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Preface

Nowadays, mathematical and numerical modeling has become an essential compo-
nent of the general scientific process. Ever since the 1960s, numerical analysis and
scientific computation have made up the most rapidly growing part of mathemat-
ics. One of the challenging problems in this area is the creation of fully reliable
computer simulation methods, which could become an adequate complement to ex-
perimental sciences. This book aims to give an overview of mathematical methods
and computer technologies focused on reliable verification of computed solutions
and present recently developed methods. We hope that it will be useful for an audi-
ence much larger than just advanced specialists in numerical analysis and computer
simulation methods. In actuality, the book can be used in three different ways.

For engineers and specialists in natural sciences interested in quantitative analy-
sis of mathematical models, it is best to concentrate on algorithms and prescriptions,
which explain how to measure the accuracy of a numerical solution. In Chap. 2, we
discuss various error indicators, which are used in mesh adaptive numerical algo-
rithms in order to achieve proper restructuring (refinement) of the computational
mesh (or changing the set of trial functions). We suggest a unified approach to this
question and discuss different error indicators. Chapter 3 is concerned with the ques-
tion: “how can guaranteed and computable bounds of errors associated with approx-
imations of differential equations be derived?”’. We tried to explain this in simple
terms without a deep excursion into the mathematical background. In other words,
the reader whose main purpose is to use the results (estimates) will find the corre-
sponding detailed recommendations. Certainly, they are given for a limited amount
of typical problems. Other cases can be found in the literature cited or require addi-
tional analysis (in the latter case, a good understanding of the mathematical theory
is necessary).

For advanced specialists interested in the development of new error estimation
methods, Chaps. 3-5 are the most interesting. Here, we discuss mathematical tech-
nologies that provide guaranteed error control and applications to analysis of prob-
lems with uncertain data. These chapters essentially use materials exposed in the
books P. Neittaanméki and S. Repin [NR04] and S. Repin [RepO8] (in [NR04] the
reader can find a complete set of a posteriori error estimation theory generated by
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the variational duality approach and [Rep08] is mainly devoted to the method using
transformations of integral identities, which define generalized solutions of bound-
ary value problems). We recommend them for further study of the mathematical
theory of a posteriori error estimation. However, in this book (unlike the above-
mentioned publications) we pay more attention to computational aspects and try
to supply the reader with practical prescriptions. Chapter 5 is devoted to a special
but important topic: analysis of effects caused by indeterminacy (incomplete knowl-
edge) of problem data. It contains many new results. We show that studying prob-
lems with incompletely known data leads to conceptions and methods, which differ
from those used in “classical” error analysis. In particular, they lead to the notion
of an a priori limited accuracy, which leads to a new perspective on quantitative
analysis of mathematical models. Chapter 5 and Sects. 4.1.2 and 4.1.3 (related to
beams) use materials of the Ph.D. thesis of O. Mali [Mall1]. The material exposed
in Chaps. 4 and 5 may be especially interesting for specialists in computational me-
chanics interested in finding bounds of the accuracy generated by approximation
errors and data indeterminacy.

The entire book (maybe with the exception of Chaps. 4-6) can also be consid-
ered as a textbook for undergraduate and postgraduate students studying applied
mathematics and mathematics of computations. For these reasons, we append three
chapters (Appendices A, B, and C), in which basic mathematical knowledge is sum-
marized. These chapters present a concise lecture course “Numerical analysis of
differential equations” (which has been developed by the authors for graduate and
undergraduate students of the University of Jyvaskyld). It discusses the main meth-
ods used for quantitative analysis of partial differential equations. Chapters 2 and 3
are also written in the textbook style. Here, we have used materials from lecture
courses on a posteriori error estimation methods that have been delivered to un-
dergraduate and postgraduate students by S. Repin in Jyviskyld, Radon Institute of
Computational and Applied Mathematics in Linz, Helsinki University of Technol-
ogy, and University of Saarbrucken.

We would like to express our gratitude to the University of Jyvéskyld and to the
Academy of Finland for their support.

We are especially grateful to I. Anjam and S. Matculevich for contributions to
the material exposed in the book, discussions, and proofreading and to M.-L. Ranta-
lainen for her help in preparing the electronic version of our book.

Many materials related to theoretical justification and practical implementation
of new a posteriori error estimation methods are results of joint research exposed in
joint publications with our colleagues, which are referred to in the respective parts
of the book. We express sincere gratitude to all of them for the cooperation and
interesting discussions. Finally, we would like to thank Springer-Verlag publishing
group for the friendly cooperation.

Jyviskyld, Finland Olli Mali
2013 Pekka Neittaanmaiki
Sergey Repin
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Chapter 1
Errors Arising in Computer Simulation Methods

Abstract The goal of this introductory chapter is to discuss in general terms differ-
ent classes of errors arising in computer simulation methods and to direct the reader
to the chapters and sections of the book where these errors are analyzed. Moreover,
we describe the error estimation methodology applied in this book.

1.1 General Scheme

Mathematical modeling and computer simulation allows us to perform virtual ex-
periments without costly physical equipment, construct predictions based on our
assumptions, investigate events from the past, investigate prototypes of industrial
objects, etc. However, without proper understanding and estimation of errors gen-
erated during the modeling process, there is a risk of drawing wrong conclusions
based on unreliable numerical results.

The modeling process consists of several stages. First, physical (or biological,
financial, etc.) reality is described using mathematical relations, which generate the
respective mathematical model. Then, we obtain a mathematical problem, which in
general terms is as follows: Find u € V such that

Lu=f,

where the set V, the operator £, and the source term f are defined in accor-
dance with the features of the problem. A mathematical model always represents
an “abridged” version of a physical object, so that the error of the mathematical
model is always greater than zero. This error is the difference between u and the
corresponding physical function, which we denote by ¢;.

Approximation error arises when continual (differential) models are replaced by
a finite dimensional (discrete) problem: Find uj, € V}, such that

Lyup = fn,

where u, € V,, C V and h is the mesh size parameter. A certain norm of the differ-
ence between u and uy, is the approximation error &;.

Numerical errors arise because finite dimensional problems are also solved ap-
proximately, using numerical integration, iteration procedures, and operations per-
formed with a limited amount of digital numbers. For this reason, instead of u; we
obtain . A norm of u;, — iy, is denoted by &3 (see Fig. 1.1).

O. Mali et al., Accuracy Verification Methods, 1
Computational Methods in Applied Sciences 32, DOI 10.1007/978-94-007-7581-7_1,
© Springer Science+Business Media Dordrecht 2014
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Fig. 1.1 Errors in
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’ Numerical
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This book is devoted to the quantitative estimation of these errors. This is nec-

essary not only for the sake of reliability, but also because

it provides information

that can be used to improve mathematical and/or discrete models. Chapters 3 and 4
consider guaranteed and computable estimates of errors encompassed in i7;,. We ex-
plain how to construct computable upper and lower bounds of errors. We emphasize

that the error estimation functionals (minorants and major
the applied discrete model (in particular they do not depend
are valid for any approximation in V. In particular, we do n
exact solution of the corresponding discrete problem (so th

ants) do not depend on
on the parameter /) and
ot assume that u, is the
at it may not satisfy the

Galerkin orthogonality property). Thus, they measure the numerical error €3 as well

and satisfy the following general relation:
M) < &2 4 &3 < M(utp).

The benefits of these estimates are as follows:

e Estimates are always guaranteed (not only in the asymptotic sense as 7 — 0).
e Computation of the estimates can be performed in many different ways and de-

pending on the circumstances, we can balance between
and the accuracy of the estimates. For linear problems,
sided error estimates can be computed with any desired
mates have no gaps).

the computational cost
we can prove that two-
accuracy (i.e., the esti-

e Finally, the estimates depend explicitly on the problem data, providing us with an

efficient mathematical tool to investigate modeling errors
the incompletely know data.

and errors generated by

Now, we discuss different types of errors in more detail and refer to particular
parts of the book in which the corresponding error estimates are considered.
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1.2 Errors of Mathematical Models

Let U be a physical quantity that characterizes some phenomenon or process. In
mathematical modeling, it is described by a certain mathematical model, the exact
solution of which is u (depending on a model u may be a vector, a function, or a
collection of functions dependent on spatial variables and time). Then, the quantity

e1=|U —u|

represents the error generated by the mathematical model (henceforth, we call it the
modeling error). Here the symbol | - | is understood in a broad sense: it may denote
a suitable norm in the corresponding functional space or some special (e.g., local)
quantity used to estimate the difference between the results of physical experiments
and the numbers generated by a mathematical model.

A mathematical model always represents an “abridged” version of a physical
object, so that &1 is always greater than zero.

The evaluation of modeling errors is one of the most difficult problems in quantita-
tive analysis of mathematical models, which in the vast majority of cases is yet to
be solved.

Typical sources of modeling errors are the following:

o A mathematical model neglects some of the really existing effects (physical rela-
tions, dependencies, influences).

e Physical data involved in the mathematical model are defined with limited preci-
sion.

e The problem is solved using a simplified geometric description or dimension re-
duction.

In this book, we first of all focus our attention on the second case, i.e., on errors gen-
erated by incomplete knowledge of data, which are studied in Chap. 5. In Sect. 6.6
the reader will also find an overview of results related to modeling errors of other

types.

1.3 Approximation Errors

Approximation errors arise when continual (differential) models are replaced
by finite dimensional (discrete) models.

Usually finite dimensional problems are created with the help of meshes, which
cover the corresponding domain (set in R?). Let 7, be such a mesh, and let & denote
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the “character” (mean) distance between neighboring elements of the mesh. By u,
we denote an approximate solution computed on 7j. Obviously, u; encompasses
the approximation error

&) = |Lt —Mh|.

In modern scientific computing, the major attention is usually paid to &,. Classi-
cal a priori error analysis aims to construct estimates of the type

&2 < Ch*|| f1,

which indicate that the solution provided by the discrete model converges to the
one of the exact model by O (k) convergence rate as & — 0. Thus, the method to
obtain the discrete model is well justified. In Appendix C, we shortly discuss a priori
asymptotic methods with the paradigm of elliptic partial differential equations. This
topic is well studied, and a priori error estimates qualified in terms of mesh size
parameter(s) have been derived for many problems. The goal of the chapter is to
explain the main principles of a priori error analysis in the context of conforming
variational methods and mixed approximations of PDEs. The reader interested in
further investigation of the subject is provided with necessary references.

A posteriori indicators of approximation errors are considered in Chap. 2, where
we present a unified outlook on this question, which leads to a clear classification
of different error indication methods.

Guaranteed bounds of approximation errors can be computed with the help of
methods discussed in Chaps. 3 and 4. Some generalizations to nonlinear problems
are presented in Chap. 6, which ends with a list of challenging problems arising
within the framework of fully reliable modeling conception.

1.4 Numerical Errors

Numerical errors arise because finite dimensional problems are solved ap-
proximately, using numerical integration, iteration procedures, and operations
performed with a limited amount of digital numbers.

In general, computers cannot perform elementary mathematical operations abso-
lutely accurately, so that instead of uj, we obtain uj. The quantity

€3 = |up — Up|

shows the error of numerical operations performed by a concrete computer. Typ-
ically, this error includes errors arising in iteration processes, errors of numerical
integration, and roundoff errors. Errors associated with various quadrature (cuba-
ture) formulas are well studied (we direct the reader to, e.g., [PTVF07]). Errors of
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iteration processes are considered in Sect. 6.7 and roundoff errors are briefly dis-
cussed in Sect. 6.8.

It remains to comment on errors caused by defects (bugs) in numerical codes.
They create a special class of errors arising in large codes with complicated logical
structures. Certainly, rough errors in a code usually lead to evident discrepancies and
are easily detectable. However, experienced numerical analysts know that in some
cases code bugs may produce relatively small effects (which are not easy to recog-
nize in a particular numerical test) and much bigger effects in other cases (which
may seriously corrupt results of expensive numerical experiments). The latter situ-
ation is rather dangerous because may lead to misleading conclusions. In principle,
two different methods can be used to discover defects in codes. The first method
suggests the theory of algorithms in the mathematical logic and theoretical comput-
ing (see, e.g., [CLRSO01, GK90, Knu97]). Another method follows from a posteriori
error estimation theory. In particular, estimates considered in Chaps. 3 and 4 include
such type errors (if they indeed exist). If the corresponding error majorant does not
decrease and shows relatively big errors even for fine meshes, then this fact may
indicate that the algorithm is not quite correct and generates solutions containing
some essential and nondecreasing errors.



Chapter 2
Indicators of Errors for Approximate Solutions
of Differential Equations

Abstract Error indicators play an important role in mesh-adaptive numerical al-
gorithms, which currently dominate in mathematical and numerical modeling of
various models in physics, chemistry, biology, economics, and other sciences. Their
goal is to present a comparative measure of errors related to different parts of the
computational domain, which could suggest a reasonable way of improving the fi-
nite dimensional space used to compute the approximate solution. An “ideal” error
indicator must possess several properties: efficiency, computability, and universal-
ity. In other words, it must correctly reproduce the distribution of errors, be indeed
computable, and be applicable to a wide set of approximations. In practice, it is
very difficult to satisfy all these requirements simultaneously so that different error
indicators are focused on different aims and stress some properties at the sacrifice
of others. We discuss the mathematical origins and algorithmic implementation of
the most frequently used error indicators. Our goal is twofold: to discuss the main
types of error indicators, which have already gained high popularity in numerical
practice, and to suggest a unified conception, which covers practically all methods
used in error indication.

For differential equations, we discuss indicators of two types. Indicators of the
first type show the distribution of errors in the whole computational domain. An-
other group of indicators is focused on the so-called goal-oriented error functionals
typically associated with some subdomains (“zones of interest”), where the accu-
racy of an approximate solution is especially important. Usually, the indicators of
the latter type use solutions of adjoint boundary value problems. We discuss some
new forms of these indicators, which do not exploit extra regularity of solutions and
special properties of respective approximations (such as, e.g., superconvergence).
Indicators that follow from a posteriori error majorants of the functional type are
discussed in Chap. 3.

2.1 Error Indicators and Adaptive Numerical Methods

Adaptive numerical methods are based on the conception that efficient approxima-
tions should be constructed by means of a sequence of consequently refined finite
dimensional spaces {Vi}, k = 1,2, ... such that the amount of linearly indepen-
dent trial functions in Vj4 is larger than in Vi (i.e., dim V41 > dim Vj). Typically,

O. Mali et al., Accuracy Verification Methods, 7
Computational Methods in Applied Sciences 32, DOI 10.1007/978-94-007-7581-7_2,
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the structure of these spaces is a priori unknown. Within the framework of the adap-
tive modeling conception, the generation of Vi1 is based upon the information
encompassed in the approximation u associated with Vj. For this reason, it is nec-
essary to have computable quantities that furnish information on the error e pre-
sented in terms of a certain error measure (e.g., in terms of the energy norm). Such
quantities are called Error Indicators. Throughout the book, we denote them by the
symbol £ (which is generated by the initial letters £ and 7). Error indicators play
an important role in mesh-adaptive numerical algorithms, which follow the formal
scheme

Vi M) %3 E(—u%) - Vi E(ﬂ)) Vit1.

A “good” error indicator must be easily computable and must correctly reproduce
the distribution of errors. It is also desirable that an indicator be applicable to a wide
set of approximations and imply quantities that provide a realistic presentation on
the overall (global) error. In practice, it is very difficult to satisfy all these require-
ments simultaneously, so that different error indicators are focused on different aims
and stress some properties at the expense of the others.

In this chapter, we discuss the general principles of error indication and examples
of error indicators with the paradigm of finite element approximations of elliptic
partial differential equations.

2.1.1 Error Indicators for FEM Solutions

Let Ty, s = 1,2, ..., N be elements (subdomains) associated with the mesh T (with
characteristic size &), and let u;, be an approximate solution computed on this mesh.
Henceforth, the corresponding finite dimensional space is denoted by V},, so that
uy € Vy. Then, the true error is e = u — uj,. Denote by m(e) the value of the er-
ror measure m associated with 7. Usually, the error measure m (e) is defined as
a certain integral of u — uy, related to 7. For example, local error measures of ap-
proximate solutions to linear elliptic problems are often presented by the integrals

1/2 5 1/2
(/ |u—uh|2dx) or (/ ‘V(u—uh)’ dx) .
T Ty

The components of the vector

m(e) = {mi(e), ma(e), ..., my(e))

are nonnegative numbers, which may be rather different.

If the overall error encompassed in uy, is too big, then a new approximate solution
should be computed on a new (refined) mesh ‘¥, .. Comparative analysis of m,(e)
suggests where to add new degrees of freedom (new trial functions). However, in
real life computations the vector m(e) is not known and, therefore, an error indicator
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E(up) is used. The corresponding approximate values of errors E; associated with
the elements form the vector

E(up) ={E, E>, ..., EN},
which is used instead of m(e). If the vector E(uy,) is close to m(e), i.e.,
m(e) = E(up), (2.1)

then a new mesh T, can be efficiently constructed on the basis of comparative
analysis of Es. However, the fact that the adaptive procedure is efficient depends on
how accurately the condition (2.1) is satisfied and how efficiently the information
encompassed in E(up,) is used to improve approximations.

2.1.2 Accuracy of Error Indicators

Certainly, the condition (2.1) looks vague unless a formal definition of the sign
= is given. Despite the huge amount of publications focused on error indication,
to the best of our knowledge no commonly used definition has yet been accepted.
Different authors may claim (explicitly or implicitly) different things, so the words
“good error indicator” may take on a variety of meanings.

Below we suggest definitions, which can be used for a reasonable qualification
of error indicators. They define “strong” and “weak” meanings of =, respectively.

Definition 2.1 The indicator E(uj) is e-accurate on the mesh %, if

_ Im(e) — EQup)| _

M(Eup)) = o (2.2)

The value of M (E(up)) is the strongest quantitative measure of the accuracy of
E(up).

This definition imposes strong requirements on E(uj). Indeed, (2.2) guarantees
that inaccuracies in the error distribution computed by E(u,) are much smaller (pro-
vided that ¢ is a small number) than the overall error. Therefore, an indicator should
be regarded as “accurate” if it meets (2.2) with relatively coarse ¢.

From (2.2) it follows that the so-called efficiency index

E
Ieff(E(Mh)) — [E(up)|

<1+ M(E@up) (2.3)
im(e)| ( )
is close to 1, which means that |E(uy)| provides a good evaluation of the overall
error |m(e)|.

The efficiency of E(uj,) may be different for different meshes and approximate
solutions. It is desirable that the indicator is accurate for a sufficiently wide class
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Fig. 2.1 Typical
h-refinement and

f . %& h-refinement
p-refinemen /
ll T DA p-refinement

of approximations and meshes. The wider the class of approximations served by an
indicator, the better it is from the computational point of view.

The majority of indicators suggested for finite element approximations are
applicable only to Galerkin approximations (or to approximations that are
very close to Galerkin solutions). Properties of the mesh used are also very
important, and theoretical estimates of the quality of error indicators usually
involve constants dependent on the aspect ratio of finite elements.

2.1.2.1 Marking Procedures

In adaptive finite element schemes, subsequent approximations are often con-
structed on nested meshes, where a refined mesh is obtained by “splitting” ele-
ments (h-refinement) or by increasing the amount and order of basis functions (p-
refinement) of the current mesh. In Fig. 2.1, we depict typical refinement strategies
for a linear triangular element, the degrees of freedom of which are function val-
ues at nodes. A detailed discussion on refinement methods can be found in, e.g.,
[BGP89, Dem07]. Alternative procedures intended to increase the set of basis func-
tions lead to nonconforming methods (cf. Appendix B).

Typical adaptive schemes consists of solving the problem several times on a se-
quence of improving subspaces. In this type of practice, error indicators are used
together with a certain marker that marks elements (subdomains) where errors are
excessively high. A new subspace V}, . is constructed in such a way that these errors
are diminished.

Let B denote the Boolean set {0, 1} (we can assign the meaning “NO” to 0 and
“YES” to 1). By BY we denote the set of Boolean valued arrays (associated with
one-, two- or multidimensional meshes) of total length N. If b= {b1,bs,...,by} €
BY, then b, € B for any s = 1,2,..., N. It is assumed that in the new mesh the
elements (subdomains) marked by 1 should be refined, while those marked by 0
should be preserved (see Fig. 2.2). Note that the refined mesh in Fig. 2.2 contains
the so-called “hanging nodes”. In order to avoid them it is often necessary to refine
also some neighboring subdomains marked by 0.

ref

Remark 2.1 Modern mesh adaptation algorithms often make coarsening of a mesh
in subdomains where local errors are insignificant (see, e.g., [BNP10, BS12, KM10,
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A =

Fig. 2.2 Marking procedure and a refined mesh

Algorithm 2.1 Marking based on comparison with the average value

Input E(uh) € RV {vector of errors indicated by £}, N {number of elements}
I= Zl 1 E; {Averaged value of the error on mesh elements }
fori=1:Ndo
if £, > E then
bi=1
else
bi =0
end if
end for
Output: b {Marking of elements}

PPB12, Rhe80, SDW*10, SMGG12] and the references cited therein). In this case,
elements of BY may attain three values: {—1, 0, 1}. The elements marked by —1
should be further aggregated in larger blocks.

From the mathematical point of view, marking is an operation performed by a
special operator.

Definition 2.2 Marker M is a mapping (operator) acting from the set Rﬁ (which
contains estimated values of local errors) to the set BV,

Different markers generate different selection procedures, which are applied
to the array of errors evaluated by an indicator E(uj) in order to obtain a
boolean array b. Further refinement is performed with the help of data en-
compassed in b.

Example 2.1 Algorithm 2.1 determines the simplest marker, which classifies the
components of e into two groups by comparing with the average value.

Example 2.2 As before, E(uy) is a vector with nonnegative components containing
indicated errors and 6 € (0, 1) is a parameter (which determines the percentage of
refined elements). Algorithm 2.2 ranks the values of £; (from minimal to maximal
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Algorithm 2.2 Marking based on a predefined amount of elements to be refined

Input: £ € RV {vector of errors}, N {number of elements}, 6 € (0, 1)
icyr = floor((1 —O)N)
{Esorted, I} = sort(k)
fori=1to N do
if i <i. then

b(I()) =1
else
b)) =0
end if
end for

Output: b {Marking of elements}

values) and assigns 1 to the largest 6 N values. All other elements are marked by O.
In the formal description of the algorithm, we use a “sorting procedure” sort, which
input is the array £ and output is the array Fsoreq containing local errors sorted
in the descending order (i.e., Esorted(j) = Esored(j + 1)), and the array I, which
contains natural numbers (indexes of sorted elements) in the original vector, i.e., for
any j=1,2,..., N, Esorted(j) = EI(j)). Algoritmization of such a procedure is
a technical task, which we are not focused on. The procedure floor(z) selects the
largest integer not greater than z.

Example 2.3 In the literature related to adaptive procedures, a selection method
called the “bulk criterion” is often used. In it, we select by a certain method a set
of elements for which the summed indicated error is greater than some “bulk” of
the total indicated error (one of the first papers related to this method is [D6r96];
see also [BCHO09]). Algorithm 2.3 forms the subset of elements which contains the
highest indicated errors. The process stops when the error accumulated on previous
steps exceeds the “bulk” level. This is sometimes referred to a “greedy” algorithm.

In order to demonstrate the performance of the above-discussed marking proce-
dures, we consider the following diffusion problem:

—Au=1, inQ:=(0, 1>\ ([0.5, 1] x [0,0.5]),
u=0, onl.

We compute uy by the finite element method using piecewise affine approxima-
tions (Courant elements), and use the indicator £(uj) generated by the gradient-
averaging method (see Sect. 2.2.2.1). We apply both Algorithms 2.1 and 2.2. In
Fig. 2.3 the mesh and elements marked by a certain method are depicted (above) and
the histogram of indicated errors and the marked elements are presented (below). In
general, Algorithms 2.1 and 2.2 may suggest to refine rather different amount of
elements.
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Algorithm 2.3 Marking based on the bulk criterion
Input: £(uj) {vector of errors}
6 € (0, 1) {bulk factor}
{Esorted, I} = sort(£)
K= ZlNzl E; {total error}
Epux =0 E,,; {value of the “bulk” error}
i=1
E,;,p =0 {temporary value of accumulated error}
while Epyx > E;pyp do
bA@E)) =1
Etmp = Etmp + Esortea (i)
i=i+1
end while
Output: b {Marking of elements}
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Fig. 2.3 Marking by Algorithms 2.1 (left) and 2.2 (right), marked elements (b; = 1) are colored
darker. Above are meshes and below the histograms of element-wise errors

Remark 2.2 'We note that the marking of elements with the highest errors makes
sense only if the errors differ significantly. If they have close values, then any rank-
ing is not really motivated. For example, consider an almost uniform error distri-
bution and two markings presented in Fig. 2.4. It is obvious that in this the case
refining only the shadowed elements mesh is a rather disputable strategy because
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20 40 60 80 100 20 40 60 80 100

Fig. 2.4 Algorithms 2.1 (left) and 2.2 (right) are applied to mark elements of almost uniform error
distribution, elements to be refined are darker

Table 2.1 Logical operation = in Definition 2.3

a b a=b

0 0 1 M@m(e)=[1 0 0 0 1 1 O O 1 1]
1 0 o0 M(E)up)=[0 1 1 0 1 1 1 0 1 0]
0 1 0 M@m(e)) =M(E)(up))=[0 0 0 1 1 1 0 1 1 0]
1 1 1

every element makes almost equal contribution to the overall error. In this situation,
the uniform refinement of all elements would be more adequate.

Remark 2.3 In principle, one can use the information provided by an indicator
without any ranking procedure and construct a completely new mesh where ele-
ment sizes are related to respective errors. Moreover, in adaptive Ap-FEM, the ele-
ment size and the order of basis functions can be varied simultaneously (see, e.g.,
[AS99, Dem07]).

To compare different error indicators in the context of element-wise marking,
we introduce two operations with Boolean valued arrays. Let a = {a;} and b = {b;}
be elements of BY. By [la[] we denote the sum ZzN=1 a; and = denotes the logical
equivalence rule (see Table 2.1, left).

Definition 2.3 An indicator E(uj) is e-accurate on the mesh T, with respect to the
marker M if

_ IM(m(e)) = M(E@p)) _ .

M(E(up), M) =1 ¥

(2.4)

This definition is illustrated by Table 2.1 (right). We see that the operation =
counts the cases in which markings based on the true error measure and on E(up)
coincide. In the array of N = 10 elements the number of coincides is 5. Hence, in
this example M(E(up), M) =1 — 1% = 0.5. This quantity shows that the indicator
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Fig. 2.5 True error distribution e for a set of nine elements and local errors generated by two
indicators E; and E,

is unacceptably coarse. If in another example we have an array containing, e.g.,
10000 elements and the number of inconveniences (with respect to M(m(e))) is
8, then M(E(up),M) =1 — % = (0.0008. This shows the high accuracy of the
indicator.

It is easy to see that the accuracy measure M (£ (uy,), M) is much weaker than the
measure introduced in Definition 2.1. For example, in Fig. 2.5 we depict the exact
distribution of local errors (left) and two distributions generated by two indicators
(which are rather different). However, a marker designed to select three elements
with the highest errors would select the same elements (shadowed). This example
shows the difference between the accuracy measures (2.2) and (2.4). We see that the
indicator £, may be accurate in the sense of (2.4), but do not provide a true idea of
the values of errors. This situation is quite typical. Often error indicators are based
on heuristic argumentation and have no mathematical justification (in the best case
they can be justified only in the above weak sense). Nevertheless, numerical analysts
and engineers use them. Customarily they motivate this by saying that in some tests
performed with the help of a marking procedure the indicator manages to properly
mark the elements. In general, these arguments are not convincing because there is
no guarantee that similar results will be obtained in other computations.

If E£(up) is not accurate in the strong sense (i.e., it does not show actual values
of the error), then the quality of marking may be good for one marker (mesh)
and quite bad for another. Therefore, we believe that the indicators suggested
for reliable numerical experiments should satisfy Definition 2.1.

It is clear that direct accuracy verification for an error indicator can be performed
only in test examples where the exact solutions are known (so that we can find e).
In other cases, the validity of an indicator is usually motivated by some indirect ar-
guments (e.g., by those based on a priori regularity and asymptotic analysis). Some
of the most popular motivations are considered below.
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2.2 Error Indicators for the Energy Norm

To present various error indicators related to energy norms of linear elliptic equa-
tions within the framework of a unified scheme, we consider the classical Poisson’s
problem

—Au=f in$2, (2.5)
u=0 onlrl, (2.6)
where £2 is an open bounded connected subset in R? with Lipschitz continuous

boundary I" and f € LZ(.Q).
The generalized solution (see Sect. B.1) satisfies the relation

/ w-wm:/ fwdx, YweVy:=HY(2). 2.7)
2 2
Let v € Vp be an approximation of u. We are interested in evaluation of the global
error norm ||Ve| = ||[V(u — v)|| and local errors m(e) associated with subdomains
(elements).
Note that
1 2
sup (V(u —v)- Vw) dx — - ||Vw]|
weVy L/ 2
I, 1 2
< sup Vu—-v)-t—-|t| dx:—”V(u—v)” .
1el?2(R2,Rd)J 2 2 2
On the other hand,

1 2 1 2
supf <V(u—v)~Vw—§|Vw| )deEHV(u—v)H .
2

weVp

Thus,

IV —v)|* = sup/g(zwu—v)-Vw—WwR)dx

weVy

= sup {—||Vw||2—2/ (Vv-Vw—fw)dx},
2

weVy

and we conclude that

[V = )| = sup {—IIVw]? —2¢,w)}, 2.8)
weVp
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where
£y (w) ::/ (Vv-Vw — fw)dx
Q

is the residual functional. This relation serves as a basis for various error estimation
methods.

It is easy to show that the variational problem on the right-hand side of (2.8) has
a unique solution and this solution is w = u — v. Indeed,

2
)

Zv(u—v)zf (Vo-V(u—v)=Vu-V(u—v))dx=—||V(u—v)
2

and we see that the right-hand side coincides with the left-hand one. Hence, (2.8)
implies

€@ —v)| = ||V —v)|*. (2.9)

We can use (2.9) to indicate the error ||V (« — v)|| and classify the following three
principal ways:

A: Estimate £, (u — v) in (2.8) from the above, and use the computable part(s)
of the estimate as error indicator(s).

B: Replace ¢, in (2.8) by a close functional, which leads to a directly com-
putable estimator.

C: Solve the problem (2.8) numerically.

Below we discuss several error indicators, which are based on the approaches (A),
(B), or (C).

2.2.1 Error Indicators Based on Interpolation Estimates

Error estimators of this type can be referred to the group (A). They originate from
the papers [BR78b, BR78a]. In the literature, they are often called “residual type
a posteriori error estimators”. Various modifications and advanced forms have been
discussed in numerous publications (see, e.g., [AO92, AO00, BSO1, BWS11, Car99,
CV99, DR98, EJ88, JH92, Ver96]). Let the approximate solution v = uy be the
Galerkin approximation computed on Vy, C Vp, i.e.,

/ Vuh~thdx=/ fwpdx, Ywy € V. (2.10)
2 2

With the help of (2.10), we can deduce an upper bound of the residual functional
and suggest error indicators associated with computable parts of the estimate.
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We represent the residual functional in the form
Ly, (W) = / (Vuh -V(w —mpaw) — f(w— nhw)) dx,
Q
where ;, : Vo — Vo, denotes an interpolation operator. Assume that §2 consists of

subdomains (e.g., simplexes T, which form the mesh %), and uy is sufficiently
regular on each subdomain. Then, we integrate by parts and obtain

N
Ly )= | (Aup+ f)(pw — w) dx
k=1 Tk
N
+ ) | [Vun-nidw — myw) ds, 2.11)
1s=17Eis
I>s

where [ ] denotes the jump, Ej, is the common boundary (edge) of 7; and T (bound-
ary edges do not have this term), and 7y is the unit normal vector to Ej; outward to
T; if I > s (we recall that the integral over Ej, is assumed to be equal to zero if the
elements / and s have no common edge).

It is easy to see that

(Aup + fH(pw — w)dx < [|Aup + fllnllw — mpwl 7,

Tk
ouy, duy
/ |:—:|(w —maw)ds < |:—]
E,L on on
Now, we need to bound ||w — mpw|| 7, and ||lw — mwl g, by [Vw], i.e., we need
interpolation estimates associated with the operator 7. The derivation of such es-
timates is more difficult than for the operator I, considered in Sect. C.2. It is clear
that the estimates must rely on geometrical features of Ty and properties of Vy;. In
the case of piecewise affine continuous approximations, a polygonal £2 c R?, and
a simplicial mesh, the corresponding interpolation operator 1, : H!(£2) — Vg, has
been studiedo in [CI€75].
Letve H'(£2) and X ; be an inner node of the triangulation T;. We define the
set

lw—mrwllE,-
Ejs

wj={xeT|X;eT,t=1,2,...,N},
which contains all the elements having common node X ;. Define p;(x) € Pl(w i)
by the relation
(v—pjpgdx=0, VgeP' (). (2.12)
wj

This definition means that p; is the L2-projection of v on @ j. Now, mj, is defined
by setting



2.2 Error Indicators for the Energy Norm 19

Fig. 2.6 The sets @ (T}) and
@ (Eg) on a regular mesh
Tk Elx
nhv(Xj) :p(X.,'), VXj €int$2, (2.13)
JThv(Xj) =0, VXj erl. (2.14)

This mapping is linear, continuous, and is subject to the relations (see, e.g., [ Ver96])

v — mpvlla, 7, < CR diam Tel[v |12, (7). (2.15)

int

v — vl g, < CHHELIY 10 2,0y (2.16)
where the sets (patches) associated with 7 and Ej are defined as follows:
o(T) ={xeT, |T:NTy#0,t=1,2,...,N},
w(Ey):={xeT; |T;NE;#0,t=1,2,...,N}.

See Fig. 2.6 for a clarifying illustration.
The constants C{}" and C}! depend on the structure of the mesh, and the factors

diam(T%) and | Ejs|'/? depend on the mesh size parameter /. We have

N
Z/ (Aup + f)(w — mpw) dx
k=1 Ti

N

<Dl Aw, + fllagllw —mwla g
k=1

=

<Yl Aup + fllo. g Cif diam Tellwl1 2.0z
k=1

N 1/2
(Z i) * (diam Ty)2 ||Auh+f||2 Tk) Vir(w), (2.17)

where (7 (w) = Zk 1 ||w||1 2w (T It is easy to see that

ir(w) < C7 (T wli, 0. (2.18)
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where Cr(T)) depends on the topological structure of the mesh. We note that since

one and the same element 7} occurs in several different patches @, the constant is

greater than one (it depends on the maximal amount of elements in a patch).
Analogously,

Zf [Vup - nigl(w — mpw) ds

1,s=1"Eis

[>s

< D Vun iy g, CHE i 2,00 ()
l,s=1

[>s
N 1/2
< (Z( SO [ [Vun sl 3 g, ) View), (2.19)
l,s=1
[>s

where
N
W) =Y 1wl 2 -
l,s=1
[>s
‘We have
) < CHED Il g0, (220

where Cg (%)) also depends on the mesh.
By (2.17) and (2.19), we find that

N 1/2
€, ()| < (cT (Z( ’”’) (diam ) || Aup, + £ 113, Tk)

k=1

m 1/2
E<Z cyl) |E1s|H[wh-ms]H;Eh) >||w||1,2,9~(2-21)

l,s=1
I>s

Let C = max{Cr, Cg},/1 + C%,. Then,
€, ()| < CE@p)Vwl, (2.22)

where
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N 1/2
Euy) = (Z( znt) (diam Ty)?|| Aup, + f||2 Tk)

k=1

N 12
+(Z< Y Vi ||) |

l,s=1
[>s

By (2.8), we obtain

|V @ —un)| < sup{ IVw|* +2CE@p)||Vw||} < C*E*(up).

weVy
Hence,
IV —up)| < CEup). (2.23)

We can represent this estimate in a slightly different form
| V@ —un)| < CEw), (2.24)

where the indicator

N
l%(uw:(z )2 (diam T)* | Aup + £113 7,

172
+ Z CZZ; |Elv||| [Vup 'nlS]H;ElS)

l,s=1
I>s

is a sum of locally defined quantities.

It is worth outlining that in the process of deriving (2.23) and (2.24), we several
times considerably overestimated the right-hand side, so that the equality sign in
(2.8) and (2.11) is irretrievably lost. For this reason, the estimates obtained with the
help of the above mathematical arguments may overestimate the error even if we
manage to find and use sharp values of the interpolation constants C”” and CZ‘;
However, the latter task is not easy (especially for nonuniform meshes Wthh arise
in the process of mesh adaptation). Indeed, to find C IIZI we must solve the problem

lw—mhwll2,m 7

wevy Wl 2,@ @)

(2.25)

which is an infinite dimensional problem. In some publications, it is suggested to
find the constant approximately (e.g., by using a finite dimensional space formed
by low order polynomial functions w). In this case, the true value of sup in (2.25)
may be not achieved and, therefore, the overall estimate looses reliability. More-
over, solving a large number of local problems (2.25) (even for finite dimensional
spaces) requires considerable numerical efforts. The corresponding computational
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Fig. 2.7 Two patches of a
nonuniform mesh

expenditures must be taken into account. After each mesh refinement, new constants
associated with patches of the new mesh must be recomputed. Patches of highly
nonuniform meshes may contain a different number of elements and complicated
geometry (especially in 3D). For example, in Fig. 2.7 bold lines show boundaries
of two patches P; and P, associated with two elements 77 and 7> of a nonuniform
plane mesh. In real life computations, adaptive methods may generate meshes with
much higher irregularities than those depicted in Fig. 2.7. In the case of highly ir-
regular mesh, it is impossible to compute all the constants within the framework
of a certain unified procedure similar to that we use for the constants in H> — C°
interpolation estimates, which can be fairly easily evaluated by interpolation esti-
mates on the basic (etalon) simplex (see Sect. C.2). Thus, sharp computations of all
the constants Ci}c” and Cé;f for thousands of different patches lead to high compu-
tational expenditures.

In view of these reasons, getting realistic and guaranteed error bounds with the
help of (2.23) and (2.24) is rather challenging even for relatively simple elliptic
equations (see, e.g., [CF00a], where these questions are systematically studied with
the paradigm of boundary value problems in L-shaped domains).

A true meaning of the indicator E is that it suggests easily computable quanti-
ties associated with elements, which can be used as error indicators. The standard
argument for this is as follows. Assume that we use a quasi-uniform mesh. Then,
we may assume that all (or almost all) constants C ll’,? have approximately the same
value, and can be replaced by a single constant C{’” . If the constants Céﬂ are also

replaced by a single constant Cé'”, then (2.21) implies an estimate

N 1/2
Eup~C (Z n2<Tk)> : (2.26)
k=1
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where

int\2, 1
n*(Ty) = (C") (diam To)* || Aup + £113 7,
(Cznt)2

> 1B Vun sl g, - (2.27)
EjgeTy

The multiplier 1/2 arises in the second term because any interior edge is common
for two elements.

Remark 2.4 Sometimes only the last term containing jumps is used as an efficient
error indicator (in many cases it dominates, see, e.g., [CV99]).

2.2.2 Error Indicators Based on Approximation of the Error
Functional

Assume that the functional ¢, in (2.8) can be efficiently approximated by another
functional, i.e., £, >~ £,, and, moreover, for the new functional we have the estimate

16 w)| < QW) [IVw]l, (2.28)
where Q(v) is a computable nonnegative functional. Then, (cf. (2.8))

|V —v|*= sup{—an2 26,(w)} = sup {—[|Vw| — 20, (w)}

weVy weVp
< sup [=IVw|* +20W)IVu|} = 0*(v). (2.29)
wevy

This relation shows the general idea of generating indicators of the group (B) and
motivates the indicator Q(v). Certainly, the quality of such an error indicator de-
pends on the closeness of ¢, and E ! The functional E can be constructed by a
certain post-processing procedure.

Post-processing is a computational procedure that adjusts computed data to
some a priori knowledge on properties of the exact solution. This procedure
should be fairly simple, being compared with the expenditures required for
computing the approximate solution.

Below, we describe several post-processing procedures.

'In general, the functionals must be close in the sense of H -1().
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2.2.2.1 Averaging of Gradients (Fluxes)

Gradient averaging procedures are often used to post-process gradients (fluxes,
stresses) computed by finite element approximations of elliptic boundary value
problems. Among first publications in this direction we mention the papers [ZZ87,
77388], which generated an interest in gradient recovery methods. Similar methods
were investigated in numerous publications (see, e.g., [AO92, BC02, BR93, BSO01,
HTWO02, Ver96, Wan00, WY02, ZBZ98, ZN05]). Mathematical justifications of the
error indicators obtained in this way follow from the superconvergence phenomenon
(see, e.g., [KN84, KNS98, Wah95]). Superconvergence arises on regular (quasireg-
ular) meshes and, in simple terms, means that some components of approximate
solutions obtained by inexpensive post-processing procedures converge to the cor-
responding components of the exact solution with a rate higher than the rate that
can be predicted by standard a priori estimates. One of the most widely known re-
sults justified by superconvergence claims that a relatively simple averaging of Vuy,
yields a vector-valued function, which approximates Vu much better than Vuy,. As-
sume that in our problem this phenomenon takes place, and the gradient Vu can be
successfully represented by G, (Vuy), where G, is a certain post-processing oper-
ator. Then,

/(Vuh~Vw—fw)dx:/ Z(up) - Vwdx,
2 2

where Z(up) := Vuy — G, (Vuy) (and (2.28) holds if we set Q(up) = |1 Z(up) ).
We recall (2.8) and deduce the relation

2

IVel® =~ sup {—nwn2 —2f Z(uh>~dex} < || Z(un)
2

weVp
which means that
IVell >~ | Z ).

This relation suggests the idea to use the function Z(uy) as an error indicator and
set

E(up) = || Z(up)|| T,

So far we did not define particular forms of the operator G, which can be con-
structed by many different methods. Some of them are discussed below. At this
point, we only note that

Various post-processing procedures (averaging, smoothing, regularization)
lead to various error indicators.
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Fig. 2.8 A patch w;
associated with the node X;.
Iy, =1{s,j,k,p,1,q,2}

;

2.2.2.2 Averaging of Fluxes in H!

In the majority of cases, post-processing is performed by local averaging proce-
dures. Consider the patch w; associated with the node X; (see Fig. 2.8)

w; = U Tj,

J€lw;
where 1,,; contains indexes of simplexes in w;.
Define g as the vector-valued function in P¥(w;, R%) solving the minimization
problem:

inf lg — Vi |? dx. (2.30)
gePk(wi,Rd) w;

Using g, we can define values of an averaged gradient at the node X;.

Consider the simplest case k = 0 and assume that uy, is a piecewise affine contin-
uous function. Then, the components of Vuy, are constants on 7;. We denote them
by (Vup); and find g € P%(w;, RY) such that

& - VuiLar= ot [ lg— Vi Par 231)
w; gePY(w;,RY) J oy

It is easy to see that

i |71
g =3 |w{| (Vup);j. (2.32)

jelo,

We set G(Vuy)(X;) =g@. Repeat this procedure for all nodes and define the vector-
valued function yg := G(Vuy,) by the piecewise affine extrapolation of these values.
This vector-valued function belongs to H! and in many cases approximates Vu
much better then the original (numerical) flux Vuy. This fact is justified by the
superconvergence phenomenon (see, e.g., [KNS98, Wah95]).

Various averaging formulas of this type are represented in the form

g =" aj(Vun);. Y ai=1, (2.33)

jela, Jely,
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where the quantities A ; are weight factors. In (2.32), we set

|7;1

|wl|

i=
If the mesh is regular and all the quantities |7;;| are equal, then (2.32) reads

gl = Z (Vup);, (2.34)

]Elm,

where M is the number of elements in w;. For internal nodes, the factors A;; may
also be defined by the rule

1yl
2
where |y;| is the radian measure of the angle of T; associated with the node X;.
However, if a node belongs to the boundary, then it is better to choose special
weights. Their values depend on the mesh and on the boundary type (see, e.g.,
[HKS87]).

Another way of defining g is to solve the problem

inf Z|g(xs) —

gePk(w; ]R‘l)

Aj=

’

where the points x; € @; are so-called superconvergent points (see, e.g., [KN87,
KNS98)).
If kK = 0, then by similar arguments we obtain

g — Z Viup(xs). (2.35)

As in the previous case, we define the vector-valued function G, (Vuy,) by the piece-
wise affine extrapolation of these values.

2.2.2.3 Averaging of Fluxes in H (2, div)

Post-processing operators for fluxes can be based on Raviart-Thomas elements of
the lowest order (see, e.g., in [BF86, RT91]). The corresponding averaging operator
Grr generates an averaged flux in the space H (£2, div) by averaging normal compo-
nents of fluxes. Since the true flux belongs to this space (provided that f € L?(£2)),
this way of averaging is quite natural.

Consider a patch formed by two elements 7; and 7; having a common edge
E;j (see Fig. 2.9). If uy, is constructed by Pl-approximations, then (Vuy)|r, and
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Fig. 2.9 Patch related to E;;
and averaged flux y;;

T;
Yij
(Vuh)\r,[ T(V”Iz)|T1
Ejj
T;

(Vup) |T,~ are constant vectors. In general, their normal components on E;; are dif-
ferent. We define the (common) normal flux on E;; as follows:

(v -niple,; = (kij (Vup)|z, + (1 —Kij)(VMh)IT,-) “nij,

where «;; € (0, 1) is the weight factor associated with E;;. In the simplest case,
kij = 1/2. Another option (which takes into account the sizes of the elements) is

1T
YT+ 1Ty

For the boundary edges, we use the only one existing flux. Thus, three normal fluxes
on three sides of each element are determined. The field inside the element is ob-
tained by the standard RT?-extension of normal fluxes. As a result, we have an
averaged flux

yrr = Grr(Vup) € H(R, div).

Similar averaging procedures can be constructed in the case of 3D approximations,
e.g., by averaging normal fluxes over the faces of a tetrahedron.

2.2.2.4 Averaging of Fluxes with Partial Equilibration

Since the exact flux p must satisfy the equilibrium (balance) equation div p+ f =0,
it is sensible to post-process it in such a way that the residual of this equation is
minimal (e.g., in the integral sense). There are methods that produce equilibrated
(or almost equilibrated) fluxes (see, e.g., [AO00, Bra07, LL83]). Sometimes these
methods are rather sophisticated and use solutions of local Neumann type problems
on patches. We have no space to properly discuss them here more systematically
and, therefore, refer the reader to the above-mentioned and many other publications
cited therein.

We conclude by describing a simple relaxation type algorithm, which allows to
quasi-equilibrate ygrr.
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Consider two neighboring elements with common edge E;;. Our goal is to select
the quantity y;; = y - n;; in such a way that

f ((div y)lz, +f)2dx+f (@iv )7, + £)’ dx — min.
T.

J

We use the identity fT,- divydx = faT,- y - njdx and the fact that (divy)|7, and
(div y)|r; are constant on 7; and T, respectively. Then, the corresponding value
of y;; is explicitly defined by the relation (see [Rep08])

wIT = T TS, — U ))
M= \ES1(Ti + |T;1)

, (2.36)

where { f}r; is the mean value of f on 7.

Using the same idea, we recompute normal fluxes for all edges. At each step of
this procedure the value of || divy + f ||?2 decreases. After several cycles of mini-
mization we obtain a vector-valued field, which is equilibrated much better than the
original one.

2.2.2.5 Global Averaging

In many cases, an efficient averaging operator is obtained if local minimization prob-
lems on patches are replaced by a global problem (this method may generate es-
sential computational expenditures). Consider the following problem: Find g;, in a
certain (global) set Uy (§2), which minimizes the quantity Zi fT’_ lgn — Vuhlzdx
among all g, € Uy($2). Very often g, is a better image of Vu than the func-
tions obtained by local procedures. Moreover, mathematical justifications of the
methods based on global averaging procedures can be performed under weaker as-
sumptions, which makes them applicable to a wider class of problems (see, e.g.,
[CB02, CFOOb, HTWO02]).

2.2.2.6 Averaging by Least Squares Surface Fitting

In [Wan00], it was suggested a different recovery procedure, which is efficient for
problems with sufficiently smooth solutions. The analysis is based on the represen-
tation

u— Qeup = (u— Qcu) + Qr(u —up), (2.37)

where u is the exact solution of a linear elliptic problem, uy, is the Galerkin approx-
imation computed on a mesh Ty, and Q; is the L>-projection operator on the finite
dimensional space constructed on a mesh T, with the help of piecewise polynomial
functions of the order » > 0. The key estimate is

Qi — Qrup|| < ChS~IHomint02=sh i, (2.38)
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where « € (0, 1) is a parameter that connects . and 7 in the way t = h“. The origi-
nal problem is assumed to be H®-regular with 1 <s <k + 1, and k is the degree of
polynomials used in the Galerkin approximation. From (2.38) it follows that

lu — Qeup| < ChPH-TRE) (2.39)

provided that u € H*T1(£2) N H™1(£29) N Vp. In (2.39), the rate B depends on A,
7, r, and k, and is greater than 2, provided that u is regular enough, and the space
V; is selected appropriately (i.e., it is sufficiently rich). The constant C depends on
the norm of u. Concrete values of the convergence rate for various k, r, and « are
presented in the paper [WanOO0].

2.2.2.7 Error Indicators Based on Solutions of Local Subproblems

The splitting of the error functional ¢,, (w) into a number of functionals (defined
by solutions of local subproblems (see, e.g., [Ain98, AOO0] and further develop-
ments in [AR10]) generates another class of error indicators, which can be assigned
to the group (B). Below we present a sketch of the underlying ideas. For a con-
sequent study, we address the reader to the above-cited literature and many other
publications cited therein.

Let £2 be a union of nonoverlapping domains (elements) £2;, i =1,2,..., N.
Denote the common edge of £2; and £2; by I and Iy; := 0§2; N I" and assume that
for each §2; we know a function u; such that

N
euh(w)=2/ Vu; - Vwdx. (2.40)
=175

Consider a function u : £2 — R that coincides with u; (x) if x € £2;. Assume that
the functions u; preserve continuity on the boundaries I3; and the function i (x)
belongs to H 1(£2). Then, (2.40) reads

/V(ﬁ+uh)~dex:/ fwdx, Yw e Vo(£2). (2.41)
2 2

The relation (2.41) means that u = u; + uj, on £2;. Therefore, u; = u — uy,, and we
know the errors.

One way to determine u; is to use solutions of local subproblems with Neumann
(or Dirichlet-Neumann) type boundary conditions. For each §2; we solve the fol-
lowing problem: Find u; € H(£2;) such that u; =0 on I and

N
[ Vui-dexE/ fwdx—i—Z/ sijgwds
£2; £2; o r; .

—/ Vuy, - Vwdx, Yw e Vo(82)), (2.42)
Q,

i
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where g is a reconstruction of Vuy (in the simplest case this reconstruction can be
performed by averaging of Vuy - n;; associated with two neighboring elements).
The space Vo (£2;) is defined as follows. If Iy; # @, then Vp(£2;) is a subspace of
H(£2;), which contains the functions vanishing on [g. If I'y; = @, then the local
problem is considered with Neumann conditions and V((£2;) is the subspace of
H'(£2;) containing functions with zero mean. The weight ¢; j 1s equal to zero if
i=j.Ifi > j, thenitis equal to 1, and ¢;; = —1 in the opposite case. It is easy
to see that each internal boundary I;; generates two integrals with equal absolute
values and opposite signs. Therefore, the sum of all integrals does not contain such
terms, and we obtain

N
2/ Vui'dexzf fwdx—f Vup - Vwdx
pmrile) 2 2

=4y, (w), Ywe V($2), (2.43)

which shows that the relation (2.40) holds.

This simple procedure may contain certain technical difficulties. One of them is
that for internal domains the function g (which defines the Neumann type boundary
conditions of the local subproblems) cannot be taken arbitrarily. This follows from
the fact that the Neumann problem may be unsolvable if the external data do not
satisfy an additional condition. For the problem (2.42) this condition is as follows:

N
dx + / iigds =0. 2.44
fgifx ;n,,-;’gs (2.44)

Therefore, a special equilibration procedure that transforms g in order to satisfy
(2.44) on each element is required. After that, exact solutions u; of local problems
must be found. Except special cases, this problem cannot be solved exactly and,
therefore, instead of u; some approximations #; of local solutions are often used.
Then, ¢, (w) is replaced by a directly computable functional

N
Cyy(w) =" / Vii; - Vwdx. (2.45)
i=1 75

It generates the quantities E;(u;,) = ||Vii;| o,, which can be used to indicate local
errors, and the quantity |E(up)| = (O _; (E; (up))®)V/2, which serves as an indicator
of the global error. Accuracy of such an estimate depends on the choice of g and on
the accuracy of the computed approximations ;.

2.2.3 Error Indicators of the Runge Type

Consider again the case v = uj, where u; is the Galerkin approximation on
Von C Vo. We can try to get an error indicator by solving the variational problem
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in (2.8) numerically using a certain finite dimensional subspace Vy,
(cf. (2.7)), i.e., by applying the relation

instead of Vj

ref

V- uh)||2 > sup {—Vwl® - 26, w)}. (2.46)

we VOhref

Thus, in our classification, estimators of this group belong to the class (C). It should
be noted that this procedure makes sense only if the space oy, is essentially richer
than Vo, Gf Vou, = Von then £,,(w) =0, for any w € Vy,,, and, therefore, the
value of sup in (2.46) is zero).

Assume that

Vo C Vongs,  dim Vo, > dim Vpy,. (2.47)

The function wy, . maximizing the right-hand side of (2.46) satisfies the relation
/Q Vwp,, - Vwdx = /Q(fw —Vuy, -Vw)dx, Yw e Vo, (2.48)
which is equivalent to
/.QV(whrer +uyp) - Vwdx = /Q fwdx, Ywe Vop,. (2.49)

Hence, up,; = wh,; + up, where uy,; is the Galerkin solution on Vyy, ... We have

V@ = un)|* = = | Vng — un) | = 260, @y — un).

Since

Cun g — ) = /Q (Vith - g — wn) — Gty — ) dx

= / (Vuh V(Upe —up) — Vg - V(U — uh)) dx
2

2

= HV(I/[h - uhref)

we conclude that the quantity ||V (u, — up,.)|l estimates || Vel from below. If Vo,
is much wider than Vo, then ||V (4, — up,;)|l can be used to measure the global
error, and the corresponding contributions £; can be used for indication of element-
wise errors. It is easy to see that this type error indicator always underestimates the
error. In fact, it coincides with the indicator suggested by C. Runge at the beginning
of the 20th century. In the simplest form, it reads as follows: if the difference between
two approximate solutions computed on a coarse mesh ¥y, and on a certain refined
mesh Ty (e.8., het = h/2) has become small, then both uy, . and uy are probably
close to the exact solution u.

In other words, this rule suggests the use of global or local norms of u, — up,
as error indicators. Henceforth, we denote it by Erunge (#5). This indicator is simple
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Fig. 2.10 The subspaces Vj,,
Wy, and V., the exact
solution u and solutions uy,
and uy,,, from the respective
subspaces

Vi

and looks very natural. For these reasons, it was easily accepted by engineers, who
often consider it as a self-evident criterion. However, it is not difficult to find exam-
ples showing that this heuristic rule may be wrong. In particular, Erunge(#;) may
lead to misleading conclusions if the space V;, has been refined “improperly”, i.e.,
if new (appended) trial functions do not really improve the approximation. In that
case, uy and uy,, may be quite close to each other but not close to u. We note that
a correct form of the Runge’s rule, which indeed provides guaranteed upper bounds
of approximation errors, follows from error majorants of the functional type (see
Sect. 3.6 of [Rep08] and Sect. 3.5.1 of this book).

Below we discuss hierarchically based error indication methods, where error
indicators are constructed with the help of auxiliary problems on enriched finite
dimensional subspaces (local or global) (see, e.g., [Ago02, DLY89, DMR91, DN02]
and the references therein). Thus, in principle they invoke the same idea as does the
Runge indicator, but in a more economical way.

Assume that the spaces Vj, and V},, are constructed in such a way that

Vher = Vi @ Wi

In Fig. 2.10, we schematically depict the space V, the subspaces Vj,, W, and Vj,
and the corresponding approximate solutions uy and uj, .. It is easy to see that

ref *

2 2 2
/|V(u—uh)| dx:/ |V — up,)| dx+/ |V (up — upy)|” dx
2 2 2
+ 2/ Vu—up) - V@up, —up)dx,
2
where

/ V(U —upy) - V(up, —up)dx
2

=/ Sy —up)dx —/ Sun dx +/ Sfupdx =0.
2 2 2
Hence,

[V —un) | = |V = wn) | + |V — a0

= ||V(” — Uhyer) ”2 + || ERunge(uh)“z.
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Further analysis is based on the so-called saturation assumption

V@ —up)| <AV —up)

|, r<1, (2.50)

which formalizes a rather natural condition: uy,, is closer to u than uj. Usually,
the space W}, is constructed by locally based approximations of higher order (e.g.,
by “bubble-functions”). In this case, the asymptotic relation A ~ i is often consid-
ered as a justification of the saturation property. However, in general, proving this
inequality (with an explicit A < 1) is a difficult task.

With the help of (2.50), we obtain

(1= ) [V = un)|* = | Erunge wn) |* < [V —un) > @51)

This inequality can be used for error control, provided that A is known, but even in
that case, the computation of u;, , may be too expensive. Since V), differs from V},
only by the orthogonal complement Wy, the difference uy,; — uj, = wy, belongs to
this subspace. This fact suggests the idea to compute the correction function with the
help of a subsidiary problem defined on W), (instead of Vj, ;). However, in general,
the projection of uj, . onto Vj, does not coincide with u, and the true projection i,
is unknown. Instead, an approximation of u, , is sought in the form u;, + wy,, where
wy, is defined as an element minimizing the distance from uj, + Wy, to u, which leads
to the problem

. 1 2
inf —/ |V(u—uh—wh)’ dx.
2

wpeW), 2
It is easy to see that the latter problem is equivalent to
inf {=[IVwpll”"— | V(@ —up)-Vw,dx
wreW;, | 2 o

or

1
inf {—||th||2—/ fwhdx+/ Vuh.thdx}.
2 2 2

wpeWy

We arrive at the following problem: Find w;, € W}, such that

/ Vwy, - Vwy dx :/ fwpdx —/ Vuyp - Vwpdx, Ywy, € W (2.52)
2 2 2

The following questions rise: how large is the difference between wj, and wy,, and
when wy, can be used instead of Wy, (we recall that u;, . = uy + wy). To answer
them, we first recall that u satisfies the integral relation

ref

/Vu~dex=/ fwdx, YwelV, (2.53)
2 2
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uy and uy,_. are Galerkin solutions, i.e.,

ref

fVuh~thdx=/ fwpdx, Ywy € Vy,
2 2

/ Vuhrcf ' thrcf dx = / fwhrcf d'x’ thrcf € thref - V’
2 2

and
/ (Vupe —up) - Vwpdx =0, VYwy, € V. (2.54)
Q
Also, we assume that the spaces Vj, and W, are such that the strengthened Cauchy
inequality
172 1/2
/ Vv, - Vwp dx| < y(/ Vo, - Vo dx) (/ Vwy, - Vwy, dx> (2.55)
2 2 Q

holds, where y € (0, 1) is a constant independent of /. In this case,
|V —un)| < Coy IV (2.56)

To prove this fact, we argue as follows. By the Galerkin orthogonality (cf. (2.54)),
we have

/ V(up —up) - V@ —up)dx =0. (2.57)
Q
In view of (2.52),

/Vﬁ;pVﬂJ\hdx:/ f@hdx—/ Vuh~thdx=/ V(uhref—uh)~VﬁJ\hdx,
2 2 2 2

whence
/ V(Upy — Uh — wy) - (Vwy)dx =0. (2.58)
Q

From (2.57) and (2.58), we conclude that
0 :/ V(up — up — Wy) - Vwy, dx +/ V(upy —up) - V(@p —up)dx
Q 2
:/ V(up —un) - V(Wy, +up — up) dx —/ Vwy, - Vg dx
Q Q

2 ~ .
= |lupe — unll —/ Vwy, - Vwy dx.
Q

Thus,

|V (s —uh)Hz:/vah.v@h dx. (2.59)
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Note that
|V Gt = ) |* = |V e =) > + [ V@ = )|

+2/ V (Up —up) -V —up)dx.
2

Here %), — uj, € Vj, and uy, U, = Wy, € Wy, so that we use (2.55) and obtain

ref

IV Ghe = un) |> = IV@RI2 + |V @ = un) | = 20 IV |V G — )

ref
> (1= y?) IVl
From this relation and (2.59), we find that

1 ~ ~
||V(uhref — uh)H2 = =2 /g Vwy, - Vwy dx. (2.60)

Vi |* <
1— y2

Thus, we see that the true correction function wy, is subject to wy,:

V|l < 1 IVl (2.61)

— yz
Now, we recall that |V (u — up)[|? = IV — up )1> + |V (un — un,)||I> and use
(2.59). We have
2 2 ~ ~
VG =) | = [V s )+ [ 9 ae
2

< 22|V —up) |* + 1V B V|

< 2|V —wy)| + Vi1

1—y2
From here, we conclude that

2 1 ~ 2
[V —up)|” < m”vwh” , (2.62)

which shows that ||Ve|| >~ || Vi, || and motivates using || Vi, || as an error indicator.

2.3 Error Indicators for Goal-Oriented Quantities

Evaluation of approximation errors in terms of special “goal-oriented” quantities is
very popular in engineering computations. A consequent exposition can be found
in [BRO3] and in numerous publications devoted to goal-oriented a posteriori error
estimates and applications of them to various problems (see, e.g, [BR12, BR96,
HRS00, KM10, MS09, OP01, PP98, Ran00, RV10, SO97, SRO07]). In this method,
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estimates are derived for the quantity (¢, u —uy), where £ is a given linear functional
and uj, is a conforming approximation. In general, £ belongs to the dual energy space
Vi Typically, £ is focused on some special properties of approximate solutions. For
example, if £ is an integral type functional (e.g., £ € L?(£2)) localized in a certain
subdomain w C £2, then [(£, u — uy,)| characterizes the quality of u; in w. A way of
evaluating this quantity is based on the following idea, which we discuss with the

example of the basic elliptic problem: Find u € Vj := H! (£2) such that

/AVM-dex=/ fwdx, Ywe, (2.63)
Q Q

where A is a positive definite matrix with bounded coefficients.
Let A* be the matrix adjoint to A and u, the solution of the respective adjoint
problem

/ A*Vu, - Vwdx = (£, w), Ywe V. (2.64)
Q
From (2.63) and (2.64), it follows that
(Z,u—uh):/ A*Vug - V(u —up)dx (2.65)
Q
= / (fug — AVuy - Vug)dx =: Iy(ug, up). (2.66)
Q

Hence, (£, u — uy) is equal to the functional 7, (u¢, up) and can be easily estimated,
provided that u, is known (we note that finding u#, amounts to solving another
boundary value problem having the same complexity as (2.63)). In the majority
of cases, uy is unknown and, therefore, it is replaced by an approximation u,, com-
puted on an adjoint mesh T, (which does not necessarily coincide with 7). Then,
the non-computable quantity Iy (u¢, uy) is approximated by the computable quantity
To(uge, up).

If uy; is a sharp approximation of u, (in general, it should be sharper than uy),
then the quantity |E¢(uer, up)| := |Ie(uer, up)| serves as an indicator of the goal-
oriented error |(¢, u — up)|. However, getting a sharp approximation of u, may lead
to essential additional expenditures. In order to minimize them, one can apply dif-
ferent modifications (generalizations) of (2.65), which the reader can find in the
publications mentioned at the beginning of Sect. 2.3.

2.3.1 Error Indicators Relying on the Superconvergence of
Averaged Fluxes in the Primal and Adjoint Problems

Henceforth, for the sake of simplicity we assume that A is a symmetric matrix. We
rewrite Iy in the form

ToQup, uer) = Lor (up, wer) + Loo(up, ez u, ug), (2.67)
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where
Toy (g, ter) 1=/ (fuer — AVuy, - Vuyr) dx
7)

is a directly computable functional and
Lo (up, wers u, ug) i= / A(Vu —Vup) - (Vug — Vuyr) dx
Q

involves unknown u and uy, i.e., the exact solutions of (2.63) and (2.64), respec-
tively. Note that if u;, is a Galerkin approximation and 7; coincides with 7, then
Toy(up, wgr) =0.

Estimate (2.67) is a source of various indicators. One of them is based on the idea
of replacing unknown fluxes

p:=AVu and p;:=Vuy

by G pn and G p¢r, where pj, := AVuy, per = AVuy,, and Gy, and G, are some
suitable averaging operators associated with the primal and adjoint meshes, respec-
tively. In [KNRO3, NRO4], it is proved that under the standard assumptions (which
guarantee superconvergence of averaged fluxes computed for the primal and adjoint
problems) such a replacement generates errors of a higher order (with respect to &
and 7). In view of this fact, the quantity

Eo(up,uer) :=Tor(up, uer) + Ee2(up, uge), (2.68)
where
Eoo(up, ugr) 2=/ A NGupn — pr) - (G per — per) dx
7,

is used instead of Iy (uj, uer). However, such an indicator is justified only if both
problems (primal and adjoint) are sufficiently regular, so that u; and u; possess
superconvergent fluxes. This fact imposes rather obligatory conditions on 77, which
may be difficult to satisfy. Typically, the mesh 7}, generated by commonly used
solvers is sufficiently regular (so that one can await the superconvergence of pj, at
least in the major part of §2). For the adjoint mesh 77, such a regularity is difficult to
guarantee. Indeed, this mesh should satisfy two conditions, which in fact contradict
each other. On the one hand, dim V; should not significantly exceed dim V}, (other-
wise the adjoint problem is computationally much more expensive than the primal
one). On the other hand, 7; should be “sufficiently dense” in the vicinity of w. This
observation motivates attempts at finding other error indicators which are not based
on the superconvergence of adjoint fluxes.
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2.3.2 Error Indicators Using the Superconvergence of
Approximations in the Primal Problem

An error indicator that does not attract the superconvergence of averaged gradients
in the adjoint problem was suggested in [NRTO8]. The idea behind is to represent
the term Iy (up, uer; u, ug) in a new form, namely:

Too(up, ugr; u, ug)

= f (Vi = Vup) - (pe = pee) dx
TieT:

= Z </ (un —u)R(per) dx +/ (u —un)(pe = per) - vi dS)
T; oT;

TieT:
= Ipo1(up, pes u) + Iepo(up, pec; u, pe),

where v; is a unit outward normal to d7; and
R(per) :=div per + L.

Since u, up, and py are continuous on interelement boundaries, we find that

Lea(up, pecsu, pe) = Z/ (u —up)(pe — per) - vids
T;€T:

/ (un —w)[pex - vijlE; ds.
Ejje&;
Here, &; is the set of edges in the adjoint mesh, v;; is the unit normal to the edge
E;; (common for 7; and T;), which is external to 7; if i < j. Since u;, and u sat-
isfy the same Dirichlet boundary conditions, £; contains only internal edges. In this
functional, the exact solution of the adjoint problem is completely excluded. There-
fore, the justification of the estimator is not connected with superconvergence in the
adjoint problem, and we may hope that it is insensitive with respect to adjoint mesh
structure. To obtain a computable error indicator, in [NRTO8] the superconvergent
post-processing of the function u;, (by the operator Q;; see (2.37)—(2.39)) and a
regularization of the adjoint flux pe; (which eliminates the jumps [per - vij] E,.].)
were used. Below, the corresponding regularization operator is denoted by G, and
the Wang projection operator by W. In particular, such an operator can be con-
structed with the help of Hsieh—Clough—Tocher finite element approximations (see,
e.g., [BH81, Cia78b]). Then, 175> =0 and I3 is replaced by

Epoy(up, uges u) = /Q(“h —W(un)R(G(per)) dx
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and we arrive at the indicator

(€1t = up) ~ Eolun) = Iot (s o) + /Q (un — W) R(G (peo)) dr. (2.69)

Another representation of 1;, leads to a somewhat different error indicator. Let g
be a vector-valued function in H (§2, div). Then,

Lo (up, ugr; u,ug)

1=/9(Vu—Vuh)(pe—per)dx
=/ (Vu—Vuh)(q—pzf)der/ (u —up)(divg +£)dx
2 2

=/QA—1<p—ph>-(q—pef)dx+/9<u—uh)<divq +odr.  (270)

In this relation, u, is excluded from the right-hand side without a regularization
of gy . This relation implies an error indicator if one reconstructs p and u with the
help of the recovery operators G, and W, respectively.

We have

(C,u—up) ~ Ee(up, per)

= Iy (up, uer)

+ /Q AN Gn(pn) = pn) - (q — per) dx

+/ (un — Wup)) (divg + £) dx, 2.71)
2

where ¢ is an arbitrary vector valued function. If ¢ is equilibrated (or almost equili-
brated), then the last term can be ignored and we obtain a simpler indicator

Eo(un, pee) = Ion (up ee) + /Q AN Gapn) — p) - (@ — pro)dx.  (272)

It is clear that properties of E,(uj, p¢r) depend on superconvergence properties of
averaged fluxes in the primal problem and on the difference between ¢ and py.
Numerical examples and asymptotic exactness of the above-introduced indicators
are discussed in [NRTOS8]. One of the examples is presented below.

Example 2.4 We consider the following elliptic type problem:
Au+1=0 1in £, u=0 onas2, (2.73)

and define

€, u —up) :/ Lo —up)dx, 2.74)
2



40 2 Indicators of Errors for Approximate Solutions of Differential Equations

Fig. 2.11 The meshes 77 (315 nodes) (left), T2 (193 nodes) (middle), and T3 (451 nodes) (right)
used in the test; the region of interest w is shadowed

where

1, ifxewC$,
¢ = 2.75
o) 0, otherwise. ( )
Both primal and adjoint problems are solved with the help of piecewise linear finite
element approximations. As usual, the efficiency index is defined by the relation

Eo(up)

loff i = ————.
T —up)

The primal problem is solved on the mesh 77 (see Fig. 2.11). It is known that the
corresponding exact solution u has singularity in the re-entrant corner. The adjoint
problem was solved on 77, on a rather coarse regular mesh 7, and on the mesh
T3 adapted to the configuration of the domain w (shadowed). Numerical results
are summarized in Table 2.2, where we compare the indicators (2.68), (2.69), and
(2.71). We see that error indicators based on (2.69) and (2.71) demonstrate bet-
ter performance than (2.68). Other tests in [NRTOS8] for problems with regular and
rather irregular solutions confirm advantages of (2.69) and especially of (2.71).

2.3.3 Error Indicators Based on Partial Equilibration of Fluxes in
the Original Problem

First, we prove one principal result, which yields another (in a sense more conve-
nient) form of the functional Iy (up, uer; u, ug).

Proposition 2.1 The term I (up, ugr; u, ug) is equal to the quantity

/QA_I(PQ_/ (pn) = pn) - (e — AVuge) dx := Lea (i, wer, 00, (2.76)

where 1y is an arbitrary function in the set
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Table 2.2 Efficiency of the : -
estimators in Example 2.4 Indicator  Nuoa  Tr  Inn E E Leff

(2.68) 315 71 0.00000 0.00264 0.00264 1.58
193 7> 0.00119 0.00138 0.00257 1.54
451 73 0.00184 0.00040 0.00223 1.34

Indicator ~ Npoy T In1 Ep E ieff

(2.69) 315 71 0.00163 0.00051 0.00213 1.28
193 7> 0.00189 0.00064 0.00253 1.51
451 73 0.00181 0.00013 0.00193 1.16

Indicator  Npou T Io1 E» F Leff

(2.71) 315 71 0.00108 0.00055 0.00163 0.98
193 7> 0.00126 0.00053 0.00179 1.07
451 73 0.00178 0.00000 0.00178 1.06

Qe(£2) :={q € H(2,div) | divg + £ =0},

and the operator Pg . : Q — Q is defined by the relation

lg —=Po, @] 4ot <llg —qslla-1, VareQy. (2.77)
Proof Let ng be a solenoidal vector-valued function. Then,

Tp(up, wers u, ug) = /Q(Vu = Vup) - (AVug+no — AVuyr) dx.
Since AVu, € Qy, we conclude that
Lo (up, wees u, ug) = /Q A (p = pn) - (e — AVugr) dx,

where 7, is an arbitrary element of Q. From (2.77) with g = pj,, it follows that

fg A7 (ph —Pg,(pn)) -modx =0, Vng € Q. (2.78)

Since p and Po, (pn) belong to O r(82), we conclude that (p — Po, (pn)) € Qo.
In view of (2.78), we obtain

0= ./9 Ail(Ph - PQf(Ph)) (p—Po,(pn))dx

=/QA_1(ph —p+p—Po,(pn)-(p—Po,(pn)dx
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2
= f (Vup —Vu) - (p—Po,(pn)) dx + | p = Po, (pn) || -1
Q
2
=lp=Po, (P [41:
and the relation (2.76) follows. O
We note that the term I,2(pp, uer, n¢) does not contain the exact solution of
the adjoint problem. The only difficulty in computing Ip>(pp, t¢r, ne) consists of
the projection to Q r. A computable error indicator arises if the exact projection
Po,(pn) is replaced by an approximate Dn (which can be constructed with the help

of a certain quasi-equilibration procedure). Then, we replace Iy (pp, U¢r, n¢) by the
term

Eox(ph, Phy ez, o) 22/ A™YPh = pn) - (ne — AVugr) dx (2.79)
Q
and find that

(Z, u— Mh) = Iﬂl(u/’lv uf‘[) + EZZ(Ph’ Z;hv Upr, 7715) + R(p]‘n 5}11 Ugr, 77[,)1 (280)

where the first two terms are explicitly computable and the remainder term is defined
by the relation

R(pn, P> ter, ne) = /;? AN (Po, (pn) — Pn) - (ne — AVugr) dx.
An upper bound of this term can be explicitly evaluated.
Proposition 2.2 The remainder term is subject to the estimate
|R(ph, Phs ez, 0|

~ Cro .. ~
< (”Ph —pilla-1 + T” div pj + fll)llne — AVugr |l g1 = ppr. (2.81)

Proof We have

|R(ph P tee n0)| < [P, (p) = P || -1 llme — AVuer || 1.
It is easy to see that
IPo, (1) —Po,(p)|| =1 < 1Ph — Pillg-1-

This fact follows from the relation

/;A_I(Ph —Ph —Po,(pn) +Po,(Ph)) - nodx =0, Vo € Qo,



2.3 Error Indicators for Goal-Oriented Quantities 43

Fig. 2.12 Actual domains §2
and sample domains £2,

if we set 7o = Pg, (Pn) — Po,(pn) € Qo. Hence,

IPo,(pr) — Pi| =1 < lpn — Prlla=1 + [Po, (Pr) — P 4-1-

Since
1Po, i) — Pl , = inf 5% —ayllas < 22 div pi + £1.
’ qreQy Cl
we arrive at (2.81). O

Remark 2.5 From (2.80) and (2.81), it follows that

Tot(up, wer) + Ee2(phsy Phs tber, Ne) — Mie
<€, u—up) <Ip(un,uegc) + Ee2(ph, Ph, e, Ne) + Mz,

which yields guaranteed error bounds. Certainly these bounds are sensible only if
the quantity gy, is small compared to the first two terms. Since wj; is directly
computable, this requirement can be verified in practical computations.

Finally, we discuss a particular form of the above-introduced error indicator
based on solutions of specially constructed sample problems. In (2.80), the function
u¢r can be replaced by any conforming approximation v, of u (in the derivation of
this relation the Galerkin orthogonality of uy; was not used). Therefore,

€ u—up) = I (un, ve) + Ee2(pi, Phy ve, ne) + R(ph, Pryve, me). (2.82)

A way of constructing vy and 7y is to use the exact solution of an adjoint problem for
a close domain 2, having a simple geometric form. In Fig. 2.12 (left), this domain
is presented by a dashed rectangular and o is the domain (zone) of interest, in which
£ is nonzero. In Fig. 2.12 (right), this domain is a circle. In the simplest form, the
idea of the method is as follows (see [NR09] for more details). Consider the problem
(2.63) with the boundary condition #g = 0. Let £2 C £2,. Assume that we know the
functions p, € H($2,,div) and u, € Vy(£2,) such that

/ Pe - Vwdx =/ fwdx, VYwe Vy(82,), (2.83)
Qe Q(
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and
/ﬂ (pe — AVu,) -ndx =0, Vne Q(£2.). (2.84)

It is easy to see that u, and p, represent the solution of the adjoint problem in £2,
and the respective flux. If £2, has a simple form (e.g., it is a rectangular, a cube
or a sphere) then these functions can be found either analytically or numerically
with a high accuracy (since 2, has a simple form, sharp approximations can be
constructed with the help of, e.g., spectral methods or other methods adapted to
such type domains).

Let ¢ be a continuous function such that

$=0 onl, 0<¢(x)<1 in,
d(x)=1 in 2, V¢ € L¥(2,RY).

Set n¢ = p. and vy = ¢u,. Since pu, € Vo(§2), we can use it in the indicator. Then,
AVvy =¢pAVu, +u.,AVe, n¢ = AVu, and the remainder term has the following
form:

R(ph> Phs Ve, Me) i= /9\9 AN (Po, (pn) = D) - (1 — $)pe — ue AV) dx.
1

If the flux py, is almost equilibrated in the boundary strip §2 \ £21, then the remainder
term is very small so that the two first computable terms in (2.82) dominate and
represent the major part of (¢, u — uy,). Therefore, the quality of the error indicator

(€ u—up) =~ E¢(up, pp,ve, ¢, 2¢) = Ip1 (up, ve) + Ee2(ph, Phs ve, 1e)

depends mainly on the equilibration properties of pj, in the boundary strip.



Chapter 3
Guaranteed Error Bounds I

Abstract In this chapter, we discuss foundations of new error control methods de-
veloped during the last 10-12 years. First, we consider the simplest boundary value
problems generated by ordinary differential equations and show that proper trans-
formations of the corresponding integral identity yield a guaranteed bound of the
difference between the exact solution and any conforming approximation. Subse-
quently, this method is extended to partial differential equations of the elliptic type.

Our goal is not only to explain how fully reliable error bounds are derived but
also discuss their main properties, which are as follows:

e the estimates are guaranteed,
e they do not contain mesh-dependent constants, and
o the estimates are valid for any conforming approximation of a problem.

The theory provides a way of creating new error estimation algorithms. First, we
present them with the paradigm of the stationary diffusion problem. In subsequent
sections, the error control techniques and step-by-step algorithms are discussed for
several main classes of linear elliptic problems.

3.1 Ordinary Differential Equations

We begin with the boundary value problem

—(a@)u' @) +bux) = f(x) x€R2:= (6, (3.1
(&) = u, (3.2)
u(§2) = ua, (3.3)

generated by the Sturm—Liouville operator with bounded coefficients a and b satis-
fying the conditions

a(x)>ag >0, b(x)>0, and feL*(£).

Problem (3.1)—(3.3) is one of the most simple boundary value problems, which can
be solved by different numerical methods. Let

ve H'(2), vED=ui. vE)=u
O. Mali et al., Accuracy Verification Methods, 45
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be a function computed by some method. Our goal is to obtain a guaranteed (fully
reliable) estimate of # — v in terms of the energy norm

3
llu — o] := /g 2(a(u’ — t/)2 +b(u — v)2) dx.
1

A function u € H'(£2) satisfying the boundary conditions is a generalized solution
of (3.1)—(3.3) if it meets the relation

& &
/ (au'w’ + buw) dx = fwdx (3.4)
&1 &

for any trial function w € Vjy, where V{y contains the functions from H 1(£2) vanish-
ing at &£ and &, (see Sect. B.1).

3.1.1 Derivation of Guaranteed Error Bounds

In order to deduce a computable upper bound of u — v, we rewrite (3.4) in the
equivalent form

& &
/ 2(a(u —v)'w +bu —v)w)dx = / 2(fw —av'w’ — bvw)dx. (3.5)
&1 &1

Let y(x) be an arbitrary function in H'(£2). Since
&

&
A (yw) dx = (yw)

= 0, Yw € V(), (36)

&1
we rewrite the right-hand side of (3.5) as follows:

& &

/ (fw—av'w' —bvw)dx =/ ((f + Y —bv)w — (av' — y)w')dx.

&1 &1

Now, we set w = u — v and obtain
2 b2 i 1 /
Il — vl =f ((F +3 = bv) @ —v) — (@' —y)—v))dr. (37
&1

If b is strictly positive, then

& & ) 172 1 rty 172
/ (f+y’—bv)(u—u)dx5</ E\f+y’—bv| dx) (/ blu—vlzdx> .
£ £ 3

1 1
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Analogously,

& | 5 12 / r&r 5 172
/ (az/—y)(u—v)’dxf(/ —|av' —y| dx> (f alu’ — /| dx> )
&1 g a &
By means of the algebraic inequality A181 + X282 <, /A% + A%‘ /8% + 82, we find

that

&
llu — v|I* = / (f+y —bv)w—v)—a(v' —y)u—v))dx (3.8)

&1

£/ / ;1 o 1/2
< E|f+y—bv|~|—;|y—av| dx ) Jlu—vll. (3.9)

&

Thus, we arrive at the estimate

8271 2 1 2 —
|||u—v|||2§/; (Z|f+y/—bv| —|—;|y—av/| )dx:i Mi(v,y), (3.10)
1

the right-hand side of which is a nonnegative functional depending on v and prob-
lem data. It presents a guaranteed upper bound of the error and does not involve u.
Henceforth, such type functionals are called a posteriori estimates of functional
type, or error majorants.

The method used in the process of deriving (3.10) is based on the idea to split
the residual functional by means of the integration by parts formula, which involves
a “free function” y. Originally, this method was introduced in [RepO1b]. In subse-
quent sections, we show that it can be extended to a wide spectrum of boundary
value problems.

Since y is an arbitrary function in H'!(£2), we find that

llu —vll < inf Mi(v,y). @3.11)
cHY(2)

y
It is easy to show that (3.11) holds as equality. Indeed, if we set y = au’, then
2

f+y —bv|’= %}b(u —v) é|y|2+a‘v/‘2—2yv’=a(u’— v)?

y
b

and

_ & 5 » 1/2
Ml(v,y)=</s (blu —v|* +a(u’ =) )dx) = |lle —v||I.
1
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Another estimate follows from (3.7) if we apply the simplest Friedrichs inequal-
ity

& & )
/ |w|2dx§Cpf alw’|”dx, (3.12)
& &
where w is a function in H'((&], &)) such that w(&;) = w(&) =0 and
) &1
Cr <Cp:=———esssupal(x).
T xes
Then,

& _
/g (F +y = bv)(u—v) < Cr|| £ + ' — bo|llu — .

and we find that

£ . A\ _
|||u—v|||§<f§ E|y—av’| dx> +Cr| f+y —bv| =M, y).
1

Moreover,

llu —vll < inf Ma(v,y). (3.13)
yeH!(2)

It is easy to see that M (v, y) and My (v, y) vanishes if and only if the functions
y and v are such that

y=av (3.14)
and
y —bv+ f=0. (3.15)

Since v satisfies the boundary conditions, these two relations imply that v coincides
with u and y with au’.

The majorants M (v, y) and My (v, y) provide the guaranteed upper bounds of
the overall error ||u — v|||. They are nonnegative functionals, which depend
on the problem data (a, f, £2), approximate solution v, and a function y,
which can be considered as an approximation of au’. We emphasize that y is
completely at our disposal, and the majorants provide the guaranteed upper
bound with any y.
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In practical computations, we can use both majorants and select the best estimate.
However, since M»(v, y) does not contain ™', it is more convenient to use it if b
attains small (or zero) values. A method to derlve more efficient (advanced) forms
of the majorants is discussed in the next section with the paradigm of a boundary
value problem generated by a partial differential equation.

3.1.2 Computation of Error Bounds

Assume that approximate solution is a piecewise affine continuous function de-
fined by nodal values on a regular mesh with N intervals and h = 52_ L. Such
type approximation can be viewed as the simplest finite element approxnnatlon (cf.
Sect. B.4.3). We denote it by vy, and the corresponding finite dimensional space by
Vi From the computational point of view, it is convenient to slightly modify the
estimate. We square My (v, v), use (A.4), and obtain

&
|||u—vh|||2§/E < |y avp| +CF<1+ )|f+y —b(x)vy| >dx, (3.16)
1

where B is an arbitrary positive number and y is an arbitrary differentiable function.
We denote the right-hand side of (3.16) by Mﬁ(vh, v, B) and two parts of it by

& 1 12
—D 2
M, (vp, y) = (/ —|y—av;,| dx)

g 4

—Eq & 9 1/2
M, (v, y) = (/E ’f—i—y’—bvh| dx) .
1

Clearly, they are related to violations of (3.14) and (3.15), respectively. We note that
(3.14) is the simplest form of the duality relation (cf. (A.44)) and (3.15) is a simple
equilibrium (balance) equation.

The right-hand side of (3.16) contains only known functions, namely, vy, a, and
b are given and y and § are in our disposal (they are changeable). We outline that
no special conditions are imposed on vy, so that the estimate can be applied to any
function vy, regardless of the way used to construct it. However, getting a good upper
bound needs a rational selection of the “free” function y and “f