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Abstract

Multi Agent Systems (MAS) have recently attracted a lot of interest because of their ability to model

many real life scenarios where information and control are distributed among a set of different agents.

Practical applications include planning, scheduling, distributed control, resource allocation, etc. A

major challenge in such systems is coordinating agent decisions, such that a globally optimal outcome

is achieved. Distributed Constraint Optimization Problems (DCOP) are a framework that recently

emerged as one of the most successful approaches to coordination in MAS.

This thesis addresses three major issues that arise in DCOP: efficient optimization algorithms, dy-

namic and open environments, and manipulations from self-interested users. We make significant con-

tributions in all these directions: Efficiency-wise, we introduce a series of DCOP algorithms, which are

based on dynamic programming, and largely outperform previous DCOP algorithms. The basis of this

class of algorithms is DPOP, a distributed algorithm that requires only a linear number of messages,

thus incurring low networking overhead. For dynamic environments we introduce self-stabilizing al-

gorithms that can deal with changes and continuously update their solutions. For self interested users,

we propose the M-DPOP algorithm, which is the first DCOP algorithm that makes honest behaviour

an ex-post Nash equilibrium by implementing the VCG mechanism distributedly. We also discuss the

issue of budget balance, and introduce two algorithms that allow for redistributing (some of) the VCG

payments back to the agents, thus avoiding the welfare loss caused by wasting the VCG taxes.

Keywords: artificial intelligence, constraint optimization, dynamic systems, multiagent systems,

self-interest



viii



Résumé

Les systèmes multiagent (MAS) ont récemment attiré beaucoup d’intérêt en raison de leur capacité

de modéliser beaucoup de scénarios réels où l’information et le contrôle sont distribués parmi un en-

semble de différents agents. Les applications pratiques incluent la planification, l’ordonnancement,

les systèmes de contrôle distribués, ou encore l’attribution de ressources. Un défi important dans de

tels systèmes est la coordination des décisions des agents, afin que des résultats globalement optimaux

soient obtenus. Les problèmes d’optimisation distribuée sous contraintes (DCOP) sont un cadre qui

a récemment émergé comme étant une des approches les plus performantes pour la coordination de

MAS.

Cette thèse adresse trois points principaux de DCOP : les algorithmes efficaces d’optimisation, les

environnements dynamiques et ouverts, et les manipulations par des agents stratégiques. Nous appor-

tons des contributions significatives dans toutes ces directions : en ce qui concerne l’éfficacité, nous

présentons une série d’algorithmes de DCOP qui sont basés sur la programmation dynamique, et offrent

des performances considerablement meilleures que les algorithmes précédents. La base de cette classe

d’algorithmes est DPOP, un algorithme distribué qui exige seulement un nombre linéaire de messages,

économisant ainsi des ressources de réseau. Pour les environnements dynamiques, nous présentons des

algorithmes auto-stabilisants qui peuvent prendre en compte des changements dans l’environnement

et mettent à jour les solutions en temps réel. Pour agents stratégiques, nous proposons l’algorithme

M-DPOP, qui est le premier algorithme de DCOP qui fait du comportement honnête un équilibre post-

Nash en appliquant le mécanisme de VCG de façon distribuée. Nous discutons également de la question

de léquilibre du budget, et présentons deux algorithmes qui permettent de redistribuer [partiellement]

les paiements VCG aux agents, évitant ainsi la perte d’utilité provoquée par le gaspillage des taxes

VCG.

Mots-clés : intelligence artificielle, optimisation sous contraintes, systèmes dynamiques, systèmes

multiagent, agents stratégiques
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Chapter 1

Introduction

“A journey of a thousand miles begins with a single step.”

— Lao tzu

Many real problems are naturally distributed among a set of agents, each one holding its own

subproblem. Agents are autonomous in the sense that they have control over their own subproblems,

and can choose their actions freely. They are intelligent, in the sense that they can reason about the

state of the world, the possible consequences of their actions, and the utility they would extract from

each possible outcome. They may be self-interested, i.e. they seek to maximize their own welfare,

regardless of the overall welfare of their peers. Furthermore, they can have privacy concerns, in that

they may be willing to cooperate to find a good solution for everyone, but they are reluctant to divulge

private, sensitive information.

Examples of such scenarios abound. For instance, producing complex goods like cars or airplanes

involves complex supply chains that consist of many different actors (suppliers, sub-contractors, trans-

port companies, dealers, etc). The whole process is composed of many subproblems (procurement,

scheduling production, assembling parts, delivery, etc) that can be globally optimized all at once, by

expressing everything as a constraint optimization problem. Another quite common example is meet-

ing scheduling ( [239, 127, 141]), where the goal is to arrange a set of meetings between a number

of participants such that no meetings that share a participant are overlapping. Each participant has

preferences over possible schedules, and the objective is to find a feasible solution that best satisfies

everyone’s preferences.

Traditionally, such problems were solved in a centralized fashion: all the subproblems were com-

municated to one entity, and a centralized algorithm was applied in order to find the optimal solution. In

contrast, a distributed solution process does not require the centralization of all the problem in a single

location. The agents involved in the problem preserve their autonomy and the control over their local

1
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problems. They will communicate via messages with their peers in order to reach agreement about

what is the best joint decision which maximizes their overall utility. Centralized algorithms have the

advantage that they are usually easier to implement, and often faster than distributed ones. However,

centralized optimization algorithms are often unsuitable for a number of reasons, which we will discuss

in the following.

Unboundedness: it may be unpractical or even impossible to gather the whole problem into a

single place. For example, in meeting scheduling, each agent has a (typically small) number of meetings

within a rather restricted circle of acquaintances. Each one of these meetings possibly conflicts with

other meetings, either of the agent itself, or with meetings of its partners. When solving such a problem

in a centralized fashion, it is not known a priory which ones of these potential conflicts will manifest

themselves during a solving process. Therefore, it is required that the centralized solver acquire all the

variables and constraints of the whole problem beforehand, and apply a centralized algorithm in order

to guarantee a feasible (and optimal) solution. However, in general it is very difficult to bound the

problem, as there is always another meeting that involves one more agent, which has another meeting,

and so on. This is a setting where distributed algorithms are well suited, because they do not require

the centralization of the whole problem in a single place; rather, they make small, local changes, which

eventually lead to a conflict-free solution.

Privacy: is an important concern in many domains. For example, in the meeting scheduling scenario,

participating in a certain meeting may be a secret that an agent may not want to reveal to other agents

not involved in that specific meeting. Centralizing the whole problem in a solver would reveal all this

private information to the solver, thus making it susceptible to attacks, bribery, etc. In contrast, in a

distributed solution, usually information is not leaked more than required for the solving process itself.

Learning everyone’s constraints and valuations becomes much more difficult for an attacker.

Complex Local Problems: each agent may have a highly complex local optimization problem,

which interacts with (some of) its peers’ subproblems. In such settings, the cost of the centralization

itself may well outweigh the gains in speed that can be expected when using a centralized solver. When

centralizing, each agent has to formulate its constraints on all imaginable options beforehand. In some

cases, this requires a huge effort to evaluate and plan for all these scenarios; for example, a part supplier

would have to precompute and send all combinations of delivery dates, prices and quantities of many

different types of products it is manufacturing.

Latency: in a dynamic environment, agents may come in the system or leave at all times, change

their preferences, introduce new tasks, consume resources, etc. If such a problem is solved centrally,

then the centralized solver should be informed of all the changes, re-compute solutions for each change,



Introduction 3

and then re-distribute the results back to the agents. In case changes happen fast, the latency introduced

by this lengthy process could make it unsuitable for practical applications. In contrast, a distributed

solution where small, localized changes are dealt with using local adjustments can potentially scale

much better and adapt much faster to changes in the environment.

Performance Bottleneck: when solving the problem in a centralized fashion, all agents sit idle

waiting for the results to come from the central server, which has to have all the computational resources

(CPU power, memory) to solve the problem. This makes the central server a performance bottleneck.

In contrast, a distributed solution better utilizes the computational power available to each agent in the

system, which could lead to better performance.

Robustness: to failures is a concern when using a single, centralized server for the whole process,

which is a single point of failure. This server may go offline for a variety of reasons (power or processor

failure, connectivity problems, DOS attacks, etc). In such cases the entire process is disrupted, whereas

in a distributed solution, the fact that a single agent goes offline only impacts a small number of other

agents in its vicinity.

All these issues suggest that in some settings, distributed algorithms are in fact the only viable

alternative. To enable distributed solutions, agents must communicate with each other to find an optimal

solution to the overall problem while each one of them has access to only a part of this problem.

Distributed Constraint Satisfaction (DisCSP) is an elegant formalism developed to address con-

straint satisfaction problems under various distributed models assumptions [226,206,38,39,203]. When

solutions have degrees of quality, or cost, the problem becomes an optimization one and can be phrased

as a Constraint Optimization Problem or COP [189]. Indeed the last few years have seen increased

research focusing on the more general framework of distributed COP, or DCOP [141, 237, 160, 81].

Informally, in both the DisCSP and the DCOP frameworks, the problem is expressed as a set of

individual subproblems, each owned by a different agent. Each agent’s subproblem is connected with

some of the neighboring agents’ subproblems via constraints over shared variables. As in the central-

ized case, the goal is to find a globally optimal solution. But now, the computation model is restricted.

The problem is distributed among the agents, which can release information only through message

exchange among agents that share relevant information, according to a specified algorithm.

Centralized CSP and COP are a mature research area, with many efficient techniques developed

over the past three decades. Compared to the centralized CSP, DisCSP is still in its infancy, and thus

current DCOP algorithms typically seek to adapt and extend their centralized counterparts to distributed

environments. However, it is very important to note that the performance measures for distributed algo-

rithms are radically different from the ones that apply to centralized one. Specifically, if in centralized

optimization the computation time is the main bottleneck, in distributed optimization it is rather the
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communication which is the limiting factor. Indeed, in most scenarios, message passing is orders of

magnitude slower than local computation. Therefore it becomes apparent that it is desirable to design

algorithms that require a minimal amount of communication for finding the optimal solution. This

important difference makes designing efficient distributed optimization algorithms a non-trivial task,

and one cannot simply hope that a simple distributed adaptation of a successful centralized algorithm

will work as efficiently.

1.1 Overview

This thesis is organized as follows:

Part I: Preliminaries and Background: Chapter 2 introduces the DCOP problem, and a set of

definitions, notations and conventions. Chapter 3 overviews related work and the current state of the

art.

Part II: The DPOP Algorithm: Chapter 4 introduces the dynamic programming DPOP algorithm.

Chapter 5 introduces the H-DPOP algorithm, which shows how consistency techniques from search

can be exploited in DPOP to reduce message size. This is a technique that is orthogonal to most of the

following algorithms, and can therefore be applied in combination with them as well.

Part III: Tradeoffs: This part discusses extensions to the DPOP algorithm which offer different

tradeoffs for difficult problems. Chapter 6 introduces MB-DPOP, an algorithm which provides a cus-

tomizable tradeoff between Memory/Message Size on one hand, and Number of Messages on the other

hand. Chapter 7 discusses two algorithms (A-DPOP and LS-DPOP) that trade optimality for reductions

in memory and communication requirements. Chapter 8 discusses an alternative approach to difficult

problems, which centralizes high width subproblems and solves them in a centralized way.

Part IV: Dynamics: This part discusses distributed problem solving in dynamic environments, i.e.

problems can change at runtime. Chapter 9 introduces two self-stabilizing algorithms that can operate

in dynamic, distributed environments. Chapter 10 discusses solution stability in dynamic environments,

and introduces a self-stabilizing version of DPOP that maintains it.

Part V: Incentives: In this part we turn to systems with self-interested agents. Chapter 11 discusses

systems with self-interested users, and introduces the M-DPOP algorithm, which is the first distributed

algorithm that ensures honest behaviour in such a setting. Chapter 12 discusses the issue of budget
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balance, and introduces two algorithms that extend M-DPOP in that they allow for redistributing (some

of) the VCG payments back to the agents, thus avoiding the welfare loss caused by wasting the taxes.

Finally, Chapter 13 presents an overview of the main contributions of this thesis in Section 13.1,

and then concludes.
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Chapter 2

Distributed Constraint Optimization
Problems

“United we can’t be, divided we stand.”

—

This chapter introduces the Distributed Constraint Optimization formalism (Section 2.1), a set of

assumptions we make for the most part of this thesis (Section 2.2), and a number of applications of

DCOP techniques (Section 2.3).

2.1 Definitions and Notation

We start this section by introducing the centralized Constraint Optimization Problem (COP) [19, 189].

Formally,

Definition 1 (COP) A discrete constraint optimization problem (COP) is a tuple 〈X ,D,R〉 such that:

• X = {X1, ..., Xn} is a set of variables (e.g. start times of meetings);

• D = {d1, ..., dn} is a set of discrete, finite variable domains (e.g. time slots);

• R = {r1, ..., rm} is a set of utility functions, where each ri is a function with the scope

(Xi1 , · · · , Xik), ri : di1 × ..× dik → R. Such a function assigns a utility (reward) to each

possible combination of values of the variables in the scope of the function. Negative amounts

mean costs. Hard constraints (which forbid certain value combinations) are a special case of

9
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utility functions, which assign 0 to feasible tuples, and −∞ to infeasible ones; 1

The goal is to find a complete instantiation X ∗ for the variables Xi that maximizes the sum of utilities

of individual utility functions. Formally,

X∗ = argmaxX

⎛
⎝ ∑

ri∈R

ri(X)

⎞
⎠ (2.1)

where the values of ri are their corresponding values for the particular instantiation X . The constraint

graph is a graph which has a node for each variable Xi ∈ X and a hyper-edge for each relation ri ∈ R.

Using Definition 1 of a COP, we define the Constraint Satisfaction Problem as a special case of a

COP:

Definition 2 (CSP) A discrete constraint satisfaction problem (CSP) is a COP 〈X ,D,R〉 such that all

relations ri ∈ R are hard constraints.

Remark 1 (Solving CSPs) CSPs can obviously be solved with algorithms designed for optimization:

the algorithm has to search for the solution of minimal cost (which is 0, if the problem is satisfiable).

Definition 3 (DCOP) A discrete distributed constraint optimization problem (DCOP) is a tuple of the

following form: 〈A, COP,Ria〉 such that:

• A = {A1, . . . , Ak} is a set of agents (e.g. people participating in meetings);

• COP = {COP1, . . . COPk} is a set of disjoint, centralized COPs (see Def. 1); each COPi is

called the local subproblem of agent Ai, and is owned and controlled by agent Ai;

• Ria = {r1, . . . rn} is a set of interagent utility functions defined over variables from several

different local subproblems COPi. Each ri : scope(ri)→R expresses the rewards obtained by

the agents involved in ri for some joint decision. The agents involved in ri have full knowledge

of ri and are called “responsible” for ri. As in a COP, hard constraints are simulated by utility

functions which assign 0 to feasible tuples, and −∞ to infeasible ones;

Informally, a DCOP is thus a multiagent instance of a COP, where each agent holds its own local

subproblem. Only the owner agent has full knowledge and control of its local variables and constraints.

Local subproblems owned by different agents can be connected by interagent utility functions Ria that

specify the utility that the involved agents extract from some joint decision. Interagent hard constraints

1Maximizing the sum of all valuations in the constraint network will choose a feasible solution, if one exists.
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that forbid or enforce some combinations of decisions can be simulated as in a COP by utility functions

which assign 0 to feasible tuples, and −∞ to infeasible ones. The interagent hard constraints are

typically used to model domain-specific knowledge like “a resource can be allocated just once”, or “we

need to agree on a start time for a meeting”. It is assumed that the interagent utility functions are known

to all involved agents.

We call the interface variables of agent Ai the subset of variables X ext
i ⊆ Xi of COPi, which are

connected via interagent relations to variables of other agents. The other variables of Ai, X int
i ⊂ Xi

are called internal variables, and are only visible to Ai. We have that Xi = X int
i 	 X ext

i .

As in centralized COP, we define the constraint graph as the graph which is obtained by connecting

all the variables which share a utility function. We call neighbors two agents which share an interagent

utility function. The interaction graph is the graph which is obtained by connecting pairwise all the

agents which are neighbors. Subsequently, we will assume that only agents which are connected in the

interaction graph are able to communicate directly.

As in the centralized case, the task is to find the optimal solution to the COP problem. In traditional

centralized COP, we try to have algorithms that minimize the running time. In DCOP, the algorithm

performance measure is not just the time, but also the communication load, most commonly the number

of messages.

As for centralized CSPs, we can use Definition 3 of a DCOP to define the Distributed Constraint

Satisfaction Problem as a special case of a DCOP:

Definition 4 (DisCSP) A discrete distributed constraint satisfaction problem (DisCSP) is a DCOP

< A, COP,Ria > such that (a) ∀COPi ∈ COP is a CSP (all internal relations are hard constraints)

and (b) all ri ∈ Ria are hard constraints as well.

Remark 2 (Solving DisCSPs) DisCSPs can obviously be solved with algorithms designed for DCOP:

the algorithm has to search for the solution of minimal cost (which is 0, if the problem is satisfiable).

Remark 3 (DCOP is NP-hard)

2.2 Assumptions and Conventions

In the following we present a list of assumptions and conventions we will use throughout the rest of

this thesis.
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2.2.1 Ownership and control

Definition 3 states that each agent Ai owns and controls its own local subroblem, COPi. To simplify

the exposition of the algorithms, we will use a common simplifying assumption introduced by Yokoo

et al. [226]. Specifically, we represent the whole COPi (and agent Ai as well) by a single tuple-

valued meta variable Xi, which takes as values the whole set of combinations of values of the interface

variables of Ai. This is appropriate since all other agents only have knowledge of these interface

variables, and not of the internal variables of Ai.

Therefore, in the following, we denote by “agent” either the physical entity owning the local sub-

problem, or the corresponding meta-variable, and we use “agent” and “variable” interchangeably.

2.2.2 Identification and communication patterns

Theoretical results (Collin, Dechter and Katz [38]) show that in the absence of agent identification (i.e.

in a network of uniform nodes), even simple constraint satisfaction in a ring network is not possible.

Therefore, in this work, we assume that each agent has an unique ID, and that it knows the IDs of its

neighbors.

We further assume that neighboring agents that share a constraint know each other, and can ex-

change messages. However, agents that are not connected by constraints are not able to communicate

directly. This assumption is realistic because of e.g. limited connectivity in wireless environments,

privacy concerns, overhead of VPN tunneling, security policies of some companies may simply forbid

it, etc.

2.2.3 Privacy and Self-Interest

For the most part of this thesis (Part 1 up to and including Part 4), we assume that the agents are not

self-interested i.e. each one of them seeks to maximize the overall sum of utility of the system as a

whole. Agents are expected to work cooperatively towards finding the best solution to the optimization

problem, by following the steps the algorithm as presscribed. Furthermore, privacy is not a concern,

i.e. all constraints and utility functions are known to the agents involved in them. Notice that this does

not mean that an agent not involved in a certain constraint has to know about its content, or even its

existence.

In Part 5 we relax the assumption that the agents are cooperative, and discuss systems with self-

interested agents in Chapters 11 and 12.
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2.3 Example Applications

There is a large class of multiagent coordination problems that can be modeled in the DCOP frame-

work. Examples include distributed timetabling problems [104], satellite constellations [11], mul-

tiagent teamwork [207], decentralized job-shop scheduling [206], human-agent organizations [30],

sensor networks [14], operator placement problems in decentralized peer-to-peer networks [173, 71],

etc. In the following, we will present in detail a multiagent meeting scheduling application exam-

ple [239, 127, 171].

2.3.1 Distributed Meeting Scheduling

Consider a large organization with dozens of departments, spread across dozens of sites, and employing

tens of thousands of people. Employees from different sites/departments (these are the agents A) have

to set up hundreds/thousands of meetings. Due to all the reasons cited in the introduction, a centralized

approach to finding the best schedule is not desirable. The organization as a whole desires to minimize

the cost of the whole process (alternatively, maximize the sum of the individual utilities of each agent) 2.

Definition 5 (Meeting scheduling problem) A meeting scheduling problem (MSP) is a tuple of the

following form: 〈A,M,P, T , C,R〉 such that:

• A = {A1, ..., Ak} is a set of agents;

• M = {M1, ..., Mn} is a set of meetings

• P = {p1, ..., pk} is a set of mappings from agents to meetings: each pi ⊆ M represents the set

of meetings that Ai attends;

• T = {t1, ..., tn} is a set of time slots: each meeting can be held in one of the available time slots;

• R = {r1, ..., rk} is a set of utility functions; a function ri : pi →R expressed by an agent Ai

represents Ai’s utility for each possible schedule of its meetings;

In addition, we have hard constraints: two meetings that share a participant must not overlap, and the

agents participating in a meeting must agree on a time slot for the meeting.

The goal of the optimization is to find the schedule which (a) is feasible (i.e. respects all constraints)

and (b) maximizes the sum of the agents’ utilities.

Proposition 1 MSP is NP-hard.

2A similar problem, called Course Scheduling is presented in Zhang and Mackworth [239].
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Example 1 (Distributed Meeting Scheduling) Consider an example where 3 agents want to find the

optimal schedule for 3 meetings: A1 : {M1, M3}, A2 : {M1, M2, M3} and A3 : {M2, M3}. There are

3 possible time slots to organize these three meetings: 8AM, 9AM, 10AM . Each agent Ai has a local

scheduling problem COPi composed of:

• variables Ai Mj: one variable Ai Mj for each meeting Mj the agents wants to participate in;

• domains: the 3 possible time slots: 8AM, 9AM, 10AM ;

• hard constraints which impose that no two of its meetings may overlap

• utility functions: model agent’s preferences

Figure 2.1 shows how this problem is modeled as a DCOP. Each agent has its own local subprob-

lem, and Figure 2.1(a) shows COP1, the local subproblem of A1. COP1 consists of 2 variables A1 M1

and A1 M3 for M1 and M3, the meetings A1 is interested in. A1 prefers to hold meeting M1 as late

as possible, and models this with r0
1 by assigning high utilities to later time slots for M1. A1 cannot

participate both in M1 and in M3 at the same time, and models this with r1
1 by assigning −∞ to the

combinations which assign the same time slot to M1 and M3. Furthermore, A1 prefers to hold meeting

M3 after M1, and thus assigns utility 0 to combinations in the upper triangle of r1
1, and positive utilities

to combinations in the lower triangle of r1
1.

To ensure that the agents agree on the time slot allocated for each meeting, they must coordinate

the assignments of variables in their local subproblems. To this end, we introduce inter-agent equal-

ity constraints between variables which correspond to the same meeting. Such a constraint associates

utility 0 with combinations which assign the same value to the variables involved, and −∞ for dif-

ferent assignments. In Figure 2.1(b) we show each agent’s local subproblem, and interagent equality

constraints which connect corresponding variables from different local subproblems. For example, c1

models the fact that A1 and A2 must agree on the time slot which will be allocated to M1. This model

of a meeting scheduling problem as a DCOP corresponds to the model in [127].

This distributed model of the meeting scheduling problem allows each agent to decide on its own

meeting schedule, without having to defer to a central authority. Furthermore, the model also preserves

the autonomy of each agent, in that an agent can choose not to set its variables according to the specified

protocol. Assuming this is the case, then the other agents can decide to follow his decision, or hold the

meeting without him.

2.3.2 Distributed Combinatorial Auctions

Auctions are a popular way to allocate resources or tasks to agents in a multiagent system. Essentially,

bidders express bids for obtaining a good (getting a task in reverse auctions). Usually, the highest
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Figure 2.1: A meeting scheduling example. (a) is the local subproblem of agent A1 (each meeting has
an associated variable that models its allocated time slot; r1

1
models the non-overlap of M1 and M3,

and the fact that A1 prefers to have M3 after M1; r0

1
expresses A1’s preference to have M1 as late

as possible;) (b) DCOP model where agreement among agents is enforced with inter-agent equality
constraints c1, c2, c3.

bidder (lowest one in reverse auctions) gets the good (task in reverse auctions), for a price that is either

his bid (first price auctions) or the second highest bid (second price, or Vickrey auctions).

Combinatorial auctions (CA) are much more expressive because they allow bidders to express bids

on bundles of goods (tasks), thus being most useful when goods are complementary or substitutable

(valuation for the bundle does not equal the sum of valuations of individual goods).

CAs have received a lot of attention for a few decades now, and there is a large body of work

dealing with CAs that we are not able to cover here (a good survey appears in [47]). There are many

applications of CAs in multiagent systems like resource allocation [148], task allocation [218], etc.

There are also many available algorithms for solving the allocation problem (e.g. CABOB [185]).

However, most of them are centralized: they assume an auctioneer that collects the bids, and solves the

problem with a centralized optimization method.

There are few non-centralized methods for solving CAs. Fujita et al. propose in [80] a parallel

branch and bound algorithm for CAs. The scheme does not deal with incentives at all, and works

by splitting the search space among multiple agents, for efficiency reasons. Narumanchi and Vidal

propose in [145] several distributed algorithms, some suboptimal, and an optimal one, but which is

computationally expensive (exponential in the number of agents).
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Definition 6 (Combinatorial Auction) A combinatorial auction (CA) is a tuple < A,G,B > such

that:

• A = {A1, ..., Ak} is a set of bidding agents;

• G = {g1, ..., gn} is a set of (indivisible) goods

• B = {b1, ..., bk} is a set of bids; a bid bi
k expressed by an agent Ai is a tuple 〈Ai, G

i
k, v

i
k〉, where

vi
k is the valuation agent Ai has for the bundle of goods Gi

k ⊆ G; when Ai does not obtain the

whole set Gi
k, then vi

k = 0;

A feasible allocation is a mapping S : B→{ true,false } that assigns true or false

to all bids bi
k (true means that agent Ai wins its bid bi

k) such that ∀bi
k, b

m
l , if ∃gj ∈ G s.t. gj ∈

Gi
k∧gj ∈ Gm

l (where Gi
k and Gm

l are sets of goods comprised in the two bids bi
k and bm

l , respectively),

then at least one of bi
k, b

m
l is assigned false. In words, no two bids that share a good can both

win at the same time (because goods are assumed to be indivisible). The value of an allocation S is

val(S) =
∑

bi
k
∈Bs.t.S(bi

k
)=true vi

k

Proposition 2 Finding the optimal allocation S∗ = argmaxS(val(S)) is NP-hard [182] and inap-

proximable [183].

We detail in the following how to cast CAs to a DCOP model. Let us assume that agent Ai has bid

bi = 〈Ai, Gi, vi〉. For each good gj ∈ Gi, Ai creates a local variable gi
j that models the winner of good

gj . The domain of this variable is composed of the agents interested in good gj (the ones whose bids

contain gj).

Ai connects all variables gi
j from its local problem with a relation ri that assigns vi only to the

combination of values 〈gi
j = Ai, g

i
k = Ai, . . . 〉 (the one that assigns all goods gi

j ∈ bi to Ai), and 0 to

all other combinations.

Example 2 (Distributed Combinatorial Auctions) See Figure 2.2 for an example CA with 3 bidders

and 3 goods. Figure 2.2(a) shows a centralized constraint optimization model of the problem. The

variables represent goods, and each one has as possible values the agents which bid on that good.

Assigning a variable gk to one of its values Ai means that Ai will get good gk. The relations expressed

by agents on subsets of variables model bids. For example, the bid b1 = 〈A1, {g1, g3}, 10〉 of agent A1

is modeled as the binary relation involving g1 and g3 in Figure 2.2(a). This relation assigns value 10

to the tuple 〈g1 = A1, g3 = A1〉, and 0 to all other tuples 〈g1 × g3〉.

Moving to a decentralized, DCOP model is shown in Figure 2.2(b). This involves each agent

creating copies of the variables gi from the centralized model, and expressing their bids locally, as

relations on the copy variables, just as in the centralized case. To ensure the feasibility of the resulting
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Figure 2.2: Combinatorial Auctions modeled as Constraint Optimization. (a) shows a CA
with 3 bidders and 3 goods modeled as a centralized COP, and (b) shows the equivalent
decentralized DCOP model.

allocation, we also need to connect all the copies that correspond to each good via equality constraints;

thus, agreement about the final recipient of each good is ensured. For example, both agents A1 and A2

have bids on g1. Therefore, they create local copies of the variable g1, and connect these copies via the

equality constraint as shown in Figure 2.2(b).

2.3.3 Overlay Network Optimization

Another setting for distributed constraint optimization is the optimal placement of data aggregation

and processing operators on an overlay network [100, 71, 173]. In this application, there are multiple

users and multiple servers. Each user is associated with a query and has a client machine located at

a particular node on an overlay network. A query has an associated set of data producers, known to

the user and located at nodes on the network. Each query also requires a set of data aggregation and

processing operators, which should be placed on server nodes between the nodes with data producers

and the user’s node. Each user assigns a utility to different assignments of operators to servers to

represent her preferences for different kinds of data aggregation. Examples of in-network operators

for data aggregation include database style “join” operators, or custom logic provided by an end user.

For instance, one may have an operator (snippet of code) that does database JOINs. Then, a user may

desire “volcano data X” and “earthquake data Y” joined and sent to them. To address this, a specific

operator that we call “VolcanoXEarthquakeY Join” is created and put into the network. Naturally, each
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Figure 2.3: An operator assignment problem. (a) The centralized COP model: each server has
an associated variable that models the feasible combinations of operators that can be executed at the
server’s node. Agent preferences on assignments of operators are expressed as relations (blue); e.g., r0

3

states that A3 obtains utility 10 if operator A3 o1 runs on S2, and only 5 if it runs on S3. (b) The DCOP
model with replicated variables, where agreement among agents is enforced with equality constraints
between local copies; (c) A DFS arrangement of the graph in (b), used by the DPOP algorithm.

user has preferences on the possible placement of their operators on servers in the network. The task is

to allocate operators to servers such that capacity constraints are observed, and that the sum of utilities

of individual users is maximized.

A distributed algorithm, to be executed by user clients situated on network nodes, will determine

the assignment of data aggregation and processing operators to server nodes. The server nodes are

assumed to “opt-in” in that they will implement whatever allocation is determined by users. Constraints

on server nodes, e.g. based on maximal load, are commonly known to users and thus captured through

public constraints. There are also other side-constraints because the queries have prerequisites that

have to run on a server in order for the query to be executed there. Server nodes play no active role in

the algorithm.

This problem maps easily to a DCOP model. Each user has a number of operators it would like to

place. Each operator could be placed on (potentially) many servers, subject to the capacity constraints

of the servers. To model this we introduce a variable for each server, which models in its domain the

feasible combinations of operators that can be executed by that server. Each user has preferences on

the possible placements of its operators.

Example 3 (Operator Placement) In Figure 2.3, assume that A3 wants to place an operator, A3 o1.

It has two alternatives: either on S2, or on S3. This is modeled as follows: A3 has a variable for



Distributed Constraint Optimization Problems 19

the feasible assignment of operators on servers S2 and S3. The domains of these variables contain

all feasible combinations of operators each server can execute. Among these combinations, there are

some that include A3’s operator, A3 o1. Assume A3 obtains utility 10 if its operator A3 o1 runs on S2,

and only 5 if it runs on S3. A3 models this preference with the relation r0
3, which assigns utility 10 to

all cases in which S2 runs its operator, 5 to all cases where S3 runs its operator, 0 to all cases where

its operator is not run anywhere, and −∞ for cases where both S2 and S3 run the operator.

2.3.4 Distributed Resource Allocation

Definition 7 (Distributed sensor allocation problem (SAP)) The distributed sensor network problem

formalized in [14] consists of:

• a sensor field composed of n sensors: S = {s1, s2, ..., sn}

• m targets that need to be tracked: T = {t1, t2, ..., tm}

Each sensor has a certain “range” (the maximum distance that it can cover), and in order to success-

fully track a target, 3 sensors have to be assigned to that target (triangulation can be applied using the

data coming from those 3 sensors). The following restrictions apply:

• any one-sensor can only track one target at a time;

• the sensors in the field can communicate among themselves, but not necessarily every sensor with

every other sensor (the sensor connectivity graph is not fully connected). The 3 sensors tracking

a given target must be able to communicate among themselves;

We can formalize the problem as a DisCSP assigning one agent for each target: the variables are

the required sensors (three variables per agent), and the values of each variable are the sensors that can

track that target (are within range). Assume we have one agent Ai for each target Ti to be tracked. This

agent would then have 3 variables to control: si
1, s

i
2, s

i
3; each of them represents one sensor that has to

be assigned to track this target. The domain of the variables of each agent consists of sensors that can

actually “see” the respective target).

In this representation of the problem, we have two types of constraints:

• intra-agent constraints (the constraints within one agent): (a) no two variables can be assigned

the same value (one agent must have three different sensors tracking it) and (b) there must be a

communication link between every two sensors that are assigned to each agent
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Figure 2.4: A sensor allocation problem example. 3 different sensors have to be allocated for
each target. The figure shows allocation conflicts, as Sx is allocated to several targets at once.

• inter-agent constraints (the constraints between agents): no two variables si
k and sj

l from any two

agents Ai and Aj can be assigned the same value (one sensor can track a single target at a given

time)

The problem is to allocate sensort to targets such that the maximal number of targets are tracked.

Alternatively, each target can yield a “reward” for being tracked, and then the problem is to maximize

the sum of rewards.

Proposition 3 SAP is NP-hard.

It is interesting to note that all constraints in this problem (except for the “visibility” ones) are

constraints of mutual exclusion (typical in resource allocation problems).

Example 4 Please refer to Figure 2.4 for an example SAP. The sensors are placed in a grid (filled

circles) and the targest are scattered randomly in the grid (filled squares). The ovals depicted in the

figure are each a domain of one of the targets (for example, Dom.T2 contains all sensors that are

within range of T2). An arrow connecting a sensor to a target denotes that the sensor is allocated to

that target. In the figure there are some conflicts, as the sensor Sx is allocated to multiple targets at the

same time: T1, T2, T3, T4.

2.3.5 Takeoff and Landing Slot Allocation

In this example, airports allocate takeoff and landing slots to different airlines and need to coordinate

these allocations so that airlines have corresponding slots for their flights. Here, the airports and airlines
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are agents; airports decide which airlines to allocate available slots to, while airlines decide which

flights to operate. These decisions must be coordinated so that for every flight the airline has the

required slots for its takeoff and landing. Nevertheless, airports want to keep control over the decision

process as to which airline is allocate which ones of their available slots. Therefore, a centralized

controller that would jointly optimize the whole slot allocation for all airports in the world is completely

unrealistic.
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Chapter 3

Background

Centralized Constraint Satisfaction Problems [142, 125, 48, 211] (CSP, see Definition 2) have been an

area of active research since the 70’s, when they were formalized for several applications including

scene labeling in image processing [142]. CSPs have been extended to Constraint Optimization Prob-

lems [76, 79] (COP, see Definition 1) for problems which have solutions with different degrees of

optimality or cost.

Algorithms for centralized CSP can be classified into two main categories of search (e.g., depth-first

or best-first search [216, 85, 24, 112]) and inference (e.g., dynamic programming [15, 16, 19], variable

elimination [50], join-tree clustering [55, 51]). Search algorithms have been enhanced with various

forms of consistency techniques [142, 45, 21, 56], and with variations of the branch and bound princi-

ple [58] for optimization problems. Dynamic programming algorithms on the other hand have also been

extended to bounded-error approximations, and also hybridized with search [106, 119, 107, 120, 180].

Search and inference algorithms can be distinguished primarily by their time and space complex-

ities. An inference algorithm such as bucket-elimination [50] is time and space exponential only in

the graph’s treewidth. On the other hand, brute force search can operate with only linear memory but

seems to lack structure-based time bounds, thus usually being time exponential in the size of the prob-

lem. Recently however, AND/OR search schemes were shown to accommodate graph-based bounds

as well [133]. Specifically, AND/OR search spaces [146] for COPs and CSPs capture problem decom-

position through AND nodes and they can be traversed in linear space and in time exponential in the

depth of a spanning pseudo-tree of the problem’s graph [54]. When caching of subproblem solutions

is used [42, 8, 132], time and space complexity of those AND/OR search algorithms can be reduced to

exponential in the treewidth as well.

In the early nineties, distributed constraint satisfaction was formalized [225, 226, 38, 206], and a

first generation of distributed algorithms for DisCSP was proposed [227, 224, 226].

Naturally, emerging DCOP algorithms extend traditional centralized COP algorithms, and as such

23
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fall into the two main categories of search and dynamic programming. We present in the following

a comprehensive view of distributed CSP and COP algorithms. We show side by side search and

inference algorithms, and discuss their strengths and weaknesses. In Section 3.1.1.2 we introduce new

synchronous distributed AND/OR algorithms for COP having linear-size messages whose number is

bounded exponentially in either the depth of the guiding DFS tree or in its treewidth, depending on

the level of caching. Focusing on distributed inference in Section 3.2, we review the bucket-tree-

elimination algorithm (BTE) [50, 107].

The strengths and weaknesses of distributed search and distributed inference are discussed and

compared empirically throughout Parts II and III of this dissertation.

The focus of this thesis is on algorithms based on DFS structures, which we introduce and discuss

in Section 3.4. However, a large body of work in the DisCSP arena is on algorithms that use arbi-

trary orderings, not necessarily DFS ones. For constraint satisfaction, the most prominent algorithms

are the Asynchronous Backtracking (ABT) algorithm of Yokoo et al. [226], the Asynchronous Weak

Commitment search (AWC) of Yokoo [224], and the Asynchronous Search with Aggregations (AAS)

by Silaghi et al. [197]. For constraint optimization, there is the Asynchronous Forward Bounding algo-

rithm of Gershman et al. [139]. We review all these algorithms in Section 3.1.

Parallel Constraint Satisfaction In a different line of research, Zhang and Mackworth [239]

describe algorithms based on junction trees and tree decompositions for parallel constraint satisfac-

tion/optimization. These algorithms are developed for problems which are initially centralized, and

they assume that nodes from the junction tree can be assigned at will to agents to perform the respec-

tive computation, for efficiency reasons. In contrast, we are concerned with solving problems which

are distributed by nature, and our algorithms seek to maintain the initial partition of the problem to the

owner agents for several reasons, privacy included.

3.1 Backtrack Search in DCOP Algorithms

With few exceptions, the vast majority of work in distributed optimization has revolved around ex-

tending various forms of backtrack search [216, 85, 24, 112] originally designed for centralized COP,

to a distributed environment. Loosely, centralized search algorithms work by establishing an ordering

of the variables, and then executing a form of backtrack search based on that ordering. This works

by assigning to variables values that are compatible with the values chosen for their ancestors, then

moving forward to the next variable. When for a variable there is no value that is compatible with the

values chosen for its ancestors, a backtrack occurs. The culprit assignment of its ancestors is called a

nogood. For satisfaction algorithms, the search continues until either (a) an empty nogood is discovered

(i.e. there is no solution to the problem) or (b) a full instantiation is discovered which does not contain

any conflicts. For optimization algorithms, the search continues until ”enough“ of the search space is
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explored to be able to infer that the optimal solution is found.

To increase efficiency, various schemes were developed which try to minimize the portion of the

search space which has to be visited in order to prove that the algorithm has already found the optimal

solution. The most well known such scheme is the branch-and-bound scheme from centralized opti-

mization [58]. Branch and bound works as follows: as soon as we have a complete instantiation, we

store it as the current best solution, and the cost of this instantiation as an upper bound on the cost that

the algorithm tolerates. Later on during search, whenever a new value is tried for a variable, one com-

putes the partial cost accumulated up to that variable, plus the cost incurred by the new instantiation.

If this cost is larger than the current upper bound, then the assignment is pruned, as it cannot lead to

a better solution than the current best solution, and the search backtracks. Whenever we find a new

complete instantiation which has a lower cost than the current best solution, we update the best current

solution to the new one, and the upper bound to the cost of this new solution.

DCOP algorithms typically seek to adapt and extend their centralized counterparts to distributed

environments, and are based on the same principles: backtrack search, and some bounding scheme

for pruning. However, it is very important to note that the performance measures for distributed algo-

rithms are radically different from the ones that apply to centralized one. Specifically, if in centralized

optimization the computation time is the main bottleneck, in distributed optimization it is rather the

communication which is the limiting factor. Indeed, in most scenarios, message passing is orders of

magnitude slower than local computation. This important difference makes designing efficient dis-

tributed optimization algorithms a non-trivial task of simply adapting centralized algorithms to work

distributedly.

Execution Model DCOP algorithms are distinguished to be either synchronous or asynchronous.

In the following, we describe briefly these two execution models in an informal way. In a synchronous

algorithm, each agent waits for the messages it is supposed to receive from its peers, and only after

having received them, it starts performing computation and sending out its own messages. In an asyn-

chronous algorithm, all agents start performing computation and sending out messages even before

having received any message from its peers. As incoming messages arrive, they incorporate them into

their computation, and if needed, they send out updated messages of their own. The asynchronous

execution has the potential advantage that agents don’t sit idle waiting for messages, when they could

possibly perform computations. On the other hand, a synchronous execution model ensures that agents

perform their computation based on relevant, most up to date information. Therefore, the need to

perform another computation when an updated message arrives is eliminated.
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3.1.1 Synchronous search algorithms

In this section we discuss the SynchBB algorithm of Hirayama and Yokoo, and two synchronous algo-

rithms that we have developed, and which work on a DFS tree.

3.1.1.1 Synchronous Branch and Bound (SynchBB)

The SynchBB algorithm is the first complete algorithm for DCOP, and was first proposed by Hirayama

and Yokoo in [98]. This algorithm is a simple, distributed version of the classical centralized branch &

bound scheme [118]. SynchBB does not use a DFS tree, but rather a linear ordering of the agents1.

After an ordering is established (e.g. lexicographic ordering), the agents perform a synchronous

branch and bound search. The process works like the centralized branch and bound algorithm; however,

the agents, each associated with a single variable do not have access to the global upper/lower bounds

on solution quality. This problem is addressed by simply passing these bounds back and forth, together

with the forward value assignment messages and the backward backtrack messages.

This algorithm may require that any 2 agents/variables can communicate directly, thus violating our

assumption from Section 2.2.2 which allows only for direct neighbors to communicate. Furthermore, it

has been shown by Modi et al [141] to be quite inefficient, and is easily outperformed by more elaborate

schemes.

Next, we will introduce a synchronous algorithm that performs an AND/OR search in a distributed

fashion (Section 3.1.1.2), its branch and bound variant (Section 3.1.1.3), and we will also present the

NCBB algorithm of Chechetka and Sycara (Section 3.1.2.3).

3.1.1.2 dAO-Opt: Simple AND/OR Search For DCOP

The AND/OR search spaces are a powerful concept for search that has been introduced by Nilsson

in [146], and subsequently further developed in many other contexts [78, 39, 131, 135]. Recently,

Dechter and Mateescu [54] showed how AND/OR graphs can capture search spaces for general graph-

ical models that include constraint networks and belief networks. These AND/OR graphs are defined

relative to the pseudo-tree of the graphical model.

AND/OR search spaces are a formalization of the idea that search on a pseudotree structure is po-

tentially exponentially better than traditional search on linear variable orderings, especially if caching

is not allowed. The reason is that when performed on a DFS structure (or more generally, on a pseu-

dotree), search can be done in parallel on distinct branches of the tree. This yields search processes that

in the worst case are time exponential in the depth of the tree. In contrast, traditional search algorithms

1One can think of this algorithm as working on a pseudochain, rather than on a pseudotree
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that operate on linear variable orderings are time exponential in the number of variables. Therefore,

it is always beneficial to perform search on DFS trees with low depth as opposed to linear variable

orderings.

To see an example of this idea, consider the tree in Figure 3.3. It is easy to see that once X0 is

instantiated to a value from its domain, what remains is actually a set of two distinct subproblems,

independent from each other. Therefore, they can be explored in parallel. The process can be applied

recursively (instantiating X1 as well leaves us with 2 independent subproblems - {X3, X7, X8} and

{X4, X9, X10}, which depend only on X0 and X1, but not on each other). On this particular exam-

ple, the worst case complexity is reduced thus from O(exp(14)) (the depth of a linear ordering) to

O(exp(4)) (the depth of the DFS tree).

Freuder [78], Bayardo and Miranker [13] and recently Dechter and Mateescu [54] describe search

algorithms that apply this principle in a centralized setting. In [39] a distributed algorithm for constraint

satisfaction is described. This algorithm also traverses an AND/OR search space, for finding a single

solution. In the following, we introduce dAO-Opt: a simple, synchronized extension of AND/OR

search for distributed optimization problems. As with [39], dAO-Opt also performs distributed search

on a DFS tree in a depth-first manner, with the difference that it works for optimization problems as

well. The formal description of dAO-Opt is presented in Algorithm 1.

Again, we start with a pre-established DFS tree. The root Xr starts the search process by assigning

itself a value v0
r from its domain, and informing its children about this choice with an EVAL(〈Xr = v0

r 〉)

message. Each one of the children then picks a value for its variable, passes it down to its children, and

so on. Each EVAL message sent to a child Xj of an agent Xi contains an assignment 〈Sepj〉 for each

variable in Sepj , in order to allow Xj to evaluate the constraints it has with all its ancestors (not just

with its parent).

When an agent Xi receives an EV AL(〈Sepi〉) message from its parent, the message includes a

full assignment of all variables in Sepi. Given this assignment, Xi can evaluate those utility func-

tions it has with its ancestors which are fully instantiated, for each one of its values vj
i ∈ dom(Xi).

In the case of non-binary functions, Xi limits this evaluation to only the functions in the bucket of

Xi [50], i.e. those relations whose scope does not include any of Xi’s descendants; these functions

are already fully instantiated, and can be evaluated by Xi.2 The corresponding costs are denoted by

local cost(vj
i , 〈Sepi〉), ∀vj

i ∈ dom(Xi):

Definition 8 (Local Cost) 3 For each agent Xi, we denote by

local cost(vj
i , 〈Sepi〉) =

∑
ri∈Xi

(
ri(v

j
i , 〈Sepi〉)

)
,

such that ri is fully instantiated. This is the cost of its utility functions and constraints with its

2The functions which include in their scope Xi and descendants of Xi will be evaluated by Xi’s descendant that is lowest
in the DFS tree.

3The local cost as defined here is also called the label of the node in [54]
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Algorithm 1 dAO-opt - distributed AO search for cost minimization.
dAO-opt(X , D, R): each agent Xi does:

Construct DFS tree: execute Alg 3; after completion, Xi knows Pi, PPi, Ci, PCi

procedure EVAL: Xi waits for EVAL(〈Sepi〉) messages from Pi (unless root)
1 when EVAL(〈Sepi〉) message received: let 〈Sepi〉 be the assignment of Sepi

2 forall vi ∈ dom(Xi) do

3 cost(vi) ← local cost(vi, 〈Sepi〉)
4 forall Xj ∈ Ci do

5 send EVAL(〈SepXj
〉) message to Xj containing the current 〈SepXj

〉
6 wait for the COST message reply
7 cost(vi) = cost(vi) + costXj

(vi)

8 pick v∗i s.t. v∗i = argminvi∈dom(Xi)(cost(vi))
9 if Xi is root then v∗i is the root’s value in the optimal solution, and cost(v∗i ) is the optimal cost

10 else send COST (cost(v∗i )) to Pi

ancestors, when these ancestors are assigned the values as in 〈Sepi〉, and Xi = vj
i . If the assignment

Xi = vj
i violates any such constraint, then the cost is infinite: local cost(vj

i , 〈Sepi〉) = ∞.

When EVAL messages have reached the leaves, or in case of a deadend (i.e. when an agent cannot

find a value in its domain which is consistent with the assignments of its ancestors), the backtrack

process begins. The leaves will cycle through their values, determine the best ones for the current

instantiation of their ancestors, and reply with the best cost. A dead-ended agent replies with an infinite

cost. Subsequently, whenever an agent Xi has received cost messages from all of its children for its

current value, it tries the next: it informs the children about its new value assignment, and awaits the cost

replies. When all its values are tried, the agent chooses the best one (minimal cost, or maximal utility,

depending on whether we do minimization or maximization). The agent then reports the corresponding

cost to its parent via a COST message4, and the parent starts cycling through its values, and so on.

When the root Xr has cycled through all its values, and has received COST messages for each

one, it can pick the best one. The cost (utility) associated with the root’s best value is the optimal cost

(utility) for the whole problem.

Re-deriving solutions for subtrees – extra work in the absence of caching: So far, this

process allows only for determining the cost (utility) of the best solution, but not necessarily the solution

itself. The reason is that this simple scheme does not do any caching. Therefore, when the root finds

out what is its optimal value, and announces it, its children do not know what were their corresponding

optimal values, and they will have to re-derive them. Therefore, there is another top-down search phase

4This cost is called the value of a node in [54]; we use the term COST here to maintain consistency with the most part of
the DCOP literature, and to avoid confusion with the VALUE messages.
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initiated by the root, where each agent announces its optimal value, and its children solve again their

subtrees in the context of the values taken by their ancestors. Thus, smaller and smaller subtrees are

solved again, for the purpose of re-deriving the optimal values of the roots of these subtrees, in the

context of the ancestors being already assigned their optimal values. Eventually, the process reaches

the leaves, and at this point, all agents are assigned their values from the optimal solution.

Remark 4 The problem of rediscovering the solution is a problem that apparently occurs in all dis-

tributed search algorithms that do not do full caching. However, this does not occur in a centralized

algorithm, as in that case ”the best solution so far“ can be stored, and retrieved at the end of the

process. This is another complication that has to be solved in order to have very efficient distributed

search algorithms.

Proposition 4 (dAO-opt complexity) dAO-opt (Algorithm 1) requires a number of messages which is

exponential in the depth of the DFS tree used. Message size and memory requirements are linear for

each agent.

PROOF. Straightforward from the centralized case, as dAO-opt simulates a synchronized AND/OR

search in a distributed fashion [54]. �

It becomes apparent that it is desirable to find DFS arrangements with low depth, as the worst

case complexity of dAO-opt depends on this parameter. We review in Section 3.4.2.1 some existing

heuristics for generating shallow pseudotrees.

3.1.1.3 dAOBB: AND/OR Branch and Bound for DCOP

The simple dAO-opt does not take advantage of any pruning techniques, and therefore it explores the

full search space. This is not a problem for enumeration tasks such as counting solutions or computing

the probability of evidence [135]. However, for simpler tasks like finding the optimal solution, travers-

ing the whole search space is not always required, and implies spending unnecessary effort. Marinescu

and Dechter introduced in [131] an adaptation of the classical branch and bound algorithm on a pseu-

dotree, thus yielding an algorithm called AOBB (AND/OR Branch and Bound). AOBB was shown

in [131] to be quite efficient in a centralized setting, especially when using minibucket heuristics for

generating tighter upper bounds.

We present here dAOBB, an adaptation of the AOBB algorithm for the distributed case. The algo-

rithm is described in Algorithm 2. As in dAO-opt, the search starts top-down, with agents assigning

themselves values, and sending EVAL messages to their children. However, in order to be able to

prune parts of the search space according to the branch and bound scheme, each agent Xi needs some

information about the current cost structure:
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1. the cost cpa(Xi, 〈Sepi〉) already accumulated by the current partial assignment from the root, to

the current agent.

2. the cost local cost(vj
i , 〈Sepi〉) of each one of the values of Xi, given the current values of Xi’s

ancestors

3. the cost of the best currently known solution of the subtree rooted at Xi, i.e. the current upper

bound

Definition 9 (Cost of current Partial Assignment - CPA) We define the cost of the current partial

assignment cpa(〈Sepi〉) as the cost accumulated from all the cost functions along the current branch

which are fully instantiated:

cpa(〈Sepi〉) =
∑

XjancestorofXi

local cost(vj , 〈Sepj〉) (3.1)

The CPA represents the sum of the cost functions encountered from the root to the parent of Xi,

which are fully instantiated. Normally (e.g. in dAO-opt, or ADOPT), agents do not have access to these

costs incurred above themselves. Therefore, we introduce a modification to the EVAL messages: now,

they also include the cost of the partial assignment so far. These partial costs accumulate and propagate

down together with the EVAL messages sent from agents to their children.

The CPA received from the parent in the EVAL message, plus the evaluation local cost(vj
i ), give the

cost of the current partial assignment, extended by Xi = vj
i : cost(〈Sepi, Xi = vj

i 〉 = cpa(Xi, 〈Sepi〉)+

local cost(vj
i , 〈Sepi, Xi = vj

i 〉). Clearly, this cost is a lower bound on the cost of any complete as-

signment, for any instantiation of the variables in the subtree of Xi.

The propagation of the EVAL messages proceeds down the DFS tree, towards the leaves as in dAO-

opt. Initially, all agents start with lower bounds equal to the cost of the current partial assignment (see

Algorithm 2, line 7), and infinite upper bounds (line 4).

When a leaf receives an EVAL message, it computes the cost of each one of its values with the

constraints it has with ancestors, just like a normal agent. As the leaf has no children, it can simply

select the best value from its domain (lowest cost with ancestors), and reply back to the parent with a

COST message that reports this lowest cost.

When an agent Xi receives COST messages from its children, it does the following:

1. sum up all COST messages from children - lines 9-12. The result is the optimal cost for all the

subtree rooted at Xi, for the current instantiation of Sepi.

2. If this optimal cost improves the current upper bound, then update the upper bound as a better

solution has been found - line 13.
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3. Consider next untried value vj
i ∈ dom(Xi). Compute its lower bound: LB(vj

i ) = cpa(Xi, 〈Sepi〉)+

local cost(vj
i ). If LB(vj

i ) > UB (i.e. the minimal cost incurred by choosing Xi = vj
i is larger

than the best solution found so far), then it is useless to try assigning Xi = vj
i , as this could not

lead to a better solution. Therefore, prune Xi = vj
i , and try another value.

4. Otherwise, try Xi = vj
i . Send EV AL(Xi = vj

i , LB(vj
i )) to all children (LB(vj

i ), computed

as LB(vj
i ) = cost + cost(vj

i ) represents the cost of the current partial assignment extended by

Xi = vj
i ). Wait for COST replies, and repeat previous step until no more values to try.

5. when all values are tried, pick optimal value v∗i that minimizes total cost(v∗i ) = cost+cost(v∗i )+∑
Ci

COSTCi
(v∗i ). Send to parent Pi a cost message: COSTXi

(total cost(v∗i ))

6. when parent sends another EVAL message, reset bounds, and repeat the process (cycle through

all the values in own domain).

When the root has received COST messages for all its values (or pruned them), the optimal cost for

all the problem has been found.

Remark 5 As with dAO-Opt (Section 3.1.1.2), when caching is not allowed, one needs to revisit parts

of the search space to rediscover the optimal solutions for certain subtrees. However, in the case of

dAOBB the problem may not be as severe as for dAO-Opt, as the pruning mechanism may limit the

amount of extra effort required.

Proposition 5 (dAOBB complexity) dAOBB (Algorithm 2) requires a number of messages which is

exponential in the depth of the DFS tree used. Message size and memory requirements are linear for

each agent.

PROOF. Follows from Proposition 4, and from the fact that the branch and bound scheme has the same

worst case complexity as the AND/OR search. �

dAOBB with heuristics: It is well known that good initial bounds are essential to the efficiency

of a branch and bound scheme. For this purpose, the centralized AOBB algorithm has been enhanced

in [131] with both static and dynamic heuristics based on mini-buckets. The static bounds based on

minibuckets are computed by running a bounded inference phase in a preprocessing step, and saving

the bounds obtained as lower bounds, which are then used in the main branch and bound phase. The

dynamic bounds are computed by interleaving the bounded inference phase with the branch and bound

process, and continuously updating the lower bounds. Petcu and Faltings [158] introduce A-DPOP, an

adaptation of the minibucket scheme to a distributed setting; A-DPOP can be easily used in conjunction

with dAOBB to produce better bounds, either static or dynamic.
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Algorithm 2 dAOBB - distributed AO B&B search for cost minimization.
dAOBB(X , D, R): each agent Xi does:

Construct DFS tree; after completion, Xi knows Pi, PPi, Ci, PCi

1 if Xi is root then do EVAL
2 else wait for EVAL messages from parent

procedure EVAL: Xi received an EVAL(〈Sepi〉, cost) message from Pi

3 let 〈Sepi〉 be the received assignment of variables in Sepi

4 UB ← ∞
5 forall vi ∈ dom(Xi) do

6 cost(vi) ← cost between Xi and its ancestors, when Xi ← vi and Sepi ← 〈Sepi〉
7 LB(vi) = cost + cost(vi)
8 if LB(vi) < UB then

9 forall Xj ∈ Ci do

10 send EVAL(〈SepXj
〉, LB(vi)) message to Xj containing the current 〈SepXj

〉
11 wait for the COSTXj

(vi) replies from children
12 cost(vi)+ = COSTXj

(vi)

13 if cost(vi) < UB then UB = cost(vi)

14 pick v∗i s.t. v∗i = argminvi∈dom(Xi)(cost(vi))
15 if Xi is root then v∗i is the root’s value in the optimal solution
16 else send COST (cost(v∗i )) to Pi

dAOBB(i): Distributed AND/OR Branch and Bound with caching Similarly to AOBB with

caching [132], one can extend dAOBB to equip it with a customizable and adaptable caching scheme.

The user can specify the parameter i which represents the maximal size of any cache table; subse-

quently, each agent Xi caches in its table results of searches for a subset of variables in its Sepi which

is bounded by i. Previous search results can be retrieved from the cache; however, whenever one of

the agents in Sepi not included in the cache changes its value, the cache table has to be purged and

recomputed. Depending on the structure of the problem, dAOBB(i) can provide exponential speedups

over simple dAOBB.

Concretely, the caching mechanism can be added to dAOBB by making the following changes to

Algorithm 2:

• initialize cache of size di after line 2;

• in EVAL (after line 3) purge cache if any agent in Sepi which is not in the cache changed its

value in 〈Sepi〉;

• in EVAL (after line 3) check if the received assignment for 〈Sepi〉 is found in the cache; if so,

return it with its corresponding cost. Otherwise, after line 14 cache (〈Sepi, v
∗
i 〉, cost(vi))



Background 33

Proposition 6 (dAOBB(i) complexity) dAOBB(i) requires at most O(exp(i)) memory at each agent.

Messages are of linear size. The number of messages required varies with the level of caching:

O(exp(w)) when using full caching (i.e. i ≥ w) and O(exp(depth)) when using bounded caching

(i.e. i < w).

PROOF. Follows straightforwardly from the centralized case [132]. �

Similar to dAO-opt, dAOBB(i) can also benefit from DFS arrangements with low depth (see

Section 3.4.2.1 for some heuristics). However, considering that the number of messages depends also

on the induced width (when full caching is used) it becomes apparent that it is desirable to minimize

not only the DFS depth, but also the induced width.

3.1.2 Asynchronous search algorithms

The vast majority of algorithms developed so far for DisCSP/DCOP are asynchronous algorithms.

Asynchrony is appealing for distributed algorithms for a number of reasons. First, asynchrony can offer

in principle a better distribution of the computation between the agents involved (all agents can execute

in parallel, and do not necessarily have to wait for messages from their peers). Second, asynchronous

algorithms are in principle less sensitive to message delays and message loss, as agents execute even

without necessarily having received the most up to date messages from their peers.

We start this section with a short review of asynchronous algorithms for distributed constraint

satisfaction. Next, we move to algorithms for distributed constraint optimization and describe ADOPT,

NCBB and AFB.

3.1.2.1 Asynchronous search for DisCSP

This section describes existing asynchronous approaches for Distributed Constraint Satisfaction Prob-

lems. This is by far the area which has received the most attention since the beginnings of the dis-

tributed constrain reasoning field, in the early nineties. Undoubtedly, the most influential piece of

work is Yokoo’s Asynchronous Backtracking (ABT) algorithm, which represented the basis for many

subsequent developments. We describe this algorithm in the following.

Asynchronous Backtracking (ABT) Asynchronous Backtracking (ABT [225]) is the first asyn-

chronous algorithm that has been proposed for DisCSP. ABT laid the foundations of DisCSP, being the

first algorithm to allow agents to execute concurrently and asynchronously.

In ABT, agents are ordered linearly. They assign values to their variables concurrently and asyn-

chronously, and announce the assignments to their lower-priority neighbors via ok? messages. When
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an agent receives an ok? message, it updates its agent view 5 and tries to find a compatible value for

its variable. If it can, it announces this to lower priority agents with an ok? message, otherwise, it

backtracks with a nogood message. When receiving a nogood message, an agent tries to find an-

other value for its value, compatible with its own agent view. If it cannot, it backtracks with a nogood,

and so on. The algorithm terminates if an empty nogood is discovered (the problem has no solution),

or if quiescence is reached, in case a solution is found. Note that detecting that a solution was found

requires an additional termination detection algorithm, which may introduce some overhead.

ABT is sound and complete, and its complexity is polynomial amount of memory, and exponential

number of messages in the worst case. ABT has been extensively studied since its original publication

by Yokoo in ’92 [225], and much of the later work in DisCSP is based on it.

Asynchronous Weak Commitment (AWC): Asynchronous Weak Commitment (AWC [224]) is

an alternative to ABT which was proposed in order to simulate the dynamic variable ordering heuristics

from the centralized case, which have been shown to offer important performance improvements in

some cases. Specifically, whenever an agent initiates a backtrack, it takes the first position in the

ordering. This step is designed to refocus the algorithm on the newly discovered difficult part of the

search space. AWC is shown to be more efficient than ABT on difficult problems [224, 86]. However,

in this case, AWC must store all nogoods discovered during search to guarantee completeness, which

makes it space-exponential in the size of the problem in the worst case. On a side note, Yokoo and

Hirayama [228] introduce a modification of AWC which deals with complex local problems, i.e. an

agent owns several variables as opposed to a single one.

Dynamic Variable Reordering: In order to allow distributed search to benefit from dynamic vari-

able ordering heuristics like AWC, but without AWC’s exponential space problems, variable reorder-

ing techniques have been developed for the ABT algorithm in [199, 202, 193], and then also in [242].

These techniques work by allowing only for a limited type of reordering, namely each agent can im-

pose new orderings for agents below itself in the ordering, and inform these lower priority agents of

the new ordering. Upon being announced of a change in the ordering, a lower priority agent updates

its agent view, and discards obsolete nogoods. A more advanced reordering protocol is introduced

by Silaghi et al. [201]. This protocol allows for general reorderings, thus being able to simulate AWC

with polynomial space requirements.

Asynchronous Aggregations in Search (AAS): AAS (asynchronous aggregations in search)

[197] is an algorithm that operates on the dual model of the CSP, i.e. where agents own and control

the constraints, not the variables, which are public. The domains are now tuples of assignments of

variables from the original CSP formulation, and can be large. AAS exploits the fact that in cases

5A data structure holding the agent’s view of the current assignment of agents of higher priority
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where variables have large domains, it could happen that several values in the domain behave similarly

with respect to constraints. Thus, it can be beneficial to group several values in equivalent sets, and

perform ABT on such a modified problem, and managing the grouping into sets dynamically during

search.

Asynchronous Consistency Techniques: Consistency techniques have been shown to be very

effective in centralized CSP, and have been also implemented in distributed settings [95, 138, 26, 139,

200, 195]. Asynchronous Forward-Checking introduced by Meisels and Zivan [139] works by hav-

ing agents perform backtracking sequentially, and announcing their assignments in parallel to all other

agents lower in the ordering, which perform forward checking in parallel. Hamadi proposes a dis-

tributed arc consistency algorithm in [95]. Silaghi introduces MHDC [195], an algorithm which main-

tains arc consistency during search in AAS, which is shown to improve AAS’s performance signifi-

cantly.

Concurrent Search: Multiple search processes operating concurrently and exchanging informa-

tion have also been investigated. The idea is to launch parallel search processes that explore different

parts of the search space, and let them communicate relevant nogoods between themselves, such that

they avoid exploring the same dead ends. [241, 176] report promising results.

The vast majority of algorithms that do not operate on a DFS require communication between

non-neighbors. This is also the case of ABT (requested via add-link messages) and derivatives, AWC,

DisFC, ConcBT, etc. All these algorithms violate our assumption from Section 2.2. An extension to

ABT proposed by Bessière and colleagues [22] eliminates the need to add links, but incurs a perfor-

mance hit for doing so.

Distributed Local Search: A local search method called the Distributed Breakout Algorithm [227]

has also been developed. DBA is not complete, and works only for satisfaction problems, but in some

cases it can find solutions very fast, and it also exhibits anytime behaviour for overconstrained prob-

lems. In DBA, agents execute a hillclimbing algorithm in parallel, and try to escape from quasi-local

minima 6 using the breakout method [143]. In DBA, agents initially choose arbitrary values for their

variables, and announce their choices to their neighbors with ok? messages. Subsequently, when re-

ceiving ok? messages, each agent evaluates the number of conflicts its current assignment produces

with the assignments of its neighbors. The agent (internally) evaluates what reduction in the number of

conflicts it could make by changing its value, and advertises this possible improvement to its neighbors

with an improve message. Neighboring agents thus exchange improve messages, and the one with

the highest improvement wins and actually changes its value (ties are broken according to agent ID).

The cycle then repeats, with ok? and improve messages. In case a solution is found, the algorithm

6In [143], the breakout method is used to escape from global local minima, but in a distributed setting it is difficult for the
agents as a group to realize they are stuck in a global minima; thus quasi-local-minima is used as a loose, cheaper alternative.
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reaches quiescence (a termination detection is provided). If a solution is not found, or none exists, DBA

cycles forever.

As with ABT, DBA has been the object of many subsequent improvements [236,238,155,157,12].

An improvement to DBA appears in [155] which uses interchangeabilities [77] to try to contain con-

flicts, and keep them localized. This works by using neighborhood interchangeability and neighbor-

hood partial interchangeability to select new values for the variables that already are in conflict with

other variables, such that we do not risk creating new conflicts by switching to the new values. Ex-

perimental results show that the new algorithms are able to solve more problems, and with less effort,

especially for difficult problems, close to the phase transition. Another improvement of DBA consist-

ing in a value-ordering heuristic appears in [157]. This heuristic is developed in the context of resource

allocation problems (e.g. sensor networks), and it works by trying to allocate the least contended re-

sources first. This tends to produce good allocations from the beginning of the execution of DBA,

and thus requires less subsequent effort. Another extension to DBA that identifies hard subproblems

and solves them with a complete search algorithm, thus guaranteeing completeness has been proposed

in [62].

Alternatively, distributed stochastic search algorithms have been proposed [75, 235, 6].

In the next sections we focus on algorithms that were specifically designed for DCOP.

3.1.2.2 ADOPT

ADOPT by Modi et al. ( [141]) is a backtracking based bound propagation mechanism. ADOPT was

the first decentralized algorithm to guarantee optimality, while at the same time allowing the agents to

operate asynchronously.

The algorithm works as follows: first, the DFS structure is created. Then, backtrack search is

performed top-down, using the following value ordering heuristic: at each point in time, each agent

chooses the value with the smallest lower bound. It announces its descendants of its choice via VALUE

messages, and waits for COST messages to come back from the children (please refer to Figure 3.1

for a diagram that shows the message flow in ADOPT). Each agent adds the costs received from its

children to the lower bound of the current value taken by the agent. If there is another value in the

domain that has a smaller lower bound, the agent switches its value, and the process repeats, refining

the lower bounds iteratively.

One of the innovative ideas behind ADOPT is that it achieves asynchrony by allowing the agents

to change their variable values whenever they detect the possibility that some other values are better

than the current ones (i.e. they have smaller lower bounds). Notice that this does not mean that the new

values are guaranteed to be better. This strategy allows for asynchronous operation since the agents

do not have to wait for achieving global information about upper bounds on cost to take their local
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Figure 3.1: ADOPT: (a) a simple problem graph, arranged as a DFS tree; (b) diagram
showing the flow of messages: VALUE assignments are sent by agents to all their descendants
in the tree; children respond to their parents with COST messages; parents send their children
THRESHOLD messages.

decisions, as would normally happen in classical branch and bound.

However, abandoning partial solutions before proving their suboptimality makes it sometimes nec-

essary to revisit several times some of the previously explored partial solutions. One solution to this

problem would be to store all these partial results, and retrieve them later on, without any more search

effort. The drawback of this approach is that the amount of memory required to do so is exponential

in the width of the DFS ordering chosen. ADOPT tries to mitigate this problem by using a backtrack

threshold which is an allowance on solution cost intended to reduce the need for backtracking, while

maintaining a low memory profile (polynomial).

3.1.2.3 Non-Commitment Branch and Bound

Chechetka and Sycara propose in [33] another DCOP algorithm that operates on a DFS: NCBB (Non-

Commitment Branch and Bound). This algorithm is a variant of AOBB, with the important difference

that NCBB includes a parallelization technique where an agent advertises different values of itself to

different children at the same time. This parallelization technique ensures that all the subtrees of any

agent are working in non-intersecting parts of the search space and we do not need to worry about the

solution costs between them.

Similar to dAOBB with i-bounded caching (Section 3.1.1.3), NCBB was also extended with a

caching mechanism in [32].

3.1.2.4 Asynchronous Forward Bounding (AFB)

AFB [81] is also based on branch and bound, and works on a linear ordering of the variables. AFB

is similar to SynchBB: agents assign their variables and generate a partial solution sequentially and
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synchronously. As in classic B&B, agents extend a partial solution as long as the lower bound on its

cost does not exceed the global bound, which is the cost of the best solution found so far. The current

partial assignment is propagated together with the cost of the best solution found so far. Each agent

which receives the CPA, extends it with its local assignment, if an assignment with a lower bound

smaller than the current global upper bound can be found. Otherwise, it backtracks by sending the CPA

to a former agent to revise its assignment. An agent that succeeds to extend the assignment on the CPA

sends forward copies of the updated CPA, requesting all unassigned agents to compute lower bound

estimations on the cost of the partial assignment. The assigning agent will receive these estimations

asynchronously over time and use them to update the lower bound of the CPA. Gathering updated lower

bounds from future assigning agents, may enable an agent to discover that the lower bound of the CPA

it sent forward is higher than the current upper bound (i.e. inconsistent). This discovery triggers the

creation of a new CPA which is a copy of the CP A it sent forward. The agent resumes the search by

trying to replace its inconsistent assignment. The authors provide an experimental evaluation of AFB

against SynchBB, and show that it performs better.

3.1.3 Summary of distributed search methods

The advantage of the search algorithms we have presented is that they require polynomial memory.

Their downside is that they may produce a very large number of small messages, resulting in large

communication overheads. As far as ADOPT is concerned, several extensions have been proposed

(e.g. [194, 127]) to deal with this problem. In some cases they show improved performance over the

basic ADOPT, but in the worst case, they all produce an exponential number of small messages.

If more memory is available, search can be executed more efficiently by using caching schemes

like dAOBB(i) or NCBB(i); however, in the worst case search algorithms may still require exp(w)

messages.

3.2 Dynamic Programming (inference) in COP

Dynamic programming [15,16] (inference) has been long recognized as a powerful paradigm for solv-

ing combinatorial optimization problems [19]. Loosely, dynamic programming works by eliminating

variables one by one while computing the effect of each eliminated variable on the rest of the problem.

Bucket elimination (BE) is a unifying algorithmic framework for dynamic programming algo-

rithms, introduced by Dechter in [50, 51]. It is applicable to any graphical model such as probabilistic

and deterministic networks. The input to a BE algorithm consists of a collection of functions or re-

lations of a reasoning problem. Given a variable ordering, the algorithm partitions the functions into

buckets, each associated with a single variable. A function is placed in the bucket of its latest argument

in the ordering.
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The algorithm processes each bucket, top-down from the last variable to the first by a variable elim-

ination procedure. This procedure computes a new function using combination (join) and marginaliza-

tion (project, or eliminate) operators in each bucket. The new function is placed in the closest lower

bucket whose variable appear in the function’s scope. When the solution of the problem requires a

complete assignment (e.g., finding the most probable explanation in belief networks) a second, bottom-

up phase, assigns a value to each variable along the ordering, consulting the functions created during

the top-down phase.

3.2.1 BTE

BTE (bucket tree elimination) is a centralized algorithm introduced by Kask et al. ( [107]) and Shenoy

( [190]). This algorithm leverages the basic bucket elimination mechanism [50] by operating on a

bucket tree, and performing bucket elimination on this tree in both top-down and bottom-up phases.

This requires twice the amount of effort as the normal bucket elimination scheme, but the advantage

is that it enables complex tasks like belief updating in a Bayesian network, or computing optimal

utilities for each value of each variable in the problem. In these cases, the normal bucket elimination

scheme would have to be applied once for each variable in the problem, thus increasing the complexity

of the process linearly with the number of variables.

3.3 Partial Centralization: Optimal Asynchronous Partial Overlay

(OptAPO)

Optimal Asynchronous Partial Overlay (OptAPO [129]) is a sound and optimal algorithm for solving

DCOPs that uses dynamic, partial centralization (DPC). Conceptually, DPC is a technique that discov-

ers difficult portions of a shared problem through trial and error and centralizes these sub-problems into

a mediating agent in order to take advantage of a fast, centralized solver. Overall, the protocol exhibits

an early, very parallel hill climbing behavior which progressively transitions into a more deliberate,

controlled search for an optimal solution. In the limit, depending on the difficulty of the problem and

the tightness of the interdependence between the variables, one or more agents may end up centralizing

the entire problem in order to guarantee that an optimal solution has been found.

The authors report that OptAPO’s message complexity is significantly smaller than ADOPT’s [129].

However, it is possible that several mediators solve overlapping problems, thus needlessly duplicating

effort. This has been shown in [169] to cause scalability problems for OptAPO, especially on dense

problems. Furthermore, the asynchronous and dynamic nature of the mediation sessions make it impos-

sible to predict what will be centralized where, how much of the problem will be eventually centralized,

or how big a computational burden the mediators have to carry. It has been reported by Davin and Modi
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Figure 3.2: A simple problem (a), a possible pseudotree(b), and a rooted DFS tree(c). Notice
that (c) is a pseudotree, while (b) is not a DFS tree.

in [44] that often a handful of nodes centralize most of the problem, and therefore carry out most of the

computation.

3.4 Pseudotrees / Depth-First Search Trees

Definition 10 (Pseudo-tree) A pseudo-tree arrangement of a graph G is a rooted tree with the same

nodes as G and the property that adjacent nodes from the original graph fall in the same branch of the

tree (e.g. X0 and X11 in Figure 3.3).

Notice that Definition 10 allows for the pseudotree to be a rooted tree with more edges than the

original graph G. For example, consider a problem that is a chain with 7 nodes: X1 . . . X7 (see Fig-

ure 3.2(a)). A pseudotree for this problem can be as in Figure 3.2(b) or (c). Notice that the pseudotree

in Figure 3.2(b) requires the addition of the two dotted edges X4 − X2 and X4 − X6, while the one in

Figure 3.2(c) contains only edges from the original graph.

The use of pseudotrees in constraint satisfaction was first introduced by Freuder in [78], and sub-

sequently exploited in ( [38, 13, 39, 54, 141]). The idea is that nodes lying in different branches of the

DFS tree become conditionally independent when all their ancestors are removed. It is thus possi-

ble to perform search in parallel on these independent branches. Specifically, one starts instantiating

nodes top-down (starting from the root); then for each node, once it is instantiated, its subtrees become

completely independent, and can be explored in parallel.

3.4.1 DFS trees

A special case of a pseudotree is when all arcs of the pseudotree belong to the original graph. It is easy

to see that this special class can be generated by a depth-first search traversal of the graph. Therefore,

these are called DFS trees. Formally,

Definition 11 (DFS tree) A DFS arrangement of a graph G is a rooted tree with the same nodes and
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Figure 3.3: A problem graph and a rooted DFS tree. Non-binary constraints like C4 are
treated as cliques of the variables involved. Tree edges are solid lines, while back-edges are
dashed lines.

edges as G and the property that adjacent nodes from the original graph fall in the same branch of the

tree (e.g. X0 and X11 in Figure 3.3).

It is well known that a depth-first traversal of a graph produces a pseudotree arrangement; DFS

trees are thus a subclass of pseudotrees. However, there are pseudotree arrangements that are not DFS

trees, for example the one from Figure 3.2(b). For the purposes of distributed optimization algorithms,

we will focus on DFS structures, because we assume that only neighboring agents can communicate

directly 7 (see Section 2.2.2). In addition, it is well understood how to generate a DFS tree distributedly,

while it is far less clear for pseudotrees that are not DFS trees. Nevertheless, all the algorithms we will

present can, in principle, work on general pseudotree structures once we relax this communication

assumption.

Figure 3.3(b) shows an example of a DFS tree for the graph in Figure 3.3(a) that we shall refer to

in the rest of this section (ignore for now the shaded areas). We distinguish between tree edges, shown

as solid lines (e.g. X8 − X3), and back edges, shown as dashed lines (e.g. X8 − X1, X12 − X2). We

call a path in the graph that is entirely made of tree edges, a tree-path. A tree-path that connects a node

with one of its descendants is called a branch. A tree-path associated with a back-edge is the tree-path

connecting the two nodes connected by the back-edge.

Definition 12 (DFS concepts) Given a rooted DFS tree T of a graph G, for each node Xi in the tree,

we define:

• The children Ci / parent Pi of node Xi: these are the descendants / ancestor of Xi which are

connected to Xi through a tree edge (e.g. P4 = X1, C1 = {X3, X4}).

7In the example problem from Figure 3.2, if one uses the pseudotree arrangement from Figure 3.2(b), the 2 pairs of agents
X4 − X2 and X4 − X6 would be required to communicate even though they are not neighbors in the interaction graph.



42 Background

• The pseudo-parents PPi of node Xi are Xi’s ancestors that are connected to Xi through back-

edges (PP8 = {X1}). Notice that Pi /∈ PPi.

• The pseudo-children PCi of node Xi are Xi’s descendants directly connected to Xi through

back-edges (e.g. PC0 = {X4, X5, X11}).

• Sepi is the separator of node Xi: all ancestors of Xi which are connected with Xi or with

descendants of Xi (e.g. Sep3 = {X1}, Sep5 = {X0, X2} and Sep8 = {X1, X3}); otherwise

stated, given a DFS tree, Sepi is the minimal set of ancestors of Xi whose removal completely

disconnects the subtree rooted at Xi from the rest of the problem. For trees, Sepi = {Pi}, ∀Xi ∈

X .

Each node Xi can easily determine its separator Sepi as the union of: (a) separators received from

its children, and (b) its parent and pseudoparents, minus itself (see Definition 12). Formally,

Sepi = ∪Xj∈Ci
Sepj ∪ Pi ∪ PPi \ Xi. (3.2)

Given a DFS arrangement of a constraint graph, we define the depth of the DFS tree as the number

of nodes on the longest branch. Additionally, the induced width [110, 111, 51] of a graph G given an

ordering o = X1, . . . , Xn is defined as follows:

Definition 13 (Induced Width) Given a graph G and an ordering o = X1, . . . , Xn on its nodes, the

induced width of the graph according to this ordering is defined as follows: we process all nodes in

the reverse order of o. When processing a node, we connect all its neighbors which precede it in the

ordering o. The width of the current node is given by the number of its induced neighbors which precede

it in the ordering o. The induced width of the ordering o is the largest width of any node in ordering o.

When considering as an ordering o the depth-first traversal of the nodes in G along a given DFS

arrangement of G, we have:

Proposition 7 The induced width of a graph G along a given DFS arrangement is equal to the size of

the largest separator of any node in the DFS arrangement.

PROOF. Consider Definition 13 of the width of each node in the DFS arrangement. We process the

nodes in G in the reverse DFS order. When processing a node as in Definition 13, we connect all its

neighbors in G which are its ancestors in the DFS, i.e. we connect its parent with all its pseudoparents.

We do this recursively in reverse DFS order, from the leaves until we reach the root. At the end of the

process, for each node X in the DFS, we will have an (induced) neighboring relation between X and

all its ancestors which are connected in G with either X or any of its children. This means that using

Definition 13 for the width of a node, we fall exactly on the Definition 12 of the separator of the node.
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Therefore, the induced width of the DFS ordering equals the size of the largest separator of any node

in the DFS, as in Definition 12. �

3.4.1.1 Distributed DFS generation: a simple algorithm

Generating DFS trees in a distributed manner is a task that has received a lot of attention, and there are

many algorithms available: for example Collin and Dolev [40], Barbosa [10], Cidon [36], Cheung [35]

to name just a few. For completeness, we specify a possible distributed DFS algorithm, which is similar

to Cheung [35]. We present this simple algorithm in Algorithm 3, and we will assume it is executed

in a preprocessing phase by all the algorithms that we will present for static optimization. When we

move to dynamic problems in Chapter 9, we will assume the self-stabilizing algorithm of Collin and

Dolev [40]. In Section 3.4.2, we will extend Algorithm 3 with different heuristics that produce better

quality DFS trees.

Algorithm 3 starts with each agent Xi identifying its set of neighbors, Ngh(Xi), as all other agents

Xj with whom Xi shares a relation or a constraint (see Chapter 2). Each agent then labels internally

its neighbors as not-visited. One of the agents in the graph is designated as the root, using for example

a leader election algorithm like [2], or simply picking the agent with the lowest/highest ID.

The root then initiates the propagation of a token, which is a unique message that will be circulated

to all the agents in the graph, thus ”visiting“ them. Initially, the token contains just the ID of the root.

The root sends it to one of its neighbors, and waits for its return before sending it to each one of its

(still) unvisited neighbors. When an agent Xi first receives the token, it marks the sender as its parent.

All neighbors of Xi contained in the token are marked as Xi’s pseudoparents (PPi).

After this, Xi adds its own ID to the token, and sends the token in turn to each one of its not-

visited neighbors Xj , which become its children. Every time an agent receives the token from one of

its neighbors, it marks the sender as visited. The token can return either from Xj (the child to whom

Xi has sent it in the first place), or from another neighbor, Xk. In the latter case, it means that there is

a cycle in the subtree, and Xk is marked as a pseudochild.

When all its neighbors are marked visited, Xi has finished exploring all its subtree. Xi then removes

its own ID from the token, and sends the token back to its parent; the process is finished for Xi. When

the root has marked all its neighbors visited, the entire DFS construction process is over.

Proposition 8 Algorithm 3 produces a correct DFS arrangement which is maintained in a distributed

fashion.

PROOF. Algorithm 3 is correct because it simulates exactly a centralized depth-first search process.

Furthermore, due to the fact that each node adds its ID to the token when sending it to its children, and

then removes it when sending it back to its parent, the structure of the whole problem remains hidden
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from individual agents. Each agent only knows its position in the tree, which is given by its knowledge

of its parent, children, pseudoparents, and pseudochildren. �

Proposition 9 Algorithm 3 produces 2× |E| messages of linear size, where |E| is the number of edges

in the graph.

PROOF. It is easy to see that there is exactly 1 DFS message going in each direction through each

edge: once when the parent node sends the token to the child the first time, and one more time when

the child has finished exploring its subtree and returns the token. Thus the total number of messages is

2× |E|. The size of these messages is linear, the largest one having a number of IDs in the context that

equals the height of the DFS tree. �

Remark 6 (Non-binary constraints) Non-binary constraints are automatically handled correctly by

Algorithm 3 as a result of the fact that all agents involved in a constraint or relation (be it binary or non-

binary) label each other as neighbors (Chapter 2). Then, in Algorithm 3, the for loop in line 6 ensures

that the first agent involved in a non-binary constraint, when receiving the token, will subsequently pass

it to all other agents involved in that constraint, thus making them its descendants. This ensures that

there are no cross-edges between different subtrees and the DFS is correctly constructed. For example,

in Figure 3.3 (left), there is a 4-ary constraint C4 involving {X0, X2, X5, X11}. By Definition 3, this

implies that {X0, X2, X5, X11} are neighbors, and in the DFS construction process and they will

appear along the same branch in the tree. This produces the result in Figure 3.3 (right).

For the rest of this chapter, we will assume that all the algorithms presented will use Algorithm 3

in a preprocessing phase, to establish the required DFS structure.

Example 5 (Execution of DFS construction Algorithm 3) Please refer to Figure 3.3 for an example.

Without loss of generality, let us assume that agent X0 has been chosen as the root of the DFS tree. X0

sends a token with just its ID, DFS[0], to one of its neighbors (e.g. to X1). X0 marks X1 as its child,

and X1 marks X0 as its parent (P (X1) = X0). X1 adds its own id to the context of the received DFS

message, and then sends it to an unvisited neighbor (e.g. to X4).

X4 receives DFS[0,1] from X1 and marks it as its parent. Now, since X0 is X4’s neighbor, and X0

is also present in the context of the message that X4 received from X1, X4 marks X0 as its pseudopar-

ent, and sends the message DFS[0,1,4] to X0. Thus, X0 can also mark X4 as its pseudochild.

X4 continues by sending DFS[0,1,4] to X9, receiving it back, and to X10 and receiving it back. At

this point, X4 has finished exploring its subtree (all neighbors are visited), so it sends back to X1 a

DFS[0,1] message, which informs X1 that the discovery of the subtree hanging from X4 is finished. X1

can then continue with the exploration of its other subtree, and sends its DFS[0,1] message to X3. X3

sends DFS[0,1,3] to X8, which marks X1 as its pseudoparent and sends it DFS[0,1,3,8], which means

that X1 can also mark X8 as its pseudochild, and so on.
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Algorithm 3 A DFS construction algorithm for DCOP.

Inputs: each agent Xi knows all its neighbors Xj ∈ Ngh(Xi)
Outputs: each Xi labels all its neighbors as either Pi, PPi, Ci, PCi.

Procedure Initialization
1 The agents X choose one of them, X0, as the root (e.g. via leader election).
2 All agents execute procedure Token Passing

Procedure Token Passing (performed by each ”virtual agent” Xi)

if Xi is root then Pi = null; create empty token DFS = ∅
3 else DFS=Handle incoming tokens()
4 let DFSi = DFS ∪ {Xi}
5 [Optional: sort Ngh(Xi) according to heuristic (see Section 3.4.2)]
6 forall Xl ∈ Ngh(Xi) do

if Xl not visited yet then

7 add Xl to Ci

8 send DFSi to Xl

9 wait for DFSl to return from Xl

10 Xi’s subtree completely explored; remove Xi from DFSi and send it back to Pi

Procedure Handle incoming tokens()

11 wait for any incoming DFSl message; let Xl be the sender; mark Xl visited
if this is the first DFS message (i.e. Xl is my parent) then

12 Pi = Xl; PPi = {Xk �= Pi|Xk ∈ Ngh(Xi) ∩ DFSl}

else

13 [Optional: sort unvisited neighbors according to heuristic (see Section 3.4.2)]
if Xl ∈ Ci (i.e. this is a DFS message returning from a child) then

14 continue with other neighbors

15 else (i.e. this is a DFS message coming from a pseudochild); add Xl to PCi

3.4.2 Heuristics for finding good DFS trees

The complexity of all the algorithms we will present in the following sections depends on the particular

DFS tree we choose. In the case of linear-size search-based algorithms (Section 3.1), the complexity

is time exponential in the depth of the DFS tree. Dynamic programming methods (Section 3.2) on the

other hand are time and space exponential in the width of the DFS tree. Therefore, depending on the

algorithm to be used, one would like to have either the minimal depth DFS tree, or the minimal width

tree. However, it has been shown that finding either of these is an NP-hard problem. Typically, one must

settle for an approximation of the best DFS tree, that can be obtained using some heuristic generation

process. The DFS construction Algorithm 3 can be parametrized with 2 parameters: the start agent (the

root), and a heuristic function that each agent uses to decide at each step to which unvisited neighbor it
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will send the token next.

There exist already a number of heuristics to generate good DFS trees in the centralized case.

However, implementing these techniques in a distributed fashion may not be easy, or even feasible. We

will discuss some possibilities for distributed adaptations, for search algorithms requiring shallow trees

in Section 3.4.2.1 and for inference algorithms requiring trees with low width in Section 3.4.2.2.

3.4.2.1 Heuristics for generating low-depth DFS trees for search algorithms

While many algorithms exist for generating shallow DFS trees in the centralized case (e.g. [132, 127,

135]), it is unclear how to implement them in a distributed way, and little work has been done in this

area. Chechetka and Sycara introduced in [31] the first distributed algorithm that constructs a pseu-

dotree [78] using a heuristic designed to minimize the depth of the pseudotree. The algorithm works

well, but in general it does not produce DFS trees, rather pseudotrees, thus violating our requirement

from Section 2.2.2.

Actually, the fact that we require DFS trees as opposed to just any pseudotree means that search

algorithms can be arbitrarily bad compared to dynamic programming ones. To see this, consider a

simple example of a ring constraint network with n agents. Any DFS arrangement of such a network

will have depth n, thus making search algorithms run in time exponential in n (runtime is O(dn)). In

contrast, a dynamic programming algorithm like DPOP would only be exponential in the width of the

DFS, which is 2 for a ring, thus offering an exponential speedup (runtime is O(d2)).

3.4.2.2 Heuristics for generating low-width DFS trees for dynamic programming

The objective of these methods is to produce the DFS arrangement with the lowest induced width. In

a centralized setting, the most common heuristics for this problem are the following: the maximum

cardinality set [208], the maximum degree [208], and the min-fill heuristic [110]. The min-fill heuristic

does not produce in general pseudotree orderings (much less DFS ones), and is difficult to implement in

a distributed setting because it would require coordination at each step between all the remaining agents

in order to decide which one should be considered next in the elimination ordering. In the following

we describe distributed adaptations of the maximum cardinality set and max-degree heuristics.

MCN: maximum connected node A heuristic called the most connected node (MCN) (also

known as max-degree) has been proved quite effective. MCN was introduced by [208], and subse-

quently re-explored in [111,25,127,84]. This heuristic works as follows: the agent with the maximum

number of neighbors is selected as the root (ties are broken by picking the agent with the lowest ID).

Afterwards, the process proceeds by visiting at each step neighboring agents with the highest number

of neighbors (ties are again broken by picking the neighbor with the lowest ID).
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Concretely, the process is implemented by changing the DFS algorithm 3 in two places. First, in

step 1 each agent broadcasts the number of its neighbors; the agent ranked highest is chosen as the root.

Second, step 5 is implemented by having each agent sort the list of its neighbors, the most connected

ones first. The rest proceeds as normal.

MCS: maximum cardinality set adapted to DFS trees The maximum cardinality set heuristic

was introduced by [208], and was subsequently used in many other contexts like [111, 25, 84]. This

heuristic is designed to find low-width elimination orders for variable elimination procedures. It works

by selecting some agent as the first one to be eliminated, and adding it to the set S of visited agents.

Then, each agent not in S is considered in turn. The one that has the most number of neighbors already

in S is selected to be eliminated next, and is placed in the set S. Ties are broken randomly (or by agent

ID). The process is repeated until all agents are in S.

MCS as was originally described in [208] does not produce a DFS ordering of the agents in the

graph. Therefore, we propose in the following a simple adaptation of the DFS generation Algorithm 3

that takes advantage of the MCS heuristic. We replace the DFS message handling code from Algo-

rithm 3 (lines 11-15) with the following process, which is intended to simulate the MCS heuristic:

Whenever an agent Xi receives a DFS message from one of its neighbors , Xi does the following:

• select its neighbors that are not either already visited, nor in the context of the DFS message :

these are agents not yet visited, future children/pseudochildren;

• ask each one of them how many of their neighbors are already in the context of the DFS mes-

sage;

• send the DFS token next to the neighbor which replies with the highest number;
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Chapter 4

DPOP: A Dynamic Programming
Optimization Protocol for DCOP

“Good things come in large packages.”

—

In this chapter we introduce the DPOP algorithm for DCOP. DPOP is an algorithm based on

dynamic programming [19] which performs bucket elimination [49] on a DFS tree in a distributed

fashion. DPOP’s main advantage is that it requires only a linear number of messages, thus intro-

ducing exponentially less network overhead than search algorithms when applied in a distributed

setting. Its complexity lies in the size of the UTIL messages, which is bounded exponentially by

the induced width of the DFS ordering chosen. DPOP is therefore an excellent choice for solving

DCOP in case the problems have low induced width.

In case the problems have high induced width and DPOP is unfeasible, other techniques must be

explored. The whole part III of this thesis (Chapters 6, 7 and 8) discusses techniques that deal with

the exponential space problem in different ways, offering different tradeoffs.

For the centralized case, we have reviewed in Section 3.2.1 the BTE algorithm introduced by Kask

et al. ( [107]) and Shenoy ( [190]). BTE is a general algorithm which operates on any variable ordering

(which is assumed to be given as input). BTE then creates a pseudotree which corresponds to this

ordering, and operates on this pseudotree. The issue in a multiagent setting is that operating on arbitrary

pseudotrees (i.e. non DFS) breaks the assumption that only neighbors can communicate directly (see

Section 2.2).

Therefore, this chapter introduces DPOP, a special case of BTE that operates on a variable ordering

which is given by a DFS arrangement of the problem graph. This guarantees that the restrictions from

51
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Section 2.2 hold.

4.1 DPOP: A Dynamic Programming Optimization Protocol for

DCOP

DPOP is a complete algorithm, and has the important advantage that it generates only a linear number

of messages. This is important in distributed settings because sending a large number of small messages

(like search algorithms do) typically entails large communication overheads.

In the following sections we will present in more detail DPOP’s three phases. For a formal descrip-

tion, see Algorithm 4.

Algorithm 4 DPOP: Dynamic Programming Optimization Protocol
DPOP(X , D, R): each agent Xi does:

DPOP phase 1: DFS arrangement - run token passing mechanism as in Algorithm 3
1 At completion, Xi knows Pi, PPi, Ci, PCi, Sepi

DPOP phase 2: UTIL propagation (bottom-up UTIL message propagation)
2 JOINPi

i = null
3 forall Xj ∈ Ci /* for all children of Xi; if Xi is a leaf, skip this */ do

4 wait for UTILi
j message to arrive from Xj

5 JOINPi

i = JOINPi

i ⊕ UTILi
j //we add to the join UTIL messages from children as they

arrive
6 JOINPi

i = JOINPi

i ⊕ RPi

i ⊕
(⊕

Xj∈PPi
Rj

i

)
//also join all relations with parent/pseudoparents

7 UTILPi

i = JOINPi

i ⊥Xi
//use projection to eliminate self out of message to parent

8 Send UTILPi

i message to Pi

DPOP phase 3: VALUE propagation (top-down VALUE message propagation)
9 wait for VALUEi

Pi
(〈Sepi〉

∗) msg from Pi // 〈Sepi〉
∗ is the optimal assignment for all vars in 〈Sepi〉

10 X∗
i ← argmaxvi∈di

(JOINPi

i [〈Sepi〉
∗]) // slice JOINPi

i corresponding to 〈Sepi〉
∗; find best vi

11 forall Xj ∈ Ci /* for all children of Xi; if Xi is a leaf, skip this */ do

12 send VALUE(〈Sepi〉
∗ ∩ 〈Sepj〉 ∪ X∗

i ) message to Xj

4.1.1 DPOP phase 1: DFS construction to generate a DFS tree

In phase 1, a DFS traversal of the graph is done using Algorithm 3. The DFS tree thus obtained

serves as a communication structure for the other 2 phases of the algorithm: UTIL propagation (UTIL

messages travel bottom-up on the tree), and VALUE propagation (VALUE messages travel top-down

on the tree).
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Figure 4.1: A problem graph and a rooted DFS tree. Non-binary constraints like C4 are
treated as cliques of the variables involved. Tree edges are solid lines, while back-edges are
dashed lines.

4.1.2 DPOP phase 2: UTIL propagation

Phase 2 - UTIL propagation: this is a bottom-up process, which starts from the leaves and propagates

upwards only through tree edges. In this process, the agents send UTIL messages (see Definition 14)

to their parents. These messages summarize the influence of the sending agent and its whole subtree

on the rest of the problem. They are equivalent to the induced constraints computed in the variable

elimination steps in the bucket elimination scheme ( [49, 51]).

Definition 14 (UTIL message) UTILj
i , the UTIL message sent by agent Xi to agent Xj is a multi-

dimensional matrix, with one dimension for each variable present in Sepi. dim(UTILj
i ) is the set of

individual variables in the message. Note that always Xj ∈ dim(UTILj
i ).

The semantics of such a message is similar to an n-ary relation having as scope the variables in the

context of this message (its dimensions). The size of such a message is the product of the domain sizes

of the variables from the context.

Definition 15 (Slice) Given a relation U (UTIL messages are relations) defined over a set of variables

dims(U), and an instantiated subset D of its dimensions (D ⊂ dims(U)), a slice through U along

D, U [D] is a lower-dimensionality relation S that has as dimensions {d|d ∈ {dims(U) \ D}} and as

values the values from U that correspond to the tuples {dims(U) \ D}. If D = dims(U), U [D] is a

relation of arity 0, i.e. the corresponding value from U .

Definition 16 (JOIN operator) The ⊕ operator (join, or combine): U = UTILj
i ⊕ UTILj

k is the

join of two UTIL matrices (relations). U is also a matrix (relation) with dims(U) = dims(UTILj
i ) ∪

dims(UTILj
k) as dimensions. For each possible instantiation s of the variables in dims(U), the
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corresponding value of U [s] is the sum of the corresponding cells in the two source matrices: ∀s ∈

U, U [s] = UTILj
i [s] + UTILj

k[s].

Example 6 Given 2 matrices UTILj
i and UTILj

k, with dim(UTILj
i ) = {X1, Xj} and dim(UTILj

k) =

{X2, Xj}, then the value corresponding to 〈X1 = vp
1 , X2 = vq

2, Xj = vr
j 〉 is UTILj

i (X1 = vp
1 , Xj =

vr
j ) + UTILj

k(X2 = vq
2, Xj = vr

j ). Also, dim(UTILj
i ⊕ UTILj

k) = {X1, X2, Xj}.

Definition 17 (PROJECTION operator) The ⊥ operator (also known in the literature as elimination

or marginalization): if Xk ∈ dim(UTILj
i ), UTILj

i ⊥Xk
is the projection through optimization of

the UTILj
i matrix along the Xk axis. Formally, ∀s ∈ {dim(UTILj

i ) \ Xk}, UTILj
i ⊥Xk

[s] =

maxXk
UTILj

i [s] (i.e. for each possible instantiation s of the variables other than Xk, the optimal

instantiation for Xk is chosen and the corresponding utility recorded in UTILj
i ⊥Xk

). The result

UTILj
i ⊥Xk

is also a UTIL matrix, with one less dimension (Xk).

The subtree of an agent Xi can influence the rest of the problem only through Xi’s separator, Sepi.

Therefore, a message contains the optimal utility obtained in the subtree for each instantiation of Sepi.

Thus, messages are exponential in the separator size (bounded by the induced width).

To compute this message, an agent Xi has to join all the messages it received from its children, and

the relations it has with its parent and pseudoparents, as in Equation 4.1:

JOINPi

i =

⎛
⎝ ⊕

Xc∈Ci

UTILi
c

⎞
⎠ ⊕

⎛
⎝ ⊕

Xp∈{Pi∪PPi}

Rp
i

⎞
⎠ (4.1)

To obtain its UTIL message, Xi projects itself out of the resulting hypercube as in Equation 4.2:

UTILPi

i = JOINPi

i ⊥Xi
(4.2)

Example 7 In figure 4.1, X4 computes its UTIL1
4 message for X1 as in equation 4.3:

JOIN1
4 = (

dim={X4,X0,X1}︷ ︸︸ ︷
dim={X4}︷ ︸︸ ︷

UTIL4
9 ⊕ UTIL4

10 ⊕R0
4︸ ︷︷ ︸

dim={X4,X0}

⊕R1
4); UTIL1

4 = JOIN1
4 ⊥X4︸ ︷︷ ︸

dim={X0,X1}

(4.3)

The leaf agents initiate the UTIL propagation. Subsequently, each agent Xi relays the UTIL mes-

sages as follows:

• Wait for UTIL messages from all children. Since all the respective subtrees are disjoint, joining

messages from all children gives Xi exact information about how much utility each of its values
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yields for the whole subtree rooted at itself. To assemble the message for its parent Xj , Xi has

to also join Rj
i and any back-edge relation it may have with agents above Xj , as in Equation 4.1.

Then it projects itself out of the result, as in Equation 4.2 (see lines 5-7 in Algorithm 4). The

result is the UTILj
i message (see equation 4.3 for UTIL1

4).

• If Xi is the root agent, it receives all its UTIL messages as vectors with a single dimension (itself).

It can then compute the optimal overall utility corresponding to each one of its values (by joining

all the incoming UTIL messages) and pick the optimal value for itself (project itself out).

Remark 7 (Non-binary relations and constraints) A k-ary relation/constraint is considered in the

UTIL propagation only once, by being introduced in its UTIL message by the lowest agent in the DFS

arrangement that is part of the scope of the relation. For example, in Figure 4.1(b), the constraint C4

is introduced by agent X11 in its UTIL message to its parent, and subsequently propagated in the UTIL

messages of agents X5 and X2. However, agents X5 and X2 do not explicitely take C4 into account.

4.1.3 DPOP phase 3: VALUE propagation

Phase 3 - VALUE propagation top-down, initiated by the root, when phase 2 has finished. Each agent

determines its optimal value based on the computation from phase 2 and the VALUE message it has

received from its parent. Then, it sends this value to its children through VALUE messages.

Clearly DPOP produces a linear number of messages. Its complexity lies in the size of the UTIL

messages, which is time and space exponential in the width of the DFS ordering used.

Example 8 (A numerical example) Figure 4.2 shows a simple example of a problem, to facilitate the

understanding of the computation being performed by each agent. The problem has a tree structure

(Figure 4.2(a)), with 3 relations r1
2(X2, X1), r1

3(X3, X1), and r0
1(X1, X0) detailed in Figure 4.2(b)

and (c)-low.

UTIL phase X2 and X3 project themselves out of r1
2 and r1

3, respectively. The results are the green

cells in r1
2 and r1

3 in Figure 4.2(b). The projections are the messages UTIL1
2 and UTIL1

3 that they

send to X1.

X1 receives the messages from X2 and X3, and computes the join JOIN0
1 = UTIL1

2⊕UTIL1
3⊕r0

1

- Figure 4.2(c). It then projects itself out: UTIL0
1 = JOIN0

1 ⊥ X1; each value in the message

represents the total utility of the entire problem, when X0 takes that value. The result is depicted in

Figure 4.2(d). X0 receives this utility message from X1, and can then simply choose its value that

produces the larges utility for the whole problem: X0 = a (X0 = a and X0 = c produce the same

result in this example, so either one can be chosen).

VALUE phase The VALUE phase then starts. X0 informs its child, X1 of its choice via a message

VALUE(X0 = a). X1 then restores its value that was found optimal for X0 = a: the blue cells in
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Figure 4.2: A simple problem (a). Relations are detailed in (b) and (c)-low. Computation
consists of (b)- projections of X2 and X3 out of their relations with X1. Then, in (c) X1 joins
the messages from X2 and X3 with its relation with X0. Finally, X1 projects itself out, and
sends the result to X0 in (d).

Figure 4.2(c) point to this computation, and X1’s optimal value is X1 = c. The process continues with

X1 sending a message VALUE(X1 = c) to X2 and X3. Just like X1 did, X2 and X3 restore their

optimal values for X1 = c, i.e. X2 = b, and X3 = a. The algorithm thus terminates with the optimal

solution 〈X0 = a, X1 = c, X2 = b, X3 = a〉 that gives the maximal utility 15.

4.1.4 DPOP: Algorithm Complexity

Theorem 1 DPOP (algorithm 4) requires a number of messages which is linear in the number of

variables. The DFS construction and the VALUE propagation require messages of size linear in the

number of variables. DPOP’s complexity lies in the size of the UTIL messages, which are space-

exponential in the induced width of the DFS tree used.

PROOF. Follows easily from the complexity proof of BTE [107]. Specifically,

Number of messages: The DFS construction (algorithm 3) requires 2 ∗ m messages, where m is

the number of edges in the interaction graph. If n is the number of agents in the problem, then the UTIL

phase requires n − 1 bottom-up messages, and the VALUE phase requires n − 1 top-down messages

(one through each tree-edge).
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Size of messages: By construction, both the DFS and the VALUE messages are of size linear in

the number of agents in the problem. The BTE algorithm is time and space exponential in the size of

the largest bucket encountered in the elimination process. In the case of DPOP, the size of each agent’s

bucket is given by the size of the agent’s separator, and Proposition 7 shows that the size of the largest

separator equals the induced width. �

4.1.5 Experimental evaluation

We performed experiments on meeting scheduling problems(MS) [127]. All experiments are run on a

P4 machine with 1GB RAM, using the FRODO [154] simulation platform.

We generated a set of relatively large problems. The model is as in [127], and described in detail in

Section 2.3.1. Briefly, an optimal schedule has to be found for a set of meetings between a set of agents.

The test instances contained from 10 to 100 agents, and 5 to 60 meetings, yielding large problems with

16 to 196 variables. The larger problems were also denser, therefore even more difficult (induced width

from 2 to 5).

The experimental results are presented in Figure 4.3. Figure 4.3(a) shows the number of messages

exchanged, and Figure 4.3(b) shows the sum of all message sizes, in bytes. Figure 4.3(c) shows the

runtime in milliseconds. 1. Please notice the logarithmic scale! ADOPT did not scale on these prob-

lems, and we had to cut its execution after a threshold of 2 hours or 5 million messages, whichever

occured first. The largest problems that ADOPT could solve had 20 agents (36 variables).

As predicted by the theory, DPOP only requires a linear number of messages. What is interesting

to note is that even though DPOP sends larger messages than ADOPT, overall, it exchanges much less

information (Fig 4.3(b)). We believe there are 2 reasons for this: ADOPT sends many more messages,

and because of its asynchrony, it has to attach the full context to all of them (which produces extreme

overheads).

4.1.6 A Bidirectional Propagation Extension of DPOP

In DPOP, any UTIL message from an agent to its parent summarizes the utility information from all the

subtree rooted at the respective agent. Therefore, the bottom-up UTIL propagation gives the root global

utility information, but all other agents have accurate UTIL information only about their subtrees.

Similar to BTE [107], we extend the UTIL propagation by making it bidirectional, in the sense that

it traverses the DFS tree in both directions: not only bottom to top, as in DPOP, but also top to bottom,

from each agent to its children. A message from a parent to its child summarizes the utility information

from all the problem except the subtree of that child. This new message can be joined together with all

1Each data point is an average over 10 instances
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the messages received by an agent from its children. The result is a summary of the utility information

from the whole problem, which gives each agent a global view of the system, logically making each

agent in the system equivalent to the root.

Notice that a similar effect can be obtained by running DPOP n times, once with each variable

as the root. However, this approach clearly would require spending more effort than the bidirectional

utility propagation we propose here: roughly speaking, n times the effort spent by DPOP, vs. twice this

effort.

The process is initiated by the root when it has received the UTIL messages from its children. Each

agent Xi (including the root) computes for each of its children Xj a UTILj
i message. To do so, Xi first

builds the join of the messages received from its other neighbors than Xj , plus the relation it shares

with Xj : JOIN j
i = Rj

i ⊕
(⊕

c∈{Pi∪Ci\Xj}
UTILi

c

)
.

The set of dimensions of the joined message is always a superset of the dimensions that have to be

passed down to the children. Subsequently, agent Xi applies a projection step to the outgoing message

for Xj , such that only the relevant dimensions are kept. This is done by projecting out in principle all

dimensions not present in Sepj , with two exceptions:

1. the dimension of Xj itself

2. the dimension of the sending agent Xi, if Xi has a pseudochild in the subtree rooted at Xj ; this

information is a byproduct of the DFS algorithm.

Once Xi has determined the relevant dimensions, it projects out everything else:

UTILj
i = JOIN j

i ⊥
Xk∈{dim(JOIN

j
i )\dim(UTIL

j
i )}

Example 9 (Bidirectional UTIL propagation) Let us consider the problem from Figure 4.4 (same

DFS as in Figure 4.1). As a result of the normal bottom-up UTIL propagation, X0 receives the UTIL0
2

message from its child X2 and can now compute its UTIL message for X1: JOIN1
0 = UTIL0

2 ⊕ R1
0.

X0 has a pseudochild (X4) in the subtree rooted at X1, therefore it cannot project itself out of the UTIL

message it sends to X1. Therefore, X0 sends to X1 UTIL1
0 = JOIN1

0 .

Subsequently, X1 builds JOIN3
1 = R3

1 ⊕ UTIL1
0 ⊕ UTIL1

4. As UTIL1
3 previously received by

X1 from X3 does not contain X0 as a dimension, X1 will project X0 out of the UTIL message it will

send to X3. Similarly to X0, X1 also identifies a backedge to itself originating from the subtree rooted

at X3. Therefore, it cannot project itself out of the message for X3: UTIL3
1 = JOIN3

1 ⊥X0
.

X1 then prepares its message for its other child, X4: JOIN4
1 = R4

1 ⊕ UTIL1
0 ⊕ UTIL1

3. As

UTIL1
4 previously received by X1 from X4 does contain X0 as a dimension, X1 will not project X0

out of the UTIL message it will send to X4. Furthermore, X1 does not have any backedge with any agent

in the subtree rooted at X4, so it can project itself out. Thus, X1 sends X4 UTIL4
1 = JOIN4

1 ⊥X1
.
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Figure 4.4: An example of a problem where bidirectional propagation is performed. Each
arrow represents an UTIL message, and the numbers in brackets above represent the dimen-
sions of the UTIL message. For example, UTIL1

0 has two dimensions: X1 and X0 (because
of the backedge R4

0, X0 cannot project itself out from the message going to X1).



Chapter 5

H-DPOP: compacting UTIL messages
with consistency techniques

DPOP groups many valuations together in fewer (and also larger) messages, thus producing small

communication overheads. However, the maximum message size is always exponential in the in-

duced width of the constraint graph, leading to excessive memory and communication requirements

for problems with large width.

Many real problems contain hard constraints that significantly reduce the space of feasible assign-

ments. However, dynamic programming does not take advantage of the pruning power of these hard

constraints; thus, DPOP sends messages that explicitly represent all value combinations, including

many infeasible ones. Search algorithms mitigate this problem by various methods for pruning

(partial assignments that have lead to an inconsistency are not further explored). Further pruning

is achieved through consistency techniques, as well as the branch-and-bound principle.

This chapter brings two contributions: the first is H-DPOP, a hybrid algorithm that is based

on DPOP. H-DPOP uses Constraint Decision Diagrams (CDDs, see [34]) to rule out infeasible

combinations, and thus compactly represent UTIL messages. For highly constrained problems,

CDDs prove to be extremely space-efficient when compared to the extensional representation used

by DPOP: experimental results show space reductions of more than 99% for some instances. H-

DPOP is an orthogonal technique, which can nicely complement other improvements to DPOP like

MB-DPOP, LS-DPOP, A-DPOP, etc.

The second contribution of this chapter is a detailed comparison between search with caching [42,

32, 132] and dynamic programming with CDDs. H-DPOP outperforms the search algorithm by a

large margin on the number of messages exchanged while exploring a similar search space and

thus is better suited for distributed environments.

In this chapter, we consider how to apply known hard constraints on feasible value combinations

to prune such combinations, so that only information that actually corresponds to feasible solutions is

transmitted. We do this by encoding value combinations using constrained decision diagrams(CDDs)

61
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( [34]). CDDs eliminate all inconsistent values and only include costs or utilities for value combinations

that reach a consistent leaf node. In experiments on several practical problems, we show that this cuts

message size by up to 99%, putting problems of practical size within reach of H-DPOP.

A technique that explores hard constraints in a similar way is to cache partial results during the

search [42], as implemented in the NCBB algorithm ( [33]). Similar to dynamic programming with

CDDs, the caches contain only utility values for value combinations that are actually consistent. How-

ever, the pruning carried out by CDDs is very different from that achieved by backtrack search: while

backtrack search prunes all value combinations that are inconsistent with variables that are higher in the

ordering, CDDs do the pruning from the bottom up and prune value combinations that are inconsistent

with variables lower in the ordering.

To compare the pruning achieved by the two methods, we have modified the NCBB search algo-

rithm ( [33]) to obtain another version that (a) maintains a complete cache and (b) does not use the

branch-and-bound heuristic which we cannot reproduce in CDDs. We compare the space explored in

dynamic programming with CDDs to that explored in backtrack search by comparing the size of the

cache that has been used. We evaluate our CDD-based algorithm against different versions of NCBB,

and show on several example domains that CDDs achieve essentially the same pruning achievable by

search with the added advantage that only a linear number of messages are required. Thus, dynamic

programming with CDDs achieves similar benefits but is more suitable for distributed settings.

The rest of this chapter is structured as follows: Section 5.1 presents an example problem which

contains hard constraints, and introduces constraint decision diagrams (Section 5.1.1). Section 5.2 in-

troduces the H-DPOP algorithm. Section 5.3 discusses search in general, and compares H-DPOP with

the NCBB algorithm with caching from a theoretical point of view. Section 5.4 contains a comprehen-

sive experimental evaluation of H-DPOP against DPOP and NCBB. Section 5.5 places H-DPOP in the

context of existing work, and Section 5.6 concludes.

5.1 Preliminaries

Without loss of generality, hard constraints can be simulated using soft constraints by assigning utility

−∞ to disallowed tuples, and utility 0 to allowed tuples. Then, simply using any utility maximization

algorithm such as DPOP avoids infeasible assignments and finds the optimal solution. However, by

doing so one does not take advantage of the pruning power of hard constraints. This drawback becomes

severe for difficult problems (high induced width).

We introduce below one such real world problem and show the space reduction ability of hard

constraints.
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Optimal query placement: Recall from Section 2.3.3 the problem of optimally placing a set of

query operators in an overlay network. Each user wants a set of services to be performed by servers in

the network. Servers are able to perform services with distinct network and computational character-

istics. Each server receives hosting requests from its users (together with the associated utilities). We

model the resulting DCOP with servers as variables (agents) and the possible service combinations as

the domains.

To avoid accounting the utility from the same service being placed simultaneously on two servers

we introduce hard constraints between server pairs. These constraints disallow the same service to be

executed by two servers at a time. Although this constraint is simple, it makes the problem highly

constrained and computationally difficult.

Note that the above model may not be an exactly equivalent model for optimal query placement but

it helps to make the problem tractable. The optimal solution may include running a service on more

than one server but the problem would become much more complex in its originality.

Figure 5.1(a) shows a DFS tree arrangement for servers in an overlay network. The services each

server can execute are listed adjacent to nodes. During the utility propagation phase of DPOP node X4

will send a hypercube with X1, X2 and X3 as context variables to its parent X3 (see figure 5.1(b)).

However such a message scheme will send combinations which will never appear in a valid solution.

For example combinations like 〈X1 = a, X2 = a, X3 = b〉 which share a common service are infeasi-

ble. The total size of this hypercube will be 64 (43) with only 24 (4!) valid combinations. Eliminating

these combinations using hard constraints can provide significant savings.

Consider an instance of a server problem with 9 variables (servers) with the same domain of size

9. The resulting network will be a chain with constraints between every server pair. The maximum

size of hypercube in DPOP will be 99 and the number of valid combinations will be only 9!. So we are

wasting 99.9% of the space in the message by sending irrelevant combinations. With the help of hard

constraints we can prune such infeasible combinations and get extreme savings.

5.1.1 CDDs: Constraint Decision Diagrams

CDDs (constrained decision diagrams) [34] are compact representations for general n-ary constraints.

They generalize binary decision diagrams (BDD) [28]. Their main feature is that they combine con-

straint reasoning and consistency techniques with a compact data structure. Unlike extensional repre-

sentations that store each individual tuple separately (therefore requiring memory exponential in the

arity of the constraint), CDDs have the potential to drastically reduce space requirements.

Formally, a CDD is a rooted, directed acyclic graph (DAG) G = (V ∪T, E). The 0−terminal (0 ∈

T ) represents false and 1 − terminal (1 ∈ T ) represents true. Each non terminal node v ∈ V con-

nects to a subset of nodes U ⊆ V ∪T −{v}. It is denoted by a non-empty set {(c1, u1), ..., (cm, um)}.
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(a) DFS Tree (b) Hypercube (c) CDD Message

Figure 5.1: A DFS tree, an extensional UTIL message (hypercube) sent from X4 to X3 and its
CDD equivalent. The constraints on X1, X2, X3, X4 impose that they must take different values. The
hypercube contains all combinations of X1, X2, X3, whereas the CDD only the feasible ones, thus
saving space.

Each branch (cj , uj) consists of a constraint cj(x1, ..., xk) and a successor uj of v.

A CDD rooted at the node v = {(c1, u1), ..., (cm, um)} is reduced if and only if each CDD graph

G′
j rooted at uj is either terminal or reduced, and

ci ∧ cj ≡ false (5.1)

ui �≡ uj (5.2)

Example 10 (CDD) We show in Figure 5.1(c) an example CDD that represents compactly a ternary

constraint (C) between X1, X2 and X3 with domain (Di) listed adjacent. The constraint C requires

the variables to take distinct values. Each CDD node is of the form {(xk ∈ r1, u1), ..., (xk ∈ rm, um)}

where r1, ..., r2 ⊂ Dk are pairwise disjoint to satisfy Property (1) of a reduced CDD. Property (2)

allows node sharing marked by dashed lines in Figure 5.1(c).

5.2 H-DPOP - Pruning the search space with hard constraints

The H-DPOP algorithm combines this pruning power with CDDs to effectively reduce message size.

Figure 5.1(c) shows the corresponding CDD message for the hypercube X4 sends to X3 in Fig-

ure 5.1(a). In a CDD, every path from root to leaf is a valid combination of domain values of the

involved variables. The explicit representation of domain values and an insight into the problem nature

allows us to prune combinations like < (X1, a)(X2, a)(X3, b) > for service placement problems even
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at the bottommost level.

Utilities in a CDD message are represented by a linear array storing utility values indexed by path

numbers. Each path in a CDD is assigned a unique index obtained by a DFS traversal of the CDD tree.

Additionally we also need to send the domain values of each variable in a CDD message. This step

is necessary to ensure pruning at higher levels which is based on examining combinations of actual

domain values.

Definition 18 Dim(X) is the tuple < X, dom(X) > consisting of the variable X and its domain

dom(X).

We now describe the CDDMessage which node X will send to PX . It is composed of three

components:

• CDDTree : It represents all valid combinations of variables involved in the message. Each level

in CDDTree corresponds to one variable.

• UtilArray: It is the array of all utilities corresponding to each path in CDDTree.

• DimensionArray : It is an array containing Dim(Xi) where Xi ∈ {variables involved in mes-

sage}.

As in DPOP, H-DPOP contains three phases as well: DFS arrangement, bottom-up UTIL propa-

gation and top-down VALUE propagation. The DFS and VALUE phases are identical to the ones of

DPOP, and the modified UTIL propagation phase is described below in Section 5.2.1.

5.2.1 UTIL propagation using CDDs

This phase is similar to the UTIL phase of DPOP, with the difference that the extensional representa-

tions of UTIL messages from DPOP (hypercubes) are replaced with CDD messages and the associated

utility vectors. The JOIN and PROJECT operators on hypercubes are redefined in the following for

CDD messages.

5.2.1.1 Building CDDs from constraints:

Algorithm 5 describes the construction of CDDTree corresponding to the Hypercube with dimension

set Dim[dimSize]. C is the partial assignment currently found to lead to a valid solution. Whenever

a new domain value is added to C, a consistency check is performed in line 6 to see if the newly

instantiated domain value will lead to a solution. This is a key step in pruning the search space as
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Algorithm 5 Construction of a CDDtree
Procedure ConstructCDD
input : Dim[dimSize], C[dimSize], currentLevel
output : The root of the CDDTree

1 if dimSize == 0 || currentLevel == dimSize then return null
2 Xk = node at currentLevel, Dk = Xk.domain
3 S = ∅, D′

k = ∅
4 forall d ∈ Dk do

5 C[currentLevel] = d
6 if isConsistent(C, currentLevel) == true then

7 u = ConstructCDD(Dim, C, currentLevel + 1)
8 if u == null || (u �= null ∩ u �= 0) then

9 S = S ∪ {< d, u >}
10 D′

k = D′
k ∪ {d}

11 if D′
k = ∅ then return 0

12 v = mkNode(Xk, S, D′
k)

13 return v

Procedure mkNode
input : Xk, S, D′

k where Xk = variable, S=children, D′
k= valid values

output : A CDDNode corrresponding to variable Xk with given domain and children set

14 v = {(Xk ∈ r, u) : d, d′ ∈ r ⇐⇒< d, u >, < d′, u >∈ S}
//i.e. Xk �→ d and Xk �→ d′ point to same node u

15 if htable.get(v.hashKey()) == null then

16 htable.add(v.hashKey(), v) //htable contains all discovered nodes
17 return v

else
//i.e. ∃v′ s.t. v′ ≡ v

18 return v′
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(a) Hypercube Join (b) CDDMessage join

Figure 5.2: H-DPOP: comparative view of joining hypercubes vs. joining CDDs

inconsistent combinations are ruled out via this check. Parameter currentLevel denotes the current

level in CDDTree under exploration. Its initial value is zero denoting the CDDroot.

The procedure ConstructCDD is based on a depth-first backtrack search algorithm (see [34]).

Set S (initially empty) consists of the branches of the CDDNode, and D′
k consists of values of variable

Xk which can lead to valid combinations. Next, for each value in the domain of Xk (=Dk), we check

if it can lead to a feasible solution (line 6). If no, it is ruled out otherwise we recursively invoke

ConstructCDD to find the CDDNode u for the next level (currentlevel+1, line 7). If u is a 1-terminal

(null node) or is not a 0-terminal , we add the branch (d,u) to S, and insert d to D′
k (lines 8 to 10). If

D′
k = ∅ after all iterations are over, a 0-terminal is returned. Otherwise, mkNode is called to return the

CDDNode for the current variable with given children and domain set (S and D′
k respectively).

Procedure mkNode is shown in algorithm 5. In line 14, an intermediate node v is created such that

for every d ∈ r, Xk �→ d leads to the same child node u. Next we check if an equivalent node v′ exists

for node v to satisfy property (2) of a reduced CDD (line 15). If an equivalent node exists we reuse that

node otherwise insert v to V and return v (line 17).

5.2.1.2 Implementing the JOIN operator on CDD messages

In Algorithm 6 we describe the method for combining two CDD messages. The extra parameter leafDi-

mension specifies which variable should be placed at the leaf level in the resulting combined CDDTree
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(line 2). Each node places itself as the leafDimension while combining CDD messages from its chil-

dren. This is an optimization which ensures that each node can project itself out of the resulting CDD

message very efficiently (see function projectMine, algorithm 7) before sending the message to its

parent. The union of dimensions of combining messages forms the dimensions of combined message

(line 1). With this new set of dimensions, a new CDD message is constructed with an empty UtilAr-

ray. The for loop in line 5 iterates over all the paths of the newly formed CDDTree, finds the relevant

contributions from individual CDD messages (function findUtil, line 7), and sets the utility of the

current path in the combined message (line 9). Finally, the combined CDD message is returned after

setting the utility of each path. Figure 5.2 shows the join of hypercubes and CDDs.

The procedure findUtil (algorithm 6) returns the utility value corresponding to CDDMessage’s

local contribution for the input source path with the specified set of dimensions unionDim. The Array

myPath stores the local contribution of the CDDMessage to input srcPath. It is initialized with values

from srcPath for the corresponding dimensions in myDim and unionDim (line 13). The utility value for

myPath is extracted from UtilArray by finding the index of this path (line 14). To increase performance,

each CDDMessage hashes every path of its CDDTree with value as path index and key as the path itself.

5.2.1.3 Implementing the PROJECT operator on CDD messages

Procedure projectMine (algorithm 7) is used by a node to project out its own dimension after it

has joined the UTIL messages from its children and the relations with its parent/pseudo parents. Since

the combineCDDMessages function places the dimension of the current node as the leaf level of

CDDTree, projecting out the current node is very efficient: we iterate through all the paths (line 2) and

choose the best utility among paths having the same prefix, except for the leaf level (line 7). We also

need to reconstruct the CDD message and initialize the utility array after the projection operation to

keep the CDD size optimal. Finally the newly formed CDDMessage is returned to be sent to the parent

of the current node.

5.2.1.4 The isConsistent plug-in mechanism

The isConsistent (see algorithm 5, line 6) function is like a gateway to the constraint problem

being solved and uses hard constraint propagation for pruning the search space. Until now existing

DCOP algorithms like ADOPT or DPOP did not try to take advantage of domain specific knowledge

while solving a particular DCOP instance. H-DPOP is unique in this sense as it provides the constraint

optimization algorithm with knowledge about the problem domain through this modular plug-in mech-

anism. Our results show that this knowledge can help reducing the size of the UTIL messages by up to

99%. This function is problem-specific and encapsulates the pruning logic into the H-DPOP algorithm.

The input to this function is the constraint array C, which is a partial assignment. The function then

processes this input using hard constraint propagation and determines if C represents a feasible combi-
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Algorithm 6 Combining two CDDMessages: JOIN operation
Procedure combineCDDMessages
input : Msg1, Msg2, leafDimension
output : Combined CDDMessage of Msg1 and Msg2

begin

1 Dim[] union = Msg1.DimensionArray ∪ Msg2.DimensionArray
2 Rearrange union array to make leafDimension as the last one
3 CDDRoot = ConstructCDD(union, new Array(union.length),

0)∩ each path ∈ {Msg1 ∪ Msg2}
4 combinedMsg = new CDDMessage(CDDRoot, union, CDDRoot.pathsCount)

//pathsCount represents total paths from root to leaves

end
5 foreach path of CDDTree with root = CDDRoot do

6 path = current path under consideration
7 util1 = Msg1.findUtil(union, path)
8 util2 = Msg2.findUtil(union, path)
9 combinedMsg.setUtility(util1+util2, path.index)

10 return combinedMsg

Procedure findUtil
input : unionDim, srcPath
output : The utility value corresponding to local contribution to srcPath

11 myDim = this.DimensionArray
12 Initialize myPath = new Vector(myDim.length)
13 myPath =

< (di = srcPath[j]) >: i ∈ [0, myDim.length] ∩ ∃j s.t. srcDim[j].id = myDim[i].id
14 index = htable.getvalueByKey(myPath)
15 return this.UtilArray[index]



70 H-DPOP: compacting UTIL messages with consistency techniques

Algorithm 7 PROJECT operation for a CDDMessage
Procedure projectMine: projects out the last dimension of this CDDMessage
output : returns the new CDDMessage

1 Initialize BestUtilities = new Vector()
2 foreach path of CDDTree of this CDDMessage do

3 path = currentPath under consideration
4 pathPrefix = path.prefix(0, path.size-1)
5 if utility already set for pathPrefix then

6 continue
else

7 util =
Max(Pi.util : Pi.prefix(0,Pi.size−1)= pathPrefix∩Pi ∈ {paths of CDDTree})

8 BestUtilities.set(util, pathPrefix)

9 Initialize newDim[] to this.DimensionArray[0] to [totalSize-1]
10 newTree = constructCDD(newDim, new Array(newDim.length), 0)
11 newMsg = new CDDMessage(newTree.root, newDim, newTree.pathsCount)
12 Initialize newMsg.UtilArray from BestUtilities
13 return newMsg

nation. For the server problem described in Section 5.1, isConsistent simply returns false for

all partial assignments where several variables take the same value, because the hard constraints do not

allow this.

Procedure 7 isConsistent(C, currentIndex)
output : true if C is valid, false otherwise
for i = 0 to currentIndex − 1 do

if C[i] == C[currentIndex] then return false

return true

The next section discusses the relationship between H-DPOP and search algorithms.

5.3 Comparing H-DPOP with search algorithms

Distributed search ( [141, 81, 194, 33]) is an alternative approach to inference based algorithms like

DPOP. Algorithms based on sequential search naturally provide pruning based on hard constraints:

partial assignments that have led to an inconsistency are not further explored, and the search backtracks.

Further pruning is achieved through more sophisticated consistency techniques, and by using variants

of the branch-and-bound principle. The main advantage of search over inference based algorithms like

DPOP ( [160]) is that search uses only polynomial space, which makes it suitable for memory limited

platforms. The main drawback is that typically, search algorithms require an exponential number of
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small messages, thus producing high network overheads.

A major improvement to search has been to use a cache at each node to remember past results

( [42]). The total size of all caches represents the explored search space in sequential search. Experi-

mentally we will show that the total explored search space in search with full caching is similar to the

explored space in H-DPOP. This comparison will provide a further testimony to the pruning power of

H-DPOP with an important advantage that H-DPOP uses linear number of messages, as opposed to an

exponential number in search.

In addition, we will show comparisons with a version of search which exploits only hard constraints

without using the branch and bound principle. This version of search is closer to our H-DPOP algorithm

as H-DPOP does pruning using hard constraints only without any other bounding. Our experiments

show that search only using hard constraints provides similar performance as branch and bound search

with only minimal degradation in cache size and message exchanges. This further highlights that the

hard constraints are the dominating factor in all these problems and H-DPOP which efficiently exploits

them with linear number of messages is superior to search.

5.3.1 NCBB: Non Commitment Branch and Bound Search for DCOP

NCBB ( [33]) is a polynomial space distributed branch and bound search for distributed optimization.

The basic idea of branch and bound is the same as in centralized branch and bound search ( [118]).

The distributed nature of search allows it to use different agents to search the non intersecting parts of

search space concurrently providing speed and computational resource advantage. It also allows for

eager propagation of bound changes from children to parent providing better pruning. The details of

NCBB can be found in [33]. We will describe it shortly here.

NCBB works on the DFS tree arrangement of agents in the constraint graph. The DFS ordering can

be done in the same way as in Section 3.4.1 or in [33]. The main advantage of such an ordering over

the traditional OR based search is that given ancestor assignments the agents in a given subtree can

work independently to minimize their cost. The time complexity of O(dn) in the OR based search (d is

the maximum domain size, n is the number of agents) reduces to O(bdH+1), where b is the branching

factor of DFS tree arrangement, d is the maximum domain size and H is the depth of DFS traversal of

constraint graph.

During the initialization of search in NCBB all agents compute the global upper and lower bounds

on the solution cost. Then each agent chooses its value greedily provided the ancestor assignments

to minimize its contribution (excluding the its subtree) to the global solution cost. After initialization

agents start performing the main search procedure. An agent Xi initiates search (in its subtree) only

after receiving an explicit SEARCH message from its parent. Before this SEARCH message all Xi’s

ancestors choose their values and announce them to all their descendants.
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A distinct feature of NCBB is that when Xi selects a value to explore on a given subtree it may

choose different values for its different subtrees (the non commitment part). The advantage of such

concurrent search is that it allows for tighter upper bound when a value is used in a different subtree

as we can take into account the already known cost for the completed subtree searches and do better

pruning. Once the search is finished at the root for all subtrees and for each of root’s values we have

the solution to the optimization problem.

5.3.1.1 NCBB with caching

The main advantage of search over inference based algorithms like DPOP ( [160]) is that search uses

only polynomial space making it suitable for memory limited platforms. However the polynomial space

comes with a price: search forgets everything from the past, so it may have to re-explore some parts

of the search space. A natural extension of search would be to use a variable sized cache at each agent

storing the previous search results, so that when the search explores previously visited search space its

value can be directly looked upon in the cache. Such a scheme greatly improves the performance of

search (as shown in [42], [32]) and allows the user to control the space-time tradeoff by varying the

cache size (using user defined cache factor).

An advanced version of NCBB ( [32]) incorporates such a caching scheme. The maximum cache

size at any node Xi is d|Sepi| (see Section 3.1.2.3). In the original NCBB the cache stores the solution

cost, indexed by the value assignment in Sepi, provided by the subtree at Xi. The results are entered

in the cache given the subtree can provide a solution within the current bounds at Xi. Otherwise the

result is not cached. In practice such a scheme keeps the cache size smaller at the expense of extra

effort (number of messages) invested for re-exploring the previously pruned and not cached parts of the

search space.

NCBB∗: NCBB with a modified caching policy We have modified the caching in NCBB

(called NCBB∗, shown in graphs as NCBB Modified) so that we also store the < cost, Sepi > pair at

Xi even if for the current Sepi assignment subtree can not provide a solution within the bounds. This

saves us the extra effort when such a combination is encountered again in the search. NCBB∗ works

on the same DFS tree as in H-DPOP using the MCN heuristic ( [208, 127]) to provide comparable

results. We have implemented another version of search which works only on the hard constraints

without any other bounds is NCBB Hard Constraints.

In NCBB∗ we store the < Sepi, cost > pairs in the cache even if the subtrees rooted at agent Xi

can not provide a solution within the current bounds. This modification saves the overhead in terms

of messages exchanged when the same Sepi assignment is explored again. Figure 5.3(b) shows the

number of messages exchanged in NCBB and NCBB∗ (for experimental setup see Section 5.4.1.2,

here it suffices to know that p or edge inclusion probability, plotted on the x axis, is a graph parameter).
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Figure 5.3: NCBB vs NCBB∗: NQueen graphs

NCBB∗ always requires a smaller number of messages, and the savings are often quite significant

(between 40% and 65% for p=0.19).

In contrast, the cache size used in NCBB∗ is more than the cache in NCBB but this increase in

the cache is more than compensated by reduced message exchange. It is better to have a slightly bigger

local cache than to increase the network overhead by exchanging larger number of messages. The idea

of search with caching being better than the search alone is a testimony to this approach.

Hence in our opinion the comparison of H-DPOP with NCBB∗ is more accurate than H-DPOP vs

NCBB, as both H-DPOP and NCBB∗ traverse a similar search space.

5.3.2 Comparing pruning in search and in H-DPOP

NCBB Hard Constraint and H-DPOP both prune the search space based on only hard constraints, so

we would expect that the size of explored search space should be identical in both cases. However,

the experimental results show that there are slight variations. We show in the following the different

pruning strategies employed by search and H-DPOP which account for this difference.

Figure 5.4 shows a DFS arrangement of a constraint network. First consider the pruning done by

H-DPOP. H-DPOP does pruning from bottom up. As the message goes up from the leaf in the subtree

of node N3 it prunes all the inconsistent combinations. H-DPOP always explore the search space at

any node Ni which is consistent given the assignment of Sepi nodes at Ni and the subtree of Ni. On

the contrary this is not true for search algorithms. Search prunes assignments from top to bottom. At

the node N1, the partial solution from root Nroot until N1 is consistent. However, there is no guarantee

that this consistent partial solution will be consistent upon further exploration of the subtree at N1.

Furthermore, there is no guarantee in either search or the H-DPOP algorithm that they always ex-
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Figure 5.4: A DFS tree arrangement to illustrate differences in bottom-up pruning (H-DPOP)
vs. top-down pruning (search)

plore only globally consistent combinations. H-DPOP explores consistent solutions in the assignment

space of Sepi nodes and the subtree of any node Ni. However, such combinations may become incon-

sistent as UTIL messages goes up the DFS tree on two accounts. In Figure 5.4, N3 sends its message

to its parent. The parent combines this message message with its other child N2’s message. During

this process the combinations which are present in both sibling’s messages are passed up, and the rest

are pruned. The other source of pruning are the constraints of N4 with its parent and pseudo parents,

which could make some combinations from the children of N4 inconsistent.

In search, any consistent partial solution may become inconsistent as the search expands lower

nodes in the DFS tree. So this leads to inconsistent search space exploration in NCBB Hard Constraint.

5.4 Experimental Results

This section discusses the performance of H-DPOP on a number of problems: optimal query place-

ment(introduced in Section 5.1), distributed graph coloring and winner determination in distributed

combinatorial auctions (only with buyers). All these problems have a satisfaction component (solutions

must not violate any hard constraints, thus incurring infinite costs), and an optimization one (maximiz-

ing utility, or minimizing cost, respectively). The experiments were performed on the FRODO platform

(publicly available, [154]). The machine used has 1GB RAM with two P4 3GHz processor.

We performed two sets of experiments : (1) H-DPOP vs DPOP (see Section 5.4.1) and (2) H-DPOP

vs NCBB (see Section 5.4.2). The H-DPOP vs DPOP experiments mainly focus on the space savings

provided by H-DPOP by pruning the search space. The second set of experiments (H-DPOP vs NCBB)

compares the search space explored and message exchanges in H-DPOP vs different versions of NCBB.

For space comparisons we compare the logical sizes of the corresponding units (hypercubes in DPOP,

CDDs in H-DPOP and total cache size in search with caching).
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5.4.1 DPOP vs H-DPOP: Message Size

These experiments mainly focus on the space savings provided by H-DPOP by pruning the search

space. We have performed 4 sets of experiments: query placement problems, graph coloring problems,

n-queens problems, and combinatorial auctions problems.

5.4.1.1 Optimal query placement in an overlay network

For experiments the problem is made deliberately very constrained by assuming that each server is able

to execute the complete set of services. For simplicity’s sake, each server can execute only a single

service at a time. The objective of the DCOP algorithm is to maximize the overall utility.

We generated random problems of different sizes, with a random number of soft constraints among

variables. All-different hard constraints are introduced thus making the constraint graph fully con-

nected. The size of the hypercube is the number of entries in the hypercube, the size of the CDD

Message is the number of entries in the Util array combined with the logical size of CDDTree (each en-

try in the CDDNode corresponds to 1 unit in the space measurement, links to children are also counted

as 1 unit).

Figure 5.5(a) shows the maximal/total message size in H-DPOP versus DPOP. Problem size is

denoted by m ∗ n implying m variables each having the same domain of size n. Results show that

H-DPOP is much superior to DPOP for all problem sizes, culminating with the largest problems (9

servers × 9 services) where H-DPOP produces 3 orders of magnitude smaller messages and smaller

total message.

Figure 5.5(b) shows the effect of problem size on space savings provided by CDDs. We count the

percentage of unfeasible assignments carried in the UTIL messages, and we plot this as “wasted space

in DPOP”. We see that the space wasted by DPOP is above 90%, and for larger and more difficult

problems, close to 100%. In contrast, CDDs enable H-DPOP to avoid this problem. Even though

CDDs introduce the overhead of representing the CDDTree explicitely, overall the space savings they

provide by not sending infeasible combinations more than compensates: savings start around 48% for

small problems (5*5), and increase with problem size, up to 99% for 9*9 problems.

5.4.1.2 Random Graph Coloring Problems

We performed experiments on randomly generated distributed graph coloring problems. In our setup

each node in the graph is assigned an agent (or a variable in DCOP terms). The constraints among

agents define the cost of having a particular color combination. The cost of two neighboring agents

choosing the same color is kept very high (10000) to disallow such combinations. The domain of each

agent is the set of available colors. The mutual task of all the agents is to find an optimal coloring
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Figure 5.5: Query placement problems: H-DPOP vs DPOP performance

assignment to their respective nodes.

For generating these graphs we have two parameters-number of agents and the constraint density.

We keep the number of agents fixed to 10. We start with a fully connected graph and remove the edges

successively until we reach the desired constraint density and the problem is still connected.

Figure 5.6 shows the results on a 10 nodes randomly generated problem for a range of constraint

densities (0.2-0.89). The problems within densities 0.2-0.5 were 4-colorable (implying domain size 4).

The problems from 0.5-0.9 were 6-colorable. For statistically sound results for each constraint density

we generated 50 random problems and the results shown are the average of 50 runs.

Figure 5.6(a) shows the full spectrum of performance of H-DPOP vs DPOP in terms of the max-

imum/total message size. For accounting the message size we take into account the number of util

values in the hypercube for DPOP, for the H-DPOP we count the length of the UTIL array and the

(logical) size of the CDD tree in the CDD Message. As can be seen, H-DPOP is better for most of

the regions (density 0.4-0.89) except for densities from 0.2-0.4. To understand the characteristics of

H-DPOP we divide the densities into three regions- low density (0.2-0.4), medium density (0.4-0.7)

and high density (0.7-0.9).

For the low density region (Figure 5.6(b)) DPOP performs better than H-DPOP. The explanation is

the same as in Section 5.4.1.1: at low density the size of the hypercube is small. CDDs at low density

do not provide sufficient pruning to overcome the overhead introduced by the size of the CDDTree in

the CDDMessage.

For the medium density region (Figure 5.6(c)) H-DPOP is much better than DPOP. The sizes of both

hypercubes and CDDMessages increase with density. This is the expected behavior as with the increas-
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ing constraint density the width increases leading to exponential increase in message size. However

with CDDs we still get much space savings.

The high density region (Figure 5.6(d)) provides interesting results for the H-DPOP. In DPOP, as

expected, the maximum message size increases with the density. However we see an opposite trend in

H-DPOP, instead of CDDMessage size increasing with the density, it starts decreasing. The reason is

that at high constraint density the extent of pruning done by CDDs is also very high. So although the

problem becomes more complex with high connectivity, the increased pruning by the CDDs overcome

this increase and at very high densities the pruning dominates the increase in problem complexity.

5.4.1.3 NQueens problems using graph coloring

For an n×n chessboard a queen graph contains n2 nodes, each corresponding to a square of the board.

Two nodes are connected by an edge if the corresponding squares are in the same row, column, or

diagonal. The intuition behind using graph coloring on a queen graph is that we can place n sets of n

queens on the board so that no two queens of the same set attack each other if the chromatic number of

the graph is at least n.

For our experiments we took the problems from Stanford Graphbase ( [113]). For a 5-colorable

5× 5 queen graph (width 19, 25 agents, density 0.53) DPOP was unable to execute (maximum message

size 19073486328125). H-DPOP successfully executed in 15 seconds with a maximum message size

of 9465, achieved through the high pruning power of the CDDs.

However, for board sizes 6× 6 (7 colorable with width 31, density 0.46) and above H-DPOP was

also unable to execute due to increased width and domain size. Relaxing a highly constrained problem

is a well known technique in CSP literature. We adopt this technique into generating queen graphs so

that the inclusion of any edge in the graph is done with a probability p. If this probability is 1 we get

the complete queen graph.

We experimented by varying this probability from 0.05 to 0.25 for 6× 6 board with the resulting

graphs being 4-colorable. For each datapoint we took the average of 50 randomly generated problems.

Graph remains 4-colorable until p=0.25 and increasing the p beyond increases the coloring number.

A direct implication of this fact is that at p=0.25 the graph is highly constrained with respect to the

coloring number 4. This observation lead us to believe that the nature of H-DPOP and DPOP should

be similar to the random coloring experiments.

Figure 5.6(e) shows the result for maximum and total message size against the probability p. The

dotted vertical line at x=0.14 divides the graph into two regions. For the first region both H-DPOP and

DPOP increase in the maximum message size. However as the density (which is directly related to

p) increases we see the same trend as in random problems. DPOP continues to increase in maximum

size but the size in H-DPOP remains constant (p ∈ [0.14, 0.20]), and it starts decreasing in the region
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Figure 5.7: Combinatorial Auctions: H-DPOP vs DPOP comparison

[0.20,0.25].

5.4.1.4 Winner Determination in Combinatorial Auctions

Combinatorial Auctions (CA) provide an efficient means to allocate resources to multiple agents. In

CA bidders can bid on a bundle of goods in addition to single item bidding. This provides for comple-

mentarity and substitutability among the goods. In our experimental setting there is a single seller and

multiple buyers (agents). The agents are distributed (geographically or logically) and have information

about only those agents with whom their bids overlap. The mutual task of agents is to find a solution

(assign winning or losing to bids) which maximizes the seller’s revenue providing a feasible solution

(no overlap among winning bids).

In our formulation we do search through the constraint network of bids presented (rather than con-

sidering all possible bids). Such a formulation has been shown to be very effective in CABOB [185,

183] and BOB [184]. However we do not intend to compare with these approaches as they are both

centralized and use linear programming to augment the search method (not feasible in distributed set-

ting).

The variables in our setting are the bids presented by the agents. Each agent is responsible for the

bid it presents. The domain of each variable is the set {wining, losing}. Hard constraints are for-

mulated between bids sharing one or more goods, disallowing several of them to be assigned winning.

The value of each bid is modeled as an unary constraint on the associated variable.

We generated random problems using CATS (Combinatorial Auctions Test Suite [122]) using the

paths and Arbitrary distributions. For the paths distribution the number of bids was varied for a fixed

number of goods (100). Each agent is allowed to present only one bid. In paths distribution goods are
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the edges in the network of cities. Agents place bids on a path from one city to other based on their

utilities. In our setting we fixed the number of cities to 100 with initial connection 2 (link density).

Since the city network structure is fixed, as the number of bids increases we expect a higher number of

bids to overlap with each other and increase the problem complexity. For the Arbitrary distribution we

use all the default CATS parameters. The number of goods is 50, and the number of bids varies from

25 to 50 increasing the complexity of the problem. Each data point is obtained as the average of 20

instances.

Figure 5.7(a) shows a comparison of DPOP with H-DPOP (average of 20 problems for each data-

point) on paths distribution. DPOP as expected increases in message complexity with the number of

bids. The pruning provided by H-DPOP is very high (around 99% of hypercubes) and increases with

number of bids. Because of such high pruning H-DPOP runs on problms with very high width (35,

bids=70) where memory requirements for DPOP are prohibitively expensive. We see a similar trend

for the arbitrary distribution (figure 5.7(b)). H-DPOP is much superior to DPOP and provides very

high pruning.

5.4.2 H-DPOP vs NCBB: Search Space Comparison

This second set of experiments (H-DPOP vs NCBB) compares the search space explored and message

exchanges in H-DPOP vs different versions of NCBB. For space comparisons we compare the logical

sizes of the corresponding units (hypercubes in DPOP, CDDs in H-DPOP and total cache size in search

with caching).

5.4.2.1 H-DPOP vs NCBB: N-Queens

We performed a comparison of search space using the number of cache entries in NCBB’s different

versions and the number of util values in H-DPOP (excluding the size of CDD Tree for fair comparison)

at each agent on the graph coloring problem. We selected a particular instance of queen graph (6× 6

board, p=0.2, domain size=4, width=9). Our aim was to find a 4 coloring of the graph optimizing the

costs assigned for color combinations. As the performance of any branch and bound search is cost

dependent we generated 50 random instances of the same problem differing in the cost assignment to

color combinations, each data-point is an average of 50 instances.

As stated in Section 5.3.1.1, NCBB uses much smaller cache size for all agents (Figure 5.8(a)). The

reason is the non inclusion of Sepi assignments for which subtrees do not provide a solution within the

bounds. The cache size in NCBB∗ is similar for most of the agents to the message size in H-DPOP.

There are a few cases (for agents 7,10,11,12,17,19,33) in which NCBB∗ is better than H-DPOP.

The relevant part of the DFS tree (with depth 15) for this problem is shown in figure 5.8(b), all

nodes without any children are the leaves. A deeper look into the DFS arrangement suggests that all
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Figure 5.8: NQueen Problems: H-DPOP vs NCBB Search Space comparison

the nodes with size variations are in the lower part of the DFS tree. A search algorithm will have tighter

upper bounds on the solution cost when it is expanding a high depth node, so it is natural that the effect

of bounding is more pronounced for such nodes. On the contrary H-DPOP does not make use of any

bounding, it prunes only the inconsistent combinations. Hence it takes more space at such nodes lower

in the DFS.

An interesting result is that at the node with maximum size (Agent 6, with highest width=9) H-

DPOP is much better (with size 216) as compared to cache size of 1094 in NCBB∗. At high width

regions NCBB∗ does not provide good pruning (based only on bounding) however H-DPOP prunes

many combinations based on consistency check. This is consistent with our previous results that at

highly constrained regions H-DPOP provide very high pruning and almost negates the effect of in-

creasing complexity.

Figure 5.9 compares NCBB and H-DPOP on the full range of 6× 6 board size queen problems.

The problems are same as used in Section 5.4.1.2 for solving NQueen problem using graph coloring.

For each data point there are 20 randomly generated instances. As we can see from the explored search

space graph (figure 5.9(a)) both NCBB∗ and H-DPOP explore nearly similar size search space. NCBB

Hard Constraint explores marginally larger search space than NCBB∗ and as expected its search space

size is very similar to H-DPOP since both H-DPOP and NCBB Hard Constraint do pruning based only

on hard constraints.

There is not a dramatic benefit of bounding on the search between NCBB∗ and NCBB Hard

Constraint. This further strengthens our claim that the major portion of pruning is attributed to the hard

constraints which are exploited more efficiently by H-DPOP. One important advantage of H-DPOP is

that it uses much less messages than NCBB or NCBB∗ (figure 5.9(b)). Even for the simpler problems



82 H-DPOP: compacting UTIL messages with consistency techniques

 10

 100

 1000

 10000

 100000

 0.05  0.1  0.15  0.2  0.25

E
xp

lo
re

d 
S

ea
rc

h 
S

pa
ce

Edge Inclusion Probability

H-DPOP
NCBB-Hard Constraint

NCBB Modified
NCBB Original

(a) Explored Search Space

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0.05  0.07  0.09  0.11  0.13  0.15  0.17  0.19  0.21  0.23  0.25

M
es

sa
ge

 E
xc

ha
ng

e(
lo

g 
sc

al
e)

Edge inclusion probability

H-DPOP
NCBB HardConstraint

NCBB Modified
NCBB Original

(b) Message Count

Figure 5.9: NQueen Problems (full range): H-DPOP vs NCBB comparison

(with p = 0.05), NCBB uses far more number of messages than H-DPOP which always has a constant

message count (70). This advantage coupled with nearly equivalent explored search space make H-

DPOP much superior to a branch and bound scheme like NCBB.

5.4.2.2 H-DPOP vs NCBB: Combinatorial Auctions

In this section we compare NCBB’s different versions and H-DPOP on two metrics: explored search

space and messages exchanged. The comparisons are shown in figure 5.10. The data set used is the

same as in the previous section (H-DPOP vs DPOP on CA).

Notably explored search space is similar for both NCBB∗, NCBB Hard Constraint and H-DPOP

for all bids. NCBB Original uses smaller cache size as it does not caches all combinations. The

difference between NCBB Hard Constraint and NCBB Modified is again minimal suggesting that only

the hard constraints play the vital role for pruning.

With respect to the message exchanges H-DPOP is much superior to all versions of NCBB on both

paths and arbitrary distribution (figure 5.10). There is a slight difference in the number of messages

between NCBB Modified and NCBB original but it is small to be visible on graph. NCBB Modified

uses less number of messages (by around 5%).

Interestingly on the arbitrary problems (figure 5.10(d)) NCBB Hard Constraint is slightly better

than its other two counterparts in terms of message exchanges. We found out that this trend occurs

because NCBB Hard Constraint backtracks whenever it finds a single inconsistency in the partial solu-

tion. However both NCBB original and NCBB Modified tolerate inconsistent solutions until they find

a better one. Figuring out the upper bound (the cost of violating one hard constraint) on the consistent

solution makes NCBB and NCBB Modified to exchange extra messages.
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Figure 5.10: Auctions: H-DPOP vs NCBB comparison

Once again in these set of experiments we have shown that explored search space is similar in both

NCBB and H-DPOP, with H-DPOP requiring only a linear number of messages. Also the effect of

bounding is negligible on pruning the search space as main pruning is provided by the hard constraints.

5.5 Related work

H-DPOP draws mostly from the dynamic programming algorithm DPOP (Chapter 4), and Constraint

Decision Diagrams (Cheng and Yap [34]). DPOP produces large arity relations that are sent over the

network. On the other hand, CDDs can take advantage of hard constraints to represent compactly such

large arity relations, thus being a well suited alternative for minimizing network traffic and memory

requirements for DPOP.

Recently, And/Or Multi-valued Decision Diagrams (AOMDDs) have been introduced by Mateescu

and Dechter in [136]. They first arrange the problem as a pseudo-tree (of which DFS is a special case).
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Subsequently, on that pseudotree structure, they start a bottom-up compilation, by computing (and

subsequently joining) high-arity relations (as in DPOP). However, their purpose is to have a compact

compilation of the entire constraint network in the root node. Therefore, they do not execute projections

at each node along the way, thus obtaining a large AOMDD at the root, that represents the entire

network. AOMDDs are space- and computation-exponential in the induced width of the DFS ordering

used.

In principle, CDDs are OR-based structures, so for a complete compilation of the network, they are

exponential in the path-width 1 of the problem, rather than exponential in the induced width. Therefore,

they could be less space-efficient than AOMDDs. However, since each variable projects itself out of the

outgoing message, our CDD representations are also guaranteed to be only exponential in the induced

width of the DFS ordering used, as opposed to exponential in the problem size.

Wilson [222] introduced SLDDs (Semiring-Labelled Decision Diagrams), a generalization of CDDs

to semiring structures. Our dynamic programming framework (DPOP) is easily extendable to semir-

ing structures as well, by using SLDDs instead of CDDs as data structures for the message exchange.

As CDDs, SLDDs are also OR-based structures, which means that they are size-exponential in the

path-width of the problem. However, for the same reasons cited above, SLDDs applied in our context

(variable elimination along a DFS tree) would also be exponential only in the induced width as opposed

to the path width.

5.6 Summary

This chapter introduced H-DPOP, a new algorithm for constraint optimization based on DPOP. H-

DPOP applies consistency techniques to reduce message size and memory requirements in DPOP by

using CDDs. H-DPOP is an orthogonal technique, which means it can be combined with other exten-

sions of DPOP like LS-DPOP, MB-DPOP, A-DPOP, etc. Experimental results show that in cases where

the problems are highly constrained, this representation allows for as much as 99% space savings as

compared to the basic dynamic programming approach.

The second contribution of this chapter is an extensive comparison with search algorithms, which

compares the pruning achieved by search with the one achieved by using CDDs in dynamic program-

ming. Pruning techniques are very natural to search algorithms, and can boost their performance sig-

nificantly. Introducing CDDs into DPOP gives dynamic programming algorithms similar pruning ca-

pabilities, and yields similar performance improvements. Our extensive analysis shows that although

pruning in H-DPOP works bottom-up as opposed to top-down in search, similar effects are obtained,

and the portions of the search space explored by H-DPOP and search are very similar.

There are many realistic scenarios where hard constraints restrict the search space significantly.

1Path-width is the induced width of linear orderings
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For example, several types of auctions have this property: auctions where agents bid on paths in space

like railroad auctions, auctions for airport time slots, etc. Other examples include advanced versions of

the service allocation problem, or scheduling with resource constraints. All these problems are large,

highly constrained problems, and can be efficiently solved by H-DPOP.

We conclude that in many applications such as those described above, H-DPOP is an excellent

approach, because it combines the best of both search and dynamic programming: it requires only a

linear number of messages like dynamic programming (i.e. low networking overhead), and by using

CDDs and their pruning power we can effectively limit the size of these messages, like in search.
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Part III

Tradeoffs

In this part of the thesis we discuss tradeoffs in DCOP along 3 dimensions: solution quality (complete vs.

incomplete algorithms), memory requirements (linear / polynomial / exponential), communication requirements

(few large messages vs. many small messages), degree of distribution (fully distributed algorithms vs. partial

centralization algorithms).
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Chapter 6

Tradeoffs between Memory/Message
Size and Number of Messages

In this chapter we discuss possible tradeoffs that variants of the DPOP algorithm can offer for

problems with high induced width, where the basic DPOP algorithm cannot be applied due to

memory or communication restrictions. The chapter is organized as follows: we start with a quick

recapitulation of DPOP, and its main features in Section 6.1. Then we present the first contribution

of this chapter: a generic, configurable framework for identifying and isolating difficult subprob-

lems of high width, which cannot be solved with the high-performance DPOP propagations. A

distributed algorithm to this effect is presented in Section 6.2. Once such difficult subproblems are

identified, they can be solved with any of a number of alternative methods, and the partial results

integrated in the overall DPOP propagation.

The second contribution is MB-DPOP, a configurable algorithm that uses the cycle-cutset idea to

offer a tradeoff between the amount of memory used and the number of messages. MB-DPOP is

shown to perform up to 5 orders of magnitude better than ADOPT, the state of the art in memory-

bounded search.

The third contribution is O-DPOP, a hybrid of best-first search and dynamic programming, which

combines some advantages of both worlds: First, it uses messages whose size only grows linearly

(as in search) with the treewidth of the problem. Second, by letting agents explore values in a best-

first order, it avoids incurring always the worst case complexity as DPOP, and on average it saves

a significant amount of computation and information exchange.

6.1 DPOP: a quick recap

The basic dynamic programming algorithm DPOP has been introduced in Chapter 4. DPOP is an

instance of the general bucket elimination scheme from [51], which is adapted for the distributed case,

and uses a DFS traversal of the problem graph as an ordering. DPOP has 3 phases:

89
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1. DFS traversal: a DFS traversal of the graph is done using a distributed DFS algorithm, like

in [160], which works for any graph requiring a linear number of messages. The outcome is that

all nodes consistently label each other as parent/child or pseudoparent/pseudochild, and edges

are identified as tree/back edges. The DFS tree serves as a communication structure for the other

2 phases of the algorithm: UTIL messages (phase 2) travel bottom-up, and VALUE messages

(phase 3) travel top down, only via tree-edges.

2. UTIL propagation: the agents (starting from the leaves) send UTIL messages to their parents.

The subtree of a node Xi can influence the rest of the problem only through Xi’s separator, Sepi.

Therefore, a message contains the optimal utility obtained in the subtree for each instantiation of

Sepi. Thus, messages are size-exponential in the separator size (which is in turn bounded by the

induced width).

3. VALUE propagation: a top-down optimal assignment propagation phase is initiated by the root,

when phase 2 has finished. Each node determines its optimal value based on the computation

from phase 2 and the VALUE message it has received from its parent. Then, it sends this value

to its children through VALUE messages.

DPOP complexity:

• number of messages: linear in the number of agents

• message size: largest UTIL message is space-exponential in the width of the DFS ordering used.
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6.2 DFS-based method to detect subproblems of high width

We have seen that DPOP’s memory requirements are exponential in the induced width of the constraint

graph, which may be prohibitive for problems with large width. For such cases, we introduce the control

parameter k which specifies the maximal amount of inference (maximal message dimensionality). This

parameter is chosen s.t. the available memory at each node is greater than dk, (d is the domain size).

We propose in this section an algorithm that identifies subgraphs of the problem (clusters) that have

width higher than k, where due to memory limitations, it is not possible to perform full inference as in

DPOP. Nodes inside such clusters will have to recourse to some other techniques (see Section 6.3, Sec-

tion 8, Section 7.1, Section 7.2). Nodes outside these clusters can perform the normal DPOP UTIL and

VALUE propagations, which have the advantages we previously discussed (optimality guarantees, low

overhead, etc). The result is that in most parts of the problem, high-performance DPOP propagations

are used, and only in minimal, high-width subproblems we have to recourse to other alternatives.

Definition 19 (Cluster node) Given a DFS tree and a number k, a node Xi in the DFS is called a

cluster-node iff |Sepi| > k.

A cluster is bounded at the top by the lowest node in the tree that has separator of size k or less. We

call these top-bounding nodes cluster roots (CR).

Definition 20 (Cluster root node) Given a DFS tree and a number k, a node Xi in the DFS is called

a cluster-root node iff ∃Xj ∈ Ci s.t. |Sepj | > k, and |Sepi| ≤ k.

Definition 21 (Cluster of width greater than k) Given a DFS tree and a number k, a cluster Cr of

width greater than k is a set of nodes which are all labeled as cluster node or cluster root, and there is

a tree path between any pair of nodes Xi, Xj ∈ Cr, that goes only through cluster nodes.

Briefly, the clusters are identified in a bottom-to-top pass on the DFS tree. The process works by

labeling the nodes with separator size larger than k as cluster-nodes, and including them in a cluster.

Subsequently, inside a cluster, we use an alternative UTIL propagation which uses less memory than

the normal DPOP propagations. The goal is to find an optimal solution for each cluster for each

assignment of the variables in the separator of the cluster root. The results are cached ( [42, 8, 132]) by

the respective cluster roots and then integrated as normal UTIL messages into the overall DPOP-type

UTIL propagation. Subsequently, during the final VALUE propagation phase, the results cached in the

UTIL phase are retrieved, and the VALUE propagation continues as in normal DPOP.

If w is the induced width of the problem given by the chosen DFS ordering, depending on the value

chosen for k, we have 3 cases:
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Algorithm 8 LABEL-DFS - a protocol to determine the areas of high width.
LABEL-DFS(X , D, R, k) (assumes a DFS tree created with Algorithm 3). Each agent Xi does:

Labeling protocol:
1 wait for all LABELj → i msgs from children
2 Sepi = ∪Xj∈Ci

Sepj ∪ Pi ∪ PPi \ Xi

3 if |Sepi| > k then label self as cluster-node
4 else

5 if ∃Xj ∈ Ci such that |Sepj | > k then label self as cluster-root
6 else label self as normal

7 send LABELPi

i = [Sepi] to Pi

1. If k = 1, only linear messages are used, and memory requirements are also linear.

2. If k < w, full inference can be performed in areas of width lower than k, and an alternative

processing in areas of width higher than k. Memory requirements are O(exp(k)).

3. If k ≥ w, full inference is done throughout the problem, and the algorithm is equivalent with

DPOP (i.e. full inference everywhere). Memory requirements are O(exp(w)).

Intuitively, the larger the k, the less need for identifying clusters, and the larger the parts of the problem

where standard DPOP is applied.

In the next sections, we will discuss a number of extensions of DPOP, which all identify complex

subproblems in this way, and then apply different techniques to deal with them: Section 6.3 discusses

MB-DPOP, which applies cycle-cutsets to reduce message size, at the expense of an increase in the

number of messages. Section 8 introduces the PC-DPOP algorithm, which allows for the partial cen-

tralization of difficult subproblems. Section 7.1 introduces the LS-DPOP algorithm, which applies local

search in difficult subproblems, and limited dynamic programming to guide it. Section 7.2 introduces

the A-DPOP algorithm, an approximation scheme which limits the size of the messages to O(dk) and

propagates upper and lower bound messages in subproblems with high width.

In the following Section 6.2.1, we explain how to determine high-width areas using Algorithm 8.

6.2.1 DFS-based Label propagation to determine complex subgraphs

This is an intermediate phase between the DFS and UTIL phases, and it has the goal to delimit high-

width clusters. We emphasize that this process is described as a separate phase only for the sake of

clarity; these results can be derived with small modifications from either the original DFS construction

algorithm, or the subsequent UTIL phase.

Labeling works bottom-up like the UTIL phase. A LABELi→Pi
message is composed of the list

of nodes in the separator Sepi of the sending node Xi. Each node Xi waits for LABELj → i messages
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Figure 6.1: A DFS tree of width w = 4. Minimal areas of high width are identified based
on the node separator size (shaded clusters C1, C2 and C3). In low-width areas the normal
UTIL propagation is performed. In high width clusters, alternative UTIL propagations are
used, and cluster roots (X2, X9, X14) cache intermediate results.

from its children Xj ∈ Ci, computes its own label LABELi→Pi
, and sends it to its parent Pi. The

process finishes when the root has received LABEL messages from all its children.

Recall that each node Xi can easily determine its separator recursively, as in Equation 3.2. If the

separator Sepi of Xi contains more than k nodes, this means that the UTIL message that normal DPOP

would send would exceed the size limit O(exp(k). Therefore, Xi is part of a high-width cluster, and

labels itself as a cluster-node. If a node Xi has separator size equal to k or less, then the node could be

in one of these two cases:

• if Xi has any child which is a cluster-node (i.e. the separator of the child is larger than k), then

Xi is a cluster-root

• if Xi has only children with separators equal to k or smaller than k, then Xi is a normal node

Example 11 in Fig. 6.1, let k = 2. Light nodes (e.g. X0, X1, X3, etc.) all have separator size

less than 2. Bold nodes on the other hand have separator size greater than 2 (e.g. node X12 has

Sep12 = {X0, X8, X11}). The shaded areas are the clusters C1, C2 and C3 identified after running
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Algorithm 8.
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6.3 MB-DPOP(k): Trading off Memory vs. Number of Messages

This section introduces MB-DPOP(k) (Algorithm 9), a new hybrid algorithm that can operate with

bounded memory. MB-DPOP(k) is controlled by a parameter k which allows the user to specify the

maximal amount of inference (maximal message dimensionality). This parameter is chosen such that

the available memory at each node is greater than dk, (d is the domain size).

MB-DPOP(k) operates in the framework of Section 6.2 for detecting high-width clusters, where it

is not possible to perform full inference as in DPOP. Clusters of high width are explored with bounded

propagations using the idea of cycle-cuts [51]. The cycle-cut nodes (CC) are a subset of nodes such

that once removed, the remaining problem has width k or less. Subsequently, in each cluster all combi-

nations of values of the CC nodes are explored using sequential k-bounded UTIL propagations. There-

fore, in these areas of high width, MB-DPOP offers a tradeoff of the linear number of messages of

DPOP for polynomial memory. In areas of low width, MB-DPOP uses the normal, high performance

DPOP propagations.

The overall behavior of MB-DPOP(k) is as follows: if w is the induced width of the problem given

by the chosen DFS ordering, depending on the value chosen for k, we have 3 cases:

1. If k = 1, only linear messages are used, and a full cycle cutset is determined. MB-DPOP(1) is

similar to the AND/OR cycle cutset scheme from [135]. Memory requirements are linear.

2. If k < w, MB-DPOP(k) performs full inference in areas of width lower than k, and bounded

inference in areas of width higher than k. Memory requirements are O(exp(k)).

3. If k ≥ w, full inference is done throughout the problem; MB-DPOP(k) is then equivalent with

DPOP (i.e. full inference everywhere). Memory requirements are O(exp(w)).

Partial results within each cluster are cached ( [42, 8, 132]) by the respective cluster root and then

integrated as messages into the overall DPOP-type propagation. This helps reduce the overall com-

plexity from exponential in the total number of cycle-cut nodes to exponential in the largest number of

cycle cuts in a single cluster.

The rest of this section is organized as follows: we explain how to determine high-width areas

and the respective cycle-cuts (Section 6.3.1) and what changes we make to the UTIL and VALUE

phases (Section 6.3.2 and Section 6.3.3). The complexity of the algorithm is analyzed formally in

Section 6.3.4. In Section 6.3.5, we compare MB-DPOP with ADOPT [141], the current state of the

art in distributed search with bounded memory. MB-DPOP consistently outperforms ADOPT on 3

problem domains, with respect to 3 metrics, providing speedups of up to 5 orders of magnitude.
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Figure 6.2: A DFS tree of width w=4. In low-width areas the normal UTIL propagation is
performed. In high width areas (shaded clusters C1, C2 and C3 in (a)) bounded UTIL propa-
gation is used. All messages are of size at most dk. Cycle-cut nodes are hashed (X0, X9, X13),
and X2, X9, X14 are cluster roots. In (b) we show a 2-bounded propagation.

6.3.1 MB-DPOP - Labeling Phase to determine the Cycle Cuts

This is an extension of the framework of Section 6.2 for detecting high-width subproblems, where it is

not possible to perform full inference as in DPOP. In addition to grouping nodes into clusters of high

width, this extension also designates a subset of these nodes to be cycle-cut nodes (called a w-cutset

in [23]).

As in Section 6.2, labeling works bottom-up like the UTIL phase. Each node Xi waits for LABELi
j

messages from its children Xj , computes its own label LABELPi

i , and sends it to its parent Pi. In

Section 6.2, label messages contain the separator of the sending node. Here, we extend them by adding

to each message a list CCi of nodes to be designated as cycle cuts. The semantics of the list CCi sent

from Xi to Pi is as follows: ∀Xc ∈ CCi, there is a node Xj in the cluster which contains Xi, such that

Xj has |Sepj | > k, and Xj therefore declared Xc as a CC node. Each node computes this list through

a heuristic function based on the separator of the node, and on the lists of cycle-cuts received from the

children (see next section).

As the labeling process proceeds, the list of CC nodes will “accumulate” to the cluster root, which

is able to send its UTIL message as in normal DPOP, since its size limit is observed. Consequently, the

cluster root will send an empty CClist to its parent, as the nodes in its own cluster need not be treated

as CC nodes upstream.
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Algorithm 9 MB-DPOP - memory bounded DPOP.
MB-DPOP(X , D, R, k): each agent Xi does:

Labeling protocol:
1 wait for all LABELi

j msgs from children
2 if |Sepi| ≤ k then

3 if ∪CClists �= ∅ then label self as CR
4 else label self as normal
5 CCi ← ∅

6 else

7 let N = Sepi \ ∪CClists
8 select a set CCnew of |N | − k nodes from N
9 return CCi = CCnew ∪ CClists

10 send LABELPi

i = [Sepi, CCi] to Pi

UTIL propagation protocol
11 wait for UTILi

k messages from all children Xk ∈ C(i)
12 if Xi = normal node then do UTIL / VALUE as DPOP
13 else

14 do propagations for all instantiation of CClists
15 if Xi is cluster root then

16 update UTIL and CACHE for each propagation
17 when propagations finish, send UTIL to parent

VALUE propagation(Xi receives Sep∗i from Pi)
18 if Xi is cluster root then

19 find in cache the CC∗ corresponding to Sep∗i
20 assign self according to cached value
21 send CC∗ to nodes in CC via VALUE messages

22 else

23 perform last UTIL with CC nodes assigned to CC∗

24 assign self accordingly

25 Send VALUE(Xi ← v∗i ) to all C(i) and PC(i)

6.3.1.1 Heuristic labeling of nodes as CC

Let label(Sepi, CClists, k) be a heuristic function that takes as input the separator of a node, the lists

of cycle-cuts received from the children, and an integer k, and it returns another list of cycle cutset

nodes.

It builds the set Ni = Sepi \ {∪CClists}: these are nodes in Xi’s separator that are not marked

as CC nodes by Xi’s children. If |Ni| > k (too many nodes not marked as CC), then it uses any

mechanism to select from Ni a set CCnew of |Ni| − k nodes, that will be labeled as CC nodes. The
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function returns the set of nodes CCi = ∪CClists ∪ CCnew.

If the separator Sepi of Xi contains more than k nodes, then this ensures that enough of them will

be labeled as cycle-cuts, either by the children of Xi or by Xi itself. If |Sepi| ≤ k, the function simply

returns an empty list.

Mechanism 1: highest nodes as CC The nodes in Ni are sorted according to their tree-depth

(known from the DFS phase). Then, the highest |Ni| − k nodes are marked as CC.

Example 12 in Fig. 6.2, let k = 2. Then, Sep12 = {X0, X8, X11}, CClists12 = ∅ ⇒ N12 =

Sep12 ⇒ CC12 = {X0} (X0 is the highest among X0, X8, X11)

Mechanism 2: lowest nodes as CC This is the inverse of Mechanism 1: the lowest |Ni| − k

nodes are marked as CC.

Example 13 in Fig. 6.2, let k = 2. Then, Sep12 = {X0, X8, X11}, CClists12 = ∅ ⇒ N12 =

Sep12 ⇒ CC12 = {X11} (X11 is the lowest among X0, X8, X11)

6.3.2 MB-DPOP - UTIL Phase

The labeling phase (Section 6.3.1) has determined the areas where the width is higher than k, and the

corresponding CC nodes. We describe in the following how to perform bounded-memory exploration

in these areas; anywhere else, the original UTIL propagation from DPOP applies.

Let Xi be the root of a cluster. Just like in DPOP, Xi creates a UTILPi

i table that stores the best

utilities its subtree can achieve for each combination of values of the variables in Sepi. Xi’s children

Xj that have separators smaller than k (|Sepj | ≤ k) send Xi normal UTILi
j messages, as in DPOP;

Xi waits for these messages, and stores them.

For the children Xj that have a larger separator (|Sepj | > k), Xi creates a Cache table with one

entry Cache(sepi) that corresponds to each particular instantiation of the separator, sepi ∈ 〈Sepi〉; the

size of the Cache table is thus exactly the same as the outgoing UTIL message, i.e. O(exp(|Sepi|)).

Xi then starts exploring through k-bounded propagation all its subtrees that have sent non-empty

CClists. It does this by cycling through all instantiations of the CC variables in the cluster. Each

one is sent down to its children via a context message. Context messages propagate top-down to all the

nodes in the cluster.

The leaves of the cluster then start a bounded propagation, with the CC nodes instantiated to the

values specified in the context message. These propagation are guaranteed to involve k dimensions or
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less, and they proceed as in normal DPOP, until they reach Xi, the root of the cluster. Xi then updates

the best utility values found so far for each sepi ∈ 〈Sepi〉, and also updates the cache table with the

current instantiation of the CC nodes in case a better utility was found.

When all the instantiations are explored, Xi simply sends to its parent the updated UTILPi

i table

that now contains the best utilities of Xi’s subtree for all instantiations of variables in Sepi, exactly as

in DPOP. Pi then continues the UTIL propagation as in normal DPOP, and all the complexity of the

cycle cutset processing performed below in the cluster rooted at Xi is transparent to it.

Example 14 In Figure 6.2, let k = 2; then C2 = {X9, X10, X11, X12, X13} is an area of width

higher than 2. X9 is the root of C2, as the first node (lowest in the tree) that has Sepi ≤ k. Using

the Mechanism 1 for selecting CC nodes, we have X9, X0 as CC in C2. X9 cycles through all the

instantiations 〈X9, X0〉, and sends its child X10 context messages of the form 〈X9 = a, X0 = b〉

(only to X10 because X15 requires no cycle cutset processing, and has already sent its UTIL message

to X9). These context messages travel to all nodes in cluster C2: X10, X11, X12 and X13. Upon

receiving a context message, X12 and X13 start 2-bounded UTIL propagation (X12 with X11 and X8

as dimensions, and X13 with X11 and X10 as dimensions).

6.3.3 MB-DPOP - VALUE Phase

The labeling phase has determined the areas where bounded inference must be applied due to excessive

width. We will describe in the following the processing to be done in these areas; outside of these, the

original VALUE propagation from DPOP applies.

The VALUE message that the root Xi of a cluster receives from its parent contains the optimal

assignment of all the variables in the separator Sepi of Xi (and its cluster). Xi retrieves from its

cache table the optimal assignment corresponding to this particular instantiation of the separator. This

assignment contains its own value, and the values of all the CC nodes in the cluster. Xi informs all the

CC nodes in the cluster what their optimal values are (via VALUE messages).

As the non-CC nodes in the cluster could not have cached their optimal values for all instantiations

of the CC nodes, it follows that a final UTIL propagation is required in order to re-derive the utilities

that correspond to the particular instantiation of the CC nodes that was determined to be optimal.

However, this is not an expensive process, since it is a single propagation, with dimensionality bounded

by k (the CC nodes are instantiated now). Thus, it requires only a linear number of messages that are

at most exp(k) in size.

Subsequently, outside the clusters, the VALUE propagation proceeds as in DPOP.
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6.3.4 MB-DPOP(k) - Complexity

Assume we have chosen a given k. In low-width areas of the problem, MB-DPOP behaves exactly

as DPOP: it generates a linear number of messages that are at most dk in size. Clusters are formed

where the width exceeds k. Let T be such a cluster; we denote by |T | the number of nodes in the

cluster T , and by |CC(T )| the number of cycle cut nodes in cluster T . Let T ∗ be the cluster such that

T ∗ = argmaxT |CC(T )| (the cluster with the largest number of cycle cut nodes). Then we have the

following:

Theorem 2 (MB-DPOP Complexity) MB-DPOP(k) requires at most O(exp(k)) memory at each node.

MB-DPOP(k) requires at most O(exp(|CC(T ∗)|)) messages, each of size at most O(exp(k)).

PROOF. For the first part of the claim: during the initial labeling phase, each node determines the size of

its separator. Nodes with separator size smaller than k act as in DPOP, and thus send messages smaller

than O(exp(k)), and require memory smaller than O(exp(k)). Nodes with separator size greater than

k turn to the bounded inference process, which limit the size of their messages to O(exp(k)).

For the second part of the claim: MB-DPOP(k) executes d|CC(T )| k-bounded propagation in each

cluster T . Each propagation requires |T | − 1 messages, as each execution is similar to a limited DPOP

execution. The size of these messages is bounded by dk by construction. It is easy to see that the overall

time/message complexity is given by the most difficult cluster, T ∗: O(exp(|CC(T ∗)|)) where T ∗ is

the cluster that has the maximal number of CC nodes. �

6.3.5 MB-DPOP: experimental evaluation

We performed experiments on 3 different problem domains: distributed sensor networks (DSN), graph

coloring (GC), and meeting scheduling (MS). All experiments are run on a P4 machine with 1GB

RAM, using the FRODO [154] simulation platform.

6.3.5.1 Meeting scheduling

We generated a set of relatively large distributed meeting scheduling problems. The model is as

in [127], and described in detail in Section 2.3.1. Briefly, an optimal schedule has to be found for

a set of meetings between a set of agents. The test instances contained from 10 to 100 agents, and 5 to

60 meetings, yielding large problems with 16 to 196 variables. The larger problems were also denser,

therefore even more difficult (induced width from 2 to 5).

The experimental results are presented in Figure 6.3. Figure 6.3(a) shows the number of messages

exchanged, and Figure 6.3(b) shows the sum of all message sizes, in bytes. Figure 6.3(c) shows the
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Figure 6.3: MB-DPOP(k) vs ADOPT - evaluation on meeting scheduling problems.

runtime in milliseconds. 1. Please notice the logarithmic scale! ADOPT did not scale on these prob-

lems, and we had to cut its execution after a threshold of 2 hours or 5 million messages, whichever

occured first. The largest problems that ADOPT could solve had 20 agents (36 variables).

We also executed MB-DPOP with increasing bounds k. As expected, the larger the bound k, the

less nodes will be designated as CC, and the fewer messages will be required2. However, message size

and memory requirements increase.

It is interesting to note that even MB-DPOP(1) (which uses linear-size messages, just like ADOPT)

performs much better than ADOPT: it can solve larger problems, with a smaller number of messages.

For example, for the largest problems ADOPT could solve, MB-DPOP(1) produced improvements

1Each data point is an average over 10 instances
2Mechanism 1 for CC selection was used.
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of 3 orders of magnitude. MB-DPOP(2) improved over ADOPT on some instances for 5 orders of

magnitude.

Also, notice that even though MB-DPOP(k > 1) sends larger messages than ADOPT, overall, it

exchanges much less information (Fig 6.3(b)). We believe there are 2 reasons for this: ADOPT sends

many more messages, and because of its asynchrony, it has to attach the full context to all of them

(which produces extreme overheads).

6.3.5.2 Graph Coloring

The GC problems are the same as the ones used in [127], and are available online at [151]. These

are small instances (9 to 12 variables), but they are more tightly connected, and are quite challenging

for ADOPT. ADOPT terminated on all of them, but required up to 1 hour computation time, and 4.8

million messages for a problem with 12 variables. The results are shown in Figure 6.4.

6.3.5.3 Distributed Sensor Networks

The DSN problems are also the same as the ones used in [127], and available online at [151]. The DSN

instances are very sparse, and the induced width is 2, so MB-DPOP(k ≥ 2) always runs with a linear

number of messages (from 100 to 200 messages) of size at most 25. Runtime varies from 52 ms to

2700 ms. In contrast, ADOPT sends anywhere from 6000 to 40.000 messages, and requires from 6.5

sec to 108 sec to solve the problems. Overall, these problems were very easy for MB-DPOP, and we

have experienced around 2 orders of magnitude improvements in terms of CPU time and number of

messages.

All three domains showed strong performance improvements of MB-DPOP over the previous state

of the art algorithm, ADOPT. On these problems, we noticed up to 5 orders of magnitude less compu-

tation time, number of messages, and overall communication.

6.3.6 Related Work

The w-cutset idea was introduced in [177]. A w-cutset is a set CC of nodes that once removed, leave

a problem of induced width w or less. One can perform search on the w-cutset, and exact inference on

the rest of the nodes. The scheme is thus time exponential in d|CC| and space exponential in k.

If separators smaller than k exist, MB-DPOP(k) isolates the cutset nodes into different clusters, and

thus it is time exponential in |CC(Tmax)| as opposed to exponential in |CC|. Since |CC(Tmax)| ≤

|CC|, MB-DPOP(w) can produce exponential speedups over the w-cutset scheme.

AND/OR w-cutset is an extension of the w-cutset idea, introduced in [135]. The w-cutset nodes
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Figure 6.4: MB-DPOP(k) vs ADOPT - evaluation on graph coloring problems.
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are identified and then arranged as a start-pseudotree. The lower parts of the pseudotree are areas of

width bounded by w. Then AND/OR search is performed on the w-cutset nodes, and inference on the

lower parts of bounded width. The algorithm is time exponential in the depth of the start pseudotree,

and space exponential in w.

It is unclear how to apply their technique to a distributed setting, particularly as far as the identi-

fication of the w-cutset nodes and their arrangement as a start pseudotree are concerned. MB-DPOP

solves this problem elegantly, by using the DFS tree to easily delimit clusters and identify w-cutsets.

Furthermore, the identified w-cutsets are already placed in a DFS structure.

That aside, when operating on the same DFS tree, MB-DPOP is superior to the AND/OR w-cutset

scheme without caching on the start pseudotree. The reason is that MB-DPOP can exploit situations

where cutset nodes along the same branch can be grouped into different clusters. Thus MB-DPOP’s

complexity is exponential in the largest number of CC nodes in a single cluster, whereas AND/OR

w-cutset is exponential in the total number of CC nodes along that branch. MB-DPOP has the same

asymptotic complexity as the AND/OR w-cutset with w-bounded caching.

Petcu and Faltings present in [156] a distributed cycle cutset optimization method. The idea of

isolating independent cyclic subgraphs appears there, too, but unfortunately there is no efficient method

presented for identifying cycle cutset nodes, nor for isolating independent cyclic subgraphs. Here, the

DFS traversal of the graph is an excellent way to achieve both goals. There, the separator sizes are

always forced to 1, resulting in less opportunities for finding small clusters, that have a small number

of cycle cuts. The inference is also bounded to k = 1, not allowing the algorithm to take advantage of

additional memory that may be available. The complicated synchronization problems between cycles

from that method are solved here by simply making each cluster root wait for complete exploration of

all its cluster(s) before sending its message to its parent.

Finally, tree clustering methods (e.g. [107]) have been proposed for time-space tradeoffs. MB-

DPOP uses the concept loosely, only in high-width parts of the problem. For a given DFS tree, optimal

clusters are identified based on the bound k and on node separator size.

6.3.7 Summary

We have presented a hybrid algorithm that uses a customizable amount of memory and guarantees

optimality. The algorithm uses cycle cuts to guarantee memory-boundedness and caching between

clusters to reduce the complexity. The algorithm is particularly efficient on loose problems, where

most areas are explored with a linear number of messages (like in DPOP), and only small, tightly

connected components are explored using the less efficient bounded inference. This means that the

large overheads associated with the sequential exploration can be avoided in most parts of the problem.

Experimental results on three problem domains show that this approach gives good results for low
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width, practically sized optimization problems. MB-DPOP consistently outperforms the previous state

of the art in DCOP (ADOPT) with respect to 3 metrics. In our experiments, we have observed speedups

of up to 5 orders of magnitude.



106 Tradeoffs between Memory/Message Size and Number of Messages

6.4 O-DPOP: Message size vs. Number of Messages

In this section we propose O-DPOP, a new distributed algorithm for DCOP that can also be applied to

open constraint optimization problems (OCOP), i.e. problems that feature unbounded domains [70].

The O-DPOP algorithm explores the same search space as DPOP or ADOPT [141], but does so in an

incremental, best-first fashion suitable for open problems.

As seen in Chapter 3, complete algorithms for distributed constraint optimization fall in two main

categories: search (see [39, 226, 198, 141, 96]), and dynamic programming (see [160, 107]).

On one hand, search algorithms (e.g. ADOPT) require linear memory and message size, and the

worst case complexity can sometimes be avoided if effective pruning is possible. However, they pro-

duce an exponential number of small messages, which typically entails large networking overheads.

On the other hand, dynamic programming algorithms (e.g. DPOP) have the important advantage

that they produce fewer messages, therefore less overhead. DPOP for example requires a linear number

of messages. The disadvantage is that the maximal message size and memory requirements grows

exponentially in the induced width of the constraint graph. Furthermore, the worst case complexity is

always incurred.

In this section we introduce O-DPOP, a hybrid which combines some advantages of both worlds:

First, it uses messages whose size only grows linearly (as in search) with the treewidth of the problem.

Second, by letting agents explore values in a best-first order, it avoids incurring always the worst case

complexity as DPOP, and on average it saves a significant amount of computation and information

exchange. This is possible because the agents in O-DPOP use a best-first order for value exploration,

and an optimality criterion that allows them to prove optimality even without exploring all the values

of their parents. This makes O-DPOP applicable also to open constraint optimization problems, where

variables may have unbounded domains [70].

We describe next the O-DPOP algorithm (Section 6.4.1 and Section 6.4.2), show examples, and

evaluate its complexity, both theoretically (Section 6.4.3) and experimentally (Section 6.4.4). Although

its worst case complexity is the same as for DPOP, O-DPOP exhibits in our experiments significant

savings in computation and information exchange.

O-DPOP is described in Algorithm 10. It works in 3 phases:

1. Phase 1 - a DFS traversal, as in DPOP (see Figure 6.5 for an example DFS).

2. Phase 2 - (ASK/GOOD) phase, which is a replacement of the UTIL phase from DPOP. It is

an iterative, bottom-up utility propagation process, where each node repeatedly asks (via ASK

messages) its children for valuations (goods) until it can compute suggested optimal values for

its ancestors included in its separator. It then sends these goods to its parent. This phase finishes

when the root received enough valuations to determine its optimal value.
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Figure 6.5: A problem graph and a rooted DFS tree. ASK messages go top-down, and GOOD
messages (valued goods) go bottom-up. All messages are of linear size.

Algorithm 10 O-DPOP - Open/Distributed Optimization
O-DPOP(X , D, R): each agent Xi does:

DFS arrangement: run token passing Algorithm 3
1 At completion, Xi knows Pi, PPi, Ci, PCi, Sepi

Main process
2 sent goods ← ∅
3 if Xi is root then

ASK/GOOD until valuation sufficiency
4 else

5 while !received VALUE message do

6 Process incoming ASK and GOOD messages

Process ASK
7 while !sufficiency conditional on sent goods do

8 select Cask
i among Ci

9 send ASK message to all Cask
i

10 wait for GOOD messages
11 find best good ∈ Sepi s.t. best good /∈ sent goods
12 add best good to sent goods, and send it to Pi

Process GOOD(gd, Xk)
13 add gd to goodstore(Xk)
14 check for conditional sufficiency

3. Phase 3 - VALUE propagation as in DPOP
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6.4.1 O-DPOP Phase 2: ASK/GOOD Phase

In backtracking algorithms, the control strategy is top-down: starting from the root, the nodes perform

assignments and inform their children about these assignments. In return, the children determine their

best assignments given these decisions, and inform their parents of the utility or bounds on this utility.

This top-down exploration of the search space has the disadvantage that the parents make decisions

about their values blindly, and need to determine the utility for every one of their values before deciding

on the optimal one. This can be a very costly process, especially when domains are large.

Additionally, if memory is bounded, many utilities have to be derived over and over again [141,

170]. This, coupled with the asynchrony of these algorithms makes for a large amount of effort to be

duplicated unnecessarily [241].

6.4.1.1 Propagating GOODs

In contrast, we propose a bottom-up strategy in O-DPOP, similar to the one of DPOP. In this setting,

higher nodes do not assign themselves values, but instead ask their children what values would they

prefer. Children answer by proposing values for the parents’ variables. Each such proposal is called a

good, and has an associated utility that can be achieved by the subtree rooted at the child, in the context

of the proposal.

Definition 22 (Good) Given a node Xi, its parent Pi and its separator Sepi, a good message GOODPi

i

sent from Xi to Pi is a tuple 〈assignments, utility〉 as follows: GOODPi

i = 〈{Xj = vk
j |Xj ∈

Sepi, v
k
j ∈ Dj}, v ∈ R〉.

In words, a good GOODPi

i sent by a node Xi to its parent Pi has exactly one assignment for each

variable in Sepi, plus the associated utility generated by this assignment for the subtree rooted at Xi.

In the example of Figure 6.5, a good sent from X5 to X2 might have this form: GOOD2
5 = 〈X2 =

a, X0 = c, 15〉, which means that if X2 = a and X0 = c, then the subtree rooted at X5 gets 15 units of

utility.

Definition 23 (Compatibility: ≡) Two good messages GOOD1 and GOOD2 are compatible (we

write this GOOD1 ≡ GOOD2) if they do not differ in any assignment of the shared variables. Other-

wise, GOOD1 �≡ GOOD2.

Example: 〈X2 = a, X0 = c, 15〉 ≡ 〈X2 = a, 7〉, but 〈X2 = a, X0 = c, 15〉 �≡ 〈X2 = b, 7〉.

Definition 24 (Join: ⊕) The join ⊕ of two compatible good messages GOODi
j = 〈assigj , valj〉 and

GOODi
k = 〈assigk, valk〉 is a new good GOODi

j,k = 〈assigj ∪ assigk, valj + valk〉
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Example in Figure 6.5: let GOOD5
11 = 〈X5 = a, X0 = c, 15〉 and GOOD5

12 = 〈X5 = a, X2 = b, 7〉.

Then GOOD5
11 ⊕ GOOD5

12 = 〈X2 = b, X0 = c, X5 = a, 22〉.

6.4.1.2 Value ordering and bound computation

Any child Xj of a node Xi delivers to its parent Xi a sequence of GOODi
j messages that explore

different combinations of values for the variables in Sepj , together with the corresponding utilities.

We introduce the following important assumption:

Best-first Assumption: leaf nodes (without children) report their GOODs in order of

non-increasing utility.

This assumption is easy to satisfy in most problems: it corresponds to ordering entries in a relation

according to their utilities. Similarly, agents usually find it easy to report what their most preferred

outcomes are.

We now show a method for propagating GOODs so that all nodes always report GOODs in order

of non-increasing utility provided that their children follow this order. Together with the assumption

above, this will give an algorithm where the first GOOD generated at the root node is the optimal

solution. Furthermore, the algorithm will be able to generate this solution without having to consider

all value combinations.

Consider thus a node Xi that receives from each of its children Xj a stream of GOODs in an

asynchronous fashion, but in non-increasing order of utility.

Notation: let LAST i
j be the last good sent by Xj to Xi. Let 〈Sepi〉 be the set of all possible

instantiations of variables in Sepi. A tuple s ∈ 〈Sepi〉 is such an instantiation. Let GOODi
j(t) be a

good sent by Xj to Xi that is compatible with the assignments in the tuple t.

Based on the goods that Xj has already sent to Xi, one can define lower (LB) and upper (UB)

bounds for each instantiation s ∈ 〈Sepi〉:

LBi
j(s) =

⎧⎨
⎩

val(GOODi
j(t)) if Xj sent GOODi

j(t) s.t. t ≡ s

−∞ otherwise

UBi
j(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

val(GOODi
j(t)) if Xj sent GOODi

j(t) s.t. t ≡ s

val(LAST i
j ) if Xj has sent any GOODi

j

+∞ if Xj has not sent any GOODi
j
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The influence of all children of Xi is combined in upper and lower bounds for each s ∈ 〈Sepi〉 as

follows:

• UBi(s) =
∑

Xj∈Ci
UBi

j(s); if any of Xj ∈ Ci has not yet sent any good, then UBi
j(s) = +∞,

and UBi(s) = +∞. UBi(s) is the maximal utility that the instantiation s could possibly have

for the subproblem rooted at Xi, no matter what other goods will be subsequently received by

Xi. Note that it is possible to infer an upper bound on the utility of any instantiation s ∈ 〈Sepi〉

as soon as even a single GOOD message has been received from each child. This is the result of

the assumption that GOODs are reported in order of non-increasing utility.

• LBi(s) =
∑

Xj∈Ci
LBi

j(s); if any of Xj ∈ Ci has not yet sent any good compatible with

s, then LBi
j(s) = −∞, and LBi(s) = −∞. LBi(s) is the minimal utility that the tuple

s ∈ 〈Sepi〉 could possibly have for the subproblem rooted at Xi, no matter what other goods will

be subsequently received by Xi.

Examples based on Table 6.2:

• GOOD4
10(X4 = c) = 〈[X4 = c], 4〉.

• LAST 4
10 = 〈[X4 = a], 3〉.

• LB4
10(X4 = c) = 4 and LB4

9(X4 = c) = −∞ , because X4 has received a GOOD4
10(X4 = c)

from X10, but not a GOOD4
9(X4 = c) from X9.

• Similarly, UB4
10(X4 = c) = 4 and UB4

9(X4 = c) = val(LAST 4
9 ) = val(GOOD4

9(X4 =

f)) = 1 , because X4 has received a GOOD(X4 = c) from X10, but not from X9, so the latter

is replaced by the latest received good.

6.4.1.3 Valuation-Sufficiency

In DPOP, agents receive all GOODs grouped in single messages. In O-DPOP, GOODs can be sent

individually and asynchronously as long as the order assumption is satisfied. Therefore, Xi can deter-

mine when it has received enough goods from its children in order to be able to determine the next best

combination of values of variables in Sepi [70]. In other words, Xi can determine when any additional

goods received from its children Xj will not matter w.r.t. the choice of optimal tuple for Sepi. Xi can

then send its parent Pi a valued good t∗ ∈ Sepi suggesting this next best value combination.

Definition 25 Given a subset S of tuples from 〈Sepi〉, a tuple t∗ ∈ {〈Sepi〉\S} is dominant conditional

on the subset S, when ∀t ∈ {〈Sepi〉 \ S|t �= t∗}, LB(t∗) > UB(t).
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In words, t∗ is the next best choice for Sepi, after the tuples in S. This can be determined once

there have been received enough goods from children to allow the finding that one tuple’s lower bound

is greater than all other’s upper bound. Then the respective tuple is conditional-dominant.

Definition 26 A variable is valuation-sufficient conditional on a subset S ⊂ 〈Sepi〉 of instantiations

of the separator when it has a tuple t∗ which is dominant conditional on S.

6.4.1.4 Properties of the Algorithm

The algorithm used for propagating GOODs in O-DPOP is given by process ASK in Algorithm 10.

Whenever a new GOOD is asked by the parent, Xi repeatedly asks its children for GOODs. In

response, it receives GOOD messages that are used to update the bounds. These bounds are initially

set to LBi(∀t) = −∞ and UBi(∀t) = +∞. As soon as at least one message has been received from

all children for a tuple t, its upper bound is updated with the sum of the utilities received. As more and

more messages are received, the bounds become tighter and tighter, until the lower bound of a tuple t∗

becomes higher than the upper bound of any other tuple.

At that point, we call t∗ dominant. Xi assembles a good message GOODPi

i = 〈t∗, val =

LBi(t∗) = UBi(t∗)〉, and sends it to its parent Pi. The tuple t∗ is added to the sent goods list.

Subsequent ASK messages from Pi will be answered using the same principle: gather goods, re-

compute upper/lower bounds, and determine when another tuple is dominant. However, the dominance

decision is made while ignoring the tuples from sent goods, so the ”next-best” tuple will be chosen.

This is how it is ensured that each node in the problem will receive utilities for tuples in decreasing

order of utility i.e. in a best-first order, and thus we have the following Theorem:

Proposition 10 (Best-first order) Provided that the leaf nodes order their relations in non-increasing

order of utility, each node in the problem sends GOODs in the non-increasing order of utility i.e. in a

best-first order.

PROOF. By assumption, the leaf nodes send GOODs in best-first order. Assume that all children of

Xi satisfy the Theorem. Then the algorithm correctly infers the upper bounds on the various tuples, and

correctly decides conditional valuation-sufficiency. If it sends a GOOD, it is conditionally dominant

given all GOODs that were sent earlier, and so it cannot have a lower utility than any GOOD that

might be sent later. �

Example 15 (Conditional valuation-sufficiency: an example) Let us consider a possible execution

of O-DPOP on the example problem from Figure 6.5. Let us consider the node X4, and let the relation

r1
4 be as described in Table 6.1.
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X1/X4 = a b c d e f

X1 = a 1 2 6 2 1 2

X1 = b 5 1 2 1 2 1

X1 = c 2 1 1 1 2 1

Table 6.1: Relation R(X4, X1).

X9 X10 X1

〈X4 = a,6〉 〈X4 = b, 5〉 〈X4 = c, X1 = a, 6〉

〈X4 = d, 5〉 〈X4 = c, 4〉 〈X4 = a,X1 = b,5〉

〈X4 = f, 1〉 〈X4 = a,3〉 〈X4 = b, X1 = a, 2〉
...

...
...

Table 6.2: Goods received by X4. The relation r1
4 is present in the last column, sorted best-

first.

As a result to its parent X1 asking X4 for goods, let us assume that X4 has repeatedly requested

goods from its children X9 and X10. X9 and X10 have replied each with goods; the current status is

as described in Table 6.2.

In addition to the goods obtained from its children, X4 has access to the relation r1
4 with its parent,

X1. This relation will also be explored in a best-first fashion, exactly as the tuples received from X4’s

children (see Table 6.2, last column).

Let us assume that this is the first time X1 has asked X4 for goods, so the sent goods list is

empty. We compute the lower and upper bounds as described in the previous section. We obtain

that LBi(〈X4 = a, X1 = b〉) = 14. We also obtain that ∀t �= 〈X4 = a, X1 = b〉, UBi(t) <

LBi(〈X4 = a, X1 = b〉) = 14. Therefore, 〈X4 = a, X1 = b〉 satisfies the condition from Definition 26

and is thus dominant conditional on the current sent goods set (which is empty). Thus, X4 records

〈X4 = a, X1 = b, 14〉 in sent goods and sends GOOD(X1 = b, 14) to X1.

Should X1 subsequently ask for another good, X4 would repeat the process, this time ignoring the

previously sent tuple GOOD(X1 = b, 14).

6.4.1.5 Comparison with the UTIL phase of DPOP

In DPOP, the separator Sepi of a node Xi gives the set of dimensions of the UTIL message from Xi to

its parent: Sepi = dims(UTILPi

i ) Therefore, the size of a UTIL message in DPOP is d|Sepi|, where d
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is the domain size. This results in memory problems in case the induced width of the constraint graph

is high.

In O-DPOP, the ASK/GOOD phase is the analogue of the UTIL phase from DPOP. A GOODPi

i

message corresponds exactly to a single utility from a UTILPi

i message from DPOP, and has the same

semantics: it informs Pi how much utility the whole subtree rooted at Xi obtains when the variables

from Sepi take that particular assignment.

The difference is that the utilities are sent on demand, in an incremental fashion. A parent Pi of a

node Xi sends to Xi an ASK message that instructs Xi to find the next best combination of values for

the variables in Sepi, and compute its associated utility. Xi then performs a series of the same kind of

queries to its children, until it gathers enough goods to be able to determine this next best combination

t∗ ∈ 〈Sepi〉 to send to Pi. At this point, Xi assembles a message GOODPi

i (t∗, val) and sends it to Pi.

6.4.2 O-DPOP Phase 3: top-down VALUE assignment phase

The VALUE phase is similar to the one from DPOP. Eventually, the root of the DFS tree becomes

valuation-sufficient, and can therefore determine its optimal value. It initiates the top-down VALUE

propagation phase by sending a VALUE message to its children, informing them about its chosen value.

Subsequently, each node Xi receives the V ALUEi
Pi

message from its parent, and determines its opti-

mal value as follows:

1. Xi searches through its sent list for the first good GOODi∗ (highest utility) compatible with

the assignments received in the VALUE message.

2. Xi assigns itself its value from GOODi∗: Xi ← v∗i

3. ∀Xj ∈ Ci, Xi builds and sends a VALUE message that contains Xi = v∗i and the assignments

shared between V ALUEi
Pi

and Sepj . Thus, Xj can in turn choose its own optimal value, and

so on recursively to the leaves.

6.4.3 O-DPOP: soundness, termination, complexity

Theorem 3 (Soundness) O-DPOP is sound.

PROOF. O-DPOP combines goods coming from independent parts of the problem (subtrees in DFS

are independent). Theorem 10 shows that the goods arrive in the best-first order, so when we have

valuation-sufficiency, we are certain to choose the optimal tuple, provided the tuple from Sepi is opti-

mal.
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The top-down VALUE propagation ensures (through induction) that the tuples selected to be parts

of the overall optimal assignment, are indeed optimal, thus making also all assignments for all Sepi

optimal. �

Theorem 4 (Termination) O-DPOP terminates in at most (h − 1)× dw synchronous ASK/GOOD

steps, where h is the depth of the DFS tree, d bounds the domain size, and w is the width of the chosen

DFS. Synchronous here means that all siblings send their messages at the same time.

PROOF. The longest branch in the DFS tree is of length h − 1 (and h is at most n, when the DFS is

a chain). Along a branch, there are at most dSepi ASK/GOOD message pairs exchanged between any

node Xi and its parent. Since Sepi ≤ w, it follows that at most (h− 1)× dw synchronous ASK/GOOD

message pairs will be exchanged. �

Theorem 5 (Complexity) The number of messages and memory required by O-DPOP is O(dw).

PROOF. By construction, all messages in O-DPOP are linear in size. Regarding the number of mes-

sages:

1. the DFS construction phase produces a linear number of messages: 2×m messages (m is the

number of edges);

2. the ASK/GOOD phase is the analogue of the UTIL phase in DPOP. The worst case behavior of

O-DPOP is to send sequentially the contents of the UTIL messages from DPOP, thus generating

at most dw ASK/GOOD message pairs between any parent/child node (d is the maximal domain

size, and w is the induced width of the problem graph). Overall, the number of messages is

O((n − 1)× dw). Since all these messages have to be stored by their recipients, the memory

consumption is also at most dw.

3. the VALUE phase generates n − 1 messages, (n is the number of nodes) - one through each

tree-edge.

�

Notice that the dw complexity is incurred only in the worst case. Consider an example: a node Xi

receives first from all its children the same tuple as their most preferred one. Then this is simply chosen

as the best and sent forward, and Xi needs only linear memory and computation!

6.4.4 Experimental Evaluation

We experimented with distributed meeting scheduling in an organization with a hierarchical structure

(a tree with departments as nodes, and a set of agents working in each department). The CSP model is
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Agents 10 20 30 50 100

Meetings 3 9 11 19 39

Variables 10 31 38 66 136

Constraints 10 38 40 76 161

# of messages 35 / 9 778 / 30 448 / 37 3390 / 65 9886 / 135

Max message size 1 / 100 1 / 1000 1 / 100 1 / 1000 1 / 1000

Total Goods 35 / 360 778 / 2550 448/1360 3390 / 10100 9886 / 16920

Table 6.3: O-DPOP vs DPOP tests on meeting scheduling (values stated as O-DPOP / DPOP)

the PEAV model from [127]. Each agent has multiple variables: one for the start time of each meeting

it participates in, with 10 timeslots as values. Mutual exclusion constraints are imposed on the variables

of an agent, and equality constraints are imposed on the corresponding variables of all agents involved

in the same meeting. Private, unary constraints placed by an agent on its own variables show how much

it values each meeting/start time. Random meetings are generated, each with a certain utility for each

agent. The objective is to find the schedule that maximizes the overall utility.

Table 6.3 shows how our algorithm scales up with the size of the problems. All experiments are

run on the FRODO multiagent simulation platform [154]. The values are depicted as O-DPOP / DPOP,

and do not include the DFS and VALUE messages (identical). The number of messages refers to

ASK/GOOD message pairs in O−DPOP and UTIL messages in DPOP . The maximal message size

shows how many utilities are sent in the largest message in DPOP, and is always 1 in O-DPOP (a single

good sent at a time). The last row of the table shows significant savings in the number of utilities sent

by O-DPOP (GOOD messages) as compared to DPOP (total size of the UTIL messages).

6.4.5 Comparison with search algorithms

In backtrack search algorithms, the control strategy is top-down: starting from the root, the agents per-

form assignments and inform their children about these assignments. In return, the children determine

their best assignments given these decisions, and inform their parents of the utility or bounds on this

utility. This top-down exploration of the search space has the disadvantage that the parents make deci-

sions about their values blindly, and need to determine the utility for every one of their values before

deciding on the optimal one. This can be a very costly process, especially when domains are large. Ad-

ditionally, if memory is bounded, many utilities have to be derived over and over again [141,170]. This,

coupled with the asynchrony of these algorithms makes for a large amount of effort to be duplicated

unnecessarily [241].

In contrast, O-DPOP uses a bottom-up strategy, similar to the one of DPOP. In this setting, higher
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agents do not assign themselves values, but instead ask their children what values would they prefer.

Children answer by proposing values for the parents’ variables. These proposals are similar to the

COST messages in search algorithms, the difference being that they are sent proactively, and in the

context chosen by the lower agents, as opposed to search, where the proposals are chosen by the higher

agents. By using the idea of valuation sufficiency, O-DPOP can possibly find the optimal solution

without exploring all values of some of the variables, which is in contrast with search algorithms. This

also enables O-DPOP to be able to deal with open problems, i.e. problems with unbounded domains.

6.4.6 Summary

O-DPOP uses linear size messages by sending the utility of each tuple separately. Based on the best-first

assumption, we use the principle of open optimization [70] to incrementally propagate these messages

even before the utilities of all input tuples have been received. This can be exploited to significantly

reduce the amount of information that must be propagated. In fact, the optimal solution may be found

without even examining all values of the variables, thus being possible to deal with unbounded domains.

Preliminary experiments on distributed meeting scheduling problems show that O-DPOP gives

good results when the problems have low induced width.

As the new algorithm is a variation of DPOP, we can apply to it all the techniques described for

self-stabilization [165], approximations and anytime solutions [158], distributed implementation and

incentive-compatibility [171] that have been proposed for DPOP.



Chapter 7

Tradeoffs between Memory/Message
Size and Solution Quality

In this chapter we discuss possible tradeoffs between solution quality on one hand, and compu-

tation/memory/communication requirements on the other hand. We introduce two algorithms that

offer configurable tradeoffs quality/effort.

In Section 7.1, we introduce LS-DPOP(k), a hybrid algorithm which is a mix between classical

local search methods in which nodes take decisions based only on local information, and full infer-

ence methods that guarantee completeness. LS-DPOP operates in the framework from Section 6.2

for detecting difficult subproblems, where normal DPOP cannot be applied. In such subprob-

lems, LS-DPOP executes a local search procedure guided by as much inference as allowed by k.

LS-DPOP(k) can be seen as a large neighborhood search, where exponential neighborhoods are

rigorously determined according to problem structure, and polynomial efforts are spent for their

complete exploration at each local search step.

The second contribution of this chapter is A-DPOP (Section 7.2), a parameterized approximation

scheme based on DPOP, which allows the desired tradeoff between solution quality and computa-

tional complexity. A-DPOP allows to adapt the size of the largest message to the desired approxi-

mation ratio. Clusters of high width are detected as in Section 6.2 and explored with approximate

propagations using the idea of minibuckets [49, 51].

7.1 LS-DPOP: a local search - dynamic programming hybrid

We present a new hybrid algorithm for local search in distributed combinatorial optimization. This

method is a mix between classical local search methods in which nodes take decisions based only on

local information, and full inference methods that guarantee completeness.

We propose LS-DPOP(k), a hybrid method that combines the advantages of both these approaches.

117
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LS-DPOP(k) is a utility propagation algorithm controlled by a parameter k which specifies the maximal

allowable amount of inference. The maximal space requirements are exponential in this parameter. In

the dense parts of the problem, where the required amount of inference exceeds this limit, the algorithm

executes a local search procedure guided by as much inference as allowed by k. LS-DPOP(k) can

be seen as a large neighborhood search, where exponential neighborhoods are rigorously determined

according to problem structure, and polynomial efforts are spent for their complete exploration at each

local search step.

For difficult optimization problems, local search methods have been developed. These methods

start with a random assignment, and then gradually improve it by applying incremental changes. Their

advantage is that they require linear memory, and in many cases provide good solutions with a small

amount of effort. However, the decisions taken are often myopic in the sense that they take into account

only local information, thus getting stuck into local optima rather easily. Large neighborhood search [3]

tries to overcome this problem by exploring a much larger set of neighboring states before moving to the

next one. Dynamic programming has already been recognized as an efficient way to explore exponential

size neighborhoods with a polynomial effort [67]. Another example of such a hybrid technique is the

work of Kask and Dechter from [105] (see Section 7.1.5).

For distributed environments, there are distributed local search methods like DSA ( [109]) / DBA( [237])

for optimization, and DBA for satisfaction ( [227]). To our knowledge, the concept of large neighbor-

hoods has not been exploited in distributed environments.

We propose a distributed algorithm that combines the advantages of both these approaches. This

method is a utility propagation algorithm controlled by a parameter k which specifies the maximal

allowable amount of inference. The maximal space requirements are exponential in this parameter. In

the dense parts of the problem, where the required amount of inference exceeds this limit, the algorithm

executes a local search procedure guided by as much inference as allowed by k. If this parameter

is equal to the induced width of the graph or larger, then the algorithm is full inference, therefore

complete. Larger values of k are conjectured to produce better results.

We show the efficiency of this approach with experimental results from the distributed meeting

scheduling domain.

The rest of this chapter is structured as follows: Section 7.1.1 presents the hybrid optimization

algorithm. Section 7.1.4 presents an experimental evaluation. Section 7.1.5 presents the relationship

between this approach and existing work. Section 7.1.6 concludes.

7.1.1 LS-DPOP - local search/inference hybrid

We keep the basic utility propagation mechanism from DPOP, but we introduce a control parameter

k which specifies the maximal amount of inference (maximal message dimensionality). In the dense
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Figure 7.1: A problem graph, one possible rooted DFS tree, and an execution detail of DPOP
in C3.

parts of the problem, the exact propagation produces messages with more dimensions than this limit.

In such cases, the algorithm executes a local search procedure guided by as much inference as allowed

by k. The nodes whose processing by inference would exceed the k limit are the ones who execute the

local search procedure. All other nodes execute the normal utility propagation protocol.

7.1.1.1 Detecting areas where local search is required

During the utility propagation procedure from DPOP, each node computes the UTIL message for its

parent. In high width areas, some nodes have to send messages whose dimensionality exceeds k.

In such cases, those nodes choose dims − k dimensions of the message, mark them as local search

dimensions, project them out of the outgoing message, and add these dimensions to the context of the

message. Thus, the final dimensionality of the message is k (size limit observed). The dimensions to

be marked as LS are chosen according to their level in the pseudotree. This is easy to determine for

each node just by finding their position in the node’s root path.

Example 16 For example, consider C3 in Figure 7.1(b). If we run LS-DPOP with k = 2, then the

messages UTIL11
12 and UTIL11

13 proceed normally as in DPOP, with dims(UTIL11
12) = {11, 0} and

dims(UTIL11
13) = {11, 9}. However, dims(UTIL10

11) = {10, 0, 8, 9}, thus it exceeds k = 2. There-

fore, X11 marks X0 and X8 (the 2 highest nodes in dims(UTIL10
11)) as LS nodes, projects them

out of UTIL10
11, and adds them to the context of UTIL10

11. Thus, dims(UTIL10
11) = {10, 9} and

context(UTIL10
11) = {0∗, 8∗}.

The propagation continues, and when the respective messages arrive at X8 and X0, they know that
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they must revert to local search. Note that in this example, X0 is labeled as LS only in C3, and not in

C2 (k not exceeded in C2), so it will receive an exact message from C2, and it will perform local search

in C3, together with X8.

7.1.1.2 Local search in independent clusters

In the example of Figure 7.1, we notice that there are 4 independent parts which do not communicate

between themselves except for some ”frontier” nodes. These 4 cyclic subgraphs (C1−C4), separated by

the nodes X0, X1, X9 can be explored separately for optimal solutions, and then the results assembled

through the same UTIL/VALUE propagations. The advantage of this separation becomes apparent if we

consider that many such separate problem components could be too complex to apply the exact DPOP

propagation, and it may be needed to apply the local search mechanism. Then, it is obvious that by

applying local search on each independent component Ct separately, we restrict the search space that

needs to be explored from d|LS| to d|LS(Ct)|, where |LS| is the total number of LS nodes in the whole

problem, and |LS(Ct)| is the number of LS nodes in the component Ct. This, together with optimal

combination of these local optima through UTIL/VALUE propagations, gives us a much better chance

of finding a better overall local optima.

Identifying these frontier nodes is easy using the following definition:

Definition 27 (Width of a tree edge) We define the width of an edge as follows: 0 if the edge is a back

edge; if the edge is a tree edge, its width is the number of back edges with distinct handlers that include

this edge in their associated tree paths.

Please note that this definition coincides with the dimensionality of the UTIL message that travels

through this edge in DPOP. A node is a frontier node for a subgraph if the message it receives from

its child contains only itself as dimension/context. For example, X9 is a frontier node for C4 because

UTIL9
15 contains only itself as dimension (X9 − X15 has width 1). X9 is not a frontier node for the

subgraph rooted at X10 because UTIL9
10 has X9, X8, X0 as dimensions/context (X9 − X10 has width

3). This classification is determined at run time based on the UTIL messages received from children.

If a frontier node is also designated a LS node in one of its subtrees, then that node will send its

UTIL message to its parent only after having explored through local search the respective subtree. For

example, assume C4 hanging out from X9 would be so complex as to require local search. Then X9

would be marked as LS, and it would first participate in the local search in C4, and only after a local

optimum is reached there, would it start its propagation(s) in C3. The utilities computed as the local

optima for each of its values in C4 are then added to the messages going through C3. The process is

logically equivalent to replacing C4 with a unary constraint on X9.
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7.1.1.3 One local search step

In the subgraphs where local search is required, the LS nodes start by assigning themselves values.

Then, we can run a DPOP-like propagation on the cyclic subgraph for each LS node Xn. For each

propagation, we consider all LS nodes assigned with their current values, except for Xn. Such a

propagation is just a simple variation of the DPOP one, where instead of applying projections for all

nodes, we execute slices for the nodes in the LS except Xn. Thus, Xn can determine how much utility

each one of its values gives for the whole cyclic subgraph in which it is involved, provided the other LS

nodes maintain their current values. It does so by joining all incoming UTIL messages, and projecting

out any other dimensions than itself. The result is a vector (one dimension) with the desired valuations.

The value giving the maximal valuation can be proposed as the next value (in case it is different than

the current value).

Figure 7.1.(c) shows an example execution of a local search step for X0. All LS nodes send to their

pseudochildren value messages, announcing their current values. The propagation starts normally from

the leaves (X12 sends X11 a message with X11 and X0 as dimensions). X11 performs normally the

join between the messages it received from its children. Note that the message it received initially from

X13 can be reused, since there is no link in that subtree with any LS node. Additionally, since X8 is

considered fixed at its present value, the relation X8 − X11 is logically replaced by a corresponding

unary constraint on X11 (this is the slice of R8
11 along the current value of X8, computed by X11). The

join is performed also with this induced unary constraint, and the relation R10
11. X11 projects itself out

of the join, and sends the message to X10. The propagation continues until X8, which performs the

join UTIL8
9 ⊕ R0

8. Instead of projecting itself out of the join to compute UTIL0
8, X8 performs a slice

of this join along its current value (the one previously announced to X11). It then sends UTIL0
8 to

X0, who receives complete information about how much each of its values is worth for the whole C3,

provided X8 keeps its current value.

X0 can now compute ΔX0 = UTIL0
8 ⊥X0

−UTIL0
8[X0 = v0], which is the maximal improve-

ment that the whole C3 can achieve if X0 changes from its current value to the new optimal one, X8

keeps its present value, and all the other nodes in C3 change to their new optimal values.

X0 also initiates a top-down propagation with itself as a LS node. It sends X8 UTIL8
0, with

dims(UTIL8
0) = {X0, X8} (actually, this message is exactly R8

0, since X0 does not have anything

else to join for sending to X8. R12
0 is taken into account by X12, when sending out UTIL11

12).

X8 joins this message with UTIL8
9, and performs a slice of this join, along its current value. The

result is exactly the same vector as X0 receives from X8 as UTIL0
8. What we achieved with the

uniform propagation is thus the ability of X8 to have the same information as X0 about the possible

improvements X0 can make if X8 keeps the current value.

After having run all propagations (with one of the LS nodes being allowed to change at the time),

each LS node Xi can thus compute ΔXj for each other LS node Xj in the same cyclic subgraph. In
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other words, each LS node Xi can thus compute the maximal improvements that each other LS node

Xj can make, provided only Xj is allowed to change.

For the change itself, one can apply any policy known in current local search methods, and guide

this policy by the Δs computed like this. The termination policy can be either a maximal number of

cycles, or detection of local/global minima by detecting that all LS nodes have Δ = 0.

Correctness In the current formulation, only the node with the highest improvement changes its

value. Thus, the algorithm executes a hill climbing procedure for the nodes designated as LS, and exact

inference for the rest, therefore it will reach a local maximum given by local maxima in each individual

cyclic subgraph.

7.1.2 Large neighborhood exploration - analysis and complexity

Let us assume that in a cyclic subgraph Ct there are cct nodes designated as LS nodes, nt total

nodes, and mt edges. The size of the neighborhood completely explored at each local search step

is cct × d× dnt−cct (for all values of each LS node, complete exploration of the non-LS nodes). The

effort for each step consists of 2× (nt − 1) UTIL messages sent for exploring Ct. The largest message

is of size dk+1. Thus, each step explores an exponential size neighborhood with a polynomial amount

of effort.

Assume the termination policy for the local search process involves at most k local search steps.

The whole process is then equivalent to exploring k× cct × d× dnt−cct neighboring states. An ex-

haustive search method would require at least as many messages (big communication overhead), while

classical local search would not be guaranteed to completely explore this part of the search space.

7.1.3 Iterative LS-DPOP for anytime

A straightforward adaptation of LS-DPOP can be used for online solving by executing LS-DPOP it-

eratively with increasing bounds k, as described in Algorithm 12. Iterative LS-DPOP starts with low

values for k, which means that the UTIL messages, and can be quickly computed and sent over the

network. This means that a (relatively) good solution can be obtained very fast. As time goes by, ex-

ecutions of LS-DPOP(k) proceed, with increasing values of k, which means that the clusters of width

higher than k where local search must be applied get smaller and smaller. Thus, more and more areas

of the problem are explored by exact inference, and not by local search, which is expected to lead to

better and better global solutions. Like this we simulate an anytime behaviour with LS-DPOP.

Remark 8 (Iterative LS-DPOP can reuse computation between iterations.) Notice that as soon as

the threshold k exceeds the size of a node Xi’s separator, and of all descendants of Xi, the UTIL

message computed and sent by Xi is exact (i.e. it is the result of only exact inference, without any
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Algorithm 11 LS-DPOP - local search/inference hybrid.
LS-DPOP(X , D, R, k): each agent Xi does:

UTIL propagation protocol
1 wait for UTIL messages (Xk, UTILi

k) from all children Xk ∈ C(i)
2 if any of UTILi

k contains myself as LS node then execute LS procedure
3 else

4 JOIN
P (i)
i =

((⊕
c∈C(i) UTILi

c

)
⊕

(⊕
c∈{P (i)∪PP (i)} Rc

i

))
5 if Xi is root then start VALUE propagation

else

6 if |dims(JOIN
P (i)
i )| > k then

7 sort dims(JOIN
P (i)
i ) by root path (P (i) is always last)

8 mark the first |dims(JOIN
P (i)
i )| − k non-LS dimensions from the JOIN as LS, project

them out and add them to the context of JOIN
P (i)
Xi

. P (i) is always kept in.

9 compute UTIL
P (i)
Xi

= JOIN
P (i)
i ⊥Xi

and send it to P(i)

Local search procedure
10 assign a value according to heuristic (can be random)
11 while termination criteria for local search not met do

12 send VALUE(Xi ← current value) messages to all PC(i)
13 wait for all corresponding UTIL messages to arrive
14 join them, and slice through Xi ← current value); store

get and store in agent view all VALUE messages (Xk ← v∗k)

15 v∗i ← argmaxXi

(
JOIN

P (i)
Xi

[v(P (i)), v(PP (i))]
)

16 Send VALUE(Xi ← v∗i ) to all C(i) and PC(i)

VALUE propagation(Xk ← vk)
17 if sending node Xk is pseudoparent then

18 perform slice Rk
i [Xk = vk] and join it with UTIL messages from children

19 project self out of this join, add Xk ← vk to the context of the message and send it to parent

20 get and store in agent view all VALUE messages (Xk ← v∗k)

21 v∗i ← argmaxXi

(
JOIN

P (i)
Xi

[v(P (i)), v(PP (i))]
)

22 Send VALUE(Xi ← v∗i ) to all C(i) and PC(i)

local search). Afterwards, for subsequent executions of LS-DPOP with larger values for k, Xi’s parent

Pi can simply reuse the UTILPi

i message it has previously received from Xi. Like this, Xi and its

whole subtree have no more computation or message passing to do until the end of the algorithm. This

effectively means that Iterative LS-DPOP explores easy (low width) parts of the problem very fast in

the beginning, and then most of the work is concentrated in the difficult parts of the problem.



124 Tradeoffs between Memory/Message Size and Solution Quality

Algorithm 12 Iterative LS-DPOP: Anytime based on iterative LS-DPOP
Iterative LS-DPOP(X , D, R):

1 Construct DFS tree using Algorithm 3
2 each Xi ∈ X knows Sepi

3 w = argmaxXi
|Sepi| (the induced width)

4 for k = 1 . . . w do

5 run Algorithm 8 to discover clusters of width higher than k
6 run LS-DPOP(k) as follows:
7 if |Sepi| < k and ∀Xj descendant of Xi, |Sepj | < k then

8 Xi reuses its UTIL message from LS-DPOP(k − 1) in LS-DPOP(k).

9 set temporary solution according to LS-DPOP(k)

7.1.4 Experimental evaluation

Our experiments were performed on distributed meeting scheduling problems. We modeled a realistic

scenario, where a set of agents working for a large organization try to jointly find the best schedule for

a set of meetings. The organization itself has a hierarchical structure: a tree with departments as nodes,

and a set of agents working in each department. We generate meetings with high probability within

departments, and with a lower probability between agents belonging to parent-child departments.

We model this problem as a DCOP following [127]. Specifically, each agent Ai has a set of vari-

ables Xj
i , one for each meeting it is involved in. Each such variable Xj

i is controlled only by the agent

Ai, and represents the time when meeting j of agent Ai will start (Xj
i has time slots tk as values).

There is an equality constraint connecting the equivalent variables of all agents involved in a particular

meeting (all agents must agree on a start time for their meeting). If a meeting has k participants, it is

sufficient to create k − 1 equality constraints that connect the corresponding variables in a chain (no

need to fully connect them pairwise). Since an agent cannot participate in 2 meetings at the same time,

there is an all-different constraint on all variables Xj
i belonging to the same agent.

We model the utility that each agent Ai assigns to each meeting Mj at each particular time tk ∈

dom(Xj
i ) by imposing unary constraints on the variables Xj

i ; each such constraint is a vector private to

Ai, and denotes how much utility Ai associates with starting meeting Mj at each time tk. The objective

is to find a schedule s.t. the overall utility is maximized.

We have run 2 series of experiments with random problems generated as specified before. In the

first part, we generated ”easy” problems, such that they can be solved by the complete algorithm as

well, in order to see how far from the global optima the local search method is. The problems had

induced width 8, and the domain size was 8, meaning the largest message in the complete algorithm

has 88 ≈ 16.5M values. These problems are quite close to the feasibility limit for a complete algorithm.

The results of these experiments are presented in Table 7.1. Each row represents an execution with
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k LS# %Non-LS Cycles Avg LS/cycle Avg non-LS/cycle Sol %off Effort/step

1 68 68 11 6 13 → d13 10.86 640 (O(d2))

2 39 81 9 4 19 → d19 10.62 3072(O(d3))

3 25 88 8 3 23 → d23 9.71 20480(O(d4))

4 15 93 6 2 33 → d33 9.3 131072(O(d5))

5 5 97 2 2 105 → d105 8.25 786432(O(d6))

6 2 99 1 2 214 → d214 7.26 4194304(O(d7))

∞ 0 100 0 0 216 → d216 0.0 O(d8)

Table 7.1: LS-DPOP tests: 100 agents, 59 meetings, 199 variables, 514 constraints, width 8

an increasing bound k. The columns represent (in order): the k bound, LS# is the total number of

nodes executing the local search procedure, %Non-LS is the percentage of nodes executing the normal

propagation, Cycles is the number of independent subgraphs identified, Avg LS/Non-LS nodes per cycle

is the average number of LS/non-LS nodes in a single component, Sol %off is the distance from the

optimal solution in percent, and Effort/step is an upper bound on the total amount of data transmitted

within an independent component, for one local search step.

We have run the algorithm with increasing k, and noticed relatively small increases in solution

quality (percent off the true optimum decreases slowly) and exponential increases of the amount of

effort spent for each local search step.

We notice that small values of k are already producing good solutions, with relatively low effort.

We explain this by the fact that even small values of k allow for a large percentage of nodes to execute

the exact propagation, and thus at each local search step, a large exponential neighborhood is explored.

For example, imposing k = 1 (first row in Table 7.1) still leaves on the average almost 70% of the nodes

to execute the exact propagation. On the average, in a subgraph, 13 non-LS nodes adjust optimally to

the values of the 6 LS nodes, which is equivalent to exploring 813 neighboring states at each LS step.

The second sets of experiments involved much larger and more difficult instances of the same

meeting scheduling problems. In this case, the problems were generated with 200 agents, 498 variables

and 1405 constraints. The induced width was 20, making for a 820 maximal message size, which

renders DPOP completely infeasible. We ran again LS-DPOP with increasing k, and noticed a similar

behavior: a large percentage of nodes execute exact propagation even for small k, and solution quality

improves slowly with increasing k. The results are shown in Table 7.2. We conjecture that these results

are close to the true optimum.
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k LS# %Non-LS Cycles Avg LS/cycle Avg non-LS/cycle Solution Effort/step

1 194 61 10 19 30 → d30 7910.0 4032(O(d2))

2 131 73 10 13 36 → d36 7946.0 23040(O(d3))

3 96 80 9 10 44 → d44 7964.0 139264(O(d4))

4 73 85 9 8 47 → d47 7980.0 884736(O(d5))

5 58 88 9 6 48 → d48 8021.0 6029312(O(d6))

Table 7.2: LS-DPOP tests: 200 agents, 498 variables, 1405 constraints, width 20

7.1.5 Related Work

The nodes involved in the local search process can be thought of as cycle cutset nodes [53, 51]. From

this perspective, there are a number of similar existing approaches.

Kask and Dechter present in [105] a method of combining a local search algorithm (GSAT) with

inference. That method is formulated for constraint satisfaction problems, in a centralized setting. A

subset of the problem nodes are given as cycle cutset nodes, and local search is performed on this

subset. For each instantiation of the cutset nodes, a tree inference algorithm is applied to the rest of

the problem. The differences between these methods are manyfold. First, our method is distributed,

and is defined for optimization, not satisfaction. Second, the set of nodes that perform local search is

identified at runtime (not given a priori). Third, we allow for inference with maximal width greater than

1, controlled by k. Finally, we separate the problem in distinct cyclic subgraphs which are explored

separately, and the subsolutions are aggregated in a distributed fashion.

Petcu and Faltings present in [156] a distributed cycle cutset optimization method. The idea of iso-

lating independent cyclic subgraphs appears there, too, but unfortunately there is no efficient method

presented for identifying cycle cutsets nodes, nor for isolating independent cyclic subgraphs. Here, the

DFS traversal of the graph is an excellent way to achieve both goals. There, exhaustive search is per-

formed on the cycle cutset variables, as opposed to local search/propagation here. The synchronization

problems between cycles from that method are solved here by simply making each node that borders

2 cyclic subgraphs wait for complete exploration of all its subtrees before sending its message to its

parent.

7.1.6 Summary

We have presented the first approach to large neighborhood search in distributed optimization. Ex-

ponential neighborhoods are rigorously determined according to problem structure, and polynomial

efforts are spent for their complete exploration at each local search step.
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The algorithm explores independent parts of the problem simultaneously and asynchronously, and

then combines the results, all in a distributed fashion. The experimental results show that this approach

gives good results for low width, practically sized dynamical optimization problems. For loose prob-

lems, most of the search space is optimally explored, and only small, tightly connected components are

explored by local search. This increases the chance that the algorithm avoids some of the local optima,

especially for loose problems.

For future work we plan to experiment with several different value switching policies (like simul-

taneous switches by several variables or allowing non-improving switches) and different termination

policies.
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7.2 A-DPOP: approximations with minibuckets

This section introduces A-DPOP, a parameterized approximation scheme based on DPOP, which allows

the desired tradeoff between solution quality and computational complexity. A-DPOP allows to adapt

the size of the largest message to the desired approximation ratio. Specifically, A-DPOP can operate in

two ways:

• The user can specify a parameter k, which specifies the maximal dimensionality of any UTIL

message produced by the algorithm, thus effectively limiting the memory and communication

requirements. In this case, A-DPOP(k) finds the best solution it can by using only O(exp(k))

memory.

• conversely, the user can specify a parameter δ, which specifies the maximal admitted error bound

(in percent). A-DPOP(δ) then uses the least amount of computation and memory which is nec-

essary to produce a solution which is guaranteed to be within δ % from the optimal solution.

When the optimal solution is required (i.e. k = ∞ or δ = 0), A-DPOP reduces to DPOP, and the

size of the largest message is in the worst case exponential in the width of the constraint graph. As

DPOP, A-DPOP also requires only a linear number of messages in all cases.

A-DPOP(k) operates in the framework of Section 6.2 for detecting high-width clusters, where it

is not possible to perform full inference as in DPOP. Clusters of high width are explored with ap-

proximate propagations using the idea of minibuckets [49, 51]. Specifically, every message in a high-

width cluster (which would normally have more than k dimensions) is replaced with two lower dimen-

sionality approximate messages, which contain upper-bounds and lower-bounds on utility. Therefore,

in these areas of high width, A-DPOP offers a tradeoff between solution quality and required mem-

ory/communication. In areas of low width, A-DPOP uses the normal, exact DPOP propagations.

The overall behavior of A-DPOP(k) is as follows: if w is the induced width of the problem given

by the chosen DFS ordering, depending on the value chosen for k, we have 3 cases:

1. If k = 1, only linear messages and memory are used.

2. If k < w, A-DPOP(k) performs exact inference in areas of width lower than k, and approximate

inference in areas of width higher than k. Memory requirements are O(exp(k)).

3. If k ≥ w, exact inference is done throughout the problem; A-DPOP(k) is then equivalent with

DPOP (i.e. exact inference everywhere). Memory requirements are O(exp(w)).

A-DPOP operates in the same 3 phases as DPOP: DFS construction, UTIL propagation bottom-

up (see section 7.2.1), and VALUE propagation top-down (see section 7.2.2). A-DPOP is formally

described in Algorithm 13.
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Figure 7.2: A problem graph and a rooted DFS tree.

Algorithm 13 A-DPOP - Approximate Distributed Pseudotree Optimization
A-DPOP(X , D, R, k, δ): each agent Xi does:

1 Construct DFS tree; after completion, Xi knows Pi, PPi, Ci, PCi

UTIL propagation protocol
2 wait for UTIL messages (Xk, UTILi

k) from all children Xk ∈ Ci

3 build JOINPi ±
i as in Equation 7.1

4 if Xi is root then start VALUE propagation
5 else

6 if |dims(JOINPi ±
i )| > k then

7 select S ⊂ dims
(
JOINPi ±

i

)
for elimination according to section 7.2.1.1

8 compute UTILPi ±
i as projections of JOINPi ±

i on S ∪ Xi, cf. equation 7.2
9 if δ(UTILPi ±

i ) > δ then retry with another set S; if not possible, decide for trade-off
according to section 7.2.4

10 else UTILPi ±
i = JOINPi ±

i ⊥Xi

11 Send UTILPi ±
i to Pi

VALUE propagation protocol
12 get and store in agent view all VALUE messages (Xk ← v∗k)
13 compute v∗i according to formulas 7.5 or 7.4 from section 7.2.2
14 Send VALUE(Xi ← v∗i ) to all Ci and PCi

7.2.1 UTIL propagation phase

In this section we show the modifications needed in the UTIL phase from DPOP to allow limiting the

size of the UTIL messages by imposing a limit k on the maximum dimensionality. In high width areas

(separator size greater than k), the algorithm drops a set S of dimensions to stay below the limit, and

computes upper and lower bounds on utility, as detailed below.
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7.2.1.1 Limiting the size of UTIL messages with approximations

In Section 4.1.2, Definition 17 we have defined the optimal projection operator ⊥, which eliminates a

variable from a relation by selecting the best utility for each combination of the remaining variables.

This projection has the semantics of a precomputation of the optimal utility that can be achieved with

the optimal values of Xk, for each instantiation of the other variables.

Definition 28 (minimal projection) The ⊥− operator (minimal projection): if H is a hypercube and

Xk ∈ dim(H), then H− = H ⊥−
Xk

is a minimal projection of H along the Xk axis: for each tuple

of variables in {dim(H) \ Xk}, all the corresponding values from H (one for each value of Xk) are

tried, and the worst is chosen. The result is a hypercube with one less dimension (Xk).

This projection has the semantics of a precomputation of lower bounds on the utility that can be

achieved for each instantiation of all variables but Xk, when Xk takes its worst values. This is a

guarantee that no matter what value Xk takes, the utility will not be lower than the corresponding value

from H−.

To better distinguish between the optimal projection operator ⊥ from Section 4.1.2 and the minimal

projection operator ⊥− from Definition 28, we will use in the following the notation ⊥+ to denote the

⊥ operator from Section 4.1.2. Notice that ⊥− and ⊥+ are associative and commutative. Thus, a

projection along a set of dimensions is identical to a sequence of projections along each dimension.

The new UTIL propagation proceeds as follows:

• as in DPOP, leaves initiate the propagation of UTIL messages, and subsequently each node com-

putes its UTIL message and sends it to its parent.

• in areas of low width (nodes with separator sizes at most k), the nodes compute their UTIL

messages normally, as in DPOP.

• in areas of high width (nodes with separator sizes at most k), every node drops from its UTIL

message as many dimensions as required to observe the maximal dimensionality k, and computes

approximate UTIL messages of at most k dimensions: a message with lower bounds, and a

message with upper bounds (see Equations 7.1 and 7.2, and Example 17).

• upon completion, the root can determine the error bound by comparing the lower bounds with

the upper bounds.

Formally, equations 7.1 and 7.2 define the approximate versions of the JOIN and UTIL hypercubes

each node Xi from a high-width area would compute. The set S represents the set of dimensions Xi

drops from its UTILPi

i message. These dimensions can be selected according to a greedy process.

In [158] we have implemented this by dropping out the highest nodes in the DFS. The goal is to drop as
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many dimensions as possible in order to observe the maximal dimensionality bound, without exceeding

the maximal error bound. In case this is not possible, one needs to settle for a tradeoff (see section 7.2.4

for more details).

JOINPi ±
i =

⎛
⎝⊕

c∈Ci

UTILi±
c

⎞
⎠ ⊕

⎛
⎝ ⊕

p∈{Pi∪PPi}

Rp
i

⎞
⎠ (7.1)

UTILPi+
i = JOINPi+

i ⊥S⊥Xi
; UTILPi−

i = JOINPi−
i ⊥−

S⊥Xi
(7.2)

Example 17 In Figure 7.2, X4 computes UTIL1
4, with dims(UTIL1

4) = {X1, X0}. If k = 1, we have

to drop S = {X0} from UTIL1
4. This is done by computing upper and lower bounds on the utility that

could be achieved by X4 and its subtree, in the best/worst case of a value of X0. Two corresponding

hypercubes, UTIL1+
4 = JOIN1

4 ⊥X4
⊥+

X0
and UTIL1−

4 = JOIN1
4 ⊥X4

⊥−
X0

are produced, with

dims(UTIL1+
4 ) = dims(UTIL1−

4 ) = {X1}. We denote by UTIL1±
4 the pair (UTIL1+

4 ,UTIL1−
4 ).

Let us consider a pair of 2 hypercubes H− and H+ with the same set of dimensions, which are

lower and upper bounds on utility for each one of their tuples; to simplify notation, we denote this pair

by H ± = (H−, H+). For each tuple T of variables Xj ∈ dims(H ± ), H−[T ] has the semantics

of a lower bound on utility that can be achieved provided the variables in dims(H ± ) are instantiated

according to T . Similarly, H+[T ] is an upper bound. We also define:

α(H ± ) = maxT
H+[T ]

H−[T ]
; δ(H ± , T ) = 1 −

H−[T ]

H+[T ]
; δ(H ± ) = maxT δ(H ± , T ) (7.3)

α is the standard approximation ratio known from approximation theory. δ(H ± ) is the maximal

distance from the optimum (in percent) of any solution that will be implemented during the VALUE

propagation. δ(H ± ) close to 0 or α(H ± ) close to 1 are equivalent, and guarantee solutions closer to

the optimum.

If H ± contains equal lower and upper bounds (as it happens in exact computation), it is easy to

see from equation 7.3 that δ(H ± ) = 0, and A-DPOP reduces to DPOP.

So far we have described A-DPOP such that when the k bound is exceeded, then some dimensions

are forcibly removed by approximate projections. Notice that it is in principle possible to compute and

send several pairs of lower dimensionality upper/lower bound messages, each computed on a different

subset of dimensions, in the spirit of the minibucket scheme [49].
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7.2.2 VALUE propagation

As in DPOP, the VALUE phase proceeds top-down from the root after the UTIL phase. Upon receipt of

the VALUE message from its parent, each node is able to pick the optimal value for itself according to

one of the strategies from Equations 7.4 or 7.5.

Equation 7.4 selects as the optimal value the one with the minimal δ. We call this a δ-strategy.

Notice that this will not necessarily produce the best assignment, since there may be another value that

has a higher upper bound, but a worse δ. However, it offers the best guaranteed solution quality.

Equation 7.5 selects as the optimal value the one with the highest upper bound, even though it may

not necessarily provide the best guarantees on solution quality (in case its lower bound is low). We call

this optimistic strategy.

v∗i = argmin
v

j
i

(
δ
(
JOINPi ±

i , < agent view, Xi = vj
i >

))
(7.4)

v∗i =
(
JOINPi+

i [agent view]
)
⊥Xi

(7.5)

The algorithm terminates when all nodes have received VALUE messages and have assigned values

to their variables.

7.2.3 A-DPOP complexity

As DPOP, A-DPOP produces a linear number of messages: 2×m DFS messages (m is the number of

edges) and n − 1 UTIL and VALUE messages (n is the number of nodes). A-DPOP’s complexity lies

in the size of the UTIL messages (the VALUE messages have linear size):

Theorem 6 (A-DPOP complexity) The largest UTIL message in A-DPOP is space-exponential in k

or in the width induced by the DFS ordering used, whichever is smaller.

PROOF. If the bound k is imposed and smaller than the width, no message larger than O(exp(k)) is

produced (see Section 7.2.1). Then, complexity is exponential in this bound.

The worst case is when the exact solution is required (k = ∞, or δ = 0). In this case, no dimensions

can be dropped out of the UTIL messages, and A-DPOP reduces to DPOP, which is exponential in the

induced width of the DFS used. �
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7.2.4 Tradeoff solution quality vs computational effort and memory

It is easy to see that in case the parameter k is at least as big as the induced width of the problem, then

all computations are exact, and the algorithm finds the optimal solution.

If not, then we have no choice but to use approximations: whenever a UTIL message exceeds the

maximal dimensionality, approximate projections need to be applied. Optimality is thus lost, and we

obtain an approximately optimal solution, and upper bounds on the distance from this solution to the

true optimum.

Notice that approximate projections are applied only in high-width areas of the problem; for all

the rest of the problem, where the dimensionality does not exceed k, optimal partial solutions are still

found.

Another parameter that we can tune is the maximal error bound. This parameter enforces at each

node an upper bound on the distance from the implemented solution to the true optimal solution for

this node and its subtree. In case the deviation of the outgoing message is bigger than this bound, then

we renounce a number of approximate projections until the bound is observed.

These two parameters are obviously conflicting. In case one cannot satisfy both of them, one needs

to settle for the classical trade-off: accuracy vs. complexity. If optimality is the main concern, then

one can specify e.g. δ = 10%, and no k. This would have as an effect that as many dimensions as

needed would be used in order to guarantee that the obtained solution is within 10% of the optimum.

Notice that this does not necessarily mean that the maximal number of dimensions will actually be

used; depending on the valuation structure of the problem, one or two dimensions could very well be

enough.

Conversely, if computation/network usage is the main concern, then one can specify e.g. k = 2

and no δ. In this case, the largest message would have 2 dimensions, and we would obtain the best

solution available for this much computation, together with an upper bound on its distance from the

true optimum. If this distance is good enough, then the algorithm returns this solution. Otherwise, we

can re-run the algorithm with an increased k. Notice that in this case, we can reuse a lot of the previous

work: one needs to re-run the propagation only in those areas of the problem where the maximal

dimension bound was exceeded.

7.2.5 AnyPOP - an anytime algorithm for large optimization problems

In large, distributed constraint networks, it may take a long time until these propagations complete.

In the following, we develop a way to decide quickly, locally, the value of each variable, based on a

limited number of UTIL/VALUE messages from the neighbors. As time goes by, and the propagation

spreads out, and more and more UTIL/VALUE messages come from the neighbors, we refine these
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decisions. As opposed to a local search method, we obtain guarantees on the quality of the solution,

even before allowing the propagations to complete. There are obvious advantages to this approach: one

can quickly start with a reasonably good solution, and refine it as time goes by.

The intuition is simple: the value taken by any node Xi can have an influence on the rest of the

problem only through the constraints between Xi and its direct neighbors. UTIL messages received by

Xi already sum up its influence on the sending subtree. Thus, based on the set of UTIL messages Xi

already received, and on the valuation structure of the constraints between Xi and its neighbors that did

not already send UTIL messages, Xi can decide with a certain error bound what is the effect of each

one of its values on the rest of the problem.

In some cases, when these error bounds are sufficiently low, Xi can decide on an assignment for

itself even before receiving all of its UTIL/VALUE messages. In such a case, one can simply start the

VALUE propagation phase immediately, without waiting for the rest of the UTIL/VALUE messages to

come.

Let us first define

Definition 29 (Pseudoneighbor set PN
j
i ) The pseudoneighbor set PN j

i is the set of pseudo-neighbors

(pseudoparents or pseudochildren) of agent Xi that are reachable through its tree-neighbor Xj . e.g.:

PN2
0 = {X11}, PN5

2 = {X12}, PN6
2 = ∅.

It is possible for an agent Xi to determine which is the tree-path associated with each one if its back-

edges by comparing the suffix/prefix of the root-paths of its neighbors with their id’s. Based on this, it

is easy for Xi to determine PN j
i for each neighbor Xj .

In the following subsections, we introduce the idea of dominant values, and present the AnyPOP

algorithm (see algorithm 14) which makes use of them.

7.2.5.1 Dominant values

We present three increasingly weak kinds of dominant values.

Definition 30 (Statical dominance) A value v∗i of a variable Xi is a statically dominant value for Xi

if v∗i is the optimal value for Xi, no matter what values will Xi’s neighbors take. Formally, v∗i must

always be argmaxXi

(⊕
Xj∈Ngh(Xi)

Ri
j

)
. If such a value is found, it is clear that Xi can already

start the VALUE propagation, without waiting for any other message.
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7.2.5.2 Propagation dynamics

At any particular time t, we assume that a set of Xi’s neighbors already sent Xi their UTIL messages.

Let Sent(Xi) be this set. According to Definition 29, each neighbor Xj of Xi, Xj ∈ Sent(Xi) has an

associated set PN j
i . Any node Xk ∈ PN j

i (Xk is a pseudoneighbor of Xi), can reach Xi only through

Xj . Xk does not directly send any UTIL message to Xi, but the relation Rk
i has already been taken into

account in the message UTILi
j . This means that Xi can ignore the relation Rk

i , and consider Xk like

it already sent an UTIL message.

Definition 31 (Extended sent set) We define for a variable Xi the extended sent set as the set of

tree neighbors of Xi which have already sent their UTIL messages, plus the pseudoneighbors of Xi

which are reachable from Xi through these tree neighbors. Formally, ExtSent(Xi) = Sent(Xi) ∪

{PN j
i |Xj ∈ Sent(Xi)}

Definition 32 (Dynamic join) For a variable Xi we define the dynamic join JOINi(t) as the join of

the UTIL messages that have arrived, and of the relations with the neighbors that are not part of the

extended sent set.

JOINi(t) =

⎛
⎝ ⊕

Xj∈{Ngh(Xi)\ExtSent(Xi)}

Ri
j ⊕

⊕
Xk∈Sent(Xi)

UTILi
k

⎞
⎠ (7.6)

This dynamic join is a means to factor at any time the influence of Xi over the rest of the prob-

lem. JOINi(t) takes into account utility information which is either explicit (UTIL messages from

Sent(Xi)), implicit (the contribution of the relations with the pseudoneighbors from ExtSent which

is encapsulated in the received UTIL messages), or not decided (the relations with the neighbors which

have not sent anything yet).

This dynamic join evolves with time: as more and more UTIL messages arrived, they replace the

relations Ri
j in Equation 7.6, and the join has less and less dimensions.

Definition 33 (Dynamic dominance) A value v∗i of Xi is a dynamically dominant value for Xi if v∗i
is the optimal value of Xi for any values of Xi’s neighbors except those in ExtSent(Xi).

Formally, if agent view records the VALUE messages which were already received, and JOINi(t)

is the current dynamic join, a value v∗i is dynamically dominant if v∗i is always

argmaxXi
(JOINi(t)[agent view]).

Notes: once such a value is determined for a variable, it cannot be changed by any incoming

UTIL message. A statically dominant value is simply a dynamically dominant value computed before
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receiving any UTIL message.

7.2.5.3 Dynamically δ-dominant values

The two previous categories of dominance were exact: once found, a dominant value is certain to be

the optimal value. We now present an approximative dominance: dominant values that allow for an

error margin. They are computed in a very similar way with Equation 7.4:

vδ∗
i (t) = argmin

v
j
i
δ
(
JOINi(t)

± , 〈agent view, Xi = vj
i 〉

)
(7.7)

The value vδ∗
i (t) computed like in Equation 7.7 has the smallest guaranteed distance to the optimal

solution, given the currently available information. It is obvious that as time progresses and more and

more UTIL/VALUE messages arrive, the bounds become tighter and tighter, thus offering the possibility

for increasingly accurate decisions.

If δ(t, vδ∗
i ) is small enough, then we say that vδ∗

i (t) is a dynamically δ-dominant value, and we can

safely assign it to Xi and start the VALUE propagation from Xi.

AnyPOP also exhibits some built-in fault tolerance. If messages are lost, there is a graceful degra-

dation of performance: the δs will not be updated anymore, and in case that would have meant changing

a current assignment, solution quality degrades. However, the algorithm still provides the best solution

it can infer based on the information that was sent/received successfully.

7.2.6 Iterative A-DPOP for anytime behaviour

Another alternative for anytime solving is obtained by a straightforward iterative execution of A-DPOP

with increasing bounds k, as described in Algorithm 15. Iterative A-DPOP starts with low values for

k, which means that the UTIL messages sent are small, and can be quickly computed and sent over

the network. This means that a (relatively) good solution can be obtained very fast. As time goes by,

executions of A-DPOP(k) proceed, with increasing values of k, which mean that the approximate UTIL

messages get larger and and more accurate, offering better bounds and better solutions. Like this we

simulate an anytime behaviour with A-DPOP.

Remark 9 (Iterative A-DPOP can reuse computation between iterations.) Notice that as soon as

the threshold k exceeds the size of a node Xi’s separator, and of all descendants of Xi, the UTIL mes-

sage computed and sent by Xi is exact (contains no approximations anymore). Afterwards, for sub-

sequent executions of A-DPOP with larger values for k, Xi’s parent Pi can simply reuse the UTILPi

i
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Algorithm 14 AnyPOP - Anytime approximate Distributed Pseudotree Optimization
AnyPOP(X , D, R, k, δ): each agent Xi does:
UTIL propagation protocol

1 get all new UTIL messages (Xk, UTILi
k)

2 build JOINi(t) as in Equation 7.6
3 if Xi is root then start VALUE propagation
4 else

5 compute δ(t, vj
i (t)), ∀vj

i ∈ dom(Xi), and let v∗i (t) = argmin
v

j
i

(
δ(t, vj

i (t))
)

6 if δ(t, v∗i (t)) < δ then start VALUE propagation
7 if |dims(JOINPi

i )| > k then

8 select S ⊂ dims(JOINPi

i ) to be eliminated
9 UTILPi

Xi
= JOINPi

i ⊥±
S∪{Xi}

10 else UTILPi

Xi
= JOINPi

i ⊥Xi

11 Send UTILPi

Xi
to Pi

VALUE propagation protocol
12 get and store in agent view all VALUE messages (Xk ← v∗k)

13 recompute δ(t, vj
i (t)), ∀vj

i ∈ dom(Xi), and let v∗i (t) = argmin
v

j
i

(
δ(t, vj

i (t))
)

14 Send VALUE(Xi ← v∗i ) to all Ci and PCi

message it has previously received from Xi. Like this, Xi and its whole subtree have no more com-

putation or message passing to do until the end of the algorithm. This effectively means that Iterative

A-DPOP explores easy (low width) parts of the problem very fast in the beginning, and then most of

the work is concentrated in the difficult parts of the problem.

Algorithm 15 Iterative A-DPOP: Anytime based on iterative A-DPOP
Iterative A-DPOP(X , D, R):

1 Construct DFS tree using Algorithm 3
2 run Algorithm 8; each Xi ∈ X knows Sepi

3 w = argmaxXi
|Sepi| (the induced width)

4 for k = 1 . . . w do

5 run A-DPOP(k) as follows:
6 if |Sepi| < k and UTILPi

i in A-DPOP(k − 1) was exact then

7 Xi reuses its UTIL message from A-DPOP(k − 1) in A-DPOP(k).

8 set temporary solution according to A-DPOP(k)

7.2.7 Experimental evaluation

Our experiments were performed in the distributed meeting scheduling scenario described in [127]

and in Section 2.3.1. In this context, the experiments were ran with an especially difficult problem
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k Max δ /msg % Avg δ /msg % δ /overall % Total UTIL payload Max msg size Utility

1 44.83 13.55 2.90 2104 16 2278

2 36.00 4.54 2.69 10032 128 2283

3 17.14 1.27 2.43 39600 1024 2289

4 13.11 0.57 0.81 130912 8192 2327

5 10.00 0.19 0.43 498200 65536 2336

6 1.36 0.04 0.30 1808904 524288 2339

7 0.00 0.00 0.00 3614064 2097152 2346

Table 7.3: Max. dimensions vs. solution accuracy: problem with 140 vars, 204 con-
straints,width=7

Snapshot # Max δ /var % Avg δ /var % Utility δ /overall % Assig changes

1 94.44 80.77 1555 33.72 0

2 66.07 16.7 1625 30.73 99

3 42.42 3.92 2036 13.21 73

4 13.51 1 2254 3.92 19

5 13.51 0.94 2289 2.43 1

Table 7.4: AnyPOP dynamic evolution: problem with 140 vars, 204 constraints,width=7

containing 70 agents, 140 variables and 204 binary constraints. The induced width is 7, meaning that

the largest message holds over two million values. We executed A-DPOP with increasing bounds on the

maximal dimensionality (k). We present in Table 7.3 the results in this order: maximal dimensionality,

maximal δ for all UTIL messages (as in equation 7.3), the average δ per message, the distance of the

approximate solution to the true optimum, the total amount of UTIL information transmitted (computed

as the sum of the sizes of the individual UTIL messages), the maximal message size, and the utility of

the solutions found. The accuracy of the solutions increases with the increase of k, culminating with

the optimal value for k = 7, in which case A-DPOP(7) is equivalent to DPOP. However, there is also

a dramatic increase in computation effort and network load. If we compare the first and the last lines

of the table, we see that we can achieve a solution which is within 3% of the optimum with 3 orders of

magnitude less effort (2k values sent over the network v.s. 3M). Therefore, if absolute optimality is not

required, it might actually pay off to settle for a suboptimal solution obtained with much less effort.

We performed the second test with the same difficult instance from the previous test. This time, we

wanted to test simultaneously both the anytime performance of AnyPOP, and its ability to deal with

low resources. Therefore, we imposed k = 3, and started AnyPOP. We took a number of 5 snapshots of
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the assignments of the variables during the execution. The first snapshot is taken immediately after the

initial δs are computed, before sending/receiving any message. Subsequent snapshots are taken after

each node has received another message. The last snapshot is taken after all messages are sent/received.

The assignments discovered by each of the snapshots are used to compute the overall utility. We notice

a steady progress of the algorithm towards a solution, culminating with the best solution found by A-

DPOP on the same test problem, with the same bound k = 3. At the same time, there is a steady

decrease of the error bounds, and of the assignment changes from one snapshot to the next.

7.2.8 Summary

We propose in this chapter an approximate algorithm for distributed optimization, which allows the de-

sired tradeoff between solution quality and computational complexity. The algorithms can be extended

with heuristics for selecting ”intelligently” the dimensions to be dropped out when exceeding maximal

message size. In the second part of the chapter we present an anytime version of the first algorithm,

which provides increasingly accurate solutions while the propagation is still in progress. This makes

it suitable for very large, distributed problems, where propagations may take a long time to complete.

The anytime algorithm also exhibits some built-in fault-tolerance features, by graceful degradation of

performance upon message loss. Experimental results show that these algorithms are a viable approach

to real world, loose, possibly unbounded optimization problems.
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Chapter 8

PC-DPOP: Tradeoffs between
Memory/Message Size and
Centralization

“Congrego et impera.”

— Anonymous

In this chapter we discuss the idea of trading full decentralization for computational and communi-

cation efficiency. We introduce PC-DPOP, a new hybrid algorithm that is controlled by a parameter

k which upper bounds the size of the largest message, and the amount of available memory. PC-

DPOP(k) operates in the framework of Section 6.2 for detecting high-width clusters, where it is

not possible to perform full inference as in DPOP. Such clusters are centralized in the root of the

cluster, and solved by the root in a centralized fashion, using an algorithm of its choice. Communi-

cation requirements over any link in the network are limited thus to exp(k). The linear number of

messages is preserved.

In high width clusters, PC-DPOP offers a tradeoff between the fully decentralized solving process

of DPOP for polynomial memory and message size. The overall behavior of PC-DPOP(k) is as

follows: if w is the induced width of the problem given by the chosen DFS ordering, depending on

the value chosen for k, we have 3 cases:

Fully decentralized algorithms for DCOP like DPOP or ADOPT often require excessive amounts of

communication when applied to complex problems. Mailler and Lesser have introduced APO (Asyn-

chronous Partial Overlay) [128], an algorithm which uses a strategy of partial centralization to mitigate

this problem. While such a tradeoff is probably unfeasible in competitive settings where the agents

141
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are non-cooperative (see the discussion from Section 11.6), in settings where the agents are perfectly

cooperative, this approach can offer communication and computation savings.

In this chapter we introduce PC-DPOP, a new hybrid algorithm that is controlled by a parameter k

which upper bounds the size of the largest message, and the amount of available memory. PC-DPOP(k)

operates in the framework of Section 6.2 for detecting high-width clusters, where it is not possible to

perform full inference as in DPOP because the memory requirements would exceed the bound imposed

by k. In low-width areas, PC-DPOP proceeds as normal DPOP, using a linear number of messages and

memory at most O(exp(k)). Clusters of high width are detected as in Section 6.2.1, and centralized in

the root of the cluster. The cluster root then solves the subproblem in a centralized fashion, using an

algorithm of its choice. Communication requirements over any link in the network are limited thus to

O(dk). The linear number of messages is preserved.

Therefore, in these high width clusters, PC-DPOP offers a tradeoff between the fully decentralized

solving process of DPOP for polynomial memory and message size. The overall behavior of PC-

DPOP(k) is as follows: if w is the induced width of the problem given by the chosen DFS ordering,

depending on the value chosen for k, we have 3 cases:

1. If k = 1, only linear size messages and memory are used.

2. If k < w, PC−DPOP (k) performs full inference in areas of width lower than k, and centraliza-

tion in areas of width higher than k. Memory and communication requirements are O(exp(k)).

3. If k ≥ w, full inference is done throughout the problem; PC-DPOP(k) is then equivalent with

DPOP (i.e. full inference everywhere). Memory requirements are O(exp(w)).

Partial results within each cluster are cached ( [42, 8, 132]) by the respective cluster root and then

integrated as messages into the overall DPOP-type propagation. This avoids the need for any recom-

putation during the final VALUE propagation phase.

Compared to OptAPO, PC-DPOP provides better control over what parts of the problem are cen-

tralized and allows this centralization to be optimal with respect to the chosen communication structure.

PC-DPOP also allows for a priori, exact predictions about privacy loss, communication, memory and

computational requirements on all nodes and links in the network. We also report strong efficiency

gains over OptAPO in experiments on three problem domains.

The rest of this section is structured as follows: Section 8.1 introduces the PC-DPOP hybrid algo-

rithm, which is evaluated empirically in Section 8.2. Section 8.3 relates PC-DPOP to existing work.

Section 8.4 briefly discusses privacy, and Section 8.5 concludes.
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Figure 8.1: A problem graph (a) and a DFS tree (b). In low-width areas the normal UTIL
propagation is performed. In high width areas (shaded clusters C1, C2 and C3 in (b)) bounded
UTIL propagation is used. All messages are of size at most dk. Clusters are centralized and
solved in the cluster roots (the bold nodes X2, X9, X14).

8.1 PC-DPOP(k) - partial centralization hybrid

To overcome the space problems of DPOP, we introduce the control parameter k that bounds the mes-

sage dimensionality. This parameter should be chosen s.t. the available memory at each node and the

capacity of its link with its parent is greater than dk, where d is the maximal domain size.

As with DPOP, PC-DPOP also has 3 phases: a DFS construction phase, an UTIL phase, and a

VALUE phase. The DFS construction is simply done using Algorithm 3. Subsequently, on the es-

tablished DFS structure, we run the LABEL-DFS algorithm from Section 6.2.1 (Algorithm 8). This

algorithm identifies clusters of high width and labels the nodes as either normal node, cluster-node or

cluster-root node. The subsequent UTIL phase assumes this labeling is in place.

8.1.1 PC-DPOP - UTIL Phase

This phase is an adaptation of the UTIL phase from DPOP. It proceeds as in DPOP for normal nodes,

and reverts to partial centralization for cluster nodes (i.e. nodes whose separator size exceeds k):

1. the UTIL propagation starts bottom-up and proceeds exactly like in DPOP for normal nodes.

2. cluster nodes perform centralization (see Section 8.1.1.1): a cluster node does not compute its
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UTIL message like in DPOP, but sends to its parent a Relation message that contains the set of

relations (arity at most k) that the node would have used as an input for computing the UTIL

message.

3. Upon receiving such a Relation message, a node Xi does:

• If Xi is a cluster root, it reconstructs the subproblem from the incoming Relation messages

and then solves it (see Section 8.1.1.3). Then it continues the UTIL propagation as in DPOP.

Later on, during the VALUE phase, when Xi receives the VALUE message from its parent,

it retrieves the solution from its local cache and informs nodes in the cluster of their optimal

values via VALUE messages.

• If Xi is a cluster node, it passes on to its parent all the relevant relations (the ones received

from its children and its own), that it would otherwise use to compute its UTIL message.

For details, see Section 8.1.1.1.

8.1.1.1 PC-DPOP - Centralization

Centralization occurs in high-width clusters such as C1, C2, C3 in Figure 8.1. It is initiated by clus-

ter nodes, since they cannot compute and send their UTIL messages because that would exceed the

dimensionality limit imposed by k. Every cluster node packages together into a Relation message

the union of the relations and UTIL messages received from children, and its own relations with its

parent/pseudoparents. The resulting Relation message is sent to the parent, as in normal DPOP.

On one hand, this ensures the dimensionality limit k is observed, as no relation with arity larger than

k is produced or sent over the network. On the other hand, this allows the cluster root to reconstruct the

subproblem that has to be centralized, and enable the use of structure sensitive algorithms like DPOP,

AOBB, etc.

Alternatively, to save bandwidth, avoid overload on cluster root nodes, and also improve privacy

(see Section 8.4), a node can selectively join subsets of its outgoing Relation message, s.t. the dimen-

sionality of each of the resulting relations is less than k. The resulting set of relations is then packaged

as a Relation message, and sent to the parent. This happens as follows:

1. node Xi receives all UTIL/Relation messages from its children, if any

2. Xi forms the union Ui of all relations in the UTIL/Relation messages and the relations it has with

its parent and pseudoparents

3. Xi matches pairs of relations in Ui s.t. by joining them the resulting relation will have k dimen-

sions or less (the dimensionality of the resulting relation is the union of the dimensions of the

inputs). If the join was successful, remove both inputs from Ui, and add the result instead. Try

until no more joins are possible between relations in Ui. This process is linear in the size of Ui.
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4. The resulting Ui set is sent to Xi’s parent in a Relation message

This process proceeds bottom-up until a cluster root node Xr is reached. Xr then reconstructs the

subproblem from its Relation messages, and solves it (see next Section).

The result is that in high-width clusters, the algorithm reverts to partial centralization, by having

nodes send to their parents not high dimensional UTIL messages, but lower arity (aggregated) inputs

that could be used to generate those UTIL messages.

8.1.1.2 Subproblem reconstruction

Let us assume a cluster root node Xi has received a set of relations RCi
from its children. Each relation

ri ∈ RCi
is defined over a set of variables: scope(ri). Xi reconstructs the subproblem it has received

as follows:

1. Xi creates an internal copy of all the nodes found in the scopes of the relations received.

2. Xi creates a hyper edge for each relation ri ∈ RCi
, which connects all variables in scope(ri).

It is interesting to note that this makes it possible for a cluster root to reconstruct the subprob-

lem while preserving structural information. This is important because it enables the cluster root to

use high-performance optimization algorithms that take advantage of problem structure, like for exam-

ple [42, 8, 132, 131].

8.1.1.3 Solving centralized subproblems

The centralized solving occurs in the cluster root nodes. In the example of Figure 8.1, such a cluster is

the shaded area containing X9, X10, X11, X12, X13.

The root of the cluster (e.g. X9) maintains a cache table that has as many locations as there are

possible assignments for its separator (in this case dk = d2 locations). As a normal node in DPOP, the

root also creates a table for the outgoing UTIL message, with as many dimensions as the size of the

separator. Each location in the cache table directly corresponds to a location in the UTIL message that

is associated with a certain instantiation of the separator. The cache table stores the best assignments

of the variables in the centralized subproblem that correspond to each instantiation of the separator.

Then the process proceeds as follows:

• for each instantiation of Sepi, the cluster root solves the corresponding centralized subproblem.

The resulting utility and optimal solution are stored in the location of the UTIL message (cache

table location, respectively) that correspond to this instantiation.
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Algorithm 16 PC-DPOP - partial centralization DPOP.
PC-DPOP(X , D, R, k): each agent Xi does:

run LABEL-DFS protocol as in Algorithm 8 → Xi knows its label

UTIL propagation protocol
1 wait for UTIL/Relation messages from all children
2 if label(Xi) = normal node then compute UTILPi

i as in DPOP and send it to Pi

3 if label(Xi) = cluster node then

4 Join subsets of incoming UTIL/Relation and relations with (p)parent with same dimension s.t.
for each join, dim(join) ≤ k

5 package joins as Relationi and send to Pi

6 if label(Xi) = cluster root node then

7 reconstruct subproblem from received relations
8 solve subproblem for each s ∈ 〈Sepi〉 and store utility in UTILPi

i and solution in local cache
9 send UTILPi

i to Pi

VALUE propagation(Xi gets Sepi ← Sep∗i from Pi)
10 if Xi is cluster root then

11 find in cache Sol∗ that corresponds to Sep∗i
12 assign self according to Sol∗

13 send Sol∗ to nodes in my cluster via VALUE msgs

14 else continue VALUE phase as in DPOP

• when all Sepi instantiations have been tried, the UTIL message for the parent contains the optimal

utilities for each instantiation of the separator (exactly as in DPOP), and the cache table contains

the corresponding solutions of the centralized subproblem that yield these optimal utilities.

• the cluster root sends its UTIL message to its parent, and the process continues just like in normal

DPOP.

8.1.2 PC-DPOP - VALUE Phase

The labeling phase has determined the areas where bounded inference must be applied due to excessive

width. We will describe in the following the processing to be done in these areas; outside of these, the

original VALUE propagation from DPOP applies.

The VALUE message that the root Xi of a cluster receives from its parent contains the optimal

assignment of all the variables in the separator Sepi of Xi (and its cluster). Then Xi can simply

retrieve from its cache table the optimal assignment corresponding to this particular instantiation of

the separator. This assignment contains its own value, and the values of all the nodes in the cluster.

Xi can thus inform all the nodes in the cluster what their optimal values are (via VALUE messages).

Subsequently, the VALUE propagation proceeds as in DPOP.
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8.1.3 PC-DPOP - Complexity

In low-width areas of the problem, PC-DPOP behaves exactly as DPOP: it generates a linear number

of messages that are at most dk in size. In areas where the width exceeds k, the clusters are formed.

Theorem 7 PC − DPOP (k) requires communication O(exp(k)). Memory requirements vary from

O(exp(k)) to O(exp(w)) depending on the algorithm chosen for solving centralized subproblems (w

is the width of the graph).

PROOF. Section 8.1.1.1 shows that whenever the separator of a node is larger than k, that node is

included in a cluster. It also shows that within a cluster, UTIL messages with more than k dimensions

are never computed or stored; their input components are sent out instead. It can be shown recursively

that these components have always less than k dimensions, which proves the first part of the claim.

Assuming that w > k, memory requirements are at least O(exp(k)). This can easily be seen in

the roots of the clusters: they have to store the UTIL messages and the cache tables, both of which are

O(exp(Sep = k)).

Within a cluster root, the least memory expensive algorithm would be a search algorithm (e.g.

AOBB(1)) that uses linear memory. The exponential size of the cache table and UTIL message domi-

nates this, so memory overall is O(exp(k)).

The most memory intensive option would be to use a centralized version of DPOP, that is proved to

be exponential in the induced width of the subtree induced by the cluster. Overall, this means memory

is exponential in the maximal width of any cluster, which is the overall induced width. �

8.2 Experimental evaluation

We performed experiments on 3 different problem domains: graph coloring (GC, see Section 8.2.1),

distributed sensor networks (DSN, see Section 8.2.2), and meeting scheduling (MS, see Section 8.2.3).

For DSN and GC experiments we used the instances available online at [151], which are used in several

other papers in the literature [140, 127].

Our versions of OptAPO and PC-DPOP used different centralized solvers, so in the interest of fair-

ness, we did not compare their runtimes. Instead, we compared the effectiveness of the centralization

protocols themselves, using 2 metrics: communication required , and amount of centralization. Over-

all, our results show that both OptAPO and PC-DPOP centralize more in dense problems; however,

PC-DPOP’s structure-based strategy performs much better.
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Figure 8.2: PC-DPOP vs OptAPO: centralization in experiments on graph coloring.

8.2.1 Graph Coloring

The results from the GC experiments are shown in Figure 8.3 (communication requirements) and in

Figure 8.2 (amount of centralization).

The bound k has to be at least as large as the maximal arity of the constraints in the problem; since

these problems contain only binary constraints, we ran PC-DPOP(k) with k between 2 and the width

of the problem. As expected, the larger the bound k, the less centralization occurs. However, message

size and memory requirements increase.

8.2.2 Distributed Sensor Networks

The DSN instances are very sparse, and the induced width is 2, so PC−DPOP (k ≥ 2) always runs as

DPOP: no centralization, message size is d2 = 25. In contrast, in OptAPO almost all agents centralize

some part of the problem. Additionally, in the larger instances some agents centralize up to half the

problem.

8.2.3 Meeting scheduling

We generated a set of relatively large distributed meeting scheduling problems. The model is as

in [127]. Briefly, an optimal schedule has to be found for a set of meetings between a set of agents. The

problems were large: 10 to 100 agents, and 5 to 60 meetings, yielding large problems with 16 to 196



PC-DPOP: Tradeoffs between Memory/Message Size and Centralization 149

 10

 100

 1000

 10000

 9  9.5  10  10.5  11  11.5  12

# 
of

 m
es

sa
ge

s 
(lo

g 
sc

al
e)

Number of variables (agents)

(b) how many agents centralize subproblems vs. total problem size

PC-DPOP(2)
PC-DPOP(3)
PC-DPOP(4)

PC-DPOP(5)=DPOP
OptAPO

(a) All PC-DPOP variants use a linear # of messages.

 100

 1000

 10000

 100000

 1e+06

 9  9.5  10  10.5  11  11.5  12

T
ot

al
 m

es
sa

ge
 s

iz
e 

in
 b

yt
es

 (
lo

g 
sc

al
e)

Number of variables (agents)

(b) how many agents centralize subproblems vs. total problem size

PC-DPOP(2)
PC-DPOP(3)
PC-DPOP(4)

PC-DPOP(5)=DPOP
OptAPO

(b) Total information exchange (bytes) is much lower for
PC-DPOPs.

Figure 8.3: PC-DPOP vs OptAPO: message exchange in experiments on graph coloring.

variables. The larger problems were also denser, therefore even more difficult (induced width from 2

to 5).

OptAPO managed to terminate successfully only on the smallest instances (16 variables), and time-

out on all larger instances. We believe this is due to OptAPO’s excessive centralization, which over-

loads its centralized solver. Indeed, OptAPO centralized almost all the problem in at least one node,

consistent with [44].

In contrast, PC-DPOP managed to keep the centralized subproblems to a minimum, therefore suc-

cessfully terminating on even the most difficult instances. PC-DPOP(2) (smallest memory usage)

centralized at most 10% of the problem in a single node, and PC-DPOP(4) (maximal k) centralized at

most 5% in a single node. PC-DPOP(5) is equivalent to DPOP on these problems (no centralization).

8.3 Related Work

The idea of partial centralization was first introduced by Mailler and Lesser in OptAPO [129]. See

Section 3.3 for more details.

Tree clustering methods (e.g. [107]) have been proposed for time-space tradeoffs. PC-DPOP uses

the concept loosely and in many parts of the problem transparently. Specifically, in areas where the

width is low, there is no clustering involved, the agents following the regular DPOP protocols. In high-

width areas, PC-DPOP creates clusters based on the context size of the outgoing UTIL messages and

bounds the sizes of the clusters to a minimum using the specified separator size.
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8.4 A Note on Privacy

Maheswaran et al. [126] show that in some settings and according to some metrics (complete) central-

ization is not worse (privacy-wise) than some distributed algorithms.

Even though the nodes in a cluster send relations to the cluster root, these relations may very well

be the result of aggregations, and not the original relations.

Example 18 For example, in Figure 8.1, X13 sends X9 (via X11 and X10) 3 relations: r11
13, r10

13 and r9
13.

Notice that r11
13 that is sent to X9 like this is not the real r11

13, but the result of the aggregation resulting

from the partial join performed with the UTIL message that X13 has received from X14. Therefore,

inferring true valuations may be impossible even in this scenario.

8.5 Summary

We have presented an optimal, hybrid algorithm that uses a customizable message size and amount of

memory. PC-DPOP allows for a priory, exact predictions about privacy loss, communication, memory

and computational requirements on all nodes and links in the network.

The algorithm explores loose parts of the problem without any centralization (like DPOP), and only

small, tightly connected clusters are centralized and solved by the respective cluster roots. This means

that the privacy concerns associated with a centralized approach can be avoided in most parts of the

problem. We will investigate more thoroughly the privacy loss of this approach in further work.

Experimental results show that PC-DPOP is particularly efficient for large optimization problems

of low width. The intuition that dense problems tend to require more centralization is confirmed by

experiments.
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Chapter 9

Dynamic Problem Solving with Self
Stabilizing Algorithms

In this chapter we extend the discussion of distributed optimization algorithms to dynamically changing

environments, like for example dynamic scheduling applications where tasks arrive and are executed

continuously, or sensor networks where vehicles to be tracked move continuously.

These problems can be modeled as dynamic CSPs, and there is a wide body of research on this

topic: [213, 52, 20, 217], to name just a few. We refer the interested reader to [212] for an excellent

survey of various techniques that can be applied in this setting. However, the vast majority of these

techniques operate in a centralized fashion: the dynamic changes in the environment are communicated

to a central server, which then resolves the problem whenever necessary. In the following, we will

present distributed algorithms for dynamic constraint reasoning; we focus on a class of algorithms

called self-stabilizing.

Self stabilization in distributed systems is a concept introduced by Dijkstra in [57]. It is the ability

of a system to respond to transient failures by eventually reaching a stable state where a legitimacy

predicate is satisfied, and maintaining it afterwards. In the context of DCOP, we define the legitimacy

predicate as ”all variables are assigned to their values from the optimal solution of the DCOP“.

Definition 34 (Self-stabilizing DCOP algorithm) A DCOP algorithm is called self-stabilizing if it is

able to always converge from any arbitrary initial configuration to a stable state where the legitimacy

predicate is satisfied. This stable state corresponds to the optimal solution of the optimization problem,

i.e. all variables in the problem are assigned their optimal values for the current problem configuration.

Algorithms with this property are very well-suited to cope with error-prone distributed systems

like distributed sensor networks, or with dynamic environments like control systems or distributed
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scheduling, where convergence to stable states is ensured without user intervention. However, ensuring

self-stabilization presents two major challenges. First, the algorithm must be able to deal with arbitrary

state changes, like for example arbitrary changes in the problem topology (for example new agents

coming in, or the network experiences temporary problems), in the valuations of the agents, or even

in their internal data structures (for example as a result of temporary power outages). There is an

obvious solution to this problem, namely simply restarting the optimization as soon as any change

has happened in the problem. Nevertheless, this approach is most likely not practical, as it would

raise another problem, namely the algorithm’s ability to deal with successive changes that occur in a

relatively fast sequence. The algorithm then must be fast enough in solving the changed problem, such

that it is able to keep up with the changes.

These problems have so far mostly prevented self-stabilizing algorithms from addressing anything

but relatively “low-level” tasks: leader election, spanning tree maintenance (e.g. [40]) and mutual ex-

clusion. We will present in the following two notable exceptions: the earlier work of Collin, Dechter

and Katz [39] for distributed self-stabilizing constraint satisfaction, and a self-stabilizing extension of

the DPOP algorithm. We also note an attempt at self-stabilizing constraint optimization using a dis-

tributed, self-stabilizing version of branch and bound ( [223]). This approach is not practical, however,

since it may create an exponential number of agents, because they represent processes corresponding

to subproblems.

9.1 Self-stabilizing AND/OR search

Collin, Dechter and Katz introduced in [39] the first self-stabilizing distributed constraint satisfaction

algorithm. This algorithm also operates on a DFS tree.

In order to be able to guarantee self-stabilization, this algorithm uses a powerful principle: each

agent executes continuously two parallel protocols: a DFS-contruction protocol, and a search protocol.

The DFS protocol they use (Collin and Dolev [40], also Dolev [59]) is guaranteed to eventually

produce a valid DFS tree, provided no more changes happen in the problem structure.

The search protocol executes in parallel with the DFS generation protocol. It operates on the DFS

tree that the first protocol produces. While this tree is not yet correctly established, the results are

undefined. However, since the DFS protocol is guaranteed to eventually stabilize on a correct DFS, the

search process is thus guaranteed to start operating on a correct DFS eventually. As the search process

is also guaranteed to produce the correct solution in finite time given a correct DFS tree, it follows that

the whole algorithm is self-stabilizing. For more details and a formal proof, see [39].

Using this satisfaction algorithm as a basis, one could in principle extend also dAOBB (Algorithm 2)

for self-stabilizing optimization. Specifically, we use the same self stabilizing DFS protocol [40],

interleaved with a self stabilizing version of the search protocol executed in dAOBB. The latter protocol
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can be easily made self-stabilizing by having all agents cycle continuously through their values (forward

search phase) and propagate cost bounds to their ancestors (backward bound propagation).

9.2 Self-stabilizing Dynamic Programming: S-DPOP

The self-stabilization principles from Collin, Dechter and Katz [39] can be extended straightforwardly

to DPOP as well [165]. We propose a method that is composed of 3 concurrent self-stabilizing proto-

cols:

1. self-stabilizing protocol for DFS tree generation: as in [40], its goal is to create and maintain

(even upon faults/topology changes) a DFS tree maintained in a distributed fashion.

2. self-stabilizing protocol for propagation of utility messages: bottom-up utility propagation along

the DFS tree, as in Section 4.1.2.

3. self-stabilizing protocol for propagation of value assignments: based on the utility information

obtained in protocol 2, each agent picks its optimal value and informs its children (top-down

along the DFS tree, as in Section 4.1.3).

The three protocols are initialized and then run concurrently. The resulting method, called S-DPOP

is described in Algorithm 17.

Proposition 11 Algorithm S-DPOP is self-stabilizing as specified in Definition 34.

PROOF. We follow the same line of reasoning as in [39]. Specifically, S-DPOP is composed of the three

self-stabilizing sub-protocols described previously. First, the DFS generation subprotocol is guaranteed

to self-stabilize, and eventually produce a correct DFS [40]. Second, the UTIL propagation subprotocol

is guaranteed to execute correctly after the DFS is correctly constructed, and self-stabilize after n − 1

UTIL messages. Third, the VALUE propagation subprotocol is guaranteed to execute correctly after

the UTIL subprotocol has provided all agents in the system with accurate UTIL information. Therefore,

the whole S-DPOP protocol is guaranteed to self-stabilize. �

9.2.1 S-DPOP optimizations for fault-containment

In a dynamic setting, many different changes can occur in the optimization problem: valuations can

change, variables and constraints can be removed or added, etc. We describe in the following sev-

eral possible optimizations to S-DPOP which make it more responsive to changes by increasing the

reusability of previous computation, and by limiting the propagation of new messages upon perturba-

tions. In doing so, we touch upon aspects of fault containment [82], which means that minor changes

can effectively be contained to confined areas in their vicinity.
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Algorithm 17 S-DPOP - Self-stabilizing DCOP algorithm.

S-DPOP(X , D, R): each agent Xi runs 3 subprotocols simultaneously:

Self-stabilizing DFS protocol: run continuously the protocol from [40]
1 at stabilization, Xi knows Pi, PPi, Ci, PCi

UTIL propagation protocol: run continuously - wait for UTIL messages
2 if received new UTIL msg (Xk, UTILi

k) OR Pi, PPi, Ci, PCi or Rk
i changed then

3 recompute UTILPi

Xi
=

((⊕
c∈Ci

UTILi
c

)
⊕

(⊕
c∈{Pi∪PPi}

Rc
i

))
⊥Xi

4 Store UTILPi

Xi
and send it to Pi

VALUE propagation protocol: run continuously - wait for VALUE messages
5 if received new VALUE msg (Xk, v(Xk)) OR changes in UTILPi

Xi
then

6 v∗i ← argmaxXi

(
UTILPi

Xi
[v(Pi), v(PPi)]

)
7 Send V ALUE(Xi, v

∗
i ) to all Ci and PCi

9.2.1.1 Fault-containment in the DFS construction

Changes in the DFS structure adversely affect the performance of S-DPOP, since some of the UTIL

messages will have to be recomputed and retransmitted. Therefore, it is desirable to maintain as much

as possible the current DFS tree upon a change, to be able to reuse most of the effort that was spent

while solving the previous problem instance. After the new DFS is constructed, it is easy to decide

which UTIL messages can be reused, by comparing the new DFS with the old one. All messages

computed and sent in parts of the problem where the DFS was not affected can be reused.

We will describe in the following a number of simple modifications to the problem, and the corre-

sponding changes they induce to the DFS tree.

Additions to the problem Adding a new variable Xi to the problem (and a new relation rj
i to link

it with an existing one, Xj): this is a trivial case. One has just to connect Xi as a child of Xj . Xi

simply starts a propagation by sending Xj the projection rj
i ⊥ Xi. In the worst case, this propagates to

all the ancestors, up to the root. This implies in the worst case a number of UTIL messages that equals

the number of ancestors of Xj , and the same amount of effort that was spent in the original propagation

along this path. 1

Adding a new relation/constraint between 2 existing agents, Xi and Xj . Depending on the relative

position of Xi and Xj , we have 2 cases:

1. Xi and Xj are ancestor-descendant (they lie in the same branch of the DFS): this a simple

1For example, in Figure 9.1, if one adds a variable X14, connected with a single constraint to X13, then it becomes X13’s
child, and the DFS does not suffer any other modifications.
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Figure 9.1: Additions to a problem: the most difficult case is case 2 from Section 9.2.1.1 of
adding an edge between siblings. Adding the red edge X8 − X9 disrupts the DFS from (a)
to (b). In (b), the blue lines denote the messages that have to be recomputed in the worst
case. Notice that X10 − X4 (the green edge) does not change, so UTIL4

10 does not require
re-computation.

case, we just need to designate the new edge as a back-edge. Assuming (without loss of gener-

ality) that Xi is the descendant, Xj becomes Xi’s pseudoparent. The UTIL propagation needs

to be restarted only from Xi, and to incorporate the newly added backedge. Xi can reuse all the

messages it has previously received from its children. 2

2. Xi and Xj are siblings (they lie in different branches of the DFS): adding such an edge violates

the required property that agents in different branches of the DFS be disconnected. This implies

that the DFS is no longer valid, and it has to be reconstructed. To maximize the similarity to

the previous DFS arrangement (and therefore the reuse of UTIL messages), we propose a simple

repair heuristic. Either one of Xi or Xj becomes a parent for the other one. Without loss of

generality, let us assume that Xi becomes Xj’s parent. Let Xk be the lowest common ancestor

of Xi and Xj . The required changes concern only the agents on the tree-path from Xj to Xk:

they all switch their parent-child roles, except for the immediate child of Xk, which becomes its

pseudochild. All other agents are unaffected. 3

Deletions from the problem Deleting a constraint: depending on the type of the edge, we have 2

cases:

1. deleting a back-edge: we simply remove the back-edge, and the lower agent involved in that

back-edge restarts a UTIL propagation without including the dimension of its (former) pseudo-

parent. 4

2For example, in Figure 9.1, if one adds an edge X9 − X1, then this edge simply becomes a back-edge, and X9 becomes
a pseudochild of X1. The DFS does not suffer any other modifications.

3For example, in Figure 9.1, if one adds an edge X8 − X9, then X8 becomes X9’s parent, and agents on the path from
X9 to X1 switch roles: X4 becomes X9’s child. Additionally, X4 also becomes X1’s pseudochild. The DFS does not suffer
any other modifications (e.g. X10 remains X4’s child).

4For example, in Figure 9.1, if one deletes the edge X8 −X1, then X8 simply restarts the UTIL propagation with just X3
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Figure 9.2: Deletions from a problem: the most difficult case is case 2.b from Section 9.2.1.1 of
deleting a tree edge that does not disconnect the problem. Deleting the red edge X5 − X2 disrupts
the DFS from (a) to (b). In (b), the blue lines denote the messages that have to be recomputed in the
worst case. Notice that X11 − X5 (the green edge) does not change, so UTIL5

11
does not require

re-computation.

2. deleting a tree-edge: let Xi and Xj be the two agents involved in it (Xi is Xj’s parent). We

have again two cases:

(a) If Sepj = {Xi}, and also ∀Xk ∈ Cj , Sepk = {Xi}, then by removing the edge Xi − Xj

we have effectively disconnected the problem in two distinct parts: the subtree rooted at

Xj , and the rest. Xj becomes a root now, so it can initiate a VALUE propagation based on

the UTIL information it already has collected from the subtree. For the rest of the problem,

Xi starts a new UTIL propagation by recomputing its UTIL message while disregarding

the message previously sent from the (now disconnected) subtree of Xj . 5

(b) Otherwise, removing the edge Xi − Xj does not disconnect the problem, but disrupts the

tree, however. One needs to restart the DFS reconstruction from the highest agent in Sepj .

Let Xk be this agent. Xk restarts the DFS reconstruction by sending DFS messages to

its children and pseudochildren. There is no point in sending these messages to its par-

ent/pseudoparents, since they cannot be affected by the removal of the edge. This is so

because Xk is the highest agent connected with Xj’s subtree.

The DFS reconstruction proceeds then as normal in the whole subtree rooted at Xk, which

includes the area affected by the removal of the edge Xi − Xj . 6

Note: All other complex changes can be decomposed into a sequence of simple changes like the

ones described before. For example, deleting a variable and all its constraints amounts to deleting its

as a dimension.
5For example, in Figure 9.2, consider removing the edge X2 − X6.
6For example, in Figure 9.2, consider removing the edge X5 − X2. Sep5 = {X0, X2}, so the highest agent in Sep5

is X0. The DFS reconstruction restarts thus from X0, in its right-hand side subtree. The traversal proceeds as follows:
X0 →X2 →X12 →X5 →X11 →X0. At this point, the DFS reconstruction is complete, and the result is depicted in Fig-
ure 9.2(b). Notice the role changes: X12 is now X2’s child (not a pseudochild anymore) and X5 and X12 have switched
parent/child roles. The blue edges represent UTIL messages that have to be recomputed, while the green one (X11 − X5)
shows that the UTIL5

11 message can be reused.
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Algorithm 18 Fault containment in SS-DPOP - limiting the spread of UTIL/VALUE propagations.
UTIL propagation protocol:
step 3.a: find v=min(UTILPi

Xi
); subtract v from each cell in UTILPi

Xi

step 3.b: if new UTILPi

Xi
= old UTILPi

Xi
then discard new UTILPi

Xi

VALUE propagation protocol:
step 6.a: if new v∗i = old v∗i then do not send VALUE message

constraints one by one, until it has a single one left (the last step is obvious). Adding a variable and

several constraints amounts to adding a variable and a single constraint, and then adding constraints

between existing variables.

9.2.1.2 Fault-containment in the UTIL/VALUE protocols

In S-DPOP, upon a perturbation all UTIL messages on the tree-path from the change to the root are re-

computed and retransmitted; subsequently, VALUE messages circulate top-down throughout the prob-

lem. This is sometimes wasteful, since some of the faults have limited, localized effects, which need

not propagate through the whole problem. We change S-DPOP (Algorithm 17) by adding three steps,

presented in Algorithm 18

Steps 3.a and 3.b are designed to identify and cut irrelevant UTIL propagations, and step 6.a to cut

irrelevant VALUE propagations.

Step 3.a rescales all UTIL matrices by subtracting from each element the lowest utility value present

in that matrix. This is a sound operation for computing the optimal solution, because in DPOP the

relative differences in utility are important, and not the absolute valuations: we just want to find the

optimal solution, we do not care about its utility. 7 Step 3.b compares the newly computed UTIL

message with the previous one; in case there are no differences, it is simply discarded. Thus, through

rescaling and projections, the influences of a change in terms of utility variations diminish from one

hop to the next, until the propagation stops altogether.

9.2.2 S-DPOP Protocol Extensions

Self stabilizing algorithms generally do not provide any guarantees about the way the system transits

from a valid state to the next, upon perturbations. The following two sections show that in some

circumstances, we can provide transitional guarantees via superstabilization and fast responses upon

low impact changes.

7Intuitively, if an agent Xi has 3 values [a,b,c], then receiving [0,1,2] as valuations for its values is the same as
receiving [10,11,12]: it still means that value c yields 2 units of utility more than value a, and 1 unit of utility more than
value b, and will thus be chosen as optimal.
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9.2.2.1 Super-stabilization

Super-stabilization [60, 59] is a guarantee that a self-stabilizing protocol satisfies a passage predicate

at all times, transitional states included. Formally,

Definition 35 (Superstabilization) A protocol P is said to be superstabilizing with respect to a pas-

sage predicate p for a class of changes Λ if and only if P is self-stabilizing, and for every trajectory Φ

beginning at a legitimate state and containing a single change of type Λ, the passage predicate p holds

for every σ ∈ Φ.

Recall that for DCOPs, we defined the legitimacy predicate in Definition 34 as ”all variables are

assigned to their optimal values“. For our purposes, we define the passage predicate p =”the previous

optimal assignment is maintained while the new one is recomputed, and the switch is made atomically“.

We also define the class Λ as any changes in the problem which do not invalidate the current solution,

i.e. they do not make it inconsistent: adding values to a variable, adding / removing / changing a

relation, removing a constraint, and even adding a constraint, as long as it does not forbid (parts of) the

current assignment (that would clearly invalidate the current assignment).

A super stabilizing algorithm with respect to predicate p and changes in class Λ as defined above,

ensures that a consistent solution (i.e. the previous optimal solution, which has now possibly become

suboptimal) is maintained at all times, even in transitory states. Superstabilization w.r.t this passage

predicate p can be regarded as a safety property, weaker than the legitimacy predicate, but nevertheless

useful: this guarantee of consistency can be important for example in control systems, where incon-

sistent assignments cannot be tolerated in transitory states where the algorithm searches the new best

solution after a fault.

SS-DPOP (Algorithm 19) relies on additional assumptions to guarantee super stability: the agents

have synchronized clocks, the messages are transmitted synchronously, and each agent knows (a) its

level in the DFS tree and (b) the depth of the DFS tree (both can be made available by the DFS con-

struction protocol). The algorithm works as S-DPOP: upon a fault, the agents start to recompute and

resend the UTIL and VALUE messages. However, now all the agents must switch their values to their

new optimum synchronously, in an atomic step, to avoid transitory inconsistent assignments. They

synchronize by delaying the switch to the new value: assuming the transmission of a VALUE message

takes a clock ”tick“, each agent delays switching its value for a number of ticks equal to the difference

between the depth of the DFS and its own level in the DFS. This ensures that the switch is made at the

moment when the last leaf agent has received the VALUE message from its parent, and can compute

its own optimal value.

Proposition 12 SS-DPOP is super stabilizing in the sense of Definition 35.
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Algorithm 19 SS-DPOP - Super-stabilizing DCOP algorithm.

SS-DPOP(X , D, R): changes from S-DPOP (Algorithm 17)

VALUE propagation protocol: run continuously - wait for VALUE messages
1 if received new VALUE msg (Xk, v(Xk)) OR changes in UTILPi

Xi
then

2 vtmp
i ← argmaxXi

(
UTILPi

Xi
[v(Pi), v(PPi)]

)
3 Send V ALUE(Xi, v

∗
i ) to all Ci and PCi

4 wait for depth − level clock ticks
5 assign v∗i = vtmp

i

PROOF. When a failure σ ∈ Λ occurs, the agents preserve their current assignments. By definition

of the class Λ, this ensures p = true. Agents then recompute and resend their UTIL messages. When

the root (level 0 in the DFS) has received all updated messages, it decides for its new value, and sends

VALUE messages to its children. It will then wait for depth clock ticks before it actually sets itself

to this new value. We assume messages are delivered synchronously, thus they arrive in the following

clock tick at the nodes on level 1, which send VALUE messages and wait for depth-1 ticks, and so

on. The VALUE propagation phase takes thus depth clock ticks, and at that time all nodes switch to

their new optimal values in a synchronized manner. �

9.2.2.2 Fast response time upon low-impact faults

In dynamic systems, optimal decisions have to be made as quickly as possible. In some cases, we

want to respond immediately to a perturbation by re-assigning the ”touched” variable to its new optimal

value, and then gradually re-assigning the neighboring ones to their new optimal values, until the whole

system re-stabilizes.

Definition 36 (Low impact faults) A low impact fault on a variable Xi is the addition of a constraint

that further limits the available values for Xi, or changes the local utilities associated with some of its

values.

To be able to immediately assess locally the global effect of such a fault, each agent needs global

utility information. To this end, we use the bidirectional utility propagation extension from Sec-

tion 4.1.6. Then, each agent simply joins together all the UTIL messages received from its parent

and children, and then projects out all other variables except itself. This gives the agent a global view

of the whole problem, as it produces a utility vector that accurately describes what is the best utility

achievable by the whole problem for each one of the values of the agent in question.
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Algorithm 20 LIF-S-DPOP - Dynamic DCOP algorithm (changes from S-DPOP)

LIF-S-DPOP(X , D, R): changes from S-DPOP (Algorithm 17)

UTIL propagation protocol: bidirectional version, as in Section 4.1.6
1 if received new UTIL msg (Xk, UTILi

k) OR Pi, PPi, Ci, PCi or Rk
i changed then

2 recompute JOINXi
=

((⊕
c∈{Ci∪Pi}

UTILi
c

)
⊕ Ri

)

3 UTILglobal
Xi

= JOINXi
⊥Xj �=Xi

VALUE propagation protocol: run continuously - wait for VALUE messages
4 if changes in UTILglobal

Xi
then

5 v∗i ← argmaxXi

(
UTILglobal

Xi

)
6 Send V ALUE(Xi, v

∗
i ) to all Ci and PCi

Once this vector is available, dealing with a low-impact fault is easy: Xi simply has to join the new

relation/constraint to the vector, and it finds out what is its best value in the new situation 8 . This later

step requires no communication, and only a linear amount of computation.

The resulting algorithm is presented in Algorithm 20.

Proposition 13 Algorithm 20 self-stabilizes in response to a low-impact fault in a time delay of n

VALUE messages.

PROOF. When a low-impact fault occurs at an agent Xi, Xi immediately finds out its new optimal

value by joining the new relation/constraint describing the fault with the pre-computed UTILglobal
Xi

vector, and choosing the new best value. Afterwards, Xi announces its neighbors of the change by

sending VALUE messages. When another agent Xj receives a new VALUE message, it simply re-

trieves its best response from its internal JOINXj
message, and announces its own neighbors about

the change, and so on. The whole propagation stops after at most n VALUE messages, i.e. in the worst

case after all the agents in the problem change value. �

8This assumes that there are no other simultaneous changes in the problem.



Chapter 10

Solution stability in dynamically
evolving optimization problems

In dynamic systems, changes occur all the time, and optimization is a continuous process. In some

cases, it is required to decide on the values of at least a subset of the variables of the problem, and fix

them to some desirable values. A simple example is a dynamic scheduling problem, where at some

point one has to fix some tasks and start working on them, otherwise deadlines would not be kept.

The traditional dynamic CSP model [20, 213, 52, 217, 18] deals with dynamic environments by

assuming that the CSP solver has to deal with a sequence of static CSPs. The solver solves each one

of these CSPs, and finds the optimal solution at each step. In some settings, it is important to try to

minimize the number of variable assignments that differ between successive solutions. For example,

when a new task is given to a scheduler, it may be wasteful to re-schedule all the other schedules that

were previously computed; it may be desirable to disrupt the existing schedule as little as possible. For

this purpose, the objective of solution stability was introduced ( [217, 83]), which states that solutions

to successive problems should differ in as few variable assignments as possible.

We next extend the traditional dynamic CSP formalism along two dimensions. First, we introduce a

more flexible mechanism to deal with environment dynamics (Section 10.1), and second, we introduce

an effective mechanism for evaluating and maintaining solution stability for a problem that evolves

with time (Section 10.2).

10.1 Commitment deadlines specified for individual variables

First, we introduce a new level of granularity as far as time is concerned. We do not treat the dynami-

cally evolving CSP as a sequence of CSPs that have to be solved individually, but rather introduce the

idea of per-variable commitment deadline. In this approach, upon defining the optimization problem,
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the designer has the opportunity to specify commitment deadlines for each variable: deadlines until

which a value must be assigned to the respective variable. This gives more flexibility, as each variable

is treated individually, and the ones that do not have to be committed to any value do not interfere with

maintaining solution stability.

We identify two kinds of commitments:

1. Soft commitments model contracts with penalties, and can be revised if the benefit extracted from

the change outweighs its cost. The penalties associated with changing a variable assignment (a

decision that has been made) are modeled with stability constraints (see definition 37 in Sec-

tion 10.2).

2. Hard commitments model irreversible processes, and are impossible to undo (example: produc-

tion of good X already started, and resource Y was already consumed). When a variable is

hard-committed to a value, the variable can be removed from the problem.

10.2 Solution Stability as Minimal Cost of Change via Stability

Constraints

Current approaches define solution stability in dynamic CSP with respect to the number of variable

assignments that need to be changed in order to reach again a consistent state upon a change in the

problem. There are two approaches to achieve this kind of stability. The first approach (e.g. [213])

is reactive: once a change occurs in the problem, one seeks the new solution which is closest to the

previous one, thus requiring a minimal number of changes. The second approach (e.g. [217, 27, 99])

is proactive: when generating a solution in the first place, one tries to find robust solutions, which are

likely to remain valid even upon changes in the problem, thus requiring little or no adjustment. [27]

uses a probabilistic model that tries to predict what possible changes can happen in the future, and tries

to generate solutions that are robust with respect to the predicted changes.

Our approach falls in the category of reactive approaches. We do not try to predict future changes,

or to build robust solutions; rather, we simply optimize continuously and provide the optimal solution

at all times. However, we break away from the traditional definition of solution stability by looking

at the process from a cost perspective. We argue that the number of assignments that change is irrel-

evant; what matters is the total cost that is incurred by performing these changes, given the current

assignments.

Therefore, we introduce stability constraints to allow for such changing costs to be explicitly mod-

eled into the COP framework with stability constraints:

Definition 37 (Stability Constraint) A stability constraint σi is a function
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σi : dom(Xi)× dom(Xi)→R, s.t. σi(v
j
i → vj

i ) = 0 (it does not cost anything if Xi stays un-

changed). The semantics of such a constraint is simple: if Xi is assigned to v1
i , then σi(v

1
i → v2

i )

denotes how much it costs to change Xi’s value to v2
i .

We define the distributed, continuous-time combinatorial optimization problem:

Definition 38 (DynDCOP) Formally, a discrete dynamic distributed constraint optimization problem

(DynDCOP) is a tuple < X ,D,R,S, T > that extends the DCOP definition with:

• S = {σ1, ..., σm} is a set of stability constraints

• T = {t1, ..., tm} is a set of commitment deadlines: times until the corresponding variable has to

commit to a value. Deadlines can be specified for hard or soft commitments.

Notice that this model of a DynDCOP is purely reactive: we do not assume any knowledge or

model of future events. At each moment, we seek the current optimal solution to the problem, taking

into account the costs incurred from revising previous commitments. Formally, we define the new

optimal solution to a dynamic DCOP as follows:

X ∗
new = argmaxX

⎛
⎝ ∑

rl∈R

rl(X ) −
∑
σi∈S

σi(X
old →X )

⎞
⎠ (10.1)

where the first sum is the utility of the new solution, and the second sum is the cost one has to pay for

changing the current assignments to the new ones.

For uncommitted variables, the cost is 0: they can simply choose their new optimal values, without

any cost. Hard-committed variables cannot change their values anymore (one can think of it as an

infinite change cost).

Thus, what we need to optimize is the difference between the new utility and the cost associated

with changing the soft-committed variables. Section 10.3 introduces RS-DPOP, an algorithm which

implements this idea.

10.3 Algorithm RS-DPOP

This section introduces RS-DPOP, an extension of the self stabilizing algorithm S-DPOP. RS-DPOP

implements the two extensions that we introduced to the DynDCOP framework: individual commit-

ment deadlines, and implementation of solution stability as cost of changing committed assignments.

There are two changes from the original S-DPOP. First, we add a time monitor for each agent

that handles the deadlines imposed on the commitment of its variable. Second, the UTIL and VALUE
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propagations are changed as far as the committed variables are concerned. The RS-DPOP algorithm is

described in Algorithm 21.

10.3.1 UTIL propagation

The UTIL propagation is essentially the same as in S-DPOP, with the exception of the committed

variables.

Soft Commitments and Stability Constraints: suppose Xi has already soft-committed to v∗i . If

there are some changes in the problem, and Xi needs to resend its UTIL message to its parent, then it

can recompute it by adding the cost of change to the current JOIN , followed by an optimal projection

along its dimension: UTIL
P (i)
Xi

=
(
JOIN

P (i)
i ⊕ σi[v

∗
i ]

)
⊥Xi

.

For each tuple of variables in {dim(JOIN j
i ) \ Xi}, all the corresponding values from JOIN j

i

(one for each value of Xi) are considered. The value corresponding to Xi = v∗i is not modified - no

change, no cost. From all the other values corresponding to Xi = vk
i , k �= ∗ we substract ”the cost of

change”: σi(v
∗
i → vk

i ). We then choose the best value. Computing the UTIL messages like this ensures

that the utility values sent by Xi are either computed by keeping the same value for Xi, or take into

account the cost of change.

Hard commitments: When computing its UTIL messages, a hard-committed variable cannot

change its value anymore, so instead of an optimal projection, a slice is used: if Xi was already assigned

to v∗i , then UTIL
P (i)
Xi

= JOIN
P (i)
i [Xi = vi∗]

10.3.2 VALUE propagation

Now the optimization of the local value happens only if the variable is not hard-committed. If it is

soft-committed, the cost of change is taken into account. Otherwise, the variable is ”floating”, and it

can freely be changed to its new value.

Proposition 14 (RS-DPOP correctness) Algorithm 21 is correct in the sense that it correctly finds the

(instantaneous) optimal solution according to Definition 10.1.

PROOF. Follows from the fact that the stability constraints are taken into account while computing the

UTIL messages (step 4 in Algorithm 21) and while determining the new optimal assignments in the

VALUE phase (step 7 in Algorithm 21). �
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Algorithm 21 RS-DPOP - Dynamic DCOP algorithm (changes from S-DPOP)
(X , D, R, S, T ): each agent Xi does:

Time monitor: run continuously
1 if deadline ti reached then commit to current best value: Xi ← v∗i
2 if ti is hard commit then mark Xi as dead; apply policy on dead agents

UTIL propagation protocol: run continuously
3 if Xi is hard-committed to vi∗ then UTIL

P (i)
Xi

= JOIN
P (i)
i [Xi = vi∗]

4 if Xi is soft-committed to vi∗ then UTIL
P (i)
Xi

=
(
JOIN

P (i)
i ⊕ σi[v

∗
i ]

)
⊥Xi

5 if Xi is not committed then UTIL
P (i)
Xi

= JOIN
P (i)
i ⊥ Xi

VALUE propagation protocol

6 if Xi is not committed then v∗i ← argmaxXi

(
JOIN

P (i)
i [agent view]

)

7 if Xi is soft-committed then v∗i ← argmaxXi

(
JOIN

P (i)
i [agent view] ⊕ σi[v

∗
i ]

)

10.4 Real time guarantees in dynamically evolving environments

In general, constraint optimization problems are NP-hard to solve, so it is difficult to provide real time

guarantees. However, low impact faults as defined in Definition 36 are a particular case of changes

which are easier to deal with: in a first phase, the agent touched by the low impact fault can almost

instantly recompute its new optimal value (see Section 9.2.2.2). The agent then informs its neighbors of

its assignment change via VALUE messages. In the worst case, this first phase requires sending all n-1

VALUE messages. However, the VALUE propagation is very fast, as the messages are of linear size,

and the processing required from each node when receiving a VALUE message is simply retrieving its

best value which corresponds to this new assignment.

In a second phase, the algorithm needs to prepare itself for the next low-impact fault, by recom-

puting and retransmitting the new UTIL messages, and by computing the new utility vectors as in (see

Section 9.2.2.2). This second phase may take much longer than the first one, as it may require much

more computation, and it also may involve sending larger messages over the network, which is an ex-

pensive operation. In the worst case, a full UTIL propagation of n-1 messages could be required to

prepare the system for the next fault. However, assuming that during this time there appear no addi-

tional faults, the solution which is implemented in the first phase is already the optimal one, and thus

the system is in the stable state.
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Chapter 11

Distributed VCG Mechanisms for
Systems with Self-Interested Users

In this chapter we consider systems with self-interested users, which try to maximize their own

utility. We focus on the efficient social choice problem (SCP), where the goal is to assign values,

subject to side constraints, to a set of variables to maximize the total utility across a population of

agents, where each agent has private information about its utility function.

We show how to model SCP as a DCOP. Whereas existing DCOP algorithms can be easily ma-

nipulated by an agent, we introduce M-DPOP, the first DCOP algorithm that provides a faithful

distributed implementation for efficient social choice. Faithfulness ensures that no agent can bene-

fit by unilaterally deviating from any aspect of the protocol, and is achieved by carefully integrating

the Vickrey-Clarke-Groves (VCG) mechanism with DPOP. Determining agent i’s payment requires

solving the social choice problem without agent i. Here, we present a method to reuse computation

performed in solving the main problem in a way that is robust against manipulation by the excluded

agent. Experimental results show that as much as 87% of the computation required for solving the

marginal problems can be avoided by re-use, providing very good scalability in the number of

agents.

Distributed optimization problems can model environments where a set of agents must agree on

a set of decisions subject to side constraints. We consider settings in which each agent has its own

preferences on subsets of these decisions. The agents are self interested, and each one would like to

obtain the decision that maximizes its own utility. However, the system as a whole agrees (or some

social designer determines) that a solution should be selected to maximize the total utility across all

agents. Thus, this is a problem of efficient social choice. As motivation, we have in mind massively

distributed problems such as meeting scheduling, where the decisions are about when and where to

hold each meeting, or allocating airport landing slots to airlines, where the decisions are which airline

is allocated which slot, or scheduling contractors in construction projects.

171
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One approach to solve such problems is with a central authority that computes the optimal solu-

tion. In combination with an incentive mechanism such as the Vickrey-Clarke-Groves (VCG) mecha-

nism [103], one can also prevent manipulation by misreporting preferences. However, in many practical

settings it is hard to bound the problem so that such a central authority is feasible. Consider meeting

scheduling: while each agent only participates in a few meetings, it is in general not possible to find a

set of meetings that has no further constraints with any other meetings and thus can be optimized sep-

arately. Similarly, contractors in a construction project simultaneously work on other projects, again

creating an web of dependencies that is hard to optimize in a centralized fashion. Privacy concerns also

favor decentralized solutions [90].

Algorithms for distributed constraint reasoning, such as ABT and AWC ( [229]), AAS [197],

DPOP [160] and ADOPT [141], can deal with large problems as long as the influence of each agent

on the solution is limited to a bounded number of variables. However, the current techniques assume

cooperative agents, and do not provide robustness against misreports of preferences or deviations from

the algorithm by self-interested agents. This is a major limitation. In recent years, faithful distributed

implementation [150] has been proposed as a framework within which to achieve a synthesis of the

methods of (centralized) MD with distributed problem solving. Until now, distributed implementation

has been applied to lowest-cost routing [192,72], and policy-based routing [73], on the Internet, but not

to efficient social choice, a problem with broad applicability.

This chapter brings the following contributions:

• We show how to model the problem of efficient social choice as a DCOP, and adapt the DPOP

algorithm to exploit the local structure of the distributed model and achieve the same scalability

as would be possible in solving the problem in a centralized fashion.

• We provide an algorithm whose first stage is to faithfully generate the DCOP representation from

the underlying social choice problem. Once the DCOP representation is generated, the next

stages of our M-DPOP algorithm are also faithful, and form an ex post Nash equilibrium of the

induced non-cooperative game.

• In establishing that DCOP models of social choice problems can be solved faithfully, we observe

that the communication and information structure in the problem are such that no agent can

prevent the rest of the system, in aggregate, from correctly determining the marginal impact

that allowing for the agent’s (reported) preferences has on the total utility achieved by the other

agents. This provides the generality of our techniques to other DCOP algorithms.

• Part of achieving faithfulness requires solving the DCOP with each agent’s (reported) preferences

ignored in turn, and doing so without this agent able to interfere with this computational process.

We provide an algorithm with this robustness property, that is nevertheless able to reuse, where

possible, intermediate results of computation from solving the main problem that all agents.
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• In experimental analysis, on a meeting scheduling problem that is a common benchmark in the

literature, we demonstrate that as much as 87% of the computation required for solving the

marginal problems can be avoided through reuse. In absolute numbers, this amounts to saving

the computation associated with 1.96 million valuations out of a total of 2.25 million.

The M-DPOP algorithm defines a strategy for each agent in the extensive-form game induced by

the DCOP for efficient social choice. In particular, the M-DPOP algorithm defines the messages that

an agent should send, and the computation that an agent should perform, in response to messages

received from other agents. In proving that M-DPOP forms a game-theoretic equilibrium, we show

that no agent can benefit by unilaterally deviating, whatever the utility functions of other agents and

whatever the constraints. Although not as robust as a dominant strategy equilibrium, because this (ex

post) equilibrium requires every other agent to follow the algorithm, Parkes and Shneidman [150] have

earlier commented that this appears to be the necessary “cost of decentralization.”

It is worthwhile to note that while agents make payments to the bank as required by the VCG

mechanism, the total payment made by each agent to the bank is always non-negative and M-DPOP

never runs at a deficit.

The reuse of computation, in solving the marginal problems with each agent removed in turn, is

especially important in settings of distributed optimization because motivating scenarios are those for

which the problem size is massive, perhaps spanning multiple organizations and encompassing thou-

sands of decisions. For example, consider project scheduling, inter-firm logistics, intra-firm meeting

scheduling, etc. With appropriate problem structure, DCOP algorithms in these problems can scale

linearly in the size of the problem. For instance, DPOP is able to solve such problems through a single

back-and-forth traversal over the problem graph. But without re-use the additional cost of solving each

marginal problem would make the computational cost quadratic rather than linear in the number of

agents, which could be untenable in such massive-scale applications.

The rest of this chapter is organized as follows: we start with a background section on mechanism

design in general. In Section 11.2 we formally introduce the social choice problem, we show how to

model it as a DCOP, and present some examples. In Section 11.3 we describe an adaptation of the

DPOP algorithm to our DCOP model of social choice problems. Section 11.4 introduces our model of

self-interested agents and defines the (centralized) VCG mechanism. Section 11.4.4 provides a simple

method, Simple M-DPOP to make DPOP faithful and serves to illustrate the excellent fit between the

information and communication structure of DCOPs and faithful VCG mechanisms. In Section 11.5

we describe our main algorithm, M-DPOP, in which computation is re-used in solving the marginal

problems with each agent removed in turn. We present experimental results in Section 11.5.3, and

summarize M-DPOP in Section 11.5.4. Additionally, we provide a discussion on adapting other DCOP

algorithms to achieve faithfulness in Section 11.6
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11.1 Background on Mechanism Design and Distributed Imple-

mentation

This work draws on two research areas: distributed algorithms for constraint satisfaction and opti-

mization, and mechanism design for coordinated decision making in multi-agent systems with self-

interested agents. We briefly overview the most relevant results in these areas.

There is a long tradition of using centralized incentive mechanisms within Distributed AI, going

back at least to Ephrati and Rosenschein [64] who considered the use of the VCG mechanism to com-

pute joint plans; see also Sandholm [187] and Parkes et al. [149] for more recent discussions. Also

noteworthy is the work of Rosenschein and Zlotkin [181, 244] on rules of encounter, which provided

non-VCG based approaches for task allocation in systems with two agents.

On the other hand, there are very few known methods for distributed problem solving in the pres-

ence of self-interested agents. For example, the TRACONET [186] and the CONTRACTNET [46] sys-

tems are negotiation-based, distributed task reallocation allocation mechanisms. Nevertheless, neither

TRACONET or CONTRACTNET were studied in the presence of game-theoretic agents, but only for

simple, myopically-rational agent behaviors. This lack of thorough analysis holds for more recent

works [63, 153, 152] as well. Similarly, Wellman’s work on market-oriented programming [219, 220]

considers the role of virtual markets in the support of optimal resource allocation, but is developed for

a model of “price-taking” agents (i.e. agents that treat current prices as though they are final), rather

than game-theoretic agents.

Izmalkov et al. [102] adopt cryptographic primitives such as ballot boxes to show how to convert

any centralized mechanisms into a DI on a fully connected communication graph. There interest is in

demonstrating the theoretical possibility of “ideal mechanism design” without a trusted center. They

focus on the issue of trust: can mechanism design be performed without a trusted center? Our work

has a very different focus: we seek computational tractability, do not require fully connected commu-

nication graphs, and make no appeal to cryptographic primitives. On the other hand, we are content

to retain desired behavior in some equilibrium (remaining consistent with the MD literature) while Iz-

malkov et al. avoid the introduction of any additional equilibria beyond those that exist in a centralized

mechanism.

In a similar line of work, Yokoo, Suzuki and Hirayama [231, 233, 204, 205, 232, 234] resort to

cryptographic mechanisms to address incentive issues. [232] shows how to implement a combinatorial

auction mechanism in a distributed fashion, such that the VCG outcome is selected. Their approach

has some drawbacks, however: it requires the computation of prices for each possible bundle, for all

bidders, i.e. n× 2m prices, where n is the number of bidders, and m is the number of items. This,

coupled with the fact that the computation of each price involves heavy cryptographic computations,

limit the practical applicability of their approach.
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The first step in providing a more satisfactory synthesis of distributed algorithms with MD was

provided by the agenda of distributed algorithmic mechanism design (DAMD), due to Feigenbaum and

colleagues [72, 74]. They consider the problem of lowest-cost interdomain routing on the Internet, and

provide an efficient algorithm that computes the VCG outcome. The agents– in this case autonomous

systems running network domains –could therefore not benefit by misreporting information about their

own transit costs. However, they do not consider the robustness of the algorithm itself to manipulation.

This problem is later fixed in [150], where the concept of Distributed implementation is introduced,

which specifies this additional requirement. Parkes and Shneidman [150] provide the partition principle

for achieving faithfulness 1 in an ex post Nash equilibrium. They do not provide however a concrete

instantiation of their mechanism for social choice problems.

Ours is the first work to achieve faithfulness for general DCOP algorithms, demonstrated here via

application to efficient social choice.

11.2 Social Choice Problems

We assume that the social choice problem consists of a finite but possibly large number of decisions

that all have to be made at the same time. Each decision is modeled as a variable that can take values in

a discrete and finite domain. Each agent has private information about the variables on which it places

relations. Each relation associated with an agent defines the utility of that agent for each possible

assignment of values to the variables in the domain of the relation. There may also be hard constraints

that restrict the space of feasible joint assignments to subsets of variables.

Definition 39 (Social Choice Problem - SCP) An efficient social choice problem can be modeled as

a tuple 〈A,X ,D, C,R〉 such that:

• X = {X1, ..., Xm} is the set of public decision variables (e.g. when and where to hold meetings,

to whom should resources be allocated, etc);

• D = {d1, ..., dm} is the set of finite public domains of the variables X (e.g. list of possible time

slots or venues, list of agents eligible to receive a resource, etc);

• C = {c1, ..., cq} is a set of public constraints that specify the feasible combinations of values of

the variables involved. A constraint cj is a function cj : dj1 × ..× djk
→ {−∞, 0} that returns

0 for all allowed combinations of values of the involved variables, and −∞ for disallowed ones.

We denote by scope(cj) the set of variables associated with constraint cj;

1An algorithm is faithful if an agent cannot benefit by deviating from any of its required actions, including information-
revelation, computation and message passing.
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• A = {A1, ..., An} is a set of self-interested agents involved in the optimization problem; X(Ai) ⊆

X is a (privately known) set of variables in which agent Ai is ”interested“ and on which it has

relations.

• R = {R1, ..., Rn} is a set of private relations, where Ri is the set of relations specified by

agent Ai and relation rj
i ∈ Ri is a function rj

i : dj1 × ..× djk
→ R specified by agent Ai,

which denotes the utility Ai receives for all possible values on the involved variables {j1, . . . , jk}

(negative values mean costs). We denote by scope(rj
i ) the domain of variables that rj

i is defined

on.

The private relations of each agent may, themselves, be induced by the solution to local optimization

problems on additional, private decision variables and with additional, private constraints. These are

kept local to an agent and are not part of the SCP definition.

The optimal solution to the SCP is a complete instantiation X∗ of all variables in X , s.t.

X∗ ∈ arg max
X∈D

∑
i∈{1,..,n}

Ri(X) +
∑
cj∈C

cj(X), (11.1)

where Ri(X) =
∑

r
j
i∈Ri

rj
i (X) is agent Ai’s total utility for assignment X . This is the natural problem

of social choice: the goal is to find a solution that maximizes the total utility of all agents, while

respecting hard constraints; notice that the second sum is −∞ if X is infeasible and precludes this

outcmoe. We assume throughout that there is a feasible solution.

In introducing the VCG mechanism in Section 11.4.1 and onwards, we will require the solution to

the SCP with the influence of each agent’s relations removed in turn. For this, let SCP(A) denote the

main problem in Eq. (11.1), and we define a marginal problem as follows:

Definition 40 (SCP(−Ai): the marginal problem without agent Ai) We call ”the marginal prob-

lem without agent Ai“, and we denote by SCP(−Ai), the problem maxX∈D
∑

j �=i Rj(X)+
∑

cj∈C
cj(X).

Note that all decision variables remain. The only difference between SCP(A) and SCP(−Ai) is that

the preferences of agent Ai are ignored in solving SCP(−Ai).

For variable Xj , we refer to the agents Ai for which Xj ∈ X(Ai) as forming the community for

Xj .

Assumptions We choose to emphasize the following assumptions:

• Each agent knows the variables in which it is interested, together with the domain of any such

variable and the hard constraints that involve the variable.
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• Each decision variable is supported by a community mechanism that allows all interested agents

to report their interest and learn about each other. For example, such a mechanism can be imple-

mented using a bulletin board.

• For each constraint cj ∈ C, every agent Ak in a community Xl ∈ scope(cj), i.e. with Xl ∈

X(Ak), can read the membership lists of all other communities Xm ∈ scope(cj) for Xm �= Xl.

In other words, every agent involved in a hard constraint knows about all other agents involved

in that hard constraint.

• Each agent can communicate directly with all agents in all communities in which it is a member,

and with all other agents involved in the same shared hard constraints. No other communication

between agents is required.

In Section 11.4 we will establish that the step of identifying the SCP, via the community mechanism,

is itself faithful so that self-interested agents will choose to volunteer the communities of which they

are a member (and only those communities.)

11.2.1 Modeling Social Choice as Constraint Optimization

We first introduce a centralized, constraint optimization problem (COP) model of the efficient social

choice problem. This model is represented as a centralized problem graph. Given this, we then model

this as a distributed constraint optimization problem (DCOP), along with an associated distributed

problem graph. The distributed problem graph makes explicit the control structure of the distributed

algorithm that is ultimately used by the multi-agent system to solve the problem. Both sections are

illustrated by reference to a meeting scheduling problem, as described in Section 2.3.1, and [127]. We

now introduce the idea of self-interest in this problem: although the organization as a whole desires

to minimize the cost of the whole process, each department and employee is self interested in that it

wishes to maximize its own utility. An artificial currency is created for this purpose and a weekly

assignment is made to each employee. Employees express their preferences for meeting schedules in

units of this currency.

11.2.1.1 A Centralized COP Model as a MultiGraph

Viewed as a centralized problem, the SCP can be defined as a constraint optimization problem on a

multigraph, i.e. a graph in which several distinct edges can connect the same set of nodes. We denote

this COP(A), and provide an illustration in Figure 11.1(a) in the meeting scheduling domain. The

decision variables are the nodes, and relations defined over subsets of the variables form edges of the

multigraph; hyperedges that connect more than two vertices at once in the case of a relation involving

more than two variables. There can be multiple edges that involve the same set of variables, with each
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Figure 11.1: A meeting scheduling problem. (a) A centralized model: each vertex is a meeting
variable, red edges correspond to hard constraints of non-overlap for meetings that share a partici-
pant 2, and blue edges correspond to relations and represent agent preferences. (b) A decentralized
(DCOP) model with replicated variables: each agent has a local replica of variables of interest and
green edges denote equality constraints that ensure agreement. The hard constraint for non-overlap
between meetings M1, M2 and M3 is now a local hyperedge to agent A2. (c) A DFS arrangement of
the decentralized problem graph: used by the DPOP algorithm to control the order of problem solving.

edge corresponding to the relations of a distinct agent on the same set of variables. The hard constraints

are also be represented as edges on the graph.

Example 19 (Centralized Model for Meeting Scheduling) The example in Figure 11.1(a) contains

3 agents and considers 3 meetings. The meetings {M1, M2, M3} correspond to the decision variables

and the domain of each meeting is the available time slots for that meeting. Each vertex is associated

with a meeting. Agent 1 must participate in meetings M1 and M3, agent 2 in every meeting, and agent

3 in meetings M2 and M3. These hard constraints are annotated as an edge for each of agents A1 and

A3 and a hyperedge for agent A2. Agent 1 expresses a relation on the of meeting M1, agent 2 on the

joint times assigned to meetings M1 and M2 and agent 3 on the joint times on M2 and M3. These

relations are denoted with three edges on the graph, with the unary relation of agent 1 associated with

a self-edge on vertex M1.

11.2.1.2 A Decentralized COP (DCOP) Model Using Replicated Variables

It is useful to define an alternate graphical representation of the SCP, with the centralized problem graph

replaced with a distributed problem graph. This distributed problem graph has a direct correspondence
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with the DPOP algorithm for solving DCOPs. We show in the following how to translate a SCP into a

DCOP model.

Remark 10 Both SCP(A) (the problem with all agents included) and SCP(−Ai) (the problem with

agent Ai removed) can thus be translated into DCOP problems, which we denote by DCOP(A) and

DCOP(−Ai), respectively.

In our distributed model, each agent has a local replica of the variables in which it is interested.3 For

each public variable, Xv ∈ X(Ai), in which agent Ai is interested, the agent has a local replica,

denoted Xi
v. Agent Ai then models its local problem COP(X(Ai), Ri), by specifying its relations

rj
i ∈ Ri on the locally replicated variables.

The neighborhood of each local copy Xi
v of a variable is composed of three kinds of variables:

Neighbors(Xi
v) = Siblings(Xi

v) ∪ Local neighbors(Xi
v) ∪ Hard neighbors(Xi

v). (11.2)

The siblings are local copies of Xv that belong to other agents Aj �= Ai also interested in Xv:

Siblings(Xi
v) = {Xj

v | Aj �= Ai and Xv ∈ X(Aj)} (11.3)

All siblings of Xi
v are connected pairwise with an equality constraint. This ensures that all agents

eventually have a consistent value for each variable. The second set of variables are the local neighbors

of Xi
v from the local optimization problem of Ai. These are the local copies of the other variables that

agent Ai is interested in, which are connected to Xi
v via relations in Ai’s local problem:

Local neighbors(Xi
v) = {Xi

u | Xu ∈ X(Ai), and ∃rj
i ∈ Ri s.t. Xi

u ∈ scope(ri)} (11.4)

We must also consider the set of hard constraints that contain in their scope the variable Xv and

some other public variables: Hard(Xv) = {∀cs ∈ C|Xv ∈ scope(cs)}. These constraints connect Xv

with all the other variables Xu that appear in their scope, which may be of interest to some other agents

as well. Consequently, Xi
v should be connected with all local copies Xj

t of the other variables Xt that

appear in these hard constraints:

Hard neighbors(Xi
v) = {Xj

t |∃cs ∈ Hard(Xv) s.t. Xt ∈ scope(cs), and Xt ∈ X(Aj)} (11.5)

3An alternate model designates an “owner” agent for each decision variable. Each owner agent would then centralize and
aggregate the preferences of other agents interested in its variable. Subsequently, the owner agents would use a distributed
optimization algorithm to find the optimal solution. This model limits the reusability of computation from the main problem in
solving the marginal problems in which each agent is removed in turn because when excluding the owner agent of a variable,
one needs to assign ownership to another agent and restart the computational process in regards to this variable and other
connected variables. This reuse of computation is important in making M-DPOP scalable. Our approach is disaggregated and
facilitates greater reuse.
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In general, each agent can also have private variables, and relations or constraints that involve

private variables, and link them to the public decision variables. For example, consider a meeting

scheduling application for employees of a company. Apart from the work-related meetings they sched-

ule together, each one of the employees also has personal items on her agenda, like appointments to the

doctor, etc. Decisions about the values for private variables and information about these local relations

and constraints remain private. These provide no additional complications and will not be discussed

further.

Example 20 (DCOP Model for Meeting Scheduling) Refer to Figure 11.1 (b). In the example, each

agent has as local variables the time slots corresponding to the meetings it participates in (e.g. M2
1

represents A2’s local replica of the variable representing meeting M1). Local edges correspond to local

all-different constraints between an agent’s variables and ensure that it does not participate in several

meetings at the same time. Equality constraints between local replicas of the same value ensure global

agreement. Agents specify their relations via local edges on local replicas. For example, agent A1 with

its relation on the time of meeting M1 can now express a preference for a meeting later in the day with

relation r0
1, which can assign low utilities to morning time slots and high utilities to afternoon time

slots. Similarly, if A2 prefers holding meeting M2 after meeting M1, then it can use the local relation

r0
2 to assign high utilities to all satisfactory combinations of timeslots and low utility otherwise. For

example, 〈M1 = 9AM, M2 = 11AM〉 gets utility 10, and 〈M1 = 9AM, M2 = 8AM〉 gets utility 2.

We can understand the potential for manipulation by self-interested agents through this example:

Example 21 (Manipulation Example) Notice that although the globally optimal solution may require

holding meeting M2 before meeting M1, this is less preferable to A2, providing utility 2 instead of 10.

Therefore, in the absence of an incentive mechanism, A2 could benefit from a simple manipulation: de-

clare utility +∞ for 〈M1 = 9AM, M2 = 11AM〉, thus changing the final assignment to a suboptimal

one that is nevertheless better for itself.

11.3 Cooperative Case: Efficient Social Choice via DPOP

In this section, we instantiate DPOP for efficient social choice problems. Specifically, we first show

in Section 11.3.1 how the optimization problem is constructed from the agents’ interests in variables

and their preferences. Subsequently, we show the changes we make to DPOP to adapt it to the SCP

domain. The most prominent such adaptation exploits the fact that several variables represent local

replicas of the same variable, and can be treated as such both during the UTIL and the VALUE phases.

This adaptation improves efficiency significantly, and allows complexity claims to be stated in terms

of the induced width of the centralized COP problem graph rather than the distributed COP problem

graph (see Section 11.3.5).
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11.3.1 Building the DCOP

To initialize the algorithm, each agent first forms the communities around its variables of interest,

X(Ai), and defines a local optimization problem COP i(X(Ai), Ri) with a replicated variable Xi
v for

each Xv ∈ X(Ai). Shorthand Xi
v ∈ COP i denotes that agent Ai has a local replica of variable Xv.

Each agent owns multiple variables and we can conceptualize each variable as having an associated

“virtual agent” operated by the owning agent. Each such virtual agent is responsible for the associated

variable.

All agents subscribe to the communities in which they are interested, and learn which other agents

belong to these communities. Neighboring relations are established for each local variable according to

Eq. 11.2, as follows: all agents in a community Xv connect their corresponding local copies of Xv with

equality constraints. By doing so, the local problems COP i(X(Ai), Ri) are connected with each other

according to the interests of the owning agents. Local relations in each COP i(X(Ai), Ri) connect

the corresponding local variables. Hard constraints connect local copies of the variables they involve.

Thus, the overall problem graph DCOP (A) is formed.

For example, consider again Figure 11.1(b). The decision variables are the start times of the three

meetings. Each agent models its local optimization problem by creating local copies of the variables

in which it is interested and expressing preferences with local relations. Formally, the initialization

process is described in Algorithm 22.

Algorithm 22 DPOP init: community formation and building DCOP(A).

DPOP init(A, X , D, C, R):
1 Each agent Ai models its interests as COP i(X(Ai), Ri): a set of relations Ri imposed on a set

X(Ai) of variables Xi
v that each replicate a public variable Xv ∈ X(Ai)

2 Each agent Ai subscribes to the communities of Xv ∈ X(Ai)
3 Each agent Ai connects its local copies Xi

v ∈ X(Ai) with the corresponding local copies of other
agents via equality constraints

11.3.2 Constructing the DFS traversal

The method for DFS traversal is described in Algorithm 23. The algorithm starts by choosing one of

the variables, X0, as the root. This can be done randomly, for example using a distributed algorithm

for random number generation, with a leader election algorithm (e.g. [147]), or by simply picking the

variable with the lowest ID. The agents involved in the community for X0 then randomly choose one

of them, Ar as the leader. The local copy Xr
0 of variable X0 becomes the root of the DFS.

Once a root has been chosen, the agents participate in a distributed depth-first traversal of the

problem graph. For convenience, we describe the DFS process as a token-passing algorithm in which

all members within a community can observe the release or pick up of the token by the other agents. The
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Algorithm 23 DPOP Phase One: DFS construction.

Inputs: each Ai knows its COP i, and Neighbors(Xi
v), ∀Xi

v ∈ COP i

Outputs: each Ai knows P (Xi
v), PP(Xi

v), C(Xi
v), PC (Xi

v), ∀Xi
v ∈ COP i.

Procedure Initialization
1 The agents choose one of the variables, X0, as the root.
2 Agents in X0’s community elect a “leader”, Ar.
3 Ar initiates the token passing from Xr

0 to construct the DFS

Procedure Token Passing (performed by each “virtual agent” Xi
v ∈ COP i)

4 if Xi
v is root then P (Xi

v) = null; create empty token DFS := ∅
5 else DFS :=Handle incoming tokens()
6 Let DFS := DFS ∪ {Xi

v}
7 Sort Neighbors(Xi

v) by Siblings(Xi
v), then Local neighbors(Xi

v), then Hard neighbors(Xi
v). Set

C(Xi
v) := null.

8 forall Xl ∈ Neighbors(Xi
v) s.t. Xl not visited yet do

9 C(Xi
v) := C(Xi

v) ∪ Xl. Send DFS to Xl wait for DFS token to return.

10 Send DFS token back to P (Xi
v).

Procedure Handle incoming tokens() //run by each “virtual agent” Xi
v ∈ COPi

11 Wait for any incoming DFS message; let Xl be the sender
12 Mark Xl as visited.
13 if this is the first DFS message (i.e. Xl is my parent) then

14 P (Xi
v) := Xl ; PP(Xi

v) := {Xk �= Xl|Xk ∈ Neighbors(Xi
v) ∩ DFS}; PP(Xi

v) := ∅

else

15 if Xl /∈ C(Xi
v) (i.e. this is a DFS coming from a pseudochild) then

PC (Xi
v) := PC (Xi

v) ∪ Xl

neighbors of each node are sorted (in line 7) to prioritize for copies of variables held by other agents,

and then other local variables, and finally other variables linked through hard constraints. Making the

assumption that virtual agents act on behalf of each variable in the problem, the functioning of the

token passing mechanism is similar to that described in Section 3.4.1.1.

Example 22 Consider the meeting scheduling example in Figure 11.1. Assume that M3 was chosen

as the start community and A2 was chosen within the community as the leader. A2 creates an empty

token DFS = ∅ and adds M2
3 ’s ID to the token (DFS = {M2

3 }). As in Eq. 11.2, Neighbors(M2
3 ) =

{M3
3 , M1

3 , M2
1 , M2

2 }. A2 sends the token DFS = {M2
3 } to the first unvisited neighbor from this list,

i.e. M3
3 , which belongs to A3. A3 receives the token and adds its copy of M3 (now DFS = {M2

3 , M3
3 }).

A3 then sends the token to M3
3 ’s first unvisited neighbor, M1

3 (which belongs to A1).

Agent A1 receives the token and adds its own copy of M3 to it (now DFS = {M2
3 , M3

3 , M1
3 }).

M1
3 ’s neighbor list is Neighbors(M1

3 ) = {M2
3 , M3

3 , M1
1 }. Since the token that A1 has received already
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contains M2
3 and M3

3 , this means that they were already visited. Thus, the next variable to visit is M1
1 ,

which happens to be a variable that also belongs to A1. The token is “passed” to M1
1 internally (no

message exchange required), and M1
1 is added to the token (now DFS = {M2

3 , M3
3 , M1

3 , M1
1 }).

The process continues, exploring sibling variables from each community in turn, and then passing

on to another community, and so on. Eventually all replicas of a variable are arranged in a chain and

have equality constraints (back-edges) with all the predecessors that are replicas of the same variable.

When a dead end is reached, the last agent backtracks by sending the token back to its parent. In our

example, this happens when A3 receives the token from A2 in the M2 community. Then, A3 sends back

the token to A2 and so on. Eventually, the token returns on the same path all the way to the root and

the process completes.

11.3.3 Handling the Public Hard Constraints.

Social choice problems, as defined in Definition 39 can contain side constraints, in the form of publicly

known hard constraints, which represent domain knowledge such as “a resource can be allocated only

once”, “this hotel can accomodate 100 people”, “no person can be in more than one meeting at the

same time.” etc. These constraints are not owned by any agent, but are available to all agents interested

in any variable involved in the domain of any such constraint. Handling these constraints is essentially

unchanged from handling the non-binary constraints in standard DPOP, as described in Section 3.4.1.1

for the DFS construction phase, and in Section 7 for the UTIL phase. Specifically:

DFS construction: neighboring relationships as defined in Eq. 11.2 require for each local variable

that other local copies that share a hard constraint are considered as neighbors. This ensures that during

the DFS construction phase, hard constraints are handled as any non-binary constraint, i.e. as a clique

of the involved variables. Furthermore, in Algorithm 23, because of the prioritization in line 7, the DFS

traversal is mostly made according to the structure defined by the relations of the agents and most hard

constraints will appear as backedges in the DFS arrangement of the problem graph.

UTIL propagation: similarly to a non-binary constraint in DPOP, hard constraints are introduced

in the UTIL propagation phase by the lowest agent in the community of the variable from the scope of

the hard constraint, i.e. the agent with the variable that is lowest in the DFS ordering. For example, if

there was a constraint between M2 and M3 in Figure 11.1 to specify that M2 should occur after M3

then this becomes a backedge between the 2 communities and would be assigned to A3 for handling.



184 Distributed VCG Mechanisms for Systems with Self-Interested Users

11.3.4 Handling replica variables

Our distributed model of SCP replicates each decision variable for every interested agent and connects

all these copies with equality constraints. This in turn may increase the induced width k of the DCOP

model with replicated variables when compared to the induced width w of the centralized model. This

is best avoided, because DPOP’s message size and computational complexity is exponential in the

induced width. Specifically, with no further adaptation, the UTIL messages in DPOP on the distributed

problem graph would be conditioned on as many variables as there are local copies of an original

variable. However, all the local copies represent the same varible and must be assigned the same value;

thus, sending many combinations where different local copies of the same variable take different values

is wasteful. Therefore, we handle multiple replicas of the same variable in UTIL propagation as though

they are the single, original variable, and condition UTIL messages on just this one variable. This is

realized by updating the JOIN operator as follows:

Definition 41 (Updated JOIN operator for SCP) Defined in two steps:

Step 1: Consider all UTIL messages received as in input. For each one, consider each variable X i
v

on which the message is conditioned, and that is also a local copy of an original variable Xv. Rename

Xi
v from the input UTIL message as Xv, i.e. the corresponding name from the original problem.

Step 2: Apply the normal JOIN operator for DPOP.

Applying the updated JOIN operator makes all local copies of the same variable become indistin-

guishable from each other, and merges them into a single dimension in the UTIL message and avoids

this exponential blow-up.

Example 23 Consider the meeting scheduling example in Figure 11.1. The centralized model in Fig-

ure 11.1(a) has a DFS arrangement that yields induced width 2 because it is a clique with 3 nodes.

Nevertheless, the corresponding DCOP model in Figure 11.1(b) has induced width 3, as can be seen

in the DFS arrangement from Figure 11.1(c), in which SepM2

2

= {M2
3 , M3

3 , M2
1 }. Applying DPOP

to this DFS arrangement, M2
2 would condition its UTIL message UTILM2

2
→M2

1

on all variables in its

separator: {M2
3 , M3

3 , M2
1 }. However, both M2

3 and M3
3 represent the same variable, M3. Therefore,

M2
2 can apply the updated JOIN operator, which leverages the equality constraint between the two

local replicas and collapse them into a single dimension (called M3) in its message for M2
1 . The result

it that the outgoing message only has 2 dimensions: {M3, M
2
1 }, and it takes much less space. This is

possible because all 3 agents involved, i.e. A1, A2 and A3 know that M1
3 , M2

3 and M3
3 represent the

same variable.

With this change, the VALUE propagation phase is modified so that only the top most local copy

of any variable solve an optimization problem and compute the best value, announcing this result to all

the other local copies which then assume the same value.
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11.3.5 Complexity Analysis of DPOP Applied to Social Choice

The special handling of replica variables avoids the possible artificial increase in complexity and al-

lows DPOP applied to SCP to scale with the induced width of the centralized problem graph, and

independently of the number of agents involved and in the number of local replica variables.

Specifically, consider a DFS arrangement for the centralized model of the SCP that is equivalent

to the DFS arrangement for the DCOP model, where “equivalent” means that the original variables

from SCP are visited in the same order in which their corresponding communities are visited during

the distributed DFS construction. (Recall that the distributed DFS traversal described in Section 11.3.2

visits all local copies from a community from DCOP before moving on to the next community). Let

w denote the induced width of this DFS arrangement of the centralized SCP. Similarly, let k denote

the induced width of the DFS arrangement of the distributed model. Let D = maxm |dm| denote the

maximal domain of any variable. Then, we have the following:

Theorem 8 (DPOP Complexity for SCP) The number of messages passed in DPOP in solving a SCP

is 2m, (n−1) and (n−1) for phases one, two and three respectively, where n and m are the number of

nodes and edges in the DCOP model with replicated variables. The maximal number of utility values

computed by any node in DPOP is O(Dw+1), and the largest UTIL message has O(Dw+1) entries,

where w is the induced width of the centralized problem graph.

PROOF. The first part of the claim (number of messages) follows trivially from Proposition 1. For the

second part (message size and computation): given a DFS arrangement of a DCOP, applying Propo-

sition 1 trivially gives that in the basic DPOP algorithm, the maximal amount of computation on any

node is O(Dk+1), and the largest UTIL message has O(Dk) entries, where k is the induced width of

the DCOP problem graph. To improve this analysis we need to consider the special handling of the

replica variables.

Consider the UTIL messages which travel up along the DFS tree, and whose sets of dimensions

contain the separators of the sending nodes. Recall that the updated JOIN collapses all local replicas

into the original variables. The union of the dimensions of the UTIL messages to join in the DPOP

on the DCOP model becomes identical to the set of dimensions of the nodes in the DPOP on the

centralized model. Thus, each node in the DCOP model performs the same amount of computation as

its counterpart on the centralized model. It follows that the computation required in DPOP scales as

O(Dw+1) rather than O(Dk+1) by this special handling.

There remains an additional difference between DPOP on the DFS arrangement for the centralized

SCP versus DPOP on the DFS arrangement for the DCOP. A variable Xv that is replicated across

multiple agents can only be projected out from the UTIL propagation through local optimization by the

top-most agent handling a local replica of Xv. This is the first node at which all relevant information

is in place to support this optimization step. In particular, whenever a node with the maximal separator



186 Distributed VCG Mechanisms for Systems with Self-Interested Users

set is not also associated with the top-most replica of its variable then it must retain dependence on the

value assigned to its variable in the UTIL message that it sends to its parent. This increases the worst

case message size of DPOP to O(Dw+1), as opposed to O(Dw) for the normal DPOP. Computation

remains O(Dw+1) because the utility has to be determined for each value of Xv anyway, and before

projecting Xv out. �

To see the effect described in the proof, in which a local variable cannot be immediately removed

during UTIL propagation, consider again the problem from Figure 11.1. Suppose now that agent A3 is

also involved in meeting M1. This introduces an additional back-edge M3
2 − M3

1 in the DFS arrange-

ment for the decentralized model shown in Figure 11.1(c).

The DFS arrangement of the COP model that corresponds to the decentralized model is simply

a traversal of the COP in the order in which the communities are visited during the distributed DFS

construction. This corresponds to a chain: M3 − M1 − M2. The introduction of the additional back-

edge M3
2 − M3

1 in the distributed DFS arrangement does not change the DFS of the COP model, and

its width remains w = 2. However, as M3
2 is not the top most copy of M2, agent A3 cannot project

M2 out of its outgoing UTIL message. The result is that it sends a UTIL message with w + 1 = 3

dimensions, as opposed to just w = 2.

11.4 Handling Self-interest: A Faithful Algorithm for Social Choice

Having adapted DPOP to remain efficient for SCPs, we now turn to the issue of self-interest. Without

further modification, an agent can manipulate DPOP by misreporting its private relations and deviat-

ing from the algorithm in various ways. In the setting of meeting scheduling, for example, an agent

might benefit by misrepresenting its local preferences (“I have massively more utility for the meet-

ing occurring at 2pm than at 9am”), incorrectly propagating utility information of other (competing)

agents (“The other person on my team has very high utility for the meeting at 2pm”), or by incorrectly

propagating value decisions (“It has already been decided that some other meeting involving the other

person on my team will be at 9am so this meeting must be at 2pm.”)

By introducing carefully crafted payments, by leveraging the information and communication struc-

ture inherent to DCOPs for social choice, and by careful partitioning of computation so that each agent

is only asked to reveal information, perform optimization, and send messages that are in its own in-

terest, we are able to achieve faithfulness. This will mean that each agent will choose, even when

self-interested, to follow the modified algorithm.

We first define the VCG mechanism for social choice and illustrate its ability to prevent manipula-

tion in centralized problem solving in a simple example. With this in place, we next review the defini-

tions of faithful distributed implementation and the results of a useful principle, the partition principle.

In closing this section, we then describe the simple M-DPOP algorithm and prove its faithfulness.
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11.4.1 The VCG Mechanism Applied to Social Choice Problems

Mechanism design (MD) addresses the problem of optimizing some criteria, frequently social welfare,

in the presence of self-interested agents that each have private information relevant to the problem at

hand. In the standard story, agents report private information to a “center,” that solves an optimization

problem and enforces the outcome.

In our setting of efficient social choice, we will assume the existence of a currency so that agents

can make payments, and make the standard assumption of quasilinear utility functions, so that agent

Ai’s net utility is,

ui(X, p) = Ri(X) − p, (11.6)

for an assignment X ∈ D to variables X and payment p ∈ R to the center, i.e., its net utility is that due

to the decision, Ri(X) =
∑

r
j
i∈Ri

rj
i (X), minus the amount of its payment.

One of the most celebrated results of MD is provided by the Vickrey-Clarke-Groves (VCG) mech-

anism. The VCG mechanism generalizes Vickrey’s second price auction to the problem of efficient

social choice:

Definition 42 (VCG mechanism for Efficient Social Choice) Given knowledge of public constraints

C, and public decision variables X , the mechanism works as follows:

• Each agent, Ai, makes a report R̂i about its private relations.

• The center’s decision, X∗, is that which solves SCP(A) given the reports R̂ = (R̂1, . . . , R̂n).

• Each agent Ai, makes payment

Tax (Ai) =
∑
j �=i

(
R̂j(X

∗
−i) − R̂j(X

∗)
)

, (11.7)

to the center, where X∗
−i, for each Ai, is the solution to SCP(−Ai) given reports R̂−i =

(R̂1, . . . , R̂i−1, R̂i+1, . . . , R̂n).

Each agent makes a payment that equals the negative marginal externality that its presence imposes

on the rest of the system, in terms of influencing the solution to the SCP.

The VCG mechanism has a number of useful properties:

• Strategyproofness: Each agent’s weakly dominant strategy, i.e. its utility-maximizing strategy

whatever the strategies and whatever the private information of other agents, is to truthfully report

its private relations to the center.
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Figure 11.2: Numerical example of UTIL propagation. (a) A simple DCOP problem in which
there are three relations r1

3
, r1

2
and r0

1
between (X3, X1), (X2, X1) and (X1, X0) respectively. (b)

Projections of X2 and X3 out of their relations with X1. The results are sent to X1 as UTIL1

2
, and

UTIL1

3
respectively. (c) X1 joins UTIL1

2
and UTIL1

3
with its own relation with X0. (d) X1 projects

itself out of the join and sends the result to X0.

• Efficiency: In equilibrium, the mechanism makes a decision that maximizes the total utility to

agents over all feasible solutions to the SCP.

• Participation: In equilibrium, each agent’s net utility, Ri(X
∗) − Tax (Ai) = (Ri(X

∗) +∑
j �=i R̂j(X

∗)) −
∑

j �=i R̂j(X
∗
−i), is non-negative, by the principle of optimality, and therefore

agents will choose to participate.

• No-Deficit: The payment made by each agent is non-negative in the SCP, because
∑

j �=i R̂j(X
∗
−i) ≥∑

j �=i R̂j(X
∗), by the principle of optimality, and therefore the entire mechanism runs at a budget

surplus.

To understand why the VCG mechanism is strategyproof, notice that the first term in Tax (Ai) is

independent of Ai’s report. Now, the second term when taken together with the agent’s own true utility

from the decision, provides Ai with net utility Ri(X
∗) +

∑
j �=i R̂j(X

∗). This is the total utility for all

agents, and to maximize this the agent should simply report its true relations, because the center will

then explicitly solve this problem in picking X∗.

Example 24 (A numerical example of VCG computation) Consider the simple DCOP example in

Figure 11.2. We can make this into a SCP by associating agents A1, A2 and A3 with relations r0
1, r

1
2

and r1
3 on variables {X0, X1}, {X1, X2}, and {X1, X3} respectively. Breaking ties as before, the
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solution to SCP(A) is <X0 = a, X1 = c, X2 = b, X3 = a> with utility < 6, 6, 3 > to agents A1, A2

and A3 respectively. Removing agent A1, the solution would be <X0 =?, X1 = a, X2 = c, X3 = a>

with utility < 5, 6 > to agents A2 and A3. The ‘?’ indicates that agents A2 and A3 are indifferent to

the value on X0. Removing agent A2, the solution would be < X0 = c, X1 = b, X2 =?, X3 = c >,

with utility < 7, 4 > to agents A1 and A3. Removing agent A3, the solution would be <X0 = a, X1 =

c, X2 = b, X3 =? >, with utility < 6, 6 > to agents A1 and A2. The VCG mechanism would assign

< X0 = a, X1 = c, X2 = b, X3 = a >, with payments (5 + 6) − (6 + 3) = 2, (7 + 4) − (6 + 3) =

2, (6 + 6)− (6 + 6) = 0 collected from agents A1, A2 and A3 respectively. A3 has no negative impact

on agents A1 and A2 and does not incur a payment. The other agents make payments: the presence of

A1 helps A2 but hurts A3 by more, while the presence of A2 hurts both A1 and A3. The only conflict

in this problem is about the value assigned to variable X1. Agents A1, A2 and A3 each prefer that

X1 be assigned to b, c and a respectively. In the chosen solution, only agent A2 gets its best outcome.

Considering the case of A3, it can force either a or b to be selected by reporting a suitably high utility

for this choice, but for X1 = a it must pay 4 while for X1 = b it must pay 1, and in either case it weakly

prefers the current outcome in which it makes zero payment.

In fact, there is a real sense in which we are only able to address self-interest in DCOPs by maxi-

mizing something like the total utility of participants. (More generally, it is straightforward to extend

our techniques to maximize a linear weighted sum of the utility of each agent for the solution, where

these weights are fixed and known, for instance by a social planner [103].) Roberts [179] proves that the

Groves mechanisms are the only, non-trivial strategyproof mechanisms in the domain of social choice

unless one makes additional assumptions about the structure of the domain; e.g., everyone prefers

earlier meetings, or more of a resource is always weakly preferred to less.4

11.4.2 Faithful Distributed Implementation

Our goal here is to find a way to distribute the computation required to solve the SCP, and to determine

the VCG payments, onto the agents while retaining an analog to strategyproofness. This is the prob-

lem of distributed implementation (DI), which seeks to distribute the computation performed by the

center in the traditional model of MD to the agents. This is challenging because it opens up additional

opportunities for manipulation beyond those in the centralized VCG.

Additional Assumptions we introduce the following additional assumptions over-and-above those

made so far in Section 11.2:

• Agents are rational but helpful, meaning that although self-interested, they will follow a protocol

4Together with another technical assumption, Robert’s theorem has been extended by Lavi, Mu’alem and Nisan [121] to
domains that allow this kind of structure, for instance to combinatorial auctions.
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whenever there is no deviation that will make them strictly better off (given the behavior of other

agents).

• Each agent is prevented from posing as several independent agents by an external technique for

providing strong (but perhaps pseudonymous) identities.

• Catastrophic failure will occur if all agents in the community of a variable do not eventually

choose the same value for the variable.

• A trusted bank, connected with a trusted communication channel to each agent and with the

authority to collect payments from each agent.

By a trusted communication channel, we mean that each agent can send a message to the bank

without interference by any other agent. These messages are only sent upon termination of M-DPOP,

to inform the bank about other agents’ payments. The bank is the only trusted entity that we need to

assume. We continue to assume that the SCP has a feasible solution (and therefore that each marginal

problem also has a feasible solution.) Catastrophic failure ensures that the decision determined by the

protocol is actually executed. It prevents a “hold-out” problem, where an unhappy agent refuses to

adopt the consensus decision.5

Given a distributed algorithm (such as simple M-DPOP, to be introduced shortly), we formalize

this, for the same of analysis as a distributed implementation (DI), dM =< g,Σ, s̆ >, which is defined

in terms of three components [150, 192]:

• A strategy space, Σ, for each agent Ai. This restricts the space of messages that an agent can

send in every possible state of the distributed algorithm. Given a DI, the way to think about this is

that the other agents will only be programmed (in equilibrium) to be able to intepret a particular,

well-defined set of messages that agent Ai could send.

• A strategy, σi ∈ Σ, exactly defines the message(s) that agent Ai will send in every possible

state of the distributed algorithm. By defining the message(s) that are sent this encompasses

all computation performed internal to an agent, all information-revelation decisions made by an

agent about its private information, and all decisions made by an agent about how to propagate

information received as messages from other agents.

• A suggested protocol, s̆ = (s̆1, . . . , s̆n), defines a strategy s̆i(Ri) ∈ Σ, for every agent Ai and

all possible private relations Ri. That is, a suggested protocol s̆i for Ai defines the messages that

Ai will send in all possible states of the distributed algorithm, and for all possible private inputs

of the agent.

• A two-part outcome rule, g = (g1, g2), where g1 : Σn → D defines the assignment of values,

g1(σ) ∈ D, to variables X given a joint strategy, σ = (σ1, . . . , σn) ∈ Σn, and g2 : Σn → R
n

defines the payment g2,i(σ) ∈ R made by each agent Ai given joint strategy σ ∈ Σn.

5An alternative solution would be to have agents report the final decision to a trusted party, responsible for enforcement.
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To provide an additional interpretation, one can think about protocol s̆ as corresponding to the

algorithm, such as simple M-DPOP, that one wishes to show is faithful. Coupled with the distributed

input to the problem, R = (R1, . . . , Rn) and the known parts of the input such as hard constraints C,

then algorithm s̆ defines particular messages that will be sent in every possible state of the algorithm.

It is these messages that are defined by a strategy σ, which defines a particular execution trace of

the algorithm given the input, and in turn the outcome g(σ), where g1(σ) is the assignment of values

determined on termination and g2(σ) is the vector of payments to collect from agents.6

The main question that we ask, given a distributed algorithm in the presence of self-interested

agents, is whether the algorithm is an ex post Nash equilibrium.

Definition 43 (Ex post Nash equilibrium.) A protocol s = (s1, . . . , sn), that defines a strategy si(Ri) ∈

Σ for each agent Ai, for all possible private relations Ri, is an ex post Nash equilibrium (EPNE) in

this context of social choice, if

Ri(g1(si(Ri), s−i(R−i))) − g2(si(Ri), s−i(R−i)) ≥ Ri(g1(σ
′
i, s−i(R−i))) − g2(σ

′
i, s−i(R−i)),

∀σ′
i ∈ Σi, ∀Ri, ∀R−i (11.8)

This is defined so that no agent Ai can benefit by deviating from protocol, si, whatever the particular

instance of DCOP (i.e. for all private relations R = (R1, . . . , Rn)), so long as the other agents also

choose to follow the protocol. It is this latter clause that makes EPNE weaker than dominant-strategy

equilibrium, in which si would be the best protocol for agent i even if the other agents followed an

arbitrary protocol. Given this, we can define a faithful DI:

Definition 44 (Faithful Distributed Implementation) Distributed implementation

dM =< g,Σ, s̆ > is ex post faithful, if suggested protocol, s̆, is an ex post Nash equilibrium.

That is, when a suggested protocol, or algorithm, s̆, is ex post faithful (or just faithful) then it is

in the best interest of every agent Ai to follow all aspects of the algorithm – information revelation,

computation and message-passing – whatever the private inputs of the other agents, as long as every

other agent follows the algorithm.

11.4.3 The Partition Principle applied to Efficient Social Choice

One cannot achieve a faithful DI for efficient SCP by simply running DPOP, n + 1 times on the same

problem graph, once for the main problem and then with each agent’s effect nullified in turn by asking

6Note that the outcome rule must be well-defined for any unilateral deviation from s̆, i.e. where aby one agent deviates and
does not follow the suggested protocol. Here we assume that either the protocol still reaches a terminal state so that decisions
and payments are defined, or that the protocol reaches some “bad” state with suitably negative utility to all participants, such
as livelock or deadlock. We neglect this latter possibility for the rest of our analysis, but it can be easily treated by introducing
special notation for this bad outcome.
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it to simply propagate messages. Agent Ai would seek to do the following: (a) interfere with the

computational process for SCP(−Ai), to make the solution as close as possible to that to SCP(A),

so that its marginal impact appears small; and (b) otherwise decrease its payment, for example by

increasing the apparent utility of other agents for the solution to SCP(A), and in turn increase the

value of the second term in its VCG payment (Eq. 11.7).

This opportunity for manipulation was recognized by Parkes and Shneidman [150], who proposed

the partition principle as a method for achieving faithfulness in distributed VCG mechanisms, instan-

tiated here in the context of efficient social choice problems:

Definition 45 (partition principle) A distributed algorithm, corresponding to suggested protocol s̆,

satisfies the partition principle in application to efficient social choice, if:

1. (Correctness) An optimal solution is obtained for SCP(A) and SCP(−Ai) when every agent

follows s̆, and the bank receives messages that instruct it to collect the correct VCG payment

from every agent.

2. (Robustness) Agent Ai cannot influence the solution to SCP(−Ai), or the report(s) that the bank

receives about the negative externality that Ai imposes on the rest of the system conditioned on

solutions to SCP(A) and SCP(−Ai).

3. (Enforcement) The decision that corresponds to SCP(A) is enforced, and the bank collects the

payments as instructed.

Proposition 15 [150] A distributed algorithm that satisfies the partition principle is an ex post faithful

distributed implementation for efficient social choice.

By the partition principle, no agent Ai is able to prevent the other agents from correctly solving

SCP(−Ai), and neither can the agent prevent the other agents correctly reporting the negative exter-

nality that Ai imposes on the other agents by its presence. On the other hand, no restriction is placed on

the agent’s ability to influence the decision to SCP(A). For example, it is permissible for every agent

to use the standard DPOP algorithm to solve the main social choice problem.

For some intuition behind this result, note that the opportunity for manipulation by an agent Ai is

now restricted to: (a) influencing the solution computed to SCP(A); and (b) influencing the payments

made by other agents. As long as the other agents follow the algorithm, it the ex post faithfulness then

follows from the strategyproofness of the VCG mechanism because the additional opportunity here is

to change (either increase or reduce) the amount of some other agent’s payment.

Remark 11 (Ex-post Nash equilibrium vs. dominant strategy) As has been suggested in previous

work, the weakening from dominant-strategy equilibrium in the centralized VCG mechanism, to ex post
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Nash equilibrium in a distributed implementation, can be viewed as the “cost of decentralization”. The

incentive properties necessarily rely on the computation performed, and thus the strategy followed, by

the other agents.7

11.4.4 Simple M-DPOP

Algorithm 24 describes simple-M-DPOP. In this variation the main problem, SCP(A) is solved, fol-

lowed by the social choice problem, SCP(−Ai) with each agent removed in turn.8 Once these n + 1

problems are solved, every agent Aj knows the local part of the solution to X∗ and X∗
−i for all Ai �= Aj ,

that is the part of the solution that affects its own utility. This is critical, because it provides enough

information to allow the system of agents without some agent Ai, for any Ai, to each send a message

to the bank about a component of the payment that agent Ai should make.

Algorithm 24 Simple-M-DPOP.

1 Run DPOP for DCOP(A) on DFS (A); find X∗

2 forall Ai ∈ A do

3 Build DFS (−Ai); run DPOP for DCOP(−Ai) on DFS (−Ai); find X∗
−i

4 All agents Aj �= Ai compute Tax j(Ai) = Rj(X
∗
−i) − Rj(X

∗) and report it to the bank.
5 Bank deducts

∑
j �=i Tax j(Ai) from Ai’s account

6 Each Ai assigns values in X∗ as the solution to its local COPi

The computation of payments is disaggregated across the agents. The tax payment collected from

agent Ai as a result of the message sent to the bank by agent Aj , is defined (in the truthful equilibrium)

as:

Tax j(Ai) = Rj(X
∗
−i) − Rj(X

∗), (11.9)

which is defined so that Tax (Ai) =
∑

j �=i Tax j(Ai). The value, Tax j(Ai), represents the payment

made by agent Ai in the VCG mechanism as a result of its negative effect on the utility of agent Aj .

The important observation, in being able to satisfy the partition principle, is that these component

of Ai’s payment satisfies a locality property, so that each agent Aj can compute this component of

Ai’s payment with just its private information about its relations and its local information about the

part of solutions X∗ and X∗
−i that affects its own utility, all of which is available upon termination

of DPOP in the main problem and in the problem without Ai. Correctly determining this payment,

7An exception is provided by Izmalkov et al. [102], who are able to avoid this through the use of cryptographic primitives,
in their case best thought of as physical devices such as ballet boxes.

8Simple M-DPOP is presented for a setting in which the main problem and the subproblems are connected but extends
immediately to disconnected problems. Indeed, it may be that the main problem is connected but one or more subproblems are
disconnected. To see that there are no additional incentive concerns notice that it is sufficient to recognize that the correctness
and robustness properties of the partition principle would be retained in this case.
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Figure 11.3: Simple M-DPOP: Each agent Ai is excluded in turn from the optimization
DCOP(−Ai). This is illustrated on the meeting scheduling example.

conditioned on X∗ and X∗
−i, does not rely on any aspect of any other agent’s algorithm, including that

of Ai.9

Figure (11.3) provides an illustration of simple M-DPOP on the earlier meeting scheduling exam-

ple, and shows how the marginal problems (and the DFS arrangements for each such problem) are

related to the main problem.

Theorem 9 The simple-M-DPOP algorithm is a faithful distributed implementation of efficient social

choice and terminates with the outcome of the VCG mechanism.

PROOF. To prove this we establish that simple-M-DPOP satisfies the partition principle. First, DPOP

computes optimal solutions to SCP(A) and SCP(−Ai) for all Ai ∈ A when every agent follows the

protocol. This is immediate because of the correctness of the DCOP model of SCP and the correctness

of DPOP. The correct VCG payments are collected when every agent follows the algorithm by the

correctness of the disaggregation of VCG payments in Eq. 11.9. Second, agent Ai cannot influence

the solution to SCP(−Ai) because it is not involved in that computation in any way. The DFS ar-

rangement is constructed, and the problem solved, by the other agents, who completely ignore Ai and

any messages that agent Ai might send. (Any hard constraints that Ai may have handled in SCP(A)

are reassigned automatically to some other agent in SCP(−Ai) as a consequence of the fact that the

9A similar disaggregation was identified by Feigenbaum et al. [72] for lowest-cost interdomain routing on the Internet.
Shneidman and Parkes [192] subsequently modified the protocol so that agents other than Ai had enough information to
report the payments to be made by agent Ai.
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DFS arrangement is reconstructed. DPOP still solves SCP(−Ai) correctly in the case that the prob-

lem graph corresponding to SCP(−Ai) becomes disconnected (in this case the DFS arrangement is a

forest). The robustness of the value of the reports from agents �= Ai about the negative externality im-

posed by Ai, conditioned on solutions to SCP(A) and SCP(−Ai), follows from the locality property

of payment terms Tax j(Ai) for all Aj �= Ai. For enforcement, the bank is trusted and empowered to

collect payments, and all agents will finally set local copies of variables as in X∗ to prevent catastrophic

failure. Agent Ai will not deviate as long as other agents do not deviate. Moreover, if agent Ai is the

only agent that is interested in a variable then its value is already optimal for agent Ai anyway. �

The partition principle, and faithfulness, has sweeping implications. Not only will each agent

follow the subtantive aspects of simple-M-DPOP, but each agent will also chose to faithfully participate

in the community discovery phase, in any algorithm for choosing a root community, and in selecting a

leader agent in Phase one of DPOP.10

Remark 12 (Antisocial behavior) Note that reporting exaggerated taxes hurts other agents but does

not increase one’s own utility so this is excluded by our assumption that the agents are self-interested

but helpful (see Section 11.4.2).

11.5 M-DPOP: Reusing Computation While Retaining Faithfulness

In this section, we introduce the M-DPOP algorithm. In simple-M-DPOP, the computation to solve

the main problem is completely isolated from the computation to solve each of the marginal problems.

In comparison, in M-DPOP we re-use computation already performed in solving the main problem

in solving the marginal problems. This enables the algorithm to scale well in practice to problems

where each agent’s influence is limited to a small part of the entire problem because little additional

computation is required beyond that of DPOP.

The challenge that we face, in facilitating this re-use of computation, is to retain the incentive

properties that are provided by the partition principle. A possible new manipulation is for agent

Ai to deviate in the computation in DCOP (A), with the intended effect to change the solution to

DCOP (−Ai) via the indirect impact of the computation performed in DCOP (A) when it is reused

in solving DCOP (−Ai). To prevent this, we have to determine which UTIL messages in DCOP (A)

could not have been influenced by agent Ai.

Example 25 (Reusing computation safely based on problem structure) Refer to Figure 11.4. Here
10One can also observe that is not useful for an agent to misreport the local utility of another agent Aj while sending UTIL

messages around the system. On one hand, such a deviation could of course change the selection of X∗ or X∗

−k for some
k �= {i, j} and thus the payments by other agents or the solution ultimately selected. But, by deviating in this way the agent
cannot change the utility information that is finally used in determining its own payments. This is because it is agent Aj itself
that computes the marginal effect of agent Ai on its local solution, and component Tax j(Ai) of agent Ai’s payment. Thus,
we are able to protect against this manipulation through leveraging the disaggregated definition of VCG payments.
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Figure 11.4: Reconstructing DFS (−Ai) from DFS (A) in M-DPOP. The result is in general a DFS
forest. The bold nodes from main DFS initiate DFS−i propagation. The one initiated by X5 is redun-
dant and eventually stopped by X9. The ones from X4 and X15 are useful, as their subtrees become
really disconnected after removing Ai. X14 does not initiate any propagation since it has X1 as a
pseudoparent. X1 is not controlled by Ai, and will eventually connect to X14. Notice that X0 − X9

and X1 − X14 are turned into tree edges.

agent Ai controls only X3 and X10. Then it has no way of influencing the messages sent in the subtrees

rooted at {X14, X15, X2, X7, X5, X11}. We want to be able to reuse as many of these UTIL messages

as possible. In solving the problem with agent Ai removed we will strive to construct a DFS−i arrange-

ment for problem DCOP(−Ai) that is as similar as possible to the DFS for the main problem. This

is done with the goal of maximizing the re-use of computation across problems. See Figure 11.4(b).

Notice that this is now a DFS forest, with three distinct connected components. The UTIL messages

that were sent by the green nodes can be re-used in solving DCOP(−Ai). These are all the UTIL

messages sent by nodes in the subtrees that were not influenced by agent Ai except for {X14, X15, X5}

and also X9, which now has a different local DFS arrangement.

M-DPOP uses the “safe reusability” idea suggested by this example. See Algorithm 25. In its

first stage, M-DPOP solves the main problem just as in Simple-M-DPOP. Once this is complete, each

marginal problem DCOP(−Ai) is solved in parallel. To solve DCOP(−Ai), a DFS−i forest (it will

be a forest in the case that DCOP(−Ai) becomes disconnected) is constructed as a modification to

DFS (A), retaining as much of the structure of DFS (A) as possible. A new DPOP(−Ai) execution

is performed on the DFS−i and UTIL messages are determined to be either reusable or not reusable

by the sender of the message based on the differences between DFS−i and DFS (A). We will explain
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Algorithm 25 M-DPOP: faithfully reuses computation from the main problem.

1 Run DPOP for DCOP(A) on DFS (A); find X∗

2 forall Ai ∈ A do
in parallel

3 Create DFS
−i with Algorithm 26 by adjusting DFS (A)

Run DPOP for DCOP(−Ai) on DFS
−i:

4 if leaves in DFS−i observe no changes in their DFS−i then
they send null UTIL−i messages

else they compute their UTIL−i messages anew, as in DPOP
subsequently, all nodes Xk ∈ DFS−i do:

5 if Xk receives only null UTIL−i msgs ∧ (Pk = P−i
k ∧ PPk = PP−i

k ∧ Ck = C−i
k ) then

Xk sends a null UTIL−i message

else

6 node Xk computes its UTIL−i message, reusing:
forall Xl ∈ Neighbors(Xk) s.t. Xl sent UTIL−i = null do

Xk reuses the UTIL message Xl had sent in DCOP(A)

7 Compute and levy taxes as in simple-M-DPOP;
8 Each Ai assigns values in X∗ as the solution to its local COPi;

below how DFS−i is constructed.

11.5.1 Phase One of M-DPOP for a Marginal Problem: Constructing DFS
−i

Given a graph DCOP(A) and a DFS arrangement DFS (A) of DCOP(A), if one removes a set of

nodes X(Ai) ∈ DCOP(A) (the ones that belong to Ai), then we need an algorithm that constructs a

DFS arrangement, DFS−i, for DCOP(A) \ X(Ai). We want to achieve the following properties:

1. DFS−i must represent a correct DFS arrangement for the graph DCOP(−Ai) (a DFS forest in

the case DCOP(−Ai) becomes disconnected).

2. DFS−i must be constructed in a way that is non-manipulable by Ai, i.e. without allowing agent

Ai to interfere with its construction.

3. DFS−i should be as similar as possible to DFS (A). This allows for reusing UTIL messages

from DPOP(A), and saves on computation and communication.

The main difficulty stems from the fact that removing the nodes that represent variables of interest

to agent Ai from DFS (A) can create disconnected subtrees. We need to reconnect and possibly rear-

range the (now disconnected) subtrees of DFS (A) whenever this is possible. Return to the example in

Figure 11.4. Removing agent Ai and nodes X3 and X10 disrupts the tree in two ways: some subtrees

become completely disconnected from the rest of the problem (e.g. X15−X18−X19); some other ones
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Algorithm 26 Reconstruction of DFS−i from DFS (A). All data structures for the DFS−i are denoted with
superscript −i.

Procedure Token passing for DFS
−i (executed by all nodes Xk /∈ X(Ai)) :

forall Xl ∈ Neighbors(Xk) s.t. Xl belongs to Ai do

1 Remove Xl from Neighbors(Xk) and from Ck,PC k,PPk //i.e. send nothing to Ai

2 Sort Neighbors(Xk) in this order: Ck,PC k,PPk, Pk //mimic DFS (A)
if Xk is root, or Pk ∈ X(Ai) (i.e. executed by the root and children of Ai) then

3 Initiate DFS−i as in normal DFS (Algorithm 23)

4 else do Process incoming tokens()
5 Send DFS−i(Xk) back to P−i

k // Xk’s subtree completely explored

Procedure Process incoming tokens()

6 Wait for any incoming DFS−i token; Let Xl be its sender
7 if Xl ∈ Ai then ignore message
8 else

9 if this is first token received then

10 P−i
k = Xl; PP−i

k = {Xj �= P−i
k |Xj ∈ Neighbors(Xi) ∩ DFS−i}

11 root−i
k = first node in the token DFS−i

else

12 let Xr be the first node in DFS−i

13 if Xr �= root−i
k //i.e. this is another DFS−i traversal then

14 if depth of Xr in DFS (A) < depth of root−i
k in DFS (A) then

15 Reset P−i
k ,PP−i

k , C−i
k ,PC−i

k //override redundant DFS from lower root
16 P−i

k = Xl; PP−i
k = {Xj �= P−i

k |Xj ∈ Neighbors(Xi) ∩ DFS−i}
17 root−i

k = Xr

18 Continue as in Algorithm 23

remain connected only via back-edges, thus forming an invalid DFS arrangement (e.g. X5−X8−X9).

The basic principle we use is to reconnect disconnected parts via back-edges from DFS (A) whenever

possible. This is intended to preserve as much of the structure of as possible. For example, in Fig-

ure 11.4, the back edge X0 − X9 is turned into a tree edge, and X5 becomes X9’s child. Node X8

remains X5’s child.

The DFS−i reconstruction algorithm is presented in Algorithm 26. The high-level overview is as

follows (in bold we state the purpose of each step):

1. (Similarity to DFS(A) :) All nodes retain the DFS data structures from constructing DFS (A);

i.e., the lists of their children, pseudo parents/children, and their parents from DFS (A). They
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will use this data as a starting point for building the DFS arrangements, DFS (−Ai), for marginal

problems.

2. (At least one traversal of each connected component on a DFS forest:) The root of DFS (A)

and the children11 of removed nodes each initiate a DFS−i token passing as in DFS (A), except

for these changes:

• Each node Xk sends the token only to neighbors not owned by Ai.

• The order in which Xk sends the token to its neighbors is based on DFS (A): First Xk’s

children from DFS (A), then its pseudochildren, then its pseudoparents, and then its parent.

This order helps preserve structure from DFS (A) into DFS (−Ai).

3. (Unique traversal of each connected component on a DFS forest:) Each node Xk retains its

“root path” in DFS (A) and knows its depth in the DFS arrangement. When a new token DFS−i

arrives:

• If it is the first DFS−i token that arrives, then the sender (let this be Xl) is marked as the

parent of Xk in DFS−i: P−i
k = Xl. Notice that Xl could be different from the parent of

Xk from DFS (A). Xk stores the first node from the received token DFS−i, as root−i
k : the

(provisional) root of the connected component to which Xk belongs in DCOP(−Ai).

• If this is not the first DFS−i token that arrives, then there are two possibilities:

– the token received is part of the same DFS−i traversal process. Xk recognizes this by

the fact that the first node in the newly received token is the same as the previously

stored root−i
k . In this case, Xk proceeds as normal, as in Algorithm 23: marks the

sender as pseudochild, etc.

– the token received is part of another DFS−i traversal process, initiated by another

node than root−i
k (see below in text for when this could happen). Let Xr be the first

node in the newly received token. Xk recognizes this situation by the fact that Xr

is not the same as the previously stored root−i
k . In this case, the DFS−i traversal

initiated by the higher node in DFS (A) prevails, and the other one is dropped. To

determine which traversal to pursue and which one to drop, Xk compares the depths

of root−i
k and Xr in DFS (A). If Xr is higher, then it becomes the new root−i

k . Xk

overrides all the previous DFS−i information with the one from the new token. It then

continues the token passing with the new token as in Algorithm 23.

To see why it is necessary to also start propagations from the children of removed nodes (step

2), consider again the example from Figure 11.4. Removing X10 and X3 completely disconnects the

subtree {X4, X6, X11, X7, X12, X13}. Had X4 not started a propagation, this subtree would not have

11Children which have pseudoparents above the excluded node, for instance X14 in Figure 11.4, do not initiate DFS token
passing because it would be redundant: they would eventually receive a DFS token from their pseudoparent.
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been visited at all since there are no connections between the rest of the problem and any nodes in the

subtree.12

Lemma 1 (DFS correctness) Algorithm 26 constructs a correct DFS arrangement (or forest), DFS−i

for DCOP (−Ai) given a correct DFS arrangement DFS (A) for DCOP(A).

PROOF. First, since a DFS−i is started from each child of a node that was controlled by Ai, and also

from the root, it is ensured that each connected component is DFS-traversed at least once (follows from

Step 2). Second, each DFS process is similar to a normal DFS construction, in that each node sends

the token to all its neighbors (except for the ones controlled by Ai ); it is just that they do so in a pre-

specified order (the one given by DFS (A)). It follows that all nodes in a connected component will

eventually be visited (follows from Step 3). Third, higher-priority DFS traversals override the lower

priority ones (i.e. DFS traversals initiated by nodes higher in the tree have priority), again by Step 3.

Eventually one single DFS-traversal is performed in a single connected component. �

Lemma 2 (DFS robustness) The DFS arrangement, DFS−i, constructed by Algorithm 26 is non-

manipulable by agent Ai, for any input DFS arrangement from the solution phase to DCOP(A).

PROOF. This follows directly from Step 3, since Ai does not participate in the process at all: its

neighbors do not send it any messages (see Algorithm 26, line 1), and any messages it may send are

simply ignored (see Algorithm 26, line 7) �

In fact, no additional links are created while constructing DFS−i. The only possible changes

are that some edges can reverse their direction (parents/children or pseudoparents-pseudochildren can

switch places), and existing back-edges can turn into tree edges. Again, one can see this in Fig-

ure 11.4.13

11.5.2 Phase Two of M-DPOP for a Marginal Problem: UTIL
−i propagations

Once DFS−i is built, the marginal problem without Ai is then solved on DFS−i. Utility propagation

proceeds as in normal DPOP except that nodes determine whether the UTIL message that was sent in

12Some of the DFS traversals initiated in Step 2 are redundant and the same part of the problem graph can be visited more
than once. The simple overriding rule in Step 3 ensures that only a single DFS

−i tree is eventually adopted in each connected
component, namely the one that is initiated by the highest node in the original DFS(A). For example, in Figure 11.4, X5

starts an unnecessary DFS
−i propagation, which is eventually stopped by X9, which receives a higher priority DFS

−i token
from X0. Since X9 knows that X0 is higher in DFS(A) than X5, it drops the propagation initiated by X5, and relays only
the one initiated by X0. It does so by sending X5 the token for DFS

−i received from X0 to which it adds itself. Upon
receiving the new token from X9, node X5 realizes that X9 is its new parent in DFS

−i. Thus, the redundant propagation
initiated by X5 is eliminated and the result is a consistent DFS subtree for the single connected component P1.

13A simple alternative is to have children of all nodes Xi
k that belong to Ai, create a bypass link to the first ancestor of

Xi
k that does not belong to Ai. For example, in Figure 11.4, X4 and X5 could each create a link with X1 to bypass X3

completely in DFS(−Ai). However, additional communication links may be required in this approach.
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DPOP(A) can be reused. This is signaled to their parent by sending a special null UTIL message.

More specifically, the process is as follows:

• The leaves in DFS−i initiate UTIL−i propagations:

1. If the leaves in DFS−i observe no changes in their local DFS−i arrangement as com-

pared to DFS (A) then the UTIL message they sent in DCOP (A) remains valid and they

announce this to their parents by sending instead a null UTIL−i message.

2. Otherwise, a leaf node computes its UTIL message anew and sends it to their (new) parent

in DFS−i.

• All other nodes wait for incoming UTIL−i messages and:

1. If every incoming messages a node Xk receives from its children is null and there are no

changes in the parent/pseudoparents then it can propagate a null UTIL−i message to its

parent.

2. Otherwise, Xk has to recompute its UTIL−i message. It does so by reusing all the UTIL

messages that it received in DCOP(A) from children that have sent it null messages in

DCOP(−Ai) and joining these with any new UTIL messages received.

Example 26 (Reusing Computation) Consider DCOP(−Ai) in Figure 11.4, where X16 and X17 are

children of X14. X14 has to recompute a UTIL message and send it to its new parent X1. To do this,

it can reuse the messages sent by X16 and X17 in DCOP(A), because both sending subtrees do not

contain Ai. By doing so, X14 reuses the effort spent in DCOP(A) to compute the messages UTIL16
20,

UTIL16
21, UTIL14

16 and UTIL14
17.

Theorem 10 The M-DPOP algorithm is a faithful distributed implementation of efficient social choice

and terminates with the outcome of the VCG mechanism.

PROOF. From the partition principle. First, agent Ai cannot prevent the construction of a valid DFS−i

for DCOP(−Ai) (Lemmas 1 and 2). Second, agent Ai cannot influence the execution of DPOP on

DCOP(−Ai) because all messages that Ai influenced in the main problem DCOP(A) are recomputed

by the system without Ai. The rest of the proof follows as for simple-M-DPOP, leveraging the locality

of the tax payment messages and the enforcement provided by the bank and via the catastrophic failure

assumption. �

11.5.3 Experimental Evaluation: Distributed Meeting Scheduling

We present the results of our experimental evaluation of DPOP, Simple M-DPOP and M-DPOP in a

distributed meeting scheduling problem. The problems consist of agents working for a large organiza-

tion and representing individuals, or groups of individuals, for the purpose of scheduling meetings for
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some upcoming period of time. Although the agents themselves are self interested, the organization as

a whole requires an optimal overall schedule, that minimizes cost (alternatively, maximizes the utility

of the agents). This makes it necessary to use a faithful distributed implementation such as M-DPOP. In

enabling this, we can imagine that the organization distributes a virtual currency to each agent (perhaps

using this to prioritize particular participants.)

The problem is modeled as a DCOP as described in Section 2.3.1, with each agent assigning a

utility to each possible time for each meeting by imposing a unary relation on each variable Xi
j . Each

such relation is private to Ai, and denotes how much utility Ai associates with starting meeting Mj at

each time t′ ∈ dj , where dj is the domain for meeting Mj . The social objective is to find a schedule in

which the total utility is maximized while satisfying the all-different constraints for each agent.14

Following [127], we model the organization by providing a hierarchical structure. In a realistic

organization, the majority of interactions are within departments, and only a small number are across

departments and even then these interactions will typically take place between two departments ad-

jacent in the hierarchy. This hierarchical organization provides structure to our test instances: with

high probability (around 70%) we generate meetings within departments, and with a lower probability

(around 30%) we generate meetings between agents belonging to parent-child departments. We gen-

erated random problems having this structure,15 with an increasing number of agents: from 10 to 100

agents. Each agent participates in 1 to 5 meetings, and has a uniform random utility between 0 and 10

for each possible schedule for each meeting in which it participates. The problems are generated such

that they have feasible solutions.

For each problem size, we averaged the results over 100 different instances. We solved the main

problems using DPOP and the marginal ones using simple-M-DPOP, and M-DPOP respectively. All ex-

periments were performed in the FRODO multiagent simulation environment [154], on a 1.6Ghz/1GB

RAM laptop. FRODO is a simulated multiagent system, where each agent executes asynchronously in

its own thread, and communicates with its peers only via message exchange.

These experiments were geared towards showing how much effort M-DPOP is able to reuse from

the main to the marginal problems. Figure 11.5 shows the absolute computational effort in terms of

number of messages (Figure 11.5(a)), and in terms of the total size of the messages exchanged, in bytes

(Figure 11.5(b)). The curves for DPOP represent just the number of messages (total size of messages,

respectively) required for solving the main problems, and not also the marginal ones. The curves for

simple-M-DPOP and M-DPOP represent the total number (size, respectively) of UTIL messages, for

both main and marginal problems.

We notice several interesting facts. First, the number of messages required by DPOP increases

14In a simple variation one could also seek to maximize the weighted utility across the agents, wherein some agents receive
more priority within the organization than other agents. The VCG payments, and also M-DPOP, can be easily extended to
provide appropriate incentives in this setting.

15The test instances can be found at http://liawww.epfl.ch/People/apetcu/research/mdpop/MSexperiments.tgz
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Figure 11.5: Meeting scheduling problem: measures of absolute computational effort (in
terms of the number of messages sent and the total size of the UTIL messages) in DPOP,
simple-M-DPOP and M-DPOP. The curves for DPOP represent effort spent just on the main
problem, while the ones for simple-M-DPOP and M-DPOP represent effort on both the main
and the marginal problems.

linearly with the number of agents because DPOP’s complexity in terms of number of messages is

always linear in the size of the problem. On the other hand, the number of messages of simple-M-DPOP

increases roughly quadratically with the number of agents, since it solves a linear number of marginal

problems from scratch using DPOP, each requiring a linear number of messages. The performance of

M-DPOP lies somewhere between the DPOP and simple-M-DPOP with more advantage achieved over

simple-M-DPOP as the size of the problem increases, culminating with almost an order of magnitude

improvement for the largest problem sizes (i.e. with 100 agents in the problem). Similar observations

can be made about the total size of the UTIL messages (a good measure of computation, traffic and

memory requirements) by inspecting Figure 11.5(b). For both metrics we find that the performance of

M-DPOP is only slightly super-linear in the size of the problem.

Figure 11.6 shows the percentage of the additional effort required for solving the marginal problems

that can be reused from the main problem, i.e. the probability that a UTIL message required in solving

a marginal problem can be taken directly from the message already used in the main problem. We

clearly see that as the problem size increases we can actually reuse more and more computation from

the main problem. The intuition behind this is that in large problems, each individual agent is localized

in a particular area of the problem. This translates into the agent being localized in a specific branch of

the tree, thus rendering all computation performed in other branches reusable for the marginal problem

that corresponds to that respective agent. Looking also at the percentage of reuse when defined in terms

of message size rather than the number of messages we see that this is also trending upwards as the size

of the problem increases.



204 Distributed VCG Mechanisms for Systems with Self-Interested Users

 50

 55

 60

 65

 70

 75

 80

 85

 90

 10  20  30  40  50  60  70  80  90  100%
 o

f e
ffo

rt
 fo

r 
m

ar
gi

na
ls

 r
eu

se
d 

fr
om

 m
ai

n

Number of agents

Total information
Number of messages

Figure 11.6: Meeting scheduling problem: Percentage of effort required for the marginal problems
that is reused by M-DPOP from the main problem. Reuse is measured both in terms of the percentage
of the UTIL messages that can be reused (dashed) and also in terms of the total size of the UTIL
messages that are reused as a fraction of the total UTIL message size (solid).

11.5.4 Summary of M-DPOP

M-DPOP is a faithful, distributed algorithm with which one can solve efficient social choice problems

in multi-agent systems with private information and agent self-interest. No agent can improve its

utility either by misreporting its local information or deviating from any aspect of the algorithm (e.g.,

computation, message-passing, information revelation.) The only centralized control we assume is

that of a bank that is able to receive messages about payments and collect payments. In addition to

promoting efficient decisions we also minimize the amount of additional computational effort required

for computing the VCG payments by reusing effort from the main problem. Experimental results show

that a significant amount of the computation required in all the main problems can be reused from

the main problem, sometimes above 87%. This provides near-linear scalability in massive, distributed

social choice problems that have local structure so that the maximal induced tree width is small.

An issue for future work relates to robustness against adversarial or faulty agents: the current

solution is fragile in this sense, with its equilibrium properties relying on other agents following the

protocol. Some papers [124, 4, 191] provide robustness to mixture models (e.g. some rational, some

adversarial) but we are not aware of any work with these mixture models in the context of efficient social

choice. Another interesting direction is to find ways to allow for approximate social choice (e.g. with

memory-limited DPOP variations [158]) while retaining incentive properties, perhaps in approximate

equilibria. Future research should also consider the design of distributed protocols that are robust

against false-name manipulations in which agents can participate under multiple pseudonyms [230],

and achieve better robustness through mitigating opportunities for collusive behavior and removing

weak equilibria in favor of strict equilibria [5, 108].
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11.6 Achieving Faithfulness with other DCOP Algorithms

The partition principle, described in Section 11.4.3, is algorithm independent. The question as to

whether another, optimal DCOP algorithm can be made faithful therefore revolves, critically, around

whether the algorithm will satisfy the robustness requirement of the partition priciple. We make the

following observations:

• Robustness in the first sense, i.e. that no agent Ai can influence the solution to the efficient

SCP without agent Ai, is always achievable at the cost of restarting computation on the marginal

problem with each agent removed in turn, just as we proposed for simple-M-DPOP.

• Robustness in the second sense, i.e. that no agent Ai can influence the report(s) that the bank

receives about the negative externality that Ai imposes on the rest of the system, conditioning

on the solutions to the main problem and the problem without Ai, is also immediate because of

the locality property of tax payments, and as long as the DCOP algorithm terminates with every

agent knowing the part of the solution that is relevant in defining its own utility.

Thus, if one is content to restart the DCOP algorithm multiple times, then the same kinds of results

that we provide for simple-M-DPOP are generally available. This is possible because of the already

mentioned locality property of payments, which follows from the disaggregation of the VCG payment

across agents in Eq. (11.9) and because of the information and communication structure of DCOP.

The other useful property of DCOP in this context, worth reemphasizing, is that it is possible to retain

faithfulness even when one agent plays a pivotal role in connecting the problem graph. Suppose that

problem, DCOP (−Ai), becomes disconnected without Ai. But, if this is the case then its optimal

solution is represented by the union of the optimal solution to each connected subcomponent of the

problem, and no information needs to flow between disconnected components either for the purpose of

solving the problem or for the purpose of reporting the components of agent Ai’s tax.

We discuss in the following possible adaptations of the other two most popular algorithms for

DCOP: ADOPT and OptAPO.

11.6.1 Adapting ADOPT for Faithful, Efficient Social Choice

ADOPT (reviewed in Chapter 3) is one of the most celebrated algorithms for DCOP. Considering its

main advantage of requiring only polinomial memory, it seems legitimate to ask the question: ”Could

ADOPT be used for faithfully solving the SCP“. We discuss this possibility in the next two sections.
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11.6.1.1 Adaptation of ADOPT to the DCOP model with replicated variables

ADOPT’s complexity is given by the number of messages, which is exponential in the height of the

DFS tree. Similar to DPOP, using the DCOP model with replicated variables could artificially increase

the complexity of the solving process. Specifically, the height of the DFS tree is increased when using

replicated variables compared to the centralized problem graph.

ADOPT can be modified to exploit the special structure of these replicated local variables in a

similar way as DPOP. Specifically, ADOPT should explore sequentially only the values of the original

variable, and ignore assignments where replicas of the same variable take different values. This works

by allowing just the agent that owns the highest replica of each variable to freely choose values for the

variable. This agent then announces the new value of the variable to all other agents owning replicas

of the variable. These other agents would then consider just the announced value for their replicas, add

their own corresponding utilities, and continue the search process. Using this special handling of the

replica variables, the resulting complexity is no longer exponential in the height of the distributed DFS

tree, but in the height of the DFS tree obtained by traversing the original problem graph.

For example, in Figure 11.1, it is sufficient to explore the values of M2
3 , and directly assign these

values to M3
3 and M1

3 via VALUE messages, without trying all the combinations of their values. This

reduces ADOPT’s complexity from exponential in 6, to exponential in 3.

11.6.1.2 Reusability of computation in ADOPT

Turning to re-use of computation, we note that because ADOPT uses a DFS arrangement then it is easy

to identify which parts of the DFS arrangement for the main problem are impossible for an agent to

manipulate, and therefore can be “reused” while computing the solution to the marginal problem with

that agent removed. Just as with DPOP, the DFS reconstruction techniques from Section 11.5.1 apply.

However, a major difference between DPOP and ADOPT is that in DPOP, each agent stores its

outgoing UTIL message, and thus has available all the utilities contingent to all assignments of the

variables in the agent’s separator. This makes it possible for the agent to simply reuse that information

in all marginal problems where the structure of the DFS proves it is safe to do so. In contrast, ADOPT

does not store all this information because of its linear memory policy. This in turn makes it impossible

to reuse computation as in DPOP from the main problem to the marginal problems. All marginal

problems have to be solved from scratch, and thus the performance would scale poorly as problem size

increases.

We see two alternatives for addressing this problem: (a) renounce linear memory guarantees, and

use a caching scheme like in NCBB [32] or dAOBB(i) [170]: this would allow for a similar reusability

as in M-DPOP, where previously computated utilities can be extracted from the cache instead of having

to be recomputed. Alternatively, (b) one can devise a scheme where the previously computed best
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solution can be saved as a reference, and subsequently used as an approximation while solving the

marginal problems. This could possibly provide better bounds and thus allow for better pruning, such

that some computation could be saved. Both these alternatives are outside the scope of this thesis, and

considered for future work.

11.6.2 Adapting OptAPO for Faithful, Efficient Social Choice

OptAPO (reviewed in Chapter 3) is the other most popular algorithm for DCOP. Similar to the adapta-

tions of DPOP and ADOPT to social choice, OptAPO can also be made to take advantage of the special

features of the DCOP model with replicated variables. Its complexity then would not be artificially in-

creased by the use of this DCOP model.

OptAPO has the particularity that it uses mediator agents to centralize subproblems and solve them

in dynamic and asynchronous mediation sessions. The mediator agents then announce their results

to the other agents, who have previously sent their subproblems to the mediators. This process alone

would introduce additional possibility for manipulation in a setting with self interested agents. How-

ever, using the VCG mechanism would fix this problem and incentivise the agents to behave correctly

according to the protocol.

As with ADOPT, the main issue with using OptAPO for faithful social choice is the reusability

of computation from the main to the marginal problems. Specifically, consider that while solving the

main problem, a mediator agent Ai has centralized and aggregated the preferences of a number of other

agents, while solving subproblems as dictated by the OptAPO protocol. Subsequently, when trying to

compute the solution to the marginal problem without agent Ai, all this computation has to go to waste,

as it could have been manipulated by Ai while solving the main problem.

Furthermore, since OptAPO does not explicitely use structure in the problem, it is unclear whether

any computation from the main problem could be safely reused in any of the marginal problems. To

make matters worse, experimentaly studies ( [44, 169]) show that in many situations, OptAPO ends

up relying on a single agent in the system to centralize and solve the whole problem. This implies

that while solving the marginal problem without that agent, one can reuse zero effort from the main

problem.
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Chapter 12

Budget Balance

For social choice problems with self interested agents, the VCG mechanism achieves efficiency,

individual-rationality and incentive-compatibility. One of the characteristics of the VCG mecha-

nism is that it requires wasting the taxes collected from the agents, thus decreasing their net utility.

Burning money in this way can be a particular problem in networked systems where payments are

made by “proof of work” [61] or other form and the primary goal is social efficiency, not revenue.

This chapter introduces two extensions to M-DPOP ( Chapter 11) that address this problem of

burning money. Our extensions exploit structure in the problem to develop faithful methods to

redistribute payments back to agents, reducing this cost on the system. The first method (R-M-

DPOP) preserves the efficiency guarantees, but cannot guarantee full budget balance (some taxes

may still have to be wasted). Nevertheless, our experimental results show that we can redistribute a

significant percentage of the VCG taxes (up to 70% in our experiments). The second redistribution

scheme (BB-M-DPOP) guarantees complete budget balance, but cannot guarantee optimality. BB-

M-DPOP works by forcibly limiting each agent’s influence to a restricted area, which in turn allows

for an effective redistribution of all of the VCG payments in a faithful way. Interestingly, BB-M-

DPOP yields better net utility for the system as a whole, even though it does not guarantee optimal

solutions. In our experiments, BB-M-DPOP, R-M-DPOP and VCG-classic provided agents with a

net utility of 97%, 89%, and 71% from the cooperative optimum, respectively.

We have seen in the previous chapter that distributed optimization problems can model social choice

problems with self interested agents. We have introduced the M-DPOP algorithm, which is the first

faithful distributed algorithm for general social choice problems that deals with self-interested users.

M-DPOP implements the Vickrey-Clarke-Groves mechanism (VCG) [214, 37, 91], which aligns the

incentives of the participating agents with the goal of maximizing overall utility. VCG frees agents

of the burden of reasoning strategically about their actions, and makes honest behaviour a dominant

strategy equilibrium.

In the VCG mechanism, each agent makes a payment that equals the negative marginal externality

that its presence imposes on the rest of the system, in terms of influencing the ultimate choice of values

209
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for variables. Sometimes these payments are large, and thus decrease the agents’ net utility significantly

(recall from Chapter 11 that net utility means the utility derived from the optimal solution, minus the

VCG payments). These payments cannot be simply returned to the agents, because this would break

the incentive properties. Agents would falsely declare their preferences such that they get tax refunds.

For instance, an agent might try to increase the tax payments made by other agents by overstating the

negative impact of those agents on its own local solution in order to increase the payments made by

these agents and in turn its own share of these payments.

The simplest way to deal with this problem is to just waste all payments (“burn” the money, or give

it to some external third party). However, this approach creates a loss in the overall net utility of the

system, and possibly creates unwanted incentives for a third party receiving the payments. Burning

money in this way can be a particular problem in netwoked systems where payments are made by

“proof of work” [61], and in which the primary goal is efficiency and the revenue accrues to no-one

and payments are (literally) wasted compute cycles.

Fundamental results in mechanism design prove the impossibility of a general mechanism that

satisfies at the same time optimality 1, individual rationality 2, incentive-compatibility 3 and budget-

balance 4 in a dominant strategy equilibrium [101]. 5 Hence, at least one of these properties has to be

violated. In this chapter, we design new mechanisms that retain a dominant-strategy equilibrium,6 and

sacrifice either efficiency or budget-balance. We seek to modify the VCG mechanism, by redistributing

the payments proposed by the mechanism back to agents, but in a way that does not compromise the

incentive properties. In one method, this is achieved by imposing ex ante constraints on the optimization

problem, which has the effect of redistributing the payments of a modified VCG mechanism, that is in

effect applied to this additionally constrained problem. These constraints are actually unconstraining,

in the sense that they are introduced to provide additional flexibility in redistributing payments.

Our results are presented as extensions to M-DPOP, which was introduced in Chapter 11. The first

method (R-M-DPOP) guarantees efficiency, but does not guarantee full redistribution and thus is not

exactly budget balanced. We note however that it never runs at a deficit: the bank always receives a non-

negative amount of payments from the agents. Moreover, this method is typically able to redistribute

a considerable amount of the payments proposed by the VCG mechanism. The second method (BB-

M-DPOP) offers the inverse tradeoff: it guarantees exact budget balance, but sometimes at the expense

of efficiency. Both these methods exploit problem structure, albeit in quite different ways. R-M-DPOP

1Also called ”economic efficiency“, it means that the optimal solution to the social choice problem must be chosen.
2Also called ”participation constraint“ and means that no agent should be charged more than the utility it derives from the

decision.
3Each agent’s utility is maximized when truthfully declaring its preferences
4Sum of payments from agents to any third party must equal zero.
5Myerson and Satterthwaite [144] also establish that it is impossible to satisfy efficiency, budget-balance and individual-

rationality even in a Bayes-Nash equilibrium.
6The equilibrium concept will be ex post Nash when used as a distributed implementation, but our mechanisms provide

a dominant-strategy equilibrium when they are used as centralized mechanisms and computation and message-passing is not
passed to agents.
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identifies components of the problem that define payments that cannot be influenced by some subset of

agents, so that these agents are then eligible to receive a share of the payments. BB-M-DPOP places ex

ante constraints on the problem, forcibly preventing each agent from having any influence on decisions

for some part of the domain. This also creates, for each agent, payments made by other agents that

cannot be influenced by the agent. (These are the payments of the agents that care only about the

problem domain that cannot be influenced by this agent.) BB-M-DPOP can leverage problem structure

to decide how to constrain the problem, with constraints added where the likely influence of an agent

is very weak.

In achieving our results we propose a “label propagation” algorithm, that is used in R-M-DPOP to

determine the subset of variables that an agent could not have possibly influenced, for all its possible

reports, given the reports of the others. Such an agent could then receive, if elected as a candidate

for this redistribution, the VCG payment made by another agent that is only negatively impacted in

its utility by decisions made in regard to these variables. In BB-M-DPOP, we propose a configurable

method that allows each agent to express its preferences on its variables of interest, and even indirectly

influence other variables via other agents’ relations. This method allows nevertheless the influence of

each agent to be decisevely cut beyond a configurable point, such that the redistribution of taxes origi-

nating beyond the given point is not influenceable by the agent in question. This works by propagating

dual UTIL messages, corresponding to both the main problem (the influence of the agent in question

included), and to the marginal problem (the influence removed). Beyond the cutoff point, only the

marginal message is propagated, which effectively eliminates any influence from the agent.

As a distributed implementation, both R-M-DPOP and BB-M-DPOP retain faithfulness when cou-

pled with the centralization of the pre-processing step in which a depth first search (DFS) arrangement

is constructed for the problem graph. This is performed by the agents themselves in M-DPOP, but

the DFS arrangement is used by R-M-DPOP and BB-M-DPOP in determining whether and to whom

to redistribute payments; therefore, the agents have vested interest in manipulating the DFS creation

which in turn would influence the redistribution schemes (see Section 12.4.1). The centralization of

this pre-processing step can be achieved without a third party needing to know about the private infor-

mation of agents; e.g. their private variables or local utility information: all is needed is access to the

public information about each agent’s variables of possible interest. One natural party to perform this

task in our new methods could be the bank, that is a trusted third party required by M-DPOP in order to

enforce the collection of payments. Indeed, it is natural to think the bank should play a more active role

in BB-M-DPOP and R-M-DPOP given that these are methods to allow for the incentive-compatible

redistribution of payments.

R-M-DPOP and BB-M-DPOP can also be used as centralized algorithms, in which the agents

report their private information to a “center” as in traditional mechanism design. The center would

then directly implement R-M-DPOP, or BB-M-DPOP, which correspond as centralized algorithms to

dynamic programming with generalized bucket elimination [51], coupled here with checking for the

possible influence of an agent on parts of the problem domain. As a centralized mechanism, R-M-
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DPOP can be viewed as extending, and exemplifying, the principles of Cavallo [29], in that we leverage

structure on agent valuations and determine given reports of other agents, which parts of the problem

domain can be influenced by an agent. BB-M-DPOP, on the other hand, can be viewed as generalizing

the method of Faltings [68], who proposed to constrain social choice problems in that a single agent is

prevented from being able to have any influence on the entire problem, and can therefore receive the

payments made by all the other agents.

We present experimental results, in a simulated meeting scheduling domain, that show that R-

M-DPOP can redistribute a significant percentage of the VCG payments (as much as around 70%).

R-M-DPOP does this while retaining perfect efficiency, i.e. while optimally solving the social choice

problem. Interestingly, BB-M-DPOP yields better net utility for the system as a whole, even though

it does not guarantee optimal solutions. The net utility of BB-MDPOP approaches 97% of the best

possible solution, which is achieved in a cooperative system when one can implement the optimal

decision without charging agents. In comparison, R-M-DPOP is able to achieve around 89% of the

best possible solution. Both algorithms improve significantly on the net utility achieved by the classic

VCG mechanism, which is at 71% from the optimum.

The rest of this chapter is organized as follows: after preliminaries (Section 12.1), in Section 12.2

we move on to the issue of redistributing VCG payments. Section 12.2.1 introduces the R-M-DPOP

algorithm, and Section 12.2.2 introduces the BB-M-DPOP algorithm. We present experimental results

in Section 12.3, and then conclude.

12.1 Related Work

There is a long tradition of leveraging the VCG mechanism (or the Clarke tax) within Distributed AI,

going back to Ephrati and Rosenschein [64,65,66], who introduced the use of the VCG mechanism into

AI, and considered its role as a method to achieve consensus in multi-agent planning. For more recent

work in Distributed AI that relates to the VCG mechanism, and more broadly the themes of mechanism

design, we refer the reader to these surveys [103, 134], or to [188, 149, 221, 150, 41, 116, 230, 43].

The problem of tax waste in the context of the VCG mechanism was recognized early on in [210,

92, 64]. Well-known impossibility results [101, 89, 215] show that in general settings, for quasi-linear

utility functions there can be no truthful mechanism that is efficient and exactly budget-balanced for

all inputs.7 Therefore, it has been assumed that VCG payments are impossible to redistribute back

to the agents [209]. Nevertheless, some authors have suggested partitioning the population of agents

into independent groups, which could pay VCG taxes to each other, such that overall budget balance is

achieved [64, 88, 209]. Alternatively, in restricted settings, budget balance and efficiency were shown

7The so-called d’AGVA mechanism [7] offers exact budget balance and optimality. However, incentive compatibility is
just a Bayes-Nash equilibrium, individual-rationality is obtained just in expectation, and the mechanism designer and the
agents have to have common knowledge about a distribution on agent types.
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possible [93, 115].

In our setting, the VCG mechanism always runs at a surplus, with the bank receiving a net payment

from agents. A naive redistribution of these tax payments back to the agents would satisfy budget-

balance but fail incentive compatibility. For instance, an agent might try to increase the tax payments

made by other agents by overstating the negative impact of those agents on its own local solution in

order to increase the payments they make and, in turn, its own share of these payments.

In some cases, together with the increase in problem size, it has been noted that the VCG payments

tend towards zero [87, 178, 130]. Interestingly, we find in our experiments (and see also Faltings [68])

that this seems not to be the case, especially in structured domains.

To our knowledge, the first truthful redistribution scheme of VCG payments back to interested

agents has been proposed by Bailey [9]. In Bailey’s scheme, each agent receives payment TN−i/N

from the center, where TN−i is the payment that the center would collect without agent i and there are

N agents altogether. This is truthful because the redistribution is agent independent. Bailey studies the

effect of this redistribution on the convergence of total payments towards zero, as an economy gets large

through replication, demonstrating O(1/N2) error compared to O(1/N) error without redistribution.

The main limitations of Bailey’s scheme are that it can sometimes run at a budget deficit, and also

that it is a “macro-approach” rather than “micro-approach.” Whereas Bailey considers only the use of

signal TN−i in determining the redistribution to agents, we determine redistributions based on detailed

microstructure of a particular instance.

The basic idea of Bailey’s scheme was rediscovered, and extended in different ways, by Porter et

al. [174], Cavallo [29], and Guo and Conitzer [94]. Cavallo overcomes the shortcoming of Bailey’s

scheme (i.e. its potential budget deficit) in general settings by deriving a tight bound on what can be

redistributed to an agent but again keeping a macro-view of the redistribution problem. Cavallo also

formalizes explicitly (c.f. Porter et al. [174] in more restricted setting) the opportunity for redistribution

of payments without compromising truthfulness. For his general results, Cavallo [29] imposes an

anonymity requirement, which one can think of as providing a form of fairness: if two agents have the

same potential for receiving a redistribution8 then they should receive the same redistribution payment.

We do not seek to achieve this fairness property in our scheme.

Porter et al. [174] study the related problem of fair imposition, in which costly tasks are to be al-

located to a population of agents, costs are private information to agents, and the center will make

transfers to the agents to provide incentive compatibility. They restrict attention to simple, non-

combinatorial problems. Because of this setting of “imposition”, the authors adopt the goal of fairness,

trying to minimize the maximium loss of utility across all participants. Although a different problem

to the one that we study, in order to achieve this they study what are, in effect, redistribution schemes

for VCG mechanisms. Indeed, they briefly consider an alternate interpretation to a single-item auction

8Cavallo refers to this as the “surplus guarantee,” it is a minimal bound on total payments made by other agents across all
possible reports of agent i.



214 Budget Balance

setting, where they rediscover the scheme of Bailey [9].

Guo and Conitzer [94] extend Cavallo’s method [29], proposing a family of mechanisms with

significantly better redistribution of payments. However, these mechanisms work only for a restricted

setting: allocation problems with multiple, indistinguishable units, and agents with unit demand.

The other possibility for achieving budget balance 9 (following from [88]) is to impose constraints

on the problem and then leverage these constraints to enable cross-payments across different parts of

the system [64,68]. By doing so, in principle one cannot guarantee efficiency anymore, but by carefully

designing the constraints, budget-balance is possible. Ephrati and Rosenschein [64], study the problem

of N agents trying to reach a consensus on a plan to transform the world from some initial state, to

some final state for which they each have individual value. They propose to partition the group of

agents in different sets, with each set forming a coordinated plan for some part of the larger problem

and with payments flowing between different sets of agents. While similar in spirit to our approach,

these authors do not provide details on how the partition can be formed by the agents in the first place,

without providing an opportunity for manipulation. Moreover, whereas BB-M-DPOP imposes agent-

wise, heterogeneous constraints on the problem, these authors seek to impose global constraints.

Faltings [68] studies the approach of Green and Laffont [88] by simply picking a random subset of

agents (typically one), and excluding these from the decision but allowing them to receive payments.

Reporting the first experimental results on structured problems, Faltings observe that while the total

tax payments increase with the size of the problem, the cost of degradation due to removing one agent

reduces, and finds a very significant net utility gain through this approach. Obviously, a drawback of

this approach is that in a large optimization problem, some agent would not be considered at all in the

entire problem. BB-M-DPOP extends this idea and is less draconian and more graceful. Each agent

is able to receive some portion of the tax in return for some reduction of its influence on the solution.

Rather than introduce a single, strong constraint for one agent we introduce individualized, weaker

constraints for every agent.

12.1.1 The VCG Mechanism Applied to Social Choice Problems

Recall from Chapter 11 that the payment by agent i in the VCG mechanism is:

Tax (Ai) =
∑
j �=i

(
Rj(X

∗
−i) − Rj(X

∗)
)

(12.1)

=
∑
j �=i

Tax j(Ai) =
∑
j �=i

Rj(X
∗
−i) − Rj(X

∗). (12.2)

The disaggregation implied in this definition (with Tax j(Ai), to represent the payment made by agent

Ai as a result of its marginal (negative) effect on the utility of agent Aj) is the same as the one used in

9Instead of seeking exact efficiency and trying to redistribute payments as best possible



Budget Balance 215

M-DPOP. Each agent Aj can be relied upon to report each component of the total payment made by

agent Ai �= Aj . We recall from Section 11.4.1 that all instances of the social choice problem satisfy

the property of no positive externalities:

∑
j �=i

Rj(X
∗
−i) ≥

∑
j �=i

Rj(X
∗), ∀Ai ∈ A (12.3)

An agent can only have the effect of changing the values of variables away from the best possible

settings in the problem without the agent. This ensures that Tax (Ai) ≥ 0 for all Ai, by Equation (12.1),

so that the VCG payments collected by the center are always non-negative. One can conclude that the

VCG mechanism in this setting of social choice always runs at a surplus.10

12.2 Incentive Compatible VCG Payment Redistribution

In this section we turn to the main goal of this chapter, which is that of payment redistribution. Specif-

ically, our motivation is to reduce the loss of efficiency that is caused by having the bank receive net

payments from the agents. As discussed in the introduction, in the standard VCG mechanism these

payments must be wasted.

In the following, we consider two alternatives for dealing with the issue of VCG surplus. Both

methods use the structure of the problem in determining the redistribution of payments. The first

method (R-M-DPOP, Section 12.2.1) is in the spirit of Cavallo [29] and preserves the optimality of the

solution, but is not guaranteed to achieve exact budget-balance: we redistribute only the components of

the payments for which we can find a recipient that cannot possibly influence the particular component

of the payment under consideration. The structure of the specific instance of the social choice problem

is used to determine this possible influence.

The second method (Section 12.2.2) is in the spirit of Faltings [68] and does the inverse: it trades

optimality for budget-balance. This method ensures that each payment is redistributable to some agent

by deliberately breaking its influence on some part of the social choice problem. This in turn may affect

optimality. Problem structure is used to determine where to break the influence of individual agents

such that it is known which payments they can receive and also to best avoid compromising solution

optimality.

10For comparison, notice that if the presence of some agent was to increase the range of values that can be assigned to
some variable then it can have a positive externality on the rest of the agents. The VCG mechanism can run at a budget deficit
in this kind of environment.
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12.2.1 R-M-DPOP: Retaining Optimality While Seeking to Return VCG Pay-
ments

This first method preserves the optimality of the solution, but sacrifices budget-balance: we redistribute

only the payments made by agents Ai for which we can find a recipient Al �= Ai that cannot influence

the marginal impact of Ai on the rest of the problem. Naturally, one necessary condition is that agent

Al’s local solution is not itself influenced by the presence of agent Ai.

Here is a quick overview of this method:

1. As in M-DPOP, solve the main and marginal economies.

2. The optimal solution is implemented, just as in M-DPOP and VCG taxes are computed by each

agent and reported to the bank.

3. In a new “redistribution phase” we seek to redistribute the tax payments back to the agents. For

each agent Ai, we check for the specific problem instance whether some candidate recipient

Al �= Ai could have possibly influenced the computation of the tax payment. If not then it is safe

to give the payment to Al otherwise the payment accrues to the bank as in M-DPOP.

Let us consider a further disaggregation of the tax payments from Equation 12.2. Specifically, let

us consider agent Ai and a single relation rk
j ∈ Rj that belongs to another agent Aj . Agent Ai will

have to pay the following VCG tax for interfering just with Aj’s relation:

taxrk
j
(Ai) = rk

j (X∗
−i) − rk

j (X∗) (12.4)

We call taxrk
j
(Ai) a micropayment. Summing up all micropayments over all agents Aj �= Ai gives

the VCG tax payment made by Ai:

Tax(Ai) =
∑
j �=i

∑
rk
j ∈Rj

taxrk
j
(Ai) (12.5)

We abuse notation in the following, and write rk
j ∈ Taxj(Ai) if the payment taxrk

j
(Ai) �= 0 and

adopt scope(Tax(Ai)) to denote the set of variables involved in relations rk
j for some agent Aj �= Ai,

i.e. rk
j ∈ Taxj(Ai). This is the set of variables whose values are influenced by the presence of agent

Ai in a way that changes the utility of some other agent, and thus impacts the payment by agent Ai.

Designate an agent Al �= Ai as a candidate to receive as a refund the entire VCG payment Tax(Ai)

made by agent Ai. This candidate agent needs to be chosen independently of the declarations of any

agent that can possibly affect Tax(Ai). Our algorithm does this as follows (see Algorithm 27):
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1. Restrict areas of direct influence: for each agent Ar, restrict to P (Ar) the variables on which

the agent can express interest and ignore its declarations when they involve other variables.

2. Select a candidate to receive a refund: for each Ai, designate an agent Al as a candidate to

receive the payment Tax(Ai) made by Ai, by random selection11 among agents that cannot

possibly have a direct influence on any variable involved in P (Ai) (i.e. P (Al) ∩ P (Ai) = ∅).

3. Check possible indirect influence: given candidate Al for Tax(Ai) check Al has no possible

(indirect) influence on the values of any variables in scope(Tax(Ai)) in either DCOP (A) or in

DCOP (−Ai). If there is no possible influence, Al receives the payment Tax(Ai) as a refund

and otherwise the payment accrues to the bank.

Step 1, which restricts the impact of an agent’s messages, is without loss given that P (Ai) is the

set of variables on which an agent Ai can possibly have interest. Step 2 is a specific example of a more

general idea: we must pick the candidate Al by some criterion that is not related to agent declarations.

The algorithm for performing the check on indirect influence is presented in Section 12.2.1.2.12

This mechanism cannot guarantee budget-balance since it can happen that Al can have a possible

influence on some of the variables in scope(Tax(Ai)) and therefore the tax payment made by agent

Ai. However this approach can significantly reduce the payments that need to be made, as we see in

the experimental results in Section 12.3.

Theorem 11 The R-M-DPOP algorithm is a faithful distributed implementation of efficient social

choice, never runs a budget deficit, remains individual-rational for agents and can redistribute some of

the VCG payments collected by the bank back to the agents.

PROOF. Faithfulness follows from the faithfulness of M-DPOP and because agent Al cannot influence

whether or not it receives as a refund the tax payment made by some other agent. This is by con-

struction. To see that the mechanism never runs a budget deficit note that each agent’s tentative tax

payment to the center remains non-negative by Eq. (12.3), but that sometimes the center simply returns

this payment to some other agent. For individual-rationality (IR), recall that the VCG is IR because

the payment Eq. (12.1) is less than an agent’s utility for solution X∗. The difference here is that agents

sometimes receive an additional payment, when they are eligible to receive the tax payment of some

other agent. �

11For instance, this random selection can be done using a secure distributed protocol for random number generation, like
Benaloh [17]: each Aj �= Al proposes a random number rj between 0 and |X |. All numbers are added up and the result is
the sum modulo |X |: rnd =

P
Aj

rj mod |X |. rnd is then the ID of the chosen agent.
12The mechanism only makes a single attempt to find an agent that is eligible to receive the tax payment by agent Ai. If

the candidate agent chosen does not qualify the tax is not redistributed and goes to the bank. To increase the chances for
redistribution one might think to select a group of candidate agents, with each agent then checked for eligibility. Successful
agents could then split the tax among themselves or get the entire tax with some probability. However, each candidate chosen
in Step 2 would have an interest to make the other candidate agents have a possible influence in order to increase its own
chance of receiving a refund. This would significantly complicate the procedure.
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Algorithm 27 R-M-DPOP with VCG refunds: towards budget-balance

Inputs: Bank knows community membership P (Ai)∀Ai ∈ A
Outputs: Each VCG tax is refunded to an agent, or wasted

1 run M-DPOP algorithm to compute solution and VCG payments

Procedure TAX refunds

2 forall Ai do

3 Bank selects an agent Al randomly s.t. P (Al) ∩ P (Ai) = ∅
4 Agents execute LABELl(DCOP (A)) on DCOP (A) (see Section 12.2.1.2)
5 if possible influence of Al on ∀Xk ∈ scope(Tax(Ai)) then waste Tax(Ai)
6 else

7 Agents execute LABELl(DCOP (−Ai)) on DCOP (−Ai) (see Section 12.2.1.2)
8 if possible influence of Al on ∀Xk ∈ scope(Tax(Ai)) then waste Tax(Ai)
9 else refund Tax(Ai) to Al

12.2.1.1 An example of possible, indirect influence

Consider the example from Figure 12.2. The figure illustrates a DFS arrangement of a DCOP problem

(the largest triangle in the figure) and fixes an agent Al and the tax payment made by some agent

Ai. Agent Al is restricted to placing relations only on the subset of variables P (Al) for which it has

possible influence. Let Hl denote the lowest node in DFS(A) such that its subtree, T (Al), contains

all the nodes on which Al is allowed to place relations.13 It follows that Al can have no direct influence

on nodes outside of T (Al), including any sibling or ancestor of Hl.

The question addressed in checking for possible influence is the following: for which variables

outside of T (Hl) was it possible for agent Al to have an indirect influence on the values assigned?

To make this example concrete we assume that variable Hl can take three values a, b, c. Let us

assume that Al can completely control Hl through its relations placed in the subtree T (Al) (this is the

worst case scenario). Let Y be the ancestor of Hl in the DFS ordering with possible values d, e, f,

and assume that some other agent has imposed a relation between Hl and Y , as depicted in Table 12.1.

Assuming omnidirectional UTIL propagation as explained earlier in Section 4.1.6, in addition to a

UTIL message from Tl, node Y will also receive UTIL messages from all its other subtrees and also

from its parent, Z. Let us assume that the sum of all these UTIL messages other than from Hl arriving

at Y is the vector (5,5,5), giving the utilities for values of Y ∈(d, e, f) in the rest of the problem.

Notice that this vector cannot be influenced by Al, since Al could not place any relations outside T (Al).

13Notice that the subtree T (Al) does not necessarily include all siblings of the local variables of Al. Therefore, there could
be variables above Hl which are connected with equality constraints with variables below Hl, and thus under the influence
of Al. However, the scheme we propose in Section 12.2.1.2 would detect such influence.
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Y = d e f

Hl = a 3 2 1

Hl = b 2 3 1

Hl = c 4 3 2

Table 12.1: Example of possible influence. Here, node Hl is the node that defines the subtree isolating
the direct influence by Al and Y is the ancestor of Hl in the DFS ordering. r(Hl, Y ) is the relation
between Hl and Y , and owned by an agent other than Al.

Y = d e f

Hl = a 8 + Ul(Hl=a) 7 + Ul(Hl =a) 6 + Ul (Hl =a)

Hl = b 7 + Ul(Hl =b) 8 + Ul(Hl=b) 6 + Ul (Hl =b)

Hl = c 9 + Ul(Hl=c) 8 + Ul(Hl =c) 7 + Ul (Hl =c)

Table 12.2: JOIN l
Y →Z : table with global utilities for combinations of assignments 〈Hl, Y 〉. Al can

claim any utility on each value of Hl, and in turn can influence whether Y = d or Y = e is optimal.
The assignments that can be selected by Y are represented as the red cells.

However, it remains possible that agent Al can indirectly influence the value selected for Y through the

utilities it assigns to the three different values of Hl and through its impact on the choice on value of

Hl. Letting these utilities be Ul(Hl), and factoring the utilities reported in the rest of the problem, the

propagation would choose the maximum in each row of Table 12.2, as indicated in bold.

The chosen column (the value for Y ) depends on the utilities Al assigns to Ul(Hl). Notice that Al

can never force Y = f, since this will never give the maximum utility. However, Al can still influence

Y to take value Y = d by assigning a large utility to either Hl = a or Hl = c, and force Y = e by

assigning a large utility to Hl = b. Thus, there is possible influence and any tax collected because of

some other agent’s influence on Y cannot be given to Al without breaking the incentive properties. It

is not possible to prove, in this case, that the agent has a lac of influence. Had this been possible, then

any tax collected from other agents for their influence on Y could have been given to Al.

Agent Al’s indirect influence on a variable outside P (Al) depends on the preference of the other

agents. For instance, if the utilities from the rest of the problem for the values of Y would instead

aggregate to the vector (5,5,1000) then the influence of Al over Hl is not enough to prevent Y from

taking value f ; therefore, Al would have no influence whatsoever on Y .
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12.2.1.2 Detecting Areas of Indirect, Possible Influence

We present in this section an algorithm (Algorithm 28) to check whether an agent Al can possibly

influence the value taken by a variable X outside of its area of direct influence. This algorithm is used

as a subroutine in R-M-DPOP (lines 4, 5 and 7, 8) in checking whether a candidate agent is actually

eligible to receive a payment redistribution. By this we mean that we can prove, given the reported

preferences of other agents, that the same value of X would be selected by M-DPOP for all messages

that could have been sent by agent Al, and therefore Al has no influence on X .

First we introduce the following LABEL data structure to keep track of the possible (indirect) influ-

ence an agent Al can have on variables in the rest of the problem:

Definition 46 (Influence label) We can characterize the influence that an agent Al has on a group of

variables by an influence label, which is a multidimensional matrix with one dimension for each vari-

able in the group. Each element of the label corresponds to a combination of values for the variables

(a tuple), and takes value 1 if Al can force the corresponding tuple to be chosen in the optimal solution,

and 0 otherwise.

Notice that in the optimal solution, any variable Xk will take some value, so all labels will contain

at least a “1” for that combination. Refer to Figure 12.1. From the most influence to the least, a label

can have:

1. 1’s for all elements: this means that Al can fully influence all variables in the label, and can

impose any value combination - e.g. Figure 12.1(1).

2. 1’s for at least 2 different values for each variable: this means that Al can (partially) influence all

variables in the label - e.g. Figure 12.1(2).

3. 1’s for just a single value v of a certain variable Xk: this means that Al has no influence on Xk:

no matter what Al does, Xk always takes value v (Xb = f is in this situation in Figure 12.1(3)).

4. A single 1: then Al cannot influence any of the variables at all; they will take the same values

regardless of what Al does- e.g. Figure 12.1(4).

It is easy to see that when Al can have a direct relation on a variable then it can claim any utilities it

desires for all values and make any value the best one for the system. Therefore the labels are initialized

to “1” on each of the values for such a variable.

We now describe the label propagation process that computes and propagates LABEL messages

to determine where the influence of an agent stops. The LABEL propagation determines the possible

influence of Al on all variables in the problem. It is run as a post-processing step once M-DPOP has

completed to determine which candidate agents are eligible to receive tax re-distributions. This was
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Figure 12.1: Detecting Areas of Indirect Influence: Example labels for a set of 2 variables Xa and
Xb. (1) Al can impose any combination of values for Xa and Xb. (2) Al can impose just 2 value
combinations: either 〈Xa = a, Xb = d〉, or 〈Xa = c, Xb = e〉. (3) Al can impose any value for Xa,
but Xb takes value f regardless. (4) Al can do nothing: 〈Xa = c, Xb = e〉 is chosen.

Algorithm 28 Computing and sending LABELs: determining Al’s influence.

Procedure LABEL passing for Al

1 Node Xt gets LABELl
j → t from neighbor Xj

2 forall Xm ∈ {Pt ∪ Ct \ Xj} do

3 JOIN l
t→m = rt

j ⊕
(⊕

Xq∈{Pt∪Ct\Xj ,Xm} UTILq → t

)
(detailed in text in 2.a)

4 LABELl
t→m = JOINt→m ⊥ LABELl

j → t (this keeps in LABELl
t→m only the

dimensions from UTILm→ t and is detailed in text in 2.b)
5 send LABELl

t→m to Xm

used in Algorithm 27. In overview, the LABEL propagation starts from the nodes on the border of

the P (Al) area: the node Hl, which is the lowest node whose subtree includes P (Al), and the nodes

Lj
l which are the highest nodes in T (Al) which do not contain any variables of Al in their subtree.

The propagation proceeds outwards as far as the agent Al still has a possible influence. Payments

originating as the result of values on variables outside Al’s area of possible influence can be safely

refunded to Al without breaking the incentive properties.

Consider a node Xt that has just received a LABEL message from one of its neighbors, Xj . The

LABEL message summarizes the possible influence Al could have on Xj . This information, together

with the aggregation of the other agents’ utilities for values of Xt, can determine the possible influence

Al could have on Xt, i.e. its LABEL, which will be sent further on to its neighbors, and so on. To this

end, we use the omnidirectional utility propagation introduced in Section 4.1.6.

Denoting as LABELl, the propagation that occurs for Al, it works as follows:

1. Hl and all L1
l , . . . , L

k
l are determined to delineate the area of direct influence of Al: it is easy for

these nodes to identify themselves as a direct result of the DFS construction phase. Notice that

they are chosen such that they are not owned by Al.

2. Hl and all L1
l , . . . , L

k
l initialize the LABELl propagation by constructing LABEL messages

filled with 1’s and sending them to their tree-neighbors outside the P (Al) area;
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Figure 12.2: Checking possible influence: A structural method to determine whether it is safe to
redistribute the VCG payment of an agent Ai to another agent Al. Agent Al must be unable to influence
any component taxrk

j
(Ai) of Tax(Ai) for Aj �= Ai and rk

j ∈ Rj . Let P (Al) denote the subset (orange
area in the figure) of variables on which Al is allowed to place direct relations. Al can also indirectly
influence other variables, via other agents’ relations (the gray areas in the figure). However, its indirect
influence is limited, and the green areas are completely out of Al’s influence. Since all components of
Tax(Ai) (contained in the red area) are outside Al’s influence, it is safe to give Al the VCG tax of Ai.

3. Subsequently, all nodes wait for incoming LABELl messages, compute their own labels for

their tree-neighbors not in the P (Al) area, and propagate these to their neighbors.

For Step 3 a node Xt performs Algorithm 28 to compute and propagate its own labels. In overview,

this algorithm works as follows:

1. Node Xt receives a message LABELl
j → t from Xj

2. Node Xt computes LABELl
t→m for each one of its tree neighbors Xm �= Xj :

(a) It joins the following: (1) the relation rt
j it has with the sender of the LABEL message,

(2) all the UTIL messages it has received from its tree neighbors except the one from the

sender of the LABEL message (this UTIL message is presumably manipulated by Al) and

(3) the UTIL message sent by Xm. The result is JOIN l
t→m.

(b) For all tuples marked as 1 in LABELl
j → t, perform the corresponding slice operation in

JOIN l
t→m. The resulting hypercubes are then projected onto Xt. These projections are
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the optimal results that will be selected in each of the possible deviations by Al. Therefore,

they are marked with 1’s in the corresponding outgoing LABELl
t→m message.

(c) Node Xt sends LABELl
t→m to its tree neighbor Xm

Let us now refer again to the example from Figure 12.2. Since we assumed that Al can impose

any value on Hl, Al’s label for Hl is thus (1,1,1). By design, Hl is not controlled by Al and is

expected to propagate this label correctly to its parent, Y , which receives it in Step 1 of Algorithm 28.

Y then performs Step 3 of Algorithm 28: it joins all the UTIL messages received from all its other

tree neighbors except Hl (i.e. its parent Z, and its children other than Hl). Assume as before that

this produces the vector (5, 5, 5). Y also adds the relation it has with Hl to this join. The result is

JOIN l
Y →Z , depicted in Table 12.2. Y then computes its LABELl

Y →Z message for its parent Z as

in Steps 4 and 5 of Algorithm 28. Each tuple from LABELl
Hl →Y that is associated with a “1” is

considered in turn (actually, this is all of them: Hl = a,Hl = b,Hl = c). For each one, we perform a

slice in JOIN l
Y →Z : this results in the corresponding rows of Table 12.2. For each row, we project on

to Y , i.e. we find the best assignment for Y . This assignment of Y is enforceable by Al, and thus is

assigned a “1” in LABELl
Y →Z . Concretely, Hl = a forces Y = d, Hl = b forces Y = e and Hl = c

forces Y = d, thus LABELl
Y →Z = (1, 1, 0).

Note: had Al’s label for Hl been (1,0,1), its label for Y would have been (1,0,0), meaning

that only Y = d is possible and thus Al would have had no possibility to influence Y ’s value.

Finally, Y sends this label to its parent, Z, and the process continues until the labels contain just a

single value of 1. Note that the number of “1”s in a label can never increase during such a propagation,

since for every choice of input value there can be only one optimal output value. This means that the

propagation will eventually converge to labels with a single “1”. By propagating labels in the same way

as propagating messages in M-DPOP, we can determine the set of variables that an agent can potentially

influence.

Lemma 3 LABELl propagation is non-manipulable by Al, and conservatively determines Al’s influ-

ence on all variables in the SCP.

PROOF. Al is not involved in any computation or message passing during the LABELl propagation.

The propagation is initiated by the nodes Hl and L∗
k, which are conservatively chosen, outside the area

of direct influence of Al. They are not under Al’s control, thus expected to initiate the propagation with

LABEL messages containing all 1’s (i.e. assuming the worst case, when Al can impose any value on

them). The propagation then proceeds outside the area of influence of Al, through nodes which Al does

not control, and therefore, expected to propagate LABEL messages correctly. �



224 Budget Balance

Figure 12.3: A concrete numerical example of LABEL propagation. Al is present in the subtree
rooted at X4 and has direct influence on X4. Thefore the label [1,1,1] is passed to X2. X2 computes
its label by joining the UTIL messages it gets from its neighbors other than X4, and considering the
relation r2

4
X2 shares with X4 and LABEL4→ 2. X3’s label is [0,0,1], meaning that Al cannot

influence at or below X3 and taxes originating at or below X3 can be redistributed to Al.

12.2.1.3 A concrete numerical example of LABEL propagation

We show in Figure 12.3 a concrete example on which to illustrate the use of LABEL propagation. We

determine the possible influence for Al.

As seen in the figure, Al’s presence in the problem is limited to the subtree rooted at X4. Therefore,

the worst-case scenario is assumed: Al can completely influence X4 to take any value it desires. The

LABELl message that X4 generates and sends to X2 is thus [1,1,1].

X2 computes the join of the UTIL messages it receives from X1 and X3, and of the relation it

shares with X4. This computation is shown in Figure 12.3(b)-middle. The result is a matrix with 2

dimensions, X2 and X4, which states what values X2 will take as a function of the values X4 takes.

This can be influenced by Al according to the LABELl
4→ 2, i.e. Al can force any column in that

matrix. However, for both X4 = j and X4 = l then X2’s optimal value is the same, X2 = e. Notice

that Al has no way of forcing X2 = f via its influence on X4. Therefore, the LABELl message

computed by X2 is [1,1,0]. X2 sends this message to its neighbors, X1 and X3.
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Figure 12.3(b)-bottom shows a similar computation performed by X3. X3 joins the UTIL3
5 mes-

sage it received from X5 and the relation it shares with X2. The result is a matrix with 2 dimensions,

X2 and X3, which states what values X3 will take, as a function of the values X2 takes. This can be

influenced by Al according to the LABELl
2→ 3, i.e. Al can force either X2 = d, or X2 = e, but not

X2 = f . However, for both X2 = d, and X2 = e, X3’s optimal value is the same, i.e., X3 = i. Notice

that Al has no way of forcing X3 = g or X3 = h via its influence on X2 via X4. Thus, the LABELl

message computed by X3 is [0,0,1], meaning that the value of X3 cannot actually be influenced

at all by Al. Therefore Al’s influence stops alltogether at and below X3. This means that whatever

(micro)payments some agent Ai �= Al has to pay for its effect on variables X3 or below, these taxes

can be safely redistributed to Al, as Al has no way of influencing them.

12.2.2 BB-M-DPOP: Exact Budget-Balance Without Optimality Guarantees

The redistribution method described so far guarantees the optimality of the final solution to the social

choice problem. Because of this, it is unable to ensure complete budget-balance, and the protocol may

run at a budget surplus to the bank and thus the population of agents may continue to lose utility through

these payments. In this section we propose a scheme that guarantees complete budget balance, at the

expense of the optimality.

Similarly to Faltings [68], we add constraints to the problem to prevent an agent Al from influencing

a part of the taxes by preventing it to have even possible influence on the part of the problem with

variables in the scope of the tax payment. However, recall that we aim to allow Al to have some

influence in a restricted part of the problem, unlike Faltings, where Al is excluded altogether. We

achieve this by assigning a priori to each agent Ai another agent Al from another part of the problem,

who will collect Ai’s payment. During the optimization, we need to put Al and Ai in well separated

parts of the problem; specifically, we must ensure (via constraints) that Al cannot have any influence on

the marginal impact that agent Ai has on some subset of the variables, and thus on the tax payments. We

do this by performing two versions of the UTIL propagation: one with Al’s relations taken into account,

and another one that does not take Al’s relations into account.14 Intuitively, the propagations with Al’s

relations considered are used in a ”surrounding“ area to Al, to allow it to express its preferences on a

subset of the problem. Beyond this ”surrounding“ area to Al, the propagations without Al’s influence

are used, thus effectively eliminating its influence.

Let us refer to the example from Figure 12.4. The example illustrates a problem arranged as a DFS

tree, and two agents, Ai and Al in separate parts of the problem. The mechanism decides a priori (i.e.,

before any messages are received) that the VCG tax of Ai will be given to Al. Therefore, we need to

ensure that Al has no way of affecting the impact of Ai on the rest of the problem and thus on the tax

payment made by Ai. We achieve this by including constraints, in the following way:

14The second propagation is similar to the marginal propagations executed in M-DPOP for the marginal economy without
Al.
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Figure 12.4: Exact budget-balance in return for possible loss of optimality guarantees: a structure-
based method to forcibly limit an agent Al’s influence in the problem. Al is also allowed to indirectly
influence other variables as well, via other agents’ relations (the gray areas). Beyond a certain area,
Al has its influence forcibly eliminated. This area is defined by the cutoff point Z beyond which only
marginal UTIL messages that do not contain any influence from Al are propagated. These are the
green areas and cannot be influenced by Al. Since all components of Tax(Ai) (contained in the red
area) are outside Al’s possible influence it is safe to give Al the VCG tax of Ai.

1. We allow Al to post its relations normally on variables in P (Al), and within T (Al) (the minimal

subtree which contains P (Al)) the normal UTIL and VALUE propagations take place.

2. From Hl (the root of T (Al)) we propagate upwards two versions of the UTIL messages: the

normal UTIL (optimal utilities, including the influence of Al) messages, and UTIL−l messages

(sent in solving the problem without Al.)

3. A cutoff point, Z is chosen in any fashion that is independent of Al’s declarations. Influence of

Al is permitted in the subtree rooted at Z (which is the gray area in Figure 12.4). On the path

from Hl to Z, we propagate both versions of the UTIL messages (with and without Al’s relations

included). During the downward VALUE propagation, we select optimal values for the variables

on the path from Z to Hl according to the UTIL messages that contain also Al’s influence. This

ensures that we allow Al to express its (indirect) preferences in the subtree rooted at Z.

4. Outside the Z-rooted subtree, Al’s influence is prevented by using just the marginal UTIL mes-

sage UTIL−l. This constraint has the effect that the values chosen for all variables outside the
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Algorithm 29 BB-M-DPOP: budget-balanced distributed mechanism for social choice

Inputs: Bank knows community membership P (Ai), ∀Ai ∈ A
Outputs: a (possibly suboptimal) solution; each VCG tax is refunded to an agent;

forall Ai do

1 Bank selects an agent Al s.t. P (Ai) ∩ P (Al) = ∅
2 Al will receive Ai’s VCG payment, Tax(Ai)
3 Select cutoff point for Al, let this be node Z
4 In subtree rooted at Hl, execute normal UTIL/VALUE
5 From Hl up to Z, propagate main and marginal UTIL (UTIL, UTIL−l)
6 From Z down to Hl, propagate main VALUE (i.e. consider Al’s influence)
7 From Z onwards propagate just marginal UTIL−l/V ALUE−l(exclude Al)
8 Compute VCG (micro)payments normally
9 Any payments issued outside of the subtree rooted at Z can be given to Al

subtree rooted at Z are independent of Al. This makes it safe to give Al the VCG tax of Ai ,

since Al cannot influence its computation.15

12.3 Experimental evaluation

We present the results of an experimental evaluation of R-M-DPOP and BB-M-DPOP in a distributed

meeting scheduling problem. The problems consist of agents working for a large organization and

representing individuals, or groups of individuals, for the purpose of scheduling meetings for some

upcoming period of time. Although the agents themselves are self interested, the organization as a

whole requires an optimal overall schedule that minimizes cost (alternatively, maximizes the utility

of the agents). This motivates the need for a faithful distributed implementation such as M-DPOP,

rather than a cooperative approach such as vanilla DPOP. In enabling this, we can imagine that the

organization distributes a virtual currency to each agent (perhaps using this to prioritize particular

participants.)

Each agent Ai has a set of local replicate variables Xi
j for each meeting Mj in which it is involved.

The domain of each variable Xj (and thus local replicas Xi
j) represents the feasible time slots for the

commonly known meeting. An equality constraint is included between replica variables to ensure that

meeting times are aligned across agents. If a meeting has q participants, it is sufficient to create q − 1

equality constraints that connect the corresponding variables in a linear chain. Since an agent cannot

participate in more than one meeting at once there is an all-different constraint on all variables Xj
i

belonging to the same agent. This is modeled as a clique constraint between these meeting variables.

Each agent assigns a utility to each possible time for each meeting by imposing a unary relation on

15A side effect is that Al’s own VCG taxes outside the tree rooted at Z effectively become 0 as Al no longer has any
influence on these variables.
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each variable Xi
j . Each such relation is private to Ai, and denotes how much utility Ai associates with

starting meeting Mj at each time t′ ∈ dj , where dj is the domain for meeting Mj . The social objective

is to find a schedule in which the total utility is maximized while satisfying the all-different constraints

for each agent.16

Following Maheswaran et al. [127], we model the organization by providing a hierarchical struc-

ture. In a realistic organization, the majority of interactions are within departments, and only a small

number are across departments and even then these interactions will typically take place between two

departments adjacent in the hierarchy. This hierarchical organization provides structure to our test

instances: with high probability (around 70%) we generate meetings within departments, and with a

lower probability (around 30%) we generate meetings between agents belonging to parent-child de-

partments. We generated random problems having this structure,with an increasing number of agents:

from 5 to 50 agents.17 Each agent participates in 1 to 5 meetings, and has a uniform random utility

between 0 and 10 for each possible schedule for each meeting in which it participates. The problems

are generated such that they have feasible solutions.

For each problem size, we averaged the results over 10 different instances. All experiments were

performed in the FRODO multiagent simulation environment [154], on a 2.0Ghz/1GB RAM laptop.

FRODO is a simulated multiagent system, where each agent executes asynchronously in its own thread,

and communicates with its peers only via message exchange.

We experiment with both classes of redistribution schemes: R-M-DPOP which guarantees opti-

mality but not budget balance and BB-M-DPOP, which guarantees budget-balance at the expense of

optimality.

12.3.1 R-M-DPOP: Partial redistribution while maintaining optimality

This set of experiments analyzes the redistribution potential of the R-M-DPOP scheme. The results are

presented in Figure 12.5. As the problems grow in size, we observe an increase in the percentage of

taxes that can be redistributed by R-M-DPOP. The intuition is simple: as the problems grow in size, it

is more likely that each agent’s influence spans only a limited area in its neighborhood. Therefore, it

is more likely to find a recipient from a different part of the problem for any VCG tax, such that the

recipient has no influence on the tax. This is why the percentage of redistribution increases with the

problem size.

Figure 12.6 compares the net efficiency of the optimal solution, the R-M-DPOP algorithm, and the

VCG mechanism. In the VCG mechanism, each agent’s net utility is the difference between the utility

it derives from the solution which is being chosen (in this case the optimal one) and its VCG tax. In

16In a simple variation one could also seek to maximize the weighted utility across the agents, wherein some agents receive
more priority within the organization than other agents. The VCG payments, and also M-DPOP, can be easily extended to
provide appropriate incentives in this setting.

17Available at http://liawww.epfl.ch/People/apetcu/research/mdpop/MSexperiments.tgz
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Figure 12.5: The percentage of the amount of VCG taxes that can be redistributed by R-M-DPOP
increases with the size of the problem.

R-M-DPOP, some agents receive tax refunds from the bank, which get added to their net utility. We

can see that the loss in utility while using the VCG mechanism (with respect to the optimal solution in

a cooperative system) is quite significant, and increases with the size of the problem. This is because as

the problems increase, competition increases and more payments are collected. In contrast, R-M-DPOP

manages to redistribute a significant percentage of these payments back to the agents, thus limiting the

net utility loss.

12.3.2 BB-M-DPOP: Complete redistribution in exchange for loss of optimality

This set of experiments analyzes the tradeoff introduced by BB-M-DPOP between the loss of optimality

of the solution and the utility gain induced by the reimbursement of the VCG taxes. The results are

presented in Figure 12.6. We notice that BB-M-DPOP fares much better than the VCG mechanism,

and the overall utility when using BB-M-DPOP is very close to the optimal utility without any taxes.

This is in spite of the fact that BB-M-DPOP does not guarantee optimal solutions. It compensates for

this by returning all VCG taxes back to the agents, thus avoiding the net utility loss incurred by burning

these taxes.

As the problems grow in size, it is more likely that each agent’s influence spans only a limited area

in its neighborhood. Therefore, it is more likely to find a recipient from a different part of the problem

for any VCG tax, such that the recipient has limited or no influence on the tax anyway, and therefore

cutting off its influence does little to change the optimal solution.

Interestingly, BB-M-DPOP outperforms R-M-DPOP in terms of the net utility to agents. This

shows that in this environment it is more beneficial to accept a small loss in optimality and be able to

redistribute all VCG taxes than insisting on optimality and thereby forfeiting the guarantee of budget-
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agents. BB-M-DPOP offers even better overall utility, as the loss of optimality is counterbalanced by
the complete redistribution of the VCG payments.

balance.

Figure 12.7 shows the amount of computational effort required by R-M-DPOP and BB-M-DPOP

compared to M-DPOP. Here, computational effort means the total size of the UTIL and LABEL mes-

sages sent by each algorithm. The curve for M-DPOP shows the total size of the UTIL messages

required for solving the main and the marginal economies. As explained in Chapter 11, M-DPOP can

reuse some computation from the main economy while computing the marginal economies; the curve

corresponding to M-DPOP from Figure 12.7 takes this fact into account.

R-M-DPOP spends the same amount of effort as M-DPOP for the main and marginal economies.

However, R-M-DPOP also has to perform all the required LABEL propagations, which can increase

the complexity by a linear factor in the worst case: one full LABEL propagation for each candidate

agent, both in the main economy and in the corresponding marginal one. Figure 12.7 confirms this fact,

and clearly shows that R-M-DPOP spends much more effort than M-DPOP 18: for the largest problem

size, we have a 100-fold increase, due to the LABEL propagation.19

In contrast, BB-M-DPOP does not incur the computational overhead introduced by the LABEL

propagations. Figure 12.7 clearly shows that BB-M-DPOP requires less effort than R-M-DPOP, and is

relatively close to M-DPOP. For the largest problem size, BB-M-DPOP spends just 36% more effort

18Notice the log scale in Figure 12.7
19It would, in principle, be possible to extend the LABEL propagation with the same ”safe-reusability“ principle as M-

DPOP extends simple-MDPOP: we could reuse effort spent in the LABEL propagation in the main economy while performing
LABEL propagation in a marginal economy. However, the current implementation and the results in Figure 12.7 do not take
advantage of this possibility.
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Figure 12.7: Computational effort required by M-DPOP, R-M-DPOP and BB-M-DPOP, measured
as the total size of the UTIL/LABEL messages sent.

than M-DPOP: 150K as opposed to 110K.

12.4 Discussions and Future Work

In this section we discuss several aspects of the redistribution schemes, and point out some directions

for future work.

12.4.1 Distributed implementations: incentive issues

The execution of the redistribution schemes is somewhat sensitive to the DFS tree chosen as a commu-

nication structure. Specifically, in R-M-DPOP, the choice of the DFS tree can influence which agents

are eligible to be considered for receiving tax reimbursements from some other agents. Therefore, the

agents may have an interest in influencing the creation of the DFS tree such that they become eligible

for more reimbursements, or more “interesting“ ones.

In BB-M-DPOP, the DFS tree plays a role in determining the areas where each agent is allowed

to exercise its influence (e.g. in Figure 12.6, the subtree rooted at Z). Depending on how the tree is

constructed, this subtree may or may not contain some variables on which an agent may have a special

interest, and therefore, the DFS construction is susceptible to manipulation.

To prevent these possible manipulations, we can require a trusted third party, which will provide the

agents with the DFS structure they should use. If the agents cannot influence the DFS, then the LABEL

propagation from R-M-DPOP and the marginal propagations from BB-M-DPOP are faithful and give

the expected results. For future work, we will investigate more elaborated versions of the LABEL and
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the marginal propagations that would not be sensitive to the DFS structure used, and thus make it not

profitable for agents to manipulate the DFS construction.

12.4.2 Alternate Scheme: Retaining Optimality While Returning Micropayments

Notice that it could also be possible to do the redistribution at a micro level so that a candidate agent

Al /∈ {Ai, Aj} is selected for each taxrk
j
(Ai) for each rk

j ∈ Tax(Ai) for each Ai, and agent Al

receives this micropayment if it could have had no possible influence on the payment.

The reason to consider the redistribution of micropayments is that it offers more fine-grained control

over payment redistribution than when finding an agent that is eligible to receive the entire tax payment

made by some agent Ai, as in R-M-DPOP. Micropayment redistribution is less brittle, in that whether

or not we can redistribute payments is less sensitive to one bad choice of candidate agent Al in R-M-

DPOP. Instead, for a given VCG payment, we seek to redistribute all its component micropayments,

and thus stand a better chance of being able to redistribute as much as possible from the total VCG

payment.

However, care must be taken as some micropayments may be negative. To understand why, con-

sider two agents Ai and Aj with similar preferences. Together, they are able to impose their most

preferred value on a variable X , but not when taken individually. In this way, each agent can have

a positive influence on the other one, which in turn, makes the respective VCG micropayments nega-

tive, i.e. agent Ai receives a payment for the effect on the relation of agent Aj involving this variable.

Thus, we see an interesting phenomenon: while total tax payments, Tax(Ai), made by every Ai are

non-negative by the property of no positive externalities, an agent’s presence can nevertheless have a

positive externality on any one other agent considered in isolation, and in particular on any micropay-

ments.

Redistributing such negative micropayments must be avoided, as it amounts to having the recipient

paying taxes for some other agent and could break individual-rationality. Furthermore, by redistributing

positive micropayments but not negative micropayments we can stand the risk that the redistribution

will leave the bank with a budget deficit.

12.4.3 Tuning the redistribution schemes

Both in R-M-DPOP and in BB-M-DPOP, the designer can tune the execution of the algorithms and

influence their performance in several ways.

R-M-DPOP: the choice of Al can influence both the computational effort required for the LABELl

propagation, and the likelihood of finding a good recipient for the taxes, and thus the final net overall

utility. In our implementation, we try to choose for each tax a recipient agent Al which lies “as far
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as possible“ from the origin of the tax, i.e. an agent Al in a different branch of the DFS tree. This is

designed to maximize the chance that Al has no influence on the area where the tax originates.

BB-M-DPOP: here, the designer can consider different options for choosing both Al (the recipient

agent) and Z (the cutoff point). The choice of Z may have an impact on the quality of the solution

chosen because the closer Z is to Al, the less of a chance Al has to influence its neighboring variables

according to its preferences, thus decreasing the overall solution quality;on the other hand, if Z is

chosen arbitrarily far then no redistribution would be possible. Therefore, in our implementation,

we have tried to select an Al as far away as possible from the area where the payments originate.

Subsequently, we choose cutoff points Z which are as far as possible from Al.

It is interesting to note that in addition to their impact on efficiency, these design choices may also

have certain implications on the “fairness” of the process: which agents are considered for receiving

which payments, etc. We acknowledge the importance of these issues, and will elaborate on them in

future work.

12.5 Summary

We presented two methods for dealing with the VCG surplus in social choice problems when agents are

self interested and have private, arbitrary utilities for different outcomes. Our algorithms are faithful, in

the sense that no agent can improve its utility either by misreporting its local information or deviating

from any aspect of the algorithm. The first method (R-M-DPOP) produces optimal solutions, but can

only achieve a limited redistribution of the VCG payments. Our experiments show that a significant

percentage of the VCG payments can be returned to the agents (close to 70%) in problems that exhibit

local structure.

The second method (BB-M-DPOP) offers no optimality guarantees, but enforces full budget bal-

ance. Experiments show that both R-M-DPOP and BB-M-DPOP dominate the classical VCG mech-

anism in terms of the net utility of the agents, with BB-M-DPOP slightly outperforming R-M-DPOP.

Experimental results show that BB-M-DPOP also requires less computational effort than R-M-DPOP.

This suggests that in settings with self-interested agents where the net utility is more important than the

optimality of the solution, BB-M-DPOP is the method of choice.

A very interesting avenue for future research is to investigate mechanisms that seek to redistribute

micropayments as opposed to aggregate VCG payments (see the discussion in Section 12.4.2). Such a

scheme would offer more fine-grained control over payment redistribution and would be less brittle, in

that whether or not we can redistribute payments is less sensitive to one bad choice of candidate agent

Al.

In both R-M-DPOP and BB-M-DPOP, we select candidate agents to receive payments originating

from parts of the problem they cannot influence. This selection has an impact on the ”quality“ of the
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redistribution scheme. Specifically, in R-M-DPOP we can seek to select as a candidate agent, an agent

that is very likely to be proven non-influential by the LABEL propagation scheme, and thus increase

the chances of redistribution 20 In BB-M-DPOP, the question is how to choose a candidate agent such

that it is likely it will have a weak influence on the tax (or not at all), and once the agent chosen, how

to determine where to cut its influence such that the overall optimality is as little affected as possible.

For future work, one could also investigate more elaborated versions of the LABEL and the marginal

propagations that would not be sensitive to the DFS structure used, and thus make it not profitable for

agents to manipulate the DFS construction.

20One must take care of incentive issues, as all agents have the interest to influence this selection.



Chapter 13

Conclusions

This dissertation tackles Distributed Constraint Optimization Problems, with a particular focus on de-

veloping new efficient algorithms that make good use of the computational / memory / network re-

sources available. In this context, previous work has concentrated mostly on adapting techniques from

centralized CSP to the distributed case. In centralized CSP, search algorithms are preferred because

they are fast and require small amounts of memory. Additional techniques like dynamic variable or-

dering, consistency maintenance, or the branch and bound principle are very successful, and further

improve performance, sometimes quite impressively.

However, in a distributed setting, the conditions in which these algorithms operate are radically

different. An assignment of a value to a variable is no longer instantaneously known to all agents

involved, and has to be communicated. “The best solution found so far”, or “the best cost so far” are no

longer available as in centralized branch and bound, and have to be broadcast to all agents. By its very

nature, search works by sequentially exploring the search space with rapid state changes, which implies

many changes of context, which translates into many messages. In optimization, the search space is

exponential, and thus oftentimes an exponential number of messages have to be exchanged. Techniques

like dynamic reordering, or consistency maintenance from centralized CSP have been adapted to the

distributed case, and oftentimes show performance improvements [199, 200, 202, 26, 137, 139, 242].

However, even with these improvements, the number of messages required is typically still very large,

which implies the associated overhead is prohibitive for practical applications (Section A.1).

On the other hand, dynamic programming works by exploring the search space in a more parallel

fashion: each agent computes all the possible impacts of a set of other agents on itself, and sends these

valuations at once, in a single message. Messages are larger, but since they are fewer, the massive net-

working overhead associated with many small messages is avoided. Furthermore, if problem structure

is taken into account (like for example by operating on a DFS tree), the maximal message size can

be limited to exponential in the induced width as opposed to exponential in the size of the problem.

Together with the fact that practical distributed problems tend to have low width, this realization is at

235
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the core of the success of the DPOP algorithm.

In the following we present in Section 13.1 a list of the major contributions of this dissertation, and

we conclude with some final remarks in Section 13.2.

13.1 Contributions

We present in the following a condensed list of the contributions of this thesis, and we continue after-

wards with a more detailed view on the most important ones.

1. DPOP algorithm: distributed dynamic programming, produces a linear number of messages.

Largest message exponential in the induced width of the chosen DFS. The algorithm of choice

for DCOPs with low induced width.

2. DPOP extensions for efficiency (Part III):

• a generic framework for identifying difficult areas (high-width clusters) based on problem

structure (Section 6.2).

• H-DPOP: (Chapter 5): uses consistency techniques from search to reduce message size.

Can be applied in combination with most DPOP variants.

• MB-DPOP: tradeoff between number of messages and memory/message size (Chapter 6)

• O-DPOP: hybrid of dynamic programming and best first search that trades exponential

message size for number of messages (Section 6.4)

• LS-DPOP: Configurable large neighborhood search combined with dynamic programming

(Section 7.1)

• A-DPOP: parametrized approximation scheme, which adapts the size of the larges message

to the desired approximation ratio (Section 7.2)

• PC-DPOP: configurable centralization of high width subproblems in cluster roots, which

solve them in a centralized way and integrate results into DPOP (Section 8)

3. Dynamic problem solving (Part IV):

• SS-DPOP: self stabilizing dynamic programming (Section 9.2)

• RS-DPOP: continuous problem solving (Section 10.3)

• structural methods for reusing computation upon dynamic changes

• cost-based solution stability

4. DPOP extensions for self interested agents (Part V):

• M-DPOP: first faithful distributed mechanism for social choice (Chapter 11)
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(a) implements the VCG mechanism distributedly (just a bank required)

(b) allows reuse from main to marginal economies

• Structural techniques for budget balance ((Chapter 12))

(a) R-M-DPOP: uses structure to detect possible influence → burns tax

(b) BB-M-DPOP: uses structure to cut influence → redistributes tax

In distributed constraint reasoning, several search algorithms [225, 224, 229, 96, 139, 197, 141]

have been proposed. While most of these algorithms have the advantage that they can operate asyn-

chronously and with low memory requirements, they all suffer from the problems associated with

search in a distributed environment: large networking overheads caused by sending many small pack-

ets, and large algorithmic overheads due to the obligation of attaching full context information to each

message because of asynchrony.

One of the most important contributions of this thesis is the dynamic programming algorithm DPOP

(Chapter 4). DPOP groups many individual valuations in a single message, and it requires only a linear

number of messages, thus generating low communication overheads. DPOP’s complexity is given by

the size of the largest UTIL message it produces, which is exponential in the induced width of the DFS

ordering used. This makes DPOP very well suited for large but loose problems, which exhibit low

induced width.

For problems with high induced width, however, DPOP’s memory requirements may be prohibitive.

In some situations, hard constraints can be exploited by methods like H-DPOP to effectively reduce

message size by pruning incompatible tuples ( Chapter 5).

The whole Part III of this thesis is dedicated to exploring various efficiency-related tradeoffs one

can make for problems with high width, along four different dimensions: solution quality (complete

vs. incomplete algorithms), memory requirements (linear / polynomial / exponential), communication

requirements (few large messages vs. many small messages) and the degree of distribution (fully

distributed algorithms vs. partial centralization algorithms). Several new algorithms are introduced.

Table 13.1 presents a comparative overview of the current DCOP landscape. Existing algorithms are

shown side by side with the new algorithms developed in this thesis (the latter ones are shown in

bold). We classify all algorithms according to their memory requirements, and the number of messages

they exchange, as these are the two most commonly used performance metrics. The DPOP algorithm

(lower left corner) was the first in a series of algorithms exploring dynamic programming approaches

in a DCOP context. Subsequently, we have developed many different extensions: typically hybrids of

dynamic programming and other techniques, seeking to mitigate the exponential memory problem of

DPOP by offering different tradeoffs.
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Memory Number of Messages

linear polynomial worst case exponential exponential

linear PC-DPOP(1)1

A-DPOP(1)2
LS-DPOP(1)3 ADOPT, NCBB, AFB,

SynchBB
MB-DPOP(1)

polynomial PC-DPOP(k)1

A-DPOP(k)2
LS-DPOP(k)3 NCBB(k), OptAPO4 MB-DPOP(k)

w.c. expon H-DPOP O-DPOP

exponential DPOP

Table 13.1: Comparative overview of DCOP algorithms: memory vs. number of messages

We summarize these results in the following: Section 6.3 introduces the MB-DPOP algorithm,

which can operate with bounded memory using the idea of cycle-cuts [51]. Section 6.4 introduces

the O-DPOP algorithm, which can be applied to open optimization problems [70], i.e. problems that

feature unbounded domains. Section 5 introduces the H-DPOP algorithm, which takes advantage of

Constraint Decision Diagrams [34] (CDDs) to prune out from the UTIL messages combinations which

are infeasible due to hard constraints. Section 8 introduces the PC-DPOP algorithm, which allows for

the partial centralization of difficult subproblems. Section 7.1 introduces the LS-DPOP algorithm, a

hybrid algorithm which is a mixture of local search and dynamic programming. Section 7.2 intro-

duces the A-DPOP algorithm, an approximation scheme which offers a tradeoff between (guaranteed)

solution quality, and computational effort.

For dynamic, distributed problems, we propose in Part IV two self stabilizing algorithms that can

cope with dynamically changing problems. Different techniques for fault containment and super-

stabilization are presented. We also introduce a cost-based version of solution stability, and an al-

gorithm that enforces it.

In an orthogonal area of research, we tackle the problem of dealing with strategic behavior in

systems with self-interested agents. The issue is that existing DCOP algorithms can be manipulated

by self-interested agents such that the chosen solution is no longer optimal, but better fits their inter-

ests. This is a major limitation shared by all previous DCOP algorithms. We introduce M-DPOP, the

first faithful DCOP algorithm that makes honest behavior an ex-post Nash equilibrium. M-DPOP care-

fully integrates the Vickrey-Clarke-Groves (VCG) mechanism with DPOP. M-DPOP introduces a novel

method that leverages structure in the problem to selectively reuse computation performed in solving

the main problem while solving the marginal problems, in a way that is robust against manipulation

by the excluded agents. We have also introduced two extensions to M-DPOP (see Chapter 12) that ad-

1PC-DPOP is optimal, but sacrifices the initial distribution of the problem by partially centralizing subproblems
2A-DPOP is an approximation scheme, and thus sacrifices optimality
3LS-DPOP is a local search scheme, and thus sacrifices optimality
4OptAPO is optimal, but sacrifices the initial distribution of the problem by partially centralizing subproblems
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dress the inefficiency of the VCG mechanism that taxes must be burned, thus creating a welfare loss to

the agents. Our extensions exploit structure in the problem to develop faithful methods to redistribute

payments back to agents, reducing this cost on the system.

All the algorithms described in this thesis operate in an essentially synchronized fashion. While

this avoids the inconvenience of overhead (see Section A.2), asynchronous techniques have potential

advantages in terms of ability to deal with message loss and/or slow links, and sometimes they offer

the possibility of anytime solving (i.e. offering some solution fast, and then improving it as time goes

by). Nevertheless, anytime behavior can also be obtained from dynamic programming algorithms, like

for example using the iterative versions of A-DPOP (Section 7.2.6), or LS-DPOP (Section 7.1.3). One

could also envisage an online version of the O-DPOP algorithm, where partial results are sent upstream

before proving their optimality.

While in this thesis we have not dealt with message loss explicitly 1 the self-stabilizing algorithms

in Chapters 9 and 10 handle this problem by simply resending the lost messages. An alternative is

provided by the AnyPOP algorithm from Section 7.2.5, which deals with messages that have not yet

arrived by considering what could have been their influence, based on the messages that did arrive, and

the local relations.

13.2 Concluding Remarks

In this thesis, we have investigated Distributed Constraint Optimization Problems as an approach to

effective coordination in multiagent systems. This is an important topic because DCOPs are applicable

to many real life problems that are distributed by nature.

Among the most challenging issues in DCOP is efficiency. For problems of practical interest, cur-

rent search-based algorithms are too inefficient to be used in a realistic application. The main issue is

that typically they require exponential numbers of small messages, which in turn produces enormous

networking overheads and delays. We have proposed in this thesis a class of algorithms based on dy-

namic programming which address this issue by (a) discovering problem structure by using DFS trees,

and exploiting it when possible, and (b) by packaging together many valuations in larger messages

which can be transported over the network more efficiently, with less overhead. The resulting algo-

rithms have been shown by experimental results to be up to 5 orders of magnitude more efficient than

search based algorithms. We therefore believe that whenever memory constraints allow for algorithms

based on dynamic programming, such algorithms are preferable to search based algorithms. In situa-

tions where this is not possible because of excessive memory requirements, different hybrid algorithms

can be tried, as discussed in Part III of this thesis.

1The TCP underlying networking protocol deals with the problems of packet loss and out-of-order delivery, thus freeing
higher level algorithms of the task of reasoning about these problems explicitly
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An important feature of DCOPs is that often times agents operate in open and dynamic environ-

ments, with agents dynamically joining or leaving the system, resources appearing or being consumed,

tasks being allocated and carried out, etc. Chapter 9 introduces two self-stabilizing algorithms that can

operate in such dynamic, distributed environments. Chapter 10 discusses solution stability in dynamic

environments, and introduces a self-stabilizing version of DPOP that maintains it.

Another key challenge in DCOPs is dealing with dishonest behavior in systems with self-interested

agents. This poses effectively a big problem to DCOP algorithms, which can be manipulated by such

self-interested agents such that the final solution discovered is better suited to themselves, regardless

of the global optimum. This renders existing DCOP algorithms useless in such settings, as the results

they obtain are meaningless. Existing work to address this problem is limited at most. We introduce

MDPOP, the first DCOP algorithm that provides a faithful distributed implementation for efficient

social choice. Faithfulness ensures that no agent can benefit by unilaterally deviating from any aspect

of the protocol, and is achieved by carefully integrating the Vickrey-Clarke-Groves (VCG) mechanism

with DPOP. M-DPOP introduces a novel method that leverages structure in the problem to selectively

reuse computation performed in solving the main problem while solving the marginal problems, in a

way that is robust against manipulation by the excluded agents. We have also introduced two extensions

to M-DPOP (see Chapter 12) that address the inefficiency of the VCG mechanism that taxes must be

burned, thus creating a welfare loss to the agents. Our extensions exploit structure in the problem to

develop faithful methods to redistribute payments back to agents, reducing this cost on the system.
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Appendix

A.1 Performance Evaluation for DCOP algorithms

Performance evaluation of distributed constraint reasoning algorithms is a long-debated subject. Sev-

eral metrics have been proposed so far:

• number of messages, or “network load” [123] required by an algorithm to find the (optimal) solu-

tion. This metric is meaningful when all algorithms compared produce messages of comparable

sizes. This is not the case when comparing DPOP with search algorithms, for example.

• number of constraint checks (CC) performed while solving the problem. This is a metric heavily

used in centralized CSP, which offers the advantage that it is independent of the algorithm used

and of the hardware platform.

• number of simulator cycles [229]. This assumes a simulator is used, and in each synchronous

cycle, each agent reads its incoming messages, performs computation, and sends out its messages

for delivery in the next cycle. The metric counts the number of such cycles performed while

solving the problem.

• the longest sequence of messages (LSM): this is the DisCSP equivalent of Lamport’s logical

clock [117], and is a measure of the duration of the execution of the algorithm.

• number of concurrent constraint checks (CCC) performed by the agents while solving the prob-

lem. This is an adaptation of the cc metric from centralized CSP to the distributed case, and

measures the computation performed by the agents (in parallel).

• number of non concurrent constraint checks (NCCC) performed by the agents while solving the

problem. This is an adaptation of the cc metric from centralized CSP to the distributed case.

241
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Figure A.1: Encapsulation of a TCP packet.

Most of the metrics devised so far were designed for comparing very similar algorithms, all of

which were based on search. Therefore, all the algorithms were producing messages of comparable

size (linear in the number of variables), and thus the “number of messages” metric was adequate.

However, with the introduction of DPOP, it is clear that this metric by itself is no longer sufficient, at

least not when comparing DPOP against a search-based algorithm. Specifically, consider that some

UTIL messages in DPOP can contain millions of valuations! Such a “logical” message obviously

cannot count as a single message while comparing DPOP with a search algorithm. All “logical” UTIL

messages are subject to possible fragmentation into multiple smaller messages by the lower networking

layer, and DPOP must be penalized in such cases. To our knowledge, so far the lower networking

layers have been ignored while devising performance metrics. We believe that in order to ever deploy

a DisCSP/DCOP system in a real environment, we need to consider also the details of the underlying

network, and understand its behavior, strengths and limitations.

Let us consider the following scenario: the “agents” in our DCOP are real people, each one with

their own computer connected to the internet, and a (complex) local problem. Local problems are

connected with other agents’ local problems, and the neighboring agents are expected to be able to

communicate with each other. Different connectivity scenarios are possible:

• users in a company, connected to the company LAN. These are fast connections, 100Mbit or

even Gigabit. Latency is typically around 10ms [1].

• home users, or small companies, connected to internet via a broadband connection. These are

(relatively) fast connections, 256Kbit or more 1. Latency is above 100ms, typically between

150ms and 200ms [1].

• large industrial users, connected to backbones via fiber optic.

1At the time of this writing, my broadband connection is 4Mbit
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In the following, we assume that the TCP/IP protocol stack is used by the agents to communicate.

A TCP packet is encapsulated by the physical layer in (ethernet) frames (as shown in Figure A.1)

composed of:

• MAC header: 14 bytes + 4 bytes CRC final field (overhead). Minimal size of an Ethernet frame

is 64 bytes, out of which the data is at least 46 bytes (if less, then padded with 0’s)

• IP header: size 20 bytes (overhead).

• TCP header: size: 20 bytes (overhead)

• TCP payload: typically 1000-1500 bytes.

The following parameters of the network are of interest (to simplify our analysis, we assume they

hold throughout the network of agents, without variations):

• L: latency for one packet: this is the time it takes for one packet to travel to its destination.

Typical latency for local LAN: 10ms [1]. Typical latency for Internet: above 100ms; typically

between 150ms and 200ms [1].

• B: communication bandwidth: the rate at which data can be sent over a connection. Typical

for LAN is 10Mbit, 100Mbit, Gigabit (nowadays mostly 100Mbit, Gigabit is quite common).

Wireless (11,54,108Mbps). For Internet, slowest links are 56kbps.

• No: Networking overhead per packet, in bytes (size of MAC headers, TCP/IP headers)

• TCP payload: size of payload in a TCP message, in bytes (typically 1000-1500 bytes). If a

message contains more than TCP payload bytes, it will be split in several messages. Network-

ing overhead is incurred for each resulting message.

In addition to the characteristics of the network, each algorithm has its own specifics:

• algorithm-introduced communication overhead: for each message mi, Ao(mi): size of algorithm

required context information (in ADOPT, the current view; in DPOP, the IDs and domain sizes

of variables in the message).

• payload per message: for a message mi, Payload(mi) is the size of the useful information

the message contains. In ADOPT, this is always 1 (one cost value reported). In DPOP, this is

exponential in the number of dimensions of the message.

To capture the characteristics of the underlying transport protocol, we propose an adaptation of

the LSM metric, which (a) takes into account message size, thus penalizing DPOP for sending large

messages, and (b) takes into account the characteristics of the lower transport layers:
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Definition 47 (Network-based LSM (NLSM)) Considering the Longest Sequence of Messages met-

ric (LSM), we define the Network-based LSM (NLSM) metric as follows:

NLSM =
∑

∀mi∈LSM

⌈
(Payload(mi)+Ao(mi))

TCP payload

⌉

Notice that in the sum, only the messages mi that participated in the LSM are considered. Thus, NBR

effectively accounts for the longest message passing sequence, while at the same time considering large

messages as splitted across multiple, smaller, packets.

Furthermore, we argue that in any practical deployment of a DCOP application on a real network,

an important performance measure is the runtime (in seconds) of the algorithm until the solution is

found, given the characteristics of the network. To capture this runtime, we propose to use NLSM

(which already takes into account the transport layer, i.e. TCP), and to adapt NLSM to account for the

physical network where the algorithm is deployed:

Definition 48 (Network Based Runtime (NBR)) Considering NLSM, we define the Network Based

Runtime (NBR) metric as follows:

NBR = NLSM ×L

NBR thus gives a measure of the total time spent by an algorithm to solve a problem, on a particular

network with the given latency L.

Note that NBR makes a number of simplifying assumptions: the latency L holds throuhout the network,

for the entire execution of the algorithm, and for all algorithms measured, i.e. no significant variations

in latency related to geographical position, time, or algorithm. While we acknowledge that these as-

sumptions are debatable in a real deployment of a DCOP algorithm, we believe they are reasonable,

and that NBR is a more realistic metric than the ones previously proposed for DCOP.

Additionally, to measure the degree to what a DCOP algorithm makes appropriate use of network

bandwidth, we define the

Definition 49 (Communication Overhead) The communication overhead is the total amount of infor-

mation (bytes) which is not essential to the algorithm, but sent over the network nevertheless: Overhead

=
∑

∀mi
Overhead(mi) =

∑
∀mi

No(mi) + Ao(mi);

Notice that this sum is defined over all messages sent over the network, not just LSM as in Defini-

tion 48.

Example 27 (Message Passing Example) Consider the example problem from Figure 3.3. Consider

agent X11, who sends messages to its parent X5. For simplicity, assume all variables have 10 values
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in their domain. Assume that the range of possible valuations is between 0 and 255, for the largest

aggregated valuation. Thus, all valuations can be encoded as one byte.

ADOPT: X11 sends COST messages of this form: COST (X0 = 1, X2 = 2, X5 = 4) = 4, i.e.

”in the context of X0 = 1, X2 = 2, X5 = 7, the cost for X11 is 7. An economic encoding of such

a message requires at least 6 bytes: 3 bytes for the IDs of the variables X0, X2, X5, and 3 for their

current values. The useful payload of this message is just the cost value 7 (i.e. 1 byte). The algorithm

overhead is Ao = 6 bytes.

The message has to be sent over the network. Assume the best case: the COST message is sent using

a single TCP message, which uses a single Ethernet frame. The minimal size of such a frame is 64 bytes:

MAC headers of 14 bytes, plus a minimum of 46 bytes of TCP/IP payload data (if less, padded with 0’s),

plus 4 bytes CRC. The overhead introduced by the networking layer is No = 64 − Ao − Payload =

64−6−1 = 57 bytes. Total overhead is Overhead = Ao+No = 63 bytes. Overhead to payload ratio:

63:1. To simplify the analysis, assume ADOPT does not manage to perform any pruning in this case,

and the whole set of 1000 combinations of assignments for X0, X2, X5 will be explored. Therefore,

X11 will receive at least 1000 VALUE messages of the form X0 = 1, X2 = 2, X5 = 7, and will reply

with 1000 individual COST messages of the form COST (X0 = 1, X2 = 2, X5 = 4) = 4. This implies

that ADOPT requires 63,000 bytes of useless information sent for 1000 bytes of payload.

DPOP: the UTIL message UTIL5
11 sent from X11 to X5 contains 103 = 1000 valuations, one

for each combination of values of variables X5, X2, X0. The message has a header containing the

list of the variables involved (i.e. X5, X2, X0), and the size of their domains (i.e. 10,10,10). For the

example above, this requires 6 bytes, thus Ao = 6 bytes. The 1000 valuations are simply included in

the message as a sequence of 1000 bytes, which typically fit into a single message. The networking

overhead for this message is then No = 58 bytes (MAC header, IP header, TCP header, MAC final

CRC field) Therefore, a UTIL message of 1000 valuations has total size 1064 bytes, and total overhead

Overhead = No + Ao = 58 + 6 = 64 bytes. Overhead to payload ratio: 64:1000.

DPOP splitting large messages: assume DPOP has to send a message with 4 dimensions (i.e.

10,000 values). Considering the typical payload of a TCP message of 1000 bytes, it follows that the

UTIL message will have to be split into 10 TCP messages. Now the message contains 4 dimensions,

therefore we count 8 bytes for the header describing the variables and their domains. Overhead =

Ao + 10×No = 8 + 580 = 588 bytes for 10,000 valuations (the algorithmic overhead Ao is counted

only once)

In contrast, ADOPT sending the same amount of information would incur an overhead of

Overhead = 10000× (Ao+No) = 10, 000× (8+55) = 630, 000 bytes of overhead when sending

10,000 valuations.

Assuming equal latencies of 100ms for a fast connection over the internet, and assuming all the

1000 valuations are sent sequentially by ADOPT, we have:
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NBRADOPT = 10000×L = 1000s.

NBRDPOP = 10×L = 1s.

A.2 Performance Issues with Asynchronous Search

Asynchronous search algorithms with polynomial memory bounds have the advantage that they allow

the agents to operate asynchronously, and have low memory requirements. However, they have a series

of drawbacks, that we outline in the following.

Issues with search algorithms in general:

• In general, in order to be able to guarantee polynomial memory requirements, full caching [42,

8, 32, 132, 170] is not possible (see Section 3.1.1.3). In such cases, re-exploration of parts of the

search space may be required [240, 33, 141, 170]. This means that even after the whole search

space has been explored and the cost of the best solution has been found, the algorithm has to

re-explore parts of the search space again to actually derive the solution itself. This implies even

more work than necessary for the agents in terms of computation, and more network load in

terms of message passing.

• search algorithms introduce significant networking communication overheads by the fact that

they use many small messages, which contain as payload just a single cost value, i.e. typically 1

byte (see Section A.1). If effective pruning is not possible, the overhead becomes prohibitive.

Additionally, asynchronous search algorithms introduce the following performance issues:

• asynchronous algorithms produce significant algorithmic communication overheads by the fact

that due to their asynchrony, they have to attach context information to each message (see Sec-

tion A.1).

• random delays in message delivery (which are the norm in any realistic network) sometimes

significantly degrade their performance, both in terms of computation and message passing [240,

241, 243].

A.3 FRODO simulation platform

We have developed and released a ”FRamework for Open/Distributed Optimization” (FRODO), that

simulates in a single Java virtual machine a multiagent platform geared towards the implementation

and testing of (distributed) optimization algorithms. Each agent is simulated with a Java thread, and

communicates with its peers via message exchange.
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In Figure A.2 we present an overview of the architecture of the platform. Briefly, there is an

environment that is responsible for creating the agent threads and message delivery. Within the en-

vironment, each agent operates in an autonomous fashion: it loads its relevant subproblem, and then

participates in a message exchange protocol with (some of) its peers, as dictated by the optimization

algorithm.

The environment can monitor the message exchange, and can present a GUI to the user that shows

the current state of the solving process. For example, in the resource allocation example in the sen-

sor network environment, the GUI shows the current allocations of sensors to targets, and the con-

flicts that are still to be resolved. For more details, and screenshots of the simulator, please visit

http://liawww.epfl.ch/Research/sensornets/.

In the public version there are two implemented algorithms: Distributed Breakout Algorithm -

DBA [229], and DPOP [160]. The framework is extensible, and allows for easy implementation and

testing of new optimization algorithms, be they centralized or distributed.

There are also available two testbeds: one for resource allocation in a sensor network, and one for

meeting scheduling problems. Both have random problem generators, and GUIs to display the problem

instances.

More details, documentation, paper and source download can be found in [154] and at

http://liawww.epfl.ch/frodo/.

A.4 Other applications of DCOP techniques

A.4.1 Distributed Control

In a highway network, many problems like traffic jams or accidents can be avoided with more effective

and adaptive speed limitations. Such adaptive control can be provided by intelligent agents, each one

responsible for a highway segment. Neighboring agents can communicate with each other to exchange

information about traffic conditions, enforced speed limits, etc. The objective is to make the traffic a

fluid as possible, and increase safety.

We have developed a DCOP model of this problem [175], where the agents correspond to highway

segments and they control the speed limitation for their respective segments. Constraints between

neighboring agents are designed to model safety restrictions (e.g. enforcing a speed limit of 60 km/h

on a segment immediately after a segment with 120 km/h is dangerous), and to increase throughput.
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Figure A.2: FRODO platform: agents simulated as threads that exchange messages with their
peers. New optimization algorithms can be easily implemented and tested. The environment
provides monitoring and visualization support.

A.4.2 Distributed Coordination of Robot Teams

Cooperative robotics is an area where multiple autonomous agents often have to accomplish a common

goal, such as finding an object, moving an object, patrolling, etc. Often times, the goal is too complex

for each one of the individual robots to achieve by itself: the area to patrol may be too large for a single

robot, the object to move may be too heavy, etc. In such settings, the robots have to cooperate in order

to achieve the goal, and effective coordination is essential.

In [97] we investigate a scenario where a team of robots must find an odor source as fast as possible.

They have sensors for odor and for the wind direction on board, and can track the odor source by

reasoning about the direction of the wind, and about the possible location of the source. Team work can

lead to finding the source much faster than a single robot could do, but requires effective coordination

among the robots. Modeling the coordination problem as a DCOP and executing a variant of DPOP to

solve it dynamically as the robot teams evolve in the environment can lead to significant improvements

in terms of the time required to find the source, and of the total effort spent by the robots to find the
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source.

A.5 Relationships with author’s own previous work

Parts of this thesis have appeared as preliminary versions in the following publications:

• Optimization algorithms:

1. the DPOP algorithm (Chapter 4) appears in [160]

2. the H-DPOP algorithm (Chapter 5) appears in [114]

3. the MB-DPOP algorithm (Section 6.3) appears in [167]. An early version appears in [156]

4. the O-DPOP algorithm (Section 6.4) appears in [168]

5. the LS-DPOP algorithm (Section 7.1) appears in [163]

6. the A-DPOP algorithm (Section 7.2) appears in [158], and an extended version in [159]

7. the PC-DPOP algorithm (Chapter 8) appears in [169]

8. an improvement to the DBA algorithm [227] using interchangeabilities [77] appears in [155].

Another improvement of DBA consisting in a value-ordering heuristic appears in [157]

• Dynamic Systems:

1. the S-DPOP algorithm (Chapter 9) appears in [165]

2. the RS-DPOP algorithm and solution stability (Chapter 10) appear in [164]

• Self-interested agents:

1. the M-DPOP algorithm (Chapter 11) appears in [171]. An early version appears in [162]

2. the BB-M-DPOP algorithm (Chapter 12) appears in [171, 172]

• Privacy:

1. a secure version of the DPOP algorithm using multiparty computation appears in [196]

2. an efficient, secure version of the DPOP algorithm appears in [69]

• Applications:

1. an application to distributed scheduling of preventative maintenance of generating units in

a power plant appears in [166]

2. applications to distributed meeting scheduling problems are discussed in [160, 161, 168,

171, 169, 167]

3. applications to graph coloring problems are discussed in [160, 161, 169, 167]



250 Appendix

4. applications to sensor networks are discussed in [157, 155, 160, 161, 169, 167]

5. applications to combinatorial auctions are discussed in [114, 69]

6. distributed coordination of robot teams (Section A.4) [97]

7. distributed control (Section A.4) [175]
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http://liawww.epfl.ch/People/apetcu


• co-organizer of the international CSCLP04 workshop: Joint Annual Workshop of
ERCIM/CoLogNet on Constraint Solving and Constraint Logic Programming. The workshop
included 22 papers and had 35 participants.

• co-editor of the Springer LNAI 3419 volume “CSCLP04: Recent Advances in Constraints”

• Reviewing: International Journals: AI Journal, Constraints Journal, Journal of AI Research
(JAIR); International Conferences: CP 2004, IJCAI 2005, IJCAI 2007, AAAI 2007

• Involved in the European project AgentCities (http://www.agentcities.org): deployed a
FIPA-compliant agent-based online banking service as one of the deliverables

• Supervised several students directly (Master thesis and semester projects)

• Teaching assistant for a PhD-level course (Distributed Information Processing: 2003, 2004, 2006)
and one MS-level course (Intelligent Agents 2003)

Courses/seminars
• Entrepreneurial course “Venture Challenge” for creating a startup (by VentureLab.ch)

• Language courses: several series of courses of English, French, German, Italian

• Communication courses organized at EPFL: “Effective Communication”, “Efficient Technical
Presentations”, “Straightforward English for professional writing”

Presentations
• Invited talks: Jan’06 LABOS group at EPFL, Switzerland; June’06 SAP Research Center in

Karlsruhe, Germany; July’06, ECONCS group at Harvard University, Boston, USA

• Oral presentations in these international conferences: IJCAI’03, CSCLP’04, CP’04, IJCAI’05,
AAAI’05, AAMAS’05, WINE’05, AAMAS’06, AAAI’06, ECAI’06, IJCAI’07

• Poster presentations in these international conferences: IJCAI’03, CP’03, CP’04, CP’05,
AAMAS’06, AAAI’06, ASAMAS’06, IJCAI’07

Industrial Experience
• 2000-2002: eQuadriga AG Schweiz—Project Manager, Software Designer, Network Expert

– Project management for a 300000 EUR e-learning project; CRM, project life-cycle,
planning, reporting, monitoring. Coordinating an off-shore team of 70 developers

– High-level design of a multi-user eLearning platform (application and database level);
implementation of small prototypes, integration of various technologies/modules

– Design, deployment and maintenance of the computing infrastructure for a
multi-national organization with several sites around the world, and around 100
employees (servers for mail/web/dns/proxy/samba, conference system, secure file
transfers, multi-site concurrent development center, data-replication and backup)

• 1995-2000: Software-related internships and part-time jobs: Sysco SRL, Pepsi Cola Romania SA,
General Turbo SA, Taxo Verlag Gmbh, Radiotel SA, Canad Systems Plus, Wizrom SA

Computer-related Skills
• Expert knowledge of Linux (Red Hat EL, Fedora, Ubuntu, SuSE), Windows, MacOS, Solaris



• Computer Languages: Java, C, C++, PHP, UNIX Shells, Perl, HTML, LATEX, JSP

• Tools, Systems: Apache, BIND, CVS/RCS, Squid, Samba, SSHD, MySQL, NFS, Postfix

Languages
• Romanian: mother tongue; English: fluent (TOEFL:298/300, GRE verbal: 660/800); French:

fluent (C2 level); German: good (B2+ level); Italian: good; Spanish: basic

Excellent communication skills:
• Fluent in 3 languages, good knowledge of other 3

• Taken a course on “Straightforward English for professional writing” organized at EPFL

• Taken a course on “Effective Communication” organized at EPFL

• Taken a course on “Efficient Technical Presentations” organized at EPFL

• Dozens of presentations/posters in international conferences and workshops

• Customer relations (including support) in an industrial environment for 1.5 years

Varia
• Romanian citizen, married, 2 children

• Swiss permanent residence permit type C

• Hobbies: Skiing, Aikido, Karate Shotokan, Target Shooting
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• Prof. David C. Parkes, Division of Engineering and Applied Science,Harvard University
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Phone: +49 711 6242 436, Fax: +49 711 6242 101, Email: erwin.selg@gft.com

• Eugen Serbanescu, Project Manager, Nortel Networks Romania
Phone: +40-21 327 22 85, Fax: +40-21 327 22 89, Email: eserbanescu@nortel.com



This page intentionally left blank



This page intentionally left blank



This page intentionally left blank


