lems with non-homogeneous boundary conditions can be analyzed quite similarly.
Together with the regularity requirements, kinematic boundary conditions define the
space of admissible displacements

V0 := {v ∈ V | v satisfies the kinematic boundary conditions},
where V :=H 1((0,1))×H 2((0,1)).

Additionally, at the endpoints of the beam, stresses must satisfy the natural
boundary conditions, namely

p1 + cp2 =N, p2 =M, and p′
2 = F. (4.14)

Stresses satisfying these relations form the space of admissible stresses,

Q0 := {y ∈H 1((0,1)
)×H 2((0,1)

) | y satisfies (4.14)
}
. (4.15)

The problem is called statically determined if for p = 0, the equations (4.11)
imply u = 0. It is not difficult to see that the kernel of equations (4.11) consists of
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Fig. 4.4 Examples of different boundary condition types

rigid body motions (see [Cia78a]) that can be presented in the form

v =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

][
dψ2 + b1
dψ1 + b2

]

, (4.16)

where d , b1 and b2 are constants. Thus, the beam is statically determined (or overde-
termined) if the kinematic boundary conditions forbid any rigid body motion.

It is natural to classify boundary conditions into three main groups:

• Statically indetermined cases, where there are not enough kinematic boundary
conditions to restrict rigid body movements (see Fig. 4.4 top). These problems
do not have unique solutions and cannot be analyzed within the framework of
statical models.

• Statically determined cases, where there are three kinematic boundary conditions
(which restrict rigid body movement, see Fig. 4.4 middle). In these cases, the
constitutive equations (4.11) and the equilibrium equations (4.13) can be solved
separately in a consecutive manner.

• Statically determined cases, where there are more than three kinematic bound-
ary conditions (see Fig. 4.4 bottom). In these cases, equations (4.11) and (4.13)
must be solved together as a single fourth order system. These kinds of boundary
conditions allow the existence of non-zero stresses for an unloaded beam.

The energy of the arch is presented by the functional

J (u) = 1

2

∫ 1

0

{
EA

(
u′

1 − cu2
)2 +EI

(
cu1 + u′

2

)′2}
ds

−
∫ 1

0
f · uds −Nu1

∣
∣
∣
∣

1

0
+ Fu2

∣
∣
∣
∣

1

0
−Mu′

2

∣
∣
∣
∣

1

0
. (4.17)

The solution u ∈ V0 minimizes J (u) over V0 and satisfies the integral relation

a(u,w)= �(w), ∀w ∈ V0, (4.18)
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where

a(u,w)=
∫ 1

0

[
EA(u′

1 − cu2)

EI (cu1 + u′
2)

′
]

·
[
w′

1 − cw2
(cw1 +w′

2)
′
]

ds

and

�(w) :=
∫ 1

0
f ·w ds +Nw1

∣
∣
∣
∣

1

0
− Fw2

∣
∣
∣
∣

1

0
+Mw′

2

∣
∣
∣
∣

1

0
. (4.19)

At each endpoint either homogeneous kinematic boundary condition is imposed or
the corresponding load (N , F , or M) is defined. Hence, the functional � in (4.19) is
fully defined. The energy norm for the problem is ‖|w‖|2 := √

a(w,w).
For the existence of the solution of the Kirchhoff–Love arch problem we must

show the ellipticity of a : V0 ×V0 →R (see Sect. B.2), which is proved in [Cia78a]
(Theorem 8.1.2, p. 433),

Theorem 4.2 If the function c is continuously differentiable over the interval I, then
the bilinear form

a(u, v)=
∫

I

{(
u′

1 − cu2
)(
v′

1 − cv2
)+ (u′

2 + cu1
)′
(v2 + cu1)

′}ds

is H 1
0 (I)× (H 2(I)∩H 1

0 (I))-elliptic, and thus, it is a fortiori H 1
0 (I)×H 2

0 (I)-elliptic.

Theorem 4.2 states that for a statically determinate beam, there exists a positive
constant CKL such that

∫ 1

0

(
w2

1 +w2
2 +w′2

1 +w′2
2 +w′′2

2

)
ds

≤ CKL

∫ 1

0

((
w′

1 − cw2
)2 + (cw1 +w′

2

)′2)ds, (4.20)

for all w ∈ V0.

4.1.3.1 Estimates of Deviations for the Kirchhoff–Love Arch Model

Estimates of deviations from the exact solution of the Kirchhoff–Love arch model
were firstly presented in [Mal09]. We follow the lines of this paper and show how
to derive the error majorant with the help of transformations of the integral relation
(4.18).

Theorem 4.3 Let u be a solution of (4.18) and v ∈ V0. Then,

‖|u− v‖|2 ≤ M
2
KL(v, y,β), y ∈Q0, β > 0, (4.21)
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where

M
2
KL(v, y,β)

:=
(

1 + 1

β

)
CKL

α

∫ 1

0

{(
f1 + (y′

1 + cy′
2

))2 + (f2 − (cy1 + y′′
2

))2}ds

+ (1 + β)

∫ 1

0

{
1

EA

(
y1 −EA

(
v′

1 − cv2
))2 + 1

EI

(
y2 −EI

(
cv1 + v′

2

)′)2
}

ds,

(4.22)

CKL is defined by (4.20), and α := min{EA,EI }.

Proof We begin with the integral identity that defines the generalized solution of
the arch problem. We note that

∫ 1

0

[
w′

1 − cw2
(cw1 +w′

2)
′
]

·
[
y1
y2

]

ds

=
∫ 1

0

[−y′
1 − cy′

2

−cy1 + y′′
2

]

·
[
w1
w2

]

ds +w1y1

∣
∣
∣
∣

1

0
+ (cw1 +w′

2

)
y2

∣
∣
∣
∣

1

0
−w2y

′
2

∣
∣
∣
∣

1

0
(4.23)

for any w ∈H 1((0,1))×H 2((0,1)) and y ∈H 1((0,1))×H 2((0,1)).
By (4.18) and (4.23), we obtain

a(u− v,w) =
∫ 1

0
f ·w ds +Nw1

∣
∣
∣
∣

1

0
− Fw2

∣
∣
∣
∣

1

0
+Mw′

2

∣
∣
∣
∣

1

0

−
∫ 1

0

[
EA(v′

1 − cv2)

EI (cv1 + v′
2)

′
]

·
[
w′

1 − cw2
(cw1 +w′

2)
′
]

ds

+
∫ 1

0

[
w′

1 − cw2
(cw1 +w′

2)
′
]

·
[
y1
y2

]

ds

−
∫ 1

0

[−y′
1 − cy′

2

cy1 + y′′
2

]

·
[
w1
w2

]

ds

−w1y1

∣
∣
∣
∣

1

0
− (cw1 +w′

2

)
y2

∣
∣
∣
∣

1

0
+w2y

′
2

∣
∣
∣
∣

1

0
. (4.24)

We rewrite (4.24) in the form

a(u− v,w)= I1 + I2 + I3, (4.25)

where

I1 =
∫ 1

0

[
f1 + (y′

1 + cy′
2)

f2 − (cy1 + y′′
2 )

]

·
[
w1
w2

]

ds,
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I2 =
∫ 1

0

[
y1 −EA(v′

1 − cv2)

y2 −EI (cv1 + v′
2)

′
]

·
[
w′

1 − cw2
(cw1 +w′

2)
′
]

ds,

and

I3 = (N − y1 − cy2)w1

∣
∣
∣
∣

1

0
+ (−F + y′

2

)
w2

∣
∣
∣
∣

1

0
+ (M − y2)w

′
2

∣
∣
∣
∣

1

0
.

After imposing the boundary conditions, w ∈ V0 and y ∈Q0, I3 vanishes.
I1 and I2 we estimate from the above. By the Cauchy–Schwartz inequality, we

have

I1 ≤
(∫ 1

0

(
f1 + (y′

1 + cy′
2

))2 + (f2 − (cy1 + y′′
2

))2 ds

)1/2

×
(∫ 1

0

(
w2

1 +w2
2

)
ds

)1/2

. (4.26)

We can estimate the L2-norm of w from the above by the full Sobolev norm and
apply (4.20), then

I1 ≤
(∫ 1

0

(
f1 + (y′

1 + cy′
2

))2 + (f2 − (cy1 + y′′
2

))2 ds

)1/2

×
√
CKL√
α

(∫ 1

0
EA

(
w′

1 − cw2
)2 +EI

(
cw1 +w′

2

)′2 ds

)1/2

, (4.27)

where α = min{EA,EI }. Now, we apply the Cauchy–Schwartz inequality again
and find that

I2 =
∫ 1

0

⎡

⎣
1√
EA

(y1 −EA(v′
1 − cv2))

1√
EI

(y2 −EI (cv1 + v′
2)

′)

⎤

⎦ ·
[√

EA(w′
1 − cw2)√

EI(cw1 +w′
2)

′
]

ds

≤
(∫ 1

0

1

EA

(
y1 −EA

(
v′

1 − cv2
))2

+ 1

EI

(
y2 −EI

(
cv1 + v′

2

)′)2
ds

)1/2

‖|w‖|. (4.28)

We apply (4.28) and (4.28) them to (4.25) and set w = u− v. Then, we arrive at

‖|u− v‖| ≤
√
CKL√
α

(∫ 1

0

(
f1 + (y′

1 + cy′
2

))2 + (f2 − (cy1 + y′′
2

))2 ds

)1/2

+
(∫ 1

0

1

EA

(
y1 −EA

(
v′

1 − cv2
))2

+ 1

EI

(
y2 −EI

(
cv1 + v′

2

)′)2 ds

)1/2

. (4.29)
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Squaring both sides and (A.4) leads to (4.21). �

Two terms of the error majorant have a clear meaning. The first part

M
equi
KL :=

∫ 1

0

(
f1 + (y′

1 + cy′
2

))2 + (f2 − (cy1 + y′′
2

))2 ds

is the error in the equilibrium condition (4.13) and the second part

M
const
KL :=

∫ 1

0

1

EA

(
y1 −EA

(
v′

1 − cv2
))2 + 1

EI

(
y2 −EI

(
cv1 + v′

2

)′)2 ds

is the violation of the constitutive relation (4.11). If we set y := p, then
M

equi
KL = 0 and M

const
KL coincides with the exact error.

Remark 4.2 If we define,

Λu :=
[
u′

1 − cu2
(cu1 + u′

2)
′
]

, Λ∗p :=
[−p′

1 − cp′
2

−cp1 + p′′
2

]

, and

Ap :=
[
EAp1
EIp2

]

,

(4.30)

then (4.11) and (4.13) can be written as

AΛu= p (4.31)

and

Λ∗p = f, (4.32)

respectively. Under the definitions (4.30) the majorant has the typical structure dis-
cussed in Sect. 4.4 for a generalized model problem

M
2
Λ(v, y,β) :=

(

1 + 1

β

)
CKL

α

∫ 1

0

∣
∣f −Λ∗y

∣
∣2 ds

+ (1 + β)

∫ 1

0
A−1(y −AΛv) · (y −AΛv)ds. (4.33)

Example 4.1 Consider a half-circular beam

ψ(t)=
[

cos(πt)
sin(πt)

]

, t ∈ [0,1],
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where the curvature is c = 1 and EA = EI = 1. Let both ends of the beam be
clamped, i.e.,

u1(0)= u2(0)= u′
2(0)= u1(1)= u2(1)= u′

2(1)= 0.

The basis that satisfies the boundary conditions can be easily constructed using
Fourier type basis functions. Let

V N
0 := span

{[
sin(kπt)

0

]

,

[
1 − cos(2kπt)

0

]

,

[
0

1 − cos(2kπt)

]}N

k=1
. (4.34)

We set CKL = 1 based on the approximated general eigenvalue problem: Find
vk ∈ V N

0 such that

∫ 1

0
AΛvk ·Λw ds = λk

∫ 1

0
vk ·w ds, ∀w ∈ V N

0 .

We increased N and observed how the approximated value of the smallest eigen-
value develops.

Consider a polynomial solution

u(t)=
[
t (t − 1)
t2(t − 1)2

]

, (4.35)

which satisfies the kinematic boundary conditions. We generate an approximate so-
lution v by perturbing u. To measure the efficiency of the a posteriori error estimates,
we introduce efficiency indexes,

I⊕
eff := MKL

‖|u− v‖| (4.36)

and

I�
eff := MKL

‖|u− v‖| . (4.37)

Since the estimates are guaranteed, we know that

I�
eff ≤ 1 ≤ I⊕

eff.

Let y in the majorant be defined using a Fourier basis, i.e.,

y ∈QN := span

{[
sin(kπt)

0

]

,

[
cos(kπt)

0

]

,

[
0

sin(kπt)

]

,

[
0

cos(kπt)

]}N

k=1
.

We minimize the majorant with respect to y ∈QN as in Algorithm 3.2. Regardless
of the dimension N , the iteration converged within five to six steps. In Table 4.2,
we can observe how the majorant improves as N increases. The efficiency index
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Table 4.2 Efficiency index and parts of the majorant with different N

N

4 6 8 9 10 11 12

I⊕
eff 1.0887 1.0728 1.0101 1.0024 1.0005 1.0001 1.0000

M
2
KL 60.143 58.398 51.774 50.985 50.7949 50.752 50.742

M
equi
KL 0.01320 0.00229 0.00485 0.00029 0.00002 7.2 ·10−7 3.3 ·10−8

M
const
KL 58.374 57.658 50.776 50.742 50.740 50.740 50.740

Table 4.3 Efficiency index of the minorant with different values of N

N

2 3 4 5 6

I�
eff 0.99985 0.99994 0.99997 0.99998 0.99999

M2
KL(v,w

N) 50.725 50.7341 50.737 50.7382 50.7388

Table 4.4 Efficiency index of the majorant with different N and CKL

CKL N

4 6 8 9 10 11 12

1 1.0887 1.0728 1.0101 1.0024 1.0005 1.0001 1.0000

10 1.1219 1.0771 1.0296 1.0075 1.0017 1.0004 1.0001

100 1.2244 1.0839 1.0683 1.0224 1.0054 1.0012 1.0003

1000 1.5475 1.0966 1.0767 1.0577 1.0163 1.0037 1.0008

tends to one as the majorant approaches the exact deviation. Moreover, the equilib-
rium part of the majorant tends to zero as the constitutive part approaches the exact
deviation error.

Next, we study the minorant. We solve the problem (4.18), using the Galerkin
method with the Fourier type subspace V N

0 in (4.34). Then, we compute the energy
of the obtained approximation wN and estimate the error from below by comparing
it to the energy of v as follows:

‖|u− v‖|2 ≥ 2
(
J (v)− J

(
wN

))=: M2
KL

(
v,wN

)
. (4.38)

The resulting lower bounds are presented in Table 4.3. The reason for the efficiency
of the minorant is that the applied basis (4.34) can represent the exact solution (4.35)
very well with a relatively small number of basis functions.

Remark 4.3 Since the term related to the equilibrium relation tends to zero, even
a substantial overestimation of the constant CKL does not seriously affect the effi-
ciency of these estimates. In Table 4.4, we show the efficiency indexes obtained by
different values for the constant CKL.
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Fig. 4.5 Plate type elastic
body Ω and middle surface
S0

4.1.4 The Kirchhoff–Love Plate

Plates are commonly used structures in many engineering applications. Here we
consider two of the most common type plates, the Kirchhoff–Love plate model and
the Reissner–Mindlin plate model. They can be viewed as two-dimensional coun-
terparts of the Euler–Bernoulli beam model and the Timoshenko beam model, re-
spectively.

We consider a bounded three-dimensional elastic body occupying the domain

Ω :=
{

(x1, x2) ∈ Ω̂, x3 ∈
(

−h

2
,
h

2

)}

,

where Ω̂ is a bounded open domain in the x1, x2-plane with Lipschitz continuous
boundary Γ̂ and h is a positive constant (see Fig. 4.5), which is assumed to be small
with respect to the size of Ω̂ . We refer to the domain Ω̂ as a plate and denote ele-
ments of x1, x2-plane by x̂. S0 := {x ∈Ω | x3 = 0} is the middle surface of the plate,
which is deflected by volume and surface loads f = (0,0, f̂ ) and F = (0,0, F̂ ), re-
spectively. The volume load f̂ = f̂ (x̂) is distributed inside Ω , and the surface load
F̂ = F̂ (x̂) is distributed on the upper face Γ⊕ := {x ∈ Ω | x3 = h

2 }. In the classi-
cal theory of Kirchhoff–Love plates, the corresponding 3D model is replaced by
a simplified 2D problem by means of the so-called Kirchhoff–Love hypothesizes.
The first hypothesis states that the unit normal to the middle surface remains un-
stretched during the deformation of the plate. It means that the displacement vector
is presented in the form

u1(x) = −x3û,1(̂x),

u2(x) = −x3û,2(̂x),

u3(x) = û(̂x),

where û is a scalar-valued function that represents deflections of S0.
Another (static) hypothesis is that the components σi3, i = 1,2,3, are negligibly

small compared to σ11, σ12, and σ22 so that they are set to zero. Thus, only the plane
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part of the stress tensor is considered. For the case of isotropic media, the Hooke’s
law leads at relations

σ11 = − Ex3

1 − ν2
(̂u,11 + νû,22)= − 2μx3

1 − ν
(̂u,11 + νû,22), (4.39)

σ22 = − Ex3

1 − ν2
(νû,11 + û,22)= − 2μx3

1 − ν
(νû,11 + û,22), (4.40)

σ12 = − Ex3

1 + ν
û,12 = −2μx3û,12. (4.41)

In order to deduce the equation for û, we substitute relations (4.39)–(4.41) to the
virtual energy relation

∫

Ω

σ : ε(w)dx =
∫

Ω

f ·w dx +
∫

Γ⊕
F ·w dx, (4.42)

where the test functions are of the form

w = (−x3ϕ,1(̂x),−x3ϕ,2(̂x), ϕ(̂x)
)
,

where ϕ ∈ H 2(Ω̂,R) is an arbitrary function vanishing on Γ̂ together with its first
derivatives. In view of the static hypothesis, the left-hand side of (4.79) contains
only plane components and can be rewritten as follows:

∫

Ω

σ11(u)ε11(w)dx =
∫

Ω

Ex2
3

1 − ν2
(̂u,11 + νû,22)ϕ,11 dx

=
∫

Ω̂

D(̂u,11 + νû,22)ϕ̂,11dx̂, (4.43)

where D := Eh3

12(1−ν2)
= μh3

6(1−ν)
. Analogously,

∫

Ω

σ22(u)ε22(w)dx =
∫

Ω̂

D(νû,11 + νû,22)ϕ,22dx̂

and
∫

Ω

σ12(u)ε12(w)dx = (1 − ν)

∫

Ω̂

Dû,12ϕ,12dx̂.

Hence, we arrive at the following problem: Find

û ∈ V00(Ω̂) := {η̂ ∈H 2(Ω̂) | η̂ = η̂,n = 0 on Γ̂
}

such that
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∫

Ω̂

D
(
(̂u,11 + νû,22)ϕ̂,11 + (νû,11 + νû,22)ϕ̂,22 + 2(1 − ν)̂u,12ϕ̂,12

)
dx̂

=
∫

Ω̂

ĝϕ̂dx̂, ∀ϕ̂ ∈ V00(Ω̂), (4.44)

where ĝ(̂x)= hf̂ + F̂ .
If û is sufficiently regular, then (4.44) implies the classical plate equation (see,

e.g., [DL72])

û,1111 + 2û,1122 + û,2222 = ĝ

D
, (4.45)

a weak form of which is
∫

Ω̂

DΔ̂ûΔ̂ϕ̂dx̂ =
∫

Ω̂

ĝϕ̂dx̂, ∀ϕ̂ ∈ V00(Ω̂). (4.46)

This simplified 2D model is often used for numerical analysis of plate-type elastic
bodies (see, e.g., [Bra07]). Concerning latest results on asymptotic convergence of
KL type solutions, a priori error estimates, and a systematic bibliography, we refer
to [BSS11].

The problem (4.46) belongs to the class of biharmonic problems, i.e.,

div DivB∇∇u = f in Ω ⊂ R
2

u = 0 on Γ

∇u · ν = 0 on Γ,

where B is a symmetric positive definite tensor, i.e.,

Bjikm = Bijkm = Bkmij , i, j, k,m ∈ {1,2}

and

α1|Υ |2 ≤ BΥ : Υ ≤ α2|Υ |2, ∀Υ ∈M
2×2
s .

The generalized solution u ∈ V00 satisfies the integral relation,

∫

Ω

B∇∇u : ∇∇w dx =
∫

Ω

fw dx, ∀w ∈ V00. (4.47)

For this problem the majorant has been discussed in [NR01].

Theorem 4.4 Let u ∈ V00 be the solution of (4.46) and v ∈ V00 be arbitrary. Then,

∫

Ω

B∇∇(u− v) : ∇∇(u− v)dx ≤ M
2
∇∇(v, κ, y,β), ∀κ ∈ Z∇ , y ∈ Ydiv, β > 0,
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where

M
2
∇∇(v, κ, y,β) := (1 + β)‖B∇∇v − κ‖2

B−1

+
(

1 + β

β

)
C2∇Ω

α1

(‖Divκ − y‖ +CFΩ‖divy − f ‖)2,

ZDiv :={κ ∈ L2(Ω,Md×d
) | Divκ ∈ L2(Ω,R2)},

Ydiv :={y ∈ L2(Ω,R2) | divy ∈ L2(Ω)
}
,

(4.48)

and C∇Ω is a constant in the inequality

‖∇w‖ ≤ C∇Ω‖∇∇w‖, ∀w ∈ V00.

It is easy to see that the majorant contains the terms, which can be viewed as
penalties for violations of the relations divy = f , y = Divκ , and κ = B∇∇v. Other
variants of the majorant and a discussion of results related to biharmonic type prob-
lems can be found in [Fro04a, Fro04b, NR01, NR04, Rep08].

4.1.5 The Reissner–Mindlin Plate

The theory of Reissner–Mindlin plates is a generalization of the classical theory
of Kirchhoff–Love thin plates. Again, we consider a plate type domain. For sim-
plicity, in this section we omit the symbol ˆ in all formulas (so that Ω denotes a
two-dimensional domain).

In the Reissner–Mindlin model, a plate is described in terms of the following
two variables: a scalar-valued function w(x) (which is the transverse displacement
of the middle plane at point x) and a vector-valued function ξ(x) (which is the
rotation of fibers normal to the middle plane). In contrast to the Kirchhoff–Love
model, the rotation of fibers is considered and presented by a special function. This
yields better results in modeling of relatively “thick” plates.

The energy functional for this problem has the following form:

J (w, ξ) :=
∫

Ω

(
1

2
Cε(ξ) : ε(ξ)+ 1

2α
|∇w − ξ |2 − fw

)

dx,

where C is a positive definite tensor (of the fourth-order), ε(ξ) is the symmetric
part of ∇ξ , α is a positive parameter proportional to h2 (h is the thickness) and the
function f is related to the transverse loading of the plate.

The classical equations for the Reissner–Mindlin plate problem are as follows:

−divp = f in Ω, (4.49)

−DivCε(φ)− p = 0 in Ω, (4.50)
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where p := 1
α
(∇u− φ) ∈ L2(Ω,R2)=:Q. The function p has an important physi-

cal meaning: it is the so-called shear stress vector (see, e.g. [AMZ02]). For simplic-
ity, henceforth we consider the homogeneous Dirichlet boundary conditions, i.e.,

u= 0, φ = 0 on Γ. (4.51)

Problems with mixed boundary conditions can be analyzed within the framework
of the same scheme. We note that the existence of the minimizer (u,φ) ∈ S (where
the set S =: V0 × Y0 is the subset of H 1(Ω) × H 1(Ω,R2) containing functions
satisfying the boundary conditions) follows from the known results of calculus of
variations (see Sect. B.2). One can show that if α → 0, then the minimizers of this
variational problem tend to the corresponding solution of the variational problem
for the respective Kirchhoff–Love plate (see, e.g., [BF86]).

As before, one analysis is based on the weak formulation of the problem, which
is as follows: Find (u,φ,p) ∈ V0 × Y0 ×Q such that

∫

Ω

Cε(u) : ε(ξ)dx −
∫

Ω

p · ξ dx = 0, ∀ξ ∈ Y0, (4.52)

∫

Ω

p · ∇w dx −
∫

Ω

fw dx = 0, ∀ξ ∈ V0, (4.53)

∫

Ω

(

p − 1

α
(∇u− φ)

)

· q dx = 0, ∀q ∈Q. (4.54)

It is not difficult to show that the solution of (4.52)–(4.54) coincides with the mini-
mizer.

Numerical methods for the problem (4.52)–(4.54) are discussed in many pub-
lications (see, e.g., [AF89, AMZ02, BF86, BS98, LNS07, SS09] and references
therein). In the next section, we derive computable majorants of deviations from the
exact solution of the Reissner–Mindlin plate model, which can be used in order to
measure errors encompassed in numerical approximations. Our exposition follows
the lines of [RF04], where error majorants are obtained by the variational method
(see, e.g., [NR04, Rep00b]), which is based on the dual energy formulation. Numer-
ical tests can be found in [Fro04b, FNR06].

4.1.5.1 Error Majorants

Assume that (v,ψ) ∈ S is an approximate solution. By y := 1
α
(∇v −ψ) we denote

the corresponding shear stress vector and consider the deviations

ev := v − u,

eψ := ψ − φ,

ey := y − p.
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First, we define the primal problem,

J (u,φ)= inf
(w,ξ)∈S I (w, ξ)= infP .

Then, we establish a generalized form of the Miklin’s identity.

Proposition 4.1 For any approximation (v,ψ) ∈ S, it holds

‖|eψ‖|2 + α‖ey‖2 = 2
(
J (v,ψ)− J (u,φ)

)
, (4.55)

where

‖ey‖2 =
∫

Ω

|ey |2 dx and ‖|eψ‖|2 :=
∫

Ω

Cε(eψ) : ε(eψ)dx.

Proof We have

2
(
J (v,ψ)− J (u,φ)

)

=
∫

Ω

(

Cε(ψ) : ε(ψ)+ 1

α
|∇v −ψ |2 − 2f v

)

dx

−
∫

Ω

(

Cε(φ) : ε(φ)+ 1

α
|∇u− φ|2 − 2f u

)

dx. (4.56)

By (4.52),

∫

Ω

Cε(ψ) : ε(ψ)dx −
∫

Ω

Cε(φ) : ε(φ)dx

=
∫

Ω

Cε(ψ − φ) : ε(ψ − φ)dx + 2
∫

Ω

Cε(ψ − φ) : ε(φ)dx

= ‖|eψ‖|2 + 2
∫

Ω

Cε(eψ) : ε(φ)dx

= ‖|eψ‖|2 + 2
∫

Ω

p : eψ dx. (4.57)

Now we recall definitions of y and p and find that

1

α

(‖∇v −ψ‖2 − ‖∇u− φ‖2) = α
(‖y‖2 − ‖p‖2)

= α

(

‖y − p‖2 + 2
∫

Ω

y · (y − p)dx

)

= α‖ey‖2 + 2
∫

Ω

p · (αey)dx. (4.58)
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Substituting (4.57) and (4.58) to (4.56) yields the relation

2
(
J (v,ψ)− J (u,φ)

) = ‖|eψ‖|2 + 2
∫

Ω

p : eψ dx + α‖ey‖2

+ 2
∫

Ω

p · (αey)dx −
∫

Ω

f (v − u)dx

= ‖|eψ‖|2 + α‖ey‖2 + 2
∫

Ω

(
p · (eψ + αey)− f (v − u)

)
dx.

Note that

eψ + αey =ψ − φ + (∇v −ψ)− (∇u− φ)= ∇v − ∇u= ∇ev (4.59)

and by (4.53) we obtain
∫

Ω

(
p · (eψ + αey)− f (v − u)

)
dx =

∫

Ω

(p · ∇ev − f ev)dx = 0.

Thus, we arrive at (4.55). �

Now, we discuss the so-called dual energy principle, which allows us to esti-
mate the right-hand side of (4.55) from the above. Consider the Lagrangian (see
Sect. B.3.1)

L(w, ξ, q) :=
∫

Ω

(
1

2
Cε(ξ) : ε(ξ)− fw + q · (∇w − ξ)− 1

2
α|q|2

)

dx. (4.60)

It generates the primal problem as follows:

J (u,ψ)= infP = inf
(w,ξ)∈S J (w, ξ)= inf

(w,ξ)∈S sup
q∈Q

L(w, ξ, q).

Also, it generates the dual problem,

I (p)= supP∗ = sup
q∈Q

I (q)= sup
q∈Q

inf
(w,ξ)∈S L(w, ξ, q).

From the theory of saddle points, it follows that

J (u,ψ)= I (p). (4.61)

Then, Proposition 4.1, (4.61), and the definition of the dual problem yield the esti-
mate

‖|eψ‖|2 + α‖ey‖2 ≤ 2
(
J (v,φ)− I (q)

)
, ∀q ∈Q. (4.62)

The dual functional

I (q)= inf
(w,ξ)∈S

∫

Ω

(
1

2
Cε(ξ) : ε(ξ)− fw + q · (∇w − ξ)− 1

2
α|q|2

)

dx,



114 4 Guaranteed Error Bounds II

is bounded from below only if

q ∈Qf :=
{

q ∈Q

∣
∣
∣

∫

Ω

q · ∇w dx =
∫

Ω

fw dx,∀w ∈ V0

}

.

Thus, for q ∈Qf we obtain

I (q)= inf
ξ∈Y0

∫

Ω

(
1

2
Cε(ξ) : ε(ξ)− q · ξ − 1

2
α|q|2

)

dx.

In the right-hand side of this relation, we have a new variational problem (with
respect to ξ ∈ Y0, which contains H 1 vector-valued functions vanishing on Γ ). It
is a quadratic problem with the source term q . For a given q , we know that (cf.
(B.39)–(B.41) with u0 = 0)

inf
ξ∈Y0

∫

Ω

(
1

2
Cε(ξ) : ε(ξ)− q · ξ

)

dx = sup
τ∈Zq

∫

Ω

−1

2
C

−1τ : τ dx,

where

Zq :=
{

τ ∈ L2(Ω,M2×2
s

) ∣∣
∣

∫

Ω

τ : ε(ξ)dx =
∫

Ω

q · ξ dx,∀ξ ∈ Y0

}

.

Therefore,

I (q)= sup
τ∈Zq

Ĩ (τ, q)= sup
τ∈Zq

∫

Ω

(

−1

2
C

−1τ : τ − 1

2
α|q|2

)

dx,

Since

I (q)≥ Ĩ (τ, q), ∀τ ∈ Zq,q ∈Qf ,

we use (4.62) and find that

‖|eψ‖|2 + α‖ey‖2 ≤ 2
(
J (v,φ)− Ĩ (τ, q)

)
, ∀τ ∈ Zq,q ∈Qf . (4.63)

It is a matter of algebraic manipulation to show that (4.63) yields

‖|eψ‖|2 + α‖ey‖2 ≤ ∥∥Cε(ψ)− τ
∥
∥2
C−1 + α‖y − q‖2, ∀τ ∈Zq,q ∈Qf , (4.64)

where
∥
∥Cε(ψ)− τ

∥
∥2
C−1 :=

∫

Ω

(
Cε(ψ)− τ

) : (ε(ψ)−C
−1τ

)
dx.

We see that if the right-hand side of (4.64) vanishes, then the relations (4.49) and
(4.50) hold. The drawback of (4.63) and (4.64) is that these estimates are valid only
for equilibrated functions τ ∈ Zq and q ∈ Qf , which are difficult to construct in
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practice. Next we modify the estimate (4.64) in such a way that it can be written in
terms of auxiliary function in Σdiv and Qdiv, where

Σdiv = {τ ∈ L2(Ω,M2×2
s

) | Div τ ∈Q
}

(4.65)

and

Qdiv = {y ∈ L2(Ω,R2) | divy ∈ L2(Ω)
}
. (4.66)

We introduce κ ∈Σdiv and use the estimate
∥
∥Cε(ψ)− τ

∥
∥
C−1 ≤ ∥∥Cε(ψ)− κ

∥
∥
C−1 + ‖τ − κ‖C−1 .

We square both sides, apply (A.4), and obtain the estimate

∥
∥Cε(ψ)− τ

∥
∥2
C−1 ≤ (1 + β1)

∥
∥Cε(ψ)− κ

∥
∥2
C−1 +

(
1 + β1

β1

)

‖τ − κ‖2
C−1 , (4.67)

which is valid for any positive β1. In order to estimate the last norm we need the
following auxiliary result.

Proposition 4.2 For any κ ∈Zdiv,

inf
τ∈Zq

‖τ − κ‖C−1 ≤ C1Ω‖q + Divκ‖, (4.68)

where C1Ω is a constant in the inequality

‖ξ‖ ≤ C1Ω‖|ξ‖|, ∀ξ ∈ Y0.

Proof Let σ := τ − κ . Since τ ∈ Zq and κ ∈ Zdiv, we see that

σ ∈Zr :=
{

σ ∈ L2(Ω,M2×2
s

) ∣∣
∣

∫

Ω

σ : ε(ξ)dx =
∫

Ω

r · ξ dx,∀ξ ∈ Y0,

}

,

where r := q + Divκ . We have

inf
τ∈Zq

‖τ − κ‖2
C−1 = inf

σ∈Zr

‖σ‖2
C−1

= − sup
σ∈Zr

{−‖σ‖2
C−1

}= − inf
ξ∈Y0

∫

Ω

(
Cε(ξ) : ε(ξ)− 2q · ξ)dx.

We estimate the right-hand side from the above to obtain the statement

− inf
ξ∈Y0

∫

Ω

(
Cε(ξ) : ε(ξ)− 2q · ξ)dx ≤ − inf

ξ∈Y0

(‖|ξ‖|2 − 2C1Ω‖r‖‖|ξ‖|)

= − inf
a≥0

(
a2 − 2C1Ω‖r‖a)= C2

1Ω‖r‖2. �



116 4 Guaranteed Error Bounds II

In order to exclude q ∈ Qf from the estimate, we introduce γ ∈ Qdiv and use
similar arguments, namely,

‖y − q‖2 ≤ (1 + β2)‖y − γ ‖2 +
(

1 + β2

β2

)

‖q − γ ‖2 (4.69)

and

‖q + Divκ‖2 ≤ (1 + β3)‖Divκ + γ ‖2 +
(

1 + β2

β2

)

‖q − γ ‖2, (4.70)

where β2 and β3 are arbitrary positive parameters.

Proposition 4.3 For any γ ∈Qdiv,

inf
q∈Qf

‖q − γ ‖ ≤ CFΩ‖divγ + f ‖. (4.71)

Proof is similar to the previous case.
Applying (4.68)–(4.71) to (4.67) yields the desired majorant:

‖|eψ‖|2 + α‖ey‖2 ≤ M
2
RM(ψ,y, γ, κ), ∀γ ∈Qdiv, κ ∈Zdiv, (4.72)

where

M
2
RM(ψ,y, γ, κ;β1, β2, β3)

:= (1 + β1)
∥
∥Cε(ψ)− κ

∥
∥2
C−1

+ (1 + β2)α‖y − γ ‖2 +
(

1 + β1

β1

)

(1 + β3)C
2
1Ω‖γ + Divκ‖2

+
((

1 + β1

β1

)(
1 + β3

β3

)

C2
1Ω + (1 + β2)α

)

C2
FΩ‖divγ + f ‖2. (4.73)

This estimate (4.73) consists of the violations of relations (4.52)–(4.53) and addi-
tional terms resulting from the fact that auxiliary functions are not “equilibrated”,
i.e., γ �=Qf and κ �= Zq .

4.1.6 3D Linear Elasticity

Let the domain Ω ⊂ R
3 have the boundary Γ consisting of two disjoint parts ΓD

and ΓN . We assume that ΓD has the positive measure, e.i. |ΓD| > 0. The classical
formulation of the linear elasticity problem is to find a tensor-valued function σ

(stress) and a vector-valued function u (displacement) that satisfy the system of
equations (see, e.g., [TG51])
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σ = Lε in Ω, (4.74)

Divσ + f = 0 in Ω, (4.75)

u = g on ΓD, (4.76)

σν = F on ΓN. (4.77)

Here g defines the Dirichlet boundary condition, f is the volume force, ν is the unit
normal vector outward to Γ , F is the surface load on ΓN , and L = {Lijkm} is the
tensor of elasticity constants. We assume that it is positive definite and bounded,
i.e.,

c1|ε|2 ≤ Lε : ε ≤ c2|ε|2, ∀ε ∈M
3×3
s ,

and satisfies the symmetry conditions

Ljikm = Lijkm = Lkmij , i, j, k,m ∈ {1,2,3}
(the Hooke’s law), which presupposes a linear dependence between strains and
stresses. The relation (4.75) means that internal stresses are in equilibrium with
body forces.

A generalized solution of (4.74)–(4.77) is a function u ∈ V0 + g, where

V0 := {w ∈H 1(Ω,Rd
) |w = 0 on ΓD

}
(4.78)

that minimizes the energy functional

J (w) := 1

2
E(w)− 〈�,w〉,

where

〈�,w〉 =
∫

Ω

f ·w dx +
∫

ΓN

F ·w ds,

and

E(u)=
∫

Ω

σ(u) : ε(u)dx =
∫

Ω

Lε(u) : ε(u)dx := ‖|u‖|2
L

is the elastic energy of the deformation. The generalized solution satisfies the inte-
gral relation

∫

Ω

Lε(u) : ε(w)dx = 〈�,w〉, ∀w ∈ V0. (4.79)

In the special case of an isotropic medium, the tensor L can be expressed with the
help of only two material parameters. Usually, they are the Lame constants that lead
to the form

Lε(u)= λdivuI+ 2με(u).
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Another pair of constants is Young’s modulus E and Poisson’s ratio ν. They are
related to the Lame constants as follows:

λ= Eν

(1 + ν)(1 − 2ν)
, μ= E

2(1 + ν)
. (4.80)

The tensor L can be expressed also, using the bulk modulus K ,

Lε(u)=K divuI+ 2μεD(u), (4.81)

where strain is decomposed to a volumetric and a deviatoric part

ε = 1

3
tr εI+ εD = 1

3
div(u)I+ εD(u).

4.1.6.1 Estimates of Deviations from the Exact Displacement Field

The majorant for the problem (4.74)–(4.77) has the form (see [MR03, NR04,
Rep01b, Rep08])

M
2
EL(v, τ ;β) := (1 + β)

∫

Ω

(
ε(v)−C

−1τ
) : (Cε(v)− τ

)
dx

+ 1 + β

β
C
(‖Div τ + f ‖2 + ‖F − τn‖2

ΓN

)
, (4.82)

where C > 0 is a constant in the inequality

‖w‖2
Ω + ‖w‖2

ΓN
≤ C‖|w‖|2

L
, ∀w ∈ V0,

the existence of which follows from the Korn’s inequality (see Sect. A.3.3). It is
easy to see that the majorant has the same structure as other majorants we have
considered earlier.

Three terms of the majorant penalize violations of the Hooke’s law (4.74),
equilibrium relations (4.75), and the Neumann boundary condition (4.77).

Theorem 4.5 For any v ∈ V0,

‖|u− v‖|2 ≤ M
2
EL(v, τ ;β), ∀τ ∈HΓN (Div,Ω),β > 0, (4.83)

where

HΓN (Div,Ω) := {τ ∈ L2(Ω,Md×d
) | Div τ ∈ L2(Ω,Rd

)
, τn ∈ L2(ΓN,R

d
)}

is the space of admissible stresses. The majorant vanishes if and only if v = u.
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Theorem 4.5 was proved in [Rep01a], see also [NR04] and [Rep08]. For the case
of isotropic media, the estimate follows from the result of [RX96] as a particular
case.

We consider the special case of isotropic media and material parameter pair K
and μ. For them, we have

L
−1τ = 1

9K
tr τ I+ 1

2μ
τD, (4.84)

and

ε(v)−L
−1τ =

(
1

3
divv − 1

9K
tr

)

I+ (ε(v)D − 2μτD
)
,

Lε(v)− τ =
(

K divv − 1

3
tr

)

I+ (2μεD(v)− τD
)
.

Since for any deviatoric tensor τD , tr τD = 0 and τD : I = 0, we have

(
ε(v)−L

−1τ
) : (Lε(v)− τ

)=K

(

divv − 1

3K
tr τ

)2

+ 2μ

∣
∣
∣
∣ε
D(v)− 1

2μ
τD
∣
∣
∣
∣

2

.

Hence, for the isotropic media the estimate (4.83) reads as follows:
∫

Ω

(
K div(u− v)2 + 2μ

∣
∣εD(u− v)

∣
∣2)dx

≤ M
2
EL,iso(v, τ,β), ∀τ ∈HΓN (Div,Ω),β > 0,

where

M
2
EL,iso(v, τ ;β) := (1 + β)

∫

Ω

(

K

(

divv − 1

3K
tr τ

)2

+ 2μ

∣
∣
∣
∣ε(v)

D − 1

2μ
τD
∣
∣
∣
∣

2)

dx

+ 1 + β

β
C
(‖Div τ + f ‖2 + ‖F − τn‖2

ΓN

)
. (4.85)

In (4.85), the part of the majorant related to the Hooke’s law (4.74) is decom-
posed into two terms, which measure possible violations of the Hooke’s law
for the volumetric and deviatoric.

Remark 4.4 Linear elasticity equations are often considered together with other
physical equations (e.g., those that describe diffusion). We arrive at coupled models,
for which error majorants should be obtained by combining estimates deduced for
each sub-problem separately. Sometimes (as, e.g., for thermoelasticity) this method
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easily yields the estimate for the whole system. Sometimes, (as in the case of the
Barenblatt–Biot poroelastic model) deducing the estimate requires some efforts (see
[NRRV10]). In general, getting fully reliable, computable, and efficient bounds for
coupled models is a complicated problem, which may be much more difficult than
getting such bounds for each sub-problem separately (see Sect. 6.9).

4.1.7 The Plane Stress Model

Consider an isotropic material occupying the domain Ω := Ω̂ × (−h
2 ,

h
2 ), where Ω̂

belongs to the x1x2-plane and h is “much smaller” compared to Ω̂ . As before, we
denote plane coordinates by x̂ = (x1, x2).

In the plane stress model, it is assumed that the stress tensor is planar, i.e.,

σi3 = 0, i = {1,2,3} (4.86)

and we have σ̂ ∈ M
2×2. Moreover, displacement and body forces are planar, i.e.,

u3 = 0 and u := û= (u1, u2).

Also, it is assumed that f3 = 0 and f := f̂ = (f1, f2). Strictly speaking, these as-
sumptions violate the 3D elasticity, but they are often used because they make the
model simpler. Due to (4.86), we have ε13 = ε23 = 0. The condition (4.81)

0 = σ33 = (K tr εI+ 2μεD(u)
)

33 =K tr ε + 2ν
2ε33 − ε11 − ε12

3

and e33 = tr ε − tr ε̂ lead to

tr ε = 6ν

3K + 4ν
tr ε̂.

Note that the strain tensor is not planar, but the e33-component was eliminated from
the problem by the Hooke’s law (4.81). This leads to the Hooke’s law for the plane
stress model,

σ̂ = K̂ tr ε̂Î+ 2νεD,

where K̂ := 9Kν
3K+4ν . The relations

−Div σ̂ = f̂ in Ω̂, (4.87)

û = ûg on Γ̂D, (4.88)

σ̂ n̂ = F̂ on Γ̂N , (4.89)

(where, |ΓD| > 0, and ΓN denote two parts of the boundary of Ω̂) form the plane
stress problem. By repeating the derivation of the majorant for 3D problem, we
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arrive at the estimate
∫

Ω̂

(
K̂ div(û− v̂)2 + 2μ

∣
∣ε̂D(û− v̂)

∣
∣2
)

dx ≤ M
2
2D,σ (v, τ̂ ;β), ∀τ̂ ∈M

2×2, β > 0,

where

M
2
2D,σ (v, τ̂ ;β) := (1 + β)

∫

Ω̂

(

K̂

(

div v̂ − 1

2K̂
tr τ̂

)2

+ 2μ

∣
∣
∣
∣ε̂
D(v)− 1

2μ
τ̂D
∣
∣
∣
∣

2)

dx

+ 1 + β

β
Ĉ
(‖Div τ̂ + f̂ ‖2 + ‖F̂ − τ̂ n̂‖2

Γ̂N

)
.

We see that the majorant for the plane stress model M2D,σ is a planar analog of MEL.

4.1.8 The Plane Strain Model

In the plane strain model, it is assumed that the strain tensor is planar, i.e.,

εi3 = 0, i = {1,2,3}, (4.90)

and ε̂ ∈ M
2×2. From (4.90), it follows that σ13 = σ23 = 0. The component σ33 is

eliminated by the Hooke’s law, and we obtain the planar Hooke’s law for the model,

σ̂ = K̂ t̂rεI+ 2μεD,

where K̂ = E
2(1+ν)(1−2)ν . Together with relations (4.87)–(4.89) they form the plane

strain problem. The respective error majorant has the familiar form:

M
2
2D,ε(v, τ̂, β) := (1 + β)

∫

Ω̂

(

K̂

(

div v̂ − 1

2K̂
tr τ̂

)2

+ 2μ

∣
∣
∣
∣ε̂
D(v)− 1

2μ
τ̂D
∣
∣
∣
∣

2)

dx

+ 1 + β

β
Ĉ
(‖Div τ̂ + f̂ ‖2 + ‖F̂ − τ̂ n̂‖2

Γ̂N

)
(4.91)

and generates the estimate

∫

Ω̂

(
K̂ div(û− v̂)2 + 2μ

∣
∣ε̂D(û− v̂)

∣
∣2
)

dx ≤ M
2
2D,ε(v, τ̂, β), ∀τ̂ ∈M

2×2, β > 0.

Example 4.2 The following examples were computed by A. Muzalevski and are
presented in [MR03]. The approximate solution is computed by a finite element
method using linear nodal elements, and the majorant (4.91) is applied as an error
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Fig. 4.6 Initial mesh (left) and refined mesh (right)

Fig. 4.7 True error distribution (left) and majorant indicator distribution (right)

indicator to guide a local mesh refinement. Then, a new approximation is computed,
and the adaptive procedure continues.

First we consider a square domain with cuts. One fourth of the domain Ω̂ is
depicted in Fig. 4.6, where the initial mesh and the one obtained by adaptive re-
finement procedure are presented. Moreover, in Fig. 4.7 we show the exact error
distribution and the one obtained by the element-wise contributions of the majorant
integral for the initial mesh. As expected, the error is concentrated around corners.
The value of the error and the guaranteed upper bound (4.91) in each iteration stage
are presented in Table 4.5. The efficiency index Ieff is defined in (2.3).

As an another example, we consider a square domain with a horizontal hexagonal
slot. One fourth of the domain is depicted in Fig. 4.8 as well as the initial and
adaptively refined mesh. The values of error estimate and the true error are presented
in Table 4.6. A systematic discussion of the numerical tests can be found in [MR03].
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Table 4.5 Error estimates for
the triangular cut example Nodes ‖|ε(u− v)‖| M2D,ε Ieff

166 0.417 0.547 1.31

173 0.324 0.537 1.66

179 0.289 0.539 1.86

185 0.268 0.537 2.01

206 0.242 0.530 2.18

241 0.207 0.506 2.44

623 0.081 0.139 1.71

2413 0.056 0.114 2.05

4.2 The Stokes Problem

Classical formulation of the Stokes problem consists of finding a vector-valued
function u (velocity) and a scalar-valued function p (pressure) that satisfy the rela-
tions

−Divσ = f − ∇p in Ω, (4.92)

σ = νε(u) in Ω, (4.93)

divu = 0 in Ω, (4.94)

u = u0 on Γ, (4.95)

where u0 is a given function such that divu0 = 0, ν is a positive constant (viscosity),
ε(u) is the tensor of small strains (see (A.33)), and, as before, Ω is a bounded set in
R
d with Lipschitz boundary Γ .
To define the corresponding generalized solution of the Stokes problem we need

to introduce extra notation. Henceforth,
◦
S denotes the closure of smooth solenoidal

functions compactly supported in Ω with respect to the norm ‖∇w‖.

Fig. 4.8 Initial (left) and refined (right) meshes
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Table 4.6 Error estimates for
the hexagonal cut example Nodes ‖|ε(u− v)‖| M2D,ε Ieff

174 0.443 0.690 1.56

177 0.370 0.690 1.86

181 0.337 0.687 2.03

185 0.316 0.687 2.17

198 0.291 0.680 2.33

234 0.271 0.627 2.31

652 0.095 0.181 1.91

2523 0.068 0.151 2.19

With J̇∞(Ω) we denote smooth solenoidal functions with compact supports
in Ω . The space

◦
S is the closure of J̇∞(Ω) with respect to the norm ‖∇v‖ (in

other words
◦
S contains solenoidal fields from H 1(Ω,Rd) vanishing on the bound-

ary). The set
◦
S + u0 contains functions of the form w + u0. Let V := H 1(Ω,Rd),

Σ := L2(Ω,Md×d) and V0 be a subspace of V that contains functions with zero
traces on Γ . Also we use the Hilbert space Σdiv(Ω) (cf. (4.65)) and the space
◦
L2(&), which contains square summable functions with zero mean.

Henceforth, we assume that f ∈ L2(Ω,Rd) and u0 ∈ H 1(Ω,Rd). Generalized
solution of (4.92)–(4.95) is a function u ∈ ◦

S + u0 that meets the relation
∫

Ω

νε(u) : ε(w)dx =
∫

Ω

f ·w dx, ∀w ∈ ◦
S. (4.96)

It is well-known (e.g., see [Lad70, Tem79]) that u exists and is unique. It can be
viewed as the minimizer of the variational problem

inf
v∈◦

S+u0

J (v), J (v)=
∫

Ω

(
ν

2

∣
∣ε(v)

∣
∣2 − f · v

)

dx. (4.97)

In addition, the Stokes problem can be presented in a minimax form. Let the
Lagrangian L : V0 × ◦

L2(&)→ R be defined as follows:

L(v, q)=
∫

Ω

(
ν

2

∣
∣ε(v)

∣
∣2 − f · v − q divv

)

dx.

Now, u and p can be defined as a saddle-point (see Sect. B.3) that satisfies the
relations

L(u,q)≤ L(u,p)≤ L(v,p), ∀v ∈ V0 + u0, q ∈ ◦
L2(&). (4.98)

Numerical methods and various error estimators for the Stokes problem are dis-
cussed in, e.g., [AO00, BW91, CKP11, DA05, Fei93, GR86, PS11, PS08, Ran00,
Ver96, Ver89] and in many other publications.
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4.2.1 Divergence-Free Approximations

In this section, we show a simple way of deriving guaranteed bounds of deviations
from the exact solution for any solenoidal approximation v ∈ ◦

S + u0, which follows
the lines of [Rep02b, Rep04, Rep08]. First, we note that

∫

Ω

νε(u− v) : ε(w)dx =
∫

Ω

(
f ·w − νε(v) : ε(w))dx, ∀w ∈ ◦

S. (4.99)

Let τ ∈H(Ω,Div). Then, we represent (4.99) as follows:
∫

Ω

νε(u− v) : ε(w)dx =
∫

Ω

(f + Div τ − ∇q) ·w + (τ − νε(v)
) : ε(w))dx,

where q ∈ ◦
L2(&) is a scalar-valued function (note that since w is a solenoidal field

the product of this function and ∇q is zero). We set w = u − v and arrive at the
estimate

ν
∥
∥ε(u− v)

∥
∥≤ ∥∥νε(v)− τ

∥
∥+CFΩ‖Div τ + f − ∇q‖. (4.100)

We can square both parts and rewrite this estimate in the form

ν2
∥
∥ε(u− v)

∥
∥2

≤ (1 + β)
∥
∥νε(v)− τ

∥
∥2 + (1 + β)C2

FΩ

β
‖Div τ + f − ∇q‖2. (4.101)

As the estimates presented earlier in this book, it involves certain free parameters
that should be chosen in such a way that the right-hand side of (4.101) is minimal.
Moreover,

ν2
∥
∥ε(u− v)

∥
∥2

= inf
τ∈H(Ω,Div)

q∈H̃ (Ω),β>0

{

(1 + β)
∥
∥νε(v)− τ

∥
∥2 + (1 + β)

β
C2
FΩ‖div τ + f − ∇q‖2

}

.

In this estimate, it is required that q ∈ H̃ (Ω) := ◦
L2(&) ∩ H 1(Ω). If q has a

weaker regularity, then we use a modification of (4.100), which is obtained by in-
troducing a new tensor-valued function instead of τ (which is η := τ + qI). We
have

ν
∥
∥ε(u− v)

∥
∥≤ ∥∥νε(v)− η− qI

∥
∥+CFΩ‖Div τ + f ‖. (4.102)

Estimates (4.100), (4.101) or (4.102) are applicable only if v belongs to the set
of solenoidal functions. Typically, approximate solutions computed by numerical
methods do not exactly satisfy this condition. For this reason, it is desirable to have
a projection method, by which we can post-process an approximate solution to the
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Fig. 4.9 Hsiesh–Clough–
Tocher macroelement (left)
and decomposed subelements
(right)

set of divergence-free fields. In general, this may be a rather difficult task, but for 2D
problems such a projection can be constructed fairly easily by means of the stream
function. Let W ∈H 2(Ω) and

v =
(
∂W

∂x2
,−∂W

∂x1

)

. (4.103)

It is easy to see that divv = 0. If v̂ is not a solenoidal vector-valued function, then we
can post-process it by a certain mapping to the set of functions of the form (4.103).
For this purpose, the function W is constructed with the help of C1-elements. One
way is to use the Hsieh–Clough–Tocher elements, which are macroelements con-
structed by dividing a triangle into three sub-triangles Ti (see, e.g., [BH81]). On
each of them, the function is presented by a 3rd order polynomial. These elements
and the corresponding degrees of freedom are depicted in Fig. 4.9. Let

◦
Sh denote

the space of functions satisfying (4.103), where W is constructed by Hsieh–Clough–
Tocher approximations. Obviously,

◦
Sh ⊂ ◦

S. Assume that uh /∈ ◦
S is a finite element

approximation computed by some numerical procedure. Define vh ∈ ◦
Sh such that

∥
∥∇(uh − vh)

∥
∥= min

wh∈
◦
Sh

∥
∥∇(uh −wh)

∥
∥. (4.104)

The computational cost of this projection procedure can be reduced by taking the
values of the stream function directly from the values of uh by (4.103). For example,
if uh is constructed by means of Taylor–Hood elements, then the degrees of freedom
associated to the derivatives of W are defined as follows:

∂W

∂x1
= −uh2 and

∂W

∂x2
= uh1,

at each node and
∂W

∂n
= (−uh2, uh1) · n

on each exterior edge. The remaining degrees of freedom are defined by local min-
imization in accordance with (4.104). If uh is computed by means of Crouzeix–
Raviart elements, then a similar procedure can be applied if the previously solution
is smoothed (averaged).

Example 4.3 Analysis of numerical efficiency of the estimates discussed in
Sect. 4.2.1 was performed in [Gor07]. Below we present one test example taken
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from there (see also [GNR06]). In it, the majorant (4.101) was applied to finite
element approximations of the Stokes problem in the domain

Ω := ((−1,1)× (−1,1)
) \ ([0,1] × [−1,0]).

It is assumed that f = 0 and the boundary conditions coincide with the boundary
traces generated by the exact solution

−→
u (r, θ) = rα

(
(1 + α)(sin θ,− cos θ)w + (cos θ, sin θ)

)∂w

∂θ
,

p(t, θ) = − rα−1

1 − α

(

(1 + α)2
∂w

∂θ
+ ∂3w

∂θ3

)

,

w(θ) = sin((1 + α)θ) cos(αγ )

1 + α
− cos

(
(1 + α)θ

)

− sin((1 − α)θ) cos(αγ )

1 − α
+ cos

(
(1 − α)θ

)
,

where α = 0.54448 and γ = 3π
2 .

Approximations were computed with the help of Taylor–Hood elements and
Uzawa iteration algorithm. The velocity field uh obtained by this method is close
to a solenoidal field, but does not exactly satisfy the condition divuh = 0. There-
fore, it is necessary to apply the projection method described above and find a
close solenoidal approximation. It is substituted in the majorant (4.101), which is
then minimized with respect to the auxiliary functions τ and q . The auxiliary func-
tions belong to finite dimensional subspaces constructed with the help of piecewise
quadratic functions. For τ , the initial guess is computed by simple (patch-wise) av-
eraging of ν∇uh, and the pressure ph is computed by the Uzawa algorithm. This
test problem was solved by an adaptive method, in which the integrand of the ma-
jorant (4.101) was used as an error indicator. In this simple example, marking was
performed on the basis of the mean value principle: we refine (split) the elements,
for which the indicated error is greater than one half of the maximum error.

The exact error, value of (4.101), and the respective efficiency index are presented
in Table 4.7. The first column of the table shows the amount of Uzawa iterations used
for finding the corresponding approximate solution, the second column containing
the amount of mesh nodes. The error and the upper bound computed by the majorant
are shown in the next two columns. By the efficiency indexes presented in the last
column, we see that for all meshes the quality of error estimation was quite good.

4.2.2 Approximations with Nonzero Divergence

In many cases, it is more convenient to operate with numerical solutions which sat-
isfy the divergence-free condition only approximately. Error majorants can be de-
rived for such approximations as well, but they have an additional term and involve
a new global constant. The motivation of this is as follows.
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Table 4.7 Error estimates
# iterations # nodes ‖|u− uh‖| Majorant Ieff

5 472 0.94 1.288 1.37

9 2174 0.041 0.057 1.41

12 4303 0.026 0.03926 1.51

14 5734 0.013 0.0166 1.28

19 7893 0.0096 0.01373 1.43

26 12552 0.008 0.0095 1.19

An estimate of the distance between a function v̂ ∈ V0 and the space
◦
S follows

from Lemma A.1. Set f = div v̂. Lemma A.1 guarantees the existence of a function
uf ∈ V0 such that

div(̂v − uf )= 0, and ‖∇uf ‖ ≤ κΩ‖div v̂‖.

In other words, there exists a solenoidal field w0 := v̂ − uf ∈ ◦
S such that

∥
∥∇ (̂v −w0)

∥
∥≤ κΩ‖div v̂‖. (4.105)

This fact can be presented in another form. Let v̂ ∈ V0, then

inf
v∈◦

S

∥
∥∇ (̂v − v)

∥
∥≤ κΩ‖div v̂‖. (4.106)

Thus, the distance between v̂ ∈ V0 and
◦
S (in the strong norm generated by gradients)

is controlled by the constant κΩ . Obviously, the same estimate holds if v̂ ∈ V0 + u0

is projected on
◦
S + u0.

Now, we can easily deduce error majorant for a function v̂ ∈ V0 +u0, which does
not belong to

◦
S + u0. Using the triangle inequality twice, we find that

ν
∥
∥ε(u− v̂)

∥
∥≤ ∥∥νε(̂v)− τ

∥
∥+CΩ‖div τ + f − ∇q‖ + 2νκΩ‖div v̂‖, (4.107)

where the additional term that can be thought of as a penalty for possible violation
of the divergence-free condition.

A similar estimate can be derived for the pressure field (see [Rep02b]). It has the
form

1

2κΩ
‖p − q‖ ≤ νκΩ‖div v̂‖ + ∥∥νε(̂v)− τ

∥
∥+CFΩ‖Div τ + f − ∇q‖. (4.108)

It is easy to see that the right-hand side of (4.108) contains the same terms as the
right-hand side of (4.107) and vanishes if and only if v̂ = u, τ = σ and p = q .
However, the penalty factors more strongly dependent on the value of κΩ .

The presence of the LBB-constant makes the estimates (4.107) and (4.108) less
attractive because this constant may be difficult to estimate. On the other hand,
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if a method of estimation would be developed, then rather simple nonsolenoidal
approximations of the velocity field could be analyzed by the estimate.

Remark 4.5 Estimates (4.107) and (4.108) have been extended to generalized forms
of the Stokes problem in [RS07, RS08]. Further development of the method in
the context of finite element approximations is presented in [HSV12]. A posteri-
ori estimates for the Stokes problem in velocity-vorticity formulation are derived in
[MR11b] and for the evolutionary Stokes problem in [NR10b].

4.2.3 Stokes Problem in Rotating System

As an example of a more complicated model, we consider the Stoke’s problem in
rotating frame:

−νΔu+ 1

Rb

B × u = f − ∇p in Ω ⊂ R
2,

divu = 0 in Ω, (4.109)

u = ug on Γ.

The term 1
Rb
B ×u is related to the Coriolis force (which must be taken into account

if, e.g., effects caused by the Earth rotation are significant). Here B = bez is the adi-
mensional rotation speed and Rb is the so-called Rossby number. The term related to
the centripetal force is included to the pressure term and is not considered in rotating
fluid computations (see, e.g., [Var62]). Similar observations as for the Stokes prob-
lem are valid. We assume f ∈ L2(Ω,Rd) and divug = 0. The generalized solution

u ∈ ◦
S + ug satisfies the integral relation

∫

Ω

(

ν∇u : ∇w + 1

Rb

(B × u) ·w
)

dx =
∫

Ω

f ·w dx, ∀w ∈ ◦
S.

Error majorants for this problem were derived in [GMNR07]. Let u be the exact
solution of (4.110) and v be a function in

◦
S + ug . Then,

∥
∥ν∇(u− v)

∥
∥≤ ‖τ − ν∇v‖ +CFΩ

∥
∥
∥
∥f + div τ − 1

Rb

B × v − ∇q

∥
∥
∥
∥, (4.110)

where τ ∈ Σdiv(Ω) and q ∈ H 1(Ω) ∩ ◦
L2(&). If ξ ∈ Σdiv(Ω) and

q ∈ ◦
L2(&), then we have a somewhat different estimate

∥
∥ν∇(u− v)

∥
∥≤ ‖ξ − ν∇v + qI‖ +CFΩ

∥
∥
∥
∥f + div ξ − 1

Rb

B × v

∥
∥
∥
∥. (4.111)

Error majorants applicable for non-solenoidal approximations and estimates for
the pressure can be derived along the same lines as for the Stokes problem (see
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[GMNR07]). The following numerical tests in Examples 4.4 and 4.5 were computed
by E. Gorshkova (see [Gor07]).

Example 4.4 We consider viscous flow in a rotating container that consists of three
connected cylinders with different radii, i.e., Ω =Ω1 ∪Ω2 ∪Ω3, where

Ω1 :=
{

(r, θ, z) ∈R
3
∣
∣
∣ 0 ≤ r ≤Rtop,0 ≤ θ < 2π,

h

2
≤ z≤ 3h

2

}

,

Ω2 :=
{

(r, θ, z) ∈R
3
∣
∣
∣ 0 ≤ r ≤Rmiddle,0 ≤ θ < 2π,−h

2
≤ z≤ h

2

}

,

Ω3 :=
{

(r, θ, z) ∈R
3
∣
∣
∣ 0 ≤ r ≤Rbottom,0 ≤ θ < 2π,−3h

2
≤ z≤ −h

2

}

.

The container rotates around the vertical ez-axis. The income and outcome boundary
conditions are defined as follows: ur = 0 and uθ = 1

Rb
br at the “top” and “bottom”

sides, uz = R2
top−r2

R3
top

at the top side, and uz = R2
bottom−r2

R3
bottom

at the bottom side.

The problem by the finite element method using quadratic approximations for v
and linear approximations for q . The velocity field is post-processed by the same
method as for the Stokes problem. The resulting solenoidal field is considered as an
approximation, the error of which is measured by the estimate (4.110). The majo-
rant (4.110) is minimized numerically with respect to τ and q , which are constructed
by means of quadratic elements (the initial values are taken from the approximate
solution). This procedure results in an error bound and an error indicator that de-
scribes the distribution of local error. The marking is performed in accordance with
the “bulk strategy” (see Algorithm 2.2 with θbulk = 0.6). A series of adapted meshes
is depicted in Fig. 4.10. In this example, we set Rtop =Rbottom = 0.6, Rmiddle = 1.0,
and h = Rb = b = 1.0. The exact solution for the test problem is not known.
Therefore, we use a “referenced” solution uref, which is specially computed on a
very fine mesh. The results obtained by the majorant (4.110) are presented in Ta-
ble 4.8. Additionally, we study the accuracy of the indicator with respect to the
marker used (“bulk” criterium). We apply Definition 2.3 and compute the value of
M(EI(uh),M), i.e., the percentage of the elements where the majorant generates
wrong marking. For this test, we set b = 100 and Rtop = Rbottom = 0.8. The results
are collected to Table 4.9.

Example 4.5 Fig. 4.11 demonstrates results of numerical tests for rotating cylin-
der in which the efficiency of error indicators generated by the majorant was veri-
fied. Figure 4.11a is related to the value of rotation parameter 3. True relative error
for the geometry and mesh presented in the figure is around 3.2 % (it was com-
puted by comparing it with the reference solution), and the majorant gives 3.5 %,
so that Ieff ∼= 1.09. Comparison of marked elements shows 97.2 % coincidence for
the maximum criterion (where the elements containing error larger than one half of
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Fig. 4.10 Adaptation of meshes in the rotating container problem

Table 4.8 Rotating container
(Rtop =Rbottom = 0.6, b = 1) # iterations # nodes ‖|uh − uref‖| Majorant Ieff

1 312 0.0087 0.0129 1.48

2 472 0.0066 0.0086 1.30

3 643 0.0059 0.0081 1.37

4 692 0.0051 0.0061 1.20

5 786 0.0033 0.0050 1.51

6 981 0.0023 0.0045 1.96

7 1240 0.0016 0.0027 1.69

8 2054 0.0011 0.0018 1.64

the largest occurring error are selected) and bulk criterion (Algorithm 2.3, where
θ = 0.6). Figure 4.11 presents similar information for a problem with a faster ro-
tation (the rotation parameter is 100). In this case, the relative error is 1.8 %, the
majorant is 2.18 %, and Ieff ∼= 1.21. Maximum and bulk criteria show 94.2 % and
90.9 % coincidence, respectively.



132 4 Guaranteed Error Bounds II

Table 4.9 Rotating container Rtop =Rbottom = 0.8, b = 100

# iterations # nodes
‖|uhref−v‖|
‖|uhref‖|

‖|uhref − v‖| MStokes,rot Ieff M(EI(uh),M)

1 425 0.38 1.93 2.63 1.35 0.03

2 637 0.28 1.44 1.87 1.29 0.05

3 956 0.19 0.997 1.18 1.19 0.04

4 1147 0.126 0.63 0.86 1.36 0.08

Fig. 4.11 Marking of elements in the rotating container example, where a the rotation parameter
is 3 and b the rotation parameter is 100

4.3 A Simple Maxwell Type Problem

In classical settings, the Maxwell problem is defined by the functions E, D (which
denote the electric field and induction, respectively) and the functions H and B

(magnetic field and induction, respectively), which satisfy the system

∂D

∂t
− curlH = −J,

∂B

∂t
+ curlE = 0
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for all (t, x) ∈ (0, T )×Ω . Here J denotes the current and, as before, Ω is a bounded
domain in R

d with Lipschitz boundary Γ . Moreover, in this section we assume
that Ω is simply connected. Physical properties of the electromagnetic media are
described by the constitutive relations

D = εE and B = μH,

where ε(x) > 0 is the dielectric permittivity and μ(x) > 0 is the magnetic per-
meability (both μ and ε are assumed to be positive constants or positive bounded
functions). Then, the Maxwell’s equations are presented in terms of E and H as
follows:

ε
∂E

∂t
− curlH = −J,

μ
∂H

∂t
+ curlE = 0.

These equations must be accompanied by initial conditions and suitable boundary
conditions. Here we assume that E satisfies the so-called perfect electric conductor
boundary condition

E × n= 0 on Γ,

where n denotes the unit outward normal of Γ . Usually the time derivatives are
replaced by incremental relations. Using the backward-Euler scheme we have

ε

Δt

(
En −En−1)− curlHn = −J,

μ

Δt

(
Hn −Hn−1)+ curlEn = 0, n= 1, . . . ,N,N = T

Δt
,

where Δt is the time step. By eliminating Hn and transferring En−1 and Hn−1 to
the right-hand side, we have

curl
(
μ−1 curlEn

)+ ε

(Δt)2
En = 1

Δt

(

−J + ε

Δt
En−1 + curlHn−1

)

.

We denote the right-hand side by f ∈ L2(Ω,Rd), set κ = ε(Δt)−2 and arrive at the
model problem

curl
(
μ−1 curlE

)+ κE = f in Ω, (4.112)

E × n = 0 on Γ, (4.113)

in which the superscript n is omitted.
Below, we study (4.112)–(4.113) in the 2D case, so that the double curl is under-

stood as curl curl, where

curlw := ∂1w2 − ∂2w1, curlϕ :=
(
∂2ϕ

−∂1ϕ

)

.



134 4 Guaranteed Error Bounds II

Let V (Ω) denote the space H(curl;Ω) (see Sect. A.2) and

V0(Ω) := {w ∈ V |w × n= 0 on Γ }.
The generalized solution E ∈ V0(Ω) of (4.112)–(4.113) is defined by the integral
relation

∫

Ω

(
μ−1 curlE curlw + κE ·w)dx =

∫

Ω

f ·w dx, ∀w ∈ V0(Ω). (4.114)

Henceforth, we assume that f is a solenoidal function and 0 <μ� ≤ μ(x)≤ μ⊕.

4.3.1 Estimates of Deviations from Exact Solutions

Let Ẽ ∈ V0 be an approximation to the exact solution E. Our goal is to obtain com-
putable and guaranteed bounds of the difference between E and any function Ẽ ∈ V0
measured in terms of the weighted (energy) norm

∣
∣[w]∣∣

(γ,δ)
:=
(∫

Ω

(
γ | curlw|2 + δ|w|2)dx

)1/2

.

We begin with auxiliary results, which are further used in the derivation of the
upper bound. By the Helmholtz decomposition, E = E0 + ∇ψ , where E0 is a
solenoidal field and ψ ∈ ◦

H 1(Ω). Since curl∇ψ = 0, we rewrite (4.114) as follows:
∫

Ω

(
μ−1 curlE0 curlw + κ(E0 + ∇ψ) ·w)dx =

∫

Ω

f ·w dx.

Next, we make the same decomposition for the trial function and set w =w0 + ∇φ.
Since

∫

Ω

f · ∇φ dx =
∫

Ω

E0 · ∇φ dx =
∫

Ω

w0 · ∇ψ dx = 0,

we observe that
∫

Ω

(
μ−1 curlE0 curlw0 + κE0 ·w0 + κ∇ψ · ∇φ

)
dx =

∫

Ω

f ·w0 dx.

By setting w0 = 0 and φ = ψ , we find that ‖∇ψ‖ = 0. Hence, E is a solenoidal
function.

Note that φ satisfies the relation
∫

Ω

∇φ · ∇ξ dx =
∫

Ω

w · ∇ξ dx = −
∫

Ω

(divw)ξ dx, ∀ξ ∈ ◦
H 1(Ω),

which implies the estimate

‖∇φ‖ ≤ CFΩ‖divw‖, (4.115)
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where CFΩ is the constant in the Friedrichs inequality for the domain Ω (cf.
(A.27)). For solenoidal fields we also have the estimate (see, e.g., [Sar82])

‖w0‖ ≤ CΩ‖ curlw0‖ = CΩ‖ curlw‖. (4.116)

Constants in these inequalities appear in advanced a posteriori estimates for the
problem (4.112)–(4.113), which we discuss later (cf. Proposition 4.4). However,
first we mention simpler estimates derived in [Rep08] (similar estimates have been
reported [Han08]). If κ > 0 and Ẽ is a conforming approximation of E, then a
simple majorant of the error has the form

∣
∣[E − Ẽ]∣∣2

(μ−1,κ)
≤ M

2
curl(v, y)

:= ∥
∥κ−1/2(f − κẼ − curly)

∥
∥2

+ ∥∥μ1/2(y −μ−1 curl Ẽ
)∥∥2

. (4.117)

It is easy to see that

inf
Ẽ∈V0,

y∈H(Ω,curl)

Mcurl(Ẽ, y)= 0

and the exact upper bound is attained if and only if

curly + κẼ = f a.e. in Ω, (4.118)

y = μ−1 curl Ẽ a.e. in Ω. (4.119)

Since Ẽ×n= 0 on Γ , the relations (4.118) and (4.119) mean that Ẽ coincides with
the exact solution E and y = μ−1 curlE.

For any y ∈ V0, the quantity Mcurl(Ẽ, y) gives an upper bound of the error. It is
clear that the function y should be selected in such a way that the majorant would
be minimal. Since

inf
y∈V0

M
2
curl(Ẽ, y) ≤ M

2
curl

(
v,μ−1 curlE

)

= ∥
∥κ−1/2(f − κẼ − curlμ−1 curlE

)∥
∥2 + ∥∥μ−1/2 curl(E − Ẽ)

∥
∥2

= ∥
∥κ−1/2(E − Ẽ)

∥
∥2 + ∥∥μ−1/2 curl(E − Ẽ)

∥
∥2 = ∣∣[E − Ẽ]∣∣2

(μ−1,κ)
,

we see that computable quantities generated by the majorant can approximate |[E−
Ẽ]|(μ−1,κ) with any desired accuracy.

An advanced form of the error majorant is presented by the estimate (4.120).
The exposition below follows along the lines of [NR10a], where similar estimates
are considered for a 3D problem.

Proposition 4.4 Let Ẽ ∈ V0 ∩H(div;Ω) be an approximation of E. Then,
∣
∣[E − Ẽ]∣∣2

γ,δ
≤ M

2
curl(λ,α1, α2, Ẽ, y), y ∈H 1(Ω), (4.120)
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where

M
2
curl(λ,α1, α2, Ẽ, y) :=R1(λ, Ẽ, y)+ α1

4
R2

2(λ, Ẽ, y)+ α2

4
R2

3(λ, Ẽ, y),

α1 and α2 are arbitrary numbers in [1,+∞),

γ =
(

1 − 1

α1

)

μ−1, δ =
(

1 − 1

α2

)

κ,

λ ∈ I[0,1] := {λ ∈ L∞(Ω) | λ(x) ∈ [0,1] for a.e. x ∈Ω
}
,

κ is a positive constant, and the quantities Ri , i = 1,2,3 are defined by (4.126)–
(4.128).

Proof Subtracting
∫
Ω
(μ−1 curl Ẽ curlw + κẼ ·w)dx from (4.114) leads at

∫

Ω

(
μ−1 curl(E − Ẽ) curlw + κ(E − Ẽ) ·w)dx

=
∫

Ω

(
f ·w −μ−1 curl Ẽ curlw − κẼ ·w)dx. (4.121)

In view of the integration by parts formula (for the operator curl in 2D)

∫

Ω

y curlw dx =
∫

Ω

curly ·w dx +
∫

Γ

y(w × n)ds,

which is valid for any y ∈H 1(Ω) and w ∈H(curl;Ω), we find that

∫

Ω

(curly ·w − y curlw)dx = 0, ∀w ∈ V0(Ω). (4.122)

Therefore, by (4.122) and (4.121) we obtain

∫

Ω

(
μ−1 curl(E − Ẽ) curlw + κ(E − Ẽ) ·w)dx

=
∫

Ω

r(Ẽ, y) ·w dx +
∫

Ω

d(Ẽ, y) curlw dx, (4.123)

where

r(Ẽ, y) := f − curly − κẼ,

d(Ẽ, y) := y −μ−1 curl Ẽ.

With the help of the weight function λ we decompose the integral identity (4.123)
as follows:
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∫

Ω

(
μ−1 curl(E − Ẽ) curlw + κ(E − Ẽ) ·w)dx

=
∫

Ω

λr(Ẽ, y) ·w dx +
∫

Ω

(1 − λ)r(Ẽ, y) ·w dx

+
∫

Ω

d(Ẽ, y) curlw dx, (4.124)

where λ ∈ I[0,1]. Let w =E − Ẽ. Since

∫

Ω

λr(Ẽ, y) · (E − Ẽ)dx ≤ ∥∥λκ−1/2r(Ẽ, y)
∥
∥
∥
∥κ1/2(E − Ẽ)

∥
∥

and by inequalities (4.115) and (4.116)

∫

Ω

(1 − λ)r(Ẽ, y) · (E − Ẽ)dx

≤ ∥∥(1 − λ)r(Ẽ, y)
∥
∥(CFΩ‖div Ẽ‖ +CΩμ

1/2
⊕
∥
∥μ−1/2 curl(E − Ẽ)

∥
∥).

Now, (4.124) implies the estimate

∫

Ω

(
μ−1

∣
∣curl(E − Ẽ)

∣
∣2 + κ|E − Ẽ|2)dx

≤R1 +R2
∥
∥μ−1/2 curl(E − Ẽ)

∥
∥+R3

∥
∥κ1/2(E − Ẽ)

∥
∥, (4.125)

where

R1(λ, Ẽ, y) = CFΩ

∥
∥(1 − λ)r(Ẽ, y)

∥
∥‖div Ẽ‖, (4.126)

R2(λ, Ẽ, y) = CΩμ
1/2
⊕
∥
∥(1 − λ)r(Ẽ, y)

∥
∥+ ∥∥μ1/2d(Ẽ, y)

∥
∥, (4.127)

R3(λ, Ẽ, y) = ∥
∥λκ−1/2r(Ẽ, y)

∥
∥. (4.128)

By applying Young’s inequality to the right-hand side of (4.125), we obtain

∫

Ω

(

1 − 1

α1

)

μ−1
∣
∣curl(E − Ẽ)

∣
∣2 dx +

∫

Ω

(

1 − 1

α2

)

κ|E − Ẽ|2 dx

≤R1 + α1

4
R2

2 + α2

4
R2

3,

which implies (4.120). �

Corollary 4.1 If α1 = α2 = 2 then (4.120) has the following form:

∣
∣[E − Ẽ]∣∣2

(μ−1,κ)
≤ M

2
curl,λ, (4.129)
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where

M
2
curl,λ := M

2
curl(λ, Ẽ, y)= 2R1(λ, Ẽ, y)+R2

2(λ, Ẽ, y)+R2
3(λ, Ẽ, y),

and this estimate is sharp.

Proof It holds that

inf
λ∈I[0,1],
y∈H 1(Ω)

M
2
curl,λ(λ, Ẽ, y)≤ inf

y∈H 1(Ω)
M

2
curl,1(Ẽ, y)≤ M

2
curl,1(Ẽ,p),

where p = μ−1 curlE and Mcurl,1 := M
2
curl(1, Ẽ, y), i.e.,

M
2
curl,1(Ẽ,p)= ∥∥μ−1/2 curl(E − Ẽ)

∥
∥2 + ∥∥κ1/2(E − Ẽ)

∥
∥2 = ∣∣[E − Ẽ]∣∣2

(μ−1,κ)
,

so that the estimate is sharp. �

Remark 4.6 By setting λ = 1 and λ = 0 we arrive at two particular forms of the
error majorant, namely,

M
2
curl,1(Ẽ, y)= ∥∥κ−1/2r(Ẽ, y)

∥
∥2 + ∥∥μ1/2d(Ẽ, y)

∥
∥2 cf. (4.117), (4.130)

and

M
2
curl,0(Ẽ, y) = 2CFΩ

∥
∥r(Ẽ, y)

∥
∥‖div Ẽ‖

+ (CΩμ
1/2
⊕
∥
∥r(Ẽ, y)

∥
∥+ ∥∥μ1/2d(Ẽ, y)

∥
∥
)2
. (4.131)

It should be noted that Mcurl,0 is robust with respect to small values of κ . However,
this form of the error majorant may lead to a considerable overestimation if κ is
large. In contrary to that, Mcurl,1 is sensitive with respect to small κ , but it is well
adapted to large values of this parameter. The combined majorant Mcurl,λ is appli-
cable to both cases. This property is due to the presence of the function λ, which
allows us to compensate small values of κ .

Now, our goal is to derive a lower bound of the error. We apply the same method
that we have used several times before.

Proposition 4.5 Assume that κ > 0 and Ẽ ∈ V0 is an approximation of E. For any
w ∈ V0 the following estimate holds:

∣
∣[E − Ẽ]∣∣2

(μ−1,κ)
≥ M2

curl(Ẽ,w), (4.132)

where
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M2
curl(Ẽ,w) :=

∫

Ω

(
2f ·w −μ−1| curlw|2

− κ|w|2 − 2μ−1 curl Ẽ curlw − 2κẼ ·w)dx.

Moreover, the lower bound is sharp, i.e.,
∣
∣[E − Ẽ]∣∣2

(μ−1,κ)
= inf

w∈V0
M2

curl(Ẽ,w)= M2
curl(Ẽ,E − Ẽ).

Proof Note that

sup
w∈V0

∫

Ω

(

μ−1 curl(E − Ẽ) curlw + κw · (E − Ẽ)

− 1

2

(
μ−1 curlw curlw + κw ·w)

)

dx

≤ sup
τ∈H 1(Ω)

w∈L2(Ω,R2)

∫

Ω

(

μ−1 curl(E − Ẽ)τ − 1

2
μ−1τ 2

+ κw · (E − Ẽ)− 1

2
κw ·w

)

dx

= 1

2

∣
∣[E − Ẽ]∣∣2

(μ−1,κ)
.

On the other hand,

sup
w∈V0

∫

Ω

(

μ−1 curl(E − Ẽ) curlw + κw · (E − Ẽ)

− 1

2

(
μ−1 curlw curlw + κw ·w)

)

dx

≥
∫

Ω

(

μ−1 curl(E − Ẽ) curl(E − Ẽ)+ κ(E − Ẽ) · (E − Ẽ)

− 1

2

(
μ−1

∣
∣curl(E − Ẽ)

∣
∣2 + κ|E − Ẽ|2)

)

dx

= 1

2

∣
∣[E − Ẽ]∣∣2

(μ−1,κ)
.

Thus, we conclude that

1

2

∣
∣[E − Ẽ]∣∣2

(μ−1,κ)
= sup

w∈V0

∫

Ω

(

μ−1 curl(E − Ẽ) curlw

+ κw · (E − Ẽ)− 1

2

(
μ−1 curlw curlw + κw ·w)

)

dx.
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Now (4.114) yields (4.132).
Finally, we note that the sharpest bound is presented by the quantity

M2
curl(Ẽ)= sup

w∈V0

M2
curl(Ẽ,w).

By setting w =E − Ẽ, we obtain

M2
curl(Ẽ,E − Ẽ)= ∣∣[E − Ẽ]∣∣2

(μ−1,κ)
,

so that the lower bound is sharp. �

4.3.2 Numerical Examples

Estimates derived in the previous section have been verified in a series of numerical
tests which are discussed in this section. Approximations for the model problem
were calculated by means of the lowest order Nédélec’s elements of the first type
(e.g., see [Mon03, Néd80]).

In the derivation of the upper bound we have used the Helmholz decomposi-
tion for the numerical approximation of the exact solution. In view of this fact,
we assume that numerical approximations belong not only to H(curl) but also to
H(div). The lowest order Nédélec’s elements do not preserve the continuity of the
normal component across element edges, so the divergence of approximate solu-
tions is not square summable. To overcome this difficulty we chose to force the
normal continuity by post-processing numerical solutions. An alternative way is
to use standard Courant type elements and generate solution in H 1(Ω) × H 1(Ω).
It is worth noting that these difficulties do not arise in the derivation of Mcurl,1,
because it can be derived separately without using Helmholz decomposition (see
[Han08, NR10a, Rep07]). Also the lower bound does not require the square summa-
bility of the divergence of the numerical approximation.

The free function y can be obtained by a global minimization of the majorant,
which requires solving a finite dimensional problem with respect to y. Increasing
the order of elements or using a more refined mesh than the mesh on which the ap-
proximate solution was computed results in better values of the majorant. As before,
we measure the efficiency of the majorant in terms of the efficiency index (cf. (2.3)).

Ieff = Mcurl,λ

|[E − Ẽ]|(μ−1,κ)

.

For the first test example we take

Ω = (0,1)2, μ≡ 1, κ > 0, f = (π2 + κ
)
(

sin(πx2)

sin(πx1)

)

. (4.133)



4.3 A Simple Maxwell Type Problem 141

Table 4.10 Problem (4.133):
Efficiency indexes for
different values of κ

κ Linear y Quadratic y

Mcurl,1 Mcurl,0 Mcurl,λ Mcurl,1 Mcurl,0 Mcurl,λ

10−3 103.79 1.98 1.98 6.35 1.07 1.07

10−1 10.42 1.98 1.98 1.18 1.07 1.06

100 3.42 1.98 1.91 1.02 1.08 1.02

101 1.42 1.96 1.42 1.00 1.18 1.00

103 1.00 7.14 1.00 1.00 7.05 1.00

For this problem, we know the exact solution u= (sin(πx2), sin(πx1)). Table 4.10
shows the efficiency of the error majorants Mcurl,1, Mcurl,0, and Mcurl,λ for differ-
ent κ . In this series of tests, for each κ the approximate solution was calculated on
a mesh with 82 elements, and post-processed so that the divergence of the approx-
imate solution becomes square summable. In the left part of Table 4.10, the results
correspond to the case in which y is computed by minimizing majorants over the
space of piecewise affine continuous functions generated by the same mesh that
has been used to compute the approximate solution. The right part exposes results
obtained by applying piece-wise quadratic approximations for y on a refined mesh.

It is not surprising that the efficiency indexes in the quadratic case are smaller,
because in the tests the number of degrees of freedom for a quadratic y is approx-
imately four times larger than for the linear y. Another observation, which follows
from Table 4.10 consists of that the majorants Mcurl,1 and Mcurl,0 may essentially
overestimate the error, while Mcurl,λ keeps small values of the efficiency index for
all κ . The behavior of the majorants with respect to κ is also depicted in Fig. 4.12.
The left picture corresponds to linear approximations of y and the right one shows

Fig. 4.12 Problem (4.133): Efficiency indexes of the majorants Mcurl,1, Mcurl,0 and Mcurl,λ for
different κ
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Table 4.11 Problem (4.133) with κ = 10−3: The efficiency of Mcurl,1 and Mcurl

# elem |[E − Ẽ]|2 M2
curl Linear y Quadratic y

M
2
curl,1 Ieff M

2
curl,1 Ieff

82 0.11908 – 1897.90 126.25 7.04419 7.69

328 0.11908 0.08914 486.837 63.94 0.55972 2.17

1312 0.11908 0.11158 123.000 32.14 0.14689 1.11

5248 0.11908 0.11721 30.9403 16.12 0.12083 1.01

results computed with the help of quadratic approximations of y. From these re-
sults we also see that Mcurl,1 significantly benefits from using quadratic elements to
approximate y.

Even though Mcurl,1 seriously overestimates the error with small values of κ , the
theory claims that it is sharp. In principle, with Mcurl,1 one should be able to get as
low efficiency index values as with Mcurl,λ. To verify this, we took the case κ = 10−3

and calculated the numerical approximation in a mesh with 82 elements. For this test
we did not post-process the numerical approximation, because this majorant does
not require that approximate solution belongs to H(div). To test the sharpness of
this majorant, we calculated the free parameter y on subsequently refined meshes.
The results presented in Table 4.11 are in good agreement with the theory. The
efficiency of Mcurl,1 using linear y is low, but using quadratic y for y we clearly see
that the upper bound converges to the exact error. Also, calculations related to Mcurl
show that it is rather efficient.

From these results we can conclude that it is possible to achieve high accuracy
of two-sided bounds of error. This is only a matter of computational resources that
we are ready to invest in error analysis. Certainly, in many cases very sharp bounds
of the error are not required. However, in principle we can estimate errors with any
desired accuracy.

4.3.2.1 Error Indicators Generated by Mcurl,1

Getting efficient indicators of the error distribution is another important task. The
majorant Mcurl,1 is most suitable for this purpose because it does not contain any
constants. Using the two terms in Mcurl,1 separately, we define the following error
indicators

EIr(Ẽ, y)= ∥∥κ−1/2r(Ẽ, y)
∥
∥ (4.134)

and

EId(Ẽ, y)= ∥∥μ1/2d(Ẽ, y)
∥
∥. (4.135)
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If y ≈ μ−1 curlE, then the indicator (4.134) should give a good error distribution
for the weighed L2-norm of the error

∥
∥κ1/2(E − Ẽ)

∥
∥.

Respectively, the indicator (4.135) should give a good error distribution for the
weighed H(curl)-seminorm of the error

∥
∥μ−1/2 curl(E − Ẽ)

∥
∥.

Our numerical tests applied two different techniques to compute y in the indica-
tors (4.134) and (4.135): (a) yglo denotes the function obtained by global minimiza-
tion of the majorant Mcurl,1, where yglo was calculated with linear elements in the
same mesh on which the approximate solution was calculated; (b) yavg denotes the
function obtained by a simple averaging procedure, where for each node we calcu-
late the approximate solution’s curl values on the surrounding elements and weight
them by the sizes of respective elements. Then, we average the values to obtain a
value for the node.

For the second test example we take

Ω = (0,1)2\
([

1

2
,1

]

×
[

0,
1

2

])

, μ≡ 1,

κ = 1, f =
(

1
0

)

.

(4.136)

For this problem we do not know the exact solution: instead, we introduce a refer-
ence solution, which was calculated in a mesh with 286114 elements.

Figures 4.13 and 4.14 present typical results for the indicators (4.134) and
(4.135). In them, we denote, by Ir (y) and Id(y), the markings indicated by

Ir(y) :=EIr(Ẽ, y) and Id(y) :=EId(Ẽ, y), respectively. Moreover, we have marked
with black color all those elements for which the indicated error is greater than the
indicated average error. The first row is related to the indicator (4.134) and the sec-
ond one to (4.135). The first picture of each row depicts marking of elements based
upon the true distribution of the error. The second picture shows the marking based
on the error indication computed with the help of yglo, and the third picture shows
the marking where the error indication is based on yavg. We observe that the latter
method may provide a suitable indication in some cases and rather coarse results in
others.

We end up this section with literature comments. Error indicators studied in the
literature devoted to Maxwell type equations are usually based on residual approach.
In particular, residual type estimates were studied in [BHHW00, Mon98, Mon03],
and an equilibrated residual approach was presented in [BS08]. A posteriori es-
timates for nonconforming approximations for H(curl)-elliptic partial differential
equations were considered in [HPS07]. A Zienkiewicz–Zhu type error estimate was
analyzed in [Nic05].
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Fig. 4.13 Problem (4.133): Performance of error indicators

Fig. 4.14 Problem (4.136): Performance of error indicators

Functional type estimates for the problem (4.112)–(4.113) were derived in
[Han08, Rep07, Rep08] and numerically studied in [AMM+09] (the material of
this section and numerical results are based on the latter paper). [Han08] presented
a majorant for the case of complex κ , R(κ) ≥ 0. However, sharpness of this upper
bound was not proved. In [NR10a], a sharp lower bound for κ > 0 and two new
upper bounds were presented. The first upper bound is valid for κ ≥ 0, and it is in-
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sensitive with respect to small values of κ . However, this estimate is sensitive with
respect to large values of κ , and the sharpness of this estimate was not proved. The
second upper bound is derived in a more sophisticated way and provides a more
general upper bound. Also, it behaves well with respect to small and large values
of κ .

4.4 Generalizations

The reader may have noticed that almost all the above-discussed estimates con-
tain similar terms, which penalize possible violations of the fundamental physical
relations generating the problem. However, there are certain differences and the ma-
jorants M2, MdivA∇ , MΔ, MEL, M2D,σ , M2D,ε , M∇∇ , MRM, MKL, and Mcurl,0 form a
group of their own, and the majorants M1D , M1, and Mcurl,1 form a somewhat dif-
ferent group. Below, we discuss a general framework which encompasses all the
above-mentioned linear problems (a general framework of a posteriori error estima-
tion applicable for a wide set on nonlinear problems generated by convex energy
functionals is presented in [NR04, Rep08, Rep00b]).

Let V and U be two Hilbert spaces with the inner products (·, ·)V and (·, ·)U
respectively. These products generate the norms ‖ · ‖V and ‖ · ‖U . We introduce a
positive definite self-adjoint linear operator A :U →U and a semi-positive definite
self-adjoint operator B : V → V .

In addition, we introduce a bounded linear operator Λ : V →U , where V ⊂ V is
a Hilbert space generated by the inner product (w,v)V := (w,v)V + (Λw,Λv)U .
Henceforth V0 denotes a convex, closed and non-empty subspace of V such that
V0 ⊂ V ⊂ V ⊂ V ∗

0 .
Typically, V is a Sobolev space associated with the differential operator Λ and

V0 contains the functions which satisfy homogeneous Dirichlet boundary conditions
on part of the boundary.

Using these definitions, we can represent almost all energy functionals associated
with the problems discussed in Chaps. 3 and 4 in the following common form:

J (w) := 1

2
(AΛw,Λw)U + 1

2
(Bw,w)V − (f,w)V , (4.137)

where f ∈ V . We assume that

(Ay, y)U ≥ c1‖y‖2
U , ∀y ∈U, (4.138)

and

‖w‖V ≤ CF ‖Λw‖U, ∀w ∈ V0. (4.139)

The adjoint operator Λ∗ :U → V ∗
0 is defined by the relation

〈
Λ∗y,w

〉= (y,Λw)U , ∀y ∈U,w ∈ V0, (4.140)
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where 〈·, ·〉 denotes the pairing of V0, and its conjugate V ∗
0 and 〈Λ∗y,w〉 is the

value of the functional Λ∗y ∈ V ∗
0 at w ∈ V0.

For our analysis, it is convenient to introduce the form a : V0 × V0 →R,

a(u,w) := (AΛu,Λw)U + (Bu,w)V , (4.141)

which is symmetric and bilinear. Under the assumptions made above, the form a is
V -elliptic (cf. (B.4) and (B.5)). The form a defines the norm

‖|w‖| :=√a(w,w), (4.142)

that is, the energy norm. Since A is self-adjoint and positive definite, we can define
additional equivalent norms in U

‖y‖2
A := (Ay, y)U and ‖y‖2

A−1 := (A−1y, y
)
U
.

Using the form a, we rewrite the energy in the form

J (w) := 1

2
a(w,w)− (f,w)V . (4.143)

The (generalized) solution u is the minimizer of the variational problem

J (u)= min
w∈V0

J (w), (4.144)

which (see Theorem B.5) exists and is unique. Moreover, it satisfies the relation

a(u,w)= (f,w)V , ∀w ∈ V0. (4.145)

We introduce the function

p := AΛu.

It can be considered as a generalization of the notion “flux”, which is typical in
analysis of diffusion type problems. Assume that B = 0. Then, (4.145) reads as
follows:

(p,Λw)U = (f,w)V , ∀w ∈ V0.

This means that p ∈Q, where

Q := {y ∈U |Λ∗y ∈ V
}
.

This allows us to rewrite the problem as the system

Λ∗p = f, (4.146)

p = AΛu. (4.147)

The relations (4.146) and (4.147) are the generalized form of the equilibrium rela-
tion and the constitutive (duality) relation, respectively. Usually, these key relations
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have a clear physical motivation. If B �= 0, then it enters the first equation and the
system has the form

Λ∗p +Bu = f, (4.148)

p = AΛu. (4.149)

These relations motivate the main terms entering error majorants, which we consider
below.

4.4.1 Error Majorant

The goal of this section is to generalize the method that has been used for the reac-
tion diffusion problem (see Sect. 3.2.1) and deduce several generalized forms of the
error majorant (which encompass MdivA∇ defined in (3.38), MEL, and MKL).

First, we consider the case B = 0. The solution is defined by the integral identity

(AΛu,Λw)U = (f,w)V , ∀w ∈ V0, (4.150)

and the respective error majorant is presented by the following theorem.

Theorem 4.6 Let u be the solution of the problem (4.150) and v ∈ V0. Then,

‖|u− v‖|2 ≤ M
2
Λ(v, y,β), ∀y ∈Q and β > 0, (4.151)

where

M
2
Λ(v, y,β) := (1 + β)‖AΛv − y‖2

A−1 +
(

1 + 1

β

)
C2
F

c1

∥
∥f −Λ∗y

∥
∥2
V , (4.152)

where CF and c1 are defined by (4.139) and (4.138) respectively, and y is an arbi-
trary function in Q. Moreover, this bound is sharp, i.e.,

‖|u− v‖|2 = inf
y∈Q,

β>0

M
2
Λ(v, y,β). (4.153)

Proof By subtracting (AΛv,Λw)U from (4.150) and applying (4.140), we find that

(
AΛ(u− v),Λw

)
U

= (f,w)V − (AΛv,Λw)U − (Λ∗y,w
)
V + (y,Λw)U

= (y −AΛv,Λw)U + (−Λ∗y + f,w
)
V ,

where y ∈ Q. We estimate the first term from the above by (A.8) and the second
term by the Cauchy–Schwartz inequality. Then, the estimates (4.138) and (4.139)
imply



148 4 Guaranteed Error Bounds II

(
AΛ(u− v),Λw

)
U

≤ ‖AΛv − y‖A−1‖Λw‖A + ∥∥−Λ∗y + f
∥
∥
V‖w‖V

≤ ‖AΛv − y‖A−1‖|w‖| + CF√
c1

∥
∥−Λ∗y + f

∥
∥
V‖|w‖|.

We set w := u− v and obtain

‖|u− v‖| ≤ ‖AΛv − y‖A−1 + CF√
c1

∥
∥f −Λ∗y

∥
∥
V .

Squaring both sides of the estimate and applying (A.6) we arrive at (4.151). If
y := AΛu, then the second term vanishes. Therefore, (4.153) holds if we tend β

to zero. �

If we compare the structure of (4.151) with (4.146) and (4.147), we see that
two parts of MΛ are measures of errors in the basic relations (4.146) and
(4.147).

Now, we consider the case B �= 0. Moreover, we assume that B is positive definite
and define the norms

‖w‖2
B := (Bw,w)V and ‖w‖2

B−1 := (B−1w,w
)
V .

In order to derive an analog of the majorant Mα̂ (cf. (3.30)), we apply the same
method and introduce a weight function μ : V → V , which attains values from 0
to 1. The class of such functions is denoted by Υ .

Theorem 4.7 For any v ∈ V0,

‖|u− v‖|2 ≤ M
2
Υ (v, y,β,μ), ∀y ∈Q,β > 0,μ ∈ Υ, (4.154)

where

M
2
Υ (v, y,β,μ) := (1 + β)‖AΛv − y‖2

A−1 +
(

1 + 1

β

)
C2
F

c1

∥
∥μR(v, y)

∥
∥2
V

+ ∥∥(1 −μ)R(v, y)
∥
∥
B−1, (4.155)

and R(v, y) := f −Λ∗y −Bv. The estimate is sharp, i.e.,

‖|u− v‖|2 = inf
y∈Q,

β>0

M
2
Υ (v, y,β,0).
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Proof We apply (4.145) and (4.140), and obtain

a(u− v,w) = (f −Bv,w)V − (AΛv,Λw)U − (Λ∗y,w
)
V + (y,Λw)U

= (y −AΛv,Λw)U + (R(v, y),w
)
V .

By means of the function μ we rewrite this identity as follows:

a(u− v,w)= (y −AΛv,Λw)U + (μR(v, y),w
)
V + ((1 −μ)R(v, y),w

)
V .

We apply (A.8), the Cauchy–Schwartz inequality, (4.138), and (4.139) and obtain

a(u− v,w) ≤ ‖AΛv − y‖A−1‖Λw‖A + ∥∥μR(v, y)
∥
∥
V
CF√
c1

‖Λw‖A

+ ∥∥(1 −μ)R(v, y)
∥
∥
B−1‖w‖B

=
(

‖AΛv − y‖A−1 + CF√
c1

‖μr‖V
)

‖Λw‖A

+ ∥∥(1 −μ)R(v, y)
∥
∥
B−1‖w‖B

≤
((

‖AΛv − y‖A−1 + CF√
c1

‖μr‖V
)2

+ ∥∥(1 −μ)R(v, y)
∥
∥2
B−1

)1/2

‖|w‖|. (4.156)

Setting w := u− v, using (A.6), and squaring both sides results in the estimate

‖|u− v‖|2 ≤
(

‖AΛv − y‖A−1 + CF√
c1

∥
∥μR(v, y)

∥
∥
V

)2

+ ∥∥(1 −μ)R(v, y)
∥
∥2
B−1

≤ (1 + β)‖AΛv − y‖2
A−1 +

(

1 + 1

β

)
C2
F

c1

∥
∥μR(v, y)

∥
∥2
V

+ ∥∥(1 −μ)R(v, y)
∥
∥2
B−1 .

It remains to show that the estimate is sharp. Let us set y = AΛu, then

‖Aλv − y‖A−1 = ∥∥Λ(v − u)
∥
∥
A and R(v, y)= B(u− v).

If μ= 0, then the right-hand side of (4.154) coincides with the left-hand one. �

Remark 4.7 The function μ is at our disposal: if we select μ = 0 or μ = 1, we
obtain the following estimates of a special type:

‖|u− v‖|2 ≤ ‖AΛv − y‖2
A−1 + ∥∥(1 −μ)R(v, y)

∥
∥2
B−1 (4.157)
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and

‖|u− v‖|2 ≤ (1 + β)‖AΛv − y‖2
A−1 +

(

1 + 1

β

)
C2
F

c1

∥
∥R(v, y)

∥
∥2
V , (4.158)

which are analogs of M1 (3.28) and M2 (3.29), respectively. The bound (4.157) has
no “gap”, i.e., for y := p = AΛu it coincides with the exact error, whereas (4.158)
does not have this property. The benefits of the bound (4.158) are the same as those
of M2 (see comments in Sect. 3.2.1).

4.4.2 Error Minorant

The methods of deriving error minorants, which we have used in previous sections
can also be written in terms of our abstract setting.

Theorem 4.8 Let u be the solution of (4.145) and v ∈ V0. Then,

‖|u− v‖|2 ≥ M2
Λ(v,w), ∀w ∈ V0, (4.159)

where

M2
Λ(v,w) := −a(w,w + 2v)+ 2(f,w)V . (4.160)

The minorant is sharp, i.e.,

‖|u− v‖|2 = sup
w∈V0

M2
Λ(v,w). (4.161)

Proof In view of (B.72), we have

‖|u− v‖|2 = 2
(
J (v)− J (u)

)
.

Since (4.144), J (u)≤ J (w + v), for all w ∈ V0, we have

‖|u− v‖|2 ≥ 2
(
J (v)− J (w + v)

)= −a(w,w + 2v)+ 2(f,w)V .

It is easy to see that M2
Λ(v,u− v)= ‖|u− v‖| and (4.161) holds. �

Remark 4.8 In computations, it may be easier to use a different form of the minorant

‖|u− v‖|2 = 2
(
J (v)− J (u)

)≥ 2
(
J (v)− J (w)

)=: M2
Λ,J (v,w), ∀w ∈ V0.

Let v be a Galerkin approximation computed on a subspace V h
0 ⊂ V0. Then, the

maximizer w̃ ∈ Ṽ h
0 of M2

Λ,J (v,w) can be computed from the problem

a(w̃,w)= (f,w)V , ∀w ∈ Ṽ h
0
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using the same solver which was used to compute the approximation v. However,
in order to obtain a positive lower bound, the subspace Ṽ h

0 must contain more trial
functions than V h

0 .



Chapter 5
Errors Generated by Uncertain Data

Abstract In this chapter, we study effects caused by incompletely known data. In
practice, the data are never known exactly, therefore the results generated by a math-
ematical model also have a limited accuracy. Then, the whole subject of error anal-
ysis should be treated in a different manner, and accuracy of numerical solutions
should be considered within a framework of a more complicated scheme, which in-
cludes such notions as maximal and minimal distances to the solution set and its
radius.

5.1 Mathematical Models with Incompletely Known Data

Incompletely known data are constantly present in mathematical modeling. Typi-
cally, a mathematical model describing a physical phenomenon contains some pa-
rameters defined by measurements or other means. For example, material param-
eters often belong to this class. The measurements are performed with a limited
accuracy, and it is important to be able to estimate how much this inaccuracy affects
the results. This inaccuracy does not depend on the choice of a particular numerical
scheme, but presents a fundamental property of the problem itself.

The main approach usually used for controlling uncertainty in a model is the so-
called probabilistic approach, which leads to stochastic PDEs. These indeterminate
data occurring in a PDE are considered random variables with the known probabil-
ity density. The aim is then to find or approximate the mean value, variance, and
other probabilistic quantities related to the solution. An overview of the theory and
related numerical methods (dating back to [Bab61]) can be found in [Sch97]. The
most popular numerical method is the Monte Carlo method [Eli83]. The idea of the
method is to generate samples of input data within an uncertainty range and to com-
pute respective solutions. Then, the probabilistic features are studied via a statistical
analysis.

Probability distributions are not the only way of modeling the uncertainty. In the
evidence theory (also known as the Dempster–Shafer theory) [Dem67, Sha76], the
requirements for the probability measure are relaxed and the obtained probability
assignments are applied instead.

In the theory of fuzzy sets [Zad65] (and evolved possibility theory [Zad78]), the
uncertainty is introduced via a membership function. In the classical theory, there

O. Mali et al., Accuracy Verification Methods,
Computational Methods in Applied Sciences 32, DOI 10.1007/978-94-007-7581-7_5,
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are only two options: an element is a member of a set or it is not. The membership
function determines the degree of truth of the statement that an element belongs to
a set. The idea is to analyze how the fuzziness of data is inherited by a solution. An
introduction and examples can be found in [Ber99].

The application of these theories to physical models is discussed in [HCB04],
where the question is studied in the framework of the worst-case scenario method.

An overview of reliability engineering, which is related to system analysis and
risk analysis, is given in [Zio09], where uncertainty is classified either as aleatory
or as epistemic. The first class is related to the uncertainty due to the inherent vari-
ability of the system and the second one is associated with a lack of knowledge.

Sensitivity analysis is another concept related to incompletely known data. It
qualitatively indicates the influence of a particular input parameter on the exact so-
lution or another quantity of interest. Typically, for this purpose derivatives (gradi-
ents) of the solution norm or other quantities with respect to input parameters are
investigated. This analysis can be carried out either for the original PDE or for an
approximated finite dimensional model. The corresponding theory is exposed in,
e.g., [Hay79, Lit00, Rou97]. Also, the sensitivity analysis can be conducted nu-
merically by Monte Carlo type simulations, where the scattering of the results may
indicate the level of correlation between input and output data (see, e.g., [KH99]).
The sensitivity of the solution with respect to the geometrical factors is studied in
[HM03, HN96], where the information on the sensitivity is used to solve the opti-
mization problem.

5.2 The Accuracy Limit

Below, we suggest a mathematical framework for studying the effects of incom-
pletely known data, which differs from the above-mentioned approaches. It is clear
that, owing to limited knowledge of the data, a solution of PDE (or another quantity
of interest) can be known only with a certain limited accuracy. This accuracy limit
has a profound impact for simulation practice:

If the accuracy of an approximate solution is within the accuracy limit dictated
by indeterminacy (data uncertainty), then efforts to improve this solution (e.g.,
by enriching the set of basis functions) are not consistent.

Henceforth, the set of admissible data is denoted by D. It is described by setting
a certain “mean” data D◦ and admissible perturbations around it. Here and later on,
the subscript ◦ means that the corresponding objects (data or solutions) are related
to D◦. We assume that all admissible data in D are such that the corresponding prob-
lems are well defined, i.e., any such problem possesses a unique solution. Moreover,
we define a solution mapping (see Fig. 5.1)

S :D → S(D)⊂ V,
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Fig. 5.1 Illustration of
definitions

where S(D) is a set of possible solutions, which belongs to a suitable (energy) space
V common for all data.

Analysis of problems with incompletely known data motivates investigation of
several topics related to size and structure of the set S(D). One topic concerns the
size of S(D). To measure it, we choose a “mean” solution u◦ := S(D◦) as an “an-
chor” and define the radius of the solution set (see Fig. 5.1) as follows:

r := sup
u∈S(D)

‖|u◦ − u‖|◦. (5.1)

In practice, it is better to use its normalized counterpart

r̄ := sup
u∈S(D)

‖|u◦ − u‖|◦
‖|u◦‖|◦ , (5.2)

where ‖| · ‖|◦ denotes the energy norm generated by the “mean problem” (i.e., by the
boundary-value problem with the data D◦). Other definitions of r can be defined in
terms of dual solution or some suitable functionals.

The radius of the solution set S(D) is a fundamental quantity, which is not
related to a particular approximation. It shows the accuracy limit dictated by
data uncertainty.

Another topic is related to sensitivity of solutions (or some quantities generated
by solutions) with respect to variations in data. Here, the goal is to study the vari-
ability of certain quantities of interest with respect to the data. It is of special interest
to see how the variability depends on the value of D◦ and how various factors affect
its magnitude.

Denote the distance between v ∈ V and the mean solution u0 by e◦ := ‖|u◦−v‖|◦.
Let

ē◦ := ‖|u◦ − v‖|◦
‖|u◦‖|◦ .
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In the case of incompletely known data, this quantity cannot fully characterize the
error. Indeed, the exact solution is not uniquely determined (we have many different
solutions and can not prefer one of them). Therefore, it is necessary to define two
other quantities (see Fig. 5.1): the worst case (maximal) error

emax := sup
u∈S(D)

‖|u− v‖|◦ (5.3)

and the best case (minimal) error

emin := inf
u∈S(D)

‖|u− v‖|◦. (5.4)

Evaluation of emax and emin is another important topic arising in the situation where
S(D) contains more than one element.

If the distance from v to the set S(D) is much larger than diam(S(D)) (in this
case e◦ ≈ emax ≈ emin), then the distance from v to any function in the solution set
mainly represents the approximation error. If this is not the case, i.e., emax � emin,
then any further efforts to improve the approximative solution v are useless, be-
cause v is already close to the solution set and therefore the accuracy limit has been
reached.

Example 5.1 In order to illustrate the definitions, we consider the following elemen-
tary example generated by a system of linear equations.

Ax = b,

where the matrix A is not completely known but belongs to a set

A ∈D := {A ∈M
2×2 |A=A◦ + δE,E ∈ M

2×2, |E| ≤ 1, δ > 0
}
.

The respective solution set is

S(D) := {x ∈ R
2 |Ax = b,A ∈D

}
.

We use the Monte-Carlo algorithm to compute elements of the solution set, i.e.,
we randomly generate a large number of symmetric matrices such that |E|< 1 and
compute the respective solutions. Two “mean” matrices

A(1)◦ =
[

1 0
0 1

]

and A(2)◦ = 1

3

[
2 1
1 2

]

generate the sets D1 and D2, respectively. Figure 5.2 depicts the corresponding sets
S(D1) and S(D2), where δ = 0.05 and b = [1,1]T . The computations also produce
a lower bound for the radius of the solution set, i.e.,

ri :=
{

max
x∈S(Di )

|x◦ − x|
|x◦|

}

,
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Fig. 5.2 Representations of
solution sets S(D1) (darker)
and S(D2) (lighter)

where x◦ satisfies A◦x◦ = b. For our example, they are r1 = 0.053 and r2 = 0.152,
respectively. It is easy to see that in the second case the perturbation of coefficients
by five percent generates approximately three times larger difference between the
most distant elements of S(D).

5.3 Estimates of the Worst and Best Case Scenario Errors

At first glance, the computation of worst and best case errors for problems generated
by PDEs seems to be an unfeasible task, since elements of the set S(D) are generally
unknown. The remedies are the functional a posteriori error estimates of deviations
from exact solutions, which are guaranteed and explicitly depend on the problem
data.

Estimates of deviations from exact solutions considered in Chaps. 3 and 4 ex-
plicitly depend on the problem data, which makes it possible to estimate quan-
tities including an extremum over the solution set. Thus, taking the supremum
over the solution set (which is generally unknown) can be replaced by taking
the supremum over the set of admissible data (which are known).

The main motivation to investigate worst and best case errors is that the ratio

υ := emax − emin

emin
(5.5)
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Fig. 5.3 Illustration of two cases: a Error generated by data uncertainty dominates (υ ≈ 2 and
υ◦ ≈ 0.5); b approximation error dominates (υ ≈ 0 and υ◦ ≈ 0)

can be estimated from both sides. This ratio indicates how close an approximative
solution is to the solution set (see Fig. 5.3). If this ratio is close to one, then the size
of the solution set is small compared to the approximation error and it makes sense to
invest more in the computation. However, if the ratio is large, then the approximate
solution is very close to the solution, set and further adaptation of meshes or other
means to improve the approximation makes no sense.

Often it is computationally more feasible to study the ratio

υ◦ := emax − e◦
e◦

. (5.6)

Since emax encompasses the approximation error, and the error due to incomplete
knowledge of the data and e◦ is the approximation error, their ratio indicates rela-
tive magnitudes of these error sources. The information obtained from υ and υ◦ is
illustrated in Fig. 5.3. Certainly, there is no unified criterion showing when it is nec-
essary to stop computations, and it is somewhat up to the analyst to decide whether,
e.g., υ ≈ 2 or υ ≈ 1 is a proper condition to cease all efforts to acquire an improved
approximate solution.

The benefits of using majorants and minorants of the functional type are transpar-
ently seen in Theorem 5.1, where the worst and best case errors are estimated from
both sides. Here, we write the majorant (minorant) as M(v, y,β;D) (M(v,w;D))
to highlight the fact that the majorant (minorant) depends explicitly on the problem
data D. We recall that the majorant and minorant are guaranteed, i.e., for any v ∈ V ,

M2(v,w;D)≤ ‖|u− v‖|2D ≤ M
2
(v, y,β;D), ∀w ∈ V0, y ∈Q, (5.7)

where u is the solution of the boundary-value problem generated by the data D and
w and y are auxiliary functions in respective function spaces.

Theorem 5.1 Let v ∈ V and u be the exact solution of a boundary value problem
generated by D. Then, emax (5.3) and emin (5.4) can be controlled as follows:

K sup
w

sup
D∈D

M2(v,w;D)≤ e2
max ≤K inf

y,β
sup
D∈D

M
2
(v, y,β;D)
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and

K sup
w

inf
D∈D

M2(v,w;D)≤ e2
min ≤K inf

y,β
inf
D∈D

M
2
(v, y,β;D).

Here the constants K and K satisfy the inequalities

K‖|w‖|2D ≤ ‖|w‖|2◦ ≤K‖|w‖|2D, ∀w ∈ V0,D ∈D, (5.8)

where ‖| · ‖|D denotes the energy norm generated by the problem data D, ‖| · ‖|◦ is
the norm generated by D◦, and V0 is a subspace of V used in the minorant.

Proof We apply the right-hand side of (5.7), (A.6), and (5.8) to estimate the worst
case (maximal) error from the above,

e2
max = sup

u∈S(D)

‖|u− v‖|2◦ ≤K sup
D∈D

inf
y,β

M
2
(v, y,β;D)≤K inf

y,β
sup
D∈D

M
2
(v, y,β;D).

Alternatively, we can apply the left-hand side of (5.7) and (5.8),

e2
max = sup

u∈S(D)

‖|u− v‖|2◦ ≥K sup
D∈D

sup
w

M2(v,w;D)=K sup
w

sup
D∈D

M2(v,w;D).

The estimation of the best case (minimal) error is similar:

e2
min = inf

u∈S(D)
‖|u− v‖|2◦ ≤K inf

D∈D
inf
y,β

M
2
(v, y,β;D)=K inf

y,β
inf
D∈D

M
2
(v, y,β;D)

and

e2
min = inf

u∈S(D)
‖|u− v‖|2◦ ≥K inf

D∈D
sup
w

M2(v,w;D)≥K sup
w

inf
D∈D

M2(v,w;D).�

Example 5.2 In order to demonstrate practical applications of Theorem 5.1, we con-
sider the equation div(a∇u)+ f = 0 with homogeneous Dirichlet boundary condi-
tions in a bounded domain Ω ⊂ R

2. Assume that the function a is defined with an
uncertainty and the information we possess is that

a ∈Da := {a ∈ L∞(Ω) | 0 < a� ≤ a(x)≤ a⊕,∀x ∈Ω
}
.

The energy norm for the problem is defined by the relation

‖|w‖|2a :=
∫

Ω

a|∇w|2 dx,

and the constants K = a�+a⊕
2a⊕ and K = a�+a⊕

2a� serve the inequality

K‖|w‖|2a ≤ ‖|w‖|2a◦ ≤K‖|w‖|2a, ∀w ∈ V0, a ∈ Da,
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where a◦ := 1
2 (a� + a⊕). We recall that for this problem

M
2
diva∇(v, y,β) := 1 + β

β

∫

Ω

(a∇v − y) ·
(

v − 1

a
y

)

dx

+ (1 + β)
CF

a�

∫

Ω

(divy + f )2 dx

and

M2
diva∇(v,w) := −

∫

Ω

a∇(w + 2v) · ∇w dx + 2
∫

Ω

fw dx.

Our goal is to compute the supremum and infimum of the majorant and minorant
over the set of uncertain data, i.e., the function a.

The upper bound of the maximal error is presented by the quantity

sup
a∈Da

M
2
diva∇(v, y,β) = 1 + β

β
sup
a∈Da

∫

Ω

(

a|∇v|2 + |y|2
a

− 2∇v · y
)

dx

+ (1 + β)
CF

a�

∫

Ω

(divy + f )2 dx.

Since a|∇v|2 + |y|2
a

is convex with respect to a, taking the supremum yields

sup
a∈Da

M
2
diva∇(v, y,β)= 1 + β

β

∫

Ω

gmax(∇v, y)dx + (1 +β)
CF

a�

∫

Ω

(divy + f )2 dx,

where

gmax(∇v, y) := max

{

a⊕|∇v|2 + |y|2
a⊕

− 2∇v · y, a�|∇v|2 + |y|2
a�

− 2∇v · y
}

.

In order to compute the lower bound, we find

inf
a∈Da

M
2
diva∇(v, y,β) = 1 + β

β
inf
a∈Da

∫

Ω

(

a|∇v|2 + |y|2
a

− 2∇v · y
)

dx

+ (1 + β)
CF

a�

∫

Ω

(divy + f )2 dx

= 1 + β

β

∫

Ω

gmin(∇v, y)dx + (1 + β)
CF

a�

∫

Ω

(divy + f )2 dx,

where

gmin(∇v, y) :=

⎧
⎪⎪⎨

⎪⎪⎩

a⊕|∇v|2 + |y|2
a⊕ − 2∇v · y if a⊕ <

|y|
|∇v| ,

2(|∇v||y| − ∇v · y) if a� ≤ |y|
|∇v| ≤ a⊕,

a�|∇v|2 + |y|2
a� − 2∇v · y if |y|

|∇v| < a�.
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Similarly we compute the respective quantities associated with the minorant. They
are

sup
a∈Da

M2
diva∇(v,w) = sup

a∈Da

−
∫

Ω

(
a(∇w + 2∇v) · ∇w + 2fw

)
dx

=
∫

Ω

(
zmax(v,w)+ 2fw

)
dx,

where

zmax(v,w) :=
{
a⊕(∇w + 2∇v) · ∇w if (∇w + 2∇v) · ∇w > 0,

a�(∇w + 2∇v) · ∇w if (∇w + 2∇v) · ∇w < 0,

and

inf
a∈Da

M2
diva∇(v,w) = inf

a∈Da

−
∫

Ω

(
a(∇w + 2∇v) · ∇w + 2fw

)
dx

=
∫

Ω

(
zmin(v,w)+ 2fw

)
dx,

where

zmin(v,w) :=
{
a⊕(∇w + 2∇v) · ∇w if (∇w + 2∇v) · ∇w < 0,

a�(∇w + 2∇v) · ∇w if (∇w + 2∇v) · ∇w > 0.

In the tests below, uh◦ (approximation of u◦ associated to the problem generated
by a◦) is computed on different meshes with the help of the lowest order (linear)
Courant elements. Then, we estimate the approximation error, the worst case error,
and the best case error from both sides in order to study the relation between uh◦
and the solution set. For the functions w and y, we apply the quadratic Courant
elements.

The computation of the upper bound of the “mean error” e◦ is performed by
globally minimizing the majorant with respect to y (see Sect. 3.3.1). We denote the
respective upper bound by e⊕◦ . For the lower bound, we compute the minorant by
comparing the energies of uh◦ and uhref, where uhref is the reference solution computed
on a very fine mesh with second order elements, i.e.,

‖|u◦ − uh◦‖|2◦ ≥ 2
(
J
(
uh◦
)− J

(
uhref

))=: e�◦ .

Table 5.1 shows the upper and lower bounds of emax and emin, i.e., the quantities
e⊕

max, e�
max, e⊕

min, and e�
min. In these tests problems, Ω := (0,1) × (0,1), f = 1,

a� = 0.98 and a⊕ = 1.02, and finite element approximations were computed on
uniform meshes.

In Fig. 5.4, we depict three zones formed by two-sided bounds for emax, emin, and
e◦, respectively. One can observe how these different errors start to deviate from
each other as the approximate solution approaches the solution set. Moreover, in
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Table 5.1 Error quantities

# nodes e�◦ e⊕◦ ē�◦ ē⊕◦ e�
max e⊕

max e�
min e⊕

min υ� υ⊕ υ◦� υ◦⊕

25 0.080 0.080 0.42 0.42 0.081 0.083 0.077 0.078 0.03 0.08 0.01 0.04

81 0.041 0.041 0.22 0.221 0.043 0.044 0.039 0.040 0.08 0.14 0.04 0.07

169 0.028 0.028 0.148 0.149 0.0298 0.031 0.0255 0.0261 0.14 0.20 0.07 0.10

625 0.0138 0.0141 0.0735 0.0748 0.0161 0.0167 0.0118 0.0122 0.32 0.41 0.16 0.22

1369 0.0089 0.0094 0.0475 0.0500 0.0116 0.0121 0.0073 0.0077 0.50 0.64 0.24 0.37

3481 0.0050 0.0058 0.0267 0.0311 0.00818 0.00865 0.00400 0.00440 0.86 1.16 0.40 0.73

Fig. 5.4 Bounds for emax,
emin, and e◦, respectively

Fig. 5.5 Development of υ
and υ◦ as the amount of
nodes is increased

Fig. 5.5, we depict the bounds of υ and υ◦ (cf. (5.5) and (5.6)). It is easy to see that
υ is close to zero if the amount of nodes used to compute the approximate solution
is small. The impact of indeterminacy becomes more significant as the amount of
nodes increases, i.e., accuracy of the approximate solution improves. For this partic-
ular problem, the bounds of υ and υ◦ indicate that computations on meshes having
more than 3481 nodes are disputable, since the generated approximate solution is
already close to the set of possible solutions. In other words, the situation arising for
# nodes = 3481 and finer meshes is close to the case (a) in Fig. 5.3.
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5.4 Two-Sided Bounds of the Radius of the Solution Set

The quantity (5.2) shows the accuracy limit associated with the incompletely known
data. In this section, we consider a way of estimating r̄ . We follow along the lines
of [MR11a, MR10, MR08] and use the notation from Sect. 4.4.

Consider the problem (4.145): Find u ∈ V0 such that

(AΛu,Λw)U = (f,w)V , ∀w ∈ V0.

Assume that the operator A is not completely known but we know that it belongs
to a set of admissible operators

D := {A ∈ L(U,U) | A = A◦ + δΨ,‖Ψ ‖L ≤ 1, δ ≥ 0
}
, (5.9)

where A◦ is the “mean” operator, δ ≥ 0 is the indeterminacy magnitude and

‖Ψ ‖L := sup
y∈U
y �=0

‖Ψy‖U
‖y‖U .

We assume that the non-perturbed operator is elliptic and bounded,

c‖y‖2
U ≤ (A◦y, y)U ≤ c‖y‖2

U , ∀y ∈U. (5.10)

Then, all the problems generated by A ∈ D are elliptic provided that

θ := δ

c
< 1. (5.11)

Proposition 5.1 Let the set D be defined as in (5.9), where A◦ satisfies (5.10). Then,

K‖|w‖|2A ≤ ‖|w‖|2◦ ≤K‖|w‖|2A, ∀w ∈ V,A ∈D,

where

K := max

{
1

cond(A◦)+ θ
,

1 − 2θ

1 − θ

}

, cond(A◦)= c

c
, and K := 1

1 − θ
.

Proof We note that

(c− δ)‖y‖2
U ≤ (Ay, y)U ≤ (c+ δ)‖y‖2

U , ∀y ∈U,A ∈D.

By the definition (5.9),

‖|w‖|2◦ = ‖|w‖|2A − δ(ΨΛw,Λw)U .

Therefore,
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‖|w‖|2◦ ≤ ‖|w‖|2A + δ‖ΨΛw‖U‖Λw‖U

≤ ‖|w‖|2A + δ‖|w‖|2 ≤
(

1 + δ

c− δ

)

‖|w‖|2A. (5.12)

For the lower bound, we have

‖|w‖|2◦ ≥ ‖|w‖|2A − δ‖ΨΛw‖U‖Λw‖U

≥ ‖|w‖|2A − δ‖|w‖|2 ≥
(

1 − δ

c− δ

)

‖|w‖|2A. (5.13)

An alternative lower bound is

‖|w‖|2◦ ≥ c‖|w‖|2 ≥ c

c+ δ
‖|w‖|2A.

Clearly, the maximum of lower bounds is also a lower bound. The definition of θ
(5.11) leads to the statement. �

The normalized radius can be estimated from both sides, using only the data
of the mean operator and the perturbation magnitude. Alternatively, if the non-
perturbed solution u◦ is at our disposal, more accurate bounds can be constructed.

Theorem 5.2 The radius of the solution set for the problem (4.145), where A ∈ D
and u◦ = S(A◦), can be estimated as follows:

r̄� ≤ R̄�(u◦)≤ r̄ ≤ R̄⊕(u◦)≤ r̄⊕,

where

r̄� :=√
K

cond−1(A◦)θ√
1 − cond−1(A◦)θ

, r̄⊕ :=
√
K

θ√
1 − θ

,

R̄�(u◦) :=√
K

δ(‖|u◦‖|2/‖|u◦‖|2◦)√
1 − δ(‖|u◦‖|2/‖|u◦‖|2◦)

, R̄⊕(u◦) :=
√
K

δ
√
c− δ

‖|u◦‖|
‖|u◦‖|◦ ,

and K and K are constants from Proposition 5.1.

Proof Let us consider lower bounds first. We use the left-hand side of Proposi-
tion 5.1 and Theorem 4.8 to estimate r̄ from below as follows:

r2 ≥ K sup
u∈S(D)

‖|u− u◦‖|2A

= K sup
A∈D

sup
w∈V0

M2
Λ(u◦,w)

= K sup
w∈V0

sup
A∈D

M2
Λ(u◦,w). (5.14)



5.4 Two-Sided Bounds of the Radius of the Solution Set 165

The minorant can be written as

M2
Λ(u◦,w) = −((A◦ + δΨ )Λw,Λw

)
U

− 2
(
(A◦ + δΨ )Λu◦,Λw

)
U

+ 2(f,w)V

= −‖|w‖|2◦ − δ
(
ΨΛ(w + 2u◦),Λw

)
U

− 2
(
(A◦Λu◦,Λw)U − (f,w)V

)
, (5.15)

where the last term vanishes, because u◦ is the solution of the non-perturbed
problem. We estimate supw∈V0

supA∈D M2
Λ(u◦,w) from below and set w := αu◦

(α > 0). Then,

M2
Λ(u◦, αu◦)= −α2‖|u◦‖|2◦ − δ(α + 2)α(ΨΛu◦,Λu◦)U

and

sup
‖Ψ ‖L≤1

M2
Λ(u◦, αu◦) = −α2‖|u◦‖|2◦ + δ(α + 2)α‖|u◦‖|2

= α
(
2δ‖|u◦‖|2 + α

(
δ‖|u◦‖|2 − ‖|u◦‖|2◦

))
. (5.16)

The expression on the right-hand side attains the maximum if

a = α̃ := δ‖|u◦‖|2
‖|u◦‖|2◦ − δ‖|u◦‖|2 .

Hence,

sup
‖Ψ ‖L≤1

M2
Λ(u◦, α̃u◦)= δ2‖|u◦‖|4

‖|u◦‖|2◦ − δ‖|u◦‖|2 . (5.17)

Since

sup
w∈V0

sup
A∈D

M2
Λ(u◦,w)≥ sup

‖Ψ ‖L≤1
M2
Λ(u◦, α̃u◦),

we substitute this expression in (5.14), divide by ‖|u◦‖|2A◦ , and take the square root.

As a result, we find the lower bound R̄�(u◦). To obtain the lower bound r̄�, we note
that

δ2‖|u◦‖|4
‖|u◦‖|2◦ − δ‖|u◦‖|2 ≥ (δ/c)2

1 − (δ/c)
‖|u◦‖|2◦,

divide the expression by ‖|u◦‖|2◦, and take the square root.
Similarly, we estimate r from the above by the right-hand side of Proposition 5.1,

Theorem 4.6, and (A.6):

r2 ≤ K sup
u∈S(D)

‖|u− u◦‖|2A

= K sup
A∈D

inf
y∈Q
β>0

M
2
Λ(u◦, y,β)≤K inf

y∈Q
β>0

sup
A∈D

M
2
Λ(u◦, y,β). (5.18)
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To estimate the infimum from the above we set y := A◦Λu◦. Then,

M
2
Λ(u◦,A◦Λu◦, β) = (1 + β)

(
Λu◦ −A−1A◦Λu◦,AΛu◦ −A◦Λu◦

)
U

+
(

1 + 1

β

)
C2
F

c− δ

∥
∥f −Λ∗A◦Λu◦

∥
∥2
V , (5.19)

where the last term vanishes, since the exact flux satisfies the equilibrium condition
and we can take β arbitrarily close to zero. Thus,

M
2
Λ(u◦,A◦Λu◦,0)

= (A−1((A◦ + δΨ )Λu◦ −A◦Λu◦
)
, (A◦ + δΨ )Λu◦ −A◦Λu◦

)
U

≤ δ2

c− δ
(ΨΛu◦,ΨΛu◦)U ≤ δ2

c− δ
‖|u◦‖|2. (5.20)

Substituting this estimate in (5.18), dividing by ‖|u◦‖|2◦, and taking the square root
yield R̄⊕(u◦). To obtain r̄⊕, we use the estimate

δ2

c− δ
‖|u◦‖|2 ≤ δ2

c(c− δ)
‖|u◦‖|2◦ = θ2

1 − θ
‖|u◦‖|2◦

and again divide by ‖|u◦‖|2◦. �

The bounds r̄� and r̄⊕ in Theorem 5.2 are valid for a wide range of prob-
lems and depend only on the perturbation magnitude and spectral range of
the non-perturbed operator. Thus, if c � c, they may be very coarse. If the
non-perturbed solution u◦ is at our disposal, then we can apply the bounds
R̄�(u◦) and R̄⊕(u◦) to obtain sharper estimates, which are more related to a
particular problem.

Example 5.3 Consider the problem

−div(A∇u)= f in Ω, u= 0 on Γ, (5.21)

where

A ∈DA := {A ∈ L∞
(
Ω,M2×2) |A=A◦ + δΨ

}
, (5.22)

‖Ψ ‖L∞(Ω,M2×2) ≤ 1, δ ≥ 0 satisfies (5.11), and Ω := (0,1)× (0,1).
Our aim is to compare the estimates of the radius provided by Theorem 5.2.

Consider the case where the solution related to the non-perturbed matrix is

u◦ = sin(10πx)y(y − 1)
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Fig. 5.6 Bounds for r̄ as a function of θ in test problems generated by A◦1 and A◦2

and the “mean matrices” are

A◦1 =
[

1 0
0 10

]

and A◦2 =
[

10 0
0 1

]

,

so that cond(A◦1)= cond(A◦2)= 10. The bounds r̄� and r̄⊕ do depend only on the
condition number of A◦, and thus they are identical for both matrices. The intervals
generated by the bounds for the radius are depicted in Fig. 5.6.

It is easy to see that the bounds R̄�(u◦) and R̄⊕(u◦) indicate very different radii
of the solution sets related to A◦1 and A◦2 respectively.

Example 5.4 Consider another example, which has an analytical solution. Our goal
is to compute the radius of the solution set for a certain type of perturbation and
compare it with the upper bound from Theorem 5.2.

Again, we use the problem (5.21) and assume that f coincides with the eigen-
function, i.e.,

f (x, y) := sin(k1πx) sin(k2πy), k1, k2 ∈ N. (5.23)

Let

A◦ :=
[
a1 0
0 a2

]

, a1, a2 > 0.
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In this case,

u◦(x, y)= sin(k1πx) sin(k2πy)

π2(a1k
2
1 + a2k

2
2)

= f (x, y)

π2ā · k̄ ,

where for the sake of convenience we use the notation

ā :=
[
a1
a2

]

and k̄ :=
[
k2

1

k2
2

]

.

Let the perturbations be generated by a diagonal matrix, i.e.,

Ã=A◦ + δΨ =
[
a1 + δε1 0

0 a2 + δε2

]

.

Then, the restriction |Ψ | ≤ 1 leads to the condition

ε̄ ∈ E := {ε2
1 + ε2

2 ≤ 1
}
, (5.24)

where

ε̄ :=
[
ε1
ε2

]

.

The respective solution is given by the relation

ũ(x, y)= f (x, y)

π2(ā + δε̄) · k̄ .

Now, we can observe how perturbations of the matrix affect the solution. Since

‖|u◦ − ũ‖|
‖|u◦‖| = |δε̄ · k̄|

|ā · k̄ + δε̄ · k̄| (5.25)

we find that

max
ε̄∈E

|δε̄ · k̄|
|ā · k̄ + δε̄ · k̄| = δ

ā · k̄/|k̄| − δ
. (5.26)

The maximal value in (5.26) is attained if ε̄ = − k̄

|k̄| . Without a loss of generality we

assume that a1 ≤ a2. In this case, the normalized perturbation is θ = δ
a1

. Thus, for
this model problem, the radius of the solution set is given by the relation

r̂mod := max
ε̄∈E

‖|u◦ − ũ‖|
‖|u◦‖| = θ

ā · k̄/(a1|k̄|)− θ
. (5.27)

In Fig. 5.7, we plot rmod for different values of k̄ and compare them with the
upper bound established in Theorem 5.2. It is easy to see that the radius approaches
the upper bound derived in Theorem 5.2, as the value of k1 increases. This obser-
vation shows that there exist such elliptic problems for which the relation between
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Fig. 5.7 Comparison of r̄⊕
from Theorem 5.2 and r̂mod
(5.27) for different k̄

the radius of the solution set and the magnitude of indeterminacy coincide with the
theoretical upper bound in Theorem 5.2. Indeed, if k1 tends to infinity, then the ratio

(1/a1)ā · k̄
|k̄| = k2

1 + cond(A◦)k2
2√

k4
1 + k4

2

tends to one and the right-hand side of (5.27) tends to the upper bound established
in Theorem 5.2.

5.5 Computable Estimates of the Radius of the Solution Set

The a priori type error bounds r̄� and r̄⊕ in Theorem 5.2 may be coarse if the
condition number of A◦ is large. This difficulty can be overcome by using R̄� and
R̄⊕, which requires certain computational efforts. These efforts are motivated if we
wish to define the accuracy limit generated by indeterminate data and investigate
sensitivity of solutions with respect to data variations. Below we discuss possible
numerical strategies focused on this problem.

5.5.1 Using the Majorant

Assume that for any D ∈ S(D) we have an error majorant M(v, y;D). First, we
compute an approximation uh◦ of the non-perturbed solution u◦ associated with the
mean data D◦ and apply the majorant to estimate from the above the respective
approximation error

e◦ := ∥∥∣∣u◦ − uh◦
∥
∥
∣
∣◦ ≤ e⊕◦ ,
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Fig. 5.8 Getting a lower
bound of r by means of the
computed reference solutions
and the majorant

where ‖| · ‖|◦ is the energy norm associated with D◦. Then, we select a certain
amount of data from the set of admissible data, i.e., Dj ∈ D, j = 1, . . . ,N , and
compute the respective approximate solutions uhj supplied with the respective guar-
anteed upper bounds error

∥
∥
∣
∣uj − uhj

∥
∥
∣
∣
Dj

≤ e⊕
j ,

where uj = S(Dj ) and where ‖| · ‖|Dj
is the energy norm associated with Dj . Let

κ◦j be the coefficient in the relation establishing equivalence of norms ‖| · ‖|◦ and
‖| · ‖|Dj

. Then, κ◦j‖|uj − uhj‖|◦ ≤ e⊕
j . Since the computed upper bounds for the

approximation error are guaranteed, we know that the solution set S(D) intersects
with every ball B(uhj , e

⊕
j ) (Fig. 5.8). Thus,

r ≥ max
j=1,2,...,N

‖|u◦ − uj‖|◦ ≥ max
j=1,2,...,N

{∥
∥
∣
∣uh◦ − uhj

∥
∥
∣
∣◦ − e⊕

j

κ◦j

}

− e⊕◦ .

The corresponding numerical procedure is formalized in Algorithm 5.1 where the
selection method for Dj is not specified. This method depends on the problem and
on the accuracy we wish to have. Certainly, the procedure becomes computation-
ally expensive if N is large. On the other hand, the method is very general and
can be applied to any problem (including non-linear problems), provided that the
corresponding error majorant of the functional type has been established.

5.5.2 Using a Reference Solution

Usually, the exact solution of the non-perturbed problem is not at our disposal. How-
ever, we can use a numerical solution uh◦ . The upper bound of the error arising due
to this change is evaluated by the majorant

∥
∥
∣
∣u◦ − uh◦

∥
∥
∣
∣◦ ≤ M

(
uh◦, y,D◦

)
.
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Algorithm 5.1 Numerically computed lower bound for the radius using majorant
Input: N {Number of computed solutions}
Compute approximate solution uh◦ related to data D◦.
Compute upper bound for the approximation error, ‖|u− uh◦‖|◦ ≤ e⊕◦ .
rh� = 0 {initial value for the lower bound}
for j = 1 to N do

Select Dj ∈ D. {select admissible perturbation of the data}
Compute approximate solution uhj related to data Dj .

e⊕
j {compute approximation error by the majorant}

r�
j := ‖|uh◦ − uhj‖|◦ − e⊕j

κ◦j − e⊕◦
if r�

j ≥ rh� then

rh� = r�
j

end if
end for
Output: rh� {Lower estimate for the radius}

Then, the ratio ‖|u◦‖|
‖|u◦‖|◦ can be estimated from both sides as follows:

‖|u◦‖|
‖|u◦‖|◦ ≥ ‖|uh◦‖| − ‖|uh◦ − u◦‖|

‖|uh◦‖|◦ + ‖|uh◦ − u◦‖|◦ ≥ ‖|uh◦‖| − (1/
√
c)M

‖|uh◦‖|◦ + M

and

‖|u◦‖|
‖|u◦‖|◦ ≤ ‖|uh◦‖| + ‖|uh◦ − u◦‖|

‖|uh◦‖|◦ − ‖|uh◦ − u◦‖|◦ ≤ ‖|uh◦‖| + (1/
√
c)M

‖|uh◦‖|◦ − M
.

This observation applied to R̄�(u◦) and R̄⊕(u◦) from Theorem 5.2 motivates Algo-
rithm 5.2, which produces two-sided bounds of the radius.

If the non-perturbed solution can be approximated with high accuracy and an
efficient majorant can be computed, then Algorithm 5.2 finds bounds which are as
efficient as R̄�(u◦) and R̄⊕(u◦) from Theorem 5.2. Whether this is possible de-
pends on the particular problem, computational methods and computer resources.
We emphasize that in this method (unlike the previous one) only a single reference
solution uh◦ and the respective error bounds must be computed.

5.5.3 An Advanced Lower Bound

In the proof of Theorem 5.2, we have selected the free function w in a special form.
An advanced form of the lower bound can be obtained if we estimate maximal
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Algorithm 5.2 Estimates of the radius obtained by the reference solution

Input: δ {Perturbation magnitude}, K , K {Constants in Proposition 5.1}
Compute the reference solution uh◦ related to the non-perturbed problem.
Compute a majorant M, e.g., by Algorithm 3.2.
Compute the numbers

Z := ‖|uh◦‖| − (1/
√
c)M

‖|uh◦‖|◦ + M
and G := ‖|uh◦‖| + (1/

√
c)M

‖|uh◦‖|◦ − M

and obtain the estimates

Rh�
(
uh◦
) :=√K δZ√

1 − δZ
and Rh⊕

(
uh◦
) :=

√
K

δG
√
c− δ

.

Output: Rh�(uh◦), Rh⊕(uh◦) {Estimates for the radius}

value the minorant attained on the whole set of admissible functions. This method
is discussed below with the paradigm of the problem (5.21)–(5.22). As before, we
assume that the mean matrix A◦ is positive definite and bounded, i.e.,

c‖ξ‖2 ≤A◦ξ · ξ ≤ c‖ξ‖2, ∀ξ ∈R
2, (5.28)

0 < δ < c, and |Ψ | ≤ 1. Proposition 5.1 holds for the norm ‖|w‖|2A := ∫
Ω
A∇w ·

∇w dx, and we have

K‖|w‖|2A ≤ ‖|w‖|2◦ ≤K‖|w‖|2A, ∀w ∈ V0 :=H 1
0 (Ω),A ∈ DA. (5.29)

An advanced form of the lower bound is presented by (5.30).

Theorem 5.3 Let u◦ be the solution of (5.21)–(5.22) generated by A◦ ∈D. Then,

r2 ≥K sup
w∈V0

R�(u◦,w), (5.30)

where w is an arbitrary function in V0, K is from (5.28) and

R�(u◦,w) := −‖|w‖|2◦ + δ

∫

Ω

|∇w + 2∇u◦||∇w|dx. (5.31)

Proof We have

r2 = sup
u∈S(D)

‖|u◦ − u‖|2◦ ≥K sup
u∈S

‖|u◦ − u‖|2A.

On the other hand,
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sup
u∈S(D)

‖|u◦ − u‖|2A = sup
A∈D

{
sup

w∈V0(Ω)

M2
divA∇(u◦,w)

}

= sup
w∈V0

{
sup
A∈D

MdivA∇(u◦,w)
}
,

and we conclude that

r2 ≥K sup
w∈V0(Ω)

{
sup
A∈D

M2
divA∇(u◦,w)

}
, (5.32)

where

M2
divA∇(u◦,w)= −

∫

Ω

(A◦ + δΨ )(∇w + 2∇u◦) · ∇w dx + 2
∫

Ω

fw dx.

Since u◦ is the exact solution of the non-perturbed problem, we have

M2
divA∇(u◦,w)= −

∫

Ω

A◦∇w · ∇w dx − δ

∫

Ω

Ψ (∇w + 2∇u◦) · ∇w dx, (5.33)

and

sup
A∈D

M2
divA∇(u◦,w)= −‖|w‖|2◦ + sup

|Ψ |≤1

{

−δ

∫

Ω

Ψ (∇w + 2∇u◦) · ∇w dx

}

. (5.34)

Set Ψ = − ∇w⊗(∇w+2∇u◦)|∇w⊗(∇w+2∇u◦)| , where ⊗ stands for the dyad product (see (A.1)). Then,

(∇w ⊗ (∇w + 2∇u◦)
)
(∇w + 2∇u◦) = ∇w|∇w + 2∇u◦|2,

∣
∣∇w ⊗ (∇w + 2∇u◦)

∣
∣2 = |∇w + 2∇u◦|2|∇w|2,

and we find that

−δΨ (∇w + 2∇u◦) · ∇w = δ
|∇w|2|∇w + 2∇u◦|2
|(∇w + 2∇u◦)⊗ ∇w| = ∣∣(∇w + 2∇u◦)⊗ ∇w

∣
∣.

Now (5.34) implies (5.30). �

Theorem 5.3 suggests a way of computing a lower bound by maximizing
R�(u◦,w) with respect to w ∈ Vh ⊂ H 1

0 (Ω), where the subspace Vh is at our dis-
posal. Let Vh := span(ψi), i = 1, . . . ,M , where the ψi satisfy Dirichlet boundary
conditions. Then, we compute the lower estimate of the radius by solving the fol-
lowing (non-linear) maximization problem:

r2 ≥K max
αi∈R

R�

(

u◦,
N∑

i=1

αiψi

)
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Algorithm 5.3 Numerically computed lower bound for the radius
Input: θ {normalized perturbation}, K {constant from Proposition 5.1}
Compute a reference solution uh◦ for the “mean problem”.
Compute the majorant M by Algorithm 3.2.
Solve the optimization problem

G(ŵ)= max
w∈Vh⊂H 1

0 (Ω)

(
R�

(
uh◦,w

)− 2Mθ‖∇w‖).

Output:
√
KG(ŵ) {lower bound for the radius}

with respect to the coefficients αi . If u◦ is not at our disposal, then we can introduce
a reference solution uh◦ and use a modified estimate.

Corollary 5.1 Under the assumptions of Theorem 5.3,

r2 ≥K
(
R�

(
uh◦,w

)− 2
∥
∥
∣
∣u◦ − uh◦

∥
∥
∣
∣◦θ‖∇w‖), ∀w ∈ V0,

where θ is defined in (5.11) and

∥
∥
∣
∣u◦ − uh◦

∥
∥
∣
∣◦ ≤ MdivA∇

(
uh◦, y,β

)
, ∀y ∈H(Ω,div), β > 0.

Proof We estimate the lower bound R�(u◦,w) in Theorem 5.3 from below as fol-
lows:

R�(u◦,w) = −‖|w‖|2◦ + δ

∫

Ω

∣
∣∇w + 2∇uh◦ + 2∇(u◦ − uh◦

)∣∣|∇w|dx

≥ R�
(
uh◦,w

)− 2δ
∫

Ω

∣
∣∇(u◦ − uh◦

)∣
∣|∇w|dx. (5.35)

Note that
∫

Ω

∣
∣∇(u◦ − uh◦

)∣
∣|∇w|dx ≤ 1

c1

∥
∥
∣
∣∇(u◦ − uh◦

)∥
∥
∣
∣◦‖∇w‖.

Substituting these estimates to (5.35) and applying the Cauchy–Schwartz inequality
yield the statement. �

In Corollary 5.1, we have the lower bound of the solution set in fully computable
quantities (see Algorithm 5.3). The main benefit of Algorithm 5.3 (compared to Al-
gorithm 5.1) is that it operates only with the non-perturbed problem. However, it
requires solving a non-linear optimization problem. The efficiency of the estimate
provided by Algorithm 5.3 depends on the accuracy of the computed reference so-
lution, efficiency of the respective error majorant, and structure of Vh.
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5.6 Multiple Sources of Indeterminacy

So far we have considered only the cases where the coefficients of the elliptic prob-
lem are not completely known. However, also the data associated to the right-hand
and/or the boundary conditions may not be completely known. In this section, we
generalize our analysis to these cases.

5.6.1 Incompletely Known Right-Hand Side

We generalize the estimates R̄�(u◦) and R̄⊕(u◦) of Theorem 5.2 derived for the
Recall problem (4.145). Assume that uncertainty comes out of two sources, so that
A ∈DA (see (5.9)) and f ∈Df , where

Df := {f ∈ V | f = f◦ + ξ}, ‖ξ‖V ≤ ε.

Theorem 5.4 The radius of the solution set for the problem (4.145), where A ∈DA,
satisfies the following estimate:

R�,RHS(u◦)≤ r ≤R⊕,RHS(u◦),

where

R�,RHS(u◦) :=√
K

δ‖|u◦‖|2 + ε‖u◦‖V√‖|u◦‖|2◦ − δ‖|u◦‖|2
,

R⊕,RHS(u◦) :=
√
K

1
√
c− δ

(
δ‖Λu◦‖U +CF ε

)
,

where the constants K and K are defined in Proposition 5.1, c and c are from the
inequality (5.10) and CF is from (4.139).

Proof The proof is similar to that of Theorem 5.2. We apply Proposition 5.1 and
Theorem 4.8 as follows:

r2 ≥ K sup
u∈S(D)

‖|u− u◦‖|2A

= K sup
A∈DA
f∈Df

sup
w∈V0

M2
Λ(u◦,w)=K sup

w∈V0

sup
A∈DA
f∈Df

M2
Λ(u◦,w). (5.36)

Here

M2
Λ(u◦,w) = −((A◦ + δΨ )Λw,Λw

)
U

− 2
(
(A◦ + δΨ )Λu◦,Λw

)
U

+ 2(f◦ + ξ,w)V
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= −‖|w‖|2◦ − δ
(
ΨΛ(w + 2u◦),Λw

)
U

+ (ξ,w)V

− 2
(
(A◦Λu◦,Λw)U − (f◦,w)V

)
,

where the last term vanishes. We estimate supw∈V0
sup(A,l)∈D M2

Λ(u◦,w) from be-
low by setting w := αu◦ (α > 0). Then,

M2
Λ(u◦, αu◦)= −α2‖|u◦‖|2A◦ − δ(α + 2)α(ΨΛu◦,Λu◦)U + 2α(ξ,u◦)V .

Taking the supremum over possible perturbations leads to

sup
‖Ψ ‖L≤1,‖ξ‖V≤ε

M2
Λ(u◦, αu◦)

= −α2‖|u◦‖|2◦ + δ(α + 2)α‖|u◦‖|2 + 2αε‖u◦‖V
= α

(
2
(
δ‖|u◦‖|2 + ε‖u◦‖V

)+ α
(
δ‖|u◦‖|2 − ‖|u◦‖|2◦

))
. (5.37)

The expression attains the maximum if

α = α̃ := δ‖|u◦‖|2 + ε‖u◦‖V
‖|u◦‖|2◦ − δ‖|u◦‖|2 .

Substituting this value yields

sup
‖Ψ ‖L≤1,‖ξ‖V≤ε

M2
Λ(u◦, α̃u◦)= (δ‖|u◦‖|2 + ε‖u◦‖V )2

‖|u◦‖|2◦ − δ‖|u◦‖|2 ,

and (5.36) yields a lower bound.
By Proposition 5.1 and Theorem 4.6 we find that

r2 ≤ K sup
u∈S(D)

‖|u− u◦‖|2A

= K sup
A∈DA
f∈Df

inf
y∈Q
β>0

M
2
Λ(u◦, y,β)=K inf

y∈Q
β>0

sup
A∈DA
f∈Df

M
2
Λ(u◦, y,β). (5.38)

Here

M
2
Λ(u◦, y,β) := (1 + β)

(
AΛu◦ − y,Λu◦ −A−1y

)
U

+
(

1 + 1

β

)
C2
F

c− δ

∥
∥f −Λ∗y

∥
∥2
V

= (1 + β)
(
A−1(AΛu◦ − y),AΛu◦ − y

)
U

+
(

1 + 1

β

)
C2
F

c− δ

∥
∥f −Λ∗y

∥
∥2
V . (5.39)
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We substitute A = A◦ + δΨ , f = f◦ + ξ , and y = A◦Λu◦. Then,

M
2
Λ(u◦,A◦Λu,β) = (1 + β)

(
A−1(AΛu◦ −A◦Λu◦),AΛu◦ −A◦Λu◦

)
U

+
(

1 + 1

β

)
C2
F

c− δ

∥
∥f◦ −Λ∗A◦Λu◦ + ξ

∥
∥2
V

≤ δ2

c− δ

∥
∥(A◦ + δΨ )Λu◦ −A◦Λu◦

∥
∥2
U

+
(

1 + 1

β

)
C2
F

c− δ
‖ξ‖2

V

= 1

c− δ

(

(1 + β)δ2‖ΨΛu◦‖2
U +

(

1 + 1

β

)

C2
F ‖ξ‖2

V

)

and

sup
‖Ψ ‖L≤1,‖ξ‖V≤ε

M
2
Λ(u◦,A◦Λu,β)≤ 1

c− δ

(

(1 + β)δ2‖Λu◦‖2
U +

(

1 + 1

β

)

C2
F ε

2
)

.

Set β := CF ε
δ‖Λu◦‖ . We arrive at the inequality

sup
‖Ψ ‖L≤1,‖ξ‖V≤ε

M
2
Λ(u◦,A◦Λu,β)≤ 1

c− δ

(
δ‖Λu◦‖U +CF ε

)2
,

which together with (5.38) leads to the result. �

Remark 5.1 The comparison of R�,RHS(u◦) and R⊕,RHS(u◦) in Theorem 5.4 with
R̄�(u◦) and R̄⊕(u◦) in Theorem 5.2 reveals that the right-hand side indeterminacy
produces additional linearly growing terms to the respective estimates.

5.6.2 The Reaction Diffusion Problem

As an addition to the previous discussion, we consider a problem which has several
sources of incompletely known data (see [MR10]). The reaction diffusion problem
with mixed Dirichlét–Robin boundary conditions is defined by the system

−div(A∇u)+ ρu = f in Ω, (5.40)

u = 0 on ΓD, (5.41)

n ·A∇u = F on ΓN, (5.42)

αu+ n ·A∇u = G on ΓR. (5.43)

The generalized solution is the function u ∈ V0 satisfying the integral identity,
∫

Ω

A∇u·∇w dx+
∫

ΓR

αuw ds =
∫

Ω

fw dx−
∫

ΓN

Fw ds−
∫

ΓR

Gw ds, ∀w ∈ V0,
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where

V0 := {w ∈H 1
0 (Ω) |w = 0 on ΓD

}
. (5.44)

Here, Ω ⊂ R
d has the boundary ΓD ∪ΓN ∪ΓR , A ∈ L∞(Ω,Md×d) (symmetric

and positive definite), ρ ∈ L∞(Ω,R+), and α ∈ L∞(ΓR,R+) are related to the
properties of the medium.

The system has several functions dependent on the material properties, namely
A, ρ, and α. We assume that

DA := {
A ∈ L∞

(
Ω,Md×d

) |A=A◦ + δ1Ψ
}
, (5.45)

Dρ := {
ρ ∈ L∞(Ω,R) | ρ = ρ◦ + δ2ψρ

}
, (5.46)

Dα := {
α ∈ L∞(Γ3,R) | α = α◦ + δ3ψα

}
, (5.47)

where ‖Ψ ‖L∞(Ω,Md×d ) ≤ 1, ‖ψρ‖L∞(Ω) ≤ 1, and ‖ψα‖L∞(Γ3). Thus, in the case
considered, the set of indeterminate data is

D := DA ×Dρ ×Dα.

Let

c1|ξ |2 ≤ A◦ξ · ξ ≤ c1|ξ |2, ∀ξ ∈ R
d, on Ω,

c2 ≤ ρ◦ ≤ c2 on Ω,

c3 ≤ α◦ ≤ c3 on ΓR,

where ci > 0. Then, the “mean” problem has a unique solution u◦. The condition

0 ≤ δi < ci, i = 1,2,3,

guarantees that the perturbed problem remains elliptic and possesses a unique solu-
tion u. We define normalized perturbations and the corresponding “condition num-
bers”:

θi := δi

ci
and condi := ci

ci
, i = 1,2,3.

First, we establish a technical result (analogous to Proposition 5.1).

Proposition 5.2 Let A, ρ, and α be defined by (5.45), (5.46), and (5.47), respec-
tively. Then,

C‖|w‖|2(A,ρ,α) ≤ ‖|w‖|2◦ ≤ C‖|w‖|2(A,ρ,α), ∀w ∈ V0,

where

‖|w‖|2(A,ρ,α) :=
∫

Ω

(
A∇w · ∇w + ρw2)dx +

∫

ΓR

αw2 ds,
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‖|w‖|◦ := ‖|w‖|(A◦,ρ◦,α◦),

C := max

{

min
i∈{1,2,3}

1

condi +θi
, min
i∈{1,2,3}

1 − 2θi
1 − θi

}

, and

C := max
i∈{1,2,3}

1

1 − θi
.

Proof We note that

(c1 − δ1)‖|w‖|2 ≤ ‖|w‖|2A ≤ (c1 + δ1)‖|w‖|2, ∀w ∈ V0,A ∈DA.

(c2 − δ2)‖|w‖|2 ≤ ‖|w‖|2ρ ≤ (c2 + δ2)‖|w‖|2, ∀w ∈ V0, ρ ∈ Dρ.

(c3 − δ3)‖|y‖|2 ≤ ‖|w‖|2α ≤ (c3 + δ3)‖|y‖|2, ∀w ∈ V0, α ∈Dα.

By the definitions (5.45), (5.46), and (5.47), we have

‖|w‖|2◦ = ‖|w‖|2(A,ρ,α) −
∫

Ω

(
δ1Ψ∇w · ∇w + δ2ψρw

2)dx − δ3

∫

ΓR

ψαw
2 ds.

This implies

‖|w‖|2◦ ≤ ‖|w‖|2(A,ρ,α) + δ1‖∇w‖ + δ2‖w‖2 + δ3‖w‖ΓR
≤ ‖|w‖|2(A,ρ,α) + δ1

c1 − δ1
‖∇w‖2

A + δ2

c2 − δ2
‖√ρw‖2 + δ3

c3 − δ3
‖√αw‖2

ΓR

≤ max
i∈{1,2,3}

(

1 + δi

ci − δi

)

‖|w‖|2(A,ρ,α).

We derive a similar estimate for the lower bound:

‖|w‖|2◦ ≥ ‖|w‖|2(A,ρ,α) − δ1‖∇w‖ − δ2‖w‖2 − δ3‖w‖ΓR
≥ ‖|w‖|2(A,ρ,α) + δ1

c1 − δ1
‖∇w‖2

A + δ2

c2 − δ2
‖√ρw‖2 + δ3

c3 − δ3
‖√αw‖2

ΓR

≥ min
i∈{1,2,3}

(

1 − δi

ci − δi

)

‖|w‖|2(A,ρ,α).

Another lower bound is as follows:

‖|w‖|2◦ ≥ c1‖∇w‖2 + c2‖w‖2 + c3‖w‖2
ΓR

≥ c1

c1 + δ1
‖∇w‖2

A + c2

c2 + δ2
‖√ρw‖2 + c3

c3 + δ3
‖√αw‖2

ΓR

≥ min
i∈{1,2,3}

ci

ci + δi
‖|w‖|2(A,ρ,α).

Clearly, the maximum of lower bounds is also a lower bound. The definitions of θi
lead to the statement. �
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Theorem 5.5 Let u◦ be the solution of the non-perturbed problem (5.40)–(5.43)
and A, ρ, and α be defined by (5.45), (5.46), and (5.47), respectively. Then,

r̄�,RD ≤ R̄�,RD(u◦)≤ r̄ ≤ R̄⊕,RD(u◦)≤ r̄⊕,RD, (5.48)

where

r̄�,RD :=√
C min
i∈{1,2,3}

cond−1
i θi

√
1 − cond−1

i θi

, (5.49)

r̄⊕,RD :=
√

C max
i∈{1,2,3}

θi√
1 − θi

, (5.50)

R̄�,RD(u◦) :=√
C

‖|u◦‖|2δ/‖|u◦‖|2◦√
1 − ‖|u◦‖|2δ/‖|u◦‖|2◦

, (5.51)

R̄⊕,RD(u◦) :=
√

C

√
Υδ(u◦)

‖|u◦‖|◦ , (5.52)

C and C are from Proposition 5.2, ‖|u◦‖|2δ := δ1‖∇u◦‖2
Ω + δ2‖u◦‖2

Ω + δ3‖u◦‖2
ΓR

,
and

Υδ(u◦) := δ2
1

c1(c1 − δ1)

∫

Ω

A∇u◦ · ∇u◦ dx + δ2
2

c2(c2 − δ2)
‖√ρ◦u◦‖2

Ω

+ δ2
3

c3(c3 − δ3)
‖√α◦u◦‖2

ΓR
.

Proof Consider the lower bound first. We have

r2 = sup
u∈S

‖|u◦ − u‖|20 ≥ C sup
u∈S(D)

‖|u◦ − u‖|2(A,ρ,α).

Since (see [MR10])

sup
u∈S(D)

‖|u◦ − u‖|2(A,ρ,α) = sup
(A,ρ,α)∈D

{
sup
w∈V0

M2
A,ρ,α(u◦,w)

}

= sup
w∈V0

{
sup

(A,ρ,α)∈D
M2
A,ρ,α(u◦,w)

}
,

we conclude that

r2 ≥ C sup
w∈V0

{
sup

(A,ρ,α)∈D
M2
A,ρ,α(u◦,w)

}
. (5.53)
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Now our goal is to estimate the right-hand side of (5.53) from below. For this pur-
pose, we employ the structure of the minorant, which is as follows:

M2
A,ρ,α(u◦,w) = −

∫

Ω

(A◦ + δ1Ψ )(∇w + 2∇u◦) · ∇w dx

−
∫

Ω

(ρ◦ + δ2ψρ)(w + 2u◦)w dx

−
∫

ΓR

(α◦ + δ3ψα)(w + 2u◦)w ds + 2l(w), (5.54)

where l(w) := ∫
Ω
fw dx − ∫

ΓN
Fw ds − ∫

ΓR
Gw ds. Note that

∫

Ω

(A◦∇u◦ · ∇w dx + ρ◦u◦w)dx +
∫

ΓR

α◦u◦w ds = l(w).

Hence,

M2
A,ρ,α(u◦,w) = −

∫

Ω

A◦∇w · ∇w dx −
∫

Ω

ρ◦w2 dx −
∫

ΓR

α◦w2 ds

− δ1

∫

Ω

Ψ (∇w + 2∇u◦) · ∇w dx − δ2

∫

Ω

ψρ(w + 2u◦)w dx

− δ3

∫

ΓR

ψα(w + 2u◦)w ds. (5.55)

We substitute w := λu◦ (λ > 0) and obtain

M2
A,ρ,α(u◦, λu◦) = −λ2‖|u◦‖|2◦ − λ(λ+ 2)

(

δ1

∫

Ω

Ψ∇u◦ · ∇u◦ dx

+ δ2

∫

Ω

ψρu
2◦ dx + δ3

∫

ΓR

ψαu
2◦ ds

)

. (5.56)

Since,

sup
|Ψ |≤1

−
∫

Ω

Ψ∇u◦ · ∇u◦ dx =
∫

Ω

|∇u◦|2 dx = ‖∇u◦‖2
Ω

sup
|ψρ |≤1

−
∫

Ω

ψρu
2◦ dx = ‖u◦‖2

Ω

sup
|ψρ |≤1

−
∫

ΓR

ψαu
2◦ dx = ‖u◦‖2

ΓR
,

we have

sup
(A,ρ,α)∈D

M2
A,ρ,α(u◦, λu◦)= −λ2‖|u◦‖|2◦ + λ(λ+ 2)‖|u◦‖|2δ .
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The expression attains the maximum at

λ̃= ‖|u◦‖|2δ
‖|u◦‖|2◦ − ‖|u◦‖|2δ

.

Substituting this yields

sup
(A,ρ,α)∈D

M2
A,ρ,α(u◦, λ̃u◦)= ‖|u◦‖|4δ

‖|u◦‖|2◦ − ‖|u◦‖|2δ
. (5.57)

We apply (5.57) to estimate (5.53) from below, divide by ‖|u◦‖|2◦, and take the square
root to obtain (5.51).

Note that

‖|u◦‖|2◦ =
∫

Ω

(
A◦∇u◦ · ∇u◦ + ρ◦u2◦

)
dx +

∫

ΓR

α◦u◦ ds

≥
∫

Ω

(
c1∇u◦ · ∇u◦ + c2u

2◦
)

dx +
∫

ΓR

c3u◦ ds

> δ1‖∇u◦‖2
Ω + δ2‖u◦‖2

Ω + δ3‖u◦‖2
ΓR

= ‖|u◦‖|2δ ,
so that the respective lower bound is positive. Moreover,

‖|u◦‖|2δ ≥ δ1

c1

∫

Ω

A◦∇u◦ · ∇u◦ dx + δ2

c2

∫

Ω

ρ◦u2◦ dx + δ3

c3

∫

ΓR

α◦u2◦ ds

≥ min
i∈{1,2,3}

δi

ci
‖|u◦‖|2◦. (5.58)

By applying (5.58) to the estimate (5.57), we arrive at (5.49).
Now we deduce an upper bound. We have

sup
u∈S(D)

‖|u◦ − ũ‖|2(A,ρ,α) = sup
(A,ρ,α)∈D

{
inf

y,μi ,γj
M

2
A,ρ,α(u◦, y, γ,μ1,μ2)

}

≤ inf
y,μi ,γj

{
sup

(A,ρ,α)∈D
M

2
A,ρ,α(u◦, y, γ,μ1,μ2)

}
,

where (see [MR10])

M
2
A,ρ,α(u◦, y, γ,μ1,μ2) = κ

(

γ1D(∇v, y)+ γ2

∥
∥
∥
∥

√
κ2γ 2

2 ρ + 1

κγ2ρ + 1
r1(v, y)

∥
∥
∥
∥

2

Ω

+ γ3

∥
∥
∥
∥

√
κ2γ 2

3 α + 1

κγ3α + 1
r2(v, y)

∥
∥
∥
∥

2

Γ3

+ γ4‖F − y · ν‖2
Γ2

)

.
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By Proposition 5.2, we obtain

r2 ≤ C inf
y,μi ,γj

{
sup

(A,ρ,α)∈D
M

2
A,ρ,α(u◦, y, γ,μ1,μ2)

}
. (5.59)

We need to estimate explicitly the term in the brackets. For this purpose we estimate
from the above the last two terms of the majorant and represent them in the form

M
2
A,ρ,α(u◦, y, γ,μ1,μ2)

≤ κ

(

γ1D(∇v, y)+
∥
∥
∥
∥

√

γ2κ(1 −μ1)2 + μ2
1

κ(c2 − δ2)
r1(v, y)

∥
∥
∥
∥

2

Ω

+
∥
∥
∥
∥

√
γ3κ(1 −μ2)+ μ2

κ(c3 − δ3)
r2(v, y)

∥
∥
∥
∥

2

ΓR

+ γ4‖F − y · ν‖2
ΓN

)

. (5.60)

Now we find the upper bounds with respect to A ∈ DA, ρ ∈ Dρ , and α ∈ Dα sepa-
rately.

First, we consider the term D generated by A and A−1:

sup
A∈DA

D(∇u◦, y)

= sup
|Ψ |<1

∫

Ω

(A◦ + δ1Ψ )−1
∣
∣(A◦ + δΨ )∇u◦ − y

∣
∣2 dx

≤ 1

c1 − δ1

× sup
|Ψ |<1

{

‖A◦∇u◦ − y‖2 + 2δ1

∫

Ω

Ψ∇u◦ · (A◦∇u◦ − y)dx + δ2
1‖Ψ∇u◦‖2

}

≤ 1

c1 − δ1

(

‖A◦∇u◦ − y‖2
Ω + 2δ1

∫

Ω

|∇u◦||A◦∇u◦ − y|dx + δ2
1‖∇u◦‖2

Ω

)

.

(5.61)

For the term related to the error in the equilibrium equation, we have

sup
ρ∈Dρ

∥
∥rρ1 (u◦, y)

∥
∥2
Ω

= sup
|ψ2|<1

∫

Ω

(
f − (ρ◦ + δ2ψ2)u◦ + divy

)2 dx

= sup
|ψ2|<1

∫

Ω

(
divy − div(A◦∇u◦)− δ2ψ2u◦

)2 dx

≤ ∥∥div(y −A◦∇u◦)
∥
∥2
Ω

+ 2δ2

∫

Ω

∣
∣div(y −A◦∇u◦)

∣
∣|u◦|dx + δ2‖u◦‖2.
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(5.62)

Similarly, for the term related to the error in the Robin boundary condition we have

sup
α∈Dα

∥
∥rα2 (u◦, y)

∥
∥2
ΓR

≤
∥
∥
∥
∥
∂(y −A◦∇u◦)

∂ν

∥
∥
∥
∥

2

ΓR

+ 2δ3

∫

ΓR

∣
∣
∣
∣
∂(y −A◦∇u◦)

∂ν

∣
∣
∣
∣|u◦|ds + δ2

3‖u◦‖2
ΓR
. (5.63)

It is clear that for y = y0 := A◦∇u◦, the estimates (5.61)–(5.63) attain minimal
values. In addition, we set in (5.60) μ1 = μ2 = 1 and derive that

M
2
A,ρ,α(u◦,A◦∇u◦, γ,1,1)

≤ κ

(
δ2

1γ1

c1 − δ1
‖∇u◦‖2

Ω + δ2
2

c2 − δ2
‖u◦‖2

Ω + δ2
3

c3 − δ3
‖u◦‖2

ΓR

)

. (5.64)

Now we tend γ2, γ3, and γ4 (which are contained in κ) to infinity. Then, (5.64) and
(5.60) imply (5.52). An upper bound for the normalized radius follows from the
relation

M
2
A,ρ,α(u◦,A◦∇u◦, γ,1,1)

≤ δ2
1

c1(c1 − δ1)

∫

Ω

A◦∇u◦ · ∇u◦ dx

+ δ2
2

c2(c2 − δ2)
‖√ρ◦u◦‖2

Ω + δ2
3

c3(c3 − δ3)
‖√α◦u◦‖2

ΓR

≤ max
i∈{1,2,3}

δ2
i

ci(ci − δi)
‖|u◦‖|2,

which leads to (5.50). �

The main difference between Theorem 5.5 and Theorem 5.2, where only a
single source of indeterminacy is considered, is that the bounds R̄�,RD(u◦) and
R̄⊕,RD(u◦) depend on the indeterminacy magnitude of A, ρ and α weighted by
‖∇u◦‖A◦ , ‖√ρ◦u◦‖Ω , and ‖√α◦u◦‖ΓR , respectively. The bounds r̄�,RD and r̄⊕,RD ,
which do not employ any knowledge of the non-perturbed solution, are likely to be
less accurate. In these estimates, the most uncertain parameter dominates. Also the
other results exposed earlier for the incompletely known operator A can be extended
to the reaction diffusion problem.

5.7 Error Indication and Indeterminate Data

Error indicators used in numerical analysis of partial differential equations usually
assume that data of the problem are known exactly. In this case, a good error indica-
tor can suggest efficient reconstructions of meshes, which lead to accurate numerical
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Fig. 5.9 Error indications EI 1
and EI 2 oriented toward two
different solutions u1 and u2
in the solution set S(D)

solutions. In this section, we discuss how this process may be affected by incom-
pletely known data. Certainly this discussion is based upon rather simple examples.
However, to the best of our knowledge, such type studies are quite new, and our
goal is to show some principal difficulties arising if error indicators are applied to
problems with uncertain data. It is clear that similar difficulties arise in many other
problems. Computational results of this section were performed by I. Anjam and, in
general, the exposition follows along the lines of [AMNR12].

We begin with observations motivated by Fig. 5.9 where we depict two different
“error indication directions”, EI 1 and EI 2. These directions are computed by means of
the indicator EI with the data D1 and D2, which lead to two different exact solutions
u1 and u2, respectively. If our approximate solution vh is far from S(D), then the
directions are close (in other words, if we have a coarse approximation, then good
error indicators are robust with respect to small variations of data). However, this
may be not true for accurate approximations. This fact does not depend on the qual-
ity of an error indicator and takes place even for the best one based on comparison
of approximations and exact solutions. In practice, the arrows depicted in Fig. 5.9
mean certain reconstructions of meshes. It is easy to see that if the approximate so-
lution lies in the vicinity of S(D), then error indicators provide very different results
if the data vary within admissible bounds. Therefore, the process of sensible mesh
adaptation has a limit beyond which further refinements become unreliable. Below
we demonstrate this fact on several simple examples. For this purpose, we use the
model problem (5.21)–(5.22) again. Our goal is to study how incomplete knowledge
of the diffusion coefficients impacts the reliability of error indication.

5.7.1 Numerical Experiments

In our numerical experiments, we again consider the stationary diffusion equation
divA∇u + f = 0 with small disturbances of the diffusion matrix A = A◦ + δB ,
where the magnitude of variations δ satisfies A◦ξ · ξ ≥ c > δ for all |ξ | = 1. For
each element T ∈ Th, the matrix B (which defines disturbances) is symmetric and its
coefficients may attain one of the three values: {−1,0,1}. A perturbation generated
in this way is clearly an extreme one. It suits our purposes, since we are trying to find
perturbations generating the worst case situation, which may occur with different
diffusion matrices A that belong to the set D.

We note that since the number of matrices contained in D is much larger than
those representable in such a form, the sensitivity of error indicators with respect to
data uncertainty is even higher than detected in our experiments.
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Let EI denote an error indicator computed on the set of elements Th for an ap-
proximation uh (see Chap. 2). The output of EI is a vector {EI(uh)} that contains
approximate errors value for each element in T . In computational practice, error in-
dicators are used together with a marker M. In this series of numerical experiments,
we confine ourselves to the marker M, which marks a certain predefined amount of
elements with highest errors (denoted by Nref).

Our analysis of effects caused by data uncertainty is based on the following strat-
egy. We select a mesh Th and a certain number of matrices Aj = A◦ + δBj for
some given δ. For each set of data associated with the exact solution uj = S(Aj ),
we compute the corresponding approximations ujh on the mesh Th. Then, for each
ujh, we calculate the error indicator EIj =EI(Aj ,ujh) and the corresponding mark-
ings M(EIj ).

The difference of two markings is natural to evaluate by means of the boolean
measure analogous to that we used in (2.4). We define the quantity

diff(M,EI i,EIj ) := 1 − []M(EI i)≡ M(EIj )[]
N

∈ [0,1], (5.65)

where ≡ is the logical operator defined in Table 2.1.
The quantity

Θ := max
i,j

{
diff(M,EI i,EIj )

}
(5.66)

shows the maximal difference produced by an error indicator with different diffu-
sion matrices from the set D. We have tested the following commonly used error
indicators.

We test the error indicators based on the majorant (see (3.103)) generated by the
following reconstructions of the flux: yG obtained by nodal gradient-averaging (see
Sect. 2.2.2.2), yjRT obtained by edge-wise gradient-averaging and j equilibration
cycles (see Sect. 2.2.2.4), and yglo obtained by global minimization of the majorant
(see (3.102)). Additionally, we introduce “globally averaged” yGglo, which is cal-
culated by globally minimizing ‖yGglo −A∇uh‖2

A−1 (see, e.g., [CB02, BC02]) us-
ing Raviart–Thomas elements. We denote the corresponding indicated element-wise
error distributions by EIM(uh, yG), EIM(uh, y

j
RT), EIM(uh, yglo), and EIM(uh, yGglo),

respectively. Moreover, we recall two residual type error indicators EI(ηRF ) (see
(3.108)) and EI(ηRJ ) (see (3.109)).

5.7.2 Results and Conclusions

The approximate solutions of the model problem were computed by using stan-
dard Courant type finite element approximations. Indicators EIM(uh, yglo) and
EIM(uh, yGglo) were computed with the help of linear Raviart–Thomas finite ele-
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ments. All the problems were solved on same regular meshes, and the arising sys-
tems of linear simultaneous equations were exactly solved by direct methods. In
view of this fact, approximate solutions possess the Galerkin orthogonality prop-
erty, and, therefore, the residual error indicator EI(ηRF ) can be used. For the edge-
averaging indicator EIM(uh, y

j
RT), we set j = 5 (the number of times the quasi-

equilibration cycle PRM is applied).
Nelem denotes the overall amount of the elements. The marker M used selects

30 % of elements to be refined, i.e., Nref = 0.3Nelem. Note that the maximal value
of Θ for this marker is 0.6. Even if markings generated by two different indicators
select completely different elements, for 40 % of all elements the marked value
coincides (it is zero).

We studied how the magnitude of variations δ affects error indicators and discuss
typical results with the example of a simple problem where Ω = (0,1)2, A◦ = I ,
and f = 2(x1(1 − x1)+ x2(1 − x2)). The exact solution of this “mean” problem is
u◦ = x1(1 − x1)x2(1 − x2).

The results are shown in Table 5.2 and Fig. 5.10. They show the performance
of indicators on six different meshes. It is worth outlining that the actual sensitivity
of error indicators with respect to the data uncertainty is even higher than in these
results, because we do not consider all problems with admissible data.

Table 5.2 shows how the values of Θ (associated with the indicators) depend on
the number of elements Nelem and the parameter δ. It is easy to see that sufficiently
small values of Θ (which correspond to relatively stable performance of an error
indicator) are obtained only for small δ (such as 0.005 or 0.01) and a rather mod-
erate number of elements. If the values of δ are not very small (e.g., 0.04), then
all the indicators may generate quite different markings. We recall that Θ = 0.6 if
the indicators computed for different elements of the solution set D may generate
completely opposite markings. Obviously, this situation arises if the corresponding
approximate solution lies within (or is very close) the set S(D).

The curves in Fig. 5.10 represent these results graphically. We see that for
δ > 0.01 all indicators lose the reliability.

We observe that if the indeterminacy is significant compared with the approx-
imation error, uncertainties in the matrix entries may seriously corrupt the
process of error indication. This phenomenon does not depend on a particular
error indicator.

Finally, we note that in this simple test problem the effect of indicator deterio-
ration is easy to discover even for relatively coarse meshes. However, by our ex-
perience, similar effects eventually arises in all problems if more and more refined
meshes are used. In other words, indeterminacy of data limits efficiency (and appli-
cability) of error indicators.
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Table 5.2 The values of Θ

(a) EIM(v, yG), patch-wise averaging (b) EIM(v, y
0
RT) edge averaging

Nelem δ δ

0.005 0.01 0.02 0.03 0.04 0.05 0.005 0.01 0.02 0.03 0.04 0.05

800 0.09 0.16 0.31 0.40 0.48 0.51 0.09 0.16 0.30 0.40 0.45 0.50

3200 0.18 0.31 0.47 0.53 0.52 0.58 0.16 0.30 0.46 0.52 0.53 0.52

12800 0.32 0.48 0.52 0.59 0.60 0.60 0.30 0.46 0.53 0.56 0.59 0.59

51200 0.48 0.52 0.60 0.60 0.60 0.60 0.46 0.53 0.59 0.60 0.60 0.60

115200 0.53 0.59 0.60 0.60 0.60 0.60 0.52 0.57 0.59 0.60 0.60 0.60

(c) EI (ηRF ) residual, full (d) EI (ηRJ ) residual, jumps

Nelem δ δ

0.005 0.01 0.02 0.03 0.04 0.05 0.005 0.01 0.02 0.03 0.04 0.05

800 0.16 0.24 0.39 0.48 0.54 0.56 0.09 0.15 0.30 0.40 0.44 0.52

3200 0.25 0.38 0.53 0.57 0.57 0.57 0.16 0.30 0.46 0.53 0.54 0.53

12800 0.38 0.53 0.57 0.58 0.59 0.59 0.30 0.45 0.54 0.53 0.59 0.59

51200 0.53 0.57 0.59 0.60 0.60 0.60 0.45 0.54 0.59 0.60 0.60 0.60

115200 0.56 0.58 0.60 0.60 0.60 0.60 0.53 0.53 0.60 0.60 0.60 0.60

(e) EIM(v, yGglo), global averaging (f) EIM(v, yglo), majorant min

Nelem δ δ

0.005 0.01 0.02 0.03 0.04 0.05 0.005 0.01 0.02 0.03 0.04 0.05

800 0.08 0.15 0.30 0.39 0.46 0.50 0.08 0.15 0.30 0.39 0.45 0.50

3200 0.17 0.30 0.46 0.53 0.54 0.52 0.16 0.30 0.46 0.53 0.53 0.52

12800 0.30 0.46 0.54 0.57 0.60 0.60 0.30 0.46 0.53 0.57 0.60 0.60

51200 0.46 0.53 0.59 0.60 0.60 0.60 0.46 0.53 0.60 0.60 0.60 0.60

115200 0.52 0.57 0.60 0.60 0.60 0.60 0.52 0.57 0.60 0.60 0.60 0.60

5.8 Linear Elasticity with Incompletely Known Poisson Ratio

We consider the isotropic linear elasticity problem discussed in Sect. 4.1.6. Our
main goal is to analyze sensitivity of the energy with respect to the Poisson ratio ν

and to show that for some classes of linear elasticity problems the overall energy
(and the corresponding exact solutions) are extremely sensitive to small variations
of ν. In the worst case, we may be faced with a phenomenon which can be called a
“blow-up” of the indeterminacy error caused by incomplete information on the true
value of ν. Certainly if some other parameters are also defined with uncertainties,
then this effect may arise even in a more significant form.

Henceforth, we assume that the uncertainty of material parameters is generated
by one factor: the uncertainty of Poisson’s ratio ν. In practice, values of the Young’s
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Fig. 5.10 Values of Θ for different δ for three meshes

modulus E are often known only within some interval, but this constant occurs in
the equation as a multiplier. In view of this fact, the corresponding effects are easy to
evaluate (they are proportional to the indeterminacy range). In this study, we neglect
these effects. Moreover, we assume that solutions are normalized with respect to E,
which effectively means that E is replaced by one.

By the superscript ν we denote the quantities and functions associated with Pois-
son’s ratio ν (e.g., Cν ). Similarly, we denote the energy, strain, displacement or
stress related to the exact solution (e.g., uν denotes the exact solution of the linear
elasticity problem, and εν stands for ε(uν)). We estimate differences of quantities
related to the exact solutions obtained for the ratios ν and ν + δ. For this purpose,
it is convenient to use incremental type quantities, e.g., for the energy E we use the
quantity

"ν
δE := Eν+δ − Eν

δ
. (5.67)
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We note that E is an important integral characteristic of the exact solution. If all
components of the solution are robust (insensitive) to small variations of material
parameters, then the energy also changes insignificantly. However, if "ν

δE becomes
large for relatively small δ, then this fact definitely indicates that at least some com-
ponents of the exact solution are highly sensitive with respect to small changes of ν.

It is worth noting that difficulties arising in analysis of problems associated with
almost incompressible media as well as some special methods invented to overcome
them are well-known (see, e.g., [KRW07] and the references cited therein). Our
goal is to show that in the case of uncertain data the situation is even worse and
difficulties in quantitative analysis arise before any method is applied, namely, if
ν approaches to 0.5, then very small changes of this quantity may generate quite
different solutions.

We begin our consideration with the elementary example, in which effects caused
by incomplete information on parameters generate effects similar to those we dis-
cuss later with the paradigm of linear elasticity. Consider the following minimiza-
tion problem with constraints: Find x0 ∈K such that

Qγ
(
x0)= min

x∈K⊂R2
Qγ (x),

where

Qγ (x) := 1

1 − γ
(x1 − x2)

2 + x2
1 + x2

2 .

The function Qγ represents the overall energy. It can be written in the form,

Qγ (x)= y · x, y = 1

1 − γ
Bx + x,B =

[
1 −1

−1 1

]

,

where x and y can be regarded as simple analogs of strain and stress, respectively.
Let K be an affine set

K := {x ∈R
2 | x2 = ax1 + b, a, b ∈R

}
.

Assume that only the parameter γ is defined with an uncertainty, but the coefficients
a and b are exactly known. It is not difficult to find that

x0 = b

(γ − 2)a2 + 2a + γ − 2

[−1 − a(γ − 2)
a + γ − 2

]

solves the problem and the corresponding values of Qγ and y are

Qγ
(
x0)= b2(γ − 3)

(γ − 2)a2 + 2a + γ − 2

and

y
(
x0)= b(γ − 3)

(γ − 2)a2 + 2a + γ − 2

[−a

1

]

.
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Sensitivity of these quantities with respect to γ is measured by the derivatives

dx0

dγ
= b(a − 1)(a + 1)

(2a − 2a2 + γ (a2 + 1)− 2)2

[−1
−a

]

, (5.68)

dQγ (x0)

dγ
= b2(a + 1)2

(2a − 2a2 + γ (a2 + 1)− 2)2
, (5.69)

dy(x0)

dγ
= b(a + 1)2

(2a − 2a2 + γ (a2 + 1)− 2)2

[−a

1

]

. (5.70)

We note that Qγ can be written in the form

Qγ (x)= 1

1 − γ
|Ex|2 + |x|2,

where

E = 1√
2

[
1 −1
1 −1

]

.

The behavior of derivatives (5.68)–(5.70) is drastically different in two cases. If the
kernel of the matrix E, i.e., Ker(E)= {x ∈R

2 | x1 = x2}, and K do not have a com-
mon point (i.e., if a = 1), then the values, derivatives, and logarithmic derivatives of
Qγ (x0) and y(x0) tend to infinity as γ tends to one. In the other case, where Ker(E)
and K do have a common point, the values of x0, y(x0), Qγ (x0) and the respective
derivatives are bounded when γ tends to one.

This study indicates that for this elementary model problem, different constraints
(defined by the set K) have a crucial effect on the reliability of a quantitative anal-
ysis. We see that if γ contains a very small uncertainty, e.g., γ ∈ [γ◦ − ε, γ◦ + ε],
where ε is very small, but γ◦ is close to one, then nevertheless the errors caused by
this uncertainty may be so high that quantitative analysis of the problem is hardly
possible.

The analogy between this algebraic example and a similar problem in the linear
elasticity theory is presented in Table 5.3. The function Q : R2 →R is an analog of
the energy functional E in linear elasticity theory. The term 1

γ
xT Ex behaves like the

divergence term
∫
Ω
λ|div(u)|2 dx of the energy functional. The coefficient tends to

infinity as the parameter γ tends to 1 in a similar way as λ. Indeed, the coefficient λ
tends to infinity as ν tends to 1

2 (analogously the first part of Qγ tends to infinity as
γ tends to one). The kernel of div(u) is nontrivial: it contains solenoidal fields. The
second term |x|2 is positive definite. Its analog in linear elasticity is

∫
Ω
μ|ε(u)|2 dx.

As we will see in the next section, the two cases K ∩ Ker(E) �= ∅ and K ∩
Ker(E)= ∅ are analogs of two different types of boundary conditions: the first one
admits the existence of divergence-free solutions and the second one does not.
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Table 5.3 Analogy of algebraic example and isotropic linear elasticity

Example Linear elasticity Physical description

γ ν Poisson ratio

x ε(u) Strains

y σ Stresses

K V0 Set of admissible solutions

Q E Energy functional
1

1−γ
xT Ex

∫
Ω
λdiv(u)2 dx First part of the energy functional

Ker(E) Ker(div) Kernel of the “blow-up” term

xT x
∫
Ω
μ|ε(u)|2 dx Second part of the energy functional

5.8.1 Sensitivity of the Energy Functional

Henceforth, we assume that

0 ≤ ν <
1

2
and δ ≤ 1

2

(
1

2
− ν

)

. (5.71)

This condition guarantees that the problems with different Poisson’s coefficients are
uniformly elliptic. Also we assume that � = 0 (this assumption is made only for
simplicity).

First, we establish a relation that serves as a basis for our subsequent analysis.
We have

∥
∥
∣
∣εν+δ − εν

∥
∥
∣
∣2
Cν+δ =

∫

Ω

Cν+δεν : εν dx −
∫

Ω

Cν+δεν+δ : εν+δ dx

= δ

∫

Ω

("ν
δC
)
εν : εν dx − δ

("ν
δE
)
.

Hence

"ν
δE =

∫

Ω

("ν
δC
)
εν : εν dx − 1

δ

∥
∥
∣
∣εν+δ − εν

∥
∥
∣
∣2
Cν+δ . (5.72)

For isotropic media we have
∫

Ω

("ν
δC
)
εν : εν dx =

∫

Ω

(("ν
δλ
)∣
∣divuν

∣
∣2 + 2

("ν
δμ
)∣
∣εν
∣
∣2
)

dx.

In view of (5.71), we have

κ� := 4(1 + 2ν2)

(5 + 2ν)(1 + ν)(1 − 2ν)2
≤ "ν

δλ≤ 2(1 + 2ν2 + 2νδ)

(1 + ν)2(1 − 2ν)2

≤ 2 + v + 2ν2

(1 + ν)2(1 − 2ν)2
:= κ⊕
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and

m� := − 1

(1 + ν)2
≤ 2"ν

δμ≤ − 4

(5 + 2ν)(1 + ν)
:=m⊕.

Now we find that
∫

Ω

("ν
δC
)
εν : εν dx ≥

∫

Ω

(

κ�
∣
∣divuν

∣
∣2 − 1

(1 + ν)2

∣
∣εν
∣
∣2
)

dx. (5.73)

In order to estimate the second term on the right-hand side of (5.72), we use the
majorant for the linear elasticity problem,

MEL(v, τ ) =
(∫

Ω

(
Cν+δε

(
uν
)− τ

) : (ε(uν)− (Cν+δ
)−1

τ
)

dx

)1/2

+ cK‖Div τ + f ‖,

where cK is the constant related to Korn’s inequality and τ is an auxiliary stress
function that is at our disposal. Here, we consider uν as an approximation v for the
problem defined by uν+δ . For τ := Cνε(uv), the equilibrium term vanishes and the
estimate reads as follows:

∥
∥
∣
∣ε
(
uν+δ − uν

)∥∥
∣
∣2
Cν+δ ≤ M

ν+δ
EL

(
uν, τ

)
, (5.74)

where

M
ν+δ
EL

(
uν, τ

) :=
∫

Ω

(
Cν+δε

(
uν
)− τ

) : (ε(uν)− (Cν+δ
)−1

τ
)

dx.

Lemma 5.1

∥
∥
∣
∣εν+δ − εν

∥
∥
∣
∣2
Cν+δ ≤ δ2(cν1

∥
∥divuν

∥
∥2 + cν2

∥
∥ε
(
uν
)∥∥2)

,

where

cν1 := λν

ν
nκ⊕ and cν2 := 1

4
(5 + 2ν)m2�.

Proof It is easy to see that

Cν+δε
(
uν
)−Cνε

(
uν
)= (λν+δ − λν

)
divuνI+ 2

(
μν+δ −μν

)
ε
(
uν
)
. (5.75)

Since

C−1τ = 1

2μ

(

τ − λ

3λ+ 2μ
tr(τ )I

)

,

we have
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(
Cν+δ

)−1
Cνε

(
uν
)

= 1

2μν+δ

(

λν divuνI+ 2μνε
(
uν
)− λν+δ

3λν+δ + 2μν+δ

(
3λν + 2μν

)
divuνI

)

=
(

λν

2μν+δ
− λν+δ(3λν + 2μν)

2μν+δ(3λν+δ + 2μν+δ)

)

divuνI+ μν

μν+δ
ε
(
uν
)
.

We note that

3λν + 2μν = 1

1 − 2ν
,

λν+δ

2μν+δ
= ν + δ

1 − 2ν − 2δ
,

λν

2μν+δ
− λν+δ(3λν + 2μν)

2μν+δ(3λν+δ + 2μν+δ)
= − δ

(1 + ν)(1 − 2ν)
=: − δ

ν
λν,

and

ε
(
uν
)− (Cν+δ

)−1
Cνε

(
uν
)= δ

λν

ν
divuνI+ μν+δ −μδ

μν+δ
ε
(
uν
)
. (5.76)

By (5.75) and (5.76), we obtain

M
ν+δ
EL

(
uν, τ

)

= nδ
λν

ν

(
λν+δ − λν

)∥∥divuν
∥
∥2 + (λν+δ − λν)(μν+δ −μν)

μν+δ

∥
∥divuν

∥
∥2

+ 2δ
λν

ν

(
μν+δ −μν

)∥
∥divuν

∥
∥2 + 2

(μν+δ −μν)2

μν+δ

∥
∥ε
(
uν
)∥
∥2
.

Since the second and third terms are negative, we find that

M
ν+δ
EL

(
uν, τ

) ≤ nδ
λν

ν

(
λν+δ − λν

)∥∥divuν
∥
∥2 + 2

(μν+δ −μν)2

μν+δ

∥
∥ε
(
uν
)∥∥2

≤ δ2
(
λν

ν
nκ⊕

∥
∥divuν

∥
∥2 + m2�

2μν+δ

∥
∥ε
(
uν
)∥
∥2
)

,

which, together with (5.74), leads to the statement. �

Theorem 5.6 Let ug ∈ V be a function with minimal divergence norm, i.e.,

‖divug‖ = min
u∈V ‖divu‖. (5.77)

Then, for 0 ≤ δ ≤ min{ 1
2cν1

κ�, δ̄}, the following estimate is valid:

"ν
δE ≥ 1

2
κ�‖divug‖2 − cν3

∥
∥ε(ug)

∥
∥2
, (5.78)
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where

cν3 := 1

(1 + ν)2
+ m2�(5 + 2ν)

4

νκ�
2λνnκ⊕

= 1

(1 + ν)2

(

1 + (1 + 2ν2)(1 − 2ν)

2n(2 + ν + 2ν2)

)

. (5.79)

Proof By applying the estimate (5.73) and Lemma 5.1 to (5.72), we have

"ν
δE =

∫

Ω

("ν
δC
)
εν : εν dx − 1

δ

∥
∥
∣
∣εν+δ − εν

∥
∥
∣
∣2
Cν+δ

≥ (
κ� − δcν1

)∥
∥divuν

∥
∥2 −

(
1

(1 + ν)2
+ cν2δ

)
∥
∥ε
(
uν
)∥
∥2
.

Let δ ≤ κ�
2cν1

. Then, we obtain

"ν
δE ≥ 1

2
κ�
∥
∥divuν

∥
∥2 −

(
1

(1 + ν)2
+ m2�(5 + 2ν)

4

νκ�
2λνnκ⊕

)
∥
∥ε
(
uν
)∥
∥2

= 1

2
κ�
∥
∥divuν

∥
∥2 − cν3

∥
∥ε
(
uν
)∥∥2

. (5.80)

Since ug satisfies (5.77) and uν minimizes the energy functional Eν , we find that
∫

Ω

(
λν
∣
∣div(ug)

∣
∣2 + 2μν

∣
∣ε
(
uν
)∣
∣2
)

dx

≤ Eν
(
uν
)≤ Eν(ug)=

∫

Ω

(
λν
∣
∣div(ug)

∣
∣2 + 2μν

∣
∣ε(ug)

∣
∣2
)

dx (5.81)

and, therefore,
∥
∥ε
(
uν
)∥∥≤ ∥∥ε(ug)

∥
∥. (5.82)

By applying (5.77) and (5.82), we estimate the right-hand side of (5.80) from below
and arrive at the statement. �

Corollary 5.2 Since the right-hand side does not depend on δ, we can pass to the
limit as δ → 0 and obtain

∂Eν
∂ν

≥ 1

2
κ�‖divug‖2 − cν3

∥
∥ε(ug)

∥
∥2
. (5.83)

Theorem 5.6 shows the sensitivity of the internal energy associated with the ex-
act solution uν with respect to small variations of Poisson’s ratio ν. If it is large,
then ν must be known with a high accuracy; otherwise a quantitative analysis of
the problem is not motivated. For this reason the estimate (5.83) deserves special
discussion. First of all, we note that the right-hand side of (5.83) is easy to compute.
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The asymptotic properties of the estimate depend crucially on the first term.
A distinctive feature of the set V (of admissible displacements) is whether the
boundary conditions are “compatible” (in the sense that there exists a divergence-
free function ug that satisfies these conditions) or not.

If divug = 0, then (5.81) shows that

Eν
(
uν
)≤ Eν(ug)= 1

1 + ν

∥
∥ε(ug)

∥
∥2
,

which means that for all ν ∈ [0, 1
2 ) such quantities as Eν and ‖ε(uν)‖ are uniformly

bounded. Moreover,
∫

Ω

∣
∣div

(
uν
)∣∣2 dx ≤

∫

Ω

(

2
μν

λν

∣
∣ε(ug)

∣
∣2
)

dx → 0 as ν → 1

2
.

In this case, small variations of Poisson’s ratio do not lead to large changes in the
solution.

Let us consider another case. Assume that the boundary conditions are non-
compatible, i.e.,

‖divug‖> 0. (5.84)

Then, even the normalized energy increment blows up.

Corollary 5.3 Under the assumptions of Theorem 5.6,

"ν
δEν

Eν ≥ C(ν,ug) and
1

Eν
∂Eν
∂ν

≥ C(ν,ug),

where

C(ν,ug) := (1 + ν)
cν4‖divug‖2 − cν3(1 − 2ν)‖ε(ug)‖2

ν‖divug‖2 + (1 − 2ν)‖ε(ug)‖2

and

cν4 := 2(1 + 2ν2)

(5 + 2ν)(1 + ν)(1 − 2ν)
. (5.85)

Proof By (5.78) and (5.81) we see that the normalized energy increment is subject
to the relation

"ν
δEν

Eν ≥ (1/2)κ�‖divug‖2 − cν3‖ε(ug)‖2

λν‖div(ug)‖2 + 2μν‖ε(ug)‖2

= (1 + ν)
cν4‖divug‖2 − cν3(1 − 2ν)‖ε(ug)‖2

ν‖divug‖2 + (1 − 2ν)‖ε(ug)‖2
. (5.86)

Since the right-hand side of (5.86) does not depend on δ, it also follows that the
logarithmic derivative of the energy is bounded by the same constant. �



5.8 Linear Elasticity with Incompletely Known Poisson Ratio 197

Fig. 5.11 Domain of the
axisymmetric problem

C(ν,ug) is the sensitivity constant, which depends only on the geometry, ν, and
the “minimal divergence function” ug . If ‖divug‖ > 0, then C(ν,ug) blows up as
ν tends to 1/2. Thus, the value of the energy increment normalized by the value of
Eν (and the logarithmic derivative) also becomes highly sensitive to small changes
in the Poisson’s ratio.

Remark 5.2 It is worth noting that the estimate (5.86) and the constant C(ν,ug)
can be used to estimate the effects caused by variations of ν around a given value.
Indeed,

Eν+δ − Eν
Eν ≥ δC(ν,ug). (5.87)

From (5.87) it follows that if γ denotes the upper limit of acceptable uncertainty
in terms of the energy, then the value of the Poisson’s ratio must be known with
an accuracy of γC−1(ν,ug). Obviously, in the case of a blow-up situation, this
condition may be impossible to satisfy in practice.

5.8.2 Example: Axisymmetric Model

In this section, we study exact solutions of an axisymmetric problem and use them
to demonstrate effects caused by an incomplete knowledge of Poisson’s ratio. The
geometry of the problem is presented in Fig. 5.11. Let (r, θ) be polar coordinates;
then

Ω := {a < r < b,0 < θ < 2π}.
In polar coordinates,

εr = dur

dr
, εθ = ur

r
, εrθ = r

2

d

dr

(
uθ

r

)

, (5.88)

and the constitutive relations read as follows:
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σr = 2μεr + λ(εr + εθ ), (5.89)

σθ = 2μεθ + λ(εr + εθ ), (5.90)

σrθ = 2μεrθ . (5.91)

We assume that the volume and surface loads are zero. In this case, the equations of
equilibrium have the form

dσr

dr
+ σr − σθ

r
= 0, (5.92)

dσrθ

dr
+ 2

σrθ

r
= 0, (5.93)

and

E :=
∫

Ω

σ : ε dx =
∫

Ω

(
λ tr2(ε)+ 2μ|ε|2)dx.

First note that

σr − σθ = 2μ(εr − εθ )= 2μ

(
dur

dr
− ur

r

)

= 2μr
d

dr

(
ur

r

)

.

Substituting this relation into (5.92), we obtain

σr + 2μ
ur

r
= γ1, (5.94)

where γ1 is constant. In view of (5.89), we arrive at the differential equation

d

dr
(rur)= r

γ1

λ+ 2μ
,

which implies that

ur = γ1r + γ2

r
. (5.95)

From (5.93) we find that σrθ = γ3
r2 and uθ = γ3 + γ4

r
. Next,

σr = 2(μ+ λ)γ1 − 2μ
γ2

r2
and σθ = 2(μ+ λ)γ1 + 2μ

γ2

r2
.

The energy is

E = 4π

(

(λ+μ)
(
b2 − a2)γ 2

1 +μ

(
1

a2
− 1

b2

)

γ 2
2

)

.

5.8.2.1 Compatibility of the Set V

As we have discussed earlier, the boundary conditions distinguish whether the set of
admissible functions V has (is “compatible”) or does not have (is “non-compatible”)
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any divergence-free members. The divergence-free functions for the model problem
can be directly computed. They all have the form

w(r) := c

r
,

where c is constant.
For the Dirichlet–Neumann boundary conditions,

ur(a)= ga and σr(b)= Fb,

the divergence-free minimizer

uDN
g = gaa

r

always belongs to the set V . The exact solution of the problem is

uDN = γDN
1 r + γDN

2

r
,

where

γDN
1 = ab2(2ga(λ+μ)− bFb)

2(b2(λ+μ)+ a2μ)
and γDN

2 = Fbb
2 + 2gaaμ

2(b2(λ+μ)+ a2μ)
.

For the Dirichlet–Dirichlet conditions,

ur(a)= ga and ur(b)= gb,

the divergence minimizer ug coincides with the solution of the problem and is

uDD = uDD
g = γDD

1 r + γDD
2

r
,

where

γDD
1 = gbb− gaa

b2 − a2
and γDD

2 = ab(gab− gba)

b2 − a2
.

The function ug is divergence-free only if gaa = gbb. This condition defines
whether the Dirichlet–Dirichlet conditions are “compatible” or not.

Next, we observe the blow-up that occurs with “non-compatible” boundary con-
ditions. We study the behavior of the energy quotient at the incompressibility limit.
For our model problem, we can compute the derivative of energy with respect to the
Poisson’s ratio,

∂Eν
∂ν

= 4π

{
(
b2 − a2)

(
∂λν

∂ν
+ μν

∂ν

)

γ 2
1 +

(
1

a2
− 1

b2

)
∂μν

∂ν
γ 2

2

}

= 2π(b2 − a2)

(1 + ν)2

{
1 + 4ν

(1 − 2ν)2
γ 2

1 − 1

a2b2
γ 2

2

}

.
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Fig. 5.12 Exact values of
1
E
∂Eν

∂ν
and the lower estimate

of Corollary 5.3 for the model
problem with pure Dirichlet
conditions and parameter
values a = 0.2, b = 1.0,
ga = 0.01, and gb = −0.03

Moreover, for the logarithmic derivative we have

1

Eν
∂Eν
∂ν

= 1

(1 + ν)(1 − 2ν)

(1 + 4ν)a2b2γ 2
1 − (1 − 2ν)2γ 2

2

a2b2γ 2
1 + (1 − 2ν)γ 2

2

.

It is easy to see that | ∂Eν

∂ν
| and | 1

Eν
∂Eν

∂ν
| tend to ∞ if γ 2

1 > 0, i.e., the boundary condi-
tions are non-compatible. If the boundary conditions are compatible, i.e., gaa = gbb

and γ1 = 0, then
∣
∣
∣
∣

1

Eν
∂Eν
∂ν

∣
∣
∣
∣=

1

1 + ν
.

Moreover, since ug is known for the applied boundary conditions, we can com-
pute the sensitivity constant in Corollary 5.3,

C(ν,ug)= (1 + ν)
a2b2(2cν4 − (1 − 2ν)cν3)γ1 − cν3(1 − 2ν)γ2

a2b2γ 2
1 + (1 − 2ν)γ2

,

where cν3 and cν4 are defined by (5.79) and (5.85). For pure Dirichlet conditions, the
blow-up of the exact logarithmic derivative and the sensitivity constant can be ob-
served from Fig. 5.12. For Dirichlet–Neumann conditions, a similar plot provides
an exact quotient, which is almost zero, while the lower bound crudely underesti-
mates it.

5.8.2.2 Numerically Constructed Solution Set

Here we demonstrate how the sensitivity of the solution depends on the compati-
bility of the boundary conditions. We do not restrict this study only to demonstrate
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Fig. 5.13 Illustration of the
numerical experiment

the blow-up phenomenon. In particular, it is interesting to observe how far from the
incompressibility limit the sensitivity of the solution renders any quantitative results
too inaccurate for engineering purposes.

In reality, ν is an unknown function defined on (a, b) with values in [ν◦ − δ, ν◦ +
δ] ⊂ (0, 1

2 ). Thus, in our case the set of admissible parameters D (cf. Sect. 5.2) has
the following simple form:

ν ∈D := {ν : (a, b)→ [ν◦ − δ, ν◦ + δ]}.
Our interest is to study the set of solutions S(D) associated with all members of D.
Obviously it is impossible to derive analytical solutions for arbitrary ν ∈ D. In order
to obtain a reasonable representation of S(D), we consider the set of piecewise
constant functions Dh ⊂ D. For ν ∈ Dh, we can compute exact solutions and obtain
S(Dh). The sets are depicted in Fig. 5.13. A procedure for computing S(Dh) is
described below.

Consider the case where the material parameters on the entire domain (a, b) are
piecewise constants. Let the interval (a, b) be divided into N non-intersecting subin-
tervals Ik := (rk, rk+1), where rk (k = 1, . . . ,N +1) are grid points. We assume that
the Poisson’s ratio νk is constant on each interval Ik . Moreover, we allow only M

different constants from the interval [ν◦ − δ, ν◦ + δ]. Consequently, Lamé’s param-
eters λk and μk are piecewise constants as well.

Without body forces, on each interval Ik the displacement and stresses have the
form

ur = γ k
1 r + γ k

2

r
, σr = 2(λk +μk)γ

k
1 − 2μk

γ k
2

r2
.

The solution must satisfy continuity conditions at the junctions of each interval.
Thus, for every rk (k = 2, . . . ,N + 1),

γ k−1
1 rk + γ k−1

2

rk
= γ k

1 rk + γ k
2

rk
, (5.96)

2(λk−1 +μk−1)γ
k−1
1 − 2μk−1

γ k−1
2

r2
k

= 2(λk +μk)γ
k
1 − 2μk

γ k
2

r2
k

. (5.97)

The boundary conditions and continuity conditions (5.96) and (5.97) together form
a set of linear equations, from which the coefficients γ k

1 and γ k
2 can be found.
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Fig. 5.14 Domain with
intervals and a piecewise
constant values of ν

The experiments are performed as follows: we compute a solution associated
with all combinations generated by a piecewise continuous ν ∈ Dh. A particular
member of Dh is depicted in Fig. 5.14. Each of these solutions (displacement and
stresses denoted by subscript pert), are then compared with the non-perturbed solu-
tion. We examine the relative perturbations of various solution-dependent quantities
defined as follows:

euL2
:= max

upert∈S(Dh)

‖ur0 − upert‖L2

‖ur0‖L2

, euL∞ := max
upert∈S(Dh)

‖ur0 − upert‖L∞
‖ur0‖L∞

,

eσL2
:= max

upert∈S(Dh)

‖σr0 − σpert‖L2

‖σr0‖L2

, eσL∞ := max
upert∈S(Dh)

‖σr0 − σpert‖L∞
‖σr0‖L∞

.

and similarly for stress. Moreover, we compute relative perturbations in the energy:

eJ := max
upert∈S(Dh)

|J (upert)− J (u◦)|
J (u◦)

.

These quantities are computed analytically on each interval. In the experiments
discussed below, we set (a, b) := (0.4,1.0), Young’s modulus was set to one, the
Dirichlet conditions were ga = 0.01 and gb = 0.02, and the Neumann condition
was Fr = 0.2. The perturbation parameters were N = 10 and M = 2. We com-
pare the behavior of predefined quantities of interest in the case of non-compatible
(Dirichlet) and compatible (Neumann) boundary conditions.

Figure 5.15 depicts results of experiments for ν◦ = 0.33 and ν◦ = 0.45. Indeter-
minacy is restricted to variations up to 5 %, i.e., δ

ν◦ ≤ 0.05. For each perturbation
level, we compute the approximated solution set and compute the quantities of in-
terest. In the first case (ν◦ = 0.33), the difference between the results obtained for
non-compatible and compatible boundary conditions is not very drastic. The depen-
dence of the radius of the solution set measured by the L2-norm of displacements
or stresses is almost linear. However, the rate of growth is somewhat bigger in the
non-compatible case.

In the second case (ν◦ = 0.45), the non-compatible and compatible boundary
conditions generate quite different results. In this case, only displacements measured
in the L2-norm are almost unaffected by the increase of ν◦. All other quantities
contain large uncertainty measured in dozens of percents as ν is perturbed. However,
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Fig. 5.15 Relative
perturbations of various
quantities with respect to the
relative perturbation in
Poisson’s ratio for ν◦ = 0.33
(top) and ν◦ = 0.45 (bottom)

in the case of Neumann boundary conditions these quantities behave as in the case
ν◦ = 0.33.

We note that in every test example the accuracy required for computing point-
wise values (L∞-norm) is considerably higher than the accuracy required to com-
pute the integral quantities. From these plots, one can depict the accuracy required
for the Poisson’s ratio with respect to the desired accuracy and relevant quantity.

These and other experiments lead us to the following conclusion:
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Fig. 5.16 Relative
perturbations of various
quantities for δ = 0.01

High sensitivity of solutions with respect to small variations of Poisson’s ra-
tio (especially in the case of non-compatible boundary conditions) should
be taken into consideration in engineering computations. This phenomenon
may essentially decrease the reliability of numerical solutions even before
approaching to the incompressibility limit.

This fact is demonstrated in Fig. 5.16, where we present the behavior of relative
perturbations with different ν◦ and fixed δ = 0.01 for both boundary conditions.
The figure is plotted up to ν◦ = 0.48, where the errors in all quantities of interest
surpass any acceptable engineering accuracy. Another interesting observation is that
the point-wise values of stresses (and displacements) may be very inaccurate even
for ν◦ = 0.3. Of course, the studied model example is rather elementary, but it indi-
cates that further research including more test examples is required. Certainly, one
may count the case of fully non-compatible boundary conditions as a special one.
But since our experiments show significant effect due to the incompletely known
Poisson ratio way before incompressibility limit is reached, it is relevant to take into
account these effects also if the boundary conditions are “almost non-compatible”.
For example, it is natural to await strong sensitivity of solutions with respect to ν if
the Neumann (or Robin) conditions are set on a small part of the boundary and non-
homogeneous Dirichlet conditions are set on the remainder part of the boundary.



Chapter 6
Overview of Other Results and Open Problems

Abstract This chapter presents an overview of results related to error control meth-
ods, which were not considered in previous chapters. In the first part, we discuss
possible extensions of the theory exposed in Chaps. 3 and 4 to nonconforming ap-
proximations and certain classes of nonlinear problems. Also, we shortly discuss
some results related to explicit evaluation of modeling errors. The remaining part of
the chapter is devoted to a posteriori estimates of errors in iteration methods. Cer-
tainly, the overview is not complete. A posteriori error estimation methods are far
from having been fully explored and this subject contains many unsolved problems
and open questions, some of which we formulate in the last section.

6.1 Error Estimates for Approximations Violating Conformity

Nonconforming approximations (see Appendix B) are widely used in modern nu-
merical analysis. This fact is motivated by the following reasons.

• If a problem has a complicated geometry, then it may be difficult to create meshes
(and the corresponding sets of trial functions) that exactly satisfy the prescribed
boundary conditions.

• In conforming methods, the meshes must satisfy additional conditions (e.g., the
so-called “hanging nodes” are forbidden). This fact may seriously hamper mesh
generation procedures.

• Very often nonconforming methods offer more efficient approximations of exact
solutions.

The reader will find many results related to a posteriori error control of noncon-
forming approximations in Sects. B.4.6 and B.4.7. Here, we discuss how numeri-
cal results computed by nonconforming approximations can be verified within the
framework of the above-discussed a posteriori estimates if a suitable post-processing
procedure P (projecting approximations to the energy space) is known. If we use a
posteriori estimates of the functional type (which do not exploit special properties of
approximations), then the corresponding error can be evaluated by the same method.
Indeed, let v̂ ∈ V̂ be a nonconforming approximation of the solution u ∈ V0 + u0 to
Δu+ f = 0 (we recall that V0 contains functions vanishing on ΓN and u0 defines
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Computational Methods in Applied Sciences 32, DOI 10.1007/978-94-007-7581-7_6,
© Springer Science+Business Media Dordrecht 2014

205

http://dx.doi.org/10.1007/978-94-007-7581-7_6


206 6 Overview of Other Results and Open Problems

the boundary condition on Γ ). For any v ∈ V0 + u0, we have the triangle inequality
∥
∥[∇(u− v̂)

]∥∥≤ ∥∥[∇(u− v)
]∥∥+ ∥∥[∇ (̂v − v)

]∥∥, ∀v ∈ V0 + u0. (6.1)

Here ‖[·]‖ is the “broken norm” defined on subsets of Ω where the conformity con-
dition holds (e.g., ‖[∇w]‖2 =∑

i ‖∇w‖2
Ωi

, where Ωi are non-overlapping subsets
of Ω). Since u− v ∈ V0, the broken norm of u− v coincides with the usual norm
‖∇(u− v)‖, for which we can apply the error majorant M. Then,

∥
∥
[∇(u− v̂)

]∥
∥≤ inf

v∈V0+u0
y∈H(Ω,div)

{
M(v, y)+ ∥∥[∇ (̂v − v)

]∥
∥
}
. (6.2)

If v = u and y = ∇u then M(v, y) = 0. Thus, the estimate has no gap. In practice,
we set v = ṽ := PV0+u0 (̂v), and replace (6.2) by

∥
∥
[∇(u− v̂)

]∥
∥≤ M(̃v, y)+ ∥∥[∇ (̂v − v)

]∥
∥, (6.3)

where y ∈H(Ω,div) should be defined by reconstruction of the numerical flux (or
by minimization of the right-hand side of (6.2)).

Lower bounds of the approximation errors are derived analogously. By the evi-
dent inequality

∥
∥[∇(u− v̂)

]∥∥≥ ∥∥[∇(u− v)
]∥∥− ∥∥[∇ (̂v − v)

]∥∥, ∀v ∈ V0 + u0, (6.4)

we find that
∥
∥
[∇(u− v̂)

]∥
∥≥ sup

v∈V0+u0
w∈V0

{
M(v,w)− ∥∥[∇ (̂v − v)

]∥
∥
}

(6.5)

and, therefore,
∥
∥
[∇(u− v̂)

]∥
∥≥ M(̃v,w)− ∥∥[∇ (̂v − v)

]∥
∥. (6.6)

In [RSS03], this way was used in order to obtain error estimates for approxima-
tions violating the main (Dirichlét) boundary conditions. A consequent discussion
and numerical examples for DG approximations can be found in [LRT09, TR09].
Error estimates for the finite volume method were derived and numerically tested
in [CDNR09]. Another method based on Helmgholtz decomposition is presented in
[Rep08, RT11].

6.2 Linear Elliptic Equations

At present, guaranteed and computable bounds are known for a much wider set
of problems than those considered in Chaps. 3 and 4. Below, we shortly overview
some of these results. Boundary-value problems related to high order differential
operators are interesting from the mathematical viewpoint and arise in numerous
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applications. Numerical analysis of these problems is often more complicated than
of problems generated by the harmonic operator and other differential operators of
the second order. For this class of problems, residual-based error indicators were
derived in several publications (see, e.g., [CDP97] and the literature cited in this
paper). Functional type error majorants have been first derived by the variational
technique in [NR01] for the following problem: Find a function u= u(x) such that

∇ · ∇ · (B∇∇u) = f in Ω,

u= ∂u

∂ν
= 0 on ∂Ω,

where B ∈ L(M2
s ,M2

s ) is a positive operator having certain symmetry properties.
By a non-variational technique, the same result was obtained in [Rep08]. The bi-
harmonic equation ΔΔu = f is a special case of this problem (estimates for this
problem have been studied in [Fro04b]). The corresponding error estimates are con-
sidered in Sect. 4.1.4 (see (4.48)). In [BMR08], error majorants have been derived
for a class of variational inequalities associated with differential operators of the 4th
order.

Elliptic problems in exterior domains form another practically important class
of problems. Here, guaranteed and computable bounds of deviations from the exact
solutions can be derived by transformations of the corresponding integral identity.
However, on this way some specific features of problems in exterior domains must
be taken into account. In this case, the estimates are derived in terms of weighted
Sobolev spaces (see [PR09]).

6.3 Time-Dependent Problems

Consider the classical initial-boundary value problem for the heat equation: find
u(x, t) such that

ut −Δu = f (x, t) ∈QT , (6.7)

u(x,0) = φ, x ∈Ω, (6.8)

u(x, t) = 0, (x, t) ∈ ST , (6.9)

where QT := Ω × (0, T ) is the space-time cylinder and ST := Γ × [0, T ]. This
problem is one of the simplest evolutionary problems which is often used to model
various diffusion type processes (e.g., heat transfer). A posteriori error estimates for
this and other parabolic type problems were obtained by many authors within the
framework of the residual method (e.g., see [SV08, SW10, Ver98, Ver03, Ver05])
or dual-weighted residual method (see [FNP09, Ran02, Ran00, RV10] and the ref-
erences therein).

The method is based on transformations of integral identities which was applied
to the problem (6.7)–(6.9) in [Rep02a], where two forms of the error majorant were
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derived. The simplest one has the following form:

‖|w‖|2(1,2−δ) ≤
∫

Ω

∣
∣v(x,0)− φ(x)

∣
∣2 dx

+ 1

δ

∫

QT

(

(1 + β)|y − ∇v|2

+C2
FΩ

(

1 + 1

β

)

|f − vt + divy|2
)

dx dt, (6.10)

where

‖|w‖|2(κ,ε) := κ
∥
∥w(·, T )∥∥2

Ω
+ ε‖∇w‖2

QT
, μ, ε > 0.

Here y ∈ Ydiv(QT ) = {y ∈ L2(QT ,R
d),divy ∈ L2(Ω) for a.e., t ∈ [0, T ]} and

β is a positive bounded function of t . A modification of this estimate valid for a
wider class of problems was tested in [GR05]. In [NR10b], this technique was ap-
plied to the evolutionary Stokes problem. Error majorants for the wave equation
were derived in [Rep09a] (the method relies on analysis of the corresponding inte-
gral identity and Gronwall inequalities). By the same method, error majorants were
derived for a class of hyperbolic Maxwell equations (see [PRR11]).

6.4 Optimal Control and Inverse Problems

Estimates of deviations from exact solutions of partial differential equations open
new ways of error estimation for some classes of optimal control problems.

Let ψ ∈ L∞(Ω), σd ∈ L2(Ω,Rd), f ∈ L2(Ω) be given functions, and

K := {v ∈ L2(Ω) | v ≤ψ a.e. in Ω
}
.

The goal is to find a control function u ∈ K and a state function ηu defined by the
boundary-value problem

−Δηv = v + f in Ω, (6.11)

v = 0 on Γ (6.12)

such that the cost functional

J1(η, v) := 1

2

∥
∥∇η− σd

∥
∥2 + a

2

∥
∥v − ud

∥
∥2
, a > 0,

attains its minimal value J (ηu,u).
Another version of the problem is generated by the functional

J2(η, v) := 1

2

∥
∥ηv − ηd

∥
∥2 + a

2

∥
∥v − ud

∥
∥2
,

where ηd ∈ L2(Ω).
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Adaptive methods and a posteriori error indicators were intensively studied in
the last decade mainly in the context of residual type and goal-oriented approaches
(see, e.g., [BKR00, BR01, GH08, HH08, HHIK08, HK10, VW08] and numerous
references cited in these publications). In [GHR07, Rep08], it was shown that with
the help of error majorants these optimal control problems can be transformed into
new forms, in which the differential equations are taken into account in a weak sense
(as penalties). In this way, fully computable, guaranteed, and two-sided estimates for
the cost functional were deduced. Also, in these publications the convergence of the
respective minimizing sequence to the optimal solution was proved and two-sided
error bounds in terms of the combined (state-control) norm

∣
∣[u− v]∣∣2 := 1

2

∥
∥∇(ηu − ηv)

∥
∥2 + a

2
‖u− v‖2

were obtained.
Finally, we note that in [RR12] it was shown that minimization of error majo-

rants with special conditions imposed on the variables lead to solutions of inverse
problems associated with the corresponding differential equation.

6.5 Nonlinear Boundary Value Problems

A unified theory of a posteriori error estimation exists for the class of variational
problems

inf
v∈V J (v,Λv), J (v) :=G(Λv)+ F(v), ∀v ∈ V, (6.13)

where G and F are convex continuous functionals, V is a reflexive Banach space
and Λ is a linear continuous operator which maps V to another reflexive Banach
space Y . In the special case

G(y)= 1

2
(Ay, y), F (v)= 〈�, v〉,

the problem (6.13) leads to a quadratic type functional. We assume that the operator
Λ is coercive on V and J is coercive on V , i.e.,

‖Λw‖Y ≥ c‖w‖V , ∀v ∈ V, (6.14)

J (w,Λw)→ +∞ as ‖w‖V → +∞. (6.15)

In this case, the problem (6.13) has a solution u.
The operator Λ∗ : V ∗ → Y ∗ satisfying the relation

〈〈
y∗,Λw

〉〉= 〈Λ∗y,w
〉
, ∀w ∈ V (6.16)

is conjugate to Λ. Here, Y ∗ is the space topologically dual to Y with the respective
duality pairing 〈〈y∗, y〉〉 and the pairing of v ∈ V and v∗ ∈ V ∗ is denoted by 〈v∗, v〉.
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Let G∗ denote the Fenchel conjugate of G (cf. Appendix A), which is defined by
the relation

G∗(y∗)= sup
y∈Y
(〈〈
y∗, y

〉〉−G(y)
)
.

If the functionals G and G∗ are uniformly convex with the forcing functionals Φδ

and Φ∗
δ∗ , respectively (see Sect. A.4), then the following general estimate holds (see

[NR04, Rep97a, Rep99a, Rep00b, RX97]):

Φδ

(
Λ(v − u)

2

)

+Φ∗
δ∗

(
y∗ − p∗

2

)

≤ 1

2

(
DG

(
Λv,y∗)+DF

(
v,Λ∗y∗)), (6.17)

where

DF

(
v,Λ∗y∗) := F(v)+ F ∗(−Λ∗y∗)+ 〈Λ∗y∗, v

〉
(6.18)

and

DG

(
Λv,y∗) :=G(Λv)+G∗(y∗)− 〈〈y∗, y

〉〉
(6.19)

are the so called compound functionals DF and DG. These functionals are nonneg-
ative. Moreover, the relation

F(v)+ F ∗(−Λ∗y∗)+ 〈Λ∗y∗, v
〉= 0 (6.20)

is equivalent to

−Λ∗y∗ ∈ ∂F (v) (6.21)

and

G(Λv)+G∗(y∗)− 〈〈y∗,Λv
〉〉= 0 (6.22)

is equivalent to

y∗ ∈ ∂G(Λv). (6.23)

We recall that (6.21) and (6.23) are the duality relations, which hold if and only
if v and y∗ coincide with u and p∗, respectively. Therefore, the right-hand side
of (6.17) vanishes if and only if v and y∗ coincide with the corresponding exact
solutions. A systematic exposition of this approach to a posteriori error estimation
based upon convex duality method can be found in [NR04, Rep08].

6.5.1 Variational Inequalities

An overview of basic facts related to variational inequalities is contained in
Appendix B. We follow the notation used there and introduce a bilinear form
a : V × V →R, and a convex continuous functional j : V → R defined on a Ba-
nach space V .
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Consider the following problem (variational inequality): Find u ∈K such that

a(u,w − u)+ j (w)− j (u)≥ 〈�,w − u〉
for any w ∈K , where K is a convex closed subset of V and � ∈ V ∗. Let

a(u,w)=
∫

Ω

A∇u · ∇w dx, j = 0, 〈�,w〉 :=
∫

Ω

fw dx, f ∈ L2(Ω),

and

K =Kφψ := {v ∈ V0 := ◦
H 1(Ω) | φ(x)≤ v(x)≤ψ(x) a.e. in Ω

}
,

where φ,ψ ∈H 2(Ω) are two given functions. In this case, we arrive at the classical
obstacle problem, which is a typical representative of one class of variational in-
equalities (cf. Sect. B.3.3). This problem has a variational setting: Find u ∈ V0 + u0
such that

J (u)= inf
w∈V0+u0

J (w), J (w)= 1

2
a(w,w)−

∫

Ω

fw dx.

The generalized solution of the problem satisfies the variational inequality
∫

Ω

A∇u · ∇(w − u)dx ≥
∫

Ω

f (w − u)dx, ∀w ∈Kφψ, (6.24)

and generates the following three sets:

Ωu⊕ := {
x ∈Ω | u(x)=ψ(x)

}
(upper coincidence set),

Ωu� := {
x ∈Ω | u(x)= φ(x)

}
(lower coincidence set),

Ωu
0 := {

x ∈Ω | φ(x) < u(x) < ψ(x)
}
.

Here Ωu
0 is an open set, where a solution satisfies the differential equation. The

configuration of Ωu
0 is not known a priori, so that this problem contains unknown

free boundaries. Moreover, u has a limited regularity u ∈ H 2(Ω) even for smooth
data (in the best case u ∈W 2,∞) and unknown free boundaries.

A priori estimates of approximation errors generated by low order finite element
approximations of obstacle problems were derived in [Fal74]. Various residual type
estimates and error indicators can be found in [Bra05, CN00, HK94, Kor96], and
estimates based on a version of the hypercircle estimate and equilibration are dis-
cussed in [BHS08]. For a systematic overview of numerical methods and error esti-
mates for contact type problems, we refer the reader to [Woh11].

Guaranteed error majorants can be derived by the two methods, which we have
earlier discussed in the context of linear problems, namely, by a variational method
based on specially constructed perturbed problems and by nonvariational method
based on direct analysis of (6.24).
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The variational method uses a generalized version of the Mikhlin’s estimate

‖|v − u‖| ≤ J (v)− infP ≤ J (v)− J ∗(τ ∗), (6.25)

where J ∗ : Y ∗ → R is the functional of the corresponding dual problem. It is worth
noting that unlike the linear case, (6.25) holds as an inequality. The main difficulty
in the derivation of a posteriori estimates using (6.25) is that J ∗ does not have an
explicit form. To overcome it, we consider the so-called perturbed functional

Jλ(v) := J (v)−
∫

Ω

λ · (v −Φ)dx,

where

Φ = (φ,−ψ),

v = (v,−v),

λ ∈ L⊕ := {(λ1, λ2) ‖ λi ∈ L2(Ω),λi(x)≥ 0 a.e. in Ω
}
.

It is easy to see that

sup
λ∈L⊕

Jλ(v)= J (v)− inf
λ∈L⊕

∫

Ω

λ · (v −Φ)dx =
{
J (v) if v ∈Kφ,ψ,

+∞ if v /∈Kφ,ψ .

Thus, we arrive at the following perturbed Problem Pλ: Find uλ ∈ V0 such that

Jλ(uλ)= inf
v∈V0

Jλ(v) := infPλ. (6.26)

Since

inf
v∈V0

Jλ(v)≤ inf
v∈Kφ,ψ

Jλ(v)= inf
v∈Kφ,ψ

J (v)= infP,

we see that infPλ ≤ infP for any λ ∈ L⊕ and, therefore,

1

2
‖|v − u‖|2 ≤ J (v)− infPλ. (6.27)

To estimate the right-hand side of (6.27), we use the problem dual to Pλ. For a given
λ, the problem Pλ is a quadratic problem so that the corresponding dual functional
is easy to construct. As a result, we can deduce an upper bound, which is valid for
any λ ∈ L⊕. A special choice of λ leads to the following estimate (see the details in
[BR00, NR04, Rep00a]):

∥
∥
∣
∣∇(u− v)

∥
∥
∣
∣ ≤

∫

Ω

(
A∇v · ∇v +A−1y · y − 2y · ∇v

)
dx

+CFΩ

∥
∥[f + divy]v

∥
∥, (6.28)
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where CFΩ is the constant in (A.27) for functions vanishing on Γ (or an upper
bound of this constant) and

[f + divy]v :=

⎧
⎪⎨

⎪⎩

(f + divy)� for a.e. x ∈Ωv⊕,
f + divy for a.e. x ∈Ωv

0 ,

(f + divy)⊕ for a.e. x ∈Ωv�.

We outline that this estimate does not require an information on the structure of Ωu⊕
and Ωu� and instead operates with the sets Ωv⊕ and Ωv� (which are known).

It is easy to see that the right-hand side of (6.28) vanishes if and only if v coin-
cides with u. Indeed, assume that it is equal to zero. Then,

y −A∇v = 0,

(f + divy)� = 0 for a.e. x ∈Ωv⊕,

f + divy = 0 for a.e. x ∈Ωv
0 ,

(f + divy)⊕ = 0 for a.e. x ∈Ωv�

and

∫

Ω

A∇v · ∇(v −w)dx =
∫

Ω

y · ∇(v −w)dx

=
∫

Ω

(divy + f )(w − v)dx +
∫

Ω

f (v −w)dx

=
∫

Ω⊕
(f + divy)⊕(w − v)dx

+
∫

Ω�
(f + divy)�(w − v)dx +

∫

Ω

f (v −w)dx

≤
∫

Ω

f (v −w)dx, ∀w ∈Kφψ.

In other words, the majorant vanishes if and only if v = u and y is the exact flux
A∇u.

The estimate (6.28) can also be deduced directly from (6.24) and represented in
the form, where CFΩ is replaced by a collection of Poincare constants associated
with subdomains (cf. Sect. 3.2.6) (see [Rep08, Rep09b]).

In [RV08], the reader will find estimates of this type for variational inequalities
generated by nonlinear boundary conditions and in [BMR08, FR10, FR06, NR04,
Rep09b] for variational inequalities generated by other nonlinear problems.
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6.5.2 Elastoplasticity

Various variational statements motivated by plasticity and nonlinear elasticity are
generated by the energy functional

J (v)=
∫

Ω

g
(
ε(v)

)
dx +

∫

Ω

f v dx +
∫

ΓN

Fv ds, (6.29)

where g = σ(ε(v)) : ε(v) is the internal energy function and f and F are the volume
and surface forces, respectively. Consider the class of models, which are presented
by the relations

divσ + f = 0, in Ω, (6.30)

σ = Φ ′(ε(v)
)
, in Ω, (6.31)

u = u0 on ΓD, (6.32)

σn = F on ΓN, (6.33)

where n is the outward unit normal vector to the boundary ∂Ω , ε is the tensor of
small strains and the media is described by a convex potential Φ . If Φ = Lε : ε, then
the system is a linear elastic problem. Other cases are related to various nonlinear
models. In particular, models in the deformation plasticity theory of isotropic solid
bodies are generated by the constitutive relation

σ =K0 tr(ε)I+ γ
(∣∣εD

(
u(x)

)∣∣)εD
(
u(x)

)
, (6.34)

where

γ (t)=
{

2μ if t ≤ t0 = k∗/
√

2μ,

(2μ− δ)t0t
−1 + δ if t > t0,

k∗ > 0 is the shear stress constant, K0 and μ are positive (elasticity) constants,
and δ > 0 is the hardening parameter. Let f ∈ L2(Ω,Rd), F ∈ L2(Γ2Ω,Rd),
u0 ∈H 1(Ω,Rd), and V0 := {v ∈H 1(Ω,Rd) | v = 0 on ΓD}. The variational prob-
lem associated with (6.34) is to find a displacement vector u ∈ V0 + u0 such that

J (u)= inf
v∈V0+u0

J (v), (6.35)

where

g(ε) :=K0 tr(ε)2 + δ
∣
∣εD

∣
∣2 +

(

1 − δ

2μ

)

φ
(∣
∣εD

∣
∣
)
,

and

φ(t)=
{
μt2 if |t | ≤ t0 = k∗/

√
2μ,

k∗(
√

2t − k∗/2μ) if |t |> t0.
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It is easy to see that the functional (6.35) is a particular case of the functional
J (v) = G(Λv) + F(v) and G is a uniformly convex functional. Thus, the corre-
sponding errors are subject to (6.17). The reader can find a more detailed analysis of
a posteriori error estimates for nonlinear variational problems related to deformation
theory of hardening elasto-plastic materials in [RX96] and [RV09]. For numerical
methods related to the problem, see, e.g., [BMR12, NW03, ST87] and references
therein.

6.5.3 Problems with Power Growth Energy Functionals

Power growth functionals are also representable in the form J (v)=G(Λv)+F(v).
They generate an important class of nonlinear problems. Consider the simplest case,
in which G(y)= 1

α

∫
Ω

|y|α dx and F(v)= ∫
Ω
f v dx. Then, the problem is to mini-

mize the functional

Iα(v) :=
∫

Ω

(
1

α
|∇v|α + f v

)

dx, α > 1,

over the space V = {v ∈ Hα(Ω) | v = 0 on ∂Ω}. The derivation of error estimates
is based upon Clarkson’s inequalities, which guarantee uniform convexity of G(y).
For α ≥ 2, this fact follows from the first Clarkson’s inequality (see [Sob50])

∫

Ω

∣
∣
∣
∣
y1 + y2

2

∣
∣
∣
∣

α

dx +
∫

Ω

∣
∣
∣
∣
y1 − y2

2

∣
∣
∣
∣

α

dx ≤ 1

2

∫

Ω

(|y1|α + |y2|α
)

dx, (6.36)

which is valid for all y1, y2 ∈ Y (thus, in this case, it is convenient to write estimates
in terms of the gradient of the primal variable). In this case, we can use (6.17) with
Φ(z) = 1

α
‖z‖αα,Ω (for any δ). Since F is a linear functional, the term DF (v,Λ

∗y∗)
is finite and it is equal to zero if and only if

y∗ ∈Q∗
f := {y∗ ∈ Lα(Ω),divy∗ + f = 0

}
.

Then, we obtain the estimate

1

α2α

∫

Ω

∣
∣∇(v − u)

∣
∣α dx ≤ 1

2

(
Jα(v)− I ∗

α

(
q∗)), ∀q∗ ∈Q∗

f , (6.37)

For 1 < α ≤ 2, the functional Jα is also uniformly convex. This fact follows from
the second Clarkson’s inequality (see [Sob50])

(∫

Ω

(
y1 + y2

2

)α
dx

)1/(α−1)

+
(∫

Ω

(
y1 − y2

2

)α
dx

)1/(α−1)

≤
(

1

2

∫

Ω

(|y1|α + |y2|α
)

dx

)1/(α−1)

. (6.38)
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However, in this case, the functional Φδ depends on the radius δ of a ball B(0Y , δ)
that contains y1 and y2 (see [MM80]), so that (6.17) holds with the forcing func-
tional Φδ(z) = δ(α−2/α−1)κ‖z‖α/(α−1)

α,Ω (where κ = 1
κ0+1 and κ0 is the integer part

of 1
α−1 ) provided that ∇v lies in the corresponding ball. For the case 1 < α ≤ 2, an

unconditional estimate of the deviation from the exact solution can be obtained for
the dual variable (see [BR07]).

6.6 Modeling Errors

We have already discussed origins of modeling errors in Sect. 1.2. Errors caused
by an incomplete knowledge of data (see Chap. 5) can be viewed as a special and
important class of modeling errors [MR10, MR08].

Modeling errors may be very essential and, therefore, in reliable modeling we
must take them into account. In particular, modeling errors establish a limit
beyond which decreasing of approximation errors is senseless.

In contrast to approximation errors (which were the focus of numerous studies in
the last 40–50 years), the amount of publications related to modeling errors is not
that large. We do not aim to present an overview of the results and mention just
several publications, which give an insight into recent advances and provide a link
to other papers. In [BBRR07, HN96, JSV10, MRV09, OBN+05, OPHK01, RV12,
RWW10, SO97], the authors present a combined study of the accuracy as a result
of several factors (numerical approximations, integrations, randomness in material
coefficients and loads). Also, we refer to [BE03], where the authors use the concept
of dual-weighted residuals in the context of modeling errors.

Estimates of deviations from exact solutions to boundary value problems (which
follow from the methods of a posteriori error estimation considered in Chaps. 3
and 4 of this book) suggest a way of evaluating modeling errors explicitly. The un-
derlying idea is rather transparent: since an estimate of the deviation from the exact
solution is applicable to any admissible function, we can apply them to exact solu-
tions of simplified models. The first result was obtained in this way in [Rep01a],
where an upper bound of the difference between the exact solution of a three-
dimensional elasticity problem (in a plate type domain) and the exact solution of
a simplified (plane stress) model has been obtained. Also, we refer to [RSS04],
where dimension reduction errors of elliptic problems in thin domains have been
estimated explicitly. In [RS10a, RS10b], such estimates have been derived for the
Kirchhoff–Love plate model. Estimates of modeling errors generated by lineariza-
tion of nonlinear models in the theory of viscous fluids can be found in [FR10].
Two-sided estimates of modeling errors arising in homogenized models of elliptic
problems with oscillating coefficients have been recently derived in [RSS12b].
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Algorithm 6.1 Iteration method
Input: x0 ∈X {initial approximation}, ε {accuracy}
i = 1
x1 = T x0 + g

while ‖xi − xi−1‖> ε do
i = i + 1
xi = T xi−1 + g

end while
Output: xi {approximate solution}

It is worth noting that simultaneous consideration of approximation and model-
ing errors generates conceptually new adaptive algorithms, in which values of these
errors are compared on each step of refinement (related either to a mesh or to model
description). Such combined modeling-discretization adaptive methods can be very
efficient for complicated structures analyzed with the help of the defeaturing method
(see, e.g., [RSS12a]).

6.7 Error Bounds for Iteration Methods

In this section, we consider iteration methods based on fixed point algorithms and
the corresponding a posteriori error estimates, which are applied to algebraic prob-
lems as well as integral and differential equations.

6.7.1 General Iteration Algorithm

Consider the following general problem: Find x in a Hilbert space X such that

x = T x + g, (6.39)

where T : X → X in a certain bounded operator and g ∈ X. The element x# ∈ X

satisfying (6.39) is a fixed point. A natural way of solving (6.39) is to apply the
iteration procedure

xi = T xi−1 + g, i = 1,2, . . . , (6.40)

which generates an infinite sequence {xi}∞i=1. The theory of fixed point iteration
methods (see, e.g., [Col64, KF75, Zei86]) formulates conditions that guarantee con-
vergence of this sequence to x#.

The iteration process (6.40) generates Algorithm 6.1. If the sequence {xi} in
(6.40) converges, (i.e., if xi −−−−→

i→+∞ x# in X), then the sequence generated by Algo-

rithm 6.1 is finite for any positive ε. In this case, it ends up with a certain approxi-
mation of x#.
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However, the fact that ‖xi − xi−1‖ ≤ ε cannot guarantee that xi is close to the
fixed point (even if such a point indeed exists). Examples that demonstrate this fact
are easy to construct.

Example 6.1 The iteration scheme

xi =
√
δ + x2

i−1, x0 ∈ [0,+∞), i = 1,2, . . . ,

generates a sequence {xi} such that |xi − xi−1| → 0. For example, if δ = 0.01
and x0 = 0, then after 50000 iterations we have |xi − xi−1| = 0.000224. However,
this fact does not mean that we are close to a solution. Moreover, this sequence
does not converge to any fixed point because the corresponding algebraic equation
x = √

δ + x2 has no real roots. This elementary example shows that heuristic itera-
tion schemes similar to Algorithm 6.1 may lead to unreliable and wrong results.

6.7.2 A Priori Estimates of Errors

Reliable iteration algorithms can be constructed if the operator T possesses addi-
tional properties.

Assume that T : S → S, where S is a closed nonempty set in X and T is a
q-contractive mapping, i.e.,

‖T x − T y‖X ≤ q‖x − y‖X, ∀x, y ∈X, (6.41)

where 0 < q < 1 (which is independent of x and y).

It is easy to show that the sequence {xi} converges to a unique fixed point x# (in
the literature, this fact is known as the Banach fixed point theorem). We have

‖xi+1 − xi‖X = ‖T xi − T xi−1‖X
≤ q‖xi − xi−1‖X ≤ · · · ≤ qi‖x1 − x0‖X. (6.42)

For any m> 1, we have

‖xi+m − xi‖X ≤ ‖xi+m − xi+m−1‖X + · · · + ‖xi+1 − xi‖X
≤ (qm−1 + qm−2 + · · · + 1

)
qi‖x1 − x0‖X

≤ qi

1 − q
‖x1 − x0‖X −−−−→

i→+∞ 0. (6.43)
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In the view of (6.43), {xi} is a Cauchy sequence, which has a limit in the Banach
space X.

A reliable algorithm must include a stopping criterion based on correct two-sided
estimates of the error

ei := ‖xi − x#‖X. (6.44)

Taking (6.41) into account, we conclude that

ei = ‖T xi−1 − T x#‖X ≤ qei−1 ≤ qie0. (6.45)

However, in general, e0 is unknown. To get a computable bound, we use (6.43), tend
m to infinity, and obtain an a priori estimate

ei ≤ qi

1 − q
‖x1 − x0‖X =: M

0
i . (6.46)

This error majorant is fully computable, but may seriously overestimate the error.

6.7.3 A Posteriori Estimates of Errors

In order to obtain a sharper majorant of the error, we set i = 1 in (6.43). Then, it has
the form

‖x1+m − x1‖X ≤ q

1 − q
‖x1 − x0‖X, where m> 1. (6.47)

Since x1+m −−−−−→
m→+∞ x#, we obtain

‖x# − x1‖X ≤ q

1 − q
‖x1 − x0‖X. (6.48)

Let us consider xi−1 as the first element of the iteration sequence. Then, (6.48)
implies the majorant

ei ≤ q

1 − q
‖xi − xi−1‖X =: Mi . (6.49)

A lower bound of the error follows from the triangle inequality

‖xi − xi+1‖X ≤ ‖xi − x#‖X + ‖xi+1 − x#‖X ≤ (1 + q)‖xi − x#‖X. (6.50)
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Algorithm 6.2 Iteration algorithm with a posteriori error control
Input: x0 ∈X {initial approximation}, ε {accuracy}
i = 1,
x1 = T x0 + g,
M1 = q

1−q
‖x1 − x0‖X ,

M1 = 0
while Mi > ε do

xi = T xi−1 + g

Mi = q
1−q

‖xi − xi−1‖X
Mi = 1

1+q
‖xi − xi+1‖X

i = i + 1
end while
Output: xi {approximate solution}

Mi and Mi {two-sided bounds of the error}

Thus,

ei ≥ 1

1 + q
‖xi − xi+1‖X =: Mi , (6.51)

where Mi is the minorant for the error. Now, (6.51) and (6.49) lead us to the follow-
ing conclusion:

Two-sided bounds of the distance between xi and x# can be computed using
three neighboring elements of the iteration sequence, namely, xi−1, xi , and
xi+1.

The estimates (6.49) and (6.51) were derived by Ostrowski [Ost72]. By (6.51) and
(6.49), we modify Algorithm 6.1 and obtain Algorithm 6.2, which includes two-
sided estimates of the error on each step.

6.7.4 Advanced Forms of Error Bounds

The ratio Mi/Mi exceeds 1+q
1−q

. Therefore, if q is close to 1, then the efficiency of the
estimates may deteriorate. In order to compensate this effect, we can apply advanced
error bounds, which use additional terms of the sequence {xi}Ni=1. For example, a
simple modification of the majorant follows from the estimate

‖xi − x#‖X ≤ ‖xi − xi+1‖X + ‖xi+1 − x#‖X ≤ ‖xi − xi+1‖X + q‖xi − x#‖X,
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which yields

‖xi − x#‖X ≤ 1

1 − q
‖xi − xi+1‖X := M

1
i (xi, xi+1). (6.52)

Since
1

1 − q
‖xi − xi+1‖X ≤ q

1 − q
‖xi−1 − xi‖X, (6.53)

we see that M
1
i (xi, xi+1) is sharper than Mi . The same idea can be applied to subse-

quences of {xi}Ni=1, so that we obtain

‖xi − x#‖X ≤ 1

1 − ql
‖xi − xi+l‖X := M

l
i (xi, xi+l ), l = 1, . . . ,L. (6.54)

By means of three sequential elements xi , xi+1, and xi+2, we deduce another esti-
mate

‖xi − x#‖X ≤ ‖xi − xi+1‖X + ‖xi+1 − xi+2‖X + ‖xi+2 − x#‖X
≤ ‖xi − xi+1‖X + 1

1 − q
‖xi+2 − xi+1‖X

:= M
1,2
i (xi, xi+1, xi+2). (6.55)

Error minorants can be improved by similar arguments, e.g.,

‖xi − x#‖X ≥ 1

1 + ql
‖xi − xi+l‖X := Ml

i (xi, xi+l ). (6.56)

The ratio of advanced upper and lower bounds in (6.54) and (6.56) is 1+ql

1−ql
so that

they provide estimates better than (6.51) and (6.49) if q is close to 1.
These estimates and their modifications can be applied to linear and nonlinear

algebraic systems, integral equations, and other problems solved by iteration meth-
ods. The major difficulty is that it is necessary to calculate a sharp upper bound
of q and to prove that it is less than 1. Below we discuss several examples, which
demonstrate typical behavior of error estimates.

Example 6.2 Solve the equation

x = φ(x), (6.57)

where

φ(x)= αx + 1

xp
,

α = 0.9, and p = 1. The problem is to find the point of intersection of the two curves
depicted in Fig. 6.1a. We apply the iteration method (with x0 = 1.0) and compute
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Fig. 6.1 Example 6.2. a Solution of equation φ(x)= x. b A priori and a posteriori error majorants

Fig. 6.2 Example 6.2. a The error and error bounds. b Efficiency indexes

different error estimates. In Fig. 6.1b, we compare a posteriori error majorant Mk

(6.49) with the priori error majorant M
0
k (6.46). Clearly, Mk provides more accurate

error estimates than M
0
k .

Figure 6.2a illustrates the exact error together with upper and lower bounds (6.49)
and (6.51), and their more advanced counterparts (6.55) and (6.56). In Fig. 6.2b, we
present the corresponding efficiency indexes (i.e., values of minorants and majorants
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Fig. 6.3 Example 6.3. a The error and various a posteriori error bounds. b A priori and a posteriori
error majorants

divided by the value of the exact error). Here, I
M

0
k

= M
0
k‖ek‖ , IMk

= Mk‖ek‖ , I
M
l
k

= M
l
k‖ek‖ ,

IMl
k
= Ml

k‖ek‖ , and IMk
= Mk‖ek‖ .

Example 6.3 In this example, we set

φ(x)= 0.95 arctan(x)− 0.05x2 + 0.01

in (6.57) and start from x0 = 0. The results are shown in Fig. 6.3. As in the previous
test, we see that a posteriori error bounds are more efficient than a priori bounds,
and their advanced forms are even more efficient.

Example 6.4 Consider the equation

f (x)= 0.

In order to represent it in the form x = T x, we set

T x := x + ρf (x), (6.58)

where ρ is a certain parameter. Then, the iteration method has the form

xi = xi−1 + ρf (xi−1). (6.59)

Since (T x)′ = 1 + ρf ′(x), we may try to provide q-contractivity of the operator T
by selecting an appropriate ρ (for this purpose we must know two-sided bounds of
the derivative in an interval containing the root).
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If ρ = −[f ′(x)]−1, then we arrive at Newton’s method

T x = x − f (x)

f ′(x)
, (6.60)

which implies the iteration scheme

xi = xi−1 − f (xi−1)

f ′(xi−1)
. (6.61)

It should be noted that such type methods need certain a priori assumptions. Namely,
the root must be localized in some interval [x�, x⊕], in which f ′(x) �= 0, starting
point must satisfy the condition f (x0)f

′′(x0) > 0, and the corresponding operator
T must perform a contractive mapping of this interval to itself. Sometimes, instead
of (6.61) the modified Newton’s method is used. It has the form

xi = xi−1 − f (xi−1)

f ′(x�)
, (6.62)

where x� ∈ [x�, x⊕] is a fixed element.
Analogous methods are often used for systems of nonlinear algebraic equations

and operator equations in Banach spaces. Let A :X →X be a continuous bounded
operator and A′ be the (Freshet) derivative of A. Then, the functional equation
Ax = 0 can be solved by the iteration scheme xi = xi−1 − (A′(xi−1))

−1Axi−1,
which is often called the Newton–Kantorovich method (concerning error estimates
for this class of iteration methods, we refer to [Deu04, EW94, GT74, Mor89, Ort68,
PP80] and the literature cited in these publications).

6.7.5 Systems of Linear Simultaneous Equations

Important applications of iteration methods are related to systems of linear simulta-
neous equations and other algebraic problems (see, e.g., [Axe94, Var62]).

Consider the system of linear simultaneous equations Ax = f with f ∈ R
d and

a non-degenerate matrix A ∈M
d×d . Let

A= L+D +R, (6.63)

where L and R are left and right triangular matrices, respectively, and D is a diag-
onal matrix. A linear iteration method has the form

xk+1 = Lxk + b, (6.64)

where L depends on L, D, R, and some parameters. In the examples below, we use
standard schemes that can be found from [BBC94, GL96, Saa03, SG89, Ver00], and
many other publications. Particular cases are the Jacobi scheme,

xk+1 = Lxk + b, with L =D−1(L+R),b =D−1f, (6.65)
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the Gauss–Seidel scheme

L = (L+D)−1R, b = (L+D)−1f, (6.66)

and the so-called the SOR scheme

L = I −
(
D

ω
+L

)−1

A, b =
(
D

ω
+L

)−1

f, (6.67)

where 0 <ω < 2. Below, we discuss the applicability of the estimates (6.46) (6.49)
to several iteration schemes of this type.

6.7.5.1 Stationary Methods

Usually, one-step iteration methods are presented in the canonical form

Bk+1 xk+1 − xk

τk+1
+Axk = f, k = 1, . . . , n. (6.68)

In stationary methods, Bk+1 = B and τk+1 = τ . Then, (6.68) has the form

B
xk+1 − xk

τ
+Axk = f (6.69)

and the error ek = xk − x#, k = 1,2, . . . satisfies the equation

B
ek − ek−1

τ
+Aek−1 = 0, (6.70)

which yields the relation

ek = (I − τB−1A
)
ek−1. (6.71)

Hence, convergence of the iteration process depends on the properties of the transi-
tion matrix L := I −τB−1A. In view of the Banach theorem, the condition ‖L‖< 1
guarantees that the iteration sequence converges for any x0.

Assume that A and B are positive definite and

λmin(Bx, x)≤ (Ax,x)≤ λmax(Bx, x), λmin, λmax > 0,∀x ∈X. (6.72)

Let κ = λmin
λmax

, and τ = 2
λmin+λmax

. Then, q = 1−κ
1+κ

(see [BBC94, GL96, SG89, Saa03,

Ver00])) and we can use the estimates

‖xk − x#‖A ≤ qk‖x0 − x#‖A, (6.73)

‖xk − x#‖A = ‖ek‖A ≤ q

1 − q
‖ek − ek−1‖A = q

1 − q
‖xk − xk−1‖A, (6.74)
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Algorithm 6.3 Stationary iteration method with a priori and a posteriori bounds
Input: x0 ∈X {initial approximation}, ε {accuracy}
τ = 2

λmax(B−1A)+λmin(B
−1A)

κ = λmin(B
−1A)

λmax(B−1A)

q = 1−κ
1+κ

L = I − τB−1A

b = τB−1f

k = 1
xk = Lxk−1 + b

M1 = q
1−q

‖x1 − x0‖A
M

0
1 = qk

1−q
‖x1 − x0‖A

while Mk > ε do
k = k + 1
xk =Lxk−1 + b

M
0
k = qk

1−q
‖x1 − x0‖A {a priori estimate for ‖ek‖A}

Mk = q
1−q

‖xk − xk−1‖A {a posteriori estimate for ‖ek‖A}
end while
Output: xk {approximate solution}

M
0
k , Mk {a priori and a posteriori error bounds}

‖xk − x#‖A ≤ qk

1 − q
‖x1 − x0‖A, (6.75)

where ‖x‖A := √
(Ax,x). The corresponding one-step stationary iteration scheme

with guaranteed bounds is presented by Algorithm 6.3, and Example 6.5 is based on
this algorithm.

Remark 6.1 If λmin and λmax are unknown, then we need computable estimates of
them. Methods developed for this purpose can be found in [Kol11, Yam80, Yam82,
Yam01, ZSM05].

Example 6.5 Let A= c1Q
TDQ+ c2D, where c1 and c2 are constants, Q is a ran-

domly generated unitary matrix, and D = {dij }, dij = 0 if i �= j , dii = i. Typical

results are presented in Table 6.1. Here M
0
k is a priori error estimate, Mk and Mk are

a posteriori error estimates, M
l
k and Ml

k are advanced a posteriori estimates), and,
finally, ‖ek‖ is the exact error at step k of the iteration (for the case c1 = 1, c2 = 10,
and N = 10). Efficiency indexes of the estimates are presented in Table 6.2. For

N = 100 the results are presented in Table 6.3 and Table 6.4. They show that M
l
k

and Ml
k efficiently estimate the error. We can not say the same about M

0
k .
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Table 6.1 Example 6.5 (N = 10). Error estimates and exact error

k Mk Ml
k ‖ek‖ M

l
k Mk M

0
k

2 5.67e-03 5.74e-02 5.74e-02 5.74e-02 1.10e-01 1.83e-01

4 3.93e-03 4.01e-02 4.01e-02 4.01e-02 6.74e-02 1.46e-01

8 2.03e-03 1.97e-02 1.97e-02 1.97e-02 3.39e-02 9.20e-02

16 5.87e-04 4.78e-03 4.78e-03 4.78e-03 9.63e-03 3.66e-02

32 6.71e-05 2.85e-04 2.85e-04 2.85e-04 1.12e-03 5.82e-03

64 1.53e-06 2.17e-06 2.17e-06 2.17e-06 2.71e-05 1.47e-04

128 9.69e-10 1.15e-09 1.31e-09 1.31e-09 1.73e-08 9.31e-08

Table 6.2 Example 6.5
(N = 10). Efficiency indexes k IMk

IMl
k

I
M
l
k

IMk
I

M
0
k

2 0.10 1.00 1.00 1.91 3.19

4 0.10 1.00 1.00 1.68 3.63

8 0.10 1.00 1.00 1.72 4.66

16 0.12 1.00 1.00 2.01 7.66

32 0.24 1.00 1.00 3.95 20.44

64 0.71 1.00 1.00 12.52 67.67

128 0.74 0.88 1.00 13.24 71.23

6.7.5.2 The Chebyshev Method

The Chebyshev method is one of the iteration schemes with variable steps. It has
the form

xk+1 − xk

τk+1
+Axk = f, (6.76)

where

τk = τ0

1 + ρ0tk
, k = 1, . . . , n. (6.77)

Here, n is the amount of Chebyshev parameters tk = cos (2k−1)π
2n (which are intro-

duced to minimize the error at every iteration step; see, e.g., p. 109 in [SG89] and
[Saa03]),

τ0 = 2

λmin + λmax
, ρ0 = 1 − κ

1 + κ
, and κ = λmin

λmax
. (6.78)

The iteration procedure can be represented in the form

x
(n)
(l+1) = Lx(n)l + b, l = 1,2, . . . , (6.79)
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Table 6.3 Example 6.5 (N = 100). Error estimates and exact error

k Mk Ml
k ‖ek‖ M

l
k Mk M

0
k

2 2.01e-03 4.34e-02 4.34e-02 4.34e-02 7.44e-01 8.28e-01

4 1.95e-03 4.19e-02 4.19e-02 4.19e-02 7.12e-01 8.18e-01

8 1.89e-03 3.96e-02 3.96e-02 3.96e-02 6.81e-01 8.00e-01

16 1.80e-03 3.60e-02 3.60e-02 3.60e-02 6.42e-01 7.65e-01

32 1.64e-03 3.06e-02 3.06e-02 3.06e-02 5.83e-01 7.00e-01

64 1.37e-03 2.30e-02 2.30e-02 2.30e-02 4.86e-01 5.85e-01

128 9.56e-04 1.39e-02 1.39e-02 1.39e-02 3.39e-01 4.09e-01

256 4.67e-04 5.59e-03 5.59e-03 5.59e-03 1.66e-01 2.00e-01

512 1.12e-04 1.09e-03 1.09e-03 1.09e-03 3.97e-02 4.78e-02

1024 6.37e-06 5.32e-05 5.32e-05 5.32e-05 2.27e-03 2.73e-03

2048 2.08e-08 1.64e-07 1.64e-07 1.64e-07 7.41e-06 8.93e-06

Table 6.4 Example 6.5
(N = 100). Efficiency indexes k IMk

IMl
k

I
M
l
k

IMk
I

M
0
k

2 0.05 1.00 1.00 17.15 19.07

4 0.05 1.00 1.00 17.00 19.53

8 0.05 1.00 1.00 17.22 20.23

16 0.05 1.00 1.00 17.86 21.28

32 0.05 1.00 1.00 19.07 22.89

64 0.06 1.00 1.00 21.11 25.43

128 0.07 1.00 1.00 24.44 29.48

256 0.08 1.00 1.00 29.69 35.82

512 0.10 1.00 1.00 36.51 44.04

1024 0.12 1.00 1.00 42.60 51.36

2048 0.13 1.00 1.00 45.15 54.42

where x(n)l denotes the version obtained at the end of the cycle ‘l’, and

L = (I − τnA) · · · · · (I − τ1A), b =
(

n∑

i=2

n∏

m=i

(I − τmA)+ 1

)

f. (6.80)

Here, n reminds about the amount of iterations on the internal subcycles. In this
case, the estimate (6.46) reads as follows:

∥
∥x(n)l − x#

∥
∥≤ (q(n))l‖x0 − x#‖, (6.81)
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Algorithm 6.4 Chebyshev iteration algorithm with a priori and a posteriori bounds
Input: x0 ∈X {initial approximation}, ε {accuracy}, n {number of sub-cycles}

τ0 = 2
λmax(A)+λmin(A)

κ = λmin(A)
λmax(A)

ρ0 = 1−κ
1+κ

ρ1 = 1−√
κ

1+√
κ

q(n)= 2ρn1
1+ρ2n

1

x1 = chebyshev-subcycle(x0, n,A,f, τ0, ρ0) {Apply Algorithm 6.5}
i = 1
Mi = q

1−q
‖xi − xi−1‖A {a posteriori estimate}

M
0
i = qi

1−q
‖x1 − x0‖A {a priori estimate}

while Mi > ε do
i = i + 1
xi = chebyshev-subcycle (xi−1, n,A,f, τ0, ρ0) {Apply Algorithm 6.5}

M
0
i = qi

1−q
‖x1 − x0‖A

Mi = q
1−q

‖xi − xi−1‖A
end while
Output: xi {approximate solution}

M
0
i , Mi {a priori and a posteriori error bounds}

Algorithm 6.5 Chebyshev sub-cycle algorithm
Input: x0 {input vector}, n {number of sub-cycles}, A, f , τ0, ρ0
L = I

b = 0̄
for k = 1 : n do

tk = cos (2k−1)π
2n

τk = τ0
1+ρ0tk

L = (I − τkA)L
b = (I − τkA)b+ τkf

end for
x =Lx0 + b

Output: x {output vector}

where

q(n) = 2ρn1
1 + ρ2n

1

and ρ1 = 1 − √
κ

1 + √
κ
. (6.82)

Algorithm 6.4 (together with Algorithm 6.5) formalizes the iteration schemes based
on the Chebyshev method.
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Fig. 6.4 Example 6.6. a The a priori estimate M
0
k , the a posteriori estimate Mk , the true error ‖ek‖,

and the lower estimate Mk . b Zoomed interval of a priori estimate M
0
k , the a posteriori estimate Mk ,

the true error ‖ek‖, and the lower estimate Mk

Example 6.6 In this example, the set of matrixes was generated by the same proce-
dure as in Example 6.5.

For each system, the set of accessorial parameters (i.e., the size of the Chebyshev
subcycle) is set n= 2k + 1, where k = 2,3, as before N = 10k . The set of accesso-
rial parameters for each system (the size of the Chebyshev sub-cycle) is set by the
formula n = 2k + 1, where k = 2,3, respectively. Systems with sizes N = 10k , k
defining the dimension N = 10k , k = 2,3.

In Figs. 6.4a and 6.5a, the estimates are depicted in the logarithmic scale. We see
that the Chebychev method is more efficient than the stationary method considered
in the previous example, and a posteriori majorants and minorants provide a correct
presentation on the error.

Finally, we note that more information on a posteriori error control for various
problems solved by iteration methods can be found in, e.g., [ES00, GTG76, Hay79,
Leo94, Mey92, Pot85, Qn00, SO00, TO76], and in the literature cited therein.

6.7.6 Ordinary Differential Equations

Iteration methods can be used for computing approximate solutions of ordinary dif-
ferential equations. In this case, a differential problem is presented in the form of
an integral equation. If one can prove that the integral operator is subject to the
conditions of the Banach theorem, then the results of the general theory (existence,
convergence, and error estimates) are directly applicable.
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Fig. 6.5 Example 6.6. a The a priori estimate M
0
k , the a posteriori estimate Mk , the true error ‖ek‖,

and the lower estimate Mk . b Zoomed interval of a priori estimate M
0
k , the a posteriori estimate Mk ,

the true error ‖ek‖, and the lower estimate Mk

In this section, we discuss a version of the Picard–Lindelöf method (see, e.g.,
[CL55, HNW93]), which is used to solve the Cauchy problem

du

dt
= ϕ

(
u(t), t

)
, u(t0)= a0, (6.83)

where the solution u(t) (which may be a scalar or vector function) must be found in
the interval [t0, tK ].

The Picard–Lindelöf method can be used not only for ODEs but also for time-
dependent algebraic and functional equations (see, e.g., [Nev89a] and [Nev89b],
where it was shown that the speed of convergence is independent of the step sizes).
Numerical methods based on Picard–Lindelöf iterations for dynamical processes
(the so-called waveform relaxation in the context of electrical networks) are dis-
cussed in [EKK+95]. A posteriori estimates and nodal superconvergence for time
stepping methods were studied in [AMN11, MN06].

The existence and uniqueness of u(t) follow from the Picard–Lindelöf theo-
rem and the Picard’s existence theorem or from the Cauchy–Lipschitz theorem (see
pp. 1–15 in [CL55, Lin94]).

The problem (6.83) can be solved numerically by various well-known methods
(e.g., by the methods of Runge–Kutta and Adams, see, e.g., [But03, PTVF07]). Typ-
ically, these methods are furnished by a priori asymptotic estimates, which show
theoretical properties of the numerical algorithm. However, these estimates have
mainly a qualitative meaning and do not provide information about the exact er-
ror bounds for particular numerical approximation. In this section, we deduce such
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type of estimates and discuss a version of the Picard–Lindelöf method as a tool for
constructing a fully reliable approximation of (6.83).

The approach discussed below is based on Ostrowski estimates. It was suggested
in [MNR12]. The corresponding numerical algorithm includes adaptation of the in-
tegration step and provides guaranteed bounds for the accuracy on the time interval
[t0, tK ].

6.7.6.1 The Picard–Lindelöf Method

Assume that the function ϕ(ξ(t), t) (which, in general, can be a vector-valued func-
tion) is continuous with respect to both variables and satisfies the Lipschitz condi-
tion in the form

∥
∥ϕ(u2, t2)− ϕ(u1, t1)

∥
∥
C([t1,t2])

≤ L1‖u2 − u1‖C([t1,t2]) + L2|t2 − t1|, ∀(u1, t1), (u2, t2) ∈Q, (6.84)

where L1, L2 are Lipschitz constants, and

Q := {(ξ, t) | ξ ∈ U, t0 ≤ t ≤ tN
}
. (6.85)

Here, U is the set of possible values of u (the information about this set comes from
an a priori analysis of the problem).

In the Picard–Lindelöf method, we represent the differential equation in the inte-
gral form

u(t)=
∫ t

t0

ϕ
(
u(s), s

)
ds + a0. (6.86)

Now, the exact solution is a fixed point of (6.86), which can be found by the iteration
method

uj (t)=
∫ t

t0

ϕ
(
uj−1(s), s

)
ds + a0. (6.87)

We write this relation in the form uj = T uj−1 +a0, where T :X →X is the integral
operator. It is easy to see that the operator

T u :=
∫ t

tk

ϕ
(
u(s), s

)
ds (6.88)

is q-contractive on Ik = [tk, tk+1] (with respect to the uniform metric)

q := L1(tk+1 − tk) < 1. (6.89)

Therefore, if the interval [tk, tk+1] is sufficiently small, then the solution can
be found by the iteration procedure (henceforth, it is called the Adaptive Picard–
Lindelöf (APL) method) and the corresponding errors can be controlled by the Os-
trowski estimates



6.7 Error Bounds for Iteration Methods 233

Mj := 1

1 + q
‖uj − uj+1‖C(Ik) ≤ ‖u− uj‖C(Ik)

≤ q

1 − q
‖uj − uj−1‖C(Ik) =: Mj . (6.90)

However, this theoretically simple scheme contains serious technical difficulties.
Let FK =⋃K−1

k=0 [tk, tk+1] be a mesh selected on [t0, tK ]. Consider one step of the
APL method. Assume that u0 is the initial approximation defined as a piecewise
affine continuous function on a certain sub-mesh ΩSk =⋃Sk−1

s=0 [zs, zs+1] induced
on the interval [tk, tk+1], where z0 = tk and zSk = tk+1. On the first interval, we
have

u1(t)=
∫ t

t0

ϕ
(
u0(s), s

)
ds + a0, t ∈ [t0, t1]. (6.91)

If q < 1 and u1 is computed exactly, then we can measure the distance between
u1 and the exact solution u by means of the estimate

∥
∥u1(t)− u(t)

∥
∥
C([t0,t1]) ≤ q

1 − q

∥
∥u1(t)− u0(t)

∥
∥
C([t0,t1]). (6.92)

However, the integration operator in (6.91) does not transfer piecewise affine func-
tions to piecewise affine functions, so that iterations lead to piecewise polynomial
functions, the order of which increases from iteration to iteration and makes the ex-
act integration more and more difficult. Very soon we will be forced to use approxi-
mate quadrature formulas. In this case, the estimate (6.92) cannot be applied. If we
wish to perform iterations within the framework of a certain finite dimensional space
Xh (e.g., the space of piecewise affine functions), then additional errors caused by
integration and mapping of a function to this finite dimensional space must be taken
into account. This situation is illustrated in Fig. 6.6.

The operator T maps Xh to Zh ⊂ X (i.e. xj = T xj−1 ∈ Zh), where Zh doesn’t
coincide with Xh. Therefore, if we wish to study the iteration process as a mapping
of Xh to itself, then we need to apply a certain projection (interpolation) operator π
and evaluate the corresponding error. Since in practice we use a numerical approx-
imation of T (which is TΔ : Xh → Zh), the function x̂j (which is computed nu-
merically) also contains an integration error. Similar difficulties arise in many other
iteration scheme based on integral type operators, where we need to estimate the
interpolation and integration errors in order to provide guaranteed error estimates.

Henceforth, we consider the situation in which Xh is the space CP1 of piece-
wise affine continuous functions constructed on a local mesh with nodes zs (s =
0, . . . , Sk , z0 = t0, zSk = t1). In this case, on the first step of integration we construct

ū1(t)= πu1 ∈ CP1([t0, t1]
)
, (6.93)
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Fig. 6.6 Integration and
interpolation errors generated
by T

where π is the projection operator π : C → CP1([t0, t1]) satisfying the condition
πu(zs)= ū(zs) at all points zs . Thus, the norm on the right-hand side of (6.92) can
be estimated as follows:

∥
∥u1(t)− u0(t)

∥
∥
C([t0,t1])

≤ ∥∥ū1(t)− u0(t)
∥
∥
C([t0,t1]) + ∥∥ū1(t)− u1(t)

∥
∥
C([t0t1]). (6.94)

Here ‖ū1(t) − u1(t)‖C([t0,t1]) = ‖ē1‖C([t0,t1]) is the interpolation error. In general,
this term is unknown, but we can estimate it.

Numerical integration generated errors have a different origin. In general, the
values ū(zs), s = 0, . . . , Sk cannot be found exactly. Therefore, at every node zs we
have an approximate value û1(zs) instead of ū1(zs). In view of this fact, we reform
(6.94) as follows:

∥
∥u1(t)− u0(t)

∥
∥
C([t0,t1]) ≤ ∥∥û1(t)− u0(t)

∥
∥
C([t0,t1]) + ∥∥û1(t)− ū1(t)

∥
∥
C([t0,t1])

+ ∥∥ū1(t)− u1(t)
∥
∥
C([t0,t1]), (6.95)

where ‖û1(t)− ū1(t)‖C([t0,t1]) = ‖̂e1‖C([t0,t1]) is the integration error.

6.7.6.2 Estimates of Interpolation and Integration Errors

First, we study the difference between u1 and ū1, where ū1 is the interpolant of u1,

which at {zs}Sks=0 is defined by the relation

ū1(zs)= u1(zs)=
∫ zs

z0

ϕ
(
u0(t), t

)
dt + a0. (6.96)

For any subinterval z ∈ [zs, zs+1],
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u1(z) = u(zs)+
∫ z

zs

ϕ
(
u0(t), t

)
dt,

ū1(z) = u1(zs)+ u1(zs+1)− u1(zs)

Δs

(z− zs),

where Δs = zs+1 − zs . Then, on this interval we have

ē = ū1(z)− u1(z)

= z− zs

Δs

∫ zs+1

zs

ϕ
(
u0(t), t

)
dt −

∫ z

zs

ϕ
(
u0(t), t

)
dt. (6.97)

We recall that u0 is an affine function, so that
∫ z

zs

ϕ
(
u0(t), t

)
dt =

∫ z

zs

ϕ

(

u0,s + u0,s+1 − u0,s

Δs

(t − zs), t

)

dt. (6.98)

Using these representations, the interpolation error can be estimated as follows (see
[MNR12]):

∥
∥ū1(z)− u1(z)

∥
∥
C([zs ,zs+1])

≤ ϕs+1 − ϕs

8
Δs + 2

3
Δs

(
L1,s |u0,s+1 − u0,s | + L2,sΔs

)
, (6.99)

where ϕs = ϕ(u0,s , zs) and ϕs+1 = ϕ(u0,s+1, zs+1).
Errors of numerical integration can be evaluated in a similar way. Assume that

f is a Lipschitz function with the constant L. Then, we can easily find guaranteed
bounds of integration errors associated with the well-known quadrature formula

S =
∫ b

a

f (x)dx � S̃ := f (a)+ f (b)

2
(b− a). (6.100)

It is easy to see that the integration error is subject to the estimate

eint = |S − S̃| ≤ L

4
(b− a)2 − 1

4L

[
f (b)− f (a)

]2
.

In our case, a = zs , b = zs+1, Ls = L1,s ls + L2,s , and ls is the slope of the piecewise
affine function û on every interval [zs, zs+1], s = 0, . . . , Sk−1. Thus,

∥
∥û1(t)− ū1(t)

∥
∥
C([zs ,zs+1]) ≤ Ls

4
Δ2
s − 1

4Ls

[ϕs+1 − ϕs]2. (6.101)

Interpolation and integration errors interact and we need to evaluate the overall
impact of them accumulated in the process of integration.

On every subinterval [zs, zs+1], the interpolation error can be estimated with the
help of (6.99). Then, for the whole interval [t0, t1] :=⋃Sk−1

s=0 [zs, zs+1] we obtain
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∥
∥ū1(t)− u1(t)

∥
∥
C([t0,t1])

≤
∑

s=0,...,Sk−1

ϕs+1 − ϕs

8
Δs + 2

3

[
L1,s |u0,s+1 − u0,s | + L2,sΔs

]
Δs. (6.102)

For the error of integration, we have

∥
∥ū1(t)− û1(t)

∥
∥
C([t0,t1]) ≤

∑

s=0,...,Sk−1

Ls

2
Δ2
s − 1

2Ls

[ϕs+1 − ϕs]2. (6.103)

Then, (6.95) implies the estimate
∥
∥u1(t)− u0(t)

∥
∥
C([t0,t1])

≤ ∥∥û1(t)− u0(t)
∥
∥
C([t0,t1])

+
∑

s=0,...,Sk−1

(
ϕs+1 − ϕs

8
Δs + 2

3
Δs

[
L1,s |u0,s+1 − u0,s | + L2,sΔs

]
)

+
∑

s=0,...,Sk−1

(
Ls

2
Δ2
s − 1

2Ls
[ϕs+1 − ϕs]2

)

, (6.104)

which right-hand side contains only known quantities and, therefore, can be used in
the Ostrowski estimate. After j iterations we have

∥
∥uj+1(t)− uj (t)

∥
∥
C([t0,t1]) ≤ M⊕,1

j+1(̂uj )

:= E1
iter +E1

interp +E1
integr , (6.105)

where

E1
iter := ∥

∥ûj+1(t)− ûj (t)
∥
∥
C([t0,t1]), (6.106)

E1
interp :=

∑

s=0,...,Sk−1

(
ϕ(̂uj,s+1, zs+1)− ϕ(̂uj,s , zs)

8
Δs

+ 2

3
Δs

[
L1,s |̂uj,s+1 − ûj,s | + L2,sΔs

]
)

, (6.107)

and

E1
integr :=

∑

s=0,...,Sk−1

(
Ls

2
Δ2
s − 1

2Ls

[
ϕ(̂uj,s+1, zs+1)− ϕ(̂uj,s , zs)

]2
)

. (6.108)
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For j = 0 the function ûj is taken as a piecewise affine interpolation of u0, and

for j ≥ 1 it is taken from the previous iteration step. The quantity M
⊕,1
j is fully

computable, and it shows the overall error associated with the step number j on the
first interval.

Remark 6.2 The estimate of the overall error related to the interval [t0, tK ] in-
cludes all errors computed on the intervals. In other words, the error associated
with [t0, tk−1] is appended to the error on [tk−1, tk] (formally, this rule follows from
the fact that the initial condition on [tk−1, tk] includes the errors on all previous
intervals).

Thus, for the problem (6.83) (with the Lipschitz function ϕ) fully guaranteed and
computable bounds of approximations can are presented by (6.105). Numerical tests
discussed below were computed by S. Matculevich (see [MNR12]).

6.7.6.3 Adaptive Picard–Lindelöf Algorithm

The algorithm needs a suitable primal mesh FK (should be generated a priori and
changed in the iteration process). Here, we do not discuss this question in detail and
only note that FK should reflect the behavior of ϕ(u(t), t) and requires information
about U (see (6.85)). In practice, such information can be obtained in different ways
(e.g., by solving the problem (6.83) numerically with the help of some other non-
adaptive (e.g., Runge–Kutta) method on a coarse mesh or by an a priori analysis of
the solution properties).

The APL algorithm is a cycle over all the intervals of the mesh FK =⋃K−1
k=0 [tk, tk+1]. On each subinterval, the algorithm is realized as a sub-cycle (the

index of which is j ). In the sub-cycle, we apply the PL method and try to find
an approximation that meets the accuracy requirements (i.e., the accuracy must be
smaller than εk). The initial data are taken from the previous step (for the first step,
the initial condition is defined by a0).

After computing an approximation on [tk, tk+1], we use the majorant and find a
guaranteed upper bound (which includes the interpolation and integration errors).
Iterations are continued unless the required accuracy εk is achieved. After that we
save the results and proceed to the next interval.

Note that in Algorithm 6.6, we do not discuss in detail the process of integra-
tion on an interval, which is performed on a local mesh with a certain amount of
subintervals (which size is Δs ). In principle, it may happen that the desired level of
accuracy εk is not achieved with the Δs selected at some moment t ′ < tK . This
fact can be easily detected because the interpolation and integration errors will
dominate and do not allow the overall error to decrease below εk . In this case,
Δs must be reduced, and computations on the corresponding interval must be re-
peated.
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Algorithm 6.6 The APL method
Input: ε {accuracy}, a0 {initial condition}, q {contraction constant}

FK =⋃K−1
k=0 [tk, tk+1] {initial mesh}

ΩSk =⋃Sk−1
s=0 [zs, zs+1] {initial submesh for each subinterval}

for k = 0 to K − 1 do
j = 1
do

if k = 0
a = a0

else
a = vk(tk)

endif
vk+1
j

= Integration Procedure(ϕ, vk+1
j−1, Sk)+ a

calculate Ek
interp

and Ek
integr

by using (6.107) and (6.108)

M
⊕,k+1
j =Ek+1

iter
+Ek+1

interp
+Ek+1

integr

e⊕
j

= q
1−q

M
⊕,k+1
j

if Ek+1
interp

+Ek+1
integr

> ε/K

Sk+1 = 2Sk+1 {refine the mesh ΩSk }
endif
j = j + 1

while e⊕
j
> ε/K

vk+1 = vk+1
j

{approximate solution on [tk−1, tk]}
e⊕,k+1 = e⊕

j
{error bound for [tk−1, tk]}

end for
Output: {vk}K−1

k=0 {approximate solution}

{e⊕,k}K−1
k=0 {error bounds on subintervals}

Algorithm 6.6 generates a piecewise linear approximation

v(t) := vk(t), if t ∈ [tk, tk+1], k = {0,1, . . . ,K − 1}
and a piecewise constant error bound

M(t) := e⊕,k, if t ∈ [tk, tk+1], k = {0,1, . . . ,K − 1}. (6.109)

The error bound is guaranteed. For the exact solution u holds

v(t)− M(t)≤ u(t)≤ v(t)+ M(t), t ∈ [t0, tK ].

Moreover, we can improve the error bound further. If we perform l additional itera-
tions after the stopping criteria e⊕

j ≤ ε/K is satisfied, we can use an advanced form
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Fig. 6.7 Example 6.7. The
error and the error majorants

of the estimate (6.54) instead of (6.49). We denote the error bound obtained in this
manner by M

l
. In the following examples, we select l = 1.

Example 6.7 Consider the problem

du

dt
= 4ut sin(8t), t ∈

[

0,
3

2

]

,

u(0)= a0 = 1.

(6.110)

The exact solution of this problem is u= e(1/16) sin(8t)−(1/2)t cos(8t).
In Fig. 6.7, we depict the error and error bounds generated by APL-method.

In Figs. 6.8a and 6.9a, the results are presented in a different form. Here, we see
the exact solution, the approximate solution computed by the APL method, and
the bounds of possible variation of it. Therefore, we can guarantee that the exact
solution belongs to the shadowed zone. Numerical results exposed in Figs. 6.8a

and 6.9a show that the advanced majorant M
l

provides much sharper bounds of the
deviation than the original Ostrowski estimate M.

Table 6.5 shows the true error, the majorant, and three components of the majo-
rant on each time interval. In this example, the values of Sk are sufficient large, so
that the interpolation and integration error estimates are insignificant with respect to
the first term.

Example 6.8 This example is intended to show that the APL is applicable to stiff
problems. We consider the classical stiff equation (see [HW96])

du

dt
= 50 cos(t)− 50u, t = [0,1],

u(0)= a0 = 1

(6.111)
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Fig. 6.8 Example 6.7. a The exact and approximate solutions with guaranteed bounds of the de-
viation computed by the Ostrowski estimate. b Zoomed interval with solutions and bounds of the
deviation

Fig. 6.9 Example 6.7. a The exact and approximate solutions with the guaranteed bounds of the
deviation computed by the advanced error majorant. b Zoomed interval with solutions and bounds
of the deviation

with the exact solution u= 1
2501e

−50t + 2500
2501 cos(t)+ 50

2501 sin(t).

The results are exposed in Fig. 6.10a. The left picture shows the behavior of e
and the corresponding majorants. We see that the usual Ostrowski estimate M se-
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Table 6.5 Example 6.7. The error, the majorant, and three components of the majorant related to
the interval [tk, tk+1], k = {0,1, . . . ,K − 1}
k ‖ek+1‖ Ek+1

iter Ek+1
interp Ek+1

integr M
⊕,k+1

0 2.2841e-003 2.2658e-002 8.6160e-008 9.5725e-008 2.2658e-002

1 3.3368e-003 4.6095e-002 1.8847e-007 5.8148e-007 4.6095e-002

2 3.3368e-003 5.4949e-002 2.5299e-007 5.9301e-007 5.4949e-002

3 1.5150e-003 7.4818e-002 2.5768e-007 2.3618e-006 7.4818e-002

4 1.3213e-003 9.5993e-002 3.0190e-007 2.3699e-006 9.5993e-002

5 9.8338e-004 1.0302e-001 3.4216e-007 2.3807e-006 1.0302e-001

6 6.4687e-003 1.5427e-001 4.8963e-007 2.4320e-006 1.5427e-001

7 6.8425e-003 1.5647e-001 6.1877e-007 2.4999e-006 1.5647e-001

8 6.5957e-003 2.3495e-001 9.4891e-007 2.6183e-006 2.3495e-001

9 4.6256e-003 2.7145e-001 9.8935e-007 2.6328e-006 2.7145e-001

10 6.3005e-003 3.0533e-001 9.9923e-007 2.6373e-006 3.0533e-001

11 6.6933e-003 3.2838e-001 1.0158e-006 2.6404e-006 3.2838e-001

12 6.6933e-003 4.4629e-001 1.0182e-006 2.6517e-006 4.4629e-001

Fig. 6.10 Example 6.8. a The error and the error majorants. b The exact and the approximate
solutions with guaranteed bounds of possible deviations

riously overestimates the error, but the advanced majorant M
l

provides the correct
presentation on the error. The right picture shows the approximate solution v and
the zone v ± M, which contains the exact solution u. Certainly, in this test we know
u and can check that it indeed belongs to this zone. However, in general u is un-
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Fig. 6.11 Example 6.9. The exact and approximate solutions and guaranteed bounds of possible
deviations

known, but using the above-described technique we can compute the interval which
guaranteedly contains it.

Example 6.9 As an example of a stiff system, we consider

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du1
dt = 998u1 + 1998u2,

du2
dt = −999u1 − 1999u2,

u1(t0)= 1, u2(t0)= 1,

t ∈ [0,5 · 10−3],

which has the exact solution

{
u1 = 4e−t − 3e−1000t ,

u2 = −2e−t + 3e−1000t .

In Figs. 6.11a, 6.11b, 6.12a and 6.12b, we present the corresponding results in the
same form as in the previous example.

We note that for stiff equations getting an approximate solution with the guar-
anteed and sharp error bounds requires much larger expenditures than in relatively
simple Examples 6.7 and 6.8. This fact is not surprising. It is clear that fully reliable
computations for stiff models are much more expensive.
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Fig. 6.12 Example 6.9. The errors and error majorants for the components u1 (a) and u2 (b)

6.8 Roundoff Errors

At the end of this section, we briefly discuss roundoff errors. They arise because
numbers in computers are presented in the floating point format:

x = ±
(
i1

q
+ i2

q2
+ · · · + ik

qk

)

ql, is < q.

These numbers form the set Rqlk ⊂ R, where q is the base of the representation and
l ∈ [l1, l2] is the power.

We outline that the set Rqlk is not closed with respect to elementary and advanced
operations! For this reason, practically all operations performed on any computer
generate roundoff errors. In general, the effects caused by such type errors are stud-
ied by interval analysis (see, e.g., [AH83, Var62]).

Example 6.10 (Summation of two drastically different real numbers) Assume that
we use a rather primitive digital system with k = 3 and q = 2 to compute a + b,
where a = 1000 and b = 1. In the process of summation, the smallest number must
be normalized in such a way that both numbers have the same power l. Then, all
nonzero digits of b will be lost and we formally obtain a + b = a. This example
shows the difference between operations in R and Rqlk . Certainly, modern comput-
ers operate with much better digital systems, but effects of this type may arise even
in elementary operations.

Definition 6.1 The smallest floating point number, which when added to 1 gives a
quantity other than 1, is the machine (computer) accuracy h.
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Algorithm 6.7 Numerical integration procedure
Input: a, b, n, f (procedure that computes the integrand), c (array of quadrature
weights or the corresponding procedure)
S = 0
for i = 1 : n do
S = S + cif (xi)

end for
Output: S

Machine accuracy depends on the digital system used in a particular computer.
In modern computers, the quantity h is very small, so that occasional roundoff er-
rors are usually unable to corrupt numerical results (at least in engineering com-
putations). However, if such type errors are repeated many times (e.g., in iteration
procedures), then the overall effect may be quite substantial. Numerical integration
methods present examples in which roundoff errors may seriously affect the accu-
racy.

Example 6.11 Consider the standard numerical integration scheme

∫ a

b

f (x)dx ∼=
n∑

i=1

cif (xi).

A simple method of numerical integration associated with this quadrature formula
is presented in Algorithm 6.7.

Assume that we have made one half of the summations and now perform the next
iteration step, which is to compute

(1/2)n∑

i=1

cif (xi)+ c(1/2)n+1f (x(1/2)n+1),

where the first term is of the order 1 and the second one is a very small number ε.
In the process of normalization, certain digits of the latter term may be lost. The
smaller the integration step, the more valuable these roundoff effects could be, so
that in practical computations it may happen that the overall accuracy deteriorates if
the integration step goes to zero. In order to avoid such type effects, the integration
process should be performed in a more sophisticated way, avoiding summation of
drastically different real numbers.

6.9 Open Problems

At present, we know that the main classes of linear boundary value problems can
be reliably modeled because for them we have computable and guaranteed error
bounds (majorants and minorants). These two-sided estimates adequately reflect er-
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rors evaluated in terms of energy norms and other weaker measures. Moreover, they
generate efficient and robust error indicators, which can be used in mesh-adaptive
procedures. Also, majorants and minorants allow us to evaluate modeling errors and
effects caused by incomplete knowledge of physical data. The corresponding theory
has been successfully extended to nonconforming approximations of linear prob-
lems and to certain classes of convex nonlinear problems. However, in general, the
theory of fully reliable computer simulation methods contains many open problems.
Further development of this theory is faced with conceptual questions and challeng-
ing problems.

Below we formulate and briefly motivate eight problems. We hope that some of
them will be studied and solved (at least partially) in the nearest future.

1. Guaranteed and efficient error bounds in terms of pointwise norms. It is well-
known that a priori error estimates in terms of L∞ type norms can be derived,
provided that the exact solution possesses necessary regularity. Also, some error
indicators valid for this case have been suggested. However, so far we do not
know analogs of the estimates (3.28) and (3.35) (or other functional a posteriori
estimates) which could present guaranteed and fully computable bounds of errors
evaluated in terms of pointwise norms. A possible way of deriving such bounds
may come from the theory of sub- and supersolutions, which are widely used in
the theory of partial differential equations (see, e.g., [GT77]).

2. Fully reliable numerical methods for coupled problems. The majority of real life
engineering problems are described by coupled models, which may include vari-
ous differential, integral, and algebraical relations. They arise, e.g., in the theory
of electro- or magneto-rheological fluids, piezoelectricity, poroelasticity, and in
many other models. It is clear that trustable numerical simulations should be
based on a careful analysis of interactions between different errors. This inter-
action together with effects caused by uncertain material data may lead to rather
unpredictable results. The theory of fully reliable computer simulation for cou-
pled models, which takes into account all these effects, is yet to be developed.

3. Analysis of effects caused by uncertain data in nonlinear problems. So far we
have no systematic investigations of indeterminacy effects for strongly nonlinear
problems. It is clear that in some cases these effects can be very significant, and
reliable modeling of nonlinear models cannot be performed without quantitative
analysis of indeterminacy errors.

4. Efficient space-time error control methods for evolutionary models. In spite of
considerable progress in numerical analysis of evolutionary models, the majority
of algorithms used in practice are based on heuristic grounds. The development
of fully reliable integration schemes, which would be able to efficiently control
accumulation of the overall error (and prevent an unacceptable growth of this
error) is one of the most challenging tasks.

5. Reliable modeling of nonlinear problems in fluid dynamics. At this point, the
Navier–Stokes (NS) equation should be mentioned first of all. Certainly, reliable
numerical methods cannot be justified unless the existence and uniqueness of
NS system is proved (which is one of the Millenium Problems stated by the
Clay Mathematical Institute) or unless we properly define the meaning of the
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word “solution”. On the other hand, accurate and fully reliable numerical results
performed for specially selected test problems may provide useful information
for solving difficult theoretical questions. Similar questions arise in other models
of viscous flow, including coupled models (e.g., in solid-fluid interaction models,
generalized Newtonian fluids, phase transition models, etc.).

6. Fully reliable methods for optimal control problems. Partial differential equa-
tions often enter optimal control problems (in the form of state equations). It is
clear that errors encompassed in solutions of state equations affect solutions of
optimal control problems. This means that investigation of fully reliable meth-
ods (based on guaranteed and computable error majorants and minorants) is a
challenging topic in the theory of optimal control and optimal shape design.

7. Computable bounds of constants in embedding inequalities. Error majorants con-
tain different global constants, which come from embedding inequalities associ-
ated with the problem under consideration. Therefore, finding explicit bounds
for such constants is an important problem. For some cases, such estimates are
known (see, e.g., [AD03, Dob03, NR12, OC00, Pay07, PW60, Rep12]). How-
ever, many problems in this area are still unsolved. For example, there is no gen-
eral method able to provide efficient estimates of the LBB constant for arbitrary
Lipschitz domain. Such estimates are required if we wish to perform reliable
modeling of problems defined on the subspace of divergence-free fields.

8. Modeling errors and modeling-discretization adaptive methods. It is clear that
efficient and reliable numerical algorithms developed for engineering problems
must be based on simultaneous analysis of approximation and modeling errors.
Therefore, evaluation of modeling errors and validation of mathematical models
is a fundamental problem, which nowadays is actively under study with the help
of various methods and theoretical conceptions (see Sect. 6.6). We believe that
the creation of new adaptive numerical methods balancing modeling errors and
errors arising due to discretization, approximate integration, interpolation, etc. is
a goal of utmost practical importance.



Appendix A
Mathematical Background

A.1 Vectors and Tensors

By R
d and M

d×d we denote the spaces of real d-dimensional vectors and d × d

matrices, respectively. The scalar product of vectors is denoted by ·, and for the
product of tensors we use the symbol :, i.e.,

u · v = uivi, τ : σ = τij σij ,

where summation (from 1 to d) over repeated indices is implied. Symbol ⊗ stands
for the dyad product of vectors u ∈R

d and v ∈ R
d , i.e.,

u⊗ v = uivj ∈R
d×d, (A.1)

The norms of vectors and tensors are defined as follows:

|a| := √
a · a, |σ | := √

σ : σ .
Henceforth, the symbol := means “equals by definition”. The multiplication of a
matrix A ∈ M

d×d and a vector b ∈ R
d is a vector, which we denote by Ab. Matrices

are usually denoted by capital letters (matrices associated with stresses and strains
are denoted by Greek letters σ and ε). Any tensor τ is decomposed into a deviatoric
part τD and a trace tr τ := τii , so that τ := τD + 1

d
I tr τ , where I is the unit tensor. It

is easy to check that

τ : I = tr τ, τD : I= 0, (A.2)

|τ |2 = ∣
∣τD

∣
∣2 + 1

d
tr τ 2, (A.3)

so that τ is decomposed into two parts (which sometimes are called deviatorical and
spherical).

For a, b ∈ R and any positive β , we have the algebraic Young’s inequality

2ab ≤ βa2 + 1

β
b2. (A.4)
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This inequality has a more general form

ab ≤ 1

p
(βa)p + 1

p′

(
b

β

)p′

, p > 1,
1

p
+ 1

p′ = 1. (A.5)

With the help of (A.4) we find that

1

1 + β
|a|2 − 1

β
|b|2 ≤ |a + b|2 ≤ (1 + β)|a|2 + 1 + β

β
|b|2. (A.6)

Analogous relations hold for any pair of vectors (or tensors) a and b and any β > 0,
i.e.,

2τ : σ ≤ β|τ |2 + 1

β
|σ |2, |τ + σ |2 ≤ (1 + β)|τ |2 + 1 + β

β
|σ |2. (A.7)

If U is a Hilbert space with scalar product (·, ·) and the respective norm ‖ · ‖ asso-
ciated with the product, then it is easy to extend (A.4)–(A.7) to the elements of U .

Also, we use the inequality

(y, q)≤ ‖y‖A‖q‖A−1, ∀y, q ∈U, (A.8)

where A :U →U is a symmetric and positive definite operator,

‖y‖2
A := (Ay, y), and ‖y‖2

A−1 := (A−1y, y
)
.

Indeed, we have

0 ≤ (A(A−1y + γ q
)
,A−1y + γ q

)= (A−1y, y
)− 2γ (y, q)+ γ 2(Aq, q),

where we can set γ := (A−1y,y)
(y,q)

(we assume that y �= 0 and (y, q) �= 0, otherwise

the inequality (A.8) is obvious) and arrive at (A.8).

A.2 Spaces of Functions

A.2.1 Lebesgue and Sobolev Spaces

We denote a bounded connected domain in R
d by Ω and its boundary by Γ .

Everywhere in the book, we assume that Γ is Lipschitz continuous. This means
that at any point x ∈ Γ , a certain local coordinate system can be introduced such
that the boundary is presented by a one-valued function which is Lipschitz continu-
ous at a vicinity of x. Usually, ω stands for an open subset of Ω . The closure of sets
is denoted by a bar and the Lebesgue measure of a set ω by the symbol |ω|.
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By Lα(ω) we denote the space of functions summable with power α endowed
with norm

‖w‖α,ω :=
(∫

ω

|w|α dx

)1/α

.

Also, we use the simplified notation

‖w‖α := ‖w‖α,Ω, ‖w‖ := ‖w‖2,Ω .

The vector-valued functions with components that are square summable in Ω

form the Hilbert space L2(Ω,Rd). Analogously, L2(Ω,Md×d) is the Hilbert space
of tensor-valued functions (sometimes we use the special notation Σ for this space).
If tensor-valued functions are assumed to be symmetric, then we write M

d×d
s (and

Σs instead of L2(Ω,Md×d
s )). For v ∈ L2(Ω,Rd) and τ ∈ L2(Ω,Md×d), the norms

are defined by the relations

‖v‖2 :=
∫

Ω

|v|2 dx and ‖τ‖2 :=
∫

Ω

|τ |2 dx.

Similarly, for a vector-valued function v ∈ Lα(ω),

‖v‖α,ω :=
(∫

ω

|v|α dx

)1/α

and ‖v‖α,Ω = ‖v‖α :=
(∫

Ω

|v|α dx

)1/α

. (A.9)

The space of measurable essentially bounded functions is denoted by L∞(Ω). It is
equipped with the norm

‖u‖∞,Ω = ess sup
x∈Ω

∣
∣u(x)

∣
∣.

By
◦
C∞(Ω) we denote the space of all infinitely differentiable functions with com-

pact supports in Ω . The spaces of k-times differentiable scalar- and vector-valued
functions are denoted by Ck(Ω) and Ck(Ω,Rd), respectively;

◦
Ck(Ω) is the sub-

space of Ck(Ω) that contains functions vanishing on the boundary. P k(Ω) denotes
the set of polynomial functions defined in Ω ⊂ R

d , i.e., v ∈ P k(Ω) if

v =
∑

|α|≤m
aαx

α, m≤ k, aα = aα1,...,αd , (A.10)

where α := (α1, . . . , αd) is the so-called multi-index, |α| := α1 + α2 + · · · + αd ,
and xα = xα1xα2 · · ·xαd . For partial derivatives we keep the standard notation and
write ∂f

∂xi
or f,i . Usually, we understood them in a generalized sense, namely, a

function g = f,i is called a generalized derivative of f ∈ L1(Ω) with respect to xi
if it satisfies the relation

∫

Ω

fw,i dx = −
∫

Ω

gw dx, ∀w ∈ ◦
C1(Ω). (A.11)

Generalized derivatives of higher orders are defined by similar integral relations.
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By {|g|}S we denote the mean value of a function g on S, i.e.,

{|g|}S := 1

|S|
∫

S

g dx and g̃S := g − {|g|}S.

Square-summable functions with zero mean form the space

◦
L2(Ω) := {q ∈ L2(Ω) | {|q|}Ω = 0

}
.

The space H(Ω,div) is a subspace of L2(Ω,Rd) that contains vector-valued func-
tions with square-summable divergence, and H(Ω,Div) is a subspace of Σ that
contains tensor-valued functions with square-summable divergence, i.e.,

H(Ω,div) := {
v ∈ L2(Ω,Rd

) | divv := {vi,i} ∈ L2(Ω)
}
,

H(Ω,Div) := {
τ ∈ L2(Ω,Md×d

) | Div τ := {τij,j } ∈ L2(Ω,Rd
)}
.

Both spaces H(Ω,div) and H(Ω,Div) are Hilbert spaces endowed with scalar
products

(u, v)div :=
∫

Ω

(u · v + divudivv)dx

and

(σ, τ )Div :=
∫

Ω

(σ : τ + Divσ · Div τ)dx,

respectively. The norms ‖ · ‖div and ‖ · ‖Div are associated with the above-defined
scalar products.

Similarly, H(Ω, curl) is the Hilbert space of vector-valued functions having
square-summable rotor, i.e.,

H(Ω, curl) := {v ∈ L2(Ω,R3) | curlv ∈ L2(Ω,R3)},

where curlv := (v3,2 − v2,3;v1,3 − v3,1;v2,1 − v1,2). This space can be defined as
the closure of smooth functions with respect to the norm

‖w‖curl := (‖w‖2
Ω + ‖ curlw‖2

Ω

)1/2
.

The Sobolev spaces [Sob50] Wm,p(Ω) (where m and p are positive integers) con-
tain functions summable with power p, its generalized derivatives up to order m
belonging to Lp . For a function f ∈Wm,p(Ω), the norm is defined as follows:

‖f ‖m,p,Ω =
(∫

Ω

∑

|α|≤m

∣
∣Dαf

∣
∣p dx

)1/p

,

where Dαv = ∂ |α|v
∂x

α1
1 ···∂xαdd

is a derivative of the order |α| := α1 + · · · + αd .
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Sobolev spaces with p = 2 are often denoted by the letter H (because they are
Hilbert spaces), i.e.,

Hm(Ω) := {v ∈ L2(Ω) |Dαv ∈ L2(Ω),∀m : |α| ≤m
}
.

A subset of Hm(Ω) formed by the functions vanishing on Γ is denoted by
◦
Hm(Ω).

Relationships between the Sobolev spaces and other functional spaces (such as
Lp(Ω) and Ck(Ω)) are well studied. The following results (which are known in
the literature as embedding theorems, see [GT77, Lad70, Sob50]) play an impor-
tant role in analysis of PDEs. We recall that a space X is said to be continuously
embedded in Y if X ⊂ Y and a constant C exists such that

‖w‖Y ≤ C‖w‖X, ∀w ∈X.

This fact is usually denoted by X �→ Y . For example, it is easy to show that
Lp(Ω) �→ Lq(Ω), provided that p ≥ q ≥ 1.

We say that the embedding operator is compact if it maps bounded sets to com-
pact sets (compact embedding is denoted by the symbol ↪→).

Theorem A.1 Let Ω be a bounded domain in R
d with Lipschitz continuous bound-

ary and l ≥ 0 be an integer. Then,

• If p,q ≥ 1, p ≤ q , and l + n
q

≥ n
p

, then Wl,p(Ω) is continuously embedded in
Lq(Ω) provided that l < n

p
. If l = n

p
, then the above holds for p < q <∞.

• if in the above l + n
q
> n

p
, then the embedding operator is compact.

• If l − k > n
p

, then Wl,p(Ω) is compactly embedded in Ck(Ω).

A.2.2 Boundary Traces

The functions in Sobolev spaces have counterparts on Γ (and on other manifolds of
lower dimensions) that are associated with spaces of traces. Thus, there exist some
bounded operators mapping the functions defined in Ω to functions defined on the
boundary. For example, an operator γ :H 1(Ω)→ L2(Γ ) is called the trace operator
if it satisfies the following conditions:

γv = v|Γ , ∀v ∈ C1(Ω), (A.12)

‖γv‖2,Γ ≤ cT Γ ‖v‖1,2,Ω, (A.13)

where cT Γ is a positive constant independent of v. From these relations, we ob-
serve that γv is a natural generalization of the trace defined for a continuous
function (in the pointwise sense). The image of γ is a subset of L2(Γ ), which
is the space H 1/2(Γ ). The functions from other Sobolev spaces are also known
to have traces in Sobolev spaces with fractional indices. Thus, γ is a linear con-
tinuous operator from H 1(Ω) to H 1/2(Γ ) and the space

◦
H 1(Ω) is the kernel
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of γ . Also, for any φ ∈H 1/2(Γ ), one can define a continuation (lifting) operator
μ :H 1/2(Γ )→H 1(Ω) such that

μφ =w, w ∈H 1(Ω), γw = φ on Γ

and (e.g., see [LM68a, LM68b, LM68c])

‖φ‖H 1/2,Γ ≤ cγ ‖w‖1,2,Ω, ‖w‖1,2,Ω ≤ cμ‖φ‖H 1/2,Γ . (A.14)

Using the operator γ , we define subspaces of functions vanishing on Γ or on some
part Γ1 of Γ . Such subspaces are marked by the zero subscript, e.g.,

V0 := {v ∈ V ‖ γv = 0 a.e. on Γ1}.
We understand the boundary values of functions in the sense of traces, so that “u= φ

on Γ ” means that the trace γu of a function u defined in Ω coincides with the given
function φ defined on Γ . If for two functions u and v defined in Ω we say that u
equals v on Γ , then we mean that γ (u− v)= 0 on Γ . For the sake of simplicity, we
omit the trace symbol γ and write u= v.

Boundary conditions of boundary value problems are often written in the form

u= u0 on Γ,

where u0 is a given function from V . This condition should be understood in the
sense that the trace of u coincides with the trace of u0.

A.2.3 Linear Functionals

Let V be a Banach space. A mapping � : v → 〈�, v〉 ∈ R (where v ∈ V ) is called
a linear functional if it is additive and 〈�, γ v〉 = γ 〈�, v〉 for any γ ∈ R. We define
||�|| := supv∈V

〈�,v〉
‖v‖V and call the functional bounded if this quantity is finite. Any

bounded linear functional is continuous. The set of all linear bounded functionals
on V forms the dual space V ∗. In view of the Riesz representation theorem, in a
Hilbert space H with the scalar product (·, ·) any bounded linear functional has the
form (v∗, v), where v∗ is a unique element of H . Moreover, ||�|| = ‖v∗‖H . This
result can be extended to a wide spectrum of reflexive metric spaces if we replace
the scalar product by 〈v∗, v〉.

For f ∈ L2(Ω), the functional

〈f,i, ϕ〉 := −
∫

Ω

f
∂ϕ

∂xi
dx (A.15)

is linear and continuous not only for functions in
◦
C∞(Ω) but also for all functions of

the space
◦
H 1(Ω) (this fact follows from the density of smooth functions in

◦
H 1(Ω)
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and known theorems on the continuation of linear functionals). Such functionals can
be viewed as generalized derivatives of square-summable functions. They form the
space H−1(Ω) dual to

◦
H 1(Ω). It is easy to see that the quantity

||f,i|| := sup
ϕ∈ ◦

H 1(Ω)

ϕ �=0

|〈f,i, ϕ〉|
‖∇ϕ‖Ω (A.16)

is nonnegative and finite. It can be used to introduce the norm for H−1(Ω). We can
introduce other linear continuous functionals defined on

◦
H 1(Ω), e.g.,

�(w)=
∫

Ω

η · ∇w dx,

where η is a given function ∈ L2(Ω,Rd). It is easy to see that

||�|| ≤ ‖η‖Ω.

Example A.1 In a posteriori error analysis of the differential equation
divA∇u+ f = 0, the residual functional

�v(w) :=
∫

Ω

(fw −A∇v · ∇w)dx

generated by an approximate solution v has an important role. Getting the com-
putable upper bounds for such a functional (and for similar functionals arising in
other boundary value problems) presents a problem studied in the theory of error
estimation.

A.3 Inequalities

In this section, we recall several inequalities well-known in functional analysis (e.g.,
see [GT77, KF75, LU68, Sob50]) and discuss some implications that are employed
in the book.

A.3.1 The Hölder Inequality

First, we recall the inequality

|a · b| ≤
(

d∑

i=1

|ai |α
)1/α( d∑

i=1

|bi |α′
)1/α′

, (A.17)



254 A Mathematical Background

where 1
α′ + 1

α
= 1 and a, b ∈ R

d . It is known as the discrete Hölder inequality. The
Hölder inequality for functions defined in a bounded Lipschitz domain ω reads

∫

ω

wv dx ≤ ‖w‖α,ω‖v‖α′,ω (A.18)

for w ∈ Lα(ω) and v ∈ Lα′
(ω), α ∈ [1,+∞).

A.3.2 The Poincaré and Friedrichs Inequalities

First, we recall the following well-known fact. Let �(w) be a linear continu-
ous functional defined for any w ∈ W 1,p(Ω), p ≥ 1, such that if �(w) = 0 and
w ∈ P 0, then w = 0. Then, the original norm of W 1,p(Ω) is equivalent to the norm
|�(w)| + ‖∇w‖p,Ω . The proof of this assertion is similar to the proof of Theo-
rem A.2.

Since W 1,p(Ω) is embedded in Lp(Ω), we conclude that

‖w‖p,Ω ≤ C(p,Ω,d)
(∣
∣�(w)

∣
∣+ ‖∇w‖p,Ω

)
, ∀w ∈W 1,p(Ω). (A.19)

We can select �(w) as

�(w)=
∫

Ω

w dx, �(w)=
∫

Γ

w ds, or �(w)=
∫

ω

w dx,

where ω is a certain measurable subset of Ω .
Consider subspaces of W 1,p(Ω) defined by the condition �(w)= 0. Then, (A.19)

reads

‖w‖p,Ω ≤ C(p,Ω,d)‖∇w‖p,Ω, ∀w ∈ {W 1,p(Ω) |w ∈ ker�
}
. (A.20)

A.3.2.1 The Poincaré Inequality

If �(w) = ∫
Ω
w dx, then the condition �(w) = 0 is equivalent to {|w|}Ω = 0. In this

case, we obtain the Poincaré inequality

‖w‖p,Ω ≤ CP (p,Ω,d)‖∇w‖p,Ω, ∀w ∈ {W 1,p(Ω) | {|w|}Ω = 0
}
. (A.21)

Without the zero mean condition, the Poincaré inequality can also be represented in
the form (for p = 2)

‖w‖2
Ω ≤ C2

P (Ω,d)

(

‖∇w‖2
Ω +

(∫

Ω

w dx

)2)

. (A.22)
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From (A.22) it follows that for p = 2

‖w‖Ω ≤ CP (Ω,d)‖∇w‖Ω, ∀w ∈ ◦
L2(Ω). (A.23)

These results (and similar estimates associated with the spaces Wl,p(Ω)) are proved
with the help of the so-called “compactness method”. Below we use this method to
prove one more estimate, which has an exceptional importance for the approxima-
tion theory.

Theorem A.2 Let Ω ∈ R
d be a bounded domain with Lipschitz boundary Γ and

w ∈Wk+1,p(Ω). Then,

‖w‖k,p,Ω ≤ C|w|k+1,p,Ω, ∀w ∈ V, (A.24)

where C(p,Ω,d, k) is a positive constant independent of w and V is the space of
functions orthogonal to all polynomials of degree less than or equal to k, i.e.,

V =
{

w ∈Wk+1,p(Ω)

∣
∣
∣

∫

Ω

wη dx = 0, ∀η ∈ P k(Ω)

}

.

Proof Assume that (A.24) does not hold; then for any i ∈ N, we can find w(i) ∈ V

such that
∥
∥w(i)

∥
∥
k,p,Ω

> i
∣
∣w(i)

∣
∣
k+1,p,Ω. (A.25)

Let w̄(i) =w(i)/‖w(i)‖k,p,Ω . We have

∣
∣w̄(i)

∣
∣
k+1,p,Ω < 1/i,

∥
∥w(i)

∥
∥
k,p,Ω

= 1. (A.26)

Evidently the sequence w̄(i) is bounded with respect to the norm Wk+1,p(Ω), which
implies

w̄(i) → w̄ ∈ V weakly in Wk+1,p(Ω).

In view of embedding theorems (cf. Theorem A.1),

w̄(i) → w̄ strongly in Wk,p(Ω).

Moreover, |w̄(i)|k+1,p,Ω → 0. Hence, w̄ ∈ P k(Ω)∩ V . Since

∫

Ω

w̄η dx = 0, ∀η ∈ P k(Ω),

we set η = w̄ and conclude that w̄ = 0. Thus, ‖w(i)‖k,p,Ω → 0 as i → ∞. On the
other hand, ‖w(i)‖k,p,Ω = 1 (cf. (A.26)). We arrive at a contradiction, which shows
that our original assumption was wrong and the estimate (A.24) is true. �
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In the book, we use (A.23) in the derivation of a posteriori estimates for elliptic
partial differential equations. In this analysis, it is important to have computable
estimates of the constant CP .

If Ω is a convex domain and p = 2, then (for any d) CP (Ω,d) ≤ diamΩ
π

(see
[PW60]). Similar estimates for other p ≥ 1 can be found in, e.g., Sect. 7.8 in [GT77]
and [AD03].

A.3.2.2 The Friedrichs Inequality

For functions from H 1(Ω), the Friedrichs inequality

‖w‖2
Ω ≤ C2

FΩ

(

‖∇w‖2
Ω +

∫

Γ

|w|2 ds

)

(A.27)

holds, where C2
FΩ does not depend on w. Similar inequalities hold for functions in

W 1,p(Ω).
A particular form of (A.27) is

‖w‖Ω ≤ CF (Ω,d)‖∇w‖Ω, ∀w ∈ ◦
H 1(Ω). (A.28)

It also follows from (A.20) if �(w)= ∫
Γ
w ds and p = 2.

For p ∈ [1,+∞) we have an analogous estimate (see, e.g., [GT77])

‖w‖p ≤
( |Ω|
�d

)1/d

‖∇w‖p,Ω. (A.29)

Let Ω ⊂ Ω̂ . For any w ∈ ◦
H 1(Ω), we can define ŵ ∈ ◦

H 1(Ω̂) by setting ŵ = w in
Ω and ŵ(x)= 0 for any x ∈ Ω̂ \Ω . For all ŵ ∈ ◦

H 1(Ω̂), we have the inequality

‖w‖Ω̂ ≤ CF (Ω̂, d)‖∇w‖Ω̂ , ∀w ∈ ◦
H 1(Ω̂),

which means that CF (Ω,d)≤ CF (Ω̂, d).
This fact opens a way of deriving simple upper bounds for the Friedrichs con-

stant. Let

Ω ⊂ Ω̂ := {x ∈R
d | ai < x < bi, bi − ai = li , i = 1, . . . , d

}
.

Since the constant CF (Ω̂, d) is known, we find that

CF (Ω,d)≤ 1

π

(
d∑

i=1

1

l2i

)−1

. (A.30)
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Finally, we note that the constant in (A.28) depends on the lowest eigenvalue of
the operator Δ, which satisfies the Rayleigh relation

1

C2
F (Ω,d)

= λΩ := inf
w∈ ◦

H 1(Ω)

w �=0

‖∇w‖2

‖w‖2
. (A.31)

Therefore, lower estimates of the minimal eigenvalue generate upper estimates of
the Friedrichs constant.

Discrete versions of the Friedrichs and Poincaré inequalities valid for piecewise
H 1 functions are established in [Bre03b]. They are used in error analysis of various
nonconforming approximations.

A.3.3 Korn’s Inequality

In continuum mechanics, of importance is the following assertion known as the
Korn’s inequality. Let Ω be an open, bounded domain with Lipschitz continuous
boundary. Then,

∫

Ω

(|w|2 + ∣∣ε(w)∣∣2)dx ≥ CKΩ‖w‖2
1,2,Ω, ∀w ∈H 1(Ω,Rd

)
, (A.32)

where CKΩ is a positive constant independent of w and ε(w) denotes the symmetric
part of the tensor ∇w, i.e.,

εij (w)= 1

2

(
∂wi

∂xj
+ ∂wj

∂xi

)

. (A.33)

It is not difficult to verify that the left-hand side of (A.32) is bounded from the
above by the H 1-norm of w. Thus, it represents a norm equivalent to ‖ · ‖1,2,Ω .
The kernel of ε(w) is called the space of rigid deflections and is denoted by R(Ω).
If w ∈ R(Ω), then it can be represented in the form w = w0 + ω0x, where w0

is a vector independent of x and ω0 is a skew-symmetric tensor with coefficients
independent of x. It is easy to understand that the dimension of R(Ω) is finite and
equals d + d(d−1)

2 .

For functions in
◦
H 1(Ω), the Korn’s inequality is easy to prove. Indeed,

∣
∣ε(w)

∣
∣2 = 1

4
(wi,j +wj,i)(wi,j +wj,i)

= 1

4
(wi,jwi,j +wj,iwj,i + 2wi,jwj,i)= 1

2

(|∇w|2 +wi,jwj,i

)
,
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where summation over repeated indices is implied. Therefore, for any w ∈ ◦
C2(Ω)

we have
∫

Ω

∣
∣ε(w)

∣
∣2 dx = 1

2

∫

Ω

(|∇w|2 +wi,jwj,i

)
dx = 1

2

∫

Ω

(|∇w|2 −wiwj,ij

)
dx

= 1

2

∫

Ω

(|∇w|2 +wi,iwj,j

)
dx = 1

2

∫

Ω

(|∇w|2 + |wi,i |2
)

dx

≥ 1

2
‖∇w‖2.

Hence,

‖∇w‖ ≤ √
2
∥
∥ε(w)

∥
∥, ∀w ∈ ◦

C2(Ω). (A.34)

Since
◦
C2(Ω) is dense in

◦
H 1(Ω), this inequality is also valid for functions in

◦
H 1(Ω). Mathematical justifications of the inequality (A.32) are much more compli-
cated (see, e.g., [DL72, Nit81]). Korn’s inequalities for piecewise H 1 vector fields
are established in [Bre03a]. Interesting generalizations of the Korn’s inequality has
been recently found and presented in [NPW12].

A.3.4 LBB Inequality

The following result plays an important role in analysis of boundary value problems
related to the theory of viscous fluids.

Lemma A.1 Let Ω be a bounded domain with Lipschitz continuous boundary.
There exists a positive constant κΩ (which depends only on Ω) such that for
any function f ∈ ◦

L2(Ω) one can find a function w ∈ V satisfying the relations
divw = f and

‖∇w‖ ≤ κΩ‖f ‖. (A.35)

The reader will find the proof in [BA72, BF91, LS76]. Lemma A.1 implies sev-
eral important results. First, it leads to the key condition in the mathematical theory
of incompressible fluids known in the literature as the Inf–Sup (or Ladyzhenskaya–
Babuška–Brezzi (LBB)) condition. The latter reads: there exists a positive constant
cLBB such that

inf
q∈ ◦

L2(Ω)

q �=0

sup
w∈V
w �=0

∫
Ω
q divw dx

‖q‖‖∇w‖ ≥ cLBB. (A.36)

By Lemma A.1, it is easy to show that (A.36) holds with cLBB = (κΩ)
−1. Indeed,

for arbitrary q ∈ ◦
L2(Ω), we can find wq such that divwq = q and ‖∇wq‖ ≤ κΩ‖q‖,

which implies the required result.
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Inf–Sup condition (A.36) and its discrete analogs are used for proving the sta-
bility and convergence of numerical methods in various problems related to the
theory of viscous incompressible fluids. In [Bab73b] and [Bre74], this condition
was proved and used to justify the convergence of the so-called mixed methods, in
which a boundary-value problem is reduced to a saddle-point problem for a certain
Lagrangian. Also, (A.36) can be justified by the Nečas inequality (for domains with
Lipschitz boundaries a simple proof is presented in [Bra03]). Estimates of cLBB for
various domains are discussed, e.g., in [Dob03, OC00, Pay07].

A.4 Convex Functionals

A consequent exposition of convex analysis can be found, e.g., in [ET76, Roc70].
Here, we make a brief summary of the most commonly used notions.

Definition A.1 A functional J : V → R is called convex if

J (λ1v1 + λ2v2)≤ λ1J (v1)+ λ2J (v2)

for any nonnegative λ1 and λ2 such that λ1 + λ2 = 1.

The convexity of quadratic type functionals is easy to show, e.g., for any v1
and v2,

(λ1v1 + λ2v2)
2 = λ2

1v
2
1 + 2λ1λ2v1v2 + λ2

2v
2
2

≤ λ2
1v

2
1 + λ1λ2v

2
1 + λ1λ2v

2
2 + λ2

2v
2
2 = λ1v

2
1 + λ2v

2
2 .

Important subsets of the set of convex functionals are formed by strictly convex and
uniformly convex functionals.

Definition A.2 A functional J : V → R is called strictly convex if

J (λ1v1 + λ2v2) < λ1J (v1)+ λ2J (v2)

for any positive λ1 and λ2 such that λ1 + λ2 = 1.

Uniform convexity is a property which is important in the theory of nonlinear
convex variational problems related to a posteriori error estimation.

Definition A.3 A convex functional J : V → R is called uniformly convex in a
ball B(0V ,ρ) if there exists a nonnegative functional Υρ �≡ 0 such that for all
v1, v2 ∈ B(0V ,ρ) the following inequality holds:

J

(
v1 + v2

2

)

+Υρ(v1 − v2)≤ 1

2

(
J (v1)+ J (v2)

)
. (A.37)
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For many convex functionals, the estimate (A.37) holds with

Υρ = Υρ
(‖v1 − v2‖V

)
,

i.e., with a monotone function dependent on the norm and vanishing only at zero
(see, e.g., [NR04, Rep97b]).

Let V be a reflexive Banach space (see Sect. A.2.3). The functional J ∗ : V ∗ →R

defined by the relation

J ∗(v∗)= sup
v∈V

{〈
v∗, v

〉− J (v)
}

(A.38)

is said to be dual (or conjugate) to J .

Remark A.1 If J is a smooth function that increases at infinity faster than any linear
function, then J ∗ is the Legendre transform of J . The dual functionals were studied
by Young, Fenchel, Moreau, and Rockafellar (e.g., see [ET76, Fei93, Roc70]). The
functional J ∗ is also called polar to J .

The functional

J ∗∗(v)= sup
v∗∈V ∗

{〈
v∗, v

〉− J ∗(v∗)} (A.39)

is called the second conjugate to J (or bipolar). If J is a convex functional attaining
finite values, then J coincides with J ∗∗.

To illustrate the definitions of conjugate functionals, consider functionals defined
on the Euclidean space Ed . In this case, V and V ∗ consist of the same elements:
d-dimensional vectors (denoted by ξ and ξ∗, respectively) and the quantity 〈ξ∗, ξ 〉
is presented by the scalar product ξ∗ · ξ .

Let A= {aij } be a positive definite matrix. We have the following pair of mutu-
ally conjugate functionals:

J (ξ)= 1

2
Aξ · ξ and J ∗(ξ∗)= 1

2
A−1ξ∗ · ξ∗. (A.40)

Another example is given by the functionals

J (ξ)= 1

α
|ξ |α and J ∗(ξ∗)= 1

α′
∣
∣ξ∗∣∣α′

, (A.41)

where 1
α

+ 1
α′ = 1. If ϕ is an odd convex function, then (ϕ(‖u‖V ))∗ = ϕ∗(‖u∗‖V ∗).

Let a functional J : V → R be finite at v0 ∈ V . The functional J is called sub-
differentiable at v0 if there exists an affine minorant l such that J (v0) = l(v0). The
element v∗ is called a subgradient of J at v0. The set of all subgradients of J at v0
forms a subdifferential, which is usually denoted by ∂J (v0). It may be empty, or it
may contain one element or infinitely many elements.

An important property of convex functionals follows directly from the fact that
they have an exact affine minorant

J (v)− J (v0)≥ 〈v∗, v − v0
〉
, (A.42)
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where v∗ ∈ ∂J (v0). The inequality (A.42) represents the basic incremental relation
for convex functionals. For proper convex functionals, there exists a simple criterion
that enables one to verify whether or not an element v∗ belongs to the set ∂J (v).

Lemma A.2 The following two statements are equivalent:

J (v)+ J ∗(v∗)− 〈v∗, v
〉= 0, (A.43)

v∗ ∈ ∂J (v), (A.44)

v ∈ ∂J ∗(v∗). (A.45)

Proof Assume that v∗ ∈ ∂J (v). In accordance with (A.42), we have

J (w)≥ J (v)+ 〈v∗,w − v
〉
, ∀w ∈ V.

Hence,
〈
v∗, v

〉− J (v)≥ 〈v∗,w
〉− J (w), ∀w ∈ V

and, consequently,

〈
v∗, v

〉− J (v)≥ sup
w∈V

{〈
v∗,w

〉− J (w)
}= J ∗(v∗). (A.46)

However, by the definition of J ∗, we know that for any v and v∗

J ∗(v∗)≥ 〈v∗, v
〉− J (v). (A.47)

We observe that (A.46) and (A.47) imply (A.43).
Assume that v ∈ ∂J ∗(v∗). Then, J ∗(w∗)≥ J ∗(v∗)+ 〈w∗ − v∗, v〉, so that

〈
v∗, v

〉− J ∗(v∗)≥ sup
w∗∈V ∗

{〈
w∗, v

〉− J ∗(w∗)}= J ∗∗(v).

On the other hand,
〈
v∗, v

〉− J ∗(v∗)≥ J ∗∗(v)= J (v),

and we again arrive at (A.43).
Assume that (A.43) holds. By the definition of J ∗, we obtain

0 = J (v)+ J ∗(v∗)− 〈v∗, v
〉≥ J (v)− J (w)− 〈v∗, v −w

〉
,

where w is an arbitrary element of V . Thus,

J (w)− J (v)≥ 〈v∗,w − v
〉
, ∀w ∈ V,

which means that J (v) + 〈v∗, v − w〉 is an exact affine minorant of J (at v) and,
consequently, (A.44) holds. The proof of (A.45) is quite similar. �
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Let J and J ∗ be a pair of conjugate functionals. The functional

DJ : V × V ∗ →R+
DJ

(
v, v∗) := J (v)+ J ∗(v∗)− 〈v∗, v

〉

is called the compound functional.
In view of Lemma A.2, DJ (v, v

∗) ≥ 0. Moreover, DJ (v, v
∗) = 0 if and only if

the arguments satisfy (A.44) and (A.45), which are also called the duality relations
and very often represent the constitutive relations of a physical model. Compound
functionals play an important role in the a posteriori error estimation of nonlinear
variational problems.

Finally, we recall some basic notions related to the differentiation of convex func-
tionals. We say that J has a weak derivative J ′(v0) ∈ V ∗ (at the point v0) in the sense
of Gâteaux if

lim
λ→+0

J (v0 + λw)− J (v0)

λ
= 〈J ′(v0),w

〉
, ∀w ∈ V. (A.48)

Assume that J is differentiable in the above sense and v∗ ∈ ∂J (v0). Then, for any
v ∈ V we know that J (v) − J (v0) ≥ 〈v∗, v − v0〉. Set v = v0 + λw, where λ > 0.
Now, we have J (v0 + λw)− J (v0)≥ λ〈v∗,w〉. Therefore,

〈
J ′(v0),w

〉= lim
λ→+0

J (v0 + λw)− J (v0)

λ
≥ 〈v∗,w

〉
,

and 〈J ′(v0)− v∗,w〉 ≥ 0 for any w ∈ V . This inequality means that, in such a case,
the Gâteaux derivative coincides with v∗.



Appendix B
Boundary Value Problems

This chapter briefly discusses the main approaches to quantitative analysis of elliptic
boundary value problems. They are based on classical and generalized settings of
a BVP and on representation of a problem in the variational or saddle point forms.
Each of the approaches generates the corresponding approximation procedures and
numerical methods, which are considered in the last part of the chapter.

B.1 Generalized Solutions of Boundary Value Problems

Solutions of boundary value problems are usually considered in a generalized sense.
The definition of a solution to BVP is connected with approximation methods and,
therefore, it is impossible to discuss accuracy and error estimation methods without
addressing these questions. In this chapter we briefly recall basic facts from the
corresponding mathematical theory with the example of the problem

Δu+ f = 0 in Ω, (B.1)

u = u0 on Γ. (B.2)

Originally, this problem was understood in the classical sense: Find
u ∈ C2(Ω)∩C(Ω̄) such that the boundary condition (B.2) is satisfied and

∂2u

∂2x1
+ ∂2u

∂2x2
+ f = 0, ∀(x1, x2) ∈Ω,

where ∂2u

∂2xk
, k = 1,2, are the classical derivatives.

However, the question as to how one can guarantee that a solution of (B.1)–
(B.2) does exist must be answered. This question happened to be very difficult, and
the answer has been found only after about one hundred years of studies, which
completely reconstructed the theory of partial differential equations. The modern
theory is based on the works of D. Hilbert, H. Poincaré, S. Sobolev, R. Courant,
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O. Ladyzhenskaya, and many others mathematicians who contributed to the con-
ception of a generalized or weak solution. These solutions are closely related to
the Petrov–Bubnov–Galerkin method [Gal15]. The idea of this method is to find
uN =∑N

i=1 αiwi such that

∫

Ω

(ΔuN + f )wi dx = 0, ∀wi, i = 1,2, . . . ,N.

This means that the residual of the differential equation generated by uN is or-
thogonal to the finite dimensional space VN formed by linearly independent trial
functions wi .

The conception of generalized solutions naturally extends this idea. Let us find a
function that makes the residual orthogonal to all the functions in w from a proper
functional space V , i.e.,

∫

Ω

(Δu+ f )w dx = 0, ∀w ∈ V.

Integration by parts leads to the generalized statement of (B.1)–(B.2): Find
u ∈ ◦

H 1(Ω)+ u0 such that

∫

Ω

∇u · ∇w dx =
∫

Ω

fw dx, ∀w ∈ V = ◦
H 1(Ω). (B.3)

It is easy to see that if (B.1)–(B.2) has a classical solution, then it automatically satis-
fies (B.3). However, some boundary value problems may have generalized solutions
but do not have classical solutions.

The idea used in (B.3) admits wide extensions (see, e.g., [Lad85]) to various
differential equations. In particular, it is easy to generalize it to the class of elliptic
problems generated by V -elliptic bilinear forms, defined on a Hilbert space V . We
recall that a symmetric bilinear form a : V × V → R is called V -elliptic if two
positive constants c1 and c2 exists such that

a(u,u) ≥ c1‖u‖2
V , ∀u ∈ V, (B.4)

∣
∣a(u, v)

∣
∣ ≤ c2‖u‖V ‖v‖V , ∀u,v ∈ V. (B.5)

In particular, the left-hand side of (B.3) is presented by a(u, v)= ∫
Ω

∇u · ∇v dx.
Let � : V → R be a bounded linear functional. The problem of finding u in a

Hilbert space V such that

a(u,w)= �(w), ∀w ∈ V, (B.6)

is a generalization of (B.3). It is not difficult to prove that (B.6) has a solution. The
proof of this fact is based on the following theorem (often called the Lax–Milgram
lemma).
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Lemma B.1 For a V-elliptic bilinear form a there exists a linear bounded operator
A ∈ L(V ,V ) such that

a(u, v)= (Au,v), ∀u,v ∈ V.

It has an inverse A−1 ∈ L(V ,V ). The norms of the operators A and A−1 are
bounded by the constants c2 and 1

c1
, respectively.

Lemma B.1 is sufficient to prove that the problem (B.6) is well defined and to
deduce the first a priori estimate that bounds ‖u‖V through the norm of � (such
estimates are often called “energy estimates”).

Theorem B.1 Let a be a V -elliptic bilinear form, then (B.6) has a unique solution
and

‖u‖V ≤ 1

c1
‖�‖. (B.7)

Proof In view of the Reisz theorem, there exists w ∈ V such that

�(v)= (v,w), ∀v ∈ V

and ‖w‖V = ‖�‖. By Lemma B.1, we know that a(u, v) = (Au,v) and, therefore,
(B.6) reads

(Au,v)= (w,v), ∀v ∈ V,

which is equivalent to Au = w. Since the inverse operator exists, we conclude that
u=A−1w. Hence, u exists and is unique. By Lemma B.1, we also conclude that

‖u‖V = ∥∥A−1w
∥
∥
V

≤ ∥∥A−1
∥
∥‖w‖V ≤ 1

c1
‖w‖V = 1

c1
‖�‖. �

Example B.1 Consider the problem (B.1)–(B.2) and reformulate it in the following
form: find ū := u− u0 ∈ V0 := ◦

H 1(Ω) such that
∫

Ω

∇ū · ∇w dx = �(w), ∀w ∈ V0,

where �(w) := ∫
Ω
(fw−∇u0 · ∇w)dx. We set V = V0 and endow it with the norm

‖∇v‖. Since the corresponding bilinear form is a(ū,w) = ∫
Ω

∇ū · ∇w dx, we see
that c1 = c2 = 1. Then (B.7) implies the energy estimate

‖∇ū‖ ≤ ‖�‖ = sup
w∈V

∫
Ω
(fw − ∇u0 · ∇w)dx

‖∇w‖ . (B.8)

Note that
∫

Ω

fw dx ≤ ‖f ‖‖w‖ ≤ ‖f ‖CFΩ‖∇w‖,
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where CFΩ is the constant in the Friedrichs inequality. Therefore, (B.8) yields the
desired estimate

‖∇ū‖ ≤ CFΩ‖f ‖ + ‖∇u0‖,
which means that ‖∇u‖ ≤ C(‖f ‖ + ‖∇u0‖).

B.2 Variational Statements of Elliptic Boundary Value Problems

The variational approach arose in the 19th century shortly after the first PDE’s had
been presented. They are motivated by physical “minimal energy” principles in me-
chanics. In fact, the variational method originates from the famous Fermat theorem:
If f is a differentiable function that attains the minimum at x̄, then f ′(x̄)= 0.

Later, L. Euler and J. L. Lagrange created the calculus of variations and general-
ized this principle to one-dimensional variational problems. Moreover, it was proved
that a minimizer of the functional

∫ T
0 g(t, y, ẏ)dt must satisfy a certain ODE (which

is often named the Euler–Lagrange equation). A further development of the vari-
ational approach was made by K. Weierstrass, A. Clebsch, D. Hilbert, E. Noether,
H. Lebesgue, J. Hadamard, L. Pontryagin, J. Moreau, C. B. Morrey, T. Rockafellar,
and many others. It has been shown that variational statements can be extended to
various multidimensional problems. In the general form, such a problem consists of
finding u(x) such that u= u0 on Γ and

J (u)= inf
v
J (v), (B.9)

where the infimum is taken over all admissible functions v (i.e., all such functions
that J (v) is finite and v = u0 on Γ ).

For example, it is easy to see that the functional generating the problem (B.1)–
(B.2) is

J (v)=
∫

Ω

(
1

2
|∇v|2 − f v

)

dx.

Indeed, let w be an admissible (smooth) function vanishing on the boundary. Then
for any λ > 0 we have

J (u)≤ J (u+ λw)=
∫

Ω

(
1

2

∣
∣∇(u+ λw)

∣
∣2 − f (u+ λw)

)

dx. (B.10)

This inequality is equivalent to
∫

Ω

(∇u · ∇w − fw)dx ≥
∫

Ω

−λ

2
|∇w|2 dx.

Since λ is an arbitrary real number, we find that (B.10) can be true only if the left-
hand side is nonnegative. Obviously, w can be replaced by −w and, therefore, for
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any w
∫

Ω

(∇u · ∇w − fw)dx = 0. (B.11)

Since smooth functions are dense in
◦
H 1(Ω), we conclude that (B.11) also holds for

any function from this space. Thus, we have derived the generalized statement (B.3)
using variational arguments. If u possesses second derivatives, then we can integrate
by parts in the above integral and use the Du–Bois–Reymond Lemma, which says
that if g is a locally integrable function defined on an open set Ω and satisfies the
condition

∫

Ω

gw dx = 0, ∀w ∈ ◦
C∞(Ω),

then g = 0 for almost all points in Ω . We conclude that u is the classical solution,
i.e.,

Δu+ f = 0, in Ω, (B.12)

u = u0 on Γ. (B.13)

Now, it is necessary to discuss how the existence and uniqueness theorems can
be proved within the framework of the variational method. Certainly, we can refer to
previous results (based on the Lax–Milgram lemma) and say that since (B.11) has a
solution, a minimizer exists. However, there exists another quite different approach
(which comes from the works of K. Weierstrass). It is applicable to a much wider
class of boundary value problems than those generated by V -elliptic bilinear forms.

Theorem B.2 If K is a closed bounded set in R
d , and J is a continuous functional

defined on K , then the problem

inf
v∈K J (v), (B.14)

has a minimizer u ∈K .

Proof Let {vk} be a minimizing sequence, i.e., J (vk) → infv∈K J . We can extract
a converging subsequence out of it (by the Boltzano–Weierstrass Lemma). Denote
this subsequence by {vks }. Since K is closed, we know that the limit of this sequence
(we denote it by u) belongs to K . Since J is continuous, we find that

inf
v∈K J = lim

s→∞J (vks )= J (u).

Thus, u is a minimizer. �

It is not difficult to extend this method to the case of functional spaces and lower
semicontinuous functionals. We recall that the functional J : V →R is called lower
semicontinuous at v̂ if limvs→v̂ J (vs) ≥ J (̂v) for any sequence vs converging to v̂.
The functional is called lower semicontinuous if it possesses this property at any
point of the set on which it is defined.
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Theorem B.3 Let V be a full metric space, K ⊂ V be a compact set, and J

be a lower semicontinuous functional defined and finite on K . Then, the problem
infv∈K J (v) has a solution (minimizer) u ∈K .

Proof Let {vk} be a minimizing sequence, i.e., J (vk) → infK J . Since K is com-
pact, we can extract a convergent subsequence out of it, which we denote {vks }. K is
a closed set; therefore, the limit of this sequence (we denote it by u) belongs to K .
Finally, we recall that J is lower semicontinuous and conclude that

inf
K
J = lim

s→∞J (vks )≥ J (u).

We conclude that u is a minimizer. �

Regrettably, this theorem cannot be directly applied to functionals minimized
on the whole space

◦
H 1(Ω) (and other functional spaces). It is necessary to reduce

the requirement imposed on K (compactness) and compensate this reduction by
strengthening conditions imposed on J . More precisely, we replace compactness by
weak compactness, which means that if K is bounded then a weakly convergent se-
quence can be extracted. This change would be very convenient, because any closed
bounded subset of a Hilbert space is weakly compact. On the other hand, we also
change the lower semicontinuity of J to weak lower semicontinuity (which means
that the functional is lower semicontinuous for all weakly convergent sequences).

Theorem B.4 Let K be weakly compact and J be a weakly lower semicontinuous
functional defined on K . Then, the problem infv∈K J (v) has a minimizer u ∈K .

Proof Let {vk} be a minimizing sequence, i.e., J (vk) → infK J . We can extract a
weakly convergent subsequence {vks }⇀u ∈K . Since J is weakly lower semicon-
tinuous, we find that

inf
K
J = lim

s→∞J (vks )≥ J (u).

Thus, u is a minimizer. �

Theorem B.4 opens a way of proving the existence of a minimizer for the func-
tional (B.9). Indeed, the set K := {w ∈ V0 | J (w)≤ J (v1)} that contains a minimiz-
ing sequence is bounded. This fact follows from the relation

1

2
‖∇w‖2 −

∫

Ω

fw dx ≤ J (v1),

where v1 is the first element of a minimizing sequence. This relation infers the
estimate (for w ∈K)
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1

2
‖∇w‖2 ≤ J (v1)+ ‖f ‖‖w‖ ≤ J (v1)+ ‖f ‖CF ‖∇w‖

≤
(

J (v1)+ 1

2
C2
F ‖f ‖2

)

+ 1

2
‖∇w‖2,

which shows that ‖∇w‖ is bounded.
It remains to verify the weak lower semicontinuity of J . Fortunately, for func-

tionals defined on reflexive spaces there is a simple criterion: a convex lower semi-
continuous functional is weakly lower semicontinuous. Typically, the functionals
arising in variational statements of boundary-value problems are continuous on re-
flexive spaces and the convexity of them is easy to check.

Thus, Theorem B.4 guarantees the existence of a minimizer and, consequently,
proves the existence of the generalized solution of the corresponding differential
equation.

It is worth remarking that the variational method is extendable to a much wider
class of problems, which includes many nonlinear boundary value problems. To
show this, we need one more definition.

Definition B.1 The functional J is called coercive on V if

J (vk)→ +∞
for any sequence {vk} ∈ V such that ‖vk‖V → +∞.

Coercivity plays an important role in establishing the existence.

Lemma B.2 Let J be coercive; then the set

Vα := {v ∈ V | J (v)≤ α
}

is bounded.

Proof Assume the contrary, i.e., Vα is unbounded and it is not contained in any ball

B(0, d)= {v ∈ V | ‖v‖V ≤ d
}
.

This means that for any integer k, one can find vk ∈ Vα such that ‖vk‖V > k. By
coercivity, we conclude that

J (vk)→ +∞ as k → +∞.

But this is impossible because elements of Vα are such that the functional does not
exceed α. �

As a result, we arrive at the following theorem, which provides easily verifiable
conditions sufficient to guarantee the existence of a minimizer for a wide class of
convex variational problems (see, e.g., [ET76])
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Theorem B.5 Let J : K → R be a convex, continuous, and coercive functional,
and let K be a nonempty, convex, and closed subset of a Hilbert space V . Then, the
problem infw∈K J (w) has a minimizer u. If J is strictly convex, then the minimizer
is unique.

Proof Let {vk} be a minimizing sequence, i.e., J (vk)→ infK J . The set

K1 := {v ∈K | J (v)≤ J (v1)
}

is bounded (by Lemma B.2). Obviously, it is also closed. In a Hilbert space all closed
bounded sets are weakly compact. Therefore, we can extract a weakly convergent
subsequence {vks }⇀u ∈K1. Since J is convex and continuous, it is weakly lower
semicontinuous, and we find that

inf
K
J = lim

s→∞J (vks )≥ J (u),

which means that u is a minimizer.
Assume that J is strictly convex, i.e.,

J (λ1v1 + λ2v2) < λ1J (v1)+ λ2J (v2), λ1 + λ2 = 1, λi > 0.

If u1 and u2 are two different minimizers, then we immediately arrive at a contra-
diction, because

J (λ1u1 + λ2u2) < λ1J (u1)+ λ2J (u2)= inf
K
J.

Hence, we conclude that the minimizer is unique. �

At the end of this section, we discuss several examples showing how to apply
Theorem B.5 to various variational problems.

Example B.2 Consider the functional J (w) = 1
2a(w,w) − 〈�,w〉, where a is the

bilinear form used in the definition of problem (B.6). It is easy to verify that the
minimizer of J (v) on V satisfies (B.6). We set K = V and apply Theorem B.5.

Since

1

2
a(w,w)≥ c1‖w‖2

V ,
∣
∣〈�,w〉∣∣≤ ||�||‖w‖V ,

we see that

J (w)≥ c1‖w‖2
V − ||�||‖w‖V→ +∞ as ‖w‖V → +∞.

Hence, J is coercive on V . Since J is strictly convex and continuous we apply
Theorem B.5 and establish the existence and uniqueness of the minimizer without
Lemma B.1.
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Example B.3 One of the simplest models in the theory of nonlinear fluids is related
to the functional

J (w)=
∫

Ω

(
ν

2
|∇w|2 + k∗|∇w| − fw

)

dx, (B.15)

which must be minimized on the set K = ◦
H 1(Ω). Here, μ and k∗ are positive con-

stants dependent on the viscosity and plasticity properties of the so-called Bingham
fluid and f ∈ L2(Ω). Since

−
∫

Ω

fw dx ≥ −‖f ‖CF (Ω,d)‖∇w‖,

the functional (B.15) is coercive. It is also strictly convex and continuous on V .
Therefore, the solution of this problem exists and is unique.

Remark B.1 Finally, we discuss applicability limits of the method based on lower
semicontinuity. There exist many practically interesting problems in which condi-
tions of Theorem B.5 are not satisfied. They are related to (a) nonconvexity of the
functional J , (b) nonconvexity of the set K , or (c) nonreflexivity of the space V .

Nonconvex variational problems often arise, e.g., in the theory of phase tran-
sitions in solids. In these problems, the energy functional contains two (or more)
branches generated by different phases, so that the whole energy is not convex.
A simple example presents the functional

∫

Ω

(
g(∇w)− fw

)
dx, g = min{g1, g2},

where g1 and g2 are related to two different phases. In these problems, a minimizing
sequence may have no strong convergence and “solutions” are presented by struc-
tures with rapidly oscillating layers (see [BJ87]).

Optimal control problems with control η in the main part of the operator A, e.g.,
problems of type

inf
(η,w)∈K J (η,w), K := {(η,w) |A(η)w + f = 0

}
, η ∈ C,

generate a class of problems with nonconvex K (even if the set of admissible control
functions C is convex and closed). The nonexistence of a minimizer often arises in
the form of the so-called “sliding regimes”. Mathematically, these problems require
the so-called G-closure of the operator set.

Problems defined on nonreflexive spaces arise if the energy has linear growth
with respect to the differential operator. Typical example is presented by the non-
parametric minimal surface problem

J (v)=
∫

Ω

√
1 + |∇w|2 dx. (B.16)
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The functional J is defined on the Sobolev space V :=W 1,1(Ω) and

K := {w ∈ V |w = u0 on Γ },
where u0 is a given function defining the boundary condition. This functional is
convex and continuous on V . Since J (w) ≥ ‖∇w‖, it is coercive on K . Also, K is
convex and closed (in V ).

However, the variational problem associated with the functional (B.15) may have
no solution because W 1,1(Ω) is a nonreflexive space. For such spaces, convexity
and boundedness do not imply weak compactness (so that we cannot apply the
above-presented method).

Practically important classes of engineering problems related to such type phe-
nomena arise in the theory of capillary surfaces and in perfect plasticity. In these
models, a minimizing sequence may converge to a discontinuous function. There-
fore, special approximation methods are required (see, e.g., [BMR12, NW03,
Rep94, ST87] and references therein).

Numerical methods generated by variational statements use a natural idea of min-
imizing J (v) on a certain finite dimensional subspace of V . We consider some of
them in Sect. B.4.2.

B.3 Saddle Point Statements of Elliptic Boundary Value
Problems

B.3.1 Introduction to the Theory of Saddle Points

Minimax approaches to elliptic partial differential equations and the corresponding
numerical methods are based on the theory of saddle points, which play an impor-
tant role in mathematical analysis of boundary value problems. Saddle points are
often considered as corresponding solutions. We refer, e.g., to [ET76, Roc70] for
a systematic exposition of the saddle point theory. Concerning numerical methods
for saddle point problems we refer to, e.g., [Glo84, GLT76] and the literature cited
therein. Below, the reader can find a collection of results used in the book.

Saddle point theory operates with functionals defined on a pair of elements (func-
tions), which are called Lagrangians. Let L : (V ×Q) → R be such a Lagrangian,
V and Q be two Banach spaces, and K ⊂ V and M ⊂ Q be two closed subsets in
these spaces.

Saddle point problem is to find (u,p) ∈K ×M such that

L(u,q)≤ L(u,p)≤ L(v,p), ∀q ∈M,∀v ∈K. (B.17)
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It is easy to see that regardless of the structure of the Lagrangian and the nature of
nonempty sets K and M ,

sup
q∈M

inf
v∈K L(v, q)≤ inf

v∈K sup
q∈M

L(v, q). (B.18)

Our first goal is to present conditions that guarantee the existence of a saddle
point. First, we mention the following simple criterion.

Lemma B.3 If there exist a constant α and two elements u ∈ K and p ∈ M such
that

L(u,q)≤ α, ∀q ∈M, (B.19)

and

L(v,p)≥ α, ∀v ∈K, (B.20)

then (u,p) is a saddle point. Moreover, we have the relation

α = inf
v∈K sup

q∈M
L(v, q)= sup

q∈M
inf
v∈K L(v, q). (B.21)

Proof From (B.19) and (B.20), we obtain

L(u,p)≤ α ≤ L(u,p).

Therefore, L(u,p)= α and

L(u,q)≤ L(u,p)≤ L(v,p), ∀v ∈K,∀y ∈M,

which means that (u,p) is a saddle point. Since

sup
q∈M

L(u,q)= L(u,p)= α and inf
v∈K L(v,p)= L(u,p)= α,

we have

inf
v∈K sup

q∈M
L(v, q) ≤ sup

q∈M
L(u,q)= α,

sup
q∈M

inf
v∈K L(v, q) ≥ inf

v∈K L(v,p)= α.

In view of (B.18), we arrive at (B.21). �

Regrettably, in many cases it is not easy to justify the conditions (B.20) and
(B.21), so that other existence criteria are required. We will discuss them later, but
first prove one general result about the structure of saddle points. Henceforth, we
assume that
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• V and Q are reflexive Banach spaces (e.g., Hilbert spaces) and K and M are
convex and closed subsets of V and M , respectively.

• The functional v �→ L(v, q) is convex and lower semicontinuous for any q ∈M .
• The functional q �→ L(v, q) is concave and upper semicontinuous for any v ∈K .

These conditions are easily verifiable and hold for many practically interesting prob-
lems. However, they are not sufficient to guarantee the existence of a saddle point.

Lemma B.4 All saddle points of L form a set K0 × M0, where K0 and M0 are
convex subsets of K and M , respectively.

Proof Assume that (u1,p1) and (u2,p2) are two different saddle points. Then,

L(u1, q) ≤ L(u1,p1)= α = L(u2,p2)≤ L(v,p1),

L(u2, q) ≤ L(u1,p1)= α = L(u2,p2)≤ L(v,p2),

where v and q are arbitrary elements of the sets K and M , respectively. From
the first relation, we obtain L(u2,p1) ≥ α, and from the second one we have
L(u2,p1)≤ α.

Now, Lemma B.3 implies that (u2,p1) is a saddle point. The same conclusion is
obviously true for (u1,p2). Let u1 and u2 be two different elements of K0. Then,

L(u1, q) ≤ L(u1,p1)= α, ∀q ∈M,

L(u2, q) ≤ L(u2,p1)= α, ∀q ∈M.

Since v �→ L(v, q) is a convex mapping, we have

L(λ1u1 + λ2u2, q)≤ λ1L(u1, q)+ λ2L(u2, q)≤ α, λ1 + λ2 = 1.

In particular, L(λ1u1 + λ2u2,p1)≤ α. Since L(v,p1)≥ α for all v ∈K , we obtain
the opposite inequality

L(λ1u1 + λ2u2,p1)≥ α

and conclude that L(λ1u1 + λ2u2,p1)= α.
Hence, λ1u1 + λ2u2 ∈ K0, where λ1 + λ2 = 1. Hence, K0 is a convex set. The

convexity of M is proved analogously. �

Using the Lagrangian L, we define two functionals:

J (v) := sup
q∈M

L(v, q) and I ∗(q) := inf
v∈K L(v, q),

which generate two variational problems.

Problem P . Find u ∈K such that

J (u)= infP := inf
v∈K J (v). (B.22)
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Problem P∗. Find p ∈M such that

I ∗(p)= supP∗ := sup
q∈M

I ∗(q). (B.23)

Henceforth, Problems P and P∗ are called primal and dual, respectively. Their
solutions are closely related. Solutions of these problems (if they exist) form the
corresponding saddle point of (u,p).

By (B.18), we see that

supP∗ ≤ infP . (B.24)

However, in many cases a stronger relation supP∗ = infP . Below we state the main
theorem, which establishes a link between the solutions of Problems P and P∗ and
the saddle points of Problems L.

Theorem B.6 The following two statements are equivalent:

1. there exists a pair of elements u ∈K and p ∈M such that

J (u) = infP, (B.25)

I ∗(p) = supP∗, (B.26)

infP = supP∗. (B.27)

2. (u,p) is a saddle point of the Lagrangian L on K ×M .

Moreover, any of the above two assertions implies the principal relation

I ∗(p)= L(u,p)= J (u). (B.28)

Proof Let the first assumption be true. We set α = infP = supP∗. Then,

L(u,q) ≤ sup
q∈M

L(u,q)= J (u)= α, ∀q ∈M,

L(v,p) ≥ inf
v∈K L(v,p)= I ∗(p)= α, ∀v ∈K.

According to Lemma B.3, (u,p) is a saddle point.
Let (u,p) be a saddle point, i.e.,

L(u,q)≤ L(u,p)≤ L(v,p), ∀v ∈K,q ∈M.

From this double inequality we obtain

J (u)= sup
q∈M

L(u,q)≤ L(u,p)≤ L(v,p)≤ sup
q∈M

L(v, q)= J (v), ∀v ∈K.

Hence, u ∈K is a minimizer. Analogously,

I ∗(p)= inf
v∈K L(v,p)≥ L(u,p)≥ L(u,q)≥ inf

v∈K L(v, q)= I ∗(q), ∀q ∈M
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and p ∈M is a maximizer. Furthermore,

L(u,p) ≤ sup
q∈M

L(u,q)= J (u)≤ L(u,p),

L(u,p) ≥ inf
v∈K L(v,p)= I ∗(p)≥ L(u,p),

and the relation (B.28) follows. �

At the end of this concise overview of the saddle point theory, we expose suffi-
cient conditions, which are useful in checking the correctness of particular saddle
point problems.

Theorem B.7 Let the assumptions imposed on L and the sets K hold. Assume that
the sets K and M are bounded or there exist elements p0 ∈M and u0 ∈K such that

L(vk,p0) → +∞ for any sequence {vk} ∈K

such that ‖vk‖V → +∞, (B.29)

L(u0, qk) → −∞ for any sequence {qk} ∈M

such that ‖qk‖Q → +∞. (B.30)

Then, the Lagrangian L has at least one saddle point on K ×M .

Remark B.2 It is possible to prove that a saddle point exists if K is bounded and the
coercivity condition for q holds (or M is bounded and the coercivity condition for
v holds). It is also worth noting that the basic relation infP = supP∗ is true even
if only one of the above coercivity conditions holds. Proofs and a more detailed
exposition of the saddle point theory can be found in [ET76].

B.3.2 Saddle Point Statements of Linear Elliptic Problems

We discuss mathematical statements of elliptic boundary value problems, which
generate mixed finite element approximations. All the main principles of this ap-
proach can be demonstrated with the paradigm of the problem

divA∇u+ f = 0 in Ω, (B.31)

u = u0 on ΓD, (B.32)

A∇u · n = F on ΓN, (B.33)

where A ∈ M
d×d is a matrix with bounded entries, which satisfies the condition

c2
1|ξ |2 ≤A(x)ξ · ξ ≤ c2

2|ξ |2, ∀ξ ∈ R
d, for a.e. x ∈Ω. (B.34)
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We assume that u0 ∈ V =H 1(Ω), f ∈ L2(Ω), F ∈ L2(ΓN). In mixed methods, the
system (B.31)–(B.33) is represented with the help of two functions: u and p (this
vector-valued function is often called a “flux”). Now the system reads

divp + f = 0 in Ω, (B.35)

p = A∇u in Ω, (B.36)

u = u0 on ΓD, (B.37)

p · n = F on ΓN, (B.38)

and the “solution” is a pair of functions (u,p) satisfying (B.35)–(B.38) in a gener-
alized sense, which is explained below. We assume that

u ∈ V0 + u0 := {v ∈ V | v =w + u0,w ∈ V0}, V0 := {v ∈ V | v = 0 on ΓD},
and p ∈Q := L2(Ω,Rd). By

‖q‖2
A :=

∫

Ω

Aq · q dx and ‖q‖2
A−1 :=

∫

Ω

A−1q · q dx

we denote norms generated by A and A−1 (for which a two-sided estimate similar
to (B.34) holds with constants c̄1 and c̄2). It is clear that these norms are equivalent
to the usual norm of L2(Ω,Rd). The Lagrangian

L(v, q)=
∫

Ω

(

∇v · q − 1

2
A−1q · q − f v

)

dx −
∫

ΓN

Fv ds

generates two functionals. The first one is

J (v) := sup
q∈Q

L(v, q)= 1

2
‖∇v‖2

A−�(v), �(v) :=
∫

Ω

f v dx+
∫

ΓN

Fv ds. (B.39)

It leads to Problem P : Find u ∈ V0 + u0 such that

inf
w∈V0+u0

J (w)= infP = J (u).

It is clear that J (v) is convex, continuous, and coercive on V0 + u0, so that the
minimizer u exists.

Another (dual) functional is defined by the relation

I ∗(q)= inf
v∈V0+u0

{∫

Ω

(

∇v · q − 1

2
A−1q · q

)

dx − �(v)

}

.

We represent v as u0 +w, where w is an element of the linear subspace V0 and see
that the infimum is finite if and only if q belongs to a special set, namely,

q ∈Q� :=
{

q ∈Q

∣
∣
∣

∫

Ω

(∇w · q − fw)dx −
∫

ΓN

Fw ds = 0, ∀w ∈ V0

}

.
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For any q ∈Q�, we have

I ∗(q) := −1

2
‖q‖2

A−1 − �(u0)+
∫

Ω

∇u0 · q dx. (B.40)

Hence, the dual Problem P∗ reads as follows:

sup
q∈Q�

(

−1

2
‖q‖2

A−1 − �(u0)+
∫

Ω

∇u0 · q dx

)

. (B.41)

The functional −I ∗ is convex, continuous, and coercive. The set Q� is an affine
manifold, so that it is convex. It is easy to see that it is closed in Q. Hence, Theo-
rem B.5 guarantees the existence of a maximizer p.

It is easy to show that J (u) = I ∗(p). We know that J (u) ≥ I ∗(p). Take
q̄ :=A∇u and note that

∫

Ω

A∇u · ∇w dx = �(w), ∀w ∈ V0.

Thus, q̄ ∈Q� and
∫

Ω

∇u0 · q̄ dx − �(u0) =
∫

Ω

∇u · q̄ dx − �(u)+
∫

Ω

∇(u0 − u) · q̄ dx − �(u0 − u)

=
∫

Ω

∇u ·A∇udx − �(u).

Also

−1

2
‖q̄‖2

A−1 = −1

2

∫

Ω

A−1(A∇u) · (A∇u)dx = −1

2

∫

Ω

A∇u · ∇udx,

and we find that

I ∗(q̄)= 1

2
‖∇u‖2

A − �(u)= J (u).

By Theorem B.6, we conclude that the saddle point (u,p) exists and satisfies the
relations

inf
v∈V0+u0

J (v) := infP = L(u,p)= supP∗ := sup
q∈Q�

I ∗(q). (B.42)

The problem of finding (u,p) ∈ (V0 + u0)×Q such that

L(u,q)≤ L(u,p)≤ L(v,p), ∀q ∈Q,∀v ∈ V0 + u0, (B.43)

leads to the Primal Mixed Form of the problem (B.31)–(B.33).
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What relations follow from (B.43)? Consider the left-hand inequality. For any λ > 0,
we have

L(u,p + λη)≤ L(u,p), ∀η ∈Q,

which implies the relation

∫

Ω

(

λ∇u · η− λ2

2
A−1η · η− λA−1p · η

)

dx ≤ 0.

Dividing by λ, we obtain
∫

Ω

(∇u · η−A−1p · η)dx ≤
∫

Ω

λ

2
A−1η · η dx, ∀λ > 0.

This inequality holds if and only if
∫

Ω

(∇u · η−A−1p · η)dx = 0, ∀η ∈Q.

Thus, ∇u=A−1p and (B.36) holds at almost all points of Ω .
By the right-hand inequality, we have

L(u,p)≤ L(u+w,p), ∀w ∈ V0.

Hence,
∫

Ω

∇w · p dx − �(w)≥ 0, ∀w ∈ V0.

Since V0 is a linear manifold, this relation holds as equality.
We see that the saddle point (u,p) ∈ (V0 +u0)×Q satisfies the integral relations

∫

Ω

(
A−1p − ∇u

) · η dx = 0, ∀η ∈Q, (B.44)

∫

Ω

p · ∇w dx − �(w) = 0, ∀w ∈ V0, (B.45)

which define the generalized solution of the above mixed problem. Substituting
p =A∇u (this relation follows from (B.44)) into (B.45), we arrive at the integral
identity

∫

Ω

A∇u · ∇w dx = �(w), ∀w ∈ V0, (B.46)

which defines the generalized solution of (B.31)–(B.33) and is a particular form of
(B.6).

Remark B.3 It is worth noting that, in the primal mixed problem, the constitutive
relation (i.e., a physical law postulated for the model) p = A∇u is satisfied in the
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sense of L2(Ω) and the conservation law (the equation of balance) divp + f = 0
and the boundary condition p · n = F on ΓN are satisfied in the sense of integral
relation (B.45), which involves trial functions from a narrower space V0. If p is
sufficiently regular, then the relations (B.35) and (B.38) are satisfied in the classical
sense.

Another mixed form of the boundary value problem (B.31)–(B.33) arises if we
represent L in a somewhat different form and define the saddle point in Q̂ × V̂ ,
where Q̂ :=H(Ω;div) and V̂ := L2(Ω). It is called the dual mixed statement.

First, we introduce a functional g : (V0 + u0)× Q̂→ R by the relation

g(v, q) :=
∫

Ω

(∇v · q + v divq)dx.

In fact, we select a flux q even in a narrower set

Q̂F :=
{

q ∈ Q̂

∣
∣
∣ g(w,q)=

∫

ΓN

Fw ds, ∀w ∈ V0

}

.

Then, using integration by parts, we obtain

L(v, q) =
∫

Ω

(

∇v · q − 1

2
A−1q · q

)

dx − �(v)

= g(v, q)−
∫

Ω

v divq dx − 1

2
‖q‖2

A−1 − �(v),

For any q ∈ Q̂F and w ∈ V0, we have

g(v, q)= g(w + u0, q)= g(w,q)+ g(u0, q)=
∫

ΓN

Fw ds + g(u0, q).

Therefore, if the variable q is taken not in Q (as in the primal mixed form) but in
the narrower set Q̂F , then the Lagrangian can be represented in a different form:

L̂(v, q) = g(v, q)−
∫

Ω

(v divq + f v)dx − 1

2
‖q‖2

A−1 −
∫

ΓN

Fv ds

= −1

2
‖q‖2

A−1 −
∫

Ω

v divq dx −
∫

Ω

f v dx −
∫

ΓN

Fu0 ds + g(u0, q).

We see that L̂ is defined on a much wider set of primal functions v ∈ V̂ .

The problem of finding (̂u, p̂) ∈ V̂ × Q̂F such that

L̂(̂u, q̂)≤ L̂(̂u, p̂)≤ L̂(̂v, p̂), ∀q̂ ∈ Q̂F ,∀v̂ ∈ V̂ (B.47)

is called the Dual Mixed Form of the problem (B.31)–(B.33).
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From (B.47) we obtain necessary conditions for the dual mixed statement. Since

L̂(̂u, q̂)≤ L̂(̂u, p̂), ∀q̂ ∈ Q̂F ,

we have

−1

2
‖p̂ + λη‖2

A−1 −
∫

Ω

(̂udiv p̂ + λη+ f û)dx −
∫

ΓN

Fu0 ds + g(u0, p̂ + λη)

≤ −1

2
‖p̂‖2

A−1 −
∫

Ω

ûdiv p̂ dx −
∫

Ω

f ûdx −
∫

ΓN

Fu0 ds + g(u0, p̂),

where λ is a real number and η is a function in Q̂0 := Q̂F with F = 0. Now, we
arrive at the relation

−λ

∫

Ω

(
A−1p̂ · η+ ûdivη

)
dx + λg(u0, η)≤ λ2

2

∫

Ω

A−1η · η dx,

which is equivalent to
∫

Ω

(
A−1p̂ · η+ ûdivη

)
dx − g(u0, η)≥ λ

2

∫

Ω

A−1η · η dx.

Since λ > 0 can be taken arbitrarily small and Q̂0 is a linear manifold, the latter
relation holds if and only if

∫

Ω

(
A−1p̂ · η+ ûdivη

)
dx − g(u0, η)= 0, ∀η ∈ Q̂0.

Another saddle point inequality

L̂(̂u, p̂)≤ L̂(̂u+ v̂, p̂), ∀v̂ ∈ V̂ := L2(Ω)

yields
∫

Ω

(̂v div p̂ + f v̂)dx = 0.

Thus, we arrive at the system
∫

Ω

(
A−1p̂ · η+ divηû

)
dx = g(u0, η), ∀η ∈ Q̂0, (B.48)

∫

Ω

(div p̂ + f )̂v dx = 0, ∀v̂ ∈ V̂ . (B.49)

Remark B.4 Now the condition div p̂ + f = 0 is satisfied in a “strong” sense (for
all trial functions L2(Ω)), the Neumann boundary condition is viewed as the essen-
tial boundary condition, and the relation p̂ = A∇û and a Dirichlet type boundary
condition are satisfied in a weaker sense.
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These properties of the dual mixed statement are employed in the correspond-
ing dual mixed finite element method (see the next section). This method generates
approximations, which satisfy equilibrium type relations much better than the stan-
dard finite element approximations. This fact is important in many applications,
where strict satisfaction of the equilibrium relations is indeed required.

The Lagrangian L̂ also generates two functionals

Ĵ (̂v) := sup
q̂∈Q̂F

L̂(̂v, q̂) and Î ∗(̂q) := inf
v̂∈V̂

L̂(̂v, q̂).

The corresponding two variational problems are

P̂ : inf
v̂∈V̂

Ĵ (̂v) and P̂∗ : sup
q̂∈Q̂F

Î ∗(̂q).

Note that the functional Ĵ (unlike J ) does not have a simple explicit form. However,
we can prove the solvability of Problem P̂ by the following Lemma.

Lemma B.5 For any v̂ ∈ V̂ and F ∈ L2(ΓN), there exists pv ∈ Q̂F such that

divpv + v̂ = 0 in Ω, (B.50)
∥
∥pv

∥
∥
A−1 ≤ CΩ

(‖̂v‖ + ‖F‖ΓN
)
. (B.51)

Proof We know that the problem

divA∇uv + v̂ = 0 in Ω,

uv = 0 on ΓD,

A∇uv · n = F on ΓN

has a (unique) solution uv ∈ V0, which satisfies the energy estimate

∥
∥∇uv

∥
∥
A

≤ CΩ

(‖̂v‖ + ‖F‖ΓN
)
.

Let pv :=A∇uv . We have divpv + v̂ = 0. Obviously, pv ∈ Q̂F and, since

∥
∥pv

∥
∥2
A−1 =

∫

Ω

A−1(A∇uv
) · (A∇uv

)
dx = ∥∥∇uv

∥
∥2
A
,

we find that (B.51) also holds. �



B.3 Saddle Point Statements of Elliptic Boundary Value Problems 283

By the Lemma B.5, we can easily prove the coercivity of Ĵ on V̂ . Indeed,

Ĵ (̂v)≥ L̂
(
v̂, αpv

)

= −1

2

∥
∥αpv

∥
∥2
A−1 − α

∫

Ω

v̂
(
divpv

)
dx −

∫

Ω

f v̂ dx −
∫

ΓN

Fu0 ds + g
(
u0, αp

v
)

= −1

2
α2
∥
∥pv

∥
∥2
A−1 + α‖̂v‖2 − ‖f ‖‖̂v‖ + g

(
u0, αp

v
)−

∫

ΓN

Fu0 ds.

Here |g(u0, αp
v)| ≤ α‖pv‖div‖u0‖1,2,Ω and

∥
∥pv

∥
∥2

div = ∥
∥pv

∥
∥2 + ∥∥divpv

∥
∥2 ≤ 1

c̄1

∥
∥pv

∥
∥2
A−1 + ‖̂v‖2

≤ 1

c̄1
C2
Ω

(‖̂v‖ + ‖F‖ΓN
)2 + ‖̂v‖2,

where c̄1 is the smallest eigenvalue of A−1.
Therefore

Ĵ (̂v)≥ −1

2
α2C2

Ω ‖̂v‖2 + α‖̂v‖2 +Θ
(‖̂v‖)+Θ0,

where Θ(‖̂v‖) contains terms linear with respect to ‖̂v‖ and Θ0 does not depend
on v̂. Take α = 1/C2

Ω . Then,

Ĵ (̂v)≥ 1

2C2
Ω

‖̂v‖2 +Θ
(‖̂v‖)+Θ0 → +∞ as ‖̂v‖ → ∞.

It is not difficult to prove that the functional Ĵ is convex and lower semicontinu-
ous. Therefore, Problem P̂ has a solution û.

Corollary B.1 Lemma B.5 implies the Inf–Sup condition for the dual mixed form:

inf
φ∈L2(Ω)

ψ∈L2(ΓN )

sup
q∈Q̂F

∫
Ω
φ divq dx + ∫

ΓN
ψq · nds

‖q‖div(‖φ‖2 + ‖ψ‖2
ΓN
)1/2

≥ C0 > 0.

Now construct the dual functional Î ∗. It is easy to see that if div q̂ + f = 0 (in
the L2-sense), then

Î ∗(̂q) = inf
v̂
L̂(̂v, q̂)

= inf
v̂

{

−1

2
‖q̂‖2

A−1 −
∫

Ω

v(div q̂)dx −
∫

Ω

f v dx −
∫

ΓN

Fu0 ds + g(u0, q̂)

}

= −1

2
‖q̂‖2

A−1 + g(u0, q̂)−
∫

ΓN

Fu0 ds
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= −1

2
‖q̂‖2

A−1 +
∫

Ω

(∇u0 · q̂ − f u0)dx −
∫

ΓN

Fu0 ds

=
∫

Ω

∇u0 · q̂ dx − 1

2
‖q̂‖2

A−1 − �(u0).

In all other cases, Î ∗(̂q)= −∞.
In the dual mixed form q̂ ∈ Q̂F . As we have seen, I ∗ attains finite values only if

div q̂ + f = 0. This means that

∫

Ω

∇w · q̂ dx = −
∫

Ω

(div q̂)w dx +
∫

ΓN

Fw ds = �(w), ∀w ∈ V0

and q̂ ∈Q�.

Thus, Problems P∗ and P̂∗ coincide and are reduced to the maximization of
I ∗ on the set Q�, which means that

supP∗ = sup P̂∗.

We know that sup P̂∗ ≤ inf P̂ . Set q = p =A∇u. Then,

sup
q∈Q̂F

inf
v̂∈V̂

L̂(v̂, q) ≥ inf
v̂∈V̂

L̂(v̂, p)= −1

2
‖A∇u‖2

A−1 −
∫

ΓN

Fu0 ds + g(u0,p)

= −1

2
‖∇u‖2

A −
∫

ΓN

Fu0 ds +
∫

Ω

(∇u0 · p − f u0)dx.

Here u0 is a function satisfying the prescribed boundary conditions (we can set
u0 = u). We see that sup inf L̂(v̂, q) ≥ J (u). By Theorem B.6, we conclude that a
saddle point of L̂ exists and

L̂(̂u, p̂)= inf P̂ = sup P̂∗.

On the other hand

sup P̂∗ = supP∗ = infP .

We infer that inf P̂ = infP and u ∈ V0 + u0 (minimizer of the Problem P) also
minimizes Ĵ on V̂ .

Analogously, if p ∈Q� is the maximizer of Problem P∗, then

∫

Ω

∇w · p dx =
∫

Ω

fw dx +
∫

ΓN

Fw ds, ∀w ∈ V0.
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From here we see that divp + f = 0 a.e. in Ω and, hence,
∫

Ω

(∇w · p + (divp)w
)

dx =
∫

ΓN

Fw ds, ∀w ∈ V0,

that is, p ∈ Q̂F . Thus, p is also the maximizer of Problem P̂∗. We conclude that

both mixed statements have the same solution (u,p), which is in fact a gen-
eralized solution of our problem.

B.3.3 Saddle Point Statements of Nonlinear Variational Problems

Finally, we comment on minimax statements of nonlinear elliptic problems, which
serve as a basis for minimax approximations and saddle point algorithms.

Let the Lagrangian L be defined on a pair of Hilbert spaces V and Y with scalar
products (·, ·) and ((·, ·)), respectively. As before, we assume that K ⊂ V and Λ⊂ Y

are convex and closed sets.
Consider the functional

J (v)= 1

2
a(v, v)− (f, v)+ sup

y∈Λ
((
y,Φ(v)

))
(B.52)

and the corresponding convex variational problem P : Find u ∈K such that

J (u)= inf
v∈K J (v). (B.53)

This problem has a solution and can be represented in a somewhat different form

inf
v∈K sup

y∈Λ
L(v, y), (B.54)

where

L(v, y) := 1

2
a(v, v)− (f, v)+ ((y,Φ(v)

))
,

a(v, v) : V × V → R is a bilinear form, which satisfies the inequality

a(v, v)≥ c1‖v‖2
V , c1 > 0, ∀v ∈ V, (B.55)

and Φ : V → Y is a given functional. Henceforth, we assume that
∥
∥Φ(u)−Φ(v)

∥
∥
Y

≤ C‖u− v‖V , ∀u,v ∈K. (B.56)
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In order to guarantee the existence of the minimizer u, we need to assume addi-
tionally that the functional v → ((y,Φ(v))) is convex and l.s.c. for any y. In this
case, the functional v → supy∈Λ((y,Φ(v))) is convex and l.s.c. as the supremum of
convex l.s.c. functionals.

Example B.4 Consider the problem

inf
v∈V J (v), J (v)=

∫

Ω

(
g(v,∇v)+ α|v|)dx,α ≥ 0.

We assume that the integrand g is convex, continuous, and differentiable. Also,
we assume that it is coercive on V so that the problem infv∈V J (v) is correctly
stated. However, it is generated by a non-differentiable functional, which may lead
to known difficulties in the process of minimization. We can avoid them if we refor-
mulate the problem and represent it in the minimax form.

Define the set

K = {y ∈ L∞(Ω) | ∣∣y(x)∣∣≤ 1 in Ω
}
.

It is not difficult to show that
∫

Ω

|v|dx = sup
y∈K

∫

Ω

yv dx.

Then, the Lagrangian associated with the functional J is

L(v, y)=
∫

Ω

(
g(v,∇v)+ αyv

)
dx.

We note that L is differentiable with respect to both variables v and y. Thus, passing
to a minimax setting allows us to exclude non-differentiable terms, which may cause
serious technical (computational) difficulties.

Example B.5 Another example is presented by the classical Stokes problem. In this
case,

J (v)=
∫

Ω

(
ν
∣
∣ε(v)

∣
∣2 − f v

)
dx, ν > 0,

where v ∈ V := ◦
H 1(Ω,Rd) and ε(v) is the tensor of small strains. The problem is

to minimize J (v) on a subset that contains only solenoidal (divergence free) fields
(we denote this set by

◦
S(Ω)). We set Λ= ◦

L(Ω,Rd), Y = L2(Ω), and

L(v, q)= 1

2
a(v, v)− (f, v)+

∫

Ω

q div(v)dx,

where a(u, v)= ∫
Ω
νε(u) : ε(v)dx. It is easy to see that

J (v)= sup
q∈Λ

L(v, q).
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Hence, finding a saddle point of L(v, q) on V ×Λ means solving the Stokes prob-
lem.

Example B.6 Consider the problem of minimizing a convex functional J on a con-
vex closed set K ∈ V . It can be written in the minimax form with the help of the
characteristic functional

χK(v)=
{

0, v ∈K,

+∞, v /∈K.

It is easy to see that

inf
v∈K J (v)= inf

v∈V
(
J (v)+ χK(v)

)
.

Let χ∗
K(v

∗) : V ∗ → R denote the Fenchel conjugate to χK . Here V ∗ is the space
topologically dual to V , i.e., the space of linear continuous functionals v∗(v) repre-
sented in the form 〈v∗, v〉. If V is a Hilbert space, then we write (v∗, v) instead of
〈v∗, v〉. By the definition (see Sect. A.4)

χ∗
K

(
v∗)= sup

v∈V
(〈
v∗, v

〉− χK(v)
)
.

With the help of χ∗
K we construct the Lagrangian

L
(
v, v∗)= 〈v∗, v

〉+ J (v)− χ∗
K

(
v∗),

which gives the minimax form of this constrain minimization problem. In particular,
if K = {v ∈ V | ‖v‖V ≤ 1}, then χ∗

K has a simple form χ∗
K(v

∗)= ‖v∗‖V ∗ .

Many other nonlinear problems in mechanics, physics, economy, biology and
other sciences cannot be stated in the form of identities (equations). Two main rea-
sons for this are that either the energy functional J is non-differentiable or that
the set of admissible functions K is not a linear manifold. Problems of such a
type lead us to new mathematical objects called variational inequalities (see, e.g.,
[DL72, Glo84, GLT76, Pan85]). Let

J (v)= J0(v)+ j (v),

where J0(v) : V → R is a convex, coercive, and continuous functional having the
Gateaux derivative G′ (see Sect. A.4). It is assumed that j (v) : V → R is convex
and continuous but not necessarily differentiable. The problem P is to minimize J
over a convex closed set K ⊂ V .

The following theorem presents one of the basic facts in the theory of convex
nonlinear variational problems (often called Lions–Stampacchia lemma).

Lemma B.6 A function u is a minimizer of the problem P if and only if it is a
solution of the variational inequality

〈
J ′

0(u),w − u
〉+ j (w)− j (u)≥ 0, ∀w ∈K. (B.57)
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Proof We show that the minimizer of the variational problem satisfies (B.57). As-
sume that u ∈K realizes the lowest value of the functional, i.e., J (u)= infP . Then,

J (v)≥ J (u), ∀v ∈K.

Since K is a convex set, we know that v = λu+ (1 − λ)w belongs to K , provided
that w ∈K and λ ∈ (0,1). Consequently, J (w + λ(u−w))≥ J (u) and

J0
(
w + λ(u−w)

)+ j
(
w + λ(u−w)

)≥ J0(u)+ j (u).

We recall that the functional j is convex, i.e.,

j
(
w + λ(u−w)

)= j
(
λu+ (1 − λ)w

)≤ λj (u)+ (1 − λ)j (w).

Therefore

J0
(
w + λ(u−w)

)− J0(u)+ (1 − λ)
(
j (w)− j (u)

)≥ 0.

We set μ= 1 − λ, and obtain

J0
(
w + (1 −μ)(u−w)

)− J0(u)+μ
(
j (w)− j (u)

)≥ 0, ∀w ∈K,

which implies

J0(u+μ(w − u))− J0(u)

μ
+ j (w)− j (u)≥ 0.

Passing to the limit as μ→ +0, we find that the minimizer u satisfies the variational
inequality

〈
J ′

0(u),w − u
〉+ j (w)− j (u)≥ 0, ∀w ∈K.

Now, we show that (2) implies (1). Let u be a solution of the variational inequality

〈
J ′

0(u),w − u
〉+ j (w)− j (u)≥ 0, ∀w ∈K.

By convexity of J0, we have J0(w)≥ J0(u)+ 〈J ′
0(u),w − u〉. Hence,

J0(w)≥ J0(u)+ j (u)− j (w), ∀w ∈K,

i.e.,

J (u)≤ J (w), ∀w ∈K.

In other words, u is a minimizer of the problem P . �

Relation (B.57) is called an elliptic variational inequality. In view of the above-
proved theorem, it is equivalent to the variational Problem P .
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Corollary B.2 If J0(v)= 1
2a(v, v)− (f, v), then

J (v)= 1

2
a(v, v)− (f, v)+ j (v)

and we minimize it over the set K . Then, the corresponding variational inequality
is as follows:

a(u, v − u)− (f, v − u)+ j (v)− j (u)≥ 0, ∀v ∈K. (B.58)

We note that J (v) is continuous and strictly convex and K is a convex closed set.
Then, by the general existence Theorem B.5 we conclude the minimizer of J (v) on
K exists and it is unique. Hence, the problem (B.58) has a unique solution.

If j (v)≡ 0, then we arrive at the elliptic variational inequality of the first kind:

a(u, v − u)≥ (f, v − u), ∀v ∈K. (B.59)

Problems generated by (B.58) with K = V form another special class of elliptic
variational inequalities, which are often called the variational inequalities of the
second kind.

B.4 Numerical Methods for Boundary Value Problems

Almost all approximation methods developed for boundary value problems are
based upon the idea to approximate the exact solution by a certain combination
of known functions φ, which are usually called trial functions. This idea probably
has its origin in [Rit09]. Approximation methods can be classified by

• types of the trial functions (finite dimensional spaces),
• the mathematical statement used,
• the residual form, which the method aims to minimize.

If the trial functions belong to the energy space V , then the approximations are
called conforming or internal. If they belong to a wider space, then they are non-
conforming or external. Also, trial functions can be classified as globally or locally
supported. In the first case, trial functions do not vanish at almost all points of Ω .
Locally supported functions (which are widely used in finite element approxima-
tions) vanish everywhere except for a small supporting domain.

From the viewpoint of the mathematical origin, the methods can be generated by
classical or generalized (integral), variational (or dual variational), mixed (or dual
mixed) statements of a boundary value problem.

By the “residual type” they are classified into the methods minimizing the resid-
ual in a pointwise (strong) sense (as, e.g., in the collocation method) and those that
minimize it in L2 or even in a weaker sense.
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Fig. B.1 Regular finite
difference grid Ωh

B.4.1 Finite Difference Methods

The finite difference (FD) method is one of the first methods developed for quan-
titative analysis of PDE’s. For a systematic study, we refer the reader to the books
[FW60, SG89, MA81] and numerous publications cited therein.

The FD method is based on the classical statement of a boundary value problem
and belongs to the class of nonconforming methods.

In the FD method, Ω is replaced by Ωh, which is a collection of mesh nodes
forming a mesh (grid). Instead of u, a mesh-function uh defined only at nodes is
considered. Let Ω be a plain domain covered by a regular mesh with nodes (ih, jh),
where i and j are natural numbers and h is the mesh size (see Fig. B.1). An approx-
imate solution to be found is a mesh function vij , which is a set of real numbers
associated with mesh nodes.

The FD method exploits approximations of classical derivatives, generated by
well-known incremental relations, e.g.,

v(x1 + h,x2)= v(x1, x2)+ ∂v

∂x1
(x1, x2)h+ 1

2

∂2v

∂2x1
(x1 + ξ, x2)h

2,

where ξ ∈ [x1, x1 + h]. Assuming that the function v is sufficiently smooth and the
last term on the right-hand side is small, we conclude that

∂v

∂x1
(x1, x2)≈ vh(i + 1, j)− vh(i, j)

h
,

where i is the index related to x1, j is related to x2, and vh(i, j) denotes the value
of the mesh function vh at the node (ih, jh). Analogously,

∂v

∂x1
(x1 − h,x2)≈ vh(i, j)− vh(i − 1, j)

h
.

For the second derivatives, we have similar relations
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∂2v

∂2x1
(x1, x2) ≈ 1

h

(
∂v

∂x1
(x1, x2)− ∂v

∂x1
(x1 − h,x2)

)

≈ vh(i + 1, j)− 2vh(i, j)+ vh(i − 1, j)

h2
=Λ11vh,

∂2v

∂2x2
(x1, x2) ≈ vh(i, j + 1)− 2vh(i, j)+ vh(i, j − 1)

h2
=Λ22vh.

Hence, the operator Δ is replaced by the following difference operator

Δv ≈ Δhvh :=Λ11vh +Λ22vh

= vh(i + 1, j)+ vh(i, j + 1)− 2vh(i, j)+ vh(i − 1, j)+ vh(i, j − 1)

h2

(B.60)

and the boundary value problem Δu + f = 0, u = u0 on Γ (we assume that Γ
is approximated by the boundary nodes of Ωh) is replaced by the finite difference
equation

Δhuh = fh, fh(i, j)= f (xi, xj ),

uh(i, j) = u0(xi, xj ), (xi, xj ) ∈ Γ.

The latter relations lead to a system of linear simultaneous equations with respect
to the unknown nodal values uh(i, j) associated with the internal nodes. This is the
main idea of the FD method, which suggests to replace the differential problem

Lu= f (B.61)

associated with the operator L by the finite difference equation

Lhuh = fh, (B.62)

where Lh is the mesh-operator, uh ∈ Vh, and Vh is the space of mesh-functions. The
first condition, which must be satisfied, is that all discrete problems Lhuh = fh are
solvable.

Let πh : V → Vh be an interpolation operator which transforms functions into
mesh functions. Then, the mesh function eh = uh − πh(u) is the error of the FD
scheme, and the quantity ‖eh‖h (which is computed with the help of a mesh norm
‖ · ‖h) is an error measure. If L is a linear operator, then

Lheh = Lhuh −Lh(πhu)= fh −Lh(πhu).

Note that πh(Lu)= πhf . Therefore, we obtain the following relation of importance
for the error analysis of FD approximations:

Lheh = fh − πhf + πh(Lu)−Lh(πhu). (B.63)
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Here fh − πhf is the approximation of the right-hand side (and of the boundary
conditions) and πh(Lu)−Lh(πhu) is the error arising owing to the approximation
of the differential operator L by a mesh-operator Lh.

For example, let L =Δ and πh be defined in the simplest way, i.e.,

(πhw)(i, j)=w(xi, xj ).

Then, πh(Lu)=Δu(ih, jh). Using the Lagrange formula, it is not difficult to show
that for smooth functions Δh(πhu)=Δu+ch2, where the constant c depends on the
values of fourth order derivatives of u. Thus, under these (rather restrictive) assump-
tions the difference operator Δh approximates Δ with the accuracy h2. Regrettably,
this fact it is not sufficient to prove that eh → 0.

In order to guarantee that errors tend to zero as h tends to zero, we must justify
another condition (stability).

Definition B.2 A finite deference scheme is correct if (a) for any fh there exists a
unique mesh-solution uh and (b) a constant c > 0 exists such that

‖uh‖h ≤ c‖fh‖h, ∀fh ∈ Vh, (B.64)

where c does not depend on fh.

The stability condition means that mesh-norms of discrete solutions are con-
trolled by the mesh-norm ‖fh‖h. We note that stability is a crucial property not
only for the FD method, but also for many other numerical methods. The notion
of stability can be formulated in a very general form. Consider an abstract problem
Luf = f , where L :X → Y . If we can prove that

‖uf ‖X ≤ c‖f ‖Y , ∀f ∈ Y, (B.65)

with the positive constant c independent of f , then the problem associated with the
operator L is stable.

For example, if L = Δ is understood as a differentiable operator that
acts from X = {u ∈ C2(Ω),u = u0 on Γ } to Y = C(Ω) (or from
X = {u ∈H 2(Ω),u= u0 on Γ } to L2), then, in general, we cannot prove (B.65).

However, if we consider a generalized solution (for f ∈ L2) and understand L as
an operator from H 1 to L2, then by the relation

∫

Ω

∇uf · ∇w dx =
∫

Ω

fw dx,

we find that
∥
∥∇(uf − u0)

∥
∥2 ≤ ‖f ‖‖uf − u0‖ ≤ ‖f ‖CFΩ

∥
∥∇(uf − u0)

∥
∥

and easily obtain
∥
∥∇(uf − u0)

∥
∥≤ CFΩ‖f ‖.



B.4 Numerical Methods 293

Since u0 is a given function, we deduce (B.65) by the triangle inequality. Moreover,
such an estimate can be proved for a wider class of right-hand sides, namely, for

�(w)=
∫

Ω

(gw + τ · ∇w)dx, g ∈ L2(Ω), τ ∈ L2(Ω,Rd
)
.

Linear functionals of this type belong to the space H−1(Ω), so that Δ possesses
stability as an operator V0 →H−1(Ω).

Let us now formulate and prove a theorem that is central in error analysis of FD
methods.

Theorem B.8 Let a solution of the differential problem exist and possess necessary
differentiability properties. If the FD scheme approximates the differential operator
and the function f with power hk and it is stable, then

‖eh‖h ≤ Chk. (B.66)

Proof In view of the approximation property, we have
∥
∥πh(Lu)−Lh(πhu)

∥
∥
h

≤ chk,

‖f − fh‖h ≤ chk.

Then, from (B.63) if follows that ‖gh‖h ≤ 2chk , where

Lheh = gh := fh − πhf + πh(Lu)−Lh(πhu).

In view of the stability property,

‖eh‖h ≤ C‖gh‖h ≤ 2cChk. �

We end up this section with comments related to practical applications of classi-
cal FD schemes. The FD methods have clear advantages: they are relatively simple
and the derivation of a discrete problem is very transparent. They are often used in
the analysis of evolutionary problems of type

∂u

∂t
+Au= f,

where u= u(x, t), t ∈ (0, T ). If time derivatives are replaced by the finite difference
relation, then the following two numerical schemes arise

uk+1 = (I − τA)uk + τf k, 0 ≤ τk ≤ T (explicit), (B.67)

uk+1 = (I + τA)−1uk + τf k, 0 ≤ τk ≤ T (implicit). (B.68)

It is well-known that the first scheme is stable only for sufficiently small τ , unlike
the second one which is unconditionally stable (provided that A possesses a posi-
tive discrete spectrum). Such schemes are efficiently used in computer simulation
methods.
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However, for elliptic problems the FD methods are used not very often. This is
due to several properties of the method, namely

• Strong assumptions on the differentiability of exact solutions, which may not hold
in many practically interesting problems.

• Difficulties in approximation of complicated boundaries.
• Verification of stability (especially for nonlinear problems) may be a very difficult

task.

Practical implementation of FD methods is often based on heuristic grounds. In
engineering and scientific computations, analysts typically justify the results using
model problem(s) (where solutions are known). A suitable value of h usually comes
not from theoretical estimates, but is due to comparison of results computed for
meshes with various h. Reliable justification of numerical results obtained by FD
method may be a difficult problem, which however can be solved by means of the
technique discussed in Sect. 6.1.

B.4.2 Variational Difference Methods

Various variational methods originate from of the Ritz method [Rit09], which is
based on the variational statement and minimizes the corresponding energy func-
tional J on a certain finite dimensional space Vn formed by a collection of linearly
independent functions {vi}, i = 1,2, . . . , n. In the Ritz method, an approximation is
sought in the form

un =
n∑

i=1

αivi . (B.69)

Example B.7 If J (v)= 1
2a(v, v)− (f, v), then we arrive at the problem

min
αi

∑

i

∑

j

(
1

2
aijαiαj − fiαi

)

, aij = a(vi, vj ), fi = (f, vi),

which is reduced to a system of linear simultaneous equations with respect to the
unknown coefficients α.

Definition B.3 We say that a collection of spaces {Vn} is limit dense in V if for any
v ∈ V and small ε > 0, we can find a natural number n∗(v) such that

dist{v,Vn} := inf
w∈Vn

‖v −w‖V ≤ ε, ∀n≥ n∗(v). (B.70)

In other words, if {Vn} is limit dense in V , then for any v ∈ V one can find a
sequence vk such that vk ∈ Vk and vk → v strongly in V .
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Let J : V → R be convex, continuous, and coercive on V , and the collection
of spaces {Vn} be limit dense in V . Then, it is easy to prove that the sequence un
constructed by the variational method tends to the exact minimizer u as n → +∞.
Assume the opposite, i.e.,

lim inf
n→+∞J (un) > J (u)= inf

w∈V J (w).

In view of the limit density property, we can find a sequence of elements vn ∈ Vn
convergent to u in V . Then,

lim inf
n→+∞J (vn)= J (u).

On the other hand, J (vn) ≥ J (un) = infwn∈Vn J (wn), and we arrive at a contradic-
tion. Hence, {un} is a minimizing sequence. Since J is coercive, we conclude that
the sequence is bounded and contains a weakly convergent subsequence (which we
denote by the same letters): un ⇀ ũ. Since J is weakly lower semicontinuous, we
conclude that

infJ = lim inf
n→+∞J (vn)≥ J (̃u),

whence it follows that ũ is a minimizer (if J is strictly convex, we conclude that
ũ= u). Thus, approximations constructed by the variational method weakly con-
verge to the exact solution under very general assumptions on J and finite dimen-
sional subspaces used.

In order to prove strong convergence, we need to strengthen the conditions im-
posed on J and assume that it is uniformly convex (see Sect. A.4), i.e., there exists
a nonnegative monotone function Υρ(‖un − u‖V ) �≡ 0, Υρ(0)= 0 such that for all,

J

(
v1 + v2

2

)

+Υρ
(‖un − u‖V

)≤ J (v1)+ J (v2)

2
, ∀v1, v2 ∈ B(0V ,ρ).

If the functional J is coercive, then the minimizing sequence is bounded and, there-
fore, it is contained in a ball. We select ρ (radius of the ball) accordingly, set v1 = un,
v2 = u, and see that

Υρ
(‖un − u‖V

)≤ 1

2
J (un)+ 1

2
J (u)− J

(
un + u

2

)

≤ 1

2

(
J (un)− J (u)

)
. (B.71)

Hence, for such type functionals any minimizing sequence tends to the minimizer
in the norm of V .

For a special but important case J (v) = 1
2a(v, v)− (f, v), we have the relation

(see [Mik64])

1

2
a(u− v,u− v)= J (v)− J (u). (B.72)

In view of this relation, for quadratic type variational problems strong convergence
of a minimizing sequence is guaranteed.
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Fig. B.2 Patch (supporting
set of vi ) associated with the
node Xi , and the intersection
of two adjacent patches
associated with Xj and Xn

For a wide set of convex variational problems, the convergence of approx-
imate solutions (conforming approximations) constructed by the variational
method is easy to prove. The proof is based upon the limit density of approx-
imation spaces and very general properties of the energy functional.

B.4.3 Petrov–Galerkin Methods

The Petrov–Galerkin method is based on the generalized statement of a boundary
value problem. For example, assume that u ∈ V is defined by the integral identity
(B.6). In particular, if �(v)= (f, v), then the problem reads

a(u, v)= (f, v), ∀v ∈ V. (B.73)

We can seek an approximate solution un in the form (B.69) and select the trial func-
tions in the same subspace Vn (or in another subspace Vn′). Certainly, the selection
of vi is an important question. If all vi belong to V , then we say that the method is
conforming. In conforming approximation methods, approximate solutions are rep-
resented by functions (not mesh-functions). The function un satisfying the relation

a(un, vi)= �(vi), ∀i = 1,2, . . . , n (B.74)

is called a Galerkin approximation of u.
Methods using global trial functions (such as, e.g., the Ritz method) have serious

technical drawbacks. First, for domains with complicated boundaries, a proper col-
lection of trial functions vi may be difficult to construct. Moreover, the integration
of complicated global functions generates an error, and the corresponding matrix
{aij } does not have a special (sparse, n-diagonal) structure.

The idea of finite element approximations (which is contained in [Cou43]) is to
use trial functions made of lower order polynomials having small supporting sets
suppvi = ωi ⊂Ω . The set ωi of elements associated with the node i (see Fig. B.2)
is often called a patch of elements. Traditionally, the diameter of suppvi is denoted
by h. The subspace formed by such type functions is called Vh, and we denote the
respective Galerkin solution by uh, i.e.,

a(uh,wh)= �(wh), ∀wh ∈ Vh. (B.75)
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In the asymptotic analysis of the finite element method (FEM) (see, e.g., [Bra07,
Cia78a, SF73]), it is assumed that

uh ∈ Vh ⊂ V, dimVh = n(h) <+∞, and n(h)→ +∞ as h→ 0.

Such type conforming approximations generate dispersed matrices {aij } whose en-
tries are exactly computed by simple integration formulas. Moreover, these approx-
imations are able to approximate solutions of boundary value problems in domains
having complicated boundaries. Another attractive property is that the stability and
convergence of the scheme is easily proved.

The convergence of a sequence of conforming approximations to the exact so-
lution of an elliptic boundary value problem is usually proved by the method, the
main idea of which is easy to demonstrate with the example of the problem (B.6).

Theorem B.9 Let a(·, ·) be a V -elliptic bilinear form and let finite dimensional
subspaces Vh be limit dense in V . Then, the sequence of Galerkin approximations
uh tends to u in V as h→ 0.

Proof In view of (B.75), we have

c1‖uh‖2 ≤ a(uh,uh)= �(uh)≤ ||�||‖uh‖.
Whence

‖uh‖ ≤ 1

c1
||�||.

The sequence uh is bounded and contains a weakly convergent subsequence (for the
sake of simplicity, we denote it by uh as well), i.e.,

uh ⇀ ũ in V as h→ 0.

Let w be an arbitrary element of V . Since the collection of Vh is limit dense in V ,
we know that a sequence wh ∈ Vh exists such that wh → v in V . Then,

a(uh,wh)→ a(̃u,w), �(wh)→ �(w),

and, consequently,

a(̃u,w)= �(w), ∀w ∈ V.

We conclude that ũ satisfies (B.6). We know that the generalized solution is unique.
Therefore, ũ= u. Now, we pass to the limit in the relation

a(uh − u,uh − u) = a(uh,uh)− a(u,uh − u)− a(uh,u)

= �(uh)− a(u,uh − u)− a(uh,u)

and find that
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Table B.1 Different types of mixed approximations

Primal variable Dual variable Method

uh ∈ V0 + u0 ph ∈ L2(Ω,Rd ) Primal Mixed (PM) Method

uh ∈ L2(Ω) ph ∈H(Ω,div) Dual Mixed (DM) Method

uh ∈ V0 + u0 ph ∈H(Ω,div) Least Squares Mixed (LSM) Method

c1‖uh − u‖2 ≤ a(uh − u,uh − u)→ �(u)− a(u,u)= 0 as h→ 0.

Thus, strong convergence of uh to u is established. �

Nowadays, finite element methods are widely used in engineering and scien-
tific computations. A systematic discussion of the finite element method (and other
methods) for problems in structural mechanics can be found in [BLM00, Oña09].

B.4.4 Mixed Finite Element Methods

Mixed methods are based on saddle point statements of elliptic problems, in which
a solution is understood as a pair of variables satisfying two integral type relations
defined on a proper set of trial functions.

Consider again the problem (B.35). We know that the generalized solution to
this problem u belongs to the space H 1(Ω), and the respective flux is p = A∇u

belongs to H(Ω,div). Different approximations of the primal and dual variables
lead to different versions of mixed methods. The main three cases are presented in
Table B.1.

B.4.4.1 The Primal Mixed Method

This method is based on the statement
∫

Ω

(
A−1p − ∇u

) · q dx = 0, ∀q ∈Q= L2(Ω), (B.76)

∫

Ω

p · ∇w dx − �(w) = 0, ∀w ∈ V0, (B.77)

which defines the pair (u,p) ∈ {V0(Ω)+ u0} ×L2(Ω). By Qh ⊂Q and V0h ⊂ V0

we denote subspaces constructed by the FE approximation. Then, a discrete analog
of this system is the Primal Mixed Finite Element Method (PMM).

In the PMM, we need to find a pair of functions (uh,ph) ∈ (V0h + u0) × Qh,
where Qh ⊂ L2(Ω), such that
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∫

Ω

(
A−1ph − ∇uh

) · qh dx = 0, ∀qh ∈Qh, (B.78)

∫

Ω

ph · ∇wh dx − �(wh) = 0, ∀wh ∈ V0h. (B.79)

In the simplest case, uh is constructed by means of piecewise affine (C0) ele-
ments, and ph uses piecewise constant functions (they should satisfy the compat-
ibility condition A∇uh ∈ Qh). With respect to the pair of spaces (V0 + u0)×Q,
this method operates with conforming approximations, but with respect to
(V0 + u0)×H(Ω,div) it should be viewed as a nonconforming method.

If ph is a piecewise constant function, then the relation p = A∇u is satisfied on
any element T in the integral sense

∫

T

(ph −A∇uh)dx = 0.

If A is a matrix with constant entries, then

ph =A∇uh in Ω. (B.80)

On the other hand, the equation of balance divp + f = 0 is satisfied in a weaker
sense: namely, the residual of this equation is orthogonal to a certain amount of trial
functions in V0h. From the physical point of view, this fact means that, generally
speaking, these approximations are more focused on the relation p =A∇u than on
the balance equation. However, the constitutive relation p = A∇u is often known
with some precision only, unlike the balance equation representing the basic en-
ergy conservation principle, which must be exactly satisfied. In other words, we are
more interested in keeping the balance relation (at least integrally) on every element
than making accurate satisfaction of the constitutive relation. A way of doing this is
considered below.

Finally, we note that the corresponding uh is the usual Galerkin approximation.
Indeed, by (B.80) we exclude ph and find that

∫

Ω

A∇uh · ∇wh dx = �(wh), ∀wh ∈ Vh.

Therefore, all the results of the approximation theory for Galerkin solutions can be
used in the analysis of PM approximations.

B.4.4.2 The Dual Mixed Method

Conforming variational approximations and similar approximations generated by
the PM method have an essential drawback, namely, the respective flux ph does not
satisfy the equilibrium equation even in an integral sense. For this reason, nowa-
days the “classical” FEM schemes (using nodal approximations) are often replaced



300 B Boundary Value Problems

by approximations based upon edge-type elements, which are natural for the dual
mixed statement. In these approximations, the major attention is focused on the con-
servation (balance) relations. The corresponding theory is systematically exposed in
[BF91, Bra07, RT91] and other publications.

In our simple example, the dual mixed mathematical statement is defined on the
pair of spaces L2(Ω)×H(Ω,div). As in Sect. B.3.2, the spaces and functions used
in dual mixed approximations are denoted by hats. In particular, V̂ = L2(Ω). Let

V̂h ⊂ V̂ , Q̂0h ⊂ Q̂0, Q̂Fh ⊂ Q̂F .

A discrete analog of the dual mixed problem is as follows: Find (̂uh, p̂h) ∈ V̂h × Q̂Fh

such that
∫

Ω

(
A−1p̂h · q̂h + ûh div q̂h

)
dx = g(u0, q̂h), ∀q̂h ∈ Q̂0h, (B.81)

∫

Ω

(div p̂h + f )̂vh dx = 0, ∀v̂h ∈ V̂h. (B.82)

Approximations of the primal and dual variables must satisfy a discrete analog of
the “infsup” condition (see Lemma B.5). This question is discussed in Sect. C.3.

B.4.4.3 Least Squares Mixed Method

We end up this concise overview of mixed finite elements methods with a short
comment on the Least Squares Mixed FEM. If this method is applied to a second
order elliptic problem (see, e.g., [CLMM94, PCL94]), then the problem is reduced
to minimization of the quadratic functional

J (v, q) := ‖divq + f ‖2 + ‖q −A∇v‖2

on the product space (V0 +u0)×QΓN , where QΓN contains vector- valued functions
from H(Ω,div) satisfying the Neumann boundary conditions (the latter require-
ment is not indeed important and can be avoided by adding the term ‖q ·n−F‖2

Γn
).

In [PCL94]), the reader will find a discussion of a mixed FEM method that uses
conforming approximations uh and ph in the corresponding spaces and a priori rate
convergence estimates.

B.4.5 Trefftz Methods

The classical Trefftz method [Tre26] was suggested for elliptic problems with con-
stant coefficients, such as, e.g.,

Δu= 0 in Ω, u= u0 on Γ.
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Let φi , i = 1,2, . . . ,N , be a set of linearly independent harmonic functions (i.e.,
they satisfy the equation Δφi = 0). We define an approximate solution (see, e.g.,
[Mik64]) as a function

ũ=
N∑

i=1

αiφi

that minimizes the energy norm ‖∇(u − ũ)‖2. Since ũ does not satisfy the pre-
scribed boundary condition, the Trefftz method operates with nonconforming ap-
proximations. In this method, we select the coefficients αi in such a way that the
functional

J (̃u) :=
∫

Ω

(|∇ũ|2 − 2∇ũ · ∇u
)

dx

attains the minimum. Since ũ is a harmonic function, we have

J (̃u)=
N∑

i,j=1

αiαj

∫

Ω

∇φi · ∇φj dx − 2
∫

∂Ω

N∑

i=1

αi
∂φi

∂ν
u0 ds.

The minimization of the above functional leads to a linear system with respect to αi .
It is convenient to rewrite the functional in the form that does not include the

normal derivatives of φi on the boundary. Since
∫

Ω

∇ũ · ∇(u− u0)dx = 0,

we can rewrite the functional as

J (̃u) :=
∫

Ω

(|∇ũ|2 − 2∇ũ · ∇u0
)

dx

and define αi by minimizing

1

2

N∑

i=1

N∑

j=1

αiαj

∫

Ω

∇φi · ∇φj dx −
N∑

i=1

αi

∫

Ω

∇φi · ∇u0 dx.

For the equation divA∇u = 0 and other elliptic equations, this method can be
presented quite analogously. The classical Trefftz method admits various general-
izations (e.g., see [CLP09, Her84, Jir78]).

B.4.6 Finite Volume Methods

The finite volume (FV) method was first developed for evolutionary models in or-
der to generate approximations, which are first of all oriented toward the proper
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satisfaction of conservation laws (this idea was suggested in [God59]; a consequent
exposition is presented in [LeV02]). Nowadays various modifications are used for
solving partial differential equations of all types. The FV method is very popular
in engineering computations. Mathematical studies of the method can be found in,
e.g., [ABC03, EGH00, Nic06] and many other publications. Below we briefly dis-
cuss one version, which is often applied to elliptic problems. To this end, we select
the problem

−div
(
α(x)∇u

) = f in Ω, (B.83)

u = u0 on ΓD, (B.84)

α∇u · ν = gN on ΓN, (B.85)

where Ω is a bounded Lipschitz domain in R
2, u0 ∈ H 1(Ω), f ∈ L2(Ω),

gN ∈ L2(ΓN), and

α ∈ L∞(Ω), 0 < α� ≤ α(x)≤ α⊕ <+∞, ∀x ∈Ω, (B.86)

are given data. The solution u ∈ V0 + u0 satisfies the integral relation

∫

Ω

α∇u · ∇w dx =
∫

Ω

fw dx +
∫

ΓN

gNw ds, ∀w ∈ V0. (B.87)

Let Ω be divided into a collection of simplicial cells Ti , i = 1,2, . . . ,N (e.g.,
triangles). We denote by Γi the boundary of an element Ti and by νi its outward
normal vectors. The relation

−
∫

Ti

divp dx = −
∫

Γi

p · νi ds =
∫

Ti

f dx (B.88)

reflects the conservation law principle. It holds for the true flux p = α∇u on each
cell that has no common boundary with ΓN . The relation

−
∫

Γi

p · νi ds =
∫

Ti

f dx +
∫

ΓNi

gN ds (B.89)

presents the same law for a cell having common boundary ΓNi with ΓN . The rela-
tions (B.88) and (B.89) form a basis of the FV method. Moreover, we use a special
representation of normal fluxes in terms of the values of the approximation uh on
the cells. In the simplest case, we assume that uh ∈ P 0(Ti). For the control volume
Ti , we select a certain point xi called “cell center” (see Fig. B.3), where ui denotes
uh(xi).

The flux along an edge of the triangulation is approximated by using the so-called
cell-centered scheme of the finite volume method. Let αi = {|α|}Ti , Eij be an interior
edge of the triangulation, shared by two elements Ti and Tj of respective centers xi
and xj . If we suppose that this edge Eij is orthogonal to the straight line joining xi
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Fig. B.3 Two adjacent cells
Ti and Tj , and the flux
associated with the edge Eij

and xj , then

−
∫

Eij

α∇u · νi ds ∼= −τEij
(uj − ui)= FTi,Eij

, (B.90)

where the factor is defined as a weighted harmonic mean

τEij
:= |Eij | αiαj

αidTj ,Eij
+ αjdTi ,Eij

,

and dTi ,Eij
denotes the minimal distance between the center xi and the edge Eij .

If an edge EDi of an element Ti belongs to the Dirichlet boundary of the domain,
then we denote by dTi ,EDi

the distance between the center xi and x̄i , where x̄i is
defined by the relation |xi − x̄i | = infx∈EDi

|xi − x|. Along this edge, the flux is
approximated by

−
∫

EDi

α∇u · νi ds ∼= −τEDi
(u0 − ui)= FTi,EDi

, (B.91)

where τEDi
= |EDi | αi

dTi ,EDi
.

If an edge ENi belongs to the Neumann boundary, then

−
∫

ENi

α∇u · νi ds = −
∫

ENi

gN ds, (B.92)

and the corresponding flux is given by the relation

FTi,ENi
= −

∫

ENi

gN ds. (B.93)

Equations (B.88) and (B.89) then lead to the following finite volume scheme:

−
∑

Eij⊂Γi

FTi ,Eij
=
∫

Ti

f dx, (B.94)

−
∑

Eij⊂Γi

FTi ,Eij
=
∫

Ti

f dx +
∫

ENi

gN ds. (B.95)
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This system of equations is considered together with the relations (B.90), (B.91),
and (B.93).

Then, the numerical flux associated with the internal edge Eij common to Ti and
Tj is defined by the relation qEij

:= −FTi,Eij
. On ΓNi and ΓD , the fluxes are defined

by the relations qENi
= ∫

ENi
gN ds and qEDi

:= −FTi,EDi
, respectively.

Thus, the approximations produced by the finite volume method are presented
by a set of piecewise constant functions

uh(x)= ui for x ∈ Ti

and the set

Qh := {qij | qij ∈ P 0(Eij )
}

of normal fluxes on the edges.

Remark B.5 Certainly, the approximations ui and qij generated by the FV method
are nonconforming (mesh) approximations. However, by these data we can construct
a pair of functions

(̃uh, q̃h) ∈H 1(Ω)×H(Ω,div),

viewed as conforming approximations of u and p, respectively. For example, we
can do this as follows. Let Pk be the patch related to a common node k. We define
the value of ũh at the interior node k as an averaged value

ũh(xk) :=
∑

s=i1,...,imk
|Ts |us

∑
s=i1,...,imk

|Ts | ,

where mk is the number of elements in the patch Pk . Inside Ti the function ũh is
defined as the affine function having the above-defined values at all the nodes. For
a boundary node k, we take

ũh(xk) := u0(xk),

assuming that u0|Γ ∈ C(Γ ).
The function q̃h is defined by the extension of edge fluxes inside Ti with the help

of Raviart–Thomas elements of the lowest order (RT 0 elements).

Remark B.6 A posteriori error estimates for finite volume approximations were ob-
tained by different methods. For example, in [Zou10] a hierarchical approach was
used. Papers [HO02, LT02, Nic06, Voh07a, Voh07b, Ye11] use various versions
of the residual approach. Functional type a posteriori estimates for FV approxima-
tions has been suggested and tested in [CDNR09]. Modifications of a posteriori es-
timates adapted to singularly perturbed convection diffusion problems were studied
in [Ang95, Ohl01].
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B.4.7 Discontinuous Galerkin Methods

The discontinuous Galerkin (DG) method belongs to the class of nonconform-
ing methods, based on weakened mixed statements. It was initially proposed in
the 1970s/1980s (see, e.g., [Arn82, Bab73a, Bab73b, BZ73] and the references in
[ABCM02]). Usually it uses piecewise polynomial functions that do not preserve
continuity along faces of finite elements (subdomains). To discuss the basic ideas,
we consider the simplest elliptic problem Δu+ f = 0 with homogeneous boundary
conditions on Γ .

As before, we split the equation into two relations:

p = ∇u, (B.96)

divp + f = 0. (B.97)

Let ω ⊂Ω , q ∈H(ω,div), and w ∈H 1(ω). Since

∫

ω

(p · q − ∇u · q)dx =
∫

ω

(p · q + udivq)dx −
∫

∂ω

u(q · n)ds,

∫

ω

(divp + f )w dx =
∫

ω

(−p · ∇w + fw)dx +
∫

∂ω

(p · n)w ds,

we find that
∫

ω

p · q dx =
∫

ω

−udivq dx +
∫

∂ω

u(q · n)ds, (B.98)

∫

ω

p · ∇w dx =
∫

ω

fw dx +
∫

∂ω

(p · n)w ds. (B.99)

Assume that Ω is decomposed into a collection of subdomains Ωi and Γij denotes
the common boundary of Ωi and Ωj . We define the so-called “broken” spaces

V̂ := {
w = {wi

}
,wi ∈H 1(Ωi), i = 1,2, . . . ,N

}

Q̂ := {
q = {qi}, qi ∈H(Ωi,div), q · n ∈ L2(∂Ωi)

}
,

use (B.98) and (B.99), and arrive at the relations, which generate the following
statement: Find u,p ∈ (V̂ , Q̂) such that

∫

Ωi

p · qi dx =
∫

Ωi

−udivqi dx +
∫

∂Ωi

u
(
qi · n)ds, ∀qi, (B.100)

∫

Ωi

p · ∇wi dx =
∫

Ωi

fw dx +
∫

∂Ωi

(p · n)wi ds, ∀wi. (B.101)
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In the DG method, V̂ and Q̂ are replaced by finite dimensional spaces V̂h and
Q̂h, and the system (B.100)–(B.101) is replaced by a close (but different) system

∫

Ωi

ph · qih dx = −
∫

Ωi

uh divqih dx +
∫

∂Ωi

ũ
(
qih · n)ds, ∀qi (B.102)

∫

Ωi

ph · ∇wi
h dx =

∫

Ωi

fw dx +
∫

∂Ωi

(p̃ · n)wi
h ds, ∀wi, (B.103)

where ũ and p̃ are the so-called numerical fluxes, which are approximations of ∇u

and u on the boundary ∂Ωi , respectively, and wi
h and pih are polynomials on Ωi .

Typically, Ωi are assumed to be of size h. Unknown numerical fluxes are expressed
in terms of uh and ph, i.e.,

ũ=G1(uh,ph), p̃ =G2(uh,ph). (B.104)

Different versions of the DG method make use of different forms of G1 and G2. We
rewrite the above relations in the form

∫

Ω

ph · qh dx = −
∫

Ω

uhd̂ivqh dx

+
N∑

i=1

∫

∂Ωi

ũ(qh · n)ds, ∀qh ∈ Q̂h, (B.105)

∫

Ω

ph · ∇̂wh dx =
∫

Ω

fw dx +
∫

Γ0

(p̃ · n)wh ds

+
∫

Γ

(p̃ · n)wh ds, ∀wh ∈ V̂h, (B.106)

where Γ0 is the set of internal faces and ∇̂ and d̂iv are (generalized) differential
operators defined on each Ωi .

Set wh = 1 on Ωi . Then, from (B.103) it follows that

∫

Ωi

f dx +
∫

∂Ωi

p̃ · nds = 0. (B.107)

This fact means that the scheme is conservative on any subdomain.
Consider the face Γij . We introduce the mean values of w and q on Γij

{|w|} := 1

2

(
wi +wj

)
, {|q|} := 1

2

(
qi + qj

)

and jumps

[w] :=winij +wjnji, [q] := qi · nij + qj · nji .
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On Γ , we set [w] =wn and {|q|} = q . Note that

N∑

i,j=1

∫

Γij

(
wi
hq

i
h · nij −w

j
hq

j
h · nij

)
ds

=
N∑

i,j=1

∫

Γij

1

2

(
wi
hnij −w

j
hnij

)(
qih + q

j
h

)
ds

+
N∑

i,j=1

∫

Γij

1

2

(
wi
h +w

j
h

)(
qih · nij − q

j
h · nij

)
ds

=
N∑

i,j=1

∫

Γij

({|qh|} · [wh] + {|wh|}[qh]
)

ds. (B.108)

Here an integral over Γij is zero if Γij = ∅. On the external boundary, we have
∫

Γ

wh(qh · n)ds =
∫

Γ

[wh] · {|qh|}ds. (B.109)

Then,

∑

i

∫

∂Ωi

wh(qh · ni)ds

=
N∑

i,j=1

∫

Γij

({|qh|} · [wh] + {|wh|}[qh]
)

ds +
∫

Γ

[wh] · {|qh|}ds (B.110)

and
∫

Ω

(∇̂wh · qh +whd̂ivqh)dx

=
∑

i

∫

∂Ωi

wh(qh · ni)ds

=
N∑

i,j=1

∫

Γij

({|qh|} · [wh] + {|wh|}[qh]
)

ds +
∫

Γ

[wh] · {|qh|}ds. (B.111)

We reform (B.105) and (B.106) by the above relations and arrive at the system

∫

Ω

ph · qh dx =
∫

Ω

−uhd̂ivqh dx +
N∑

i,j=1

∫

Γij

({|qh|} · [̃u] + {|̃u|}[qh]
)

ds

+
∫

Γ

[̃u]{|qh|}ds, ∀qh ∈ Q̂h, (B.112)
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∫

Ω

ph · ∇̂wh dx =
∫

Ω

fw dx +
N∑

i,j=1

∫

Γij

({|p̃h|} · [wh] + {|uh|}[p̃h]
)

ds

+
∫

Γ

[wh] · {|ph|}ds, ∀wh ∈ V̂h. (B.113)

Now, we set wh = uh in (B.111) and obtain

∫

Ω

uhd̂ivqh dx =
N∑

i,j=1

∫

Γij

({|qh|} · [uh] + {|uh|}[qh]
)

ds +
∫

Γ

[uh] · {|qh|}ds

−
∫

Ω

∇̂uh · qh dx. (B.114)

Use this relation in (B.112). Then, this equation comes in the form

∫

Ω

ph · qh dx =
∫

Ω

∇̂uh · qh dx

+
N∑

i,j=1

∫

Γij

({|qh|} · [̃u− uh] + {|̃u− uh|}[qh]
)

ds

+
∫

Γ

[̃u− uh] · {|qh|}ds, (B.115)

where qh is an arbitrary trial function in Q̂h. (B.115) is an important relation. First,
using it we can express ph in terms of uh. Second, it defines a bilinear form B

associated with the DG method.
Now, we need to introduce certain trace and lifting operators associated with the

DG method. We recall that the operator γ that assigns the boundary data related to
a function in ω is called the trace operator and the operator extending the boundary
data inside ω is called the lifting operator μ (cf. Sect. A.2.2). We can define μ(q)
in such a way that the relation

∫

T

μ(q) · q dx = −
∑

Est∈∂T

∫

Est

q · {|q|}ds

holds for a certain set of admissible q . Let us consider the simplest example. Assume
that we consider only constant q . Then, we can define

μ(q)= α

{∫

∂T

q1 ds,
∫

∂T

q2 ds

}

.
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From the above-defined conservation principle, it follows that α should be selected
as α = − 1

|T | . Indeed,

∫

T

μ(q) · q dx = |T |α
(

q1

∫

∂T

q1 ds + q2

∫

∂T

q2 ds

)

= |T |α
∫

∂T

q · q ds ⇒ α = − 1

|T | .

In the DG scheme, we need two lifting operators defined for the whole sampling

μ1 : L2(Γ0 + Γ,R2)→ Q̂h, μ2 : L2(Γ0)→ Q̂h.

They are defined by the relations
∫

Ω

μ1(q) · q dx = −
∫

Γ0+Γ

q · {|q|}ds,

∫

Ω

μ2(w) · q dx = −
∫

Γ0

w[q]ds.

Now we return to (B.115) and replace the terms in the right hand side, using lifting
operators. We have

∫

Γ0+Γ

{|qh|} · [̃u− uh]ds = −
∫

Ω

μ1
([̃u− uh]

) · qh dx,

∫

Γ0

[qh]{|̃u− uh|}ds = −
∫

Ω

μ2
({|̃u− uh|}

) · qh dx,

and (B.115) implies that
∫

Ω

ph · qh dx =
∫

Ω

(∇̂uh −μ1
([̃u− uh]

)−μ2
({|̃u− uh|}

)) · qh dx.

Instead of the relation ph = ∇uh (in the conforming FEM) we have a more sophisti-
cated relation ph = ∇̂uh −μ1([̃u−uh])−μ2({|̃u−uh|}), which includes additional
terms depending on discontinuities.

Take (B.115) and set qh = ∇̂wh, where wh is an arbitrary function in the broken
space V̂h. We have

∫

Ω

ph · ∇̂wh dx =
∫

Ω

∇̂uh · ∇̂wh dx

+
∫

Γ0+Γ

{|∇̂wh|} · [̃u− uh]ds

+
∫

Γ0

{|u− uh|}[∇̂wh]ds. (B.116)
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Recall (B.113)
∫

Ω

ph · ∇̂wh dx =
∫

Ω

fwh dx +
∫

Γ0+Γ

{|p̃h|} · [wh]ds +
∫

Γ0

{|uh|}[p̃h]ds.

We rewrite (B.116) in the standard form

Bh(uh,wh)=
∫

Ω

fwh dx, ∀wh ∈ V̂h, (B.117)

where

Bh(uh,wh) :=
∫

Ω

∇̂uh · ∇̂wh dx +
∫

Γ0+Γ

{|∇̂wh|} · [̃u− uh] − {|p̃h|}[wh]ds

+
∫

Γ0

{|u− uh|} · [∇̂wh] − {|uh|}[p̃h]ds

is the bilinear form of the DG method.

Example B.8 An example is given by the Bassi–Rebay method. Here

ũ= {|uh|} on Γ0, ũ= 0 on Γ, p̃ = {|ph|} on Γ0 + Γ. (B.118)

In this case, {|̃u− uh|} = 0, [̃u− uh] = [uh], and we have

ph = ∇̂uh +μ1
([uh]

)
,

Bh(uh, vh) =
∫

Ω

(∇̂uh · ∇̂vh +μ1
([uh]

)
μ1
([vh]

))
dx

−
∫

Γ0+Γ

({|∇̂uh|} · [vh] + [uh] · {|∇̂vh|}
)

ds.

Further mathematical analysis of DG schemes is mainly based on proving two
properties: boundedness and stability, i.e.,

Bh(vh, vh) ≥ c1
∣
∣[vh]

∣
∣2, ∀vh ∈ Vh (B.119)

Bh(uh, vh) ≤ c2
∣
∣[uh]

∣
∣
∣
∣[vh]

∣
∣, ∀uh, vh ∈ Vh, (B.120)

where c1 and c2 are positive constants independent of h and |[vh]| is a suitable
“broken” energy norm.

A priori rate convergence estimates for DG approximations are derived with the
help of these properties and interpolation-type estimates. A systematic discussion
of these questions can be found in [ABCM02] and literature cited in this paper.

A posteriori estimates for DG approximations of elliptic type equations were in-
vestigated by many authors. In [Ain07, BGC05, BHL03, EP05, ESV10, HSW07,
KP03, YC06], residual type error indicators for the energy norm were suggested
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Fig. B.4 The domains Ω , ω,
and Ω̂

and, in [SXZ06], the authors considered a posteriori estimates based on local so-
lutions and on gradient recovery. [Kim66, Kim07] are devoted to a posteriori error
analysis for locally conservative mixed methods, with applications to P 1 noncon-
forming FEM and interior penalty DG (IPDG) methods and mixed FEM. A pos-
teriori estimates in terms of L2 norm were derived in [Cas05] for the so-called
“local DG method”. Methods based on equilibration of residuals are discussed in
[BS08, Sch08]. In [EP05, HRS00, JS95, SW05, YC06] time-dependent (transport)
equations are considered. Functional a posteriori estimates have been applied for
DG approximations in [LRT09, RT11, TR09].

B.4.8 Fictitious Domain Methods

The fictitious domain method is often used for problems associated with compli-
cated geometry. In general terms, the idea of this method is to get an approximate
solution by means of a problem defined in a simpler domain. Closeness of two solu-
tions can be proved if the coefficients of the latter problem are selected in a special
way. Let us discuss this idea, using the basic elliptic problem: Find u ∈H 1(Ω) such
that

divA∇u+ f = 0 in Ω, (B.121)

u = u0 on Γ = Γ̂ + Γω, (B.122)

where Ω = Ω̂ \ ω, Ω̂ is a “simple” domain with the boundary Γ̂ (e.g., rectangular
domain in Fig. B.4), and ω is a hole (holes). We consider the following modified
problem: Find uε ∈H 1

0 (Ω̂) such that

∫

Ω̂

Âε∇ûε · ∇ŵ dx +
∫

Ω̂

b̂εûεŵε dx =
∫

Ω̂

f̂ ŵ dx, ∀ŵ ∈H 1
0 (Ω̂), (B.123)

where Âε , b̂ε , and f̂ are selected such that ûε tends to u in Ω . For example, we can
set Âε = A in Ω , Âε = 1

ε
I in ω, bε = 0 in Ω , bε = 1

ε
in ω, and somehow extend

f to ω. In the simplest case, penalization is applied only to the second term. Then,
(B.123) infers the estimate

c1‖∇ûε‖2
Ω + 1

ε
‖ûε‖2

ω ≤
∫

Ω̂

f̂ ûε dx ≤ ‖f̂ ‖Ω̂‖ûε‖Ω̂ ≤ CFΩ̂‖f̂ ‖Ω̂‖∇ûε‖Ω̂ .
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Since ‖f̂ ‖Ω‖ûε‖Ω̂ ≤ c1
2 ‖∇ûε‖2

Ω̂
+ 1

2c1
‖f̂ ‖2

Ω̂
, we have the estimate

c1

2
‖∇ûε‖2

Ω + 1

ε
‖ûε‖2

ω ≤ CFΩ̂

2c1
‖f̂ ‖2

Ω̂
, (B.124)

which shows that ‖ûε‖2
ω → 0 as ε → 0.

Also, (B.125) shows that ‖∇ûε‖2
Ω is bounded and, therefore, contains a subse-

quence tending to a function ũ weakly in H 1(Ω).
Let ŵ in (B.123) be a test function supported in Ω (therefore, we denote it by w).

Then, we pass to the limit in the relation
∫

Ω

A∇ûε · ∇w dx =
∫

Ω

fw dx (B.125)

and see that in Ω the function ũ satisfies (in a generalized sense) the differential
equation divA∇ũ + f = 0. This fact suggests the idea to use (B.123) instead of
(B.121). Convergence of ûε to u can be strictly proved and qualified in terms of ε
for various schemes of the method (see, e.g., [BGH+01, GPP94b, GPP06, Kop68]
and the literature cited therein). Applications of the method to viscous flow problems
can be found in, e.g., [Ang99, GPP94a, GGP99] and to free boundary problems in
[NK81]. We note that fictitious domain method can be considered as a “domain
imbedding method” (see [BDGG71]).

Finally, we show that functional a posteriori estimates considered in Chap. 3 infer
computable upper bounds of the error associated with the fictitious domain method.
Let φ ∈H 1(Ω̂) be a correction function such that

φ(x)= 0 on Γ̂ , φ(x)= −uε on Γω. (B.126)

Then, v = ûε + φ can be viewed as a conforming approximation of u. We use the
estimate (3.38)

‖|u− v‖|Ω ≤ ‖A∇v − y‖A−1,Ω + C‖f + divy‖Ω, (B.127)

where y = pε := A∇ûε in Ω . In this case, divy + f = 0 in Ω and the majorant
contains only one term. Note that A∇v − pε =A∇φ. Thus, we obtain

‖|u− v‖|2Ω ≤ ‖A∇φ‖2
A−1,Ω

=
∫

Ω

A∇φ · ∇φ dx = e2(φ, ûε|Γω). (B.128)

This estimate has a clear sense: the best possible error bound is obtained if the cor-
rection function φ ∈H 1(Ω) minimizes the quadratic integral on the right-hand side
of (B.128) over the set of functions satisfying (B.126). It is clear that e(φ̄, ûε|Γω)
represents the “nonconformity” error caused by an inexactness in the boundary con-
dition on Γω . Since ûε tends to zero in ω, this quantity tends to zero.

In [RSS03], this error estimate was applied to approximations computed with the
help of a fictitious domain method. Numerical tests have shown its high efficiency
and robustness.



Appendix C
A Priori Verification of Accuracy

The a priori convergence of approximate solutions and the corresponding error es-
timates provide the first and the most general information on the accuracy of nu-
merical results. Methods of a priori error estimation for linear partial differential
equations were developed in the 1950s/1960s years. Subsequently, they were ex-
tended to practically all classes of boundary (initial boundary) value problems in-
cluding nonlinear ones. A priori rate of convergence estimates establish error bounds
in terms of the mesh size parameter (and other parameters characterizing finite di-
mensional subspaces). The derivation of them is based upon two keystones: projec-
tion type error estimates and interpolation theory for functions in Sobolev spaces.
The goal of this section is to demonstrate the main ideas within the paradigm of a
linear elliptic problem. The reader will find a detailed discussion of the theory in
[BS94, Cia78a, SF73] and other publications.

C.1 Projection Error Estimate

We consider the boundary value problem presented in the generalized form

a(u,w)= �(w), ∀w ∈ V, (C.1)

where the bilinear form a satisfies the conditions (B.4) and (B.5). We recall that the
solution u minimizes the functional

J (v) := 1

2
a(v, v)− (f, v)

on a Banach space V . Let V̂ be a subspace of V and û ∈ V̂ be such that J (̂u)≤ J (̂v)

for any v̂ ∈ V̂ . Then, û satisfies the relation

a(̂u, ŵ)= �(ŵ), ∀ŵ ∈ V̂ , (C.2)

and for any v̂ ∈ V̂ we have (cf. (B.72))
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1

2
a(u− û, u− û)= J (̂u)− J (u)≤ J (̂v)− J (u)= 1

2
a(u− v̂, u− v̂).

Thus,

a(u− û, u− û)= inf
v̂∈V̂

a(u− v̂, u− v̂). (C.3)

The right-hand side of the projection error estimate (C.3) can be viewed as the
distance from u ∈ V to the subspace V̂ computed in terms of the norm generated by
the form a. If u ∈ V̂ , then (C.3) shows that û= u.

By (B.4) and (B.5), we obtain the estimate

‖u− û‖2
V ≤Ca inf

v̂∈V̂
‖u− v̂‖2

V , (C.4)

where Ca := c2
c1

is the “condition number” of the bilinear form a.

We see that the error e = u − û is bounded from the above by the distance
between the exact solution u and the subspace V̂ .

Approximations of partial differential equations are usually constructed with the
help of finite dimensional subspaces (i.e., dim V̂ =N <+∞). In the finite element
method (cf. Sect. B.4.3), the basis of V̂ is created with the help of piecewise poly-
nomial and locally supported trial functions. Assume that all the support domains of
trial functions have character size h and denote the corresponding V̂ by Vh. Then,
the relation (C.2) reads

a(uh,wh)= �(wh), ∀wh ∈ Vh. (C.5)

By (C.4), we conclude that the Galerkin approximation uh satisfies the estimate

‖u− uh‖2
V ≤Ca inf

vh∈Vh
‖u− vh‖2

V . (C.6)

This result is often called the Cea’s lemma. The estimate (C.6) plays an important
role in error analysis. It serves as a basis for deriving a priori convergence rate
estimates expressed in terms of the parameter h.

Generalized versions of (C.6) (known as lemmas of Strang) extend Cea’s lemma
to nonconforming approximations (see, e.g., [Bra07, Cia78a]).

C.2 Interpolation Theory in Sobolev Spaces

Interpolation theory investigates the difference between a function in a Sobolev
space and a suitable counterpart of it in some finite dimensional subspace. A natural
way of defining such a counterpart is to project the function to the corresponding
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subspace. However, exact (orthogonal) projections may be difficult to construct,
so that much simpler interpolation procedures are used instead. For example, if
V = ◦

H 1(0,1) and Vh is the subspace of piecewise affine continuous functions with
N nodes, then the interpolant of v ∈ V is constructed by assigning vh(xk) = v(xk)

at each node xk , k = 1,2, . . . ,N .
We begin with two lemmas (the proofs of which can be found in, e.g., [Cia78a]).

They establish important facts related to approximations generated by piecewise
polynomial functions.

Lemma C.1 Let Ω ∈ R
d be a connected bounded domain with Lipschitz bound-

ary, 1 ≤ q ≤ +∞, and k ≥ 0. There exists a constant C > 0 such that for any
v ∈Wk+1,q (Ω)

inf
p∈Pk(Ω)

‖v − p‖k+1,q,Ω ≤ C(Ω)|v|k+1,q,Ω . (C.7)

An advanced version of this inequality reads as follows:

inf
p∈Pk(Ω)

‖v − p‖t,q,Ω ≤ C(diamΩ)k+1−t |v|k+1,q,Ω, t = 0,1, . . . , k + 1,

where the constant C depends on d , k, q and on the aspect ratio of Ω .

Lemma C.2 Let the conditions of Lemma C.1 hold and let � : V ∗ → R be a linear
continuous functional vanishing on P k(Ω), where V ∗ is the space dual to Wk+1,q .
Then, there exists a constant c > 0 such that for any v ∈Wk+1,q (Ω)

∣
∣�(v)

∣
∣≤ c||�||V ∗ |v|k+1,q,Ω . (C.8)

In the literature, these results are often called Deny–Lions and Bramble–Hilbert
lemmas ([BH70, DL55]), respectively.

Definition C.1 We say that domains Ω and Ω̂ are affine equivalent if there exists
an affine non-degenerate mapping F (̂x)= Bx̂+b, where B ∈M

d×d , detB > 0 and
b ∈R

d , which maps Ω̂ to Ω .

Since

|Ω| =
∫

Ω

dx =
∫

Ω̂

det

(
∂x

∂x̂

)

dx̂ =
∫

Ω̂

detBd dx̂ = |Ω̂|detB,

we see that

detB = |Ω|
|Ω̂| . (C.9)

Let v ∈ Wm,p(Ω) and V̂ (̂x) = v(Bx̂ + b), where x̂ ∈ Ω̂ . It is clear that v̂ ∈
Wm,p(Ω̂). Moreover, the constants C1(m,d,p) and C2(m,d,p) > 0 exist such that

|̂v|m,p,Ω̂ ≤ C1(m,d,p,Ω)‖B‖m(detB)−1/p|v|m,p,Ω, (C.10)
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and

|v|m,p,Ω ≤ C2(m,d,p,Ω)
∥
∥B−1

∥
∥m(detB)1/p |̂v|m,p,Ω. (C.11)

The corresponding proofs can be found, e.g., in [Cia78a]. The quantities ‖B‖ and
detB can be estimated throughout geometrical characteristics of Ω and Ω̂ . Let

h = diamΩ := sup
{|x − y| | x, y ∈Ω

}
, (C.12)

ĥ = diam Ω̂ := sup
{|̂x − ŷ| | x̂, ŷ ∈ Ω̂

}
, (C.13)

B denote a ball in Ω , and B̂ denote a ball in Ω̂ . Define the numbers

ρ = sup{diamB | B ⊂Ω}, (C.14)

ρ̂ = sup{diam B̂ | B̂ ⊂ Ω̂}. (C.15)

Since

‖B‖ = sup
|̂x|=1

|Bx̂| = 1

r̂
sup
|̂x|=r̂

|Bx̂|, r̂ > 0, (C.16)

we estimate ‖B‖ if the quantity sup{|Bx̂| | |̂x| = r̂} is estimated from the above for
some r̂ . In accordance with (C.15), for any small ε > 0 there exist ẑ, ŷ ∈ Ω̂ such
that

r̂ = |̂z− ŷ| = ρ̂ − ε.

Denote x̂ = ẑ− ŷ. It is clear that x = F (̂x) and y = F(ŷ) belong to Ω . It is easy to
see that

F (̂z)− F(ŷ)= Bẑ+ b−Bŷ − b = Bx̂.

On the other hand,

F (̂z)− F(ŷ)= z− y, ∀z, y ∈Ω.

By (C.12), we conclude that |Bx̂| ≤ h. Thus,

‖B‖ ≤ 1

ρ̂ − ε
h, ∀ε > 0,

and we obtain

‖B‖ ≤ h/ρ̂. (C.17)

The inverse estimate

‖B−1‖ ≤ ρ/ĥ

follows from similar arguments.
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C.2.1 Interpolation Operators

Assume that the numbers k, t,m, s, d ∈ N are such that the space Wk+1,s(Ω̂) is
continuously embedded in Wm

t (Ω̂), i.e, there exits C1, dependent on Ω̂ , k, m, d , t ,
s, such that

‖̂v‖m,t,Ω̂ ≤ C1‖̂v‖k+1,s,Ω̂ , ∀v̂ ∈Wk+1,s(Ω̂). (C.18)

Let

Π̂ :Wk+1,s(Ω̂)→Wm,t (Ω̂)

be a continuous operator, i.e., there exists constant c2(Ω̂, k, s, d, t,m) > 0 such that

‖Π̂ v̂‖m,t,Ω̂ ≤ C2‖̂v‖k+1,s,Ω̂ , ∀v̂ ∈Wk+1,s(Ω̂). (C.19)

In further analysis, it is required that Π̂ do not change polynomials, i.e.,

Π̂p̂ = p̂, ∀p̂ ∈ P k(Ω̂), (C.20)

and that Ω and Ω̂ be affine equivalent. Now we can define the operator ΠΩv =
Π̂ v̂, where v(x) := v̂(̂x). The operator ΠΩ is called the interpolation operator and
the function ΠΩv is called the interpolant of v. It is clear that the operator ΠΩ

possesses the same property:

ΠΩp(x)= Π̂p̂(x)= p̂(̂x)= p(x), ∀p ∈ P k(Ω).

Moreover, p ∈ P k(Ω) if and only if p̂ ∈ P k(Ω̂).

Theorem C.10 Let the conditions (C.18)–(C.20) be satisfied. Then,

|v −ΠΩv|m,t,Ω ≤ C(Π̂, Ω̂)

(
h

ρ

)m
hk+1−m(detB)|v|k+1,s,Ω . (C.21)

Proof Take a polynomial p̂ ∈ P k(Ω̂), then

v̂ − Π̂ v̂ = v̂ − p̂ − Π̂ (̂v − p̂)= (I − Π̂)(̂v − p̂).

From here, it follows that

|̂v − Π̂ v̂|m,t,Ω̂ ≤ C(Π̂)‖̂v − p̂‖m,t,Ω̂ , ∀p̂ ∈ P k(Ω̂).

We take the infimum with respect to p̂ ∈ P k(Ω̂) and obtain

|̂v − Π̂ v̂|m,t,Ω̂ ≤ C(Π̂) inf
p̂∈Pk(Ω̂)

‖̂v − p̂‖m,t,Ω̂ ≤ C(Π̂)C1 inf
p̂∈Pk(Ω̂)

‖̂v − p̂‖k+1,s,Ω̂ .

Now, (C.7) implies the estimate

|̂v − Π̂ v̂|m,t,Ω̂ ≤ C(Π̂, Ω̂)|̂v|k+1,s,Ω̂ .
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By (C.10)–(C.11), we have

|v −Πv|m,t,Ω ≤ C
∥
∥B−1

∥
∥m(detB)1/t |̂v − Π̂ v̂|m,t,Ω̂ .

Therefore,

|v −Πv|m,t,Ω ≤ C
∥
∥B−1

∥
∥m(detB)1/t |̂v|k+1,s,Ω̂

≤ C‖B‖k+1(detB)−1/s
∥
∥B−1

∥
∥m(detB)1/t |v|k+1,s,Ω . �

C.2.2 Interpolation on Polygonal Sets

In the majority of approximation methods, meshes are formed by rather simple cells
(simplexes, quadrilaterals, polygons). Consider the simplest case, in which Ω is a
simplex and ΠΩ maps functions from Wl,p(Ω) to P k(Ω).

Definition C.2 Let x1, x2, . . . , xd be elements of Rd , which do not belong to a com-
mon R

d−1 plane. The set

T :=
{

y ∈R
d
∣
∣
∣ y =

d∑

i=1

λixi, λi ∈ (0,1),
d∑

i=1

λi = 1

}

.

In other words, simplex is a convex envelope of elements x1, x2, . . . , xd , which are
called “nodes”.

If d = 2, then T = (x1, x2); if d = 3, then simplex is a tetrahedron. Faces of
a simplex are simplexes of lower dimension. Two simplexes of one dimension are
affine equivalent (see Definition C.1).

Usually, interpolation estimates are first studied on the basic (“etalon”) sim-
plex (Fig. C.1). Then, by affine mappings they can be easily extended to any
(non-degenerate) simplex. Since polygonal sets are representable as unions of
simplexes, this method opens a way of deriving estimates of the difference
between a function and an interpolant of it for any domain of such a type.

In R
d , the basic (etalon) simplex T̂ has the nodes

X̂0 = (0,0, . . . ,0), X̂1 = (1,0,0, . . . ,0),

X̂2 = (0,1,0, . . . ,0), . . . , X̂d = (0,0, . . . ,1).

Henceforth, we consider the simplest case, in which m = 0 or 1 (m = 0 cor-
responds to approximation of functions and m = 1 corresponds to approximation
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Fig. C.1 Affine mapping of
T̂ to T

of derivatives), k = 1 and t = s > 1. This situation arises if we are interested in
approximation of solutions in W 2,t using the simplest polynomial approximations
with k = 1.

In view of Theorem A.1, W 2,t (T̂ ) is continuously embedded in C(T̂ ) if 2 > d/t .
In particular, if d = 2, t = 2, then H 2(T̂ ) is continuously embedded in C(T̂ ) and,
therefore, a simple interpolation operator can be constructed, namely,

Π̂ v̂ ∈ P 1(T̂ ), Π̂ v̂(X̂i)= v̂(X̂i), i = 0,1, . . . , d. (C.22)

It is easy to see that the function Π̂ v̂ is uniquely determined and the operator Π̂ does
not change polynomials of order 1. Let us check that the condition (C.19) holds. In
our case, it has the form

‖Π̂ v̂‖m,t,T̂ ≤ C‖̂v‖2,t,T̂ , (C.23)

Indeed, on a finite dimensional space all the norms are equivalent, i.e.,

‖Π̂ v̂‖m,t,T̂ ≤ C‖Π̂ v̂‖C(T̂ ). (C.24)

On the other hand,

‖Π̂ v̂‖C(T̂ ) = max
i=0,1,...,d

∣
∣Π̂
(
v̂(X̂i)

)∣
∣= max

i=0,1,...,d

∣
∣̂v(X̂i)

∣
∣≤ C‖̂v‖C(T̂ ). (C.25)

Since (by the embedding theorem)

‖̂v‖C(T̂ ) ≤ C‖̂v‖2,t,T̂ , (C.26)

we find that (C.23) follows from (C.24)–(C.26).
Now we apply previously derived estimates. Let h denote the size (length of the

largest edge) of the simplex Th and ρ denote the radius of the largest inscribed ball.
Then, (C.21) yields

|v −Πhv|m,t,Th ≤ C(m,d, t)

(
h

ρ

)m
h2−m|v|2,t,Th , (C.27)

where Πh is the interpolation operator associated with Th.

Definition C.3 The aspect ratio ℘(T ) of a simplex T is the ratio of the length of
the largest edge E to the diameter of the largest ball B inscribed in T i.e.,

℘(T ) := maxE∈E(T ) |E|
maxB∈T diam(B)

, (C.28)
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Fig. C.2 Simplexes with
small, medium, and large
values of ℘

where E(T ) denotes the set of edges of T (see Fig. C.2 for illustrations).

Now, we rewrite (C.27) in the form

|v −Πhv|m,t,Th ≤ C(m,d, t)
(
℘(Th)

)m
h2−m|v|2,t,Th . (C.29)

This estimate can be extended to functions defined in Ω , provided that this domain
is a union of simplexes and the parameter h denotes the maximum over all the
simplexes.

Let {Th} be a sequence of simplicial triangulations of Ω (Th = {T i
h}i=1,2,...,N(h))

such that the number of simplexes N increases and the parameter h decreases. In
order to guarantee that the corresponding approximations converge with the optimal
rate, we need to impose additional conditions.

Definition C.4 We say that the sequence {Th} is regular if

(a) T i
h ∩ T

j
h = 0 if i �= j .

(b) Each edge of T i
h is either a part of Γ or coincides with an edge of some other

simplex in Th.
(c) All the quantities ℘(Ti) associated with different simplexes T i ∈ Th in all tri-

angulations Th are uniformly bounded with respect to h, i.e.,

℘(Ti) < C℘, i = 1,2, . . . ,N. (C.30)

Requirements (a) and (b) of Definition C.4 are necessary to guarantee that the
functions constructed belong to the energy space V , so that they belong to the class
of conforming approximations. The condition (c) is important for a priori error es-
timates: it allows one to guarantee that constants in interpolation estimates do not
degenerate as h tends to zero (see below).

Let Πi
hv be the interpolant of v on T i

h . We define the global interpolation operator
Πh by setting

Πhv(x)=Πi
hv(x) if x ∈ T i

h. (C.31)

Πhv is an affine function on any simplex and coincides with v at the nodes. More-
over, Πhv ∈ C(Ω̄) and, in addition,

Πhv ∈W 1,t (Ω)∩C(Ω̄). (C.32)

In view of (C.29), on T i
h we have:

|v −Πhv|tm,t,T i
h

≤ (C(m,d, t)h2−m
)t |v|t

2,t,T i
h

. (C.33)
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We sum over all i = 1, . . . ,N and obtain

|v −Πhv|tm,t,Ω ≤ (C(m,d, t)h2−m
)t |v|t2,t,Ω, (C.34)

whence the general interpolation estimate follows (where m= 0 or 1)

|v −Πhv|m,t,Ω ≤ Cinth
2−m|v|2,t,Ω, (C.35)

where the interpolation constant Cint depends on the numbers m and t , the dimen-
sion d , and on the constant C℘ associated with the selected type of simplexes (or
other elements) forming Th. This estimate allows us to obtain qualified convergence
estimates for finite element approximations.

Assume that Ω is a polygonal domain (which can be exactly approximated by a
simplicial mesh) and u ∈H 2(Ω). We know that

a(u− uh,u− uh)≤ a(u−Πhu,u−Πhu)≤ c2‖u−Πhu‖2.

For m= 1 and t = 2 the estimate (C.35) yields

|v −Πhv|m,t,Ωh
≤ Cinth

2−m‖v‖2,t,Ωh
.

Hence, we conclude that the error is subject to the estimate
∥
∥∇(u− uh)

∥
∥≤ CintCah|u|2,2,Ω .

However, exact solutions in polygonal domains may not have H 2 regularity, so
that this estimate is conditional so far. Below we consider one class of problems,
which possess H 2 regularity and, therefore, the corresponding convergence results
are guaranteed.

Remark C.1 Interpolation operators for functions in H 1(Ω) cannot be based on
pointwise relations (such as (C.22)). They use more complicated constructions
based upon integral type relations. Clement’s interpolation operator considered in
Sect. 2.2.1 belongs to this class. Various modifications of Clement’s interpolation
operator are suggested in [Ber89, BG98, Car99, SZ90].

C.3 A Priori Convergence Rate Estimates

Projection type and interpolation error estimates yield rate convergence estimates.
We discuss this method for the problem

divA∇u= −g in Ω, u= u0 on Γ.

We assume that Ω is a convex domain, d = 2, Γ is a smooth boundary, g ∈ L2(Ω),
A ∈ C1(Ω,Md×d) and u0 ∈H 2(Ω). In this case (owing to known results for elliptic
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Fig. C.3 Boundary strip ωε

supplied with the curvilinear
coordinate system (left) and
local coordinates associated
with the element of the
triangulation (right)

partial differential equations, see, e.g., [GT77, Lad85]), u ∈ H 2(Ω,R2), and the
following regularity estimate holds:

‖u‖2,2,Ω ≤ cr
(‖g‖2,Ω + ‖u0‖2,2,Ω

)
,

where cr is a positive constant.
Let ũ = u − u0. Then, the problem is restated as a problem with homogeneous

boundary conditions and a modified right-hand side

divA∇ũ= −(g + divA(∇u0)
)= −f in Ω,

ũ= 0 on Γ.

For ũ we have the regularity estimate

‖ũ‖2,2,Ω ≤ cr‖f ‖2,Ω . (C.36)

Consider a thin strip around the boundary. Henceforth, we assume that its width
does not exceed ε and call it ε-strip:

ωε = {x ∈Ω | dist(x,Γ ) < ε
}
.

If ε is sufficiently small (ε ≤ ε0, where ε0 depends on the maximal curvature of
Γ ), then we can introduce a local coordinate system, which uniquely determines
any point of the strip. In Fig. C.3, these coordinates are denoted by s (length of the
curve) and t (distance from Γ computed along the normal n oriented inside Ω). Let
l := |Γ | denote the length of Γ . Then, for any s ∈ [0, l) and t ∈ [0, ε) we have the
representation in terms of local coordinates

x(s, t)= x(s)+ tν(s), (C.37)

where x(s) = x(s,0) is the vector associated with the point on Γ , the distance of
which to the reference point on Γ is s, and τ (s) and ν(s) are the corresponding unit
vectors satisfying the relations

τ (s)= dx(s)

ds
,

dν(s)

ds
= −k(s)τ (s).

It is not difficult to prove that the Jacobian of this curvilinear coordinate system is
positive in ωε . Indeed,
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∂x(s, t)

∂s
= τ(s)− k(s)tτ (s),

x1(s, t)= x1(s)+ tν1(s), x2(s, t)= x2(s)+ tν2(s).

Hence,
∣
∣
∣
∣
∣

∂x1
∂s

∂x2
∂s

∂x1
∂t

∂x2
∂t

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
τ1(s)(1 − tk(s)) τ2(s)(1 − tk(s))

ν1(s) ν2(s)

∣
∣
∣
∣ , (C.38)

and we conclude that

|J | = ∣∣1 − tk(s)
∣
∣|τ1ν2 − τ2ν1| =

∣
∣1 − tk(s)

∣
∣
∣
∣
∣
∣
τ1 τ2
ν1 ν2

∣
∣
∣
∣ . (C.39)

Since τ1 = −ν2 and τ2 = ν1, we obtain

|J | = ∣∣1 − tk(s)
∣
∣≥ 1 − |t |∣∣k(s)∣∣. (C.40)

Assume that ε0 is sufficiently small, i.e., ε0|k(γ )| ≤ θ < 1 for any point γ ∈ Γ .
Then, |J | ≥ 1 − θ > 0.

Now we can prove an auxiliary estimate, which is needed for deducing estimates
of norms associated with the strip ωε (provided that ε < ε0).

Lemma C.3 For any w ∈H 1(ωε), we have the estimate

‖w‖2
ωε

≤ βε
(‖w‖2

2,Γ + ε‖∇w‖2
ωε

)
, (C.41)

where β does not depend on w and ε.

Proof We pass to the coordinate system (s, t) (see (C.37)) and define w(ε)(s, t) =
w(x(s, t)) in ωε . By the integral representation formula, we have

w(ε)(s, t)=w(ε)(s,0)+
∫ t

0

∂w(ε)(s,μ)

∂μ
dμ.

From here

∣
∣w(ε)(s, t)

∣
∣ ≤ ∣∣w(ε)(s,0)

∣
∣+

∫ t

0

∣
∣∇w(ε)(s,μ)

∣
∣dμ

≤ ∣∣w(ε)(s,0)
∣
∣+

∫ ε

0

∣
∣∇w(ε)(s,μ)

∣
∣dμ.

We square both parts and obtain

∣
∣w(ε)(s, t)

∣
∣2 ≤ 2

{
∣
∣w(ε)(s,0)

∣
∣2 +

∣
∣
∣
∣

∫ ε

0

∣
∣∇w(ε)(s,μ)

∣
∣dμ

∣
∣
∣
∣

2}

≤ 2

{
∣
∣w(ε)(s,0)

∣
∣2 + ε

∫ ε

0

∣
∣∇w(ε)(s,μ)

∣
∣2 dμ

}

.
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Then,

∫ l

0

∣
∣w(ε)(s, t)

∣
∣2 ds ≤ 2

{∫ l

0

∣
∣w(ε)(s,0)

∣
∣2 ds + ε

∫ l

0

∫ ε

0

∣
∣∇w(ε)(s, t)

∣
∣2 ds dt

}

.

We integrate both parts again over t , apply the Fubini theorem, and arrive at the
estimate

∫ l

0

∫ ε

0

∣
∣w(ε)(s, t)

∣
∣2 ds dt ≤ 2ε

{∫ l

0

∣
∣w(ε)(s,0)

∣
∣2 ds + ε

∫ l

0

∫ ε

0

∣
∣∇w(ε)(s, t)

∣
∣2 ds dt

}

.

Now we return to the original coordinate system (x1, x2), invoke the fact that the
corresponding Jacobian is uniformly bounded and obtain the required estimate. �

Corollary C.3 If w ∈ ◦
H 1(Ω), then

‖w‖2
ωε

≤ βε2‖∇w‖2
ωε
. (C.42)

If w ∈H 1(Ω), then

‖w‖2
ωε

≤ βε‖w‖2
1,2,Ω . (C.43)

Assume that Ω is a convex domain which contains a regular triangulation Th.
Elements of Th form a polygonal domain Ωh ⊂Ω . Let

Vh = {vh ∈ C(Ωh) | vh is affine on any simplex T ∈ Th, vh = 0 on Γh := ∂Ωh

}

and ũh ∈ Vh be defined by the relation
∫

Ωh

A(x)∇ũh · ∇wh dx =
∫

Ωh

fwh dx, ∀wh ∈ Vh.

Since wh = 0 on Γh, we can extend ũh and wh by zero to Ω \Ωh, and uh = ũh +u0

can be considered as an approximation of u. The corresponding finite dimensional
set of extended functions Ṽh is a subset of V = ◦

H 1(Ω). We see that the finite di-
mensional problem is equivalent to finding ũh ∈ Ṽh such that

J (̃uh)= inf
w̃∈Ṽh

J (w̃). (C.44)

We apply the estimate (C.4) to this case and obtain

∥
∥∇ (̃u− ũh)

∥
∥

2,Ω ≤Ca

∥
∥∇ (̃u− ṽh)

∥
∥

2,Ω, ∀ṽh ∈ Ṽh. (C.45)

Now, the goal is to construct a suitable interpolant of ũ and to derive the corre-
sponding estimate of the difference ũ − Πhũ, which gives an upper bound of the
error qualified in terms of the parameter h.
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For d = 2, the space H 2(Ω) is continuously embedded in C(Ω), and we can
construct the interpolant Πhũ in Ωh by the above-discussed method, exploiting the
fact that ũ ∈H 2(Ω). Then, we deduce the estimates

∥
∥∇ (̃u−Πhũ)

∥
∥
Ωh

≤ Cinth|̃u|2,2,Ωh
, (C.46)

‖ũ−Πhũ‖Ωh
≤ Cinth

2 |̃u|2,2,Ωh
. (C.47)

Let Πhũ be zero in Ω \Ωh. We need to extend the estimates (C.46) and (C.47)
from Ωh to Ω .

First, we prove that Ω \Ωh ⊂ ωε , where ε = κh2 and κ is a constant independent
of h. Indeed, consider one edge of the triangulation having two common points with
Γ (Fig. C.3, right). We introduce local coordinates ξ and η associated with the edge.
Since the boundary is smooth, the function η = φ(ξ) that determines the boundary
in the local coordinate system is also smooth. The distance between Γ and the edge
is maximal at a point ξ∗ where φ′(ξ∗)= 0. We use the representation

φ(ξ2) = 0

= φ(ξ∗)+ φ′(ξ∗)(ξ2 − ξ∗)+ 1

2
φ′′(ξ∗ + θ(ξ2 − ξ∗)

)
(ξ2 − ξ∗)2, θ ∈ [0,1],

and arrive at the estimate

∣
∣φ(ξ∗)

∣
∣≤ 1

2

∣
∣φ′′(ξ∗ + θ(ξ2 − ξ∗)

)∣
∣
∣
∣(ξ∗ − ξ2)

2
∣
∣≤ κh2.

Since the curvature is bounded, the constant κ is uniformly bounded for all edges
that have two common points with Γ . Thus, we conclude that the distance between
Γ and Γh does not exceed κh2. This means that Ω \Ωh ⊂ ωε , where ε = κh2.

Note that

‖ũ−Πhũ‖2
2,Ω/Ωh

= ‖ũ‖2
2,Ω/Ωh

≤ ‖ũ‖2
ωε
. (C.48)

We use (C.42) (since ũ= 0 on Γ ) and obtain

‖ũ‖ωε ≤ βε‖∇ũ‖ωε ≤ βκh2‖∇ũ‖ωε . (C.49)

In order to estimate the right-hand side of this inequality, we use (C.43) and recall
that ũ ∈ H 2(Ω). Hence, any generalized derivative of ũ belongs to H 1(Ω) and on
ωε we can estimate the gradient as follows:

‖∇ũ‖ωε ≤ βκ1/2h‖ũ‖2,2,Ω . (C.50)

From (C.49) and (C.50), it follows that

‖ũ‖ωε ≤ C2κ3/2h3‖ũ‖2,2,Ω = Cκh
3‖ũ‖2,2,Ω,
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where Cκ is another constant (independent of h). We have

‖ũ−Πhũ‖2
Ω = ‖ũ−Πhũ‖2

Ωh
+ ‖ũ−Πhũ‖2

Ω/Ωh

≤ Cinth
4‖ũ‖2

2,2,Ωh
+ ‖ũ‖2

ωε
≤ Cinth

4‖ũ‖2
2,2,Ωh

+C2
κh

6‖ũ‖2
2,2,Ω .

Thus, for sufficiently small h

‖ũ−Πhũ‖Ω ≤ Ĉh2‖ũ‖2,2,Ω, (C.51)

where Ĉ is a constant independent of h.
Estimates for the derivatives are derived analogously. We use the identity

∥
∥∇ (̃u−Πhũ)

∥
∥2
Ω

= ∥∥∇ (̃u−Πhũ)
∥
∥2
Ωh

+ ∥∥∇ (̃u−Πhũ)
∥
∥2
Ω/Ωh

. (C.52)

By (C.46), the first norm is estimated as follows:
∥
∥∇ (̃u−Πhũ)

∥
∥
Ωh

≤ Ch‖ũ‖2,2,Ωh
≤ Ch|̃u|2,2,Ω . (C.53)

Since
∥
∥∇ (̃u−Πhũ)

∥
∥2
Ω/Ωh

= ‖∇ũ‖2
Ω/Ωh

≤ ‖∇ũ‖2
ωε
,

we apply (C.43) again and deduce estimates for the derivatives of ũ in the strip,
which imply

‖∇ũ‖2
Ω/Ωh

≤ Cκh2‖ũ‖2
2,2,Ω . (C.54)

By (C.52)–(C.54), we obtain

∥
∥∇ (̃u−Πhũ)

∥
∥2
Ω

≤ C3h
2‖ũ‖2

2,2,Ω . (C.55)

Estimates (C.51) and (C.55) yield the estimate

|̃u−Πhũ|2i,2,Ω ≤ Ch2−i‖ũ‖2
2,2,Ω, i = 0,1. (C.56)

Now we use (C.45) and set ṽh =Πhũ. Then,
∥
∥∇ (̃u− ũh)

∥
∥

2,Ω = |̃u− ũh|1,2,Ω
≤ Ca |̃u−Πhũ|1,2,Ω ≤ CaCh‖ũ‖2,2,Ω ≤ CaCcrh‖f ‖Ω.

Since u= ũ+ u0 and uh = ũh + u0, we arrive at the estimate

∥
∥∇(u− uh)

∥
∥
Ω

≤ C1h‖f ‖Ω, C1 = CaCcr . (C.57)

This estimate (and similar estimates derived for many other boundary value prob-
lems) represents the main result of a priori asymptotic error analysis. It shows that if



C.3 A Priori Convergence Rate Estimates 327

all the computations are performed exactly, then the error encompassed in Galerkin
solutions decreases with the same rate as the parameter h of regular triangulations.
We note that the corresponding constant depends on the interpolation constant C,
the ellipticity constants c1 and c2 and the regularity constant cr .

Interpolation estimates (C.46) and (C.47) suggest the idea that the convergence
rate in terms of the weak (L2) norm may be better than h. To prove this fact, we use
the so-called Aubin–Nitsche estimate. Let ug be the solution of the adjoint problem

a∗(ug, v)=
∫

Ω

g · v dx, ∀v ∈ V, (C.58)

which is generated by the adjoint matrix A∗. If the matrix is selfadjoint, then the
problem reads

∫

Ω

A(x)∇ug · ∇w dx =
∫

Ω

gw dx, ∀w ∈ ◦
H 1(Ω). (C.59)

For any g ∈ L2(Ω) there exists a unique solution ug ∈ ◦
H 1(Ω). Moreover, under the

above-made assumptions on the problem data ug ∈H 2(Ω) and

‖ug‖2,2,Ω ≤ c∗
r ‖g‖Ω. (C.60)

It is easy to see that

‖u− uh‖2,Ω = sup
g∈L2(Ω)

g �=0

∫
Ω
(u− uh) · g dx

‖g‖2,Ω
.

By (C.59), we rewrite this relation in the form

‖u− uh‖Ω = sup
g∈L2(Ω)

g �=0

∫
Ω
A(x)∇ug · ∇(u− uh)dx

‖g‖2,Ω
.

We use the Galerkin orthogonality and insert the function Πhug ∈ Vh in the above
quotient. Then,

‖u− uh‖Ω = sup
g∈L2(Ω)

g �=0

∫
Ω
A(x)∇(ug −Πhug) · ∇(u− uh)dx

‖g‖Ω

≤ c2 sup
g∈L2(Ω)

g �=0

‖∇(ug −Πhug)‖Ω
‖g‖Ω

∥
∥∇(u− uh)

∥
∥
Ω
.

By the interpolation estimate and (C.60),
∥
∥∇(ug −Πhug)

∥
∥
Ω

≤ Ch‖ug‖2,2,Ω ≤ Cc∗
r h‖g‖Ω,
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and we arrive at the estimate

‖u− uh‖Ω ≤ Cc∗
r c2h

∥
∥∇(u− uh)

∥
∥
Ω

≤ C0h
2‖f ‖Ω,

where C0 = C2crc
∗
r c2Ca . It shows that the convergence in a weaker norm has a

higher rate. It should be noted that this conclusion is justified only if all the solutions
of the auxiliary problem (C.59) are H 2-regular.

C.4 A Priori Error Estimates for Mixed FEM

Mixed methods are based on saddle point statements of elliptic problems (see, e.g.,
[BF91, Bra07, RT91] and Sect. B.3). Consider again the problem

divA∇u+ f = 0 in Ω,

u = u0 on ΓD,

A∇u · n = F on ΓN,

where f ∈ L2(Ω) and F ∈ L2(ΓN).
Our goal is to discuss specific problems arising in the a priori error analysis of

dual mixed approximations (for primal mixed approximations we can, in principle,
use methods very close to that considered in Sect. C.3). We derive computable upper
bounds for the quantities

∥
∥∇(u− uh)

∥
∥
A
, ‖p − ph‖A−1, ‖p − ph‖div.

Here, the main difference (with respect to the previous section) is in the derivation of
projection-type error estimates. Combining them with standard interpolation results,
one can obtain known a priori estimate of convergence rate. Below we present a
simplified version of the corresponding analysis, which, however, contains the main
ideas usually used for the dual mixed approximations. A detailed exposition of this
subject can be found in the above-cited books.

For the sake of simplicity, we consider the case of uniform Dirichlét boundary
conditions and a constant matrix A. The dual mixed setting is presented by the
relations

∫

Ω

(
A−1p̂ · q̂ + (div q̂ )̂u

)
dx = 0, ∀q̂ ∈ Q̂0,

∫

Ω

(div p̂ + f )̂v dx = 0, ∀v̂ ∈ V̂ .

Since there is no Neumann part of the boundary, the sets Q̂F and Q̂0 coincide with
Q̂ :=H(Ω,div).
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In the case considered, the system of dual mixed finite element approximations
satisfies the following system:

∫

Ω

(
A−1p̂h · q̂h + ûh div q̂h

)
dx = 0, ∀q̂h ∈ Q̂h,

∫

Ω

(div p̂h + f )̂vh dx = 0, ∀v̂h ∈ V̂h.

Assume that

Th is a regular triangulation of a polygonal domain Ω, (C.61)

V̂h = {vh ∈ L2 | vh ∈ P 0(T ), ∀T ∈ Th

}
, (C.62)

Q̂h = {qh ∈H(Ω,div) | qh ∈RT 0(T ), ∀T ∈ Th

}
, (C.63)

f ∈ P 0(T ), ∀T ∈ Th. (C.64)

Note that under the assumptions made

div p̂h + f = 0 on any T . (C.65)

This fact directly follows from the relation
∫

Ω

(div p̂h + f )̂vh dx = 0, ∀v̂h ∈ V̂h.

In view of (C.65), p̂h ∈Qf .

C.4.1 Compatibility and Stability Conditions

In order to provide the stability of the discrete DM problem, we need to further re-
strict conditions imposed on approximation spaces. Let V̂h, Q̂h satisfy the following
condition:

For any vh ∈ V̂h exists qvh ∈ Q̂h such that

divqvh = vh (compatibility), (C.66)
∥
∥qvh

∥
∥ ≤ C‖vh‖ (stability). (C.67)

We show that the above two conditions are sufficient conditions for proving that a
discrete DM problem is correct (e.g., has a solution), stable and has a projection-
type error estimate.

From (C.66) and (C.67), it follows that

inf
vh∈V̂h

sup
qh∈Q̂h

∫
Ω
vh divqh dx

‖vh‖‖qh‖div
≥C> 0,
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which is called the discrete Inf–Sup condition. Indeed,

sup
qh∈Q̂h

∫
Ω
vh divqh dx

‖vh‖‖qh‖div
≥
∫
Ω
vh divqvh dx

‖vh‖‖qvh‖div
= ‖vh‖

‖qh‖div
≥ 1√

1 +C2
.

Proving the solvability of the discrete dual mixed problem is based on (C.66) and
(C.67) in the same way as the solvability of the dual mixed problem is based on
(B.50) and (B.51). The corresponding proof is quite analogous and leads to the
following conclusion: if the triangulations are “regular” and the discrete Inf–Sup
condition holds, then the discrete problem has a unique solution.

Now, we deduce a projection type error estimate for dual mixed approximations.
Since p is a maximizer, i.e.,

−1

2
‖q‖2

A−1 ≤ −1

2
‖p‖2

A−1, ∀q ∈Qf ,

we find that
∫

Ω

A−1p · q dx = 0, ∀q ∈Q0,

where Q0 is the space of solenoidal functions. Therefore, for any q ∈Qf ,

1

2
‖q − p‖2

A−1 = 1

2
‖q‖2

A−1 − 1

2
‖p‖2

A−1 +
∫

Ω

A−1p · (p − q)dx

= 1

2
‖q‖2

A−1 − 1

2
‖p‖2

A−1 .

Let Qfh =Qf ∩ Q̂h. Note that ph ∈Qfh is also the maximizer of − 1
2‖qfh‖2

A−1 on
Qfh, so that

1

2
‖ph − p‖2

A−1 = 1

2
‖ph‖2

A−1 − 1

2
‖p‖2

A−1 ≤ 1

2
‖qfh‖2

A−1 − 1

2
‖p‖2

A−1

= 1

2
‖qfh − p‖2

A−1, ∀qfh ∈Qfh.

Thus, we arrive at the first projection estimate

‖p − ph‖A−1 ≤ inf
qfh∈Qfh

‖p − qfh‖A−1 . (C.68)

However, this projection error estimate has an obvious drawback. It is applicable
only for a very narrow class of approximations: conforming (internal) approxima-
tions of the set Qf .

To obtain an estimate for a wider class, we first derive one auxiliary result. Let
us consider a Modified DM problem. Let f̃ = div(̂qh − p) where q̂h ∈ Q̂h. The
modified DM problem is to find p̂

f
h and û

f
h such that
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∫

Ω

(
A−1p̂

f
h · q̂h + û

f
h div q̂h

)
dx = 0, ∀q̂h ∈ Q̂0h, (C.69)

∫

Ω

(
div p̂fh + f̃

)
v̂h dx = 0, ∀v̂h ∈ V̂h. (C.70)

Under the assumptions made f̃ ∈ P 0(T ), the above DM problem is solvable, and

∥
∥p̂fh

∥
∥2
A−1 +

∫

Ω

û
f
h div p̂fh dx = 0,

∥
∥p̂fh

∥
∥2
A−1 ≤ ∥∥ûfh

∥
∥
∥
∥div p̂fh

∥
∥= ∥∥ûfh

∥
∥‖f̃ ‖.

From here, we observe that

c̄1
∥
∥p̂fh

∥
∥2 ≤ ∥∥p̂fh

∥
∥2
A−1 ≤ ∥∥ûfh

∥
∥‖f̃ ‖. (C.71)

By (C.66) and (C.67) we conclude that for ûfh we can find q̄h in Q̂h such that

div q̄h + û
f
h = 0 and ‖q̄h‖ ≤ C

∥
∥ûfh

∥
∥.

Use q̄h in the first identity (C.69). We have,

∫

Ω

(
A−1p̂

f
h · q̄h + û

f
h div q̄h

)
dx = 0.

Thus,

∥
∥ûfh

∥
∥2 =

∫

Ω

û
f
h div q̄h ≤ ∥∥p̂fh

∥
∥
A−1‖q̄h‖A−1

≤ c̄2
∥
∥p̂fh

∥
∥
A−1‖q̄h‖ ≤ c̄2C

∥
∥p̂fh

∥
∥
A−1

∥
∥ûfh

∥
∥.

We conclude that
∥
∥ûfh

∥
∥≤ c̄2C

∥
∥p̂fh

∥
∥
A−1 . (C.72)

Now, we use (C.71) and obtain

∥
∥p̂fh

∥
∥2
A−1 ≤ ∥∥ûfh

∥
∥‖f̃ ‖ ≤ c̄2C

∥
∥p̂fh

∥
∥
A−1‖f̃ ‖.

Thus,

c̄1
∥
∥p̂fh

∥
∥≤ ∥∥p̂fh

∥
∥
A−1 ≤ c̄2C‖f̃ ‖ (C.73)

and

∥
∥p̂fh

∥
∥2

div = ∥∥p̂fh
∥
∥2 + ∥∥div p̂fh

∥
∥2 ≤

(

1 + c2
2

c2
1

C2
)

‖f̃ ‖2. (C.74)
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We note that the estimates (C.72), (C.73), and (C.74) show that the modified DM
problem is stable, i.e. its solutions (p̂fh , û

f
h ) are bounded by the problem data uni-

formly with respect to h.
If we replace f̃ by f , then we can derive the same stability estimate for the

functions (p̂h, ûh) that present an approximate solution of the original DM problem.

C.4.2 Projection Estimates for Fluxes

Now, we return to the projection error estimates. As we have seen

‖p − ph‖A−1 ≤ inf
qf h∈Qfh

‖p − qfh‖.

Let ηh = p̂
f
h + q̂h, where q̂h is an arbitrary element of Q̂h. We have,

divηh = div p̂fh + div q̂h = −f̃ + div q̂h

= div(p − q̂h)+ div q̂h = divp = −f.

Therefore, ηh ∈Qf . Now, we use the projection inequality with ηh

‖p − ph‖A−1 ≤ ‖p − ηh‖A−1 = ∥∥p − p̂
f
h − q̂h

∥
∥
A−1

≤ ‖p − q̂h‖A−1 + ∥∥p̂fh
∥
∥
A−1 . (C.75)

Note that in the case considered div(p − ph)= 0, so that

‖p − ph‖div = ‖p − ph‖ ≤ 1

c̄1
‖p − ph‖A−1 .

With the help of (C.73), we find that

‖p − ph‖div ≤ 1

c̄1

(‖p − q̂h‖A−1 + ∥∥p̂fh
∥
∥
A−1

)≤ 1

c̄1

(‖p − q̂h‖A−1 + c̄2C‖f̃ ‖).

Now, we recall that f̃ = div(p − q̂h) and arrive at the estimate

‖p − ph‖div ≤ 1

c̄1

(‖p − q̂h‖A−1 + c̄2C
∥
∥div(p − q̂h)

∥
∥
)
, ∀q̂h ∈ Q̂h.

Hence,

‖p − ph‖div ≤ C̄p inf
q̂h∈Q̂h

{‖p − q̂h‖A−1 + ∥∥div(p − q̂h)
∥
∥
}
, (C.76)

where C̄p depends on C, c̄1, and c̄2 and does not depend on h.
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Error estimates for û− ûh can be derived analogously. We have
∫

Ω

(
A−1p̂h · q̂h + ûh div q̂h

)
dx = 0, ∀q̂h ∈ Q̂h.

Since Q̂h ⊂Q, we also have
∫

Ω

(
A−1p · q̂h + udiv q̂h

)
dx = 0.

From here, we see that
∫

Ω

(
A−1(p̂h − p) · q̂h + (̂uh − u)div q̂h

)
dx = 0, ∀q̂h ∈ Q̂h.

Denote

{|u|}T = 1

|T |
∫

T

udx, {|u|}h(x)= {|u|}Ti if x ∈ Ti.

Since div q̂h is constant on each Ti , we rewrite the relation as follows:
∫

Ω

(
A−1(p̂h − p) · q̂h + (ûh − {|u|}h

)
div q̂h

)
dx = 0, ∀q̂h ∈ Q̂h. (C.77)

Note that {|u|}h ∈ V̂h and therefore ūh := ûh − {|u|}h ∈ V̂h Now, we exploit the
compatibility and stability conditions (C.66) and (C.67) again. For ūh one can find
q ′
h ∈ Q̂h such that

divq ′
h + ūh = 0 and

∥
∥q ′

h

∥
∥≤ C‖ūh‖.

Let us use this function q ′
h in the integral relation (C.77). We have

∫

Ω

(
A−1(p̂h − p) · q ′

h + ūh divq ′
h

)
dx = 0.

From here, we conclude that

‖ūh‖2 =
∣
∣
∣
∣

∫

Ω

A−1(p̂h − p) · q ′
h dx

∣
∣
∣
∣

≤ ‖p̂h − p‖A−1

∥
∥q ′

h

∥
∥
A−1 ≤ Cc̄2‖p̂h − p‖A−1‖ūh‖.

Thus,

‖ūh‖ ≤ Cc̄2‖p̂h − p‖A−1 .

We have

‖u− ûh‖ ≤ ∥∥u− {|u|}h
∥
∥+ ∥∥{|u|}h − ûh

∥
∥= ∥∥u− {|u|}h

∥
∥+ ‖ūh‖

≤ ∥∥u− {|u|}h
∥
∥+Cc̄2‖p̂h − p‖A−1 .
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Note that by the definition of {|u|}h
∥
∥u− {|u|}h

∥
∥≤ ‖u− vh‖, ∀vh ∈ V̂h.

Thus,

‖u− ûh‖ ≤ Cc̄2‖p̂h − p‖A−1 + inf
vh∈V̂h

‖u− vh‖

We recall that

‖p − ph‖A−1 ≤ ‖p − q̂h‖A−1 + ∥∥p̂fh
∥
∥
A−1 ≤ c̄2C

∥
∥div(p − q̂h)

∥
∥+ ‖p − q̂h‖A−1

and arrive at the projection type error estimate for the primal variable

‖u− ûh‖ ≤ Cu

(
inf

q̂h∈Q̂h

{‖p− q̂h‖A−1 + ∥∥div(p− q̂h)
∥
∥
}+ inf

vh∈V̂h
‖u− vh‖

)
, (C.78)

where Cu depends on C, c̄1, and c̄2 and does not depend on h. Estimates (C.76) and
(C.78) lead to a qualified a priori convergence estimates, provided that the solution
possesses proper regularity.

It is worth concluding this brief overview of a priori error estimation methods
by the following comment. As we have seen mathematical justifications of a priori
convergence rate estimates are based on several assumptions, namely,

• the exact solution of a boundary value problem possesses an extra regularity (e.g.,
the generalized solution of a second order differential equation belongs to the
space H 2);

• uh is the Galerkin approximation, i.e., it is the exact solution of the corresponding
finite dimensional problem;

• all the meshes Th are regular, i.e., the elements do not “degenerate” in the refine-
ment process.

In real life computations, it is difficult to guarantee that all these assumptions do
hold. Even if we can ensure this, the a priori convergence estimates cannot guar-
antee that the error monotonically decreases as h → 0 (this can be easily proved
only for nested meshes). Moreover, in practice we are interested in the error of a
concrete approximation on a particular mesh. A priori asymptotic estimates could
hardly be efficient in such a context, because they are derived for the whole class
of approximate solutions of a particular type, which encompasses all possible cases.
Therefore, a priori convergence estimates have mainly a theoretical value: they show
that an approximation method is correct “in principle”. Efficient quantitative anal-
ysis of approximation errors associated with a particular approximate solution is
performed by a posteriori estimates.
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Lemma
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Du–Bois–Reymond, 267
infsup stability, 258, 282
Lax–Milgram, 264, 267
properties of compound functionals, 261

Limit density property, 294
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Method
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dual mixed, 280
fictitious domain, 311
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Post-processing, 23
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