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Preface

The visualization of human anatomy for diagnostic, therapeutic, and educational pur-
poses has long been a challenge for scientists and artists. In vivo medical imaging
could not be introduced until the discovery of X-rays by Wilhelm Conrad Réntgen
in 1895. With the early medical imaging techniques which are still in use today, the
three-dimensional reality of the human body can only be visualized in two-dimensional
projections or cross-sections. Recently, biomedical engineering and computer science
have begun to offer the potential of producing natural three-dimensional views of the
human anatomy of living subjects.

For a broad application of such technology, many scientific and engineering problems
still have to be solved. In order to stimulate progress, the NATO Advanced Research
Workshop in Travemiinde, West Germany, from June 25 to 29 was organized. It brought
together approximately 50 experts in 3D-medical imaging from all over the world.

Among the list of topics image acquisition was addressed first, since its quality decisively
influences the quality of the 3D-images. For 3D-image generation — in distinction to 2D-
imaging ~ a decision has to be made as to which objects contained in the data set are to
be visualized. Therefore special emphasis was laid on methods of object definition. For
the final visualization of the segmented objects a large variety of visualization algorithms
have been proposed in the past. The meeting assessed these techniques. Their practical
application in medicine depends heavily on the availability of suitable tools for object
manipulation and interaction and the corresponding hardware systems. Therefore these
topics were included as important aspects. Although the meeting was dominated by the

algorithmic and systems aspects, the discussion of their relevance to the applications
was considered indispensible.

We chose to publish the proceedings before the meeting. We are aware of the fact
that new ideas gained following stimulating discussions at the meeting could not be
incorporated into articles of this book. On the other hand the field is developing so
rapidly that a timely publication could only be provided by asking the authors to meet

a deadline prior to the meeting. We are highly indebted to the authors for having
accepted the heavy workload we have put on them.

The workshop would not have been possible without the help of many people in the
Department of Computer Science in Medicine at the University of Hamburg and the
Department of Computer Science at the University of North Carolina at Chapel Hill.
Our special thanks go to Linda Houseman, Michael Bomans, and Andreas Pommert for

their enthusiastic support. And last but not least we thank NATO for providing the
financial basis for this meeting.

Hamburg and Chapel Hill Karl Heinz Hohne
June 1990 Henry Fuchs
Stephen M. Pizer
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Magnetic Resonance Imaging
Wilfried K. Loeffler

Siemens AG, Med
Henkestrasse 127
D-8520 Erlangen, FRG

Abstract

Magnetic Resonance Imaging within the past 10 years has become the primary
medical imaging modality for many neurological and orthopedic applications.
Starting from the basic phenomena of Nuclear Magnetic Resonance, the prin-
ciples of 2D and 3D Magnetic Resonance Imaging are described. As a new and
possibly important future application the basics of Magnetic Resonance Angio-
graphy allowing the display of vascular structures without the use of contrast
agents is being elaborated.

Keywords: Nuclear Magnetic Resonance (NMR) / Magnetic Resonance Imaging
(MRI) / magnetic field / magnetic field gradients / relaxation times / 3D-
Magnetic Resonance Imaging / Bloch Equations / Radio-Frequency (RF)
pulses / Magnetic Resonance Angiography

Introduction

In principle, all fields or particles can be employed for medical imaging, if they
fulfill the three following conditions: First, the fields or particles have to interact
with the body tissue, second, they still have to penetrate the body to a sufficient
degree, and third, a spatial association of the interaction must be possible.
Looking at the electromagnetic spectrum for candidates for medical imaging
only two wavelength ranges allow a sufficient penetration of the human body.
This is, on the one hand, the well known range of ionizing radiation with x-rays,
still being utilized in most medical imaging systems. On the other hand, also
electromagnetic fields with wave lengths above about 20 cm will show a
penetration depth in tissue sufficient for medical imaging use. Unfortunately, the
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spatial resolution required for a meaningful diagnosis must be much higher than
the wavelength limit in this VHF or UHF range would allow. Therefore, other
than quasi-optical means of imaging are required, if this range of electro-
magnetic fields is to be used for medical imaging. Magnetic Resonance Imaging
(MRI) represents such an imaging method.

Nuclear Magnetic Resonance (NMR)

All atomic nuclei with an odd number of neutrons or protons (that is about two
thirds of all stable isotopes) possess an angular momentum or spin. Due to the
electrical charge of the nuclei their spin always is associated with a magnetic
moment. This is usually written as:

u=vyhl

= magnetic moment

gyromagnetic ratio (characteristic for each type of nucleus)
Planck’s constant

= nuclear spin

— R E
I

The interaction of these nuclei with an external magnetic field can be described
by:

w = <u-B>
YRB<I,>

= energy of a nucleus in the magnetic field
magnetic field
component of I parallel to B

&=
1}

Quantum mechanics allow I(I + 1) values of < Iy >:
<Iz>=-1-1I+1,..1I-1,1
For an ensemble of nuclei the relative number of spins in each energetic level

corresponding to a certain value of <Iz> is governed by the Boltzmann
equation:



Nop4o1 _ -
N n
Nn number of nuclei in level n
k = Boltzmann’s constant
T = absolute temperature

As a consequence of the competing thermal and magnetic interaction as
described by the Boltzmann equation, the spins in an external magnetic field
will not be aligned uniformly. A small preponderance of nuclei will be oriented
in the energetically more favorable direction. As a result, a small macroscopic
magnetization can be associated with an ensemble of nuclei in a magnetic field:

N Y2 B2 I (I+1)

M = B
© 3k T
M, = equilibrium magnetization (magnetic moment / volume)
N = number of nuclei / volume

The quantitative description of the motion of the macroscopic magnetization M
does no longer require the use of quantum mechanics; instead classical
mechanics can be employed. Therefore, the macroscopic angular momentum
associated with the magnetization M can be written as:

1

P= — VM
Y

V = volume

In an external magnetic field P will change as a consequence of the magnetic
torque VM x B:

dp
— = V .MxB
dt

Inserting for P leads to the well known Larmor equation which describes the



motion of a magnetization in a magnetic field:

d M
dt

As can be easily verified the solution of the Larmor equation is a type of motion
where the component of M parallel to B remains steady while the component
perpendicular to B rotates at an angular frequency of

w=YB
about the axis of B. This type of motion is known as precession.
This simple equation in fact correctly describes the results of NMR in thin gases.
In condensed matter, however, interactions between the nuclei have to be taken

into account additionally. This can be done by introducing empirical relaxation
factors into the equation of motion

dMX MX
= ’Y[MXB]X"

d t Ty

d M M
Y - ymxBl, - L

d t Ty

d M M, - M
Z - yMxB],+ ———2

d t Tl

This system of equations first has been introduced by Felix Bloch to describe the
results of his early NMR-experiments (1). It has since been termed Bloch’s
equations. The time constant T1 is called longitudinal or Spin-Lattice Relaxation
Time, while T2 is called transverse or Spin-Spin Relaxation Time. The
following is a simple solution for a static magnetic field along the z-direction

B=(0,0,Bo)

and a nuclear magnetization starting perpendicular to B



M(o) = (ML’ 0,0)

Mx = M] e /T2 cos Wot
My = ML eYT2sinwot
M, = Mo (1 - e t/T1)

Wo = YBo

In order to describe the results of experiments in the presence of high frequency
electromagnetic fields it has proven useful to transform the equations of motion
into a coordinate system that rotates with the Larmor Frequency o. This
transformation can be described by:

d M J M
d t ) fixed d t / rotating

Neglecting the relaxation terms for a moment, this leads to the following equa-
tion of motion:

dt rotating eff

with Besf=B+ /Yy

This means that the magnetization in a frame of reference rotating at an angular
frequency of @ will precess about an effective field Beff. The correct choice of
® will dramatically simplify the equations of motion if both a static and high
frequency magnetic field are applied. This can be shown with three simple
examples:



1) Static magnetic field B = (0, 0, By)

A choice of w=-7vBgleadsto

oM
J t

This simply means that the magnetization in the rotating frame of reference
remains static.

2) Inhomogeneous static field B = (0, 0, Bo + AB)
With the same choice of ® this leads to
Beff =AB

Therefore, the magnetization in the rotating frame of reference will precess
slowly at an angular frequency corresponding to the local field offset AB.

3) Static field plus alternating field B = (B1 cos wot, B1 sin wot, By):
With the usual choice of ® this leads to
Beff = (B1,0,0)

Therefore, if an alternating magnetic field with a frequency corresponding
to the Larmor Frequency is applied, the nuclear magnetization in the rotat-
ing frame of reference will precess about the direction of the alternating
field with an angular frequency of

®] = YBp

If B] - as in our example - is perpendicular to Bo, the magnetization in the
rotating frame of reference will be turned away from the direction of the
static field Bo. In the fixed frame of reference this corresponds to a pre-
cession about the axis of Bo with the angle between the static field and the
magnetization changing at the rate of ®].



In most NMR experiments the alternating magnetic field B1 is not applied con-
tinuously but rathed in a pulsed mode. Starting an NMR experiment, for ex-
ample, with an RF-pulse (alternating field in the radio-frequency range) of the
duration

T

At = —
2 Y By

will tilt the magnetization starting from its equilibrium direction parallel to B,
through 90°. An RF-pulse like this, therefore, is termed 90°-pulse. As seen from
the fixed laboratory frame of reference a 90° pulse will tilt the magnetization
into a plane perpendicular to Bo and thus start its precession about the axis of
Bo. Similarly RF-pulses of different duration At or strengths B are termed
according to the angle through which they turn the magnetization in the rotating
frame of reference (e.g. 180° pulse). Figure 1 shows a simple pulsed NMR-ex-
periment. The same coil is employed to generate the excitation field B1 and,
after the RF-transmitter is turned off, to detect the precession of the nuclear
magnetization.

Imaging with Nuclear Magnetic Resonance

In an experiment as shown in Figure 1 the NMR signal received will be a super-
position of signals from all the material inside the test tube within the pick-up
coil. In order to employ this type of measurement for imaging a mechanism
must be found which allows to distinguish contributions to the NMR-signal
coming from spatially different parts of the sample. For this purpose, a simple
trick can be used: If the static magnetic field B is made spatially nonuniform,
the Larmor Frequency or NMR frequency wg will vary correspondingly. There-
fore, contributions to the NMR signal from different regions can be dis-
tinguished by means of a simple frequency analysis. Provided the spatial de-
pendence of the magnetic field strength is known and unambiguous a precise
correlation between the NMR-spectrum and the position in space is possible (2).

The most straight forward correlation between field strength and space (in one
dimension) is represented by a magnetic field the strength of which varies
linearly with one spatial coordinate:
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with

=4
I

x,y,2)
( d B, 3 B, 3 B, )
G
d x , dy d B,
In this case, the magnetic field B can be considered as the superposition of a
homogeneous field with a linear gradient field. In imaging systems usually three
separate coil systems are employed which allow the generation of gradient fields

in the x, y, and z-directions. The Larmor Frequency in an NMR-experiment then
will be spatially dependent with

®

I
<2
w
@]

+
Q
c

®

Il
e
o
+
=2
Q
-

As an example let us consider an NMR-experiment like the one described in
Figure 1 with the x-gradient field of an imaging system activated. After an initial
90° RF-pulse which starts the precession of the magnetization, the resonance fre-
quency will be:

OX,Yy,z) = 0o+YGx ' X
In a frame of reference rotating with the angular frequency wg this simplifies to

(observation in a rotating frame of reference is equivalent with using a phase
sensitive demodulator tuned to wp):

or (x,y,2) = YGx X
The signal contribution from the location (x, y, z) theh can be written as
A (x,y,z)el ot dx dy dz

with A representing the local contribution to the NMR signal as a result of the
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density of nuclei and - depending on the pulsing scheme that is used - also as a
function of the local relaxation parameters T1 and T9. The total signal in the re-
ceiver coil then can be seen as the result of the integration:

S@® = [l A x,y, z) eYGxXt dx dy dz

A Fourier Transform of the received time domain signal yields:

|
8

s (0p) S (t) e ~iort gt

0r
I'a (x= , Yr z) dy dz

X

This represents a projection of the "NMR-density" A of the sample on the axis
of the gradient field x. One way of obtaining three dimensional information of
the sample, therefore, could be to repeat the above experiment for a sufficient
number of different projection directions and then use the well known mathe-
matics for reconstruction of 3D objects from projections (3). Although this idea
has marked the beginning of NMR-imaging in 1973, in the meantime a slightly
different approach has established itself as the standard for 3D-imaging (4).

Figure 2 shows the time course of a 3D-Fourier-Transform NMR-imaging
experiment. The leading RF-pulse starts the precession of the magnetization
within the sample. As will become obvious, the two following gradient field
pulses Gy and Gz imprint a typical spatially dependent phase characteristic on
the magnetization. These pulses, therefore, are called phase encoding gradient
pulses. Finally, the NMR-signal is sampled while a third gradient field in x-
direction is activated. The negative x-gradient lobe in front of the sampling
interval is added only to effectively shift the time domain zero into the middle of
the sampling interval to simplify the time domain Fourier Transform. As a result

of the phase encoding gradient pulses the magnetization will experience a phase
shift
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Figure 2: Nonselective 3D-Fourier-Transform MR-Imaging sequence
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[0} = 'y(Gy.y+GZ~z)At
or [0} = ky~y+kz~z
with  ky = YGy At ky, = vG, - At

The signal contribution from a location (x, y, z) during the sampling interval,
therefore, can be written:

A (x,y, z) eikx X +kz 2) eiy Gx X t dx dy dz

Again the total signal in the receiver coil can be considered the result of the
integration

S(kx, ky, kz) =[] A(x, y, z) eikx X + Ky y + k7 2) dx dy dz
with kx = YGy - t

A three-dimensional Fourier Transform of the NMR signal in the experiment
described, obviously will result in a 3D representation of the "NMR-density"
A(x, y, z). Since only the time domain parameter kx =y- Gy -t can be ade-
quately sampled in a single experiment, the pulse sequence shown in Figure 2
has to be repeated with different settings of the phase encoding gradients Gy and
Gz in order to acquire a sufficient number of samples in k-space. The total data
acquisition time TA required to build up a 3D image matrix of the dimensions
1 x m x n, therefore, is given by:

TA Ixmx TR
TR represents the pulse sequence repetition time. Further it is assumed that in
each of the data sampling periods n samples of kx are taken.

If for reasons of image contrast, a long repetition time TR is required, a variant
of the imaging method described is frequently employed. This method circum-
vents the excessive data acquisition time demanded by a long repetition time TR
in 3D mode if only a limited number of crossectional 2D images are required.
Here the 90° RF-pulse is modified such that only the magnetization within a suf-
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ficiently thin slice is flipped out of its equilibrium state. Therefore, only areas
within such a slice will contribute to the NMR signal received in the pick-up
coil. To achieve this kind of slice selection, a narrow band 90° RF-pulse is
applied while one of the three orthogonal gradient fields is switched on. As a
result, the NMR-frequency will only match the frequency of the RF-pulse in a
narrow spatial band defining the desired slice. Subsequent to the leading slice
selective RF-pulse a gradient pulse sequence similar to the one shown in Figure
2 is used except that phase encoding gradient pulses are employed only in one
direction. In order to build up an m x n 2D image, therefore, only a time

TA = mx TR

is required. For reasons of image contrast, frequently a repetition time TR much
longer than the duration of the pulse sequence shown in Figure 2 is used. In
these cases the excessive waiting time can be employed to acquire information
from other 2D slices parallel to the first one. This 2D multislice mode is used
frequently to acquire up to 20 or 30 parallel slices with moderately long repeti-
tion times TR. A disadvantage compared to true 3D methods is relative smooth
slice profiles and cross-talk between adjacent slices. Still the 2D multislice mode
is the method most frequently used in routine diagnostic imaging.

Magnetic Resonance Angiography

Techniques for magnetic resonance angiography are based on two physical
principles: Inflow and phase effects (5, 6). Inflow effects are due to motion of
spins with a different history into the slice or volume to be investigated. Phase
effects are a consequence of motion of spins along the direction of the field
gradients employed for imaging.

In any imaging sequence the nuclear magnetization is exposed to a large number
of RF-pulses repeated at fixed intervals TR. To shorten the total data acquisition
time, TR is usually chosen to be of the order of or even shorter than T1. There-
fore, the magnetization has not enough time between two successive RF-pulses
to completely reestablish its full equilibrium value. Instead a dynamic equi-
librium - the so-called steady-state magnetization - will be established after the
first couple of RF pulses. For a sequence of a-pulses the value of the steady-
state magnetization can be derived from the Bloch equations
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(1 - e~TrR/T1)
M = M,

1 + (1 - e‘TR/Tl) cos O

As a consequence, the NMR signal available in an imaging sequence, will be
reduced, particularly if short TR values and flip angles o approaching 90° are
being used. This phenomenon has been termed saturation. By using slice or slab
selective RF-pulses or RF-transmitter coils which encompass only parts of the
human body, like the head, for example, it is possible to limit the volume which
shows a reduced steady-state magnetization to the corresponding areas. If blood
flow now moves spins from outside the volume exposed to the RF-pulses into
this area, this unsaturated blood volume possesses the full equilibrium longi-
tudinal magnetization and, therefore, upon entering the area of interest produces
a much stronger signal than stationary spins. This effect has also been termed
“entry slice phenomenon".

The second physical phenomenon employed for MR-angiography, the phase
effect, is a consequence of the phase memory of the magnetization. When travel-
ling along the direction of magnetic field gradients, the spins experience a
motion dependent phase shift. In general, this phase shift will give rise to flow
artifacts frequently seen as repeated parallel "ghosts" of vessels with blood flow.
The physical origin of the flow-related phase shift lies in the fact that moving
spins, as long as a magnetic field gradient is turned on, will experience different
local magnetic fields on their way along the direction of the gradient. A quanti-
tative description of flow-related phase effects can be based on the Larmor
Equation. The phase of the spin system can be written as:

t
| B (x, t’) dt’
(@]

D (t)

I
=2

If x(t) represents the position of the spins along the x-axis, the magnetic field
can be rewritten:

B, t)= Bo+Gx (1) - x (1)

In case of a motion of spins at a constant velocity v this yields
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x(t) = Xo+ V-t
and for the phase
t
@ (t) =y [(Bg + Gy (t’) xg + Gy (t’) vt’) dt’
(o]

The motion dependent phase term, therefore, is represented by:

t
Dy, (t) = yv | Gy (t’) t’ dt’
(o]

This type of integral is also known as the first moment of the gradient wave
form.

Some methods for magnetic resonance angiography make use of this flow-
related phase effect to allow the display of blood vessels. Moreover, the above
relationship allows to quantitate the flow velocity in blood vessels using the
known time dependence of the magnetic field gradients. A problem common to
all of these methods is their sensitivity to the pulsatile flow in arteries. In order
to obtain consistent data it is generally necessary to use cardiac synchronization
for data acquisition. This severely increases the data acquisition times particular-
ly if three-dimensional data are to be obtained.

The problem of pulsatile flow can be overcome by compensating the flow
dependent phase term derived above, for example by the use of additional
negative gradient pulses which allow to reduce or even null the first moment of
the gradient wave form at the time of data acquisition TE:

TE
J

J,, (Tg) = yv Gy (t’) dt’ = 0

)

This equation can be fulfilled with a number of gradient wave forms. A pulse
sequence like this will be called flow compensated along the x-direction. In
general, flow compensation can be employed along the three orthogonal direc-
tions of the gradients used in imaging. These types of pulse sequences allow the
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elimination of flow artifacts without cardiac synchronization. The inflow pheno-
mena described initially can only be used for an enhanced display of blood
vessels if the flow related phase effects for the pulsatile flow in arteries are
completely compensated.

In principle, with this technique for an enhanced display of blood flow, any
vessel segment can be imaged by cutting through the vessel with 2D slice select-
ive sequences perpendicular with regard to the flow direction. With repetitive
increments of the slice position a complete vessel tree can be reconstructed with
appropriate postprocessing techniques. Still, good resolution will require rela-
tively narrow slices with the corresponding loss in signal-to-noise ratio.

Improvement of the spatial resolution without a reduction of the signal-to-noise
can be achieved with 3D techniques. Also here complete phase compensation is
required to avoid flow artifacts in the form of signal loss or ghosting. In order to
increase the signal from flowing blood above that of stationary tissue slab select-
ive RF-pulses perpendicular to the direction of arteries feeding the area of inter-
est are employed. This allows to make optimally use of the inflow enhancement.

For an improved visualization of the three dimensional flow enhanced data one
particular postprocessing technique has proven to be especially useful. Since the
data acquisition techniques described make sure that flowing blood will show a
higher signal than stationary tissue, a simple maximum intensity projection
allows to extract vessel information in projective images like those commonly
used in conventional angiography. A good spatial impression can be achieved by
rapidly showing a sequence of projective images with different projection angles
obtained from a single 3D data set.

Contrary to conventional angiography magnetic resonance angiography is com-
pletely noninvasive and does not require the use of contrast agents. The 3D
technique described above allows a complete examination in about 15 minutes
and, therefore, appears well suited for routine clinical use. A major advantage
over two dimensional projective data acquisition techniques are the postprocess-
ing capabilities which allow a representation of vascular structures at any pro-
jection angle. Clinical studies have shown that pathological conditions such as
stenoses, aneurysms, and arteriovenous malformations can be visualized.
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3D Echography : Status and Perspective
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Abstract

3D echography is still in its infancy but recent preliminary clinical results reveal
exciting potentialities. Echography presents specific characteristics which have to be
exploited when designing a 3D ultrasound system. After reviewing the various schemes
which have been followed to reliably acquire 3D data, the possible exploitation of these
volumic data will be described, insisting on the advantages / limitations of the various
possibilities. Finally, a survey of the still meager clinical investigations will be made.

Keywords : 3D medical imaging, echography, ultrasound

1. Introduction

All medical imaging modalities are able to generate 3D data [Freiherr 1987, Hemmy
1988]. 3D display of CT data is routinely used in some advanced clinical institutions to
evaluate hip displasy or for preoperative surgical planning. Large research and
development efforts are also devoted to propose 3D acquisition and reconstruction
systems for other types of imaging such as MRI and now, ultrasound [Greenleaf 1982].

Echography presents specific characteristics with respect to other imaging modalities.
Its geometrical resolution is clearly poorer than those obtained with CT or MRI
imaging although high-end echographic systems now offer good performances (1 mm is
a typical resolution). An other difficulty is that ultrasound images are corrrupted by a
rather strong texture noise, due to a speckle phenomenon as in the case of coherent
optics, and this impedes the differentiation of weakly contrasted regions [Smith 1983].
Moreover, velocity fluctuations in biological tissues may cause ultrasound ray bending
which distorts the image.

On the advantage side, the image frame rate typically ranges between 10 and 50
images per second, depending on the type of probe and the scanning mode ; this allows
to image moving tissue, in particular the beating heart. As it will be shown later, this
also ensures dan acquisition time for a 3D echography of a few seconds, to be compared
to the several minutes needed in the case of CT or MRI. When the acquisition is
performed with annular arrays [Pini 1987], echography also provides thinner
tomographic slices, which reduces the danger of merging adjacent structures in the
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direction perpendicular to the scan. Let us recall also that echography is a an
innocuous, and relatively inexpensive, technique.

Extending medical ultrasound imaging from 2D to 3D raises problems at several
levels. We will first review different ways to design and optimize the acquisition unit for
getting the most accurate data. Then several methods to exploit these 3D data will be
presented, mentioning also the difficult areas of data segmentation due to the peculiar
characteristics of ultrasenic images. Finally, clinical interest of 3D echography will be
discussed, based on still preliminary clinical studies.

2. The Data Acquisition Problem

2.1 Generalities

Designing a reliable 3D data acquisition system is probably the most crucial step when
extending 2D imaging to 3D since the accuracy of the recorded data will greatly
condition the quality of the final results. That step is also completely imaging modality
dependent and tools to acquire 3D ultrasound data are not at all related to those used
for CT or MRL

Two parameters are especially important when specifying the acquisition system :

- the 3D scanning of the ultrasound beam is to be such that the 3D volume is correctly
sampled ;

- the acquisition time has to be reduced as much as possible to minimize possible
artefacts introduced by natural tissue motion ; even a minor organ motion can lead to

severe misregistrations of the 2D acquired images, blurring then the reconstructed 3D
image.

In addition to these two requests, shaping the ultrasound beam in order that its point
spread function is homogeneous to get a similar geometrical resolution in the three
directions is also important. Some considerations have also to be given to the footprint
of the 3D probe, especially when the body acoustic window has a limited extent (for
heart exams specially).

We will start with the two following characteristics :

- size of the volume to be scanned,
- sampling pitch,

to define the main specifications of a 3D scanner.
Let us consider a very simple type of apparatus, as shown in fig. 1, consisting in fixing a

conventional linear array (the ultrasound beam, always perpendicular to the array front
face, is electronically scanned in the X direction) to a mechanical set-up translating it in
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the Z direction. For a depth of exploration equal to 20 cm, the maximum pulse
repetition frequency is 3.8 kHz, and for a sampling pitch fixed at 1 mm (a rather
conservative specification which is however justified by the resolution performances of
high-end systems), the frame rate is 38 images per second for a 10 cm wide image.
Scanning a volume of 10 cm x 10 cm x 20 cm thus leads to a total acquisition time of
about 3 seconds.

Fig. 1. Principles of a 3D ultrasound scanning system.

These figures have to be adapted, depending on the specific type of scanning and
probes used. The three main classes of 3D probes reported in literature, i.e. hand
controlled scan head, mechanical 3D probe and 2D arrays, will be now described.

2.2 Hand Controlled 3D Scanner

A simple arrangement [Geiser 1982, Nikravesh 1984, Levaillant 1989] consists in fixing
the probe of a conventional real time echographic system at the end of a pantographic
arm, for example a B-scan arm of a manual echographic scanner which was used some
ten years ago for radiological exams (fig. 2). The practician scans the patient and the
spatial position of the probe is indicated by the arm. Note that the scanning plane
orientation is constrained to be perpendicular to the B-scan arm movement. This set-up
can be readily adapted to any commercial echographic system but the volume scanning
is never perfectly regular and strongly depends on the ability of the practician ; this
implies a non even sampling of the space. The scanning requires generally ten seconds,
which can bring artefacts associated to natural or scanning induced tissue motions.

Due to the large volume of data to acquire (a typical 10 seconds acquisition
corresponds to 250 images with a resolution of 512 x512 pixels, which amounts to a
64Mbyte data volume if the pixel is coded on 8 bits), a video recorder is used as an
intermediate storage unit. Synchroneously with the video recording, the position of the
probe is picked up by measuring the voltage of the potentiometer based coders of the
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B-scan arm, digitizing their values and storing the result on an IBM PC. After the
acquisition phase, image and probe position data have then to be transferred to a
computer for off-line processing, the video data on the video tape recorder being first
digitized using a real time video disk .

ECHOGRAPH
signal | D
y.9) video
PROBE signal
position
data trigger signal framtel-
on
i SCAN ARM clear signal ﬁmm-
board
video
VCR v__‘ signal
—1
| VICOM
! AD
L ———— ——————'——-—’
toADC ]
| VAX via ETHERNET
portable PC/AT

+ ADC board & /0

Fig. 2. A simple set-up for 3D echographic data acquisition.

Several investigators [Geiser 1982, Brinkley 1982, Moritz 1983] have also reported
the use of a method based on a direct localization of the transducer through the
acoustic range principle illustrated in fig. 3. An array of three spark gap sources js
attached to the mechanical sector scan head ; spark spurces have been chosen as sound
sources because their size is small, ensuring an adequate localization of the sound
source, and the amplitude of the generated sound is reasonably high. On the other
hand, an array of three hemispherical microphones is mounted over the patient. The
operator holds the transducer and, when the orientation of the plane is to be recorded,
a switch is depressed causing each spark gap source to be activated in turn. Knowing
the sound velocity in air, the position of each spark gap source can be successively
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deduced, with elementary geometry, from the time of arrival of the sound at the three
microphones. Since the orientation and the position of a plane are completly defined
once the location of three of its points is known, the ultrasound scan plane is straightly
deduced from the spark gap array plane. Designing such a system requires some care,
in particular when positioning the microphones : the spark gaps must be within the
range of the microphones and the operator should ensure than the sources have an
unobstructed line of sight to each receiver ; it is also needed to take into account the
air temperature since a 10°C variation results in about a 2 % change in ultrasound
velocity. Reported precision is of the order of 1 mm.

MICROPHONES

SPARK ARRAY

=

SCAN HEAD

POSITION fe—-
LOCATING

SYSTEM

Fig. 3. Direct localization of the transducer probe through an acoustic range principle.

This localization principle is attractive because it offers a maximum of flexibility. The
transducer probe is hand held, as for normal 2D echography, and ultrasound slices with
any orientation of the scan plane can be recorded, their absolute spatial localization
being given by the acoustic range device. However, this flexibility has its drawback
which is that the recorded sections may have completely different orientations ; there is
no mechanism which partly constrains the scanning of the volume as when employing
the previously described B-scan arm based mechanism, or completely controls the
scanning order as explained in the next paragraph for mechanical probes or 2D arrays.
This completely uncontrolled sampling strategy of the volume may possibly lead to
grossly undersampled regions. As in the previous arrangement, images are stored on
videorecorders, while the position of the probes, as deduced from the sound time
arrival on the microphones, is computed and stored on a microcomputer.
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Other approaches can be suggested to position the scan head without direct contact,
using a set of laser diodes with suitably located receptors or filming with one or several
cameras the hand held moving scan head. For example [Watkins 1989], 3D acquisition
of the tongue is performed by painting landmarks on the transducer and the face of the
patient and recording with a TV camera the motion of the hand held tranducer,
synchroneously with the B-scan images .

2.3 Mechanical 3D Probes

Starting from the probe and the type of scanning used in present real time echographic
systems, the idea is to add some computer controlled additional degree of movement to
progressively shift the ultrasound scanning plane for volume exploration. There are
several possibilities at this level, consisting in combining different types of 2D images
(sectorial scanning as in the case of mechanically driven 2D probes, or phased array;
parallel scanning for linear array) with a third direction of scanning. Let us take two
examples.

A 3D acquisition system for the ultrasound diagnosis of breast tumors has been built
[Itoh 1979]. It simply consists in fixing a probe (either a linear array or a mechanical 2D
probe) to a computerized translation unit actuated by a stepping motor : the probe
assembly can be shifted with regular steps over the breast ; a plastic water bag is placed
over the patient’s breast and the probe is immersed in the water bath ; the
experimental arrangement is quite similar to the one sketched out in fig. 1.

ROTOR MOTOR

Fig. 4. A small footprint probe for imaging heart.
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Imaging heart, in vivo, with relatively narrow acoustic windows (because of the ribs
and the gas filled lungs) implies that the 3D probe footprint size has to be small. The
approach followed at the Mayo Clinic [McCann 1988] consists in setting up a
commercial phased array (type of probe mostly used in clinical echocardiography) on a
rotating stage, in such a way the scanned plane can be turned around the phased array
axis as shown in fig. 4 ; a 180° field of view can then be explored to obtain 50 views at
3.6° increments. This type of scanning does not provide an even sampling, since the
areas close to the rotation axis are sampled with a much smaller pitch than those near
the external boundaries of the sectorial images. Recording heart data raises other
issues, since the image acquisition has to be triggered with respect to the natural heart
motion (caused by the heart natural beating and the patient breathing), in order to get
coherent 3D data corresponding to the same position of the heart within the chest. The
trick is to gate the image acquisition at the end of the expiration period, when the
acoustic window size is the largest. The images are then recorded on a video tape
recorder (with the phased array orientation and the ECG), and cardiac gating is then
performed by a manual selection of the frames corresponding to a specific phase of the
heart cycle. Similar arrangements have also been reported by others [Sohn 1989].

2.4 2D Arrays

This is certainly a very attractive way and will likely be the ultimate solution. The
challenge however is formidable. Let us take a phased array-like configuration, adapted
to heart exams. A 1D phased array is made of typically 64 elemental transducers with
dimensions such as 10 mm length and 0.15 mm width. Such a fine pitch for the array is
needed to avoid the presence of grating lobes inducing artefacts on the image ['tHoen
1982, Kino 1987] ; it corresponds to a half-wavelength spacing between elements.

Time Delay Transducer Array Object O
control
T1
LA
T2
12 Ultrasound Pulse
Receiver T3 Direction
Output, T3 *Azimufh
° : - ; e Axi
® ® />( Range  Axis
l. o
Tn-1 /
| Tn-1 Echo Wavefronts
Tn

Tn

Fig. 5. Beam formation for a 1D phased array.
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During the transmission phase, transmission times from the transducers are delayed
to focus and steer the beam in a given direction ; these delays are used to compensate
the different path lengthes between each of the transducers and the point focused on.
During the reception phase (fig. 5), the echoes are dynamically delayed to optimize the
focalisation when the wave is coming back to the array. A complex front-end
electronics controls the transmission/reception of signals to properly steer and focus the

beam. A typical delay accuracy of M8 (» being the ultrasound wavelength) is generally
implemented.

The straightforward extension of this 1D to a 2D phased array would involve the
design of a 64 x 64 arrays (to avoid grating lobes), see fig. 6. Making this type of
transducer raises very serious issues : the geometry of the elemental transducer is to be
such that it generates a unimodal vibration, there must be no cross-coupling between
elements, electrical connection to each of these elements has to be provided
[Pappalardo 1981, Kino 1987]. However, the main issue here remains the design of the
associated front-end electronics which must control in parallel these 4096 elemental
transducers !
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Fig. 6. A 2D phased array.

These characteristics are clearly out of grip with the presently available technology
but the realization of a simpler array is now undertaken at Duke University [Poutton
1988]. It consists in a 16 x 16 (256 elements) 2D phased array for echocardiography.
Although the image quality will not be optimum, this system will allow to explore new
and very exciting potentialities of echocardiography.

There are two possible exploitations of such arrays:



29

- perform a 2D beam formation in transmission and reception to steer the beam in one
particular direction of the 3D space. If the beam former architecture authorizes a full
control of the applied delays, any type of scanning can then be programmed. Some
examples are indicated in the fig. 7 : the 3D space can be explored by a succession of
sectorial images to get a partial or full acquisition of the volume ; this exploration can
be effected by rotating the sectorial plane around the symmetry axis of the array, or by
modifying the azimuth angle of the sectorial plane. Depending on the required frame,
compromise on the data sampling can be useful, going for example towards the

acquisition of two orthogonal views which could provide a first estimation of the heart
ventricle volume.

( biplane )

Fig. 7. Different scanning strategies.

- realize a true real time 3D imaging system which is the option chosen by the Duke
University (fig. 8). The basic principle here is to transmit an unfocused wide beam
which insonifies the whole volume of interest and form in parallel during the reception
phase many focused ultrasound beams for adequately sampling the volume of interest ;
this requires a number of beam formers equal to the one of the ultrasound beams
generated in parallel. They call this concept Explososcan Galloway 1986] and its main
force is that it is imaginable to have a real time 3D imaging which will be extremely
valuable for heart exams (no need to trigger data acquisition, no blurr,...) ; however
there are two problems : i) the system obviously is very complex since it requires the
realization of a series of beam formers ii) there is no focalisation during the
transmission phase, meaning that the geometrical resolution will be poorer than when
using more conventional techniques where some focusing is also done during
transmission.

The projected front-end electronics is to be made of 64 independant beam formers
allowing to generate 9600 separate directions at a 20 cm range in 1/30th second
corresponding typically to 100 sectorial planes made of 96 ultrasound lines ; this is
quite a reasonable spatial sampling pitch of the 3D space and the 1/30th second time
sampling is adequate to freeze the heart when capturing 3D data. To achieve this goal,
an implementation based on dedicated digital integrated circuits is under way, each
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chip containing essentially the circuitry for a complete analog to digital conversion,
programmable digital delay lines and adders (partial beam formation [Poutton 1988]).
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Fig. 8. Parallel beam formers for a 2D phased array.

These specifications in spatial / time sampling lead to a data flow of more than 60
million points per second to transfer, store or process ; this is also a major challenge.

To make easier a practical implementation of 2D arrays, the use of sparse 2D arrays
could be envisaged. Such arrays contain only a limited number of elements with a very
carefully chosen distribution avoiding in particular any periodic arrangement. It is a
well known technique in radar antenna design. Preliminary simulations [Turnbull 1989]
for ultrasounds indicate that the number of elements could be reduced by a factor of 6
while keeping side lobes at a sufficiently low level.

3. Data Set Manipulation

At the end of the acquisition phase, a certain number of tissue slices have been
recorded with information on their spatial localization. A 3D digital scan conversion
has first to be done to obtain a regular 3D sampling .of the volume. Then two modes of
visualization are possible, multiplanar reformatting and solid 3D rendering.

3.1 3D Digital Scan Converter and Preprocessing

In the case of a hand controlled scanning, with a B-scan arm set-up for example, the
scan conversion can be performed as follows (fig. 9) : each pixel of the recorded B-scan
images is mapped on the nearest voxel in the 3D cartesian data set, thanks to the probe
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position derived from the voltage outputs of the B-scan arm. The vertical axis can be
chosen, for instance, as the average of the angles of the B-scans.

VIDEO

ERAMES SCANNING

VA A s .
2 L

PARALLELEPIPEDIC DATA SET
Fig. 9. Transformation of the acquisition data into a regular 3D grid.

As the scanning is irregular, some voxels are oversampled and others are missed.
When several pixels fall in the same voxel, the average of their value is retained
resulting in an efficient speckle smoothing. Missed voxels are filled by linearly
interpolating the two closest non-empty voxels in the transverse direction.

In the case when the scanning is automatic, conventional 3D interpolation, linear or
cubic, which resamples the data at the location of the voxels can be used.

The last step before visualization is to perform appropriate editing of the 3D data to
eliminate overlying structure which might otherwise hide or obscure the object of
interest. Ideally automatic segmentation would be a great help at that level, but the
present performances of these techniques on echographic data (difficult to segment
because of the strong texture pattern) are so poor that the work is most generally done
interactively by the operator.

3.2 Multiplanar Data Reformatting

The present 2D echographic systems provide tissue slices which are roughly
perpendicular to the body wall ; this is a severe limitation. Selecting one or several

views which have a clear anatomical reference would certainly be useful to improve
diagnosis accuracy.
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Starting from the reconstructed cartesian voxel volume, a procedure to extract a
selected plane with a given orientation is easily implemented on a workstation with
human interactive time response. The position and orientation of the plane can be
controlled by using an interactive device such as the mouse of the workstation. To get
the voxel value of the selected section, a tri-linear interpolation from the nearest
neighbour voxels is generally sufficient. In fig. 10 are shown three orthogonal views
(sagittal, lateral, coronal) of the head of a 16 weeks hydrocephalous fetus. Such scans
are impossible to visualize with present echographic systems. Note that, by averaging
parallel planes that generates thick slices, it is also possible to improve the image
contrast at the expense of the out-of-plane resolution.

Other modes of representation such as cutting planes or wedge tools displaying
simultaneously several slices representing the visible faces of the object with their
respective orientation can also be proposed.

3.3 Surface Modelling and Volume Rendering

A direct understanding of a complex 3D structure may be obtained by rotating and
viewing the volume from different angles. A number of techniques, developed first for
computer graphics, have been used to display body images.

Surface modelling. In 3D computerized tomography for imaging bone structures, surface
volume rendering techniques have been extensively employed [Vannier 1983]. The first
step consists in segmenting the data in two classes, those corresponding to soft tissues
and those considered as bones, with an adapted thresholding technique, and then
extract the surface of the bones. This very simple automatic segmentation procedure
works rather well because the contrast between bones and soft tissues is important.
Note that the segmentation step is critical since it must not remove diagnostically
important information or add artefacts. After that, well known computer graphic
techniques, based either on a 1D (wireframe) surface reconstruction or on 2D
primitives (patches), model the boundaries of the objects.

This approach has been used also in 3D echography by several experimentators
mainly to display the surface of heart ventricles or large vessels. Most often the cavities
are segmented manually, isolating for example, in the case of heart, the endocardial
surface. This is a lengthy procedure and developing methods to ease that step is
important. Segmentation by a simple thresholding technique is clearly unsufficiently
reliable. More robust semi-automatic (human expert guided) techniques are a critical
research field and partial answers have been reported.

Volume rendering. Surface modelling is not always applicable to 3D ultrasound images
because the boundaries between soft tissues are often quite fuzzy and somewhat
smoothed out by the ultrasound speckle. Volume rendering algorithms which are
largely employed for representing MRI 3D data are also powerful tools in 3D
echography. These techniques process the volume directly ; there is no need for binary
operation to segment data, making sure that no image information is lost.



33

[

Fig. 10. Coronal (a), lateral (b) and sagittal (c) views of the brain
of a hydrocephalous fetus.
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The simplest technique consists in reprojecting the 3D data : the observer looks at
the 3D volume and the intensity he perceives in a given direction (corresponding to a
specific ray) is a weighted sum of the voxels intercepted by the ray ; to get some depth
cues, voxel values are weighted according to the distance to the observer’s eye,
simulating a medium with a certain attenuation. The so obtained reprojected views,
akin to a radiography of the volume, are much smoother than the original 2D
echographic images because the speckle has been efficiently averaged by the process.
For a good appraisal of the 3D structure, it is important to dynamically change the
viewpoint, for example by continuously rotating the 3D object in front of the observer.

Editing the data volume is to be done before performing the reprojection ; to display
a fetus, it is important to segment the data to cut out the highly reflecting placenta part
which would impede a proper fetus visualization. Some additional processings, prior to
reprojection, to enhance the contrast (3D filter, grey scale optimization) are also very
useful to improve the visibility of specific anatomical features. Breast lesions, shown in
fig. 11, which generally have a lower reflectivity than the surrounding healthy tissue,
can be highlighted through an adaptive contrast reversal algorithm. Yet, details at the
surfaces are hard to discern due to the absence of shading.

More sophisticated volume rendering techniques which involve at the same time
volumic and surface representations are presently under evaluation for 3D echographic
display [Drebin 1988, Levoy 1988]. For ultrasounds, a classification assigns to each
voxel a partial opacity and color according to the local image reflectivity and to a
possible region segmentation. Computation of a local 3D gradient estimates the
amount of surface present and its orientation, relative to an external source of light.
Computation of the 3D gradient magnitude estimates the amount of surface present.
These three informations (color for tissue differentiation, opacity and surface) are
finally combined to obtain the shaded volume, revealing weak boundary details (fig.
12).

4. Preliminary Clinical Evaluation

Although clinical evaluation of 3D echography is still in its infancy, it is worthwhile to
have a brief survey of the clinical experience already acquired, pointing out the the
strength of this new technique with respect to the 2D imaging.

4.1 Breast lesions

A better differentiation between breast adenofibromas and adenocarcinomas has been

reported. Typical fibromas appear like rather regular. volumes presenting well defined
boundaries with normal tissues ; they extend more or less parallel to the breast wall.
Typical adenocarcinomas have a much more intricate structure interfering with the
normal tissue ; their orientation is often rather orthogonal to the breast interface
[Levaillant 1989].
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Fig. 11. Breast lesions : adenofibroma (a) and adenocarcinoma (b).
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4.2 Fetus

- Fetal weight : fetus growth rate is generally estimated by combining a series of fetal
size measurements such as circumferences (skull,...) and length (tibia,...). The reliability
of such estimates are far from satisfactory [McCallum 1979, Brinkley 1984]. Measuring
volume by counting the number of voxels in the area of interest should bring
substantial improvements. More generally, by selecting the right anatomical view, it
allows an exact anatomical measurement of distances, areas and volumes.

- Fetal morphology : a 3D image of a 12 week old fetus is shown in fig. 13 : a
continuous rotation allows to appreciate its general morphology and readily detect
possible abnormalities. Reslicing [Levaillant 1989] gives access to a fine morphological
study of the fetus internal structure.

4.3 3D Echocardiography

Although 3D echocardiography [Matsumoto 1981, Eiho 1981, Samada 1983, Linker
1986, McCann 1987, Pini 1989] raises very difficult issues, it has attracted a lot of
attention simply because 2D echocardiography is presently a major technique, routinely
used to assess heart functions and performances. 2D echocardiography is a non invasive

technique, portable and relatively inexpensive. Two of its features are of special
interest :

- it is a real time imaging modality of the beating heart with a typical frame rate of 25
images per second, allowing to follow the evolution of chambers and stroke volumes,
evaluate the ejection fraction, visualize regional wall motions indicative of possible
infarcted zones, control valve efficiency ;

- blood flow within the heart chambers and the main vessels is readily assessed by
conventional Doppler techniques giving the local blood velocity in selectable areas. The
more recently introduced Color Flow Mapping technique (CFM) is also more and
more routinely used ; such a technique supplies a real time map of the blood velocity
and direction (coded with different hues / brightness) superimposed to the usual grey
scale B-mode image of the soft tissues.

Which benefits can bring a 3D representation ?

2D images are successfully used to evaluate the cardiac function and show a wide
variety of vascular disorders or myocardial disease but it is far from ideal to understand
the 3D morphology of the beating heart and the estimation of the heart cavities (left
ventricle in particular) is far from accurate. Generally volume estimation is derived
from the areas of two cross-sections of the ventricle, modelling it by a crude shape such
as an ellipsoid. The shape of a normal heart ventricle is far more complex, not speaking
of the diseased heart. Deriving the exact volume from 3D echography will certainly
largely improve the accuracy of this important parameter ; validation of this technique,
based on in vitro experiments, has already been reported. The two ways to acquire the
data needed to perform the reconstruction have already been described in the data
acquisition section :
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Fig. 12. 3D representation of a 12 week old fetus by a volume rendering technique.

Fig. 13. 3D representation of a 12 week old fetus by reprojection.
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- use short-axis images obtained by changing the position of the probe on the chest wall
- grasp a series of apical long axis views by rotating the probe around its axis.

Assessing local heart disease should also be made much easier by the 3D
representation. Currently the cardiologist examines each part of the moving heart
muscle in turn, to detect possible abnormalities indicative of ischemy or infarctus.
Greenleaf [1982] has shown that surface modelling techniques provide an accurate
representation of the anatomic structures and that the 3D complete view of the
endocardial surfaces allows a much better appreciation of wall motion abnormalities.
By using a color mapping representation similar to the technique employed for blood
flow imaging, variations of wall thickness during a cardiac cycle can be evaluated.

Volume rendering technique are also considered to be important since they keep the
real backscattering structure of the myocardium in the form of texture patterns and this
type of information is considered to be useful by cardiologists.

5. Conclusion
Potentialities of 3D echography are significant :

- the acquisition time is of the order of a few seconds, which guarantees a high patient
throughput ; '

- reslicing the 3D volume along an arbitrary orientation relaxes the constraint of having
access to tissue slices nearly perpendicular to the body wall. The most significant
orientations at the anatomy level can then be selected ;

- visualizing 3D structures joined to the possibility of making accurate measurements of
distances, areas and volumes provides useful tools to quantify the evolution of lesions
[Dumke 1989].

It also raises issues :

- how to optimize the acquisition process, in particular when the organ is moving (heart
for sure, but also fetus,...) ?

- the interacive data reslicing is now easily implementable on modern workstations. On
the contrary, the volume computation needed to offer realistic volume rendering with
the possibility of rotating the object is not yet feasible with non-dedicated hardware.
However, system designers strive to design graphics systems for interactive volume
display [Robbe 1986, Williams 1988] ;

- a segmentation/editing of the original data must be done prior to the 3D
representation. Most of the time, this task is performed manually, since automatic
segmentation procedures are not sufficiently reliable. This is a very tedious process.

Considering the more and more important research and development effort devoted
to 3D echography, these problems should progressively be solved, making this new
technology transferable into the clinical environment.
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NETWORK REPRESENTATION OF
2-D and 3-D IMAGES

A.C.F.Colchester

Department of Neurology, Guy’s Hospital, London Bridge SE1 9RT

Abstract

Much of the data and knowledge representation in image interpretation needs to be in
the form of networks. We propose that a network representation of the grey level changes
in an image should be constructed as early as possible during bottom-up processing. We
refer to this low level description as the image structure representation. The image is
treated as a continuous surface made up of triangular facets (in 2-D) or as a continuous
volume of tetrahedrons (in 3-D). The image is completely segmented into non-
overlapping slope districts. Each slope district is anchored between one peak and one
pit and (usually) two or more saddle points. Slope districts can easily be grouped in
several ways to form more meaningful entities such as edge support regions, ridges,
convex corners etc.

Keywords: Segmentation, image structure, grey level morphology, edges, connectivity,
symbolic, data representation, knowledge representation.

1. INTRODUCTION
1.1. The Need for a General Purpose Segmentation System

In the past ten years increasing attention has been paid to the value of using domain-
specific knowledge in the analysis of medical images. Such knowledge is employed in two
distinct ways [Ritchings et al 1985]. Firstly, factual knowledge is used in the specification
of models. Secondly, strategy knowledge is used to guide bottom-up processing (including
segmentation) and also top-down processing. With regard to bottom-up processing,
selection of image processing operators using expert knowledge, by the human user if not
by the computer, is usually taken for granted. However, in most image interpretation
domains there is a requirement to be able to describe novel entities which cannot be
matched to any models and which must be extracted during the segmentation process
even if no prior knowledge of their probable size, shape, position, contrast etc is available.
Therefore, even in a restricted domain such as the interpretation of magnetic resonance
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images of the brain, it is important that segmentation operators allow the compilation of
general descriptions of salient features as well as domain-tuned descriptions of features
which are candidates for matching to specific models.

The approach we have taken to segmentation at Guy’s Hospital can best be
understood in the context of the data and knowledge representation schemes used in the
computer vision system which we are developing.

1.2. Data and Knowledge Representation Schemes for an Intelligent Vision System

There are three major sets of representations: image, model, and current patient
representations. Each set consists of multiple subdivisions. The standard data structure
for each representation is a semantic network. Most links in the networks imply spatial
relations, particularly (1) connectivity or adjacency, or (2) a part hierarchy.

The model representations are of several types. The present discussion is restricted
to factual knowledge rather than strategy knowledge. Factual knowledge is organised into
topics such as "brain anatomy", "CT numbers", "conventional radiographic projections" etc.
This is efficient for summarising general principles that enable the knowledge to be used
in a variety of contexts, but the corollary is that the representations will usually have to
be modified to incorporate constraints that make model matching feasible in a particular
context. These modifications constitute top -down processing.

There are several image representations at different levels of abstraction. The lowest
level consists of the input image where the primary index for each entity (pixel) is its
position. At the highest level a symbolic representation refers to entities composed of
linked entities from lower levels. For example, a high level entity might refer to a
structure occupying a large part of the image, formed by linking together several edge
sections and several regions contained in its interior. The image representations are
initially constructed by bottom-up processing. They form an increasingly refined image
description. Entities in the higher level descriptions may be formed by universal rules
which extract salient features in any context. In addition, entities may be formed by the
application of domain-specific rules which tune the bottom-up processes so that features
which are likely to match model entities are sought in the image. A subset of such image
entities is used to seek initial matches with certain model entities; these entities are
referred to as cues.

The current patient representations are constructed from three types of entity which
already exist in the image and/or the model representations. Firstly, there are entities
which exist in both the image and the model representations and have been linked to
each other. Secondly, there are model entities which are not matched to any specific
image entity but whose presence in the current patient is implied by other entities for
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which there is direct evidence in the current image. Thirdly, there are salient features
which exist in the image but have not been matched to any model entities.

1.3 Network Data Structures

Higher level, symbolic representations refer to entities that may occur at arbitrary
locations and take the form of a network. The management of transformations (bottom-
up and top-down) between these high level representations of irregularly spaced entities
and low level arrays of regularly sampled pixel intensities is hindered by the fundamental
difference in their data structures. During bottom-up processing, we argue that the
transformation to a network data structure which makes key spatial relations explicit but
is not dependent on regular sample spacing should be carried out as early as possible.
Nevertheless, the earliest such representation must provide a detailed description of grey
level changes if loss of potentially important information is to be avoided. Thus, our aim
is to construct a symbolic but low level description which avoids premature interpretation.
Subsequent transformations of the image representations all involve fundamentally similar
processes and data structures. Furthermore, these data structures are the same type as
those used in all but the lowest level of model and current patient representations.

1.4. Formation of Districts where Changes of Grey Level are Uniform

Our initial approach to the construction of a symbolic, low level description of image
structure was developed in collaboration with Tim Ritchings and Nehal Kodikara at the
University of Manchester Institute of Science and Technology [Colchester et al 1990a,b].
Edge support regions were constructed from maximum gradient profiles (MGPs). MGPs
are polylines linking pixels along lines of maximum grey level gradient in the image.

The approach of Burns et al [1986] for constructing districts by identifying areas of
uniform grey change in their interior had some similarities to ours. They grouped local
gradient values into straight edge support regions without creating an intermediate
representation. In contrast, we first constructed MGPs from local gradient values, and
then grouped the MGPs into edge support regions. This allowed us to form regions
supporting modestly curving as well as straight edges. Both methods were developed for
the identification of high gradient areas of the image and involved the use of a threshold
which is a potential disadvantage.

Several conclusions can be drawn from these approaches. Edges can be successfully
treated as regions of high and/or consistent slope. Defining a region in which there is a
boundary may be as important as defining the correct linear locus of the boundary. It is
clear that in some domains, including quantitative angiography, the accurate localisation
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of boundaries requires the use of special operators which depend on domain knowledge.
Yet many aspects of processing do not depend on accurate localisation of boundaries. For
example, even if boundary localisation has not been refined, successful identification of
vessels is possible, and accurate centre line localisation may be possible because of the
symmetry of the boundary regions.

1.5. Gradient Thresholds and Plateaus

In the method described in section 1.4, we used a local gradient threshold (calculated
from the current image data) below which pixels were not grouped into MGPs. Pixels
where the gradient was less than this were ignored. This was appropriate for the images
under examination, where the larger vessels were reliably identified. However, in some
parts of the image, MGPs constructed from low gradient areas still corresponded to
significant features. Furthermore, following Marr’s principle of least commitment [1976],
we wished to define districts of coherent grey level change which would help to establish
a low level image description rather than a - possibly premature - image interpretation.
Such a general description should include low gradient as well as high gradient districts.
Some districts might during subsequent processing be identified as due to noise but would
be merged together in a multi-scale hierarchy. Others could be used as a component of
a structural texture classification. Only selected districts would be treated as edge
components. Areas of zero gradient, i.e. plateaus, would merely be extreme cases of the
general type of district.

1.6. Defining Districts from their Boundaries

To define a general type of district, it was necessary to establish a consistent criterion for
the boundaries. Singular points such as local maxima and minima would be important
anchor points on ridges and troughs which would form the upper and lower boundaries.
Appropriate criteria for the sides of a district were not as easy to identify. Continuing to
draw on the analogy with a terrain surface, we explored the use of watersheds and
watercourses to define district boundaries.

More than a hundred years ago, Maxwell [1870] proposed decomposing a landscape
into "natural districts" consisting of a dual representation of hills and dales, and more
recently this has been applied to water surfaces [Longuet-Higgens, 1960]. Hills and dales
correspond to parabolic sectors in mathematical topology. A hill is the set of points from
which maximum uphill paths lead to one particular peak, and a dale is the set of points
from which maximum downhill paths lead to one particular pit. Maxwell also showed that
these regions can be defined by their boundaries in terms of maximum uphill and
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downhill paths emanating from saddle points and terminating at peaks and pits
respectively. These uphill paths correspond to watersheds and the downhill paths
correspond to watercourses. Hills are bounded by watercourses, enclosing one peak, and
dales are bounded by watersheds, enclosing one pit.

~ Thus, hills and dales can be
V/O\V A/O\A represented by separate

é A graphs whose nodes are sin-

\ \ gular points, and whose direc-

AV4 \V4 A A ted arcs are watersheds or
\<)/ \O/ watercourses. In this paper

Figure 1. A hill graph Figure 2. A dale graph peaks are shown as a, pits as

v, and saddles as hexagons.
Arrows point downhill. Maximum uphill paths are shown by solid lines and maximum
downhill paths by dashed lines.

Figures 1 and 2 show a hill and a dale diagrammatically. A watershed separates two
districts both of whose maximum uphill paths reach the same peak, and whose maximum
downhill paths terminate at two different pits. Likewise a watercourse separates two
districts both of whose maximum downhill paths terminate at the same pit, and whose
maximum uphill paths terminate at two different peaks.

It is possible to construct a unified representatfon which incorporates both watersheds
and watercourses [Rosin et al 1990]. Within the basic district, in general all maximum
uphill paths lead to one particular peak, and all maximum downhill paths lead to one
particular pit. These regions usually have boundaries formed by connecting singular points
as follows: saddle point 1 - peak - saddle point 2 - pit - saddle point 1. The interiors of
each district would in principle contain sets of maximum gradient profiles running
approximately parallel to each other, but by defining the sides of a district in relation to
saddle points, only the MGPs linking the saddle points to peaks and pits would actually
need to be constructed.

2. METHOD: 2-D SEGMENTATION
2.1. Construction of the Basic Representation of Image Structure

2.1.1. Data Structures and Representation of the Image as a Connectivity Network. Input
data points in general can be specified with arbitrary sample spacing in x & y and an
intensity or z value which is treated as a point height. Near neighbour data points are
linked to form triangles using Delaunay triangulation. With this method of triangulation,
the circumcircle of each triangle does not enclose any other data points. This is one way
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of producing triangles which are as regular as possible. We treat images as continuous
surfaces. That is, the triangles are treated explicitly as inclined planes. At any point on
one of these planes, height values are the linearly interpolated intensity values between
the three neighbouring sample points.

Where data points form a symmetric pattern such as a square or hexagon, a procedure
for choosing between the alternative, equally good triangulations must be established.
Many implementations choose one triangulation arbitrarily. We avoid this problem by
interpolating a new data point at the centre of any symmetric pattern. Our normal input
image data of course form a symmetric set of points where four adjacent pixel-centres
form the corners of a square. A grey value is linearly interpolated in the middle of each
square which is thus always split into four triangles. The discrete input image can now be
considered as a continuous surface made up of triangular planes whose vertices consist
of two original pixel values and one interpolated point.

2.1.2. Classification of 2-D Data Points. The first stage of processing of the surface
representation involves finding the singular points. For every pixel and interpolated point
we compare its grey value with the grey value of each of its neighbours in rotation. Peaks
and pits are pixels that are greater or smaller respectively than their neighbours. The
interpolated points can never be local maxima or minima. Saddles are either pixels or
interpolated points where the gradient changes from uphill to downhill or vice versa four
or more times when the point is compared with each neighbour in rotation.

2.1.3. Construction of 2-D Maximum Gradient Profiles between Singular Points. From
every saddle, MGPs are formed by tracking the maximum uphill paths to peaks, and
maximum downhill paths to pits. The paths are not constrained to run along the borders
of the triangles but are allowed to cross their interior (figure 3).

2.1.4. Construction of 2-D Slope Districts. Districts are formed by connecting MGPs in
sequence so that they enclose an area which is not crossed by any other path. Starting
from an arbitrary path, the sequence of forming the district to its right hand side is as
follows. Points at the beginning and end of the path are listed in the path’s data
structure. The data structure for the singular point at the end of the path is inspected.
The next path to which this point is connected in anticlockwise rotation is linked to the
district’s boundary list. The data structure of the point at the far end of this latest path
is next inspected, and the next path is connected in the same way. This process is
repeated until the singular point at the end of a linked path is the same as the singular
point at the beginning of the first path.
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Figure 3. Diagram of a portion of an image showing the grey values at pixels (integers) and interpolated

points (decimals), triangular planes with their directions of maximum gradient, singular points, and
maximum gradient paths.

Figure 3 shows a small portion of an image which has been processed. The pixels and
interpolated points are shown connected to form triangular planes. In each triangle an
arrow shows the direction of maximum downhill gradient (quantized to sixteen directions
in the display, but calculated and stored with a higher precision). The peaks, pits, and
saddles are marked by a, v, and hexagons respectively, the maximum uphill paths by
continuous lines, and the maximum downhill paths by dashed lines.

2.1.5. Zero Gradient Paths and Plateaus. The above rules do not cover groups of points
with zero gradient. If groups of contiguous points have the same value they are grouped
to form either lines or areas of zero gradient. A plateau is considered as one entity, and
its neighbours are checked by tracking round the region’s perimeter. If a plateau region
satisfies the appropriate conditions, it will be treated as a peak, pit, or saddle in the same
way as if it were a point. A saddle is defined as a point or flat region with four or more
sign changes of gradient when tracking round the perimeter. The number of sign changes
is always even within the image but not on its borders. Since pixels and interpolated
points within the image have eight and four-way connectivity respectively, they are
restricted to a maximum of four and eight sign changes. Plateau regions, however, will be
connected to more points, and so the larger a region, the more sign changes of gradient
round its perimeter are possible. All maximum uphill and downhill paths between sign
changes are generated, and regions are formed as before.

2.1.6. District Attributes. A set of attributes is calculated for each district. The attributes
allow the districts to be combined in various ways by the grouping rules described below.
Currently these attributes are: the XY centroid; average grey-level value; the grey-level

difference from peak to pit; gradient magnitude; and gradient direction. For ease of
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computation, the following approximations are made: the average grey-level value is taken
as the average of the peak and pit values, the gradient direction is taken as the direction
from the peak to pit, and the gradient magnitude is taken as the grey-level difference
from peak to pit divided by the distance from the peak to pit.

The segmentation of the complete image into districts forms the basic representation
of image structure.

2.2. District Grouping

In most application areas it is to be expected that the slope districts in the low level
representation of image structure outlined above would usually require further processing
to construct candidates for matching to model entities. During the initial phase of
bottom-up processing, the basic operation consists of grouping near neighbour districts
if they share certain characteristics. We employ two types of grouping process which must
be clearly distinguished. The first is a general grouping process which may be based on
any district attribute. For example, if districts have a similar mean gradient direction, they
may be linked to form a longer hillside section or edge component, or if they have a
similar within- district variance of gradient magnitude they might be linked to form a
region of similar texture. The second is a specialised grouping process which is equivalent
to a type of adaptive smoothing. It is used to create our multi-scale representation. In
this case, the only district attribute used is the grey value and position of its centroid. The
two types of grouping are contrasted in the table.

COMPARISON OF DIFFERENT TYPES OF DISTRICT GROUPING PROCESS USED
DURING INITIAL BOTTOM-UP PROCESSING

General Grouping Grouping for Multi-Scale

Representation

Criteria for Defining the
Candidate Set of Districts for
Possible Grouping

Near neighbours defined by
districts having boundaries

Near neighbour defined by
Delaunay triangle links

touching at least at a point between centroids of districts

Criteria for Grouping Districts

Any type of intra-district att-
ribute and any type of
between-district relationship

Centroids of districts treated
as new input data points

Type of Region Formed by
Grouping Districts

Any type. Regions may
correspond to entities of
Marr’s primal sketch

Coarser scale slope district
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General Grouping According to Gradient Direction. One of the most important attributes
of a district for general grouping is the direction of maximum gradient. We have experi-
mented with grouping neighbouring districts using this attribute alone. Pairs of regions
are classified into three major categories: straight hillsides, and convex and concave
sections. Region pairs are classed as straight hillside sections if the angle between the
directions of maximum gradient is <45°. If the directions of maximum gradient diverge
by more than 45° the regions form a convex section. Convex sections are classified as a
ridge if the directions of maximum gradient diverge by 135° to 180°. If they diverge by 45°
to 135° then their classification lies between a ridge and a straight hillside and they can
either be thought of as a steeply ascending ridge, i.e. a buttress, or a sharply bending

hillside or convex corner. If the directions of maximum gradient converge by more than
45° the adjacent regions form a concave section or gully. Concave sections are classified
as a trough if they converge by 135° to 180°. If they converge by 45° to 135° then their
classification lies between a trough and a straight hillside, and they can either be thought

of as a steeply descending trough, i.e. a gully, or a sharply bending hillside or concave
corner.

3. WORKED EXAMPLES: 2-D SEGMENTATION
3.1. Synthetic Image to Show one Hill overlapping one Dale

Figure 4 shows an enlarged synthetic image generated to demonstrate our segmentation.
When plotted as a 3D landscape it can readily be seen to contain within its interior three
peaks, three pits, and four saddles (figure S). The direction of maximum gradient within
each of the original triangle planes is shown by an arrow. The peaks, pits, and saddles are
marked as before. The peak right of centre is the summit of a hill whose borders are
delineated by the four watercourses passing through the pits and saddles around the peak.

Figure 4. Synthetic 12x8 pixel image Figure 5. Synthetic image plotted as a 3D
landscape
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Overlapping the hill is a dale, centred on the pit left of the centre, and delineated by the
four surrounding watersheds. Notice that the local gradients radiate out from the peak
and converge at the pit (figure 6).
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Figure 6. Image structure representation showing Figure 7. Convex and concave district groups.

singular points, MGPs and districts.

The results after general grouping using only the district attribute of mean gradient
direction are shown in figure 7. In the following figures where region boundaries have
been classified as described above, districts which form straight hillside borders are
separated by thin lines. Ridges and convex corners are denoted by thick continuous and
dashed lines respectively, and troughs and concave corners by mid-thickness continuous
and dashed lines respectively. Figure 7 shows that the three borders between regions
within the interior of the hill are convex, and those within the dale are concave. The
convex border point at ten o’clock (the thick continuous line) is a ridge while the other
two convex borders are buttresses. Likewise, the concave borders are separated into one
trough and two gullies.

3.2. MRI Image

The segmentation and grouping algorithms were also tested on a sagittal MRI slice of the
head shown in figure 8, with the region of interest shown enlarged in figure 9. There are
many features that we would like to identify. On this image the brain substance is pale
and the surrounding cerebrospinal fluid dark.

The convoluted cauliflower-like pale regions correspond to gyri or folds of brain grey
matter on the cortical surface. The dark channels between the gyri correspond to sulci
(spaces between the brain folds). Figure 10 shows the calculated location of the singular
points and the regions that were formed. It can be seen that the bright patches contain
clusters of peaks and saddles, while the dark patches contain pits and saddles. The regions
enclose areas of continuously increasing intensity lying between the bright and dark
patches at either end, and are bordered by concave or convex folds at each side. Figure
11 shows the classification of adjacent districts. There is a good correspondence with the
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Figure 8. MRI brain image. Sagittal slice near Figure 9. MRI region of interest showing the
midline visual cortex.

anatomical features. The major ridges follow the centre of the gyri, the major troughs
follow the sulci, and the straight hillsides or edge sections correspond to the sides of the
gyri. '

3.3. Image Detail to Illustrate the Effect of Warping.
The next example shows the effects of warping an image. Isotropic transformations of the

XY plane have no effect, while non-isotropic scaling or more general rubber sheet trans-
formations usually alter only a small proportion of region boundaries since the singular
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points and hillsides remain intact (although deformed). This is advantageous if the X and
Y axes are incommensurate, as in parametric images for example. Since a non-isotropic
transformation will alter the surface patch gradients unevenly, segmentation is not
identical. At any point the direction of the maximum gradient path may be altered,
causing different boundary paths to be followed. Figure 12 shows the original image and
figure 13 shows it after it has been stretched (and resampled) along the X axis. Many
corresponding paths have ideéntical connectivity, either following an identical (stretched)
path or deviating slightly along the way before being pulled back on course. For a few the
connectivity is altered.

Figure 12. Image detail before Figure 13. Image detail after stretching
stretching

When treating a 2-D grey-scale image as a 3-D surface the spatial and intensity
dimensions are incommensurate. That is, there is no relationship between the spatial and
intensity dimensions. The regions defined are not affected since the segmentation is
unchanged under any monotonic grey-level transformations of the image.

The segmentation is fairly robust. Slight perturbations usually only cause small
quantitative changes. However, depending on its topology, certain points on a surface may
be unstable. An example is a point at which a maximum gradient path forks into two
paths of unequal but similar gradient. A small change may be sufficient to make the less
steep path the steeper, diverting the maximum gradient path, causing a different set of
regions to be formed in the neighbourhood. However, these local instabilities are not
likely to have much effect on the mean attributes of the district, and are even less likely
to affect the grouping of districts when larger, more meaningful entities are formed.

The hillside sections correspond to edges for which basic attributes of mean gradient,
direction, and amplitude are immediately available. Hillside sections could be selected on
the basis of these attributes and subjected to conventional edge detectors, polynomial
surface fits, or other algebraic operations if required for specific applications. The same

is true for more complex topographical elements such as corners, ridges, hills, etc.
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4. EXTENSION OF 2-D IMAGE STRUCTURE ANALYSIS TO 3-D

The principles of our approach to 2-D image structure analysis extend naturally to higher
dimensions and are discussed in this section.

4.1. Construction of links between neighbouring 3-D data points. Where 3-D data sets are
input without explicit links to define the neighbourhood set for each point, 3-D Delaunay
triangulation is used to define these links. The entire 3-D volume is thus composed of
tetrahedrons. Input data sets with existing links forming tetrahedrons can be accepted
even if these links do not strictly join the nearest neighbours.

4.2. Classification of 3-D points. For every 3-D point a "neighbourhood polyhedron"
whose apices are formed by the point’s neighbourhood point set is analysed. The initial
3-D point lies in the interior of the polyhedron and the links between the initial point and
the neighbourhood point set divide the polyhedron into a set of tetrahedrons. The outer
triangular faces of the polyhedron form a continuous surface, a 2-D manifold in 3-space.
This surface is referred to as the neighbourhood surface. Figures 14 to 17 show examples
of neighbourhood polyhedrons. To assist comprehension, an icosahedron has been used
as an example. Irregular polyhedra with non-equilateral triangular facets can be analysed
in the same manner.

The intensity gradient
between the initial point
and its neighbouring
points is calculated as the
ratio of the difference in
intensity and the length
of the link in 3-space.
Each gradient value can
be considered as an
attribute of the
neighbouring points on
the neighbourhood
surface. Gradient values
can now be interpolated
within the triangular
facets of the
neighbourhood surface so
that all points on the
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neighbourhood surface can be given a gradient value. Figure 14 shows a view of a
neighbourhood polyhedron (an icosahedron) as if split open so that part of the inner and
outer surfaces can be seen. The point in the centre of the polyhedron, which is the initial
point whose neighbourhood is given by the polyhedron, is not shown. In figures 15 to 17,
the split polyhedra have been opened out further so that almost all the interior can be
seen.

The analogy of terrain height is again applied in describing the geometry of the types
of gradient distributions that may be encountered on the neighbourhood surface.
However, it should be recalled that in the present context terrain height represents first
derivative values and not absolute intensity values. All areas of positive gradient (where
the neighbouring point has a higher intensity value than the initial point) can be regarded
as lying above sea level and are shown as pale shades on the diagrams. All areas of
negative gradient can be regarded as lying below sea level and are shown as dark shades.
The shore line thus represents the zero crossing of the gradients on the neighbourhood
surface. On the same intensity scale this would be a mid grey shade, but to highlight the
zero values they are shown as pale lines.

A neighbourhood surface which has all zero gradients means that the points all form
part of a zero gradient district in 3-space. A neighbourhood surface which has all positive
or all negative gradients (all land or all sea) means that the initial point is a local
minimum or local maximum respectively. The commonest type of point has a
neighbourhood surface with a single island surrounded by sea as in figure 15, or a single
sea surrounded by land which covers the rest of the surface. This surface type thus has
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a single continuous zero crossing path (shoreline). Points with such neighbourhood
surfaces lie within a 3-D slope district.

More complex surfaces all indicate different types of 3-D saddle. The essential
characteristic of a 3-D saddle is that there is more than one continuous zero crossing path
on its neighbourhood surface. Two islands surrounded by a continuous sea (figure 16),

or two seas surrounded by continuous land, form the simplest type of 3-D saddle. As in
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the 2-D domain, the number of points in the neighbourhood point set (polyhedron) limits
the possible complexity of the saddle. The most complex saddle which can be formed by
a 20-facet neighbourhood polyhedron has three separate zero crossing paths (figures 14
& 17). Rare points with a large neighbourhood set can form a saddle with several islands
and/or seas.

4.3. Construction of 3-D MGPs. As in the 2-D case, each saddle point seeds maximum
gradient profiles which are grown in 3-space via the highest point of each island on its
neighbourhood surface (maximum uphill paths) till they reach a local maximum image
intensity, and from the deepest point of each sea (maximum downhill paths) till they
reach a local image intensity minimum.

4.4 Construction of 3-D slope districts. The basic concept of a 3-D slope district is that
following a line of maximum uphill gradient from any point within it will lead to the
specific local maximum of the district, and following a line of maximum downhill gradient
will lead to its local minimum. In 3-D, multiple adjacent saddle points exist which can be
linked to form a polyline running along the locus of contact of four or more adjacent 3-D
slope districts. From these saddle points, multiple MGPs are generated forming a
maximum gradient surface. On one side of a maximum uphill surface, travelling downhill
would lead to one local minimum. From the other side of this maximum uphill gradient
surface, travelling downhill would lead to a different local minimum. In the same way,
on one side of a maximum downhill surface, travelling uphill would lead to one local
maximum. From the other side of this maximum downhill gradient surface, travelling
uphill would lead to a different local maximum.

5. DISCUSSION

Like Pizer and co-workers at the University of North Carolina (see for example Nackman
1984), we use the analogy between an image data set and a 3-D surface terrain map to
describe image structure. Many other authors have applied this analogy both in computer
vision and other domains. It is useful because significant topographical features such as
peaks, ridges, and hillsides are likely to correspond to'significant features in the data sets
of the problem domain. Example data types include image, range, demographic, and
economic trend data, as well as actual terrain data. In image analysis this approach has
been used for a variety of purposes such as stereo matching [Pong et al 1989], 3-D shape
estimation [Pong et al 1985], image approximation [Hsu et al 1978], segmentation [Lee
and Fu 1980; Besl and Jain 1986}, texture analysis [Ehrich and Foith 1978], edge detection
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[Ehrich and Foith 1978; Colchester et al 1990a,b], and estimation of centre-lines of ribbon
like-structures such as images of blood vessels [Colchester et al 1990a,b].

There are important consequences of representing surfaces as a connectivity network.
Disadvantages include the need to transform standard image data structures at the very
start of processing, and the inability to execute conventional image processing procedures.
However, we believe that the disadvantages are outweighed by significant advantages.
Much real world data is inherently irregularly sampled. This is easily handled in a
connectivity representation. 3-D image data sets are usually acquired as multiple slices
with different resolution in different dimensions. A 3-D connectivity network
representation, constructed from 2-D representations by linking adjacent points in
adjacent slices, is fundamentally the same regardless of slice separation. Scale can be
represented very simply in network representations as a part hierarchy which makes
explicit the connections between coarse and fine entities. Network representations
provide a direct route for communication with computer aided design and vector graphics
procedures. Insertions or deletions can easily be handled as local operations in the data
structure. This is relevant for the handling of artefacts in sensor data, such as missing
sample points, as well as the more general issue of user interaction and editing. Higher
level, symbolic representations are usually already in the form of a semantic network.
Thus, communication between feature-based representations (high level) and image
intensity-based representations (low level) is simplified.

6. CONCLUSIONS

Our low level representation of images provides an accurate description of images at fine
detail by well defined regions that can be easily and robustly generated. The segmentation
is unaffected by monotonic grey-level transformations, and is insensitive to rubber sheet
transformations of the spatial co-ordinates. The data structure is a connectivity network.
The nodes of the network are slope districts. The links between the districts code
adjacency. Each node also has pointers to the components from which it was constructed
and these form a part hierarchy. We refer to this representation as image structure. It
is the lowest level of symbolic representation, and provides a framework to simplify the
interaction between bottom-up and top-down processes. Using simple region grouping
rules we have shown the usefulness of the representation in the construction of more
complex elements like those in the primal sketch.
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Abstract

Segmentation and analysis of 2-D and 3-D CT and MR data sets is illustrated
on examples covering renal function studies in MR time sequences, discrimi-
nation of brain matter in multispectral 3-D MRI, extraction of brain tumor by
structure segmentation methods, and model guided analysis of hip-joint and
pelvic anatomy. It is argued in favor of a tightly integrated analysis sequence
which exploits the characteristics of the original measurements and all avail-
able anatomic information. Knowledge-based analysis has produced some pre-
liminary results but must be considered still in its infancy. Novel ideas for
describing and representing natural structures in conjunction with AI tools are
needed for generally applicable analysis methods.

Keywords: medical image processing, nonlinear smoothing, classification,
edge detection, grouping, structure segmentation, computer vision, signal-to-
symbols paradigm, knowledge-based interpretation

1. Introduction

Computer-assisted analysis of multidimensional medical images - according to
established practice - is specified by the sequence: data-acquisition, data-pro-
cessing, segmentation, and model-guided interpretation, where the implicit
assumption is made that the steps in this analysis-chain may be regarded as dis-
tinct modules executing in a strict hierarchy and, in essence, without feedback.
This embodies the famous "from-signals-to-symbols" (SS) paradigm which has
had its decisive and eminently productive influence on computer vision
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research and which has only recently come under critical scrutiny partly in
favor of a more integrated, monolithic approach [Fischler 1987].

Applying the SS paradigm to multidimensional images in medicine has led to
spectacular results such as 3-D visualizations of segmented structures like brain
or blood vessels displayed within the outer anatomy. Some inherent drawbacks
have also become apparent, perhaps best exemplified by the legal arguments
raised against 'post-processing' of the 'original' data. Although the physical
measurements have to be processed in any case to transform them into useable
images and the data-format is never changed in what is normally called post-
processing, a logical distinction is introduced which may, however, be
regarded as largely arbitrary. The discussion about a change of paradigms in
computer-vision and the technical limitations will not bring about an immedi-
ate and complete revision of current strategies but it should teach us not to
overestimate the beautiful and spectacular static and animated 3-D renditions
of anatomical structures which have been such a success with research oriented
physicians and medical equipment manufacturers. In terms of clinical potential
and achievement, computer-assisted analysis of medical imagery will have to
be examined with care to indicate where the traditional approach is bringing
significant progress and where a judicious combination and integration of
methods appears particularly promising.

In assessing segmentation and analysis of multidimensional image data in
medicine we want to demonstrate results which can be obtained by transcribing
established computer-vision methods from the normal 2-D domain to higher
dimensions and we will discuss some initial results in support of an integrated
approach. The order of presentation is arranged according to the following
objectives of medical image analysis: quantitation by interactive and automated
measurements and minimizing tedium by partly automated analysis of large
amounts of similar data, data-processing and improved statistical classification,
determination of structure and function, integration with other data and
descriptive features. The central and important goal of stimulating intuition of
medical researchers and practitioners and of facilitating communication
between them will not be addressed specifically since it appears more a princi-
pal topic of display oriented research and implementation. The paper con-
cludes with a discussion of the present status and an attempt at identifying nec-
essary and, hopefully, promising analysis strategies for the future.
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2. Quantitating Multidimensional Measurements and Exploiting
Bulk Data

The technical support offered by modern work-stations makes quantitative
interactive measurements on 2-D images a trivial but generally tedious affair.
Delineation of features in data-sets with three spatial dimensions requires real-
istic rendering schemes in conjunction with special interaction devices which
are under technical development and should become widely available in a few
years. In summary, completely interactive segmentation as with a surgical
knife followed by readout and further analysis of the data within the defined
region(s) may be considered as technically demanding tasks for which working
solutions will be developed. Most efforts pertaining to surgical planning and its
technical implementation can also be put into this context.

Automated and partly automated measurements require functionally correct
and efficient segmentation procedures. The reliability of present segmentation
methods must, in general, be treated with reserve as discussed in section 4. A
notable exception is given by function studies on time series of 2-D images. In
this case, segmentation can be made very reliable by automatically extracting
discontinuities in the data and interactively selecting those features which
delineate the desired anatomical structures. Elastic pattern matching techniques
allow to retrieve these from one time frame to the next and to put them into
one-to-one correspondence. Great savings in operator time result, in particular
for extended time series, since interactive intervention is required on one time
frame only. The approach and the steps involved are representative for recent
advances in image analysis and are explained in greater detail.

2.1 Semiautomated Analysis of Extended 2-D Time Sequences

Time series of medical image data are used either when studying the move-
ment of an anatomical structure (beating heart) or the dynamic behavior of the
signal in specific areas within anatomical parts with the aim of extracting
functional information. In Nuclear Medicine this is done by injecting tracers
and assessing the temporal change of radioactivity within regions-of-interest
(ROIs) from the recorded scintigrams.



66

In order to analyze localized regions a one-to-one correspondence between
them must be given or must be constructed for the overall acquisition time.
This prerequisite is uncritical in Nuclear Medicine because of poor spatial
resolution but is hard to fulfill when high resolution methods such as MRI are
to be exploited. In MRI, large scale function studies involving the use of con-
trast agents have been performed on kidneys to quantitate regional glomerular
filtration. The target spatial resolution of ROIs was defined by the different
functional parts of the renal anatomy. Due to the considerable movement and
rotation of the kidneys between image frames the ROIs have to be realigned,
either by redrawing them tediously in every frame or by developing and
resorting to robust and efficient techniques for automatic recognition and
geometric correction of kidney positions throughout the different sequences of
more than 100 frames each.

The proposed image analysis processing scheme consists of a multi step
feed-forward system containing essential elements of the classical SS paradigm
and schematically described in Fig 1.

[Input: Original MRI time sequence|
1

lContour map: Feature extractionl

1
rCompletion: Model-guided groupingl

!

{Object recognition: Search for evident boundary curvesl

!

D/Iotion compensation: Geometrical warp of images}

!

|Output: Registered sequence of imagesl

Fig 1: Processing scheme for high resolution renal function studies from extended time
series of 2-D Magnetic Resonance Images

The processing scheme is motivated by the observations that the most
important cues to image structures are normally given in the form of edges
and contours but that edge detection techniques will supply fragmented and
spurious contours. Grouping and selection thus becomes mandatory for object
recognition. The geometrical distortion of the kidney structures represents a
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purely technical step to establish the desiréd one-to-one correspondence in the
form of registered images making subsequent compilation of function curves
over highly resolved ROIs a trivial task.

A look at a typical MR image (Fig 2a) reveals that large parts of the left and
right kidneys are outlined by conspicuous valleys in image intensity. Well-
known edge detectors [Haralick 1984, Canny 1986] in their standard line-
detection variants will find all significant contour elements in the image
meaning that far more than the kidney boundary shows up and that it is not
delineated by a continuous line (Fig 2b). Although this lack of selectivity and
completeness is a generally accepted part of the SS strategy which aims at first
detecting all edges in a low-level process in order to group and do something
useful with them in subsequent (intermediate-level) steps, it is exactly these
non-elementary processes which are still largely missing in computer vision.

In the present case, grouping of edge primitives can be performed by a
robust model-guided procedure. A valid model of the kidney contours is
obtained by tracing it interactively or, alternatively, by selecting and linking
contour-elements in one edge image (Fig 2c). Grouping of contour primitives
in all edge images of the long time sequence is then performed by a general-

ized Hough strategy which links image-space and accumulator (=Hough) space
[Gerig 1987].

The central idea of augmented Hough technique is to use the transform for
finding elements which belong to a particular pattern (template matching)
while retaining the exact spatial distribution of the contributing elements in
image-space. Relative maxima in Hough space are regarded as representative
of most evident groupings and are extracted without ambiguity by directed but
exhaustive search driven by a second Hough transform which removes all
irrelevant counts from the accumulator generated in the first transform. A
pointer structure is generated which links the surviving nonzero accumulator
cells with the elements of the various incarnations of partially represented
patterns in image space. Discrimination between equally evident patterns with
differently represented contour (e.g. 50% evident, long dashes-long gaps vs.
hemi-contour or arrays of dots with different degrees of uniformity) thus
becomes possible.
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Fig 2: Detection of kidneys in MR images:
a : original, b: extracted edge-elements, c: left and right templates (= models),
d: original and corrected left kidney with overlayed template

The grouping and recognition strategy provided by the augmented Hough
transform in its simplest form immediately yields the transform parameters
for left and right kidneys in the sequence assuming rigid body motion.
Differential contour deformation can also be treated by using a more elaborate
kidney model than the initial rigid template [Morgue 1988]. The quality of the
geometric correction is illustrated in Fig 2d and resulting function curves
obtained on small areas of the renal cortex and renal medulla are shown in Fig
3.

The contour extraction, grouping, and organ recognition in the renal func-
tion studies represents an example of successful and complete segmentation and
illustrates the spirit of the signals-to-symbols paradigm of computer-vision.
Success is due to the efficient grouping strategy provided by the augmented
Hough transform and the stratagem of interactively procuring a simple,
explicit, and essentially rigid model of the structure under investigation. The
grouping strategy will remain viable as long as similarly simple template-type
model scan be used but it is not at all obvious how such models could be
obtained if image sequences are not available. For reasons of computational
complexity and memory requirements, the Hough transform is restricted to
images with two spatial dimensions on present hardware while edge, or rather,
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surface extraction has been transcribed to 3-D (Section 4). The task of compil-
ing functional information on renal glomeral filtration was solved completely.
This should not conceal the fact that structural information had to be provided
externally as ROIs were defined interactively. Other analysis tasks will demand
structural answers in addition to segmentation, and again combining methods
appears hold most promise.

relative signal intensity

renal cortex

+

i

renal medulla

T T — T T —

— T v T v
0 100 200 300 400 500 t(s]

Fig 3: Signal intensities (with standard deviations) in renal cortex(top) and renal medulla
(bottom) as a function of time (t=0: end of contrast agent injection)

3. Data Processing and Statistical Pattern Recognition

Statistical Pattern Recognition, although a standard method with an elaborate
mathematical basis and of widespread use in image analysis applications such as
remote sensing, has so far played a minor role in the analysis of multidimen-
sional medical data. The notable exception of course is the simple two category
classification problem of bone soft-tissue discrimination in CT images treated
by elementary windowing or thresholding techniques.

With the advent of multi-echo MRI data interest in statistical methods has
been revived. The pronounced noise-sensitivity of pixel- or voxel-based clas-
sification methods, however, leads to unattractive results on vector-valued MR
measurements acquired under patient-compatible conditions. Since spatial
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relationships are disregarded in pointwise classification, additional methods
have to be applied to derive a minimum of structural information.

Segmentation of MRI data into anatomically and functionally distinct regions
calls for a multistage processing scheme. For dual-echo head images a scheme
requiring minimal user interaction (Fig 4) has been defined [Gerig 1989] and
applied to a substantial number of cases.

Input: multiecho MR volume data

!
Il: 3D edge preserving smoothing]

|

[2: supervised multispectral classiﬁcationl

1
I3: 3D morphological postprocessingl

!

14: 3D connected component labelingl

!

[5: interactive assignment of anatomical meanings]

1
Output: segmented data

Fig 4: Polystage segmentation of multi-echo multidimensional MR data

In the proposed segmentation scheme, human interaction is only necessary in
stages 2 and 5. Training areas of distinct categories must be defined to apply
supervised classification techniques and simple assignment have to be made as
to the anatomical meaning of connected entities resulting from the labeling in
stage 4. Thus, the brain is given by the structure containing the largest number
of connected voxels while the ventricular system must be chosen from a num-
ber of liquid structures.

Basic anatomical knowledge yields simple spatial constraints on the 3-D dis-
tribution of gray and white brain matter and on the ventricular system, the
structures which are to be determined in the analysis. The different categories
form highly diverse but connected, directly adjacent and clearly distinguish-
able entities. The result of statistical classification should reflect this property
in the best possible way. It will not do so, however, when applied to the im
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Fig 5: discontinuity preserving smoothing of dual-echo MR images, top: smoothed images,
bottom: original images, Signal intensities along one scan-line (white) are shown as bar
diagrams (white overlay)

mediate data with their high noise component, inevitable if patient-friendly
short acquisition times are to be used.

Noise suppression has been a basic issue in image processing since its
beginnings and a host of linear as well as non-linear techniques have been pro-
posed. Linear smoothing as preparatory step to pointwise classification is of
little value as edges and fine details are blurred and shifted from their true
locations and accidental transition zones are generated disagreeing with the
postulate of having distinct but directly abutting anatomical and functional
regions. A number of discontinuity preserving non-linear smoothing methods
have been proposed, the most effective of which appears to be an iterative
scheme based on the multidimensional anisotropic diffusion equation where the
diffusion coefficient depends on the spatial coordinates and the number of
iterations (=time) [Perona 1987]. Every image element in a new iteration
results from a weighted superposition of neighboring elements in the previous
iteration. The weights are given by an exponential dependence with the nega-
tive (scaled) modulus of the image gradient forming the space (and time)
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dependent exponent. The rapid exponential decrease of the diffusion coeffi-
cient in function of increasing gradient leads to the superb behavior of
anisotropic diffusion and distinguishes it from older and simpler gradient
inverse smoothing schemes [Wang 1981]. The algorithm is easily implemented
for any number of spatial dimensions and can be made to run very fast [Gerig
1990]. Anisotropically smoothed MR images show considerable noise suppres-
sion while retaining the relevant structural features (Fig 5).

The acquisition of multi-echo MR measurements results in enhanced sensi-
tivity and discriminatory power, as different parameter combinations are
available to characterize soft tissue and liquid containing structures. Applying
multispectral pattern classification techniques becomes a natural choice under
these circumstances, also with regard to the ready availability of such methods.
The image data have to fulfill basic assumptions: they must be radiometrically
homogeneous over their full spatial extent and different tissue categories must
have characteristic signatures in feature space. Our experience with a large
number of dual-echo MR studies clearly indicates that these conditions are sat-

isfied. A typical feature plane and the result of classification are shown in Fig
6.

Fig 6: statistical classification: left: 2D feature space, right: classification result (white-,
gray-matter, liquid (dark))

The display of classification results often detracts from the fact that each
individual data element gets its category assigned without any regard to its
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neighbors. Human observers immediately reconstruct structural properties
from the classified images which are, however, not represented in the data at
this stage of processing. Important structural measures for segmentation
should also be made available quantitatively such as topological and space fill-
ing properties of the classified data elements. An efficient means to procure
this information is connected component labeling where we use the normal
convention of defining object-connectivity in the 8-neigborhood sense in 2-D
and in the 26-neighborhood sense in 3-D.

Once the connected components are known it becomes a trivial matter to
assign anatomical meanings, either interactively or by simple arguments such
as: ventricular system = liquid structure, completely surrounded by other
material. The minimum on spatial information introduced by connected com-
ponent labeling also allows to remove incorrectly classified spurious detail
such as visible as fine disconnected outer rim encircling the brain tissue in Fig
6. The final segmentation results show all of the anatomical features expected
from textbooks but they are still obviously deficient in terms of highly
resolved structures, in particular on the ventricular system (Fig 7). Less con-
spicuous segmentation errors may exist but can only be inferred by a skilled
observer with sufficient medical training.

Fig 7: Visualization of segmentation results by statistical classification and morphological
postprocessing. top: brain surface, bottom: ventricular system and eyes
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Segmentation of dual-echo 3-D MR images of the human head by a combi-
nation of data-smoothing, supervised statistical classification, connected com-
ponent labeling, and interactive assignment of anatomical meaning has yielded
consistent results which are presently being compiled into an experimental data
base in order to investigate the tissue characterization power of multispectral
MRI. The choice of methods may be considered heuristic and tailored to a
very special application. It illustrates, however, the strategy of exploiting the
original measurements by extracting their information content with optimally
suited procedures and presenting the results to the user in an easily under-
standable manner.

The processing chain can be regarded as a prototype of tight integration
covering the whole range from data acquisition to final evaluation. It has
delivered results which, although still in the research phase, appear of practical
medical relevance. The extraction and visualization of the ventricular system
of the brain is seen to give valuable contributions to the diagnosis of different
types of hydrocephalus (e.g. occlusive vs. non-occlusive). Provided particular
regions in the brain do reflect the early morphological neuropathologic
changes of Alzheimer type dementia, then the characteristics of tissue atrophy
within local regions of interest will have to be analyzed and automatic segmen-
tation of the brain is a first step towards its detailed description. Finally, MRI
represents a diagnostic tool that allows to investigate the morphological
changes caused by local inflammations of white matter, which is of special
importance for multiple sclerosis cases. It is planned to detect and describe
such temporal changes by comparing MR data acquired at different dates.

4. Structure Segmentation Techniques

Segmentation techniques have a central position in the SS paradigm of com-
puter vision and immense research effort has been invested into them. Two
complementary directions can be distinguished: structure segmentation by dis-
continuity detection or segmentation from homogeneity criteria. The first ap-
proach has led to an arsenal of edge detection procedures while the second is

characterized by relaxation and region growing techniques and texture analy-
sis.
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In reviewing structure segmentation techniques, we will restrict attention to
edge and surface detection procedures since they far outnumber homogeneity
based techniques and since they are increasingly used in general computer
vision applications and in medical image analysis. In a comprehensive defini-
tion which we will adopt, segmentation is accompanied by a change of data
format, i.e. a first symbolic description should be obtained in result of the
segmentation process.

The common approach to localizing edges in images is to associate edges
with the zero-crossings of the second derivative of a smoothed version of the
image. A principal difference is given by electing to use rotationally invariant
or directional derivatives and technical differences are defined by the choice of
smoothing function. An excellent survey of the early days of edge detection
and image understanding is given by Brady [Brady 1981] while a number of
articles supplying detailed mathematical investigations and consolidating
approaches have appeared over the last years [Haralick 1984, Canny 1986,
Torre 1986, Yuille 1986, Bertero 1988, Clark 1989].

The edge detection scheme of particular prominence is the so called
Laplacian-of-Gauss (LOG) or, in its popular approximation, Difference-of-
Gauss (DOG) also known as Mexican hat operator. Edges are here defined by
zeros in the (rotationally invariant) Laplacian derivative of the image
smoothed in a regularizing manner by convolution with an isotropic Gaussian.
The LOG edge detector is trivial to implement in 2-D and 3-D explaining part
of its popularity. In addition, it has the great attraction of yielding zeros which
are either closed or terminate on the boundary of the image. This property
makes segmentation a seemingly trivial task since the image is directly parti-
tioned into regions.

LOG surface extraction on 3-D MR images of a human head yields natural
looking segmented brain structures [Kiibler 1987] but mathematical investiga-
tions [Torre 1986, Clark 1989] and further experimental evidence have estab-
lished that LOG edges are incorrectly localized and may be spurious.
Comparative segmentation of a brain tumor (acousticus neurinoma) by LOG
surface extraction and region filling methods reveals significant differences
(color plate I).
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A look at the kidney study illustrates how incorrect and misleading,
although highly convenient, closed edges can be. The kidney outlines (=model
curves) can impossibly be closed if anatomy is respected. The organ is more of
an abstract than of a disjoint physical entity and segmentation methods without
semantic information will not be able to describe it adequately.

Edge and surface detection methods with correct localization are available
[Haralick 1984, Canny 1986]. They will produce edge elements where there is
sufficient evidence in the data but the resulting fragments have to be grouped
posing another - in general - unsolved problem. Considerable effort has gone
into the definition of grouping strategies, with moderate success. The most
recent proposal combines a particularly effective implementation of 3-D edge
detection with a closing strategy and shows first results on MRI data [Monga
1990].

Structure segmentation techniques have been investigated in depth in the
computer vision literature. Mathematical theorems have been supplied for
conjectures made at earlier and many open issues have been cleared up.
Practical applicability of these methods, however, is still very limited and
becomes successful only in conjunction with grouping and interpretation
strategies. Simple segmentation techniques have led to attractive visual results
in the display of 3-D MRI data but, at present, quantitative analysis should
make extremely careful and critical use of such methods.

5. Prospects of knowledge-based analysis

Representation of anatomical and physiological knowledge and means to
incorporate it the interpretation process appear absolutely essential for the
future of computer supported analysis of medical images and for the utilization
and management of medical information. Image information must be con-
densed into a symbolic description in order to be combined with clinical
information and to be organized in data bases for easy retrieval and use in
comparative and long term studies.

Abstraction, representation and modelling of spatial structures has been
introduced in the area of robotics and has resulted in considerable success.
Robotics applications can profit from the great simplification of dealing with a
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structured environment consisting of technical objects many of which already
exist in the form of CAD-models. Good strategies for general knowledge-
based interpretation of multidimensional medical data sets appear much harder
to define, given the enormous diversity of anatomical structures, in particular
when soft tissue is involved, and the preliminary and deficient state of gener-
ally applicable structure segmentation methods. A reasonable approach to gain
experience with knowledge based techniques for the interpretation of anatomi-
cal structures appears to start with structures of reduced complexity and seg-
mentable images. In practice, this means dealing with skeletal anatomy in CT
data-sets, defining and implementing tool, and endeavoring to expand them
gradually and systematically into a comprehensive system.

We present first results obtained on identifying and selectively manipulating
bones of the hip joint in the case a fractured pelvis and on determining the
amount of dislocation in the case of a slipped capital femural epiphesis. The
segmentation procedure adopted consisted in image binarization, connected
component labeling, and simple model-guided object refinement. Information
abstraction and representation of the geometry were used to analyse and
quantitate the amount of slippage of the epiphesis.

The volume elements belonging to the bony objects are available from the
segmentation process and their connectivity is known. Region filling algo-
rithms allow to fill the interior parts of bones if required. In both cases under
study, one hip joint had suffered abnormal changes such that pelvic and femur
bones were not recognized as separate entities at normal CT resolution. By
modeling the femur head as a hemisphere and fitting it to the data the bones
could be separated (color plate IT). Knowing the identity of the different bones
facilitates visual assessment of the fractured pelvis as the crack running
through the joint can now be seen in its full extension.

The dislocation of the capital femural epiphesis was quantified by determin-
ing the femur axis and putting it into relation with the center of the hemispher-
ical epiphesis. The bone axis is derived by 3-D medial axis transformation and
subsequent straight line fit. The axis together with the hemisphere yields the
correct position of the femur and allow to determine the three components of
the angular misorientation needed for a correcting wedge removal osteosyn-
thesis.
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The present cases must be regarded as extremely preliminary examples of a
vast and complex area of research in which progress is mandatory if analysis
of medical images with substantial computer support is to have a bright future.
We advocate working on the skeletal anatomy and temporarily using CT data
to define initial tools for model-guided analysis since the complexity and
geometry of the scene appears realistic but manageable and segmentation of
bony structures is successful. There is an abundance of suggestions for the rep-
resentation of natural shape but implementations are preliminary or seem to be
lacking and no cogent evidence has been produced to prefer one over the
other. Interpretation strategies and Al tools for multidimensional data in
medicine clearly are still in their infancy and need all the support and effort
they can get.

6. Conclusion

Advanced imaging methods increasingly enable researchers in medicine,
biology, and other areas of science and technology to acquire true 3-D infor-
mation in the form of densely sampled contiguous volume elements (voxels).
Understanding voxel data necessitates effective tools to display, manipulate,
enhance, and analyse the underlying structures while retaining their full
dimensionality.

Manipulating 3-D structures on the display-station is an area of very active
technical development requiring, however, that the 3-D data sets and the indi-
vidual structures be segmented into their constituent parts. Part of this task can
be done automatically but a certain amount of interactivity remains which can
be facilitated by preprocessing and image enhancement techniques virtually all
of which are direct transcriptions of well known 2-D procedures.

Analysis and automated segmentation of 3-D data sets can proceed only in
part according to traditional signal processing and computer vision paradigms.
The objective of extracting edges, surfaces, and texture properties and of
combining them for a structural and functional description is made difficult by
non-unique contrast assignments, different scales of useful resolution and
complicated geometries. Automated scene interpretation is still in its infancy
due to the general lack of knowledge-bases for medical and biological objects



79

and the absence of explicit rules governing their composition, appearance, and
functional behavior. Substantial efforts aim at filling this gap and to apply
symbolic reasoning and structural pattern recognition methods.

Succes has been obtained for simple structures where a priori-knowledge
could be incorporated into the segmentation process in the form of geometrical
constraints and data structures could be defined and used. The scope of these
preliminary methods is limited, however, and immense research effort is
needed to produce generally useful analysis methods.
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Color Plate I: 3-D segmentation of acousticus neurinoma: a.original MR image, b 3-D
structure of tumor, ¢: LOG segmentation, d: region growing segmentation,
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Color Plate II: Structure-segmentation and model-assisted analysis of CT images

a: Example of the segmentation procedure to extract hip and femur in a set of CT slices.
Planar sections of original data are shown in top half and corresponding segmentation results
in bottom half.

b: Illustration of a quantitative procedure to determine and simulate the surgical correction of
a slipped capital femoral epiphysis. Points of the geometric medial axis of the bony
structures are shown (in cross section) in top half, straight line fit to femur axis and
hemispherical fit (including center) to captial epiphesis are shown in lower half. Notice the
good and poor alignment in the healthy and afflicted joints.

c: Shaded surface views of a hip fracture. Hip with femur in:its original position are shown
in top half; femur is extracted after segmentation and pelvi¢ bone is shown in isolation in
bottom half
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Abstract

We present a method of object definition designed to allow fast interactive
definition of object regions in 2D and 3D image data by a human user based on
an automatically computed image description of sensible image regions. The
image description is a quasi-hierarchy of ridges (or courses) and subridges (or
subcourses) in the intensity surface corresponding to the image. Two methods
of ridge computation are presented, one based on the intensity axis of
symmetry and another based on flow lines in the intensity surface. A system for
interactive object definition using this approach is described, and the use of this
approach on a variety of medical images is evaluated. Generalizations of these
descriptions and the interactive object definition tool to 3D are discussed.

Keywords: Segmentation, 3D display, object definition, multiscale, geometry.

1. Introduction

The most time-consuming step of methods involving general volume
visualization is that of selecting regions within the 3D image data that
correspond to the objects to be visualized. For example, in 3D scalar ("grey-
scale”) medical images the display of all but objects appearing at the highest
contrast typically requires hours of hand selection, slice by slice, of regions
enclosing the objects before the elegant rendering methods can be applied to the
resulting regions to produce good visualizations of the organs or other
anatomic objects of interest. For the so-called volume rendering methods the
region selected does not need to fit closely to the surface of the object of
interest but may include the object and part of its background, as long as that
background does not include other objects that after rendering will occlude the
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object of interest. For surface rendering, and also for the purposes of object
measurement, the surface of the region indeed needs to follow the surface of
the object. However, given the surface of the former type, the active contours
method of Kass et al [1987] can be used to find the actual object surface with
little user interaction. As a result this paper focuses on methods to determine
the more loosely fitting region just described.

The definition of an object depends on both properties inherent in the
image data and properties of the scene. The properties of the image data give
geometric information about region structure (syntax) but do not use our
knowledge of possible scenes (semantics). We suggest that both the early
human visual system and a computer can derive the syntactic region structure
by using geometric analysis, but while the human cognitive system also knows
how to bring knowledge of possible scenes to bear, given the regions produced
from the syntactic analysis, it is not very well known how to make computers
do this. However, for the regions to be useful for rendering, they must be
known not simply by the human but by the computer. We are thus led to design
a method whereby we attempt to have the computer derive the syntactically
defined regions and let these serve as a means of communication between the
human and the computer such that the user interactively and quickly can specify
to the computer semantically correct regions from the syntactically defined
ones.

This paper is therefore divided into section 2 on how to produce an
image description in the form of a graph of sensible regions and section 3 on an
interactive method for producing a meaningful region based on the image
description.

2. Image Description by Multiscale Geometry

We suggest that if the image is viewed as an intensity surface, where height
corresponds to image intensity (see figure 1), then shape properties of this
surface will determine the region definitions. Humans seem to use ridges of
intensities as organizing features for light objects on dark backgrounds, or
courses for dark objects on light backgrounds. In keeping with its being a good
model for human vision, ridge/course analysis is largely insensitive to rotations
of the co-ordinate system, spatial scaling, and monotonic transformations of
intensity and involves a focus on curvature, orientation, and two-sidedness. In
this paper we will focus on regions lighter than their background, but all of the
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ideas will apply to the problem of finding regions darker than their
background. The relation between these two sets of regions is also of interest if
we are trying to imitate human visual behavior but is beyond the scope of this
paper.

Fig. 1. MRI brain image and corresponding intensity surface

The fact that analysis into ridges may provide a reasonable model of
human visual segmentation is relevant for 2D images but not necessarily for 3D
images. Nevertheless, the effectiveness of this analysis for 2D images has led us
to investigate its usefulness for 3D images. For each form of ridge analysis we
will discuss first the ideas as applied to 2D images and then their generalization
to 3D.

Ridges are structures with a ridge top and flanks falling to a course
separating this ridge's flank from that of the next. The ridge top is defined by
curvature properties of the surface there. Ridges have a multiscale structure, in
the sense that small ridges may fall on the flank of or branch from larger
ridges. For 2D (see figure 2), a) a ridge may fork into two ridges, and b) these
two may rejoin, so that the pair surround an indentation with a course and even
possibly a pit at its bottom. Furthermore, c,d) one ridge may appear on the
flank of another. Finally, e) a ridge can begin on the flank of one ridge and end
on the flank of another. The result is that the intensity surface forms a graph of
ridges, with the directed arcs deriving from the child ridge being on the flank
of or branching from the parent ridge. The fact that a ridge may fork and
rejoin or connect two or more other ridge flanks mean that a single ridge can
have more than one parent.
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Fig. 2. Ridge types: a) ridge fork, b) ridge fork and rejoining, ¢) monotonic
ridge on flank of another ridge, d) nonmonotonic ridge on flank of another
ridge, e) ridge connecting two other ridges.

It follows that an analysis of an intensity surface into ridges must have a
multiscale, geometric flavor such that ridge regions are identified and
parent/child relations are generated among these ridge regions. Two different
strategies suggest themselves. In the first, the quasi-hierarchical structure of
ridges and subridges is captured by a quasi-tree of connected geometric
elements with each element corresponding to a ridge, and the elements are
followed to annihilation into other elements under increase in scale (blurring)
of the image. The ridge corresponding to an annihilating element is then taken
as the child of the ridge corresponding to the element into which the
annihilation took place. In the second strategy the ridges (with their flanks) are
analyzed directly via geometric properties, and the ridge/subridge relationship
follows from the geometric properties of one ridge's flank containing the other
ridge. Sections 2.1 and 2.2 explore these respective strategies.

2.1. Connected Structures with Annihilation

2.1.1. The Intensity Axis of Symmetry

We suggest that a basic property of "ridgeness" is symmetry, so that for each
point on one flank of a ridge there is another point on the other flank to which
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it has some sort of symmetry relation. Symmetry is an important visual
property -- regions are seen as two sided, i.e., ridge flanks are visually grouped
to form the objects that we see. An analysis in terms of this symmetry should
thus generate regions and hierarchical relationships that provide a natural
medium for human and computer communication for segmentation.

As a result we define an intensity axis of symmetry (IAS). This axis,
made of a forest of branching or looping sheets, fits under the ridges midway
between the two symmetric flanks of the ridge. In order to avoid sensitivity to
any monotonic transformation of intensity and also to avoid the
incommensurability of intensity and space, the image (intensity surface) must
be considered as a one-parameter family of slices in the intensity dimension,
with the IAS made by stacking axes of symmetry defined for each slice. Thus,
the IAS is the one-parameter family of medial axes of the intersections of the
intensity surface with a series of slicing surfaces (see figure 3).

For now we have been slicing at isointensity levels, so that each axis of
symmetry in the family is the medial axis of a level curve of intensity, even
though this slicing focuses too greatly on intensity levels and too little on local
image structure. The present IAS has the advantage that there is a 1-1 relation
between each branch and a ridge top as defined by the locus of maxima of
positive curvature of intensity level curves (these loci are called vertex curves)
[Gauch, 1988a, 1989]. However, it has the disadvantage that it is too directly
tied to absolute intensity and ridge flanks go down only to the higher of the two
courses bounding a ridge, so future consideration of slicing strategy is
indicated.

As illustrated in figure 3, associated with each point on the IAS are
(normally) two points in the image where the maximal disk centered at the IAS
point is tangent to a level curve at its intensity. The basic sheets that are the
leaves in the IAS quasi-tree thus have associated with them a set of image points
that are taken as the primitive regions of the image.

2.1.2. Generating the Ridge/Subridge Relationships

Associated with a monotonic ridge on the flank of another ridge (its parent),
then, is a branch of the IAS that grows from the IAS sheet lying under the
parent ridge. If the child ridgetop branches from the parent ridgetop, the IAS
child branch also begins at the top of the IAS sheet of the parent (see figure
4a); otherwise from the middle of the parent sheet (see figure 4b). A splitting
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Fig. 3. The IAS as a one parameter family of slice axes of symmetry.

a) Level curves of a simple image; b) Level curves on intensity surface, their
medial axes, and selected maximal disks; c) Level curves on intensity surface,
and IAS; d) Image region associated with an IAS branch.

and merging of the ridgetop results in a scoop in the IAS sheettop (see figure
4c), and a ridge connecting two other ridges corresponds to an IAS sheet
connecting two other sheets (see figure 4d). The IAS under a nonmonotonic
subridge forms a loop on the parent IAS sheet; at the intensity of the loop
bottom the parent sheet tears (see figure 4e). More complicated forms arise if
pits appear in inter-ridge valleys. In any case, we have the important
relationship that although ridgetops may not form a connected structure, the
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corresponding IAS sheets do form a connected structure reflecting the subridge
on ridge flank or ridge branching relationships. Because a given subridge may
be on the flank of or branch from more than one other ridge, a given ridge
may be the child of more than one parent.

a) branch b) branch be- ¢) scoop in d) connecting e) loop & tear be-
at sheet-top low sheet-top sheet-top sheets low sheet-top

Fig. 4. IAS branchings

Region analysis thus involves computing a graph in which each node
corresponds to a ridge, i.e. what we are taking to define sensible, coherent
regions. The arcs in the graph are directed to ridges from subridges that
describe sensible, coherent subregions of the parent ridge in question. In
addition the parent ridge contains pixels that are on the parent's flank but not in
any subridge.

Our problem is to decide which ridge is a subridge of which and to form
the graph which describes these relationships. Our strategy is to compute the
region containment relations induced by the connectivity of the IAS branches
and by the annihilation of one branch into another as scale is increased (see
figure 5). That is, one ridge is taken as a subregion of another ridge if the IAS
branch corresponding to the former disappears into the IAS branch
corresponding to the latter as the scale at which the image is considered is
successively increased.

In the process of increasing spatial scale, it can be shown that a simple
IAS branch (obtained by either ridge branching or by one ridge being on the
flank of another ridge) will begin as a sheet but shrink from the top and bottom
until it disappears smoothly into the sheet to which it is attached. This
disappearance can be used to establish the child/parent relationship. Looping
subsheets will normally disappear by narrowing down in their middle and
breaking into two simple IAS sheets. An IAS sheet connecting two other
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Fig. 5. An MRI brain image at various scales and corresponding IAS's. Scale
change was obtained by edge-affected anisotropic diffusion.

sheets can detach first from one of its parents and then from the other, the
intensity levels at which it is attached to one not being the same as those at
which it is attached to the other.

Scale increase is performed by diffusion (Gaussian blurring), since this
form of scale increase avoids most strongly the creation of structure [Yuille,
1983]. Simplicity suggests isotropic and stationary Gaussian blurring, but it
seems preferable that the diffusion rate be matched to the scale of local objects.
That is, diffusion across the interior of a large object should be faster than
across a similar region made up of small objects or across the edge of the large
object -- the scale change should be nonstationary. Moreover, diffusion along
an edge should be faster than diffusion across-it. To achieve this adaptively
nonisotropic diffusion, we have begun using a program written by De Moliner
[1989] at E.T.H., Ziirich, in which a negative exponential function of intensity
gradient magnitude (edge strength) is used as the local conductivity in a
variable-conduction form of the diffusion equation [Perona, 1987].
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2.1.3. Computing the 2D IAS-Based Image Description

IAS Computation. To compute the IAS [Gauch, 1988b], we first view the 2D
image as an intensity surface in 3-space. We define a parameterization of the
2D image as f(u,v) = (x(u,v),y(u,v),z(u,v)) with initial values x(u,v)=u,
y(u,v)=v, and z(u,v)=I(u,v). The surface thus defined is allowed to move in the
spatial directions (x(u,v) and y(u,v) are allowed to change values) but held
fixed in intensity as it is moved toward the IAS. Think of this as a collapsing
of the original surface onto the IAS skeleton. By not allowing motion in the
intensity direction, we insure that the basic structure of the image, as defined
by the ridges, is not lost.

The surface is moved toward the IAS by an iterative relaxation
algorithm. During each iteration each point on the surface is examined to see if
moving it to a neighboring location will increase its distance, inside the
intensity surface and at its intensity, from that surface, as measured by the
image symmetry function, g(x,y,I). If so, the point is moved to that new
location.

This method breaks up surface continuity. In order to re-establish this
continuity, at least at places where the surface should be continuous (see figure
6), we extend the concept of active contours [Kass, 1987] to a deformable
surface, starting from the broken surface resulting from the unconstrained
collapse. This active surface model iteratively minimizes an energy functional
defined on the surface with terms that capture the smoothness constraints of the
surface while also keeping the surface near the IAS. The smoothness
constraints aid in the identification of individual IAS branches. The equation
we are currently using is given by

Energy = J[[wq(f(u,v)2+y(0,v)2) + W (fiy (0,v) 2 4+£4y (u,v) 24+, (0,v)2)
- w3(g(f(u,v))] du dv,

where the u and v subscripts indicate the partial differentiation of the surface
equation. The weighting factors determine the degree to which the surface
behaves like a smooth membrane (w1), or a spline (wy). To allow desired
discontinuities of the type illustrated in figure 6, these weights are reduced in
those areas of the image that have strongly moved away from each other during
the original collapse. We are also currently investigating other surface energy
equations that better match the surface geometry of the IAS.
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Fig. 6. A cross-sectional slice of a double ridge. Areas of the image where
the continuity constraints need to be relaxed are marked with dots.

Since the image symmetry function g is used extensively during the
iterative collapse routine, its values are precomputed for every point in the
image at each intensity level. To limit the size of this 3D data array the image
is first scaled to a reasonable number of discrete intensity levels, typically 50.
The calculation can take advantage of the fact that at a given pixel location, the
distance value at a lower intensity must be no less than the distance value at a
higher intensity (g(x,y,I+1) < g(x,y,])).

Identifying Branches. Once the surface has been collapsed onto the IAS, we
need to identify the individual branches within this structure. We do this for
each branch by identifying the two patches of the active surface which have
been drawn to the opposite sides of the IAS branch. Before we do this, we
must first identify for each point in the image its involute: the point on the
other side of the IAS that mapped to the same point on the IAS (see figure 7).
The collapsing of the surface onto the IAS has given us a mapping for each
point from the original surface to the IAS. Note that each point on the surface
maps to a single point on the IAS, but each point on the IAS may have several
image points mapped to it. Determining involute pairs is achieved by first
allocating a bucket for each IAS point, then filling the buckets with the original
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image points that map to each bucket location. Each point in a proper involute
pair should satisfy the following conditions:

1) moved the same distance in getting to the IAS,

2) be distant from its involute to prevent linking points on the same side of

the axis sheet,

3) moved to the same IAS point (bucket).
Due to the discrete nature of the data and the approximation of the IAS
resulting from the surface minimization, these conditions may only be
approximately satisfied. By using a weighting of the first two conditions, and
an outward search based on the third condition (start with the current bucket
and then search neighboring buckets), we have achieved a reasonable linking of
involutes. We now have for each point in the image two mappings, the first
maps the point to its IAS point, and the second maps the point to its involute.

The identification of individual branches of the IAS now becomes a

simple region growing process. The process starts with an arbitrary point,
placed in set A, and its involute in set B. You then examine all neighboring
points of points in set A, adding them to A (and their involutes to B) if their
involutes are in set B or neighbors of points in B. You do likewise for points
in B with their involutes in A. This process is repeated until neither set A nor
B increase. The growing stops when the involute of a neighbor is not a
neighbor of the other set, that is, at the branch points of the IAS (see figure 7).

Fig. 7. Involute pairs and their relationship at a branch point in the IAS. The
outer curve represents a single isointensity contour.
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Region/Subregion Identification. By identifying the individual branches of the
IAS, we have partitioned the image into primitive regions, one region per
branch. In order to group these regions in a hierarchical manner, we follow
the simplification of the branching structure through scale space. Since the IAS
branching structure simplifies through successive blurring levels, the goal is to
track the branches from level to level, recording when individual branches
annihilate.

At present we are associating each branch at a given blurring level (scale)
with the branch at the successive scale with whose region its region has the
greatest overlap. If more than one branch at the lower scale are associated with
a single branch at the higher scale, a connection in the hierarchy is recorded.
We are currently investigating more robust methods of tracking the IAS
branches themselves.

2.1.4. Toward 3D IAS-Based Image Descriptions

All of the 2D definitions for IAS generalize to 3D. An intensity surface over
three spatial variables has an IAS- based on an intensity family of 3D medial
axes based on maximal spheres. The resulting structure can be formed into a
graph of connected elements, and these can be followed to annihilation into
each other as the 3D image scale is increased by diffusion.

The extension of the algorithms to 3D images is straightforward. The
intensity surface now becomes a 3D surface in 4-space: f(u,v,w) = (x(u,v,w),
y(u,v,w), z(u,v,w), I(u,v,w)). The IAS is now a branching structure in 4D.
The image symmetry function is now defined over a 4D data set.

We have had some success with the 3D algorithms on small, simple test
images, but are still investigating the process. We have found that the proper
identification of involutes is both a more difficult task due to the added spatial
dimension, and more sensitive to the proper termination of the branch growing
algorithm. We are currently modifying the algorithms to take advantage of a
newly acquired MasPar SIMD parallel processing computer which should
reduce the hindrances to our research caused by the large amounts of time and
space the current sequential algorithms require.
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2.2. Surface Regions with Containment

2.2.1. Reverse Gravity Watersheds

The goal of image segmentation is to produce visually meaningful primitive
regions and a hierarchy on those regions that allows a sensible grouping of
those regions into larger scale objects. The IAS achieves the first goal by
associating regions of the image with individual branches of the IAS. It
achieves the second goal by following the annihilations of the branching
structures through scale space. Several aspects of the current implementation
of IAS have led us to consider alternative approaches. One disadvantage of the
IAS is that its dependence on isointensity slicing results in ridge flanks that do
not necessarily reach down to valleys on both sides (see figure 8). Also the
complex nature of the IAS branching and connectivity makes it difficult to
follow the structure through scale space (consider that a loop at one scale can
break into two branches at a larger scale). Finally, the computational cost of
the IAS is significant, especially when considering the extension to 3D.

Instead of focusing on the medial axis of ridges, one can focus on their
surface properties [Koenderink, 1990]. Consistency with the medial axis
approach would suggest the use of vertex curves to define ridge tops, but this
does not associate flanks with these tops. Another, not equivalent, means of
characterizing a ridge is via properties of integral curves of principal
curvature. Yet another, not equivalent, means of characterizing a ridge is via
the properties of flow lines on the surface, that is curves of maximum slope on
the surface. A weakness of this approach is its sensitivity to monotonic
transformations of intensity. Nevertheless, the computational and theoretical
simplicity of this approach has led us to work on its development and
implementation.

Perhaps the simplest way of using flow lines to partition the surface into
ridge/flank structures that span valley to valley is to group them into
watersheds (with reverse gravity) (see figure 8). A reverse gravity watershed
is a region of the image where if water were to fall on the region, the water
would flow uphill and collect into a single maximum of that region. Once the
surface has been partitioned into watersheds, you can produce a hierarchy on
those regions by successively blurring the image and determining the order in
which watersheds blur together. Unfortunately since a single long ridge may
be composed of several watersheds (several local maxima along the ridge) we
have found that they do not always blur together before the ridge blurs into a
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neighboring ridge. This results in a hierarchy that does not adequately reflect
the ridge structure of the image.

Intensity —p
Intensity —»

Distance Distance

Fig. 8. IAS region (left) vs. reverse gravity watershed (right)

An alternative approach for producing a hierarchy on watershed regions
has been tried with promising results. It examines surface properties rather
than behavior under blurring. The concept is to hierarchically group together
primitive regions based on a measure of the cost of moving from one patch to
another. When you move from the maximum of one watershed, through the
saddle point on the border of the two regions, to the maximum of the
neighboring watershed, a reasonable cost measure is the effort spent going
downhill and back up again. This would reflect a relatively low cost when
moving along a ridge line (allowing watersheds along a ridge to be connected
lower in the hierarchy) while moving from one ridge to another would be
relatively more expensive (linking separate ridges higher in the hierarchy).

Partitioning the surface into watersheds is a relatively simple task. The
image is scanned once initially to build a list of pixels for each discrete
intensity. To grow each region from its highest intensity point downward these
lists are processed one at a time. Starting with no primitive regions and the
highest intensity list, you choose any pixel in that list as the seed for the first
region. The region starts growing by repeatedly scanning the list, each time
removing any pixels from the list and adding them to the region if they are
neighbors of the region. If the region stops growing, but there are still pixels
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in the list, then you choose one of these remaining pixels as a seed for a new
region. Continue the process until the list is exhausted. Then start processing
the next lower intensity list, adding neighboring pixels to the existing regions
and creating new regions each time a list still has pixels that aren't neighbors to
any existing region.

To compute the cost function between each pair of neighboring regions
you need to determine the intensities at the maximum of each region and at the
saddle point between the regions (cost equals the average of the two maximum
intensities minus the saddle point intensity). The intensities at each maximum is
easily determined since the maximum point is the seed point mentioned in the
previous paragraph. The saddle point intensity can be found with two scans of
the image, the first in row major order, the second in column major order,
checking the intensity each time you cross from one region to another and
retaining the largest of those intensities for each pair of regions. Once the cost
function has been determined, the hierarchy is built simply by ordering the
costs from lowest to highest. Typical results can be seen in figure 10.

Unfortunately, watersheds have significant disadvantages as the primitive
region generator. It has already been mentioned that a single long ridge may
be composed of several watersheds. Even worse, one watershed may contain
more than one ridge structure. For example, a child ridge may branch off a
parent ridge where the child ridge does not have its own local maximum.
Therefore we are currently investigating other surface properties involving
flow lines that may be used to partition the surface into ridge/flank primitive
regions. For example, the separation and reconvergence of nearby flow lines
may be utilized in defining a subridge. Also, the cost function used so far has
been a very simple one and we plan to investigate more robust alternatives.

2.2.2. Towards 3D Watershed-Based Image Descriptions

Flow lines and their computation generalize directly to 3D. The definition of
reverse gravity watershed regions in 3D, however, requires new concepts
because in 3D there are more types of critical points and ridges/courses.

In a 2D image a critical point has either two negative principal
curvatures (a peak, where the surface peaks along both principal directions),
one negative and one positive principal curvature (a saddle, where the surface
peaks along one direction but bottoms out along the other), or two positive
principal curvatures (a pit, where the surface bottoms out along both
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directions). In 3D there are four types of critical points, where the signs of the
principal curvatures are respectively --- (peak), --+ (saddlepoint of type 1), -++
(saddlepoint of type 2), and +++ (pit). A reverse gravity watershed ridge in a
2D image goes from maximum to a saddlepoint to maximum. A reverse
gravity watershed ridge in a 3D image goes from a maximum to a saddlepoint
of the first type to a maximum. The role of the connections between
saddlepoints of the two types needs to be investigated.

The 2D reverse gravity watershed algorithm extends naturally to 3D
where each region is again grown from a maximum intensity seed point until it
collides with a neighboring region. The cost function between pairs of regions
is still the average of the maxima minus the largest intensity point along the
border between the two regions (a saddlepoint).

2.3. Image Description Quality

The speed of the computation of the image description is not critical because it
is totally automatic. Nevertheless, this speed affects the computing cost and the
extendability of the method to 3D. We have implemented both 2D image
description methods on a DEC3100 workstation (12 MIPS). Our programming
has taken some care for speed, but we have not searched for optimal
algorithms. Using 12 levels of blurring, the IAS-based method requires
approximately six hours on a 256 x 256 image. Approximately 30% of this was
taken by the distance calculations, approximately 20% by the surface collapses,
and approximately 35% by the branch identifications. The reverse gravity
watershed-based method is two orders of magnitude more efficient: the region
growing and the hierarchy computation take less than a minute. The 3D
generalization of this algorithm has been tested on a 128 x 128 x 32 MRI brain
image. The computation time was approximately 15 minutes. We are in the
process of transforming these to operate on a MasPar MP-1 4K-processor
SIMD parallel computer (8000 MIPS). Speedups of a factor of approximately
100 are achieved by using the MasPar MP-1.

We have applied the algorithms for each of the two approaches to a
number of 2D MR and CT images. These include objects that are elongated
and possibly branching, such as the brain stem and the bronchial tree, and
objects that are more compact, such as the cerebellum and kidneys. They also
include objects with sharp edges and others with indistinct edges or portions of
the organ boundary that have not been imaged as an edge. Examples of regions
found on an MRI image of a brain are given in figures 9 and 10.
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Most of the regions, both primitive ones and ones appearing higher in the
quasi-hierarchy, from both approaches seem reasonable and provide a useful
basis for a user to build meaningful object regions using the interactive tool
described in section 3. For example, bronchial branches and their connections
within the bronchial tree were well found in a CT chest image. The brain stem
and the cerebellum in an MR brain image were each made up from just a few
regions.

The IAS regions cover the full range of scale, an.. .. appears that the
regions as mathematically defined generate a reasonable hierarchy. The reverse
gravity watershed primitive regions capture large sensible object regions more
frequently than the IAS regions do. Our limited trial of the 3D generalization
of the reverse gravity watershed calculation on a portion of a 3D MR image
surrounding the cerebellum captures a number of reasonable 3D regions such
as the scalp and most of the cerebellum, but the method sometimes failed to
isolate visually sensible regions from neighboring regions.

Besides its inefficiency the main weaknesses of the IAS-based method
have been that the resulting regions

1) sometimes are uncomfortably small,

2) connect image regions in an unnatural way, or

3) have boundaries that did not come up to the natural object boundary.

The small regions were frequently correct, but of a scale smaller than
one desired to build a meaningful object. This is essentially a desirable situation
because these regions are real ones that could for some small objects be just the
regions needed to build these objects. However, for larger objects, some means
of selecting only regions of a satisfactorily large scale may be usefully built
into our interactive object region definition tool.

As for the unnaturally connected IAS regions and some of the small
regions, it appears that these were largely the result of the computation not
calculating the regions that the mathematics would define. Largely, this
followed from improperly identifying involutes due to an imperfect surface
contraction onto the JAS. An example of an area of disappointment was in
trying to follow the convolutions of the cortex in an MR image. The primitive
regions corresponded well to the individual folds, but moving up the hierarchy
through scale ‘space quickly brought in regions outside of the brain. We expect
that improvements in the hierarchy and the primitive regions will result from



100

using non-stationary, anisotropic edge sensitive diffusion as opposed to the
Gaussian blurring we have used so far and from using a surface energy
function that better captures the geometry of the desired IAS. Also,
improvements can be made in our method for tracking the IAS branches
through scale space.

Finally, the unnatural IAS region boundaries seem to have two causes:
problems with the computational algorithm and the fact, illustrated in figure 8,
that region edges are tied to absolute intensity levels of one of the courses
bounding the region.

The main weaknesses of the reverse gravity watershed method have been
that sometimes small regions were simply incorporated into larger regions that
were taken to be primitive and that some unnaturally connected regions were
computed. We attribute both of these failings to two facts. First, only reverse
gravity watershed regions and not regions reflecting flow line separations have
been computed to date. Second, the cost function used to connect ridge pieces

together requires improvement. Our short term research goals are to attack
these problems.

Fig. 9. Brain MRI regions defined via IAS
Left: Primitive regions. Right: The scalp and cerebellum selection each from a

single point plus moving up the hierarchy. The blue region shows what would
be added by moving once more up the hierarchy.

Fig. 10. Brain MRI regions defined from reverse gravity watersheds

Left: Primitive regions. Right: The scalp and cerebellum each from a single
point plus moving up the hierarchy.

Fig. 11. A complex selected object region: the cortex
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Fig. 9.

Fig. 10.

Fig. 11.
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3. Interactive Object Definition from Descriptions

3.1. 2D Interactions

In our approach to interactive object definition the user defines an object
region using simple mouse-based interactions. The user causes a set of regions
from the image description to be selected as an object region and displayed with
a color wash to indicate their selection. While the option of editing an object
region by pixel painting is provided, it is infrequently necessary, except when
the object being defined really is not fully captured in the grey-scale
differences in the original image data.

The simplest interaction of the user is that of pointing to and clicking on
a pixel, which causes the smallest region containing the selected pixel to be
chosen. If the user is in the mode of adding regions to the object set, the chosen
region is added to the set. If the user is in difference mode, the chosen region is
removed from the set. 'Region painting' is accomplished by holding the
selection button down and sweeping the cursor over the region of interest. The
union of the regions corresponding to all the selected pixels is selected for
addition into or removal from the the object set, depending on the mode. A
"parent” button causes the presently selected description region to move to its
parent in the description graph. This higher level region is then added to or
removed from the object set, depending on the mode. It has proven quite
useful to avoid the frequent use of the 'undo' operation by color washing, in a
special color, additional pixels in the parent of the presently selected
description region.

This method of object definition has proven to be very intuitive for
physicians and to allow the definition of complicated anatomic objects in CT
and MR slice images to take place in under a half-minute. The system
implementing this method runs in an X environment on color workstations.

3.2. Speed of 2D Object Definition

The following examples of object definition speeds are typical using our
interactive system. In our example MR brain image, using pointing and
hierarchy traversals, the scalp could be identified in 10 seconds by selecting one
primitive region followed by seven parent operations for IAS regions and eight
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parent operations for reverse gravity watersheds. The cerebellum required
seven atomic actions over 8 seconds in each case, but the reverse gravity
watershed method used one primitive region followed by six parent operations,
whereas the IAS method required one primitive region selection followed by
five parent operations followed by an additional primitive region selection.
Selecting the cortex by groups consisting of the selection of a primitive region
and a number of hierarchy traversal operations required six groups of 3-7
operations over 60 seconds for reverse gravity watersheds and 12 groups of 3-
4 operations over 120 seconds for IAS regions. Thus the timings were about
the same for the IAS regions and the reverse gravity watersheds except for the
cortex, where the reverse gravity watersheds provided faster definition. In all
these cases, with both methods, the object definition was rather speedy.

Region painting (see figure 11 for the selected regions) provided a
considerable speedup for the more complex objects. For example, to define the
cortex, a speedup by a factor of 3 was obtained for IAS and a factor of 2 for
the reverse gravity watersheds. To define the cerebellum, no speedup was
obtained.

Applying this object definition approach slice by slice to 69 MRI slices
covering the cerebellum allowed us to specify a 3D region including the
cerebellum and a bit of its background but no occluding organs. Only two of

Fig. 12. Volume rendering of cerebellum from region selected from MRI
study
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these slices required editing by pixel painting. The application of Levoy's
volume rendering technique [Levoy, 1988] to the image intensities in this 3D
region produced the images in figure 12. Thus we have demonstrated the
capability of this approach to select 3D regions of interest for the volume
rendering of internal organs in 3D medical images.

3.3. Toward 3D Interactive Object Definition

We are working toward a system for interactive specification of 3D object
regions based on quasi-hierarchical 3D image descriptions. We anticipate
interactions essentially the same as the ones provided in our 2D system. In such
an interactive system the user must be able to specify locations in 3-space,
visualize the regions selected and unselected relative to the grey-scale values in
the original 3D image data, and visualize the 3D objects in the selected region.
The latter capability, with a speed of approximately one second from a 2563
data set, will be provided by Pixel-planes 5, described in another paper in this
volume [Fuchs, 1990]. The possibility of modification of viewpoint, rendering
parameters, and clipping planes with optional display of the original grey-scale
data on these planes, with a response via progressive refinement of about 0.1
seconds, is anticipated.

A major component of the system displays the slices making up the
original image data as an array of small images ("postage stamps") in an X
window on a CRT. Any postage stamp can be selected for display at full
sampling in another X window. Pixel (voxel) pointing will be possible either on
any postage stamp or on the fully sampled slice window. The presently selected
3D object region will appear as a color wash on the collection of slices, such
that the selection of any pixel would cause a 3D region including pixels on
many slices to be colored.

We are also considering region painting interactions using a 3D mouse
controlling a 3D cursor that would appear on the volume rendered image as
well as on the 2D postage stamp display. It remains to be seen whether a way
can be developed to communicate in 3D the relation of the cursor to the 3D
grey-scale data and whether such a means of communication is necessary.

In any case we are aiming to have such a system allow the volume
rendered presentation of any anatomic region appearing in any 3D data set with
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a selection time of under 2 minutes, after a considerably longer image
acquisition and automatic image description computation stage.
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Abstract

We describe in this paper part of the research being performed at Inria on the
automatic interpretation of three-dimensional images. We identify three common key
problems which we call segmentation, representation, and matching of 3D regions.
We describe our approach for solving these problems, our current results on 3D medical
images, and give the trends of our future work.

Keywords : 3D Images, Interpretation, Segmentation, Representation, Matching.

1 Introduction

We describe in this paper part of the research being performed at Inria on the automatic
interpretation of three-dimensional images.

An interpretation task usually includes operations such as display, quantifica-
tion, registration and labelling of 3D regions coming from one or several 3D images.
Display consists in producing a useful image of a 3D object; quantification consists in
extracting some significant numerical features characterizing its shape and intensity, reg-
istration consists in superposing several 3D images of similar 3D objects; and labelling
consists in attaching a name to specific 3D regions.

Automating these operations is very useful for improving the diagnosis, and also
for improving the planning, simulation and control of a therapeutic action, such as a
medical gesture or a radiotherapy [LCD*89).

To solve most of the interpretation tasks, it appears necessary to solve three common
key problems which we call segmentation, representation, and matching of 3D
regions.

1. Segmentation consists in a partitioning the original image into regions of in-
terest. This is a very crucial stage, necessary for concentrating the following
operations towards a more compact and pertinent amount of data. Regions can
be extracted by regrouping voxels which form homogeneous areas with respect
to a given homogeneity criterion, or by detecting edges, i.e. points of transi-
tion between two homogeneous areas. In our approach, we have chosen to detect
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regions by combining both a local edge-extraction and global region-extraction.
We describe in section 2 the use of linear and non-linear filtering methods to ex-
tract local edge chains, and in section 3 the use of deformable models to extract
global regions, taking advantage of the previous local analysis and enforcing some
important regularity properties.

2. Representation of extracted regions is a dual task. On one hand, one must
describe the shape of the extracted regions, i.e. produce a geometric representa-
tion, and on the other hand, one must describe the distribution of intensity within
each region, i.e. produce a tertural representation. We describe in section 4 the
representation we have chosen to describe shapes, which is based on the Delaunay
triangulation, and we discuss its advantages, compared to the more widely used
voxel-based representations. In section 5, we describe our current work on the
representation of textures using fractal and integral geometry.

3. Matching of regions is based on their representations, and can be performed
between the representations of two distinct regions or between the representations
of aregion and a model. In the first case, matching solves the registration problem,
and allows the superposition and comparison of two 3D images. In the second case,
matching solves the labelling problem, by attaching the names and properties of
the model description to the corresponding regions in the 3D image. We describe
in section 6 our preliminary work on this topic, which consists in extracting first
some surface singularities which will later guide the matching task.

Much work has already been done in these areas, and the interested reader can
refer to the following short and necessarily incomplete list of references: on display and
representations, (SH88|, [BGL*88|, [FLP89|, [RB89|, [SS89a], [PFL*89|, [Mon87|; on
registration and labelling [STH89|, [LCD*89]|, [BK89a/, [SS89b], [SKM89].

2 Edge Extraction

Edges are defined as being points of transition between homogeneous regions. Our
model of an ideal edge is a step between 2 regions of constant intensity, cor-
rupted by additive Gaussian noise. Following the approach of Canny, Deriche and
Shen [Can83,Der89,Der87,SC86|, we generalized in 3D an optimal linear filter with
respect to objective quality criterions: accuracy and robustness [MD89,MD86|. For
the sake of efficiency, we chose a recursive and separable implementation of the filter
in 3D. Therefore, the computational complexity no longer depends on the width of
the impulse response of the filter, and is of the order of a single convolution with a
3 x 3 x 3 mask. Our edge detector compares very favorably with previous 3D edge
detectors [Lui77,ZH81,MR81].

We also improved our results locally by developing a new method to fill up the small
gaps between two disconnected edge chains; this is done by searching for a path mini-
mizing a criterion which combines distance, curvature and gradient [MDMC89,DC88].

An edge extraction example in a 3D MR image is shown in figure 1. Despite the high
level of noise and the presence of artefacts due to blood motion, one can see that the
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important boundaries are correctly recovered. This is mainly due to a better elimination
of the noise with 3D filtering. Moreover, this approach insures $D coherence among the
detected edges, which is not the case if one applies 2D operators on successive cross-
sections. This important result is examplified on the right bottom pictures of figure 1.

3 Applications of deformable models

The previous approach only applies local analysis to detect object boundaries. But in
many situations, one might have some global a priori knowledge on the shape of the
desired edges. For instance, one might look for a closed contour, whose curvature varies
smoothly with abscissa, in a given region of the image.

As in [KWT87,Ter88|, we consider the application of deformable mod-
els [Coh89,CC90]. We introduce an elastic curve in the image and let it evolve from an
initial position under the action of both internal (elasticity of the curve) and external
forces (attraction towards the local edges).

We have improved the original method on several points:

1. We take into account the previously extracted local edges.

2. We introduce an internal pressure force by considering our curve as a balloon
that we blow out. From an initial oriented curve we add to the previous forces
a pressure force pushing outside as if we were introducing air inside. The curve
expands and is attracted and stopped by edges as before. But if the edge is too
weak, since there is a pressure force, the curve can pass through the edge if it is
a singularity with regard to the rest of the curve being blown out.

Beginning with a small curve, we inflate a balloon which then sticks to the edges.
This permits taking an initial curve far away from the solution, and makes the
result much more insensitive to the initial conditions (see figure 2).

3. We use a finite element technique instead of finite differences, since in finite dif-
ferences we only see what happens at points of the subdivision. The forces are
applied to a grid of points, and the distance between successive points has to be
small enough so as to not miss too much information. This has effects on the size
of the linear system being solved. In finite elements, we are really working on
curves independent of the size of the grid, so that the whole curve between two
points of the grid is considered in the equilibrium of forces.

Once an object is extracted in a 2D image, we follow its contour from one slice to the
other, and rebuild a 3D surface from the contours [ABB*89|. We use the balloon model
to initialize one slice, and then we take as initial value for each succeeding slice the final
result of the previous slice. Figure 3 shows the reconstruction of the left ventricle. This
reconstruction is almost automatic. Indeed, when the contour undergoes a big change
from one slice to the next, the initial curve in that slice may have to be redefined in

order to obtain a good contour. This problem can be avoided by adding interpolated
slices when necessary.



110

The next step in our research is to follow the deformation of this surface in time.
This can be done either slice by slice or globally by generalizing this approach to a
3D surface model which would be a real balloon since the active contour model is a
particular case of the deformable models of [Ter88|.

We can add internal forces to control the deformation for following the contours.
This is the case if we have a physical model of the desired object (for example, following
the deformation of a ventricle during a cardiac cycle), or for making the curve expand
or contract from the initial data using some knowledge of the deformation properties.

Another orientation of our research is the elastic' matching of extracted features to
an atlas, which is related to [BK89b]. A deformation between the pattern and the
object is allowed. Thus we deform a curve to best match the pattern using some of the
measure distorsion to achieve the deformation, such as the area between the two curves.
This was also studied in [YCH89] with simple geometric shapes as templates which are
deformed to match the image.

4 Shape representation

In the recent past, several concepts of 3-dimensional reconstruction and rendering of
volume data have been presented. They basically belong to two different classes: voxel
based methods and triangulation based methods. The common aim is to visualize the
surface of the objects of interest, and to use the resulting data for FEM or volume
calculation.

In voxel based methods, after a segmentation of the volume data, the voxels are
treated as opaque cubes. A different approach uses a kind of ray tracing, deducing the
orientation of the surface normals from the gray scale gradient along the ray [HB86]
[Lev88|. The main disadvantage of these methods is the use of the entire data for visual-
isation yielding high computational cost. Real time display is only possible on dedicated
machines. With standard visualisation algorithms and machines, it is necessary to fit
geometric primitives (typically triangles) to the object surface.

In triangulation based methods, edge-tracking is performed by means of image
processing (c.f. previous sections) or manually or both resulting in a polygonal approx-
imation of the object contours. Then a strip of triangles can be constructed that links
two contours in successive cross-sections.

The resulting triangles are smoothened and a conventional surface rendering algo-
rithm (Z-buffer, Phong/Gouraud shading) is performed. On a graphics workstation
like HP, IRIS, real time motion is possible, but there is already hardware available for
running the visualisation on personal computers.

The advantages of the triangulation are the following ones:

1. it provides directly a facet representation,

2. there is a small number of surface triangles (linearly related to the number of
points per contour),

3. it provides an interpolation between the cross sections avoiding any anti-aliasing
step.
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We propose to use a specific triangulation, the Delaunay triangulation. We can show
that the reconstruction based on the Delaunay triangulation introduced in [Boi88| has
some properties, that allow to compare the assignment pixel-voxel with the assignment
triangle-tetrahedron: indeed, the Delaunay triangulation links a point to its nearest
neighbours in the adjacent sections. Thus this triangulation method joins the advantage
of the voxel method — accurate connections of the cross sections — with those of the
triangulation — small data amount and the possibility of applying widely distributed
shading software and hardware.

The algorithm has been implemented in C, is fully automatic and has been success-
fully tested on various medical data: heart, brain, lungs, liver, aneurism of aorta, hip
joints. The results shown in Figures 4 to 6 have been obtained from 256 X 256 resolution
MR images, provided by the Universitatsklinik Heidelberg, Germany. It is to point out,
that the number of cross-sections is small and corresponds to the normal rate of scans
taken at a clinical examination. The reconstruction time is less than 70ms per point on
a Sun3 Workstation.

5 Texture Segmentation Using Fractal and Integral
Geometry

Besides the description of the shape of extracted regions, it is necessary to describe their
intensity distribution, i.e. to produce a textural representation.

Both fractal geometry [Man82,Man77,Vos85] and integral geometry [San76| are new
approaches that we are investigating for characterizing the texture of very complex
medical images [LV89,LVB90].

The main interest of Fractal Geometry is that it provides a way to quantify ir-
regularity. Also, fractal techniques differ from the classical texture analysis meth-
ods [Gag83,HS85], and better account for the infinite degree of correlation found in
many natural objects. This is because classical techniques are based on the assump-
tion that textures can be modelized by Markov fields and so have the property that
sufficiently distant points are nearly independent, which is not always true.

With Integral Geometry, classical measures such as length, perimeter and surface
are made on sets of the space. The interest is that the computation of these parameters
is much more robust to noise, because it is done with global knowledge and properties
of the sets.

We only have room for one example in this paper. Figure 7 shows the global value of
lacunarity‘(a fractal parameter to characterize second order irregularities) for three types
of lung diseases, and figure 8 shows the visual representation of a local computation of the
same parameter, again for three classes of lung diseases, exemplifying its discrimination
power for texture classification. The reader will find a detailed description of these
methods and applications in [LV89,LVB90).
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6 Matching

6.1 Extracting Surface Features

An increasingly important notion in computer vision is that of qualitative description.
For many tasks, including object identification, computation of qualitative features is
more important than precisely estimating structure everywhere. In this spirit, we de-
velop methods for the computation of surface structure permitting the reliable deter-
mination of second derivative singularities [San89].

Qualitative features can only be useful, however, when they are stable, that is generic
(insensitive to small perturbations of the form of the object), intrinsic (not dependent
on the situation of the object in space), and robust to a certain amount of noise. Two
such stable second derivative singularities of surfaces are: parabolic points, those zeros
of Gaussian curvature which appear on smooth surfaces between regions of elliptic and
hyperbolic points; and umbilic points, the singularities of the principal direction fields.
Generic parabolic points on object surfaces form curves which can be used to effect
a decomposition into stable parts. Umbilic points are generally isolated, with their
number and type forming an intimate link between local differential surface structure
and global topological properties.

Shape characterization and decomposition provide the overall context in which to
place this research. We strongly believe that the sorts of descriptions that will underlie
successful theories of shape must satisfy the attributes of stability mentioned above —
and principal curvature and direction fields on object surfaces permit the calculation of
generic singularities which do so. They thus provide a qualitative foundation of precisely
the sort on which third paradigm computational vision stands [Zuc87].

6.2 Applications
6.2.1 Registration and matching

We are investigating two applications of our methods to biomedical imagery.

The first one involves registration between images taken from different viewpoints,
e.g., transverse and sagittal MR images, or images from different modalities, e.g., MR,
positron emmission or X-ray tomography. As an illustration, we show in figure 9 the
detection and localization of 3 umbilic points from the MR image of a human face.

The second application involves matching structure in clinical images to structure
in a standardized atlas, with the eventual goal of automatic structure identification. As
an illustration, we shall start with the analysis of the surface of the brain ventricles (see
figure 10), which were reconstructed from the cross-sections of the anatomical atlas of
Talairach [TT88|. :

Singularities also permit the decomposition of object surfaces into stable parts useful
for the registration and matching tasks.

6.2.2 Shape deformations

In addition to applications to static 3-D images, singularities provide insights for the
analysis of image sequences. Changes in surfaces produce characteristic changes in the
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surface singularities, and a longer term theoretical goal is the analysis of the evolution
of singularities with time to yield information about dynamic surface deformation as,
for example, in a sequence of images of a beating heart. This research will be connected
to the one on deformable models described in section 3.

7 Conclusion

We presented an integrated approach to the difficult problem of 3D image interpre-
tation. This approach focuses on three main topics which we called segmentation,
representation and matching. Segmentation transforms the raw data into regions of
interest, combining edge-detection and deformable models. The shape of these regions
can be described by geometric models involving the Delaunay triangulation, while their
texture can described by Fractal and Integral Geometry.

Finally, characteristic geometric features derived from the Differential Geometry of
surfaces can be extracted to guide a spatial registration between two images or with a
model, providing the semantic labeling of the extracted regions.

We presented several promising experimental results on each topic, but much re-
search remains to be done to complete a fully integrated system.
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Figure 1: Comparison between 2D and 3D edge extraction: better robustness to noise,
and spatial coherence of the results.

Figure 2: Automatic segmentation of the left ventricle using a deformable balloon model.
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Figure 3: 3-D reconstruction of the inside cavity of the left ventricle of the heart.

Figure 4: The edges extracted in three successive cross-sections of the brain. Note the
complexity of the these contours.

Figure 5: Human brain: 15 cross-sections, 104 contours, 3300 points, 7900 triangles.
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Figure 6: Hip joint: 14 cross-sections, 38 contours, 1103 points, 2362 triangles. The
aim was to visualize the cartilage of the femoral head.
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Figure 7: Typical values of fractal lacunarity for normal lung, chronic disease, pul-
monary embolism.
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Figure 8: Local computation of fractal lacunarity on SPECT images of normal lung,

chronic disease and pulmonary embolism.

5

:

Figure 9: Computation of umbilic points on the MR image of a human face. (a) Tangent
planes. (b) Principal direction field showing three typical singularities at umbilic points.

Figure 10: Surface of the brain ventricles, reconstructed from the Talairach Atlas.
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Abstract

Magnetic Resonance Imaging (MRI) is a highly flexible diagnostic imaging
technique providing complex information about the morphology of various
normal and abnormal tissues. Besides this clinically valuable anatomic and
pathologic information, there are some unique functional features which can
be extracted from MR images. The influence of macroscopic and microscopic
motion on MR images as revealed by more or less specialized pulse sequences
may demonstrate the presence of physiologically important processes such as
blood or cerebrospinal fluid (CSF) flow, tissue perfusion and diffusion
[Axel84, Demoulin87, Demoulin89, Haacke89, Wehrli87]. Recent progress in
the implementation of these MRI methods shows that while these applications
have not yet been fully exploited, their use in clinical practice is not far in the
future.

The use of image processing techniques can definitely improve the visual-
ization, display and interpretation of MR images. The computerized post-pro-
cessing techniques may also have a very significant role in accessing the phys-
iologic information available from MRI. In this work we applied image pro-
cessing techniques to both routine, standard spin-echo MR acquisitions and to
MR angiograms (MRA) in order to extract and display vascular structures
with intraluminal flow. We demonstrated that it is possible to segment a stan-
dard spin-echo data set into brain parenchyma (white and gray matter), cere-
brospinal fluid (CSF) and vascular structures. The segmented images can be
displayed using 3D surface rendering and selective clipping. The extracted
vascular structures obtained with the MRI and MRA methods were compared .
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While the vessels were better delineated by the MRA method, especially after
image processing, the major morphologic features were also accessible after
segmentation of the standard spin-echo images.

Keywords: Medical Image Processing, Magnetic Resonance Imaging, MR-
Angiography, Vascular Imaging, 3D Segmentation, 3D Display

1. Introduction

The basic purpose of various MR angiography (MRA) techniques is to sup-
press or eliminate signal from stationary tissue and to enhance the appearance
of flow, and by doing so to provide optimal contrast between flowing blood
and surrounding soft tissue. MRA methods can be used efficiently as a com-
plement to standard MRI. The simultaneous display of intraluminal and extra-
luminal information can demonstrate not only details about the vessel walls and
perivascular structures but can also delineate the spatial relationship of the ves-
sels with other non-vascular structures. Usually, the MRA is acquired as an
additional pulse sequence along with conventional MRI, and therefore prolongs
the imaging session significantly.

The enhancement and segmentation of specific structures is the fundamental
role of digital image processing. While the performance of most image pro-
cessing techniques depends on the quantitative and qualitative information di-
rectly available from the digital data, it is possible to utilize image processing
techniques even when the information available from the images is quite lim-
ited. While vascular flow data are more easily accessible from specialized
MRA images we investigated the possibility of obtaining similar information
from standard MR images by applying image processing tools. This approach
is justified since spin echo images, although limited in some respects, are sen-
sitive to blood flow and at the same time are optimal for the visualization of
the stationary tissue elements. In spin-echo images, the signal intensity of
rapidly flowing blood is low or absent and the vascular structures are visible
due to their relative contrast to the surrounding tissues. The fact that our vi-
sual system clearly distinguishes blood vessels from surrounding non-vascular
structures even on these standard non-angiographic images motivated the work
presented herein.

This report is divided into three parts. In the first section, we describe a
preprocessing method which preserves the finely detailed information of the
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vessels and significantly increases the SNR. In the second part, a 3D line (tube)
detection algorithm is presented which recognizes linear structures in 3D
volume data. The segmentation algorithm is applied to a routine clinical spin-
echo data set to demonstrate its ability to enhance tubular structures. Once
extracted, the vascular system can be displayed using standard 3D volume ren-
dering or surface rendering procedures. We finally demonstrate the segmenta-
tion of spin-echo volume data into brain parenchyma (white and gray matter),
CSF, and vessels. A combined 3D display of the segmented surfaces and the
vascular morphology is also demonstrated.

2. MRI methods

Spin echo images of the brain were obtained as part of routine clinical
studies. Imaging was performed at 1.5 Tesla using a General Electric SIGNA
MRI system. Data acquisition used a double echo sequence (TR 3000ms, TE
30/80ms) with 3mm axial slice distance and thickness. Contiguous slices were
obtained by combining two interleaved sequences. Imaging time was reduced
by using half-Fourier sampling (.5 NEX). We used flow compensation
(gradient moment nulling) and presaturation of a slab inferior to the head to
reduce flow related artifacts and to obtain low intra-arterial signal intensity.
Forty to 50 double echo slices were used to cover the brain volume. The
imaging time was under 8 minutes.

The method used to obtain additional MRA was a multiple thin-slab 3D
gradient echo technique implemented in the General Electric SIGNA system
[Parker89]. The 15 mm 3D slabs were further divided with 16 phase encoding
steps into nominally 1 mm thin sections. The slabs were acquired in a sequen-
tial manner and the reconstructed one half slabs were spaced in a contiguous
fashion. The gradient echo (TR=50 msec, TE=5 msec flip angle=80 degrees)
were acquired within 15 minutes.

3. Image Processing Methods
3.1 Three-dimensional Preprocessing

The MRIs are corrupted by a considerable noise component, which inter-
fered with the recognition of fine vessels. In order to smooth this noise



124

without losing the fine and detailed vascular structures, we have developed a
processing scheme based on anisotropic smoothing [Gerig89, Gerig90]. The
new filtering is based on a locally nonlinear diffusion process, which has a
high smoothing capacity while preserving and even increasing the sharpness of
object boundaries and fine detailed structures. These properties are best suited
to preprocess MR images, which can be assumed to be approximately piece-
wise constant. The discrete implementation of the diffusion process is formu-
lated as an iterative adaptive smoothing, where the filter coefficients (cj) are
nonlinear functions of the local gradients (VI;):

n
I(t+At) = I(t) + At*Ig = I(t) + At*Z(ci*VIi) | 2: local neighborhood
i=1 i

ci=( 14{%) 21 | K: conduction parameter

The iterative filtering results in image structures of homogeneous intensity
without blurring of edges or fine lines, and without altering the appearance of
their exact positions. A great advantage of the filtering process applied to
isotropic 3D volume data is full 3D implementation. Local estimations about
image structures and averaging are performed within 3x3x3 voxel neighbor-
hoods, resulting in a significant decrease of noise even after one iteration
(adaptive averaging over 27 neighbors in homogeneous areas increases SNR by
more than factor of four [Gerig90]) and in a sharpening of 3D discontinuities.

3.2 Segmentation of 3D Tubular Structures

Common solutions for optimal filtering to enhance structural features can be
found in digital signal processing, the most appropriate filters often match the
characteristics of the structures themselves. A typical analysis by Canny
[Canny83] proposes the use of twodimensional directive Gaussian derivatives
in a multiresolution simultaneous convolution scheme. Extended to three
dimensions, a filter for the detection of linear features is designed as an
isotropic 3D Gaussian filter with second derivatives in two orthogonal direc-
tions (Laplacian of Gaussian). Instead of convolving the volume data with a set
of directive filters the differentiation can be performed on the convolution
result of the image data with the isotropic Gaussian filter, resulting in a maxi-
mum computational efficiency:
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2 92
(5ax_2 +5Q;2‘) [G(x,y,2;0) ® I(x,y,2)] | 6: smoothing parameter

Differentiation is approximated by discrete operations within 3x3x3 voxel
neighborhoods, we used 13 filters spatially oriented in the three immediate, six
plane-diagonal and the four volume-diagonal directions. The maximal response
among the multiple filter output is chosen to match optimally the local
intensity structure. It determines the local direction and the significance of the
curvilinear three-dimensional structure.The segmentation scheme consists of
the following steps:

» summation of the two echoes (if applied to multivariate spin-echo data)

« multiple convolution with directive Gaussian derivatives

« Half-wave rectification (discrimination between dark and bright features)

« connected component labeling starting from interactively selected seeds

4. Results

We applied the discontinuity-preserving filtering to both MRA and routine
MR images. In the case of MRAs the goal of preprocessing is to give maximal
small vessel enhancement. Equally important is the possibility of displaying
these fine vascular structures. Maximum intensity projection favors the
demonstration of high intensities along projection rays over finer structures
even when they are located nearer to the observer. Furthermore, a 3D im-
pression is obtained only in moving image sequences or in stereoscopic views.
MRA takes the role of an acquisition based segmentation, the vessel identifica-
tion process is therefore carried out by thresholding and connected component
labeling. Such a labeling serves as a prerequisite for a subsequent volume- or
surface-rendering of structures of interest. Figures la,b and 2a,b illustrate
maximum intensity projections and 3D surface renderings of a MRA data set.

The segmentation method to enhance tubular structures was applied to the
contiguous multi-slice spin-echo MR images, as well. Again, the iterative pre-
processing algorithm was applied to remove noise while preserving and even
enhancing edges and fine structures. A special extension to perform simultane-
ous multiecho-smoothing has been applied [Gerig90]. Our segmentation con-
cept is based upon the observation that on spin-echo images parts of the blood
vessels are visible as low signal intensity curvilinear structures in contrast to



126

higher signal intensity and mostly non-linear surrounding tissues. This infor-
mation may obscured or misrepresented by several flow-related artifacts.
Along the phase-encoding direction, a parallel bright line is visible represent-
ing a kind of "shadow" caused by misregistration of the flowing blood. The
distance of the dark and bright lines as well as their intensities depend on the
flow velocity and the phase encoding direction [Wehrli87]. Flowing blood
causes local extinction of signal; by localizing the curvilinear dark structures
we can characterize the true positions of high flowing blood. Since signal loss
occurs in both echoes, the two echoes are averaged, resulting in a further
increase of the SNR and in a less pronounced occurrence of the bright
"shadow" lines, which vary in position on the two echoes. Figure 3 shows an
original spin-echo slice (left) and the result after the segmentation of tubular
structures (right). Corresponding views of 3D reconstructions of the arteries
of the MRA (left) and the spin-echo images (right) are shown in figure 4. A
pure visual comparison of the two views shows a more complete vascular sys-
tem obtained from the MRA data. The original spin-echo input data are
acquired with an anisotropy of 1:3, which does not allow the extraction of ves-
sels with isotropic resolution. With thinner slices a better segmentation of vas-
cular structures will undoubtedly be possible. It is obvious that the best per-
formance of the segmentation scheme will be obtained using isotropic voxels.

Nevertheless, the first results encourage us to continue the development of
image processing methods to detect structural features. Further refinements
are necessary to increase the resolution of the algorithm to detect even finer
vessels. The primarily local processing must be extended to a more complex
segmentation scheme. Furthermore it is planned to apply the processing to
nearly isotropic volume data.

5. Complete Segmentation of Two-echo Spin-echo Volume Data

A great advantage of the image processing approach lies in the fact, that we
can fully explore the volume data by applying different segmentation schemes
to obtain information as much as possible.

An earlier work proposed a multistage segmentation scheme [Gerig89]
which performed a segmentation of the brain (white and gray matter) and the
ventricular system in multispectral MR volume data with only minimal user
interaction. In that method, the most important factor was the fully 3D formu-
lation of the segmentation steps. Processing stages included discontinuity-pre-
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serving filtering, multispectral user-supervised classification, and morphologi-
cal postprocessing using spatial context information. Human interaction is
needed only in the second stage by interactively selecting meaningful sub-
regions of tissue categories to train the classifier and to calculate multidimen-
sional discrimination functions. Our experience clearly shows that the pro-
posed segmentation scheme does not require tedious interactive corrections of
the segmented areas, which is very important for use in daily clinical routine.

The multispectral segmentation scheme is applied to carry out a segmenta-
tion of multispectral MR volume data. The two volume data sets specified by
the two different echoes are preprocessed using the iterative anisotropic
smoothing procedure. Noise can be reduced significantly after three iterations
while finely detailed structures are preserved. Our analysis focused on the
three categories CSF, white matter and gray matter. The segmentation defines
labeled objects in 3D space and their surfaces can be displayed directly using
standard rendering techniques.

Many attempts to visualize multimodality, multivariable medical image data
demonstrate its importance to clinical applications (e.g. [Hu89]). In the ap-
proach presented here, the combination of tissue segmentation and extraction
of vascular structures is a straightforward process, as both sets of information
are obtained using the same input data. No matching or reformatting problems
arise.

Marching cube soft surface calculation and selective clipping facilities
[Cline88] were applied to generate 3D views. Figure 5 illustrates the brain sur-
face and the ventricular system in combination with the main arteries extracted
by the segmentation scheme proposed herein. The anatomical surfaces shown
in figure 5 are extracted from a routine spine-echo data set, demonstrating the
variety of information contained in the original data.

6. Conclusions

The MRA is typical of a class of "goal directed MRI techniques”, which
select specific MR scan parameters based on distinctive imaging goals. In this
case the segmentation, or the enhancement of specific anatomical structures is
performed using a special acquisition technique. An alternative approach to
segmentation of MR volume data into meaningful anatomical structures is the
application of image processing methods. When fully evaluated routine clinical
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data reveal sufficient information for gross morphological evaluation.
Application of image processing methods can provide contrast- or feature-
enhancement of anatomical structures or functions in the postprocessing stage.

The segmentation and enhancement of specific information using image
processing has several advantages over specialized, goal-directed MR-acquisi-
tion techniques. Furthermore it offers a great potential in giving access to
otherwise hidden quantitative information. Postprocessing can be obtained ret-
rospectively if necessary. If flow-related and stationary data are available from
the same data set, no geometric mapping of image data from different sources
is required.

In summary, the use of computer assisted advanced image processing for the
delineation of vascular structures from routine MRI data sets yields several
advantages, which in some cases may favor this approach over special acquisi-
tion techniques especially when imaging time is restricted and when the infor-
mation obtained is otherwise sufficient. The possibility of retrospectively
deriving vascular data from routine images is very promising, and this method
may have unique clinical applications. Additional to segmentation methods
based on the spectral properties of single voxels, structural segmentation
methods have been developed and applied in which 2D line-extraction methods
were extended to 3D to extract blood vessels from volume data. We have
shown that, despite the large amount of data, the presence of noise, and the
complexity of imaged structures, it is possible to apply efficient procedures to
segment and visualize anatomical structures. The 3D display of segmented
objects allows the study and qualification of complex shapes and interrelations
of different structures, and provides specific reference to the position of ab-
normalities with respect to the surrounding anatomical structures.

An additional important role of the image processing techniques presented
here is to improve the visibility of fine vascular structures from highly
specialized MRA data sets in which this information is present but not
necessarily displayed in an optimal way. We have demonstrated that the SNR
of MRA can be improved significantly using a discontinuity-preserving 3D-
filter. A 3D rendering of the segmented vascular system improves the visual
impression of structural relationships.

The quality of the segmentation results and 3D renderings is evaluated by
radiologists and surgeons specifically considering its potential use in surgical
planning, where the access to major morphological features is required.
Although the vascular system obtained by the processing of MRA data turns
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out to be more complete and finer detailed, the segmentation of spin-echo
images yields promising results and support a further development of three-
dimensional structural segmentation methods.

We believe this research is a step towards the realization of a system that
allows maximum information to be obtained from a single noninvasive proce-
dure. The extraction of specific information, which may vary from case to
case, is done by the computer. The possibility of retrospectively answering of
multiple questions, and the excellent cost-effectiveness of using only one brief
patient encounter and minimal computational expense favors such an approach
over specific goal-directed MR-acquisitions.

Acknowledgments: The research reported in this article is supported by the
Swiss National Science Foundation grant number 4018-11082 and by the NIH
PO1 CA41167 (USA).

Fig. 1a,b, 2a,b: Maximum intensity projections (left) and 3D surface renderings of the
arteries (right) of a MRA data set
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Fig. 3: Corresponding slices obtained by Magnetic Resonance Angiography (left), Spin-echo
acquisition (center) and result after the enhancement of tubular structures (right)

Fig. 4: 3D surface rendering of the arteries segmented from the MR-angiogram (left) and from
the spin-echo image data (right). The circular structure represents a hematoma.
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Fig. 5: Brain surface, surface of white matter and the ventricular system in combination with
the main arteries extracted by the proposed segmentation scheme. The complete information is
obtained by the processing of a routine spin-echo acquisition. The arrow points to the
hematoma. ‘
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Abstract

This paper describes an image processing, pattern recognition and computer gra-
phics system for the noninvasive identification and evaluation of atherosclerosis
using multidimensional Magnetic Resonance Imaging (MRI). Particular
emphasis has been placed on the problem of developing a pattern recognition
system for noninvasively identifying the different plaque classes involved in
atherosclerosis using minimal a priori information. This pattern recognition
technique involves an extension of the ISODATA clustering algorithm to include
an information theoretic criterion (Consistent Akaike Information Criterion) to
provide a measure of the fit of the cluster composition at a particular iteration
to the actual data. A rapid 3-D display system is also described for the simul-
taneous display of multiple data classes resulting from the tissue identification
process. This work demonstrates the feasibility of developing a "high informa-
tion content" display which will aid in the diagnosis and analysis of the athero-
sclerotic disease process. Such capability will permit detailed and quantitative
studies to assess the effectiveness of therapies, such as drug, exercise and dietary
regimens.
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1. Introduction

Magnetic Resonance Imaging (MRI) is rapidly becoming accepted as a valuable
diagnostic tool in modern day radiology. One of the most valuable aspects of
MRI is that it provides multidimensional (or multispectral) imagery which
emphasizes different soft tissue characteristics. However, techniques are just
beginning to be developed to combine information from different pulse
sequences for the purpose of characterizing and identifying different tissue types.
This paper describes our work on the development and integration of multidi-
mensional (i.e., multispectral) image processing, pattern recognition and 3-D
display techniques which are capable of effectively utilizing multispectral MR
imagery. This work demonstrates the feasibility of utilizing these techniques for
the noninvasive evaluation of a disease such as atherosclerosis.

We have focused the development of these techniques on atherosclerosis
because it represents a major health risk in the United States and other developed
countries. The diagnosis and management of the consequences of atherosclerosis
is a major contributing factor to health care costs. The current gold standard for
the diagnosis and evaluation of atherosclerosis is x-ray angiography, an invasive
procedure only justified after severe cardiovascular problems have already
developed, such as stroke, myocardial infarction or peripheral vascular ischemia.
Additionally, angiography carries the risks of high x-ray exposure, reaction to
the contrast medium, as well as potential embolism. Most importantly, detection
of the disease at an advanced stage means that much of the damage has been
done, and the disease process is not generally reversible. More recently,
techniques for producing an MRI correlate of x-ray angiography, called MRI
angiography, have been developed which noninvasively show the lumen of the
vessel. All such angiographic techniques suffer from the problem of not being
able to characterize the tissues in the wall of the vessel, which is essential when
evaluating the atherosclerotic lesion and stage of the disease.

Work by other investigators has demonstrated that different MRI pulse
sequences are able to enhance the contrast between certain atherosclerotic tissue
types [Kaufman et al 1982; Herfkens et al 1983 and Wesbey et al 1986]. Most
work to date has concentrated on visualization of protrusional atheromatous
tissue. We have been specifically interested in developing techniques for
automatically identifying the different atherosclerotic tissue class types involved
in the disease process for both protrusional as well as non-protrusional lesions.
We have concentrated on recognizing the tissue classes of normal muscle wall
(i.., intima and media) and the major atheromatous plaque constituents, which
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include: (1) fatty, lipid containing plaque; (2) fibrous, dense connective tissue;
(3) complex mixed fatty and fibrous tissue; (4) calcification; and (5) thrombus.
Previous work of ours has concentrated on application of these techniques to
fresh excised human aorta specimens [Merickel et al 1986 and Merickel et al
1988]. This paper describes new techniques developed to extend this work to
the noninvasive evaluation of atherosclerosis in patients. The ability to reliably
identify different tissue types is an important goal because it will permit the
stage of the disease process to be quantitatively evaluated and followed over
time.

2. The General Approach
2.1 Soft Tissue Characterization with Multispectral MRI

MRI provides multispectral or multidimensional information regarding soft tissue
types due to the ability of the machine operator to control pulse sequence
parameters. Different spin-echo pulse sequences were employed which enable
different physicochemical aspects of the tissue to be emphasized. Contrast
between different tissue constituents in MRI is due to the distribution of water
and lipid (fat) protons, as well as inherent differences in their nuclear spin
relaxation times. Multiple images emphasizing different tissue characteristics
can be obtained at the same slice position to produce a multispectral data set of
overlying image planes.

The standard spin-warp imaging method was employed with spin-echo
pulse sequences chosen to emphasize the MRI parameters of T, the spin lattice
relaxation time, T,, the spin-spin relaxation time, and proton density. In MRI,
the time between the excitation pulse and the spin-echo maximum is denoted as
TE, and the repetition time between serial excitation pulses is referred to as TR
[Bottomley et al 1984]. Images emphasizing differences in proton density were
obtained using relatively short values of TE (< 32 ms) and long values of TR (>
1.7 s) to obtain maximum signal intensity. Images emphasizing differences in
T, were obtained using relatively short values of TE (< 20 ms) and TR (< 0.9
s), while images emphasizing differences in T, were obtained with relatively
long values of TE (60 ms) and long TR times (> 1.7 s) to allow equilibration
between scans. Such T, weighted images were usually obtained as the second
echo of a dual echo sequence. Specific pulse sequence parameters employed are
given in the legend for Figure 2.
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Fig. 1. Image processing, pattern recognition and graphical display system for creating 3-D display
of aorta as described in text

2.2 Pattern Recognition Protocol

The pattern recognition system which has been developed to classify the major
tissue types involved in atherosclerosis based on the above multispectral MR
imagery is shown in block diagram form in Figure 1. The major steps in the
process are listed below. 1) The input to the system is multiple pulse sequence
images (usually proton density (pd), T, and T,) of a major vessel taken in cross
section. 2) The entire scene is segmented to extract the major vessel(s) of
interest from the rest of the scene. 3) The inner and outer wall boundaries of
the major vessel are then identified using contour following methods to identify
the vessel wall; 4) Classification techniques are utilized to identify the different
soft tissue types of interest in the vessel wall identified in (3) above. 5) A 3-D
data base for the different soft tissue types is then created which is displayed
using 3-D graphical techniques. Steps 2 and 3 involve determination of the
vessel wall boundaries. Steps 4 and 5 involve classification of the tissues in the
vessel wall and creation of a 3-D data base of the resulting class types (eg.,
"normal wall" and the major atheromatous plaque constituents of fatty plaque,
fibrous plaque, and complex plaque with possible calcification). The identifica-
tion of these soft tissue types can be directly utilized for evaluation of the
physiological stage of the disease. This is done by examination of the ratios of
the various plaque constituent volumes to the total wall volume.
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3. MR Imaging of the In Vivo Aorta

The work reported in this paper has focused on imaging the lower abdominal
aorta due to its large size as well as the relatively small movement artifacts due
to respiration. Images were generated using a Siemens spine coil on a 1 Tesla
Magnetom Imager. The present study employed transverse T,, proton density
(Pd) and T, weighted images obtained from approximately 10 different slice
positions. The work reported in this paper was performed on a patient with
advanced atherosclerosis (confirmed by prior angiography) as well as a "normal"”
subject with no significant disease.

3.1 Artifact Reduction

The raw MR images contained several artifacts which had to be removed before
segmentation and classification could be performed. Most artifacts were caused
by the use of the spine coil and are typical of surface coils currently employed
in MR imaging to increase spatial resolution and the signal to noise ratio. The
sensitivity profile of the surface coil, such as the spine coil employed in this
investigation, causes the average intensity of the image to fall off with distance
from the center of the coil. This intensity fall off results in an intensity gradient
across the image of an individual slice as well as a reduction in average intensity
of slices imaged further from the coil.

The intensity gradient within a slice was reduced by employing the tech-
nique of dividing each image by a spatially smoothed copy of itself on a pixel
by pixel basis [Haselgrove & Prammer 1986]. This technique significantly
reduces the low frequency surface coil intensity gradient and produces some high
frequency emphasis which enhances the contrast of edges [Bottomley 1984].

The average intensity of slices fell off with distance from the surface coil
which required all of the slices belonging to each of the 3 pulse sequences to be
normalized to some standard. This was accomplished by normalizing each of
the sequences to the mean intensity value of a small set of easily identifiable
tissues common to all slices. For this data set we used skeletal muscle and
interstitial tissue as the readily identifiable tissues for normalization. The mean
values for skeletal and interstitial tissue for each pulse sequence were then used
to define the set of standard intensity values for these reference tissues, which
then allowed computation of the T,, Pd and T, normalization scale factors for
each slice.
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Fig. 2. Representative cross sectional T,, Pd and T, images through the lower abdominal aorta in
"normal” subject (Norm, top row) and patient with advanced atherosclerosis (Ath, bottom row)
confirmed with angiography. The labels in the T, weighted image from the diseased aorta are: W
= aorta wall; and L = aorta lumen. The pulse sequence parameters for the "normal” subject are: T,
= SE 500/20, pd = SE 1700/32 and T, = SE 1700/64; x-y resolution = 0.59 mm/pixel; distance
between slices = 15 mm; and slice thickness = 10 mm. The parameters for the patient with advanced
disease are: T, = SE 900/20, pd = SE 3600/20 and T, = 3600/60; x-y resolution 0.59 mm/pixel;
distance between slices = 10 mm; and slice thickness = 5 mm. White scale bars in bottom right hand
corner are 4.5 cm.

A third major artifact was within plane misregistration between the T,, Pd
and T, pulse sequences for an individual slice. This misregistration is due to a
combination of patient movement and configuration of the current Siemens
reconstruction software. The shifts were corrected by spatially shifting the T,,
Pd and T, images until they lined up to one another by visual inspection.

3.2 Basic Characteristics of the Aorta Viewed with MRI

Figure 2 shows a set of T,, Pd and T, weighted transverse images through a
representative section of the "normal" subject and the patient with advanced
disease. The T, and T, weighted images through the diseased vessel clearly
show the wall of the aorta to be thickened, particularly on the dorsal side next
to the vertebral column. The wall thickening and distribution of plaque tissues
can be quite complex in patients with advanced disease.

In general, the lumen of a vessel appears dark with all pulse sequences
due to spin washout, except in cases exhibiting significant flow artifact
associated with the movement of the blood and the long T, of blood (approx. 1
sec, see [Bradley 1987] for review). Flow artifacts which can cause the lumen
to appear bright are entry phenomenon and second echo rephasing. The lumen
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of most of the images in Figures 2 and 3 are dark compared to the surrounding
vessel wall. However, the lumen appears gray in the T, weighted pulse sequence
of the normal subject in Figure 2 because it is the first slice in the sequence (i.e.,
entry phenomenon).

4. Pattern Recognition and Classification of In Vivo Tissue

Previously, we have demonstrated the ability to identify the plaque constituent
classes of normal wall (primarily smooth muscle), fatty lipid containing plaque,
fibrous plaque (primarily connective tissue) and mixed complex plaque with
regions of calcification in an excised aorta preparation [Merickel et al 1986 and
Merickel et al 1988]. We have found that simple pattern recognition classifiers,
such as the minimum distance to the means and Fisher linear classifiers, are
sufficient for the classification of excised aorta specimens using multispectral
image input consisting of T,, Pd and T, weighted image sequences. However,
these supervised classification techniques cannot be utilized in vivo due to the
lack of appropriate a priori training data, such as histopathology [Tou &
Gonzalez 1974]. We have therefore developed an unsupervised classification
technique, based on the ISODATA clustering algorithm, which does not require
training data.

4.1 Segmentation of Aorta

Following acquisitior of transverse images of the abdominal aorta, the T,
weighted images are used for aorta segmentation. The T, weighted images are
utilized for image segmentation because they have been found to emphasize the
structural information involving the vessel wall boundaries. The segmentation
is accomplished by convolving the images with a Laplacian of a Gaussian
operator. Peaks in the resulting image correspond to the position of the aorta,
the vena cava and various other structures. The spot detected sequence of
images is thresholded and an average of this sequence is calculated. Since the
aorta and vena cava are the only circular structures with a consistent spatial
location between slices, the peaks in the average of the sequence correspond to
only the aorta and vena cava. Since the positions of the aorta and vena cava
relative to each other are known, it is a simple matter to select the peak
corresponding to the aorta. Extractions are performed about a peak in each
convolved slice nearest the aorta’s peak in the average of the sequence, and the
resulting extracted regions are passed to the aorta segmentation procedure.
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The goal of the aorta segmentation procedure is to locate a better
approximation to the center of the aorta than that obtained through spot detection
of the images and to distinguish the outer wall of the aorta from the surrounding
tissue. An automatic threshold selection is performed on each of the extracted
regions. The first goal is achieved through an erosion process to find circular
structures in the resulting binary images. The spatial average of the remaining
points are taken as the center of the aorta. A smaller sub-image is extracted
about this center, further reducing the quantity of tissue outside the aorta.

The aorta segmentation procedure uses these sub-images as a starting point
to accomplish it’s second goal. A threshold for each of these sub-images is
automatically determined and thresholding is performed. A radius filter is used
that eliminates the regions in the thresholded sub-image which lie beyond the
aorta wall. The result is a region with size, shape, and position corresponding
to that of the aorta, as shown in Figure 3. A one pixel border is added to this
region to ensure inclusion of all of the aorta wall.

Fig. 3. Resulting boundaries (white curves) of the outer wall of the aorta for the first eight
successive sections of the diseased aorta in vivo data set which are superimposed on the T, weighted
MR images.

4.2 Classifier Description

Most clustering techniques utilize task dependent heuristics or analyst interven-
tion to supervise the progress of the clustering algorithm. We have been
interested in developing a clustering procedure which utilizes as little a priori
information as possible in order to determine the intrinsic number of tissue
classes in the MRI data. Carman and Merickel [1990] have developed an
internally supervised clustering technique for classification of the in vivo aorta
images which requires little a priori information. The ISODATA clustering
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algorithm was utilized as the basic clustering strategy due its well known
robustness and previous success in similar multispectral problems, as well as its
relative ease of implementation [Anderberg 1973 and Ball & Hall 1965].
However, one of the major problems with ISODATA, as well as other
unsupervised classifiers, is their sensitivity to initial parameter selection. Our
clustering technique is based upon a modification of the ISODATA clustering
algorithm and utilizes a statistical measure, the Consistent Akaike Information
Criterion (CAIC), to provide supervision of the splitting and merging operations
as described below.

ISODATA is a variation of the K-means clustering algorithm, in which
data points are assigned to the nearest cluster (i.e., class) [Tou & Gonzalez
1974]. Many variations of ISODATA have been developed over recent years in
which <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>