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Preface

The primary emphasis of this book is the transition from an algorithm to a
program. Given a problem to solve, the typical first step is the design of an
algorithm; this algorithm is then translated into software. We will look care-
fully at the interface between the design and analysis of algorithms on the
one hand and the resulting program solving the problem on the other. This
approach is motivated by the fact that algorithms for standard problems are
readily available in textbooks and literature and are frequently used as
building blocks for more complex designs. Thus, the correctness of the algo-
rithm is much less a concern than its adaptation to a working program.
Many textbooks, several excellent, are dedicated to algorithms, their
design, their analysis, the techniques involved in creating them, and how to
determine their time and space complexities. They provide the building
blocks of the overall design. These books are usually considered part of the
theoretical side of computing. There are also numerous books dedicated to
designing software, from those concentrating on programming in the small
(designing and debugging individual programs) to programming in the
large (looking at large systems in their totality). These books are usually
viewed as belonging to software engineering. However, there are no books
that look systematically at the gap separating the theory of algorithms and
software engineering, even though many things can go wrong in taking
several algorithms and producing a software product derived from them.
This book is intended to fill this gap. It is not intended to teach algorithms
from scratch; indeed, I assume the reader has already been exposed to the
ordinary machinery of algorithm design, including the standard algorithms
for sorting and searching and techniques for analyzing the correctness and
complexity of algorithms (although the most important ones will be
reviewed). Nor is this book meant to teach software design; I assume that
the reader has already gained experience in designing reasonably complex
software systems. Ideally, the readers’ interest in this book’s topic was
prompted by the uncomfortable realization that the path from algorithm to
software was much more arduous than anticipated, and, indeed, results
obtained on the theory side of the development process, be they results
derived by readers or acquired from textbooks, did not translate satisfac-
torily to corresponding results, that is, performance, for the developed
software. Even if the reader has never encountered a situation where the
performance predicted by the complexity analysis of a specific algorithm
did not correspond to the performance observed by running the resulting
software, I argue that such occurrences are increasingly more likely, given
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the overall development of our emerging hardware platforms and software
environments.

In many cases, the problems I will address are rooted in the different way
memory is viewed. For the designer of an algorithm, memory is inexhaust-
ible, has uniform access properties, and generally behaves nicely (I will be
more specific later about the meaning of niceness). Programmers, however,
have to deal with memory hierarchies, limits on the availability of each class
of memory, and the distinct nonuniformity of access characteristics, all of
which imply a definite absence of niceness. Additionally, algorithm designers
assume to have complete control over their memory, while software design-
ers must deal with several agents that are placed between them and the
actual memory — to mention the most important ones, compilers and oper-
ating systems, each of which has its own idiosyncrasies. All of these conspire
against the software designer who has the naive and often seriously disap-
pointed expectation that properties of algorithms easily translate into prop-
erties of programs.

The book is intended for software developers with some exposure to the
design and analysis of algorithms and data structures. The emphasis is
clearly on practical issues, but the book is naturally dependent on some
knowledge of standard algorithms — hence the notion that it is a companion
book. It can be used either in conjunction with a standard algorithm text, in
which case it would most likely be within the context of a course setting, or
it can be used for independent study, presumably by practitioners of the
software development process who have suffered disappointments in apply-
ing the theory of algorithms to the production of efficient software.
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Foreword

The foremost goal for (most) computer scientists is the creation of efficient and
effective programs. This premise dictates a disciplined approach to software
development. Typically, the process involves the use of one or more suitable
algorithms; these may be standard algorithms taken from textbooks or litera-
ture, or they may be custom algorithms that are developed during the process.
A well-developed body of theory is related to the question of what constitutes
a good algorithm. Apart from the obvious requirement that it must be correct,
the most important quality of an algorithm is its efficiency. Computational
complexity provides the tools for determining the efficiency of an algorithm;
in many cases, it is relatively easy to capture the efficiency of an algorithm in
this way. However, for the software developer the ultimate goal is efficient
software, not efficient algorithms. Here is where things get a bit tricky — it is
often not well understood how to go from a good algorithm to good software.
It is this transition that we will focus on.

This book consists of two complementary parts. In the first part we
describe the idealized universe that algorithm designers inhabit; in the
second part we outline how this ideal can be adapted to the real world in
which programmers must dwell. While the algorithm designer’s world is
idealized, it nevertheless is not without its own distinct problems, some
having significance for programmers and others having little practical rel-
evance. We describe them so that it becomes clear which are important in
practice and which are not. For the most part, the way in which the algo-
rithm designer’s world is idealized becomes clear only once it is contrasted
with the programmer’s.

In Chapter 1 we sketch a taxonomy of algorithmic complexity. While
complexity is generally used as a measure of the performance of a program,
it is important to understand that there are several different aspects of com-
plexity, all of which are related to performance but reflect it from very
different points of view. In Chapter 2 we describe precisely in what way the
algorithm designer’s universe is idealized; specifically, we explore the
assumptions that fundamentally underlie the various concepts of algorith-
mic complexity. This is crucially important since it will allow us to under-
stand how disappointments may arise when we translate an algorithm into
a program.

This is the concern of the second part of this book. In Chapter 4 we explore
a variety of ways in which things can go wrong. While there are many causes
of software behaving in unexpected ways, we are concerned only with those
where a significant conceptual gap may occur between what the algorithm
analysis indicates and what the eventual observations of the resulting
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program demonstrate. Specifically, in this chapter we look at ways in which
slight variations in the (implied) semantics of algorithms and software may
cause the software to be incorrect, perform much worse than predicted by
algorithmic analysis, or perform unpredictably. We also touch upon occa-
sions where a small change in the goal, a seemingly innocuous generaliza-
tion, results in (quite literally) impossible software. In order for this
discussion to develop in some useful context, Part 1 ends (in Chapter 3) with
a discussion of analysis techniques and sample algorithms together with
their worked-out analyses. In Chapter 5 we discuss extensively the rather
significant implications of the memory hierarchies that typically are encoun-
tered in modern programming environments, whether they are under the
direct control of the programmer (e.g., out-of-core programming) or not (e.g.,
virtual memory management). Chapter 6 focuses on issues that typically are
never under the direct control of the programmer; these are related to actions
performed by the compiling system and the operating system, ostensibly in
support of the programmer’s intentions. That this help comes at a sometimes
steep price (in the efficiency of the resulting programs) must be clearly
understood. Many of the disappointments are rooted in memory issues;
others arise because of compiler- or language-related issues.

The next three chapters of Part 2 are devoted to somewhat less central
issues, which may or may not be of concern in specific situations. Chapter
7 examines implicit assumptions made by algorithm designers and their
implications for software; in particular, the case is made that exceptions must
be addressed in programs and that explicit tests for assumptions must be
incorporated in the code. Chapter 8 considers the implications of the way
numbers are represented in modern computers; while this is mainly of inter-
est when dealing with numerical algorithms (where one typically devotes a
good deal of attention to error analysis and related topics), occasionally
questions related to the validity of mathematical identities and similar topics
arise in distinctly nonnumerical areas. Chapter 9 addresses the issue of
constant factors that are generally hidden in the asymptotic complexity
derivation of algorithms but that matter for practical software performance.
Here, we pay particular attention to the notion of crossover points. Finally,
in Chapter 10 we look at the meaning of undecidability for software devel-
opment; specifically, we pose the question of what to do when the algorithm
text tells us that the question we would like to solve is undecidable. Also
examined in this chapter are problems arising from excessively high com-
putational complexities of solution methods.

Four appendices round out the material. Appendix I briefly outlines which
basic algorithms should be familiar to all programmers. Appendix Il presents
a short overview of some systems that are implicated in the disappointments
addressed in Part 2. In particular, these are the memory hierarchy, virtual
memory management, optimizing compilers, and garbage collection. Since
each of them can have dramatic effects on the performance of software, it is
sensible for the programmer to have at least a rudimentary appreciation of
them. Appendix III gives a quick review of NP-completeness, a concept that
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for many programmers appears rather nebulous. This appendix also looks
at higher-complexity classes and indicates what their practical significance
is. Finally, Appendix IV sketches undecidability, both the halting problem
for Turing machines and the Post’s Correspondence Problem. Since unde-
cidability has rather undesirable consequences for software development,
programmers may want to have a short synopsis of the two fundamental
problems in undecidability.

Throughout, we attempt to be precise when talking about algorithms;
however, our emphasis is clearly on the practical aspects of taking an algo-
rithm, together with its complexity analysis, and translating it into software
that is expected to perform as close as possible to the performance predicted
by the algorithm’s complexity. Thus, for us the ultimate goal of designing
algorithms is the production of efficient software; if, for whatever reason,
the resulting software is not efficient (or, even worse, not correct), the initial
design of the algorithm, no matter how elegant or brilliant, was decidedly
an exercise in futility.

A Note on the Footnotes

The footnotes are designed to permit reading this book at two levels. The
straight text is intended to dispense with some of the technicalities that are
not directly relevant to the narrative and are therefore relegated to the foot-
notes. Thus, we may occasionally trade precision for ease of understanding
in the text; readers interested in the details or in complete precision are
encouraged to consult the footnotes, which are used to qualify some of the
statements, provide proofs or justifications for our assertions, or expand on
some of the more esoteric aspects of the discussion.

Bibliographical Notes

The two (occasionally antagonistic) sides depicted in this book are analysis
of algorithms and software engineering. While numerous other fields of
computer science and software production turn out to be relevant to our
discussion and will be mentioned when they arise, we want to make at least
some reference to representative works of these two sides. On the algorithm
front, Knuth’s The Art of Computer Programming is the classical work on
algorithm design and analysis; in spite of the title’s emphasis on program-
ming, most practical aspects of modern computing environments, and espe-
cially the interplay of their different components, hardly figure in the
coverage. Another influential work is Aho, Hopcroft, and Ullman’s The
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Design and Analysis of Computer Algorithms. More references are given at the
end of Chapter 1.

While books on algorithms have hewn to a fairly uniform worldview over
the decades, the software side is considerably more peripatetic; it has tradi-
tionally been significantly more trendy, prone to fads and fashions, perhaps
reflecting the absence of a universally accepted body of theory that forms
the backbone of the discipline (something clearly present for algorithms).
The list below reflects some of this.

Early influential works on software development are Dijkstra, Dahl, et al.:
Structured Programming; Aron: The Program Development Process; and Brooks:
The Mythical Man Month. A historical perspective of some aspects of software
engineering is provided by Brooks: No Silver Bullet: Essence and Accidents of
Software Engineering and by Larman and Basili: Iterative and Incremental Devel-
opment: A Brief History. The persistence of failure in developing software is
discussed in Jones: Software Project Management Practices: Failure Versus Suc-
cess; this is clearly a concern that has no counterpart in algorithm design.
Software testing is covered in Bezier: Software Testing Techniques; Kit: Software
Testing in the Real World: Improving the Process; and Beck: Test Driven Devel-
opment: By Example. Various techniques for and approaches to producing
code are discussed in numerous works; we give, essentially in chronological
order, the following list, which provides a bit of the flavors that have ani-
mated the field over the years: Liskov and Guttag: Abstraction and Specification
in Program Development; Booch: Object-Oriented Analysis and Design with Appli-
cations; Arthur: Software Evolution, Rumbaugh, Blaha, et al.: Object-Oriented
Modeling and Design; Neilsen, Usability Engineering; Gamma, Helm, et al.:
Design Patterns: Elements of Reusable Object-Oriented Software; Yourdon: When
Good-Enough Software Is Best; Hunt and Thomas: The Pragmatic Programmer:
From Journeyman to Master; Jacobson, Booch, and Rumbaugh: The Unified
Software Development Process; Krutchen: The Rational Unified Process: An Intro-
duction; Beck and Fowler: Planning Extreme Programming; and Larman: Agile
and Iterative Development: A Manager’s Guide.

Quite a number of years ago, Jon Bentley wrote a series of interesting
columns on a variety of topics, all related to practical aspects of programming
and the difficulties programmers encounter; these were collected in two
volumes that appeared under the titles Programming Pearls and More Pro-
gramming Pearls: Confessions of a Coder. These two collections are probably
closest, in goals and objectives as well as in emphasis, to this book.



Part 1

The Algorithm Side:
Regularity, Predictability,
and Asymptotics

This part presents the view of the designer of algorithms. It first outlines the
various categories of complexity. Then it describes in considerable detail the
assumptions that are fundamental in the process of determining the algo-
rithmic complexity of algorithms. The goal is to establish the conceptual as
well as the mathematical framework required for the discussion of the prac-
tical aspects involved in taking an algorithm, presumably a good or perhaps
even the best (defined in some fashion), and translating it into a good piece
of software.!

The general approach in Chapter 1 will be to assume that an algorithm is
given. In order to obtain a measure of its goodness, we want to determine
its complexity. However, before we can do this, it is necessary to define what
we mean by goodness since in different situations, different measures of
quality might be applicable. Thus, we first discuss a taxonomy of complexity
analysis. We concentrate mainly on the standard categories, namely time
and space, as well as average-case and worst-case computational complex-
ities. Also in this group of standard classifications falls the distinction

! It is revealing that optimal algorithms are often a (very legitimate) goal of algorithm design,
but nobody would ever refer to optimal software.
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2 A Programmer’s Companion to Algorithm Analysis

between word and bit complexity, as does the differentiation between on-
line and off-line algorithms. Less standard perhaps is the review of parallel
complexity measures; here our focus is on the EREW model. (While other
models have been studied, they are irrelevant from a practical point of view.)
Also, in preparation of what is more extensively covered in Part 2, we
introduce the notion of I/O complexity. Finally, we return to the fundamental
question of the complexity analysis of algorithms, namely what is a good
algorithm, and establish the importance of lower bounds in any effort
directed at answering this question.

In Chapter 2 we examine the methodological background that enables the
process of determining the computational complexity of an algorithm. In
particular, we review the fundamental notion of statement counts and dis-
cuss in some detail the implications of the assumption that statement counts
reflect execution time. This involves a detailed examination of the memory
model assumed in algorithmic analysis. We also belabor a seemingly obvious
point, namely that mathematical identities hold at this level. (Why we do
this will become clear in Part 2, where we establish why they do not neces-
sarily hold in programs.) We also discuss the asymptotic nature of complex-
ity analysis, which is essentially a consequence of the assumptions
underlying the statement count paradigm.

Chapter 3 is dedicated to amplifying these points by working out the
complexity analysis of several standard algorithms. We first describe several
general techniques for determining the time complexity of algorithms; then
we show how these are applied to the algorithms covered in this chapter.
We concentrate on the essential aspects of each algorithm and indicate how
they affect the complexity analysis.

Most of the points we make in these three chapters (and all of the ones
we make in Chapter 2) will be extensively revisited in Part 2 because many
of the assumptions that underlie the process of complexity analysis of algo-
rithms are violated in some fashion by the programming and execution
environment that is utilized when designing and running software. As such,
it is the discrepancies between the model assumed in algorithm design, and
in particular in the analysis of algorithms, and the model used for software
development that are the root of the disappointments to be discussed in Part
2, which frequently sneak up on programmers. This is why we spend con-
siderable time and effort explaining these aspects of algorithmic complexity.
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A Taxonomy of Algorithmic Complexity

About This Chapter

This chapter presents various widely used measures of the performance of
algorithms. Specifically, we review time and space complexity; average,
worst, and best complexity; amortized analysis; bit versus word complexity;
various incarnations of parallel complexity; and the implications for the
complexity of whether the given algorithm is on-line or off-line. We also
introduce the input/output (I/O) complexity of an algorithm, even though
this is a topic of much more interest in Part 2. We conclude the chapter with
an examination of the significance of lower bounds for good algorithms.

1.1 Introduction

Suppose someone presents us with an algorithm and asks whether it is good.
How are we to answer this question? Upon reflection, it should be obvious that
we must first agree upon some criterion by which we judge the quality of the
algorithm. Different contexts of this question may imply different criteria.

At the most basic level, the algorithm should be correct. Absent this quality,
all other qualities are irrelevant. While it is by no means easy to ascertain
the correctness of an algorithm,! we will assume here that it is given. Thus,
our focus throughout this book is on performance aspects of the given
(correct) algorithm. This approach is reasonable since in practice we are most
likely to use algorithms from the literature as building blocks of the ultimate
solution we are designing. Therefore, it is sensible to assume that these
algorithms are correct. What we must, however, derive ourselves is the

! There are different aspects of correctness, the most important one relating to the question of
whether the algorithm does in fact solve the problem that is to be solved. While techniques exist
for demonstrating formally that an algorithm is correct, this approach is fundamentally predi-
cated upon a formal definition of what the algorithm is supposed to do. The difficulty here is that
problems in the real world are rarely defined formally.
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complexity of these algorithms. While the literature may contain a complex-
ity analysis of an algorithm, it is our contention that complexity analysis
offers many more potential pitfalls when transitioning to software than
correctness. As a result, it is imperative that the software designer have a
good grasp of the principles and assumptions involved in algorithm analysis.

An important aspect of the performance of an algorithm is its dependence
on (some measure of) the input. If we have a program and want to determine
some aspect of its behavior, we can run it with a specific input set and observe
its behavior on that input set. This avenue is closed to us when it comes to
algorithms — there is no execution and therefore no observation. Instead,
we desire a much more universal description of the behavior of interest,
namely a description that holds for any input set. This is achieved by
abstracting the input set and using that abstraction as a parameter; usually,
the size of the input set plays this role. Consequently, the description of the
behavior of the algorithm has now become a function of this parameter. In
this way, we hope to obtain a universal description of the behavior because
we get an answer for any input set. Of course, in this process of abstracting
we have most likely lost information that would allow us to give more
precise answers. Thus, there is a tension between the information loss that
occurs when we attempt to provide a global picture of performance through
abstraction and the loss of precision in the eventual answer.

For example, suppose we are interested in the number of instructions
necessary to sort a given input set using algorithm A. If we are sorting a set
S of 100 numbers, it stands to reason that we should be able to determine
accurately how many instructions will have to be executed. However, the
question of how many instructions are necessary to sort any set with 100
elements is likely to be much less precise; we might be able to say that we
must use at least this many and at most that many instructions. In other
words, we could give a range of values, with the property that no matter
how the set of 100 elements looks, the actual number of instructions would
always be within the given range. Of course, now we could carry out this
exercise for sets with 101 elements, 102, 103, and so on, thereby using the
size n of the set as a parameter with the property that for each value of n,
there is a range F(n) of values so that any set with # numbers is sorted by
A using a number of instructions that falls in the range F(n).

Note, however, that knowing the range of the statement counts for an
algorithm may still not be particularly illuminating since it reveals little
about the likelihood of a value in the range to occur. Clearly, the two
extremes, the smallest value and the largest value in the range F(n) for a
specific value of n have significance (they correspond to the best- and the
worst-case complexity), but as we will discuss in more detail below, how
often a particular value in the range may occur is related to the average
complexity, which is a significantly more complex topic.

While the approach to determining explicitly the range F(n) for every value
of n is of course prohibitively tedious, it is nevertheless the conceptual basis
for determining the computational complexity of a given algorithm. Most
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importantly, the determination of the number of statements for solving a
problem is also abstracted, so that it typically is carried out by examining
the syntactic components, that is, the statements, of the given algorithm.

Counting statements is probably the most important aspect of the behavior
of an algorithm because it captures the notion of execution time quite accu-
rately, but there are other aspects. In the following sections, we examine
these qualities of algorithms.

1.2 The Time and Space Complexities of an Algorithm

The most burning question about a (correct) program is probably, “How long
does it take to execute?” The analogous question for an algorithm is, “What
is its time complexity?” Essentially, we are asking the same question (“How
long does it take?”), but within different contexts. Programs can be executed,
so we can simply run the program, admittedly with a specific data set, and
measure the time required; algorithms cannot be run and therefore we have
to resort to a different approach. This approach is the statement count. Before
we describe it and show how statement counts reflect time, we must mention
that time is not the only aspect that may be of interest; space is also of concern
in some instances, although given the ever-increasing memory sizes of
today’s computers, space considerations are of decreasing import. Still, we
may want to know how much memory is required by a given algorithm to
solve a problem.

Given algorithm A (assumed to be correct) and a measure n of the input
set (usually the size of all the input sets involved), the time complexity of
algorithm A is defined to be the number f(n) of atomic instructions or oper-
ations that must be executed when applying A to any input set of measure
n. (More specifically, this is the worst-case time complexity; see the discus-
sion below in Section 1.3.) The space complexity of algorithm A is the amount
of space, again as a function of the measure of the input set, that A requires
to carry out its computations, over and above the space that is needed to
store the given input (and possibly the output, namely if it is presented in
memory space different from that allocated for the input).

To illustrate this, consider a vector V of n elements (of type integer; V is
of type [1:n] and n = 1) and assume that the algorithm solves the problem
of finding the maximum of these n numbers using the following approach:

Algorithm Max to find the largest integer in the vector V[1:n]:

1. Initialize TempMax to V[1].

2. Compare TempMax with all other elements of V and update Temp-
Max if TempMax is smaller.
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6 A Programmer’s Companion to Algorithm Analysis

Let us count the number of atomic operations? that occur when applying
the algorithm Max to a vector with n integers. Statement 1 is one simple
assignment. Statement 2 involves n — 1 integers, and each is compared to
TempMax; furthermore, if the current value of TempMax is smaller than the
vector element examined, that integer must be assigned to TempMax. It is
important to note that no specific order is implied in this formulation; as
long as all elements of V are examined, the algorithm works. At this point,
our statement count stands at 7, the 1 assignment from statement 1 and the
n — 1 comparisons in statement 2 that must always be carried out. The
updating operation is a bit trickier, since it only arises if TempMax is smaller.
Without knowing the specific integers, we cannot say how many times we
have to update, but we can give a range; if we are lucky (if V[1] happens to
be the largest element), no updates of TempMax are required. If we are
unlucky, we must make an update after every comparison. This clearly is
the range from best to worst case. Consequently, we will carry out between
0 and n — 1 updates, each of which consists of one assignment. Adding all
this up, it follows that the number of operations necessary to solve the
problem ranges from n to 2n — 1. It is important to note that this process
does not require any execution; our answer is independent of the size of n.
More bluntly, if n = 10'° (10 billion), our analysis tells us that we need between
10 and 20 billion operations; this analysis can be carried out much faster
than it would take to run a program derived from this algorithm.

We note as an aside that the algorithm corresponds in a fairly natural way
to the following pseudo code®:

TempMax := V[1];
for i:=2 to n do

{ if TempMax < V[i] then TempMax := VI[i] };
Max := TempMax

However, in contrast to the algorithm, the language requirements impose
on us a much greater specificity. While the algorithm simply referred to
examining all elements of V other than V[1], the program stipulates a (quite
unnecessarily) specific order. While any order would do, the fact that the
language constructs typically require us to specify one has implications that
we will comment on in Part 2 in more detail.

We conclude that the algorithm Max for finding the maximum of 7 integers
has a time complexity of between n and 2n — 1. To determine the space
complexity, we must look at the instructions again and figure out how much
additional space is needed for them. Clearly, TempMax requires space (one

2 We will explain in Chapter 2 in much more detail what we mean by atomic operations. Here, it
suffices to assume that these operations are arithmetic operations, comparisons, and assign-
ments involving basic types such as integers.

3 We use a notation that should be fairly self-explanatory. It is a compromise between C notation
and Pascal notation; however, for the time being we sidestep more complex issues such as the
method used in passing parameters.
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unit of it), and from the algorithm, it appears that this is all that is needed.
This is, however, a bit misleading, because we will have to carry out an
enumeration of all elements of V, and this will cost us at least one more
memory unit (for example for an index variable, such as the variable i in
our program). Thus, the space complexity of algorithm Max is 2, independent
of the size of the input set (the number of elements in vector V). We assume
that 1, and therefore the space to hold it, was given.

It is important to note that the time complexity of any algorithm should
never be smaller than its space complexity. Recall that the space complexity
determines the additional memory needed; thus, it stands to reason that this
is memory space that should be used in some way (otherwise, what is the
point in allocating it?). Since doing anything with a memory unit will require
at least one operation, that is, one time unit, the time complexity should
never be inferior to the space complexity.

It appears that we are losing quite a bit of precision during the process of
calculating the operation or statement count, even in this very trivial exam-
ple. However, it is important to understand that the notion of complexity is
predominantly concerned with the long-term behavior of an algorithm. By
this, we mean that we want to know the growth in execution time as n grows.
This is also called the asymptotic behavior of the complexity of the algorithm.
Furthermore, in order to permit easy comparison of different algorithms
according to their complexities (time or space), it is advantageous to lose
precision, since the loss of precision allows us to come up with a relatively
small number of categories into which we may classify our algorithms. While
these two issues, asymptotic behavior and comparing different algorithms,
seem to be different, they turn out to be closely related.

To develop this point properly requires a bit of mathematical notation.
Assume we have obtained the (time or space) complexities f,(n) and f,(n) of
two different algorithms, A, and A, (presumably both solving the same
problem correctly, with 1 being the same measure of the input set). We say
that the function f,(n) is on the order of the function f,(n), and write

fi(n) = O(fy(n)),

or briefly f; = O(f,) if n is understood, if and only if there exists an integer
ny, 21 and a constant ¢ > 0 such that

fi(n) < cfy(n) for all n 2 n,.

* We assume here that one number requires one unit of memory. We discuss the question of what
one unit really is in much greater detail in Chapter 2 (see also the discussion of bit and word com-
plexity in Section 1.4).

5 Later we will see an example where, owing to incorrect passing of parameters, this assertion is
violated.
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Intuitively, f; = O(f,) means that f; does not grow faster asymptotically than
f» it is asymptotic growth because we are only interested in the behavior
from n, onward. Finally, the constant ¢ simply reflects the loss of precision
we have referred to earlier. As long as f; stays “close to” f, (namely within
that constant c), this is fine.

Example: Let f(n) = 5-n-log, (n) and g(n) = n?/100 — 32n. We claim that f =
O(g). To show this, we have to find n, and ¢ such that f(n) < c¢-g(n) for all
n 2 n,. There are many (in fact, infinitely many) such pairs (1,,c). For example,
n, = 10,000, c = 1, or n, = 100,000, c = 1, or n, = 3,260, ¢ = 100.

In each case, one can verify that f(n) <c - g(n) for all n = n,. More interesting
may be the fact that ¢ # O(f); in other words, one can verify that there do
not exist 1, and ¢ such that g(n) < ¢ - f(n) for all n 2 n,,.

It is possible that both f; = O(f,) and £, = O(f;) hold; in this case we say that
f1 and f, are equivalent and write f; = f,.

Let us now return to our two algorithms A, and A, with their time com-
plexities f,(n) and f,(n); we want to know which algorithm is faster. In general,
this is a bit tricky, but if we are willing to settle for asymptotic behavior, the
answer is simple: if f; = O(f,), then A, is no worse than A,, and if f; = f,, then
A; and A, behave identically.

Note that the notion of asymptotic behavior hides a constant factor; clearly
if f(ln) = n? and g(n) = 5-n2, then f= g, so the two algorithms behave identically,
but obviously the algorithm with time complexity f is five times faster than
that with time complexity g.

However, the hidden constant factors are just what we need to establish
a classification of complexities that has proven very useful in characterizing
algorithms. Consider the following eight categories:

0, =1, ¢, = log,(n), 9, = 2/n, 0y =1, @5 = n-log,(n), @5 = 12, @, = 13, @5 = 2".

(While one could define arbitrarily many categories between any two of
these, those listed are of the greatest practical importance.) Characterizing a
given function f(n) consists of finding the most appropriate category ¢; for
the function f. This means determining @; so that f = O(¢,) but f # O(g;_,).”
For example, a complexity n2/log,(n) would be classified as 7?2, as would be
(n? = 3n +10)-(n*— n®)/(n*+ n®>+ n + 5); in both cases, the function is O(n?),
but not O(n-log,(n)).

We say that a complexity of ¢, is constant, of ¢, is logarithmic (note that the
base is irrelevant because log,(x) and log,(x) for two different bases a and b

¢ One can develop a calculus based on these notions. For example, if f; =g, and f, = g,, then f; +
=81+ 8 fi—f, = 81— §» (under some conditions), and f; * f, = g, * g,. Moreover, if f, and g, are
different from 0 for all argument values, then f, /f, = g,/g,. A similar calculus holds for functions
fand g such that f = O(Q): f;= O(g;) for i = 1,2 implies f o f, = O(g; o &) for o any of the four basic
arithmetic operations (with the obvious restriction about division by zero).

7 Note that if f = O(¢)), then f= O(¢,, ) for all j > 0; thus, it is important to find the best category
for a function.
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are related by a constant factor, which of course is hidden when we talk
about the asymptotic behavior of complexity®), of @, is linear, of @, is quadratic,
of ¢, is cubic, and of @ is exponential . It should be clear that of all functions
in a category, the function that represents it should be the simplest one. Thus,
from now on, we will place a given complexity into one of these eight
categories, even though the actual complexity may be more complicated.

So far in our discussion of asymptotic behavior, we have carefully avoided
addressing the question of the range of the operation counts. However,
revisiting our algorithm Max, it should be now clear that the time complexity,
which we originally derived as a range from n to 2n — 1, is simply linear.
This is because the constant factor involved (which is 1 for the smallest value
in the range and 2 for the largest) is hidden in the asymptotic function that
we obtain as final answer.

In general, the range may not be as conveniently described as for our
algorithm Max. Specifically, it is quite possible that the largest value in the
range is not a constant factor of the smallest value, for all n. This then leads
to the question of best-case, average-case, and worst-case complexity, which
we take up in the next section.

Today, the quality of most algorithms is measured by their speed. For this
reason, the computational complexity of an algorithm usually refers to its
time complexity. Space complexity has become much less important; as we
will see, typically, it attracts attention only when something goes wrong.

1.3 The Worst-, Average-, and Best-Case Complexities of an
Algorithm

Recall that we talked about the range of the number of operations that
corresponds to a specific value of (the measure of the input set) n. The worst-
case complexity of an algorithm is thus the largest value of this range, which
is of course a function of n. Thus, for our algorithm Max, the worst-case
complexity is 2n — 1, which is linear in n. Similarly, the best-case complexity
is the smallest value of the range for each value of n. For the algorithm Max,
this was n (also linear in n).

Before we turn our attention to the average complexity (which is quite a
bit more complicated to define than best- or worst-case complexity), it is
useful to relate these concepts to practical concerns. Worst-case complexity
is easiest to motivate: it simply gives us an upper bound (in the number of
statements to be executed) on how long it can possibly take to complete a
task. This is of course a very common concern; in many cases, we would

8 Specifically, log,(x) = c - log,(x) for ¢ = log,(b) for alla, b > 1.

?In contrast to logarithms, exponentials are not within a constant of each other: specifically, for
a>b>1,a"#O(b"). However, from a practical point of view, exponential complexities are usually
so bad that it is not really necessary to differentiate them much further.
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like to be able to assert that under no circumstances will it take longer than
this amount of time to complete a certain task. Typical examples are
real-time applications such as algorithms used in air-traffic control or power-
plant operations. Even in less dramatic situations, programmers want to be
able to guarantee at what time completion of a task is assured. Thus, even
if everything conspires against earlier completion, the worst-case time com-
plexity provides a measure that will not fail. Similarly, allocating an amount
of memory equal to (or no less than) the worst-case space complexity assures
that the task will never run out of memory, no matter what happens.

Average complexity reflects the (optimistic) expectation that things will
usually not turn out for the worst. Thus, if one has to perform a specific task
many times (for different input sets), it probably makes more sense to be
interested in the average behavior, for example the average time it takes to
complete the task, than the worst-case complexity. While this is a very
sensible approach (more so for time than for space), defining what one might
view as average turns out to be rather complicated, as we will see below.

The best-case complexity is in practice less important, unless you are an
inveterate gambler who expects to be always lucky. Nevertheless, there are
instances where it is useful. One such situation is in cryptography. Suppose
we know about a certain encryption scheme, that there exists an algorithm
for breaking this scheme whose worst-case time complexity and average
time complexity are both exponential in the length of the message to be
decrypted. We might conclude from this information that this encryption
scheme is very safe — and we might be very wrong. Here is how this could
happen. Assume that for 50% of all encryptions (that usually would mean
for 50% of all encryption keys), decryption (without knowledge of the key,
that is, breaking the code) takes time 2", where 1 is the length of the message
to be decrypted. Also assume that for the other 50%, breaking the code takes
time n. If we compute the average time complexity of breaking the code as
the average of n and 2" (since both cases are equally likely), we obviously
obtain again approximately 2" (we have (n + 27)/2 > 2"~1, and clearly 2" -1
= 0O(2"). So, both the worst-case and average time complexities are 2", but
in half of all cases the encryption scheme can be broken with minimal effort.
Therefore, the overall encryption scheme is absolutely worthless. However,
this becomes clear only when one looks at the best-case time complexity of
the algorithm.

Worst- and best-case complexities are very specific and do not depend on
any particular assumptions; in contrast, average complexity depends cru-
cially on a precise notion of what constitutes the average case of a particular
problem. To gain some appreciation of this, consider the task of locating an
element x in a linear list containing 7 elements. Let us determine how many
probes are necessary to find the location of x in that linear list. Note that the
number of operations per probe is a (very small) constant; essentially, we
must do a comparison. Then we must follow a link in the list, unless the
comparison was the last one (determining this requires an additional simple
test). Thus, the number of probes is the number of operations up to a constant
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factor — providing additional justification for our systematic hiding of
constant factors when determining the asymptotic complexity of algorithms.
It should be clear what are the best and worst cases in our situation. The
best case occurs if the first element of the linear list contains x, resulting in
one probe, while for the worst case we have two possibilities: either it is the
last element of the linear list that contains x or x is not in the list at all. In
both of these worst cases, we need n probes since x must be compared with
each of the 1 elements in the linear list. Thus, the best-case time complexity
is O(1) and the worst case complexity is O(n), but what is the average time
complexity?

The answer to this question depends heavily on the probability distribu-
tion of the elements. Specifically, we must know what is the likelihood for
x to be in the element of the linear list with number i, fori =1, ..., n. Also,
we must know what is the probability of x not being in the linear list. Without
all this information, it is impossible to determine the average time complexity
of our algorithm, although it is true that, no matter what our assumptions
are, the average complexity will always lie between the best- and worst-case
complexity. Since in this case the best-case and worst-case time complexities
are quite different (there is no constant factor relating the two measures, in
contrast to the situation for Max), one should not be surprised that different
distributions may result in different answers. Let us work out two scenarios.

1.3.1 Scenario 1

The probability p,,, of x not being in the list is 0.50; that is, the likelihood
that x is in the linear list is equal to it not being there. The likelihood p; of x
to occur in position i is 0.5/n; that is, each position is equally likely to contain
x. Using this information, the average number of probes is determined as
follows:

To encounter x in position i requires i probes; this occurs with probability
p;= 0.5/n. With probability 0.5, we need n probes to account for the case that
x is not in the linear list. Thus, on average we have

1 p+2-p,+3-p3+...+(n-1)-p,1+n-p,+n-05=
1+2+3+...+n)-05/n+n05=
m+1)/4+n/2=0Bn+1)/410

Thus, the average number of probes is (3n + 1)/4.

0In this computation, we used the mathematical formula X;_; i = n-(n + 1)/2. It can be proven
by induction on n.
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1.3.2 Scenario 2

Assume that x is guaranteed to be in the list; that is, p,,, = 0.00, but now the
probability of x being in position i is '/, fori=1,...,n—-1and '/,"~ ! for i
=n. In other words, x is much more likely to be encountered at the beginning
of the list than toward its end. Again, to encounter x in position i requires i
probes, but now for the average number of probes we get

1 pr+2-p,+3-ps+...+(n-1)-p+n-p=
1.1/, +2.1/,2+3.1/,3+ ..+ (mn-1)-1/," 1 +n-1/,n1 =

= 2_ (Tl + 1) .1/211—1+ n .1/211—] — 2_]/2}1—1,1]

and therefore the average time complexity in this scenario is always less
than two probes. Note that this answer is independent of the number n of
elements in the linear list.!?

True, the situation in Scenario 2 is somewhat contrived since the probabil-
ity decreases exponentially in the position number of a list element (for
example, the probability of x occurring in position 10 is less than one tenth
of 1%). Nevertheless, the two scenarios illustrate clearly the significance of
the assumptions about the average case to the final answer. Thus, it is
imperative to be aware of the definition of average before making any state-
ments about the average complexity of an algorithm. Someone’s average
case can very possibly be someone else’s completely atypical case.

1.4 Bit versus Word Complexity

Throughout our discussions, we have tacitly assumed that each of the num-
bers occurring in our input sets fits into one unit of memory. This is clearly
a convenient assumption that greatly simplifies our analyses. However, it
can be somewhat unrealistic, as the following example illustrates.

Recall our algorithm Max for determining the largest element in a vector
V of n integers. We assumed that each memory unit held one integer. The
time complexity (each of best, worst, average) of this algorithm is linear in

UIn this computation, we used the mathematical formula X;_, ,i/,'=2 - (n +2)/," It can be
proven by induction on n.

12The last term, n:1/,", could be omitted since we know after n — 1 unsuccessful probes that x
must be in the last position because p,,,, = 0.00. However, this last term is so small that its inclu-
sion does not affect the final answer significantly.
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n — assuming our operations apply to entire integers. This is the assumption
we want to examine a bit closer in this section.

We have n integers in vector V. How realistic is it to assume that the
memory units that accommodate the integers be independent of n? Assum-
ing we wanted to have the n integers pairwise different, it is not difficult
to see that we need a minimum of?logz(nﬂ bits to represent each.!® Clearly,
this is not independent of #; in other words, if n grows, so does the number
of bits required to represent the numbers. (One might object that this is
true only if the numbers are to be pairwise different, but if one were to
drop this assumption and restrict one’s attention only to those integers
that can be represented using, say 16 bits, then one effectively assumes
that there are no more than 65,536 [i.e., 2'¢] different integers — not a very
realistic assumption.)

This example shows that we must be a bit more careful. On the one hand,
assuming that all numbers fit into a given memory unit (typically a word,
which may consist of a specific number, usually 4 or 8, of bytes, of 8 bits
each) simplifies our analyses significantly; on the other hand, we are pre-
tending that a fixed number of bits can accommodate an unlimited number
of numbers. While we will not resolve this contradiction, we will make it
clear which of the two (mutually contradictory) assumptions we use in a
specific application. We will talk about word complexity if we assume that a
(fixed-sized) word will accommodate our numbers, and we will talk about
bit complexity if we take into consideration that the length of the words in
terms of bits should grow with 7, the number of these numbers. Given that
bit complexity is much less often used, we will mean word complexity if we
do not specify which of the two we are using.

It should be obvious that the bit complexity will never be smaller than the
word complexity. In most cases it will be larger — in some cases substantially
larger. For example, the word complexity of comparing two integers is O(1).
However, if the integers have m bits, the bit complexity of this operation is
clearly O(m) since in the positional representation (regardless of whether
binary or decimal), we first compare the most significant digits of the two
integers. If the two are different, the number with the larger digit is larger;
if they are equal, we proceed to the next significant digit and repeat the
process. Clearly, the worst case is where both sequences of digits are identical
except for the least-significant one, since in this case m comparisons are
necessary; the same bound holds for establishing that the two numbers are
equal.

A somewhat more complicated example is provided by integer multipli-
cation. The word complexity of multiplying two integers is obviously O(1);
however, if our integers have m bits, the bit complexity of multiplying them
by the usual multiplication scheme is O(m?). To illustrate this, consider
multiplying the two binary integers x = 1001101 and y = 1100001, each with

13 If y is a real (floating-point) number, the ceiling [ /] of i is the smallest integer not smaller than
v. Thus, [1.0011=2,10.0011=1,1.01=1, and [0.5]=1.
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7 significant bits. Since the second integer has three 1s, multiplication of x
and y consists of shifting the first integer (x) by a number of positions and
adding the resulting binary integers:

position 7654321 7654321
1001101 * 1100001

position 3210987654321
1001101 x, no shift, from position 1 of vy
1001101 x, 5 shifts, from position 6 of y
1001101 x, 6 shifts, from position 7 of y
1110100101101

It is clear that the only operations involved in this process are copying x,
shifting x, and adding the three binary integers. In the general case of m-bit
integers, copying and shifting take time O(m), and adding two m-bit integers
also takes time O(m). Since there are at most m 1s in the second integer (y),
the number of copying and shifting operations is also at most m. The grand
total of the amount of work in terms of bit manipulations is therefore no
larger than m-O(m) + O(m), which is O(m?). Thus, the bit complexity of this
method of multiplying two m-bit binary integers is O(m?).

We note that this can be improved by using a divide-and-conquer strategy
(for details, see Section 3.2.1). This involves rewriting the two integers, x and
y as (a,b) and (c,d) where a, b, c, and d are now of half the length of x and y
(namely, m/2; this assumes that m is a power of two). We can then reconstitute
the product x-y in terms of three products involving the 4, b, c, and d integers,
plus some additions and shift operations. The result of repeating this process
yields a bit complexity of O(m'%), which is substantially better than O(m?) for
larger m — but of course still much larger than the O(1) word complexity.

Most analyses below are in terms of word complexity. Not only is this
invariably easier, but it also reflects the fact that bit complexity has little to
offer when one translates an algorithm into a program; clearly, in most
instances a program will use fixed-length words to accommodate the num-
bers it manipulates. However, in certain applications bit complexity is quite
relevant, for example in the design of registers for multiplication. Software
developers, however, are less likely to be interested in bit complexity analy-
ses; for them and their work, word complexity is a much more appropriate
measure of the performance of an algorithm.!*

14 An exception is provided by cryptographic methods based on number-theoretic concepts (for
example, the RSA public-key cryptography scheme) where arithmetic operations must be car-
ried out on numbers with hundreds or thousands of bits.
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1.5 Parallel Complexity

Parallelism is an aspect of software with which programmers are generally
unfamiliar, but virtually all modern computing systems (for example, any-
thing manufactured in the last decade or so) employ parallelism in their
hardware. While producing parallel programs is probably not imminent for
most application programmers, it is nevertheless useful to have some knowl-
edge of the underlying software principles.

Parallel architectures are used because of their promise of increased per-
formance. At the most primitive level, employing two or more devices that
operate at the same time is expected to improve the overall performance of
the system. A wide spectrum of different models of parallelism is available,
from vector computing to shared-memory MIMD systems, to distributed
memory MIMD systems.!> Each requires specialized knowledge to allow
programmers to exploit them efficiently. Common to most is the quest for
speed-up, a measure of the improvement obtained by using several hard-
ware devices in place of a single one.

Assume we are given a system with p processors, where p > 1. We use
T,(n) to denote the time a given (parallel) algorithm AP requires to solve a
given problem of size n using s processors, for 1 < s < p. The speed-up that
AP attains for a problem of size  on this parallel system is defined as follows:

For s < t, SP(s,t) = T,(n)/T,(n).

One is frequently interested in the effect that doubling the number of
processors has on execution time; this corresponds to SP(s,t), where t = 2s.
Itis also interesting to plot the curve one obtains by fixing s = 1 and increasing
t by 1 until the maximum number p of processors in the system is reached.

In general, speed-up is dependent on the specific architecture and on the
quality of the algorithm. Different architectures may permit differing speed-
ups, independent of the quality of the algorithm. It may be impossible to
take an algorithm that works very well on a particular parallel system and
apply it effectively to a different parallel architecture.

Parallel algorithms frequently assume the shared memory paradigm; that
is, they assume there are several processors but only one large memory space,
which is shared by all processors. From a theoretical point of view, one can
differentiate two types of access to a unit of memory: exclusive and concur-
rent. Exclusive access means that only one processor may access a specific
memory unit at a time; concurrent access means that more than one processor
can access the memory unit. Two types of access can be distinguished:

15Michael Flynn defined a very simple, yet effective classification of parallelism by concentrating
on instruction streams (I) and data streams (D); the presence of a single stream (of type I or D) is
then indicated by S, that of multiple streams by M. This gives rise to SISD, SIMD, and MIMD
systems.
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reading and writing. Therefore, we can image four types of combinations:
EREW, ERCW, CREW, and CRCW, where E stands for exclusive, C for con-
current, R for read, and W for write. Of these four EREW is the standard
mechanism implemented in all commercial systems (including all parallel
shared-memory systems). ERCW, makes very little sense, since it is writing
that is difficult to image being carried out in parallel. However, CREW is
conceptually quite sensible; it simply means several processors can read a
unit of memory at the same time.!* However sensible concurrent reading
may be, no commercially successful computing system has implemented it,
so it is of no practical significance. Theoretically, one can, however, show
that of the three models, EREW, CREW, and CRCW, certain problems can
be solved more efficiently using CREW than EREW, and certain problems
can be solved more efficiently using CRCW than CREW. In other words,
CRCW is most powerful, and CREW is less powerful than CRCW but more
powerful than EREW. However, these results are only of a theoretical nature
and have no practical significance (at least as long as no commercial systems
of CREW or CRCW types exist).

An alternative to the shared-memory approach assumes that each proces-
sor has its own (private) memory and that communication between proces-
sors relies on message passing. In this situation it is necessary to specify
what messages are sent and at what time. While this creates significant
problems for the programmer, it does not provide new programming para-
digms that must be considered. Therefore, it does not give rise to new
complexity considerations.

It should not come as a great surprise that programming parallel systems
is significantly more difficult than programming sequential systems. When
designing algorithms (or producing code), one must distinguish between
covert and overt parallelism. In covert parallelism the designer ignores the
parallel nature of the hardware and designs a standard sequential algorithm.
It is only for overt parallelism that parallel algorithms must be devised. Here
we are concentrating on sequential algorithms; they are not parallel, even
though the hardware on which the software ultimately executes may contain
a great deal of parallelism. Any exploitation of the available parallelisms in
the hardware would be done by the compiling system, the operating system,
or the run-time support system, all of which are typically outside of the
designer’s influence.

What is the promise of parallel hardware? Recall the notion of speed-up.
If we have p processors instead of one, we might hope for a speed-up of p.
After all, there is p times more hardware available. This ignores the ultimate
crux in the difficulty of programming parallel systems: overhead, lack of
balance, and synchronization.

Overhead refers to the coordination efforts that are necessary to have all
processors cooperate to achieve a single goal. This typically involves the

16This occurs very frequently in practice, in different contexts. Consider a movie theater where
many patrons see (that is, read) the same content at the same time. Clearly, writing is a com-
pletely different issue.
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exchange of information between the processors that computed the infor-
mation and the processors that require it for their own calculations.

Lack of balance refers to the fundamental problem that each processor
should do essentially the same amount of work. This is difficult to achieve
in practice. Most programming paradigms use a master—slave notion,
whereby a single master process coordinates the work of many slave pro-
cesses. Frequently (and in marked contrast to ordinary office work) the
master process ends up having much more work than the slave processes.
This lack of balance implies that the most overloaded process, which takes
the longest, determines the overall execution time, since the entire problem
is solved only when the last process is finished.

Synchronization refers to the fact that certain computations depend on the
results of other computations, so the latter must be completed before the
former may start. Ensuring that these dependences are satisfied is a necessary
precondition for the correct functioning of the algorithm or software. Syn-
chronization is the mechanism that achieves this. The downside is that it
will make some processors wait for results. Forcing processors to wait results
in a reduction of the efficiency that can be achieved by the parallel system.

The upshot of this (very brief) discussion is that the ideal speed-up, of p
for p processors compared with one processor, is almost never attained. In
many cases, significantly lower ratios (for MIMD systems perhaps 50% for
smaller p, for example, p 32, and 20% or less for p on the order of thousands)
are considered very respectable. An additional complication arises because
a good parallel algorithm is not necessarily obtained by parallelizing a good
sequential algorithm. In some cases parallelizing a bad sequential algorithm
produces a much better parallel one.

1.6 1/0 Complexity

I/0O complexity is a nonstandard complexity measure of algorithms, but it
is of great significance for our purposes. Some of the justification of and
motivation for introducing this complexity measure will be provided in
Part 2.

The I/O complexity of an algorithm is the amount of data transferred from
one type of memory to another. We are primarily interested in transfers
between disk and main memory; other types of transfer involve main mem-
ory and cache memory. In the case of cache memory the transfer is usually
not under the control of the programmer. A similar situation occurs with
disks when virtual memory management (VMM) is employed. In all these
cases data are transferred in blocks (lines or pages). These are larger units
of memory, providing space for a large number of numbers, typically on the
order of hundreds or thousands. Not all programming environments provide
VMM (for example, no Cray supercomputer has VMM); in the absence of
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VMM, programmers must design out-of-core programs wherein the transfer
of blocks between disk and main memory is directly controlled by them. In
contrast, an in-core program assumes that the input data are initially trans-
ferred into main memory, all computations reference data in main memory,
and at the very end of the computations, the results are transferred to disk.
It should be clear that an in-core program assumes the uniformity of memory
access that is almost always assumed in algorithms.

Let us look at one illustration of the concept of an out-of-core algorithm.
Consider a two-dimensional (2D) finite difference method with a stencil of
the form

s[if] = sli - 2,j] +
sli-17-1]+s[i-1j]+s[i-1;+1] +
slij —2] +slij—1] + s[i,j] + slij + 1] +s[ij + 2] +
sli+1,j-1]+s[i+ 1] +sli+1,;+1]+
sli + 2,j],

where we omitted the factors (weights) of each of the 13 terms. Suppose the
matrix M to which we want to apply this stencil is of size [1:n,1:n], for n =
218, Consequently, we must compute another matrix M', whose [i,j] element
is exactly the stencil applied to the matrix M at the [ij] position. (For a
somewhat different approach, see Exercise 11, page 35.) Now comes the
problem: we have only space of size 2% available for this operation. Because
of the size of the two matrices (which is 2%), we can only bring small portions
of M and M' into main memory; the rest of the matrices must remain on
disk. We may use VMM or we can use out-of-core programming, requiring
us to design an algorithm that takes into consideration not only the compu-
tation, but also the movement of blocks between disk and main memory.

It is clear that we must have parts of M and M' in main memory. The
question is which parts and how much of each matrix. Let us consider several
possibilities:

1.6.1 Scenario 1

Assume that one block consists of an entire row of the matrices. This means
each block is of size 2'8, so we have only room for four rows. One of these
rows must be the it row of M'; the other three rows can be from M. This
presents a problem since the computation of the [i,j] element of M' requires
five rows of M, namely the rows with numbersi—-2,i-1,i,i+ 1, and i +
2. Here is where the I/O complexity becomes interesting. It measures the
data transfers between disk and main memory, so in this case, it should
provide us with the answer of how many blocks of size 2'® will have to be
transferred. Let us first take the rather naive approach formulated in the
following code fragment:
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for i:=1 to n do
for j:=1 to n do
M[i, j1 := M[i-2,3]1+
M[i-1,3-11+M[i-1,31+M[i-1,3+1]+
M[i,3-2] + M[1i,7-1] +M[1,3] +M[1,J+1] +M[1,J+2]+
M[i+1,3J-11+M[1i+1,J]1+M[i+1,3+1]+
M[i+2,73]

This turns out to have a truly horrific I/O complexity. To see why, let us
analyze what occurs when M'[i,j] is computed. Since there is space for just
four blocks, each containing one matrix row, we will first install in
main memory therowsi—-2,i—1,i,and i + 1 of M and compute M[i — 2,j] +
M[i-1,j-11+M[-1/1+M[ -1/ + 1]+ M[i,j - 2] + M[i,j — 1] + M[i,j] +
M[ij+1] + M[i,j + 2] + M[i + 1,j 1] + M[i + 1,j] + M[i + 1,j + 1]. Then we
replace one of these four rows with the M-row i + 2 to add to the sum the
element M[i + 2,j]. Then we must displace another M-row to install the row
i of M' so we may assign this complete sum to M'[i,j]. In order to enable us
to be more specific, assume that we use the least recently used (LRU) replace-
ment strategy that most virtual memory management systems employ. (This
means the page or block that has not been used for the longest time is
replaced by the new page to be installed.) Thus, in our example, we first
replace the M-row i — 2 and then the M-row i — 1. We now have in memory
the M-rows i,i + 1, and i + 2 and the M'-row i. To compute the next element,
namely M'[i,j + 1], we again need the M-rows i —2,i—1,i,i+ 1, and i + 2.

Under the LRU policy, since M-rows i — 2 and i — 1 are not present, they
must be installed, replacing M-rows i and i + 1. Then the just-removed M-
row i must be reinstalled, replacing M'-row i; subsequently M-row i + 1 must
be reinstalled, replacing M-row i + 2. Now, the just-removed M-row i + 2 is
reinstalled, replacing M-row i — 2. Finally, M'-row i must be brought back,
replacing M-row i — 1. It follows that of the six rows involved in the com-
putation (five M-rows and one M'-row), each must be reinstalled when
computing M'[i,j + 1] after having computed M'[i,j]. While the situation for
the border elements (M[i,j] for i = 1,2,n — 1,n or j = 1,2,n — 1,n) is slightly
different, in general it follows that for each of the 1> elements to be computed,
six page transfers are required. Thus, the data movement is 3n times greater
than the amount of data contained in the matrices.!” In particular, most of
the 12 elements of the matrix M are transferred 57 times; since n = 218, each
of these M elements is transferred about 1.3 million times. This clearly
validates our assertion about the lack of effectiveness of this approach.

For the following, let us assume that we can specify explicitly which blocks
we want to transfer. The above analysis implicitly assumed that the replace-
ment operations are automatically determined. (After all, it is difficult to
conceive of any programmer coming up with as hopelessly inefficient a

17 Each matrix consists of n pages. In total, 6n> pages are transferred. Since 6112/ 2n = 31, the claim
follows.
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strategy as the one we described, yet it was the direct consequence of seem-
ingly rational decisions: LRU and a code fragment that looked entirely
acceptable.) The following scheme allows us to compute the entire matrix
M' (we assume that both M and M' are surrounded with Os, so we do not
get out of range problems). To compute M'[1,*]:

1. Fetch rows i —2,i— 1, and i of M and compute in M'[7,*] the first
three lines of the stencil.

2. Fetch rows i + 1 and i + 2 of M, replacing two existing rows of M,
and compute the remaining two lines of the stencil.

3. Store M'[;,*] on disk.

Thus, for computing M'[7,*] we need to fetch five rows of M and store one
row of M'. If we iterate this for every value of i, we will retrieve 5n rows
and store n rows. If we are a bit more clever and recognize that we can reuse
one of the old rows (specifically, in computing M'[i,*], in the second fetch
operation we overwrite rows M[i — 2,*] and another one, so the row that is
still there is useful in the computation of M'[i + 1,*]), this will reduce the
block retrievals from 51 to 4n. Thus, even though M and M' have only 2n
rows, the I/O complexity is 5n; in other words, we have data movement
that is 250% of the amount of data manipulated, a dramatic reduction over
the previous result.

1.6.2 Scenario 2

The problem in Scenario 1 was that we had to retrieve the rows correspond-
ing to one stencil computation in two parts. Perhaps we can improve our
performance if we devise a set-up in which stencil computations need not
be split. Assume that each block is now of size 2'¢, so we can fit 16 blocks
into our available main memory. This should allow us to compute an entire
stencil in one part.

We assume that each row consists of four blocks (we will refer to quarters
of rows to identify the four blocks). In this case, our algorithm proceeds as
follows:

1. Compute the first quarter of M'[1,*].

1.1Fetch the first and second block of M[1,*], M[2,*], and M[3,*] and
compute the entire stencil in the first quarter of M'[1,*].

1.2 Store the first quarter of M'[1,*] on disk.

1.3 Calculate the first two elements of the second quarter of M'[1,*]
and store it on disk (eight resident blocks).

2. Compute the first quarter of M'[2,*].

2.1Fetch the first and second block of M[4,*] and compute the entire
stencil in the first quarter of M'[2,*].
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2.2 Store the first quarter of M'[2,*] on disk.

2.3 Calculate the first two elements of the second quarter of M'[2,*]
and store it on disk (10 resident blocks).

3. Compute the first quarter of M'[3,*].

3.1Fetch the first and second block of M[4,*] and compute the entire
stencil in the first quarter of M'[3,”].

3.2 Store the first quarter of M'[3,*] on disk.

3.3 Calculate the first two elements of the second quarter of M'[3,*]
and store it on disk (12 resident blocks).

4. For i =4 to n- 2 compute the first quarter of M'[i,*].

4.1Fetch the first and the second block of row i + 2 of M, overwriting
the respective blocks of row i - 3, and compute the entire stencil
in the first quarter of M'[i,*].

4.2 Store the first quarter of M'[i,*] on disk.

4.3 Calculate the first two elements of the second quarter of M'[/,*]
and store it on disk (12 resident blocks).

5. Compute the first quarter of M'[n - 1,*].

5.1 Compute the entire stencil in the first quarter of M'[n - 1,*] and-
store it on disk.

5.2 Calculate the first two elements of the second quarter of M'[n -
1,*] and store it on disk (10 resident blocks).

6. Compute the first quarter of M'[n,*].
6.1 Compute the entire stencil in the first quarter of M'[n,*] and store

it on disk.
6.2 Calculate the first two elements of the second quarter of M'[n,*]
and store it on disk (eight resident blocks).

The second quarter of each M'[i,*] is calculated in a similar manner, except
that we would go backwards, from i = n to i = 1, which saves us initially
fetching a few blocks that are already in memory; of course now we fetch
the third quarter of each row, replacing all first quarters. Also, the second
quarter of each M-row must be fetched from disk, because we will calculate
all but the first two elements, which have already been computed in the
previous round (first quarters). The third quarter is analogous (precomput-
ing again the first two elements of each fourth quarter). Finally, the fourth
quarter is computed similarly, but there is no precomputing of elements of
the next round.

To calculate the I/O complexity of this second algorithm, we first note that
we have space for 16 blocks. Computing the first quarter of M[i,*] requires
us to have 10 blocks in memory, plus we need space (two blocks) for the
first and second quarters of M'[i,*]. Therefore, the available memory is not
exceeded. Adding up the fetches and stores in the first quarter round, we
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we need a total of 2n block retrievals (portions of M) and 2n block stores
(portions of M'). For the second quarter round, we need 3n retrievals
(2n analogously to the first round, plus the retrieval of the second quarter
of M'[i,*], which had two elements precomputed in the first round) and
2n stores, and similarly for the third. For the fourth quarter round, we need
3n fetches and only n stores, since there is no precomputation in this
round. The grand total is therefore 11n block fetches and 7n block stores, for
an I/O complexity of 18n blocks of size 2!°. Since each matrix now requires
4n blocks, the data movement with this more complicated scheme is some-
what smaller: 225% of the size of the two matrices instead of the 250% of
the much simpler scheme above.

This somewhat disappointing result (we seem to always need significantly
more transfers than the structures require memory) raises the question of
whether this is the best we can do.!8 Here is where the issue of lower bounds,
to be taken up in Section 1.8, is of interest. We will return to this issue there
and derive a much better lower bound.

We will return to the I/O complexity of a task in Part 2 in more detail.
Here, we merely want to emphasize that important nontraditional measures
of the performance of an algorithm are different from the usual time or space
complexities. However, as we will see in Part 2, I/O performance is very
intimately related to the time complexity of an algorithm when the memory
space is not uniform.

1.7 On-Line versus Off-Line Algorithms

Algorithms can be classified according to the way in which they receive their
input. If the entire input set is provided at the beginning of the algorithm,
we say it is off-line. If input may be supplied during the computations of
the algorithm, it is considered on-line. While most algorithms are off-line,
because it often makes little sense to start solving the problem before all data
are received, numerous problems are inherently on-line. For example, many
algorithms occurring in operating systems are on-line, since an operating
system deals with a dynamic situation where decisions must be continually
made based on the information available at that time; once additional infor-
mation is received, updates of the status are necessary. In general, on-line
algorithms tend to be more difficult than off-line ones.

As an example, consider again the computation of the largest element of
some set of integers. We have already seen an algorithm to solve this
problem: the algorithm Max. Revisiting it makes it clear that this is a typical
off-line algorithm. The entire input set V is assumed to be available before

180Of course, we are comparing the second approach with the out-of-core approach in Scenario 1.
If we instead take the VMM approach in Scenario 1 as benchmark, all other techniques are mar-
velously efficient.
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we start carrying out any computations. It is not unreasonable to consider
an on-line algorithm for this purpose. We may have a continuous stream of
input and would like to know, upon demand, what the maximum of the
numbers seen up to this point was. It turns out that we can use Max without
much modification; we simply treat each incoming new element as the next
element with which we must compare our current TempMax and, if neces-
sary, update it. It follows without great difficulty that the time complexity
of this on-line version is still O(n) if at some point we have received n integers
as input. However, ordinarily one tends to report the time complexity of an
on-line algorithm differently. Instead of giving a global answer (O(n), where
n is the number of inputs received), we might report the amount of work
per input integer, because for each input, we have to do some work, so this
amount of work should be attributed to the integer just received as input.
Thus, we would report that per integer received, we must spend O(1), or a
constant amount of work. Also, in some on-line algorithms the question of
how many input elements have been received at a certain point in time is
not germane and might require an (extraneous) counter to enable us to know
this.

Another example involves inserting elements into an ordered linear list
with n elements. By adapting the analysis in Scenario 1 of Section 1.3, we
see that one insertion requires on average /2 probes, assuming all locations
are equally likely.”” Thus, carrying out m successive insertions in this way
requires a total of n/2 + (n + 1)/2 + ...(n + m — 1)/2 probes, or mn/2 + (m
— 1)-m/4 probes. This is the on-line version. If we were able to batch these
m insertions together, we could instead sort the m numbers (using HeapSort
which requires no more than 3-m-log,() comparisons; see Section 3.2.6) and
then merge the two ordered structures (this requires about m + n compari-
sons; see Section 3.2.4). Thus, this off-line process takes no more than n +
m-[1 + 3-log,(m)]. Since one probe is essentially one comparison, the off-line
version is significantly more efficient. For example, if m = n = 2%, then the
on-line version requires asymptotically 2¢/(4-k) times more probes; for larger
n, this is a dramatically increased number of probes.?

It should be clear that the complexity of an optimal on-line algorithm can
never be better than that of an optimal off-line algorithm. If there were an
on-line algorithm more efficient than the best off-line algorithm, we could
simply use it on the data set of the off-line algorithm to obtain a more efficient
off-line algorithm.

19 More precisely, there are 11 + 1 places to insert x (we assume here that duplicates are permitted),
namely before the first element, between elements 1 and 2, and so on until the 2 + 15t place, which
is after the n'" element. For the first place, we need one probe, for the second, two, through the
n' place, which requires ; the last place (1 + 1) requires no additional probe. Summing this up
yields n-(n + 1)/2; therefore, on average, we need n/2 probes.

20We have n:n/2 + (n — 1)-n/4 versus n + n-[1 + 3:log,(1n)] probes. Thus, the asymptotic factor
between on-line and off-line is [n-n/2 + (n — 1)-n/4]/[n + n-(1 + 3-log,(n))] = [3-n — 1]/[8 +
12-log,(n)] = n/(4-k). If k = 8, then 2¢/(4-k) = §; if k = 16, 2/ (4-k) = 1024; so for k = 8, about eight
times more probes are required, and for k = 16, over a thousand times more probes are needed.
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For the most part, we will concentrate on off-line algorithms. This does
not mean we will ignore on-line algorithms completely since certain meth-
ods, notably search trees (including AVL trees, see 3.2.11) and hashing tech-
niques (see 3.2.12), are essentially on-line algorithms (even though they are
frequently presented as if they were off-line). On-line algorithms are also
most amenable for amortized, or credit, analysis wherein lucky instances
and bad instances of an algorithm are supposed to balance.

I
1.8 Amortized Analysis

If we execute an algorithm once, we can consider either its average or its
worst-case complexity. If the difference between the two measures is small,
we can ignore it. If it is large, we may want to know how likely it is that a
bad instance will occur. This is particularly interesting if we execute the
algorithm several times, since in this case we may be lucky in that a bad
case (the algorithm approaches the worst-case situation) is balanced by a
good case (the algorithm approaches an average or, even better, a best-case
situation). If we carry out a complexity analysis taking repeated executions
into consideration, this is called amortized, or credit, analysis. Not all algo-
rithms lend themselves naturally to amortized analysis; on-line algorithms
are usually most suitable for this approach. Obviously, when doing amor-
tized analysis, one hopes that the bad cases are rare and the good cases
frequent. While amortized analysis has attracted attention recently, it is not
very different from average analysis. If one knows the probability of a case
(also known as the potential in amortized analysis), the average complexity
is simply the average, taken over all cases, of the product of the complexity
of each case and its probability.

1.9 Lower Bounds and Their Significance

The complexity of an algorithm that solves a problem constitutes an upper
bound on the complexity of that problem. In other words, we know we
can solve the problem with that much effort, but this does not imply that
there is not a better way. This is where the importance of lower bounds
comes in. When determining a lower bound on the complexity of a
problem, we determine a range between the lower bound and the com-
plexity of a specific algorithm. If these two complexities are essentially
the same (if they are equivalent in the terminology of Section 1.2), then
our algorithm is asymptotically optimal. If the gap between the two
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complexities is great, we have two possibilities (both of which may be
true): The lower bound is not very good and could be improved, or our
algorithm is not very efficient and should be improved. There will be
always cases where we are not able to improve either of the two com-
plexities and yet the gap remains large. These are usually considered
unpleasantly difficult problems.

Recall the example involving the I/O complexity of computing the stencil
of a 2D matrix. We were concerned that the amount of block transfers
between main memory and disk was much larger than the amount of
memory required by the two matrices because we were using the idea of a
lower bound; our lower bound on the number of block transfers was the
number of blocks that the representation of the two matrices required. Since
the two matrices altogether consist of 2% elements, we expected the number
of block transfers to contain about the same number of elements. Given the
relatively limited amount of memory space in main memory, neither of our
two attempts came close to this value.

Here is an argument that comes close to this obvious lower bound: Instead
of attempting to compute M'[ij] in its entirety, go through each row of M
and accumulate in the appropriate M' elements the contributions of each M
element. Assume as before that we split each row into four blocks. The
element M[i,j] will affect M' elements in five rows. The first block of row
M[i,*] requires the first blocks of the following M'-rows to be present: i — 2,
i—1,i,i+ 1, and i + 2. Thus, we need one block for M and five for M'.
However, of these five M' blocks, one will be completed once we are done
with the M block, so we have to keep only four M' blocks around for further
accumulation.

We can replace the first block of M[i,*] by its second block. Again, we
need five M' blocks (plus the four we will need later). At the end of the
second block of M[i,*], one of the five can be retired (stored) since its
computations are completed. Now we have to keep eight M' blocks for
further accumulation. We replace the second block of M[i,*] with its third
and repeat. The final result is that we need 18 blocks at the high water
mark of this approach, namely in the fourth quarter. We must keep around
12 old M' blocks plus the five currently computed ones, plus the M block
that drives this process (the fourth quarter of M[i,*]). It follows that we are
2 blocks short, since we have space for 16, not 18. This implies that we
have to overwrite 2 of the 18, which must be first stored before they are
overwritten and then fetched later. This introduces four more block trans-
fers per row of M. Since except for this problem, we would be optimal,
that is, we would retrieve each block of M exactly once and store each
block of M' exactly once, the problem is the difference between optimality
(which would attain our lower bound) and an actual algorithm. This dif-
ference amounts to 4n.

Consequently, the change in point of view (rather than computing each ele-
ment of M' in its entirety, we view each element of M' as an accumulator)
significantly improves the I/O performance. The gap between the naive lower
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bound and the complexity of this algorithm is now only equal to the space
occupied by one matrix (recall each row consists of four blocks). Thus, we now
have data movement that is only 50% greater than the amount of data manip-
ulated. While the gap is significantly reduced, it is still not clear whether the
lower bound is effective, that is, whether there is an algorithm that attains it.

The situation is much clearer in the case of sorting n numbers by way of
comparisons. This is the traditional lower bound example that is used almost
universally, primarily because it is relatively easy to explain, as well as
because of the significance of sorting in the global realm of computing. We
will follow the crowd and present it as well, but it should be noted that for
most problems, no nontrivial lower bounds are known.?! There are only a
few problems of practical significance for which one can determine attainable
lower bounds; sorting by comparisons is one of them.

Since we are attempting to determine the complexity of a problem, not of
a specific algorithm solving that problem, we cannot use properties of any
specific algorithm, only properties of the problem. Thus, when sorting a
given sequence of n integers using comparisons (if you prefer real numbers,
replace integers by reals in the following), the only thing we know is that
we can take two integers 2 and b and compare them. There are three possible
outcomes of such a comparison, namely a = b, a < b, or a > b. For technical
reasons, we would like to eliminate the possibility that a = b; this is easily
achieved if we assume that the n numbers are pairwise different and that
we never compare a number with itself. Thus, from now on when given any
two different integers a and b, we assume we have two possible results of
comparing them: a < b ora > b.

Next we observe that any algorithm that sorts a sequence of n (pairwise
distinct) integers by comparisons must consist of a sequence of comparisons
of two numbers from the set, and once the algorithm terminates, it must tell
us the exact order of these n integers. It follows that any algorithm can be
represented by a decision tree; this is a binary tree?> where each interior node
corresponds to a comparison and each leaf corresponds to an outcome of
the algorithm. A leaf represents a point in the algorithm where no more

21Tt is not entirely trivial to define what is nontrivial. However, if one is asked to compute N
numbers, obviously O(N) is a lower bound for this problem. We must expend at least some effort
on each number. In most cases, this lower bound is trivial and cannot be attained. This is, for
example, the situation for matrix multiplication. Given two (1,11)-matrices A and B, compute the
(n,n)-matrix C that is the product of A and B. C contains N = #?> numbers, and O(N) turns out to
be the best lower bound known for this problem. Few people believe that this bound is attainable
(recall that the usual matrix multiplication scheme requires O(N*?) [or O(n®)] time, although this
can be improved — see Section 3.2.2), but nobody knows a better lower bound (as of 2005).
22Now it is clear why we wanted to eliminate the possibility a2 = b. We would need a ternary tree,
where each node can have three children. (Clearly, to represent a ternary comparison requires
two ordinary, binary ones. While this would not increase the asymptotic complexity, since it
amounts to a factor of 2 and constant factors are routinely hidden, the exclusion of equality
allows a much cleaner exposition.) Furthermore, since we are deriving a lower bound, and since
each algorithm that works for the general case (i.e., where the numbers are not pairwise distinct)
must also work for the case where the numbers are pairwise distinct, our lower bound for the
special case is also one for the general case.
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comparisons are needed because we know the exact order. Knowing the
exact order, however, simply means that we know how to permute the
original sequence of numbers — that is, we can sort.

Consider the case of three numbers: a, b, and c. Here is one decision tree
(which represents one specific algorithm; a different algorithm would almost
certainly result in an entirely different decision tree) for the problem of
sorting these three numbers. Note that we record for any comparison a < b
whether it is true (T) (a < b) or false (F) (b < a) (since we excluded the case
a=>).

a<b
AR
c<b
b<c/ c\<a<b c<b</a \
/N A
a<b<c a<c<b b<a<c b<c<a

The outcomes of the algorithm are indicated in bold. Note that this is just
one of many possible algorithms. Since we must make an argument that
applies to all of them, we can only use properties of the general decision tree
framework but not of specific trees. One such general property is that given
n (pairwise distinct) integers, there are precisely n! permutations of them;
this means there are precisely n! different outcomes of any sorting algorithm
(since every permutation is a conceivable outcome, each algorithm must be
able to provide every permutation as an answer). In our example, 7 = 3 and
3! =6, and indeed, our decision tree provided each of these six permutations:
a<b<ca<c<bb<a<cb<c<a c<a<b, andc<b <a Consequently,
a decision tree that corresponds to an algorithm for sorting #» numbers must
have n! leaves.®

What is the number of comparisons required to sort? Looking at our
example, we can see that to reach ¢ < a < b, we need two comparisons.
However, we are interested in establishing a lower bound on the worst-case
complexity,? so in our example, the most comparisons required to reach any
of the six outcomes is three. In general, it is the height of the decision tree

2 Actually, it must have at least n! leaves, since nothing in our decision tree approach precludes
one permutation from being attached to more than one leaf.

2% Lower bounds are almost always on worst-case complexities only. It usually makes little sense
to look at anything else. Obviously, if the sequence of n numbers were already sorted, verifying
this fact would require only 7 — 1 comparisons. This knowledge, however, is quite useless if they
are not sorted (and usually they are not).
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that provides the maximal number of comparisons required to reach a leaf
(a permutation).

This leads naturally to the final question we must answer: What is the
height of any binary tree with n! leaves? To obtain the answer, consider the
converse question first: What is the maximal number of leaves of a binary
tree of a given height, say /? Clearly, the complete binary tree of height h
has 2" leaves.?> Any other binary tree of height & can be obtained from the
complete one by deleting nodes (or subtrees); this immediately establishes
that no such tree can have more than 2" leaves. It follows that the minimal
height of a tree with N leaves is at least log,(IN). Assume that this is not true;
in other words, there is a binary tree with N leaves whose height, say s, is
less than log,(N). Then we apply the result just obtained: Any binary tree of
height s cannot have more than 2° leaves, but since s < log,(N), 25 < 2loe2®),
and since 2'°e2™N) = N, it follows that 2° < N. Therefore, we obtain a contra-
diction to our original assumption that the tree has N leaves. Consequently,
the height of a binary tree with N leaves must be at least log,(N). All that
remains to be done is to substitute n! for N in this result. Any decision tree
that sorts n (pairwise distinct) numbers by comparisons must have at least
a height of log,(n!). To get a better handle on this value, recall that the
logarithm of a product is the sum of the logarithms. Thus.

log,(n!) = log,(1) + log,(2) +...+ log,(n/2) +
log,(1n/2 + 1) +...+ log,(n—1) + log,(n).

We drop the first /2 terms in this sum to get
log,(n!) > log,(1n/2 + 1) +...+ log,(n-1) + log,(n).
Finally, we observe that for each of the remaining terms we have
log,(n/2) <log,(n/2 + k) forallk=1, ..., n/2.
Combining this with the fact that log,(11/2) = log,(n) — 1, we get
log,(n!) > n/2 [log,(n) — 1].

This shows that log,(n!) > c¢-n-log,(n) for some constant c. Similarly, we can
show

log,(n!) < log,(n) + log,(n) +...+ log,(n) +

% For the proof, first observe that the complete binary tree T, of height & = 1 has two leaves.
Inductively, a complete tree Th,, of height & + 1 can be constructed by taking two complete
binary trees T, of height i and making them the left and right subtrees of a root. Since by induc-
tive assumption each of the trees T, has 2" leaves, T,,; must have twice that many leaves, namely
2h+1,
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log,(n) +...+ log,(n) + log,(n) = n-log,(n).
It follows that
log,(n!) = n-log,(n).

The final conclusion is therefore that any decision tree with n! leaves must
have a height that is O(n-log,(1)). Thus, the worst-case complexity of sorting
n numbers by comparisons is O(n-log,(1n)).2

Note that we made no use of any properties of a specific algorithm. The
only concrete given was that comparisons had to be sequenced so that a
conclusion could be reached. This conclusion had to be a permutation of the
original sequence of n numbers, regardless of what algorithm was used. It
must also be noted that this lower bound of O(n-log,(n)) applies only if we
do indeed sort using comparisons; if we sort in some other way, the statement
is not applicable.”

The lower bound we derived is clearly a nontrivial one, not just because
it is somewhat complicated to obtain. It is an attainable lower bound, that
is, we will see in Chapter 3 algorithms that sort n numbers in time
O(n-log,(n)).

What then is the ultimate significance of lower bounds? Recall that we
started this chapter with the question of how to determine whether a given
algorithm is good. This question forced us first to explore what it is we might
want to measure. Once this was determined, we still had to come up with
a benchmark of quality. Just because we have an algorithm and can measure
whatever we want does not mean the algorithm is any good. Having a lower
bound changes this situation dramatically. Now we can attempt to attain
this lower bound (or else show a better?® lower bound); in other words, we
have a goal. Most important is the case where the lower bound can be
attained by some algorithm. This immediately implies that this algorithm is
optimal. Optimal algorithms are the holy grail of algorithm design since they
are provably best (at least for the measure we concentrate on, usually worst-
case time complexity). Unfortunately, optimal algorithms are fairly rare. In
most cases, substantial gaps exist between the (best) lower bound and any
algorithms that solve the problem.

2 While this is the number of comparisons, it should be clear that using word complexity, each
comparison can be carried out in time O(1). Thus, the lower bound on the worst-case complexity
in terms of comparisons is also the worst-case time complexity for this problem.

% Later (in Section 3.2.7) we will see an algorithm that does not use comparisons to sort, namely
RadixSort. Its time complexity has no correlation with the lower bound just derived.

2 Here, better means higher. We could, for instance, have started with a lower bound of O(n) for
our sorting example. Clearly, to sort # numbers, we must at least look at each, giving rise to the
O(n) lower bound. Just as clearly, this is not a very good lower bound, and attempting to attain
it is guaranteed to fail. Note that we can say this now because we have established that
O(n-log,(n)) is a better lower bound.
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1.10 Conclusion

We described several performance aspects of an algorithm and illustrated
most of them. We contrasted time and space complexity, the most important
performance measures of algorithms. Entirely orthogonal® to these concepts,
we distinguished worst-case, best-case, and average complexities and indi-
cated when and why each of these concepts may be useful in practice. Yet
again orthogonal, we discussed bit and word complexities. The I/O com-
plexity of an algorithm, although introduced in this chapter, will be revisited
in Part 2 in more detail, as it provides the basis for a performance measure
that takes into account nonuniformity of memory accesses. On-line and off-
line algorithms were contrasted, although we will primarily cover off-line
algorithms. Finally, we emphasized the significance of lower bounds; it is
only through their use that we can obtain an objective indication of whether
an algorithm is really good.

Bibliographical Notes

Most of the material covered in this chapter is standard algorithm analysis and
as such, it is presented in virtually all good algorithm books. Historically,
Knuth's The Art of Computer Programming delineates the starting point for much
of this; Aho, Hopcroft, and Ullman: The Design and Analysis of Computer Algo-
rithms is another classic. A more recent book is Kleinberg and Tardos: Algorithm
Design (very comprehensive, written at a fairly high level). Also useful are
Kingston: Algorithms and Data Structures, Design, Correctness, Analysis (not as
advanced or as comprehensive as Kleinberg and Tardos): Purdom and Brown:
The Analysis of Algorithms; as well as Gonnet: Handbook of Algorithms and Data
Structures; and Levitin: Introduction to the Design and Analysis of Algorithms. By
and large, this selection is a matter of personal taste. Numerous textbooks,
written at varying levels, convey the majority of the material in this chapter.
Readers should choose the one they feel most comfortable with.

Not covered in most textbooks is I/O complexity. The seminar paper here
is McKellar and Coffman, 1969, “Organizing Matrices and Matrix Opera-
tions for Paged Memory Systems”. Chapter 7 of Leiss: Parallel and Vector
Computing, A Practical Introduction, gives an overview of I/O complexity
and I/0 management. This book also contains some comments about par-
allel complexity.

2We consider a concept orthogonal to another one if the two are independent of each other. We
can talk about worst-case or average time complexity; we can talk about worst-case or average
space complexity; we can throw bit and word complexity into the mix and have three indepen-
dent dimensions to manipulate.
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Exercises
Exercise 1

Statement counts of entire algorithms or programs are composed of state-
ment counts of individual program statements. This exercise addresses the
constructive aspects of such a process.

For each of the following program statements, determine the best case and
the worst case complexity, assuming that each simple instruction si (condi-
tion, assignment) takes one unit of time. Give your answer as an interval
[best, worst] in each case.

a. Straight-line code: si;;...;si,

b. Conditional: if cond then list; else list,, where cond is a simple
condition and list; is a list of n; simple instructions, i = 1,2

c. For-loop: for i:=k to | by m do list, where list is a list of n simple
instructions

d. While-loop:

Qu:=[gqy; ... qJ; We assume that the elements qi are all taken from
a universal set U, consisting of n elements.

while Qu not empty do

{ remove the front element q of Qu;
compute a new element p in U, based on q;
if p has not yet been considered, append p to Qu

}

One must make assumptions about two aspects: the amount of work
required to compute p when given g and the test of whether p had been
already considered. The first is entirely arbitrary, say N simple instructions,
but the second is not. Since the universal set has n elements, the most effective
way (assuming 7 is of manageable size) is to allocate a boolean array AU[1:n]
that records whether item g; has been considered by setting AU[{] to true
(AU is initialized to false). This operation must be factored into the deter-
mination of the statement count for this code fragment.

e. Once these basis cases are established, we can combine them into
more complicated statements. For example, consider:

sil; if ¢, then {siysi;} else if ¢, then {si,;sis;si.} else si,;
for i:= k to ] by m do if c; then {sigsiy} else {si;y;siy;siio)

© 2007 by Taylor & Francis Group, LLC



32 A Programmer’s Companion to Algorithm Analysis

Exercise 2

Consider the instructions in Exercise 1, but now determine the average
complexity. This requires making assumptions about the likelihood of certain
conditions to hold true. Note that for any assumption, your answer must lie
within the interval [best, worst]. Assume that:

a. Each condition has a 50% chance of being true.
b. Each condition has a 25% chance of being true.
c. Each condition has a probability of 1/n of being true.

Exercise 3

Consider the following statement counts, expressed as functions of the pos-
itive integer parameter n:

fi(n) = 2 + 51 + 10
fa(n) = [f1(n) /logy(n)] - [1n -logy(n) + 3n - 2]
fs(n) = fo(n)/f1(n)

fu(n) = [n +logy(m)] - f5(n)

f5(n) = fu(n)/1og,(n)

fo(n) = fu(n)/n

a. Determine for each of these six functions f; the most appropriate
complexity class 9, jefl,...,8}. Also, determine whether f; = of for
that complexity class.

b. Show that the following assertions are all false: f,(n) = n; f,(n) = n?

fuln) = m; fs(n) = n.

Exercise 4

Formulate an algorithm and determine its best-case and worst-case com-
plexities for the following problems:

a. Find the third largest of a set of n (= 3) numbers.

b. Find the first instance of an element that occurs at least three times
in a sorted linear list with n elements.

c. Find the first instance of an element that occurs at least three times
in an unsorted linear list with 7 elements.
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d. Find the first instance of an element that occurs exactly three times
in a sorted linear list with 7 elements.

e. Find the first instance of an element that occurs exactly three times
in an unsorted linear list with n elements.

Exercise 5

Consider the questions in Exercise 4, but determine the average complexity
under the following assumption: The elements in the linear list are all taken
from a universal set with N elements, and the likelihood of an element being
in any location in the list is 1/N. Note that your answers will now depend
not only on the number 7 of list elements, but also on N.

Exercise 6

Assume each block is of size 256 words, the active memory set size is 64,
and the replacement strategy is pure LRU. Also assume that each array is
mapped contiguously into the memory space and the first array element is
the first element in its block. For each of the code fragments below, determine
the number of blocks transferred between main memory and disk:

a. for i:=1 to 65536 do AJi]:=A[65537-1]*A[i]
(assuming the array A is of type [1:65536])
b. for i:=1 to 1024 do
for j:=1 to 1024 do C[i,j] := A[ij] + BIi,;]
(assuming the [1:1024,1:1024] arrays A, B, and C are mapped in
column-major order)

c. fori:=1 to 1024 do
for j:=1 to 1024 do C[i,j] := A[ij] + BIi,;]
(assuming the [1:1024,1:1024] arrays A, B, and C are mapped in row-
major order)

d. fori:=1 to 1024 do

for j:=1 to 1024 do C[i,j] := 0.0;
for i:=1 to 1024 do

for j:=1 to 1024 do

for k:=1 to 1024 do
C[ij] := C[ij] + A[L,k]"B[k,j]

(assuming the [1:1024,1:1024] arrays A, B, and C are mapped in
column-major order)

e. fori:=1 to 1024 do
for j:=1 to 1024 do C[i,j] := 0.0;
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for i:=1 to 1024 do
for j:=1 to 1024 do
for k:=1 to 1024 do
Clij] = Cli,j] + A[i,k]*B[k,j]
(assuming the [1:1024,1:1024] arrays A, B, and C are mapped in row-
major order)

f. for i:=1 to 1024 do
for j:=1 to 1024 do
Clijl := CIji] + A[jAI*BIji]
(assuming the [1:1024,1:1024] arrays A, B, and C are mapped in
column-major order)

g. fori:=1 to 1024 do
for j:=1 to 1024 do
Clijl = CIj,i] + Afji]"Bjil
(assuming the [1:1024,1:1024] arrays A, B, and C are mapped in row-
major order)

Exercise 7

Determine for the following code how many pages are transferred between
disk and main memory, assuming each page has 1024 words, the active
memory set size is 300 (i.e., at any time no more than 300 pages may be in
main memory), and the replacement strategy is LRU (the least recently used
page is always replaced). Also assume that all 2D arrays are of size [1:1024,
1:1024], with each array element occupying one word, provided the
[1:1024,1:1024] arrays A, B, and C are mapped into the main memory space:
(a) in row-major order and (b) in column-major order:

fori:=1to 1024 do
forj:=1to 1024 do
{ Alijl:=AlLi1"BILj]; BIi,jJ:=C[N-i+1,]]"Ali,j] }

Exercise 8

Reexamine the following algorithms that we analyzed using word complex-
ity and determine their bit complexity, assuming that each element involved
has m bits. Pay attention to the fact that operations such as comparing two
elements and adding or multiplying two numbers no longer take O(1) time,
but that the time now depends on m.

a. Determining the largest of n elements (Section 1.2)
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b. The two scenarios of finding an element in a linear list, depending
on probability assumptions (Section 1.3)

¢. Matrix multiplication of two [1:n,1:n] matrices

Exercise 9

Determine a lower bound on sorting #n m-bit numbers by comparisons using
bit complexity.

Exercise 10

Formulate a comprehensive algorithm that implements the argument made
at the beginning of Section 1.9 to improve the computation of the stencil
discussed at length in Section 1.6. Specifically, outline how under the stated
assumption about the amount of available memory, the blocks should be
sized and how the strategy for retrieving and storing back blocks is to be
implemented. Then carefully analyze the number of block transfers, keeping
in mind that only dirty blocks (blocks that have been written to since they
were fetched from disk) need to be written back before they are replaced by
other blocks.

Exercise 11

In the stencil example in Section 1.6, we assumed that there was a new matrix
M’ that we had to compute. It is frequently not necessary to have a second
matrix. It might be acceptable to compute the result of applying the stencil
in place, that is, using the same matrix M to store the new values. This creates
problems since we must ensure that the old values of M, not the new ones,
are used in the computations of the stencil. Thus, some temporary space
must be allocated for this purpose, even though we do not need an entire
matrix M' for this.

Formulate an algorithm to incorporate this idea and determine its I/O
complexity, along the lines of the argument advanced in Section 1.6.
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2

Fundamental Assumptions Underlying
Algorithmic Complexity

About This Chapter

In this chapter we formulate explicitly the assumptions underlying the com-
plexity analysis introduced in the previous chapter. We discuss their impli-
cations and show that their effect is a significant simplification of
determining desired performance measures of an algorithm. Many of the
assumptions relate to some form of uniformity, be it uniformity in the way
operations are counted, uniformity in accessing memory, or uniformity in
the validity of mathematical identities. We also reexamine the asymptotic
nature of the functions that result from determining complexities. While
most of these aspects appear fairly innocuous, their discussion sets up the
exploration in Part 2 of whether these assumptions remain valid when
designing software based on the analyzed algorithms.

2.1 Introduction

In the previous chapter we established a conceptual framework for analyzing
the performance of algorithms. In doing so we sidestepped several important
issues and assumptions that are vital for the relative ease with which we
manage to carry out this process. It is now appropriate to examine these
assumptions in greater detail.

37
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2.2 Assumptions Inherent in the Determination of Statement
Counts

The first leap of faith we had to make when developing the theory of
operation or statement counts had to do with the assertion that all statements
are comparable in complexity. This obscured a number of rather thorny
issues, which we attempt to clarify here. First at issue is the question of what
operations can be considered atomic. Closely related is the area of memory
access, in particular, its random access property that is implicitly assumed
whenever we deal with algorithms.

At the heart of the assumptions of this section is the equivalence of atomic
operations and statements. Recall that our treatment in Chapter 1 suggested
that a statement essentially consists of no more than a constant number of
atomic operations. Since the asymptotic nature of our performance measures
allows us to hide constant factors, the fact that one statement may consist
of several atomic operations may be conveniently swept under the rug —
provided we can ascertain that the number of operations involved in a
statement is indeed a constant; that is, it must be independent of the data
structure to which the operations are applied. This is neither obvious, nor
is it always true. Therefore, we must delve a bit deeper into this question.

First we must clarify what we mean by atomic operation. We have already
obfuscated a bit by introducing two notions of complexity: bit and word
complexity. An atomic operation in bit complexity is simply an operation
that involves a single bit of each of its operands. Note that we usually assume
that operations are binary, so there would be two bits involved, one from
each of the two operands. However, there are also unary operations (for
instance negation) as well as operations with more than two operands. At
any rate, an atomic operation (in either bit or word complexity) can have
only a fixed constant number of operands. An analogous definition applies
to word complexity, but now the operation applies to a word rather than a
single bit of each operand. As indicated, this is somewhat confused because
the word length is not necessarily fixed across different architectures. On the
one hand, there are 16-bit words, 32-bit words, and 64-bit words in different
architectures; on the other hand, by its very nature, word complexity will
assume that the word is long enough to accommodate whatever space is
needed for a given data item, say an integer or a real number.

As we pointed out in Section 1.4, we need at least [ log,(n) | bits to represent
n different numbers, but in word complexity, the space for such a number
is simply considered one word, and an atomic operation on such words is
assumed to take one unit of time. This is where the two complexity measures
differ; if we have words of length m, an operation such as comparison of
two words (numbers) takes one unit of time using word complexity, but m
units of time using bit complexity. For other operations, such as multiplica-
tion of numbers, the difference is even greater. Thus, an operation that would
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be considered atomic within the context of word complexity might not be
viewed as atomic under the rules of bit complexity. Therefore, it is very
important to be aware of the context (bit or word complexity), as the atom-
icity of an operation depends on it.

It is instructive to contrast this with the mathematical operation of adding
two-dimensional (2D) matrices. This operation is not atomic under the rules
of either bit or word complexity. Ultimately, the reason is that the size of the
matrices affects the amount of work required to carry out this computation.
Clearly, if the two matrices are [2,2], less work is required to add them than
if they are of size [1000,1000]. In general, if the two matrices are of size
[1:n,1:n], we need n? additions of two scalar numbers, so even under word
complexity rules, the time complexity is O(n?). Under bit complexity rules,
the length of the scalars must also be considered. Assuming it is m (and
ordinarily m > log,(n), as there are 2-n? scalars!), the time complexity becomes
O(m-n?). Note that m here is not a constant that can be hidden in the order-
of notation, simply because it is not a constant — it generally depends on n
(increasing n requires increasing ).

Now we are ready to tackle statements. As long as a statement contains
only a fixed number of atomic operations, the equivalence (up to a constant
factor) of operations and statements is valid. This applies to both bit and
word complexity since it hinges on the atomicity of the operations (which
depends on the context). Typical statements might be

X:=2X+1,

where X is a scalar (valid for word or bit complexity, as long as X is a scalar
within the word or bit context) or

Clijl = Clij] + Al k]*B[kjl,

where A, B, and C are 2D matrices (of arbitrary size; for bit complexity with
bit matrices and for word complexity with word matrices). The first state-
ment involves one multiplication, one addition, and one assignment. As we
pointed out, we consider atomic operations to be comparable as far as their
time requirements are concerned. This is a reasonable assumption because
in virtually all computer architectures, the time for a scalar multiplication is
only a few times, perhaps five times, longer than the time of an addition.?
In general, one may assume that the basic arithmetic operations are compa-
rable; that is, the effort required to do the slowest is only a small constant
times the effort to do the fastest.

! Boolean matrices are frequently represented as integer matrices. They would be an exception
to this rule of m > log,(1). Boolean matrices are, for example, used to represent graphs.

2 This uses the fact that the word length is limited to 16, or 32, or 64 bits. This is of course true
for all of today’s commercial architectures (as of 2005). However, this statement would no longer
be valid if arbitrarily long words were supported by a specific architecture.
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Assignment is much more complicated. The converse of assignment,
retrieval, is equally thorny. The issue is one of access to memory, whether
we want to retrieve data or store data. Ordinarily, this issue is avoided since
we concentrate on operations, without worrying where the values come from
or where the results are stored. Underlying this lack of concern is the fun-
damental assumption of algorithm analysis that memory accesses are simple,
cheap, and fast. Consequently, one invariably assumes that retrieval of argu-
ments and storing of results can be subsumed in the time required to carry
out the operations at hand; in other words, retrieving and storing is consid-
ered equivalent to carrying out an atomic operation (under either bit or word
rules). This is an assumption that bears careful examination.

We will distinguish between access to simple variables, such as the variable
X in the first statement above, and access to elements of more complicated
structures, such as the array elements in the second statement. To simplify
the presentation, let us assume that we are considering word complexity
only.

In virtually all commercial computer architectures, access to a unit of
memory takes an amount of time that is comparable to (i.e., within a rela-
tively small constant factor of) the time required to carry out an atomic
arithmetic operation, provided the unit resides in main memory. This holds
because main memory possesses the random access property (RAP). This
means that any unit in main memory has a unique index, that specifying
this index provides access to the content of the unit thus indexed, and that
the time to carry out this access is independent of the value of that index.
Whether the value of the index is large or small makes no difference in the
access time. Thus, the RAP is crucial for uniform memory access. It is the
primary reason why it is justified to treat retrieval of a value from main
memory and storage of a value in a unit in main memory as atomic opera-
tions. Since access to simple variables in main memory conforms to this
paradigm, it follows that both retrieving the value of a simple variable and
storing the value of a simple variable requires an amount of time that is
comparable to that required by any other atomic operation.

Main memory possesses the RAP, but not all data structures preserve it. Even
though all of our data structures may reside in main memory, whether a
structure preserves the RAP depends on the nature of the structure. For
example, a linear list does not preserve the RAP. Access to the first element
of a linear list is direct, but access to the 50th element is not. We must first
visit the first element, then proceed from it to the second, from there to the
third, and so on, visiting every one of the preceding 49 elements of the linear
list before we finally reach the 50th. Most seriously, access to the last element
of a linear list with 7 elements requires time that is proportional to the size
of the linear list. Access to the nth element takes O(n) time even though the
linear list resides in main memory (which does have the RAP) and we have
a concrete index for the element we wish to access. Many data structures do
not preserve the RAP, for example all trees, stacks, and queues, making it
an important aspect of a data structure if it does preserve this property. In
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particular, it is very relevant for many applications that multidimensional
arrays resident in main memory do preserve the RAP, provided the mapping
into the memory space is carried out appropriately.

Any data structure must ultimately be mapped into main memory; other-
wise it cannot be used in a program since memory space must be allocated
in some way. In the following we will assume that the available main mem-
ory is sufficiently large to accommodate all the data that must be manipu-
lated by an algorithm, including not just the input and output data sets, but
also any intermediate sets that arise. Even if this assumption is satisfied,?
we still have to verify that the structure can be mapped into the main
memory space in a way that preserves the RAP. It is not too difficult to see
that preserving the RAP is equivalent to the following: When mapping the
structure into main memory, we effectively have to provide a method for
computing the index of each element in the data structure in main memory.
As the example of the linear list illustrates, this computation (namely, fol-
lowing a number of links) need not be simple, or independent of the size of
the structure. Thus, we must further stipulate that the time complexity of
computing this index has to be O(1) for all elements; in other words, only a
fixed (bounded) number of atomic operations are permissible for the calcu-
lation of the index of any element of the structure, regardless of its position
in that structure (e.g., first, middle, or last — easy for an array, difficult for a
linear list) and regardless of the size of that structure (e.g., computing the
index of A[i,j] must take the same amount of time whether A is a [5,5] or a
[5000,5000] matrix).

Here is why multidimensional arrays preserve the random access property.
Consider a k-dimensional array A of type [1:n,, 1:n,, ..., 1:n], for k > 1. * Two
standard memory mappings take a k-dimensional array and map it into the
one-dimensional (1D) main memory space, namely row-major and column-
major. To carry out a mapping of a k-dimensional space into a 1D space, it
suffices to show how every k-tuple I = (i}, 7,, ..., i) of indices satisfying
1< i]- <n forall j =1,..., k, is assigned a single index value v; such that the
following holds:

If I and | are different k-tuples, then v, # v

In other words, different array elements are assigned different indices in
the main memory space.

{ v; | I ranges over all valid k-tuples } = {1,..., ny-n,-...-m}.6

3 In Part 2 we will discuss at length what happens if this is not a valid assumption.

4 We assume that the lower bound in each dimension is 1. Changing this to an arbitrary integer
value, positive, negative or 0, does not change the complexity of the formulas below.

5 This means the mapping is injective.

¢ This means the mapping is surjective. A mapping that is both injective and surjective is called
bijective. We are therefore stipulating that our mapping be a bijection between the set of all valid
k-tuples and the set of all integers from 1 through n,-n,-...-1.
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In other words, the array has n,-n,-...-n; elements, and each of the values
from 1 to n;-n,-....m occurs as the unique index of a uniquely determined
array element. This implies that the mapping is as economical as possible,
since there are no gaps in the index set; every value between 1 and n,-n,-...-1;
represents some array element.

Let us first formulate the row-major mapping. We assume we are given
the valid k-tuple I = (i},i,,...,i;),” then the index v, corresponding to the k-tuple
Iis defined as follows:

VI,row = (11'1)'n2'. oy +
(iy-1)ng-....ny +
(i5-1)nye...my +

(%k-z'l)'nk-l'nk +
(-1 my +
ik-

The corresponding formula for the column-major mapping is as follows:

Vieol = () nyeeomyy +
(i~ nyeeomy, +
(- y-e.omy 5 +

(i-1)nym, +
(1) +
i;.

It can be verified that both formulas satisfy the two requirements listed
above. In both schemes, the k-tuple [1,1,...,1] is assigned the value 1 and the
k-tuple [n,,n,,...,n] the value n;-n,-...-n;, but for other k-tuples I, v, ,,, and v,
are usually different.

Note that we are ignoring the offset of the array. In general, the memory
space allocated to an array will not start at 1, but at its offset. Consequently,
when carrying out the mapping, everything must be appropriately shifted
according to the offset. In these formulas, we are also ignoring what happens
if there is not enough main memory available; in this case the mapping
specified by the formula is between the elements of the data structure and
the logical memory space (which knows no physical limitations, as it is not
physical), which must then be mapped separately into the available main
memory. This last mapping between logical memory space and main mem-
ory might, for instance, be carried out by virtual memory management.

As an illustration, let k = 4 and n, = n, = ny=n,= 2. Then there are 16 valid
4-tuples. Here are the two mappings:

7 Ak-tuple is valid if all indices fall within their proper ranges, thatis, 1 <7, <n,forallj=1,... k.
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= (ipizial) Virow  Vigol
1111 1 1
1112 2 9
1121 3 5
1122 4 13
1211 5 3
1212 6 11
1221 7 7
1222 8 15
2111 9 2
2112 10 10
2121 11 6
2122 12 14
2211 13 4
2212 14 12
2221 15 8
2222 16 16

We now verify that each of these two general mappings preserves the
random access property. This amounts to showing that the formulas can be
computed in constant time. Let us look first at the row-major scheme. As
written, there are k lines. In the first line, we have exactly k + 1 arithmetic
(atomic) operations (1 subtraction, 1 addition, and 1 + k — 2 multiplications,
where k — 2 of them are needed for the product of the n/s). The second
through the penultimate line all have the same pattern, except that the
product of the n/’s is progressively smaller and therefore needs fewer mul-
tiplications. Thus, line s requires k + 2 — s operations, s = 1, ..., k — 1. The
last line requires no operation. Adding all this up, we obtain (k? + 3k — 4)/2
or O(k?) operations. This can be improved if one observes that the most
significant contribution comes from the computation of the product of the
n's, which can be drastically reduced if we reorder the calculations by
starting with the penultimate line and working our way up to the first line.
In this scheme, we can obtain the product ngn,,,-....n; for any s from the
product ng,,-...-n, (which had been calculated in the previous line) by way
of a single multiplication (by 7). Summing the operation counts up for this
backward calculation results in 4k — 5 arithmetic operations, for k > 1, which
is O(k).

A similar analysis of the time complexity can be carried out for the column-
major scheme. This also results in a time complexity of O(k).

These results seem to present a problem: For both schemes, the time
complexity is dependent on k. However, a dependence on k is acceptable,
since the value of k does not affect the size of the k-dimensional array. In
other words, for a given value of k, either formula requires a number of
operations that is independent of the size of the array (even though it does
depend on k). Thus, k is considered fixed and is treated as a constant; for
the entire universe of k-dimensional arrays, the same number of operations
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is needed to compute the index. Therefore, either of the two schemes (row-
or column-major) preserves the random access property of the main memory.
Consequently, k-dimensional arrays preserve the RAP, as claimed.

Now we can return to looking at the second of our two statements above,
namely,

C[i,j] := Cli,j] + AlLK]*B[k,].

Assume that each of the three 2D arrays A, B, and C is of type [1:n,1:n].
Also assume that the mapping function is done using row-major. Then each
array reference requires a constant number of arithmetic operations: a fixed
number of arithmetic operations to compute the index into the main memory
space and, thanks to the RAP, a single direct access to the memory location
thus specified. Therefore, it is legitimate to consider such a statement to
consist of a constant number of atomic operations. So, we can finally con-
clude that this statement, within the rules of our game that allow us to hide
constant factors in the order of notation, can be viewed as requiring one unit
of time.

The upshot of this discussion is that we can properly view not only atomic
operations, but any simple statement to be of constant time complexity. We
must qualify this with the word simple since statements such as while loops
and do loops must be excluded, as they violate the goal of permitting exe-
cution in time O(1).

In Part 2 we will discuss in some detail how the programmer’s world
differs from the ideal world of the algorithm designer. Here we summarize
the latter’s salient features. All operations are comparable in complexity, all
simple statements are comparable in complexity, and, most importantly,
there is complete uniformity of access to memory. Most significantly, the
uniformity of memory access will turn out to be due primarily to our earlier
assumption that we have enough main memory available to do whatever
we want to do.

2.3 All Mathematical Identities Hold

It may appear that we are belaboring the obvious, but this is the proper place
to emphasize a fundamental assumption when designing algorithms,
namely that all mathematical identities remain valid. This includes basic
properties of numbers, such as:

1. Commutativity: a + b = b + a and a*b = b*a for any numbers a and b.

2. Associativity: a + (b + ¢) = (a + b) + c and a*(b*c) = (a*b)*c for any
numbers a4, b, and c.
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3. Distributivity: a*(b + ¢) = a*b + a*c for any numbers 4, b, and c.

This is primarily of interest when one talks about word complexity since
in essence these properties hold precisely because we are assuming that
limitations owing to word length are ignored.® A direct consequence of this
assumption is the absence of rounding errors and overflow and underflow
conditions; it is often even acceptable to ignore otherwise fatal occurrences
such as division by zero when designing algorithms, as long as the general
gist of the algorithm is not affected.

It should be clear that this simplifies the design and analysis of algorithms.
It stems from the more mathematical nature of algorithms, which places it
in opposition to programs. We will return in Part 2 to the significant diffi-
culties that this aspect of algorithm design can cause for the designer of
software.

2.4 Revisiting the Asymptotic Nature of Complexity Analysis

An important aspect of the discussion in Section 2.2 about the equivalence
of operations and statements is the inherently asymptotic nature of complex-
ity analysis. It should be clear that there are large differences between the
time required to carry out different operations or statements. To illustrate
this graphically, for the purpose of complexity analysis, the following two
statements are both assumed to take one unit of time:

X:=1;
Alijkm] := B[i-1,T[j],k,m] + B[i,T[jl,.k,m] + B[i+1,T[j] k,m],

where X is a simple variable, A and B are 4D arrays of type [1:n,1:n,1:n,1:n],
and T is a 1D integer array of type [1:1]. This is true even though examination
reveals that the second statement is composed of over 50 operations, while
the first has only a single one — the point being that 50 is a fixed constant.
More extreme examples are easily concocted.

It is of course true that in a typical algorithm, there are far more statements
of the first kind than of the second, so on average, the 50-operation outlier

8 In the case of bit complexity, we are always aware of the limitations, but only to the extent that
they force us to extend the length of the numbers. Thus, for bit complexity, overflow conditions
do not exist. They simply mean that the length of the sequences used to represent numbers
increases, which presents no problem because this length is a parameter in the analysis in the
first place. An overflow condition occurs if the result of an operation is too large to be represent-
able using the given number of bits. For example, if we have 16-bit words, adding
1111000011110000 and 1111000011110000 yields overflow since the result is a 17-bit number
(11110000111100000), which cannot be represented as an integer using 16 bits.
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is smoothed out by the preponderance of very cheap statements. Again on
average, we may have somewhere between four and six atomic operations
per statement in a typical algorithm. Still, this is a constant of a significant
size that is being hidden in our order of notation. Moreover, this is almost
unavoidable — unless we want to expend dramatically more effort on deter-
mining the computational complexity of our algorithms. This is usually quite
undesirable, especially in the case of algorithms, where even using all the
simplifications that these assumptions afford us, the difficulty of arriving at
an acceptable asymptotic complexity is nontrivial.

It is important to realize that even for worst-case complexities, the asymp-
totic nature of our analyses introduces an averaging effect. Make no mistake
— the reason we are able to get away with this is the constant-hiding ability
that we acquired in going to asymptotics. Moreover, while the difference
between average and worst-case complexities frequently amounts to more
than a constant factor gap, the peculiar way in which we determine time,
through counting statements that seemingly are wildly different in complex-
ity, guarantees us (always assuming we are somewhat circumspect in making
sure that our statements are indeed simple) that we will never be off by more
than a constant factor.!” This is the ultimate elegance that asymptotic com-
plexity of algorithm analysis bestows on us.

2.5 Conclusion

Much of this chapter lays the groundwork for an examination of the differ-
ences between the ideal world inhabited by algorithm designers and the real
world of software production. This investigation will take place in Part 2. It
is important to be aware of the idealizing assumptions that algorithm design-
ers are able to exploit.

First is the uniformity of memory access. This goes well beyond the pres-
ervation of the random access property enjoyed by main memory and creates
an almost idyllic situation where memory hierarchies are completely absent.
One may be tempted to argue that memory hierarchies could be dealt with
in the same way in which we dealt with the significantly different kinds of
statements we contrasted in the previous section. However, on closer inspec-
tion this will turn out to be impractical.

¢ It may also be counterproductive, since different architectures with their instruction sets may
demonstrate substantial differences in performance. We may have two simple statements S1 and
52 in an algorithm, and in architecture AR1, S1 might take 10 times as long as S2, but in AR2, the
two statements take the same amount of time. Being too precise in looking at simple statements
(that is, making distinctions between slow and fast simple statements) is thus shown to be quite
unhelpful.

10 As one might suspect, how big this constant factor is will depend on the target platform (archi-
tecture plus instruction set).
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A second advantage enjoyed by algorithms is the equivalence of state-
ments and operations. This is almost exclusively due to the asymptotic
nature of our complexity analysis, which allows us to hide substantial, but
bounded, differences in the underlying notation.

A third advantage stems from the fact that certain properties and identities
carry over from mathematics. This is because algorithms ignore length lim-
itations in the representation of numbers without problems. In the case of
bit complexity, the length of the representation is a parameter and thus gets
factored into the analysis if it needs to be increased. In the case of word
complexity, we assume that words, by definition, are long enough so that
whatever we want to do can be done without concern for errors or over-
and underflow conditions.

Bibliographical Notes

The same books that were cited for Chapter 1 are applicable here. After all,
Chapter 2 deals with fairly common aspects of algorithm analysis. The one
exception might be the mapping from arrays to the main memory space; it
and the discussion of the random access property can be found in most
compiler text books, for example in Aho, Sethi, and Ullman: Principles of
Compiler Design; Muchnik: Advanced Compiler Design and Implementation; and
Zima and Chapman: Supercompilers for Parallel and Vector Computers. What
is different here is our stress on the difference between the algorithm
designer’s world and the world of the programmer. While these textbooks
are aware of the assumptions, they do not pay a great deal of attention to
them, since they are the standard assumptions underlying all algorithm
design.

Exercises
Exercise 1

Determine the exact number of atomic operations (arithmetic operations and
memory accesses) required to execute the following statements:

a. X =X+1

b. A[i] := B[j]*C[k], where A, B, and C are 1D arrays of type [1:n] and
offsets off,, offs, and off., respectively.

c. Alij] == Alij] + B[ik]*A[k,j], where A and B are 2D arrays of type
[1:n,1:n] and offsets off, and off;, respectively.
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d. Alijkm] = Alijkm] + B[ikjm]*Alkj,im], where A and B are 4D
arrays of type [1:n,1:n,1:n,1:n] and offsets off, and offy, respectively.

Exercise 2

Repeat Exercise 1, but now determine the bit complexity of each of the
statements (instead of the word complexity, which was effectively calculated
in Exercise 1). Assume that the array elements use m bits and assume that
the indices use the minimum number of bits required to represent them (that
is, Llogz(n)J + 1; note that this number and m are independent of each other,
as m could be 1, reflecting that we deal with Boolean matrices). Also, pay
attention to the number of bits required to compute the indices into the
memory space. Finally, remember that the arithmetic operations involved in
the index calculations have a bit complexity substantially higher than O(1).

Exercise 3

Determine with concrete examples which of the three basic properties of
numbers listed in Section 2.3 (commutativity, associativity, and distributiv-
ity) hold for:

a. Fixed-point numbers (integers)
b. Floating-point numbers (reals)
c. Boolean numbers



3

Examples of Complexity Analysis

About This Chapter

We begin with a review of techniques for determining complexity functions.
Then we apply these techniques to a number of standard algorithms, among
others representatives of the techniques of divide-and-conquer and dynamic
programming, as well as algorithms for sorting, searching, and graph oper-
ations. We also illustrate on-line and off-line algorithms.

This chapter concentrates on techniques for determining complexity mea-
sures and how to apply them to a number of standard algorithms. Readers
who have substantial knowledge of algorithm complexity may skip this
chapter without major consequences. We first review approaches to finding
the operation or statement count of a given algorithm. These range from
simple inspection of the statements to much more sophisticated recursion-
based arguments. Then we examine a number of standard algorithms that
should be known to all computer scientists and determine their complexity
measures, mostly time complexity and usually worst-case.

3.1 General Techniques for Determining Complexity

Suppose we are given an algorithm and want to determine its complexity.
How should we do this? If the algorithm were given as a linear sequence of
simple statements (so-called straight-line code where every statement is exe-
cuted once), the answer would be trivial: Count the number of statements —
this is its time complexity. Of course, such an algorithm would be utterly
trivial. Virtually all algorithms of any interest contain more complex state-
ments; in particular, there are statements that define iteration (for loops, while
loops, repeat loops), statements that connote alternatives (if statements, case
statements), and function calls, including those involving recursion.

49
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Iteration: The most important aspect is to determine the number of
times the body of the iterative statement is executed. In the case of
for loops, we may be able to do this exactly. In other cases, we may
only be able to determine an upper bound on, or some other type
of estimate of, the number of iterations that will be performed. The
quality of this upper bound or estimate will affect the quality of our
analysis; a tight upper bound will usually give us a better complexity
measure than a loose one. Once we have determined or estimated
the number iterations, the statement count of the loop is then that
number of iterations times the statement count of the body of the
iteration statement. It is usually necessary to factor into this process
the type of complexity we are interested in. If we want worst-case,
then we must determine an upper bound; for average complexity, a
good estimate may be preferable.

Alternatives: Again, this depends on the desired type of complexity.
For worst-case complexity, we must determine the complexities of
all the alternatives and take the maximum of them; for average
complexity, we use the average of these complexities. (Recall
our discussion of average in Chapter 1; it is important to be aware
of what exactly average means within the context of a given
algorithm.?)

Function calls: If no recursion is present, we simply determine the
complexity of executing the function in dependence of its arguments,
that is, using (one or more of) the function’s arguments as para-
meters for our measures. Then we must integrate this into the overall
complexity analysis of the algorithm. If recursion is involved in the
function call, more powerful techniques are needed.

Recursion: A function F is called recursive if its body contains a call to
itself. An important aspect of recursion is that it has to terminate;
this implies that the argument? must change for this to be achieved.
Intuitively, that argument must evolve toward one of possibly sev-
eral basis cases, and for each of these basis cases, the recursion stops,
that is, no more calls to F occur. In most practical situations, the
argument of F decreases until it hits a threshold when F returns
without further recursive calls. The way in which this decrease hap-
pens is crucial for our task of determining the complexity of the call
to the recursive function.

1 Thus, for the statement if cond then s, else s,, the probability of cond to be true determines how
likely s, is executed in preference over s,. One should not automatically assume that cond is true
50% of the time (merely because true is one of two possible values cond may take on; but see the
discussion in Section 6.6 about initialization).

2 We assume here for the sake of simplicity that our function F has just one argument or para-
meter; if more arguments are present, an analogous statement must hold. Typically, this single
argument is a function of the size of the input set.
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Let us make this a bit more concrete. Let F(n1) be the function, with the
argument n being the size of the input set. Thus, 7 is an integer and n > 0. Let
us assume that for all values of n, at most 1, no recursion, occurs; in other
words, for all n < ny, we have basis cases. Here, 1, is some fixed nonnegative
integer. Conversely, for all n > 1, one or more recursive calls to F occur in F’s
body. Let us assume that there are exactly r recursive calls, for r = 1, a fixed
value. It should be clear that in this formulation, termination of the call F(n) is
assured precisely if the argument of each of these r recursive calls to F is strictly
less than 1.3 . In determining the complexity of F with argument 7, it is crucial
to know the decrease of the argument in each of these recursive calls. Let us
write down schematically what we need to know of F:

F(n)
If n < n, then do basis case
Else
{...; F(ny (first recursive call to F, with argument n, < n)
...; F(ny) (second recursive call to F, with argument n, < n)
...;F(n) (rth recursive call to F, with argument n, < n)
}

We must now distinguish several cases according to the number r of calls
and according to the nature of the decrease of the argument #.

Case 1

Each of the n; is equal to n — ¢, where c is a fixed integer constant, for all j
=1, ..., r: Then for r > 1, the (worst-case time) complexity of computing F(n)
is at least rO™; that is, it is at least the number r raised to a linear function
of n.*If r = 1, then the complexity of computing F(n) is at least O().> In each
of these situations, what complicates things is the elided stuff (the “...” in
the schematic above). If these statements together have a complexity that is

3We use here that n is an integer; otherwise this statement about termination is no longer true,
as the following counter example indicates: Consider the function

F(x): if x > 0, then do basis case else F(x/2).

When called with an argument x > 0, the function call F(x) does not terminate as an algorithm,
since the argument x will never be equal to 0. Successive division by 2 of a positive value will
always result in another positive value. However, it would terminate when implemented as a
program, since eventually the argument will be so small that it will be set equal to 0 (by rounding
error), but the number of recursion calls is unpredictable and clearly dependent on the word
length of the parameter x.

4 Let T(n) be the time required to execute the algorithm, assuming the elided statements take
O(1) time. Then we can write: T(n) = r-T(n — ¢) + O(1) for all n > n,, and T(n) = C, otherwise, for
C, some constant. From this, one shows by induction on  that T(n) = A¢=10/+00) which proves
the claim.

5 Let T(n) be the time required to execute the algorithm, assuming the elided statements take
O(1) time. Then we can write T(n) = T(n — c) + O(1) for all n > n,, and T(n) = C, otherwise, for C,
some constant. From this follows the claim.
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O(1), the complexities are exactly ™ (for r > 1) and exactly O(n) (for r = 1).
If the complexity of the elided statements is greater than O(1), then the
resulting complexity may increase accordingly.

Typical examples of these situations are the Towers of Hanoi,* where r =
2, and computing the factorial function” n! recursively (r = 1).

A similar result is obtained if the constant ¢ depends on j, that is if n;
n-c, where ¢ is a constant, for all j = 1, ..., . Specifically, the (worst-case
time) complexity remains at least 7O if r > 1 and at least O(n) if r = 1. A
typical example is provided by the Fibonacci numbers.?

Case 2

A more interesting case happens when forallj=1, ..., 7, the n; are not reduced
by some constant subtrahend, but each #; is a fraction of n. More specifically,
assume that the elided statements have a time complexity of b-n, where b is
a positive constant. Also assume that forallj=1, ..., 7, n=n /¢, where c is
another positive constant, with ¢ > 1. Finally, we assume that the basis case
(i.e., when there is no recursive call) is of complexity b (the same b as before)’
and that 1, = 1.1° In this case, we can formulate the time complexity of F as
follows. Let T(n) be the time complexity of F(n). Then we can write:

T1) = b

¢ The Towers of Hanoi is a famous game. We are given n disks of different sizes and three pegs.
The n disks reside initially on the Start peg. The task consists of moving the 1 disks to the Des-
tination peg, using the Auxiliary peg. Movements are constrained as follows: (1) We may move
only one disk at a time. This disk must be the top disk on a peg; it may be moved to any other
peg, subject to: (2) No larger disk may ever be placed on top of a smaller disk. Here is an algo-
rithm that solves the problem of moving the n disks from St to De:
Basis case: If n=1, move disk 1 from St to De else
Recursion: { move recursively the smallest n-1 disks from St to Au;

move the largest disk n from St to De;

move recursively the n-1 smallest disks from Au to De

}

The complexity of the Towers of Hanoi problem is O(2") since precisely 2" — 1 moves must be car-
ried out to get the n disks from St to De.
7 Here is the algorithm for nonnegative n: If n=0 then n!=1 else n!=n-(n-1)! .
8 The Fibonacci f, numbers are defined as follows: f; =1,f,=2,f,=f,, + f,, forn > 2. Here r =
2,¢; =1, and ¢, = 2. While it is not properly part of this discussion, we cannot resist pointing out
that just because we can do something recursively does not mean it is always a good idea. In fact,
it is a truly terrible idea to compute the Fibonacci numbers recursively. (A similar statement
holds for the recursive computation of the factorial function.) The reason should be obvious: As
the above theory indicates, the complexity of doing this is exponential in . It is a no-brainer that
the Fibonacci numbers can be computed in linear time in 7. (As a first cut, use an array with an
element for each of the n numbers. Initialize the first two elements with f; and f, and then com-
pute each of the subsequent elements by adding up the two previous ones. This then can be
modified to use only three simple variables instead of the array.) There is a fairly convoluted for-
mula that permits the computation of f, directly, resulting in a time complexity of O(log,(1)).
Really, we require that the time complexity of the basis cases be some constant b". If b’ is differ-
ent from b, then we replace b’ as well as b by max(b,b’) and everything goes through nicely.
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T(n) = r-T(n/c) + b-n,

reflecting that the problem T(n) is split into r problems of size n/c.!! Then
we can state for all values of n that are a power of c:

T(n)=0Mn) ifr<c
T(n) = O(nlogy(n)) ifr=c
T(n) = O(nlos®) if r > c.
While the statement is technically valid only for powers of ¢, one usually
assumes that for all other values of 1, corresponding results are obtained by
interpolation. Thus, assuming some degree of smoothness (which is ordi-

narily quite appropriate), one tends to omit the qualifier “n a power of ¢”
and acts as if this statement is true for all values of n.12

3.2 Selected Examples: Determining the Complexity of
Standard Algorithms

In order to get some facility in applying the techniques of the previous
section, we examine a few standard algorithms and determine their com-
plexity; for the most part, we are interested in their worst-case time com-
plexity. We first deal with two examples of divide-and-conquer algorithms;
these are techniques where one large problem is replaced by a sequence of
smaller instances of the same problem, plus some additional work. Specifi-
cally, we look at better algorithms for the multiplication of two m-bit integers
(using bit complexity) and of two [1:1,1:n] matrices (using word complexity).

10 This means we have exactly one basis case, namely # = 1. It also means we are guaranteed to
reach the basis case starting with a value 1 for n. Note that in this formulation, it is no longer cru-
cial that the n/s be integers; if the 1/'s really need to be integers, this can be achieved through
rounding n/c.
I The statement can be generalized. As stated, the additional work b-n in our formulation T(r)
=rT(n/c) + b-n is linear in 1. One can replace this with any complexity that is smaller than the
resulting complexity that is claimed for T(n). For example, if = 16 and ¢ = 2, the claim for T(n)
is O(n*); therefore, the additional work b-n can be increased to anything less than O(n).
12 Here is the proof of the three cases: If 1 is a power of ¢, then by repeated substitution of the
.......... (r/cy
converges to a constant, proving the first statement. If r/c = 1, then .y 100 (/€)' = Zilg,_joge(
o)i#lesc —1] / (r/c—1) = O(rlose®) = O(n'os<®), proving the third statement. The last equality, rlos<t)
= nlos<, can be verified as follows: Let nn = ¢° for some s = 1; then rlog<() = ysloge() = s and nloge) =
(c5)leBet) = cslogelr) = (cloge()s = s,
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3.2.1 Multiplying Two m-Bit Numbers

Consider the two m-bit integers x and y. We want to compute their product.
Assume that m is a power of 2. Instead of the technique sketched in Section
1.4, which has a time (bit) complexity O(m?), consider the following
approach: Break x and y into two halves each, x = a.b and y = c.d, where g,
b, ¢, and d each have m/2 bits. Clearly,

xy = @22+ 0b) - (¢c2"?+d) = a-c2" + (a-d + b-c)-2"/2 + b-d.

Thus, this approach to multiplying two m-bit numbers requires four mul-
tiplications and three additions of m/2-bit integers, plus two shift operations.
Now consider the following operations:

u=(@+0>b)-(c+4d);

z =0 2" +(u-v-w) - 2"? + w.

Note that the computation of u, v, w, and z requires a total of three multi-
plications of m/2-bit integers,’® plus six additions of m/2-bit integers and
two shift operations. The additions and the shifts require O(m) time. Thus,
we have the following expression for the time complexity of this method:

T(m) =k form=1;
T(m)=3-Tm/2)+k-m form>1,

where k is a suitable constant. Now we can apply the result of Scenario 2 in
Section 3.1, which yields

T(m) = O(m'°82®) = O(m'%9).14

Thus, this technique of multiplying two m-bit integers requires signifi-
cantly less time than the traditional approach. This appears to be counter-
intuitive since the O(m'*) method uses eight additional operations, whereas
the traditional method uses only five. It is therefore important to understand

13 We are fudging a bit here, as the multiplication (a + b)-(c + d) involves integers that could be of
length m/2 + 1, but this additional bit can be accommodated with only a small additional com-
plication.

14 We are not suggesting that log,(3) = 1.59, nor that O(m'°#2®) = O(m"*). The equal sign between
the last two is simply a matter of convenience that expresses an approximate equality. It can be
shown that for any > 0, m* is never O(m?), for all constants a > 0.
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that this additional effort pales in comparison with the savings that we
obtain. The crucial issue is that the resulting method for multiplying two m-
bit integers, and even more so the original starting point, which was O(m?),
has a complexity that is much larger than linear.

3.2.2 Multiplying Two Square Matrices

Consider the two [1:n,1:n] matrices A and B; we want to compute their
product, for instance, in the matrix C. The traditional method consists of
three nested loops:

fori:=1,...,n
forj:=1,...,n
{ CIlijl:=0;
fork:=1,...,n

C[i.j] = C[i,j] + Ali.K]*B[k,]]

The k-loop contains one simple statement, and the j-loop contains one simple
statement and the k-loop; therefore, the total number of simple statements
to be executed is 1 + n2.15 Thus, the time (word) complexity of this approach
is O(n®).

While one might be convinced that this cannot be improved upon, one
would be very wrong. Consider the following, seemingly irrationally, con-
voluted approach. Let 1 be a power of 2. Represent the three matrices A, B,
and C by their four quarters:

A=(A11 AlZJ B=(Bll B12J Cz(cll ClZ]
A21 A22 B 21 B 22 C21 C22

Thus, the traditional scheme of multiplying matrices would correspond to
the following computations:

Ci = Ay*By + Ap*By Copi= Ay*Byy + A*Byy;

Cy1 = AyByy + Ap*By Cyp i= Ay*Byy + Ay*By,

15 Tt is traditional to ignore the work associated with loop control (incrementing the loop indices
and comparing them against their upper and lower bounds). We follow this tradition here; it is
justified by the fact that constant factors are hidden in the order of notation, since clearly the
innermost loop dominates (as long as it does contain at least one simple statement that is exe-
cuted).
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which consists of eight multiplications and four additions of quarter matrices
(matrices of type [1:n/2,1:n/2]).
Instead of this traditional scheme, consider the following computations:

Sy = AntAy S, =8 -Ay Sy =An - Ay S, =Ap -5y
Ss := By, — By S¢ := By, — Ss S; =B, — By, Sg :=S¢— Byys
M, = 5,*S¢ M, == A *By M; = A,*By M, = 5;*S,;
M := 5;*S; Mg := S*By, M, := A,)*Sg;

T,:=M, + M, T,:=T, + M,

Now one can verify (with considerable effort, but involving only elemen-
tary arithmetic) that the following holds:

Ch=M,+M, Cp=T+M;+M, Cu:=T,-M, Cu:=T,+ M,

We conclude that instead of carrying out eight multiplications (plus four
additions) of matrices of size n/2 by n/2, which the traditional approach
would have us do, this new approach requires seven multiplications of
quarter matrices (the computations of the 7 M/’s), plus 15 additions and
subtractions of quarter matrices. Let us determine the time complexity T(r)
of this approach. Since we are replacing the problem of multiplying two
matrices of measure 1 by multiplying seven matrices of measure 1/2, plus
additional work that is no larger than O(n?), we can state:

T(n)="b forn=1;
T(n) =7Tn/2) + 15-(n/2)? for n>1.

Applying a slight generalization of Case 2 in Section 3.1 (see the first
footnote on page 53), we obtain the following (word) complexity:

T(n) = O(n'os) = O(n281).16

It is important to understand that O(n?8!) is much better than O(1%), even
though the additional work, hidden in the constant, is larger. Thus, from a
theoretical point of view, the O(n?8!) algorithm is far superior to the tradi-
tional one. Whether this is also true from a practical point of view will be
examined in Part 2.

16 A caveat analogous to second footnote on page 54 applies.
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Our next example is a representative of dynamic programming. This is a
general technique for designing algorithms in which intermediate results are
computed at one stage and combined to determine the intermediate results
for the next stage. While network flow would probably be a more appropriate
example, it tends to be fairly complicated to develop the algorithm. (Note
that Dijkstra’s algorithm, covered in Section 3.2.13.1, is also of this type.) For
this reason, we examine instead the (practically much less important)
question of determining an optimal computation order when multiplying
matrices.

3.2.3 Optimally Sequencing Matrix Multiplications

While most matrix multiplication is concerned with square matrices, matrix
multiplication is much more general. We can multiply a matrix of type
[1:p,1:9] with one of type [1:s,1:t], provided g = s; these matrices are compat-
ible.”” Let us denote by M, , a matrix of type [1:p,1:q]. Multiplying the
matrices M, , and M, , by the traditional method (three nested loops) requires
p-q-r scalar multiplications (as well as a comparable number of additions).
We will use the number of scalar multiplications as a proxy for the time
complexity of this problem. Matrix multiplication is associative, that is
(A*B)*C = A*(B*C) for all compatible matrices A, B, and C. Therefore, given
a sequence of compatible matrices, this sequence can be multiplied in dif-
ferent ways. For example, the product M;;*M;,*M, ;*M, ; can be parenthe-
sized as [M;55* (M3, M, ,)]"M, 4 or (M55*M;,)*(M, 4*M, ), among other ways,
all of which yield the same result (owing to associativity). Interestingly, it
turns out that different evaluation orders require different numbers of scalar
multiplications; that is, they have different time complexities. In our exam-
ple, the first order requires 192 scalar multiplications (3-1-4 + 5-3-4 + 5-4-6,
reflecting the operation M;,*M, ,, which results in a matrix of type M;, and
requires 3-1-4 multiplications, followed by the operation M;;*M,;,, which
results in a matrix of type M;, and requires 5-3-4 multiplications, and con-
cluding with the operation M;,*M,,, which yields the final result of type
M;, and requires 5-4-6 multiplications), while the second evaluation order
requires only 69 (5-3-1 + 1-4-6 + 5-1-6). This immediately raises the question
of determining the best evaluation order when asked to multiply a sequence
of n compatible matrices:

M

PP’ MP21P3" 4 MPn/PnH :

One approach consists of trying out all possible orders. This would result
in a time complexity that is exponential in the number of matrices. A better
way is to set up an array S of type [1:n,1:n] and store in the element S[i ]

17 Unfortunately, if the matrices are not square, no nifty multiplication algorithm like the one
given in Section 3.2.2 is known. Thus, we are stuck with the traditional method (three nested
loops) of multiplying matrices.
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the optimal number of scalar multiplications required to compute the prod-
uctM, . *...* M .18 This makes sense only for i < j. For i = j, that number
is 0; also, if i = j- 1 there is nothing to be decided, as only two (adjacent)
matrices are involved and the optimal number of scalar multiplications
needed for this is p;p;,;pi.»- It follows that for i = j and for i = j — 1, we can

initialize our matrix S:
i:=1,...,n:5[ii]:=0
ii =1, ..., n=-1: S[i,i+1]: = p;PiaPiso-

One can now see quite easily that for general i and j, S[i,j] is determined
as follows:

S[i,j] = min { pyp.rpja + S[ik] + S[k+1,j] } for all i<j+1

i<k<jl

which reflects the following argument: The optimal number is the minimum
of all possible ways of splitting the product of matrices i through j into two
portions; these two portions correspond to the last multiplication that is
carried out to produce the product of the matrices i through j. The first
portion consists of matrices i through k and requires S[i k] scalar multiplica-
tions. The second portion corresponds to the remainder, namely matrices k
+ 1 through j and requires S[k + 1,j] scalar multiplications. Finally, the term
PiPrarPja reflects the work necessary for the product of these two portions.
Clearly, we want to get the value of k for which this attains a minimum. It
follows that S[1,n] provides the desired answer, namely the minimum
number of scalar multiplications required to compute the product of the n
matrices.

Now for the complexity analysis of this scheme. Starting from the initial-
ization (the main diagonal i = j and the diagonal above it, i = j — 1), we must
compute the requisite values, in diagonal form (i = j — 2, then i = j - 3, etc.),
until the area above the main diagonal is filled. There are n-(n + 1) /2 elements
to be filled in. How much effort is needed to compute each of them? The
key observation is the formula for S[i,j] where the minimum must be taken
over all k from i through j — 1. We claim that this range is O(n) for O(n?)
pairs [i,j]. For example, consider all pairs [ij] where i —j n/2. How many
such pairs are there? These pairs correspond to the diagonals above the
main one with numbers n/2 + 1, n/2 + 2, through n. Thus, there are (1/2 -
n/2)/2 or n?/8 such pairs. Therefore, for each of these O(1?) pairs, O(n) values
of k must be examined; each examination takes O(1) time. Therefore, alto-
gether O(n®) scalar multiplications are needed for just these n2/8 pairs.

18 While multiplication is associative, it is not commutative. This is why we may not interchange
left and right factors; we may only parenthesize in different ways.
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Consequently, the overall time complexity of this scheme is O(n®) since the
other pairs do not increase this.

The next group of algorithms is related to sorting. Recall that in Section
1.9 we established that sorting n numbers by comparisons requires at least
O(n-log,(n)) comparisons. Now, we want to show that this lower bound is
attainable, that is, that there exist algorithms for sorting n numbers whose
time complexity is O(n-log,(n)). We will examine three methods, namely
MergeSort, QuickSort, and HeapSort. The situation turns out to be unexpect-
edly complex in that the algorithm that is fastest on average has a surpris-
ingly large worst-case time complexity; thus, there is no obvious winner. We
also analyze a fourth method for sorting, RadixSort, that uses no compari-
sons at all.

3.2.4 MergeSort

Assume we are given an array A of type [1:n] containing n numbers that we
want to sort in ascending order. For simplicity of presentation, assume 7 is
a power of 2, n = 2k, Consider the following approach based on the operation
of merging two subarrays. Given two sorted subarrays A[p:q] and A[g + 1:r],°
we can obtain a single sorted subarray B[p:r] (of another array B) by the
following approach that consists of merging the two sorted subarrays:

P1:=p; P2:=q+1; P3:=p;
while P1 gand P2 r do
{
if A[P1]<A[P2] then {B[P3]:=A[P1]; P1:=P1+1; P3:=P3+1}
else {B[P3]:=A[P2]; P2:=P2+1; P3:=P3+1}
}

if P1>q then assign the elements of A[P2:r] to B[P3:r];
if P2>r then assign the elements of A[P1:q] to B[P3:r];

Then the algorithm of sorting the n numbers in A[l:n] is given by the
following statements (recall that n = 2F):

fors:=1, 2,4, 8, 16, ..., 2<'do
{
merge the two subarrays A[p:p+s—1], A[p+s:p+2s—1] of
consecutive subarrays of length s into the arrays
B[p: p+2s—1], for all
p:=1, 2s+1, 4s+1,..., n—2s+1;
interchange the arrays A and B

}

19 Note that the two sorted subarrays are adjacent. In general, merging can be formulated with-
out this assumption; however, this is not needed for MergeSort.
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For the complexity analysis, we first directly observe that merging two
sorted arrays of sizes s; and s, into one sorted array of size s, + s, requires
no more than s, + s, comparisons; thus, merging has a time (word) complexity
of O(s; + s,). Proceeding to the MergeSort algorithm, we observe that the
process is completed in stages, with the first stage corresponding to the
lengths of the subarrays to be merged being 2° (1), the second stage to lengths
2! (2), in general the ith stage corresponding to lengths 2!, until in the last
stage, the subarrays are of length 2¢1. It follows now that in stage i, there
are exactly 2¥ pairs, since the entire 2* (n) elements are subdivided into pairs
of subarrays of length 2. Since in stage i merging has time complexity O(2/)
and there are 2" pairs, the complexity of stage i is O(2F) or O(n), independent
of the value of i. Now there are exactly k values of i, from 0 through k — 1.
Therefore, the overall complexity is O(k-n), but since k = log,(n), this is exactly
O(n-log,(n)). Thus, MergeSort attains the lower bound on the number of
comparisons; MergeSort is optimal in the number of comparisons in the
worst case. Note that the only difference between worst-case and average
behavior could occur in merging. Since the possible gap is small,? it follows
that the average time (word) complexity is also O(n-log,(1)). Since we need
an additional array B to carry out this scheme, the space (word) complexity
is n (worst-case, average, and best-case).?!

Because of its space complexity, MergeSort is usually not considered a
practical algorithm, in spite of its optimal time complexity. We will examine
this assertion and its basis more carefully in Part 2.

3.2.5 QuickSort

QuickSort has good press; it is generally considered the fastest known sorting
algorithm, that is, if one is interested in the average time performance. Its
worst-case time performance is surprisingly bad.

Again, we start with an array A[1:11] of n numbers that we want to sort in
ascending order. The key idea in QuickSort is partitioning these numbers
around a pivot element x so that all elements to the left of x are x and all
elements to the right of x are x. Here is how this partitioning of the subarray
Allo:hi] is carried out. Note that in contrast to MergeSort, everything is done
in place, that is, no additional array is needed.

20 Specifically, the best-case time complexity of merging two sorted arrays of sizes s, and s, into
one sorted array of size s, + s, requires min(s,,s,) comparisons; the average time complexity must
lie between the best-case and the worst-case complexities, that is, between min(s,,s,) and s, + s,
comparisons. Since s, = s, in this context, min(s,,s,) = s;, and s, + s, = 2s;; therefore, min(s,,s,) =
O(s; + s,), and the claim follows.

2l While we have applied word complexity usually to time complexity, it can also be used within
the context of space complexity, where it simply means that one word holds one number, regard-
less of how many bits this number requires for its representation.
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Partitioning A[lo:hi] around x, returning i and j:
i:=lo; j:=hi;
repeat
{
while A[i]<x do i:=i+1; find candidate for exchange (too large, x)
while A[j]>x do j:=j—1; find candidate for exchange (too small, x)
ifi<jdo
{exchange A[i] and A[j]; i:=i+1; j:=j—1}
} until i>]

Note that the place of the element x in the subarray may change during
this process since the element x can be a candidate for exchange (see “too
large” or “too small,” above). However, upon completion, the value of the
pivot element x is guaranteed to be in all elements of A[j:i].?2 Then QuickSort
can be stated as follows:

QuickSort(A[lo:hi])

Choose a pivot x=A[r] with r between lo and hi;
Partition A[lo:hi] around x;
If lo<j then QuickSort(A[lo:j]);
If i<hi then QuickSort(A[i:hi])
}

Thus, once we have split the array A[lo:hi] into two portions, with the left
portion, namely Aflo:j], containing elements x and the right portion, namely
A[j:hi], containing elements x, we call QuickSort recursively for each of these
two portions. The choice of the pivot element x is arbitrary; any element in
the array A[lo:hi] will do. Typical choices are the first, the last, or the middle
element. Clearly, to sort A[1:n], we call QuickSort(A[1:n]).

First we determine the time (word) complexity of the partitioning opera-
tion. Since the value of i increases from lo and that of j decreases down from
hi until they cross and since the exchange operation has complexity O(1),
partitioning has a time complexity (best, average, and worst) of O(hi-lo).

Next we determine the best-case complexity of QuickSort. It is not difficult
to see that the best case occurs when the two portions Aflo:j] and A[j:hi] are
always of equal size n/2. In this case, we have essentially MergeSort in
reverse order; that is, each subarray is split into two equal-sized halves until
the resulting subarrays are of size 1, which is the basis case. How many
times can the array A[l:n] be recursively cut into two equal halves before
the basis case is obtained? Clearly, not more often than rlogz(nﬂ. Let us
visualize the recursive process of QuickSort in stages, so that the process is
shown for the entire array A[l:n]. Then we can see that the complexity of

2 Since i > j is the termination condition, there is at least one element in A[j:i]. Furthermore, if
there are two or more, then x must be in all of them; note that there is no prohibition of repeated
elements.
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partitioning the various portions of the array A[l:n] in any stage, which is
the sum of the complexities taken over all the portions of A[1:n] in that stage,
is O(n). (This is true for all partitionings, whether the resulting portions are
of equal size or not.) Furthermore, in the best case, there are rlogz(nﬂ stages;
therefore, the overall time (word) complexity in the best case is O(n-1log,(1)).
Let us now consider the worst-case time complexity. It is not difficult to
see that the worst case is one where the partitioning results in two portions,
one of which contains one element and the other contains all the remaining
elements. If this case occurs consistently for every partitioning (of the larger
portion), then it follows that we will end up with n — 1 stages. In stage 1 we
have two portions, one of size 1, the other of size n — 1. In stage 2 we partition
the portion of size n — 1 into two, one of size 1, the other of size n — 2, and
so on. Note that the only work that is carried out happens in the partitioning
operations. Summing up the complexities for the worst case, we obtain

O(n) + O(n=1) + O(n=2) + ... + O(2) = O(2).

Thus, the worst-case time complexity of QuickSort is O(n?).

It turns out that the worst-case situation is quite rare; one can show that
the average time complexity is only a small constant factor times the best-
case time complexity (assuming each permutation of the numbers 1 through
n is equally likely). Since the only work carried out is in the partitionings,
which is very little, QuickSort is on average the fastest sorting method
known.

What about the space complexity? As presented here, QuickSort is recur-
sive. While nonrecursive formulations exist, keeping track of the boundaries
of the various partitionings of the original array A[1:n] requires either space
in the recursion stack (for the recursive version) or space in some other date
structure (list or stack for the nonrecursive version). In either case, the
amount of space necessary is proportional to the number of stages. Thus, in
the best case, and similarly in the average case, this additional space is
O(log,(n)). In the worst case the additional space needed for the management
of the boundaries becomes O(n). We will revisit this issue in more detail in
Part 2.

3.2.6 HeapSort

This is another in-place sorting method, meaning that no additional array
is needed. HeapSort is often considered inferior to QuickSort, we think
unfairly so. While its average time complexity is somewhat worse than that
of QuickSort, its worst-case complexity is dramatically better. Moreover, it
is inherently nonrecursive and has a much better space complexity. It is,
however, a more complicated algorithm, which may be off-putting to some.

The key concept in HeapSort is the heap. This is an array* Allo:hi] of
numbers with the property that for all 7, lo <i < [hi/2], A[i] > A[2-i] and
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Ali] = A[2+i + 1], as long as the array elements exist. Heaps have a number
of interesting properties; one of them is that the first element, A[lo], of any
heap A[lo:hi] is the maximum of all elements in the heap. Another is that
heaps are surprisingly efficient to construct.

Here is how one can construct a heap A[lo:hi]. We first observe that the
second half of the heap, A[f (lo + hi)/2 [:hi], always complies with the heap
condition. We then proceed to “insert” the remaining elements of the array
one by one, starting with the one in position r(lo + hi)/ 2] -1, then that in
position r(lo + hi)/ 2]-2, and so on, until we get to the element in position
lo. Our insertion process is such that after the insertion of the element in
position i, the resulting array A[i:hi] satisfies the heap condition for all i =
(lo + hi)/ 2]1-1,..., lo + 1,lo. Here is the first algorithm for the insertion of
A[i] into A[i:hi], assuming A[i + 1:hi] satisfied the heap condition:

Heaplnsert A[i:hi]
{ Compare A[i] with A[2-i] and A[2-i+1] if they exist;
if A[i] = max{A[2-i],A[2-i+1]}, do nothing — insertion successfully
completed
otherwise
if A[2-]]<A[2:i+1] then
{ interchange A[i] and A[2:i+1]; repeat insertion process with
A[2-i+1] }
else { interchange A[i] and A[2-i]; repeat insertion process with
A[2-] }
}

Then we use this to construct an entire heap, given the array A[lo:hi]:

Fori:=[(lo+hi)/2]-1, [ (lo+hi)/2]-2,...,lo do
Heaplnsert A[i:hi]

We apply this to the array A[1:n]. Once we have the heap A[1:n], we know
that its first element, A[1], contains the maximal element of the heap, so we
exchange it with the element in position 7 and insert the element that now
sits in position 1 into the array A[1:n — 1] so that it becomes a heap. In general,
we grow the sorted array from the back, making sure that the displaced
element in position j is properly inserted in the shrinking heap A[1; — 1],
forj=nn-1n-2,..,2,1. Obviously, when j = 1, the remnant heap is of size
1 and the remainder of the array, A[2:n1], contains all elements larger than
A[1] in sorted order. Now we can formulate the HeapSort algorithm:

2 Heaps can be formulated using binary trees as well, in which case the two children of the node
corresponding to A[7] correspond to A[2-i]] and A[2-i + 1]. It follows from this that the binary tree
corresponding to a heap is always a complete binary tree, in which only the last row of nodes
may be incomplete (more specifically, the last row of nodes is contiguous, except the nodes on
the right may be missing). It follows therefore that a tree representing a heap with n nodes is
exactly of height[log,(n + 1) — 1], which is bounded from above by log,(n).
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HeapSort (A[1:n])
{ Construct a heap: fori:=[(1+n)/2]-1,...,1 insert A[i] into the heap A[i:n].
Forj:=n,n-1,...,2,1 do
{
interchange A[j] and A[1];
insert the element in position 1 into the heap A[1:j-1]
}
}

We now come to the complexity analysis of HeapSort. We first look at
Heaplnsert. Given a heap A[j:hi] with m = hi —j + 1 elements, there are at
most rlogz(mﬂ iterated insertions (insertions that are the consequence of
extracting the larger of A[2j] and A[2j + 1] and interchanging it with A[j]).
Thus, the complexity of Heaplnsert A[j:hi] is O(rlogz(hi -j+ 1) ). When
constructing the heap A[l:n], this complexity is bounded from above by
O(log,(n)), and since there are only about 7/2 elements that must be pro-
cessed using HeaplInsert, the complexity of constructing the heap A[l:1] is
O(n-log,(n)).>* Then we must examine the process of taking the element in
position 1 (which is always the maximum of the remnant heap A[l:;]) and
exchanging it with that in position j; each of these operations entails one
HeaplInsert with a heap of size n —j. Again, we bound the complexity of this
operation by O(log,(n)), and since there are n elements altogether, this part
of HeapSort requires O(n-log,(n)) time. Thus, the total time (word) complex-
ity of HeapSort is O(n-log,(n)).

This analysis is for the worst case that can occur. However, it should be
clear that any gap between worst-case and best-case analysis is minimal. The
first part of HeapSort (the construction of a heap) can be done in linear time
(see footnote 25) and this is the same for worst case and best case; the second
part consists of inserting elements that necessarily will be small (loosely
speaking, in any heap, the last positions contain the small elements, the first
positions, the large elements). This implies that there will be numerous
interchanges, indicating that the upper bound of O(log,(1)) for the insertion
operations is close to optimal. Since the average complexity will always fall
between the best-case and the worst-case complexity (regardless of how we
define average), HeapSort’s complexity is O(n-log,(n)) in all cases — average,
worst, and best.

The space complexity of HeapSort is much easier to determine. There is
no recursion, and the iterations that occur require only simple loop variables.

2 It turns out that we are overly generous in this analysis; a finer analysis shows that the com-
plexity of constructing a heap with n elements is only O(n). This is because about 1/2 elements
need not be inserted at all (the half with the higher position numbers), so 11/4 elements need at
most one interchange, 1/8 need at most 2, and in general, "/, elements need at most r — 1 inter-
changes (r = 1,...,log,(n) — 1) when doing the repeated insertions in the heap. Summing this up
yields O(n) (see the first footnote on page 12 of Chapter 1). However, since the second part of
HeapSort requires time greater than linear (otherwise it would be a contradiction to the lower
bound we derived in Section 1.9), it is not particularly urgent to carry out the most exacting ana-
lysis for the construction of a heap.
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Also, no other additional space is needed to carry out the algorithm, except for
interchanging elements, which can be done in constant space. Therefore, the
space complexity of HeapSort is constant. This should be contrasted with
MergeSort and QuickSort, which require significantly greater space complexity.

3.2.7 RadixSort

This is the odd man out in our list of sorting methods. It does not use any
comparisons at all and it seems to contradict the lower bound we derived
in Section 1.9. Furthermore, its performance is usually measured in word
complexity, but the algorithm itself is distinctly bit- or digit-oriented. Spe-
cifically, it uses the positional representation of integers and relies on the
fact that there is a fixed number D of digits; in the case of binary numbers,
we have D = 2; in the case of decimal numbers, D = 10.2> Conceptually, in
RadixSort there exists a “bucket” that can accommodate numbers for each
digit (it is also known as BucketSort for this reason) . If the numbers involved
have m digits, with position m the least significant and position 1 the most
significant, RadixSort proceeds as follows:

Initially in stage m, we have the given n numbers N, ..., N,, each with m
digits.

for j;=m,m-1,...,2,1 do
{ for each number N in the order as listed in Stage j, examine its j" digit
g and place N into the bucket with number q;
Create Stage j-1 by sequencing the numbers as follows: first all the
numbers in Bucket 0, then all the numbers in Bucket 1, etc., until last
come all the numbers in Bucket D-1.

}

Stage 0 contains the given n numbers sorted in ascending order.

To determine the time complexity, we observe that in each stage we exam-
ine each number and place the number into the bucket indicated by a digit
of the number; this operation requires constant time for each number, pro-
vided we manipulate pointers to the numbers rather than the entire numbers
themselves. Therefore, the work to be carried out in one stage is O(n). There
are m stages; consequently, the overall time (word) complexity is O(m-n).
There is no difference between worst-case, best-case, or average time com-
plexity. The space complexity is O(D), provided we do not count the pointer
to the numbers (if we do consider the space for the pointers, the space
complexity is O(max{D,n})).

% RadixSort can also be applied to words over an alphabet A, in which case the letters in the
underlying alphabet A take the place of the digits. However, while words are sorted in a similar
way as numbers, in that the first letter or digit is most significant for the order and the last letter
or digit is least significant, words tend to have differing lengths, while we assume here that all
numbers have the same number of digits. This would be appropriate for numbers represented
by a fixed number of bytes, which is the paradigm of word complexity.
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Let us examine the time complexity more closely. Since m is fixed, O(m-n)
is faster than O(n-log,(n)); therefore, RadixSort appears to contradict the
lower bound on sorting we derived in Section 1.9. There are two responses
to this. The first one is of a technical nature: The lower bound in Section 1.9
was on the number of comparisons when sorting by comparing two numbers.
This, however, is not how RadixSort sorts. There is not a single comparison
in the entire algorithm and therefore the lower bound cannot be applied at
all. However, in a way this answer misses the point. Implicitly, we took the
lower bound in Section 1.9 to be much more universal; we really assumed
that the O(n-log,(n)) time complexity implied by the comparison argument
was applicable to all sorting methods. While this is technically incorrect (the
argument applied only to comparisons), RadixSort nevertheless does not
provide a counterexample. This can be seen as follows.

Recall that m is the number of digits. In Section 1.4, when we discussed
bit and word complexity, we made the argument that it is inappropriate to
assume that the number of bits (or digits) is independent of 7, the number
of elements to be sorted. Specifically, we indicated that in order to represent
n different elements, we need at least rlogz(n)] bits; this generalizes for
numbers in base D to [log(17) | digits. Thus, n and n are not independent;
m must always be at least | logp (1) |. This brings us back to the lower bound;
given the relationship between m and n, it now follows that RadixSort has
a complexity that is very much like O(n-log,(n)).

The next group of problems we examine centers around searching. There
are two different aspects of this notion. We may search for a given element
in a collection of elements or we may have some kind of index and want to
retrieve the element with that index. Typical examples are looking up a word
in a dictionary (first aspect) and finding the smallest number of a set of
numbers (second aspect).

Searching for a given element x in a set of elements is interesting from
the point of view of complexity, because the problem displays very dif-
ferent behaviors depending on how the set is represented. Let us assume
that the elements are contained in an array A[l:in]. In Section 1.3 we
analyzed one facet of this problem, namely the case where the array is
not sorted.?® As we pointed out there, in this case a significant gap arises
between average and worst-case complexity (using most realistic defini-
tions of average). Still, searching for a given element in an unordered array
containing n elements requires O(n) time. This linear or sequential search
is very unattractive, especially if several such searches are to be per-
formed. The situation changes dramatically if the array is sorted.

% Tt is true that our analysis in Section 1.3 assumed a linear list instead of an array, but for the
approach we examined, the random access property of the array does not imply any advantage
over the sequential access associated with a linear list. Therefore, we use an array to preserve the
uniformity of our presentation. Furthermore, when we turn to binary search, the random access
property of the set representation is indispensable.
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3.2.8 Binary Search

Assume that the array A[1:n] containing 1 elements is sorted; our task is to
determine whether a given element x is in A, and if so, what its index is.
The key idea of binary search is the following: Given a search space A[lo:hi],
we first determine the element in the middle, namely A[m] with m = (hi -
lo +1)/2 (if hi —lo + 1 is odd, use one of the two adjacent integers); if A[m]
= x, then we have found x in location m; otherwise we repeat our search in
the smaller search space A[lo:m — 1] if A[m] < x or A[m + 1:hi] if A[m] > x.
Termination then is achieved either if x is found in a specific position (suc-
cessful search) or if the search space is so small that x cannot be in it, that
is, if lo > hi (unsuccessful search).

The complexity of this algorithm is directly related to the number of search
space reductions that can occur when starting with the search space A[1:n].
Each such reduction cuts the size of the search space in half; thus, no more
than rlogz(nﬂ such reductions (halvings) can occur before the search space
size is less than 1 (which means that x cannot be found in it). Since the
amount of work required to carry out one reduction is constant, it follows
that binary search requires O(log,(n)) time. While this is the worst-case
complexity, the average time complexity is about the same. It is especially
interesting to note that binary search retains its efficiency if the search is
unsuccessful. The space complexity of binary search is O(1) since we only
need space to keep track of the upper and lower bounds of the current search
space. Note that no recursion is required; the search is entirely iterative.

It is important to realize the enormous improvement in the performance
of searching for an element that is caused by the assumption of order. If
A[l:n] is sorted, the time complexity is O(log,(n)), but if it is not, it is expo-
nentially slower, namely O(n). Thus, if one is to do several searches on the
same data set, very often it pays to invest in sorting the array A[l:n] first,
an unproductive activity with a high cost of O(n-log,(n)), and then do s
searches at a cost of O(log,(n)) each. Contrast this with the cost of s searches
based on an unsorted array. Clearly, sorting is more economical if

O(n-log,(n)) + 5:O(log,(n)) < s-:O(n).
This is precisely the case for all s > O(log,(n)).
Let us now turn to the other aspect of searching, namely finding an element

with a given index in a list of numbers.?” Specifically, assume we are given
an array A[l:n] and an integer K with 1 < K < n. Our task consists of

2 Strictly speaking, it can be applied to any type of element that has a total ordering. In other
words, given two such elements a and b, with a # b, either a precedes b or b precedes a. Numbers
have this property, as do words using the lexicographical ordering. Subsets of a set S do not; if S
= {xy,z} and a = {x,y} and b = {x,z}, then a does not contain b and b does not contain a. Note that
linear search requires only testing for equality, while binary search requires a total order as well,
because otherwise the array could not be sorted. Since finding the Kth largest element does not
rely explicitly on sorting, it is prudent to point out that a total order is nevertheless required.
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determining the Kth-largest of these n elements. There are certain specific
values of K for which this problem is particularly important. If K = 1, we
want to find the maximum (which we have already discussed). For K = 2,
we might first find the maximum and then the maximum of the remaining
elements. If Kis large, this process is not particularly attractive. For example,
if K= O(n),” it would lead to an algorithm with a time complexity of O(n?),%
a truly awful performance since we could just sort the array (in time
O(n-log,(n)) and then access the Kth-largest element in constant time (since
the array permits direct access to the element with index n — K + 1 and
accessing the element with that index, by virtue of the array’s random access
property requires O(1) time). It is therefore interesting the see that solving
our problem can be done much more efficiently than resorting to sorting.

3.2.9 Finding the Kth Largest Element

Consider the following recursive approach; note that A is not assumed to
be sorted:

Select(A[1:n],K)

1. Randomly choose a pivot element m.

2. Use m to construct the sets L, E, and G of those elements that are
strictly smaller, equal, and strictly greater than m, respectively:

For i:=1,...,n do
if A[i]=m then add A[i] to E
else if Alil<m then add A[i] to L else add A[i] to G

During the construction of L, E, and G, also count their elements ¢,
Ce, and cg, respectively.

3. If ¢ 2 K, then return Select (G,K).

else if cgtcg = K then return m
else return Select (L,K-(cgt+cg))

This algorithm splits the search space A[1:n1] around the pivot element m
and then determines the three sets L, E, and G. If there are at least K elements
in G, then we call Select recursively to determine the Kth largest element in
G. Otherwise we see whether GUE contains at least K elements; if so, m is

2 A very common value is K = 12/2, in which case the problem is finding the median of the set.
Informally, the median of a set is the element with the property that half of the elements of the
set are larger and half of the elements are smaller than the median.

2 We would spend O(#) time to find the maximum of an array of size ¢; first ¢ = n (find the max-
imum of the entire set), then t = n — 1 (find the maximum of the remaining n — 1 elements), and
so on, until t = n — K + 1. Summing this work up yields a quadratic time complexity.
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the desired Kth largest element. Finally, if none of these cases applies, we
call Select recursively again, but now with the set L, and instead of finding
its Kth largest element, we find L's element with the number K — (cq + cg),
reflecting that we removed G and E from the search space and therefore K
has to be reduced accordingly by the number of the removed elements in G
and E.

The most important factor in the determination of the complexity is the
recursive calls to Select, and more specifically, the size of the sets involved
in these calls. Initially, our search space size is ; in the single recursive call
in step 3, the search space size is either c; or ¢, (note that there is no more
than one recursive call, as at most one of the two cases with recursion can
apply). It is not difficult to see that the worst case occurs if max{cg,ci} =n -
1. If this occurs in every recursive call, we have the situation of Scenario 1
of Section 3.1, with the proviso that the additional work (namely the con-
struction of the sets L, E, and G) takes O(n) time; consequently, the worst-
case time complexity is a pathetic O(n?).%°

What would be a desirable situation? Recall that in binary search, the
search space was split into two equal halves. Can we achieve something
similar here? Suppose m were the median of the search space; then we would
mirror binary search, except for step 3, which is concerned with keeping
track of the index K. Of course, we do not know how to get m to be the
median,® but we can get very close. Here is how.

Replace step 1 in Select with the following steps:

1.1 Split the search space A[1:n] into groups of five elements each and
sort each of these sets.

1.2 Determine M to be the set of all the medians of these five-element
sets.

1.3 m:=Select(M,En/10").

We will refer to steps 1.1, 1.2, 1.3, 2, and 3 as the modified Select algorithm.
While it is clear that any choice of m will work, and hence the m determined
in steps 1.1, 1.2, and 1.3 will also work, it is not so clear what this convoluted
construction buys us. Step 1.1 groups the search space into five-element sets
and sorts each of them. This requires O(n) time, since the grouping operation
implies one scan of the search space and sorting five elements can be done
in a constant number of comparisons (seven comparisons are sufficient to
sort five numbers). Also, we can incorporate step 1.2 into this process — just
take the middle element of each five-element (by now sorted) set and add
it to M. How large is M? Since we have about 1/5 five-element sets and we

30 To see this directly, consider that in the first call, we need O(n) time. In the second call, we need
O(n — 1) time. In general, in the ith call, we need O(n —i + 1) time, for i = 1, ..., n. Summing this
up yields the claim of O(1?).

31 The best way we know at this point of finding the median is to find the Kth largest element
with K = n/2. Since we are still struggling with this problem, looking for the median is not
exactly promising.
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take one element from each, M has about /5 elements. Step 1.3 then consists
of determining, again recursively, the median of the set M, that is, the median
of the medians of the five-element sets.*

With this specific choice of m, let us revisit the question of how large are
the sets L and G determined in step 2. Let us first determine which elements
cannot possibly be in L. Clearly, m cannot be in L, and since m is the median
of M, half of the elements in M are > m, so they cannot be in L either.
Moreover, each of these elements is the median of its five-element set, so in
each such set there are two more elements that are = m, namely the elements
greater than or equal to its set’s median. Summing all this up, we reach the
conclusion that there are at least n/10 + 2-n/10, or 3-n/10, elements > m;
therefore, none of them can be in L, and hence ¢; cannot be larger than 7-n/
10. By a similar argument, one sees that there are at least 3-n/10 elements
in A[1:n] that are < m, so none of them can be in G, and hence c; <7-n/10.
It follows therefore that in step 3, the search space for either of the two
recursive calls is no larger than 7-n/10.

Let T(n) be the time the modified Select algorithm requires for a search space
with n elements. Then the recursive call in step 1.3 requires time T(1/5), and
the (single) recursive call in step 1.3 requires time at most T(7-1/10). Since
7n/10 < 3-n/4, we can bound T(7-1/10) from above by T(3-11/4). (Clearly, T
is monotonically increasing, that is, if s < t, then T(s) < T(t).) Our final expres-
sion for T(n) is therefore

T(n) <T(n/5) + T(3-n/4) + Cn,

where C-n reflects the work to be done in steps 1.1, 1.2, and 2. It follows now
that

T(n) = 20-C-n

satisfies this relation. The worst-case time complexity of the modified Select
algorithm for finding the Kth largest element in the set A[1:n1] of n elements
is therefore O(n).3* Furthermore, the space complexity is O[log,(1)] since the
recursive calls require space proportional to the depth of the recursion. Since
in the worst case, the modified Select algorithm reduces the search space
size by a factor of 7/10, such a reduction can take place at most rlog10 /7(n)]
times before the search space is reduced to nothing, and that is O(log,(1))

32 In modified Select, we used five-element sets. There is nothing magic about the number 5; any
odd number (>4) would do (it should be odd to keep the arguments for L and G symmetric).
However, 5 turns out to be most effective for the analysis.

3 We assume a suitable termination condition for Select; typically something like: if 7 < 50 then
sort directly and return the desired element. (Here, 50 plays the role of 1, a value of n so small
that it has little significance for the asymptotic complexity of how one deals with the cases where
n < n,.) Under this assumption, we write T(n) = T(n/5) + T(3-n/4) + C-n and show by direct sub-
stitution that T(n) = 20-C-n satisfies the equality. On the right-hand side we get 20-C-n/5 +
20-C-3-n/4 + C-n, which adds up to exactly 20-C-.
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times. Hence, the worst-case space complexity of modified Select is
Olog,(n))*

In comparing the initial version and the modified version of Select, one is
struck by the fact that the modification, even though far more complicated,
has a guaranteed worst-case complexity far superior to that of the original.
However, what this statement hides is the enormous constant that afflicts
its linear complexity. On average, the original Select tends to be much faster,
even though one does run the risk of a truly horrible worst-case complexity.

It is tempting to improve QuickSort by employing modified Select to
determine its pivot. Specifically, we might want to use modified select to
determine the pivot x as the median of the subarray to be sorted. While this
would certainly guarantee that the worst-case complexity equals the best-
case complexity of the resulting version of QuickSort, it would also convert
QuickSort into something like ComatoseSort. The constant factor attached
to such a sort would make it at least one, if not two, orders of magnitude
slower than HeapSort.

So far, all the algorithms we have explored were essentially off-line. In
other words, we expected the input to be completely specified before we
started any work toward a solution. This may not be the most practicable
approach to some problems, especially to problems where the underlying
data sets are not static, but change dynamically. For example, an on-line
telephone directory should be up to date: It should reflect at any time all
current subscribers and should purge former customers or entries. This
requires the continual ability to update the directory. Were we to use an
unsorted linear list to represent the directory, adding to the list would be
cheap, but looking up a number would be a prohibitive O(n) if there were
n entries. Thus, we would like to be able to use a scheme that is at least as
efficient as binary search — which requires the array to be sorted. However,
it would be clearly impractical to sort the entire array whenever we want to
insert or delete an entry. Here is where search trees come into their own.

3.2.10 Search Trees

A search tree is a binary tree in which each node N contains information
I(N).?> Thus, each node consists of three components, a pointer R(N) to its
left subtree rooted in N, a pointer L(N) to its right subtree rooted in N,
and I(N). Note that one or both subtrees of the node N can be empty.
However, whenever they exist, the information associated with each node
N; in the left subtree, I(N;), must be strictly smaller than I(N), and the
information associated with each node Ny in the right subtree, I(Ng), must

3 The worst-case space complexity of the original Select algorithm was O(n), since O(n) recur-
sive calls would occur if the search space is reduced by one element for each recursion step.

% Again, we require that we have a total order imposed on the information. Ultimately, anything
that can be sorted can also be accommodated in search trees.
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be strictly larger than I(N).® One direct consequence of this definition is that
no search tree can contain duplicate information.

Below we will show how search trees can be used to insert, delete, and
find an element. While testing whether a given binary tree with n nodes in
which each node N contains information I(N) is a search tree can be done
in time O(n),*® search trees are usually constructed by inserting elements
successively. Since insertion and deletion are based on search, we start with
this operation.

3.2.10.1 Finding an Element in a Search Tree

The key observation is that in any search tree, there is a unique location for
any element x, whether x occurs in the tree or not. We assume that p is a
pointer to the root of the search tree we examine; if p is not null (i.e., does
not point to an empty tree), we will also use p to denote the node p points
to. Furthermore, if p is not null, L(p) is a pointer to the left child of (the node
pointed to by) p, and R(p) points to the right child.

Find(p,x)
If p is null then return — x not in search tree
Else if x=I(p) then return p — x is in the node p points to
else if x<I(p) then call Find(L(p),x) else call Find(R(p),x)

% It is tempting to replace this global test (for each node, all nodes in its left subtree must be
examined, and all nodes in its right subtree must be examined) with a local variant, something
like this: For each node N, the information of the left child of N must be strictly smaller than I(N),
and the information of the right child of N must be strictly larger than I(N). However, this defi-
nition does not result in search trees, as this tree indicates 5, which satisfies the local variant but
not the global definition of a search tree:
5
/ \
3 8

N/

83
37 Assume that two different nodes contain x. Find the smallest subtree that contains both nodes;
let N be the root of that subtree. Either I(N) = x or one of the two nodes with x is in N's left subtree
and the other in its right subtree. (If both were in the left subtree, the tree rooted in N would not
be smallest — use N’s left subtree; the same situation would exist if they both were in the right
subtree.) In the first case, compare I(N) with the other node containing x. If it is in N's left subtree,
the definition requires it to be strictly smaller than I(N); the same situation would exist if it is in
the right subtree. An analogous argument applies if one occurrence of x occurs in the left subtree
of N and the other in the right subtree.
% Applying the definition directly implies a complexity of O(n?) because for each of the 7 nodes,
the definition requires us to inspect all the nodes of its left and right subtrees. However, O(1?)
time is by no means optimal. A lower bound on the time complexity is O(n), since each node
must be inspected. This lower bound can be attained: Do an in-order traversal of the tree (this
requires linear time; see Section 3.2.10.4), write the information into an array in the order in
which it is encountered during the traversal (time O(n)), and finally determine whether this
array is sorted (also linear time). One can verify that this array is sorted if and only if the tree is
a search tree.
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This formulation is recursive. However, since it is obviously tail recursion,
it can be mechanically converted to iteration, without requiring space for
the recursion stack.® This immediately answers the question about the space
complexity; the nonrecursive version has space complexity O(1). The recur-
sive version has a space complexity that is proportional to the depth of the
recursion, which in turn is bounded from above by the height of the tree.®°
This is also the time complexity of Find(p,x) (regardless of which version
we use). In the worst case we search for information attached to a leaf of
maximal distance from the root of the search tree; this is precisely the
definition of the height of a tree. Since in each recursive call (in each
iteration), O(1) work is done, the height of the tree is an upper bound on
the complexity. Unfortunately, a search tree with n nodes may have a height
equal to n — 1 in the worst case (clearly, a linear list can be viewed as a
pathological binary tree); thus, the worst-case time (word) complexity of
Find(p,x) is O(n).

3.2.10.2 Inserting an Element into a Search Tree

Once we understand Find(p,x), this operation is quite trivial. Essentially, we
pretend to search for x. If we find it, the attempted insertion is illegal since
x is already in the search tree. If we do not find it, it is because we encounter
an empty pointer to the place where x should be; all we have to do now is
put x there.

% Tail recursion means that at most one recursive call is executed and the function returns imme-
diately after that recursive call. Thus, we have the following schema for the function F with n
parameters:

F(x1,...,xn)

{ if basis-case then StatementGroup1 else { StatementGroup2; F(y1,...,yn) }

}

This recursive function with tail recursion can be equivalently replaced by the following nonre-
cursive function F’ (this assumes that the passing of the parameters is by value and that the vec-
tor assignment ::= is carried out correctly):

F'(x1,...,xn)

{ while not basis-case do { StatementGroup2; [x1,...,xn]::=[y1,...,yn] };

StatementGroup1

}

It is obvious that the nonrecursive version F’ does not require additional space; also, the time
complexities of F and F’ are identical.

Note: The vector assignment ::= implies that all values of the variables y1 through yn are deter-
mined before the assignment to x1 through x7 is carried out. To see why this is important consider
the following recursive call: F(x1 -2, x1 — x2); were one to do x1: = x1 — 2; x2: = x1 — x2 instead of
[x1,x2] ::= [x1 - 2, x1 — x2], wrong values would be assigned.

40 This assumes that we do not take into consideration the space required for the left and right
pointers for each node. While this is the usual convention, it is a questionable assumption. The
input is really only the set of # numbers, yet the space for the pointers is clearly O(n). Thus, it
would be much more appropriate to consider the space complexity to be the space required by
the function plus the space required for the representation of the tree (since this latter space has
nothing to do with the input provided).
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Insert(p,x)
If p is null then
create a node N with I(N)=x, L(N)=R(N)=null, and p pointing to N
else if x=I(p) then return — x already in the search tree :: illegal
insertion
else if x<I(p) then call Insert(L(p),x) else call Insert(R(p),x)

The comments made about Find apply here as well. In particular, the space
complexity is bounded from above by the height of the tree for the recursive
version and O(1) for the nonrecursive one; the space complexity is also
bounded from above by the height of the search tree (for both recursive and
nonrecursive versions). Again, since the height of a tree with n nodesisn -1
in the worst case, the worst-case time complexity is O(n).

3.2.10.3 Deleting an Element from a Search Tree

Deletion is trickier. We first find the element x to be deleted, but in general
we cannot just erase its node N. Instead we must distinguish two cases, if
at least one subtree of N is empty (this is the easy case) and if both subtrees
of N are nonempty.

In the easy case, we can simply remove the node N. If both subtrees of N
are empty, we set to null the pointer from N’s parent to N (this makes N
disappear, since it can no longer be accessed; in Section 6.3, we will discuss
this issue and its implications in greater detail). If only one subtree of N is
empty, let N' be the root of the nonempty subtree of N; then have the pointer
from N’s parent (which used to point to N) point to N’s only child, N". It is
easy to see that this deletion operation maintains the property of being a
search tree, but the node N has disappeared, and with it the element x.

What do we do if both subtrees of N are nonempty? We cannot remove
the node N, but we can replace x, the information attached to N, with some
suitable other information, thereby effectively deleting x. There are two
suitable candidates, namely the smallest element of all elements larger than
x and the largest element of all elements smaller than x. The idea is to locate
the replacement y, put y as I(IN) where N is x’s node, and then delete N', y’s
node.

We must be concerned about two things: Does this operation preserve the
property of being a search tree, and if so, how do we delete N'? If y is the
smallest of all larger elements, then putting ¥ at N maintains all smaller
elements to N’s left and all larger elements to N’s right (even though N now
holds y instead of x). The same is true if y is the largest of all smaller elements.
Thus, this operation preserves the search tree property.

Now, for the deletion of N'. Let y be the smallest of the elements larger
than x. Clearly, y is obtained by taking the right pointer from N (everything
larger is to the right), and from that node on always the left pointer (every-
thing to the left is smaller), until we reach a node whose left subtree is empty.
That node is N', and I(N') is . Most importantly, when we are deleting y, N'
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is one of the easy nodes to delete because its left subtree is guaranteed to be
empty. A similar argument applies if y is the largest of the elements smaller
than x. Here is the algorithm:

Delete(p,x)
if p=null then error — x not in search tree
else if I(p)<x then Delete(R(p),x)
else if I(p)>x then Delete(L(p),x)
else { ** I(p)=x**
let N’ be the parent of (the node of) x;
let g be the pointer from N’ to x;
if L(p)=null then set q to R(p)
else if R(p)=null then set q to L(p)
else if
{ **both subtrees of p are nonempty**
r:=R(p);
while L(r)= null do r:=L(r); I(p):=I(r);
**now r points to y, the smallest of all elements larger than x**
Let N” be the parent of r and let t be the pointer of N to r;
Set t to R(r).

}
}41

For the complexity analysis, it should be clear that the sum of the work
involved in finding x and then y is bounded from above by the height of the
search tree. Thus, everything we derived for Find and Insert applies here as
well: Given a search tree with n nodes, Delete(p,x) has a worst-case time
complexity of O(n); the worst-case space complexity of the recursive version
is also O(n). However, closer inspection of the algorithm indicates that we
again have tail recursion, so the space complexity of the iterative version is
o().

In summary, we determined that the three operations Find, Insert, and
Delete on search trees all have the same worst-case time complexity, namely
O(h), where h is the height of the tree. The problem with this result is that
h can grow unacceptably large for general search trees. This calls for a
modification of the notion of a search tree.

Before we do this, we want to relate search trees to sorting. More specifi-
cally, we want to use a search tree to obtain the contents of all its nodes
sorted in ascending order. This can be achieved by traversing the search tree.

41 Alternatively, if we want y to be the largest of all elements smaller than x, we replace the last
six lines with:

r:=L(p); while R(r) = null do r:=R(r);

**now r points to y, the largest of all elements smaller than x**

I(p):=I(r); Let N” be the parent of r and let t be the pointer of N” to r; Set t to L(r).
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3.2.10.4 Traversing a Search Tree

This is a fundamentally recursive technique. It first prints out all the infor-
mation of the left subtree, then the information of the root, and then all the
information in the right subtree.?? Since everything to the left is smaller and
everything to the right is larger than the information in the root, the resulting
output is sorted:

Traverse(p)
If p# null then {Traverse(L(p)); print(I(p)); Traverse(R(p)) }

The complexity analysis is as follows: For time, we visit each node in the
search tree once, and the work done at each node is constant. Therefore, the
time complexity is O(n) for a tree with n nodes. For space, we again observe
that the depth of the recursion is equal to the height of the search tree; in
the best case this will be O(log,(n)), but in the worst case, the height of the
tree, and therefore the space complexity of Traverse(p), is O(n).

The main reason a search tree with 7 nodes can have a height of O(n) is
imbalance. If the tree were an optimal binary tree with n nodes, its height
would be exactly [log,(n + 1) — 1] However, it is not clear whether the
optimal use of binary trees is compatible with the property of being a search
tree. Moreover, we would like to retain efficient search, insertion, and dele-
tion operations. All of this can be achieved through the use of AVL trees,
named after the initials of their inventors (Adelson-Velskii and Landis).

3.2.11 AVL Trees

An AVL tree is a search tree with the property that for each node N, the
height of its left subtree and the height of its right subtree differ by at most
1. The height of an empty tree is assumed to be —1, and the height of a
nonempty tree is 1 plus the maximum of the heights of its subtrees. We
assume that each node N has four components: the three of the search tree
(the information field I(N), the pointer to its left child L(N), and the pointer
to its right child R(N)) plus an additional one, H(N), to capture the height
of the tree rooted in N.# We show how to implement search, insertion, and
deletion using this type of search tree.

3.2.11.1 Finding an Element in an AVL Tree

Since an AVL tree is a search tree and the function Find(p,x) does not modify
the tree, the identical function Find will work for AVL trees as well. The

4 Strictly speaking, this is in-order traversal, since the content of the node is printed out between
the contents of the left subtree and those of the right subtree. Similarly, one defines preorder
(postorder) traversal wherein the content of the node is printed out before (after) the contents of
the left subtree and those of the right subtree are printed out.
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complexity analysis is also the same; the worst-case time complexity is O(h),
where & is the height of the AVL tree. The only difference here is that for
AVL trees, the height is bounded, as we show below.

3.2.11.2 Inserting an Element into an AVL Tree

This is where things become more interesting. The key notion is rofation. If
inserting an element in its proper place in the search tree (no change here
— it is still a search tree, and therefore there is a unique place for any given
element in that tree) results in a violation of the balance condition, we have
to rebalance the tree. In order to allow testing for the balance condition,
height information must be managed throughout. Here is the basic scheme:

InsertAVL(p,x)
If p is null then
create a node N with I(N)=x, L(N)=R(N)=null, H(N)=0,
and p pointing to N
else if x=I(N(p)) then return
— X is already in the search tree :: illegal insertion
else
{ If x<I(p) then call InsertAVL(L(p),x)
else call InsertAVL(R(p),x).
If H(L(p)) and H(R(p)) differ by more than 1
then {Rebalance(p); exit }
Else if H(p) # 1 + max{H(L(p)),H(R(p))}
then update H(p) else exit

}

The differences between Insert and InsertAVL occur exclusively after the
creation of the node for the element to be inserted. Apart from setting the
height field of that node to 0, all the action occurs when the successive
recursive calls to InsertAVL return. We distinguish three cases based on the
heights involved. In the first case if the left and the right subtree of the
current node N(p) differ by more than 1, we have to rebalance. We describe
this algorithm below and note here that a rebalancing operation does
not change the height of the tree that is rebalanced. Therefore, no more

4 Tt is possible to formulate the algorithms for AVL trees using only a three-valued balance tag
for each node N. However, since the additional space of a search tree with n nodes over and
beyond the n words for the input is already O(n) owing to the left and right pointers, the differ-
ence in space between using two bits for the balance tag and the word for representing the height
is quite negligible.

For those who are really interested in the precise additional space required by the height field, it
is no more than n-[log2(1.45~log2(n))] bits. As we will see, the height of an AVL tree with 1 nodes is
at most 1.45-log,(n); thus, the log of that is sufficient to represent the height of any subtree. So, for
each of the 1 nodes, we need at most that many bits to record the height. Consequently, the differ-
ence between the algorithms using a three-valued balance tag and ours that use a height field is
|—log2(1.45~log2(n))] — 3. To make this more concrete, for all n < 2% (that is for all # less than about 17
trillion), 6 bits are sufficient. However, the algorithms with the height field are much more intuitive.
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rebalancing further up the tree is required (remember, the tree into which
we insert is assumed to be an AVL tree) and no more updating of the heights
of any nodes further up is necessary either.# This is why we have an exit
statement; its meaning is that we abort any further orderly returning of the
recursive calls (since no more work is needed further up in the tree). The
second case applies if we have to update the height of the node N(p). In this
case H(p) is set to 1 + max{H(L(p)), H(R(p))} and recursion must return
orderly since this update of the height may require additional height updates
further up in the tree. However, if no height update is required for this node,
the third case, then no height updates will be required further up the tree
— hence the exit statement, which avoids any further unnecessary checks
for updates.

We now have to formulate the rotation operation. Recall that we started
with an AVL tree and messed it up (violating the balance condition) by
inserting an element x into it. Furthermore, keep in mind that we check
whether to apply a rotation going up from the inserted node toward the root
of the AVL tree (this is the reverse path from the root to the inserted element),
testing at each node whether the height condition is violated. Assume we
find a node N for which the height condition is violated (note that we may
never find a violation, in which case we only update the height information,
but do no rotation; if we do find such a node, it is the first time that the
height condition is violated on the path from x to the root of the AVL tree).
We distinguish several cases:

Case 1

H(L(N)) = H(R(N)) — 2; that is, the left subtree of N has a height smaller by
2 than its right subtree.®> We distinguish two cases, namely whether the
element x was inserted into the right subtree of R(N) or into the left subtree
of R(N).

Case 1.1

The value x was inserted into the right subtree of R(N). Clearly, x was inserted
into R(N)’s right subtree precisely if H(R(R(N))) > H(L(R(N))). We do a single
left rotation on N:

1. Let q be the pointer from N’s parent to N (if N is the root of the AVL
tree, q is the root pointer).

2. Make the left pointer of R(N) point to N.
3. Make the right pointer of N point to L(R(IN)).%
4. Make q point to R(N).

4 This implies that when inserting, at most one rotation (rebalancing operation) will occur.

4 Because the tree was an AVL tree before the insertion of a single element, it is impossible for
the difference in the heights to exceed 2.

46 L(R(N)) is the root of the subtree RL in the diagram.
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5. Keep all other pointers unchanged.
6. Update the height fields of the reconfigured nodes L(N(q)) and
N(q)_47

This corresponds to the following diagram:
N
/ N\
L P RR
/\ / N\

RL RR L RL

single left rotation

It is easily verified that the resulting tree is a search tree and that the height
of this tree is equal to the height of the tree rooted in N before the insertion
of x. Note that the insertion of x necessarily increased the height of the
subtree RR into which is was inserted; if it had not, then there would not be
a violation of the height condition at N.

Case 1.2

The value x was inserted into the left subtree of R(N). Clearly, x was inserted
into R(N)’s left subtree precisely if HR(R(N))) < H(L(R(N))). We do a double
left rotation on N:

1. Let q be the pointer from N’s parent to N (if N is the root of the AVL
tree, q is the root pointer).

Make the left pointer of R(N) point to R(L(R(N))).*8
Make the right pointer of N point to L(L(R(N))).#
Make the left pointer of L(R(N)) point to N.

Make the right pointer of L(R(N)) point to R(N).
Make q point to L(R(N)).

Keep all other pointers unchanged.

N oL

47 This is done (in this order) by using the relation H(N) = 1 + max{H(N),H(Ny)} for any node
N and its children N; and N, (if they exist; otherwise the height is —1). Thus, for the new nodes
N and R(N) in the diagram, we have

H(N) =1 + max{H(L),H(RL)} and H(R(N)) = 1 + max{H(N),H(RR)}.

4 R(L(R(N))) is the root of the subtree RLR in the diagram.

4 L(L(R(N))) is the root of the subtree RLL in the diagram.
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8. Update the height fields of the reconfigured nodes L(N(q)), R(N(q)),
and N(q).*°

This corresponds to the following diagram where the two occurrences of
x indicate the two places where x might have been inserted (x occurs in

exactly one of these two places):

double left rotation L(R(N))

/N\R
/N VANEZAN

L(R(N))

RR RLL | | RLR RR

RLL | | RLR

Case 2

H(L(N)) = H(R(N)) + 2; that is, the left subtree of N has a height greater by
2 than its right subtree. This situation is the exact mirror image of the
situation covered in Case 1; the algorithms for single rotation and double
rotation are obtained by systematically replacing every occurrence of right
by left, and of left by right in the above algorithms.

Single right rotation on N:

1. Let g be the pointer from N’s parent to N (if N is the root of the AVL
tree, q is the root pointer).

Make the right pointer of L(N) point to N.

Make the left pointer of N point to R(L(IN)).

Make q point to L(N).

Keep all other pointers unchanged.

Update the height fields of the reconfigured nodes R(N(q)) and N(q).

SATRCA -

Double right rotation on N:

1. Let q be the pointer from N’s parent to N (if N is the root of the AVL
tree, q is the root pointer).

2. Make the right pointer of L(N) point to L(R(L(N))).
3. Make the left pointer of N point to R(R(L(N))).

50 This is done analogously to the height updates for the single left rotation, but now it is applied
to the three nodes N, R(N), and L(R(N)) in the diagram.
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Make the right pointer of R(L(N)) point to N.
Make the left pointer of R(L(N)) point to L(N).
Make q point to R(L(N)).

Keep all other pointers unchanged.

Update the height fields of the reconfigured nodes R(N(q)), L(N(q)),
and N(q).

® N G

The operation Rebalance(p) mentioned in our algorithm InsertAVL is pre-
cisely this group of rotation algorithms. One of these four will apply in any
situation that requires rebalancing:

Rebalance(p)
If H(L(N))=H(R(N)) — 2 then
{

if HR(R(N)))>H(L(R(N))) then Single left
rotation on N
else Double left
rotation on N
}
else
{ "H(L(N))=H(R(N))+2**
if H(IL(L(N)))>H(R(L(N))) then Single right
rotation on N
else Double right
rotation on N

).

We now come to the complexity analysis of the operation InsertAVL.
Assume we have an AVL tree with n nodes. Inspecting the algorithm for
InsertAVL reveals that it is almost identical to the algorithm Insert for general
search trees, except that we perform a rebalance operation once and updates
of the height field, possibly for every node on the path from the root to the
node inserted. The height updates take O(1) time per node visited. Also,
since at most one rebalance operation will occur in an insertion and each of
the four possible candidates consists of a very small number of simple
instructions (eight in the case of double rotations, five for single rotations),
it follows that the upper bound on the time complexity of our insertion
operation is still the height of the tree. Thus, O(h) is the worst-case time
complexity of InsertAVL. Because of the recursive nature of the insertion
process, the (worst-case) space complexity is also O(h).

This seems to suggest that we have not gained anything. Both Insert and
InsertAVL have a time and a space complexity of O(h), where h is the
height of the search tree. However, the fundamental difference is that the
worst-case height of an AVL tree is guaranteed to be much smaller than the
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worst-case height of a general search tree. We will show that in the worst
case, the height of an AVL tree with n nodes is less than 1.45-log,(n).

What is the greatest height of an AVL tree with n nodes? According to the
definition of an AVL tree, the difference of the heights the two subtrees of
any node must not exceed 1. So, let us construct worst possible trees by
making sure the difference is always exactly 1. Here is the recipe:

1. The empty tree T_; has zero nodes and has height —1, which is
maximal (simply because it is unique).

2. The tree T, of height 0 with one node, the root, is clearly the tree
with one node that has the greatest height (again, it is unique).

3. To construct a tree T, of height & for h > 1 with the minimal number
of nodes, take a tree T,_; of height 1 — 1 with the least number of
nodes, take a tree T,_, of height I — 2 with the least number of nodes,
and make T,_; the left subtree and T,_, the right subtree of the root
of T,.

One can verify that this construction yields trees of any height & > 0 with
the least number of nodes.” How many nodes does T, have? If M, is the
number of nodes of T, for &1 > 0, we can write

M,=1, M, =2, and for all h>1, M, =1 + M, + M,,.

We claim that M, grows exponentially. In other words, there exists a con-
stant C such that M, > CO", Define C to be (1 + ./5)/2. It follows that M, >
C".52 Since C > 1.618, it follows that

M, > 1.618".
We use this result to obtain an upper bound on the height of any AVL tree

with 7 nodes. Since M,, is the minimum number of nodes of any AVL tree
of height 1, any AVL tree of height & must have at least M,, nodes. It follows

51 Assume the contrary, namely that there exists an AVL tree of height & with fewer nodes. Since
there cannot be a contradiction to our claim for i = —1 and & = 0, there must be a smallest value,
say g 21, such that an AVL tree of height ¢ has fewer nodes than the T, constructed by our recipe.
Let T be such a tree of height g that has the smallest number of nodes (in particular, by assump-
tion T has fewer nodes than T,). Now consider the left and right subtrees T, and T, of the root of
T: Their heights must differ by exactly 1 (if they were equal, we could replace one of them with
an AVL tree of lesser height, which would also have fewer nodes, contradicting our assumption
that T has the least number of nodes). However, it follows now that T, and T, have heights less
than g and therefore cannot have fewer nodes than T, ; and T, ,, respectively, as g is the smallest
height where our recipe is assumed not to deliver an AVL tree with the smallest number of
nodes. This results in a contradiction, since the nodes of T are obviously the root of T plus all the
nodes of T, and all of T.

52 First one verifies directly that 1 + C = C2 Then we obtain by induction on i: M, =1 + M, +
M, ,21+CH1+C2=1+C2(C+1)=1+CH2C?>=1+ C"> C! the claim follows since the two
(required) basis cases M, and M, are trivially verified.
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from this that in the worst case, the height /1 of an AVL tree with n nodes is
bounded from above by 1.45-log,(1).® Thus, in the worst case, the height of
an AVL tree with n nodes is no greater than 45% more than the height of an
optimal tree.

Now we return to the complexity of InsertAVL. Since we have bounded
the height of an AVL tree with n nodes by O(log,(n)), the worst-case time
and space complexity are therefore O(log,(r)). This is in marked contrast to
the general search tree insertion whose worst-case time complexity is O(n).

3.2.11.3 Deleting an Element from an AVL Tree

Deletion from an AVL tree proceeds essentially in the same way as it did in
a general search tree, except that we have to verify the balance condition
when returning along the path from the deleted element (the one whose
node disappears) to the root, and if necessary carry out appropriate rebalance
operations. Rebalancing is done by carrying out the appropriate rotation
algorithm. Note that it is the physical removal of a node, not the overwriting
of a value (x by y), that may affect the balance of the tree. Another issue of
note here is that it may be necessary to rebalance for each node along the
path; this is in contrast to insertion, where a single rebalancing operation
suffices to balance the tree. To see that this may indeed occur, consider the
tree T, of height h with the minimal number of nodes. Deleting any element
in the smaller subtree of the root will necessarily decrease that subtree’s
height (by definition it is the smallest AVL tree of that height, so reducing
its number of nodes by one implies that the height shrinks after rebalancing).
We can now iterate this process. The node to be deleted from T,_, will be
deleted from its smaller subtree, which is T,_,. Within that T,_,, we delete
from its T,_,, and so on, until we get to a T, or a T;. Consequently, for the
root of every subtree that occurs on the path from the deleted node to the
root of the AVL tree, a rebalancing operation is required, since in each case
the right subtree has a height that differs by 2 from the height of the left
subtree. However, since each of the rotations has constant time complexity
and since the length of the path is bounded from above by the height of the
AVL tree, which in turn is bounded from above by 1.45-log,(n), the worst-
case time complexity of deleting an element in an AVL tree with n nodes is
O(log,(n)). This is also the worst-case space complexity of deletion in AVL
trees.

Let us summarize the situation of AVL trees compared with general search
trees. In both cases the height of the tree is the upper bound on the complexity
of searching, inserting, and deleting. The fundamental difference is that for
general search trees with n nodes, the height may grow as large as n — 1,
while for AVL trees with n nodes, the height is always smaller than
1.45-1og,(n). Therefore, the complexity, time and space, of the three operations
when applied to AVL trees is O(log,(n)). This is exponentially better than the

53 For any # and h in an AVL tree, we know that n 2 C'; from this we get log.(1) 2 h, and since
logc(1) = logc(2)-1og,(n), the claim follows.
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O(n) of general search trees. Consequently, the height balance condition
of AVL trees is a very powerful condition that has enormous practical
implications.

So far, we have used various types of searches to locate information.
Common to all was that a certain order relation existed. This was reflected
in the dramatic improvement in performance resulting from sorting the
search space. One may be tempted to assume that order is paramount in
locating information. This is quite wrong; a method that seemingly thrives
on chaos is more efficient (on average and under certain conditions) than
anything exploiting order. This is hashing. While its rigorous complexity
analysis is either too complicated to give here or is obtained using simulation,
we want to mention it since it is an extremely important technique.

3.2.12 Hashing

In contrast to the previously discussed methods, hashing does not depend
on any ordering relationship on its search space. The only test we must be
able to carry out is one for equality. Hashing is useful primarily if we want
to carry out insertions and searches. Other operations tend to be difficult
(e.g., deletions) or impossible within the underlying setting (e.g., finding the
median or the maximum, assuming there is an order relation).

There is a large set S of elements, called keys, any one of which might have
to be stored. The storage structure is a one-dimensional (1D) array H of type
[0:h — 1]. It is crucial that A, the size of the storage array, is much smaller than
the set S of all possible keys. While the search techniques described in previous
sections rely on order, hashing uses a hash function ¢ to map (elements of) S
to (locations in) H. Thus, 6 maps the set S to the set {0, 1, ..., h — 1}, so that for
every key Kin S, oK) is a number between 0 and /# — 1. The intention is to
place K into H[o(K)]. However, since S has many more elements than H has
locations, collisions are inevitable. A collision occurs if two keys K; and K, are
mapped by ¢ to the same location in H, o(K;) = oK,).

Therefore, a collision resolution strategy must be applied. We assume
that the array H indicates for each location whether or not that location is
occupied by a key. With every key K, a fixed sequence of probes a,y, 4, ,
... is associated, where the first element, a,y, is equal to oK), and
subsequent elements in this sequence of probes are inspected if the previ-
ous probe indicated that the location in H corresponding to it was occupied
by a key other than K. Thus, we first check Hla,]; if it is empty (not
occupied by any key), we place K there if we want to insert and we
conclude that K is not in the hash table if we want to search for K. If H[a ]
contains K, then for insertion we report that K already exists in H (hashing
does not permit duplicates, so this is an error), while for searching we
report that K is found. Finally, if H[a,] is occupied by a key other than K,
we proceed to the next element in the sequence of probes, namely 4, i, and
repeat this process.
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It follows from this very brief sketch that it is highly desirable that the
sequence of probes visit all the locations of H in as few probes as possible;
this means that we want {a,y, 4, 2,-.., 4,1k} to be equal to {0, 1,..., h —
1}.5* The crucial observation is that for both inserting and searching for a
specific key K, the same sequence of probes is used; therefore, we either
encounter K in one of the probes in H[a;x] or we hit an empty location.
Getting to the (first) empty location while doing the probes signals that K is
nowhere in the entire hash table. This follows since K would have to be
placed into a location in H according to this process of successive probes,
and if during an insertion attempt, an empty slot had been encountered, K
would have been placed there.

Note that up until now we have not said anything about the computation of
the sequence of probes ay, 4, y, 4,y,... — for good reason, since any sequence
will do as long as it satisfies, for every key K, the requirement {ay, a,, ;- .-,
a,4x} = 10,1,..., h=1}. Quite counterintuitively, the more random this sequence
is, the better the performance. While complete randomness would result in the
best possible performance, it is obviously not feasible, since we must be able
to compute the probe sequences. There are several approaches in the literature,
including linear probing (a;x = (2, ,x + 1) mod(h) for all i = 1,..., h — 1) and
quadratic probing (a;x = (4, x + i) mod(h) for alli = 1,..., h — 1); however, double
hashing is generally accepted to be a technique that reasonably approaches the
desired ideal of randomness. In double hashing the increment (the summand
that is added to get from a;; to a;,,x) is the result of applying a second hash
function o6 to K; 66 must be independent of the first one (c).°

Thus, in double hashing we have for all keys K, a4, = oK), and a4, =
(a1 x + incr) mod(h) for all i = 1,..., h — 1, where incr is chosen as follows:
If oo(K) is different from 0 and if 66(K) does not divide / (the size of the
hash table H), then incr = 66(K), else incr = 1. The intuitive objective is the
following: Even if we have two keys K, and K, for which the first hash
function hashes to the same location (6(K;) = 6(K,)), our two probe
sequences will not be identical if 66(K;) # 66(K,). This will ensure that we
will not retrace for K, the same probe sequence as for K,.® It is important
to stress the independence of the two hash functions; if they are not inde-
pendent, this argumentation collapses. Also, we must comment on the

5 If this was not satisfied, we might miss locations in H. At first glace, this might just lead to cer-
tain inefficiencies, especially if we do not know how long we should continue probing, but it
may have more dire consequences. Note that in the case of insertion such a missed location may
be the only empty location; thus, even though H is not completely full, we will not be able to
insert the key.

% For large enough sets S, it is of course unavoidable (for any choice of ¢ and 66) that there are
keys K, and K, such that 6(K1) = 6(K,) and 66(K,) = 66(K,) — this will occur whenever S has at
least h? + 1 elements. However, double hashing will reduce the likelihood of this occurring. And
since hashing is based on probabilities at any rate, this is just what is needed.

% Consider for example the case 1 = 4 and assume the following situation: H[0] contains K1, H[2]
contains K2 (with K1 = K2), and H[1] and H[3] are empty. Suppose for a K3 different from K1
and K2, 6(K3) = 0 and 66(K3) = 2; the probe sequence for K3 is 0, 2, 0, 2, and it is apparent that
K3 will not find a place in H, even though half of H is unoccupied.
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alternative definitions of the increment. If 66(K) = 0, then we must choose
a different value for the increment; also if co(K) divides h, the probe
sequence would not visit all locations in the hash table H.%” This last point
is why hash table sizes are frequently chosen to be prime numbers; if & is
prime, then any value of 66(K) will be acceptable as long as it is not 0.

The performance analysis of random hashing is quite involved; the per-
formance of double hashing is usually determined by simulation. The most
important notion is that the hash table must not be close to full; it is vital
that a good number of slots be unoccupied. In fact, one defines the load
factor o of a hash table to be the ratio of the number of occupied slots to the
total number of slots, o = n/h, where n is the number of keys that have been
inserted and & is the size of the hash table. If o is no larger than 80% (this
means at least one-fifth of the locations in H are wasted), the number of
probes for insertion and for searching is about 2 on average. Note that this
is independent of the size of the hash table; in other words, it makes no
difference how many keys are stored in H. As long as at least 20% of all slots
are empty, we need only two probes on average. Contrast this with any of
the order-based techniques, such as binary search. Clearly, the more elements
are stored, the longer the search takes.

Thus, hashing seems to be head and shoulders above all the other tech-
niques for locating elements. This assessment is not entirely correct; hashing
also has a few significant drawbacks. Deletion is not easily implemented,®
and it is crucial to have a good idea beforehand of how many elements will
have to be inserted.” The most significant problem, however, is the worst-
case performance of hashing: If we are truly unlucky, we will need n + 1
probes to insert, or search for, a key into a hash table that contains n keys.
In this case hashing is as bad as linear search. Worse, if we are consistently
unlucky, inserting n keys into an initially empty hash table could take as

57 The problem is that when deleting K, we cannot just declare its location to be unoccupied since
this could affect the ability to find another element K' whose own probe sequence passed
through this (formerly occupied) slot. Setting the slot of K to empty would indicate that K'is not
in the hash table, since we would carry out the probe sequence of K' until we hit the empty slot,
and then we would conclude that K' is not in H — even though it is. One way around this prob-
lem is to mark keys as deleted without actually emptying their slots until they can be replaced
by a new key that is to be inserted into H and whose probe sequence passes through that slot.
% If one does not know this, the load factor might exceed 80% — with dire consequences for the
performance. Worse, if one were to attempt to insert more than & keys, a completely new hash
table with a larger size would have to be populated from scratch.

% Another searching method, again order-based, which is faster than BinarySearch but slower
than hashing, on average, is interpolation search. Here, the key idea is that knowledge of the dis-
tribution of the entries should allow faster access. In the extreme, knowing the precise index of
course yields access in a single probe. However, even if such specific information is not available,
often some knowledge about the distribution is available. Note that BinarySearch uses no exter-
nal information at all, but anyone who has used a dictionary would probably start probing at the
beginning of the (single volume) book when looking for a word that starts with a letter at the
beginning of the alphabet. This type of knowledge-driven probing is captured by interpolation
search, which can attain an access complexity of O(log,(log,(1)) probes given an ordered set of n
entries, provided the knowledge is correct.
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many as O(n?) probes. This is extremely unlikely, but this is what worst-case
performance is concerned with.

In summary, hashing is an extremely attractive method for inserting and
search, if one has a good idea of the number of elements to be accommodated,
if one is not very pressed for space (so that the load factor can always be
kept below 80%), and if one is exclusively interested in the average perfor-
mance of inserting and searching.®

3.2.13 Graph Algorithms

The last group of algorithms we examine in this chapter deal with graphs.
While many problems have regular structures and are therefore amenable
to data structures that reflect this regularity, many other problems are quite
unstructured. For example, while the roads of some cities have a regular
checkerboard structure, the interstate highway network is not very regular.
This type of structure can be represented by graphs.

A graph G consists of a finite set V of vertices or nodes and a set E of edges.
An edge is a direct link between two nodes. One distinguishes between
directed and undirected graphs. An edge ec E may unidirectional, that is, it
goes from a node ueV to a node veV, or it may be unidirectional. In the
first case, we write e = (u,v), and in the second, e = {u,v}. If all edges ecE
are unidirectional, the graph G = (V,E) is called directed; if all edges ecE are
bidirectional, the graph G = (V,E) is undirected. An undirected graph can be
viewed as a special case of a directed graph since we can simulate a bidi-
rectional edge {u,v} in the undirected graph by the two unidirectional edges
(u,v) and (v,u) in a directed graph with the same set V of nodes.®! Since
directed graphs are the more general concept, we will tacitly assume them
from now on. Trees and linear lists, as well as stacks and queues, are all
special cases of graphs.

There are two traditional ways of representing a graph G = (V,E), namely
using adjacency lists and using an incidence matrix. If we enumerate all the
neighbors®? of a node ue'V in a list L,, then the set of all lists {L, | ue V}is
the adjacency list representation of G. Similarly, if we create a boolean matrix
I; with a row and a column for each node ueV such that I;[u,v] = true if
and only if (u,v) is an edge, then I is the incidence matrix representation of

6 In our example of the road map, a unidirectional edge would correspond to a one-way street,
and a bidirectional edge, to a two-way street. A two-way street can be viewed as two one-way
streets going in opposite directions, connecting the same locations.

¢l The node veV is a neighbor of the node ue V if (u,v) €E.

62 By inherently recursive we mean that an iterative process that achieves the same result must
simulate the recursive process (as opposed to techniques that convert the recursion to iteration,
such as the method for tail recursion we explained above). More specifically, any equivalent iter-
ative process requires additional space that is proportional to the depth of the recursion of the
recursive process. It may appear that the algorithm Depth(G,u) exhibits only tail recursion, but
this is not so, because there may be several neighbors of a given node v, and after its first neigh-
bor has been processed, the second must be taken up and so on until the last one has been con-
sidered. Therefore, there may be as many recursive calls in the body as there are neighbors of v.
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G. It is important to understand the relationship between the number 7 of
nodes and the number m of edges: Since any node u can have an edge to
any node v, it follows that m < n%. However, since we usually assume that
edges (u,u) are not permitted, the relationship is normally given as m < n-(n
—1)/2. Also, we will always assume that our graphs are connected; that is,
we assume that V cannot be split into two disjoint sets V, and V, with no
edge from any node in one set to any node in the other set. Consequently,
there is a lower bound on the number m of edges in terms of 7, namely
m 2n— 1. For example, linear lists and trees attain this lower bound. The
completely connected graph G = (V,E) with E = {(u# v) | u,ve V with u = v}
attains the upper bound. We summarize:

n-1<m < n-(n-1)/2.

Now it is clear that the space complexities of the two representations may
differ; the incidence matrix will always have space n? (independent of m),
while the adjacency list representation requires only O(m) space. Thus, the
adjacency lists will be more space economical than the incidence matrix if
there are relatively few edges; however, in the worst case both have a space
complexity of O(n?).

A common question of significant practical importance in graphs is
whether we can reach a certain node v when starting in node u. Other
questions of interest relate to bandwidth and throughput issues of networks.
They lead to a host of related problems, some of which we will examine
(and solve) below.

We will mainly consider reachability questions. The first of these asks
which nodes can be accessed in one or more steps when starting in a given
node u. Two fundamentally different solution methods answer this question,
namely depth-first and breadth-first search.

3.2.13.1 Depth-First Search

The idea is to start at u and attempt to go as deep in G as possible by taking
the first unvisited neighbor, v, of u and repeating this operation at v. How-
ever, in order to reach all possible nodes, we must allow for the same process
to take place subsequently at u’s second unvisited neighbor, and so on. This
is an inherently recursive process that can be formulated as follows:

Let Visited be a boolean array with an entry Visited[v] for each node ve V.
Initially, all entries of Visited are false. Set Visited[u] to true.
Depth(G,u)
For all neighbors v of u with Visited[v]=false do
{ Visited[v]:=true; Depth(G,v) }

When Depth(G,u) returns, the array Visited will record (with Visited[v] =
true) all those nodes v (including u) that can be reached from u.
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We must now determine the complexity of this algorithm. It is clear that
there will never be more than 7 nodes that will be set to true in the array
Visited. However, when checking the neighbors of a given node (already
visited), we may have to carry out many more tests than there will be nodes
that are to be processed. This is because several of the neighbors may have
already been visited, but finding this out still requires work. Thus, in the
worst case, we may have to check every edge in this process. Since the work
for each edge is O(1), it follows that the worst-case time complexity is O(m)
— or is it? Here is where the representation has significant impact. While it
is true that each edge may have to be examined, finding out what is an edge
is not entirely trivial, at least not for the incidence matrix representation. For
the adjacency lists, getting the next neighbor (checking the next edge) is easy:
Just take the next element in the list of neighbors. This takes O(1) time.

For the incidence matrix representation, however, getting the next neigh-
bor of v involves going through the row I[v,*] starting from the last neighbor
that we had processed and checking each row element until we get one, say
Ig[v,w], that has the value true; this means w is the next neighbor to be
checked. The upshot of this is that we will have to traverse the entire row
for v in order to find all its neighbors. Since each row in I; has 7 elements,
this amounts to time O(n). Since we may have up to n nodes v that must be
checked in this way, the overall time complexity for the incidence matrix
representation is O(n?), even if there are very few edges. For the adjacency
list representation, however, the time complexity is indeed proportional to
the number of edges since the next neighbor is directly accessible. Since the
space complexity depends on the depth of the recursion, which is equal to
the length of the longest path determined by Depth(G,u) starting in u
through G, the worst-case space complexity is O(n) since no path can contain
more than n nodes (note that any node can occur at most once; Visited[w]
is set to true as soon as w is visited).

3.2.13.2 Breadth-First Search

Here we collect all neighbors of u not yet visited in a queue, and for each
node in the queue, we again determine all its neighbors and append them
to this queue if they have not yet been visited. In this way, we visit each
reachable node in the shortest number of steps from u. Here is the algorithm:

Breadth(G,u)

Let Visited be a boolean array with an entry Visited[v] for each node ve V.
Initially, all entries of Visited are false.

Qu is a queue of nodes to be processed; initially Qu contains only u.

While Qu is nhonempty
{

Remove the front element v of Qu. Set Visited[v] to true.
For all neighbors w of v with Visited[w]=false append w to Qu.

}
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As with Depth(G,u), when Breadth(G,u) returns, the array Visited will
record (with Visited[v] = true) all those nodes v (including u) that can be
reached from u.

For the complexity analysis of Breadth(G,u), we first observe that a node
v will appear at most once on the queue Qu; thus, the while loop will
terminate after no more than n iterations. Then we see that the checking
neighbors process is almost identical to that for Depth(G,u), except that here
we append to the queue instead of calling the function Depth recursively.
The upshot is that the worst-case time complexity of Breadth(G,u) is exactly
the same as that for Depth(G,u). If the graph is represented by its incidence
matrix I, then it is O(n?); if the graph is represented by its adjacency lists,
it is O(m).

The space complexity depends on the size of the queue Qu, which is
bounded from above by n. Therefore, the worst-case space complexity of
Breadth(G,u) is O(n), regardless of how G is represented.

Note that both Depth(G,u) and Breadth(G,u) return the same array Visited,
but the order in which the nodes are visited is very different. While Depth
will always have a complete path from u to v in its recursion stack for every
node v at the time is sets Visited[v] to true, Breadth only reflects the distance
of v from u, but not a path from u to v. Breadth can be modified to record
the distance of v from u directly, as follows (-1 indicates that the node has
no recorded distance from u):

BreadthDist(G,u)

Let Visited be an integer array with an entry Visited[v] for each node v e V.
Initially, all entries of Visited are -1.

Qu is a queue of pairs of [node,distance] to be processed;

initially Qu contains only [u,0].

While Qu is nonempty
{
Remove the front pair [v,dist] of Qu. Set Visited[v] to dist.
For all neighbors w of v with Visited[w]=-1 do
append [w,dist+1] to Qu.
}

Visited now records for each node v exactly its distance from u, with
Visited[w] = -1 indicating that w cannot be reached from u.

The time and space complexities of this modification are the same as those
of the original algorithm Breadth.

So far, we have implicitly assumed that all edges are of equal weight.
Specifically, when determining the distance, we assumed that each edge has
length 1. This may not be very realistic; for example, in the interstate highway
network, different pairs of cities correspond to different distances. This leads
one to assign to each edge ecE a weight W(e). Weights should satisfy some
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properties; in particular, they must be nonnegative. Furthermore, we will
assume that the weights on edges induce weights on paths: if ¢, = (v, vy), e,
= (Vi V), €3 = (Vo,V3), ..., & = (V,_1,V,) is a path from v, to v, of length s, then
the weight of that path is the sum of the weights of its edges:

Wi(ey, ..., &) = W(e;) + W(e,) + ... + W(e,).

Since we do not allow self-loops (edges [v,v] for some node ve V), a path
g, starting in v and consisting of zero edges has a weight W(e,) = 0, for all
nodes v. Note that cycles may occur in graphs. A path e, = (v, vy), &;= (v{,v,),
e3=(Vy,V3), ..., & = (V,1,v,) is a cycle if v, = v,. Obviously, the weight of cycles
is usually nonzero.®® Given this setup, we are now interested in finding a
path with the minimum weight from a given node u to some node v. We
may generalize this somewhat and ask to find the minimum weight of all
paths from the node u to all other nodes v. This is known as a single source
problem, reflecting that u is the only starting node. It can be solved by
Dijkstra’s algorithm.

3.2.13.3  Dijkstra’s Algorithm

This turns out to be another representative of dynamic programming (see
Section 3.2.3). It computes in the array WT for each node v the minimum
weight w(u,v) of a path from the single source u to v.

Given: A graph G=(V,E) with weight information W(e) for each edge e.
WT is an array with an entry for each node v. Initially, WT[v]=  for all ve V.
S is a set of nodes, initially empty.

WTI[ul:=0
For each neighbor v of u: WT[v]:=W(u,v).
Add u to S.

While S # V do
{
select from V-S a node w such that WT[w] is minimal and add w to S.
for each neighbor v of w that is in V-S
set WT[v] := min{WT[v], WT[w]+W(w,v)}

6 Another property one commonly assumes about weights (or distances or cost) is the friangle
inequality. Given a path from a to b and a path from b to c the weight of the path from a to c should
be no greater than the sum of the weights of the paths from a to b and from b to ¢: W(a,c) < W(a,b)
+ W(b,c) for all a, b, and c. This is a very reasonable assumption, which is, however, occasionally
violated by the pricing approaches airlines apply when selling tickets. (To the best of my knowl-
edge, this is the only practical scenario in the real world where the triangle inequality is not
respected.)
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We assume for the purpose of carrying out arithmetic in this algorithm
that e is treated as a number larger than any of the numbers occurring. Upon
completion, WT[v] will contain either a positive number, indicating the
actual weight of the path from u to v, or <, indicating that no path exists
from u to v.

For the complexity analysis, note first that in each iteration of the while
loop, one node from V is selected and placed in S, and no node is placed
twice in S. Thus, there are n — 1 iterations of the while loop. The work inside
the while loop is bounded by O(n) time. In the selection of w, V-S must be
inspected, and V-S, although steadily shrinking, is of size O(n) for O(n)
number of iterations. The determination of neighbors of w and their pro-
cessing also requires no more than O(n) time. Therefore, the overall worst-
case time complexity is O(n?). Note that in this algorithm, the representation
(incidence matrix or adjacency lists) does not affect the time complexity.

The space complexity is O(n) since we need to maintain the set S, which
will grow to n elements, and we must calculate the array WT, which has n
elements. The remaining space requirements are constant. This yields a total
space requirement of O(n) (worst case, best case, and average).

3.3 Conclusion

We have provided techniques for determining the complexity of algorithms,
both nonrecursive and recursive, and discussed how they apply to specific
algorithms. Then we gave a number of important algorithms and derived
their complexities. These algorithms included representatives of dynamic
programming, namely Dijkstra’s algorithm and the algorithm for optimal
sequencing matrix multiplications, divide-and-conquer methods, namely the
O(n*8) square matrix multiplication method generally attributed to Viktor
Strassen, the algorithm for finding the Kth largest element in an unordered
set, and QuickSort, and on-line methods, namely searching, inserting, and
deleting in search trees and, in particular, in AVL trees. We also discussed
three other sorting methods: MergeSort, HeapSort, and RadixSort. Finally,
we briefly reviewed hashing, a technique that allows locating elements in
ways that are unrelated to any order information, as well as basic graph
algorithms.

Bibliographical Notes

The algorithms discussed in this chapter are standard and can be found
in standard algorithm textbooks, including those mentioned at the end of
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Chapter 1. In particular, interpolation search can be found in Gonnet: Hand-
book of Algorithms and Data Structures.

Exercises
Exercise 1

Consider a recursive algorithm F(n) defined by

If n n, then do basis case

else
{...; F(ny), ...; F(ny), ...; F(n)),...
}

a. Assume that n;=c;n for i= 1, ..., r and for all i, ¢; < 1. What is the
worst-case time complexity of F(n)? Formulate your result precisely
and prove it.

b. Assume that for some of the i’s, n;= ¢;n, and for all other i’s, n,=n
—d;, whereall ¢; <1and all d; 1. What is the worst-case computational
complexity of F(n)? Formulate your result precisely and prove it.

Exercise 2

Assume there are two types of commands:

e Insert(x), where x is a number

* Retrieve(k), where k is a positive integer; this returns the kth-largest
of the numbers inserted if there were at least k insertions or otherwise
an error indication. Assume that k may vary from command to
command.

a. Design data structures that allow efficient implementation of this
scenario. Note that repeated insertions of the same number result in
this number being present with multiplicity >1.

b. For your data structures, give algorithms for Insert(x) and
Retrieve(k).

c. Determine the time complexity (worst case; average under reason-
able, stated assumptions) of your algorithms. You may assume that
for each Insert command, there will be o Retrieve commands (not
necessarily with the same value of k).

© 2007 by Taylor & Francis Group, LLC



94 A Programmer’s Companion to Algorithm Analysis

Exercise 3
The following questions apply to a (not necessarily balanced) binary search

tree.

a. Insert the following values into an initially empty search tree. Show
the search tree after each insertion:

13246587109111213141516

b. Delete the following elements from the search tree you constructed
in (a):

12346810
The following questions apply to a balanced binary search tree (AVL tree):

a. Insert the following values into an initially empty AVL tree. Show
the AVL tree after each insertion, indicating precisely the rotations
used:

13246587109111213141516

b. Delete the following elements from the AVL tree you constructed in
(a). Be sure you rebalance as needed and show your AVL tree after
each deletion, indicating precisely the rotations used:

12346810

Exercise 4

a. For a balanced search tree (AVL tree) of height i, determine the
maximal number of rotations for a deletion. Hint: Start with an AVL
tree of height / that has the minimal number of nodes; then consider
a leaf closest to the root of the tree.

b. Consider an AVL tree of height i with the least number of nodes.
What is the least number of rotations that are required when deleting
a leaf of that tree? Describe precisely that leaf whose deletion will
achieve this minimum number of rotations. Is this leaf unique?

Exercise 5

For a balanced search tree (AVL tree) containing n elements, determine (in
terms of n):
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a. The length of a longest path from the root to a leaf.
b. The length of a shortest path from the root to a leaf.

Exercise 6

Assume you are given two matrices A, B of type [1:n,1:n] and consider the
problem of determining whether any element of A is an element of B.

a. Derive a lower bound for this problem.

b. Design an algorithm for this problem. Derive its time complexity. It
should be as close to your lower bound as possible.

Exercise 7

Consider an extension of the problem in Exercise 2. Design an augmented
AVL tree structure and specify algorithms with the following characteristics:

Insert(x): In time O(log,(n)) and space O(1), where n is the number of
elements in the structure at this time (i.e., the number of Insert
operations minus the number of Delete operations up until now).
Repetitions are allowed.

Delete(x): In time O(log,(n)) and space O(1), where 7 is the number of
elements in the structure at this time (i.e.,, the number of Insert
operations minus the number of Delete operations up until now).
If there are several instances of x, Delete(x) deletes one of these
instances.

Find(k): In time O(log,(n)) and space O(1), where n is the number of
elements in the structure at this time (i.e., the number of Insert
operations minus the number of Delete operations, up until now).

Exercise 8

Suppose that instead of doing the Find(k) operation of Exercise 2, with k an
arbitrary positive integer that can vary from one Find to the next, we replace
it with FindMedian, which returns the median of all elements that are
currently stored in the structure. (Note that FindMedian is the same as

Find (n/2) where n is the number of elements in the structure at this time.
However, even though this value changes with insertions and deletions, it
is clearly not as arbitrary as the general case.)

Can you devise a data structure and algorithms for

a. Insert(x)
b. Delete(x)
¢. FindMedian
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that improve over the Find(k) approach discussed in class. (Obviously, that
approach will still apply, so we know all three operations can be done in
time O(log,(n)) and space O(1); however, the question to solve is: Can you
do better?).

Carefully formulate your data structure, outline the three algorithms in
some detail, and determine with care the time and space complexities of
your three algorithms.

Exercise 9

Consider QuickSort on the array A[1:n] and assume that the pivot element
x (used to split the array A[lo:hi] into two portions such that all elements in
the left portion A[lo:m] are x and all elements in the right portion A[m:hi]
are x) is the second element of the array to be split (i.e., A[lo + 1]). Assume
n = 8. Assign integers between 0 and 7 to the eight array elements such that
QuickSort, with the stated choice of pivot,

a. Executes optimally (A[lo:m] and A[m:hi] are always of equal size)

b. Executes in the slowest possible way

Exercise 10

Consider QuickSort on the array A[1:n1] and assume that the pivot element
x (used to split the array A[lo:hi] into two portions such that all elements in
the left portion A[lo:m] are x and all elements in the right portion A[m:hi]
are x) is the first element of the array to be split (i.e., A[lo + 1]). Assume n =
8. Assign the numbers 0 through 7 to the eight array elements such that
QuickSort, with the stated choice of pivot,

a. Executes optimally (A[lo:m] and A[m:hi] are always of equal size)
b. Executes in the slowest possible way

Exercise 11
Consider HeapSort on the array A[1:n1].

a. Construct a heap for the following array of numbers: 18256347
9 10. Show the array after the insertion of each element into the heap.

b. Use your heap to sort the array. Show the resulting heap after the
extraction of each maximum.
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Exercise 12

For the following product of rectangular matrices, determine the smallest
number of multiplications required to carry out this product:

* * * *
a. M, /M ;*M; *M, M,
ES * * * *
b. M;,*M, ,*M,;*M,; *M, ;*M, ,
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Part 2

The Software Side:
Disappointments and How to
Avoid Them

The second part of this book presents and examines the view of the pro-
grammer.

Software development tends to be dominated by software engineering
aspects. However, there are somewhat lower-level details that often conspire
against the programmer and her desire to produce efficient code. These
details frequently occur at the interfaces between the various steps involved
in software development. Here, our emphasis is on the transition between
algorithms and their implementation.

To begin with, we firmly believe in the maxim “Don’t reinvent the wheel;
use a canned algorithm.” This is the main reason we do not spend much
time on the correctness of the algorithms in Chapter 3; we only provide some
key insights that should hint at how correctness would be established. How-
ever, the complexity analysis is given because that is the way to decide which
algorithm to use. If we have several correct, canned algorithms, it is imper-
ative that we have tools to help us decide which of them to use. However,
the term use requires some examination. When determining which algorithm
to select, it is crucial to take into consideration not just the algorithm, but
also its implementation together with constraints that are imposed by the
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target platform, the programming language to be used, and perhaps other
considerations. In other words, we must be able to obtain a reasonable
measure of the performance of the implementation if this selection is to have
practical value.

If there were no problems in the transition from algorithm to software,
there would be no need for this book. However, most practitioners are
painfully aware of many instances where their performance expectations
raised by algorithm analysis were seriously disappointed. To a large extent,
this has discredited the study of algorithms in the eyes of many software
developers. A primary objective of this book is to establish techniques and
tools that help in overcoming this view. Our basic premise is that algorithm
analysis has much to offer to programmers, provided they know how to use
it.

To this end, we begin by listing the sources of disappointments that reg-
ularly arise when implementing algorithms in Chapter 4. While we must
devote some attention to the question of correctness, we mainly consider it
to the extent it may be affected by issues that affect performance even more.
In other words, the algorithm is assumed to be correct, and we look only at
things that can go wrong when translating it into code. We are much more
interested in the question of why discrepancies can occur, some of them quite
serious, between the theoretically derived performance of an algorithm and
the observed performance of its seemingly faithful implementation. We also
comment on possible sources of unpredictability — recognizing that unpre-
dictability is unusual and often hides a lack of understanding of actions that
are consequences of the interaction of the algorithm with the run-time sup-
port system and other intermediate agents that are of no concern for the
algorithm analysis but may have a significant deleterious impact on the
overall performance of the resulting code. Finally, we make a brief detour
into the world of infeasibility and undecidability, concepts that are firmly
rooted in complexity theory but may occasionally affect problems in the real
world.

Many disappointments have their roots in the nonuniformity of memory
accesses. In Chapter 5 we examine in considerable detail the surprisingly
unpleasant consequences of this lack of uniformity; the problem lies in the
fact that algorithms are developed assuming complete uniformity of memory
accesses, while real memory systems consist of (frequently quite compli-
cated) memory hierarchies. The implications of this difference are occasion-
ally staggering, frequently nasty, and usually unexpected. One unwelcome
but fundamental consequence is that the performance of a piece of software
does not depend solely on the underlying algorithm; instead, it is frequently
indispensable to have a firm grasp of the target platform’s architecture, the
system software involved, and the interplay between these three diverse
actors. For example, generations of programmers have been raised in the
belief that programs written in a higher-level programming language are
portable. This usually tends to be true when it comes to correctness (it is
very rare that a program written in a standard programming language that
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behaves correctly when executed on platform A will produce wrong results
on a platform B that has equivalent system software), but it is distressingly
often disproved when it comes to performance. The same program may run
dramatically slower on platform B than it ran on platform A, even when
ostensible differences in raw performance between the two platforms are
taken into consideration.! This is quite impossible for an algorithm; essen-
tially, the only architectural influence one might consider is the amount of
time one assumes an aqverage statement will take. However, it is extremely
misguided to expect this type of hardware independence when the algorithm
is implemented.

These and related topics are studied in Chapter 6, which is devoted to an
examination of the influence of compiler and run-time support issues on the
performance of a program. The difficulty usually lies in the fact that things
cannot be studied in isolation; it is almost always the interplay of several
agents that causes unexpected effects. Specifically, we will look at the impor-
tance of understanding memory mappings, passing parameters, and the
effect of recursion on space complexity and examine some surprising con-
sequences. We also explore the realm of dynamic structures, which are inti-
mately related to the administration of a program’s memory and to garbage
collection (which is frequently a source of apparently unpredictably behav-
ior). We consider issues related to optimization as it is carried out by high-
performance compilers — ostensibly with the objective of producing the
most efficient code possible but sometimes interfering with other compo-
nents of the run-time environment and thereby producing code that effec-
tively runs slower than unoptimized code. Finally, we take a look at language
properties and their influence on performance. Many of these issues tend to
be very subtle and are often ignored, but occasionally they are responsible
for effects that are neither expected nor easily explained. We conclude this
chapter with a few brief comments on the influence of parallelism, recog-
nizing that in most modern processing systems, parallel processes are exe-
cuted that the programmer is not aware of and has no influence over.

In Chapter 7 we focus on implicit assumptions. Algorithms are usually
formulated assuming a rather forgiving approach; for example, one tends
not to worry about exception handling and one may merely state certain
assumptions under which the algorithm functions correctly. In a program,
however, we must consider what to do when an exception is thrown. Also,
if a specific assumption is necessary for the program to work properly, it is
mandatory that this assumption be tested for. Both the code for the exception
handling and the test of assumptions may have unpleasant implications for
the program’s performance. Moreover, alternative code must be provided if

! Ttis in the nature of human behavior that people rarely complain about the opposite: when the
program executes much faster on platform B than on platform A. However, once one has
accounted for the differences in raw execution speed and the program is still much faster on B
than on A, the programmer should now ask why the program performed so poorly on A —
instead of being happy about the performance improvement.
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the test fails; otherwise the program might crash — a result that is unaccept-
able to most users.

Chapter 8 is concerned with consequences of the finiteness of number
representation. While algorithm design does pay some attention to this issue
(it is after all the chief motivation for the distinction between the word and
bit complexities of algorithms), the consequences for software are distinct
and deserve some review.

In Chapter 9 we return to the asymptotic nature of algorithms and weave
it into the question of how to select an algorithm. We are mainly concerned
with practical aspects and pay particular attention to the issue of crossover
points; these are crucial in selecting algorithms whose implementation yields
good performance.

Finally, in Chapter 10 we examine the implications of undecidability from
a practical point of view: What can be done if a problem we want to solve
is such that algorithmic theory tells us that it cannot be solved. In many
cases this is the consequence of undue generalization rather than a futile
attempt to square the circle. We also look at a related question, namely what
to do when the time complexity of the algorithm is prohibitively large. Here,
the issue is frequently the gap between the worst-case and the average time
complexity, specifically, the question of what is average in a specific context.
Also, we look at heuristics, which can be very helpful in obtaining efficient
solutions for some problems with unmanageable complexity.
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4

Sources of Disappointments

About This Chapter

We enumerate a litany of the most important woes that may befall a hapless
programmer when transitioning from an algorithm to software. These woes
include software that produces incorrect results, software whose perfor-
mance differs significantly from that suggested by algorithm analysis, gen-
eral unpredictability of performance, and problems related to undecidability
and intractability.

Our starting point in this chapter is a correct algorithm for a specific
problem whose complexity has been properly analyzed. We explore possible
pitfalls that might occur in the translation of the algorithm into an executable
program. We concentrate on explaining the problems; for the most part,
solutions are addressed later. Thus, we focus on observed problems, one
might say symptoms, and defer the comprehensive treatment of the under-
lying causes to subsequent chapters.

4.1 Incorrect Software

Given that we start with a correct algorithm, how is it possible to end up
with wrong software, in spite of a careful translation of the abstract formu-
lation into a concrete program? The most common explanation is that the
programmer made some careless mistake, but even absent such careless
mistakes, incorrect programs occur much more often than one would expect.
For the most part, the reason is that algorithms specify far less detail than
is required for a competent implementation of a program. Here is a short
list of contributing factors that conspire against the unwary programmer.

103
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Exception handling: Algorithms do not concern themselves with minor
details such as division by 0 or the lack of initialization of a variable.
In this way algorithms can concentrate on the essentials and need
not worry about being buried in extraneous details. However, soft-
ware must address all these details adequately, and if it does not,
incorrect code results.

Rounding errors: Most programmers view the issue of rounding errors
as one exclusively related to numerical methods but sometimes non-
numerical algorithms subtly involve the representation of numbers.
A surprisingly difficult issue is testing for equality. In an algorithm,
a test of whether two values are equal requires no further comment;
in a program it may not be as obvious. If the two values are the
result of floating point operations in a program, a test for equality
may require a more elaborate condition than merely asking whether
the two values are identical. For example, the test of whether the
square of the square root of 2 is equal to 2, ~/2 - /2 =2, may fail in
some programs (algorithmically, it is of course always true). Simi-
larly, the mathematically divergent sum 1/2 +1/3 +1/4 +1/5 +...
converges to a fixed constant in virtually all computer platforms.! In
these situations algorithms tend to presuppose the mathematical
interpretation, while programs typically behave according to the
rules dictated by the finite representation of the numbers involved
and the specific implementation of the arithmetic operations. The
gap between these two approaches can result in software that does
not produce the results promised by the algorithm; in practical
terms, wrong software is obtained.

Stability: This concept is for the most part directly related to numerical
aspects of computations. Some algorithms solve problems but are
unsuitable to be implemented in code. Almost invariably this is due
to the finite length of the numbers involved in the computations.

Passing parameters: Algorithms typically do not specify the interface
between the calling program and the algorithm itself. This implies
in particular that the question of how to pass the arguments is not
addressed adequately in the abstract (algorithmic) formulation.
Thus, what starts as an algorithm must now be encapsulated as a
procedure or function, and this procedure or function must receive
the arguments as parameters. The communication of these argu-
ments to the function is known as parameter passing. There are
several, fundamentally different, ways of passing parameters, and
it is crucial to understand these methods, since using the wrong
method of passing parameters to a function may result in code that
produces completely wrong results.

1 Even worse, that constant number may vary from platform to platform, since it depends on the
specific type of arithmetic that a processor implements and the word length of the representation
of the numbers (of both the fractions and the sum).
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Implicit assumptions: Occasionally, in designing an algorithm we make
very reasonable assumptions, which nevertheless may be violated
by the resulting program under some circumstances. These tend to
be quite subtle, but subtlety is cold comfort if the program turns out
to be malfunctioning. An example might be the assumption that a
sorting algorithm would not change the order of the elements of an
array if that array was already sorted. This seems to be a truism,
except that we did not consider that there could be duplicates in the
array. (While search trees and hashing do not permit duplicates,
there is nothing wrong in sorting an array with duplicate elements.)
A sorting method considers only the keys that are to be sorted, and
sorting algorithms may interchange the order of identical elements,
but in many applications the key is just an entry point for the access
to other information.? If a change in the original position of identical
elements is undesirable, this would have to be stated explicitly, but
this requirement may have been overlooked.

While it is somewhat unusual for the code derived from a correct algorithm
to fail to produce the expected results, it occurs more often than desirable.
Note that our discussion deals exclusively with sequential algorithms; par-
allel algorithms are much more likely to give rise to incorrect parallel pro-
grams, for a variety of reasons directly related to the parallel nature of the
software.?

4.2 Performance Discrepancies

Discrepancies between the performance suggested by the analysis of the
algorithm and the observed performance of the code obtained by translating
the algorithm faithfully are much more common than outright wrong results.
Occasionally, the reasons are similar. For example, choosing an inappropriate
way of passing parameters may seriously affect the performance of the
resulting program. A particularly egregious instance is provided by binary
search, where the wrong parameter-passing mechanism can slow perfor-
mance exponentially. Much more common causes are the memory hierarchy
of modern computing architectures and the support systems (compilers,

2 Sorting methods that guarantee that they will not interchange the order of identical elements
are called stable sorting algorithms. The fact that a name was coined to differentiate them from
those that might swap such elements indicates that this aspect is more important in applications
than one might suspect if one focuses only on the sorting method itself.

3 One of the most insidious problems of parallel and distributed software is so-called race con-
ditions whereby two processes compete for some resource (e.g., access to memory, communica-
tion links, input/out (I/O) controllers). Sometimes one wins, and at other times the other wins,
even though the starting configurations of the two instances are seemingly identical.
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operating systems, run-time execution systems) that heavily influence how
efficiently a program executes.

We have already hinted at the evil influence of virtual memory manage-
ment (VMM); similar but less dramatic observations hold for caches. We
have more to say about this in Chapter 5. The major problem is that VMM
interacts fairly subtly with other aspects of a program. For example, consider
the problem of adding two matrices:

C:=A+B,

where A, B, and C are matrices of type [1:1,1:n], for n a number large enough
that the matrix addition cannot be carried out in main memory (in-core). For
the algorithm, this formulation would be fully sufficient; for a program, we
need to specify a good deal more. A typical program fragment might look
like this:

for i:=1 to n do
for j:=1 to n do
Ccli,3] := A[i,j] + BI[i,]]

Since main memory is one-dimensional, the two-dimensional arrays A, B,
and C must be mapped into main memory. There are two standard mapping
functions for this purpose: row-major and column-major, as we explained
in Section 2.2. Since in this scenario we do not have enough main memory
to accommodate the three matrices, the mapping function will map each
array into the logical memory space, which in turn is divided into blocks. It
is these blocks (pages) that are fetched from disk and stored to disk by VMM.
To make this more concrete, let us assume that n = 2!, that the size of a page
is 21! (words), and that our available main memory permits us to have 2'°
pages in main memory. If the memory-mapping function is row-major, each
row consists of four pages; if it is column-major, each column consists of
four pages. Since the total amount of space required for the three matrices
is about 3-2%, but only 219 pages are available, VMM will swap pages in and
out of main memory as dictated by the code above.

Here is the first problem: Most programmers are not aware of the memory-
mapping function used.* Therefore, they are unable to determine how many
pages this very simple program fragment will swap in and out. The second
problem is that most programmers are not particularly keen on understand-
ing VMM.® For our explanations, we assume that the replacement policy is

4 Arule of thumb is the following: A language directly based on Fortran uses column-major; all
other languages use row-major memory mapping. However, it is always a good idea to make
sure of this. Many programming languages do not specify which mapping function is to be used
by the compiler, so this becomes a property of the compiler (thereby driving yet another nail into
the coffin of portability).

5 Indeed, for many programmers, the most important aspect of VMM is that it permits them to
ignore I/O problems.
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pure LRU (least recently used); this means the page that has been unused
for the longest time will be the next to be swapped out if the need arises to
bring in a page when all available memory space is occupied. Most common
operating systems that support VMM implement some version of LRU.6 7

An even greater problem is that most programmers believe all this infor-
mation is of no relevance to writing good code. They would be correct if the
three matrices fit into main memory.® However, they do not, and the differ-
ence between the numbers of pages swapped for one and for the other
mapping function is staggering. Specifically, if the memory-mapping func-
tion is row-major, 32"° pages are swapped in and out, but if it is column-
major, it is 32% pages. In other words, one version swaps fewer than 100,000
pages, and the other swaps over 200 million. Thus, it is safe to assume that
one version is about 2,000 times slower than the other. To be even more
drastic, if the faster version takes 15 minutes to execute,’ the slower would
take about 3 weeks. Yet, from an algorithmic point of view, the two versions
have identical performance.

Note that for an in-core version, nothing ugly would happen, regardless
of which mapping strategy is used. It is only once VMM comes into play
that all hell breaks lose.

It is instructive to determine an approximate running time for the in-core
version (which is the algorithm, for all practical purposes). There are 2%
elements in each matrix; thus, the grand total of required memory for all
three matrices is a bit over 200 million words (800 Mbytes, assuming one
word has four bytes). There are about 67 million additions and 67 million
assignments. It is probably quite conservative to assume that each of the 67
million elements of the matrix C can be computed in 50 nsec on a reasonably
modern (circa 2005) processor assuming all elements reside in main mem-
ory.!? Consequently, an in-core version might take about 3,356,000,000 nsec,
or not even four seconds, for the computation. In practice, it will take much
longer, since presumably even in an in-core version, the matrices A and B

¢ Not all operating systems support VMM; for example, Cray supercomputers have never pro-
vided VMM, for precisely the performance issues that we explain here.

7 Typically, LRU is not implemented exactly, since this would require a good deal of space to
store the age of each page. Instead, variants are preferred that use less space to provide informa-
tion that approximates the age of a page.

8 Because of the random access property of main memory, the performance of this code fragment
would be independent of the memory-mapping function, provided all matrices are in main
memory, that is, if the problem were in-core. Note that we are again ignoring complications
caused by the use of caches.

9 This is actually pushing it. It takes typically more than 10 msec to retrieve a page, so in 15 min-
utes fewer than 90,000 pages can be retrieved, assuming that nothing else happens.

10 This is very conservative because we do not assume overlapping of computations or pipelin-
ing. Assume a clock cycle of 2 nsec (also conservative). Each of the two operands must be
retrieved (we ignore the address calculation and concentrate on retrieving contiguous elements
for main memory); we assume five clock cycles for each. The same holds for storing the result
back. We will assume that the operation itself requires 10 clock cycles. The grand total comes to
25 clock cycles, or 50 nsec. Pipelining can result in a significant time reduction, since after an ini-
tial start-up period (priming the pipeline), it could churn out a result every clock cycle.
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initially reside on disk and must first be fetched; similarly, the resulting
matrix C most likely must be written to disk. These operations take signifi-
cantly more time. Retrieving from or writing to disk one page takes more
than 10 msec (that is, 10,000,000 nsec); since there are about 100,000 such
page operations, this will take about 17 minutes.

We now have four scenarios with three very different timings:

1. 3 sec (in-core; for the computation alone, assuming A and B are in
main memory and C stays there)

2. 17 minutes (in-core; assuming A and B must be fetched from disk
and C must be written to disk)

3. 17 minutes (out-of-core; assuming A and B must be fetched from
disk and C must be written to disk and assuming the memory-
mapping function is row-major)

4. 3 weeks (out-of-core; assuming A and B must be fetched from disk
and C must be written to disk and assuming the memory-mapping
function is column-major)

Note that the fastest timing and the slowest timing are almost seven orders
of magnitude apart. Algorithmic time complexity would suggest the fastest
timing (computation of 67 million elements, each taking about 50 nsec), while
actual observation might provide us with the slowest timing, namely 3
weeks.

In practice, no sane programmer would let a program execute for weeks
if the running time predicted on the basis of the algorithm was a few sec-
onds.! Instead, the programmer would assume after a while that something
went wrong and abort execution. Thus, there might even be the possible
interpretation that the code is wrong, so this issue could be listed in Section
4.1 as well.

We will see in the next chapter that some techniques permit a programmer
to avoid such problems. It is fairly easy to change the code in such a way
that the worst-case behavior above (out-of-core; A and B must be fetched
from disk and C must be written to disk, and the memory-mapping function
is column-major) can be avoided. More intriguingly yet, using optimization
techniques as they are available to any good optimizing compiler, such code
changes could even be done automatically.

The fundamental issue in this situation is the truly incomprehensible vast-
ness of the gap between the time needed to access an item main memory or
from disk. It takes a few nanoseconds to access an item in main memory,
but it takes more than 10 msec to access this item on disk.!? This gap is almost

' Tt is not even clear whether the system would stay up that long.

12 T know of nothing in the physical world that comes even close to such a discrepancy. To wit,
consider transportation: The slowest common way to get from A to B is probably walking, the
fastest using a jet airplane. Yet the jet is only about 200 times faster than walking, or less than
three orders of magnitude.
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seven orders of magnitude. It clearly places a premium on keeping things
local.

4.3 Unpredictability

Computational complexity is an important tool for predicting the resource
demands of an algorithm and, by extension, of a program based on that
algorithm. It is therefore disconcerting when the predictions obtained by
analyzing the underlying algorithm are not borne out by the execution of
the resulting software. This is particularly annoying if the observed perfor-
mance of the software changes seemingly randomly from one run to the
next, even though the input data are similar (or even identical).

Here is an illustration. We have developed an algorithm to solve a given
problem. This algorithm has a certain time complexity f(n) where n is the
size of the input. Translating this algorithm into code results in a program
that is being executed repeatedly with very similar data sets. When mea-
suring the run time of the program, we find that even for identical input set
sizes, very different timings are observed. Moreover, nothing in the time
complexity analysis of the algorithm indicated that the range of f(n) for a
given value of n should be more than minimal. How can this discrepancy
between time complexity and run time behavior be explained?

The issues of nonuniform memory access outlined in the previous section
could be in play. However, if the amount of main memory available exceeds
the space complexity of the algorithm and if the program is a reasonably
faithful implementation of the algorithm, such issues do not explain how
different runs of a program with identical memory requirements could have
differing execution times. Instead, the culprit could be the management of
dynamic data structures.

Many algorithms assume the availability of data structures that are used
in the process of producing the desired result but have no further signifi-
cance. For example, in MergeSort, we need an additional array to store
intermediate results (consisting of sequences of sorted subarrays that are
then to be merged to create larger sorted subarrays). This additional array
is required by MergeSort during the process of sorting but can be discarded
once sorting is completed. Similarly, when deleting an element from a binary
search tree, the action of discarding a node is carried out by disconnecting
the node from the tree, thereby making that node inaccessible. In both cases
at some point memory is freed up; this means this memory can be used
subsequently for other purposes. Thus, it should be clear that the space
complexity of sorting m arrays of size n using MergeSort is O(n) and not
O(mn). The intermediate array needed for the first sort can be reused in the
next sort and so on. Similarly, a search tree with n nodes may be the result of
many different insertions and deletions, say n;,, insertions and 1, deletions
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with n = ny,,— n4,. However, the space complexity of representing this search
tree is always assumed to be O(n), and not O(ny,). Thus, the complexity
analysis of the algorithm implicitly assumes an idealized world in which
space that is no longer needed is automatically thrown back into a pool of
available space, without anybody having to attend to this action.!?

When transitioning from algorithm to software, an explicit mechanism
must exist that allows the reuse of memory once it is freed. The invocation
of such a mechanism may be imposed on the programmer or it may be
automatic. Some programming languages require the programmer to attend
explicitly to the freeing (deallocating, releasing) of freed-up memory and
provide statements for this purpose; these statements for freeing memory
are viewed as paired up with the statements that allocated the memory for
the dynamic data structures earlier in the program execution. In particular,
in this programming setting it is expected that the programmer provide
statements that free no-longer-needed space. Other programming languages
assume that the collection of freed-up space is carried out automatically by
a process known as garbage collection.

In both cases unpredictability may result. Consider first the situation where
the programmer must free memory explicitly. It is true that at the end of
executing a program, all space allocated to that program is freed. This may
suggest to a programmer that the tedious business of explicitly freeing mem-
ory during execution is not necessary. Alternatively, an inexperienced pro-
grammer may not even be aware of the need to write statements to free
memory.'* If this occurs in a programming environment where a fixed
amount of memory space is allotted to a program, then exceeding that space
would crash the program. This is not very likely to happen, since many
computer systems provide virtual memory management. Thus, if the amount
of freed space is not excessive, it is possible that VMM avoids crashing the
program. However, as we pointed out above, VMM can seriously slow down
the execution of a program, with the outcome that seemingly highly similar
input sets result in vastly different paging requirements for VMM. Conse-
quently, the timings can differ greatly as well.

Consider now the case where garbage collection is carried out automati-
cally by the run-time support system. In this scenario it is the garbage
collection system that decides autonomously when to do garbage collection.
It is now not very difficult to see how unpredictability can arise. We simply
do not know when garbage collection is carried out. Note that the process
can be time consuming (it may involve fairly complex algorithms, depending
on the nature of the data structures involved in freeing memory); moreover,
it may interact with other processes running on the same system that have

13 Note that, in contrast to many programming languages, algorithms do not stipulate that dis-
carded memory be explicitly put back for later reuse. Since memory in the algorithm paradigm
is unlimited, such an action would be unnecessary and perhaps even confusing.

14 There are even some compilers (of Pascal) that ignore statements for deallocation of space.
This is adding insult to injury — the programmer stipulates explicitly that the memory must be
freed but the compiler blithely ignores these statements.
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nothing to do with our program. Thus, even if our program executions are
identical in instructions and input, the system configuration may differ from
one run to the next, implying that garbage collection may not occur at the
same times or with the same frequency.

Finally, dynamic memory allocation can happen even if the programmer
thinks that no dynamic structures are created in the program. The problem
is that every call to a recursive function involves a dynamic recursion stack.
Thus, unless the program terminates abnormally, every program containing
recursive function calls must deal with freeing memory. Since the dealloca-
tion of this memory is outside of the programmer’s influence, freeing recur-
sion stack memory must be done automatically. Since the size of the recursion
stack is often unpredictable (consider search trees, for example, where we
can bound from above the size of the stack, but the actual size depends on
the specific tree), whether or not garbage collection in this context is carried
out, and how often, may be unpredictable.

4.4 Infeasibility and Impossibility

The last topic we mention in our litany of woes is fundamentally different
from the previous three, but usually a disappointment nevertheless. This is
the case when the theory of algorithms tells us that a certain problem does
not have a solution; the problem is unsolvable or undecidable. Alternatively,
there may be a solution, but its time complexity is so large that it is unrealistic
to expect a solution; the problem is intractable. This situation is quite similar
to the physicist who is told that the integral she wishes to solve is indefinite
(has no finite solution), even though the integral’s solution should exist since
the underlying problem has a solution. In the same vein, the programmer
feels typically quite strongly that the problem she wishes to solve is a rea-
sonable one, in fact one that arose in the context of an eminently sensible
problem setting. We contend that in some cases the difficulty is not the
problem itself, but a seemingly sensible generalization of the problem at
hand. Reverting to the original problem or restricting it to the cases one is
really interested in frequently allows one to circumvent the problems of
undecidability and infeasibility.

A typical example is provided by compilers.!> When designing a compiler
for a programming language, one invariably starts with a formal description
of that language. This formal definition is almost always based on a context-
free grammar, a precise formalism for specifying language constructs and
how they relate to each other within a valid program. In essence, a context-
free grammar specifies all valid programs in this programming language. It

15 Another example of an undecidable problem is provided by the question of whether a given
program contains an infinite loop.
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turns out that different context-free grammars can define the same language.
If two grammars generate the same language, they are called equivalent. It
is important to note that certain types of context-free grammars are more
convenient for constructing a compiler (especially the parsing phase of the
compiler) than others. Therefore, it is quite sensible to change the original
context-free grammar into one more amenable for the purpose of parsing it;
this new grammar must generate the exact same programming language.

Ordinarily, when going from one grammar to another, certain rules are
applied that have the property that the resulting grammar is equivalent to
the original one. However, one might wish to be able to verify separately
that the two grammars do indeed generate the same language. Thus, instead
of verifying the equivalence of transformation rules, one might come up
with the idea of writing a program that accepts as input the two context-
free grammars and determines whether they are equivalent. Since it appears
to be easier to solve this problem in general, the designer of the program
might decide to refrain from imposing restrictions on the two grammars.
This is where things go badly wrong: It is known that such a program cannot
exist. More specifically, the problem of determining whether two arbitrary
context-free grammars are equivalent is undecidable. Undecidability means
one can prove with mathematical rigor that no algorithm for the problem at
hand can exist, now or ever. This is surprising in the context of our grammar
problem, but the root cause is the undue generalization of the problem. Had
we restricted our attention to grammars that were similar to the original
(that is, were obtained in some transformational way from it), the problem
would most likely have been solvable. It is the decision to consider two
arbitrary context-free grammars as input that rendered the problem unde-
cidable. In other words, in most cases it is possible to define interesting
subcases of the given problem that do have solutions.

Another aspect of impossibility is extremely large time complexity.'® While
this is not as dire as undecidability (which says we cannot fully solve the
problem under any circumstances), from a practical point of view, it can be
equally devastating. Generally, one assumes that algorithms with a time
complexity greater than O(n°) are infeasible, for ¢ some fixed constant and
n the size of the input set (such algorithms are said to have a polynomial time
complexity). In most cases the constant ¢ should be relatively small. Clearly,
algorithms with complexities that are not polynomial are practical only for
relatively small values of . So what is a programmer to do when faced with
the problem of implementing an algorithm with a prohibitively high time
complexity?

In many cases the programmer focuses on the worst-case time complexity.
While the worst-case complexity is an appropriate measure if one is inter-

16 Extremely large space complexity would also be a concern, but as we pointed out earlier, it
makes little sense to have an algorithm in which the time complexity is smaller than the space
complexity. Therefore, an algorithm with an extremely large space complexity most likely has
also an even larger time complexity. (It is true that the example of BinarySearch discussed in Sec-
tion 6.4 contradicts this assertion, but in this case, the program is in error.)
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ested in an upper bound, in practical situations the average complexity may
be much more sensible (unless we are dealing with a hard real-time appli-
cation, such as the control of a nuclear power reactor or air-traffic control).
We have already seen that some algorithms have substantial gaps between
the worst-case and the average complexity, for example finding the kth
largest element in an unordered array (Section 3.2.9) and QuickSort (Section
3.2.5). One major difficulty is in determining what is average (we commented
on this in Section 1.3). Nevertheless, it is well known that certain algorithms
are usually quite fast, even though they have a miserable worst-case time
complexity.

Probably the most celebrated algorithm with an astonishingly large gap
between the worst-case and the average time complexity is the simplex
algorithm for linear programming.!” This algorithm is known to have an
extremely bad worst-case time complexity: there exist input sets for which
the algorithm requires exponential time. Yet for almost all practical problems
it runs in linear time. Most interestingly, there are other algorithms for solving
linear programming problems that have a polynomial time complexity, but
their average time complexity tends to be slower than that of the simplex
method. Therefore, the simplex method is still the most widely used algo-
rithm for solving linear programming problems.

The upshot of this discussion is that the worst-case time complexity may
be the wrong way of looking at an algorithm when implementing it as
software. It may be far more reasonable to determine the practically signif-
icant cases to which the program is to be applied and then to determine
what the average time complexity is for these cases.

4.5 Conclusion

In preparation for a systematic treatment of the major disappointments
programmers are likely to encounter when translating algorithms into soft-
ware, we outlined the more important sources of these disappointments.
Even though we assume that the starting point of our discussion, the algo-
rithm, is correct, we indicated several ways in which one might still end up
with an incorrect program. We then zeroed in on performance, in particular,
factors that can cause a major discrepancy between the complexity that the
analysis of the algorithm supplied and the observed performance of the
resulting program. Related to this is the issue of unpredictability, specifically

17 In linear programming we are to minimize (or maximize) a quantity subject to certain con-
straints where both the quantity and the constraints must be linear functions of the n variables
Xy, ..., X,: For given constants a;, b, and ¢, minimize the linear function ¢, x; +...+ ¢,x, subject to
the linear constraints a,;x; +... + a;,"x, <b;foralli=1, ..., m. Many practically important problems
can be formulated as linear programming problems. As a result, a vast body of knowledge as
well as algorithms focus on these problems.
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of performance, whereby seemingly identical program executions may dis-
play substantial performance differences. Finally, we addressed issues
related to impossibility, either provable impossibility, also known as unde-
cidability, or practical impossibility, namely, where the time complexity is
large enough to be essentially prohibitive for practical consumption. All
these problems will be revisited in subsequent chapters, where we present
a systematic coverage of aspects of computing systems that underlie, and
consequently explain, these and similar problems.

Bibliographical Notes

Collecting references for the material on which this chapter is based provides
an excellent indication why software practitioners find it difficult to under-
stand how algorithms fail to translate properly into software. There are many
diverse topics that come to bear on this issue. Moreover, these topics tend
to be taught in different courses and are covered by different textbooks,
making it even more difficult for the interested software designer to under-
stand all the ramifications for effective programming. Apart from the obvi-
ous, namely diverse programming languages and algorithm analysis, the
areas implicated are numerical analysis, programming language design,
compiler design, and operating systems. While it is not necessary to be on
the forefront of research in each of these areas, it is important to have a
reasonable understanding and working knowledge of all of them.
Exception handling is covered by the language manual of the program-
ming language employed. Rounding errors, stability, and other aspects of
numerical errors analysis and propagation are comprehensively covered in
standard textbooks on numerical analysis and methods, for example
Higham: Accuracy and Stability of Numerical Algorithms; see also the paper by
Goldberg, entitled “What Every Computer Scientist Should Know about
Floating-Point Arithmetic”. Methods for passing parameters as well as
memory mappings are traditionally covered in three quite different places:
in the language manual of the programming language employed (but this
tends to be cursory and only focused on that language), in comparative
programming language books, and, perhaps most detailed, in standard com-
piler text books (for example Aho, Sethi, and Ullman: Compilers: Principles,
Techniques and Tools), since it is the compiler that has to grapple with the
implementation of the various mechanisms stipulated by a programming
language. Virtual memory management is part of the coverage of operating
systems. We refer to standard textbooks on this topic, for example, Silber-
schatz, Gavin, and Gagne: Operating Systems Concepts. The same applies to
garbage collection, which is usually part of operating or runtime support
systems. Undecidability and intractability are part of the general algorithm
repertoire that is covered in textbooks on the design and analysis of
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algorithms, for example Kleinberg and Tardos: Algorithm Design, and text-
books on formal language theory, for example, Hopcroft and Ullman: Introduc-
tion to Automata Theory. Additional references will be given in the chapters
covering these issues in more detail.

Exercises
Exercise 1

Determine which of the sorting algorithms covered in Chapter 3 are stable.

Exercise 2

Verify, using 16-, 32-, and 64-bit words, using your favorite computer (under
some operating system) and your favorite programming language,'® that the
product of the floating point (real) numbers 1.0/3.0 and 3.0 is not equal to 1.0.

Exercise 3

Write a program, using your favorite computer (under some operating sys-
tem supporting VMM) and your favorite programming language, that dem-
onstrates that the timings of matrix addition differ substantially for large
enough matrices, depending whether you use Version 1 or Version 2:

for i:=1 to n do for j:=1 to n do
for j:=1 to n do for i:=1 to n do
Cli,J1:=A[i,J1+BI[1i,7]] Cli,J1:=A[i,J1+BI[i,]]
Version 1 Version 2

Choose a sequence of values for n, say 128, 256, 512, 1024, 2048, 4096, 8192,
16384, 32768, and 65536, and study the timings of both versions. (Be aware
that some runs may take longer than you are willing, or able, to wait.) Keep
in mind that the two versions should have the same timings, and doubling
the value of n should result in a quadrupling of time spent to do the addition,
assuming everything is done in core (which is of course not the case, since
the last value corresponds to a memory requirement of almost 50 Gigabytes,
assuming four bytes per word). Note that you must initialize your matrices A
and B, but the time required for this should not be part of the measurements.

18 Some programming languages, notably COBOL and PL/1, use an internal decimal represen-
tation of numbers; for them, the result would indeed be 1.0. However, most modern program-
ming languages, such as C or Java, use an internal binary representation, in which case the result
of the product will not be 1.0.
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Exercise 4

Discuss in detail how the parameters must be passed so that the recursive
functions for insertion and deletion in AVL trees are correct.

Exercise 5

Study the run-time environment of your favorite programming language on
your favorite computing platform and determine how freed-up space is
recaptured for subsequent use.

Exercise 6

Conduct the following experiment that should provide some information
about the use of garbage collection on your computing platform. Implement
insertion and deletion for AVL trees, but instead of having as the content
I(N) of the node N a single integer val, let it consist of val (to govern the
insertion into its appropriate location in the search tree) plus a large matrix
of size M. Choose M as follows: If val = 0 mod 3, then M = 218; if val = 1
mod 3, then M = 27 + 25; if val = 2 mod 3, then M = 216 + 27 (these values
should guarantee that fragmentation of the available memory will occur
rapidly). Now randomly choose a large number, perhaps 1,000 or 10,000, of
values between 0 and 299 for insertion and deletion, making sure that the
tree never contains more than 50 nodes. (If your compiler is very clever, it
may be necessary to assign values to some of the array elements to ensure
that the compiler is unable to conclude that the array is not needed since it
is never used.) Measure the time each of the insertions and deletions takes.
Since your tree never has more than 50 nodes, its height cannot exceed 6
(since an AVL tree of height 7 must have at least 54 nodes); consequently,
the complexity of the insertion and deletion operations is small. However,
the repeated insertions and deletions, together with the size of the matrices
in the nodes created, should result in extensive memory fragmentation,
which in turn should engage garbage collection and, subsequently, memory
compaction in a major way.
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Implications of Nonuniform Memory for
Software

About This Chapter

The memory model assumed for the complexity analysis of algorithms is
highly unrealistic for software development. We outline the differences and
discuss their implications for software. The primary villain is virtual memory
management, which relies extensively on disks, but a secondary one is the
ubiquitous use of caches in most modern computing systems. We then
address techniques that help in avoiding bad performance of programs
whose data structures cannot be accommodated in their entirety in the avail-
able memory. This requires an extensive understanding of the memory hier-
archy in modern computers and the implications for the development of
out-of-core programs.

In Part 1 we described the properties of the memory space assumed for
the complexity analysis algorithms are subjected to. The key feature is its
uniformity: All available memory is assumed to have the random access
property (RAM). While this greatly simplifies the complexity analysis of
algorithmes, it is also wildly unrealistic; almost all modern computer systems
violate this assumption, most of them grievously.! We first outline what the
use of VMM implies for software and its behavior; we also sketch to what
extent these lessons are applicable to caches as well. Then we address the
question of how to deal with the issues raised by the nonuniformity of
memory. We distinguish between solutions that require programmer effort
and those that can be implemented automatically.

! The only exception is provided by older Cray supercomputers, which do not support any
caches or virtual memory management (VMM). (Thus, in these systems programs requiring
more space than provided by the system’s main memory must be written as explicit out-of-core
programs.) All other architectures provide for caches, even if VMM (which is strictly software-
based) is not supported.

117
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5.1 The Influence of Virtual Memory Management

Recall the horrific example from Section 4.2, a seemingly innocent matrix
addition that nobody would give much thought were it not that it glaringly
illustrates that the interplay between memory mapping, VMM, and the
program’s instructions can have enormous consequences. This is greatly
aggravated by the general ignorance that most programmers have about
memory mappings and related systems aspects. This ignorance may be
entirely acceptable for in-core programs (programs that use strictly main
memory for all storage needs, including all intermediate storage, and that
access external memory, such as disks, only for the initial input of the data
and output of the final result), because for in-core programs the memory-
mapping function has no significant performance implications. If all data
are in main memory, any direct access to any data element takes time
independent of its location because of the random access property (RAP)
of main memory. Consequently, it makes no difference in what way the
data structures are mapped into the main memory (as long as that mapping
preserves the RAP). However, this ignorance can be fatal as soon as the
program ceases to be in-core, instead using external memory (usually
magnetic disks) in conjunction with either VMM or a direct out-of-core
programming approach.

It is instructive to examine the differences between VMM and overt out-
of-core programming. In out-of-core programming the programmer must
specify which blocks of data are transferred between disk and main memory
and exactly at what point during program execution. This results in consid-
erable additional effort for the programmer; it also is a potent source of
errors. For these reasons, most programmers avoid out-of-core programming
at all costs. Nevertheless, it should also be clear that out-of-core program-
ming affords the programmer a significant amount of control over the actions
of the program. In contrast, VMM creates a virtual memory space that is
dramatically larger than the main memory; for most practical purposes it is
unlimited.? As a result, the programmer can proceed as if this virtual memory
space were the actual one. Thus, the programmer need not concern herself
with the explicit manipulation of (units of) space; instead, the instructions
of the algorithms can be translated into code, without having to manipulate
blocks of data that must be moved between main memory and disk. While
this approach is clearly convenient (who wants to worry about the transfer
of blocks of data?), the programmer loses a good deal of control over the
behavior of the program.’

To understand the serious implications of these processes, we need a better
understanding of the underlying architectural aspects of the various types
of memory and in particular of the access characteristics of the types of

2 In physical terms, it is essentially limited by the amount of (free) space on the disks available
to the system.
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memory involved. Traditionally, the memory hierarchy of a computer system
is as follows:

Registers — Cache — Main memory — External memory

Most programmers consider registers as places of action — the only
components that perform instructions.* However, they are also storage®
— the fastest storage available. It is beneficial to structure computations
so that values stay in registers as long as they are needed. Caches are
somewhat slower than registers, but faster than main memory. Therefore,
values that will be needed in subsequent computations but that cannot
be kept in registers should be stored in a cache, since access to these values
is faster than if they are in main memory. If a value cannot be kept in the
cache, it moves further down in the memory hierarchy, namely into main
memory. The last element in this progression is external memory, usually
magnetic disks, which are much slower than all the other storage struc-
tures.

It is crucial that programmers realize how much data transfer occurs
implicitly in this computation model. In contrast, algorithms are typically
not concerned with the effort required to retrieve or store a data item. Thus,
while an algorithm may simply stipulate that a data item occurs in an
operation, a program will have to retrieve this data item from whatever
storage it resides on. This may involve several steps, all of which are
implicit, that is, the programmer is not aware of them. Moreover, while
the algorithm specifies one data item, many types of implicit retrieval do
not read or write a single item, but an entire group in which that item
resides (regardless of whether those other items of that group are used or
not). Specifically, data are read from disks in blocks and are written to
caches in (cache) lines.

While technology of storage devices is a moving target, it is nevertheless
very useful to have a rough idea of the access characteristics of these com-
ponents. For our purposes, two are paramount: the size of the memory and
the time required to access a data item. While one may quibble about specific
numbers, it is the relationship between the numbers that is of interest here.

3 In VMM the space required by a program, the logical address space, is divided into pages. Each
data item has a logical address. When an item is used in the program, VMM determines whether
it resides physically in main memory. If it does, execution proceeds; otherwise, its logical address
is used to find the page containing the item, which is then located on, and read from, disk. Since
VMM is allocated a fixed amount of memory, the so-called active memory set consisting of a
fixed number of pages, reading a page ordinarily implies that another page in the active memory
set must be displaced (unless the entire memory set is not yet full, something that would usually
occur only at the beginning of execution). Which page is displaced is determined by the replace-
ment strategy, usually a variant of LRU (least recently used; the page that has not been used for
the longest time is displaced). If the displaced page is dirty (has been modified or written), it
must be written back to disk.

4 This means that actions (operations) can only occur if a data item resides in a register.

5 If registers did not play the role of storage, computers would need far fewer of them.
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Let us first look at size, in words.® The size (which is the number) of registers
is on the order of 10, the size of caches is on the order of 103, the size of main
memory is on the order of 108 or 10°, and the size of magnetic disks is well
in excess of 10'°. The gap between cache and register is about two orders of
magnitude, but that between main memory and cache is five or six, and that
between main memory and disk is perhaps three.

Related to the sizes of the components is the unit of access. The basic unit
of data that can be transferred from disk to main memory is a block or page,
whose size is on the order of 10% the basic unit of data from main memory
to cache is a cache line, of a size on the order of 10% the basic unit of data
from cache to register is a single word. To illustrate this, suppose we want
to carry out an operation involving a specific data element x, and suppose
it is determined that this data element resides on magnetic disk. The follow-
ing steps must typically be carried out: Locate the block that contains x and
transfer it into main memory, likely displacing another data block there.
Then determine the cache line in main memory that now contains x and
transfer that line to the cache, likely displacing another data line there.
Finally, locate the data item x and move it to the appropriate register. In all
but the last transfer, a significant amount of data must be manipulated that
has nothing to do with x.

Let us now consider the time required for each of these transfers. Again,
the important factor is more the relationship between the numbers than their
absolute values. Roughly speaking, transferring a word from cache to reg-
ister takes on the order of 1 nsec, and transferring a cache line from main
memory to cache may take on the order of 10 nsec, but transferring a block
or page from disk to main memory takes on the order of 10 msec, or
10,000,000 nsec.” Here is the root of all evil: It takes about six orders of
magnitude longer to access a data item if it resides on disk than if it resides
in the cache.

We can summarize the situation as follows:

register €——> cache €<———> main memory <———> external memory
size 102 1 10° 10% 107 10° 10t

access
time 1ns 3ns 10 ns 10,000,000 ns

¢ While historically there have been changes in the word length (it was 16 bits 20 years ago, then
it became 32 bits, and it is now moving to 64 bits), we will ignore them in this comparison, since
a change in word length will affect all components equally.

7 The process of reading a block off a magnetic disk is somewhat complicated. There is the seek
time of the read /write head — finding the track in which the requested block is located and
moving the head to that track. This cannot be speeded up arbitrarily because of vibrations. Then
the head must read almost one entire track (in the worst case) to determine the beginning of the
block on the track; in the next rotation, that track is read. Thus, in the worst case, two rotations
are required to read a block once the head has been moved to the correct track.
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This gap of six orders of magnitude is astounding. It is also unlikely to be
reduced; if anything, it will grow. The reason is quite simple: While registers,
caches, and main memory are electronic (solid-state) devices, disk drives are
mechanical. Since electronic devices can be speeded up by making them
smaller, this means solid-state storage will continue to reduce its access times.
Magnetic disk drives cannot be speeded up significantly;? in fact their access
speeds have shrunk by less than one order of magnitude over the past 20
years. Consequently, the outlook is that the gap between access speeds
between disk to main memory and between main memory and cache will
get wider, from the current six orders of magnitude to seven or more.’

This has dramatic consequences for access times, depending on where a
data item resides. The location of a data item is the overriding factor when
determining the time required to carry out an operation. We may reasonably
assume that an operation takes on the order of 10 nsec. Thus, if the operands
of the operation reside in the cache or in main memory, the time to retrieve
the operands and then to carry out the operation is still on the order of 10
nsec. If the operands reside on disk, the overall time is dominated by the
time required to retrieve them; instead of 10 nsec, it now is a million times
more.

Here is where it is vitally important to be able to control data movement.
While it may be a very painful experience to write (and debug!) an out-of-
core program, it allows one to exercise complete control over the determi-
nation of which block of data to retrieve from disk and at what time. In
contrast, VMM hides these highly unpleasant details from the programmer,
but at the cost of taking away the ability of determining, or even knowing,
which data are transferred when.

When one analyzes the problem more carefully, it turns out that it is not
so much the question what is transferred that is crucial, but what is being
replaced. We noted that absent unlimited main memory, when we bring
in a new block or page or line, we must find space for that unit of memory.
This typically involves displacing values that occupy the space we want
to use. This is where things can go very wrong. If we displace values that
are needed later, these values will have to be brought back in, requiring
the displacement of other values. This is particularly dire when we need
one (or a few) values of a block or page, but given the process of transfer-
ring blocks, the entire page will have to be brought in. This was precisely
the situation of the example in Section 4.2 if the memory mapping function

8 There are just two ways of reducing the access speed of magnetic disk drives: increasing the
rotation speed of the spinning platters and refining the granularity of the magnetic recordings
in the platters. The rotation cannot be increased much further since eventually the centripetal
forces will tear the platter apart. Making the granularity of the magnetic recordings finer implies
getting the read /write head closer to the platter surface, which is also not feasible because the
distances are already very small. Essentially the technology plateaued about two decades ago,
as far as access speed is concerned, and no further improvements are likely, owing to the
mechanical limitations of the device.

9 A direct consequence is that more programs will change from being compute-bound to being
input/output (I/O)-bound.
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was column-major. We managed to use one array element out of each page
of size 2048, requiring this page to be brought back 2047 times. Since we
did this for every page, the resulting performance became truly execrable.
The situation changes completely if the memory-mapping function is row-
major. In that case we use all the elements of a page before the page is
displaced, so it never has to be brought back again.

Practically, this is the worst-case scenario, as far as performance is con-
cerned. Since in one situation (row-major memory mapping) all elements of
a page are used and no page must be brought back again, and in the other
situation (column-major mapping) every page must be brought back as many
times as that page has elements, it follows that the performance hit here is
2048. In other words, column-major requires 2048 times more page retrievals
than row-major. Since the retrieval of a page takes six orders of magnitude
longer than an operation involving two operands, we can ignore the time
taken by the operations; the retrieval times dominate by far. For the following
program fragment,

for j:=1 to n do
for i:=1 to n do
Cl[i,J] := A[i,3] + BIli, 31,

under the same assumptions, the situation is exactly reversed: Row-major
memory mapping is horribly inefficient, while column-major memory map-
ping is optimal.

We pointed out earlier that different programming languages follow dif-
ferent conventions about memory-mapping functions; specifically, Fortran
compilers invariably use column-major, while all other languages tend to
use row-major. Thus, for a non-Fortran language, one should use the original
code:

for i:=1 to n do
for j:=1 to n do
C[i,J] := A[i,3] + BIli, 31,

while in Fortran, the code with the i-loop and the j-loop interchanged should
be used:

for j:=1 to n do
for i:=1 to n do
cli,jl := Aaf[i,j]1 + BI[i,JI.

Of course, it should be clear that both code fragments produce exactly the

same result. It is the performances that will differ drastically if VMM is
involved.
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Since the size of a block or page is usually on the order of 1000, it follows
that the greatest gain we can obtain (if we are lucky) is also on the order of
1000.1° In this argument we assume synchronous I/O; in other words, the
program must wait for the page to be retrieved before it can continue exe-
cuting. This is a fairly simple computation model; more sophisticated models
may attempt to predict which page is needed in the future and initiate its
retrieval while other computations continue. This requires that I/O be done
in parallel with computations. This type of speculative page retrieval is
complicated, and it is made difficult by the fact that about 1 million opera-
tions can be carried out in the time it takes to retrieve one page from disk.
To do this automatically (which is what a sophisticated VMM would have
to do) is exceedingly challenging.!! This is significantly aggravated by the
fact that VMM is part of the operating system and as such knows nothing
about the program being executed. It is much more likely that a highly
competent out-of-core programmer is capable of anticipating sufficiently in
advance of the computations which page to retrieve next. (Sufficiently here
means about a million operations earlier.) Unfortunately, this skill is very
rare. Most programmers prefer to rely on the VMM, with occasionally disas-
trous (performance) results. An intermediate approach is turning the task of
scheduling the I/O of a program over to the compiler. We will return to this
idea in Section 5.4.

5.2 The Case of Caches

As indicated in the discussion of the memory hierarchy, the interplay
between main memory and cache is similar to that between disk and main
memory. The atomic unit of access is a group of data items (line, block), not
a single word, and access times are faster, the higher we are in the memory
hierarchy. Thus, most of what we commented on in the previous section also
holds for caches in relation to main memory. The one fundamental difference
is that the performance difference between main memory and cache is much

10 One may think that the factor should be a million, since it is a million times slower to retrieve
an item from disk than from main memory. This argument would only be applicable if one com-
pared an in-core with an out-of-core program. Generally, this makes little sense, since one would
always use an in-core program if enough main memory were available — nobody wants to do
out-of-core programming. Here, we are comparing two out-of-core programs (i.e., we are assum-
ing that not enough main memory is available in either case); the only difference is the type of
memory-mapping function employed. In this case the size of the page or block is essentially the
upper bound on the factor of difference in time requirements.

11 Ideally, we would want to initiate the retrieval of a page or block one million operations before
the first element of that page is needed. Thus, we must be able to look one million operations
ahead to know what pages are required to be in main memory when a specific operation occurs.
Since this speculative approach may go wrong (a different page may be needed from the one we
retrieved), it should be clear that this is a very nontrivial task.
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smaller than that between disk and main memory. Also, in practice one
would never assume that a cache is sufficiently large to run an entire program
without having to use main memory (except to load the cache at the begin-
ning and to dump the results into main memory at the conclusion of the
program); thus, there is no analogue to an in-core program for caches.

We observed that for an out-of-core program, choosing an appropriate
memory-mapping function might improve the performance by a factor equal
to the size of the block or page. This factor is typically on the order of 1000.
What is the corresponding factor for caches? Since the access times to main
memory and to cache differ typically by a factor of less than 10, and since
the sizes of page and cache line also differ by about a factor of 10, we can
conclude that the most efficient utilization of a cache may improve the
performance of the resulting program by a factor that cannot be larger than
10. This implies that the I/O transfer between disk and main memory is far
more important for the performance of a program than the I/O transfer
between main memory and cache.!?

5.3 Testing and Profiling

While testing and profiling are not directly related to our objectives in this
chapter, these two concepts should at least be mentioned in passing. Our
approach is to use the computational complexity of algorithms as a tool for
determining the (likely) performance of a program. Thus, we do not execute
the program. Both testing and profiling require the execution of a program,
usually one that has been armed with appropriate probes. Once a program-
mer has produced a program, that program must be tested extensively, both
to ascertain its correctness and to determine its performance. While this is
obvious, it does not conform to our objective of transitioning from algorithm
analysis to predicting software performance. Therefore, we do not intend to
discuss aspects of program testing.

Profiling is quite similar. It is concerned with finding bottlenecks in pro-
grams and with isolating hot spots and discovering excessive paging and
cache misses. Knowing about the bottlenecks in a program is important since
otherwise a programmer may spend an inordinate amount of time on insig-
nificant code (insignificant from the performance point of view). Determin-
ing whether thrashing or cache misses occurred is done after the fact — after
the first (or second or third) version of a program has been produced and
its performance was found wanting. Since these activities, albeit crucial for

12 Tt is intriguing that in spite of the observation that far greater gains can be obtained from look-
ing carefully at disks and virtual memory management than at caches, there is a much greater
body of literature pertaining to optimizing the transfers between main memory and cache than
the transfers between disk and main memory.
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software production, are not directly related to the objectives of this book,
we will not discuss them in any further detail.

5.4 What to Do about It

The most important aspect of this chapter is to make the programmer under-
stand that there is a problem in using the memory available in modern
computing systems. This problem is complex, since it involves three parties:
the program itself, the memory hierarchy of the target computer, and the
system software, in particular the compiler (which defines the memory-
mapping function) and the VMM. To a large extent, once a programmer
understands these players and their interactions, unexpected performance
deterioration should no longer be completely mystifying. However, it is not
sufficient to understand why things go wrong — we have to have ways of
making them go right.

Two approaches can be employed: manual and automatic. The manual
approach requires a good deal of work and insight from the programmer
and is based on typical out-of-core programming techniques. The automatic
approach is less demanding of the programmer but is not generally available.
We will describe both in this section.

As we mentioned, different programming languages use different
memory-mapping functions. It is crucial for the performance of an out-of-
core program that the programmer be aware of the type of mapping. With
the compilers currently available, this is not something the programmer can
change or influence (short of changing to a different programming language).
Thus, once a programming language is chosen, the programmer is locked
into a specific memory-mapping function.

What is under the control of the programmer is the program. Central to
what follows is that there are often several equivalent ways of programming
the same operation. For example, to implement matrix addition, either of the
two program fragments in Section 5.1 will do. The two versions produce the
same result and if they were in-core programs, they would both have the
same performance.’® It is important to realize that these equivalent versions
may have very different performances when they are executed as out-of-
core programs. The task is then to ensure that the most efficient of these

13 We are focusing on the transfers between disk and main memory and ignoring the influence
of the cache. Thus, if there is no cache (Cray systems), there is no difference in performance. If
there is a cache, then the way in which the cache lines interact with the access patterns defined
by the program instructions will have some influence on the performance. However, since the
performance is affected much less by cache interactions than by disk interactions, this aspect can
often be ignored. Additionally, more available tools are designed to minimize cache misses than
page misses.
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versions be selected. Below we will comment on how this selection can be
made.

Frequently, one assumes that one starts with an in-core program (as sug-
gested by the algorithm) and obtains from it an out-of-core program. Unfor-
tunately, in some situations an efficient out-of-core program does not follow
systematically from a good in-core program. Instead, we may have to take
a substantially different programming approach to achieve out-of-core effi-
ciency. This can complicate the design of a program considerably. As an
illustration, consider the following problem: Suppose we are given a
sequence of data items, each of which modifies a large [1n,n] matrix M.
Assume that each data item is a triple [i,j,x], where i and j are row and
column indices, 1 <i,j <n, and x is a real value, with the interpretation being
that the value x is to be added to the value M[ij]. Initially, M is assumed to
be 0. Let us furthermore assume that M is too large, by a factor of 10, to fit
into main memory. Finally, we assume that the input is a random data
sequence (i.e., one where a data item is equally likely to modify any of the
entries of the matrix). An acceptable algorithm would be as follows:

while more input do
{ read a triple [i,j,x];
MIi,j] := MIi,j] + x
}

As a result, the complexity of this algorithm is O(m), where m is the
number of data items. We assume that m >> n?; that is, there are far more
data items than elements in the matrix M. Translating this algorithm into
an in-core program preserves the time complexity of O(m); with M residing
in main memory, no data transfers are required between disk and main
memory. (Again, we ignore the influence of the cache and concentrate
exclusively on the lower end of the memory hierarchy.) However, the
situation changes unpleasantly for an out-of-core program: After an initial
period during which the available main memory is filled up with pages,
we will encounter change requests (that is, increment M[i,j] by x) that
require elements of M that are not currently in main memory and whose
transfer into main memory displaces other blocks. Thus, after the initial
ramping up, the likelihood of having M[ij] in main memory is 1 in 10,
since only 1/10 of M fits into main memory; 9 in 10 change requests will
cause a new block to be transferred into main memory, thereby displacing
one already there, which then has to be transferred (written) to disk.
Moreover, all displaced pages are dirty and must therefore be written back
to disk. Under our stated assumption of randomness of the data sequence,
we have about 9m/10 page transfers (ignoring the ramping up). These

4 This is a fairly abstracted computation model that occurs frequently in practice. For example,
many seismic data processing algorithms are of this type.
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dramatically dominate the time requirement of this naive program, based
on the algorithm (and the in-core program).

What is a better out-of-core program? Here is an approach that is clearly
not based on the in-core version: Divide M into 10 portions, M;, M,, ..., My,
defined in a way that allows easy testing of whether an index [i,j] falls into
a specific portion. For example assuming  is divisible by 10, we might define
M, =M[(t-1)n/10+1:tn/10,1:n],t =1, .., 10; that is, M, consists of the
first n/10 rows, M, of the next 7/10 rows, and so on. First we go through
the sequence of data items and either make the change if it pertains to the
portion of M that is currently in memory, say M, or create a new subse-
quence S, consisting of all those data items that pertain to the matrix portion
M,, for 2 t 10. Once we have read all the elements in the original sequence,
we have completed all changes to M, and we have also created nine subse-
quences, each of which pertains to one portion of M (those not yet consid-
ered), which are then processed after loading that portion into main
memory.!®> The out-of-core algorithm is as follows:

allocate M, in the available main memory and initialize it to 0;
set the sequence S, to empty, for all t=2,...,10;
while more input do
{read a triple [i,j,x];
if [i,j] is in M, then M[i,j] := M[i,j] + x
else { determine t such that [i,j] is in M;;
append [i,j,x] to the sequence S,

}

}
for t:=2 to 10 do
{ write M, , to disk;
allocate M, in the available main memory and initialize it to 0;
while more input in S, do
{ read a triple [i,j,x] from S;;
MIi,j] := M[i,j] + x
}

How does this algorithm differ from the corresponding program? We have
to initialize the sequences S, to be empty, and the manipulation of these
subsequences must be specified more carefully. There are nine blocks in main
memory, one each for each of the nine incipient subsequences. Once a block

15 A thoughtful reader may observe that the original algorithm was essentially on-line; the mod-
ification for out-of-core is clearly off-line. This is unavoidable, if one wants an efficient out-of-
core version.
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is full, it is written to disk. Thus, we need nine more blocks in main memory
than what the current portion of M consumes.'¢

We now determine the time requirements of this out-of-core version. We
will ignore the initialization of the matrix portions as well as the transfers
involved in writing the resulting portions of M back to disk, since this has
to be done even for an in-core version. Thus, we count only the transfers
required because of the out-of-core situation; that is, we count only implicit
transfers. We ignore explicit transfers, which would be the initial retrieval
of M from disk and the final writing of M to disk. In this (off-line) version
we have no implicit transfers stemming from (any of the portions of) M; we
do, however, have implicit transfers stemming from the subsequences.” We
created nine subsequences, S, through S;,. On average each is of size m/10.
This means the creation of the subsequences involves the following amount
of block transfers. Let us assume that each block is of size B; then each
subsequence consists of 7/(10B) blocks. Each of the nine subsequences must
be written to disk and then retrieved from disk so that the data items in it
can be processed. For each subsequence this requires m/(5B) implicit block
transfers. Thus, the total number of implicit block transfers (transfers that
are not the initial or final ones) involved in this process is 9m/(5B). Con-
trasting this with the total number of additional block transfers involved in
the naive out-of-core version of about 9m/10, the new version is more effi-
cient in additional block transfers by a factor of B/2. If B is 1000, the new
version is about 500 times more efficient, since the block transfer times
significantly dominate the actual computations.!®

It is important to understand that the new version is not one a programmer
would devise for an in-core program. Although we formulated it in terms

16 If this assumption is not acceptable, the size of the portions of M could be decreased and their
number increased, as well as the number of subsequences. Since generally the size of a block is
substantially smaller than the total amount of memory available, this assumption is reasonable.
An alternative approach would be to create a single new subsequence of all change requests not
applicable to the portion of M currently in main memory. This reduces the required number of
blocks for the subsequence from 9 to 1 (since there is now only one subsequence of rejected
change requests, instead of the nine before). However, it also implies that this new subsequence
must now be read in its entirety for the processing of the next portion M, of M, yielding all
changes to M,, plus a new subsequence consisting of all change requests not pertaining to M, or
M,. This subsequence is of size 8m/10. Proceeding in this way yields the same results, albeit
requiring fewer additional blocks (1 rather than 9) but also requiring more time since now the
requests for changes to My, will be selected out 9 times, whereas in the previous version they
were selected out once. In this way, we can trade space for time.

17 In the naive (in-core based) program, all of our implicit transfers stem from portions of M
being read from, or written back to, disk.

18 The modification of this technique that requires only one subsequence gives rise to a some-
what larger number of implicit block transfers. For the first subsequence we need 9m/(10B)
blocks that must be written to, and then read again from, disk. This means 18m/(10B) implicit
block transfers. The next iteration yields a subsequence that needs 8m/(10B) blocks, or 16m/
(10B) implicit transfers. The third iteration involves 14m/(10B) implicit transfers, until the 10th
and last iteration, which needs 2m/(10B). Summing this up, we get a total of 9m /B implicit block
transfers, or five times more than the version with nine subsequences of size m/(10B) each. This
approach is significantly less attractive, even though it is still 100 times better than the naive one.
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of 10 portions, this value 10 could be a parameter, adjusted according to the
ratio of available main memory and size of the matrix M. The key insight
is that it must be the matrix M, not the sequence of data items, that
determines the processing even though this seems to be the natural way to
think about the problem. This reversal of the natural processing order is a
frequent aspect of efficient out-of-core programs.

An important feature of many efficient out-of-core programming programs
is that they are not directly derivable from an in-core version (as this example
just demonstrated). However, numerous programs can be derived. We have
already seen an example in matrix addition, where the two versions are
transformable into each other. To understand this process of program trans-
formations, we have to make a brief excursion into dependence analysis,
which forms the formal basis for program transformations.

The overriding goal of program optimization is to reduce the average
execution time of a program. To this end, a program is subjected to a rigorous
analysis of the dependences between its instructions. The objective of this
dependence analysis is to determine the absence of dependences.

An instruction S; depends on another instruction S, if the latter uses a
result computed by the former. Not having any dependence between the
two instructions means they can be executed in any order; in particular, they
could be rearranged without affecting the semantics of the program. Modern
optimizing compilers carry out extensive (and expensive) dependence analy-
ses. They also have a catalog of program transformations that are semanti-
cally valid, provided there are no dependences between the instructions
involved in the transformations. For example, the program transformation
that interchanges the two loops in the matrix addition programs is called
loop interchange; this transformation is semantically valid (correct, produc-
ing the same results) if there are no dependences between the instructions
involved.!” Analyzing the instructions in these two program fragments, one
realizes quickly that each iteration computes a different element of the result
matrix, independent of any of the other elements of the result matrix. Thus,
there are no dependences and the loop interchange is valid.

In addition to loop interchange, loop distribution is a useful program
transformation to keep in mind. While it goes beyond the scope of this book
to explain this transformation in detail, an example will help in understand-
ing how its application may impact the running time of a program. The
general idea is stated easily: When confronted with a complicated loop, we
want to replace it with a sequence of simpler loops. This will result in a
significant reduction of implicit block transfers if each simpler loop requires
substantially fewer implicit transfers (because all the required blocks fit into
main memory) than the complicated loop (because not all the required blocks
do). Consider the following program fragment:

19 This requirement can be greatly relaxed. We refer to the extensive literature on dependence
analysis and program transformations.
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for i:=1 to n do

{ A[i] := B[1-1] + 1;
C[i] := A[i] + D[i-17;
B[i] := A[1] - 1i;

D[i] := A[1-1] + 1;
E[i] := D[1] + F[i-17;
F[i] := D[1] - F[i-1]

There are several dependences among the statements in the loop; for
example, the assignments to B (third statement in the loop body) change the
values that are used in the assignments to A (first statement). Similarly, the
assignments to A (first) affect the values used in the assignments to B (third).
The other dependences in this loop involve the first and second statements
(the changes to A affect the assignments to C), the second and fourth state-
ments, the fourth, fifth, and sixth statements, and finally the sixth and fifth
statements. The upshot of this dependence analysis is that by applying loop
distribution, this single, complicated loop can be replaced by the following
four simpler loops:

for i:=1 to n do

{ A[i] := B[i-11 + i;
B[1] := A[1] - 1i;
}
for i:=1 to n do
{ C[i] := A[i]l + DI[i-1];
D[1] := A[1-1] + 1i;
}
for i:=1 to n do
{ F[i] := D[i] - F[i-1]
}
for i:=1 to n do
{ E[i] := DI[i] + F[i-11,
}

Note that these four loops must be in exactly this order; any other order
would result in different results (that is, it would be semantically invalid).?
Moreover, the two loops with two statements each cannot be further distrib-
uted (i.e., cannot be replaced by two loops of one statement each). How can
this reduce the number of implicit block transfers?

20 This is because in contrast to our previous stipulation that there be no dependences, here there
are some dependences, but they are preserved by the stated order of the loops.
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Observe that the original loop required that portions of each of the six
arrays, A through F, had to be in main memory if excessive thrashing
(paging in and out of only very partially processed blocks) is to be avoided.
Assuming that many blocks are required to accommodate an array, it
follows that in the worst case we need one block for A (to use on the right
of assignments and to write on the left of assignments), two blocks for B
(since both B[i] and B[i — 1] occur and may be in two different blocks), one
block for C, two for D, one for E, and two for F. This yields a total of nine
blocks that must be in memory at the same time if we want to avoid writing
partially used blocks back to disk and then reading those blocks again from
disk. Carrying out this analysis for each of the four loops individually
results in the following:

The first loop requires one block from A and two from B.
The second loop requires two blocks from A and D and one from C.
The third loop requires two blocks from F and one from D.

=W N

The fourth loop requires one block from E and D and also only one
block from F (since F[i — 1] occurs, but not F[i]).

This might lead one to conclude that five blocks are sufficient. While this is
true, it does require more careful analysis and argumentation, as well as a
further restructuring of the code.

The first problem is that it is not correct to simply take the maximum of
the block requirements of the four loops involved. The difficulty is illustrated
by the use of F[i — 1] in the fourth loop. That this could create problems is
evident once one examines the global use of blocks, that is, the interplay
between the different loops. To see this, observe that the second loop requires
from the first loop the values A[i] and A[i — 1]. Thus the blocks for A[i] and
Ali — 1] must be imported from the first loop to the second to enable that
loop to compute C[i] and D[] (one block each). While the C values are not
needed further, the D values are, namely in the third and fourth loops. Thus,
the block for D[i] has to be passed along to the third and then to the fourth
loop before it can be discarded. This requires us to redo the computation so
that each loop is broken up into several loops of an iteration count equal to
the size of the block.

Let M be the size of the block and assume for simplicity that M divides n:
M = n/m, for some positive integer m. We now do the first M iterations of
the four loops, then we do the next M iterations, until we do the last group
of M iterations of the four loops. This becomes:
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for k:=1 to m do

{ ml := (k-1)*M + 1; m2 := k*M;
for i:= ml to m2 do
{ A[i] := B[i-1] + 1i;
B[i] := A[1] - 1;
}
for i:=ml to m2 do
{ C[i] := A[i] + DI[i-1];
D[1] := A[i-1]1 + 1i;
}
for i:=ml to m2 do
{ F[i] := D[i] - F[i-1]
}
for i:=ml to m2 do
{ E[i] := D[i] + F[i-1].
}

Now it should be clear how blocks are transferred from one loop to the next.
Reviewing this flow, it is apparent that five blocks are indeed sufficient.
However, if the fourth loop had required five blocks, this argument would
have to be modified. Here is why: Suppose the statement in the body of the
fourth loop were

E[i] := A[i] + BI[i] + D[i] + F[i-1].

Clearly, one block of A, B, D, E, and F is needed if this is executed in
isolation. Two observations are in order: First, the blocks for A and B must
be passed through the third loop, which in general might increase the block
requirements (although not in this case). Second, the element of F required
in the fourth loop is F[i — 1], not F[7], and this implies that (in the worst case)
we would need to keep two blocks for F — the old one that contains F[i — 1]
and the new, second one that contains F[i] (which is not needed for the
computation of the current E[i] but will be needed in the next iteration). This
would increase the number of blocks required for the (modified) fourth loop
from five to six.

While this example started out rather simple, it rapidly became quite
complicated. Nevertheless, we can see that fewer blocks are required for the
loop-distributed version (sequence of four loops) than for the original loop.
If enough space exists in main memory for the loop-distributed version, but
not for the original one, the savings resulting from the avoidance of memory
thrashing can be significant.

If one is unsure of the effect of loop distribution, a reasonable alternative
to carrying out a usually quite involved analysis is to implement both
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versions and execute them, counting the implicit transfers affected by each.
Then one chooses the code that requires fewer such transfers. Alternatively,
it is possible to carry out an automatic analysis of block transfers at compile
time.

In summary, no implicit block transfers are needed in the loop-distrib-
uted version of our code if five blocks can be accommodated in main
memory. It is important to understand that small changes in memory can
result in dramatic changes in performance; in other words, the relationship
is definitely not linear — quantum jumps may occur. In this example, the
availability of only eight pages will produce extensive thrashing with the
original version (which needs nine pages), but the loop-distributed ver-
sion exhibits no thrashing at all, even though the reduction in memory is
small.

This still leaves us with the problem of deciding whether applying a
program transformation pays, and if so, how to carry it out effectively.
Neither of these two steps is trivial.

To determine whether a program transformation results in savings, the
transformation must be applied, the implicit block transfer analysis must be
carried out, and the version that requires fewer implicit block transfers
should be selected. Experience indicates that loop interchanges are most
likely to affect the number of implicit block transfers, with loop distribution
coming in a distant second.

Unfortunately, we are still hobbled by the memory-mapping function.
Neither of the two standard memory-mapping functions (row-major and
column-major) is particularly attractive when it comes to matrix multiplica-
tion.?! The problem is that matrix multiplication accesses one matrix in terms
of rows and the other in terms of columns. Consequently, choosing either of
the two standard mappings will work badly for one of the two matrices
involved. This is not a new problem, nor is it open; research dating back to
the 1960s indicates that tiling is a much better approach. This would entail
subdividing the two-dimensional (2D) structure (the matrix) into smaller 2D
structures (submatrices of smaller sizes). To illustrate, we can represent a
matrix of size [n,n] by its four submatrices of size [1/2,n/2]. For our three
matrices A, B, and C, we have

A=(A11 AlZJ B:[Bll BIZJ C:(CH Clzj
A21 A22 B21 B22 CZl C22 .

Consequently, the matrix multiplication C := A * B can be restated as

2l We use matrix multiplication as a representative example. There are other commonly used
operations, but matrix multiplication is by far the most important operation that performs badly
regardless of which of the two standard memory-mapping functions one chooses.
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Chp=A; *By +A,*By
Cpo=A;*By+ A, *B,y,
Cyi=A,y *By+ Ay * By
Cpi=A,*B,+A, *By,

If each of the submatrices fits into a block, the computation can be carried
out as indicated below; if submatrices are larger than blocks, the approach
may have to be iterated.

Assuming 1 submatrix is 1 block, each matrix requires 4 blocks, for a total
of 12. Each of the four statements involves one C-block and two blocks each
from A and B, for a total of five. Thus, each submatrix statement requires
five blocks. The interstatement flow of blocks is also important. If one were
to execute the four statements in the given order, we would have to retain
B,; and B,; through the second statement since both are required in the third
statement. This would necessitate that we keep four B-blocks in main mem-
ory during execution of the second statement; a similar argument applies to
the third statement with respect to the B-blocks B, and B,,. Consequently,
this execution order requires us to keep seven blocks in main memory.
However, by reordering the computations so that we do the first statement
first, then the second, then the fourth, and finally the third, one can verify
that we need to keep no more than six blocks in main memory.

This type of tiling has been known for a long time; moreover, it has been
known that it is much more efficient in terms of implicit block transfers for
matrix multiplication. However, modern compilers do not use it. This leaves
one with two, equally unpalatable, options: Accept the inefficiency of mod-
ern compilers caused by their refusal to implement vastly superior memory-
mapping functions or manage the entire memory space as a 1D memory
space. This means one does one’s own memory-mapping functions so that
the compiler deals exclusively with 1D arrays (which are mapped into main
memory identically, whether with row-major or column-major mapping).
The first alternative is potentially inefficient to an astonishing degree (as our
examples indicate). The second is prohibitively complicated to program (the
programmer must take over a major functionality of the compiler) and leads
to truly awful (that is, unreadable) programs (since everything is now a 1D
array).

The refusal of compiler writers to implement nonstandard memory-
mapping functions can only be explained by their lack of appreciation of
how serious an effect the memory-mapping function can have on the per-
formance of a program. It is not a particularly difficult task to carry out. In
fact, it is entirely conceivable that a good compiler automatically determines
the access patterns for a particular array (usually a 2D matrix) and selects
the best memory-mapping function according to that determination. Indeed,
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we will go further: A good optimizing compiler should be capable of apply-
ing program transformations automatically, determining at compile time
which version is better in terms of implicit block transfers, and selecting the
best for the object code produced by the compiler. In this way, the program-
mer is not burdened with determining a better version, does not have to
implement that better version, and does not have to verify the correctness
of the substitute version. Instead, she can concentrate on programming tasks
that require human intelligence.

We argue that the tasks of applying program transformations systemati-
cally, of determining which of two given program fragments requires more
implicit block transfers, and determining the best of a (relatively small num-
ber of) memory-mapping functions can be done by the compiler, automati-
cally (that is, without user intervention) and at compile time. The ultimate
goal is compiler-driven I/O analysis and program transformation. While it
is clearly beyond the scope of this book, compiler-driven I/O management
is entirely based on techniques that have been used successfully in optimiz-
ing compilers for many years, in particular dependence analysis (used for
decades in vectorizing and parallelizing compilers) and program transfor-
mation. While the goals of vectorizing compilers are different, the techniques
are the same.

Finally, it is possible under some rather mild assumptions to take a pro-
gram and determine automatically at compile time how many blocks will
be transferred between disk and main memory, assuming knowledge of basic
systems information, such as available main memory, block or page size,
replacement strategy, and access times to disk and main memory. This would
remove a great deal of difficulty in obtaining reasonably efficient programs.
By reasonably efficient we mean the running time of the program should be
in a clear and understandable relationship with the time complexity that
the complexity analysis provided for the algorithm that the program
implements.

The current state of compilers is not conducive to efficient memory utili-
zation, even though the techniques that would enable such an approach to
minimizing implicit transfers have been available for many years.”? As a
result, programmers must attempt to carry out some of these steps directly.
For example, loop interchanges and loop distributions can be done by the
programmer, independent of whatever steps the compiler takes. Mapping
issues are harder. The programmer can either accept the inefficiencies or
program her own memory mapping. Both alternatives are unpalatable, for
different reasons. Ultimately, the decision rests on the importance of perfor-
mance. If it is imperative that the program execute as efficiently as
possible, the programmer may have to accept that the resulting program is

2 Any efficient vectorizing compiler carries out dependence analyses and applies program
transformations to an extent that goes well beyond what would be required for our purposes.
The only portion not yet routinely implemented in vectorizing/optimizing compilers is the
automatic determination of the number of implicit transfers.
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substantially unreadable, because all arrays (or at least the important ones)
are now one-dimensional.

Bibliographical Notes

Standard computer architecture textbooks cover the memory hierarchy and
its attributes and characteristics. It is important to keep in mind that different
architectural components have different speeds of development; for exam-
ple, processor speed has historically (during the past three decades)
increased faster than the speeds of memory accesses, be they cache or main
memory, which in turn have significantly overtaken the speeds with which
access to data on external memory, specifically magnetic disks and tapes,
occurs. These performance gaps are widening, as reflected in recent techno-
logical developments. VMM is a standard part of operating systems and is
covered in all modern operating systems textbooks. Operating systems have
been the subject of texts for almost five decades. One of the earliest is Rosen
(ed.): Programming Systems and Languages. The book by Coffman and Den-
ning, Operating Systems Theory, reflects an early attempt to establish the
theoretical foundations of operating systems. Silberschatz, Gavin, and
Gagne: Operating Systems Concepts is widely used to teach operating systems;
other textbooks are Stallings, Operating Systems: Design and Principles; Bic
and Shaw: Operating Systems; and Tanenbaum: Operating Systems: Design and
Implementation. Books specifically covering the Unix operating system are
Leffler, McKusick, Karels, and Quaterman: The Design and Implementation of
the 4.3BSD Unix Operating System; and Bach: The Design of the Unix Operating
System.

Independent of operating and run-time support systems are compilers that
implement memory mappings and do code optimization. Code optimiza-
tion, in particular dependence analysis and code transformations, is covered
in textbooks on compilers, especially optimizing compilers and compilers
directed at vector and parallel computing. Much of the background material
for Section 5.4 can be found in these textbooks, for example in Aho, Sethi,
and Ullman: Compilers: Principles, Techniques and Tools; Muchnik: Advanced
Compiler Design and Implementation; and Zima and Chapman, Supercompilers
for Parallel and Vector Computers. The specific emphasis on I/O management,
intended to use code transformations to minimize implicit block transfers,
is introduced in Chapter 7 of Leiss: Parallel and Vector Computing. The compile
time analysis of block transfers is described in Zhang and Leiss: Compile Time
Data Transfer Analysis.
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Exercises

Exercise 1

Consider the code fragments below, to be executed under a virtual memory
management system with pure least recently used (LRU) replacement policy.
Assume that the arrays involved are of type [1:n,1:n], with n being 512, 1024,
2048, and 4192, and each array element requiring one word of four bytes.
Assume that the page size is 512 words and that the active memory set size
is 300 pages. Determine the exact number of page transfers, both from disk
to main memory and from main memory to disk (only if dirty), assuming
that the arrays are mapped into the main memory space using (1) row-major
and (2) column-major.

Code fragment a:

for i:=1 to n do
for j:=1 to n do
Ali,jl := BI[j,i1*A[i,j] + Cl[i,]]

Code fragment b:

for i:=1 to n do
for j:=1 to n do
Ali,j] := B[2*1,3]

Code fragment c:

for i:=1 to n do
for j:=1 to n do
{ for k:=1 to n do
Cl[i,J] := CIl[i,3] + A[i,k]1*BIlk,Jjl;
D[i,j+1] := D[i,3j] + C[i,7]]
}

Code fragment d:
for i:=1 to n do

for j:=1 to n do
Ali,J] := BI[J,i1*A[i,J]1 + CI[J,1]
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Code fragment e:

for i:=1 to n do
for j:=1 to n do
for k:=1 to n do
C[i,3j] := C[i,j] + A[k,1i1*Blk,j];

Code fragment f:

for i:=1 to n do
for j:=1 to n do
Ali,3] := Cl[j, 1]

Exercise 2

For which of the code fragments in Exercise 1 would replacing the standard
memory-mapping functions by tiling improve the performance (reduce the
number of required block transfers). Give the explicit algorithm for these
cases.”

Exercise 3

Design a program that illustrates the influence of the cache on execution.
Specifically, for a computer platform that uses a cache, determine the cache’s
size and its access characteristics (size of cache line, access times, etc.). Then
write a synthetic program that uses a relatively small amount of data for
extensive computations. In more detail, if the size of the cache is M, have
your program load a data set of size C into the cache and carry out a number
of operations (involving this data set) that is several orders larger than C.
Determine the timings for C= 0.8-M, 0.9-M, 0.95-M, 0.99-M, 1.0-M, 1.01-M, and
1.05:M. Pay attention to the replacement policy of the cache lines and struc-
ture your computations so you can be certain that thrashing occurs for C > M.

Exercise 4

Design a program that illustrates the influence of VMM on execution. Spe-
cifically, for a computer platform that uses VMM, determine the size of the
active memory set and the access characteristics of the components involved
in the VMM (size of page, access times, etc.). Then write a synthetic program
that uses a relatively small amount of data for extensive computations. In
more detail, if the size of the active memory set is M, have your program

2 This exercise considers the various code fragments in isolation. In a complete program, it
would be necessary to consider all usages of a particular array to determine the overall most ben-
eficial mapping. Also note that different mapping strategies may be required for different arrays.
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load a data set of size C into the cache and carry out a number of operations
(involving this data set) that is several orders larger than C. Determine the
timings for C = 0.8M, 0.9°M, 0.95M, 0.99°M, 1.0-M, 1.01-M, 1.5M, 2M, 5M,
10-M, and 100-M. Pay attention to the replacement policy of the VMM and
structure your computations so you can be certain that thrashing occurs for
C>M.
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Implications of Compiler and Systems Issues
for Software

About This Chapter

Numerous aspects of software depend on compiler and systems aspects. In
addition to the already mentioned memory mappings that are in a way
arbitrary because they are not inherently part of the language design and
could be changed, there are fundamental issues of programming environ-
ments and programming languages that have significant implications for the
performance of software. The most important of these are recursion and its
consequences for space complexity, the allocation of dynamic data structures
and its consequences for time complexity, the consequences of and implica-
tions for optimization, and the consequences of providing certain language
constructs as part of the programming language. All of these have in com-
mon that the resulting performance is unexpected, unpredictable, or inex-
plicable to the software developer.

6.1 Introduction

Software is written in a specific programming language, compiled by a
specific compiler, and executed under a specific run-time support system.!
All of these have implications for the functioning of the software. Typically,
these implications are noticed by the programmer only when the behavior
of the faithfully implemented algorithm does not conform to the expectations
that the computational complexity analysis of that algorithm raised. Some
of the explanations for this unexpected behavior are based on language
aspects alone (parameter passing and recursion, for example), but many

! Hardware is ultimately involved, but this is of little interest in this chapter and is therefore not
emphasized.
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straddle language constructs and compilers (for example, the treatment of
dynamic data structures and the complications caused by optimizing com-
pilers). We first look at recursion and dynamic data structures; these influ-
ence the space complexity of the code in a fairly obvious way but may also
impact the time complexity of a program in a much less obvious and often
unpredictable way.

6.2 Recursion and Space Complexity

Recursion is an elegant tool that allows us to demonstrate solutions of
complex problems.? Recursion is, however, not always as efficient as one
might expect. Apart from the already touched upon problems of the clear
abuse of recursion (e.g., computing the Fibonacci numbers recursively —
with an exponential time complexity, even though a halfway decent iterative
implementation would take no more than linear time), recursion also has
implications for the space complexity that are easy to ignore. While any
rigorous space complexity analysis will account for the memory require-
ments resulting from recursion, in particular, the recursion stack, there are
more subtle implications for programs.

While it is convenient to start with a recursive formulation of an algorithm,
and in some cases virtually unavoidable (see the Towers of Hanoi problem
or AVL trees), when implementing an algorithm, programmers tend to avoid
recursion for various reasons. Some programming languages simply do not
support recursion. Many programmers are reluctant to use recursion, either
because they do not understand it sufficiently well (for example, many find
out the hard way that failure to specify the basis case correctly can lead to
catastrophic failures) or because the performance of the resulting software
is frequently worse than they expected.

If the recursion at hand is tail recursion (see Chapter 3), its elimination is
highly desirable, since recursion will unavoidably incur a space penalty for
the allocation of the recursion stack, while the technique that allows us to
replace tail recursion by an iterative process requires no recursion stack and
no other data structure that would need additional space. Thus, replacing
tail recursion by iteration materially improves the space complexity of the
resulting program. Moreover, since the implementation of recursion in a
programming environment is a fairly complicated process (even if the
instance at hand may be simple, compilers tend to treat all types of recursion
identically, which means the most complicated situation is adapted to sim-
pler ones), the time complexity of the iterative version is usually also better.

2 To wit, the solution of the Towers of Hanoi problem (Section 3.1) cannot be understood without
recursion. Insertion and deletion in AVL trees (Section 3.2) are only slightly less unintelligible
without recursion.
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If the recursion at hand is not tail recursion, the situation is much more
complicated. While recursion can always be eliminated, this process involves
the explicit administration of the information that would automatically be
administered by the run-time support system in the recursion stack.’> While
one may avoid allocating space for some of the items that are part of the
recursion stack, this saving tends to be small. Thus, if the recursion cannot
be replaced by iteration without additional data structures, it may be advis-
able to stay with the recursive implementation. An added advantage is the
increased readability and therefore maintainability of the software.

One significant aspect of recursion is the variability of the size of the
recursion stack. Typically, it is not possible to predict the exact size that the
stack can attain; in most cases, we can only derive an upper bound. For
example, in QuickSort, a fundamentally recursive algorithm (although iter-
ative versions exist, their space complexity is essentially the same as that of
the recursive version), the upper bound for the worst-case space complexity
is O(n) when sorting n numbers. This is because in the worst situation for
QuickSort, the number of activation records on the recursion stack can be
O(n). One may point out that the worst case occurs exceedingly rarely;
indeed, since the average case requires an amount of space proportional to
the height of the tree structure that describes the recursive calls and since
this height is O(log,(1)) on average, one might be seduced into believing that
O(log,(n)) space is sufficient on average.

The problem with this argument is the following: Suppose we allocate a
certain amount of memory for the use of QuickSort and assume this amount
is well above the requirements for the average case of QuickSort. What will
happen if one of those exceedingly rare, worse than average cases occurs?
If the memory is fixed (that is, the size of the allocated memory cannot be
exceeded), the program simply crashes. This is not what one expects when
looking primarily at the time complexity. One might perhaps expect that the
program will take much longer than predicted but that it will nevertheless
terminate correctly. If the program crashes for lack of memory, this expecta-
tion is sadly wrong. However, if exceeding the allocated space results in the
invocation of virtual memory management (VMM), the run time of the
program, already very bad since we are considering a case with bad time
complexity, may become dramatically worse because of the additional time
required to do page transfers from and to disk.

It should now be clear that recursion can have major implications for the
overall behavior of a program. To emphasize this point, let us reexamine the
conventional wisdom about QuickSort. It is generally accepted that Quick-
Sort is faster than any other sorting program on average. Thus, the notion
persists that QuickSort should be used for applications that are not time
critical. However, even if we concentrate on average case behavior, it is

3 At a minimum, copies of all parameters, copies of all local variables, and the reentry point
(place in the program where execution is to resume when the recursive call returns) are stored
in a separate activation record for each recursive call. This is true even if some or most of these
data items are not necessary in a specific instance.

© 2007 by Taylor & Francis Group, LLC



144 A Programmer’s Companion to Algorithm Analysis

TABLE 6.1
Complexities of QuickSort, MergeSort, and HeapSort
Space Complexity Time Complexity
Method Prudent Average Worst Case
QuickSort O(n) O(nlogy(n))  O(n?)
MergeSort O(n) O(nlogy(n))  O(nlog,(n))
HeapSort o(1) O(nrlogy(n))  O(nlog,(n))

probably unacceptable that the program crashes occasionally.* Therefore, it
is highly advisable to allocate an amount of memory for the recursion stack
that corresponds to the worst-case situation. We must prudently conclude,
then, that QuickSort has a space complexity of O(n). This is no better than
that of MergeSort, which has a comparable time complexity as QuickSort on
average and a much better worst-case time complexity. It is also much worse
than HeapSort. We summarize the various complexities of these three sorting
algorithms in Table 6.1.

The upshot is that from a practical point of view, it is very difficult to see
why anyone would want to use QuickSort to sort arbitrary sets of numbers.
QuickSort requires as much space as MergeSort (proportionally to n and
absolutely actually more since the recursion stack requires more space per
recursive call than one array element) and is slower for both average
(slightly) and worst case (significantly), while HeapSort requires signifi-
cantly less space than QuickSort and is significantly faster in the worst case
than QuickSort and only marginally slower on average.

In general, it is probably a bad idea to look at average space complexity
when it comes to recursion, since failure to comply with the average may
result in the program’s crash.® In situations where average complexities are
of interest (that is, no real-time, time-critical applications), it is far more
sensible to assume the worst-case space complexity. If we are wrong with
our average-case assumption for time, the program may take significantly
longer than expected, but at least it will still terminate correctly. If we assume
average space complexity, the program may instead crash, which is an unac-
ceptable outcome, even if one were willing to accept that the program occa-
sionally takes much longer than was predicted by the average time
complexity of the underlying algorithm.

4 Program crashes may have consequences that go beyond the termination of the program; they
may affect the proper functioning of other processes as well. Thus, the argument that a very rare
crash of a program can be handled by a programmer manually is not a good one. It is extremely
bad programming practice to accept occasional crashes that could easily be avoided.

5 This assertion holds for space complexity in general, not just in conjunction with recursion. No
program should be allocated less space than it needs in the worst case, since the alternative is
that it may crash.
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6.3 Dynamic Structures and Garbage Collection

Dynamic data structures are data structures whose size can vary during the
execution of a program or from one run of the program to the next. Because
their size is not known at compile time, processes must be set up that allow
the allocation of dynamic data structures during run time. Numerous data
structures are considered dynamic data structures, among them trees, linked
lists, queues, and stacks. In some cases instances of these structures are repre-
sented by a fixed-size array, but then they are no longer true dynamic data
structures. These simulated structures will fail to function properly once their
maximum size (as hard-coded into the array representation) is exceeded. A key
aspect of true dynamic data structures is the absence of the test of the type

if data structure full then reject insert operation.

In other words, a dynamic data structure can never be full. It is unbounded
in size, at least when used in an algorithm.

The unboundedness of dynamic data structures is a reasonable assumption
for algorithms, since in this worldview, memory is assumed to be unlimited.
It is, however, a very tenuous assumption for software, since memory is not
unlimited in any practical computing system. The way around this problem
is to allocate a pool or heap of memory (usually of fixed size) to be used to
accommodate requests for space generated during run time. To make this
paradigm work well, it is desirable that concomitant with requests for the
allocation of space, instructions for freeing or deallocating space be issued
by the program and processed by the run-time support system. This is one
way to reuse dynamically allocated memory that is no longer needed by the
program. The burden of determining which memory locations are no longer
needed lies with the programmer in this approach.

In another way of freeing space the run-time support system determines
autonomously that certain memory locations can no longer be referenced by
the program. If a memory location can no longer be referenced by a program,
itis useless and can be recycled. If memory is needed, space considered available
in this process can then be collected and allocated to satisfy requests. In this case
the programmer is not burdened with the task of issuing explicit deallocation
instructions. This appears to be a very attractive approach until one examines
its implications more carefully. (In this sense, it is similar to VMM.)

Let us first consider allocation requests. Whenever a unit of memory is
needed in a program, the program issues a request for memory. This may
involve the creation of a new node of a tree or a stack, or it may mean
allocating an array of a size that has just been read in as input. These two
cases are different, simply because the new node tends to be a very small
unit of memory while the dynamic array is most likely much larger. It turns
out that the size of an allocation request is important, since it also implies
the size of the memory that is to be freed when a concomitant deallocation
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instruction is issued. It is not so much the size, but the variation in size that
has important implications for the gathering of freed-up space. Specifically,
if all allocation requests have the same size (for example, in Lisp programs),
it is relatively simple to devise highly efficient strategies for collecting
unused space.® If, however, the allocation requests are very different in size,
it becomes much more difficult to allocate memory efficiently.”

For our purposes, it suffices to keep in mind that space can only be
allocated to a process (program) if it is available. For the space to be available,
it is necessary that the run-time support system determine the availability
of the space (of the appropriate kind; in particular, space allocated for single
entities should be contiguous®) and then assign this memory space to the
process. Note that for algorithms, this process is unproblematic since there
is an unlimited amount of space available. This unlimitedness of space makes
it unnecessary to reuse space. Thus, it should be obvious that allocation
requests in algorithms are negligible in their effect on the algorithm’s time
complexity — they are always O(1).

For programs, one generally assumes that space allocation also takes a
constant amount of time, since it is assumed that the size of the allocation
request is known at the time of issuance and the process of assigning memory
consists of marking a chunk of the appropriate size as in use. Assuming a
(contiguous) chunk of memory is known by its starting and end addresses,
it is easy to test whether the size of a particular chunk is sufficient for
satisfying the request. Strictly speaking, the time complexity may be greater
than O(1) because of the question of finding an appropriate chunk (depend-
ing on the specific algorithm used for this purpose; numerous techniques
are employed for choosing the most appropriate chunk when allocating
allocation requests of varying sizes, from best fit, to worst fit, to various
buddy systems), and that would ordinarily depend on the number of chunks
available (except in the case of uniform-sized requests, called cells, & la Lisp,
where the run-time support system maintains a linked list of free cells and

¢ Simply maintain a linked list of cells (allocation units of identical size) that are available. Ini-
tially, the list contains the entire space (all cells) available. Any request for a cell is satisfied by
supplying the next available cell and removing it from the list. Any deallocation request simply
places the freed cell at the end of the linked list of available cells. In this way, allocation and deal-
location can be done in time O(1).

7 This is related to the fact that allocation requests are usually processed so that the entire space
request is allocated contiguously in memory. If the pool of available memory is fragmented, it is
possible that no contiguous chunk of memory of a required size is available, even though the
sum of all free memory chunks far exceeds the request. In this case, it will be necessary to carry
out a memory processing step in which memory fragments are collected and compacted so that
a large contiguous chunk of memory is created. The complexity of this compaction process is of
great concern for us.

8 In particular, for dynamic arrays, it must be contiguous, since otherwise none of the standard
memory-mapping functions (which preserve the random access property) are applicable.

° Note, however, that the initialization of an element need not be O(1); only the actual allocation
of the memory takes O(1) time. More specifically, if a node in a linear list consists of a pointer
and a 2D matrix of size n?, the allocation of this space of size n* + O(1) can be done in time O(1),
but any initialization of the matrix would take at least an additional O(n?) time.
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allocates cells from this linked list upon request by a program instruction in
constant time). Nevertheless, the time required to carry out an allocation is
usually fairly negligible — provided there is a readily available chunk of
memory to satisfy that request. This is precisely the problem.

Note that as described, the process of allocating a chunk of memory does
not include any compaction operation; this would be required if there was
no single chunk of memory of a size sufficient to accommodate the request,
but there are numerous smaller free chunks the sum of whose sizes exceeds
the size of the request. Memory compaction techniques may take a significant
amount of time. Worse, this amount of time may be incurred at completely
unpredictable times. It is even possible that running the same program twice
with substantially identical data sets may result in very different running
times, strictly because of the time taken by memory compaction.

Memory compaction has to be done when memory fragmentation impedes
the satisfaction of a request whose size does not exceed the available memory.
A memory compaction algorithm typically must examine the available
chunks of memory, because a sequence of allocations and deallocations of
memory requests of varying sizes will often result in memory fragmentation.
This means that even though we started out with one large chunk of (con-
tiguous) memory, after allocating and subsequently freeing portions of mem-
ory, we may end up rather quickly with relatively small chunks of free
memory. To illustrate this, assume we have memory M[1:1000] available and
consider the following sequence of memory requests R(s;) and deallocation
requests D;, where R; is request number i, which is of size s, and D, frees the
memory allocated when processing request R;:

R,(200), R,(400), R4(200), R,(200), D,, D,, R4(500).

The first four requests present no problem; we may allocate [1:200],
[201:600], [601:800], and [801:1000], respectively, to these requests. After
executing the two deallocation operations, only the locations [1:200] and
[601:800] remain occupied; all other locations are free. However, it is
impossible to satisfy the fifth request, because there is no contiguous
chunk of size 500, even though there are altogether 600 free locations.
Up until now, it should be evident that both allocation and freeing oper-
ations can be carried out efficiently.'” However, realizing that the request
R5(500) cannot be satisfied, we have to compact the remaining chunks to

10 This requires the use of a suitable data structure that allows access to a specific, previously allo-
cated chunk. Also, an algorithm must be employed for the determination of the most appropriate
chunk from which to satisfy a request. For example, if the fifth request were not of size 500, but 100,
we would have two possibilities: allocate out of the chunk [201:600] or allocate out of the chunk
[801:1000]. If the best fit strategy is employed, the smallest possible chunk would be selected, that
is, the chunk [801:1000] in this case. If the worst-fit strategy is employed, the request would be sat-
isfied out of the largest chunk, [201:600]. While worst fit seems to be counterintuitive (why use a
larger chunk than necessary?), it turns out that best fit results in worse fragmentation since what
is left after satisfying a request from the smallest possible chunk is a much smaller chunk (which
is likely to be useless for all subsequent requests) than if one satisfies a request from the largest
chunk (where the remnant is more likely to satisfy a subsequent request).
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consolidate them into a large chunk. This requires shifting one or more
chunks of memory to different locations. In our (very simple) example,
we can either shift the memory for R; to [801:1000] or we can shift the
memory for R; to [201:400]. Only after this operation is carried out can
the fifth request R;(500) be satisfied. The problem is that this shifting
operation takes an amount of time that is linear in the sum of the sizes
of the chunks to be shifted; this can be proportional to the size of the
memory pool. Moreover, it is not at all transparent to the programmer
when such a compaction operation is invoked by the run-time support
system. Thus, its occurrence appears to be entirely unpredictable, result-
ing in situations where a feasible request for an allocation of a certain size
is carried out instantaneously and a later, equally feasible request of the
same size seemingly halts execution of the program for an inexplicably
long time. (We say a request is feasible if the amount of free memory
exceeds the size of the request.) Understanding the role of memory com-
paction will at least help in understanding why this may happen.

We now indicate how substantially identical runs may result in different
compaction behavior. Programs on modern computing systems do not execute
in isolation; numerous other processes operate at the same time. Variations in
the behavior of these processes may have subtle impacts on the availability of
memory to our program, which in turn can cause major repercussions for its
compaction algorithm. To illustrate this, assume in our example that the amount
of memory was M[1:1100] instead of M[1:1000]. In this case the fifth request
would not necessitate a compaction operation. However, if an external process
causes the amount of available memory to shrink to M[1:1000], compaction
must be carried out.! Most programmers do not know what the size of the
pool of memory is. In some systems, this is not a fixed quantity. Even if the
pool size is fixed and cannot be affected by other processes, a permutation of
requests for allocation and deallocation may cause significant differences in run
time. Assume that the sequence of requests of allocation and deallocation in
our example was reordered as follows:

R,(200), Ry(200), R,(400), R,(200), D,, D, R5(500).

It follows that after the two deallocation operations, only the locations 1:400
are occupied; therefore, the request R3(500) can be satisfied without compac-
tion. Even though both sequences contain the same allocation and deallocation
requests, their permutation may cause differing compaction operations.

Note that allocation requests may occur explicitly or implicitly. For exam-
ple, the expansion of the recursion stack during execution of a recursive
function is always implicit, but the allocation of a node in a linear list or a
binary tree is usually explicit. Deallocation requests can also occur explicitly
or implicitly. In the case of the recursion stack, deallocation would be always

1 Note that the program may at no time need more than 1000 units of memory. Therefore, the
reduction in the memory pool from 1100 to 1000 units may appear entirely reasonable, but this
ignores the interplay between allocation and deallocation requests.
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implicit. However, for the node of a list or a tree, we can free the memory
explicitly using an instruction provided for this purpose by the programming
language, or the run-time support system may implicitly determine that a
particular node can no longer be accessed in the program. For example, when
deleting a node in a linear list, we may merely change pointers so that there
is no longer any way to access that node. Run-time support systems have
methods of determining that such a situation has occurred and that there is
no other way of accessing that node (for example, because we explicitly had
a pointer pointing to the node); in this case the memory assigned to that
node is available and can therefore be freed.

Explicit deallocation tends to be carried out when the corresponding
instruction is executed. Implicit deallocation usually occurs only when
necessary, that is, when a request can no longer be satisfied using the
currently available free space. In implicit deallocation, memory is free
only after the deallocation has been carried out. Just because it is possible
to determine that a certain space could be freed (and therefore reused)
does not mean it is free. As long as no deallocation is done, that space is
still considered occupied. In implicit deallocation, operations for freeing
up memory are effectively batched together, and the deallocation of these
several operations is carried out as one step. Implicit deallocation tends
to be more complicated and time-consuming, so it typically is carried out
only when necessary. Since it is more complicated, its impact on execution
time can be fairly dramatic when it occurs. Again, this event tends to be
completely unpredictable from the programmer’s point of view.

Some run-time support systems cleverly manage to combine the worst of
both worlds: Although the programmer issues explicit deallocation instruc-
tions, the run-time support system only collects memory when needed.!? While
this may be convenient since in this way only one type of deallocation algorithm
must be carried out (note that in many programming languages, both implicit
[think recursion stack] and explicit [think dynamic structures] deallocation is
required), it does mislead the programmer into thinking that deallocation of
space occurs whenever an explicit deallocation instruction is issued.

The upshot of this section is that the programmer should know what type
of memory deallocation is done in a specific compiling and run-time support
system; this may include various types of memory compaction. While this
knowledge does not guarantee that no disappointments happen, at least
these disappointments will no longer be inexplicable. In many cases, know-

12 There have even been compilers that ignore deallocation instructions altogether; in effect, they
acted as if the memory model were that of algorithms — no limits on available memory. Thus,
even though the programming language provides instructions for freeing up memory and a pro-
gram may execute such instructions, the compiler acts as if no such instructions exist. This
approach can work, either because enough memory exists for a specific program (especially if
the programs targeted by this compiler are “toy” programs, with unrealistically low memory
requirements) or when coupled with VMM. However, for many applications the run-time
behavior may become even more inexplicable than when explicit deallocations are carried out.
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ing the enemy makes it easier to defeat it, although in the end the
programmer is still at the mercy of systems not under her control.

6.4 Parameter-Passing Mechanisms

Every (conventional) programming language provides the facility of speci-
fying functions or procedures or subroutines; these are subprograms with
parameters. The purpose of the parameters is to make it possible for the
operation embodied in the function to be applied to varying data. For exam-
ple, when coding matrix multiplication, we want to be able to apply the
subprogram to different matrices of different sizes. This is traditionally
achieved through the use of parameters. It is useful to think of parameters
as data structures that are explicitly designated for import and export.®

The use of parameters is tied intimately to the way in which parameters are
passed. The three fundamentally different ways are call by value, call by refer-
ence, and call by name. Other ways of passing parameters are variants or
combinations of these. How parameters are passed depends on the
programming language; parameter passing is defined as part of the language
definition, and most programming languages do not support all three methods.

The three methods differ fundamentally in the way in which the para-
meters of a function call are tied to the formal parameters that are place-
holders in the formulation of the function. Since this connection between
actual and formal parameters can be very important for the run-time behav-
ior of a program, we will briefly describe the three methods.

Call by value is generally considered the simplest of the three. It
assumes that the actual parameter has a value and that the formal
parameter corresponds to a memory location. Assuming these
assumptions are satisfied, the actual parameter is evaluated and
the resulting value is copied into the memory location(s) corre-
sponding to the formal parameter. If an assumption is violated,
call by value cannot be carried out (or results in an error, either
at compile time or run time). The execution of a successful
function call then proceeds as if the formal parameters were local
variables of the function, except that they had been assigned initial
values before the instructions in the body of the function were
executed. As with all local variables, the formal parameters of a

13 Global parameters are sometimes used to circumvent the notion of restricting import and
export strictly to parameters. The use of global variables tends to result in programs that are dif-
ficult to debug and maintain. Unfortunately, today’s widely used programming languages do
not force programmers to import and export explicitly, that is, through parameters. The strict
prohibition of global variables would significantly reduce the debugging effort required and
improve the maintainability of software.
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function are no longer accessible once execution of the body of
the function has ended and control is returned to the calling
program.!* An important aspect of call by value is that the space
required for the formal parameters is to be considered additional
space; therefore, it increases the space complexity of the resulting
program. Since copying (of the values of the actual parameters to
the locations of the formal parameters) is an operation that takes
time, this also increases the time complexity.

Call by reference assumes that each actual parameter corresponds to a
memory location. The corresponding formal parameter is then asso-
ciated with this memory location for the duration of the execution of
the function call. Thus, the use of a formal parameter in an instruction
in the body of the function results in the use of the memory location
that was assigned to the corresponding actual parameter. Since the
memory space allocated to the actual parameters is also used by the
formal parameters, call by reference tends to require less space.!

Call by name is essentially the invocation of a macro. It allows passing
functions as parameters.’® Since it is supported by very few pro-
gramming languages and since it is rarely used even in those that
do support it, we will not discuss it further.

Ordinarily, call by value is considered the safest way of passing para-
meters, followed by call by reference, and (a distant third) call by name. This
is in part because passing by value cannot affect anything in the calling
program, except for the results that are reported back from the function. In
contrast, the other ways can modify values in the calling program, since
memory locations of the calling program (actual parameters) are manipu-
lated by the function.

Typically, when designing an algorithm for a specific problem, one tends
to ignore the need for a precise specification of the way in which this algo-
rithm is tied into the overall program. For example, we may design an
algorithm for the multiplication of two matrices or for the binary search of
a sorted array. In doing so, the interface between the resulting algorithm,
now encapsulated as a function, and the algorithm from which this function
is called is usually of little concern. This changes as soon as this algorithm

4 Any space no longer accessible can be returned to the pool of available dynamic memory. This
means that when invoking a function twice, there is no guarantee that the same space is allocated
again.

15 Typically, one ignores the time required to establish the correspondence. This is reasonable
since the number of parameters is negligible (compared with the space required by the data
structures of a complex program). The issue for space is even less serious since no additional
space is required (except when it comes to recursion, where the connection between actual and
formal parameters must be recorded. To see the necessity for this, consider the Tower of Hanoi
problem discussed in Chapter 3).

16 For example, it makes it possible to have a function Integral(f,a,b) that determines the definite
integral of a given function f(x) between two points a and b in a way that permits the function
f(x) to be a parameter.
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is implemented as a program in a specific programming language. The way
in which the function interacts with the calling program is crucial, as the
following two examples indicate.

Consider the standard matrix multiplication algorithm, consisting of three
nested loops, which assigns the product of the two [1:n,1:n] matrices A and
B to the matrix C of the same type:

fori:=1tondo
forj;=1tondo
{ CIijl:=0;
for k:=1tondo
} CIi,j] := C[i,j] + Ali,K]"BIk,j]

While this algorithm may not be the most efficient (see our discussion of
a more efficient matrix multiplication algorithm in Chapter 3), it at least has
the advantage of being correct. When encapsulating this algorithm into a
function, for example, MatMult, the three matrices A, B, and C (as well as
n) must be parameters:

function MatMult (A,B,C,n)
{ for i:=1 to n do
for j:=1 to n do
{ Cli,31:=0;
for k:=1 to n do C[i,3j] := C[i,3J] +
Ali,k]1*Bl[k, 3]l

}

Now we have to address the question of in what way these four parameters
are to be passed. It is not difficult to see that n can be passed by value since
the value, not the memory location, is what is relevant. How about the three
matrices? Clearly, call by value does not work, since it would not allow the
reporting back of the result (the matrix C) to the calling program. Recall that
upon completed execution of the body, the local variables (including the
formal parameters) are no longer accessible.” Moreover, copying a [1:11,1:1]
matrix requires time proportional to #% Thus, we may conclude that call by
reference is appropriate for the three matrices.

Now consider the following entirely legitimate function call (essentially
squaring the matrix X and assigning the result again to X), where X is a
[1:n,1:n] matrix:

function MatMult (X,X,X,n)

”Most programming languages do not allow the result of a function to be anything but an
object of a simple type. Thus, the result of our function MatMult cannot be an array in these
languages.
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Unfortunately, if we pass our three array parameters by reference, our code
is wrong. To see this, consider the following matrix X:

X= ( 12 J, the square of X (X*X) is [ 710 J,
34 15 22
but MatMult(X, X, X, n) yields ( g g J

Consequently, this approach of passing parameters does not work either.
It turns out that the only correct way of passing parameters to MatMult is
to pass A and B (and n) by value and C by reference. Only in this way does
the original algorithm yield a correct implementation of matrix multiplica-
tion. This has important consequences for the time and space complexities
of MatMult. Clearly, since A and B are passed by value, we must allocate
additional space for these two matrices; this requires 2n2 locations. Note that
C requires no additional space, since in call by reference the memory loca-
tions of the actual parameter are used for the formal parameters. Moreover,
the act of copying the actual parameters corresponding to the formal para-
meters A and B requires time proportional to the number of elements that
are copied, that is, 2n2%. While the time complexity of the algorithm [O(n3)]
dominates the time complexity of copying, the space complexity is increased
substantially, from O(1) to 2n? + O(1).18

The second example is binary search. Assume we are given a sorted array
A of size 1:n and a value x; BinSearch is to return an index i between 1 and
n such that x = A[i], or else 0 if x is not present in A. Here is the code:

18 One can show that there is a superior way of doing this type of matrix multiplication:

function MatMult’ (A,B,C,n)
{ declare a local [1l:n,1l:n] matrix D;
for i:=1 to n do
for j:=1 to n do
{ D[i1,3]1:=0;
for k:=1 to n do D[i,J] := D[i,3j] + A[i,k]*B[k,]]
}i
for i:=1 to n do
for j:=1 to n do
{ C[i,3):= DI[1,31}
}

It follows that we can now pass all three array parameters by reference (the situation for n can be
safely ignored since  is a single memory location; while both call by value and call by reference
would work, one tends to go with the simpler approach, that is, call by value). In this way we save
the 212 memory locations for A and B, since these two matrices are passed by reference, which does
not require additional space, at the cost of allocating a local matrix D that requires #?> memory loca-
tions. Thus, the total saving of the new version MatMult' (over MatMult, each with the stated ways
of passing its parameters) is 12 memory locations and time proportional to n2.
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function BinSearch(x,A,lo,hi)
{ allocate a local integer variable p;
while lo £ hi do
{ p:=l (lo+hi)/2];
if x=A[p] then return(p)
else if x<A[p] then hi:=p-1
else lo:=p+1
}i
return(0)
}19

Again, the question arises of how to pass the four parameters when calling
the function BinSearch(x,A,1,n). One can easily verify that the formal para-
meters x, lo, and hi can be passed by value, since neither time nor space
complexity are greatly affected by this. The situation changes dramatically
when it comes to the array A. It is true that we could pass A by value —
the resulting function would certainly be correct. However, in this case the
space complexity is 7, and the time complexity is O(n), plus the time com-
plexity of the algorithm for binary search. Binary search (the algorithm)
requires time O(log,(n)); thus, the time complexity of the code is O(n +
log,(n)) or O(n). Consequently, the code (with the array A being passed by
value) has a time complexity that is exponentially greater than that of the
algorithm. This is truly awful — and clearly indicates that call by value is
highly inappropriate. If we pass A by reference, there is no copying involved;
as a result, the space complexity is O(1) and the time complexity is exactly
that of the algorithm, namely O(log,(1)).

We conclude that the treatment of parameters can have major implications
on the behavior, and indeed on the correctness, of a program. This is an
aspect of code that is generally not considered carefully by those designing
algorithms. However, as these two simple examples indicate, this issue can
make or break an implementation.

6.5 Memory Mappings

We discussed memory mappings in the previous chapter. Here we merely
reiterate that memory mappings tend to be outside of the programmer’s
control (they are a compiler aspect), unless the programmer wants to convert
explicitly all multidimensional arrays into one-dimensional ones. This is

19 Tt would be slightly more efficient to allocate a local variable y and assign to it the value of
Alp]; then y would take the place of both occurrences of A[p] in the two if statements. This is
because an array reference (to A[p]), although O(1), is more expensive than a simple memory ref-
erence (to ).

© 2007 by Taylor & Francis Group, LLC



Implications of Compiler and Systems Issues for Software 155

generally considered a horrible idea, since readability and maintainability
of a program would be enormously affected by this decision.

6.6 The Influence of Language Properties

Several aspects of programming languages can negatively affect the behavior
of a program. We will discuss three here: initialization of variables, packed
data structures, and the problems caused by programming languages forcing
a programmer to provide far more detail than is necessary to carry out a
given operation. In a class by its own is the unfortunate tendency of pro-
gramming languages (and their compilers) to forgo the test of whether the
indices to structures are within their proper ranges.

6.6.1 Initialization

Algorithms tend to be somewhat cavalier in the way they deal with the
initialization of variables. In many cases the assumption is that the reader
of the algorithm is sufficiently intelligent to understand what is meant. This
approach does not work with programs. Programs (or compilers) are
emphatically not prepared to read the mind of the programmer. As a result,
one has to pay much more attention to the question of initialization.

There are three ways of dealing with this question. For the most part, they
are part of the language specification. Absent a statement describing this
issue in the language definition, the question is left to the compiler to
resolve.? These three approaches are undefined variables, predefined vari-
ables, and unspecified (or random) variables.

Undefined variables: This refers to requiring that every variable must
be explicitly assigned a value before the variable can be used (in an
expression, or as a parameter passed by value). Failure to do so will
result in an error.?! These variables are called undefined.”? Many
programmers are less than happy with this, mainly because they
have become accustomed to a different approach. However, this is

20 This is generally quite undesirable, since it means different compilers for the same program-
ming language may make differing assumptions. This has serious implications for the portabil-
ity of programs written in that language, since the results of the same program may differ from
one compiler to another.

21 This error is usually a run-time error, since it is undecidable in general to determine whether
there is a way to reach an undefined variable

22 This refers to the lack of a value for that variable. In contrast, variables that are not declared at
the beginning of the program are called undeclared. Again, different programming languages
adopt different approaches. Many programming languages permit implicit declaration of sim-
ple variables but require explicit declaration of complex structures, such as arrays. While impor-
tant for software design, this issue is less important for us.
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by far the most secure way of dealing with the initialization of
variables. On the one hand, we would argue that a programmer
should not expect a variable to have a value unless an (explicit)
instruction was executed that assigned that value to the variable.?
This clearly indicates that programmers should write code to initial-
ize variables if they expect these variables to have values. On the
other hand, preassigning values to variables may be inefficient, as
we will see. The only disadvantage of this method is that
the representation of a variable must permit the determination of
whether a value has ever been explicitly assigned to it. This may
require some additional space (either in the symbol table or in the
memory used for the structure).

Predefined variables: This refers to the compiler assigning a specific,
predefined value (typically 0) to all variables. While this may be
convenient and is usually safe, it may also introduce inefficiencies.
For example, if an array is initialized, the time complexity of this
operation is proportional to the number of its elements. If this ini-
tialization turns out to be unnecessary (because the program explic-
itly assigns values to the array), the time required by the
initialization is wasted. In general, it is impossible to determine
whether there is a path through the program execution to the use
of the array that avoids every explicit assignment of values to the
array; this is the only case when this initialization would be of use.
Therefore, it is unclear whether this approach will ever be useful.
More importantly, it deprives the programmer of a useful tool for
detecting logical errors (see the discussion in the previous para-
graph, including the footnotes).

Unspecified variables: No values are preassigned to variables, but the
variables are not considered undefined either. Instead, the content
of the memory location corresponding to a given variable is inter-
preted according to the type of that variable and used whenever the
variable appears in a place that requires a value (for example, in an
expression or in call by value). This is supremely unsafe since it is
entirely unpredictable what this value is during a specific execution.

23 This may be a very useful way of detecting logical errors. If a variable has not been explicitly
assigned a value, this is likely the result of an oversight in the program implementation. Such an
error is usually a semantics error; nevertheless, this type of error can be detected by the compiler
or the run-time support system. (As a general rule, semantics errors cannot be detected by com-
pilers.) It is generally an excellent idea to employ methods that allow the detection of semantics
errors by syntactical means, since the detection of true semantics errors (which are based on
what the programmer did program instead of what she wanted to program) amounts to mind
reading.

2 Or at least not any more efficient than having undefined variables (which are effectively pre-
defined as undefined). In practice, the assignment of undefined can be carried out uniformly for all
memory locations involved in the program when space is allocated to a program (at the very
beginning of execution). Thus, this assignment may be more efficient than the setting to 0 of the
space of an individual array, discussed in the next paragraph.
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In this scenario that value can (and usually will) be different from
one execution of the program to the next. It is clearly the most
efficient way, since effectively no initialization occurs. Also, it will
be of no concern if the programmer explicitly defines the values of
all variables. However, if the programmer omits, perhaps because
of a programming error, to assign a value to a variable, this error
will not be detected easily. This is highly undesirable since it can be
a source of extremely subtle errors that could be easily avoided.®

The choice between these three approaches is part of the programming
language definition. It is therefore outside of the programmer’s influence.
Nevertheless, programmers should at least be aware of the advantages and
disadvantages of the three methods. They may have a choice of program-
ming language, and the treatment of variable initialization could be one
factor in deciding which language to use.

6.6.2 Packed Data Structures

Some programming languages recognize that certain data types do not
require an entire word or byte for their representation. A typical example is
the boolean or logical type, whose representation requires only one bit. As
a result, these programming languages may offer the capability of packing
data structures. In this approach an array of 1024 boolean variables would
use only 128 bytes, instead of 1024 bytes. The difference becomes even more
pronounced if the basic unit of memory access is the word (four bytes), in
which case packing the array would require 32 words, instead of 1024. This
savings in memory comes at a price — access to an individual element of
the array becomes more complicated. In our packed array, access to any
element requires that we first determine in which byte or word the value of
the array element resides. Then this byte or word must be decoded (since it
encodes numerous array elements). Only then can we access the desired
element. For assignments, a similar process must be carried out.

It follows that in using packed structures, one trades time for space.
(Note that this generally makes sense only for arrays, since other structures
tend to be relatively small; only arrays have the property that a small
instruction can specify a huge data structure.) In our example of the bool-
ean array, it should be clear that the encoding and decoding process takes
time that would not have to be expended if the array were not packed. At
the same time, a packed array tends to use less space. One may conclude
from this that packed structures should not be used if there is enough space
available in the main memory, because then one would have to determine
how much time the I/O management for the packed structure requires, how

% The only thing positive that can be said about this type of initialization is that it wastes no
time, since no operation must be carried out. This is a terrible justification of an indisputably
unsafe practice.
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much time the I/O management for the unpacked structure requires, and
whether the difference justifies the additional time required for encoding
and decoding. If using packed structures allows one to avoid the use of
VMM (or out-of-core programming), it is always better to pack. If even the
packed structure is too large to be accommodated in main memory, a more
careful analysis of the program behavior is necessary to resolve this issue.

Unfortunately, some compilers ignore packing instructions; in other
words, the programming language provides instructions that specify
packed structures, but the compiler acts as if they were null statements. It
is useful to know what one’s compiler does if one wishes to avoid surprises.
If the compiler ignores packing instructions and we are in the situation
where packing would avoid VMM, it may be advantageous from a run-
time point of view to carry out the packing instruction explicitly. However,
this is almost as bad as doing one’s own memory mapping. It results in
awful code that is difficult to debug and terrible to maintain. This is
true even if one encapsulates these mechanisms in (properly documented)
functions.

6.6.3 Overspecification of Execution Order

The vast majority of programming languages require a programmer to for-
mulate aspects of an operation that are neither necessary nor useful. A simple
example is the addition of two matrices. In an algorithm one might simply
state that the two matrices are added. In most programming languages, this
obvious operation ends up as two nested loops. This is necessitated by the
absence of appropriate language constructs. This excessive specificity can be
very harmful; one could reasonably argue that specifying matrix addition
generically, that is, without giving any implementation details, places the
burden of choosing an acceptable way of computing this operation on the
compiler. As we have seen, coding two nested loops can go horribly wrong
if the arrays are too large to fit into main memory and the loops clash with
the memory-mapping function. The truth is that any order of traversing the
elements of the three matrices involved will do, as long as each location [i,j]
is visited exactly once.

Programming languages frequently force the programmer to specify
details that may impede efficient execution. This is in marked contrast to
algorithms, where details usually are glossed over, in many cases deliber-
ately, frequently assisting in a more efficient approach to execution. For
example, if matrix addition were simply stated as such, the compiler could
select the most efficient order of visiting the individual matrix elements.
Instead, the stipulation of a specific execution order (which is now to be
followed) may result in excruciatingly slow programs. This is a direct con-
sequence of the programming language’s failure to allow the specification
of a generic “for all array elements” operation. While this example is simple
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enough to be immediately obvious, other instances may be subtler. Never-
theless, it is important to be aware that language constructs (or the lack
thereof) can be sources of inefficiencies for a program written in that lan-
guage. This can be particularly important when combined with the actions
of a good optimizing compiler.

6.6.4 Avoiding Range Checks

Many programming languages, in an extremely ill-advised pursuit of
efficiency, forgo explicit tests that determine whether the index into a
structure, usually an array, is within the appropriate range for that index.
Because of problems discussed in the next chapter, sometimes even correct
algorithms give rise to incorrect indices. Such problems are notoriously
difficult to identify, since absent any meaningful range checks, no error
is indicated when this occurs; instead, wrong values are used in calcula-
tions or, worse, values are assigned to memory locations that correspond
to entirely different variables or structures. This is an egregious instance
where a serious semantic error could be detected during run time, but
many programming languages value a superficial efficiency (avoiding the
test of whether the index is within its proper range) higher than the
programmer’s time and effort, which must be expended on debugging
once the program misbehaves. The avoidance of range checks might be
blamed on a desire for program optimization, but the difference is that
optimization can be turned off if the programmer wishes. In contrast, a
compiler that does not implement range checks (perhaps because the
language specification does not stipulate it) will fail to do so whether it
applies optimization or not.

6.7 The Influence of Optimization

Techniques employed by optimizing compilers can result in unexpected
behavior of a program in several ways. One is the interplay of an optimiza-
tion step with a specific code. The other is the lazy evaluation of expressions.

6.7.1 Interference with Specific Statements

The more details a program specifies, the less an optimizing compiler can
do with it to improve its performance, because optimizing compilers tend
to be extremely conservative. Therefore, if it appears that the programmer
really wanted a particular formulation, optimizing compilers tend to leave
it alone. If it is clear that the programmer expressed a general operation, it
is up to the compiler to optimize that operation according to the target
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platform. This is an important notion. While not every platform is amenable
to certain optimizations, this should not be the programmer’s concern; the
compiler should ensure that the best possible (or at least a very good) version
be executed. For example, if a programmer were able state that she wanted
to multiply the matrices A and B of size [1:n,1:n1] and store the result in C,
it would be up to the optimizing compiler to select the best possible
approach. If n is small, the standard three nested loops might be appropriate,
but if n is large, a more efficient algorithm might be employed (see Chapter
3). Furthermore, if the matrices do not fit into main memory, an appropriate
memory mapping might be selected by the compiler to minimize the transfer
of blocks between main memory and disk.

While most programming languages do not provide the ability of speci-
fying operations very loosely, this example indicates that the programmer
should not attempt to be too clever. Trying to program to a specific platform
is generally highly undesirable. It sacrifices the portability of a program
written in a higher-level language (as opposed to assembly language or
machine code) and it may render a highly tuned program less efficient since
it interferes with optimization. Programmers should firmly keep in mind
that today’s optimization compilers tend to produce code that is much more
efficient than most hand-tuned code — provided one lets the optimizing
compiler do what it is supposed to do. The less detail the programmer
stipulates in the code, the more likely it is that the optimizing compiler will
attain its goal of producing efficient code. Finally, highly tuned programs
tend to be unmaintainable since a relatively simple idea in them is transmo-
grified into something that frequently looks quite bizarre.

Programmers should also be aware of the importance of software porta-
bility in this context. This is very pointedly illustrated by the following
observation: Hardware tends to be obsolete in 5 to 10 years, often even faster;
software, however, is much longer-lived. As a result, much of the software
executing on today’s systems was written long before these hardware plat-
forms existed. Since software portability is reduced by a tendency to fine-
tune programs, this temptation should be firmly resisted.

A good rule of thumb is to formulate an operation in as simple a form as
possible and leave the optimization of the simple idea to the optimizing
compiler.

6.7.2 Lazy Evaluation

A particular instance of optimization that can generate surprises for pro-
grammers is the lazy evaluation of expressions. The general principle is that
the evaluation of an expression proceeds inside out, starting with the sim-
plest subexpression and composing from these values more complicated
subexpressions until the final value of the entire expression is determined.
Lazy evaluation is based on the observation that knowledge of the value of
a certain subexpression may permit knowledge of the final value, without
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the evaluation of other subexpressions. For example, knowing that one factor
of a product has the value 0 permits one to conclude that final value of the
product is also 0, without evaluating the second factor.

Lazy evaluation is particularly important for boolean expressions. For
example, the and of two expressions is false if one of the two is false;
similarly, the or of two expressions is true is one of the two is true. In both
cases it is not necessary to evaluate the other expression.

Lazy evaluation of expressions tends to be unnoticed if there are no side
effects — instances where the evaluation of an expression not only provides
a value but carries out other operations as well. For example, consider the
product of two values. If these two values are function calls that execute
print statements in addition to returning a value, whether or not each of the
functions is executed is quite important. If a function is evaluated, it carries
out the print statements, but if it is not, then it does not print. Thus, a
programmer may expect certain actions to occur because the expression is
evaluated, without realizing that in lazy evaluation, not every component
of an expression is evaluated.

A particular side effect could be the indication that a particular variable
does not have a value. This would be the case if the language recognizes
that that variable is undefined (see the discussion in Section 6.6). One can
easily see that lazy evaluation can defeat the purpose of this (safe) approach
to initializing variables. A programmer may infer that all variables are
defined since the entire expression was evaluated, but in lazy evaluation
obtaining a value for an expression does not mean that every variable in
that expression had been inspected. Thus, it is entirely possible to execute
all statements of a loop 100 times successfully, only to be told in the 101st
iteration that a particular variable in one of the statements is undefined.

Lazy evaluation can be easily defeated by the programmer by breaking
up expressions. For example, instead of testing whether

(F(3)>10.0) or (F(j+1)<0.0)
is true, we could write the two assignments
bl:=(F(Jj)>10.0); bl:=(F(j+1)<0.0)
and then test whether
bl or b2

is true. In this way, both function calls are executed since they are needed
to assign values to the two boolean variables bl and b2.
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6.8 Parallel Processes

In modern computing systems, many processes occur in parallel. Thus, a
programmer may not be aware of processes that occur at the same time as
the execution of his or her program; this in turn may influence the behavior
of that program. These processes may be related to the program being exe-
cuted (as in the case of asynchronous 1/O, whereby the disk controller may
execute while the program proceeds with its own instructions) or they may
be entirely unrelated to the program executing. In both cases the programmer
has virtually no influence on these processes.?

In most cases parallel processes are used to improve the performance of
a program. While some overhead is incurred, it is usually not significant
enough to be noticeable. However, asynchronous I/O may improve the run-
time behavior of a program measurably by allowing the retrieval of data
and the execution of instructions to proceed in parallel. Ordinarily, this is
controlled by the compiler and the run-time support system of the target
platform on which the software is executed. The only way in which this may
result in disappointments would be if one were to migrate from a platform
supporting asynchronous I/O to one that does not. That such a migration
negatively affects the run-time performance of the code is unavoidable.?”

An altogether different situation occurs if we are dealing with an overtly
parallel program. In this case, the program itself would explicitly create
parallel processes whose coordinated execution results in the solution of the
overall problem. Determining the time complexity of parallel programs tends
to be significantly harder. Parallel programs are outside of the realm of this
book, so we refer readers interested in this topic to the literature.

6.9 What to Do about It

Several lessons can be distilled from the observations in this chapter. We
mention the more salient points.

An important lesson concerns space complexity. While it may be of interest
to know the average space complexity of an algorithm, for programs the
average space requirement is not a very useful concept. Instead, the pro-
grammer should concentrate on the worst-case space complexity. A program
that crashes because of insufficient space is not very useful, even if this occurs

% The second type of processes, unrelated to the program, can be excluded by running the pro-
gram in an environment where no other processes may execute. This is an expensive proposition
that is rarely available in practical situations. Thus, we will not consider it any further.

¥ Supporting asynchronous I/O typically means a more sophisticated computing platform.
Such a migration would therefore regress from an advanced platform to a more primitive one.
Such a migration would be highly unusual and should be avoided if at all possible.
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only rarely. This has also implications for the selection of algorithms to
implement.

Programmers should pay particular attention to dynamic data structures
and the memory management issues they engender. Allocation and deallo-
cation of memory are important for the run-time behavior of software.
This includes hidden operations, especially those generated by the use of
recursion.

Of particular interest is the question of garbage collection. While memory
compaction is clearly outside of the control of the programmer in most
contexts, awareness of this and related issues will at least remove the element
of surprise when the behavior of a program appears unpredictable. It may
also allow the programmer to avoid some hidden land mines, especially
those related to the use of recursion.

A similar observation holds for parameters. The programmer may not
have much choice once the programming language is selected, but she
should at least be knowledgeable about the various ways of passing para-
meters and their implications for time and space complexities. Moreover, an
incorrect use of parameter passing mechanisms may result in erroneous
code.

Most of the remaining issues enumerated and explained in this chapter
are even less tangible. Initialization of variables is a language property, as
is the absence of range checks and the treatment of packed arrays. Lazy
evaluation may or may not be stipulated in the language definition; absent
any statement in the definition, it becomes a compiler issue (with the obvious
negative implications for software portability).

Optimization issues, however, are quite tangible. The programmer should
always keep the program as simple as possible, resisting the temptation to
fine-tune it to a particular target platform and thereby enabling a good
optimizing compiler to hold up its end of the bargain.
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mentioned in this chapter. An interesting discussion (almost amounting to
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written by Niklaus Wirth, author of Pascal and several other programming
languages, in which he provides his view of a number of language constructs
and their usefulness (or lack thereof). This echoes some of the criticisms
listed in this chapter.

Exercises
Exercise 1

Consider the following function:
CheckSums (A, B, C)
where A is a two-dimensional (2D) array of size [1:n, 1:n] and B and C are
vectors of size [1:n], n being a positive integer. The body of CheckSums
implements the following computations:
Bli] = A[i,1] - A[i,2] + A[1,3] - .... A[in]
Cli] = A[Li] - A[2,i] + A[3] - .... A[n,i].

a. Give the complete function CheckSums (A,B,C), including the code
of the function body and the method of passing the three parameters.

b. Determine the time and space complexity of your function (space
complexity is the amount of memory space required by the function,
in addition to the space for the actual parameters).
Warning: Your function must work correctly for calls such as
CheckSums (D[1:n,1:n], D[1:n,1], D[1,1:n])!
where D[1:1,1] is the first column of the 2D array D and D[1,1:1] is the first

Trow.

Exercise 2

In Section 3.2 we discussed search trees and their height-balanced version,
AVL trees.

a. Determine the minimal prudent space requirements for insertion
and deletion for general search trees and for height-balanced search
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trees. Keep in mind that the use of recursion may not be the most
appropriate approach.

b. Examine how the parameters must be passed for the functions for
insertion and deletion with minimal prudent space requirements,
both for general and for height-balanced search trees.

Exercise 3

Examine how the compiler for your favorite programming language handles
space allocation and deallocation in conjunction with recursive calls. You
may be able to obtain information from the compiler’s documentation, but
you can also glean a good deal of information by conducting an experiment,
for example as follows:

a. Create a recursive function RF(n) (it must not be tail recursive —
otherwise a clever compiler might substitute iteration), where the
parameter # indicates the depth of the recursion stack. (To keep RF
efficient, it should have only one recursive call in its body.) Make
sure the local variables of RF require sufficient space so that repeated
executions of RF(n) do not only result in allocation requests, but also
require releasing the memory upon return. Then call RF(n) repeat-
edly, say 100 times, for several values of 1, say 10, 100, 1,000, 10,000,
and 100,000. Carefully instrument your program so you can measure
the time each recursive call takes. If garbage collection occurs, it will
introduce timing discrepancies that are not explainable by the pro-
gram’s instructions alone. These discrepancies will indicate when
and where garbage collection functions were invoked during the
program’s execution.

b. A refinement of (a) would be to obscure the recursion as follows:
Instead of RF calling itself, RF might call a function RG (which is
very similar in structure to RF, but the size of the local variables
should be slightly different). This function RG then calls RE. These
recursive functions RF and RG are also called coroutines. (There are
only two coroutines in this case, but in general the chain of function
calls connecting RF back to itself can be arbitrarily long: RF0 calls
RF1, which calls RF2, which calls RF3, etc., until finally RFn calls
RFO.)
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7

Implicit Assumptions

About This Chapter

In algorithms there are obvious assumptions that are tacitly presumed to be
satisfied. However, a program must be able to handle exceptional situations that
violate these tacit assumptions. Programs must also test for assumptions that
are fundamental for the correct functioning of the approach. What may be quite
obvious for the algorithm designer is nevertheless to be verified in a program.

Implicit assumptions occur frequently in algorithm design; they are less
common and far less acceptable in software. This tension between reasonable
assumptions and unreasonable attention to detail is an important aspect of
the difference between algorithms and software. We examine exceptions as
well as more fundamental issues related to this topic.

7.1 Handling Exceptional Situations

Algorithms presume that the reader has some intelligence. Therefore, they tend
to be formulated without covering every possibility or aspect. In contrast,
programs must be written so that even unexpected input and results do not
cause them to crash. This implies that programs do not have the luxury of
concentrating on the important aspects of a problem’s solution — all aspects
must be covered comprehensively. Modern programming languages recognize
this need and provide facilities for handling exceptions, but these facilities must
be used by the programmer or they will not improve the programs. Another
aspect an algorithm may ignore but a program must not is the initialization of
function calls, especially recursive ones. Algorithms may be able to get away
with assuming reasonable starting conditions, but programs must test for them.
Moreover, if the assumptions are not satisfied, some specific action must be
taken so that the program does not crash!" Finally, problems related to incorrect

! This assessment may be tempered by considerations related to the question of whether the pro-
gram is a batch program or interactive. We will take up this issue later.

167

© 2007 by Taylor & Francis Group, LLC



168 A Programmer’s Companion to Algorithm Analysis

input tend to be ignored in algorithms; programs, however, must ensure that
the input is in the format required by the program.

7.1.1 Exception Handling

The need for exception handling can arise in various ways. A typical exception
is division by zero. The occurrence of a division by zero may be the conse-
quence of several events. It may be the result of incorrect input, the result of
a sloppy algorithm?, or the result of a rounding error. We will argue below
that testing whether the input satisfies the requisite conditions is necessary
for code, even though it may not be considered in an algorithm. We will deal
with problems caused by the finite representation of numbers in programs in
the next chapter. Here, we want to emphasize that exception handling is crucial
for the correct functioning of programs. This implies in particular that code
must be provided that specifies the action to be taken when an exception is
thrown. Before one can do this, it is necessary that the programmer analyze
where things can go wrong — where exceptions may occur.

This brings us to a serious weakness of general exception handling: Not
every exception of a specific type should be treated in the same way. For
example, consider division by zero. If one were to deal with this generally,
the exception-handling mechanism could consist only of a generic notifica-
tion of this event. It usually does not allow us to deal with it in a specific
way. For example, we may want to determine the average salary of a group
of employees. The algorithm may not make any provisions for the case where
that group, defined in some way, contains no employees, resulting in a
careless division by zero if no test was carried out for this special case.
Generic exception handling would merely notify us of a division by zero; it
does not allow us to ignore the empty group and the effects this may have
on the overall computation. To be able to do this requires a careful analysis
of all implicit assumptions together with a careful design of code for each
of the possible violations of them.?

2 While we do assume that the algorithm we start out with is correct, its designer may not have
paid sufficient attention to all details to be directly translatable into code. For example, we may
use BinarySearch to determine an index ind of an item in a sorted array. The value of ind may
then be used to access information related to that item. This works only if the item is present in
the array; otherwise ind has a value that signals that the item is not present, for example 0, and
use of this value to access information related to this (nonexisting) item results in an error. In
other words, the algorithm formulates a solution assuming the item is present and ignores the
alternative. A program must specify explicitly what to do if the alternative is encountered.

3 Not all programming languages provide facilities for general exception handling. These com-
ments suggest that this lack is not nearly as serious as one might assume. Many exceptions must
be handled in specific ways, geared to the concrete instance where they arise, and this cannot be
done through generic exception handling. By and large, generic exception handling allows con-
tinued execution, that is, the program does not crash, but it does not allow actions to be taken
that make sense in a specific situation. This means generic exception handling is essentially syn-
tactic, not semantic, error handling. Semantic error handling requires an understanding of the
meaning of the program and can therefore be carried out only by the programmer.
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7.1.2 Initializing Function Calls

The initialization of function calls, especially recursive ones, is another
trouble spot that differentiates algorithms from programs. As with excep-
tions, the problem arises from values that were computed or determined
elsewhere but may now cause our function to misbehave. For general
functions, the problem is often that the values of the actual parameters
do not make sense for reasons that are too obvious to belabor in the
formulation of the algorithm. Unfortunately, once we transition to a pro-
gram, these nonsensical situations must be dealt with explicitly since
otherwise the program may either produce incorrect results or crash. In
the special case of recursive functions, we also have the problem of ensur-
ing that every possible call will eventually end up in a basis case, thereby
terminating the recursive calls.

Values that do not make sense (and are therefore not considered in the
formulation of the algorithm) might be 0 for the number 7 of elements in a
group, for example in the computation of the average salary. If this value is
not positive, problems may arise (for example, division by 0). For an algo-
rithm, this may be obvious and tacitly understood; for a program, the test
n = 1 should be explicitly carried out, with additional code provided when
the test is not satisfied. A similar situation occurs if we want to program
matrix multiplication of two [1:11,1:n] matrices. It would not occur to anyone
formulating the algorithm to test explicitly for n > 1, yet not doing so might
result in code that crashes if this condition happens not to be satisfied. A
last example is related to the range checks mentioned in the previous chapter.
If a function has a parameter that accesses an array element, it is highly
desirable that this index be within the proper range. If the programming
language does not test for this as a matter of course, it is probably advisable
that the programmer carry out this test explicitly. Again, an algorithm may
not bother with this, but a program should. It is important to realize that
both the test and the additional code specifying what is to be done when
the test fails are not optional, but are mandatory for good software.

It is not merely sufficient to test for these implicit assumptions. To ensure
proper functioning of our programs we must also provide code that
addresses the consequences of such a test not being satisfied. By and large,
it is unsafe to assume that input to functions will always be as expected.
Surprises may occur because of a variety of issues, from incorrect user input
to rounding errors and other exceptions.

For recursive functions, we must additionally ensure that every recursive
call terminates. This requires that for any legal input combination (and these
parameters must have been tested), eventually a basis case is reached, ter-
minating the recursion. Again, there is a subtle gap between algorithm and
program. This should be particularly of concern if the variable that governs
the recursion is not an integer. For example, consider the following recursive
skeleton:
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F(x)
if x=0.0 do { basis case }
else { statements; F(x-0.1); statements }

The idea is that we apply recursion, reducing the argument by 1/10, so if
the actual parameter is an integer, the algorithm will terminate. As we
pointed out above, this is playing with fire since at a minimum, we must
test whether this assumption (that the actual parameter is an integer) is
satisfied. However, even if this assumption holds, it is unlikely that a direct
implementation of this algorithm will terminate. The problem lies in the
representation of floating point numbers and the test for equality, which are
taken up in the next chapter. Here, we merely want to state unequivocally
that proper functioning of recursion requires that for all inputs, a basis case
must be reached. This assumption is violated in this example program, as it
would be in similar examples based on floating point numbers, even though
the original algorithm does satisfy it.

Finally, users may simply provide incorrect input, possibly through care-
lessness or because of transmission errors or an incompatibility of the input
device with the receiving unit. Programs will differ depending on whether
they are batch programs or interactive ones. For batch programs, an incorrect
input usually means the program must terminate execution. There is no way
to correct the erroneous input supplied. An interactive program would ordi-
narily be expected to prompt the user for input; thus, if the input does not
conform to the specifications, another prompt may be in order. Even in this
case the program may have to stop executing if the user insists on supplying
erroneous input (for example, if there is an incompatibility).

It is not always possible to determine that an input is wrong; this would
amount to being able to predict what the input should be. Instead, a program
can only test whether a certain general format is complied with. Thus, if a
pair of integers specifying a date within a year is required, certain combina-
tions are obviously incorrect, for example “50 50”. It is less obvious whether
“31 12” is incorrect. It would be if the month comes first (American-style
dates), but if the day comes first (European-style dates), it is correct. Finally,
there is no way to tell whether “9 10” is correct (maybe it should be “10 97),
but it conforms to the expectations of a date and should therefore be
accepted.? Another difficulty arises if an integer input is required but the
user inputs a real value or a character string. In such a case, it may be quite
cumbersome to produce code that rejects input whose type is not valid. This
kind of input error will probably have to be assessed case by case. For
example, when being prompted for a percentage value, a user may input
“15” while another user may input “0.15”. What is clear is that programs
must pay far more attention to these questions than any algorithm ever
would (or should).

4 Input such as “2 29” is also problematic, since (assuming American-style format) it is only
valid in leap years. Thus, without knowledge of the year, it is impossible to decide whether this
is a valid input.
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7.2 Testing for Fundamental Requirements

The previous section focused on relatively low-level assumptions. Occasion-
ally, assumptions occur at a much higher level. They may nevertheless be
eminently reasonable, so algorithm designers ignore them (beyond perhaps
stating that the assumption must hold). In contrast to the low-level test
mentioned before, such tests may have significant implications for the com-
plexity of a program.

We will illustrate the underlying difficulty with two examples: the imple-
mentation of matrix multiplication discussed in Section 6.4 and binary
search. In both cases certain assumptions are crucial for the correct behavior
of the functions, but testing for these assumptions can be a significant burden
to the extent that the approach that relies on the assumption may have to
be discarded in favor of one that does not make this assumption.

In Section 6.4 we discussed parameter passing for the function MatMult
(A,B,C,n) (see the code there). We observed that this function produces
wrong results if the three arrays are passed by reference. Let us analyze this
a bit more carefully. It is not difficult to see that the function is correct with
call by reference, provided the three arrays A, B, and C do not have any
memory locations in common.® This assumption was violated when we
computed the square of the matrix X in place, X := X2, since all three matrices
refer to the same locations. Note that far more complicated situations may
arise; for example we may call MatMult(X,Y,Z,1000), where the three matri-
ces X, Y, and Z are fined as follows: Let U be a matrix of type
[1:100000,1:100000] and define:

X[1:1000,1:1000] := U[M+1:M+3000:3, M+2:M+2001:2]
Y[1:1000,1:1000] := U[20000-M:20000-M-4999:-5, 10000-M:10000-M-2999:-3]
Z[1:1000,1:1000] := U[501:7500:7, 301:7300:7],

where a:b:c denotes the a sequence of integers m :=a,a + ¢, a + 2c, a + 3¢,
and so on, up to and including the number a + kc, with the largest integer
value for k such that a + kc is no larger than b for positive c and no smaller
than b for negative c. For example, 5:29:7 denotes the sequence [5,12,19,26],
and 111:39:-17 denotes [111,94,77,60,43]. Then Ula:b:c,d:e:f] denotes the sub-
array of U that consists of all elements Ui j], where i occurs in the sequence
a:b:e and j occurs in the sequence d:e:f.® For example, the specification

5 Itis sufficient to assume that the third matrix, C (which accumulates the result), has no overlap
with the matrices A and B. Since under this assumption neither A nor B are modified during the
execution of the code of MatMult (it is only the matrix C whose values are written; A and B are
merely read), the resulting matrix for the product will be correct.

¢ Note that this way of specifying matrices is possible in some programming languages, most
importantly the newer standards of Fortran.
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M[1:4,1:5] := U[5:29:7, 111:39:-17] identifies 20 elements of the array U with
the 20 elements of the matrix M in the following way:

M[1,1]=U][ 5,111], M[1,2]=U] 5,94], M[1,3]=U[ 5,77], M[1,4]=U][ 5,60],
M[1,5]=U[ 543],

M][2,1]=U[12,111], M[2,2]=U[12,94], M[2,3]=U[12,77], M[2,4]=U[12,60],
M[2,5]=U[12,43],

M[3,1]=U[19,111], M[3,2]=U[19,94], M[3,3]=U[19,77], M[3,4]=U[19,60],
M[3,5]=U[19,43],

M[4,1]=U[26,111], M[4,2]=U][26,94], M[4,3]=U][26,77], M[4,4]=U][26,60],
M[4,5]=U[26,43].

It should now be obvious that testing for the overlap condition is anything
but trivial. If one allows arbitrary sequences of indices to define subarrays,
then it turns out that determining whether a given [1:1,1:n] matrix A has
any element in common with another matrix B of the same type [1:11,1:n]
requires time proportional to n* For each of the n? elements of A, we have
to determine whether it refers to a memory location referenced by B. Since
determining whether one element of A is an element of B requires time O(n?)
because this A-element could be any of the n? B-elements, doing this n? times
(for each of the elements in A) requires O(n?) time.” The consequence is that
testing for a condition that guarantees us that a marginally more efficient
approach works properly requires dramatically more time than the savings
one could possibly obtain. Moreover, one should realize that this test would
have to be carried out every time MatMult with call by reference is to be
called, even though in the vast majority of all cases, the test for overlap
would fail (thereby permitting the use of the more efficient scheme). Finally,
if the test succeeds (that is, overlap is detected), alternative code would have

7 Note that it is not easy to determine whether two references (variables) refer to the same mem-
ory location. This is related to the fact that we have to manipulate logical memory locations, not
values (logical, since the corresponding absolute memory locations may change owing to paging
in and out, relocatable code, etc.). Under some mild assumptions, the following approach works:
Given two references x and y, determine the value x' of the memory location referenced by x and
the value y' of the memory location of y. Then change the contents of the memory location of x
to something different from x'. Determine the value referenced by y now. If this value is different
from y', then x and y refer to the same memory location; otherwise they do not. In either case,
we must change the contents of x back to x', since this test should be nondestructive (the values
should not be affected). We must make some assumptions for this to work: We must be able to
determine a value that is different from x' (note that in general, x and y may not be of the same
type, so their corresponding values need not be the same) and we must be able to assign the
value x' to the memory location referenced by x. If x' is undefined (in the scenario where the pro-
gramming language supports undefined variables), it is impossible to restore the contents from
within the program (since in programs with undefined variables, it is impossible to explicitly set
a variable to be undefined). In fact it is usually impossible to find out that x' is undefined without
aborting program execution.
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to be provided to deal with this situation. In general, it makes much more
sense to use call by value for A and B and call by reference for C if one
wants to use MatMult (or better yet, to use MatMult' with call by reference
for all three matrices [see footnote 18 in Chapter 6]). However, this conclusion
can be arrived at only after one has done the analysis that demonstrates that
this overlap test will never pay for itself.

Our second example involves binary search. It is well known that this
highly efficient technique is applicable only if the underlying array is sorted.
The question arises therefore whether it is mandatory that this condition be
verified before calling the function BinarySearch. While one may be tempted
to answer affirmatively, the consequences are unpleasant: Any test of
whether a given vector of type [1:n] is sorted requires time proportional to
n.8 Recall that binary search takes time proportional to log,(n). Thus, testing
for the fundamental condition without which the method fails miserably is
exponentially more expensive than the operation itself. One might be
tempted to view this example as no different from the matrix multiplication
example. However this is not so.

The assumption in MatMult was rather esoteric. Moreover, there is an
alternative formulation of the technique (with a minor increase in complex-
ity) that does not depend on the assumption. In BinarySearch the assumption
of sortedness is fundamental and indispensable. There is no alternative
formulation of binary search that would work without the assumption.’
Dropping the stipulation that the vector be sorted is a total change in the
computing paradigm. Without this assumption, we are no longer dealing
with binary search but with sequential search, which is a different algorithm
altogether. Therefore, it is probably acceptable to dispense with this test. This
is partly driven by complexity considerations. If the test could be carried
out in constant time, we might advise to do it. However, since it takes
exponentially more time than the operation itself, common sense suggests
that we suppress testing for the assumption that the array is sorted. In
contrast, MatMult can be formulated so that the overlap test can be com-
pletely dispensed with.

These two examples indicate that we will be frequently confronted with
assumptions that are crucial for the correct functioning of our programs, but
it is not entirely clear whether it is advisable to verify whether they are
satisfied. The answer usually depends on the context of the problem. The

8 Note that we do not sort; we merely test whether the vector is sorted. Here is how to
test whether the array A[1:n] is sorted in ascending order (for descending order, change the
comparison):

for i:=2 to n do if not(A[i-1] <A [i])
then {output(“array not sorted”); exit}

This requires at most 7 — 1 comparisons and cannot be improved, since for the conclusion that
the array is sorted, 7 - 1 comparisons are required.

¢ It is disingenuous to view linear search as an alternative formulation of binary search even
though it would obviously work.
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case of MatMult with call by reference is probably a surprise to most pro-
grammers; analysis of the test indicated that it made no sense to do it since
there exists a perfectly serviceable alternative code that does not depend on
any overlap condition. However, BinarySearch works by definition only if
the vector is sorted; therefore it makes sense to forgo testing for this condi-
tion. In general, similar analyses should be carried out to decide on a case-
by-case basis whether high-level implicit assumptions of the algorithm
should be explicitly verified. Ordinarily, complexity considerations will play
a role in these decisions.

7.3 What to Do about It

Exception handling is absolutely mandatory when designing and imple-
menting programs. It is highly advisable that the programmer ensure that
all possible cases be covered and that code exist that takes the appropriate
actions for each case. At a higher conceptual level, the question of whether
to test for implicit assumptions made in algorithms may not be as clear-cut.
It is probably prudent to be pragmatic. If there are ways of carrying out the
test efficiently (at a minimum, this would mean the complexity of the test
does not exceed that of the operation), it should be considered. If there are
inexpensive ways of obviating the need for a test, this would be another
good alternative. (If both are applicable, choose the one that is more efficient;
all things being equal again, choose the simplest approach.) However, if the
assumption is fundamental, as is the sortedness of the vector for binary
search or the squareness of the matrices for matrix inversion, it may be
permissible to forgo the test (even though in the latter example, the test
would be relatively easy, but it is inconceivable that someone would want
to invert a matrix that is not square).

Bibliographical Notes

Exception handling for a specific programming language is covered in that
language’s manual. General discussions can be found in textbooks on pro-
gramming language principles and compilers. See for example Aho, Sethi,
and Ullman: Compilers: Principles, Techniques and Tools. Assumptions under-
lying an algorithm might be considered as part of the development of that
algorithm, but if the assumptions are too obvious, the algorithm designer
may not view them as interesting or relevant.
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Exercises
Exercise 1

Assumptions pertain frequently to the size of a structure. For example, the
fast Fourier transform (FFT) on n values typically assumes that n be a power
of 2. Examine the influence of this assumption for the complexity of the
resulting algorithms and consequently the programs. Assume that # is the
measure of input and that f(n) is the time complexity of a given algorithm
that works only if a certain assumption about 7 is satisfied. Typically, if n
does not satisfy the assumption, the next larger value of n that does satisfy
it is chosen (and the structure representing the data associated with the
problem is padded, so this is applicable). For each of the eight standard
complexity classes (see Chapter 1), determine the worst-case increase of the
complexity (worst case would be that the value of n is larger by 1 than the
last value satisfying the assumption), provided the assumption is that:

a. nis even.
b. nis a perfect square (n = m? for some integer m).
c. nis a perfect cube (n = m3 for some integer m).
d. nis equal to m* for some positive integer k.
e. nis a power of 2.

Exercise 2

Formulate a test of whether a given binary tree is height balanced. Determine
the time and space complexities of your test. Note that you may not use
height information contained in the node (it may not exist or may be incor-
rect).

Hint: For a tree with n nodes, the worst-case time complexity should be
O(n), and the worst case space complexity should be no greater than
O(log,(n)) — more specifically, space should be less than 1.451log,(n)-O(1),
where the O(1) constant reflects the space required for each recursive invo-
cation of the test.

Exercise 3

Formulate a test of whether a given undirected graph is connected. Deter-
mine the time and space complexities of your test, assuming the graph is
given:

a. by its incidence matrix.

b. by its adjacency lists.
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8

Implications of the Finiteness of the
Representation of Numbers

About This Chapter

Algorithms assume that numbers are not afflicted with any limitation of
representation. Programs, however, must operate within a very different
universe. All numbers in computer systems are represented in a way that
invariably implies limitations on what can be represented internally. These
limitations have important implications for programming, from the question
of which numbers actually exist inside a program to the problem of testing
for equality, the issues related to mathematical properties, and curious
behaviors related to convergence.

The finiteness of the number representation in programs has several
important implications. They are mainly related to floating point numbers,
but even fixed point numbers occasionally display quirky behavior. We first
revisit the distinction between bit and word complexity in the context of
software development and point out that many numbers that we expect to
be representable are not. Then we examine the implications for several issues
related to arithmetic, in particular, the question of how to test for equality.
Related to this problem is the validity (or lack thereof) of various mathemat-
ical properties, identities that we take for granted in algorithms but that
provide numerous surprises in programs. Related to this is the convergence
of a sum of a sequence of numbers that mathematically diverges.

8.1 Bit and Word Complexity Revisited

Every item in a program necessarily has a finite representation. In almost
all instances, this representation is not just finite, but bounded. For the most
part, bit complexity does not arise naturally in software; programs may
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specify how many bytes are to be used to represent an item, but once this
decision is made, the number of bits used for this item remains fixed. An
unbounded representation inherently requires dynamic memory allocation
techniques and is used only in exceptional circumstances.! For most practical
purposes, complexity in programs is word complexity. The only question is
how many bits that word has.

Once a fixed-length representation (i.e., a word) is chosen, several limita-
tions follow immediately. For one, only a finite number of different values
can be represented using a fixed number of bits, certainly no more than 2
if we have m bits. This implies that we will have to contend with issues such
as overflow, underflow, and rounding errors. Before we address these,
we must point out another aspect of software that differentiates it from
algorithms.

Everybody is aware that certain real values do not have a finite represen-
tation, for example the square root of 2, /2. Most people also know that
certain rational numbers do not have a finite decimal representation, for
example 1/3.2 However, very few programmers are aware that numbers with
a perfectly good finite representation, for example 0.3 or 1.3, do not have a
finite representation in ordinary programs. This is because the internal rep-
resentation of numbers in ordinary programs is binary, and many decimal
numbers with a finite representation do not have a finite binary representa-
tion. To state it more pointedly, when we write the constant 1.3 in a program,
this is, strictly speaking, not a number; it is an identifier that refers to a value
that is close to the (decimal) value 1.3, but is never exactly 1.3. Even more
confusing is that the value of this identifier 1.3 can change. Its value depends
on the number of bits of the word used to represent this identifier. Since
program portability does not address the question of the word length of a
processor, the same program when run on different platforms (with different
processors) may yield different values for the identifier 1.3. In other words,
what seems to be the constant 1.3 is not a constant and does not have the
value 1.3.3

! In some instances extremely long representations of numbers are considered. Prominent exam-
ples are software packages that support operations on arbitrarily long integers. The need for
arithmetic on extremely long integers arises, for example, in public-key cryptography; in partic-
ular, the RSA encryption method is based on prime numbers with several hundred digits and
employs operations on integers of such lengths for the encryption and decryption of messages.
2 One might argue that 1/3 is a finite representation, but it is not a decimal representation. We
know from mathematics that any rational number can be represented in the form a/b, where a
and b are integers. However, ordinary programs do not use this representation of rational num-
bers (although some software packages do); moreover, no such finite representation exists for
real numbers that are not rational.

3 We will not enter into a discussion of processor arithmetic. This is a complicated topic and well
beyond the scope of this book. For our purposes, it suffices to know that many processors imple-
ment some standard, usually the IEEE standard. However, many processors also deviate in some
instances from the standard they ostensibly implement. While in most cases the differences are
negligible, it behooves programmers to be at least aware of the underlying problematic.
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It is obvious that in this, algorithms differ significantly from software.
Nobody expends any time worrying about the representation of numbers in
an algorithm; we essentially assume that all ordinary mathematical aspects
of numbers are satisfied. This implies that there is no over- or underflow,
there are no rounding errors, and every number we can write down exists
exactly as we wrote it. This holds even truer for the difference between
decimal and binary representation.

The finiteness of the representation of numbers, coupled with the fact that
the internal representation is binary, has a number of surprising conse-
quences. In particular, testing for equality is suddenly a complicated matter
and many mathematical identities no longer hold.

Some data items’ entire range of values can be represented exactly.* This
is usually the case whenever the range is finite. Prominent representatives
of this type of values are boolean items; also in this category are strings.> It
is not difficult to verify that any item whose entire range is finite (and
presumably not too large) presents no significant representational problems.
Consequently, any operations applied to such items will yield again exactly
representable values as long as they yield values of that type.® Consequently,
there are no differences between algorithms and software for items whose
range is finite, so no problems owing to their representation can arise when
algorithms are implemented in software.

Many programmers believe erroneously that problems owing to the finite-
ness of the number representation are irrelevant to their applications, indeed
that these difficulties are only of concern when doing heavy-duty numerical
analysis. However, representational issues arise in many contexts that have
nothing to do with numerical analysis. A simple illustration comes from
banking. Consider a program that calculates interest on bank balances. The
interest is calculated monthly on the average balance during that month.
Here are two instances where number representation is important: for the
calculation of the average daily balance in an account and for the application
of the interest rate to that average balance. It is important in this application

4 Clearly, integers and real numbers do not satisfy this. For reals, 1/3 is an example; for integers,
the integer following the largest representable integer is an example.

5 The case of strings is perhaps not entirely obvious since strings could be of unbounded length
(in contrast to the type character, which can be viewed as a string of length 1). However, given a
string (however it may be represented), we can first determine its length, and for this length
there is a finite number of different strings (assuming the strings are over a finite alphabet). Why
does this argument not carry over to floating point numbers? Because by general agreement, two
strings of the same length that differ anywhere are considered different, while two floating point
numbers, if they differ by a very small quantity, may be considered equal (see the discussion of
testing for equality in Section 8.2). Moreover, in many cases a floating point number is a finite
representation of a real number that would require an infinite exact representation; therefore, a
better approximation would have more bits or digits, and the length could be increased arbi-
trarily without ever providing an exact representation.

¢ We assume that an operation applied to items of a certain type yields again an item of that type.
This is somewhat tenuous when it comes to integers and division — the integers are not closed
under division, but the reals are. However, the integers are closed under addition, subtraction,
and multiplication (as are the reals).
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that all values be in terms of dollars and cents; in other words, there are no
fractional cents. Thus, there should be exactly two decimal digits after the
decimal point. If the balances are represented as floating point numbers,
once the average is computed, the final result must be converted into dollars
and cents. Note that the average is unlikely to be in this format. It is even
more unlikely for the interest calculation; again, the result must be explicitly
converted into the requisite format. It should be clear that care must be
exercised, since for large balances, the interest computation may not be
correct if the number of bits employed to represent the result is too small
While any differences are probably only on the order of a few cents, the bank
is nevertheless unlikely to be forgiving about such errors.

Another instance where ordinary programs may encounter unexpected
problems that are ultimately due to the finiteness of the number represen-
tation relates to something seemingly trivial, namely testing whether two
values are equal.

8.2 Testing for Equality

In an algorithm testing for equality is trivial and requires no further discus-
sion. In a program, however, testing for equality can be quite complicated
because two values that mathematically are identical may be different
because they were computed in different ways that resulted in differences
owing to their finite representation. A fairly straightforward example is the
test of whether the square of the square root of 2 is equal to 2:

(J2)2 =22,

which is virtually guaranteed to fail in all programming languages.” A more
confusing example is the following test:

1.3*10 =713,

which again would usually fail for the following reason. Recall that 1.3 does
not have a finite binary representation; as a result, its product with the
number 10 is not exactly equal to 13. This is true even if we were more careful
with the question of type. In both examples, we are mixing reals and integers.

7 We could be more deferential to type concordance and ask whether (/2.0 )2 = ? 2.0 is true; the
test would likely fail, nevertheless.
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For algorithms, this is generally ignored; for programs, it is often frowned
upon.® So, even if we tested

1.3 *10.0 =? 13.0,

the result would be false.

The problem alluded to in these examples does not arise with integers or
with any type where the entire range can be represented (booleans, charac-
ters, strings).” Consequently, testing for equality for these types of items is
not problematic.

Given the difficulty in obtaining the correct answer when testing for equal-
ity of two real values, how can we finesse this problem? We look at two
different aspects of a test for equality, namely a test where we increment or
decrement a value until some other value is reached and a general test of
whether two values are equal.

The first type of testing for equality is a modified enumeration, where the
step size is not an integer. This is frequently unsafe and should be avoided
if at all possible. Thus, the test for equality arises in the context of reaching
a termination condition. Since it is imperative to obtain termination, we
could simply replace the test for equality with a test of equal to or less
(greater) than. For example, recall the skeleton of a recursive function dis-
cussed in Section 7.1:

F(x)
if x=0.0 do { basis case }
else { statements; F(x-0.1l); statements }

8 Some programming languages insist that only operands of like type may be combined. In this
case operands would have to be converted explicitly to the more general type, in this case from
integer to real. Failure to convert would result in an error.

One might question why conversion has to be from integer to real. If one were to convert from

real to integer, the above test would hold. There are two arguments against this assertion. First,
one always wants to go from a more restricted situation to a less restricted one; since the integers
can be viewed as a subset of the reals (at least mathematically; the internal representation of the
fixed point number 13 is very different from that of the floating point number 13.0), this would
indicate conversion from integer to real (which would always preserve the value involved, in
contrast to going the other direction). Second, even if one were to convert a real to an integer, this
would not guarantee that one would obtain 13 when applying this conversion to 1.3*10. It would
depend on the way in which a real is converted into an integer. There are at least three different
standard ways of doing this: rounding down (Lx] is the largest integer such that| x [<x), rounding
up ([ x lis the smallest integer such that x<[x]), and rounding ([x] is the unique integer satisfying
x —0.5 < [x]<x + 0.5). (To see that these three techniques are all different consider the values 3.9
and -3.9:13.9]=3,1-3.9]= —4,[3.91=4,[-3.91= -3, [3.9] = 4, and [-3.9] = —4.) Consequently, if
the actual representation of 1.3*10 is smaller than 13, 1.3*10] would yield 12, not 13. Similarly,
if the actual representation of 1.3*10 is larger than 13, [1.3*10 ] would yield 14, not 13.
9 This problem does not arise with integers either, even though they do not have a finite range,
because it fundamentally derives from underflow. Integers do not suffer from underflow — only
overflow. Overflow, however, is not an issue in testing for equality, since we are considering only
the test of whether two values are equal, and either both values are overflow or none is. How
these two values are obtained is a separate issue, which is taken up in the next section.
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If this function is called with a positive integer as an actual parameter
(ignoring again the mixing of integer and real types), say F(2), it is unlikely
to terminate because the test for equality x = 0.0 most likely will fail since
0.1, the decrement, does not have a finite binary floating point representation.
Thus, the basis case will never be encountered. Were we to replace the test
x = 0.0 with x < 0.0, we would at least be guaranteed that the recursion
terminates, but it is not clear that the result would be what we expect.

Why might the result not be correct? This depends on the actual value of
the number 0.1. Since we have already established that that value cannot be
exactly 0.1, it is either larger or smaller (admittedly by very little, but this
very small quantity nevertheless trips us up). The obvious intent of the
original algorithm is to invoke recursion 10 times for each unit; thus F(2)
should give rise to 20 recursive calls, namely F(1.9), F(1.8), ..., F(0.2), F(0.1),
and finally F(0.0), which then invokes the basis case. However, if the actually
represented value of 0.1 is smaller than the real value 0.1, then the actually
represented values of the intermediate quantities (1.9, 1.8, ..., 0.2, 0.1, and
0.0) will all be larger than the values of their identifiers.’® As a result, it will
not be this last value that invokes the basis case (since it is objectively larger
than 0.0), but the next value computed in this sequence, which is something
quite close to -0.1. This is why the test for equality was such a bad idea,
since in the original formulation, the basis case (x = 0.0) would never be
reached.!

This brings up the second aspect of a test of equality, namely when we
really want to know whether the two items are equal. Clearly, if the values
are of a type whose entire range can be represented exactly, no problems
exist. However, if the values are floating point type, it is surprisingly difficult
to decide whether they are equal.

The obvious approach is to define a margin, say ¢, and to decree that the
value x is considered equal to the value y if x and y differ by no more than &:

|x-y|<e

The problem is how to determine €. On the one hand, € should be small
enough to avoid considering two values as equal that should really be
considered different; on the other hand, € should be large enough that all
values one might consider equal are in fact equal. The problem is that there
may not be a single fixed value of € that would work in all instances. In

10 This is not absolutely guaranteed, although it is extremely likely. We are assuming monotonic-
ity here; that is subtracting something smaller than 0.1 from 2 yields something larger than 1.9,
and then subtracting something smaller than 0.1 from this value yields something larger than
1.8, and so on. To obtain a definitive answer of whether this is true depends on the specific imple-
mentation of arithmetic in the processor. (The reason it could not be true is related to the way in
which the representation is determined, especially the rounding that occurs when one goes from
one order of magnitude to another. Note that since the internal representation is binary, 1.99999
is an order of magnitude larger than 0.99999.)

' We note that it is good programming practice to avoid testing for equality and replacing it by
< or 2 if the values involved are considered safe, for instance integers.
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many cases the size of € depends on the context. Thus, the decision of how
large to make € generally lies with the programmer who is called upon to
implement an algorithm in software.!

It should be clear that the difficulties with testing for equality carry over
to other comparison operators, such as < and > (when applied to floating
point numbers). However, tests for < and > are ordinarily safe.

8.3 Mathematical Properties

Mathematical identities are frequently invoked; most people are familiar at
least with commutativity, associativity, and distributivity of common num-
bers (integers, reals, and booleans). Unfortunately, because of the finiteness
of the representation of the values involved in the expressions, these math-
ematical identities and other properties do not necessarily hold.

Mathematical identities fail to hold for two reasons: because of rounding
errors (also referred to as underflow) or because of overflow. Rounding errors
arise with floating point numbers. The most common situation is that a very
large value is combined with a very small value, swamping the smaller one.
These rounding errors are common and usually do not attract much atten-
tion, but they do call into question the overall notion of mathematical iden-
tities. Overflow conditions are unlikely (but not impossible) for floating point
numbers; they occur more often with fixed point numbers.

Table 8.1 shows the most common mathematical identities together with
an indication of whether or not each holds for floating point and fixed point
numbers. The parenthetical notes indicate why the identity does not hold.
Here max indicates an integer that is the largest representable integer (a
value that depends on the word length). The quantity €,,;, denotes the largest
floating point number such that

min

1.0 + &, =1.0.

Because of the finiteness of the number representation, this value always
exists. Finally, very large (very small) refers to a value that is close to the
maximum (minimum) of the values representable as floating point numbers,
given a certain number of bits for the mantissa and for the exponent, the
idea being that the sum and the product of two such very large numbers is

12 If the order of magnitude of the values to be compared is known, the quantity €, to be dis-
cussed in Section 8.3 may be employed. More specifically, if x and y are of the order of 1, then we
might use for € a small multiple of €, for example 2* ... If x and y are larger, say on the order
of 1000, we could use 2000* ¢, if they are smaller, say on the order of 0.01, we could use
0.02* €,,;,- Even if the size of the values to be compared is not known when the program is writ-
ten, we can still use those sizes to compute an appropriate value for €.
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TABLE 8.1
Mathematical Identities
Identity Fixed Point Floating Point
Commutativity
a+b=b+a Holds Holds
a*b = b*a Holds Holds
Associativity
@+b)+c=a+(b+c) Doesnot hold (a,b max, b+ c=0) Doesnothold (a=1,b=c=¢,,)
(a*b)*c = a*(b*c) Does not hold (a,b max, ¢ = 0) Does not hold (a,b very large,

¢ very small)
Distributivity
(a + by*c = a*c + b*c  Does not hold (a,c max, a + b = 0) Does not hold (a,b very large,
¢ very small)

no longer representable, while the product of a very large and a very small
number would yield 1.

A few words are in order about the overflow conditions for fixed point
numbers. We take the position that overflow is overflow; in other words, if
any subexpression of an expression results in an overflow, then the entire
expression is afflicted with overflow. Therefore, if 4 and b are max, a + b
results in an overflow, and the fact that c is a very large negative number
does not erase the overflow condition of the expression (a + b) + c. However,
since b + ¢ is 0, the addition of 2 and b + ¢ results in max, which is not an
overflow condition. Therefore, the two sides of the identity are different: One
yields overflow and the other yields a perfectly good integer value. If a + b
(or a*b) results in overflow, so will b + a (or b*a); thus, the two sides are equal.

Given that the basic mathematical identities do not necessarily hold, it
should not be surprising that more complicated identities generally do not
hold either. For example, we know from arithmetic that a> - b?> = (a + b)*(a - b),
but this identity does not hold generally (for example, if 2 and b are both
large numbers so that a2 is not representable but a + b is, for both fixed and
floating point numbers).

The upshot is that programmers should not assume that common mathe-
matical identities hold in programs. While they do hold in most cases for
fixed point numbers (whenever all intermediate results on both sides are
valid integers), the situation for floating point numbers is a bit more tenuous.
If the sizes of the numbers involved differ substantially, the identities tend
not to hold, although usually the differences are not too great. Note, however,
that small errors can accumulate and propagate, so one should not be overly
sanguine about the insignificance of these errors, as the next section indicates.
However, boolean expressions are always exact, so any identities involving
boolean values and operators hold unconditionally.
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8.4 Convergence

Consider summing up a sequence of numbers. One would ordinarily assume
that it makes no difference in what order one sums. One would be correct
if this were done in an algorithm (that is, mathematically), but one would
be very wrong if one held the same expectation for a program. The poster
child of this phenomenon is the sequence 1, 1/2, 1/3, 1/4, 1/5,..., whose
sum is well known (at least to mathematicians) to diverge. In other words,
for any constant M there exists an integer n such that the sum of the first n
terms of this sequence exceeds M. Yet if we program this summation, for
example, as

sum :=0.0; for 1:=1 to N do sum := sum + 1.0/1i,

we will discover that there exists a value of N such that the sum Sy of the
first N terms is equal to the sum Sy, of the first N + k terms for any k > 0.
This type of convergence is a special instance of the failure of associativity
to hold. The explanation is quite simple: Adding the term 1.0/(N + 1) to the
sum Sy, of the first N terms presents us with a situation very much like 1.0
+ €. = 1.0, except that both Sy and the term 1.0/(N + 1) must be normalized
by Sy to yield 1.0 and €,,. In other words, we have to solve

min*®

€mint Sy > 1.0/(N + 1)

for N. This yields a value s for N such that S, = S,,;. This value s can easily
be obtained as follows; it depends on the word length used for the repre-
sentation of sum:

sum :=0.0; 1:=1.0;
while sum < sum +1.0/1 do

{ sum:=sum + 1.0/i; 1:=i+1.0 };
s:=1

Let us now sum up from the back; here we assume we know the value of
s from before:

sum :=0.0; for i:=s to 1 by -1 do sum := sum + 1.0/1i

Let us denote the result of this summation (as a function of s) by T,. The
first surprise is that T, # S,; in other words, summing up backwards yields
a different result than summing up from the beginning. The second surprise
is that T, < T,;. When summing up from the back, we can add many more
terms that affect the total than when summing up from the front!

The reason for this surprising result is that first summing up the smaller
terms allows them to amount to a quantity that is not as easily overwhelmed
by the larger values toward the front. Starting at the front first adds up all
the larger terms, so by the time we get to the smaller terms, they are wiped
outala 1.0 + ¢, = 1.0.

‘min
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One might get the impression that the difference between summing up
sequences of simple numbers either forward or backward is just a parlor
game that has no significance to general programming. This is by no means
valid, even though this type of sum is usually not encountered when design-
ing software. However, it does serve as a rather drastic warning about the
assumptions that programmers make. These assumptions are generally
rooted in their understanding of mathematics, and more specifically, arith-
metic. Unfortunately, what holds unconditionally in mathematics, with its
disregard of representational issues, does not necessarily hold for software,
where the finiteness of the number representation can play surprisingly nasty
tricks on the unsuspecting programmer.

8.5 What to Do about It

Programmers tend to dismiss issues related to the representation of numbers
as relevant only to number crunching. This is not entirely incorrect. For
example, bit complexity tends to be irrelevant for almost all practical pro-
grams; programmers will use whatever words are provided in a particular
language. While heavy-duty numerical error analysis is clearly not needed
for software outside of numerical analysis, every programmer should be
aware of some of the differences between what mathematics teaches about
numbers and what happens to numbers in programs. The fact that certain
values cannot be exactly represented can have some impact on software that
is far removed from number crunching. The same goes for mathematical
identities that mysteriously cease to be valid in software. Finally, testing for
equality is often not well understood when it involves floating point num-
bers. All of these problems can render software unreliable, if not outright
wrong. While there are limits to a programmer’s ability to control the errors
caused by the finiteness of the number representation, the awareness of these
problems may be very helpful in avoiding them. Certainly, using a test for
equality as a termination condition, for iteration or for recursion, is generally
not a good idea when floating point numbers are used; these tests should
be replaced by safer ones. If testing for equality is directly required, it should
be carried out using a margin of error that depends on the context of the
test (magnitude of the numbers involved).

Bibliographical Notes

Error analysis and error propagation for floating point numbers is compre-
hensively covered in standard numerical methods textbooks. Wilkinson’s
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books dating back to the early 1960s are classics: Rounding Errors in Algebraic
Processes and The Algebraic Eigenvalue Problem. Other texts are Golub and Van
Loan: Matrix Computations and Higham: Accuracy and Stability of Numerical
Algorithms. Focused on specific computer platforms are Startz: 8087/80287/
80387 for the IBM PC and Compatibles and Asserrhine, Chesneaux, and Lam-
otte: Estimation of Round-Off Errors on Several Computers Architectures. Papers
discussing the importance of error analysis for general computing are Moler:
“Double-Rounding and Implications for Numeric Computations”; Goldberg:
“Computer Arithmetic”; and, in particular, Goldberg: “What Every Com-
puter Scientist Should Know about Floating-Point Arithmetic”. The internal
representation and its consequences for programs are also treated in text-
books on programming language concepts and compilers, for example, Aho,
Sethi, and Ullman: Compilers: Principles, Techniques and Tools.

Exercises
Exercise 1

Using different word lengths (2 bytes, 4 bytes, and 8 bytes), determine
experimentally the value of €, for your computing platform.

Exercise 2

Using different word lengths (2 bytes, 4 bytes, and 8 bytes), determine
experimentally the smallest value of s such that S, = S,,;, where S; = 1.0 +
1.0/2.0+1.0/3.0 + ... 1.0/j. Also determine experimentally the smallest value
of t such that T, = T,,;, where T; = 1.0/j + 1.0/(j — 1.0) + ... 1.0/2.0 + 1.0.

Exercise 3

a. Using different word lengths (2 bytes, 4 bytes, and 8 bytes), find
fixed point numbers 4, b, and ¢ such that their associativity (distrib-
utivity) does not hold.

b. Using different word lengths (2 bytes, 4 bytes, and 8 bytes), find
floating point numbers 4, b, and c such that their associativity (dis-
tributivity) does not hold.

Exercise 4

In view of the problems with representing rational numbers a/b, where b is
not a power of 2, one may consider representing an arbitrary rational number
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a/b as the pair [a,b] consisting of the two integers a and b, with b assumed
to be positive. In order to obtain uniqueness of this representation, one
assumes that a and b are relatively prime; if they are not, for example a =
ka' and b = kb' with k > 2 an integer, then a/b = a'/b', with a' and b' requiring
fewer bits for their representation. This is a relatively simple approach that
can easily be implemented. Note that the rational numbers are closed under
the four basic arithmetic operations.

a. Formulate and implement methods for the addition, subtraction,
multiplication, and division of the pairs [4,b] and [c,d].

There is however a problem with this approach which affords absolute
precision; in order to understand this problem, we must go to bit complexity.

b. Assume that the length of the integers 4, b, ¢, and d is . Show that
the length of the integers f and g, where [f,¢] represents the sum,
difference, product, or factor of a/b and c/d, may be 2I. Generalizing
this, show that a sequence of m basic arithmetic operations may
require integers of length ml to represent the final rational number,
for any m > 1. Hint: Assume that g, b, ¢, and d are all prime numbers.
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9

Asymptotic Complexities and the Selection of
Algorithms

About This Chapter

Asymptotics are the heart of the complexity analysis of algorithms, but their
usefulness for software development is limited since by their very nature
they ignore constant factors. When constant factors are taken into consider-
ation, some overall bad algorithms may be competitive over a certain range
of input size. If this range happens to include all practical cases, the bad
algorithm may turn out to be superior to an asymptotically much better one.
How to determine this and how to apply this to practical situations is the
goal of this chapter.

9.1 Introduction

The complexity analysis of an algorithm aims at categorizing algorithms into
a few clearly defined complexity classes. For most practical applications,
these classes are polynomial, meaning that the complexity (time or space) is
bounded by a polynomial p(r) of the measure of the input employed (usually
size of input):
p(n) = a;n® + a.nt + .+ a;n® + arn + ay, for s a positive integer.
This polynomial is then equivalent to n°. Thus,
p(n) = O(r®) and p(n) # O(ns1).
Complexities are thus compared using the highest-order term only, ignor-

ing the constant attached to that term as well as all lower-order terms. As
we discussed in Chapter 1, we are primarily interested in eight complexity
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classes, defined by their highest-order terms ¢, i = 1, ..., 8, where ¢,(n) = 1,
@,(11) = log,(1), @5(11) = 3n, @un) = n, gs(n) = nlog,(1), @s(n) = 12, @,(n) = 13,
and @g(n) = 2".! Considering only the highest-order term is justified if one is
primarily interested in what happens for very large values of n, since for
those the lower-order terms become increasingly irrelevant; their contribu-
tion is completely obliterated by that of the highest-order term. The dismissal
of the constant factor of the highest-order term reflects the desire to keep
things simple; if two polynomials have the same degree, it is convenient for
comparison purposes to consider them equivalent. This allows us to con-
struct a nice, orderly hierarchy of complexities. However, for software, things
are not quite that nice and orderly.

To obtain a methodology that is practically useful for measuring the per-
formance of a program, obtaining the algorithm’s complexity functions is
only the first step. We must also pay considerable attention to the constants
that were hidden during the complexity analysis. Additionally, programs
have certain time and space requirements that are usually ignored when
algorithms are being analyzed. Furthermore, when deciding which of two
algorithms or programs is better (in some sense), we must look at crossover
points in the complexity functions.

9.2 The Importance of Hidden Constants

We have already argued that for software, it is highly unusual to have bit
complexity as a valid concept. Virtually everything of practical importance
is based on word complexity. This holds for both time and space complexity.

Assume now that we have obtained (1) as the complexity of an algorithm,
for n some measure of the input. If this is the space complexity of the
algorithm, then the memory requirements of a program implementing that
algorithm are essentially f(17) + C,,, where the constant C, accounts for the
space required for the program, for the symbol tables, and for other infor-
mation associated with the program. This constant C,, is independent of the
measure 1 of the input to the program. Thus, the space complexity of the
program is closely related to that of the underlying algorithm, provided
space is measured in words.2 We reiterate that space requirements should
always be based on worst-case analyses (see Section 6.2); average space
complexity has a limited usefulness for software.

1 As pointed out, there are infinitely many complexity classes between (and beyond) these eight.
For example, 2/nnis strictly between @5(1) and @4(1), that is, 2/nn = O(g4n)), @4(n) = O(%/n n),
05(1) = O(3/n n), and 3/n n # O(ps(n)). However, for most practical purposes, these eight are gen-
erally considered sufficient to categorize complexity functions.

2 If bit complexity is used for the algorithm, the actual space requirement of the program
depends on the way these bits are represented. There is a good deal of variability, from using an
entire word for each bit to using packed structures.
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The relationship between the complexity of the algorithm and that of the
corresponding program is not quite as clean when it comes to time. Recall
that the time complexity of an algorithm is the statement count for the
algorithm, in essence, each statement accounts for one unit of time. A pro-
gram’s time requirements are not quite that easily captured. By and large,
we end up with ¢;f(n) + c,, where the constant c; measures the duration® of
an average statement and the constant c, reflects the amount of time required
to load the program and initialize the processes associated with it. Each of
the two constants hides a good deal of work.

The difficulty with the constant c, is the assumption that we know what
an average statement is. We can make some educated guesses or we can
determine a range for this constant. The most systematic approach is to base
the value of ¢, on some limited test runs of the program at hand. In practice,
c; will also depend on the target platform (thus, it is related not just to the
architecture, but also to the instruction set and the ability of the compiler to
exploit efficiently the instruction set). Generally, a reasonably acceptable
value for ¢, is acquired experimentally. Nevertheless, the precise value of
this constant depends on the program to be executed. Realistically we can
only hope for a reasonably small range.*

The constant ¢, is a measure of the fixed cost of program execution. In
other words, even if virtually no statements are executed, the amount of
time c, must always be expended. A typical situation where this might occur
is a wrong user input that causes the program to abort. It is important to
understand that c, is definitely not 0. In fact, its value can be quite substantial.
However, it is a time penalty that will always be incurred, so it may appear
to be insignificant. While this is certainly not true for most programs, it does
have the advantage that there are never any surprises; we always must take
at least c, time, even if nothing happens.

In the next section we will discuss crossover points. These are particularly
important when comparing two algorithms, and then the corresponding
programs, according to some complexity measure. Here we explore a slightly
different issue. Assume we have two programs with the same asymptotic
(time) complexity @,(n). The decision of which program to use will first hinge
on the constant factors for each program. However, let us assume that both
have comparable factors. We may encounter the following situation. One
algorithm assumes that n is a power of 2; the complexity analysis is based
on that assumption and if n happens not to be a power of 2, the algorithm
simply assumes that we pad the input so that the assumption is again
satisfied. The other algorithm works for any value of n. In this case, it may

3 We are deliberately vague about the unit. One approach might be to use actual time, for exam-
ple in nanoseconds. Another approach would be to assume that the unit involved is a synthetic
one that allows us to maintain the simple idea of a unit statement. In this case, we would still be
looking at some type of statement count, except that we now take into consideration the actual
duration of this average statement.

# In practice, one hopes that the execution time of a program is within a range of one half of the
predicted quantity and double that quantity.
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be crucial to know whether the input is generally a power of 2 or not, for if
this is not the case, the required padding, up to the next power of 2, may
almost double the input size. The worst case is if n = 2¢ + 1 for some positive
s, where we would have to increase n to 2¢*1. However, if the complexity is
proportional to n‘ for some constant ¢, doubling the input size increases the
complexity by a factor 2¢. This can make the algorithm requiring padding
highly noncompetitive. Of course, if n is always a power of 2, this argument
does not apply. Thus, it is important to examine underlying assumptions,
even when two algorithms are considered to have the same time complexity.

Another aspect of considerable practical importance is that frequently,
there exists a simple but not very efficient algorithm for a specific problem,
as well as a more complicated but faster one. Since the complicated algorithm
aims at large problems (large 1), one customarily invokes the simpler algo-
rithm if n is small.’ This is particularly relevant if the complicated method
is recursive. As long as n is large, we call the complicated algorithm that
recursively calls itself for increasingly smaller values of # until n is smaller
than a certain threshold, in which case the simpler algorithm is invoked.
Thus, the simple algorithm serves as the basis case of the recursive method.
A typical example is the matrix multiplication algorithm discussed in Section
3.2.2, in which we reduce the multiplication of two [1n,n] matrices to 7 mul-
tiplications and 15 additions of [1/2,n/2] matrices. Each of these seven
multiplications is then treated in the same way, recursively, until we reach
a point where the size of the resulting matrices is smaller than a given value.
Once this value is reached, the recursion terminates. For all multiplications
involving matrices whose size is smaller than this threshold, the traditional
approach consisting of three nested loops is invoked. In this particular sit-
uation, the simple O(n%) time algorithm is usually invoked if # is around 30,
since below this value the more complicated approach does not result in
further time savings (for reasonably efficient implementations of both algo-
rithms).

For this matrix multiplication example, the threshold is realistically small.
There is a large range of values for which the more complicated approach
can be applied in practice. In general, the magnitude of this threshold is very
important; for if the threshold is very large, the more complicated approach
may have only theoretical significance, since for all practically important
values, the less efficient method is used.

5 From a computational complexity point of view, anything that is done for n < N, with N; a
fixed constant, requires only constant time, O(1). This is true no matter how much work is
involved, because even the most time-consuming algorithm will not require more than a con-
stant amount of work for a constant value of n. Thus, if n is bounded from above by N, no more
than a constant amount of work is required. This somewhat counterintuitive reasoning is cor-
rect, simply because computational complexity is only interested in the asymptotic behavior of
the function of n, but never in a specific instance; however, it generally has no practical signifi-
cance, since the work in absolute terms must still be carried out.
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9.3 Crossover Points

Our starting point for this section is the following: We have two algorithms
A, and A,, with complexity functions f,(n) and f,(n), where n is a measure
of the input.® The two complexity functions for the algorithms give rise to
complexity functions for the programs P; and P, that are based on the
algorithms; let them be g;(n) and g,(n), such that

gi(n) = cif(n) +d,

where ¢; and d, are constants (independent of n), for i = 1,2. We are to decide
which program is more efficient.

First we must delineate our area of interest. We focus on time complexity.
While space complexity is a valid concern as well, it is quite possible that
P, is faster but requires more space, while P, is slower and requires less
space. Most of what we discuss for time will have analogues for space, but
ultimately, it is the programmer who must decide whether time or space is
more important. We will only rarely be so lucky that one program is uni-
formly better, that is, faster and requiring less space.

Second, the approach we describe below is applicable to both average and
worst-case time complexity, so we will usually not belabor which of the two
we address. However, one should keep in mind that algorithms may com-
pare differently depending on whether we look at average or at worst-case
complexity. Again, it is the programmer who has to determine what matters
most.

In keeping with the argumentation we advanced earlier, we will assume
word complexity. As we have stated, in most instances bit complexity makes
little sense for programs.

A last caveat is in order: The constants ¢; and d, for i = 1,2 are usually
approximations (educated guesses), since the true values of the factors that
allow us to go from f,(n) to g,(n) would only be known after execution, and
even then, strictly speaking, these values would only be valid for that par-
ticular execution run. A similar cautionary note applies also to the functions
f,(n) and f,(n).

How do we determine which program is more efficient (that is, which
program should be used)? For algorithms, the answer is relatively simple.
Choose the algorithm whose complexity function grows asymptotically
slower, that is, choose A, if f; = O(f,) but f,# O(f,), and consider either of the
two algorithms acceptable if f, = f,. For programs, this simple approach does
not work. We must take into consideration the constants c; and d; (i = 1,2) to
arrive at an answer. However, even if we can show that g,(n) < g,(n) for all

® Once we have a way of deciding which of two candidates is better, this process can be iterated,
so that we may select the best of a group of more than two.
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n = n,, this may still not be sufficient to answer the question.” The reason
lies in the range of interest for our program.

Asymptotical behavior only concerns the situation for very large values
of n. The range of values for n that we are interested in when executing our
program may be quite different. Consider the following example. Suppose
we want to determine the kth-largest element of an unsorted sequence of n
numbers, presented in an unsorted array, and assume we want to determine
whether to use a program P, based on the modified Select algorithm
described in Section 3.2.9 (algorithm A;) or whether to sort the array first in
descending order using HeapSort® and then to return the kth entry in that
sorted array (algorithm A, and program P,). For algorithms, this is a silly
question. The modified Select algorithm has linear time complexity, while
sorting requires time proportional to nlog,(n); thus, it is obvious that the
modified Select algorithm is superior.

For programs, this is not at all so obvious. First, we must look at the
constant factors involved in the time complexity functions. The first algo-
rithm, A;, has a very large constant factor; it is easily verified that the time
complexity of A, is at least 240-n.° The second algorithm, A,, has a rather
small constant. HeapSort’s time complexity is no more than 4-nlog,(n). Thus,
merely on the basis of a more careful analysis of the algorithms’ time com-
plexities, we can see that A, is preferable over A, only if

240n < 4nlogy(n).
This is true precisely for 60 < log,(1), or
n > 2% =10,

In other words, unless we must deal with a data set of size of at least one
quintillion, the pedestrian approach of sorting (with an O(nlog,(n)) time
complexity) and then retrieving the kth element (in time O(1)) is superior.
This holds true even on the basis of algorithms. Since HeapSort is a fairly
simple algorithm, without recursion, while the modified Select algorithm is
much more complicated, the situation for the programs P; and P, and their
complexities g; and g, is even worse. In no conceivable practical situation is

7 Recall that in Chapter 1 we defined k(1) = O(k,(n)) if and only if there exists an integer #7,>1 and
a constant ¢ > 0 such that k,(n)<c-k,(n) for all n=n,. Thus, in this comparison of g, and g,, we not
only require that g, = O(g,), but also that ¢ = 1 in the definition of the order of notation.

8 While we formulated HeapSort there to yield an array sorted in ascending order, the reverse
order is easily obtained by creating the heap with < and > exchanged; this will result in a heap
where the first element is the smallest. Since a heap is created by repeated heap insertions, the
modification of the heap insertion function ensures the correct functioning of the overall algo-
rithm (in particular, the reinsertion of the element displaced from the last location of the current
heap).

9 In Section 3.2.9 we derived that the time complexity of A, is f;(1) = 20-C-n where C-n reflects the
work to be done in steps 1.1, 1.2, and 2. One can verify that step 2 requires about three instruc-
tions, and steps 1.1 and 1.2 about nine; therefore C = 12 and f, (1) = 240-n.
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P, better than P,. In other words, the modified Select algorithm is theoreti-
cally interesting, but practically totally useless. It will never be faster than
sorting.

This situation is not at all uncommon. Numerous algorithms have only
theoretical significance. Another example is provided by matrix multiplica-
tion. The algorithm we explained in Section 3.2.2 is eminently practical; it
runs in time O(n*8!). However, this is by no means the asymptotically best
algorithm for matrix multiplication: There exist several algorithms that man-
age to beat the time complexity 128!, the best of which achieves (as of 2005)
a time complexity of O(n>4%). The crossover point at which this 1#24% method
beats the n?8! method is so large that it is not (and will never be) of any
practical interest. However, the n>4¢ method illustrates very clearly that there
is no nontrivial lower bound for matrix multiplication (see the discussion of
lower bounds in Section 1.9).

In practical terms, crossover points are markers that indicate which algo-
rithm should be applied for a particular range. A simple, somewhat con-
trived example will illustrate this. Suppose we have three algorithms: A, has
a time complexity of f,(n), A, has a time complexity of f,(r), and A;, one of
f3(n). The three complexity functions are defined as follows:

fi(n) = (6n® — 10n?)/(n+50) for alln >1;
f,(n) = 150n./n + 200n + 1000 for all even n > 2;
f,(n) = 300n./n + 400n + 1000 for all odd n > 1;

fy(n) = 200n./n +300n + 100 for alln > 1.

We can now carry out several calculations, comparing the four functions
with each other. Let us denote by f, ....(1) and f, 44(17) the two parts of f,(n).
It follows that

fi(n) < f, yen(n) for all n < 1001;
f) even(M) < £, 4q(n) for all n;1°
f,(n) < f5(n) for all n < 1740.
Furthermore, f;(n) is never smaller than f, . ..() for values of n where f,(n)
does not beat f, .,..(17), that is, n > 1002. We conclude from these calculations

that the best algorithm is a hybrid algorithm that must utilize all three
algorithms in the following way:

10 Note that we can compare f, .,(17) and f, ,44(17) as functions for all values of 1, even though the
complexity of the algorithm A, uses f, .,.(1) only for even n and f, ,44(17) only for odd n.
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if n <1001 then call A1
else if nis even then call A2
else if n <1740 then call A1
else call A3.

Graphically, we can visualize this as follows:

1002 — even — A2 )
1003 —0dd—A1—1739 —0odd —A3 —

1 Al 1001(

It follows that for practical purposes it may be necessary to consider several
algorithms and combine them, for different ranges, into a hybrid algorithm
that will have a better performance than any of the original algorithms
individually.

9.4 Practical Considerations for Efficient Software: What
Matters and What Does Not

We summarize how computational complexity should be employed in the
selection of algorithms for implementation as software. While the target
platform may play a minor role in this process, for the most part, the deter-
mination can be based on a more careful application of computational com-
plexity techniques. We are not interested in squeezing out the last cycle; our
focus is on producing reasonably efficient software, starting from good algo-
rithm. If it is the elimination of the last redundant cycle that is of concern,
it may be necessary to implement several algorithms and do test runs. We
aim to avoid this fairly significant expense, at the risk of ending up with
software that is just very good, but not necessarily optimal.’

When determining complexity, the programmer should concentrate exclu-
sively on word complexity. Bit complexity is not particularly practical. This
holds true for average and worst-case complexity and for time and space
complexity.

1 Even if one were willing to go to this extreme, it would result in the best of the candidate pro-
grams only for this specific platform. Migrating to another platform might change this outcome
considerably. In view of the importance of portability of software (largely motivated by the fact
that software greatly outlives hardware), it is probably a bad idea to get fixated on squeezing out
the last cycle. We should rather accept that software will be ported to various platforms over its
life cycle and consequently concentrate on making a selection that may not be optimal but will
not have to be revisited each time the software is ported. Thus, somewhat lower expectations
may be a saner approach than chasing optimality.
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When determining space complexity, programmers should only consider
the worst-case space complexity, not the average complexity. Failure of the
program to conform to the average case that the analysis determined will
typically have far more dire consequences than missing the mark on time
(unless one deals with a hard real-time application, such as air traffic control
or nuclear power plant operations, which must be treated much more care-
fully, typically involving algorithms that are extremely predictable and
extensive test runs with various implementations).

Constants are typically hidden in the asymptotical analysis of algorithms.
This approach is unacceptable for programs. Instead, great care must be
taken to obtain as accurately as possible the actual constants that arise in the
analysis. While this will complicate the derivation of the functions, it is
nevertheless vital to do so for an accurate assessment of the performance of
the software. Occasionally, terms that make a negligible contribution can be
suppressed, but the programmer must be very clear about how negligible
these terms really are.

Finally, in practical situations it is crucial to consider hybrid algorithms.
For different portions of the range of interest, different algorithms may be
superior. It cannot be overemphasized that the quality of an algorithm is
measured asymptotically, while the quality of a program must be apparent
for every input of the practical range. This implies that a programmer should
consider several algorithms, determine for which range a particular algo-
rithm is better than the rest, and apply the algorithm for the range to which
it is best suited.

Bibliographical Notes

The material in this chapter is directly related to complexity analysis, which
can be found in standard textbooks on algorithm design and analysis. We
refer to Purdom and Brown: The Analysis of Algorithms, which also discusses
the unrealistic, but asymptotically very efficient, algorithm for matrix mul-
tiplication (which originally appeared in Coppersmith and Winograd: “On
the Asymptotic Complexity of Matrix Multiplication”). The actual determi-
nation for what range of values which candidate method is most efficient
must usually be carried out separately for each set of candidates.
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Exercises

Exercise 1

For each of the sets of algorithms, together with their worst-case time com-
plexity functions, determine the ranges for a hybrid algorithm:

a. Algorithms Al with f,(n) and A2 with f,(n), where
f,(n) = 5n2 - 3nlog,(n) - 2n + 10
f,(n) = 2n2 + 5nlog,(n) — 5n + 100.
b. Algorithms A3 with f;(n), A4 with f,(nn), and A5 with f;(n), where
fy(n) = (5n2 + 8n)log,(n)/(n + 44/n) - 2n + 10

f,(n) = 2n? + nlog,(n) — 5n +100

fs(n) = (4n2 + 6n)./n /(n + 8log,(n)) — 3n + 50.
c. Algorithms Al with f,(n), A5 with f;(n), and A6 with f,(n), given by

f,(n) = (n® - 2n?%)/8nlog,(n) — 3n + 20.

Exercise 2

Now assume that the constants ¢; and d; for the relationship between algo-
rithms and programs are given. Under these conditions, determine where
the crossover points occur for the resulting hybrid program:

a. ¢, = 2.5, d,=1,000,000; c,= 3.2, d, = 1,100,000.
b. ;= 3.5, dy = 1,000,000; c, = 3.2, d, = 800,000; c; = 6.5, ds = 2,000,000.
c. ¢= 1.5, d, = 500,000.
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Infeasibility and Undecidability:
Implications for Software Development

About This Chapter

There are two aspects of impossibility in computing, absolute and relative.
Absolute impossibility is undecidability: it is known that no algorithm exists
to solve a given problem. Thus, it denotes algorithmic impossibility. Relative
impossibility arises when the complexity of an algorithm is prohibitively large.
Both types of impossibility have significant importance for software develop-
ment. On the one hand, it makes no sense attempting to produce code designed
to solve an undecidable problem. On the other hand, if the complexity of an
algorithm is excessively large, the user may not be willing or able to wait until
a solution is produced. Notwithstanding these different aspects of impossibil-
ity, it is imperative to explore what they mean and how one may obtain
acceptable answers to legitimate questions, at least in some instances. Of
particular interest are approximation algorithms which apply heuristics to
obtain solutions that may not be optimal but provably close to optimal.

.|
10.1 Introduction

Occasionally, the theory of algorithm complexity indicates that a problem is
impossible to solve. Such an indication is almost always unwelcome. In order
to get a clearer picture of what this means in practice, we will explore various
aspects of impossibility.

Our first caveat has to do with the question of what exactly is impossible.
When we talk about a problem, we tend to commingle the problem in
general and a specific instance of that problem. When discussing impossi-
bility, it is important to differentiate these two for two reasons. First, it
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should be clear that a specific instance of a problem will always have a
definite answer. For example, recall the question (posed in Chapter 4) of
whether two context-free grammars generate the same language. While
the general problem is undecidable, meaning there is not an algorithm that
answers for any two grammars, yes or no, it should be perfectly obvious
that given any two specific grammars, either they do generate the same
language or they do not — there is no third alternative. In other words,
for any specific instance of a problem, there is a specific answer. The
question that decidability addresses is how we can obtain this answer, in
all possible instances.

Second, given a specific instance, even if we have an algorithmic solution
approach, it makes no sense to talk about the complexity of solving this
instance because of the overall approach of computational complexity. The
complexity of a problem is a function of some measure of the input. If one
selects a specific instance of the problem, if one can solve it, the measure of
that instance is a constant; it may be large, but a constant it is. As a result,
the computational complexity of solving this instance is also a constant.!
Consequently, it makes little sense to talk about the computational complex-
ity of solving an instance; computational complexity can only be used to
reflect the effort required to solve all instances of a problem, as a function
of the chosen measure of the size of the instances.

The second issue we must address pertains to two types of impossibility.
A problem may be such that no algorithm solving it is known. If we can
tighten this up and manage to show that no such algorithm can exist, then
we say this problem is undecidable. This is, in a way, a positive result. We
can actually show that something is impossible. Ordinarily, not being able
to do something reflects a lack of effort or success; in other words, we just
have not worked hard enough. Were we to spend more time and effort, or
were we just smarter, we could find a solution. Undecidability is fundamen-
tally different. We can show that no algorithm exists — not now and not
ever in the future.

A very different type of impossibility occurs if the complexity of the
problem is prohibitively large. This means larger instances of the problem
most likely require more time than we have available. It does not mean we
will never be able to obtain a solution. For example, if the measure of the
input is very small, even a prohibitively large function may yield a relatively
small value for that instance. In addition, if the complexity is worst case, it
is possible that instances that are not worst case take significantly less time
and effort to solve.

! For example, assume that the time complexity f(1) of a given algorithm is 25, with n the mea-
sure of the input (e.g., size). If our instance has a value of n equal to 1000, then the amount of
time required to solve this instance of the problem is 2%, or approximately 10'>°. While it is true
that (using the current model of the universe) the world has not existed that long, even if time
were measured in femtoseconds, it is nevertheless also true that 25% is a constant, that is 2500 =
O(1).
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Finally, it turns out that in some cases it is very difficult to find an optimal
solution, but frequently optimality is not mandatory. A good solution may
be entirely acceptable, especially if we can obtain it dramatically faster than
an optimal one. This leads to heuristics and approximation algorithms for
problems that are considered very hard.

10.2 Undecidability

A problem consisting of infinitely many instances is said to be undecidable
if one can prove mathematically that no algorithm exists that solves each
instance of the problem.? Traditionally, a problem is shown to be undecidable
by reducing it to one of two problems that are well known to be undecidable,
namely the halting problem for Turing machines and Post’s correspondence
problem (PCP). A problem P is undecidable if we can show that assuming
P were decidable would yield the decidability of a problem known to be
undecidable. For example, the question of whether two context-free gram-
mars generate the same language is usually reduced to PCP. One assumes
that there exists an algorithm that answers yes or no for any two given
context free grammars; then one shows that this algorithm would allow one
to solve PCP. However, since this problem is known to be undecidable, a
contradiction to the original assumption is obtained. Since the only assump-
tion one made was the existence of the algorithm determining whether two
context-free grammars generate the same language, this algorithm cannot
exist. The problem is undecidable.

One should be clear that things can be quite tricky. For example, one might
approach the problem of the equivalence of two grammars as follows. Take
a word and determine if each of the two languages contains that word
(whether it is generated by the context-free grammar corresponding to that
language).® If the word is in one language but not the other, we have proven
that the two languages are different; the two grammars do not generate the
same language. If the word is in both languages or not in either language,
then we choose another word and repeat this process. If at any point we
encounter a witness to the differentness of the two languages (that is, the
word is in one language but not the other), we know that the two grammars
generate different languages. If we never encounter such a witness, the two
languages are identical. This is true since we can effectively enumerate all

2 It makes little sense to consider finite classes of problems since it is usually possible to answer
each instance, albeit with ad hoc methods. If there are only finitely many such instances, the
finite union of these ad hoc methods would constitute an algorithm for the entire class of prob-
lems.

3 This can be done quite efficiently; even in the worst case, the time complexity of parsing a word
of length n using an arbitrary context-free grammar is less than 7°.
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words,* and if the two languages are different, we must eventually encounter
a witness to that effect.

There is a fly in the ointment in this argumentation. True, if the two
languages are different, we will eventually encounter a witness, but if they
are not, if the two grammars generate the same language, then this process
never terminates because there are infinitely many words to be checked.

Many undecidable problems are of this type. One of the two outcomes of
the question can always be answered, but the other cannot be determined
in a finite number of steps. (In the literature this is also referred to as a
procedure — a computational recipe that will give the correct answer if it
stops but may continue indefinitely without giving an answer. In contrast,
an algorithm must always stop and give the correct answer.)®

What is a programmer to do when she encounters a problem that turns
out to be undecidable?¢ It is important to understand that it is almost always
a relatively small portion of the problem that gives rise to its undecidability.
In other words, only a rather small” subclass of the problem may display
characteristics that render the general problem undecidable. While it is
impractical to consider the class of all instances that do not give rise to the
undecidability,? it is usually possible to define subclasses that do not contain
any troublesome instances. As we pointed out, often a problem becomes
undecidable because we generalized it more than necessary. For example,
instead of testing in general whether two grammars generate the same
language, it would be better to verify that each transformation rule that
changes one grammar into another one does not change the language gen-
erated. Thus, in effect, we have a limited version of the test, one that only

4 The enumeration of all words over an alphabet A refers to the task of assigning a positive inte-
ger value to each word such that each word is uniquely identified by that value. That this can be
done is seen as follows. We first fix an order among the letters of the alphabet A; this induces a
lexicographical ordering on words over A. Then we construct first all words of length 0 (there is
one, the empty word), then all words of length 1 (in this order; there are exactly card(A) such
words), then all words of length 2 (there are [card(A)]? of them), and so on. Since any word must
have a finite length, say m, we are guaranteed to encounter it eventually during this process.
Consequently, all words over the alphabet A are enumerable. The advantage of enumeration is
that we can systematically go through all integer values and be sure that we do not miss a word.
5 A problem for which a procedure exists is called recursively enumerable (r.e.); a problem for
which an algorithm exists is called recursive. Any recursive problem is also r.e., but the converse
does not hold (see, for example, the equivalence problem for context-free grammars). Any prob-
lem that is not recursive is undecidable. There do exist problems that are not even r.e., but such
problems tend to be only of theoretical interest. Problems ordinarily encountered in the real
world are usually at least r.e., if not recursive.

¢ How the programmer finds out that the problem is undecidable is another issue. This may be
known from the literature. Alternatively, having fruitlessly attempted to design a solution
method, the programmer in desperation may try to reduce the problem to one known to be
undecidable.

7 The word small is to be viewed with caution in this context. Clearly, this subclass must contain
infinitely many instances, but relative to the entire class, it may still be vanishingly small.

8 Let C be the class of all instances of the problem and let C, be the subclass of all instances for
which no algorithm exists. C, is normally not well defined. Even if it were, it would be undecid-
able to determine which instances belong to C,,.
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addresses a specific transformation rule, instead of a general test that pays
no attention to the question of how the two grammars were obtained. Such
a limited test is almost always quite easy to carry out. It certainly is not an
undecidable problem.

From a practical point of view, it may be prudent to take the following
approach. Assume one is confronted with a problem that appears to be very
difficult. In this case, it behooves the programmer to determine whether the
general problem might be undecidable. Few endeavors are as embarrassing
as spending much time and effort on obtaining a solution for a problem that
does not have one, that is, a problem that is undecidable.

Once one has verified that the problem is undecidable, one should deter-
mine whether the problem is needed in its full generality. As pointed out,
an individual instance virtually always has a solution. Moreover, if limited
classes of instances must be answered, one should determine whether these
restricted subclasses are also undecidable. As a general rule, it is quite rare
to encounter problems in real life that are fundamentally undecidable. In
most cases, closer examination reveals that only certain subclasses are really
of interest, not the fully general problem.

If the programmer ultimately determines that the problem is inherently
undecidable, the client should be informed that the problem has no solution.
Frequently, in such a case the client will use domain-specific knowledge (not
easily available to the programmer) to impose restrictions that permit solu-
tions. To help the client understand why the original problem is not solvable
may require a good deal of insight into what aspects of the problem render
it undecidable.

10.3 Infeasibility

A fundamentally different situation occurs when the algorithmic complexity
renders the task of obtaining solutions extremely time-consuming. While the
end result for the programmer may be the same (it is impossible to get a
general solution), several substantively different aspects may mitigate this
conclusion.

Consider the following problem. Modern compilers for programming lan-
guages consist of several phases, one of which is the syntactic analysis that
employs a parser. This is where we may be interested in determining whether
two grammars generate the same (programming) language. Before we get
to parsing, a compiler must group together syntactic atoms or tokens, such
as keywords, identifiers, operators, and numbers.’ This is done in the lexical
analysis, where regular expressions are used to describe all possible lexical

9 Note that a program starts out as a sequence of characters. These characters must then be
grouped together into the program’s tokens. While this grouping together may be obvious to a
human, a compiler has to use a systematic approach to carry out this task.
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tokens of the programming language. While regular expressions are a con-
venient way of describing all possible tokens, they are not as convenient for
processing the program.!? Instead, the regular expressions are converted to
deterministic finite automata (dfa), which are employed in the lexical ana-
lysis. For us the important aspect is the conversion from regular expressions
to dfa. It should be clear that this is something that occurs frequently, when-
ever a compiler for a programming language is written. It should also be
obvious that because of this ubiquity, the transition from regular expressions
to dfa cannot be hopelessly inefficient. Yet algorithmic complexity very
clearly states that the size of a dfa (its number of states) can be exponential
in the length of the regular expression. This is not just some upper bound.
One can construct regular expressions of length n so that the smallest dfa
for this regular expression has 20 states.!! This suggests that going from
regular expressions to dfa is a hopelessly inefficient step, one that should be
avoided at all cost, yet every compiler does it.

To understand this apparent paradox, several remarks are in order. First,
the exponential behavior is the worst-case complexity. While there are reg-
ular expressions whose dfa have a size exponential in the length of the
expression, these are typically pathological examples. Regular expressions
representing actual tokens in existing programming languages result in
much smaller dfa. Thus, even though the worst-case complexity is indeed
exponential, on average this does not happen.!?

Second, even if the complexity were exponential, note that the construction
of dfa occurs once. That is, we convert regular expressions to dfa once for
each compiler, and when this operation has been carried out, no more work
has to be done on this task. In particular, there is no connection between the
number of times the compiler is used to translate programs and the com-
plexity of constructing the dfa. Effectively, we have here a paradigm shift.
For the user of the compiler, the complexity of the compiling process is of
interest; the user of the compiler has absolutely no interest in the difficulty
of creating the compiler. Measured in terms of the effort to compile a pro-
gram, the transition from regular expressions to dfa is a constant. This effort
was expended once and need no longer concern the user of the compiler.
Thus, even if the construction of a dfa from a regular expression required
time exponential in the expression’s length, in terms of compiling programs
whose lengths give us the measure 1 that is the argument of our complexity
function, this effort is O(1).

10 Regular expressions are reasonably descriptive for a human; dfa are not. However, dfa are
operationally very useful in determining whether something is, or is not, a specific token.

1 It is not really important to discuss what is meant by the length of a regular expression. We
can, for example, count the number of characters and operators in the regular expression, essen-
tially treating it as a word in which we count the number of characters.

12 Recall that average is a loaded term. Here it obviously means average within the context of real
tokens in real programming languages. This notion of average would not necessarily be appli-
cable in other contexts.
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It follows that the step from regular expression to deterministic finite
automaton can be ignored by the user of the compiler, simply because the
investment has already been made and does not affect the complexity of
using the compiler. As a result, even if this investment was high, it occurred
only once. It is not recurring from the point of view of the user of the
compiler. In such a situation, one can safely ignore the alarms that compu-
tational complexity triggers.

Another situation is the following. Suppose we have an algorithm, say D,
for a very important problem. This algorithm has been used for decades very
effectively. For most practical problems, the algorithm D produces solutions
in linear time, yet it is known that its worst-case time complexity is expo-
nential. There exist problems for which D has exponential run time. Because
of the economic significance of the problem and because nobody has been
able to show that the problem necessarily is of exponential complexity,'?
extensive additional research provides a radically new algorithm, say K, for
the same problem with dramatically different time complexities. K has a
polynomial worst-case time complexity, but its average time complexity
appears to be significantly slower than that of D. The fact that K has a
polynomial worst-case time complexity establishes that the problem has a
polynomial worst-case time complexity. In particular, D is clearly not optimal
in its worst-case behavior.

This is not a hypothetical example. The problem is linear programming
(LP) (for a quick review of this optimization problem, see Section 4.4). Algo-
rithm D is Dantzig’s simplex approach to solving LP problems (which pre-
dates the widespread use of computers), Algorithm K is Karmarkar’s
approach (which dates to the mid-1980s). In spite of K’s superior worst-case
behavior, many of today’s LP problems are solved using methods based on
Dantzig’s simplex method and not on Karmarkar’s algorithm. This is pri-
marily due to the faster average case complexity, with average of course being
in the eye of the beholder. Essentially this means whatever problem I am
currently interested in.

Note the fundamental difference between the dfa construction and the LP
problem. While the dfa construction is clearly exponential in the worst case,
the LP problem is equally obviously not. Yet even though the simplex
method does run in exponential time in the worst case, it is still the method
of choice. In the first case, there is no other, better alternative; in the second
case, there exists one, but because its average time complexity is not as
attractive, it tends not to be used.

This raises the practical problem how to guard against encountering an
LP problem where the simplex method misbehaves. If this is a significant
concern, the programmer should run both algorithms in parallel (on different
computer systems). The advantage of this approach is that at the price of

13 Recall the difference between the complexity of an algorithm solving a problem and the com-
plexity of that problem. The algorithm’s complexity is an upper bound on that of the problem,
but there is no guarantee that it is a good upper bound.
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doubling the computational effort (and using twice the hardware), one is
guaranteed to get the result as fast as possible.!*

There is a third, yet again fundamentally different, situation where
infeasibility must be sidestepped. This is the case where finding an opti-
mal solution is infeasible but determining an approximation is not. It
should be clear that there are instances where optimality it not the driving
force; often, people are content if they can obtain a solution that is close
to optimal. Such an approach is applicable only in some instances. If one
were to decide that converting regular expressions to dfa is just too hard,
it would not do to provide an approximation to the correct solution.
Furthermore, not every problem where it makes sense to talk about an
approximate solution admits approximations that are acceptably good.
An example should clarify this.

The bin packing problem can be stated as follows. We are given a set of n
rational numbers w,, ..., w, such that foralli =1, ..., n, 0 <w;<1; the problem
consists of packing the numbers into the minimum number of bins such that
the sum of all numbers in each bin does not exceed 1.° The problem of
determining the minimum number of bins required is known to be infeasible
to solve optimally.'® While it may be interesting to determine the minimal
number of bins, a sufficiently good approximation is probably acceptable in
most practical situations. This gives rise to the question of what is sufficiently
good? It turns out that in the problem at hand, bin packing, we have an
excellent answer: We can guarantee that the approximate solution is within
a certain fixed percentage of the optimal one.

The first, very simple, heuristic for obtaining an approximation is First
Fit. This is an on-line algorithm whereby a number B of bins is maintained
(initially B = 0), and each rational number w; is placed into the first bin that
can accommodate it. Only if none of the bins in play can store w, is a new
bin placed in service (B: = B + 1). It is not difficult to establish an upper
bound on the number FF(I) of bins needed by First Fit for the instance I. The
number of bins required by First Fit is smaller than twice the optimal number
OPT(I) of bins for the instance I:

FE(I) < 20PT(I).””

14 Objectively, the cost is less than double. We terminate both programs as soon as one provides
the result. Thus, if the times for a specific instance are ¢, and f,, we would spend min(fp,t) on
two platforms, for an aggregate time of 2-min(tp,ty).

15 This is the simplest, one-dimensional (1D) formulation. Bin packing has many generalizations,
for example, to more than one dimension. Obviously, the resulting problems are not easier to
solve than the original, 1D problem.

16 Specifically, it is NP-complete (see the following section), meaning that for practical purposes,
any algorithm solving it optimally has a time complexity that is exponential in 7.

17 We first verify that FF(I) < r2~(w1 +...4 wn)_]. This follows if one sets w;=1/2 + ¢, foralli=1, ...,
n, with e < 1/(2n). Furthermore, it is clear that [w, + ...+ w, | < OPT(I). These two inequalities
imply the claim.
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In other words, First Fit uses fewer than twice the optimal number of bins.!®
At the same time, First Fit is is an extremely efficient algorithm.'

While the first fit heuristic is efficient, it is not particular effective; doubling
the number of bins is not very attractive. It turns out that a slight modification
of the first fit heuristic has a much better performance. This comes at the
price of sacrificing the on-line attribute of the algorithm. We first sort the
rational numbers w,, ..., w, in decreasing order, yielding v,, ..., v,. Then we
apply First Fit. This is called decreasing First Fit (DFF). One can show that
DFE(I) for any instance I of the bin packing problem requires no more than
about 22% over OPT(I):

DFF()<11/9OPT(I) + 4.

It is instructive to recall that the original optimal bin packing problem
has only infeasible algorithms. Yet using a fairly simple heuristic allows
one to produce a very practical algorithm, with a time complexity of no
more than O(n?), whose result is guaranteed to be within about 22% of
optimal.

In general, some classes of algorithms permit approximate solutions. In
all such cases, heuristics play an important role. Some of these algorithms
provide provably good solutions, meaning their solutions are within a
constant factor of optimal. Other problems may have approximation algo-
rithms, but they do not have provably good solutions; their solutions can
differ from the optimal solution by an arbitrarily large constant factor. In
most cases, such algorithms are less useful. However, their deficiencies
should always be viewed in light of the infeasibility of the algorithms
providing exact solutions.

L]
10.4 NP-Completeness

Programmers may occasionally be confronted with the observation that a
given problem is NP-complete. While it makes little sense here to go into

18 It turns out that this upper bound can be improved. First Fit requires only about 70% more
than optimal, not 100%.

19 For each of the n rational numbers w;, a bin must be identified; this can be done in time O(n).
Thus, First Fit can easily be carried out in time O(n?). (This can be improved.) Contrast this with
the exponential algorithm to obtain the optimal solution.
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the formal definition,? it is appropriate to say a few words about the rele-
vance of this to program performance. P and NP are both classes of problems
with algorithms of polynomial time complexity, the only difference being
that the algorithm must be deterministic for the problem to belong to P, while
it can be nondeterministic for NP. Of all the problems in NP, the NP-complete
problems are the most difficult to solve.?! For all practical purposes, the NP-
completeness of a problem indicates that the best algorithms solving that
problem have exponential worst-case time complexity.?? Thus, if reference is
made to the NP-completeness of a problem in the literature, it means in
practice that the problem is as hard as if it had an exponential time com-
plexity. How to deal with such problems was discussed in the previous
section.

10.5 Practical Considerations

Programmers should be aware of undecidability and infeasibility, not nec-
essarily as an absolute deterrent, but as an incentive to work around. Both
types of impossibility suggest difficulties. However, almost always addi-
tional analysis is required to determine whether the problem is inherently
without feasible solution or whether techniques can be applied that allow
one to sidestep the difficulties in some way. For undecidability, it is imper-
ative to understand whether the class of problems is inherently unsolvable

2 Roughly speaking, the class P consists of all problems for which there exist algorithms whose
worst-case time complexity is polynomial. An important aspect of an algorithm is that we know
exactly what the next instruction to be executed is. That is, the algorithm is deterministic; it does
not require any guessing. One can conceive of a different type of algorithm, namely nondeter-
ministic algorithms, for which guessing, and in particular lucky guessing, is an integral part. To
illustrate, consider the problem of finding a path from a node to another node in a graph (dis-
cussed in Section 3.2.13). We derived that for a graph with # nodes, represented by its incidence
matrix, this problem is of worst-case time complexity O(n?). However, if we were to use a non-
deterministic algorithm, we would stipulate that this algorithm guess correctly whenever there
is more than one outgoing edge at a node. In this way, the complexity of this nondeterministic
algorithm is O(n). The class NP is then defined as consisting of all problems for which there exist
nondeterministic algorithms whose worst-case time complexity is polynomial. Clearly, P is con-
tained in NP, but it is unknown whether P and NP differ (this is one of the most celebrated open
problems in theoretical computer science).

2l More precisely, a problem in NP is NP-complete if the existence of a polynomial time-deter-
ministic algorithm for that problem implies the existence of polynomial time-deterministic algo-
rithms for all problems in NP. In other words, if one NP-complete problem can be shown to
belong to P, then all problems in NP belong to P, which means that P = NP. In this sense, an NP-
complete problem is as hard as any problem in NP. Note that not all problems in NP are NP-com-
plete. This should be obvious since P is contained in NP. However, not even every problem in
NP-P is NP-complete (assuming of course that the two classes are not identical).

2 Since it is not known whether P # NP, we also cannot say whether using nondeterminism
increases the complexity at all. However, no deterministic algorithm of polynomial worst-case
time complexity is known that solves an NP-complete problem.
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or whether subclasses of interest can be isolated that do have feasible solution
techniques. In the case of prohibitively large time? complexities, we should
first ascertain whether this is worst-case or average complexity. In most such
cases, the worst-case complexity is significantly larger than the average
complexity. Then we must determine whether the average complexity is
tolerable for practical applications. This may require us to examine the basis
of our complexity consideration. For example, the lexical analysis requiring
the translation of regular expressions into deterministic finite automata may
be of little concern to the user of a compiler, even though this step does have
an exponential worst-case time complexity.

The most important aspect of this chapter is to alert the programmer that
occasionally, for a variety of reasons, a problem may not have a feasible
solution. While this may be an unpleasant surprise, it is nevertheless better
to recognize this problem than wasting significant amounts of time and effort
on obtaining a solution that cannot exist in the first place. In some cases, the
size of the problem may be small enough that even a very large complexity,
say exponential, may still be acceptable; in such a case, knowing the com-
putational complexity is not particularly useful. In other cases, it may not
be necessary that the solution is optimal — a good approximation may be
entirely satisfactory. Thus, efficient approximation algorithms should be
explored, especially those whose solutions are guaranteed to be within a
fixed percentage of the optimal solution. In other cases, the problem may be
badly formulated. Investigating more pointedly the actual requirements may
reveal that the problem became artificially more complicated than the orig-
inal question required. In such a case, reverting to the simpler question may
resolve the dilemma of needing a solution for a problem that does not seem
to have one. Finally, one should always be aware that undecidability is
inherently a question of infinitely many instances of a problem. A single
instance of a problem will always have a solution, even if it may not be easy
to find.

Bibliographical Notes

Undecidability is squarely in the realm of algorithms. Many textbooks cov-
ering design and analysis of algorithms devote time to this topic, which
clearly imposes a limit on what can be achieved; see, for example, Lewis
and Papadimitriou: Elements of the Theory of Computation. Nevertheless, given
undecidability’s pedigree in formal language theory, in particular, Turing
machines, some coverage of its fundamentals (most importantly the halting
problem for Turing machines) can be found in formal language texts, for

2 As noted before, space complexity should never exceed time complexity. Therefore, we usu-
ally concentrate on time complexity.
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example, Hopcroft and Ullman: Introduction to Automata Theory. Approxima-
tion algorithms, for the most part, are a consequence of the realization that
exact solutions may be prohibitively expensive. Only more recent algorithms
texts cover approximation algorithms adequately, for example, Kleinberg
and Tardos: Algorithm Design. Infeasibility, owing to prohibitively large com-
plexities, is also covered in algorithm texts, as is NP-completeness, although
the importance of this topic for theoretical computer science has resulted in
texts devoted exclusively to NP-completeness, for example, Garey and
Johnson: Computers and Intractability.

Exercises
Exercise 1

Most modern compilers use a variant of LR(k) parsing for their lexical ana-
lysis. General parsing of a string of length n based on context-free grammars
requires well in excess of O(n?) (Earley’s algorithm, the standard parsing
algorithm for general context free grammars, is O(1%), which can be reduced
somewhat, but general context-free parsing is another instance where a
nontrivial lower bound is extremely elusive). However, LR(k) parsing works
in linear time. The nonnegative parameter k indicates the length of the look-
ahead string — essentially how far beyond the end of the already processed
portion of the string one may look ahead to help in processing the remainder.
The boundaries between what can and what cannot be done are exceedingly
sharp here. It is possible to test effectively whether a given context-free
grammar is LR(k) for a specific value of k, but to test whether there exists a
k, such that a given context-free grammar is LR(k,) is undecidable.

Show that testing whether there exists a k, such that a given context-free
grammar is LR(k,) is recursively enumerable, that is, there exists a procedure
that halts if such a k; exists but may go on indefinitely otherwise.

Exercise 2

Given any problem P, we may consider its complement P'. For example, the
complement of the equivalence problem of two context-free grammars is the
problem of determining whether two context-free grammars generate dif-
ferent languages.

Show that there are only three possibilities for P and P":

a. P and P' are both recursive (there exist algorithms for both prob-
lems).
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b. P is recursively enumerable but not recursive, and P' is not recur-
sively enumerable.

c. Neither P nor P' are recursively enumerable.

Exercise 3

Instead of formulating problems, one frequently formulates languages when
discussing decidability. This is quite natural since its basis is in Turing
machines, which can be viewed as devices for accepting languages. The
definitions are analogous. A language is recursive if its Turing machine
always halts; it is recursively enumerable if its Turing machine halts for every
word that is in the language but may go on indefinitely if the word is not
in the language. Consequently, if a language is recursively enumerable but
not recursive, then all the Turing machines accepting the language have the
property that they do not halt for some input (which is of course not in the
language).

Let L, and L, be arbitrary languages, subject to the specification in either
(a) or (b). Consider the following four questions:

Q1. Does L,-L, contain a given fixed word w?
Q2. Is L;-L, empty?
Q3. Does L,NL, contain a given fixed word w?
Q4. Is LnL, empty?
For each of these four questions determine whether the problem is recur-
sive, not recursive but recursively enumerable, or not recursively enumera-

ble, provided:

a. Both L, and L, are recursive.

b. Both L, and L, are recursively enumerable but not recursive.
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Part 3

Conclusion

We have made the case, convincingly we hope, that many things can go
wrong when transitioning from an algorithm to software. We have given
concrete examples how this can occur and have described how to avoid some
of the disappointments that these difficulties cause. We expect that program-
mers will come away with a better appreciation of what analysis of algo-
rithms provides, but also what it does not address.

The most important message of this book is that complexity analysis of
algorithms has much to offer programmers interested in producing efficient
software. It is the only methodology that permits one to predict, with rea-
sonable certainty, how much time a given program will take for a given set
of input data, without requiring the execution of the program. Carefully and
judiciously applied, complexity analysis is an extremely useful tool that
should be viewed as fundamental in any programmer’s toolkit.

However, it is crucial to be aware of numerous problems that can cloud
the picture. These problems stem from the fundamental differences of the
computing paradigms assumed for algorithms and for software. We have
carefully outlined these differences and demonstrated how they can influ-
ence the conclusions one may draw about the efficiency of software from
the complexity analysis of the underlying algorithm.

The most important difference, and definitely the one with the greatest
consequences for the efficiency of programs, relates to memory. Algorithm
analysis assumes that memory is unlimited and that access to memory is
uniform. In contrast, real computing systems have memory hierarchies,
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consisting in most cases of registers, caches (of various types), main memory,
and external memory (magnetic disks), all of them obviously finite. Access
characteristics for different types of memory differ greatly, both in access
time and in the method of access (lines, blocks/pages, etc.). For example,
the time it takes to retrieve an item from external memory typically is
between six and seven orders of magnitude (1 to 10 million times) slower
than retrieving that item from cache. Furthermore, for most types of memory,
it is necessary to retrieve far more than just the desired item; for caches, an
entire cache line must be loaded; for main memory, an entire page (for virtual
memory management) or block (for out-of-core programming) must be
retrieved and installed before an individual item can be accessed. This is
complicated by the necessity of managing memory, since the scarcity of
memory in cache and main memory implies that installing new lines or
pages or blocks ordinarily means displacing older lines or pages or blocks.
If these are dirty (have been written to), they must be stored back as well.
The upshot of this vastly more complicated process of accessing data is that
the location of an item has enormous consequences for the performance of
the code. We have demonstrated with concrete (and realistic) code examples
that a difference of three orders of magnitude in performance is not at all
unheard of. Such a performance difference can make or break a program.

Another important difference between algorithms and software is indi-
rectly related to the management of memory, namely the allocation of
dynamic data structures in ordinary programs. Dynamic data structures are
ubiquitous in modern programming environments, ranging from explicitly
allocated structures such as trees, stacks, and queues (which are obviously
dynamic in nature) to recursive functions that may not be quite as obviously
dynamic but nevertheless require virtually all the facilities general dynamic
memory needs. This means, in particular, the ability to allocate and, perhaps
even more importantly, to free memory.

Memory that has been freed, either explicitly by the programmer via an
instruction or implicitly (as would be the case for recursion), can then be
reused for other purposes. While this is evident, how this reuse can be
achieved is not nearly as evident. It requires a good deal of work to attain
this goal. In other words, just because memory has been recognized as no
longer needed does not mean it is easily put to further use. This is particu-
larly complicated if the sizes of memory units allocated during execution of
a program differ. (As we indicated, if all allocations occur in exactly one size,
the management of memory is greatly simplified.) This is because compo-
nents of dynamic data structures must be allocated in contiguous memory
space, and here the interplay between allocation and deallocation can result
in extensive fragmentation of memory, with the result that the total amount
of memory available may significantly exceed the size of an allocation
request, but no contiguous chunk of memory of the needed size exists.

This situation calls for the invocation of a process called garbage collection
— the gathering of all unused chunks of memory into one contiguous block.
Garbage collection can be an extremely costly process. It requires the relo-
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cation of large amounts of memory in use. Moreover, it is usually quite
unpredictable when it is invoked, resulting in a degree of uncertainty in
performance that can be highly disturbing to programmers. Most impor-
tantly, it is an aspect of program execution that will never be captured by
the complexity analysis of an algorithm.

While the memory model of algorithms is responsible for much of the
discrepancies between complexity analysis and program performance, other
aspects of the analysis of algorithms may give a distorted picture of the
expected behavior of software. These are related to the asymptotic nature of
complexity functions and to the finiteness of the representation of numbers
in programs.

Complexity analysis emphasizes the eventual behavior of the functions
derived as a representation of the time and space complexity of an algorithm.
This emphasis justifies the jettisoning of constant factors and lower-order
terms. It also focuses predominantly on the behavior in the limit. In contrast,
software performance is of interest mainly for a specific range of values, and
this range tends to be not just finite but quite limited. Therefore, constant
factors and lower-order terms in the functions representing the time (or
space) complexity of the algorithm (which are usually ignored when dealing
with complexities) may play an important role in determining the perfor-
mance of a program, especially when we have to decide which of two
candidates to choose. In this context crossover points are very important
(values where one complexity function becomes larger than another func-
tion). Consequently, in practical applications it is quite common to consider
hybrid algorithms; these are composite algorithms where for each of a finite
set of ranges, a different algorithm is employed.

The finiteness of the number representation has several implications that
are not just numerical in nature. In particular, it is important for a program-
mer to understand the nature of floating point numbers: They do not faith-
fully represent all numbers a programmer may expect to be represented, and
they display unexpected quirks when they are used. Specifically, testing for
equality turns out to be quite complicated for floating point numbers. Related
to this is the failure of common mathematical properties and identities such
as associativity and distributivity to hold.

Finally, we discussed aspects of impossibility, where the situation is some-
what reversed. Algorithm analysis tells us a particular task is impossible to
solve, either absolutely (because the problem is undecidable) or relatively
(because the complexity of solving the problem is prohibitively large). At
the same time, the programmer may have a legitimate interest in obtaining
a solution. We outlined possible reasons for the impossibility and suggested
ways of avoiding it, including the use of approximation algorithms that may
be highly effective whenever solutions are needed, but whose optimality is
not crucial.
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Appendix I:

Algorithms Every Programmer Should
Know

For the most part, this book argues that the disconnect between algorithm
analysis and program performance can be bridged. As such, we effectively
took the position that the ultimate arbiter of software behavior is the pro-
grammer or software engineer. Thus, it appears that we subtly shifted the
blame for problems arising from the failure of complexity analysis to predict
accurate program performance to the designer of algorithms and away from
the software engineer. This is not entirely accurate; we do believe that soft-
ware engineers, in maintaining that very little useful can be learned from
the analysis of algorithms, are seriously shortchanging themselves, primarily
because they do not know enough about algorithms in the first place. In this
appendix we will briefly enumerate the basics of algorithms — basics in the
sense that people who are not fully conversant with them do not have the
right to call themselves software engineers. We do not intend to teach these
methods, but we do want to list them and stress some aspects that are
important for the purpose of this book.

There are generic building blocks for algorithms and there are basic algo-
rithms. Both are equally important. For the most part, the generic building
blocks relate to fundamental data structures and their manipulation (often
also referred to as abstract data types). These data structures are typically
dynamic; while they can be implemented using static data structures (which
invariably means fixed-size arrays), such implementations have deficiencies
that negate some of the advantages of these data structures.

Minimally, every competent programmer must know stacks,! queues?
(including priority queues), linked lists (of various types: singly, circular,
doubly linked, etc.), and trees (of various types: binary, balanced, search, as
well as external trees such as B-trees and similar trees). While these are
typically viewed as data structures, it should be clearly understood that a
data structure is completely useless for the representation of information
unless it is coupled with operations. It is these operations that give a data
structure its specific quality. For example, a linked list can be used to repre-

1 A stack is also known as a last in first out (LIFO) structure.
2 A queue is also known as a first in first out (FIFO) structure.
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sent both a stack and a queue, but it is the operations that are associated
with a stack or a queue that differentiate these data structures. Thus, a stack
must support the following operations, and no other operations (such as
accessing an element other than that at the top of the stack) are permitted
for a pure stack:

1. Test for emptiness
2. Adding an element (adding can only be done at the top of the stack)

3. Removing an element from a nonempty stack (removing can only
be done at the top of the stack)

4. Reading an element if the stack is not empty (reading can only be
done at the top)

Similarly, a queue must support the following operations, and no other
operations are permitted for a pure queue:

1. Test for emptiness
2. Adding an element (adding can only be done at the end of the queue)

3. Removing an element from a nonempty queue (removing can only
be done at the front of the queue)

4. Reading an element if the queue is not empty (reading can only be
done at the front)

Linear lists and trees have similar types of operations.

It is important that the programmer understand that the operations define
the data type, not some internal representation of data items. Only once the
operations of a specific data structure are defined does it make sense to
address a concrete implementation. This is where questions such as “Is the
data structure full?” may be posed. Note that this is not a recognized test
for any of these data structures (stack, queue, list, tree). In its pure definition,
a stack can never be full. It is a dynamic data structure, and as such there is
no upper limit on its size. Such limits only occur when data structures are
implemented using structures that impose these limits. Stacks (as well as
lists, queues, and trees) can be implemented using fixed-size arrays (not a
good idea, but occasionally unavoidable, for example, if the programming
language does not support the explicit allocation of dynamic memory)
whereby the size of the array imposes an obvious upper bound on the size
of the stack. Note that even in the case of dynamic memory, there is an upper
bound, namely, the amount of memory in the pool allocated by the run-time
support system for the use of dynamic memory (which could be further
increased through the use of virtual memory management). This size is
typically not known when the program is written; as such, it is not a program
constraint, but the programmer should be fully aware that there is an upper
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bound of some sort and that exceeding it will result in unpleasant conse-
quences.

In contrast to arrays (at least if they are correctly allocated in main mem-
ory), the four data structures stack, queue, linked list, and tree do not pre-
serve the random access property of main memory. To wit, if a stack contains
n elements, accessing the bottom element (the element that was first placed
on the stack) requires removing the n — 1 stack elements that are on top of
it. Thus, the complexity of (that is, the amount of work required for) accessing
this element depends on the value of n. If n is small, little work is needed,
but if n is large, a great deal more must be expended. Similarly, accessing
an element just appended to a queue with n elements requires removing
these n elements that precede it. Linked lists and trees have similar examples.

Arrays are data structures of great practical importance, from a theoretical
point of view (consider the mapping functions that we discussed and their
implications), as a structure sui generis (representing multidimensional
homogeneous collections of data), and as a representational tool for other
data structures. Most programmers are familiar with the concept of arrays,
although the random access property and the mapping functions that enable
the representation of multidimensional arrays in the one-dimensional main
memory space may be less familiar.

The transition from operations to algorithms is quite fluid. Accessing the
top element of a stack would be considered an operation by most program-
mers, but what about accessing a leaf in a binary tree? Is it an operation or
an algorithm? This points clearly to an important aspect of operations and
algorithms. They tend to appear as building blocks in more complicated
processes. Another important issue is encapsulation. It is highly desirable to
be able to enclose certain well-defined processes as operations that can be
viewed as abstractions performing certain manipulations. It is then no longer
necessary to be concerned with the implementation of these processes. They
are basic operations that could be replaced by some other implementation
as long as the same effect is achieved on the underlying data structures.?
Thus, whether we talk about operations or about algorithms is really just a
question of viewpoint, not an issue of complexity.

In Chapter 3 we formulated a number of algorithms. Most of these should
be considered fundamental. Specifically, the sorting and searching methods
are absolutely basic and indispensable. Beyond the techniques discussed
there, external sorting and searching methods are important,* as is interpo-

3 Here is where the importance of the operations and tests associated with a structure becomes
apparent. Any implementation must support them without restriction or exception, and when
replacing one implementation with another, the programmer signally makes use of the availabil-
ity of this uniform interface to the structure.

4 External methods refer to data sets stored on disk. In view of the access characteristics of disks,
it is imperative to minimize the number of disk accesses. This has important implications for the
structuring of sorting methods. It also means that searching has to be carried out using different
data structures, for example, fat trees (trees where each node has not just two children as for
binary trees, but many more, allowing one to limit the height of the tree, which corresponds to
the number of disk accesses, if everything is stored on disk).
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lation search.> Hashing is a related technique that all software engineers must
know about, together with its limitations. Balanced search trees are useful
for sorting and searching and form an integral part of the instrumentarium
all software engineers must know. Finally, there are numerous graph algo-
rithms that we did not touch upon but that are important; the ones we
mentioned in Section 3.2 are only the three best known.

Other algorithms we did not mention but that should form part of any
competent programmer’s arsenal of tools are the following:

Spanning trees: A tree is a minimally connected graph (removing any
edge will disconnect the tree into two sets of nodes such that there
is no path from any node in one set to any node in the other set). In
many applications it is useful to have such a minimally connected
skeleton in a general graph. If this skeleton contains all nodes of the
original graph, it is called a spanning tree. Numerous algorithms
exist for the construction of spanning trees, usually spanning trees
that minimize some aspect (cost, for instance, defined as the sum of
all edge costs taken over all edges in the spanning tree).

Disjoint path problems: In many applications (network flow, transpor-
tation problems) it is desirable to have disjoint paths, which do not
have any nodes in common.

Pattern matching and string algorithms: The question of whether a
given string occurs within another string is fundamental. Advances
in bioinformatics (for example, those related to the human genome
project) have assigned increased importance to this class of prob-
lems. Numerous, very efficient, algorithms exist that solve this prob-
lem and its various generalizations.

Network flow algorithms: A network is a graph in which each edge
has a weight (reflecting the capacity of that link). The basis for many
network flow algorithms is the min cut max flow theorem, which
states that the maximal flow in any network is determined by a
minimum cut. A cut is the removal of a set of edges in the network
such that the resulting network is no longer connected. A minimum
cut is a cut where the sum of the weights of the edges is minimal.
Numerous algorithms deal with this and related problems.

Approximation algorithms: In Chapter 10 we showed an approxima-
tion algorithm for bin packing. In general, approximation algorithms
are employed if the problem at hand is infeasible to solve but is

5 Binary search has a time complexity of log,(1) when searching an ordered array of # elements.
Most people assume that this cannot be improved upon. This is only true if no additional infor-
mation is available. However, if a distribution function of the information stored in the sorted
array is known, it is possible to do much better. In essence, the distribution function allows one
to pinpoint much better the approximate location of an item. Indeed, if the distribution function
were infallible, we would have direct access to the item in one probe (assuming it is there, and
otherwise detect that the item is not in the location where it would have to be).
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amenable to approximation. Not all hard problems are of this type.
Of those that are, another important question is whether the approx-
imation is guaranteed to be close to optimal. The bin packing ap-
proximation algorithms of Section 10.2 have the property that the
number of bins resulting from them is within a constant factor of
the optimal number of bins. Not all approximation algorithms give
approximate solutions that are within a constant factor of their op-
timal solution. In general, programmers should research approxima-
tion algorithms whenever the optimal solution is infeasible.

Monte Carlo methods and other randomized algorithms: These algo-
rithms are used to solve problems whose properties make them
difficult to solve. These are not necessarily problems with infeasible
solutions; it may simply be that a randomized algorithm is more
efficient for the given objectives. We briefly outline two examples,
integration of a function and determination of the probability of
getting from point A to point B in a congested environment.

Suppose we are given a function f(x) and two real values a and b (a < b).
We want to compute the definite integral of f within the interval [a,b]. We
can use standard integration techniques, such as applying the trapezoid rule,
but if the evaluation of f(x,) at a point x, is very hard, the following approach
may provide an acceptable answer. One randomly chooses a pair [x,,y,] with
a < x, < b and tests whether y, < f(x,) (v, is below the function f) or y, > f(x,)
(y, is above the function f). It should be clear that care must taken with the
choice of y,; each randomly chosen y, must satisfy K < y, < L, where K is a
fixed value smaller than the minimum of f(x) in the interval [4,b] and L is a
fixed value larger than the maximum of f(x) over [a,b]. There are functions
for which is it much easier to test (for most values y) whether y is above or
below f(x); in other words, while ordinary integration approaches require
the evaluation of f at certain points, this approach only asks whether the
value is above or below the function.

Then we repeat this process, keeping count of all randomly chosen pairs
above (C,) and below (C) the function f in the interval [a,b]. The area of the
rectangle from which all of our randomly chosen points are selected is given
by (b — a)*(L — K). Assuming we have K = 0, the ratio of C_/(C, + C) yields
the value of the integral, with (b — a)*(L — K) normalized to 1 (if K # 0, an
appropriate modification provides the desired value of the integral). It is
important to see that the number of randomly chosen pairs defines the
precision of the result — the larger the number of values, the greater the
precision. As a result, it makes little sense to talk about the complexity of
this approach, since the primary factor in determining the amount of work
to be carried out is the number of pairs of values.

¢ Given the general premise of this scenario, the case y,= f(x,) is unlikely to occur. If it does, the
overall counts must be adjusted, most likely proportionally to the ratio between values above
the function f and values below the faction f in the interval [a,b].
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The second type of problem where a Monte Carlo method is very useful
is traffic problems. Suppose we are given a map of a city (a directed graph),
with two designated points A and B (nodes A and B). Each node in the graph
is blocked with a certain probability. The question to solve is, What is the
probability for an ambulance to get from A to B? The basic approach is quite
similar to the previous one. We fix probabilities for each of the nodes to be
blocked and then determine whether a path exists from A to B under these
probabilities. If so, we increment the counter C,..,, or otherwise the counter
Chailre: After an appropriately large number of repetitions, each time ran-
domly choosing probabilities for each node to be blocked, we derive a simple
formula for the overall probability of the ambulance getting from A to B.

It should be evident that the quality of such randomized approaches
depends fundamentally on the quality of the random number generator
employed in the process. There is a good deal of fundamental research on
generating random numbers (which really can only be pseudo-random, since
they are computed by a [nonrandom] program). Most programmers are
likely to use system-provided random number generators; however, they
should be aware that several such generators have been found to be deficient.
One should therefore have at least a glancing knowledge of what constitutes
an acceptable random number generator and what tests (e.g., chi-square)
such a generator must be able to pass to be considered acceptable.

Numerous other algorithms are of significance in certain areas. We men-
tioned compiling, where algorithms to construct deterministic finite auto-
mata for the lexical analysis and parsing methods for the syntactic analysis
are central techniques. We also mentioned linear programming, and, in par-
ticular, the Simplex method, which has many applications in minimizing (or
maximizing) certain linear functions (for example, operations research). Each
discipline has some niche algorithms that tend to be very important within
that environment but not so much outside of it. It is not realistic to expect
every programmer to know about them.

However, it is realistic to expect programmers to understand that it makes
no sense at all to reinvent the wheel. Many algorithms have been imple-
mented, at least as algorithms, very competently and effectively. These algo-
rithms can be found in textbooks and published papers and typically have
been reviewed and verified by numerous people in addition to the original
author or designer. Thus, one has reasonable assurances that these algo-
rithms are correct. While the programmer still has the ultimate responsibility
of verifying the correctness of any chosen computational method, selecting
a published algorithm is likely to result in reliable software. This holds in
particular for publications that specialize in software. It is therefore the task
of the software engineer to make intelligent use of the resources available
in the literature. In particular, this means employing canned algorithms as
much as possible as the basis for the development of the envisioned software.
Deciding which algorithms to use in a particular instance is a separate issue,
on which this book should provide some guidance.
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Bibliographical Notes

Most standard algorithms are covered in modern comprehensive textbooks
on algorithm design and analysis. However, more specialized techniques
require that the reader consult texts dedicated to the special areas to which
the algorithms are related. The same holds more or less for randomized
algorithms and approximation algorithms — not all standard texts cover
these. A comprehensive textbook is Kleinberg and Tardos: Algorithm Design.
An excellent comprehensive discussion of computed randomness is in
Knuth: The Art of Computer Programming, Vol. 2: Seminumerical Algorithms.
Moreover, the wealth of network-related algorithms has resulted in texts
exclusively covering this discipline, for example, Ahuja, Magnanti, and
Orlin: Network Flows: Theory, Algorithms, and Applications. The same holds for
pattern matching techniques, which are a central part of bioinformatics. The
starting point for much of this work is covered in Chapter 9 of Aho, Hopcroft,
and Ullman: The Design and Analysis of Computer Algorithms.
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Appendix 11:

Overview of Systems Implicated in
Program Analysis

II.1 Introduction

This appendix is a grab bag of concepts that can, and frequently do, have
significant effects on program performance. Two of the sections are related
to the use of memory (including virtual memory management), one is about
a run-time support function (garbage collection), and one is about a trans-
lator of source code into optimized object code (optimizing compilers). All
of these play important roles whenever software is executed. A good deal
of the information contained in this appendix can be found sprinkled among
the discussions in the text and in the footnotes. While this appendix is by
no means intended to provide a comprehensive treatment of these concepts,
our aim is to give a coherent overview in one place that can be consulted
instead of having to chase down comments and observations in the text or
in footnotes.

II.2 The Memory Hierarchy

Most modern computing systems! have a memory hierarchy that consists of
registers, caches, main memory, and external memory. Registers are where
the action is — literally, because only registers can carry out operations. Since
operations need operands, they must be retrieved from storage. Because

1 The only computing systems that neither had caches nor supported virtual memory manage-
ment (VMM) were Cray systems. Seymour Cray firmly believed that his main memory was as
fast as any cache available at the time (thus, there was no need for caches), and he was convinced
that VMM was a bad idea since it can lead to enormous inefficiencies. His supercomputer sys-
tems offered external memories that were solid state. Essentially, they used the technology that
lesser mortals used for main memory. Magnetic disks and tapes were then considered tertiary
storage devices.
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every application program starts out on disk, as do its data, the usual
external memory, both code and data associated with and manipulated
by the code, must be first installed in main memory and then in cache
before they can be used. It is important to understand how this is carried
out. Access to magnetic disks is in terms of blocks; a block is on the order
of 10° bytes or words. Since magnetic disk drives are mechanical devices,?
access times have not increased significantly over the past two decades.
Retrieving a block from disk takes on the order of tens of milliseconds.
This is a lifetime for modern computing systems, equivalent to several
million instructions or even more.®> Note that this only supplies a few
thousand words.

Once data are in main memory, they must be transferred into the cache;
only from there are registers provisioned with data. Data are transferred to
caches in terms of cache lines. Thus, again, it is not the individual data item
that is transferred but a collective entity. Cache lines are on the order of
hundreds of bytes of words. Access times have decreased in concert with
the access times to main memory. Both main memory and caches are solid
state, not mechanical devices, so the miniaturization of components that
increases processing speed also benefits memories. Caches are typically
between three and ten times faster than main memory. Note that the absolute
speeds are a moving target, but the ratio between cache and main memory
has remained fairly constant over the decades.

A great deal of literature and research has covered using cache memory
efficiently. Interestingly, there is far less work on using disks more efficiently,
even though the potential savings for caches are no more than the factor by
which they are faster than main memory (that is, 3 to 5), while the potential
savings for disks are one the order of the size of the block (that is, 10°).
Moreover, owing to the nature of magnetic disk drives (no improvement in
access speeds over the past two decades), more and more programs that at
some point were compute-bound (when processors were slower) are becom-
ing increasingly I/O-bound. A program is said to be compute-bound if most
of its time is spent executing instructions; it is considered 1/ O-bound if most
of its time is used to retrieve data.

For our purposes, caches play a relatively minor role. While cache misses
can have some deleterious effect on the efficiency of a program, this is always
bounded by the factor by which caches are faster than main memory. In
other words, there is a very real danger that we may spend a large amount

2 There is a rotating platter and a read/write head. Increasing the access speed would either
increase the rotation speed or reduce the granularity of the magnetic fields used to record and
read data. Increasing the rotation rate eventually tears the platter apart; reducing the granularity
implies that the read/write head must get closer to the platter, which is not feasible. Finally,
moving the head to the correct track cannot be speeded up either, since excessive acceleration
and deceleration result in unacceptable vibrations.

3 Twenty-five years ago, in the early 1980s when Cray supercomputers ruled supreme, 100 mil-
lion floating point instructions per second of sustained execution was considered very good.
Today, even pedestrian desktop computers exceed this, yet magnetic disk drives have not signif-
icantly increased their access speed.
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of time making cache accesses more efficient when we should instead be
spending some time (probably a good deal more) on improving accesses to
disks.

I1.3 Virtual Memory Management

Virtual memory management (VMM) is ubiquitous in modern computing
systems. Its attraction lies in the effortlessness with which memory can be
virtually arbitrarily enlarged. What often is forgotten in this calculus is the
price that must be paid for the use of VMM. While this price is negligible
for small programs (toy programs that would really not need VMM in the
first place), many realistic software packages incur a substantial cost through
VMM. The main problem is that programmers are for the most part entirely
unaware of this cost.*

Briefly, VMM functions as follows: Whenever a data item is needed by an
instruction, the item’s location is determined. If the item is in a register, no
data movement is required (in most cases). If the data item is in cache, it is
moved from there to a suitable register. If the data item is in main memory,
it is moved first, as part of a cache line, into the cache, and from there to a
suitable register. Finally, if the data item is only in external memory (that is,
on magnetic disk), VMM determines its address and the block in which it
resides and retrieves this block (called a page) from disk to main memory.
For the purpose of transferring pages, VMM has a portion of the main
memory, the active memory set, set aside to accommodate pages that must
be installed in main memory. As long as the active memory set is not full,
pages can be freely transferred. Once the active memory set is full, bringing
in a new page necessitates expelling an old page first. Thus, an integral part
of any VMM is the replacement strategy. Most VMMs use some variant of
least recently used (LRU), meaning the page that has not been used for the
longest time is expelled. Expelling may require writing back to disk if the
page is “dirty” — if it has been written to while it was in the active memory
set. If a page is not dirty, there is no need to write it back to disk since it has
not been changed and therefore still exists in that form on disk.

Because VMM relies on magnetic disk drives, it is subject to the access
times of disks. Thus, retrieving a page will take on the order of tens of
milliseconds. Reading a block from a track on disk involves two steps. First
the beginning address of the required block is determined; this requires up
to one entire rotation. Then, in another rotation, that block is read. More
time-consuming is finding the track containing the block; this essentially
requires moving the read/write head. Since too abrupt a movement will

4 Another aspect contributes to this ignorance. Most students today have only minimal exposure
to large programs. Thus, they never experience firsthand the problems that occur when large
data spaces are manipulated.
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generate deleterious vibrations (recall the mechanical nature of disks), mov-
ing the head cannot be speeded up arbitrarily.

In the examples in the text (mainly in Chapter 5), we have pointed out
that the use of VMM can have an enormous cost, and the programmer tends
not to be aware of that cost. Using simple code fragments, it is not at all
difficult to produce two equivalent instruction sequences where one version
takes more than one thousand times longer than the other, even though both
provide identical results and are completely equivalent in their performance
if they are executed in-core. The key issue is the interplay of the VMM with
compiler issues, in particular memory-mapping functions. Both of these
aspects are generally ignored by programmers. As a result, it comes as a
nasty surprise to many programmers when certain code fragments seem to
execute at an inexplicably glacial pace.

The culprit is invariable thrashing — excessive paging in and out, usually
of pages that have been used only minimally. The obvious objective in the
efficient use of paging is that as many elements as possible in a page be used
when the page is retrieved (read or written). This is particularly important
when every element of the page is used in a computation (but possibly at
different times during the program execution).

The most insidious aspect of thrashing is that the programmer is ordinarily
not aware of any I/O operations. This is because these 1/O operations are
implicit. They are not initiated by the programmer, but occur as a conse-
quence of developments outside of the programmer’s influence (mainly size
of active memory set and replacement policy). It is difficult for a programmer
to be concerned about actions that she did not initiate. While VMM is likely
to be employed for the foreseeable future in computing systems, a much
more efficient way of managing I/O problems is using optimizing compilers
to deal with implicit I/O.

I
II.4 Optimizing Compilers

One of the first software systems any programmer uses is a compiler. Nev-
ertheless, many programmers are only marginally aware of the tasks a com-
piler carries out. In particular, optimizing compilers do many analyses whose
findings could be very useful in reducing the problems caused by the mem-
ory hierarchies encountered in modern computing platforms.

Optimizing compilers are designed to modify, automatically and at com-
pile time, the code of a program in such a way that the semantics of the
program are maintained (i.e., the results of the original program and the
modified one are identical) and the new program is improved with respect
to some predefined goal. This goal is usually a reduction in execution time.
Optimization is achieved by analyzing an input program and applying a
variety of code transformations to it. Which optimizing steps and code
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transformations can be applied depends on the semantics of the source
programming language and the results of the analyses. Modern compilers
typically perform optimizations in multiple phases, each with a distinct
purpose. Usually, certain sequences of analyses and transformations are
combined into an optimization strategy that is accessible via a compiler
switch. Thus, the user may choose between several predefined collections
of optimizations when the compiler is invoked.

11.4.1 Basic Optimizations

Several optimizations are useful for improving code written in many differ-
ent programming languages and for execution on most modern architec-
tures. They include optimizations to eliminate statements that will never be
executed (useless code), to replace certain operations by faster, equivalent
ones (e.g., strength reduction), and to eliminate redundant computations,
possibly by moving statements in the code to a new location that permits
the results to be used subsequently in multiple locations. Examples of this
last optimization include hoisting code from loops, so that it is executed just
once rather than during each loop iteration, and partial redundancy elimi-
nation, variants of which attempt to move statements so that an expression
is computed only once in a given execution path. Another popular optimi-
zation, constant propagation, attempts to determine all variable references
that have a constant value no matter what execution path is taken and to
replace those references with that value. This, in turn, may enable the appli-
cation of further optimizations. These optimizations are generally known as
scalar optimizations, since they are applied to scalar variables without regard
to the internal structuring of a program’s complex data objects.

11.4.2 Data Flow Analysis

Data flow analysis studies the flow of values of data objects throughout a
program. Many data flow optimizations are closely related to the so-called
use-definition (UD) and definition-use (DU) chains. A UD chain links a use
of a variable to the set of all definitions of that variable that may reach it,
that is, all possible sources of the value that will be used in the program. A
DU chain links a definition of a variable to all of its possible uses. The task
of determining all the points in the program where a specific optimization
is applicable, or where a specific property holds, is known as a data flow
problem. For example, the live variables problem may be solved by travers-
ing a single-exit flow graph, starting with its unique exit node, and propa-
gating information on outward-exposed uses to nodes that precede them on
paths from the start node. (Any variable definition for which there is a
subsequent outward-exposed use is live.)

In copy propagation a variable is replaced with one that is equivalent to it.
Constant folding evaluates expressions at compile time when their operands
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are known to be constant, especially when they are integers. Common sub-
expression elimination and value numbering are techniques supporting the
identification and removal of computations that are unnecessary because the
values have already been determined. Partial redundancy elimination is a
more powerful approach to handling this problem and is increasingly pre-
ferred over these alternatives. Bounds checking elimination is applicable to
programming languages that require tests to determine whether array ref-
erences are within the defined range of index values. Loop invariant code
motion finds computations that produce the same result each time a loop is
executed and moves them out of the loop. The compiler must also be able
to simplify algebraic and logical expressions to reduce the work of comput-
ing them, but also to facilitate the implementation of those optimizations
that require them to be compared or evaluated.

11.4.3 Interprocedural Optimizations

The strategies discussed so far are typically applied to individual procedures
of a program. However, it is also possible to optimize code across procedure
boundaries. The growing utilization of structured programming techniques
has led to the increased modularization of programs, which consequently
consist of a large number of relatively small procedures. Thus, it has become
important to consider how to improve code in a way that takes procedure
and function invocations into account. Interprocedural analysis (IPA) gathers
information about the calling relationships between different program units;
optimizations based upon them are called interprocedural optimizations. A
compiler generally translates input code one procedure at a time. Strategies
for applying optimizations interprocedurally must take this into account.
Interprocedural analysis may produce superior results, since without it,
worst-case assumptions must be made with respect to the impact of proce-
dure calls during (intraprocedural) data flow analysis. It must be assumed
that the call modifies every variable that is visible to both it and the calling
procedure, including every global variable. Thus, IPA can be used to improve
the results. It may also be used explicitly to improve code that spans multiple
procedures.

11.4.4 Data Dependence Analysis

The optimizations discussed above are applied to individual scalar variables;
they are not explicitly applicable to structured data objects such as arrays.
In particular, they cannot deal with subscripted variables or analyze the data
access patterns in loops, where a statement may be executed many times,
each time reading and writing a different set of subscripted variables. As a
result, important optimizations may be missed. The ability of the compiler
to analyze accesses to structured data objects, especially arrays, in the pres-
ence of nonconstant subscript expressions is crucial for a number of
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advanced optimization techniques. The foundation of this is (data) depen-
dence analysis, a collection of techniques that allow the automatic determi-
nation, at compile time, of whether two references to an array both refer to
the same element of that array, that is, whether the regions of the array
accessed by them will overlap. If they do not overlap, the compiler is free
to reorganize the code in these statements as desired to optimize it. If they
do overlap, and (at least) one of them writes the variable, then it is essential
that the relative order of those accesses be maintained. The results of this
analysis will enable the compiler to determine whether certain code trans-
formations are semantically valid (produce the same results) in a specific
context.

Numerous dependence tests have been developed and published; they are
either exact or approximate. Exact tests determine precisely whether or not
there is a dependence. Approximate tests use conditions whose validity
implies that there is no dependence. If the condition is not satisfied, one
assumes that a dependence is present. (This is what is known as a nonfatal
assumption: It may be that no dependence is present even though the con-
dition is not satisfied, but since the presence of a dependence merely impedes
the application of a code transformation, not being able to transform the
code will leave the semantics unchanged. We may simply miss out on some
possible optimization, which an exact test would have allowed us to carry
out.) Exact tests tend to be computationally intensive, if not infeasible, so
approximate tests are commonly used in compilers dedicated to this type of
optimization (typically vectorizing and parallelizing compilers).

11.4.5 Code Transformations

Once dependence analysis for a code has been carried out, code transforma-
tions can be applied. It is of paramount importance that the semantics of the
code not be affected by these transformations. Since loops tend to account
for a significant portion of the computation time of many programs, most
code transformations focus on loops and arrays. Very common are loop
distribution (replacing one big loop by several smaller ones; see, for example,
the code fragment in Section 5.4) and loop interchange (where the inner and
outer loops of nested loops are interchanged). Other code transformations
are the wavefront method, replication and alignment, loop fusion and fission,
and strip mining. These techniques were designed with specific objectives
in mind, typically automatic vectorization or parallelization; in other words,
the objective is the parallel execution of instructions.

11.4.6 1/0 Issues

In conventional programming, source code is compiled by a compiler, and
then the resulting object code is turned over to a run-time support system
operating under the operating system, which knows very little about the
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program. In contrast, a compiler, especially an optimizing compiler, knows
a good deal about the program. The information we are interested in is
routinely collected by the compiler and consists mainly of dependence infor-
mation, which in turn determines what code transformations are semanti-
cally valid for a given program fragment. We are particularly interested in
two problems related to input and output, namely reducing memory bank
conflicts and minimizing implicit block transfers.

Memory is frequently organized in banks, each with its own controller.
This allows a degree of parallelism when accessing memory because 1/0
requests involving different memory banks can be carried out simulta-
neously. This allows the pipelining of memory accesses. Given a program,
together with information about memory mapping, the number of cycles
required to access main memory, and the number of memory banks, a com-
piler can carry out an analysis (at compile time) of the number and type of
bank conflicts that the program causes. This is based on the assumption that
the dimensions of the arrays are known at compile time. There are two ways
in which a compiler can attempt to reduce bank conflicts: by changing the
shape of arrays and by inserting a filler of an appropriate length.

Automatic minimization of implicit block transfers uses the standard code
transformation techniques, but with the goal of reducing block transfers.
Based on the results of dependence analysis, the compiler can carry out
semantically valid code transformations. Since the compiler knows about
the program, the code transformations can be very specific and informed by
the program behavior. Since a reduction in the number of block transfers
implies a disproportionate reduction in the execution time, the potential
savings involved in this approach can be substantial.

In general, optimizing compilers are an important tool in improving the
performance of programs. While the ostensible goal of an optimizing com-
piler is of course reducing the overall execution time, using compiling tech-
niques — especially dependence analysis and code transformations based
on it — to ameliorate problems caused by the memory hierarchy is relatively
novel. The ultimate goal is the complete elimination of VMM.

II.5 Garbage Collection

Garbage collection is the process of determining which memory locations are
no longer accessible in a program and making them available for further use.
Usually, when using dynamic data structures, we should not only allocate
them when needed but also deallocate, or free, them when they are no longer
of use. How this can be done is dependent on the programming language. At
any rate, one must be aware that recursion necessarily employs dynamic data
structures. The recursion stack consists of the activation records, which must
be maintained for every invocation of a recursive function.
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If the programming language provides explicit instructions for the deal-
location of dynamically allocated space, this space can be marked for reuse.
Note that in this case it is the responsibility of the programmer to make sure
the program does not use this space at some later time.> The administration
of the recursion stack can also be done in this way. If there is no way for the
programmer to indicate directly that space is no longer needed, this infor-
mation may be imparted indirectly, for example, by reassigning (or setting
to null) a pointer to the node of a structure. If no other pointers to that node
exist, the node becomes inaccessible, and the space associated with that node
can then be reused. Determining whether space can be reused is part of what
garbage collection is concerned with.

A secondary objective of garbage collection is frequently the consolidation
of reusable memory. Because of allocation and deallocation requests, mem-
ory fragmentation may occur. As a result, it is possible (in fact, quite likely)
that a request for memory (which must be contiguous memory) cannot be
satisfied since no chunk of the required size is available, even though the
sum of all available memory chunks exceeds the size of the request. In such
a case, the extant small chunks of free memory must be compacted into a
large, contiguous chunk of reusable memory. After some more allocation
and deallocation requests, this process has to start again.

Depending on the type of chunks of memory that a programming language
allocates, different approaches are required. By far the simplest is the situation
where all requests are of the same (unit) size. The programming language Lisp
is the primary representative of this situation. The available dynamic memory
is initially divided into chunks of unit size and placed in a queue. Any allo-
cation request is satisfied by removing the chunk at the front of the queue.
Any deallocation request consists of placing (an address to) the freed chunk
at the end of the queue. In this way, each request takes time O(1) — clearly
optimal. Moreover, there is never any need for compaction.

Most programming languages supporting dynamic data structures (or
recursion) employ more complicated schemes, because the sizes of the
chunks of requests are not uniform. In this case, a number of strategies can
be applied, with varying complexities. The fundamental goal is to reduce
the number of compaction operations because compaction is an extremely
expensive process, since it involves copying large amounts of data from one
location to another. In order to satisfy this objective, different ways of allo-
cating requests have been studied and implemented. First fit allocates the
requested memory from the first chunk of free space (in some linear order)
that is sufficiently large. Best fit allocates the requested memory from the
chunk whose overage is minimal (that is, one finds the smallest available
chunk that is sufficiently large). Worst fit allocates the requested memory

5 Depending on the sophistication of the programming language, explicitly deallocating space
that is later accessed may or may not result in a run-time error. One should be aware that it is
often quite difficult, if not impossible (that is, undecidable), to determine whether freed space is
later referenced in a program. If such a reference were to occur, it would be to information that
is entirely unrelated to the operation at hand, so the program is semantically invalid.

© 2007 by Taylor & Francis Group, LLC



234 A Programmer’s Companion to Algorithm Analysis

from the chunk whose overage is maximal (that is, one allocates from the
largest chunk, as long as it is sufficiently large). The size of the overage (the
amount of space that is left free once the request is satisfied from a given
chunk) is an important consideration. This is why the intuitively obvious
best fit is actually anything but best. It tends to leave one with very small
overages that most likely are quite unsuitable (too small) for subsequent
requests. In contrast, the counterintuitive worst fit approach tends to leave
large overages and is usually a better scheme. Other approaches, such as
buddy schemes, have also been used and studied. However, ultimately,
every one of these schemes must resort to memory compaction (and must
therefore provide compaction facilities).

Common to all garbage collection schemes is that they occur at unexpected
times. Moreover, they typically also occur at unpredictable times.® This is
made more serious because garbage collection tends to be an expensive
process. In most instances it is driven by allocation requests. Thus, an allo-
cation instruction is executed that triggers a search for available memory. If
an appropriate chunk is identified, the request is satisfied (usually fairly
rapidly); however, if no such suitable chunk is found, garbage collection
together with memory compaction must be initiated. Since a significant
percentage of the total memory may be involved in a compaction process,
it is easily seen that compaction can take a considerable amount of time.
Because the way in which memory is allocated during the execution of a
program is usually unknown to the programmer, the execution of substan-
tially similar programs may result in very different execution times — simply
because the allocation requests of one run may require fewer garbage col-
lection processes than those of the other. While this explanation may be cold
comfort to the programmer, at least it provides some help in understanding
why such differences may occur.

In summary, garbage collection and related processes should always be
considered when executing code. Any program with dynamic aspects
(dynamic memory, recursion) is likely to require this system service. In this
sense, it is unavoidable (in contrast to VMM, for example, where one could
always write an out-of-core version of the program). Since it is an expensive
service, and since it occurs at unpredictable times, programmers should be
prepared to tolerate its consequences.
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Appendix I11:

NP-Completeness and Higher Complexity
Classes

II1.1 Introduction

In we introduced the complexity classes that are of greatest interest
for us. However, there are slightly different ways of defining complexity
classes, the most important upshot of which is the notion of NP-complete-
ness. Since programmers may encounter references to NP-completeness and
higher-complexity classes in the literature, it is useful to provide a brief
sketch of these concepts.

II1.2 NP-Completeness

We must first define the complexity classes P and NP; then we explain NP-
completeness. Before we outline the formal definition involving Turing
machines, it is useful to give an informal characterization. Intuitively, a
problem is in P if there exists an (ordinary) algorithm solving it in polynomial
time. Thus, all the complexity classes we defined in Chapter 1 except for the
exponential class are subsets of P. NP is then the class of all problems where
we can check a solution in polynomial time (even though we may not
necessarily find it).

Formally, the definition involves Turing machines. These are abstract
machines that encapsulate the notion of computation in the most compre-
hensive way. A Turing machine consists of a finite state control and an
unbounded tape consisting of cells, each of which can contain one data item,
together with a read /write head that can look at and change the contents of
a cell. Thus, a Turing machine M can be written as a sextuple,

M = (Q,T,To/s/qO/P)/

237
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where Q is a finite nonempty set of states, the initial state q, is an element
of Q, and the set of final states F is a subset of Q. The alphabet' T contains
all the tape symbols, including a distinguished character O denoting the
blank, and the alphabet T, is a subset of T consisting of all input symbols
(in particular, the blank symbol is not contained in Tj: @ € T-T). Finally, the
move function 8 is a (partial) function taking a state p and a tape symbol ¢
and returning a triple, consisting of a state g, a tape symbol s, and a direction
instruction dir that is either L or R:

d(p.t) = (q,5,dir).2

The interpretation of this is as follows: The finite state control is in state p
and the read/write head looks at a certain cell whose content is ¢; then the
control changes to g, the contents of the cell the head inspects is changed
from t to s, and the head is moved to the cell either immediately to the left
of the inspected cell (dir = L) or to the right (dir = R). The Turing machine
is initially presented with its (finite) input (a string over the alphabet T,) on
a portion of its tape, with the head looking at the first input symbol and the
finite state control in the initial state q,. All cells not occupied by the input
string are assumed to be blank (that is, contain O). Then M executes one
transition move after another in sequence. This process can terminate in two
ways. Either M enters a final state (any state in F), in which case the input
string is considered accepted and the Turing machine halts, or M reaches a
point where d(p,t) is not defined [8(p,t) = ] for the given actual state p and
the contents t of the cell currently inspected, in which case the Turing
machine rejects the input string and halts. It is possible that the Turing
machine does not reach either of these two configurations; in this case the
Turing machine does not halt (consequently, no statement can be made
regarding acceptance or rejection of the given input string).

The definition above is for a deterministic Turing machine because there
is at most one triple in each of the entries 8(p,f). In other words, given a state
and a cell content, we know deterministically (without any guessing or
choosing) where the next transition takes us. If we relax this requirement
and permit d(p,t) to contain more than one triple, we have a nondeterministic
Turing machine. In this model, when carrying out a transition move, we
must first select one of the alternatives.

Using Turing machines, one can define complexity classes as follows. For
a given input string of length 1, we determine the number of moves the
Turing machine makes for this input, assuming the machine halts. If it does

not, then the complexity is not defined. Here, the length of the input string
n is the measure of the input we assumed in our discussion in

1 An alphabet is a finite nonempty set of atomic symbols called letters. The alphabet of decimal
digits is an example (with 10 elements).

2 The move function is partial since it is permitted that no result is specified for a given pair (p,t):
S(p,t) = & where & denotes the empty set.
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The number of moves is then the complexity f(n). It can be defined for
average® and for worst case.*

Turing machines are useful because anything that can be computed can
be computed using a Turing machine.> ¢ Moreover, all generally used deter-
ministic computational models can be simulated using deterministic Turing
machines in such a way that the complexity of the Turing machine model is
no more than a polynomial function of the complexity of the other model.
This is referred to as polynomial reduction.

Now we can define the two classes P and NP. P is the set of all problems
that can be solved in (worst-case) polynomial time using a deterministic
Turing machine. NP is the set of all problems that can be solved in (worst-
case) polynomial time using a nondeterministic Turing machine.

While algorithms are polynomially reducible to deterministic Turing
machines, it is not known whether nondeterministic Turing machines are
polynomially reducible to deterministic Turing machines. Thus, it is not
known whether P = NP (although P is contained in NP, P ¢ NP, since any
deterministic Turing machine can be viewed as a nondeterministic one).
However, in practical terms, if we want to simulate a nondeterministic
Turing machine using a deterministic one, the complexity increases expo-
nentially.

Within the set of all problems in NP, there is subset, called NP-complete
problems, consisting of all those that are maximally difficult in the following
sense. If we find that one NP-complete problem has a polynomial time
algorithm (in other words, if it is in P), then all problems in NP have poly-
nomial time complexity algorithms. Thus, the open question P = NP could
be solved affirmatively if one were able to devise a polynomial time algo-
rithm for a single NP-complete problem. However, no such NP-complete
problem is known, as of this writing (2005). Thus, the best algorithm for any
NP-complete problem has exponential time complexity.

From a practical point of view, finding out that a problem is NP-complete
is generally undesirable since it means the best algorithm solving it has
exponential time complexity. However, one should note that NP-complete-
ness is based on worst-case time complexity; occasionally, the average time
complexity is much better. Moreover, using approximation algorithms, one

3 This requires assigning probabilities to each input string of length 1, determining the number
of moves for each string, and then forming the weighted average (weighted with these probabil-
ities) of these numbers to obtain the average complexity f(n).

# This requires determining the number of moves for each string of length 1 and finding the max-
imum of all these values to obtain the worst-case complexity f(r).

5 It is quite difficult to come up with something intuitively understandable that cannot be effec-
tively computed. My best candidate is the following instruction for finding a location. “Take the
one-way street and turn left two miles before the rail-road crossing.” While it can be described,
it cannot be executed, since we would have to backtrack two miles, which is impossible with a
one-way street.

¢ Strictly speaking, this is not a fact or an observation, but a thesis, known as Church’s thesis. It
is essentially not possible to prove it, since defining in its full generality what is “computable” is
infeasible.
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can frequently obtain a solution that may not be optimal but is nevertheless
acceptable.

ITI1.3 Higher Complexity Classes

The hierarchy of complexity classes is infinite, so neither NP nor the expo-
nential time algorithms are the most complicated classes. There are infinitely
many more time-consuming classes between NP and the class of undecidable
problems. We have, for instance, doubly exponential classes, exemplified by
the number 22" of boolean functions in n variables. In the higher reaches of
this complexity hierarchy are nonelementary problems, (decidable) problems
whose time complexity is so large that it cannot be expressed as a bounded
stack of exponentials. This means that given an arbitrary integer M, there
exists a value n (dependent on M) such that the time complexity of solving
this problem requires more time than the function denoted by a stack of M
powers of 2 followed by #:

on

227

This complexity is exemplified by extended regular expressions, regular
expressions in whose formulation we admit not just the three operations
involved in ordinary regular expressions, namely union, concatenation, and
star,” but also the operation complementation.®? While the smallest determin-
istic finite automaton for an ordinary regular expression of length n may
have up to 2" states, the smallest deterministic finite automata for an
extended regular expression of length n may have a nonelementary number
in n states.

None of these higher complexity classes has great practical significance
for programmers. Essentially, finding out that a problem belongs to one of
these classes means that for all but the smallest instances, trying to solve
this problem is an exercise in futility.

7 Union allows one to provide alternatives (e.g., “a constant is either an integer or a real”). Con-
catenation allows one to compose one regular expression by appending one to another (e.g., “an
assignment statement consists of a variable, concatenated to the assignment operator, concate-
nated to an expression”). Star captures unbounded iteration (e.g., “an integer consists of a digit,
concatenated to zero or more digits”).

8 Complementation captures negation. Instead of describing what we want, we describe what
we do not want. For example, we may be interested in all strings that do not contain a certain
substring. The extremely surprising aspect of complementation is that is has an incredible effect
on the complexity of the resulting expressions, from singly exponential to nonelementary.
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Appendix IV:
Review of Undecidability

IV.1 Introduction

Undecidability captures the ultimate in (algorithmic) impossibility. It means
that no algorithm can exist to solve the problem at hand. We have argued
(in Chapter 10) that in some cases at least, undecidability is the result of
overgeneralization and could be remedied by restricting our attention to a
subset of specific interest instead of considering the general problem. In this
appendix we briefly review the two fundamental undecidable problems that
are typically used to demonstrate the undecidability of some other problem
by reducing it to one of the two. These two are the halting problem for Turing
machines (HTM) and Post’s correspondence problem (PCP). The basic
approach is the following: We are given a problem P and assume that there
exists an algorithm that solves P. Then we show that under this assumption,
either HTM or PCP is also solvable. Since this is known to be false, it follows
that our original assumption, namely that P is solvable, must also be false;
hence, P is undecidable.

IV.2 The Halting Problem for Turing Machines

We first define the notion of a Turing machine;! then we explain the halting
problems for Turing machines. A Turing machine consists of a finite state
control and an unbounded tape consisting of cells, each of which can contain
one data item, together with a read/write head that can look at and change
the contents of a cell. Thus, a Turing machine M can be written as a sextuple,

M = (Q,T/T()/S/qO/F)

! There is a good deal of overlap here with Appendix III. We tolerate this repetition in the interest
of keeping the appendices independent.
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where Q is a finite nonempty set of states, the initial state q, is an element
of Q, and the set of final state F is a subset of Q; the alphabet? T contains all
the tape symbols, including a distinguished character 0 denoting the blank,
and the alphabet T, is a subset of T consisting of all input symbols (in
particular, the blank symbol is not contained in T,: O € T-T,). Finally, the
move function 8 is a (partial) function taking a state p and a tape symbol ¢
and returning a triple, consisting of a state g, a tape symbol s, and a direction
instruction dir, which is either L or R,

d(p.t) = (q,5,dir).3

The interpretation of this is as follows. The finite state control is in state
p, and the read/write head looks at a certain cell whose content is t. Then
the control changes to g, the contents of the cell the head inspects is changed
from t to s, and the head is moved to the cell either immediately to the left
of the inspected cell (dir = L) or to the right (dir = R). The Turing machine
is initially presented with its (finite) input (a string over the alphabet T,) on
a portion of its tape, with the head looking at the first input symbol and the
finite state control in the initial state q,. All cells not occupied by the input
string are assumed to be blank (that is, contain O). Then M executes one
transition move after another in sequence. This process can terminate in two
ways. Either M enters a final state (any state in F), in which case the input
string is considered accepted and the Turing machine halts, or M reaches a
point where 8(p,t) is not defined [8(p,t) = O] for the given state p and the
contents t of the cell currently inspected, in which case the Turing machine
rejects the input string and halts. It is possible that the Turing machine does
not reach either of these two configurations; in this case the Turing machine
does not halt (consequently, no statement can be made regarding acceptance
or rejection of the given input string).

The above definition is that of a deterministic Turing machine, as there is
at most one triple in each of the entries 8(p,t). In other words, given a state
and a cell content (tape symbol), we know deterministically (without any
guessing or choosing) where the next transition takes us. One can relax this
requirement, permitting d(p,t) to contain more than one triple. This results
in a nondeterministic Turing machine. Since any nondeterministic Turing
machine can be simulated by a deterministic one (although it may make
many more moves), as far as the halting problem is concerned, it makes no
difference whether the Turing machine is deterministic or nondeterministic.
If the original nondeterministic one halts, the deterministic simulation halts
as well. Similarly, if the nondeterministic Turing machine does not halt, the
deterministic one simulating it does not halt either.

2 An alphabet is a finite nonempty set of atomic symbols, called letters. The alphabet of decimal
digits is an example (with 10 elements).

3 The move function is partial since it is permitted that no result is specified for a given pair (p,t):
S(p,t) = &, where & denotes the empty set.
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The HTM can then be stated as follows. Given an arbitrary Turing machine
M (in view of the comment in the last paragraph, we may assume that M is
deterministic) and a specific input string o over the alphabet T, of input
symbols, does M halt when presented with input o? While this appears to
be a reasonable question, one can show formally that no algorithm for
answering it can exist.* Thus, HTM is undecidable.

One should be quite clear that there are Turing machines for which one
can definitely determine whether they halt for a given input; this is not in
doubt. Instead, the question is whether one can always do this for all Turing
machines. The answer to this question is no.

Consequently, any problem whose solvability would imply the solvability
of HTM must also be undecidable. HIM is a powerful tool for demonstrating
the undecidability of numerous questions of practical interest. One undecid-
able question of very practical significance to programming is whether an
arbitrary program, when started with a certain input, will ever enter into an
infinite loop.

IV.3 Post’s Correspondence Problem

Turing machines are complicated theoretical systems, and the practically
oriented programmer may harbor the suspicion that this complicatedness is
responsible for the undecidability of the halting problem. Here then is a far
simpler problem, PCP? which is also undecidable.

Let T be a fixed alphabet of symbols and let A and B be two lists of strings
or words over the alphabet T such that both lists have the same number of,
say k, elements:

A=v,vy..., v, and B=w,, w,,..., w, .

We say that the instance (A,B) of PCP has a solution if there exists a
sequence of integers iy, i, ..., i,, for some m 2 1, with all 1 <i; <k such that
selecting the words with these indices from list A and concatenating them
yields a word that is identical to the word obtained by taking the words

with these indices from list B and concatenating them:

PCP is then the problem of determining for any given instance (A,B)
whether a solution (i, i,, ..., i,) exists. This problem is undecidable; there

4 The proof is automata-centric, fairly lengthy, and of little importance for this book. We there-
fore suppress it here and refer the interested reader to the literature.
5 It is named after the Norwegian mathematician Emil Post.
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does not exist an algorithm that will determine for arbitrary lists A and B,
whether or not such a sequence of integers i, i,, ..., i,, exists solving the
given instance.

Again, there is no difficulty in coming up with specific lists where there
is a solution,® or perhaps more interesting, where there is no solution.” The
question is whether we can answer this for any two lists A and B in general.
The answer is no.

In contrast to HTM, PCP is very easy to formulate. In particular, it does
not require an elaborate formalism, but instead uses two simple, finite lists
of words. Nevertheless, it is an undecidable problem.

The undecidability of PCP is usually proven by reducing it to the HTM.
PCP is often a more convenient mechanism for proving undecidability, partly
because it is significantly simpler to formulate and hence to apply. For
example, the question of whether two context-free grammars generate the
same context-free language is very easily formulated in terms of PCP for
grammars based on the two lists, thereby rendering the equivalence problem
for context-free grammars undecidable.

Bibliographical Note

Both the HTM and PCP are covered in standard texts of algorithmic com-
plexity, for example in Lewis and Papadimitriou: Elements of the Theory of
Computation, as well as in formal language texts such as Hopcroft and Ull-
man: Introduction to Automata Theory.

¢ Here is a simple example. Assume the binary alphabet {0,1}, k = 3, and let v, = 1, v, = 10111, v,
=10, w, = 111, w, = 10, w; = 0. Then a solution is given by the sequence 2,1,1,3, since v,v,0,v; =
10111-1-110=10-111-111-0 = w,w, W, ws.

7 Here is another simple example. Assume the binary alphabet {0,1}, k = 3, and let v, = 10, v, =
011, v3 = 101, w; = 101, w, = 110, w; = 011. One can show directly that no solution can exist. First
one notes that any possible solution can only start with index 1, since the other two indices cor-
respond to words in the two lists starting with different symbols. Thus, any solution must begin
with 10 from the first list and 101 from the second. To achieve equality, we need an index where
the word from the first list starts with 1; this is achieved by 1 and 3. If we chose 1, we get a clash
on the fourth character, since the first list produces 1010 and the second 101101. Therefore, we
must select 3, which yields 10101 and 101011. Continuing in this fashion, there is always exactly
one forced choice, but it never yields strings of equal length. Thus, no solution of this instance
can exist.
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