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Preface

This book is about detecting and recognizing 2D objects in gray-level images. How are
models constructed? How are they trained? What are the computational approaches to
efficient implementation on a computer? And finally, how can some of these compu-
tations be implemented in the framework of parallel and biologically plausible neural
network architectures?

Detection refers to anything from identifying a location to identifying and register-
ing components of a particular object class at various levels of detail. For example,
finding the faces in an image, finding the eyes and mouths of the faces. One could
require a precise outline of the object in the image, or the detection of a certain number
of well-defined landmarks on the object, or a deformation from a prototype of the
object into the image. The deformation could be a simple 2D affine map or a more
detailed nonlinear map. The object itself may have different degrees of variability. It
may be a rigid 2D object, such as a fixed computer font or a 2D view of a 3D object,
or it may be a highly deformable object, such as the left ventricle of the heart. All
these are considered object-detection problems, where detection implies identifying
some aspects of the particular way the object is present in the image—namely, some
partial description of the object instantiation.

Recognition refers to the classification among objects or subclasses of a general
class of objects present in a particular region of the image that has been isolated. For
example, after detecting a face, identify the person, or classify images of handwritten
digits, or recognize a symbol from a collection of hundreds of symbols. Both domains
have a significant training and statistical estimation component.

Finding a predetermined object in a scene, or recognizing the object present in a
particular region are only subproblems of the more-general and ambitious goal of
computer vision. In broad terms, one would want to develop an artificial system that
can receive an image and identify all the objects or a large part of the objects present in

xi
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xii Preface

a complex scene from a library of thousands of classes. This implies not only detection
and recognition algorithms, but methods for sequentially learning new objects and
incorporating them into the current recognition and detection schemes. But perhaps
hardest of all is the question of how to start processing a complex scene with no prior
information on its contents—what to look for first, and in which particular regions
should a recognition algorithm be implemented. This general problem is unsolved,
although our visual system seems to solve it effortlessly and very efficiently.

Deformable-template models offer some reasonable solutions to formulating a rep-
resentation for a restricted family of objects, estimating the relevant parameters and
subsequently detecting these objects in the image, at various levels of detail of the
instantiation. Each model is defined in terms of a subset of points on a reference grid,
the template, a set of admissible instantiations of these points, also referred to as
deformations of the template, and a statistical model for the data—given a particular
instantiation of the object is present in the image. A Bayesian framework is used, in
that probabilities are assigned to the different instantiations. Bayes’s rule then yields
a posterior distribution on instantiations. Detections are computed by finding maxima
or high values of the posterior. In chapter 2, some general and unifying elements of
the Bayesian models used in all the detection algorithms are introduced, together with
an overview of the models applied to a simple synthetic example. The details of the
detection algorithms are provided in chapters 3–8.

Chapter 9 is devoted to recognition of isolated objects or shapes, assuming some
mechanism exists for isolating the individual objects from the more-complex image.
The classification schemes can be viewed as a recursive partitioning of the hierarchy
of templates using classification trees. Chapter 10 is an exploration into a possible
approach to complex scene analysis by merging detection and recognition, both in
terms of training and in terms of implementation. Detectors are no longer geared to
one particular class, but to object clusters containing elements from several classes.
Detection can be viewed as a way to quickly choose a number of candidate regions
for subsequent processing with a recognition algorithm. An overview of the models
of chapters 9 and 10 are also given in chapter 2.

Chapter 11 describes schematic neural network architectures that train and imple-
ment detection and recognition algorithms based on the sparse models developed in
chapters 6–9. The goal is to show that models based on binary local features, with
built-in invariances, simple training procedures, and simple computational implemen-
tations, can indeed provide computational models for the visual system. Chapter 12
provides a description of the software and data sets, all of which are accessible through
the web at http://galton.uchicago.edu/~amit/book/.
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xiii Preface

The Introduction is used to briefly describe the major trends in computer vision and
how they stand in relation to the work in this book. Furthermore, in the last section
of each chapter, references to related work and alternative algorithms are provided.
These are not comprehensive reviews, but a choice of key papers or books that can
point the reader further on.

The emphasis is on simplicity, transparency, and computational efficiency. Cost
functions, statistical models, and computational schemes are kept as simple as
possible—Occam’s razor is too-often forgotten in the computer-vision community.
Statistical modeling and estimation play an important role, including methods for
training the object representations and classifiers. The models and algorithms are
described at a level of detail that should enable readers to code them on their own;
however, the readers also have the option of delving into the finest details of the
implementations using the accompanying software. Indeed, it is sometimes the case
that the key to the success of an algorithm is due to some choices made by the au-
thor, which are not necessarily viewed as crucial or central to the original motivating
ideas. These will ultimately be identified by experimenting with the software. It is
also useful for the readers to be able to experiment with these methods and to discover
for themselves the strengths and weaknesses, leading to the development of new and
promising solutions.

The images from the experiments shown in the book, and many more, are provided
with the software. For each figure in the book, a parameter file has been prepared,
allowing the reader to run the program on the corresponding image. This should
help jump-start the experimentation stage. Even trying to change parameter settings
in these files can be informative, or running them on additional images. Chapter 12
should provide the necessary documentation for understanding the parameters and
their possible values.

The examples presented in this book should convince the reader that problems
emerging in different computer-vision subcommunities, from the document-analysis
community to the medical-imaging community, can be approached with similar tools.
This comes at the expense of intensively pursuing any one particular application. Still,
the book can be used as a reference for particular types of algorithms for specific
applications. These include detecting contours and curves, image warping, anatomy
detection in medical images, object detection, and character recognition. There are
common themes that span several or all chapters, as well as discussions of connections
between models and algorithms. These are, in large part, found in chapter 2 and the
introductory comments and the final discussion section of each chapter. It is still
possible to study individual models independently of the others.
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xiv Preface

The mathematical tools used in this book are somewhat diverse but not very so-
phisticated. Elementary concepts in probability and statistics are essential, including
the basic ideas of Bayesian inference, and maximum-likelihood estimation. These
can be found in Rice (1995). Some background in pattern recognition is useful but
not essential and can be found in Duda and Hart (1973). A good understanding of
multivariate calculus is needed for chapters 3 and 5, as well as some basic knowledge
of numerical methods for optimization and matrix computation (which can be found
in Press and colleagues 1995). The wavelet transform is used in chapters 3 and 5,
where a brief overview is provided as well as a description of the discrete wavelet
transform. (For a comprehensive treatment of the theory and applications of wavelets,
see Wickerhauser 1994.) Some elementary concepts in information theory, such as
entropy and conditional entropy, are used in chapters 4 and 9 and are briefly covered
in a section of chapter 4. (For a comprehensive treatment of information theory see
Cover and Thomas 1991.)

Computer vision is a fascinating subject. On one hand, there is the satisfaction of
developing an algorithm that takes in an image from the web or the local webcam
and in less than a second finds all the faces. On the other hand are the amazing
capabilities of the human visual system that we experience at every moment of our
lives. The computer algorithms are nowhere near to achieving these capabilities. Thus,
every once in a while, the face detector will miss a face and quite often will select
some part of a bookshelf or a tree as being a face. The visual system makes no such
mistakes—the ground truth is unequivocal and brutally confronts us at every step of
the way. Thus we need to stay humble on one hand and constantly challenged on the
other. It is hoped that the reader will become engaged by this challenge and contribute
to this exciting field.
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1 Introduction

The goal of computer vision is to develop algorithms that take an image as input
and produce a symbolic interpretation describing which objects are present, at what
pose, and some information on the three-dimensional spatial relations between the
objects. This involves issues such as learning object models, classifiers to distinguish
between objects, and developing efficient methods to analyze the scene, given these
learned models. Our visual system is able to carry out such tasks effortlessly and
very quickly. We can detect and recognize objects from a library of thousands if not
tens of thousands in very complex scenes. However, the goal of developing computer
algorithms for these tasks is still far from our grasp. Furthermore, there is still no
dominant and accepted paradigm within which most researchers are working. There
are a number of major trends, briefly described below, relative to which the work in
this book is placed.

1.1 Low-Level Image Analysis and Bottom-up Segmentation

Image segmentation is a dominant field of research in the computer vision and image
analysis communities. The goal is to extract boundaries of objects or identify regions
defined by objects, with no prior knowledge of what these objects are.

The guiding philosophy is that only through such low-level processing is there
any chance of identifying more-restricted regions in the scene for further high-level
processing, such as recognition. Because these algorithms operate with no higher-
level information about the objects, they are referred to as low-level image analysis.
Another commonly used term is bottom-up image processing.

Many of the early ideas that guided much of the subsequent research can be found
in Duda and Hart (1973) and Marr (1982). Motivated by the connections established

1
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by Marr and Hilderith (1980) between edge detection algorithms and computations
carried out in the primary visual cortex, a significant body of work in computer vision
has been devoted to the specific use of edge detection for segmentation. An edge
detector is used to identify all edges in the image, after which some type of local rule
tells how to group the edges into continuous contours that provide continuous outlines
of the objects. Other approaches to segmentation are region based. Regions with sim-
ilar characteristics are identified, typically through local region-growing techniques.
A detailed description of a variety of such approaches can be found in Haralick and
Shapiro (1992).

A statistical formulation of the segmentation problem from a Bayesian point of
view was introduced in Geman and Geman (1984), combining region and edge infor-
mation. An extensive review of such statistical approaches can be found in Geman
(1990). The statistical model introduces global information in that the full segmen-
tation is assigned a cost or posterior probability, in terms of the “smoothness” of the
different regions and their contours. The various algorithms proposed to optimize this
global cost are quite computationally intensive. Other approaches to bottom-up im-
age segmentation currently being proposed can be found in Elder and Zucker (1996);
Parida, Geiger, and Hummel (1998); Ishikawa and Geiger (1998); and Shi and Malik
(2000).

However, there are some persistent problems with the notion of determining a
segmentation of an image without any models of the objects that are expected to
be present. First, there is no agreement as to what a good segmentation really is.
Furthermore, continuous contours are very difficult to determine in terms of local
edges detected in an image. Using local-edge information alone, it is very difficult
to actually trace the contour of an object—for example, various noise effects and
occlusion can eliminate some of the edges along the contour. A local procedure for
aggregating or grouping edges would encounter spurious bifurcations or terminations.
Homogeneous regions are difficult to define precisely, and at times, lighting conditions
create artificial regions that may cause an object to be split or merged with parts of
the background.

As a result, people have tried to incorporate a priori information regarding specific
objects in order to assist in identifying their instantiations. This involves more-specific
modeling and more-restricted goals in terms of the algorithms. Instead of an initial
segmentation that provides the outlines of all the objects of interest, which then need to
be classified, one tries to directly detect specific objects with specific models. Because
shape information is incorporated into the model, one hopes to avoid the pitfalls of
the bottom-up approach and really identify the instantiation of these objects. This
approach, called high-level image analysis, is the main theme of chapters 3–8.
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3 1.2 Object Detection with Deformable-Template Models

It should be emphasized that all high-level models use some form of low-level
processing of the data, and often an initial edge-detection procedure is performed.
However, such processing is always geared toward some predefined goal of detecting
a specific object or class of objects, and hence are presented only within the context
of the entire algorithm. In that sense, there is no meaning to the notion of “good”
edge detection, or a “good” image segmentation divorced from the outcome of the
high-level algorithm.

1.2 Object Detection with Deformable-Template Models

The need to introduce higher-level object models has been addressed in a somewhat
disjointed manner in the statistics community on one hand and in the computer-vision
community on the other. In this section, we briefly discuss the former, which is the
point of origin for the work in this manuscript.

High-level object models, under the name deformable-template models, were in-
troduced in the statistics community in Grenander (1970, 1978). A statistical model is
constructed that describes the variability in object instantiation in terms of a prior dis-
tribution on deformations of a template. The template is defined in terms of generators
and bonds between subsets of generators. The generators and the bonds are labeled
with variables that define the deformation of the template. In addition, a statistical
model of the image data, given a particular deformation of the template, is provided.
The data model and the prior are combined to define a posterior distribution on defor-
mations given the image data. The model proposed by Fischler and Elschlager (1973)
is closely related, although not formulated in statistical terms, and is quite ahead of
its time in terms of the proposed computational tools. Much of the theory relating
to these models is presented in Grenander (1978) and revisited in Grenander (1993).
Some applications are presented in the latter part of Grenander (1993). The subject
matter has been mostly nonrigid objects in particular objects that occur in biological
and medical images.

The actual applications described in Grenander (1993) assume that the basic pose
parameters, such as location and scale, are roughly known—namely, the detection
process is initialized by the user. The models involve large numbers of generators with
“elastic” types of constraints on their relative locations. Because deformation space—
the space of bond values—is high dimensional, there is still much left to be done after
location and scale are identified. The algorithms are primarily based on relaxation
techniques for maximizing the posterior distributions. These types of elastic models
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are described in chapters 3 and 5. Chapter 3 draws primarily on the work presented
in Grenander, Chow, and Keenan (1991); Zhu and Yuille (1996); and Chesnaud,
Réfrégier, and Boulet (1999). Chapter 5 draws on the work in Amit, Grenander, and
Piccioni (1991) and Amit (1994), with some new unpublished material.

Some of these ideas were developed in parallel using nonstatistical formulations.
In Kass, Witkin, and Terzopoulos (1987) and Terzopolous and colleagues (1987), the
idea of 1D deformable contours was introduced, as well as ideas of elastic constraints
on deformations, and Bajcsy and Kovacic (1988) introduced the idea of image de-
formation as an extension of older work on image sequence analysis by Horn and
Schunck (1981) and Nagel (1983). In these models, a regularizing term takes the place
of the prior, and the statistical model for the data takes the form of a cost function on
the fit of the deformed model to the data.

In much of the above-mentioned work, the gray-level distributions are modeled
directly. This can be problematic in achieving photometric invariance, invariance
to variations in lighting, gray-scale maps, and so on. At the single pixel level, the
distributions can be rather complex due to variable lighting conditions. Furthermore,
the gray-level values have complex interactions requiring complex distributions in
high-dimensional spaces. The options are then to use very simple models, which are
computationally tractable but lacking photometric invariance, or to introduce complex
models, which entail enormous computational cost.

An alternative is to transform the image data to variables that are photometric
invariant—perhaps at the cost of reducing the information content of the data. How-
ever, it is then easier to formulate credible models for the transformed data. The
deformable curve model in chapter 4 and the Bernoulli deformable image model in
section 5.4 employ transforms of the image data into vectors of simple binary vari-
ables. One then models the distribution of the binary variables, given a particular
deformation rather than the gray-level values. The material in chapter 4 draws pri-
marily from the work in Petrocelli, Elion, and Manbeck (1992) and from Geman and
Jedynak (1996).

All the algorithms mentioned above suffer from a similar drawback. Some form of
initialization provided by the user is necessary. However, the introduction of binary
features of varying degrees of complexity allows us to formulate simpler and sparser
models with more-transparent constraints on the instantiations. Using these models,
the initialization problem can be solved with no user intervention and in a very
efficient way. Such models are discussed in chapters 6, 7, and 8, based on work in
Amit, Geman, and Jedynak (1998), Amit and Geman (1999), and Amit (2000).

These ideas do fit within the theoretical pattern-analysis paradigm proposed in
Grenander (1978). However, the emphasis on image data reduction does depart from
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Grenander’s philosophy, which emphasizes image synthesis and aims at constructing
prior distributions and data models, which, if synthesized, would produce realistic
images. This image-synthesis philosophy has also been adopted by people study-
ing compositional models, as in Bienenstock, Geman, and Potter (1997) and
Geman, Potter, and Chi (1998), and by people studying generative models, such as
Mumford (1994), Revow, Williams, and Hinton (1996), and Zhu and Mumford (1997).
Providing a comprehensive statistical model for the image ensemble is not only a very
hard task, it is not at all clear that it is needed. There is a large degree of redundancy
in the gray-level intensity maps recorded in an image, which may not be all that
important for interpreting the symbolic contents of the image.

1.3 Detection of Rigid Objects

In the computer-vision community, the limitations of straightforward bottom-up seg-
mentation also led to the introduction of object models that enter into the detection
and recognition process. Most of the work has concentrated around rigid 3D objects
(see Grimson 1990; Haralick and Shapiro 1992; Ullman 1996). These objects lend
themselves to precise 3D modeling, and the main type of deformations considered
are linear or projective.

Lists of features at locations on the object at reference pose are deduced analytically
from the 3D description. The spatial arrangements of these features in the image
are also predicted through analytic computations, using projective 3D geometry and
local properties of edge detectors. Typical features that are used in modeling are
oriented edges, straight contour segments—lines of various lengths, high curvature
points, corners, and curved contours. Two complementary techniques for detection
are searches of correspondence space and searches through pose space.

1.3.1 Searching Correspondence Space

One systematically searches for arrangements of local features in the image consistent
with the arrangements of features in the model. The matches must satisfy certain
constraints. Unary constraints involve the relationship between the model feature
and the image feature. Binary constraints involve the relationship between a pair
of model features and a pair of image features. Higher-order constraints can also
be introduced. Various heuristic tree-based techniques are devised for searching all
possible matchings to find the optimal one, as detailed in Grimson (1990). Invariance
of the detection algorithm to pose is incorporated directly in the binary constraints.
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In Haralick and Shapiro (1992), this problem is called the inexact consistent labeling
problem, and various graph theory heuristics are employed.

Similar to the search of correspondence space, or the inexact consistent labeling
problem, is the dynamic programming algorithm presented in chapter 7, which is
based on work in Amit and Kong (1996) and Amit (1997). The constraints in the
models are invariant to scale and to some degree of rotation, as well as nonlinear de-
formations. Detection is achieved under significant deformations of the model beyond
simple linear or projective transformations. The full graph of constraints is pruned to
make it decomposable, and hence amenable to optimization using dynamic program-
ming, in a manner very similar to the proposal in Fischler and Elschlager (1973). The
local features employed are highly invariant to photometric transformations but have
a much lower density than typical edge features.

1.3.2 Searching Pose Space

Searching pose space can be done through brute force by applying each possible pose
to the model and evaluating the fit to the data. This can be computationally expensive,
but we will see in chapter 8 that brute force is useful and efficient as long as it is
applied to very simple structures, and with the appropriate data models involving
binary features with relatively low density in the image.

In some cases, searching parts of pose space can be achieved through optimization
techniques such as gradient-descent methods or dynamic programming. This is pre-
cisely the nature of the deformable models presented in chapters 3–5. Note, however,
that here objects are not assumed rigid and hence require many more pose parame-
ters. These methods all face the issue of initialization.

A computational tool that repeatedly comes up as a way to quickly identify the
most important parameters of pose, such as location and scale, is the Hough transform,
originally proposed by Hough (1962) and subsequently generalized by Ballard (1981).
The Hough transform is effectively also a “brute force” search over all pose space.
Because the structures are very simple, the search can be efficiently implemented. The
outcome of this computation provides an initialization to the correspondence space
search or a more refined pose space search (see Grimson 1990 and Ullman 1996) or,
in our case, the more complex deformable template models. In Grimson (1990), a
careful analysis of the combinatorics of the Hough transform is carried out in terms
of the statistics of the local features. A very appealing and efficient alternative to the
Hough transform has recently been proposed in Fleuret and Geman (2001), where
a coarse-to-fine cascade of detectors is constructed for a treelike decomposition of
pose space into finer and finer bins.
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The Hough transform, as a method of jump-starting more intensive algorithms, is
intuitively very appealing but did not take off as a dominant paradigm in computer
vision partly because of the combinatoric problems analyzed in Grimson (1990).
Testifying to this is the fact that a significant body of work in the same community
did not use this approach for face detection (see, for example, Rowley, Baluja, and
Kanade 1998; Sung and Poggio 1998). One reason may be the use of predesigned
local features. In chapter 6, we introduce a hierarchy of local-edge arrangements of
increasing complexity. Despite being more complex than simple edges, these local
features are still very stable on object and quite rare in the background. The features in
the model are obtained through training and do not necessarily have a clear semantic
interpretation. Sparse object models are then defined as flexible arrangements of a
small number of these local features. The construction and training of sparse object
models in terms of these local features, and the statistical properties of these features
on object and on background are also described in chapter 6.

In chapter 8, an efficient algorithm for detecting such models is presented, where
the first step of identifying candidate locations is obtained using the Hough transform.
This material is based on work in Amit, Geman, and Jedynak (1998), Amit and Geman
(1999), and Amit (2000). The work in Burl, Leung, and Perona (1995) and Burl,
Weber, and Perona (1998), is very similar in spirit; however, the features and the
statistical models are more complex, and the computation of the detection more
intensive.

The dominant view in the computer-vision community is that some form of bottom-
up processing involving segmentation is still necessary to jump-start the detection and
recognition tasks. In Ullman (1996), a case for this is made in terms of biological
processes in the visual system. The point of view put forward here is that one can go
a long way with a combination of model-driven detections followed by more-refined
processing involving classification and obtaining more-detailed instantiations. This is
one of the main conclusions of chapter 6, where we study the statistics of the particular
local features employed in the sparse models; of chapter 8, where we implement a
version of the Hough transform for initial detection of candidate locations; and of
chapter 10, where some ideas on combining object detection and recognition for
complex scene analysis are explored.

1.3.3 Rigid versus Nonrigid Objects

Much of the work on object detection is centered around rigid objects. This has led,
for example, to detailed analysis of the specific pose space associated with 2D and 3D
rigid transformations and their projections (see, for example, Arbter and colleagues
1990, Mundy and Zisserman 1992). There is also an emphasis on complete planar
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rotation invariance. The rigid nature of the objects has lead to reliance on “predefined
features” with labels such as lines, corners, junctions and so on. In recent years,
a view-based approach has become widely accepted in which 3D object detection
and recognition are treated as 2D problems depending on the particular views of the
objects (see Ullman 1996; Riesenhuber and Poggio 2000).

However, even for 2D views of rigid objects, lines and contours or even corners
can be ambiguous in the image domain. Moreover, the visual system can detect and
recognize rigid objects even if many of the straight lines present on the real object are
deformed in the image. The message of chapters 8 and 10 is that all objects should be
studied within one framework, based on 2D views, using nonrigid 2D models. Views
of the object that are substantially different are considered as different 2D objects;
however, the flexibility (i.e., geometric invariance) introduced in the nonrigid models
implies that a wide range of views can still be accommodated by one model. This
alleviates to some extent the combinatoric problem of the resulting proliferation of
2D objects that need to be modeled, detected, and recognized. Some additional ideas
related to this problem are presented in chapter 10.

1.4 Object Recognition

Recognition of isolated objects has been studied extensively in two main contexts:
rigid 2D and 3D objects and character recognition. The latter context offers an im-
portant test bed for many ideas. Recent extensive reviews can be found in Plamondon
and Srihari (2000) and Nagy (2000). The data sets are abundant, different forms of
variability are present—rigid for printed characters and nonrigid for handwritten, and
one can work with a limited number of classes, say, only the digits, or with large
numbers such as all LATEX symbols, or Chinese characters.

1.4.1 Deformable-Template Models for Object Recognition

The problem of recognizing an image of an isolated object from among several
possible classes can be addressed in a Bayesian framework using the deformable-
template models. These models have a natural extension to a statistical model for
images of the different object classes, once a prior on object classes is determined.
The goal is then to compute the Bayes classifier—namely, the class that maximizes
the posterior on class, given the data. The deformation parameters are no longer
of direct interest but need to be integrated out in order to obtain the posterior on
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class. This type of computation is very expensive, so that in real applications, one
deformation is estimated from each of the class templates to best fit the data, and
classification is then based on various metrics defined on these deformations. Such
a procedure is spelled out in detail in Hastie and Simard (1998). Despite the fact
that the distance of the data to each template is computed modulo the deformation,
this approach still requires quite careful preprocessing and registration of the images
to a standard size. The underlying assumption is that the deformations are small. It
also requires explicit modeling of the prototype images, extensive computation at the
classification stage, and appears impractical with large numbers of shape classes. A
deformable-template-based approach to face recognition is presented in Wiskott and
colleagues (1997), although not based on a statistical model. There, the data model
is not based directly on the pixel intensities but on local features derived from Gabor
filters extracted at multiple scales.

In chapter 9, we present an alternative based on elements of the sparse-detection
models. The main tool will be binary classification trees (see Breiman and colleagues
1984), where the splits are defined in terms of flexible arrangements of local fea-
tures of the same nature as those defining the sparse models. Trees provide a natural
mechanism for exploring arrangements of increasing complexity.

Instead of modeling the posterior distribution on deformations and on class, and
then computing the posterior on-line, the trees yield partial posteriors conditional on a
smaller number of variables, which are obtained off-line during training. Computation
during classification is then very fast. An essential element of our approach is to
produce multiple randomized classification trees. Individually, the error rates of these
trees can be quite large, but when aggregated, a very powerful classifier emerges.
The work in chapter 9 is based on Amit and Geman (1997) and Amit, Geman, and
Wilder (1997).

1.4.2 Normalization and Registration

In the literature on statistical pattern recognition, it is common to address geometric
and photometric variations by preprocessing and normalization. A “standardized” im-
age is produced prior to classification, involving a sequence of operations that brings
all images to the same size and then corrects for translation, slant, and rotation. This
is not done using some template or model, because the class of the image is unknown.
Classification is then performed by one of the standard pattern recognition proce-
dures, based on the gray-level intensities of the standardized image. (For example,
penalized discriminant analysis in Hastie, Buja, and Tibshirani 1995, or multilayer
neural networks in Bottou and colleagues 1994, or classification trees in Ho, Hull,
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and Srihari 1994.) Difficulties in generalization are often encountered because the
normalization is not robust and does not accommodate nonlinear deformations. This
deficiency can only be ameliorated with very large training sets.

An alternative is to define a collection of binary features extracted from the data,
such as edges, contours, endings junctions, and so on. The feature/location pairs are
collected to make a fixed-size feature vector, which is fed into a standard type of clas-
sifier. These features may be designed to be more invariant to geometric deformations
than the raw gray-level values, using explicit disjunction (or-ing). Otherwise put, a
feature detected at a particular location is “spread” to an entire neighborhood. The
features are designed to be photometric invariant, so that no gray-level normalization
is required. These matters are investigated in chapter 9.

1.4.3 Geometric Invariants

Another approach, which has been explored in the computer-vision literature, is to
search for functions invariant to a family of transformations, such as the affine transfor-
mations. Discrimination is possible if the functions have different values for different
classes (see, for example, Lamdan, Schwartz, and Wolfson 1988; Forsyth and col-
leagues 1991; Mundy and Zisserman 1992; Binford and Levitt 1993; Reiss 1993).
The explicit introduction of geometric invariance is very appealing and provides an
element that is missing in the standard pattern-recognition approaches. The problem,
however, is that the invariant functions are defined in terms of precisely located dis-
tinguished points on the object. This is not very practical on real gray-level images,
or for objects that are deformed nonlinearly. This brings us back to the discussion
above regarding rigid versus nonrigid objects. Just as in the case of detection, it is
useful to consider shape classification for both categories as one problem. Focusing
on invariants associated strictly with rigidity can lead to unstable algorithms. Hence
the introduction of looser types of functions—flexible arrangements of local features,
which are also explored in chapter 9. With these functions, however, full rotation
invariance is lost.

1.5 Scene Analysis: Merging Detection and Recognition

The grand goal of computer vision is to enable the computer to detect and recognize
multiple objects in a visual scene. We are still very far from achieving this goal. This
is not only a function of computational limitations, it is also a result of the lack of
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a dominant paradigm agreed upon by most of the research community. As indicated
earlier, one paradigm assumes bottom-up image segmentation as a precursor to any
high-level processing. At the other extreme are compositional and generative models
(see Mumford 1994; Hinton and colleagues 1995; Bienenstock, Geman, and Potter
1997; Geman, Potter, and Chi 1998), where people attempt to provide a comprehen-
sive statistical model of entire scenes, both from the point of view of the components
generating the scene—namely, priors on complex scenes—and complex data models
of the images, given a particular configuration of objects. The view is that local
ambiguities can be resolved only in the framework of a comprehensive explanation
of the data. These models appear diametrically opposed to the segmentation models.
The only way to unambiguously determine the boundary of an object is by identifying
the object, its pose, all the objects in its neighborhood, and their respective positions.
Conceptually, these models are appealing in their attempt to pose the scene analysis
problem in a comprehensive Bayesian framework. Regrettably, they are extremely
challenging on all levels: formulating the prior models, the data models, estimating
the relevant parameters, and ultimately computing the optimal interpretation given
the image data.

Chapter 10 is an initial exploration into a possible middle path between these
two extremes, based on a combination of the sparse-detection models described in
chapter 8 and the recognition algorithms of chapter 9. Local features in the image are
not grouped in a bottom-up manner as in standard segmentation; rather, the grouping
is an outcome of the detection of a particular model, and comes with an estimated pose
and some additional instantiation parameters. These model-driven groupings of local
features can be viewed as elements of a compositional model. Recent implementations
of compositional models have used very gradual compositions, from edgelets to lines
or curves to small combinations of these, and so on. The compositions proposed here
are very coarse and there is a direct jump from the local to the global model.

If the detection models are created to be less specific, either by directly training on
a collection of classes or by training on one class and then using lower thresholds,
they define object clusters, as opposed to being dedicated to one particular class. This
means that classification must follow detection. Detecting instances of several coarse
models and subsequently classifying them is a very efficient way to obtain a relabeling
of the image into detections (involving some pose parameters) and class labels. This
labeling in no way provides a final scene interpretation. There could be multiple
labels at the same location, overlapping detections, and so on. From the point of view
of the compositional and generative models, this can be taken as a crude first pass,
which provides the higher-level models with multiple possible scene interpretations
for evaluation. In chapter 10, we discuss possible strategies for generating this basic
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map of labeled detections. How to then analyze this information and produce coherent
scene interpretations is beyond the scope of this book.

1.6 Neural Network Architectures

There have been a number of attempts to formulate parallel network architectures for
higher-level vision tasks such as detection. Some examples are the work in Fukushima
(1986) and Fukushima and Wake (1991), Olshausen, Anderson, and Van Essen (1993),
and recent models, such as Riesenhuber and Poggio (1999). Each of these models
touches upon certain important aspects of the problem. In Fukushima and Wake
(1991), hard wiring of invariance is achieved through or-ing or spreading, which is
an important component of the algorithms described in this book. However, the pro-
posed network depends too heavily on a long sequence of processing layers and on
learning more and more complex features. In Olshausen, Anderson, and Van Essen
(1993), mechanisms for shifting data from the periphery to the center for further pro-
cessing are studied, but the training of classifiers or implementing object detection as
a component of visual selection are not discussed. In Riesenhuber and Poggio (1999),
invariant recognition is achieved through a combination of or-ing as in Fukushima
and Wake (1991), generalized to continuous variables through a MAX (maximization)
operation, and predefined pair-wise conjunctions of features. The MAX operation is
taken to an extreme where all information on the relative locations of features is lost
at the highest stage. This is problematic when dealing with even simple data sets such
as the NIST (National Institute of Standards and Technology) handwritten character
data set. Moreover, this approach cannot produce accurate location information in a
detection problem. In chapter 11, we explore how object representations and classi-
fiers, trained using the principles of Hebbian learning, in a central memory module,
are able to drive visual selection over the entire scene and at a wide range of scales,
as well as classify isolated objects or those present at a selected location. The ma-
terial ties together the work in Amit (2000) and Amit and Mascaro (2001) into one
comprehensive system.
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2 Detection and Recognition:
Overview of Models

In this chapter, we present an overview of the object-detection and object-recognition
models and introduce some notation that will help unify the ideas developed in sub-
sequent chapters.

We will be dealing with gray-level images. An image is defined on a grid L of points
x ∈ L , also referred to as pixels, to each of which is assigned a gray-level value I (x).
We also use the terms pixel values or intensity values for I (x). The term scene refers
to a complex image containing more than one object. At times, the term image will
refer to the underlying grid as opposed to the gray-level values—for example, when
talking about the “size of an image” or “points in the image.” By size of an image,
we mean the size of the grid L on which it is defined. This can vary greatly even
for images of an individual object. An image of a face can be as small as 16 × 16
pixels and as large as 500 × 500 or more. It is useful then to introduce the notion of a
reference grid G of fixed size on which prototypical images of objects are presented.
We also use the term image surface, which refers to the surface defined by the graph
of the function I (x), x ∈ L .

2.1 A Bayesian Approach to Detection

Consider the example illustrated in figure 2.1, where a prototype E is shown together
with a number of deformations, all of which are considered instances of an E . Next
is a synthetic scene with an instance of a deformed E present among other objects.
Our goal is to detect instances of the symbol E in such a scene. How do we go about
formulating models and developing the associated algorithms?

Start with an ordered sequence of model points Z = (z1, . . . , zn), also called the
template, defined on the reference grid G. Detection is defined as finding a map from

13
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Figure 2.1 (Left) Prototype E . (Right) A sample of randomly deformed E’s. (Bottom) A
scene with an E .

Figure 2.2 Three templates for an E overlaid on the prototype with a map to an instance of
an E .

these model points on the reference grid into a set of points in the image. Because the
model points are ordered, the map is uniquely determined by an ordered set of points
θ = (θ1, . . . , θn) in the image, which is also called an instantiation of the model. This
is illustrated in figure 2.2 for three models of an E of increasing complexity. The
templates are shown overlayed on the prototype image and are mapped into another
image of an E .

In some cases, the model points are chosen as points of interest or landmarks on a
prototype image—for example, the three “endings” in the second model of figure 2.2.
Intuitively, a point of interest is a salient location on the prototype where the image
viewed as a surface has some interesting local topography and is not simply planar.
In other cases, model points are chosen according to certain statistical properties of
the image data in their neighborhood, evaluated on a training population of images of
the object, which are presented in the reference scale on the reference grid. Models
will vary in complexity in terms of the number of points—the most complex model
involving all points on the object. An instantiation of a simple model does not provide
the information required for determining the instantiation of a more complex model.
Knowing the approximate location of the landmark represented by the point in the
left-hand model of figure 2.2 does not tell us where to find the other points in the
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other two models. However, information on the instantiation of the simple model can
restrict the range of possible instantiations for the more complex models.

2.1.1 The Prior

The model is incomplete without two additional components. The first component
involves the definition of the set � of admissible instantiations. Through the defini-
tion of the set �, we determine the degree of invariance expected of the associated
detector—for example, the range of scales and rotations the detector is expected to
cover. It will be convenient to define elements of � in terms of a translation coupled
with some instantiation around the origin. Specifically, �(0) will denote a collection
of admissible instantiations more or less centered at the origin. Each instantiation
θ ∈ � is of the form θi = (x + θ ′

i ), i = 1, . . . , n, where x is a location in the image
and θ ′ ∈ �(0). Note that x and θ ′ are not uniquely determined by θ . Because we have
no prior constraints on locations x , all the constraints are defined on �(0).

A useful example of such a set is given by

�(0) = {(θ1, . . . , θn) : θi = Azi , A ∈ A}
whereA is some subset of linear transformations. Here, we accept only configurations
that can be obtained by a linear map from A applied to the model configuration. A
more-general set of constraints is defined as

�(0) = {(θ1, . . . , θn) : θi = vAzi , v ∈ ϒ, A ∈ A} (2.1)

where ϒ is some prescribed set of nonlinear deformations in the neighborhood of the
identity map. A linear map is applied to the model points and the result is perturbed
by a nonlinear deformation v ∈ ϒ . A simpler extension of the first definition has the
form

�(0) = {(θ1, . . . , θn) : θi ∈ Azi + C, A ∈ A} (2.2)

where C is some neighborhood of the origin. For C sufficiently large, this last set of
admissible instantiations contains the second; there are no constraints on the relative
locations of the points as long as they are in the proper regions.

A prior distribution P(θ) on � determines which instantiations are more likely
and which are less. The role of the prior is to penalize certain deviations from the
model instantiation defined by the template. It is usually hard to precisely describe
the distribution on instantiations, or to reliably estimate it from training data. It is
therefore important to define “loose” priors, which do not risk precluding plausible
instantiations.
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2.1.2 The Data Model and the Posterior

The second component of the model is a description of the image data I (x), x ∈ L ,
given the object is present in the scene and the specified landmarks on the object are
at a particular instantiation θ . Because of the variable nature of image formation, this
description comes in the form of a conditional distribution, often called the likelihood
or data term. Given a particular instantiation, there is a range of possible associated
images. Lighting can change to produce different gray levels, various noise effects can
occur, parts of the object may be occluded. Moreover, even though the instantiation
of the model points is fixed, the local and global shape of the object can still vary.
For example, many instances of the E can have the three “endings” at the same
location.

The model assigns a probability distribution to the set of possible images given a
particular instantiation. It is often easier to describe this probability on local trans-
forms of the image data, which are invariant to some of the gray-level variations just
mentioned (i.e., transforms that are photometrically invariant). The data transform
Î (x) at pixel x will be a vector of local features—namely, functions applied to the
gray-level intensities in the neighborhood of x .

Î (x) = (X1(x), . . . , X J (x))

X j (x) = X j
(

INt (x)

)
, j = 1, . . . , J (2.3)

where INt (x) is the image data in the t × t neighborhood of x , and X j is a function
of that data. In most cases described here, X j will be binary, and we say that X j is
on at x if X j (x) = 1. See, for example, the data transform applied to a sample E in
figure 2.4 next. Four operators are applied at each point. The response of a feature
is 1 if the image data in a neighborhood of a point corresponds to a line at a certain
range of orientations.

Having chosen a particular data transform, write the likelihood or conditional
probability of Î (x), x ∈ L , given an object is present at instantiation θ , as P( Î (x),

x ∈ L | θ). In most cases, we will assume that conditional on the presence of an
object at instantiation θ , the transformed data at the different pixels is independent,
so that the data term has a simple product form.

P( Î (x), x ∈ L | θ) =
∏

x∈L

P( Î (x) | θ) (2.4)

where we emphasize that the distribution P( Î (x) | θ) could be different for different
locations x . The product distributions are usually not very accurate models of the
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data; however, they allow for efficient computations and, properly used, lead to very
useful results.

Once a prior distribution and a likelihood are defined, Bayes’ rule allows us to form
a posterior distribution on the set of instantiations, given the observed data.

P(θ | Î (x), x ∈ L) = P( Î (x), x ∈ L | θ)P(θ) · C (2.5)

where C is a constant that does not depend on θ . We typically work with the negative
log-posterior, which up to a constant term is given by

J (θ) = − log P(θ) − log P( Î (x), x ∈ L | θ) (2.6)

The computational task is to find one or more minima of this cost function (hence the
use of negative log-posterior)—namely, instantiations that are highly likely given the
observed data. Intimately related to the formulation of the model are the computational
tools employed to perform this minimization. Chapters 3–8 describe a collection of
such models and the associated computational algorithms. In the simple example
shown in figures 2.1 and 2.2, the instances of the object are produced through smooth
deformations of a single prototype image. However, for real objects in real images
this is rarely the case. Consider faces, for example: One can hardly imagine producing
all faces using smooth deformations of one or even a small number of prototypes.
More detailed instantiations may require specific models for subclasses. Finally, we
expect to detect instantiations even if part of the object is hidden or occluded, and
this needs to be somehow incorporated in the data models.

In some of the algorithms described below, the underlying assumption is that exactly
one object is present in the image, and finding a minimum of the cost function using
some optimization procedure, such as gradient descent or dynamic programming,
will lead to the instantiation. When more than one object can be present, with a limit
of say, K , a more-complex model is needed, involving a prior on

K⋃

k=1

�k

where �k is the set of k-tuples of instantiations from �. This becomes practical only
with the sparse models described below (see chapter 6), where a very loose prior
is used with no constraints on the relative locations of the objects. In some cases,
more information is available and more structure can be introduced into the prior
assumptions on the configurations of multiple objects in the scene. Such matters are
beyond the scope of this book.
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2.1.3 Statistical Models Versus Cost Functions

Those less familiar with Bayesian modeling can interpret the first term of equation 2.6
as a penalty on deviations from the model instantiation and the second term as a
measure of how well the instantiation fits the data. Often in the literature, models are
formulated in the form of such a cost function without bothering about the statistical
setup. This can work, yet it is hard to ignore the inherent stochastic nature and
variability of both the object presentation and the image formation. The same exact
physical scene, captured at two consecutive moments by the same camera, can have
quite variable gray-level maps simply due to a slight shift in lighting caused by the
movement of the tree outside the window.

The advantage of statistical modeling emerges in the formulation of the data term.
We are forced to model the distribution of the entire image data or transformed image
data given an instantiation. This creates a framework in which a proper weighting of
different instantiations is possible. The introduction of probabilities into the modeling
process forces us to systematically consider the relative weights of different events.
In some models that are directly formulated in terms of a cost function, different parts
of the image data are used to evaluate different instantiations. This is problematic
when it comes to comparing their cost. Finally, the statistical formulation provides a
natural framework for estimating the unknown parameters of the model.

On the other hand, it is important to stay faithful to the principle of Occam’s razor,
and insist on simplicity and transparency of the models. Typically, training data are
not really random samples from the populations, and complex statistical models will
yield highly biased parameter estimates that do not generalize. Especially with the rise
of Monte Carlo–based simulation and Expectation Maximization methods, there is a
sense that anything can be estimated. This can be quite misleading. For this reason,
most of the statistical models presented below are simple, and the parameters are for
the most part simple proportions of individual binary variables.

2.2 Overview of Object-Detection Models

The different detection algorithms described in this book involve variations in the def-
inition of the template—that is, the sequence of model points Z ; the set of admissible
instantiations � and the prior distribution defined on that set; the image transforms
Î , together with data model (i.e., the likelihood of the data given an element θ ∈ �);
methods for estimating relevant parameters; and, finally, the computational algorithm
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for maximizing the posterior. These components are very tightly interlinked. The type
of algorithm chosen may constrain the types of data models as well as the definitions
of the sets Z and �. Typically, the set � will cover a limited range of scales, say,
±25%, around the reference scale determined by the reference grid; this is the small-
est scale at which the object is detected. For significantly larger scales, the image is
down sampled and the same procedure is implemented.

2.2.1 Deformable Models

These models involve a rather large and dense set Z , and a set �(0), defined using some
variation on equation 2.1. The intuition is that a linear transformation of the model
is smoothly deformed to produce the instantiation of the object. The set ϒ is defined
through some finite dimensional parameterization of nonlinear deformations of the
set Z , and a prior is defined that penalizes large deviations from the identity map.

The initial location and linear map from A ∈ A are provided by the user. This
defines an initial instantiation θ0,i = x0 + Azi , i = 1, . . . , n. The aim is to find the
instantiation θ ∈ �, which maximizes the posterior using relaxation methods or other
optimization methods in a neighborhood of θ0.

Deformable Contours

In chapter 3, the set of points Z forms a closed circle in G, or some other closed
contour with a specific shape. The set �(0) is a family of smooth perturbations of
the model contour. Optimization is done through gradient-descent methods. Under
the data model, the pixel values are conditionally independent given the instantiation
of the contour—one distribution for the interior of the contour, and another for the
exterior. An illustration is given in figure 2.3. The left panel shows the points in the

Figure 2.3 (Left) A contour template for the E (the points of Z ) overlaid on prototype.
(Middle) Model curve placed in image at initial location. (Right) Final instantiation.
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set Z forming a closed curve overlayed on the prototype image. The middle panel
shows the initial contour placed in the data image and the right panel shows the final
instantiation identified by the algorithm.

Deformable Curves

In chapter 4, the points in Z define an open curve and �(0) represents deformations of
the model curve. A prior P(θ) on �(0) penalizes irregular deviations from the model.
The data term is given in terms of a collection of binary local features detecting
“ridges” of the image surface at a range of orientations. These are defined in terms of
simple comparisons of pixel intensity differences and are highly invariant to photo-
metric transformations (figure 2.4). Under the likelihood model, the binary features
are conditionally independent at all locations in the image given the instantiation of
the curve. There is a probability associated to finding certain features at certain loca-
tions on the curve, and a lower probability of finding these features anywhere else in
the image. These probabilities can be estimated from data.

Global optimization over a well-defined neighborhood of the initial instantiation
is achieved either by dynamic programming or with a tree-based algorithm in certain
cases. Figure 2.4 provides an illustration. In the top left panel is the data image of a
deformed E . The next four panels on the top show the locations where the four local
“ridge” features are found in the image. In other words, these represent the transformed

Figure 2.4 (Top) An instance of a deformed E , and the data transform consisting of four
oriented ridge detectors. (Bottom) Left: A curve template for the E (the points of Z ) overlaid
on the prototype. Middle: The initial curve in the image. Right: Final instantiation.
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data Î 1, . . . , Î 4. The bottom left panel shows the template points Z overlaid on the
prototype image. The middle panel shows the initial curve placed in the data image
and the right panel shows the final instantiation identified by the algorithm.

Deformable Images

In chapter 5, Z is the entire reference grid, and �(0) is defined through a finite
dimensional parameterization of deformations of the reference grid. The prior is used
to penalize irregular nonsmooth deformations. Two data models are discussed. A
Gaussian data model simply uses a prototype image of the object and assumes that
every image in the class is obtained by first warping the prototype image (as, for
example, in figure 2.1) and then adding independent Gaussian noise. No model for
data off the object is provided. This is the classical image deformation model found
in the literature.

The second model, the Bernoulli data model, uses transformed image data defined
in terms of binary oriented edge type features, which, like the ridge features, are also
defined in terms of comparisons of pixel intensity differences. In training, we identify
the probabilities of each edge type at each point in the reference grid, assuming an
instance of the object is present at the reference scale and location. There is a lower
bound on these probabilities determined by the general density of edges in generic
images. There are eight oriented edge types and hence eight probability maps defined
on the reference grid. Conditional on a deformation θ , we assume that the edges in the
image occur independently according to the deformed probability maps. Optimization
in both cases is done with gradient-descent methods.

In figure 2.5, the prototype image is shown in the upper left panel. No points
are marked because every point in the reference grid is in the set Z . The upper
right panel is the data image. The bottom left panel shows the instantiation obtained
by the algorithm in the form of a vector field. Every point in the reference grid is
mapped according to the arrow attached to it. The bottom right panel shows the
prototype image deformed according to the identified instantiation and should be
compared to the data image above it. The Gaussian data model was used in this
experiment.

2.2.2 Global Detection with Sparse Models

Sparse models are defined in terms of a smaller set Z and a data transform Î , involving
binary local features that are more complex than simple oriented edges. We mainly
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Figure 2.5 (Top left) The E prototype. Z is the entire 32 × 32 reference grid. (Top right) The
data image. (Bottom left) Vector field describing instantiation. Each point on reference grid is
mapped into some point in the image. (Bottom right) Warping of prototype image according
to detected instantiation.

make use of local-edge arrangements. There is typically a different local feature Xi

associated to each model point zi ∈ Z . This is in contrast to models discussed earlier
involving a small number of generic binary features. Again, the features are assumed
independent, given the object instantiation. On the background, the local features are
of much lower density than oriented edge features, because they involve local conjunc-
tions defined in terms of these edge features. However, the probability of occurrence
on particular parts of the object is still relatively high. The object model now has the
form of a flexible arrangement of binary local features. The degree of flexibility is
determined by the set �(0). The conditional independence assumption in this case
becomes somewhat more realistic and greatly facilitates the computation of global
detections with no initialization required. The types of data transforms used to define
the local features, methods for training the models, and an analysis of the statistics
of the local features on and off the object are presented in chapter 6. Two alternatives
for computing the most likely instantiations are provided in chapters 7 and 8.
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Sparse Model Detection: Dynamic Programming

In chapter 7, � and the prior P(θ) are defined in terms of constraints and penalties
on the spatial arrangements of the points θ1, . . . , θn . The constraints are invariant to
scale and translation. This is done in terms of relative locations of triples of points
in θ . The constraints have a certain decomposable or “peelable” structure, which
permits maximization of the posterior through dynamic programming. Constraints
on larger subsets of points are possible but greatly increase the computational load.
The assumption in this case is that only one instance of the object is present in the
image and that given the instantiation is θ , feature Xi is found at θi with probability 1.
All locations where local feature Xi is found are recorded in a list Si , i = 1, . . . , n.
This is the input to a dynamic programming algorithm that finds the arrangement
θ ∈ � such that θi ∈ Si , i = 1, . . . , n, with highest posterior value.

Sparse Model Detection: Counting

The previous model may be unstable. Even if the object is present at instantiation
θ , not all features will be found at their respective points either due to various noise
effects or occlusion. In a more realistic model, the probabilities of the individual
features on the object are significantly lower than 1. Under simplified assumptions
on the probabilities of the features on and off the object, finding instantiations with a
high posterior reduces to finding admissible subinstantiations θi1 , . . . , θim , where
m > τ for some τ > 0, and Xi j (θi j ) = 1, j = 1, . . . , m. By admissible subinstan-
tiation we mean a subsequence for which there exists some element θ̂ ∈ �, such that
θi j = θ̂ i j , j = 1, . . . , m. This approach also allows us to find multiple instances of the
object in the image and is studied extensively in chapter 8. The computation is done
in two stages, using a coarse-to-fine approach. In the first step, candidate locations
are detected using a much looser set of constraints �(0)

p , which contains �(0) and
which has the form of a product set. Each local feature is constrained relative to a
center x , irrespective of the locations of the other features. The structure of this set of
constraints allows for very efficient detection of candidate locations using a simple
counting operation, also known as the Hough transform (Hough 1962). In the second
step, at each candidate location—again using a simple counting operation on detected
local features—we decide whether to keep the location and simultaneously estimate
pose parameters (i.e., scale, translation, and other linear transformations) and identify
a full instantiation of the model. The details of this approach are provided in chapter 8.

A sparse model is shown in figure 2.6, consisting of 20 points overlaid on the
prototype—top left panel. In the bottom left panel, we show a graphical representation
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Figure 2.6 (Left) A sparse model for the E . Top: Points of Z overlaid on prototype. Bottom:
The edge arrangements corresponding to some of the features in the model. (Right) A detected
instantiation, the dots correspond to detected features and the x’s to features not found at the
expected location.

of seven of the twenty local features, which are defined through local edge arrange-
ments. On the right, we show a scene and one identified instantiation of the sparse
model. Note that only a subset of the appropriate features was found, the ones that
were not detected are marked as x, and their location is obtained using the estimated
pose parameters.

We reiterate that the sparse model represents the object at the smallest scale at
which it will be detected. For much larger scales, the image is subsampled and the
same algorithm is applied again.

From Deformable Models to Sparse Models

The sparse models can be viewed as coarse approximations to the more-detailed
deformable models. In each region, instead of trying to describe the deformation of
the template that best fits the data within the family of allowed local deformations,
we define a binary local feature that is invariant with respect to these allowable
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deformations. Loosely speaking, if the local feature is present at some location on the
object, then it will also be present at the corresponding location for any admissible
deformation of the object. The local feature becomes a rough characterization of that
part of the object within the range of admissible deformations. Only if a sufficient
number of such features is found in an admissible configuration somewhere in the
image is it possible to find a more detailed deformation of the template at that location.
This relationship is further discussed in chapter 6.

The reader may have noted that the ordering of the models is not consistent with their
logical “algorithmic” ordering. Indeed, the most sensible thing to do is to implement
the sparse model first and thus obtain an initial point for the more intensive deformable
models described earlier. We show examples of this in chapter 8. The particular
ordering here is chosen for historical reasons—deformable contours and deformable
images have been around for quite a while and are actively used in many applications.
Also, these algorithms present a natural entrance to the field of high-level vision and
confront the user with certain problems that help motivate the sparse algorithms.

2.3 Object Recognition

Detection can be viewed as a two-class classification problem. For each possible
instantiation, decide if the object is present or not. Namely, at each instantiation,
classify object or not-object. On the other hand, we are also interested in classifica-
tion among several classes—for example, recognizing images of isolated characters.
We assume the image contains only one object but do not know the class. One pos-
sibility is to train models for each of the objects, run each one on the image, and
find which fits best according to some criterion. This is a difficult path. Some of the
models are quite crude and although quite successful in distinguishing between an
object and generic background, they may get confused when distinguishing between
similar objects. Other models may be more refined but are computationally inten-
sive, and running the associated detection algorithm for each object class would be
inefficient.

The alternative is to directly train a classifier based on examples from all the
classes. The main difference in training here, compared to training object models for
detection, is that now samples from all classes are used simultaneously, and training
explicitly identifies properties that discriminate between classes, as opposed to sim-
ply creating representations of the individual classes. Classification trees will serve
as the classifier of choice. The basic predictors used in growing the classification
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trees are arrangements of local features, similar in nature to the sparse models. As
before, arrangements are not rigid; rather, the locations of the features are constrained
in certain regions, either defined absolutely on the reference grid and called absolute
arrangements, or in terms of relations between features and called relational arrange-
ments. This flexibility can be controlled and determines the degree of invariance of the
classifier to geometric deformations. In contrast to the detection models, information
regarding the absence of certain features from certain regions is used as well.

The queries corresponding to deeper nodes involve more-complex arrangements,
starting at the top node of the tree with simple queries involving a single or a pair
of features. Thus the trees are using models of increasing complexity to recursively
partition the population among the different shape classes. All data points at a par-
ticular node share some arrangement of some complexity. As an illustration, we
show in figure 2.7 a number of Es, all of which reached the same depth-10 node
in a classification tree, together with some other symbols that reached the same
node. On each image, the instantiation of the relational arrangement associated to
that node is shown. The lines connect features that were constrained relative to each
other. This tree was made using eight simple oriented edge features as the elements
of the arrangements. The observed arrangements are similar to instantiations of a
sparse-detection model, although the constraints on the relative locations are defined
somewhat differently. The type of edge features at each point in the arrangement is
not specified.

Training involves recursively choosing a query at each node of the tree that opti-
mally splits the training data present in that node. A query will simply ask whether
a particular feature is present in a certain region, either defined absolutely on the

Figure 2.7 Images which reached the same depth 10 node in a decision tree based on eight
oriented edge features. The instantiation of the associated arrangement is overlaid on the image.
The lines connect features which were constrained relative to each other.
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reference grid, or relative to other local features that have already been found in all
images present at that particular node. With large numbers of feature types and possi-
ble regions, there are many thousands of possible queries at each node. Only a small
random sample of these is entertained, and the best query is chosen in terms of some
purity criterion on the empirical distribution on class. This randomization allows us
to use the same training set to produce multiple trees that are different. Aggregating
the information from the multiple trees leads to classification rates by far superior to
those of an individual tree produced from the same training data. These issues are
discussed in chapter 9.

2.4 Scene Analysis: Combining Detection and Recognition

The detection algorithms we have outlined assume we know what object to find in the
image. However, often we are presented with a scene with only very general notions
of what we expect to find there. In principle, we could develop a detector for each
possible object class and run each such detector on the entire scene. This would of
course be highly inefficient. On the other hand, if we are presented with an image
with a more or less isolated object, we can train classifiers to recognize the object
even from among hundreds of classes. The question is how to obtain isolated objects
from a complex scene?

The traditional answer in computer vision assumes some form of bottom-up image
segmentation that tries to identify regions of interest—that is, regions corresponding
to objects—using no high-level model information, solely based on local information
and very generic constraints on the properties of the regions. In chapter 10, we ex-
plore an alternative approach, where detection always precedes recognition. Detectors
are produced for object clusters from several classes. For example, we may lower
somewhat the detection threshold τ in the sparse model for the Es and find that a
large fraction of Bs, Cs, Gs, and so on are detected as well. Another possibility is to
use nodes of a classification tree. So, for example, a sparse model would be trained
for all images in the node represented in figure 2.7.

Using the detected pose, the data in the neighborhood of the detection is registered
to a reference grid. This is first done on training images to produce classifiers among
detected classes. Then, in a general scene, the data around each detected pose is
registered and subsequently classified. The idea is illustrated in figure 2.8 for the
cluster of deformed script-style LATEX symbols hit by the E detector. Each hit of this
detector in the scene is subsequently classified. The main point is that the first step in
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Figure 2.8 Classified objects detected by a sparse E model.

analyzing a scene is always an efficient counting detector, which provides candidate
poses for objects and hence input data for the classifier.

The detector may be quite coarse in that it is not designed to pick out a very specific
class and may result in a larger number of hits. However, it is still guiding the low-level
processing of the image in terms of a particular set of more complex local features
that need to be extracted in a particular configuration.

2.5 Network Implementations

The specific characteristics of the counting detector for the sparse model—the use
of binary local features and the simple counting operations involved—make it a
natural candidate for trying to model detection in a parallel network of neurons. In
chapter 11, we show that both learning and detection can be implemented in such
a framework using minimal assumptions on the complexity of the units—binary
neurons—and the connections between them—bounded positive synapses. The input
into the system is the oriented edges detected in the image, which are then processed
in local feature layers that detect simple two-edge arrangements. An object-detection
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task implies evoking a specific object model in a central module. This causes certain
intermediate layers to be primed. These also receive input from the local feature
layers and can be viewed as the junction between the bottom-up information coming
from the local feature layers and the top-down information coming from the central
module. Summing the activities in these intermediate layers produces the candidate
locations for the object. Training is achieved using simple Hebbian learning on the
connections between an “abstract” layer, in which randomly selected populations of
units code for each class, and the central module. This architecture does not involve
realistic neurons with realistic time dynamics. However, it does offer a global model
for how the visual system can learn object representations in a central module and then
somehow distribute the information to the entire system in order to compute detections
in large scenes. In this framework, we are also able to integrate a classification system
that is also trained using Hebbian learning on connections feeding from a copy of
the local feature layer and into the abstract layer. Moreover, we show how detection
can produce the gating of attention to the selected location, enabling more detailed
classification of the data at that location.
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3 1D Models: Deformable Contours

Many problems in image analysis require the detection of the closed boundary of an
object. In medical imaging, one might need to delineate the boundary of a tumor in
an X-ray or MRI image, the boundary of a ventricle of the heart in an angiogram, or any
other anatomy of interest. In biological research, boundaries of various microscopic
organisms imaged using a variety of techniques may be of interest.

In chapter 1, we discussed possible drawbacks of a purely bottom-up image seg-
mentation approach to determining the regions in the image occupied by objects. A
partial solution is to introduce global constraints—in particular, the notion that the
“ideal” contour is closed and continuous at all points. One natural idea is then to place
a closed contour on the image and allow it to smoothly deform according to some
data-driven criterion so as to adjust to the boundary of the desired object present in
the image. If the deformations preserve the continuity of the contour and do not tear it
apart, these properties will automatically be inherited by the final state, even if parts
of the target contour are occluded or missing in the image. Moreover, if the initial
contour has a characteristic shape representing some prior knowledge regarding the
shape of the target contour, then it is possible to preserve this shape with appropriate
deformations. This approach is appealing in its simplicity and is applicable in many
contexts. The computations involve gradient-descent techniques, which in this case
are quite fast because of the one-dimensional nature of the problem. However, there
are serious limitations in the sensitivity to initialization and in parameter settings, as
will be illustrated below.

3.1 Inside-Outside Model

In terms of the notation defined in chapter 2, the sequence of model points Z =
(z1, . . . , zn) defines a closed contour on the reference grid. This sequence of points

31
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is also called the template. Because optimization is done with gradient-descent meth-
ods, formulating the problem in the continuum facilitates the variational analysis.
Thus we consider the points in Z as a discrete sampling of a closed continuous
curve z(t), t ∈ [0, 1], at points 0 = t0 < t1 < · · · < tn = 1—that is, zi = z(ti ),
i = 0, . . . , n, with z0 = zn . Instantiations θ ∈ � will similarly be viewed as a discrete
sampling of a curve θ(t) at the same time points—that is, θi = θ(ti ), i = 1, . . . , n. We
abuse notation and use θ to denote both the continuous curve and the discrete instan-
tiation in the image. The deformations of the initial contour z(t) can be described as
a parameterized family of continuous contours denoted θ(t, u) = (θ1(t, u), θ2(t, u)),

t ∈ [0, 1], u ∈ U , with U a finite dimensional parameter space. Consequently, the set
of instantiations is given by � = {θ : θi = θ(ti , u), i = 1, . . . , n, u ∈ U}. For each u,
the entire contour is denoted θ(u), and the template contour z(t) = θ(t, uz), t ∈ [0, 1],
for some uz ∈ U . The curves are assumed oriented counterclockwise, and θin(u) de-
notes the points inside the curve, θout(u) the points outside.

We employ the statistical approach outlined in chapter 2. A prior P(u) on U will
assign higher probability to smooth contours that are close to the template contour.
The likelihood model will assume that given the contour θ(u) the pixel intensities
inside the contour are independent with distribution fin(I (x); ηin) and the pixel in-
tensities outside the contour are independent with distribution fout(I (x); ηout). First
we describe ways to parameterize the contours using orthonormal bases of functions,
in particular the periodic Daubechies wavelet basis. The parameters of interest are
the coefficients of the contour in this basis. We describe a prior on these coefficients
and the likelihood model and obtain a posterior. The negative log-posterior yields
a cost function on the coefficients which can be differentiated, allowing for mini-
mization using variants of gradient descent. We then show how the wavelet basis is
particularly suited for a coarse-to-fine version of gradient descent. We end with a
method to estimate the parameters ηin, ηout on-line together with the computation of
the contour.

3.1.1 Contour Parameterization

A general way to parameterize the contours, which allows us to control their smooth-
ness and control the degree of departure from the template contour, is to separately
expand the two components θ1, θ2 in a basis of functions ψk(t), k = 0, . . . , d on the
interval [0, 1], truncated at some level d. An additional convenience of this parameter-
ization is that it naturally defines a continuous curve defined for all t using a finite num-
ber of coefficients. The parameters u1 = (u1,0, . . . , u1,d) and u2 = (u2,0, . . . , u2,d)
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are the basis coefficients. Thus the contours are expressed as

θq(t, uq) =
d∑

k=0

uq,kψk(t), and the template zq(t) = θq(t, uz) =
d∑

k=0

uz,q,kψk(t)

(3.1)

for q = 1, 2, and we assume that U = R2d . This is called a spectral parameterization
as opposed to a spatial parameterization, which directly provides the locations of the
points. Different bases of functions can be used depending on the specific application.
Standard basis families such as the Fourier basis or wavelets are useful because the
particular information conveyed by the coefficients is well understood. Furthermore,
there are numerically efficient algorithms for finding the coefficients of a function
with respect to these bases.

Wavelets

In the experiments shown here, we use a Daubechies wavelet basis (Daubechies
1988). For convenience, we adopt periodic wavelets. Such bases can be organized
in a pyramid with 2s−1 functions at each level s = 1, . . . , S. At the top levels, the
functions are smooth and supported on a large portion of the interval. The associated
coefficients convey information on large-scale properties of the target function. Lower
down in the pyramid, the basis functions have smaller support, and the associated
coefficients convey local information regarding the target function.

More formally, taking d = 2S − 1, the periodic wavelets on the unit interval are
indexed by two parameters ψs,�, s = 1, . . . , S and � = 0, . . . , 2s−1 − 1, where s de-
notes the level in the pyramid. The constant function is denoted ψ0,0. At a given
level s, the functions ψs,� are shifts of the function ψs,0, covering the entire unit
interval:

ψs,�(t) = ψs,0
(
t − 2−(s−1)�

)
, � = 0, . . . , 2s−1 − 1

Furthermore, depending on the wavelet type, there exists some s̄ > 1 such that for
s ≥ s̄ we can write

ψs,0(t) = 2(s−S)/2ψS,0
(
2(s−S)t

)
(3.2)

so that ψs,0 is a scaling and “dilution” of the function ψS,0 defined at the deepest level
of the pyramid. In fact, this is true for s < s̄ as well, modulo some “wraparound”
effects due to periodicity. Thus all basis functions ψs,� can be obtained by scaling,
dilution, and shifting of the mother wavelet ψS,0. From equation 3.2 it follows that as s
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Figure 3.1 One function from each level of a pyramid with S = 6. Daubechies wavelet with
R = 3.

increases, the support of the functions decreases (i.e., the resolution increases). Thus
the level s in the pyramid is also denoted the resolution. This pyramidal structure
provides a natural coarse-to-fine mechanism for exploring the deformations of the
contour. Figure 3.1 illustrates one function at some shift �, from each resolution of a
pyramid with S = 6.

Very particular choices of the mother wavelet ψS,0 yield a set ψs,� of orthonormal
functions. The family of Daubechies wavelets Daubechies (1988) are parameterized
by an integer R, and as R increases, the support of ψ R

S,0 increases, as does its smooth-
ness. For R = 1, one obtains the more classical Haar basis.

The theory of the Daubechies wavelet bases can be found in Daubechies (1988),
efficient algorithms for computing the discrete transforms can be found in Mallat
(1989). A comprehensive description of the theory and algorithms for the much richer
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family of wavelet packets can be found in Wickerhauser (1994). Note that the models
and algorithms described below will work with other bases such as splines or bases
derived from a principle-component analysis.

3.1.2 The Prior

The prior is defined on the parameter space U taking the uq,k to be independent
Gaussian random variables with variance 1/λk and means uz,q,k . This completely
defines a prior on curves θ(t, u) and hence a prior on discrete instantiations. How-
ever, the latter is harder to write explicitly because many different curves can pro-
duce the same discrete instantiation. The role of the prior in this setting is sim-
ply to impose smoothness and prevent large deviations from the model curve z(t).
The log-prior has the form of a weighted quadratic penalty on the deviations of the
coefficients.

log P(u) = −1

2

2∑

q=1

d∑

k=0

λk(uq,k − uz,q,k)
2 + C (3.3)

where C does not depend on θ .
Basis functions of higher index are usually of higher frequency or less smooth. The

corresponding variances should be smaller, implying that λk should increase with k.
For the Fourier basis

ψk(t) = 1√
2π

exp 2π ikt, t ∈ [0, 1] (3.4)

for k = 0, . . . , d and we set λk = αkρ for some ρ > 1.
For the wavelet basis, take k = (s, �) to be the two-parameter index described

above, with s = 1, . . . , S and � = 0, . . . , 2s−1 − 1. Then λk = ρs for some ρ > 0.
All coefficients of functions at the same resolution s have the same variance 1/ρs . In
both cases, Fourier and wavelet bases, the larger the parameterρ the more concentrated
the prior on smooth functions.

3.1.3 The Data Model and the Posterior

We assume that if the curve θ(u) defines the contour of the object, the gray-level values
at each pixel inside the curve are independent and identically distributed according to
a distribution f (·; ηin), and outside they are distributed according to f (·; ηout), where
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ηin and ηout are parameters. Hence the name inside-outside model. The log likelihood
of the data, given the curve u and the parameters ηin, ηout, is given by

log P(I (x); x ∈ L | u, ηin, ηout) =
∑

x∈θ(u)in

log f (I (x); ηin) +
∑

x∈θ(u)out

log f (I (x); ηout)

(3.5)

This assumption of conditional independence of the gray-level values inside and
outside the true contour is clearly unrealistic. First, nearby locations will typically
be strongly correlated; furthermore, the distributions cannot be identical unless the
interior and exterior are very homogeneous. This precludes any particular structures in
the interior that actually may be characteristic of the object in question. Nevertheless,
in some contexts this model is meaningful, and its simplicity allows us to implement
the types of algorithms described here.

The negative log-posterior on U can be written as

− log P(u | I (x); x ∈ L; ηin, ηout) = 1

2

∑

q,k

λk(uq,k − uz,q,k)
2

−
∑

x∈θ(u)in

log f (I (x); ηin)

−
∑

x∈θ(u)out

log f (I (x); ηout) + C (3.6)

In the continuum formulation, the second and third sums become integrals over
the interior and exterior of the contour. Writing Fin(x) = − log f (I (x); ηin) and
Fout(x) = − log f (I (x); ηout), the negative log-posterior on U has the form of a
cost function

J (u) = E(u) + D(θ(u), I ) (3.7)

where

E(u) = 1

2

∑

q,k

λk(uq,k − uz,q,k)
2

D(u) =
∫

θ(u)in

Fin(x) dx +
∫

θ(u)out

Fout(x) dx

This continuum formulation is useful for computing the derivatives of J with
respect to u. One important point, which is at times ignored in the literature, is that
D(θ, u) should not depend on the time parameterization of the curve θ(u), it should
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be a quantity depending on the image and the physical curve determined by the
parameter u.

The simplest example for fin and fout is the Gaussian distribution with means
µin, µout, respectively, and the same variance σ . The data model is then

D(θ(u), I ) = 1

2σ 2

∫

θ(u)in

(I (x) − µin)
2 dx + 1

2σ 2

∫

θ(u)out

(I (x) − µout)
2 dx + C

(3.8)

where again C does not depend on u. The data model in this case tries to drive the
mean gray-level value inside the curve toward µin and outside the curve toward µout.
The cost function is

J (u) = 1

2

∑

q,k

λk(uq,k − uz,q,k)
2 + 1

2σ 2

∫

θ(u)in

(I (x) − µin)
2 dx

+ 1

2σ 2

∫

θ(u)out

(I (x) − µout)
2 dx (3.9)

If the variances inside and outside the contour are different, the data model has a
more complex form involving the different normalizing constants of the respective
densities. In the discrete setting, up to an additive constant, the log likelihood is
given by

−
∑

x∈θ(u)in

[
1

2σ 2
in

(I (x) − µin)
2 + log σin

]
−

∑

x∈θ(u)out

[
1

2σ 2
out

(I (x) − µout)
2 + log σout

]

which translates in the continuum to a data term

D(u) = 1

2σ 2
in

∫

θ(u)in

(I (x) − µin)
2 dx + Ain log σin

+ 1

2σ 2
out

∫

θ(u)out

(I (x) − µout)
2 dx + Aout log σout

where Ain, Aout are the areas of the interior and exterior domains defined by the
curve.

3.1.4 Variational Analysis

The cost functions in equations 3.7 and 3.9 depend on the parameters u in a complex
way. They are not guaranteed to be quadratic or even convex. All we can hope to find
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is a local minimum of the cost function somewhere in the neighborhood of the initial
value. This is achieved by following the downward gradient flow of the cost function.
Specifically, we solve the equations

duq,k(τ )

dτ
= −∂ J (u(τ ))

∂uq,k
, q = 1, 2, k = 0, . . . , d (3.10)

Here τ is a time variable used for the gradient flow and has nothing to do with the
parameter t defining the curve. The next step is to compute the derivatives of the cost
function in the variables uq,k, q = 1, 2, k = 0, . . . , d.

Let F be a function defined on the domain and let Cin(u) = ∫
θin(u)

F(x) dx . We
assume the curve θin(u) is parameterized as in equation 3.1 and employ the following
equality, the proof of which is provided in the next section.

∂Cin(u)

∂u1,k
=

∫ 1

0
F(θ(t, u))θ̇2(t, u)ψk(t) dt

(3.11)
∂Cin(u)

∂u2,k
= −

∫ 1

0
F(θ(t, u))θ̇1(t, u)ψk(t) dt

Because the integral over the entire domain—
∫

L F(x)—is fixed and does not depend
on u, ∂Cout(u)/∂uq,k = −∂Cin(u)/∂uq,k, and the derivative of the cost function J is
given by

∂ J (u)

∂u1,k
= λk(u1,k − uz,1,k) +

∫ 1

0
(Fin(θ(t, u)) − Fout(θ(t, u)))θ̇2(t, u)ψk(t) dt (3.12)

∂ J (u)

∂u2,k
= λk(u2,k − uz,2,k) −

∫ 1

0
(Fin(θ(t, u)) − Fout(θ(t, u)))θ̇1(t, u)ψk(t) dt (3.13)

Observe that the derivatives of D with respect to u1,k are simply the coefficients of
(Fin − Fout)(θ(t, u))θ̇2, in the basis ψk, k = 0, . . . , d. Similarly, the derivatives of D
with respect to u2,k are the coefficients of −(Fin − Fout)(θ(t, u))θ̇1, in the same basis.
Thus the gradient of D is obtained from the forward transforms of two functions with
respect to the chosen basis of functions.

This gradient can be interpreted as follows. If ψk is a locally supported function at t
then u1,k, u2,k describe the curve θ(u) in a neighborhood of t . Because the curve is ori-
ented counterclockwise, (−θ̇2, θ̇1) is the inward-pointing normal, and if Fin > Fout in
the vicinity of t , the minimization, which proceeds along (−∂D/∂u1,k, −∂D/∂u2,k),
is trying to pull the point θ(t) outward along the normal. The reason being that locally,
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the inside of the curve fits the data better than the outside, and an improved fit should
involve enlarging the curve.

Proof of Equality 3.11

The area integrals are rewritten as curvilinear integrals along θ(u) as follows.
Define

Q(x1, x2) = 1

2

∫ x1

0
F(t, x2) dt

(3.14)
P(x1, x2) = −1

2

∫ x2

0
F(x1, t) dt

Then ∂ Q/∂x1 − ∂ P/∂x2 = F(x1, x2), and by Green’s theorem we can rewrite the
integral of F over the interior of the curve as an integral along the curve.

Cin(u) =
∫

θin(u)

F(x) dx =
∫ 1

0
P(θ(t, u))θ̇1(t, u) + Q(θ(t, u))θ̇2(t, u) dt (3.15)

Writing ∂q P for ∂ P/∂xq , for q = 1, 2, and differentiating in u1,k we get

∂Cin(u)

∂u1,k
=

∫ 1

0
∂1 P(θ(t, u))

∂θ1(t, u)

∂u1,k
θ̇1(t, u) + P(θ(t, u))

∂θ̇1(t, u)

∂u1,k

+ ∂1 Q(θ(t, u))
∂θ1(t, u)

∂u1,k
θ̇2(t, u) dt (3.16)

Interchanging the order of differentiation in the second term and then integrating by
parts, we have

∫ 1

0
P(θ(t, u))

∂θ̇1(t, u)

∂u1,k
dt =

∫ 1

0
P(θ(t, u))

d

dt

∂θ1(t, u)

∂u1,k
dt

= −
∫ 1

0

d P(θ(t, u))

dt

∂θ1(t, u)

∂u1,k
dt

= −
∫ 1

0
[∂1 P(θ(t, u))θ̇1(t, u)

+ ∂2 P(θ(t, u))θ̇2(t, u)]
∂θ1(t, u)

∂u1,k
dt (3.17)
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From equation 3.1 ∂θq/∂uq,k = ψk(t), and plugging equation 3.17 in 3.16, some
terms cancel out and we get

∂Cin(u)

∂u1,k
=

∫ 1

0
[∂1 Q(θ(t, u)) − ∂2 P(θ(t, u))]θ̇2(t, u)ψk(t) dt

=
∫ 1

0
F(θ(t, u))θ̇2(t, u)ψk(t) (3.18)

The second part of equation 3.11 is obtained in the same manner. A change in the
orientation of the curves would change the signs in both equations.

3.2 An Edge-Based Data Model

The original work on deformable contours in the computer-vision literature, Kass,
Witkin, and Terzopoulos (1987), did not employ a statistical model. Rather, a cost
function was directly formulated in which the data term evaluates how consistent the
curve is with the edges in its neighborhood. The original approach simply integrated
the magnitude of the image gradient along the curve. The cost there ignores the issue
of whether the direction of the edge is consistent with the direction of the curve—
moreover, it is not invariant to the time parameterization of the curve. In other words,
the cost function does not depend on the physical curve in the plane, rather, on the
particular way the curve is described. An alternative is to parameterize the curve
between 0 and 1 and to write

D(u) = −
∫ 1

0
(−∂2 I (θ)θ̇1 + ∂1 I (θ)θ̇2)(1 + ∂1 I 2 + ∂2 I 2)−1/2(θ) dt (3.19)

where ∂1 I, ∂2 I are the partial derivatives of I . If the curve is oriented counter-
clockwise, this integrand is positive if the normalized gradient of the image has
similar direction to the outward normal. Because we are minimizing, there is a neg-
ative sign before the integral. This cost is invariant to curve parameterization and is
equivalent to

∮

θ

(1 + ∂1 I 2 + ∂2 I 2)−1/2∇ I · n

where n is the outward normal to the curve. The gradient of D with respect to the
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parameters is

∂D
∂u1,k

=
∫ 1

0
K (θ)θ̇2ψk dt,

∂D
∂u2,k

= −
∫ 1

0
K (θ)θ̇1ψk dt (3.20)

where K (x) is the mean curvature of the surface defined by the function I —namely,

K (x) = ∂22 I · (1 + (∂1 I )2) + ∂11 I · (1 + (∂2 I )2) − 2∂1 I · ∂2 I · ∂12 I

(1 + (∂1 I )2 + (∂2 I )2)3/2

Once again, the gradient of the data part of the cost function is the forward transform
in the chosen basis of an easily calculated function. If I is not a smooth function, it is
possible to smooth it with some kernel and then differentiate. Note that the derivatives
need to be precalculated only once at every point in the image and stored.

Edge-based cost functions do not correspond to real statistical data models. The
data used to evaluate the cost function changes with the curve, and it is not clear how
different curves are weighted. Any local structure with clear boundaries will stop the
evolution of the contour in its neighborhood, even if the local structure is irrelevant
to the object we are seeking to fit. On the other hand, the inside-outside model can in
some cases overcome such obstacles, as illustrated in some of the examples.

3.3 Computation

The computation of the minimizer of equation 3.7 is obtained through some form
of gradient-descent algorithm. Because the cost function is nonlinear, this sim-
ply leads to a local minimum. The simplest form of gradient descent uses a dis-
crete approximation to the downward gradient flow. For a given function f (t) on
[0, 1] let

�( f ) =
{ ∫ 1

0
f ψk dt, k = 0, . . . , d

}

denote the forward transform of f , namely, the coefficients of f in the basis ψk, k =
0, . . . , d. For a given vector of coefficients u = (u0, . . . , ud), let �−1(u) denote the
backward transform—that is,

�−1(u) =
d∑

k=0

ukψk
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Let uq,k,m, k = 0, . . . , d, q = 1, 2 denote the mth iterate of the coefficients of the
curve.

A time step � is determined (see below) and using the expression in equation 3.12,
we obtain the following algorithm.

Algorithm 3.1: Deformable Contour

1. Choose a scale s and translation x for the initial contour θ(0)(t) = sz(t) + x .
Initialize uq,0 = {uq,k,0, k = 0, . . . , d} = �(θ(0)

q ), q = 1, 2,

Set m = 0.

2. Calculate θ1 = �−1(u1,m), θ2 = �−1(u2,m), and θ̇1, θ̇2.

3. Set βq(t) = (Fin − Fout)(θ(t)) · θ̇q(t), q = 1, 2. Compute

v1 = � (β2(t)) , v2 = � (−β1(t))

4. Set uq,k,m+1 = uq,k,m −� ·[λk(uq,k,m −uq,k,0)+vq,k] for q = 1, 2, k = 0, . . . , d.

5. If a stopping criterion is satisfied, exit, otherwise m ← m + 1 go to 2.

Note that the means uz,q,k of the coefficients in the prior term from equation 3.9
have been changed to the coefficients uq,k,0 of the initial contour θ(0), which is a
scaled and translated version of the template z(t).

3.3.1 Discretization

In a real implementation, the curve is discretized using the points θ(ti , u), i =
1, . . . , n, which also define the instantiation. The gradient of the curve calculated
in step 2 is approximated using differences θ̇ (ti ) = θ(ti+1) − θ(ti ), and βq in step 3
are evaluated only at the points ti , yielding two n dimensional vectors. A discrete
version of the original basis functions is used. For wavelets or the Fourier basis, the
discrete version has discrete forward and backward transforms, which we again denote
as � and �−1. For the Fast Fourier Transform implementation of the discrete Fourier
transform, see Press and colleagues (1995). For a fast discrete wavelet transform, see
Mallat (1989) and Wickerhauser (1994). In the examples shown in this chapter, we
have used periodic Daubechies wavelets and, for the sake of completeness, we briefly
describe the discrete wavelet transform, omitting any proofs.

3.3.2 Discrete Wavelet Transform

Associated to various choices of the mother wavelet ψS,0 (see equation 3.2), there is an
even integer R and two vectors of coefficients g = (g0, . . . , gR) and h = (h0, . . . , R),
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with

R∑

k=0

gk =
√

2,

R∑

k=0

hk = 0

Let n = 2S , and start with an n-dimensional data vector x (S) = x = (x0, . . . , xn−1).
The transform starts from the deepest level of the pyramid, obtaining the coefficients
u(s)

� as follows. Set s = S and write

u(s)
� =

R∑

j=0

h j x
(s)
(2�+ j) mod 2s , for � = 0, . . . , 2s−1 − 1 (3.21)

Note that there are only 2s−1 coefficients u(s)
� due to the scaling by 2 in the summation

index. Thus u(s)
� is obtained by convolving x (s) with the filter h and subsampling.

Because the coefficients of h sum to zero, h is like a difference operator, and this
convolution has the flavor of a high-pass filter. It has higher response at locations
where the data is discontinuous or changes rapidly.

The coefficients of g add to a positive value so that convolving with g amounts
to smoothing, namely, g is a low-pass filter. It has higher response at locations
where the data are smooth. The remaining levels of the transform are then ob-
tained recursively in precisely the same way, by defining a subsampled low-pass
version x (s−1) of x (s) using the filter g and then reapplying equation 3.21 for s − 1.
Specifically,

x (s−1)
� =

R∑

j=0

g j x
(s)
(2�+ j) mod 2s , for � = 0, . . . , 2s−1 − 1 (3.22)

The vector x (s−1) has dimension 2s−1 and equation 3.21 can be reapplied to obtain
u(s−1)

� , � = 0, . . . , 2s−2 − 1, which are the coefficients corresponding to level s − 1
of the pyramid. Note that due to the wraparound effect of the modulo operation in
the index, the same element of x (s) can enter the sum more than once. This procedure
continues until the single coefficient u(1)

0 is obtained from x (1), which is a vector with
only 2 elements. Furthermore, x (0) is a weighted sum of these 2 elements, determined
by applying equation 3.22 at s = 1, and corresponds to the coefficient u(0)

0 . The full
transform consists of the vector of coefficients

u(s)
� , s = 1, . . . , S, with � = 0, . . . , 2s−1 − 1, and u(0)

0

Each u(s)
� is the coefficient corresponding to the basis function ψs,l .
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The inverse transform takes coefficients u(0)
0 and u(s)

� , s = 1, . . . , S, � = 0, . . . ,

2s−1 −1 and reproduces the original data vector x . This is now done recursively from
the top of the pyramid. Set x (0) = u(0)

0 and recursively define x (s) as

x (s)
2k =

R/2∑

j=0

(
h2 j x

(s−1)

(2k+ j) mod 2s−1 + g2 j u
(s)
(2k+ j) mod 2s−1

)

x (s)
2k+1 =

R/2∑

j=0

(
h2 j+1x (s−1)

(2k+1+ j) mod 2s−1 + g2 j+1u(s)
(2k+1+ j) mod 2s−1

)
(3.23)

for k = 1, . . . , 2s−1. The coefficients of h and g are chosen in such a way that the
procedure of equation 3.23 inverts that of equations 3.21 and 3.22 so that at each stage
the same vector x (s) is reconstructed from x (s−1) and u(s). In fact, the step described
in equations 3.21 and 3.22 can be viewed as a matrix multiplication

y(s) = W x (s) (3.24)

where W is a square 2s × 2s matrix. The first 2s−1 elements of y(s) are u(s) and
the second 2s−1 elements are x (s−1). The step described in equation 3.23 is then
simply computing W t y(s). The fact that this reproduces x (s) means that W is an
orthogonal matrix. Identifying filters g and h, which allow for such simple inversion
of the forward transform, involves a very sophisticated analysis and can be found
in Daubechies (1988), including the coefficients identified for a range of values of R.
For example, for R = 2 we have g = (1/

√
2, 1/

√
2) and h = (1/

√
2, −1/

√
2), and

for R = 4

g = 1

4
√

2
(1 +

√
3, 3 +

√
3, 3 −

√
3, 1 −

√
3)

h = 1

4
√

2
(1 −

√
3, −3 +

√
3, 3 +

√
3, −1 −

√
3)

3.3.3 Time Step

Determining the appropriate time step � is a nontrivial problem. On one hand, it
should be large enough so that the algorithm proceeds at a reasonable rate; on the other
hand, if it is too large, the algorithm becomes unstable. Assuming the cost function
is quadratic, the time step could be taken as the inverse of the largest eigenvalue of
the Hessian matrix of J . This can be bounded from above by the trace of the Hessian
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of J . Assuming that the functions Fin, Fout are bounded by 1, this in turn is bounded
by l(θ) + ∑

k λk, where l(θ) = ∑n−1
i=0 |θ̇ (ti )|, is the length of θ . The time step is then

taken to be � = 1/(l(θ) + ∑
k λk).

It is possible to avoid the approximation of the time step by carrying out a conjugate
gradient algorithm. It is then necessary to carry out searches for the minimum along
a line, and hence directly evaluate the cost function that involves 2D integrals. Using
equation 3.15, these can be reduced to one-dimensional integrals along the contour.
The functions P and Q defined in equation 3.14 need only be computed and stored
at the beginning of the procedure.

3.3.4 Coarse to Fine

In all examples of bases mentioned above, the low-index elements of the basis are
smooth functions with a large support. These describe global smooth variations of
the curve. The higher indices describe higher frequency or more local variations. It
turns out that minimizing first on the low-index coefficients until some convergence
is observed and then gradually adding in new coefficients leads to a more stable
algorithm. ChooseN1 < N2 < · · · < NA ≤ d. Apply algorithm 1 but in item 4 update
only k = 0, . . . ,N1. When convergence is observed, update in 4 up to N2, and so
on. This procedure will often avoid local minima in the vicinity of the initial curve.
If all coefficients are updated at once, the high-index coefficients dominate the cost
function and local fits of the curve to noise and small elements of clutter cause it to
get stuck very far from the true fit. In fact, when proceeding to minimize in stages, it
is often possible to omit the penalty term E(u) altogether.

For example, when a wavelet basis is used, update all coefficients corresponding to
resolutions s ≤ a. Thus for small values of a, only coefficients of the smoother basis
elements ψs,l with large support are updated. Taking d = n−1 = 2S −1 we useNa =
2 · 2a, a = 1, . . . , A, for some A ≤ S. The factor 2 comes from the two components
of the contour. The results shown in this chapter were all obtained in this fashion.

In figure 3.2, the detection of the boundary of the left heart ventricle is shown, and
in figure 3.3, we show some detections of the contour of a chess piece. In both, the
template contour is a generic circular curve. In figure 3.3, two successful detections
are shown alongside a failed match in which the object merges with the background.
In figure 3.4, we show 3 steps in the coarse-to-fine process corresponding to the
outcome of the algorithm for N1 = 2 · 2,N2 = 2 · 4,N3 = 2 · 8.

In figure 3.5, we show the detection of the deformable contour algorithm in a case
where the initial curve has a particular shape, that of the posterior ventricles in an
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Figure 3.2 An ultrasound image of the left heart ventricle, with the outcome of the deformable
contour algorithm. (Left) Initial contour. (Right) Final fit.

Figure 3.3 Three examples of the deformable contour algorithm trying to fit the boundary of
the rook. (Top) Initial position. (Bottom) Final state. The experiment on the right shows how
the algorithm can fail when the background is similar in intensity to the object.
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Figure 3.4 Three stages in the coarse to fine deformable contour algorithm corresponding to
the final state for N1 = 2 · 2,N2 = 2 · 4,N3 = 2 · 8.

Figure 3.5 Initial and final state of a deformable contour for detecting the posterior ventricles
in two axial MRI brain scans. (Top) Initial state. (Bottom) Final state.

47
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axial MRI brain scan. Initialized in the vicinity of the correct position, the contour
detects the boundaries of the ventricles. Similar experiments using an initial curve
with a shape determined by a particular object class are shown in figures 2.3 and
8.17. The enumerated points on the initial curve and on the final detection provide
an explicit instantiation of the shape. Such a match is meaningless in the previous
examples where a generic circle is deformed into some region.

3.4 Joint Estimation of the Curve and the Parameters

In the statistical model presented in section 3.1, we assumed the parameters ηin, ηout

in the data model were known—namely, estimated off-line, by computing means and
variances in various regions identified by the user, as inside and outside, on some
training images of contours. It is also possible to model the case where these param-
eters are unknown and are estimated on-line. We define a prior on the parameters
as well, and our task is to maximize the joint posterior on ηin, ηout, u. For simplic-
ity, we assume a flat prior on these parameters in some bounded domain. Then the
log of the joint posterior on u, ηin, ηout—that is, P(u, ηin, ηout | I (x), x ∈ L) has
the same form as in equation 3.6, with a different constant. For fixed value of u,
namely, a fixed curve, maximizing in ηin and ηout produces the maximum likeli-
hood estimates of these parameters, given the data inside and outside the contour,
respectively. For many models, these estimates have analytic expressions in terms
of the data. They are plugged into the log-posterior and yield a function that de-
pends only on u. It then remains to maximize this function with respect to u. We
provide the details in the case where f (·; η) are Gaussian with unknown mean and
variance.

3.4.1 Gaussian

To simplify notation, let r denote one of the regions θin(u), θout(u). Set Nr to be the
number of pixels in r , and write the log-density of the Gaussian as

log f (I (x), µr , σr ) = − 1

2σ 2
r

(I (x) − µr )
2 − 1

2
log 2π − 1

2
log σ 2

r
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The cost function to be minimized is given by the negative log-posterior on instan-
tiation and distribution parameters together,

J (u, µin, σin, µout, σout) = − log P(u, µin, σin, µout, σout | I (x), x ∈ L)

= E(u) + 1

2σ 2
in

∑

x∈ηin

(I (x) − µin)
2 + Nin

2
log σ 2

in

+ 1

2σ 2
out

∑

x∈ηout

(I (x) − µout)
2 + Nout

2
log σ 2

out + C

(3.25)

where C does not depend on u, ηin, ηout, and incorporates the uniform prior on the
parameters on some bounded interval.

Fixing θ(u), for each of the regions, minimizing equation 3.25 in the corresponding
parameters µr , σr yields

µ̂r = 1

Nr

∑

x∈r

I (x)

and

σ̂ 2
r = 1

Nr

∑

x∈r

I 2(x) − µ̂2
r

These are precisely the maximum likelihood estimates of the mean and variance in
the region. Using the fact that

∑

x∈r

(I (x) − µ̂r )
2/σ̂ 2

r = 1

and because Nθin + Nθout is constant (the total number of pixels in the lattice L), we
have

max
µin,σin,µout,σout

J (u, µin, σin, µout, σout) = E(u) + Nin

2
log σ̂ 2

in + Nout

2
log σ̂ 2

out + C ′

For the continuum formulation, define

Nr (u)
.=

∫

r
1 dx, Hr (u)

.=
∫

r
I (x) dx,

Gr (u)
.=

∫

r
I 2(x) dx
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Then Nr substitutes Nr , and µ̂r and σ̂ 2
r , respectively, become

Mr (u)
.= Hr (u)

Nr (u)
, Sr (u)

.= Gr (u)

Nr (u)
− M2

r (u)

The cost function to be minimized is then

J (u) = E(u) + Nin(u)

2
logSin(u) + Nout(u)

2
logSout(u)

The derivative of the second and third terms with respect to uq,k has the form

1

2

∂Nr (u)

∂uq,k
log Sr (u) + 1

Sr (u)

[
∂Gr (u)

∂uq,k
− Sr (u)

∂Nr (u)

∂uq,k

− 2Mr
∂ Hr (u)

∂uq,k
+ M2

r (u)
∂Nr (u)

∂uq,k

]
(3.26)

At first glance, this appears a very complex derivative to compute. However, each
of the partial derivatives has the form given in equation 3.11 with the argument F
replaced by I 2, I , or 1, and can therefore be obtained by taking the forward transform
of the appropriate one-dimensional functions.

The other terms in this expression are composed of simple algebraic operations
on integrals of I 2, I , or 1 over the domains θin(u) and θout(u). Again, using Green’s
theorem (equation 3.15), these can be reduced to one-dimensional integrals, along
the contour, of the functions

Ip,1(x1, x2) = −1

2

∫ x2

0
I p(x1, t) dt

Ip,2(x1, x2) = 1

2

∫ x1

0
I p(t, x2) dt

for p = 0, 1, 2. Specifically,

∫

θ(u)in

I p(x) dx =
∫ 1

0
Ip,1(θ(t, u))θ̇1(t, u) + Ip,2(θ(t, u))θ̇2(t, u) dt, p = 0, 1, 2

The functions Ip do not depend on u and can be precalculated and stored once and
for all at the start of the computation. This leads to the following algorithm.
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Algorithm 3.2: Deformable Contour—on-Line Parameter Estimation

1. Compute Ip, j (x1, x2), p = 0, 1, 2 j = 1, 2 (simple summation), and total
integrals of I p over entire domain: Tp, p = 0, 1, 2.

2. Initialize uq,0 = {uq,k,0, k = 0, . . . , d}, q = 1, 2. Set m = 0.

3. Calculate θ1 = �−1(u1,m), θ2 = �−1(u2,m), and θ̇1, θ̇2.

4. Calculate

Integrals:

Nin = ∑n−1
i=0 I0,1(θ(ti ))θ̇1(ti ) + I0,2(θ(ti ))θ̇2(ti ),

Hin = ∑n−1
i=0 I1,1(θ(ti ))θ̇1(ti ) + I1,2(θ(ti ))θ̇2(ti ),

Gin = ∑n−1
i=0 I2,1(θ(ti ))θ̇1(ti ) + I2,2(θ(ti ))θ̇2(ti ).

Nout = T0 − Nin, Hout = T1 − Hin, Gout = T2 − Gin.

µin = Hin/Nin, µout = Hout/Nout.

σ 2
in = Gin/Nin − µ2

in, σ
2
out = Gout/Nout − µ2

out.

Transforms: v p,1 = �(I p(θ)θ̇2), v p,2 = −�(I p(θ)θ̇1), p = 0, 1, 2.

5. Set dq,r,k = 1
2 log(σ 2

r )v
0,q
k + 1

σ 2
r

[v2,q
k − σ 2

r v
0,q
k − 2µrv

1,q
k + µ2

r v
0,q
k ],

q = 1, 2, k = 0, . . . , d and r = in, out.

6. Set uq,k,m+1 = uq,k,m − � · (λkuq,k,m + dq,in,k + dq,out,k)

i = 1, 2, k = 0, . . . , d.

7. If a stopping criterion is satisfied, exit, otherwise m ← m + 1 go to 3.

The outcomes for the two approaches, off-line and on-line parameter estimation,
are compared in figures 3.6 and 3.7. We see that if the parameters are fixed off-line
at unreasonable values, the first approach yields erroneous results, whereas on-line
parameter estimation is successful at finding the contour of the heart ventricle. On the
other hand, if the on-line method is initialized at a starting point with higher interior
mean than that of the desired region, it may converge to something entirely wrong,
whereas the first method, driven by the correct parameters, obtains a good detection.

3.5 Bibliographical Notes and Discussion

The idea of deformable contours goes back to Grenander (1970, 1978). In Grenander,
Chow, and Keenan (1991), the details of the implementation are described together
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Figure 3.6 (Top) Initial curves. (Bottom) Final detection. (Left and middle) Gaussian model
with equal variances and means estimated off-line, µin = 0, µout = .2 (Pixel values are scaled
between 0 and 1). (Right) Gaussian model with on-line parameter estimation.

Figure 3.7 (Top) Initial curves. (Bottom) Final detections. (Left) Using fixed parameters.
Gaussian model with equal variances, µin = 0, µout = .3 (as opposed to µout = .2 in figure
3.6). The contour grows beyond the boundaries of the ventricle chamber. (Right) Gaussian
model with on-line parameter estimation, initialized outside the ventricle.
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with theoretical aspects of the statistical formulation. The curve there is parameterized
directly in terms of the locations of the n points, also known as the lattice parameter-
ization. This can be viewed as one extreme example of the spectral parameterization,
where the basis functions are shifts of some “smoothed delta” function. In this case,
all elements of the basis are of equal support and in order to enforce smoothness,
it is necessary to introduce penalties in terms of sums of squared differences of the
point locations or, in the continuum formulation, integrals of squared derivatives of
some order. In this parameterization, one loses a natural way to proceed from coarse
to fine. Starting with a small number of points and gradually increasing their number
is a possibility; however, it is then necessary to determine the type of interpolation
to use between the point positions in order to define the continuous curve, and how
additional points are placed along the curve. Still, most formulations in the literature
appear in this form. The idea of on-line estimation of the parameters appears in Zhu
and Yuille (1996), and is worked out in further detail in Chesnaud, Réfrégier, and
Boulet (1999).

A deformable-contour model, called snakes, based only on an edge-data term was
originally proposed in Kass, Witkin, and Terzopoulos (1987). However, using only an
edge-data model is problematic. The contours tend to perform only local adjustments
unless artificially forced by additional terms in the cost function to grow or shrink
(see Cohen 1991). In such models, the initial contour shown, for example, in figure
3.5, would have trouble crossing the boundary encountered by the top part of the
curve on the lower part of the ventricle. When a specific data model is expected in
the interior and exterior, and the coarse-to-fine algorithm is implemented, the curve
is able to find the correct region.

Note that when initialized with a small contour, the algorithms presented here can
be viewed as smoothed-region-growing algorithms (see, for example, figure 3.2). The
gradient of the data term is locally looking for directions in which more pixels sat-
isfying the “inside model” can be found, and the penalty term is constraining this
growth to be smooth. Region growing is a very old methodology in pattern recog-
nition (see, for example, Duda and Hart 1973 or Haralick and Shapiro 1992). In
Zhu and Yuille (1996), there is further discussion on the relation between region
growing and deformable contours. In this work, several contours are grown simul-
taneously using a systematic model incorporating several closed regions, a prior on
the number of regions and on the shape of the region contours. The data model
is based on conditional independence of the gray-level intensities in the different
regions. There is also the option to merge adjacent regions. Such region-growing
techniques can hardly be viewed as object detection—rather, as image-segmentation
tools. On the other hand, when the deformable contour has a particular shape that
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is more or less preserved during the detection process, there is meaning to the
match obtained between the model points on the curve and those in the image, as
illustrated by the enumerated points along the model curve and matched curve in
figure 3.5.

One of the problems of the algorithm presented above is that there is no inherent
mechanism to prevent the self-intersection of the deforming curve; moreover, there is
no straightforward way to extend the work to deformable 2D surfaces embedded in 3D.
An interesting computational approach that overcomes these limitations can be found
in the level set methods (Malladi, Sethian, and Vemuri 1995; Caselles and colleagues
1997; Caselles, Kimmel, and Sapiro 1997). The idea is to view the deforming contour
as the 0-level set of a “virtual” function on the entire 2D domain. The gradient-descent
motion of the curve translates into an evolution of the virtual function based on a time-
dependent partial differential equation. At each step, the estimated curve corresponds
to the 0-level set of the evolved virtual function. There is never any need to define
the virtual function in the entire domain. In numerical implementations, it suffices to
define it locally around the current estimated curve. An interesting advantage of this
approach is that the topology of the curve can change in a natural way. A smooth
evolution of the virtual function can produce, at some point, a change from one closed
curve to two or more. These models have all been implemented using an edge-data
model and inherit the drawbacks of this type of data model. Also, in the presence of
noisy data, their increased topological flexibility can become a liability, because it
allows the algorithm to produce multiple isolated curves, instead of finding the one
region of interest.

There are numerous other papers in the literature on deformable contours. The
variations involve different data models, different forms of curve parameterization,
and different forms of smoothing penalties on the curves. (See, for example, Cohen
1991; Cohen and colleagues 1992; Figueiredo and Leitao 1992; Cohen and Cohen
1993; Chuang and Kuo 1996). In Blake and Yuille (1992), several papers describe
the use of deformable contours for tracking a contour in time. These ideas are further
developed in Blake and Issard (1998), where a statistical model for the curve motion
replaces the prior we have used in static images.

Attempts at training the parameterization of the deformations according to the
particular shape and its characteristic deformations can be found in Cootes and Taylor
(1992). The n points of the instantiation are marked by the user on training images
registered to a fixed scale and location, to produce a 2n dimensional vector for each
training image. The covariance matrix of this data is computed and the eigenvectors
(i.e., principal components) of this matrix are used as the basis with which to expand
the curve. Most typical variations of the curve around the mean will require only
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a small number of basis elements with nonzero coefficients. This is an appealing
approach, although the resulting basis will not come with a fast-forward and backward
transform and hence may be somewhat less efficient. There is also the risk that the
covariance matrix and resulting eigenvectors are too dedicated to the training data
and result in a prior that does not generalize well to other instances of the object; see
Wang and Staib (2000) for a related discussion.

There are certain inherent problems encountered by all implementations, the main
one being the initialization of the contour, as clearly emerges from figure 3.6. Some
attempts have been made to directly compute a global optimum of a cost function
similar to the inside-outside model described above (see Jermyn and Ishikawa 1999;
Ishikawa and Geiger 1999) using minimal-cut methods on graphs. These methods
are much slower than the iterative algorithms described here. Moreover, they find the
global optimum, over the entire image, of a cost function that is very generic and
hence this optimum may not be anywhere near the desired object.

The pose-initialization problems, the sensitivity of the deformable contours to
noise, and the need to derive more-specific data models motivate the algorithms
developed in chapters 6–8.
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The deformable-contour model described in chapter 3 is based on a nonlinear cost
function that is optimized using a gradient-descent method. At best, the algorithm will
reach a satisfactory local minimum. It is easily confused by clutter. If the interior of
the object, or the exterior, are not homogeneous, the data models for the deformable
contour are grossly incorrect and the minima are nowhere near the desired object
contours.

An alternative approach involves more detailed modeling of the data along the
curve. The template is again defined in terms of a sequence of points Z = (z1, . . . , zn)

on the reference grid. The instantiation is described directly in terms of a sequence
(θ1, . . . , θn) of locations in the image grid L , and the constraints are explicitly de-
fined in terms of a set � ⊂ Ln and a prior P(θ) penalizing nonsmooth deformations
of the model curve. The data model is again based on a conditional independence
assumption. In contrast to chapter 3, the problem is no longer considered in the con-
tinuum, rather, the discrete aspect is emphasized in the computational methods. The
cost function has the form of a sum of costs on pairs or triples of consecutive points,
and therefore lends itself in principle to global optimization. One method of optimiza-
tion is dynamic programming. The other is a tree-based optimization technique from
Geman and Jedynak (1996). It should be noted that in order for this approach to be
computationally feasible, in terms of time and memory requirements, it is necessary
to introduce some hard constraints on the locations of the n points, as detailed below.
In other words, some user initialization is still required although the algorithms are
much less sensitive to the initial configuration.
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4.1 Statistical Model

Here we use a transform of the gray-level pixel data into a vector of binary local image
features Xa(x), a = 1, . . . , A, and write Î (x) = (Xa(x); a = 1, . . . , A). The main
advantage is that such features can be chosen to be robust to monotone gray-level
transformations, and changes in the contrast of the data along the curve will not affect
the detection. Otherwise put, such features are photometrically invariant. This is in
contrast to the data models of chapter 3, which assumed a fixed mean intensity inside
the object. Such data models would be very sensitive to global changes in the range
of gray-level values. Furthermore, the discrete nature of the transformed data allows
for simple estimation of model parameters.

4.1.1 Local Features

We assume the curve can either traverse a pixel x at one of A different angles
aπ/A, a = 1, . . . , A, in which case we write ang(x) = a; or no curve traverses the
pixel, in which case we write ang(x) = φ. For example, take A = 4 and assume that
locally each curve is either horizontal, vertical, or at ±45◦. The notion of curve angle
is quite loose and covers quite a wide range. The feature Xa is expected to be “on” at
x—that is, Xa(x) = 1, if ang(x) = a. We list here two possible definitions, X̂ a and
X̃ a , for these features, but many others exist. In the experiments below, we use the
conjunction of these two conditions, namely, Xa(x) = X̂ a(x) · X̃ a(x). If the curve is
expected to be “ridgelike,” and say, brighter than its surroundings, define

X̂ a(x) = 1, if I (x) > I (x + µa) and I (x) > I (x − µa) (4.1)

where µa is the vector of length µ pixels in the direction orthogonal to a, for some
small µ.

If the curve can be brighter or darker than its surroundings but relatively constant
in intensity, we require the intensity differences within the curve to be smaller than
those between the pixels on the curve and those alongside it.

X̃ a(x) = 1, if |I (x + νa) − I (x)| < min(|I (x) − I (x + µa)|, |I (x) − I (x − µa)|)
(4.2)

where νa is a vector of ν pixels in the direction of a. In figure 4.1, we show the points
obtained using the conjunction of conditions 4.1 and 4.2, on an axial MRI brain scan.
The original image can be found in the top right panel of figure 4.3 (in section 4.2
Computation: dynamic programming).
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Figure 4.1 The four local feature types detected on the axial MRI brain scan shown at the
top right of figure 4.3, we use A = 4, µ = 3, ν = 1.

4.1.2 The Likelihood

Clearly, the probability that Xα(x) = 1 will tend to be larger if a curve of angle α

passes through x—that is, ang(x) = α. For angles a that are different from α we
would expect the probability that Xa(x) = 1 to be smaller. Denote these probabilities
pα,a, α, a = 1, . . . , A. Finally, if no curve passes through the neighborhood of x—
that is, x is a “background” pixel, the probability of Xa(x) = 1 is denoted pb and
is the same for all a. Assume that given that the curve passes through the pixel x
at angle α, the variables Xa(x), a = 1, . . . , A are independent, and given no curve
passes through the pixel, they are also independent. The conditional distribution of
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Î (x) at pixel x given ang(x) = α—is then

P( Î (x) | ang(x) = α) =
A∏

a=1

pXa(x)
α,a (1 − pα,a)

1−Xa(x) (4.3)

and given no curve passes through the pixel

Pb( Î (x)) = P( Î (x) | ang(x) = φ) =
A∏

a=1

pXa(x)
b (1 − pb)

1−Xa(x) (4.4)

Given an instantiation θ = (θ1, . . . , θn)of the curve, we assume the data Î (x), x ∈ L
to be conditionally independent. Let Li be the pixels on the segment connecting the
points θi , θi+1 and let L(θ) be the union of the sets Li . Also, let αi denote the angle of
the i th segment. Associated to each x ∈ L(θ) there is a specific angle ang(θ, x)—the
angle of the segment to which the pixel x belongs. The conditional distribution of Î ,
on the entire lattice, given the instantiation θ is then

P( Î | θ) =
∏

x∈L(θ)

P( Î (x) | ang(θ, x)) ·
∏

x /∈L(θ)

Pb( Î (x))

=
n−1∏

i=1

∏

x∈Li

P( Î (x) | αi )
∏

x /∈L(θ)

Pb( Î (x)) (4.5)

Dividing 4.5 by
∏

x∈L Pb( Î (x)), which can be interpreted as the probability of Î given
no curve is present, and does not depend on θ , and substituting 4.4 and 4.3, we obtain
a likelihood ratio of the form

P( Î | θ)

Pb( Î )
=

∏

x∈L(θ)

P( Î (x) | ang(θ, x))

Pb( Î (x))

=
n−1∏

i=1

A∏

a=1

[
pαi ,a

pb

]Nia
[

1 − pαi ,a

1 − pb

](Ni −Nia)

(4.6)

where Nia is the number of times Xa(x) = 1 along the segment Li and Ni denotes the
total number of pixels along this segment. The log-likelihood is thus up to a constant
given by a sum of functions of the counts along the segments of the curve.

log
P( Î |θ)

Pb( Î )
=

n−1∑

i=1

A∑

a=1

[
Nia log

(
pαi ,a(1 − pb)

pb(1 − pαi ,a)

)
+ Ni log

(
1 − pαi ,a

1 − pb

) ]
. (4.7)
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We are again making strong conditional independence assumptions that are clearly
a gross simplification. However, the data model is simple and transparent and does
depend on the angle of the curve in a direct way. Furthermore, as in the previous
chapters, the model is created with the computational task in mind. The log-likelihood
is simply a linear function of the counts. In this equation, the dependence on the data
Î is through Nia . It is also useful to note for later computational considerations that
the log-likelihood can be written in the form

n−1∑

i=1

ψ( Î , θi , θi+1) (4.8)

where the functions ψ depend only on the two consecutive points θi , θi+1 and on the
data Î along the segment connecting them.

Under this data model, the maximum likelihood estimates of the parameters are
obtained from training sample proportions. Take training subimage samples from
each of the categories: α = 1, . . . , A. For each α, obtain the proportion for which
Xa(x) = 1, a = 1, . . . , A to produce an estimate p̂α,a . An estimate of pb is obtained
from subimages with no curve, estimating one pooled probability for P(Xa(x) =
1 | ang(x) = φ), for all as.

The model can be simplified by setting pα,a = pc if α = a, meaning that P(Xa(x) =
1 | ang(x) = a) = pc for any a = 1, . . . , A and pα,a = pb if a �= α, meaning that
the probability of Xa(x) = 1 if ang(x) �= a is the same as the background probability.
The likelihood ratio then has the simpler form

P( Î | θ)

Pb( Î )
=

n−1∏

i=1

[
pc

pb

]Niαi
[

(1 − pc)

(1 − pb)

](Ni −Niαi )

(4.9)

In this case, parameter estimation also simplifies. Estimate one parameter pc = pa,a

for all a = 1, . . . , A, pooling together all subimage samples containing a curve of
any angle. For each a let na be the number of training subimages labeled with angle
a, and let na,1 be the number of these for which Xa(x) = 1. Then estimate pc as

pc =
∑A

a=1 na,1∑A
a=1 na

The parameter pb is estimated from training subimages identified as not having any
curve.

Training samples are either obtained by hand with the user pointing out pixels with
curves of the A different angles and pixels with no curve. Alternatively, one can start
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with initial parameter settings, detect the curve, and use pixels on and off the detected
curve to update the parameters.

4.1.3 The Prior and the Posterior

The curve is parameterized directly through the locations of the n points θ1, . . . , θn . It
is important to include a prior penalizing irregular nonsmooth curves. This can have
a variety of forms. For example, a penalty on high curvature can be written as

P(θ1, . . . , θn) ∝ exp

[
−

(
n−2∑

i=1

φi (θi , θi+1, θi+2)

)]

where φi (θi , θi+1, θi+2) is the modulus of the difference between the angle of the
segment θi , θi+1, and that of the segment θi+1, θi+2. Each such term depends on a
triple of consecutive points and is entirely scale invariant. Such penalties are useful
when there are no particular prior assumptions on the shape of the curve. If the model
or template has a particular shape and we do not expect significant variations in scale
or rotation, the functions φi can be simplified to depend only on consecutive pairs.
In the examples below, we compare angles and lengths between a pair of consecutive
points in the instantiation and the corresponding pair in the model sequence:

φi (θi , θi+1) = A|ang(θi+1 − θi , zi+1 − zi )| + B| log(|θi+1 − θi |/|zi+1 − zi |)|
(4.10)

and

P(θ1, . . . , θn) ∝ exp

[
−

(
n−1∑

i=1

φi (θi , θi+1)

)]
(4.11)

This is a simple prior that independently penalizes deviations in angle and length of
individual segments of the deformed curve from their counterparts on the template
curve. The higher-probability instantiations will tend to have a shape similar to the
model curve (z1, . . . , zn).

Putting the data model from equation 4.8 together with the prior of equation 4.11,
we write a negative log-posterior of the form

J (θ) = − log P(θ1, . . . , θn | Î ) =
n−1∑

i=1

�i (θi , θi+1) + C (4.12)
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where

�i (θi , θi+1) = φi (θi , θi+1) − ψi ( Î , θi , θi+1), i = 1, . . . , n − 1

with ψi defined in equation 4.8 and φi defined in 4.10.

4.2 Computation: Dynamic Programming

The structure of the cost function—a sum of terms each depending on two consecutive
variables—lends itself to efficient minimization using dynamic programming. Each
point θi along the curve is assigned a state space Si ⊂ L of possible values. It is
not necessary to try all possible n-tuples of points from Si , i = 1, . . . , n. Rather, the
computation reduces to trying all possible pairs of points of consecutive indices,
i, i + 1 for i = 1, . . . , n − 1. Even with this reduction it is impractical to assume that
Si is the entire image lattice. However, if some hard constraints on the location and
variability of the curve are introduced, the computation becomes tractable.

One approach to limiting the state space is to assume that the first and last points
are given within small neighborhoods S1, Sn in the image. Then, using some heuristic,
determine regions S2, . . . , Sn−1 such that for any reasonable configuration θ1, . . . , θn,

we would have θi ∈ Si , i = 1, . . . , n. Alternatively, set an initial curve θ(0), deter-
mined by an affine map A applied to the model configuration—that is, θ

(0)
i = Azi ,

and define Si as neighborhoods of the points θ
(0)
i , of some size.

Dynamic programming is based on the following simple observation. Let J (0)(θ) =
J (θ), as defined in equation 4.12. For each point θn−1 ∈ Sn−1, define

θ∗
n (θn−1) = argminSn

�n−1(θn−1, θn)

f ∗(θn−1) = minSn �n−1(θn−1, θn)

Then define

J (1)(θ1, . . . , θn−1) =
n−2∑

i=1

�
(1)
i (θi , θi+1)

with �
(1)
i = �i for i = 1, . . . , n − 3 and

�
(1)
n−2(θn−2, θn−1) = �n−2(θn−2, θn−1) + f ∗(θn−1)
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A simple argument shows that (θ∗
1 , . . . , θ∗

n−1) minimizes J (1) if and only if

(θ∗
1 , . . . , θ∗

n−1, θ
∗
n (θ∗

n−1))

minimizes J (0). If θ∗
n (θn−1) is stored for all values of θn−1 ∈ Sn−1 as well as the values

f ∗(θn−1) then the n-dimensional problem has been reduced to an n − 1-dimensional
problem of the same form, although one of the functions has been modified. These
reductions continue until we are left to find θ∗

2 (θ1) for every possible θ1 ∈ S1. This
leads to the following algorithm.

Algorithm 4.1: Curve Detection with Dynamic Programming

1. For i = 1, . . . , n, define arrays Hi indexed by elements x ∈ Si , and with 5 columns:
the first two giving the coordinates of x are merely for convenience. The last three
columns get updated as the algorithm proceeds.

2. Set Hn(x, 5) = 0 for all x ∈ Sn−1. Set i = n − 1.

3. While i > 0, do
For every x ∈ Si find the point z∗(x) in Si+1, which minimizes �i (x, z) +
Hi+1(z, 5). Store the coordinates of z∗(x) in columns 3 and 4 of the x entry in Hi .
Column 5 is used to store the value of f ∗(x) = �i (x, z∗(x)) + Hi+1(z∗(x), 5).
Set i = i − 1.

4. Loop over the array H1 and find the row with lowest value �∗ of column 5. Let θ∗
1

be the point given by the first two columns of that row. Set i = 1.

5. While i < n − 1, do
Set θ∗

i+1 to be the point given in columns 3 and 4 of Hi at the row indexed by θ∗
i .

Set i = i + 1.

6. The configuration θ∗
i , i = 1, . . . , n is the optimal configuration satisfying θi ∈ Si

and the associated cost is �∗.

If the sets Si are large, the computation and memory requirements of the algorithm
get out of hand. For example, for square regions of size 20 × 20, which is the size
used below, each step takes approximately .25 seconds on the Pentium III 700 MHz.
However, computation here grows quadratically with the size of the state space.
So, for example, using 10 × 10 regions, the time reduces to 10 milliseconds per
iteration. In figure 4.2, we show some of the stages of the dynamic programming
for detecting an E in a cluttered scene. The initial curve is shown in the left panel.
The optimal result of the first two stages is shown in the second panel. This would
be the result if the model consisted only of the first two segments corresponding
to the bottom ending of the E . This optimal solution is clearly misplaced, and is
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Figure 4.2 Stages of dynamic programming. The initial curve which determines the regions Si

is shown in the top left panel. Then at four stages of the dynamic programming the corresponding
optimal curve is shown. Final detection is in the bottom right panel.

corrected in the next stage where the optimum corresponding to the first three segments
of the model is shown. A few additional stages are shown together with the final
detection.

The outcome of dynamic programming for detecting the deformable-curve algo-
rithm on an axial MRI brain scan is shown in figure 4.3. The aim is to identify the
exterior boundary, which corresponds to the scalp. The initial curve, which has the
form of a semicircle, is shown in black, and the final curve is shown in white.
The regions Si were 21 × 21 neighborhoods of each of the points along the ini-
tial black curve. In the lower left-hand panel, the final segment of the curve is off
the correct path, most likely because the neighborhood around the last point in the
initial curve did not intersect the scalp. It is important to note that there is significant
clutter in these images that is not easily visible. This can be seen in figure 4.1, where
plenty of hits of the four local features are found inside as well as outside the scalp.
These local features are the only input to the detection algorithm, and due to their
photometric invariance, they detect ridges even in very-low-contrast regions.
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Figure 4.3 Examples of deformable curve detection on an MRI brain scan: In black is the
original curve used to define the search regions, and in white are shown the stages of the
dynamic programming.
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When there is no particular prior shape to the curve and the only constraint is that of
smoothness, priors involving consecutive triples are essential. Even with prior shape
information, such constraints may be needed. Curves detected with the simpler prior
can have sharp turns because there is no constraint on the curvature. The dynamic
programming procedure is similar but requires computations over triples of consec-
utive points. The computational and memory requirements increase, and at times it
is necessary to implement heuristics to prune the lists of optimal states to avoid an
explosion in the computation time. In chapter 7, we return to dynamic programming
as a technique for matching a sparse model with no prior initialization. There, we
indeed use functions depending on triples of points in the model and provide the
algorithmic details. A more efficient alternative to dynamic programming is described
in the next section in the case where the curves are assumed to have low curvature.

4.3 Global Optimization on a Tree-Structured Prior

When the curve changes direction very slowly, we can assume that the change in angle
between two consecutive segments is limited to three possible values, −β, 0, β, where
β = π/A for some large A. The distance N between consecutive points is taken to
be constant. If the first two points θ1, θ2 are given, the path of the curve can be described
as a sequence of symbols from the space {−1, 0, 1} according to whether the next
segment turns −β, 0, or β degrees. The entire space of possible curves emanating
from the initial segment can be represented as a ternary tree T , of depth n, with each
node representing a possible segment. The root node of the tree is the segment θ1, θ2,
which is fixed. Each node is connected to three children nodes representing the three
possible segments following it. A curve is represented by a path from the root node to
a terminal node of the tree, and is thus completely determined by that terminal node.

Starting at the initial segment, the path on the tree up to a node t provides a sequence
of turns on consecutive segments of angle β, 0, or −β, all of equal length. Thus each
interior node t in the tree corresponds to a physical segment Lt in the image, and has
an associated angle αt . If the initial segment is assigned angle 0, the angle of αt can
be any multiple of β. The node t also determines a set �t ⊂ � of curves passing
through it. We freely interchange the use of θ for a terminal node of the tree, the path
it determines in the tree, and the corresponding physical path in the image. Thus the
set of possible instantiations � is given by the set of paths or terminal nodes of the
tree. Note that certain points in the image can be traversed by two different segments
represented in the tree T . This is ignored in the model developed next.
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4.3.1 The Data Model

We employ the simpler model of equation 4.9, where P(Xa(x) = 1 | ang(x) = a) =
pc and P(Xa(x) = 1 | ang(x) �= a) = pb, for all a = 1, . . . , A = π/β. Let Yt = Ntαt

denote the counts along the segment Lt , of the corresponding feature Xαt . Recall that
αt is the angle of Lt . The likelihood ratio of the transformed image data is now
written as

P( Î | θ)

Pb( Î )
=

∏

t∈θ

[pc/pb]Yt [(1 − pc)/(1 − pb)]
N−Yt

where N is the fixed number of points along each segment. Given the true curve
is θ , this data model expects a higher count of the feature Xαt on the segments Lt

for t ∈ θ than on background segments, t /∈ θ . Multiply the above expression by∏
t∈T pYt

b (1 − pb)
N−Yt , which is constant, and write the likelihood of the data, only

at pixels corresponding to segments of the tree, conditional on the curve as

P( Î (x), x ∈ ∪t∈T Lt | θ) = C ·
∏

t∈θ

pYt
c (1 − pc)

N−Yt ·
∏

t /∈θ

pYt
b (1 − pb)

N−Yt (4.13)

Through some simple algebraic manipulation, we have reformulated a restricted
likelihood only in terms of the data along ∪t∈T Lt , namely, the collection of image
segments corresponding to the tree nodes. Recall that we are ignoring the fact that these
segments may have nontrivial intersections. This likelihood depends on the data along
each segment Lt only in terms of the count Yt . Moreover, in our particular setting,
the distribution of Yt is binomial B(N , pc) or B(N , pb) depending on whether the
curve passes through t or not. Because the data along the segments are still considered
independent given the curve, we can write a simplified likelihood of the counts Yt

along the segments as

P(Yt , t ∈ T | θ) =
∏

t∈θ

P1(Yt )
∏

t /∈θ

P0(Yt ) (4.14)

where P0 and P1 are the binomial distributions B(N , pb) and B(N , pc), respectively.
A simple computation shows that the relative weighting of the likelihood for two
curves will not change using 4.13 or 4.14. Because the prior on the tree is uniform,
the posterior on curves given the counts along the segments of the tree is again

P(θ | Yt , t ∈ T ) = C ·
∏

t∈θ

P1(Yt )
∏

t /∈θ

P0(Yt ) (4.15)
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Thus in the current setting one can start with a model that only considers the image
data along the tree of paths. Assume conditional independence of the counts Yt , given
θ corresponds to the true curve, with some distribution P1 for the counts on segments
in θ , and another distribution P0 for the counts on segments in the tree not in θ . This
is a somewhat weaker assumption than conditional independence of the data at each
pixel, and is the approach taken in Geman and Jedynak (1996). One can then use a
nonparametric form of P1 and P0 as opposed to the binomial model. The distribution
P1 is estimated from a sample of subimages in which a curve is passing through the
center. If the angle in a subimage is α, obtain Nα along the appropriate segment. These
counts are then pooled into a histogram to estimate the distribution P1. On subimages
with no curve, find the counts Na for each of the angles a = 1, . . . , A and pool these
into a histogram to obtain an estimate of P0.

Before proceeding to describe the details of this algorithm, we make a brief di-
gression to define the notion of entropy, conditional entropy, and mutual information,
which will be used in the following sections as well as in chapter 9 in the context of
classification trees. A comprehensive exposition of the theory of entropy, also called
information theory, can be found in Cover and Thomas (1991).

4.3.2 Entropy

Given a random variable X with values in a finite discrete set S and with probability
distribution p(s) = P(X = s), we define the entropy of X as

H(X) = −
∑

s∈S

p(s) log p(s) (4.16)

Because x log x = 0 if x = 0, this sum is well defined even if some of the probabilities
are 0. This quantity is one way to express how “random” X is, or the degree of
“uncertainty” in X . If X is uniform on S, then H(X) = log(|S|). This can easily
be seen to be the highest attainable value for any distribution on S. Indeed, the
uniform distribution is the most “random.” At the other extreme, if X is concentrated
at one point (i.e., p(s) = 1 for some s ∈ S), then H(X) = 0, which is the lowest
attainable value, because −x log x ≥ 0 for 0 ≤ x ≤ 1. Note that H(X) depends only
on the distribution p and not on the values of X , so we can also write H(p).

Let X1 and X2 be two random variables with values in S, so that the pair (X1, X2)

has values in S × S with a joint distribution p(s1, s2) = P(X1 = s1, X2 = s2). The
joint entropy of X1 and X2 is defined in the same way as

H(X1, X2) = −
∑

s1∈S, s2∈S

p(s1, s2) log p(s1, s2) (4.17)
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Let pi (si ) = P(Xi = si ), i = 1, 2 denote the marginal distributions of p. Let
p(s1 | s2) denote the conditional probability P(X1 = s1 | X2 = s2). We can ask what
is the randomness in X1, given we know that X2 = s2, written as the entropy of the
distribution p(· | s2)—that is,

H(X1 | X2 = s2) = −
∑

s1∈S

p(s1 | s2) log p(s1 | s2) (4.18)

This could be greater or less than the original entropy of X1. If we average over all
possible values s2 in terms of the distribution p2, we get the conditional entropy of
X1 given X2

H(X1 | X2) = −
∑

s2∈S

p2(s2)
∑

s1∈S

p(s1 | s2) log p(s1 | s2)

= −
∑

s1,s2

p(s1, s2) log p(s1 | s2) (4.19)

Using the fact that p(s1 | s2) = p(s1, s2)/p2(s2), and that H(X2) =
−∑

s1,s2
p(s1, s2) log p(s2), we get the following relation between conditional entropy

and joint entropy.

H(X1 | X2) = H(X1, X2) − H(X2) (4.20)

Furthermore, using the fact that − log x is convex, we get

H(X1) − H(X1 | X2) = −
∑

s1,s2

p(s1, s2) log
p(s1)p(s2)

p(s1, s2)

≥ − log

(
∑

s1,s2

p(s1, s2)
p(s1)p(s2)

p(s1, s2)

)

= log 1 = 0

In other words, the conditional entropy of a variable (conditioned on any other
variable) is always less than the entropy. On average, the randomness in X1 decreases
if the value of X2 is known. Except when the variables are independent—that is,
p(s1, s2) = p1(s1)p2(s2), in which case it is easy to see that

H(X1 | X2) = H(X1) = H(X1, X2) − H(X2) (4.21)

Note that by equation 4.20,

H(X1) − H(X1 | X2) = H(X1) + H(X2) − H(X1, X2) = H(X2) − H(X2 | X1)
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The quantity

�(X1, X2) = H(X1) − H(X1 | X2) = H(X2) − H(X2 | X1) (4.22)

is symmetric in X1, X2 and is called the mutual information of X1 and X2.
In our context, if we want to obtain a good guess on θ in terms of an observation

X , we would pick one for which the conditional entropy of θ given X is low, or the
mutual information is high. Not much randomness is left in θ once X is observed.
This will guide us in the development of the algorithm below.

4.3.3 Sequential Updating of the Partial Posterior

Trying to directly find the maximum of the posterior in equation 4.15 is computa-
tionally impossible for trees of depth on the order of several tens. The state space is
huge and even evaluating Yt along each segment Lt corresponding to a node t of T is
nontrivial. The idea behind the algorithm described below is to evaluate a sequence
of partial posteriors conditioning only on the data at a small subset of nodes of T , as
opposed to conditioning on all the data, and evaluating the probabilities of a limited
number of coarse subsets of �. Gradually, the size of the conditioning set increases
and the subsets at which the posterior is evaluated become more refined.

At step m, assume we already have chosen a subtree Tm rooted at the root node of T ,
and m nodes t1, . . . , tm ∈ Tm at which Yt has been computed, with values y1, . . . , ym .
Let Bm denote the event {Yt1 = y1, . . . , Ytm = ym}. Each t ∈ Tm determines a subset
�t of paths, and we calculate the partial posterior

π(m)
t

.= P(θ ∈ �t | Yti = yi , i = 1, . . . , m) (4.23)

for all t ∈ Tm . Typically, there are more than m nodes in Tm , but the number of
segments at which we actually observe Yt is given by m and is increased by 1 at each
step. The subtree Tm is sequentially updated, and typically the partial posterior in
equation 4.23 becomes more and more peaked at some node t of the current subtree.
There is a recursive method to calculate π

(m+1)
t in terms of π

(m)
t .

Moreover, as discussed in the previous section, the next segment to “query” (i.e.,
the choice of tm+1 at which to observe Ytm+1 ) is chosen as the variable maximizing the
mutual information with θ , given the data already observed—that is, given the event
Bm . At some stage, the partial posterior is sufficiently peaked at, say, t∗ ∈ Tm , the true
curve can be assumed to pass through t∗ (i.e., θ ∈ �t∗ ) and the search is reinitialized
at t∗.
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Choosing the Next Segment to Query

Assume m − 1 segments have been queried, determining an event Bm−1, and that
the current set Tm from which to choose tm is already determined. We are seeking
t ∈ Tm for which the mutual information of θ and Yt given Bm−1 is largest. Due to the
conditional independence assumptions, the most informative node is identified solely
in terms of the current partial posterior π

(m−1)
t .

For 0 ≤ π ≤ 1 define the mixture distribution Pπ = π P1 + (1 − π)P0 and let

φ(π) = H(Pπ ) − π H(P1) − (1 − π)H(P0) (4.24)

where H(P) is the entropy of the distribution P . Because −x log x is concave, the
function

H(Pπ ) =
N∑

k=0

[π P1(k) + (1 − π)P0(k)] log[π P1(k) + (1 − π)P0(k)]

is concave in π . The rest of the expression in 4.24 is linear in π so that φ is a concave
function of π ∈ [0, 1] and has a unique maximum at πmax . It depends on the particular
distributions P0, P1. The mutual information is maximized at a the node t ∈ Tm for
which π

(m−1)
t is closest to πmax .

This is seen as follows: The distribution of Yt given θ depends only on whether the
curve defined by θ passes through t (θ ∈ �t ) and therefore the mutual information
between Yt and θ is the same as the mutual information between Yt and the indica-
tor function 1�t (θ). Setting π

(m−1)
t = P(�t | Bm−1) = P(1�t (θ) = 1 | Bm−1), and

letting � denote mutual information and H the entropy, we have

�(Yt , θ | Bm−1) = �(Yt , 1�t | Bm−1) = H(Yt | Bm−1) − H(Yt | 1�t , Bm−1)

(4.25)

The conditional distribution of Yt given Bm−1 can be written as a mixture distribution

P(Yt = k | Bm−1) = π(m−1)
t P(Yt = k | �t , Bm−1)

+ (
1 − π(m−1)

t

)
P(Yt = k | �c

t , Bm−1)

= π(m−1)
t P1(k) + (

1 − π(m−1)
t

)
P0(k)

where the second equality follows from the conditional independence. The second
term in 4.25 is rewritten as

H(Yt | 1�t , Bm−1) = H(Yt | �t , Bm−1)π
(m−1)
t + H

(
Yt | �c

t , Bm−1
)(

1 − π(m−1)
t

)

= π(m−1)
t H(P1) + (

1 − π(m−1)
t

)
H(P0)
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where again the second equality follows from the conditional independence of Yt and
Bm−1 given 1�t . Therefore the mutual information reduces to

�(Yt , θ | Bm−1) = H
((

1 − π(m−1)
t

)
P0 + π(m−1)

t P1
)

− π(m−1)
t H(P1) − (

1 − π(m−1)
t

)
H(P0)

= φ
(
π(m−1)

t

)
(4.26)

as defined in equation 4.24. We therefore need to pass through all the nodes in Tm

and set tm to be the one with πt closest to πmax .

Updating from π(m−1)
t to π(m)

t

Once the next node tm ∈ Tm at which to observe the data is chosen, we update the
partial posterior given the larger conditioning set Bm , for every node in Tm . In the
next section, we will see how the set Tm is chosen.

Recall that the partial posterior given Bm−1 (i.e., π(m−1)
t ) has already been computed

and stored for every node in t ∈ Tm . Let t be a terminal node of Tm , because all the
nodes t1, . . . , tm are in Tm , knowing that the curve passes through t—that is, θ ∈ �t

completely determines whether or not each of the nodes ti , i = 1, . . . , m is on the
curve or not. Thus Ytm is conditionally independent of Bm−1 given �t . We can then
write

π(m)
t = P(�t | Bm−1, Ytm = ym)

= P(Ytm = ym | �t , Bm−1)P(�t | Bm−1)
P(Bm−1)

P(Bm)

= P(Ytm = ym | �t )π
(m−1)
t

P(Bm−1)

P(Bm)
(4.27)

The first factor can be expressed as

P(Ytm = ym | �t ) =
{

P1(ytm ) if tm is an ancestor of t
P0(ytm ) otherwise tm ∈ θt

and the ratio is given by

P(Bm)

P(Bm−1)
= P(Ytm = ym | Bm−1, �tm )P(�tm | Bm−1)

+ P
(
Ytm = ym | Bm−1, �

c
tm

)
(1 − P(�tm | Bm−1))

= P1(ym)π(m−1)
tm + P0(ym)

(
1 − π(m−1)

tm

)
(4.28)

Thus for any terminal node t ∈ Tm , the calculation of π
(m)
t = P(�t | Bm) is given

entirely in terms of π
(m−1)
t , π

(m−1)
tm , and Pi (ym), i = 0, 1—all of which are known.
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For every internal node t of the tree Tm , write π
(m)
t = π

(m)
t1 + π

(m)
t2 + π

(m)
t3 , where

t1, t2, t3 are the three child nodes of t , so that π
(m)
t can be recursively updated going

from the terminal nodes upward.

Defining the Subtree Tm+1

The partial posterior π
(m)
t has been computed for all t ∈ Tm . The set Tm+1 is obtained

from the set Tm , keeping in mind the fact that subsequently we will be looking for
informative nodes—that is, nodes with π

(m)
t close to πmax . First include all nodes in

Tm . For any terminal node t ′ ∈ Tm satisfying πt ′ > πmax , add the three children to
Tm+1. For these children nodes write

π(m)
t = P(�t | Bm) = 1

3
P(�t ′ | Bm) = 1

3
π

(m)
t ′ (4.29)

This is due to the uniform prior and the fact that we are conditioning on observed
data at nodes in Tm , so that t �= t1, . . . , tm . On the other hand, if π

(m)
t < πmax there

is no point in adding the children because their value would be further away from
πmax . Even if π

(m)
t > πmax , the value for the three children themselves will have to

be less than πmax again because of the factor of 1/3 and because πmax is typically
between .4 and .6. Therefore this extension occurs only for one level—that is, all new
nodes are children of terminal nodes of Tm . An important conclusion is that the most
informative segment in the entire tree given the information in Bm has to be in the
set Tm+1.

The procedure now repeats. The next query tm+1 will be that segment t in Tm+1

for which π
(m)
t is closest to πmax . The new probability π

(m+1)
t is computed from

π
(m)
t for all elements of Tm+1 and Tm+1 is extended to Tm+2. To start, we set T0 as

the root node and therefore necessarily T1 consists of the root node and its three
children, one of which is picked at random as t1. At some stage, the partial posterior
is sufficiently peaked at some t∗ ∈ Tm . We then assume the true curve passes through
t∗ (i.e., θ ∈ �t∗ ) and the search is reinitialized at t∗.

The entire algorithm is summarized as follows:

Algorithm 4.2: Curve Detection—Tree-Based Algorithm
A node t in the tree is an object with variables used to store the following information:

First and second point of segment: t.p1, t.p2

The count: t.Y

Pointers to 3 children and parent: t.ch1, t.ch2, t.ch3, t.par
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The current approximate posterior: t.π

Depth in tree: t.depth

πmax The minimum of φ defined in equation 4.26.

TM Pointer to node with π value closest to πmax

� Store |TM.π − πmax |
TMS Node at which algorithm reinitializes

π∗ Lower threshold for posterior at node t to reinitialize algorithm from the
corresponding segment assuming t.depth is greater then dmin

1. Initialize π∗, πmax, dmin Get two initial points from user: x1, x2

2. Initialize � = 1, TM = null, TMS = null

top is the top node of the tree. top.p1 = x1, top.p2 = x2

Call birth(top)

3. For step = 0 : stepmax

Evaluate data at TM and store in TM.Y

Compute R = 1/(TM.π · P1(TM.Y ) + (1 − TM.π) · P0(TM.Y )). (eq. 4.28)

Sweep through nodes of current tree

� If (t is terminal)

(Apply eq. 4.27)
if (t descendent of TM) t.π ← t.π · R · P1(TM.y)

else t.π ← t.π · R · P0(TM.y)

if (t.π > πmax ) Call birth(t)

� If (t is not terminal)

t.π = t.ch1.π + t.ch2.π + t.ch3.π

� Call update(t): Check if time to reinitialize, and update current choice of TM

Function update(t)

if (t.π > π∗) and (t.depth > dmin)

TMS = t

x1 = t.p1, x2 = t.p2

Go to 2.

if (|t.π − πmax| < �)

π� = |t.π − πmax|, TM = t

Function birth(t)

Create t.ch j , j = 1, 2, 3

Calculate p1, p2 for each,

and set ch j .π = t.π/3

if |ch j .π − πmax | < �

� = |ch j .π − πmax |
TM = chr (r -random)
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The m + 1th segment at which the data is observed (i.e., Yt is measured) can be
characterized as one of the following possibilities. If the posterior on tm is very high,
it could be a randomly chosen child of tm . This corresponds to asking whether the
curve continues down the path determined by tm . If the posterior on tm is low, the next
segment could be one of the interior elements of Tm for which the updated posterior
is closer to πmax , recall that not all nodes of Tm have been queried. The information
at that node may actually indicate where the curve does not pass. This is useful
information. If there is accumulated evidence that the curve does not pass through
certain parts of the tree, the posterior on other parts increases and the next query
may be a randomly chosen child of some element of Tm , which has high updated
posterior, but which is not close to tm . The last two options are specifically what
allow for backtracking and choosing a new direction of search. It is also possible
to “jump ahead.” Assume t j is somewhere near the root and that t j+1, . . . , tm are
not descendents of t j , and that Tm includes some subtree T j rooted at t j . (This is
possible because descendents of t j could have been added to the sets without having
been queried.) It may be that tm+1 is some element of T j , which is not a direct child
of t j .

This algorithm performs essentially in real time. The key component of this effi-
ciency is the very small number of segments at which the data is actually accessed
and processed, and the simple recursive way in which the posterior can be updated.
In figure 4.4, we illustrate the workings of the algorithm in detecting the scalp in an
axial MRI scan used in figure 4.3. The parameters pb, pc were not estimated but set
manually to .4 and .7, respectively. The angle β was set to 10◦ and the length of each
segment is set to 10. The algorithm tracks the entire scalp with only the two initial
points provided and marked in white. In the top image this track is shown in white and
in black are shown those segments in the tree for which the image data were accessed.
In the bottom image, we see the tracked curve with two different initial points. The
computation time is a fraction of a second. In figure 4.5, a similar experiment is done
to track the artery in an angiogram.

Although the tree grows exponentially with the depth, the number of nodes actually
involved in the algorithm (i.e., the size of Tm) never grows above several hundreds.
It is also possible to prune terminal nodes for which the posterior falls below a very
low threshold. Although it is hard to see, there is plenty of clutter in the background,
which is able to “distract” the algorithm for rather extensive periods (see figure 4.1).
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Figure 4.4 Detecting the scalp in an axial MRI scan. (Top) Two initial points shown as larger
squares. In black every segment that was queried, i.e., at which image data was accessed. In
white the track leading to the terminal node of highest posterior at each step. (Bottom) Final
contour with two different initial points.
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Figure 4.5 Detecting an artery in an angiogram using tree based algorithm.

4.4 Bibliographical Notes and Discussion

The motivation for the dynamic programming algorithm comes from Petrocelli, Elion,
and Manbeck (1992), and similar work can also be found in Geiger and colleagues
(1995). The tree-based algorithm is taken from Geman and Jedynak (1996) and has
been implemented with great success for tracking roads in remote-sensing images.
It is very fast and outperforms any computationally feasible implementation of dy-
namic programming. Whereas the deformation algorithms described in chapter 3
had a region-growing flavor to them, and hence in some coarse sense expected the
initial contour to expand around a more or less homogeneous region, the curve de-
tection algorithms described in this chapter perform some form of “tracking,” in that
they attempt to proceed along a curve with some particular image statistics in its
neighborhood. The curve-detection algorithms need some form of initialization but
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Figure 4.6 (Top) Detection of deformable contour. (Left) Initial contour. (Right) Detection.
(Bottom) Detection of deformable curve with dynamic programming. (Left) Initial curve.
(Right) Detection.

are much more robust to clutter and noise both due to the more systematic model-
ing of the data along the curve and the fact that within some restricted region the
actual global optimum is found. In figure 4.6, we show an example of a randomly
perturbed LATEX E in a cluttered environment. Using a closed contour of the proto-
type E , we run a deformable contour algorithm initialized with the contour shown
in the top left panel. The final detection is shown in the top right panel. Due to the
cluttered environment, the contour reaches some local minimum that does not reflect
the correct instantiation. For comparison, we initialize the dynamic programming
algorithm for curve detection with a curve also produced from the prototype E . The
initial curve is even further removed from the correct instantiation, and yet the final
detection shown in the bottom right panel has identified a correct instantiation of the
deformed E .
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Figure 4.7 An example of an overshoot of the tree based algorithm at a severe bend of the
curve.

Tree-based curve detection is much faster than dynamic programming and only re-
quires an initialization of two points at the beginning of the curve. It is very successful
in detecting long smooth curves of low curvature. However, it is hard to incorporate
prior shape information in this setting and it risks overshooting if the true curve does
have large curvature at some point. This is the effect of the very strong prior. See, for
example, the tracking of the artery in the angiogram of figure 4.7. When the artery
has a strong bend, the detection overshoots.
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5 2D Models: Deformable Images

In chapters 3 and 4, we explored the idea of fitting a one-dimensional model to
the boundary of an object. Prior information regarding the shape of the object is
represented in terms of the initial template contour or template curve. In most cases,
when we analyze images of a particular object class, there is much more information
available than the mere shape of one contour. Any two images of the object class
viewed as surfaces would exhibit many topological and geometric similarities that
are ignored when the contour alone is computed. The variations between objects often
appear to be smooth, in the sense that with some pulling and stretching and squeezing,
one could take one image from such a collection and transform it into another. This
form of stretching and squeezing, which we call image deformation, deforms not
only the contour of one object to the contour of the other, it deforms the entire image
surface.

Consider the image domain D as a continuum, typically the unit square, and let the
prototype image be a function F(x), x ∈ D. Let φ denote a smooth deformation of D
onto itself. What can we say about the image F̃(x) = F(φ(x))? If φ is smooth, ex-
tremal points are preserved, maxima are mapped onto maxima, minima onto minima,
saddle points onto saddle points, level curves onto level curves. Loosely speaking,
the topography of the surface remains the same, although the shapes of the hills and
valleys may change. If φ is sufficiently close to the identity, we seem to be observing
a different version of the same object. For example, in figure 5.1, 25 smooth, random
nonlinear deformations of a face still look like a face—although not necessarily of the
same person. The various points of interest, which are characterized by some peculiar
topography of the image surface, are mapped to points with the same local topography
and they maintain their relative spatial arrangement. Moreover, if the boundary of the
object or any part of the object is marked in the prototype image F , then φ−1 will
deform it to the corresponding boundary in the image F̃ .

81
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Figure 5.1 25 random deformations of a face (yours truly) using the 8 × 8 lower resolution
coefficients of a Daubechies wavelet basis for a 64 × 64 lattice.

We have reparameterized the images of the object class in terms of the deformations
φ and have established a correspondence to the prototype image. This is illustrated
by picking several points on the prototype image and plotting φ−1(x) on the data
image for each such point. For example, note that in figure 5.2 the mapping φ−1 maps
the eyes in the prototype image to the eyes in the data image, as well as the tips of
the mouth or other points on the boundary of the face.

Our goal in this section is to describe techniques for computing φ given a prototype
image F and a new data image I of the same object class.
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Figure 5.2 (Top left) Prototype image F . (Top right) Data image I . (Bottom left) Deformed
prototype image F̃(x) = F(x +U (x)). (Bottom right) Difference |F̃(x)− I (x)|. (Middle) The
displacement field U . The seven points marked on the prototype image F are mapped through
φ−1 to points shown in the data image I .

5.1 Statistical Model

In terms of the formulation in chapter 2, we take the template points Z to cover the
entire reference grid G, and assume the data images are defined on a lattice L , which
is the same size as G. The set of instantiations � is then a collection of smooth
one-to-one maps of Z = G onto the image lattice L = G.
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5.1.1 Gaussian Data Model

Let F(z), z ∈ Z be a prototype image of the object. We distinguish here between
the template, which is simply the lattice structure of points Z that are mapped onto
the image grid L , and the prototype image, which is used to define the data model.
Assume that any image of the object is generated as

I (θ(z)) = F(z) + N (z), z ∈ Z (5.1)

where N (z), z ∈ Z are independent and identically distributed (i.i.d) Gaussians
with some fixed variance σ . In other words, the pixel intensity of the prototype
image at point z is moved to θ(z), and some noise is added, independently at each
pixel. This is not a realistic model but is very simple and leads to interesting results.
Under this model, the data I (x), x ∈ L given the instantiation θ is again independent,
because the additive noise is independent. It will be more convenient to write this
equation as

I (x) = F(φ(x)) + N (x)

where φ = θ−1. Every pixel x ∈ L grabs the value of the prototype image F at φ(x).
The gray-level intensities given φ = θ−1 are assumed to be independent Gaussians
with variance σ , and mean given by F(φ(x)). Up to a constant, the log-likelihood
therefore has the simple form

D(φ) = − 1

2σ 2

∑

x∈L

|F(φ(x)) − I (x)|2 dx (5.2)

Because we will be optimizing through gradient-descent methods, we consider the
data image and the prototype image as defined on the continuum—that is, as I (x),

F(x), x ∈ D where D is the unit square. The map φ defines a smooth deformation
of the domain D onto itself. The actual instantiation of the grid Z can be recovered
by taking φ−1(z), z ∈ Z .

Define the displacement field as U (x) = φ(x) − x and denote its two components
as U (1) and U (2). Now rewrite D(φ) as

D(U ) = − 1

2σ 2

∫

D
|F(x + U (x)) − I (x)|2 dx (5.3)

The field U (x) is easier to work with because the value 0 corresponds to the identity
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map. To simplify notation and computation, we will henceforth assume that U is
periodic on the unit square.

Section 5.4 describes an alternative data model based on transforming the image
data into binary local features similar to those used in chapter 4. This data model will
have some advantages in terms of photometric invariance and in terms of parameter
estimation.

5.1.2 The Prior and Posterior

There are many solutions U that will yield D(U ) = 0. However, such solutions will
typically be highly irregular, discontinuous, and noninvertible. The topography of the
image surface would no longer be conserved. In order to rule out the discontinuous and
irregular solutions, we introduce a prior on the set of displacement fields that implicitly
defines a prior on the maps φ(x) = x + U (x) of the image onto the reference grid.
As in chapter 3, we adopt a spectral parameterization of the displacement fields in
terms of their expansion in some basis of functions. Again, such a representation
defines a map on the continuum in terms of a finite number of parameters, and using
wavelet or Fourier functions, we obtain a natural coarse-to-fine parameterization of
the deformations. Write

U (q)(x) =
d∑

k=0

u(q)
k ψk(x), q = 1, 2 (5.4)

for some finite d where ψk is some basis of functions on the unit square. This param-
eterization allows for a direct approach to enforcing the smoothness if we assume the
coefficients u(q)

k are independent Gaussian, with mean zero and variance 1/λk , with
λk an increasing sequence of positive values. The log-prior is then up to a constant
given by

E(U ) = −1

2

d∑

k=0

λk
[(

u(1)
k

)2 + (
u(2)

k

)2]
(5.5)

One drawback of this parameterization is that φ(x) = x + U (x) is not guaranteed
to be one-to-one, and φ(x) may not necessarily be in the domain D. This does not
cause major problems in applications, as will be seen below.
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Fourier Basis

For the two-dimensional Fourier basis k = (k1, k2) is a two-parameter index, and
each basis element has the form

1

2π
ψk(x) = exp[2π i(k1x1 + k2x2)]

As k1, k2 increase, the functions ψ have derivatives of increasing magnitude. In order
to ensure smoothness, the variances must decrease. Thus we set λk = (k2

1 + k2
2)

ρ for
some positive ρ. The larger ρ, the smoother the resulting functions will be.

Wavelets

As in one dimension, the two-dimensional wavelet basis on the unit square is also
arranged in a pyramid. The structure is somewhat more complex. At each level s,
there are three functions ψα,s,0,0, α = 1, 2, 3 and all other functions of that level are
given as shifts of one of these three functions:

ψα,s,�1,�2(x) = ψα,s,0,0
(
x1 − 2−(s−1)�1, x22−(s−1)�2

)

for α = 1, 2, 3 and �1, �2 = 0, . . . , 2s−1. Thus k is a four-parameter index k =
(α, s, �1, �2) where the index s defines the resolution. The constant function is denoted
ψ0,0,0,0. For s ≥ s̄ the function ψα,s,0,0 is a scaling and dilution of ψα,S,0,0. Specifically

ψα,s,0,0(x) = 2(s−S)ψα,S,0,0
(
2(s−S)x

)

Again, this is also true for s < s̄ modulo some wraparound effects.
At the highest resolution S, the functions ψα,S,0,0 have very small support. The

support increases as the resolution s decreases. For higher values of s, the information
conveyed by the coefficients is more local. Also, as s increases, the derivatives of
the functions increase in magnitude and a smaller variance needs to be set for the
coefficients to maintain the smoothness of the function. Thus we set

λk = λ(α,s,�1,�2) = 2ρs (5.6)

for all 0 ≤ �1, �2 < 2s, α = 1, 2, 3. The same variance is assigned to coefficients of all
functions at the same resolution. This particular form of decrease of the variance with
resolution is motivated by the theory relating rates of decay of wavelet coefficients to
smoothness properties of the corresponding functions, which can be found in Meyer
(1990) and Wickerhauser (1994).
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Smoothing with Differential Operators

Often in the literature, the smoothness of the deformations is obtained by a regu-
larizing term in the cost function. A common practice is to penalize the magnitude
of the derivatives of the function. In the discretized world, this corresponds to pe-
nalizing large distances between the mapping under U of two nearby lattice points.
Nearby pixels should be mapped to nearby locations. If on the lattice we want to
minimize

EL(U ) =
∑

|x−y|=1

|U (x) − U (y)|2 (5.7)

in the continuum, this translates to a penalty term of the form

E(U ) =
∫

D

∣∣∇U (1)(x)
∣∣2 + ∣∣∇U (2)(x)

∣∣2
dx (5.8)

Higher-order differences or derivatives lead to higher degrees of smoothness. Any
penalty of the form appearing in equation 5.8 involving differential operators can
be directly translated into a penalty of the form appearing in equation 5.5, with the
Fourier basis, taking d = ∞ and using particular choices of λk . For example, for
the penalty in equation 5.8, take λk = (k2

1 + k2
2). However, the spectral parameteri-

zation offers a much richer collection of possible penalties, because other values of
λk can be chosen as well as other bases, such as wavelets or wavelet packets. As in
chapter 3, this representation also has the advantage of offering a natural way to im-
plement a coarse-to-fine computation, and a built-in interpolation of the map φ to the
continuum.

Combining the likelihood and the prior, and ignoring the constant, which does not
depend on the unknowns, the negative log-posterior has the form of a cost function
of the form

J
(
u(1), u(2)

) = 1

2

d∑

k=0

λk
[(

u(1)
k

)2 + (
u(2)

k

)2]

+
∫ (

F

[
x1 +

d∑

k=0

u(1)
k ψk(x), x2 +

d∑

k=0

u(2)
k ψk(x)

]
− I (x)

)2

dx

(5.9)
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which is now rewritten as a function of the coefficients u(q) = {u(q)
k }d

k=0, q = 1, 2.

The variance coefficient 1/σ 2 from the data term has been absorbed into the
coefficients λk .

5.2 Connection to the Deformable-Contour Model

It is of interest to point out the relation of this model to the inside-outside deformable-
contour model presented in chapter 3. Given the initial contour γ (0), define a prototype
image that has constant value µin inside the initial contour and constant value µout

outside. The data term for the two-dimensional model is now identical to the data
term for the one-dimensional model. The difference in applying the two-dimensional
model is in the way the deformations of the initial contour are parameterized. Now
the contour, which is the boundary between the two intensity levels, is deforming
together with the entire 2D unit square. If φ(x) = x + U (x) is the two-dimensional
deformation, then γ (t, φ) = φ−1(γ (0)(t)). Because φ is smooth, γ (t, φ) is a smooth
deformation of γ (0). One way of illustrating the difference between these two forms
of parameterization is to imagine the one-dimensional model as a deforming elastic
rubber band and the two-dimensional model as a curve drawn on a deforming elastic
sheet. It is clear, for example, that in the second case there is a much smaller chance
of getting self-intersections of the curve. In the one-dimensional model, even if the
perturbation is smooth, it is easy to obtain self-intersections.

On the other hand, the advantage of the one-dimensional model is that even though
it uses a data term involving the entire two-dimensional domain, the actual gradient-
descent algorithm only uses data in the immediate vicinity of the curve and is therefore
less sensitive to whether the global data model is appropriate or not. Thus, for example,
in figure 3.2, the outside model that assumes the outside is brighter is obviously wrong,
except locally at the boundaries of the ventricle. By contrast, the two-dimensional
algorithm always integrates over the entire domain, and tries to match the two
surfaces.

5.3 Computation

The cost function is optimized using a gradient-descent algorithm. The derivative
of the cost function J , of equation 5.9, in the coefficients u(q)

k , is obtained by
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interchanging integration and differentiation and applying the chain rule. This yields

∂ J
(
u(1), u(2)

)

∂u(q)
k

= λku(q)
k +

∫
∂ F

∂xq
(x + U (x))[F(x + U (x)) − I (x)]ψk(x) dx

(5.10)

for q = 1, 2 and k = 0, 1, . . . , d. As in chapter 3, the derivative of the data term
is a forward transform of a function in terms of the chosen basis. In this case, the
function is

∂q F(x + U (x))[F(x + U (x) − I (x)]

where ∂q F, q = 1, 2 are the two partial derivatives of F . In chapter 3, we already
introduced the idea of gradually increasing the number of updated coefficients. This
idea proves to be very useful in the context of deformable images as well. Minimizing
in the first few coefficients in a wavelet or Fourier basis provides large and smooth
coarse deformations. Once these converge to a local minimum, increase the number
of coefficients and obtain more detailed matches.

Let � denote the forward transform of a function and �−1 denote the backward
transform applied to a sequence of coefficients with respect to the chosen basis.

�( f ) =
{ ∫

D
f ψkdx, k = 0, . . . , d

}

�−1(u) =
d∑

k=0

ukψk

Choose N1 < N2 < · · · < NA ≤ d. The coarse-to-fine gradient-descent algorithm
has the following form:

Algorithm 5.1: Image Deformation—Coarse to Fine

1. Normalize F and I to have range of values in [0, 1].
Initialize u(q)

0 = {u(q)
k,0, k = 0, . . . , d}, q = 1, 2. (Typically u0 = 0).

Set m = 0, a = 1.

2. Calculate U (1) = �−1(u(1)
m ), U (2) = �−1(u(2)

m ),

3. Calculate

Wq(x) = ∂q F(x + U (x))[F(x + U (x) − I (x)], q = 1, 2.

4. Calculate v(q) = �(Wq), q = 1, 2.
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5. Set u(q)
k,m+1 = u(q)

k,m − � · (λku(q)
k,m + vq,k) only for k = 0, . . . ,Na , and q = 1, 2

6. If stopping criterion satisfied go to 7. Otherwise m ← m + 1, go to 2.

7. If a < A, a ← a + 1, go to 2. Otherwise exit.

For the Fourier basis, we take 0 < k1, k2 < a, for each of the two field components,
so that Na = 2 · a2, and a = 1, . . . , A. The index a corresponds to the highest
frequency being updated. For the wavelet basis, take ψα,s,�1,�2 such that 1 ≤ s ≤ a
and 0 ≤ �1, �2 < 2s−1. In this case, Na = 2 · 2a, a = 1, . . . , A. The index a
corresponds to the highest resolution currently being updated.

The choice of initial point 0 is motivated by the fact that the mapping generated by
the solution is expected to be in some neighborhood of the identity map.

5.3.1 Discretization and the 2D Wavelet Transform

The functions F and I are defined only on the grid L . When x + U (x) does not
lie on the grid, set the value of F(x + U (x)) as the linear interpolation of the four
nearest lattice points around x + U (x). The derivatives of F are calculated using
finite differences and stored before the iteration procedure begins. When x + U (x)

lies outside the domain D, set F(x + U (x)) to 0. These are the ingredients needed to
compute W1(x), W2(x) step 3, at each x ∈ L .

Discretizing involves replacing the continuous basis with its discrete counterpart
and applying discrete forward and backward transforms, also denoted �, �−1. Let
the image lattice be 2S × 2S . When using discrete wavelets, the largest possible value
for A is S.

The discrete 2D wavelet transform is easily obtained from the 1D transforms. Given
a 2s × 2s data array F (s), compute one step as described in equations 3.21 and 3.22
for each row to obtain F̂ (s). Then compute the same for each column of F̂ to obtain
Y (s). The result is a 2s × 2s array

Y (s) =
(

u(s)
1 u(s)

2

u(s)
3 F (s−1)

)

where u(s)
α,�1,�2

, 0 ≤ �1, �2 ≤ 2s−1 − 1 and α = 1, 2, 3 are the coefficients correspond-
ing to resolution s—that is, the functions ψα,s,�1,�2 . The same type of operation is
again repeated on F (s−1), and so on.

The filters h and g of equations 3.21 and 3.22 can be combined through tensor
products to define the following four R × R filters: H (1)

i, j = hi · h j , H (2)
i, j = hi · g j ,
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H (3)
i, j = gi · h j , Gi, j = gi · g j , for i, j = 1, . . . , R. Then for each α = 1, 2, 3, the

matrices u(s)
α are simply the subsampled convolution of F (s) with H (α). These are

high-pass filters of F (s). The matrix F (s−1) is the subsampled convolution of F (s)

with G, which is a low-pass filter.
The inverse transform is obtained in the same way. Apply equation 3.23 to each

row of Y (s−1) and then apply the same to each column of Y (s−1). This reconstructs
F (s), again due to the particular properties of h and g.

5.3.2 Time Step

The time step is given as the inverse of an approximation to the trace of the Hessian
matrix of J . The second derivative of D with respect to the coefficient u(q)

k is a sum
of two integrals. One has the difference of F(x + U (x)) and I (x) in the integrand
and is ignored assuming that F(x + U (x)) is relatively close to I (x). The other term
is

∫
∂q F2ψ2

k (x)dx, q = 1, 2. Assuming a uniform bound M on ψk, k = 0, . . . , d,
we bound the trace of J by

T = d M
∫

|∇F |2 dx +
∑

k

λk

and set the time step � = T −1.

5.3.3 Smoothing

In some cases, it is useful to smooth and subsample the prototype image and the data
image. First, this tends to single out global geometric structures and eliminate local
ones. Second, lowering the dimension of the data speeds up the algorithm. Finally, if
I and F have disjoint support—for example, two “humps” supported on disjoint parts
of the domain—there is really no reason for these two structures to attract. Smoothing
can increase the support size of the two functions and create some interaction between
the two.

5.3.4 Other Optimization Algorithms

The minimization algorithm is a discrete approximation to the downward gradient
flow. Other more sophisticated approaches are described in the literature (see Press and
colleagues 1995). The first alternative would be to implement the conjugate gradient
method. This involves line searches, and turns out to yield comparable results to
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the gradient-descent algorithm at about the same speed. Note that the computation
involved in the forward or backward wavelet transform is on the order of a few
evaluations of the cost itself and thus very inexpensive. A second alternative involves
Newton or quasi-Newton methods. These can be rather computationally intensive. In
section 5.5, we discuss the linearization of the cost function and the associated least-
square solution. Implementing this procedure at any iteration of the gradient-descent
algorithm corresponds to a quasi-Newton type step and may speed convergence.

5.3.5 Computing Pose Parameters

The standard bases mentioned in this chapter rarely express the affine pose parameters
other than translation in a direct way. Some initial updating of these parameters could
be useful to improve on the initial pose parameters provided by the user. In the context
of the minimization problem posed above, write

D(A) = min
A∈A

∫
|F((I + A)x) − I (x)|2 dx

where A is the set of affine maps. If this set is directly parameterized in terms of the
four entries of the linear matrix and the two entries of the translation, the problem
is equivalent to defining three basis functions ψ1(x) = 1, ψ2(x) = x1, ψ3(x) = x2,
and minimizing D in terms of their coefficients. The gradient has the same form as
in equation 5.10 except that the integral needs to be explicitly calculated and cannot
be computed using a fast-forward transform.

Ignoring “shear,” A can be parameterized in terms of scaling s1, s2 in the two
coordinates, a rotation α and a translation (t1, t2), writing

Ax =
(

sx 0
0 sy

) (
cos(α) sin(α)

− sin(α) cos(α)

)
x + (t1, t2)

One can either simultaneously optimize in all five parameters, calculating the respec-
tive partial derivatives, or iterate by first adjusting for translation, then scale, and
finally rotation. This cycle can be repeated several times. This is used in the Bernoulli
model below.

5.3.6 Lattice Parameterization

In order to enforce smoothness, the low dimensionality of the deformation space,
and a natural coarse-to-fine procedure, we used a spectral parameterization of the



amit-79020 book May 20, 2002 13:13

93 5.4 Bernoulli Data Model

deformations in terms of some orthogonal bases. It is possible to stay with the point-
wise parameterization, U (x), x ∈ L , where L is the image lattice. The penalty remains
in the form of a differential operator, as in equation 5.8. This procedure is very
problematic in terms of obtaining the large coarse deformations and is relatively very
slow. It is therefore not recommended for starting. It is, however, possible to use it for
fine-detail matching after the spectral approach has converged (this is implemented
in Miller and colleagues 1993).

One way to implement the lattice parameterization together with a coarse-to-fine
procedure is related to motion estimation algorithms used for image compression.
The lattice is divided into large disjoint blocks and a fixed displacement is estimated
separately for each block. This is done either through a gradient-descent procedure
on the two displacement parameters, or by an exhaustive search for the best match in
some constrained region. A smooth interpolation of the displacements identified for
each block produces the final displacement field for the current level. This serves
as an initial point for the search for displacements for the next level of smaller
blocks. Such methods are used in various MPEG implementations (for example, see
Chalidabhongse and Kuo 1997). They are very similar to the spectral approach de-
scribed above if the Haar basis is used, which is a basis of piece-wise constant
functions, and is the simplest type of wavelet basis.

5.4 Bernoulli Data Model

One inherent problem in the model discussed thus far is the assumption that the gray
levels have a Gaussian distribution with mean given by the deformed prototype image.
It is clear that a variety of lighting conditions, such as shadows or nonhomogeneous
light, produce a more complex distribution of the gray-level intensities even for a fixed
object. In such cases, it is desirable to find forms of the data term D that are invariant
to such changes. Another problem is that it is impossible to model pixel intensities
off the object as Gaussians with some fixed mean. However, some form of model
for pixels off the object can be helpful when the object does not occupy the entire
image. In this section, we will define a data model in terms of photometric invariant
binary local features similar to those defined in chapter 4 (see equations 4.1, 4.2).
Those were, roughly speaking, “ridge” detectors and were specifically designed to be
highly invariant to photometric transformations. We now define discontinuity detec-
tors commonly known in the literature as edges, again in terms of simple comparisons
of pixel intensity differences.
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y3z3
z y

z2 y2

z1 y1

Figure 5.3 The six intensity differences being compared to identify a vertical edge.

5.4.1 Edges

Let v be one of the vectors (1, 0), (1, 1), (0, 1), (−1, 1), and let w be the 90◦ rotation
of v. Let z be a pixel and y = z + v, which is one of the eight nearest neighbors of z.
Denote z1 = z +w, z2 = z −w, z3 = z − v and y1 = y +w, y2 = y −w, y3 = y + v.
An edge is present at z if

|I (z) − I (y)| > max
i=1,2,3

(max (|I (z) − I (zi )|, |I (y) − I (yi )|)) (5.11)

The orientation of the edge is v if I (z) > I (y) and −v otherwise. The eight edges
correspond to the four possible directions of v multiplied by the two possible signs of
I (z)− I (y). The configuration of pixels being compared for a vertical edge is shown
in figure 5.3.

All in all, six intensity difference comparisons are involved in defining the edge.
These edges can be viewed as local maxima of the modulus of the gradient. It is
possible to introduce a lower bound on the size of the gradient to avoid edges in
extremely low contrast areas (i.e., |I (y) − I (z)| > κ).

In a given b×b block of pixels, several different edges types may be detected. This
is even true for b = 1. One can decide to allow only ne edges in each b × b block,
taking those with largest gradient |I (z) − I (y)|. Invariance to significant gray-scale
transformations is inherent in the definition of these features.

5.4.2 The Data Model

Let Î (x) = (X1(x), . . . , X J (x)) (in this case J = 8) denote the transformed image
data, namely, the vector of binary outputs of the edge features at point x in the image.



amit-79020 book May 20, 2002 13:13

95 5.4 Bernoulli Data Model

Let F1(x), . . . , FJ (x) be functions of value between 0 and 1 and assume that given
the object is present at deformation θ , at each location x ∈ L

P(X j (x) = 1 | θ) = Fj (θ
−1x) = Fj (φ(x)) (5.12)

independently of all other locations and features. In other words, given the object
is present at deformation θ , the variables X j (x), x ∈ L , j = 1, . . . , J are all in-
dependent and have marginal distribution given by Fj (φ(x)). The functions Fj are
called probability maps, and because the features are binary, we call this the Bernoulli
model. Again, we have a conditional independence model for the transformed im-
age data given the instantiation of the object. The full log-likelihood, in terms of the
displacement U (x) = φ(x) − x has the form

D(U ) = log P( Î (x), x ∈ L | U )

=
J∑

j=1

∑

x∈L

(
X j (x) log[Fj (x + U (x))] + (1 − X j (x)) log[1 − Fj (x + U (x))]

)

(5.13)

Adding the prior term of equation 5.5, we have the negative log-posterior

J (U ) = − log P(U | Î (x), x ∈ L)

= E(U ) −
J∑

j=1

∑

x∈L

(
X j (x) log[Fj (x + U (x))]

+ (1 − X j (x)) log[1 − Fj (x + U (x))]

)
+ C (5.14)

This defines a cost function that needs to be minimized and again this can be achieved
using gradient descent. Parameterizing U in terms of the coefficients u, the gradient
has the form

∂ J (U )

∂u(q)
k

= λku(q)
k +

J∑

j=1

[
∑

x∈L

X j (x)
∂q Fj (x + U (x))

Fj (x + U (x))

− (1 − X j (x))
∂q Fj (x + U (x))

1 − Fj (x + U (x))

]
ψk(x) (5.15)

for k = 0, . . . , d and q = 1, 2. Again, the gradient is in the form of the forward
transform of a function with respect to the basis ψk . Maximization can proceed just
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as in algorithm 5.1. The only change is in step 3. Now

Wq(x) =
J∑

j=1

[
X j (x)

∂q Fj (x + U (x))

Fj (x + U (x))
− (1 − X j (x))

∂q Fj (x + U (x))

1 − Fj (x + U (x))

]

and is evaluated at each x ∈ L .

5.4.3 Training

The use of binary features is very convenient from the point of view of parameter
estimation or training. At each point in the reference grid, we simply estimate a
proportion for each of the features j = 1, . . . , J . Assume we are given a sample of
training images of the object, I (t), t = 1, . . . , T , each with a pose parameter st , for
example, scale and location. Extract the features X j (x), j = 1, . . . , J at all locations
x ∈ L for image t , and register these locations to the reference grid using the pose
information st for that image. In other words, if X j (x) = 1, add a count to Fj (z)
where z = s−1

t (x). Some stability is gained by also adding a count to Fj (z′) for
|z − z′| ≤ 1. After normalizing by T the maps Fj , j = 1, . . . , J are the proportions
at each location on the reference grid of the J different features, and serve as estimates
of P(X j (x) = 1 | θ) from equation 5.12. Set a minimal value for Fj at all locations on
the reference grid. This is the probability of finding feature X j in a generic background
image not containing the object being modeled.

The probability maps Fj determined in this way will be somewhat “blurred” be-
cause the only part of the deformation variability that is “factored out” in training is the
pose component st . The more variable the instantiations of the object in the training
set, beyond pose variability, the lower the probabilities at each location on the refer-
ence grid. In other words, the instantiation variability is transferred into probabilities
on the reference grid.

The use of a minimal background probability for each of the features offers a
form of background model, albeit very primitive, of the data off the object. This is
useful in discouraging the template from attempting to match clutter in the immediate
vicinity of the object; edge activity outside the object does not incur a high penalty.
For regular gray-level prototypes, it is not at all clear what the values of the prototype
image outside the object should be.

The top panel of figure 5.4 shows the probability maps for the eight edges. Darker
areas correspond to higher probabilities. The middle panels show the eight detected
edge features in the data image. We express the estimated instantiation of the face
using a collection of reference points that was arbitrarily chosen on the reference grid,
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Figure 5.4 Bernoulli data model. (Top) Eight probability maps Fi on the reference grid. Dark
denotes high probability. (Middle) Transformed image data, locations of the eight detected
edges in the image. The probability maps and transformed data are shown smaller than the
original image. They are all 64 × 64. (Bottom left) Original data image. Overlaid are reference
points, chosen by hand on the reference grid which should correspond to the hairline, eyes
and mouth if the face is properly detected. (Bottom middle) After estimation of translation and
scaling in x and y, the reference points are shown mapped by the estimated scale and translation.
(Bottom right) After finding the nonlinear deformation, it is used to map the reference points
into the image.

and that are mapped by the estimated φ into the data image. The first image shows the
initial instantiation, which has some overlap with the background. The second shows
an estimated scaling and translation and the third shows the result of computing a
nonlinear deformation.

5.5 Linearization

When the deformation U is known to be small in magnitude, the problem can be
linearized. We provide the derivations only for the Gaussian data model. The extension
to the Bernoulli data model is straightforward. Taking the first-order approximation
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to F(x + U (x)), the cost function becomes

J (U ) = E(U ) +
∫

|F(x) + (∇F · U )(x) − I (x)|2 dx (5.16)

which is quadratic in U . Computing the minimum of this function is equivalent to
solving a least-squares problem. The solution depends on how U is parameterized,
however, for each parameterization the solution is unique and easy to compute.

5.5.1 The Spectral Parameterization

With the spectral parameterization, we solve for the first d coefficients of U . Dif-
ferentiating J (U ) from equation 5.16 with respect to the coefficients u(1), u(2) and
setting the gradient to equal 0, we obtain the following system of normal equations.

λku(q)
k +

d∑

�=1

2∑

p=1

u(p)
�

∫
∂q F∂p Fψ�ψkdx =

∫
(I − F)∂q Fψk dx (5.17)

for k = 0, . . . , d, q = 1, 2. Assuming the symmetric 2d ×2d matrix with coefficients∫
∂p F∂q Fψ�ψk + diag[λ1, . . . , λd , λ1, . . . , λd ] is nonsingular, this can be solved

using a Cholesky decomposition (see Press and colleagues 1995).
The solution to the least-squares problem can be obtained without calculating the

integrals of equation 5.17. Assume a discrete N × N lattice L for the spatial variable
x and let xl denote the pixel (��/N�, � mod N ), for any � = 0, . . . , N 2 − 1. Define
the (N 2 + 2d) × 2d matrix A as

Al,k =





(∂1 F · ψk)(x�) if k ≤ d and � < N 2

(∂2 F · ψk)(x�) if d < k ≤ 2d and � < N 2
√

λk if k − N 2 = � and k ≤ d√
λk−d if k − N 2 = � and d < k ≤ 2d

0 Otherwise

Define the N 2 + 2d vector b as

b� =
{

[I (xl) − F(xl)] if � < N 2

0 Otherwise.

The cost function of equation 5.16 becomes J (u) = ‖Au − b‖, and the least-square
problem can be solved using a Q R decomposition of A (see Press and colleagues
1995). Note that the penalty term on the coefficients, being quadratic, has been
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Figure 5.5 (Top left) Deformed prototype image from figure 5.2 using linear cost function
and using all 2 × 8 × 8 wavelet coefficients. (Bottom left) Deformed prototype from figure 5.2
using 3 levels of least squares and updating the prototype image. (Bottom right) Deformation
field.

incorporated into the least-squares problem by augmenting the “matrix of obser-
vations.”

For each different value of d we have a different linear problem, and the solutions
will change. Although the solution to the linearized problem is obtained directly and
has a very simple form, it may be worse than the solution obtained by the coarse-
to-fine gradient-descent algorithm for the original nonlinear cost function. In the top
left panel of figure 5.5, we show the deformed prototype image of figure 5.2 using
the linearized cost function for the first 8 × 8 coefficients, (a = 3). A small change
is observed but much less than in 5.2.

It is natural to apply the coarse-to-fine idea in this setting by first solving the
linearized problem for d = N1, obtain the estimated displacement field U , then
modify the prototype image F to F(x + U (x)). Increase d to N2, recalculate the
matrix A and the vector b in terms of the new prototype image, and solve the new
linearized problem, and so on. This greatly improves the results, as shown in the
bottom left panel of figure 5.5, where the same data as in 5.2 has been used. In both



amit-79020 book May 20, 2002 13:13

100 Chapter 5 2D Models: Deformable Images

cases, the same Daubechies wavelet basis was used. Starting with one iteration at
N1 = 2×22—which corresponds to expanding U (1) and U (2) with the four smoothest
elements in the basis—one iteration at N2 = 2 × 42, and three additional iterations
at N3 = 2 × 82. After each iteration, the prototype image has to be updated, and the
derivatives recomputed in order to update A. This is not done in the coarse-to-fine
gradient-descent algorithm. The derivatives of F are computed once and for all at
the beginning, and only the displacement field is changing at each iteration.

Solving each of the least-squares problems is computationally more intensive than
a step of the gradient-descent algorithm but less iterations are needed, and the results
can be similar. However, with large numbers of coefficients, the least squares slows
down drastically. The outcome of the gradient-descent algorithm shown in figure 5.2
was obtained with 400 iterations and took approximately 1.7 seconds on the Pentium
III 700 MHz. The five iterations of the regression problem for the four different
dimensions took approximately the same time.

In low dimensions it is possible to implement one least-squares step after the
gradient-descent iterations appear to be converging. This can help improve the result.
Indeed, this step can be viewed as a quasi-Newton step, where the term

∫
∂p Fψ�ψk ·

∂q F dx, p, q = 1, 2 is taken as the typical entry of the Hessian matrix of the original
cost function J . There is an additional term

∫
(F(x + U (x) − I (x))∂qp Fψkψ� dx in

the true Hessian, which is ignored, as in the time-step approximation in section 5.3.

5.5.2 The Lattice Parameterization

When the deformation is parameterized through the displacement vector U (x) at
each of the lattice points, with a smoothing penalty using first-order derivatives, (see
equation 5.8), the Euler equations for the linearized cost function are the following:

�U (1) + (∇F · U )
∂ F

∂x1
= (I (x) − F(x))

∂ F

∂x1

�U (2) + (∇F · U )
∂ F

∂x2
= (I (x) − F(x))

∂ F

∂x2

where � denotes the Laplacian operator. These lead precisely to the same equa-
tions suggested in the optical flow and image sequence analysis literature (Horn and
Schunck 1981). In that context, the problem is to estimate the motion occurring be-
tween two consecutive images in a video sequence. Assuming I is the image following
F , then I − F is an approximation to the time derivative, and the above equation be-
comes the same equation derived in Horn and Schunck (1981), using an “image
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intensity” conservation principle. This form of lattice-based linearization is prob-
lematic when dealing with larger deformations and there is no natural coarse-to-fine
implementation.

5.6 Applications to Brain Matching

There has been particular interest in applying deformable-image algorithms in brain
research (see Friston and colleagues 1995; Sandor and Leahy 1995; Christensen,
Rabbitt, and Miller 1996).

Activity in the brain is measured in various ways, the most common being positron
emission tomography (PET) and functional magnetic resonance imaging (MRI). In
order to study locations of activity in relation to various functions of the brain, it
is necessary to align or standardize the data from brains of different patients. One
approach has been to match the MRI data of different brains to a standard template.
Even if the MRI data does not contain signatures of the activity, the estimated defor-
mation can be applied to the PET data. Note that the PET data itself has very little
anatomic information and therefore would not lead to very precise matchings.

Figure 5.6 shows the outcome of a 2D match between two axial brain slices of
two different patients, using a wavelet basis. We use this application to illustrate
several aspects of the image-deformation algorithm. The images are 128 × 128, but
are processed at a lower resolution of 64 × 64 as recommended in the discussion
on smoothing. Starting at N1 = 2 × 22 through N6 = 2 × 642, the coarse-to-fine
algorithm is implemented, and the result is shown in figure 5.6 on the bottom left panel.
The difference between the data and the deformed template is shown in the top right
panel, and the deformation field is shown in the middle. Note that the deformation
is able to change some of the local structure of the sulci and giri of the prototype
image to match that of the target image, as well as deform and match the shape of the
interior ventricles. For comparison, in figure 5.7 we show the outcome of running the
algorithm with all coefficients at once (i.e., N1 = 2×642), together with the resulting
deformation field. The prototype image is deformed to match certain local structures
but the global shapes are not adjusted at all.

Finally, in figure 5.8 we show two other relatively successful matches using the
coarse-to-fine algorithm. MRI data is often accessed in 3D form—either as a collection
of 2D slices or as a full reconstructed 3D image. The image-deformation algorithm
described above is adapted to 3D data in a straightforward way. The deformation field
now has three components and is expanded in a 3D wavelet or Fourier basis.
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Figure 5.6 (Top left) An axial MRI brain scan of one patient, which serves as the prototype
image. (Top right) An axial MRI brain scan of another patient at the same level. (Bottom
left) The deformed prototype image. (Bottom right) The residual. (Middle) The displacement
field U .
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Figure 5.7 The outcome of the deformable image algorithm using all coefficients from the
start.

Figure 5.8 Two more experiments with the coarse to fine deformable image algorithm on
MRI axial scans. (Left) Data. (Right) Deformed template. Template from figure 5.6.

103
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The question arises as to whether this fine detail matching has any anatomic mean-
ing. Do these locations, which are mapped to each other between two different patients,
really correspond to the same anatomy? Beyond the coarse shape matching, is there
anything in the data that really justifies a specific deformation of one sulcus or gyrus
to another? This is rather debatable because the way in which, say, a short curved
gyrus is deformed into a long straight one is rather arbitrary. There is nothing in the
actual functionality of the different regions in that gyrus that guides the matching.

5.7 Bibliographical Notes and Discussion

More details on the statistical model can be found in Amit, Grenander, and Piccioni
(1991). The computational approach is based on Amit (1994). Similar models in the
linear setting were proposed much earlier by several authors in the context of motion
estimation from sequences of images. (Horn and Schunck 1981; Huang and Tsai 1981;
Nagel 1983). A similar approach is described in Bajcsy and Kovacic (1988), where a
spectral parameterization of the deformation is also used. More-recent developments
involving more-complex penalty terms and requiring much more computation can be
found in Christensen, Rabbitt, and Miller (1996), Grenander and Miller (1998), and
Hallinan and colleagues (1999).

5.7.1 Homeomorphisms

In the methods described here, the deformations are not guaranteed to be one-to-one.
A number of people have investigated the possibility of constraining the defor-
mations to be invertible homeomorphisms of the image domain onto itself. One
approach penalizes large derivatives both of the mapping φ and of its inverse
φ−1 (see Hallinan and colleagues 1999). The derivatives of the φ−1 are computable
without actually inverting φ using the inverse function theorem. The penalty term
involves ratios of derivatives. In this setup, it only makes sense to work with the
lattice parameterization—the power of the coarse-to-fine algorithm is lost and the
computation becomes very intensive. Another approach exploits the fact that the flow
of a continuous field is necessarily a homeomorphism at any time instant, due to the
uniqueness properties of solutions to ordinary differential equations (see Grenander
and Miller 1998 and references therein). The mathematics is quite involved, but the
final practical implementation is essentially the same as the image-deformation al-
gorithm described in this chapter, except that at each iteration, the prototype image
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is changed according to the current mapping—that is, Fk(x) = Fk−1(φk(x)). This is
related to the procedure described in section 5.5 on linearization. Note that allowing
the prototype image to update at each step can lead to drastic changes in the image,
without paying a high penalty. The most mathematically complete treatment of this
issue is to be found in Trouvé (1998). The diffeomorphisms are treated as a Lie group
and the variational formulation is done intrinsically in the Lie group in terms of the
associated Lie algebra of smooth vector fields. This yields an interesting modification
to the algorithms presented in Grenander and Miller (1998), where the basis functions
are implicitly deformed together with the prototype image.

5.7.2 Photometric Invariance

In Hallinan and colleagues (1999), a deformable image model is used to register
prototype face images to data images. The algorithm uses intensity-based data models,
and the prototype image is obtained by averaging images of several registered and
normalized faces. Photometric invariance is addressed by taking several prototypes
in the form of principle components of the population of faces imaged at a wide range
of illuminations. The images used are very high resolution (512 × 512), which are
carefully normalized, and computational efficiency is not discussed. A question arises
here—how much of the photometric invariance is “learned” by observing examples
of the object lit in a variety of lighting conditions, and how much can be hardwired
into the algorithm by using photometric invariant features, as in the Bernoulli model
described above? The answer to this question is not necessarily unique and depends
on the type of implementation one is seeking, what type of architecture, how efficient
should the algorithm be, and how fast is learning expected to occur. An advantage
of the Bernoulli model is the systematic and simple form of parameter estimation—
namely, the training of the probability maps. This appears to be more robust than
taking means of prenormalized images. There is also the benefit of having some form
of model of the data off the object.

5.7.3 Principal Component Bases

Also related to training is the choice-of-function basis. The standard bases will not
provide an optimal parameterization of the large-scale deformations typical of the
object class. For example, in the case of hands, the individual rotation of the fingers
relative to the palm is not easily described in terms of standard bases. One approach to
solving this problem has been to calculate the deformations for a training set and then
find “eigen-deformations” (see, for example, Hallinan and colleagues 1999, in the
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context of faces). In other words, the principal components of the deformations, com-
puted on the training set of images, are used as an orthogonal basis of deformations.
This basis, if computed from the true population of deformations, should provide the
most efficient form of parameterization in the least-square sense. Of course, in order
to estimate the principal components in the first place, it is necessary to somehow
extract deformations from a large sample, using other bases or parameterizations.

Principal components will not yield a basis allowing for fast-forward and back-
ward transforms. However, if only a small number of components are to be used,
substituting the fast-forward and backward transforms with explicit quadrature will
not significantly slow down the algorithm. It is also possible to compromise and
choose an optimal wavelet packet for the given training sample. This will not be as
economical a representation as the principal components basis but will provide a good
approximation and will come along with a fast transform algorithm.

In any case, there remains much research to be done into the problem of accurately
marking out the components of a face (i.e., detecting detailed instantiation informa-
tion) despite this being a trivial task for our visual system. The issue of efficient
and automatic detection of coarse instantiation information of faces, including pose
parameters, in a large scene is discussed in chapters 6 and 8.

5.7.4 Mutual Information Cost Function

In recent years, a new type of data term has been proposed that deals with the situation
wherein the pixel intensities for similar structures are not the same (see Viola and
Wells 1997; Kim and colleagues 1997). This occurs in medical imaging when two
different modalities are used to image the same structure—for example, a PET image
and an MRI image of the brain. In this setting, the deformations are typically small,
however, the least-square distance between pixel values is entirely inadequate. The
proposed solution constructs a bivariate histogram of gray levels—for each pixel,
two gray-level values from the two images being matched. The mutual information
between the two variables described by the histogram is computed. The algorithm
tries to modify the deformation in order minimize the mutual information.

In the algorithm described above we assumed that given the deformation φ the
image intensities are independent with some distribution f (· | F(φ(x))), where f is
Gaussian with mean F(φ(x)) and fixed variance. Whatever distribution is chosen the
log-likelihood has the form

∑
x∈L log f (I (x) | F(φ(x))). If f is not known ahead

of time, it can be estimated from the empirical distribution of I (x) at all points
with the same value of F(φ(x)). If this estimated is plugged in the log-likelihood
the result is precisely the mutual information of the empirical bivariate distribution
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(I (x), F(φ(x)), x ∈ L . In other words, the mutual information cost function tries to
simultaneously estimate the deformation φ and the conditional distribution of I (x)

given F(φ(x)). If the joint distribution is estimated using a smoothing kernel, the
cost function is again differentiable in φ (see Hermosillo, Chefd’Hotel and Faugeras
2001).

The problems arising with regard to the two-dimensional models are similar to those
mentioned in the discussions regarding the one-dimensional models. Initialization is
crucial due to the nonlinear nature of the cost function. This motivates the sparse
models described in the next several chapters.
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6 Sparse Models: Formulation, Training, and
Statistical Properties

In previous chapters, we have described a number of deformable models, all of which
require some type of user initialization in terms of pose parameters, such as scale and
location. The models are too complex for automatic pose estimation to be efficient. In
this chapter, we construct sparse models that can be detected directly, and very quickly,
with no user initialization. These models involve relatively small collections of points
that typically correspond to landmarks of some type on the object. When these points
are identified in the image—namely, the sparse model is detected—an initial state
can be determined for any of the algorithms described in previous chapters. In terms
of constructing these sparse models, some of the landmarks are easily defined by the
user, representing a clearly defined local structure in the image, on any instance of
the object. For example, in figure 6.1, we show several landmarks on an axial MRI
image of the brain, which are chosen by the user. However, other landmarks may
only be found through training on a collection of examples of the object and do not
necessarily have a very clear semantic definition.

In both cases, each landmark has a certain characteristic local topography in terms
of the image surface. Image 6.2 (left) shows the level curves around the tip of the left
ventricle in an axial MRI brain scan. Imagine a binary local feature that is present at
the tip of a ventricle for a large proportion of the images of the object. The feature must
characterize the local topography of the image in the neighborhood of the landmark.
It would be impossible to find such an operator that is on only at the tip of the left
ventricle, namely, with no false positives. See, for example, the level curves in a
neighborhood of a sulcus in figure 6.2 (right). Otherwise put, parts of objects are not
clearly identifiable at the local level. It is only after the global object is identified that
local information can be disambiguated. It is possible, however, to find a local feature
that is on at the tip of the ventricle with very high probability and has a low density
of false positives—namely, it is not on in many other places in a typical MRI image.

109
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Figure 6.1 (Top) Landmarks chosen on two training images. (Middle) The six comparison
arrays used for identifying candidates for the model landmarks. (Bottom) Neighborhoods of
tip of upper right ventricle in four axial MRI brain scans, which were identified by the leftmost
comparison array.

Figure 6.2 (Left) Contour plot of neighborhood of frontal horn. (Right) Contour plot of
neighborhood of a sulcus.
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Clearly, one local feature associated to one landmark is insufficient to detect the
object and its components. As mentioned, there will necessarily be false positives;
there is also the possibility of false negatives at the correct location. Furthermore,
this one feature does not describe the instantiation of the full object but only a small
part. We therefore require a collection of landmarks, each with an associated local
feature. A detection consists of finding instances of some or all of these landmarks
in the image, which are spatially arranged in a way consistent with their expected
arrangement on the object. Each of the local features should be invariant within the
range of consistent arrangements. For example, if we expect to observe the anatomies
in image 6.1 in a range of ±25% scaling, we would expect the local feature, detecting
the tip of the left ventricle, to be “on” at the appropriate location at all such scales.
These notions are made more precise in the following section, where a statistical
model is again formulated in the framework of the discussion of chapter 2.

The question is then, do local features exist, which are stable on the object and
of low density on the background, from which to construct such models? Two such
families of local features are defined in sections 6.3 and 6.4, which are subsequently
used in the detection algorithms of chapters 7 and 8. The second family has a number
of free parameters, and hence offers quite a wide range of choices in terms of the
complexity and statistics of the features. A detailed study of these statistics as a
function of some of these parameters is presented in section 6.5. The main conclusion
that emerges from this analysis is that a wide range of possibilities exists to define
features that are indeed stable on object and low density on background. Moreover, it
is possible to provide reasonable predictions on the density of these features and the
number of false detections of the models constructed with these features.

6.1 From Deformable Models to Sparse Models

Sparse models can be motivated as coarse approximations to the more-complex de-
formable models described in earlier chapters. In the context of random LATEX images,
there is a complete image synthesis model; we know precisely the random mechanism
producing the images. This is a very rare luxury but helps illustrate some important
points. Let A be the set of admissible linear transformations, and ϒ the set of ad-
missible nonlinear deformations. Random elements A ∈ A and υ ∈ ϒ are drawn
according to some probability and applied to the prototype image Iproto generating an
image defined by υ AIproto(z) = Iproto(A−1υ−1z), for each z ∈ G. Each such image
is then placed at a random location in the lattice L . For simplicity, let A, the range of
admissible poses, be limited to a range of scales [1, S] for say S = 2. Denote by I the
set of all images υ AIproto, υ ∈ ϒ, A ∈ A, all presented in the reference grid G. It is,
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in principle, possible to check for each location x ∈ L , each scale A ∈ A, and each
υ ∈ ϒ whether a deformation under υ of AIproto is present at x . This is equivalent to
checking at each subgrid x +G of L , if the data there matches any of the images in the
set I, above some prescribed threshold, using some prescribed distance function. The
distance function could be defined in terms of the sum of squares of the differences,
or the match of the binary feature maps extracted from the images. This is clearly a
daunting computation.

A simple way to speed up the above computation at each location is to let the
data guide us in finding an optimal deformation in ϒA, using gradient descent or
some other optimization technique. However, given the range of scales in A, it is
quite unlikely that such a procedure would indeed find the global optimum. We
therefore define a more restricted range of scales A′ = [1, s], with, say, s = 1.25, and
let I ′ be the smaller resulting set of images obtained by applying elements of ϒA′

to Iproto. Optimization in the reduced set of deformations is more reasonable, and is
precisely the approach taken in chapter 5, both for the Gaussian model, which yields
a least-squares cost function, and for the Bernoulli model.

The entire range of scales [1, S] can be covered by subsequently subsampling
the image at resolutions S/s, S/(2s), . . . , S/(ks), where k = �S/s	 and running the
same procedure again at all locations. The existence of local minima, namely, the
nonconvexity of the associated cost function over the restricted range of poses, is
still a significant problem, and even with the advantage gained by optimizing, as
opposed to brute-force matching, the entire computation at all locations x ∈ L and k
resolutions is still immense.

Assume a set of n binary local features, Xi , i = 1, . . . , n can be defined, each of
which is always on at a particular location on the object for images in I ′ and are quite
rare off the object. These features are invariant to the smaller range of scales and the
deformations in ϒ . Specifically, a location zi on the reference grid is associated to
each feature Xi , and if an image from I ′ is located at a point x ∈ L at a particular scale
A ∈ A′ and deformation υ ∈ ϒ , then Xi (x +υ Azi ) = 1 for all 1 ≤ i ≤ n. Now define
a set of constraints 	 ⊂ Ln on arrangements of these features that is consistent with
ϒA′, meaning simply that any instantiation of the form (x + υ Az1, . . . , x + υ Azn)

is in 	, for x ∈ L , υ ∈ ϒ, A ∈ A′. Otherwise put, the presence of an arrangement
θ ∈ 	 of these features is an invariant property of the images in I ′. Now take an
image and find all locations of the n local features. If there is an efficient way of
finding consistent arrangements from 	 and if the number of such arrangements is
low, we have greatly reduced the computational load. The more intensive deformation
algorithms need only be applied at these candidate instantiations.

How should the invariant local features be defined? These features need to flag
local structures invariant with respect to deformations υ A with υ ∈ ϒ and A ∈ A′.
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For example, such a feature would always be on at the top ending of the E symbol used
in chapter 2. The most elementary features, in terms of which we have already defined
a cost on deformations, are the coarse oriented edges. These are present in a stable
way in such local structures, but are quite frequent in generic images. A group of
neighboring edges characteristic of a certain part of the object will typically maintain
its relative arrangement as the object deforms smoothly. Thus features defined in
terms of a flexible edge arrangement will still be invariant to local deformations of
the structures of the object. On the other hand, such features are much less frequent in
the background, potentially reducing the computation of detections and the number of
false positives. If the edges are defined to be invariant to photometric transformations,
the edge arrangements inherit this property. This is crucial for real images where the
gray-level maps are not as homogeneous as in the synthetic LATEX scenes.

How to define 	? Set simple constraints on the locations of the points in θ , either
relative to each other or relative to a location x in the image grid, in terms of regions
where we expect to find the appropriate features. The features can be anywhere in
the respective region for the constraint to be satisfied. This slack in the definition
compensates for the fact that we rarely have a precise definition of ϒ that would lead
to a more specific definition of 	. There is an explicit or-ing being performed over
all locations in the region—indeed, this disjunction is the key to the invariance of the
model. This is the advantage of using binary features, invariance naturally translates
into an or-ing over certain regions. This property is also exploited in the context of
the classification algorithms described in chapter 9.

Finally, in this simplified model we have a straightforward mechanism to deal with
occlusion and features that are not pure invariants. It is unrealistic to expect nontrivial
features to always be present in the proper part of the object. Instead of looking for all
local features, look for a sufficiently large subset in a consistent arrangement. Thus
the sparse models can be viewed as coarse approximations to the more complex ones,
with the advantage of explicitly dealing with occlusion and photometric invariance,
and leading to efficient detection algorithms.

6.2 Statistical Model

Once more, we formulate a model following the general recipe outlined in chapter 2.
Suppose that a collection of binary local features Xi , i = 1, . . . , n and an associated
collection of landmark locations Z = (z1, . . . , zn), are identified for the object class
on the reference grid. The collection of locations represents the template for the
sparse model. In section 6.3, we explain how these feature-location pairs are identified
through training.
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6.2.1 The Prior—Admissible Instantiations

Without loss of generality, assume

zc
.= 1

n

n∑

i=1

zi = 0

We identify a set 	(0) of admissible instantiations of the object with center at the
origin

θc
.= 1

n

n∑

i=1

θi = 0

in particular, (z1, . . . , zn) ∈ 	(0). The set 	 of admissible instantiations in the image
lattice L is defined as those elements θ = (θ1, . . . , θn), for which θi = xc + θ ′

i , i =
1, . . . , n for some (θ ′

1, . . . , θ
′
n) ∈ 	(0)—namely, θc = xc. The set 	 consists of all

translations of configurations in 	(0) and can be identified with the set of pairs
(xc, θ

′) ∈ L × 	(0). This identification is not unique, two pairs can correspond to
the same element in 	.

One form of the set 	(0), which is used in chapter 8, has the form

	(0) = {(θ1, . . . , θn) : θi ∈ Azi + C, A ∈ A} (6.1)

with A some subset of the invertible 2D linear transformations and with C some
neighborhood of the origin. The larger C the looser the constraints on θ , because the
points can move independently anywhere within Azi +C . A uniform prior is used on
this set. On the other hand, in chapter 7, the set 	 and the prior are defined directly
in terms of hard constraints and penalties on the shape of triangles defined by triples
of points in Z .

6.2.2 Likelihood and Posterior

The data model is written here for the transformed data Î (x) = (X1(x), . . . , Xn(x))

for x ∈ L . We assume that if an object is instantiated at θ ∈ 	, the probability that fea-
ture Xi is on at θi (i.e., Xi (θi ) = 1) is at least po, for some predetermined probability
po. As discussed in the previous section, this implies that there must be some inter-
action between the definition of 	 and the definition of Xi . For example, it is very
hard to find local features of interest that are invariant to very large ranges of scaling.
Therefore, one seeks to limit the range of scales covered by 	. The full range of scales
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at which the object will be detected is obtained by rerunning the same algorithm at
a small number of lower resolution versions of the original image, as described in
section 6.1. In the sequel, assume for simplicity that P(Xi (θi ) = 1 | θ) = po, for all
i = 1, . . . , n.

Let pb denote the probability of detecting a feature Xi at a point x , which is off the
object, or even on the object but at the wrong location. Assume that pb � po and that
pb is also the same for all local features Xi . We again make an assumption of condi-
tional independence. Given one object is present in the image at instantiation θ ∈ 	,
all variables Xi (x), x ∈ L , i = 1, . . . , n are independent. Now write the likelihood
of the transformed data given an instantiation θ of the object as

P( Î (x), x ∈ L | θ) = P(Xi (x), x ∈ L , i = 1, . . . , n | θ)

=
n∏

i=1

[
pXi (θi )

o (1 − po)
(1−Xi (θi ))

∏

x �=θi

pXi (x)
b (1 − pb)

(1−Xi (x))

]

(6.2)

The notation P(· | θ) means conditional on an object present at instantiation θ . Let

P0(Xi (x), x ∈ L; i = 1, . . . , n)
.=

n∏

i=1

∏

x∈L

pXi (x)
b (1 − pb)

(1−Xi (x)) (6.3)

denote the probability of the data, given no object is in the scene. Define

ρ1 = log
po

pb
> 0 and ρ2 = log

1 − pb

1 − po
> 0

Divide 6.2 by 6.3, multiply by the prior, and take logs to obtain the log-posterior,
given the data as

log P(θ | Î (x), x ∈ L) = log P(θ) + ny(θ)ρ1 − (n − ny(θ))ρ2 + C (6.4)

where ny(θ) is the number of features for which Xi (θi ) = 1 and C does not depend
on θ .

The posterior is thus formulated as a simple function of the number of “hits,” ny(θ)

at instantiation θ , and the prior P(θ). It is possible to write a similar form for the
posterior in the more general case where P(Xi (θi ) = 1 | θ) varies with i . At this
point, however, we are constructing a rather crude model, which will quickly identify
a small number of candidate instantiations—the only issue of importance is then
the order of magnitude of po, and hence these probabilities are assumed to be the
same.
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Compared to the deformable-curve model, which is very similar, here the instan-
tiation θ determines a fixed number of points at which the respective features are
evaluated, whereas in the former model, the features were evaluated all along seg-
ments that could be of variable length. In the current model, the features are more
complex and of lower density. This compensates for the simpler form of the tem-
plate. In some sense, the current model can be viewed as zero dimensional. Features
are evaluated at a discrete set of points, not along line segments or in a 2D domain. In
the deformable-curve model, there was a natural way to rotate the model to any angle,
because the features depended directly on the angles of the segments. The models
described here can in principle be rotated to cover larger ranges of rotations, but this
is not as straightforward.

6.2.3 Multiple Objects

When multiple objects may be present, the model becomes more complex, involving
a term for each possible number of objects. The unknowns are now both the number
of instantiations k and their values θ(1), . . . , θ (k). The set of unknowns is defined
as 
 = ∪K

k=0	
k, where 	k is the set of k-tuples of elements of 	, with K some

upper bound on the number of possible objects in the image. There is no particular
preference for any one of these states, namely, the number of objects or their location
in the scene. We therefore include a uniform prior on 
. This uniform prior implicitly
favors a larger number of detections because the size of 	k grows with k. This is
consistent with the idea that at this stage we want to avoid missing any of the objects
present in the scene, perhaps at the risk of a number of false positives. Ultimately,
a more refined and intensive analysis should be used to distinguish real detections
from the false positives. Assigning higher prior probability to 	k for smaller k would
increase the risk of missing real objects.

This uniform prior also imposes no constraints on the relative arrangement of the
instances. In some cases, more information may be available and more structure
can be introduced into these prior assumptions, but this is beyond the scope of this
book. Given k instances at θ(1), . . . , θ (k), we again assume conditional independence
of the features at all pixels, with probability po for finding Xi at θ

(l)
i , l = 1, . . . , k

and probability pb of finding it anywhere else. The above assumptions lead to the
log-posterior on (θ(1), . . . , θ (k)) given by

log P
((

θ(1), . . . , θ (k)
) ∣∣ Î (x), x ∈ L

) =
k∑

i=1

[
ny

(
θ(i)

)
ρ1 − (

n − ny
(
θ(i)

))
ρ2

] + C

(6.5)
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From this expression it follows that to maximize the posterior we need to find all
those θ ∈ 	 for which the term in brackets is positive, namely, find all θ ∈ 	 for
which

ny(θ) > n
ρ2

ρ1 + ρ2

.= τm

The number of such θs provides the number of objects present in the image. As we
will see below, because the conditional independence model is not entirely accurate,
we use training data to find a threshold τ , which is more conservative than τm and
ensures finding all instances of the object and perhaps some additional false positives.
More-detailed processing is then necessary to determine if indeed the object is present
at the detected θs or not.

6.2.4 Computation

Two approaches for optimizing the posterior are described in chapters 7 and 8. In
the first, we still assume only one object is present in the image. Local features are
chosen for a collection of landmarks on the object and their parameters set so that po

is very close to 1. Unless all features are present (i.e., ny = n), the posterior is 0. A
list Si is generated of all locations of feature Xi in the image. It then remains to find
the mode of P(θ) over all admissible θ such that θi ∈ Si . This can be done efficiently
using dynamic programming when P(θ) is assumed to have a decomposable form (see
chapter 7). In assuming that po = 1 this method depends on the restrictive assumption
that all features of the model are found on the object, which is often not the case.

In the second approach, described in chapter 8, a collection of local features of
moderate probability, say po = .5 is identified at a collection of locations in the
reference grid. The set 	 is defined as in equation 6.2, and because several objects
can be present, following the discussion above, it is necessary to find θ ∈ 	 for which
the number of θi s with Xi (θi ) = 1 is above some threshold. This is done in two steps,
the first of which involves a coarse approximation of 	(0) in terms of a product set and
detection of candidate centers for the objects. In the second step, at each candidate
center θc, a scale is estimated and perhaps other pose parameters, and as many points
of the model as possible are matched to the data at the estimated pose.

In the remainder of this chapter, we focus on the description of the local features
used for the sparse models, methods for training the relevant parameters, and some
statistical properties of these features.
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6.3 Local Features: Comparison Arrays

There are numerous possibilities for defining local features for image data. The most
common filters found in the literature employ a variety of linear filters related to
differential operators (see, for example, Malik and Perona 1990; Wiskott and col-
leagues 1997). It is more difficult to explicitly incorporate geometric and photometric
invariance with such filters. It is also more difficult to study the statistical properties
of continuous valued variables as opposed to the binary valued features described
below. We thus prefer to use binary features involving simple comparisons of pixel
intensity differences, with which photometric and geometric invariance are easy to
implement. These local features will be more-complex extensions of the ridge fea-
tures defined for the deformable curve model in section 4.1 and the edge features in
the Bernoulli model for deformable images in section 5.4. The increased complexity
is needed because the efficiency of the algorithms depends very much on the back-
ground probability pb being small. The density of the features of sections 4.1 and 5.4
in a generic image can be very high.

Define an m × m array M , of 1s, −1s and 0s. The sign of the difference between
the intensity at a given pixel x and the intensity at each of the pixels in its m × m
neighborhood Nm(x) is calculated to yield an m × m array A(y) = sign(I (x) −
I (y)), y ∈ Nm(x) of 1s and −1s. A contrast threshold κ can be introduced and any
difference of magnitude less than κ is set to 0. If the percentage of matched 1s
and −1s between M and A are above prescribed thresholds, the pixel x is con-
sidered a candidate for the corresponding landmark. The 0-s region in M contains
pixels where the values of A are ignored—this allows for a degree of slack, which
is important in obtaining the type of invariance mentioned above. In figure 6.3 are
the sixteen 11 × 11 comparison arrays used in creating the models. White means

Figure 6.3 Sixteen comparison arrays. White means intensity greater than center value, dark
means intensity less than center value, grey means ignored.
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intensity greater than center value, dark means intensity less than center value, gray
means ignored.

Loosely speaking, these sixteen comparison arrays identify “turns” of level curves
of the image (see figure 6.2), pointing in eight different orientations and two gradi-
ent flow directions per orientation. These can be viewed as coarse “high curvature”
detectors. Recall that we are seeking features with low pb, and given the frequent
occurrence of lines and smooth curves in images, “low curvature” detectors or line
detectors would produce a relatively large number of background instances. On the
other hand, high curvature points are quite convenient for representing stable local
structures of interest on an object.

These operators are robust to rather significant variations in pixel intensities, which
are bound to occur between images, as well as to smooth deformations of the local
topography of the landmark neighborhood in the template image. They are also robust
to a certain range of scales and small rotations. Recall that this was an important
requirement on the properties of the operators Xi .

6.3.1 Training

The user points out a collection of landmarks xi,t , i = 1, . . . , n on each of a small
number of training images t = 1, . . . , T . In figure 6.1 are two training images of
axial MRI scans. Eight points have been marked on similar anatomies, the correspon-
dences are provided by the numbering. For each landmark, we seek the comparison
array that, with highest threshold, has no false negatives on the training set. Higher
thresholds mean fewer instances of the feature in the background. Note that here we
are simultaneously choosing the local feature and estimating the relevant parame-
ters—namely, the thresholds. Let M j , j = 1, . . . , J , be the collection of arrays, For
training image t , let τi,t, j,+ and τi,t, j,− be the number of matches of A j (xi,t ) to the
positive and negative regions of M j , respectively. Let τi, j,+ = mint τi,t, j,+, τi, j,− =
mint τi,t, j,−, and τi, j = τi, j,+ + τi, j,−. These are the lowest matches observed with
A j at the points xi,t , t = 1, . . . , T . Let j∗ = argmax j (τi, j ), and set the array corre-
sponding to landmark i to be M j∗ with thresholds τi, j∗,+ and τi, j∗,−. The corresponding
model locations zi , which define the template for the sparse model, are chosen on one
of the training images, (for example, the left panel of figure 6.1,) or through some
averaging procedure. The result is a list of locations z1, . . . , zn , and an associated list
of local features X1, . . . , Xn , defined by comparison arrays, each with two thresholds,
M (i), τi,+, τi,−, i = 1, . . . , n.
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In the example shown in figure 6.1, the first array is used for landmark 0, the
second for landmark 1 the third for landmark 2, the fourth for landmark 5, the fifth
for landmarks 4 and 7, and the sixth for landmarks 3 and 6. The lower panel of
the figure shows a closeup on the tip of the right ventricle in four different images.
All were detected by the first array associated to landmark 0. This illustrates the
flexibility of this type of local feature to various deformations of the underlying local
topography of the image surface. In using comparisons of gray-level intensities, and
at times a low minimum contrast threshold, these features detect the same topography
at very different contrasts—in other words, photometric invariance is built into the
definition. In figure 6.4, we show the locations of all instances of all six features in
an MRI image. Compared, for example, to the simple oriented features of chapter 4,
shown in figure 4.1, the density is much lower.

Figure 6.4 Examples of detections of the six local features from figure 6.1 in an MRI image.
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6.4 Local Features: Edge Arrangements

We now define a larger and more flexible family of local features, with several free
parameters allowing us to control the probabilities po and pb. A systematic analysis
of these probabilities is given in section 6.5. These features are also functions of pixel
intensity differences.

Start with the edges defined in section 5.4, and in terms of which the Bernoulli
data model for deformations was defined. These types of edges are rather frequent in
generic images. In figure 6.5, we show all instances of one vertical edge type in two
images with faces, which will be processed in chapter 8 (see figure 8.5). Only one
edge (ne = 1) is allowed in each 2 × 2 block.

It is not efficient to base uninitialized detection algorithms directly on the locations
of these edges, although it is definitely possible to do so. It proves more efficient to
produce features of lower density as functions of the initial edge map. Each feature is
defined in terms of a “central edge” of some type e0, and a number nr of other edge
types e1, . . . , enr , which are constrained to lie in specific subregions R1, . . . , Rnr , in
the neighborhood of the location of the center edge. We refer to the number nr of
additional edges as the complexity of the arrangement. In figure 6.6, two examples of
such local edge arrangements are shown with nr = 2.

The local feature is detected at a location if the central edge is found at that lo-
cation and if an instance of each of the nr edge types is found in the corresponding
region. The family of possible subregions is denoted R. The sizes of the subre-
gions are all approximately the same. The subregions can be wedge-shaped, as indi-
cated in figure 6.6, or squares in the neighborhood of the center. Or-ing—allowing

Figure 6.5 Vertical edges detected on two images.
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Figure 6.6 Two examples of local edge arrangements with nr = 2 edges in addition to the
center one, each allowed to lie anywhere in a wedge shaped region.

Figure 6.7 (Top) Four of the wedges used to define edge arrangements in the experi-
ments of chapter 8. There are twelve additional wedges obtained by rotating by 90, 180, and
270 degrees. (Bottom) Two of a family of eight larger wedges. The remaining six are obtained
by rotating.

the nr edges to float in their respective subregions—is how geometric invariance is
explicitly introduced at this level, as demonstrated in section 6.5 next. The family
R of regions used in the experiments reported in chapter 8 are shown in figure 6.7,
alongside a family of larger wedges, which is studied for comparison in section 6.5.

6.4.1 Training

In contrast to the previous section, here we do not assume salient landmarks have
been pointed out by the user. The locations of interest are identified as part of the
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training process. In this case, however, it is necessary to train on registered data. Three
pose reference points p1, p2, p3 are chosen on the reference grid. On each training
image t = 1, . . . , T , the user marks three anchor points that will be matched to the
three pose reference points, determining an affine map At from the training image t
to the reference grid.

Two-Edge Arrangements

For two-edge arrangements (nr = 1) (i.e., one edge in addition to the center edge),
the number of possible arrangements J is on the order of several hundreds. Locations
of all arrangement types in each training image t are found and then registered to
the reference grid. Specifically, a feature j detected at location x adds a count to
Fj (At x), for each j = 1, . . . , J . Choose a probability threshold ρ ∼ .5 and an upper
bound n on the number of local features. In each disjoint 3×3 box C on the reference
grid, find the two-edge arrangement with highest frequency in the training data—
that is,

FC = max
j=1,...,J

max
C

Fj (z)

If the relative frequency FC/T > ρ, the corresponding two-edge arrangement is added
to the model together with the location zC corresponding to the center of the box.
All such feature location pairs are identified and if more than n are found, a random
sample of n are kept. This yields a list Xi , zi , i = 1, . . . , n of two-edge features and
associated model locations.

This is the procedure used in chapter 11 to train object representations in the
framework of a neural network implementation of these models (see figure 11.4). A
similar procedure was used to train the edge templates in section 5.4, except that all
locations were kept no matter what the relative frequency.

More Complex Arrangements

When the complexity of the edge arrangements is higher (i.e., nr > 1) the number of
possible arrangements is very large, and it is impractical to precompute all locations
on all training images. A greedy search is implemented instead, seeking step-wise
increments in the complexity of features with high frequency on the object class.
Edges are first detected on each training image and their locations are registered to
the reference grid using the affine map At . Note that we do not register the images
themselves but the detected locations of the edges. In each disjoint c × c box of the
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reference grid, the two-edge arrangement with highest count is found. All instances of
the chosen two-edge arrangement in the box are recorded for each image. Then a loop
over all possible additions of one edge/region pair selects the one with highest count
in the box, until nr edge/region pairs are found. The following algorithm provides the
details.

Algorithm 6.1: Sparse Model—Training Edge Arrangements
Fix nr , and R, the family of regions, and choose ρ < 1, (typically .5) and let T
denote the training set. Detect the eight edge types in each training image and register
the locations using At to produce registered edge maps E (1)

t , . . . , E (8)
t for each t =

1, . . . , T .

1. Set feature counter I = 0. Loop over disjoint c × c (say, c = 3 or c = 5) boxes
on the reference grid. For each such box C :

(a) For each possible triple (e0, e1, R1), where e0, e1 are any possible edge types and
R1 ∈ R, count the number of training points in T for which an instance of the
triple occurs in C . This means e0, the central edge, is located at any point x ∈ C
and e1 is located anywhere in x + R1. Pick the triple with highest count and let
T1 ⊂ T denote the set of data points that have an instance of this triple in C . For
each data point t ∈ T1, let Wt,1 = {xt,m, m = 1, . . . , Mt,1} denote all locations
of the first edge e0 for which the chosen triple was found. Set j = 2.

(b) Loop over all possible pairs (e j , R j ) and count how many data points t ∈ T j−1

have an edge of type e j anywhere in xt,m + R j for any one of the locations
xt,m ∈ Wt, j−1. Find the pair with highest count and let T j ⊂ T j−1 denote the
data points that have an instance of this pair. For each data point in t ∈ T j , let
Wt, j = {xt,m ∈ Wl, j−1 : m = 1, . . . , Mt, j } denote the set of locations of the first
edge e0 for which the additional pair was found.

(c) j ← j + 1. If j < nr go to (b).

2. If |Tnr |/|T | > ρ, record the feature

X I = (e0, e1, R1, . . . , enr , Rnr )

at the center zI of C . For all data points in Tnr there exists a location x ∈ C at
which an instance of e0 is present and an instance of ek is present in x + Rk for
each k = 1, . . . , nr .
Set I ← I + 1.

3. Move to the next box c × c and go to 1.
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Figure 6.8 (Top) Frequencies of four edge types, the two vertical and two horizontal, after
registration. A pixel is on only if 70% of the faces had the corresponding edge in a 5 × 5
neighborhood of that pixel. (Bottom) Frequencies of four edge arrangements with complexity
nr = 3 from the model in figure 6.9. A pixel is on only if 50% of the faces had the corresponding
arrangement in a 5 × 5 neighborhood of that pixel. The reference points are in black, and the
model location of the feature in white.

If we initially set out to pick n local features and more have been found, choose a
random sample of size n.

In the top row of figure 6.8, we show images representing high-frequency locations
of the registered edges for faces. We used 300 faces of the Olivetti database, consisting
of 10 views of 30 people. For each of four edge types, the two vertical and two
horizontal, a pixel is on if more than .7 of the faces had an edge of that type in the
5 × 5 neighborhood of that pixel. In the bottom row of the same figure, we show
the same information for four edge arrangements from the face representation given
in figure 6.9 (nr = 3). Only locations with proportion over .5 are shown. The model
location is shown as a white dot and the three reference points in black. Note how the
local features are much more specific to particular parts of the face.

In figure 6.9, we show a graphical representation of 20 local features, with nr = 3
at their model locations, which were used as the sparse face model for the face
detection experiments shown in chapter 8. The three black dots represent the three
reference points and correspond to the location of the two eyes and mouth. In other
words, the anchor points identified by the user on each training image were the two
eyes and the center of the mouth.

Each local feature is represented by the four edges that define it. The two adjacent
rectangles describe the orientation and polarity of the edge. Recall that the edges
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Figure 6.9 The graphs representing local features identified for the sparse face model. Each
local feature has a center edge and three other edges around it. The two adjacent rectangles
describe the orientation and polarity of each edge.

can have varying locations relative to the center. For example, the upper left-hand
feature in the left-hand panel in figure 6.9 has three horizontal edges arranged more
or less horizontally and a vertical edge on their left. This appears to capture the curve
of the hairline on the left part of the face. The feature directly below that has two
horizontal edges with a dark part on the bottom, above two horizontal edges with a
dark part on the top. This captures the area around the eye, which is typically darker
than its surroundings. These edge groupings not only capture contours but other
topographical structures as well. Even a smaller training set of 50 faces (from five
people) will yield very similar statistics in terms of the edges and their arrangements.
Other representations obtained for other types of objects can be found in chapter 8.
Figure 6.10 gives a sense of the density of these features on the same two images
used in figure 6.5, which will be processed later on in figure 8.5. Locations of the first
feature in the face model above are shown.

Determining the Threshold τ

In principle, if the local features were independent on the object, and their probabili-
ties were given by po, a simple calculation using the binomial distribution B(n, po)
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Figure 6.10 For the two images used in figure 6.5 the locations of the first local feature in
figure 6.9.

would yield the threshold τ for some chosen false-negative rate r . But due to existing
correlations between the features, this analytic threshold is too high and it is better
to estimate a threshold from data. Take a sample of unregistered training images for
which the range of scales and rotations covers the prescribed range for the detector,
determined by A. Choose an acceptable false-negative rate r , say, 5%.

For each training image I (t), t = 1, . . . , T, let At be the affine map taking the
three reference points p1, p2, p3 ∈ G into the three anchor points x (t)

1 , x (t)
2 , x (t)

3 , in
I (t). Strictly speaking, we should find a value of τ for which (1 − r)T training im-
ages have a sequence i1, . . . , iτ such that an instance of Xi j is found in the region
At zi j + C for j = 1, . . . , τ . Of course, the sequence can be different from image
to image. However, there is quite a large degree of uncertainty regarding At itself.
The three anchor points are provided by the user on each image—at times mistakes
are made, and at times the precise location of, say, the center of the eye can be
equivocal. We therefore use a looser criterion for determining τ : Find the largest τ

for which (1 − r)T of the training images have an admissible instantiation θ ∈ 	,
with at least τ indices for which X j (θ j ) = 1, and the center θc is within D pix-
els from the mean xc,t of the anchor points. The distance D is chosen to be 2–3
pixels.

This choice ensures that we do not discount an image that does have at least τ

local features in an admissible instantiation, but these do not necessarily fall in the
expected regions according to the affine map At .
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6.5 Local Feature Statistics

The detection algorithms described in chapters 7 and 8 both rely on the fact that
the on-object probabilities of the local features, namely, probabilities at the correct
location of the object, are high and invariant with respect to a range of deformations,
whereas the density of these same features in the background is low. In terms of
the statistical model described in section 6.2, testing whether the object is present
or not at a specific instantiation θ is reduced to a simple hypothesis test between
two binomial distributions, B(n, po) and B(n, pb), with observations Xi (θi ), i =
1, . . . , n. A threshold τ is determined, and if the number of hits is above threshold at
a certain instantiation θ , it is declared object—otherwise, it is declared background.

In this section, we study more closely the statistical properties of the edge arrange-
ments on background and on object. The binomial model, which derives from the
conditional independence assumption, is an oversimplification; some correlations ex-
ist between the features, both on object and on background. However, we will show
evidence of very consistent patterns in terms of the dependence of these statistics on
the parameter settings. In particular, false-positive densities, although not directly pre-
dictable using the conditional independence assumption, can be predicted by fitting
some simple linear models.

In studying the statistics of these features, we take the subregion R as a family of
wedges of the 9 × 9 neighborhood of the origin. We use two sizes: Larger regions
with 8–90◦ wedges, at increments of 45◦, and smaller regions with 16–45◦ wedges
at increments of 22.5◦ (see figure 6.7). For the large regions, there are 24 pixels in
each region, whereas for the smaller regions there are between 10 and 14 pixels. The
edges are detected in 2 × 2 blocks, as described in section 6.4. In order to study the
dependence of the algorithm on edge density, we take the maximal number of edges
ne, in each 2 × 2 block to be either one or two. All in all, there are four categories:
ne = 1, 2, and large or small wedges, determining the overall density of the local
features.

We work with 40 local features identified through training on a face data set. Very
similar behavior is observed for features trained for other object types. The forty-edge
arrangements were trained using algorithm 6.1, described before. Forty locations on
the reference grid were found where an edge arrangement, defined in terms of a
central edge and six other edges in its neighborhood, was present in at least ρ = 30%
of the registered edge maps of the training set. There is an ordering on the edges in
each of these arrangements, determined by the order in which they were identified
in the algorithm. It is possible to define partial arrangements by taking the first nr
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edges in the ordering for nr = 1, . . . , 6. Clearly, the partial arrangements will have
even higher probability, and will be of higher density on the background. Note that
for the given ordering of the edges in an arrangement, as nr increases, the collection
of detections of the local feature is a subset of the previous stage. This allows us to
study the density of these arrangements as a function of nr . We start with the process
corresponding to the center edge of the arrangement. At the next step, we keep only
those locations where the second edge in the arrangement is found in the appropriate
neighborhood, so that we have filtered out the original edge locations. This filtering
continues as more edges are added in.

6.5.1 Background Densities

The density of the features on generic images decreases exponentially in nr —the
complexity of the arrangement. The rate of decay depends on the size of the subregions
in R and on the initial edge density, which in our case depends on ne—the number of
edges kept in each disjoint 2×2 block. Forty random background images—including
outdoor images from urban and nature scenes, as well as some underwater scenes—
were downloaded from the web to obtain these statistics. In addition, nine indoor
office images were taken. In figure 6.11, we show the box plots for the log-densities
for the four categories as a function of nr + 1 for the outdoor images. The first box
corresponds to the density of the edges themselves (i.e., nr = 0). Each of the remaining
boxes represents 1600 points—that is, the distribution of densities over forty images
for the 40 features at the given level of complexity nr .

For all four parameter categories, we observe an initial large decrease of the density
between nr = 0 to nr = 1. This corresponds to filtering out of edges resulting from
random noise, leaving primarily edges that form part of some rudimentary local
structure. Subsequently, we observe a linear decay on the log scale of the density as
a function of nr , which may have to do with a gradual partitioning of the “space” of
local structures.

Of the hundreds of possible arrangements with nr = 1 (two-edge arrangements),
defined in terms of a central edge and one additional edge, many can actually be found
in real data. Semantically, some could be described as a small segment of a contour
within a range of curvatures, some could be labeled as a “slit.” For each center edge
type e0, there are 8|R| possible pairs. Many such pairs describe very similar structures
due to the slack in the relative locations of the edges. Still, one notes that for each
center edge type there is quite a large number (say, S) of mutually exclusive structures
determined by the additional edge. Assuming each of these structures is equally
likely given the center edge is present, which is obviously an oversimplification, their
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Figure 6.11 Log density of arrangements as function of nr +1. (Top) Large wedges. (Bottom)
Small wedges. (Left) ne = 2. (Right) ne = 1.

probability is at most 1/S that of the center edge. This factor corresponds to the first
drop in density between nr = 0 and nr = 1.

However, once the first two edges are determined, there is a much smaller number
of internally consistent possibilities, representing realistic local structures for the third
edge, and hence the slower drop in the density for higher values of nr . Recall that the
features studied here were trained on a real object, so that inconsistent arrangements
do not get chosen. Indeed, if the arrangements were defined by randomly choosing
the edge types and the regions in R, the density would decay more rapidly.

We fit a linear model where the response variable is the log-density of the edge
arrangement (LDA) in an image. There are two predictors: the log-density of the
edges (LDE) in the image, and the complexity of the arrangement, nr = 1, . . . , 6.
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Table 6.1 95% confidence intervals for the coefficients of the two predictors: log-density of
edges (LDE) and complexity (nr ), and the R2 coefficient for the regressions

Category LDE nr R2

ne = 1, small wedges [1.21, 1.36] [−.79, −.76] .88
ne = 2, small wedges [1.31, 1.44] [−.57, −.55] .87
ne = 1, large wedges [1.29, 1.41] [−.50, −.48] .87
ne = 2, large wedges [1.16, 1.30] [−.35, −.33] .83

Table 6.1 shows 95% confidence intervals for the coefficients of the two predictors, as
well as the R2 coefficient, for each of the four categories. There are 1600 data points
for each of these four regressions, consisting of the 40 local features at each of the
forty images.

We obtain the following four models for the density DF of the feature as a function
of the density DE of the edges and complexity nr .

DF = DE1.28 · (.45)nr

DF = DE1.38 · (.57)nr

DF = DE1.36 · (.61)nr

DF = DE1.23 · (.71)nr

There are sizeable overlaps among the confidence intervals for the coefficient of
LDE. It appears that the crucial effect comes from the coefficient of nr —namely,
the base of the second exponent. As the regions in the edge arrangement get larger,
or as more edges are allowed per block, the rate of exponential decay decreases.
The explanation offered above for these rather striking phenomena is quite heuristic.
It is hoped that new models on local structures will emerge that provide a more
comprehensive explanation.

6.5.2 Statistics on Object

We now turn to the properties of the edge arrangements on object. Specifically, those
arrangements that were identified through training on the given object class.

Probability of Features as a Function of Complexity nr

In figure 6.12, we show box plots of the probabilities of the 40 features on object
(in this case, faces) at the correct location, as a function of complexity, for the four
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Figure 6.12 Box plots of probabilities on object as function of nr + 1. (Top) Large wedges.
(Bottom) Small wedges. (Left) ne = 1. (Right) ne = 2.

categories defined above. For these plots, all faces are at reference pose. The feature
is considered present at the model location z if its center is anywhere in a small 5 × 5
neighborhood N5(z) of z. The first important property that emerges from these plots is
the existence of local features with very high probabilities. This is not only a property
of the particular face database used here but of all other examples presented in later
chapters. If there is a large degree of variability at the local level, the probabilities will
be lower. This variability could be due to nonlinear deformations or to discontinuous
changes. For example, some people have glasses and some do not. The more variable
the ensemble is after pose variation is factored out, the lower the probabilities of the
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best local features will be, for a fixed set of parameters, and more of these features
will be needed to obtain good discrimination from background.

Another property that emerges from the data above is that probabilities of the
arrangements, at the correct location in the reference grid, decay very slowly—at
most, linearly as a function of the complexity nr . This is in contrast to the exponential
decay of the densities on background. A heuristic explanation for this phenomenon
is the following. Assume that the object ensemble is obtained from smooth local
deformations of a prototype image, sampled uniformly from a set of deformations ϒ

of size U . No major linear transformations are allowed, so that all deformed instances
of the object are more or less at the reference pose. On the template, at a location
with some “edge activity,” one can identify an arrangement of, say, six edges. The
center edge e0 in the arrangement has an absolute location z in the reference grid.
There is a subset ϒ0 of deformations for which there is no edge type e0 in the 5 × 5
neighborhood of z. Assuming e0 is found in z0 ∈ N5(z), for each k > 0 there is then
a subset ϒk of ϒ of deformations of the template for which the kth edge ek is not
obtained anywhere in z0 + Rk . It is reasonable to assume that the size of these sets
ϒk, k = 0, . . . , nr is more or less the same for all k, denoted u, and does not depend
on the location z0 of the first edge. Consequently, the probability of the arrangement
consisting of the first nr edges can be bounded from below by 1 − nr (u/|U |), which
is linear in nr .

This argument holds only if the population is obtained through smooth deformations
of a single template. This is rarely the case. However, it is reasonable to assume that
the population can be obtained from smooth deformations of a number of prototypes,
which are similar in some parts and different in others, so that the argument presented
above remains valid in spirit.

Invariance of Features with Respect to Pose

When large-scale deformations are introduced, such as scaling or rotation, we do not
expect to find the features at the same location on the reference grid. We now compare
the probability that feature Xi is present at location zi , when the object is at reference
scale, to the probability that the feature is present at location szi when the object is
at scale s. Similarly, with respect to rotation or other global linear transformations.
Clearly, the probabilities change drastically with large rotations, because the local
features are not rotation invariant in the strict sense. The edges are constrained relative
to the center edge in specific regions, and the edges themselves have coarse orientation
selectivity. Yet due to the slack in the definition of the edges and their arrangements, we
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Figure 6.13 Box plots of probabilities for the 40 local features at nr = 3, for different linear
transformations using small wedges. (Top) Scaling at 125%, 100%, 80%. (Bottom) Rotation
at 23, 17 and 11 degrees. (Left) ne = 1. (Right) ne = 2.

expect a limited degree of rotation invariance. The top panel of figure 6.13 illustrates
the stability of the probabilities with respect to upscaling, and downscaling, for the
smaller wedges, at nr = 3. The left shows ne = 1, the right ne = 2. The bottom of
figure 6.13 illustrates the invariance with respect to rotation. The data was obtained
by applying a linear transformation a to the face images, extracting the local features
in those transformed images, and finding what proportion of the data had the local
feature Xi on, in a small neighborhood of azi . Observe that the probabilities of the
features are indeed robust to a large range of poses. As would be expected for the
arrangements defined with larger wedges, the probabilities are even more robust.
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6.5.3 False-Positive Rates

The two detection schemes presented in chapters 7 and 8 perform a search for peaks
of the posterior. In the two cases, a peak occurs at an instantiation θ only when all or
a certain fraction of the features is present. The question arises as to the probability
of false positives—that is, the probability of having more than τ features present in
an admissible arrangement θ even if there is no object present at that instantiation.
We study the false-positive behavior, assuming the set of admissible instantiations
	(0) is defined through equation 6.1 with A covering a range of scales of ±25% and
rotations of ±15◦. For each value of nr , we use a set of face images to determine
a threshold τ , which keeps more than 95% of the faces, as detailed in section 6.4.
We then search the forty random background images for configurations of at least τ

features at any location and at any of the prescribed linear transformations of A. An
efficient way to do this search is detailed in chapter 8—here, we are only interested
in the statistics.

As already mentioned, the statistical model described in section 6.2 reduces to
a simple test between two binomial distributions, B(n, pb), and B(n, po) for every
possible instantiation θ ∈ 	. If the model was accurate, the probability of a false
positive at any given pose could be predicted using the tails of the binomial distribu-
tion B(n, pb), or using the normal approximation: 1−�(τ − npb)/(

√
npb(1 − pb)),

where � is the cumulative distribution function of the standard normal distribution.
Note that the number of possible instantiations in the present context is hundreds of
times larger than the number of locations, because at each location one could have
on the order of hundreds of scales and rotation combinations. Detected instantiations
typically occur in clusters arising from the same object in the image, and the instanti-
ation with the highest number of detected features is chosen to represent this cluster.
These considerations make it much harder to predict the density of false positives in
terms of a simple probability model. Instead, we provide empirical data on the density
of false positives per pixel (i.e., total number of detections divided by the area of the
image).

In table 6.2, for each value of nr , we list the average probability of the 40 features on
the training set; the empirical threshold τ , obtained by checking for the highest value
for which 95% of the training set of faces is detected (5% false-negative rate); the total
false-positive rate where the total number of detections in all forty images is divided
by the total area. In addition, we show the 95% confidence interval for the coefficient
of the log-density of the local features (per local feature type) in predicting the log-
density of false positives in an image, as well as the R2 coefficient. In figure 6.14,
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Table 6.2 False positive rates as function of complexity

95% Confidence
nr po τ FP Interval R2

1 .77 25 3 · 10−4 [2.28, 3.62] .82
2 .72 22 5 · 10−5 [1.34, 2.69] .70
3 .64 17 5 · 10−5 [1.58, 2.64] .80
4 .53 11 2 · 10−4 [1.88, 2.89] .84
5 .39 6 3 · 10−4 [1.79, 2.6] 0.87
6 .28 3 8 · 10−4 [1.50, 1.89] 0.94

Column 1: Complexity of edge arrangements in model. Column 2: Average on-object proba-
bility of the arrangements. Column 3: Threshold at 5% false negative. Column 4: False positive
density (number of false positives per pixel.) Columns 5, 6: 95% confidence intervals for the
regression coefficient of log-density of false positives against log-density of local features in
an image. Column 7: R2 coefficient of the regression.

the scatter plots of the log-density of false positives against the log-density of the
local features are shown for nr = 1, 3, 5. The asterisk (*) stands for outdoor images
and the “o” for the office images. Some points do not appear because there were no
false positives. The estimates using outdoor images provide an upper bound, because
there is a much higher density of edges in these. In this experiment, we used the small
wedges and ne = 1.

If the features were indeed conditionally independent, as assumed in the statistical
modeling, because the probabilities on-object decay linearly with nr whereas the
probabilities on-background decay exponentially, with a larger nr , a lower false-
positive rate could be obtained for some fixed false-negative rate. However, due to
correlations between the features on-object, which increase with their complexity, the
threshold τ decreases faster than the binomial model would predict and the number
of false positives starts to increase.

We see that the properties of this hierarchy of local features is stable and predictable
both on-object and on-background. Depending on the task at hand, the computational
constraints, and acceptable levels of the two types of error, different feature complex-
ities can be used.

We have described two families of local features—the comparison arrays and the
edge arrangements—defined in terms of simple operations involving intensity com-
parisons and intensity-difference comparisons. We also described two approaches
for training the model. In the first, the user selects the points xi,t i = 1, . . . , n on
each of the training images, and it remains only to identify the best local feature and
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Figure 6.14 Scatter plots of log-density of false positive vs. log-density of local features,
nr = 1, 3, 5.

estimate the associated parameters using subimages centered at xi,t , t = 1, . . . , T . In
the second, the user only selects three anchor points on each training image, which
determine an affine map for registration of local feature data to the reference grid.
Training involves simultaneously finding the locations of interest z1, . . . , zn and lo-
cal features for those locations. The anchor points themselves need not be part of
the model. In the next two chapters, we describe in detail two methods for finding
detections of the sparse models defined in terms of these local features.
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7 Detection of Sparse Models: Dynamic
Programming

In chapter 6, we described two families of local features that could be used to construct
a model for an object. These features exhibit certain invariance properties on the object
ensemble and are low density in generic images. The next step is to use knowledge on
the variations of the object to constrain the possible arrangements of the instances of
the features and to develop an efficient algorithm to detect admissible instantiations.
In this chapter, we explore one possible approach, which is relevant when po is very
close to 1, so that false negatives at the local level are very rare and at most one
instance of the object is expected in the image. A more general approach, allowing
for partial occlusions and multiple objects in the scene, is studied in chapter 8.

7.1 The Prior Model

The prior is defined so as to favor points θ ∈ � with a higher degree of geometric
similarity to the model configuration z1, . . . , zn . Define a function �(θ) that measures
some form of geometric distance between Z and the instantiation θ . In anticipation of
computational issues, we limit ourselves to “triangle”-based functions � of the form

�(θ) =
∑

C
ψC(θi ; i ∈ C) (7.1)

where C is a collection of triples from the set {1, . . . , n}. The prior is then simply

P(θ) ∝ exp[−�(θ)]

The functions ψC are defined to be invariant to translation and to certain ranges
of scale and rotation. They are formulated in terms of the deviation of a candidate
triangle θi1 , θi2 , θi3 from the model triangle zi1 , zi2 , zi3 . There are two components: hard

139
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constraints, which limit the range in which the triangle can vary, and soft constraints,
which penalize deviations from the template triangle. The hard constraints used below
are very loose and impose a limit of ±π/2 on the deviation of each angle of the
candidate triangle from the model triangle, and a limitation on the scaling of any of
the edges between 1/5 and 5. The set � is defined as those sequences θ that satisfy
the collection of hard constraints on θC , C ∈ C.

For a triple C = {i1, i2, i3} ∈ C, the soft constraints have the form

3∑

j=1

((
αi j − ai j

)
mod 2π

)2

where αi j is the angle at vertex θi j and ai j is the angle at vertex zi j in the model triangle.
There are many alternatives proposed in the statistical shape literature (see, for exam-
ple, Bookstein 1991 or Dryden and Mardia 1998). These penalties are translation and
scale invariant. As defined above, they are also rotation invariant; however, the local
features themselves are not. Because the orientation is usually known, in the present
context it is useful to add a rotational constraint on the functions—for example, con-
straining the absolute angle of an edge to lie within a certain range of the angle of the
corresponding edge in the model. Note that because these constraints are translation
invariant, there is no particular need to specifically define the set �(0) of admissible
instantiations centered at the origin, although the set is implicitly defined through
the hard constraint component of the cost function �. Furthermore, because the hard
constraints are defined in terms of the same triangles as the soft constraints, we can
incorporate them directly into the cost function � by setting ψC(θi ; i ∈ C) = ∞ if
(θi ; i ∈ C) does not satisfy the hard constraints.

7.1.1 Decomposability

When po = 1, all n local features will appear in an admissible configuration if the
object is in the image. The maximum of the posterior is obtained by generating a
list Si of all instances of each local feature Xi , i = 1, . . . , n in the image. Then for
each θ such that θi ∈ Si , evaluate P(θ) and find the minimum. Typically, this is not
computationally feasible, even if n is on the order of 10 points and the size of Si is on
the order of 50–100. However, when the collection of triples C has a decomposable
form, minimization can be efficiently done through dynamic programming.

Decomposability in the present context means that there are n − 2 triples defined
on the set In = {1, . . . , n}, and there exists an ordering of the triples C1, . . . , Cn−2

and a reordering σi ∈ Ci of the elements in In , with the following properties; σ1 is
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only a member of C1. If we remove σ1 from the list of points and C1 from the list of
triples, then σ2 belongs only to C2, and the two other points in C1 together belong
to at least one other triple. Eliminate σ2 and C2 and so on. At stage j − 1, the point
σ j−1 belongs only to the triple C j−1 and after eliminating σ j−1 from the list of points
and C j−1 from the list of triples, σ j belongs only to C j , and the two other points in
C j−1 together belong to the some other triple. This elimination or “peeling” procedure
continues until all that is left are σn−2, σn−1, σn , which make up the triple Cn−2.

For example, given n indices, the simplest decomposable collection would have
the triples i, i + 1, i + 2 for i = 1, . . . , n − 2, which has a simple linear form.
There are other examples where the collection of triples is decomposable but does not
have a linear form. The notion of decomposability can be defined in terms of graphs,
which have edges between any two indices belonging to the same triple. Thus in
figure 7.1, the triples in the collection are those for which all three connecting edges are
present in the graph. Decomposability of the graph is equivalent to decomposability
of the collection of triples. The numbers in the graphs correspond to the peeling
order, and differ for different graphs. The graph on the left of figure 7.1 has the
simple linear form. The graph on the right is also decomposable, but is not linear.
Decomposability can be easily extended to collections of larger subsets with varying
numbers of points (see Bertele and Brioschi 1969 and Rose, Tarjan, and Leuker
1976). However, in the present context, such extensions would lead to massive a
slowdown in computation. We therefore limit ourselves to decomposable collections
of triples.

Figure 7.1 Two decomposable collections of triples with the eight model points. Each triangle
in the above graphs corresponds to one of the triples. The left hand collection is linear the right
hand is not.
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7.2 Computation: Dynamic Programming

The description of dynamic programming in this context is very similar to that of
chapter 4; however, it is worth repeating due to the somewhat more-complex structure
of the function. We assume that the indices and triples in the model are now relabeled
according to the “peeling” order described above. The state space Si associated to each
index i = 1, . . . , n is the list of locations θi, j , j = 1, . . . , Ji for which Xi (θi, j ) = 1.
Dynamic programming proceeds as follows. Because 1 is the vertex in C1, which is
not in any other triple (the first to be eliminated), we can write

�(θ1, . . . , θn) =
n−2∑

i=1

ψCi (θk; k ∈ Ci )

= ψC1(θk; k ∈ C1) +
n−2∑

i=2

ψCi (θk; k ∈ Ci )

def= ψC1(θk; k ∈ C1) + �(θ2, . . . , θn) (7.2)

where θi ∈ Si , i = 1, . . . , n. Assume C1 = {1, a, b}. For any fixed pair θa ∈ Sa, θb ∈
Sb of candidate points for landmarks a and b, let θ∗

1 [θa, θb] be the choice of θ1 ∈ S1,
which minimizes ψC1(θ1, θa, θb). Because �(·) does not depend on θ1, it is easy to see
that the optimal instantiation (θ∗

1 , . . . , θ∗
n ) satisfies θ∗

1 = θ∗
1 [θ∗

a , θ∗
b ]. Note that finding

θ∗
1 [θa, θb] for all possible pairs θa ∈ Sa, θb ∈ Sb requires evaluating ψC1(θ1, θa, θb)

for all possible combinations of θ1, θa , and θb. Hence the amount of computation
is proportional to m3, where m is an upper bound on the number of elements in
each of the sets Si . For each pair (θa, θb) the index θ∗

1 [θa, θb] is stored as well as
ψC1(θ

∗
1 [θa, θb], θa, θb), so that the amount of storage required is proportional to m2.

According to the decomposability requirements, there exists a triple Cu1 , which
contains both vertices a and b. The index u1 is not necessarily the next one in the
ordering, except in the case where the collection of triples has a linear structure. Let
Cu1 = {a, b, c}. Define

ψ̂Cu1
(θk; k ∈ Cu1) = ψ̂Cu1

(θa, θb, θc)

= ψCu1
(θa, θb, θc) + ψC1(θ

∗
1 [θa, θb], θa, θb)

ψ̂Ci (θk; k ∈ Ci ) = ψCi (θk; k ∈ Ci ) for i = 2, . . . , n − 2, i �= u1
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and

�(θ2, . . . , θn) =
n−2∑

i=2

ψ̂Ci (θk; k ∈ Ci )

Note that ψC1(θ
∗
1 [θa, θb], θa, θb) is a function of θa and θb only, and hence ψ̂Cu1

(·) is
a function of (θk, k ∈ Cu1). It is easily seen that �(θ∗

2 , . . . , θ∗
n ) = �(θ∗

1 , . . . , θ∗
n ) and

(θ∗
2 , . . . , θ∗

n ) is the minimizer of the new function �(·). The original problem is thus
reduced to a similar one with one vertex eliminated. The new function is still a sum
of local functions on a decomposable collection of triples of indices.

By eliminating the vertices one at a time in increasing order of the labels, the
problem can be solved when only the last 3 vertices—n − 2, n − 1, n—are left.
When θ∗

n−2, θ
∗
n−1, θ

∗
n are determined, we can go backward and determine θ∗

n−3, . . . , θ
∗
1

sequentially. At step j set θ∗
j as θ∗

j [θ∗
k , θ∗

l ] (which is already stored) where k, l are the
other two elements of C j . The indices k, l are necessarily greater than j so that θ∗

k

and θ∗
l have already been determined. Because the amount of computations needed

to eliminate one vertex is proportional to m3, the total amount of computations is
proportional to nm3. We summarize this procedure in the following algorithm.

Algorithm 7.1: Sparse Model Detection—Dynamic Programming

trip − n × 3 list of triples. trip(i, j)— j th vertex in i th triple.
Points ordered by peeling order: trip(i, 1) = i .

locs—vector of n arrays:
locations of the n local features in the image.
locs[i](k, 0), locs[i](k, 1)—coordinates of kth instance of i th feature.
num[i]—number of instances of feature i .

function par(n1, n2, n3)—return index m if m < n3 and m belongs to a triple with
n1 and n2,
if no such m exists return −1.

rec[i], i = 1, . . . , n—arrays of dimensions num[n2] × num[n3] × 2:
n2 = trip(i, 2), n3 = trip(i, 3).
rec[i](l, k, 1)—optimal instance of i for the lth instance of feature n2,

and kth instance of feature n3.
rec[i](l, k, 2)—stores the value (initialized to 0).

for n1 = 1 : n − 2
n2 = trip(n1, 2), n3 = trip(n1, 3)



amit-79020 book May 20, 2002 13:16

144 Chapter 7 Detection of Sparse Models: Dynamic Programming

Find index of triples that have already been peeled based on any of the edges of the
current triple,
m2 = par(n1, n2, n1), m3 = par(n1, n3, n1), m4 = par(n2, n3, n1)

(m2, m3, m4 < n1)
for l = 1 : num[n2]
for k = 1 : num[n3]

currmin = 0.

for j = 1 : num[n1]
a = rec[m2]( j, k, 2), b = rec[m3]( j, l, 2), c = rec[m4](l, k, 2)

v = ψn1( j, k, l) + a + b + c. (ψn1 —cost function of triple n1.)
if (v < currmin) currj = j, currmin = v.

end
rec[n1](l, k, 1) = currj, rec[n1](l, k, 2) = currmin.

opt—vector of length n. Initialize to −1. Will contain optimal configuration.

VAL = mink,l rec[n − 2](k, l, 2), opt (n − 1) = kmin, opt (n) = lmin.

for n1 = n − 2 : 1
n2 = trip(n1, 2), n3 = trip(n1, 3)

m2 = opt (n2), m3 = opt (n3)

opt (n1) = rec[n1](m2, m33, 1).
end

In figure 7.2, we show the six steps of the dynamic programming algorithm for
matching the linear model of figure 7.1. At each step, we recover the optimal match
corresponding to the subgraph covered up to that step. It is interesting to observe
that due to the translation and scale invariance of the triangle cost functions, the
initial optimal matches are far removed from the actual structures we are seeking to
detect. Only after a sufficient amount of information is integrated does the optimal
match settle down at the correct location. The structure of interest is typically close
to the center of the image, however, this information is not used in the algorithm. The
structure would be detected anywhere and at a large range of scales.

In figure 7.3, we show matches of the two models shown in figure 7.1 to several
axial MRI images. In figure 7.4, we show some failed matches of the linear model.
Most often, failed matches will contain a large subset of correct matches but one or two
that are wrong. This is due on one hand to the very loose hard constraints introduced
in the cost functions shown here. A more judicious estimation of the variability of
each of the triangles in the model could probably avoid these partial mismatches. On
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Figure 7.2 Six steps of dynamic programming for the graph shown in figure 7.1. At each
step we show the optimal configuration for the subgraph which has already been peeled.

the other hand, false negatives do occur at the local feature level, and necessarily lead
to a wrong detection.

7.2.1 Coarse-to-Fine Computation

The efficiency of the computation of the model instantiation depends critically on
the decomposability property of the collection of functions and the low density of
the features in the background. Ideally, however, one would like to evaluate a can-
didate instantiation in terms of the cost of all possible triangles in the model that
correspond to the full graph on the n model points. The decomposable collection
can be viewed as a coarse model that is easily matched. A more sophisticated im-
plementation of dynamic programming can yield not only the top match but the top
M matches—see, for example, Rabiner and Juang (1993) in the case of the linear
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Figure 7.3 (Top) Matches of the linear graph in figure 7.1 (left) to three axial MRI brain
images. (Bottom) Matches of the non-linear graph in figure 7.1 (right) to three other images.

Figure 7.4 Three partial mismatches of the linear graph model.
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graph. One can also run several different graphs (as shown in figure 7.1) to obtain
different candidate instantiations. The role of the coarse model is then to provide
a small number of candidates likely to have low cost for the full function. At each
of these it would be very easy to evaluate the full cost function and determine the
optimal match in terms of this more-complete model. Estimating an upper threshold
of this cost in terms of a training sample of object images could provide a way of
ruling out false matches in images that do not contain the object. We continue to
pursue this notion of a coarse-to-fine implementation of the detection problem in
chapter 8.

7.3 Detecting Pose

When the main source of variability in object instantiation is described in terms of
affine transformations (i.e., pose) with perhaps a small degree of nonlinear variability,
it is possible to avoid dynamic programming. Given a list of features and a list of
model locations on the reference grid (Xi , zi , i = 1, . . . , n), one searches for triples
of features in the image. A triple θi1 , θi2 , θi3 of instances of features i1, i2, i3 in the
image determines a unique affine map a taking θi j to zi j for j = 1, . . . , 3. This map
provides a prediction for the location for all other features, θi = azi , and if there is
an instance of feature i in a small neighborhood of θi for each i = 1, . . . , n, then
an instantiation of the object has been found. One can even allow some omissions,
as long as some given fraction of the features is found in the expected location azi .
Once omissions are permitted, it is necessary to carry out a systematic search over
all possible triples i1, i2, i3 in the model until a triple of instances θi1 , θi2 , θi3 is found,
providing an affine map a.

In this type of search, we assume that the affine map provided by any triple of
detected features is reliable in predicting the locations of the others. This would not
work, for example, with the ventricle structures in the MRI brain scans, due to the
wide variability in the scale of the substructures. For example, in figure 7.3, the scale
of the two “arms” defined by the top ventricle varies in a range of approximately
2 : 1, whereas the entire central ventricle structure is more or less the same size across
images. Using the affine map determined by the two tips of the upper ventricles and
the cusp in between could result in wrong predictions for the locations of the other
features. On the other hand, this type of scheme can be relatively successful for objects
such as faces (as suggested in Amit and Geman 1997; Burl, Weber, and Perona 1998
and is closely related to the alignment method in Ullman 1996).



amit-79020 book May 20, 2002 13:16

148 Chapter 7 Detection of Sparse Models: Dynamic Programming

The loop through all possible triples can be computationally intensive, and even
on relatively rigid objects one particular triple of detected features can yield rather
erroneous estimates of the correct pose. A more systematic and efficient computational
approach to detection of instantiations with missing features is described in chapter 8.

7.4 Bibliographical Notes and Discussion

There is a vast literature on graph matching using a variety of other techniques.
These techniques are more general than dynamic programming in that they are not
constrained to special decomposable graphical structures. In Haralick and Shapiro
(1992), the term used is inexact consistent-labeling and several algorithms are de-
scribed using heuristics to overcome the immense combinatorial burden. In Grimson
(1990) the same problem is called searching correspondence space, and again, a num-
ber of algorithms are suggested mainly in the context of rigid objects. These themes
are revisited in Ullman (1996). Recently, methods that produce a “soft” assignment
of model points to data points has been studied (see Gold and Rangarajan 1996;
Rangarajan, Chui, and Bookstein 1997). However, all these methods are necessarily
slow due to the inherent complexity of the general graph-matching problem. They
are usually applied to hand-picked collections of points. They are rarely applied to
images where there is a substantial amount of clutter, which significantly increases
the number of detected features.

The idea of using dynamic programming to find optimal feature arrangements
was proposed in Fischler and Elschlager (1973), although there is no specific recipe
for defining local features. The computational procedure described in this chapter is
essentially the same. More details on the application of this approach to matching
deformable structures in MRI brain scans can be found Amit (1997).

We have started exploring the use of more complex local features of relatively low
density in the background. Fortunately, it is possible to identify such features that are at
the same time highly probable at certain locations on the object. The resulting models
are sparse and, given the appropriate structure, can be computed very efficiently. The
dynamic programming on decomposable graphs for the MRI images takes no more
than 100 milliseconds on the Pentium III 700 MHz for each step. This grows linearly
with the number of vertices in the graph.

The use of dynamic programming has already been introduced in chapter 4. And in
principle, the dynamic programming algorithm described here is the same. However,
there is a major difference in terms of the definition of the state space at each step.
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In the model described in chapter 4, the state space at step k is the region Sk . These
regions can be taken of moderate size, on the order of hundreds, due to the initialization
provided by the user. In the models described in this chapter, we seek to avoid user
initialization. This means that in principle, every point in the image is in the state
space for each step of the dynamic programming. Clearly this is computationally
impossible. The solution comes in the form of the low-density local features. Indeed,
one could still imagine that the entire image is the state space, however, we add a cost
to the match of a point in the model to a point in the image, which is infinite if the
latter does not pass the test associated to the local feature. The proper way to compute
the optimal match is then to find the points that pass the test associated to each local
feature, and those subsequently become the state space for the corresponding step in
the dynamic programming.
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The decomposable graphs presented in chapter 7 have been partially successful in
automatic anatomy detection in medical imaging. They rely heavily on finding in-
stances of all the local features at the correct location on the object and are sensitive
to occlusion or other sorts of noise. Moreover, when searching for objects at a large
range of scales in large images, dynamic programming becomes very slow. Finally,
if several instances of an object can be present in the image, dynamic programming
becomes significantly more complicated.

The solution involves a coarser model. After detecting all instances of the local
features in the image, instead of directly trying to find arrangements satisfying the
complex geometrical constraints, try to find arrangements satisfying a simpler set of
constraints that is consistent with the original one. Then check if the more complex
constraints are satisfied. The idea is illustrated in figure 8.1. The original model
involves constraints on relations between pairs or larger subsets of the points. Various
admissible configurations are presented in the top three panels. Now replace this
with a simple model that only constrains the locations of the features relative to a
central point, independently of each other, as illustrated in the bottom panel of figure
8.1. A point in the image becomes a candidate “center” if a sufficient number of the
features are found in their corresponding regions.

At each such candidate center, search through the instantiations in �(0) and pick the
one for which the most features are found at their expected location. If this number
is below a threshold, rule out the candidate center. For those candidate centers that
remain, the locations of the features that were found together with the expected
locations of those that were not found provide an instantiation of the model.

Here again we have a coarse-to-fine procedure. First we use a model with a much
coarser set of constraints to find candidate centers. At this stage, we expect to hit
all correct locations together with a number of false positives. Then a more detailed

151
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. . .

.
Figure 8.1 (Top) Three feature arrangements consistent with a complex set of constraints.
(Bottom) Coarse model. Features can be found anywhere in their respective regions relative to
a center point.

instantiation is computed, both in order to filter out false positives from the pre-
vious stage and to provide the full description of the detection. Subsequently, an
even more refined process can be implemented such as one of the deformable mod-
els described in earlier chapters with the detected instantiation serving as an initial
point.

In order to detect the object at a wide range of scales (say, 4 : 1), reprocess the image
using the exact same algorithm at a number of smaller resolutions. For example, if
the original range of scales of the detection scheme is ±25%, subsample the object
at scales 0.75, 0.56, 0.42, 0.32, 0.24, and rerun the detection algorithm at each new
resolution. Thus the model is given for the smallest range of scales at which the object
is detected. The method described here is very efficient and takes around .5 second
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for processing a standard 240 × 320 image, at all resolutions, on a Pentium III,
700 MHz.

8.1 Detecting Candidate Centers

Here, we will use the instantiation set � defined by equation 6.1 and take a uniform
prior on �. The on-object probability po is assumed less than 1, although much
larger than pb. Maximizing equation 6.5 involves finding values of θ for which ny(θ)

is greater than some threshold τ . Specifically, find pairs (xc, θ) with xc ∈ L and
θ ∈ �(0) such that

(D) There exist indices i1, . . . , iτ for which Xi j (xc + θi j ) = 1 for j = 1, . . . , τ .

There are several ways to find such instantiations, all of which involve counting the
number of features of a specific type present at a specific location in the image.

The brute-force approach involves looping through all xc ∈ L , θ ∈ �(0), count-
ing how many indices satisfy Xi (xc + θi ) = 1, and recording those with a count
greater than τ . This is clearly a massive loop over all locations in the image, and
for each location, a large number of instantiations. An alternative is the Hough
transform (Hough 1962 and Grimson 1990), which consists of a reordering of the
loops.

Create an array H indexed by all elements in �. Find all instances xi, j , j =
1, . . . , Ji of each of the local features Xi , i = 1, . . . , n in the image.

1. For each i = 1, . . . , n,

For each j = 1, . . . , Ji , loop through elements �. For each θ such that xi, j = θi

add 1 to the entry corresponding to θ in H .

2. Find all entries in H with value greater than τ .

If the local features are of low density in generic images, it is computationally more
efficient to index into admissible configurations through the locations of the features,
rather than carrying out the brute-force loop. This algorithm is feasible provided there
is an efficient way to loop over elements in �, or some analytic indexing mechanism
to find those elements in � for which xi, j = θi .

A more efficient way to solve this detection problem is to pursue a coarse-to-fine
procedure. Find a product set �(0)

p ⊂ Ln , which contains �(0). By product set, we
mean a set of the form {θ : θi ∈ Bi , i = 1, . . . , n} where Bi ⊂ L . If, for example,
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�(0) is defined through a set of transformations ϒ , then take �(0)
p = ∏n

i=1 Bi with

Bi = ϒzi = {υzi , υ ∈ ϒ}, i = 1, . . . , n (8.1)

With the larger set of instantiations �(0)
p , detect candidate centers—namely, points

xc satisfying

(DP) There exists some θ ∈ �(0)
p and τ indices i1, . . . , iτ for which Xi j (xc +θi j ) = 1.

Any location xc, for which there exists θ ∈ �(0) such that the pair (xc, θ) satisfies
condition (D) above, will necessarily be identified as a candidate center satisfying
condition (DP), simply because �(0) ⊂ �(0)

p . In all experiments below, we use �(0),
defined in equation 6.1, with A = ϒ some subset of linear maps covering a range of
scales of ±25%. Thus Bi = Azi .

In a brute-force search for candidate centers, each location x ∈ L would be visited,
counting how many of the regions x + Bi contain an instance of the corresponding
feature Xi —that is, maxy∈x+Bi Xi (x) = 1. In some cases, one can search over a
coarse subgrid of the image grid L and the brute-force method becomes efficient.
(See, for example, the work in Fleuret 2000 and ?.) In our context, it will be more
efficient to reverse the loops and use the Hough transform, which in this case is easy
to implement, because �(0)

p is a product set.

Algorithm 8.1: Sparse Model—Counting Detector, Step I

1. For i = 1, . . . , n, find all instances of Xi , at xi, j , j = 1, . . . , Ji .

2. Initialize to 0 an array C the size of the image.

3. For i = 1, . . . , n, do

(a) Initialize to 0 an array D the size of the image.

(b) For j = 1, . . . , Ji

Set D(y) = 1 for all y ∈ xi, j − Bi .

(c) Set C(x) = C(x) + D(x), x ∈ L .

4. Find those locations x in C for which C(x) ≥ τ .

The idea behind this loop is illustrated in figure 8.2 in terms of the coarse model
shown in figure 8.1. Each instance of feature Xi detected at location x , “votes” for a
region x − Bi of candidate centers. Here, n = 5 and τ = 3. In the upper-right-hand
corner, a location has received three votes and becomes a candidate center.
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Figure 8.2 An illustration of the voting procedure of the Hough transform.

The calculation done in item 1 is efficient and only requires lookups in small
subregions of the lattice determined by the subregions defining the local features.
The calculations in item 2 are very efficient because the loops are only over locations
of local features, which are rare, and over the regions xi, j − Bi . The size of these
regions depends on the distance of the point zi from the origin and the size of the
set A. As indicated, we restrict the range of scales covered by A to ±25% and ±15◦

rotation. The size of the reference grid is approximately 30 × 30, so that typically the
regions Bi are on the order of several tens to one hundred pixels.

In figure 8.3, we show four of the twenty stages of the implementation of the Hough
transform for step I of the counting detector, with the face model shown in figure 6.9.
In the first two stages, we show an image with the locations of the corresponding local
features (denoted as “+”) and the distribution of the counts recorded in the array C
used in item 3(c) before. For the other two stages, we show only the distribution of
counts. At each of these stages, it is possible to make out the shape of the corresponding
region Bi . Note how the distribution of counts gets more and more peaked at the face.
(The image being processed here is shown, with the results of the entire counting
algorithm, in figure 8.6 on the right.)
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Figure 8.3 Four stages of the Hough transform. (Top) First two local features. Locations
marked as “+” and count maps (0-black, 1-gray, 2-white). (Bottom) Count maps after detection
of two other local features later on in the process. Candidate centers for faces emerge as bright
regions.

8.2 Computing Pose and Instantiation Parameters

At each candidate center, xc, identified by the first step of the counting detector,
we need to recover information regarding the instantiation. First we estimate pose
parameters such as scale and rotation. The most straightforward method, used in the
examples below, involves a brute-force search through the range of allowable linear
maps. Add a small range of translation to the set of allowable linear maps A. Let C
be a small 3 × 3 or 5 × 5 neighborhood of the origin. Let τa = τ , the threshold used
in condition (D).
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Algorithm 8.2: Sparse Model—Counting Algorithm, Step II

1. At candidate center xc, for each a ∈ A.

2. Loop over i = 1, . . . , n. If there is an instance of Xi at some point x in the region
xc + azi + Ci , add one to a counter Na . Also record the location of x in a list,
Xa(i) = x .

3. Let a∗ = argmaxa∈ANa , be the map with highest count. If Na∗ < τa the location xc

is discarded. Otherwise, the detection is assigned the affine map a defined through
a(z) = xc + a∗z.

Steps I and II together represent the full counting algorithm. The main computa-
tional cost is in implementing step I because it involves image-wide detection of the
local features. Among the few locations that it detects, it is very fast to implement
step II to obtain the instantiation.

8.2.1 Edge-Based Model for Step II

Step II is described in terms of the features used in the original object model. It yields
locations satisfying condition (D). But in practice, the features used for this step do not
have to be the same features used for the first step. One of the important properties of
the more complex features, employed in the initial detection step, is their low density
in the background. This is essential for computational efficiency and to keep a tab on
the number of false positives. However, once a location xc is selected, these issues are
irrelevant. Indeed, in step II, one can use the simpler edge features that have already
been extracted in the process of finding the edge arrangements. These are stored and
used for step II.

Training of the edge-based model used for this step would proceed as described in
section 6.4. There are much larger numbers of high probability edges on the reference
grid than edge arrangements.

8.2.2 Determining Thresholds

Now there are two thresholds to determine, τ for step I, and τa for step II. We thus use
the following modification of the threshold training procedure given in section 6.4.

Find the largest value of τ for which at least (1 − r)T of the training images has
a candidate center, resulting from step I, within D pixels of xc,t —the mean of the
three anchor points for image t .
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Find the largest value of τa for which at least (1 − r)T of the training images has
at least one candidate center resulting from steps I (using τ determined above) and
II, within D pixels of xc,t .

8.2.3 From Pose to Instantiation

The outcome of this stage is a list of affine maps ak, k = 1, . . . , K of the reference
grid into the image, corresponding to detected instantiations of the object. These are
represented through a detection triangle ak z1, ak z2, ak z3. In addition, for each such
map, there is a list Xak of the locations of those model points that were detected
in the correct regions: ak zi + C . For those model points zi that were not detected,
it is possible to “extrapolate” their location by taking Xak (i) = ak zi . In this way,
we recover an entire instantiation element θ ∈ � for each detection. Note that this
instantiation is not simply given by ak z1, . . . , ak zn . For those features that were found
in step II, their original location in the region ak zi + C is recorded. The larger the
neighborhood C , the more flexibility there is in terms of the final instantiation, at the
price of more false positives.

8.2.4 Clustering

The local features occur in clusters. Because they are only used for the crude initial
detection of candidate locations, they can be clustered without significant loss of
information. Typically, we find all features of the same type in disjoint 5 × 5 blocks
and replace them by one such feature at the mean location.

Further efficiency can be gained if instead of recording the local features on the
original lattice and then clustering they are directly recorded on a coarse sublattice and
the Hough transform is performed using a coarse version of the Bi sets on the coarser
lattice. Candidate centers are then properly injected into the original lattice where the
full instantiation information is then recovered in step II.

Detected instantiations will also occur in clusters. Given that only one instance of
the object is present in a certain region, it is necessary to pick one detection from the
cluster. This can be done in a variety of ways. In the examples below, the detections
are clustered according to the distance between the detection triangles. In each cluster,
the map a with highest count Na of detected features, is chosen.

8.2.5 Invariance

The detection scheme described here covers the range of poses determined by the
set A, as well as a range of nonlinear deformations, which is difficult to quantify. It
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is also quite robust to nonsmooth variations, such as occlusion of part of the object
and changes in internal structures. The examples below will illustrate these points.
The invariance to the range of poses in A is explicitly obtained through the definition
of the sets Bi defined in equation 8.1, as well as in the implementation of step II.
Invariance to other deformations and degradations comes from two sources. The first
is again the large degree of slack introduced in the counting detector. The decoupling
of the constraints resulting from the use of the product set �(0)

p allows for rather large
nonlinear deformations. In addition, the fact that in both step I and II a detection
survives if the number of counts is above some threshold allows for certain parts of
the object to change quite drastically or be entirely occluded.

8.3 Density of Candidate Centers and False Positives

In section 6.5, we studied the false-positive density of the sparse models, disregarding
the means by which these models are detected. Some additional statistics are relevant
at this point that bear upon the computation time and shed some more light on the
false-positive density. Recall that originally the model simply involved a configuration
of local features of predetermined complexity nr . However, now we have split the
detection into two steps. The first detects a coarser model and the second recovers the
pose and instantiation parameters using the basic edges.

The density of the candidate centers detected by step I will now be higher than
the density of false positives presented in table 6.2—see, for example, column 3 of
table 8.1. In the former, an instance of the feature could be anywhere in the 5 × 5
neighborhood of the expected feature location azi , just to accommodate small local
variations. However, now an instance can be anywhere in the region Bzi , which is

Table 8.1 τ and τa , candidate location and false-positive rates for false-negative rates
under 5%

τ Candidate τa FP
nr 5% FN Centers 5% FN I + II

1 29 9 · 10−4 58 8 · 10−5

2 25 2 · 10−4 58 3 · 10−5

3 21 5 · 10−5 53 3 · 10−5

4 15 8 · 10−5 58 2 · 10−5

5 8 2 · 10−4 58 5 · 10−5

6 5 3 · 10−4 57 7 · 10−5
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much larger and may contain close to 100 pixels. Still, for the various values of
nr , the number of candidate centers in a 240 × 320 image varies between several
tens to several hundreds. As long as the number is on the order of tens, subsequent
computations at these candidate centers do not amount to a large fraction of the
computing time. However, as this number grows, step II starts dominating in terms
of computation time. It is then necessary to devise more efficient algorithms for
step II. We emphasize that the statistics shown here are obtained from outdoor images,
which have a very large density of edges. On indoor scenes, the numbers are much
lower.

In this context, we see why a model solely based on edge features would be prob-
lematic. Edge densities range between .03 to .06 edges per pixel, for each edge type.
Even for a restricted set of admissible transformations A, the minimal size of the B
neighborhoods would be on the order of 30–40 pixels. But then the expected number
of edges of any one type in any of the regions becomes very close to 1 if not greater.
This implies that the number of false positives is on the order of the number of pixels
in the image and nothing has been gained in this step.

Taking into account step II of the algorithm, which is based on edge features, the
density of false positives turns out to be even lower than that recorded in table 6.2.
This is shown in table 8.1. The thresholds τ and τa were estimated with the procedure
outlined above for each value of nr . The values of τ are larger here than in table 6.2
because the constraints in step I are now defined in terms of �(0)

p , which is much larger
than �(0). These thresholds are determined with a small set of hundred faces, which
were not used for creating the model. For different values of nr , the final false-positive
rates are quite similar due to the fact that the same edge-based model is used in step II.
However, the density of candidate centers detected in step I varies quite significantly.
This has an important effect on the the final computation time, in terms of the time
required to compute step II.

8.4 Further Analysis of a Detection

After an instantiation θ is detected, a map from the reference grid into the image
can be defined. This map could be the affine map a or complex map obtained
through some form of interpolation of the correspondence between zi and θi for
i = 1, . . . , n. The best known method involves thin plate splines (see Bookstein
1991); a much more computationally intensive alternative is proposed in Joshi (1997),
where the interpolated map is guaranteed to be a homeomorphism; a more efficient
computation of such homeomorphisms can be found in Camion and Younes (2001).
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In the examples below, we restrict ourselves to the affine map. The region of interest
(ROI) aG, is obtained by applying the map a to each point of the reference grid. The
data Î (x), x ∈ aG can be registered back to the reference grid to produce

Î a(z) = Î (az), z ∈ G (8.2)

and can then be further analyzed using any of the deformable models described in
earlier chapters. These can serve not only to provide a more detailed instantiation but
also to filter out false detections by keeping only those detections that yield a fit of
the template below some cost level, determined using training data.

8.4.1 Detection as Classification

The detection scheme provides a classification at each possible instantiation θ be-
tween the two classes, object and nonobject. Note that in the first two steps of the
algorithm there was hardly any use of nonobject or background images, in terms of
training. The reason is that the background image population is so large and diverse
that a very large sample would be needed to yield reliable estimates for a global
classifier between object and nonobject images. Large data sets of many thousands
of images have been used for this purpose in Rowley, Baluja, and Kanade (1998)
and Sung and Poggio (1998). The sparse-object models described here can be trained
successfully with several tens of examples. The only information regarding back-
ground in the counting algorithm involves the densities of the local features, studied
in chapter 6. Only a crude estimate of these is needed simply to ensure the feasibility
of the first step of the algorithm. However, once a detector is produced, the population
of false positives is much more homogeneous and constrained.

Using the original training sample of the object, together with a sample of false
positives, a classifier can be trained. Run the detector on all the images of the object
in the training set and register the pixel intensities, or the edge data, or the edge
arrangement data, from the ROI defined by the detection, to the reference grid, as
specified in equation 8.2. The same is done on images containing no object, each of
which may yield a number of registered detections, to produce a population of false
positives. This data is then used to train classifiers of the type described in chapter 9.
In figure 8.4, we show a sample of ROIs of false positives for the face detector. The
reference grid has been reduced to a 16×16 lattice immediately surrounding the area
around the eyes and mouth. Below, in the middle panel, we show the histogram maps
of four edge types (two vertical and two horizontal) on this population, compared
to the maps for the face population shown in the bottom panel. The similarity is
quite striking, indicating that this false-positive population is quite restricted. The
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Figure 8.4 (Top) Registered ROI’s of false positives from the face detector. (Middle) Edge
maps for this population. (Bottom) Edge maps for face population. Reference grid is reduced
to a 16 × 16 lattice covering the immediate region around the eyes and mouth.
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edge histograms for randomly selected 16 × 16 images in the background population
are uniform. And still for the human eye there is no question that most of the false
positives are not faces.

8.5 Examples

In this section we illustrate some aspects of the counting detector for a variety of
objects: faces, randomly perturbed LATEX symbols in cluttered scenes, the axial MRI
scans, and an example of a 3D object at a limited range of viewpoints. In addition
to detections of the sparse model, we show examples of how these detections can
provide automatic initialization for the deformable models described in chapters 3,
4, and 5. Specifically, we will use the maps a, estimated in step II, to initialize the
templates. Recall that the sparse model represents the smallest range of scales at
which the object is detected, and the algorithm is applied at six different resolutions
to cover a range of scales of 4 : 1.

The edge arrangements in the examples are defined with the 16 smaller wedges
shown in the top row of figure 6.7. The complexity of the arrangements is 3 (i.e.
nr = 3), and apart from the MRI example, we always pick n = 20 arrangements for
the model with lower bound ρ = .5 (see algorithm 6.1).

8.5.1 Faces

The face model shown in figure 6.9 was trained from 300 face images of the Olivetti
data set. Much smaller data sets yield very similar results. The original images were
downscaled to 44 × 36. The centers of the two eyes and the mouth were manually
marked on each image and used as the three anchor points. The mean locations of
each of these three landmarks are used for the three reference points p1, p2, p3 on
the reference grid, as defined in section 6.4. At this scale, the mean distance between
the center of the eyes is 14 pixels and the distance between the center of the mouth
and the middle point between the two eyes is also 14 pixels. Edges are extracted on
each downscaled image, after which their locations are registered to the reference
grid using the affine map taking the anchor points to the reference points. The edge
statistics are graphically represented in figure 6.8, and in terms of these, an edge model
for step II was derived with 110 edge-type/location pairs. The 20 edge arrangements
of complexity nr = 3 obtained from training are shown in figure 6.9. A model using
nr = 1 is shown in chapter 11. The range A of linear maps at which we expect to
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Figure 8.5 (Top) Detections from step I. (Middle) Detections from step II. (Bottom) Detec-
tions remaining after final classifier. Detection triangles—mapping of the reference points into
the image by a.

detect a face at a given resolution covers ±25% scaling and ±15◦ of rotation. The
smallest scale at which a face is detected is approximately 10 pixels between the
two eyes. Faces at much larger scales are detected by subsampling the image and
rerunning the detection algorithm.

The results of step I of the detection algorithm using this model, and processing six
resolutions covering a range of scales of 4 : 1, are shown in the top row of figures 8.5
and 8.6. In the middle row are shown all detected affine maps obtained from step II.
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Figure 8.6 (Top) Detections from step I. (Middle) Detections from step II. (Bottom) Detec-
tions remaining after final classifier. Detection triangles—mapping of the reference points into
the image by a.

The affine maps are represented using the detection triangle showing the locations of
the two eyes and mouth.

A final classifier was produced for face versus nonface using randomized classifi-
cation trees (see chapter 9). These trees were trained using the registered edge data
of the face training set against registered edge data from false detections obtained on
a collection of random images, as shown in figure 8.4. The results are shown on the
bottom row of figures 8.5 and 8.6. Some additional detections are shown in figure 8.7.
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Figure 8.7 Some additional examples of face detections: steps I and II.

The training set for this classifier is quite small—300 face images of 30 different
people (10 per person) and a similar number of false detections. This is therefore the
least stable component of the algorithm and increases the number of false negatives.

Deformable Models Initialized at Detections of Sparse Model

In figure 8.8, we show a close-up on the four faces of figures 8.5 and 8.6 and the
locations of the points in the instantiation obtained from step II. The white dots show
edge features detected at the estimated pose and the black dots show the extrapolated
features that were not detected. If the features in the model are labeled according to
the components of the face to which they belong, we obtain an estimate not only of
where the centers of the two eyes and mouth are but other parts of the face as well.
For example, the location of other parts of the eyes, or part of the nose, the hairline,
and so on.
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Figure 8.8 Estimated instantiation θ on the four faces detected above. White dots show
detected edge features, black dots show extrapolated features.
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Figure 8.9 Pose detected on right hand image in figure 8.5 initializes Bernoulli model for
deformable images.

One can also initialize a deformable image algorithm at the detected pose. Due to
the high variability in lighting and illumination of faces, we implement the Bernoulli
data model from section 5.4. This data model, being based on probabilities of edges
that are very robust to illumination changes, inherits some of these properties. On the
left in figure 8.9, we show the location of a set of points chosen on the reference grid
mapped into the image by the detected pose. In the middle, we show the outcome of
a global search on a range of scale and location parameters for updating the pose. On
the right is the outcome of the deformable-image algorithm using a small number of
basis coefficients. Note how the outlines of the eyes have been adjusted as well as
the hairline, which in the initial instantiation was outside the face. The first example
of this procedure was shown in figure 5.4, together with the edge maps and the edge
data used to drive the algorithm.

8.5.2 Randomized LATEX Symbols

Displays with randomized deformations of LATEX symbols are useful for investigating
properties of the sparse models. The background has objects with many similarities
to the one being detected, making the problem of particular interest. We use 32
randomly perturbed versions of the prototype, as shown in figure 8.10, for training.
The random perturbations involve random rotation of up to 15◦, and ±25% scaling
independently in each coordinate. The 20 local features identified in the training step
are given in the bottom panel of figure 8.10. The reference grid is approximately
30 × 30.
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Figure 8.10 (Top) Thirty-two randomly perturbed E’s used for training. (Bottom) The 20
features of the model represented on the reference grid. The three reference points are shown
in black.

Here it is possible to produce a detector from the prototype alone by simply picking
some existing arrangement of edges extracted from the prototype in each region of
the reference grid. Such a procedure may pick an edge or a particular arrangement
that is very unstable and only present in the particular image of the prototype. This
is avoided by producing a small randomly perturbed training set as above, in which
case unstable arrangements are eliminated.

Some detections in randomly generated scenes containing a large number of ran-
domly deformed LATEX symbols are shown in figure 8.11. Again, these are obtained
from six different resolutions. There are at most three instances of an E in each im-
age. The top panels show the outcome of steps I and II, and in the bottom panels, the
outcome of running the classifier of object versus false positives, based on registered
edges. In the bottom panels, only the triangle vertices are shown to enhance the view
of the underlying symbols. The use of a classifier among different object classes,
detected by the same model, is discussed in chapter 10. In the top row of figure 8.12
is an example of a deformable contour initialized with the scale and location of the
detection, then the final detection of the deformable contour algorithm. In the bottom
row, we show a similar experiment with the deformable curve algorithm.

Very similar results are obtained for any of the symbols in the database. However,
certain symbols are more “generic” in their shape and share many features with a
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Figure 8.11 (Top) Three examples of detections of the E model, steps I and II. Detection
triangles are shown. (Bottom) Results after applying the classifier of object vs. false positives.
Triangles shown as three points for better viewing.

substantial number of other symbols. The best example being the digit 0, which has
much in common with many round symbols. The representations trained for these
symbols usually produce more false positives. Although a drawback from the point
of view of accurate detection, we turn this vice into a virtue in chapter 10, where we
discuss ways to integrate detection and recognition.

The random LATEX displays are artificial and do not represent all the complexities
of real scenes. However, in many respects these scenes force us to deal with some
important issues such as clutter, confusing classes, and detection at a variety of poses.
The background clutter in these images contains many components and parts of the
detected object itself. This reinforces the point that detection cannot rely on individual
local features and forces us to think about detecting configurations. The existence of
objects very similar to the one we want to detect forces us to deal with recognition
as well as detection. It seems there is still much to be explored in this controlled
synthetic context.
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Figure 8.12 (Top row) A deformable contour algorithm initialized by a detection in the
middle panel of figure 8.11. On the left is the initial contour. On the right the final contour.
(Bottom row) The result of the deformable curve algorithm initialized the same way.

8.5.3 3D Object—Range of Viewing Angles

Detecting a rigid 3D object from multiple views is a complex problem. Some of
the original work in the field attempted to construct 3D models and match them
to data. Many of these models are described in Grimson (1990) and Haralick and
Shapiro (1992). We take the view-based approach in which significantly different
views of the object are to be considered as different 2D objects that are linked together
symbolically. Much as if in the LATEX scene we set out to detect a subset of symbols
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Figure 8.13 A sample of the synthetically generated training images for the clip, and the
20 features identified in training.

as opposed to a particular one. Thus detection involves a sequence of searches for
each of these possible objects or views.

Here we focus on developing a sparse model to detect an object from a limited range
of views. The problem then reduces to the detection of a nonrigid two-dimensional
object and can be addressed with the tools we have developed. The object model
is trained as the LATEX symbols using only one prototype image, which is deformed
32 times with random affine transformations. A sample of these deformed images
is shown in figure 8.13, together with the model, which is constructed of 20 local
features of complexity nr = 3 on a reference grid of approximately 40 × 40. Note
that the local features describe a rectangle of certain aspect ratio to which are attached,
on the top and the bottom, two additional wirelike rectangular structures.

The outcomes of the counting detector are shown on images in figure 8.14. No
final classifier has been implemented. The algorithm is run at the six resolutions. The
detections appear to be invariant to changes in viewing angle around the vertical axis,
clutter, occlusion, variable lighting, and articulation of the handles, despite the fact
that no such examples were shown in training. Here we see the advantage of treating
a rigid object in the same way as deformable objects. In the discussion section and in
chapter 10, we offer some preliminary ideas on the concept of detecting 3D objects
as unions of their 2D views. How can this be integrated into a more general scheme
of object detection and recognition and how to avoid the combinatoric explosion of
representing multiple objects at multiple views?
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Figure 8.14 Eight examples of detections of steps I and II combined.

8.5.4 MRI Images

The MRI images are trained on 18 examples of more or less the same axial slice.
The reference grid in this case is larger because we have attempted to create a model
for the entire structure and reducing to a small 40 × 40 grid destroys many of the
important components. Thus the reference grid is 128 × 128, and 100 features are
identified. These are shown in figure 8.15. In this case, the same features are used
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Figure 8.15 The model obtained for axial MRI images.

for step II as well. This experiment demonstrates the applicability of the counting
detector for highly deformable objects.

In figure 8.16 we show the outcome of steps I and II in terms of the estimated instan-
tiation. Note how the multiplicity of features introduces a large degree of flexibility.
Even if parts of the internal structure are missing or significantly deformed, the de-
tection succeeds. We show only the close-ups on the ventricle region for those images
that actually contained such structures. On those parts that are present or are not
severely deformed, the detected instantiation has local features found in the data. For
the rest, we show the extrapolated location of the undetected edge features. In order
to illustrate the correspondence between the detected features, a number is attached
to each point.

Subsequent to detection, a deformable-contour algorithm is implemented, initial-
ized at the expected location of the anterior ventricles, determined automatically
relative to the detected instantiation. The initial contour has a shape similar to the
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Figure 8.16 Instantiations in four axial MRI brain images. Ordinal numbers are shown for
detected features. A black dot denotes an undetected feature at location azi .

outline of these ventricles (figure 8.17). Four points have been marked on the con-
tour to show the correspondences derived from the contour match. A more efficient
approach, which has not been implemented here, would initialize the elastic contour
using the local features detected in step II, which are known to lie on the outline of
the anterior ventricles. The important fact to remember here is that the entire process
is completely automatic, no user initialization is required.
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Figure 8.17 Two examples of a deformable contour initialized at the location of the anterior
ventricles and the final state after running the elastic deformation algorithm.

8.6 Bibliographical Notes and Discussion

The material in this chapter is based on Amit, Geman, and Jedynak (1998), Amit
and Geman (1999), and Amit (2000), where it is shown how the counting algorithm
can be implemented in a neural network architecture. The network can detect any
model evoked in memory using a priming mechanism. This architecture is described
in chapter 11.
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8.6.1 Object Detection with Arrangements of Local Features

The idea of using local feature arrangements for object detection both for faces and
other objects can also be found in Burl, Leung, and Perona (1995), Cootes and Taylor
(1996), Wiskott and colleagues (1997), Burl, Weber, and Perona (1998), Van Rullen
and colleagues (1998), and most recently in Viola and Jones (2001). In these ap-
proaches, the features, or certain relevant parameters, are also identified through
training. However, the models presented here make use of a hierarchy of binary fea-
tures with hardwired invariances and employ a very simple form of spatial arrange-
ment for the object representation. This leads to an efficient implementation of the
detection algorithm. The representations described in the other papers make use of
various types of linear filters with a rather large support. The invariance properties of
the filters are not clear, neither with respect to photometric transformations nor with
respect to deformations. In the models described in Burl, Leung, and Perona (1995)
and Van Rullen and colleagues (1998), only a small number of features are used,
which appear to be more complex than the ones suggested here and, for faces, are
typically concentrated around the eyes and mouth. One problem with overdedicating
resources to only a small number of locations is the issue of noise and occlusion,
which may eliminate some locations. Again, in the context of faces, if the goal is to
detect faces on a large range of scales from 50–60 pixels between the eyes down to
10–14 pixels between the eyes, local information can be quite ambiguous.

In the work by Viola and Jones (2001) an interesting collection of binary features
is defined by comparing mean intensities in rather large rectangular regions. These
appear very robust to illumination changes and are computed extremely fast. Using
cumulative sums of the image intensities computed once at the start, the sum of the
values in a given rectangle can be obtained with a simple operation of the cumulative
sums at each of the corners.

8.6.2 Cutting the Invariance Pie

The Hough transform has been extensively used in object detection (see Ballard 1981;
Grimson 1990; Rojer and Schwartz 1992). However, in contrast to most previous
implementations, the local features used here are more complex, and are identified
through training. On the other hand, in many of the implementations of the Hough
transform referred to in Grimson (1990), there is an attempt to obtain full rotation
invariance in one shot. Our implementation is intentionally not fully rotation invariant.
It allows the use of much richer features and hence rarer in the background, reducing
false positives and computation time.
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This brings up the recurrent question of how to cut up the “invariance pie,” which
came up in the discussion section of chapter 5. Should the detection of a face be
done at once for all rotations, including upside-down faces? Or should we define
ranges of pose parameters for which detection is done with one procedure, but using
different procedures for different ranges, or the same procedure at rotated versions
of the image? Should features be photometric invariant or should different detection
models deal with different lighting conditions? For example, none of the models
used in this chapter can detect the object if the polarity is flipped and the object
becomes lighter than the background. The edge features on which the entire model is
based are sensitive to the direction of the gradient modulo 2π . To detect the objects
at both polarities one can either incorporate polarity invariance by taking oriented
edges modulo π ; detect even faces, which are half darker and half lighter than the
background at the price of more false positives; or run the face detector twice with
the edge polarities flipped.

8.6.3 View-Based Detection of 3D Objects

This issue also comes up regarding the detection of 3D objects. The use of full
3D models, as suggested in Marr and Nishihara (1978) and found in much of the
work described in Grimson (1990), is an extreme approach that claims the model
should be invariant to all viewing angles. On the other hand, the view-based approach
recently being proposed in Ullman (1996), Tarr and Bülthoff (1998), and Riesenhuber
and Poggio (2000), requires only invariance within a range of viewing angles that
represent smooth changes in the image of the object, as we have done for the clip
or for chess pieces in chapter 10. This implies that even rigid 3D objects should be
modeled as deformable objects, because their 2D views are not rigid at all. Moreover,
working with sparse models for nonrigid objects allows us to cover quite a wide range
of viewing angles with one detector. Working in this context makes the understanding
of 2D nonrigid object detection and recognition even more important, because all the
analysis has been reduced to the two-dimensional domain.

On the other hand, significant changes in viewing angle that completely change the
resulting image—for example, viewing the clip from the side or from the front—lead
to separate models. Indeed, significantly different views can be considered as different
2D objects.

8.6.4 Parts

In Biederman (1995) there is a strong emphasis on the role of generic 3D parts, called
geons, as the building blocks for 3D object representations. These objects, which
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consist of blocks, cylinders, and other simple geometric structures, are detected in
a view-based manner, but the idea is that not too many views are required to model
them, and that the entire library of 3D objects can then be modeled quite simply in
terms of rather coarse relationships between the geons. We have not experimented
with this idea, but in terms of the models used in this chapter, it implies introducing an
intermediate level between the local features and the object models. Sparse models
using local features would be constructed for the geons, and the complex object
models would be constructed in terms of very coarse geometric relationships between
the geons. If the geon detectors have very low false-positive rates, such as the “clip”
detector, then there is no need for refined definition of the relationships between the
geons, because very few spurious elements will be detected. We return to related ideas
in chapter 10.

8.6.5 Hierarchy of Detection Models

Comparing the various models described in this manuscript in terms of the set Z of
points defining the template, we see that the smallest set was used in the sparse models,
whereas the largest sets were used for the deformable-image models. In between lie
the deformable-contour and deformable-curve models. But the size of the template
in the sparse models is really a matter of choice. The number of stable local features
can be rather large—in particular, if the probability threshold ρ used in training is
lowered. Indeed, taking more and more local features and representing them as in
figure 6.9, we would get a very dense configuration of edges (see, for example, face
models shown in chapter 11).

In most detection experiments in this chapter, we limited ourselves to 20 local
features. However, in training for edge arrangements on faces, for example, close
to 100 were found, with above-threshold probability. There may be two reasons not
to use all 100 local features. The first is that the main computational burden of the
algorithm for nr = 3 is in step I—in particular, the calculation of the locations of all
the local features. The second is that some of these features may be highly correlated
on background. Ignoring the computational cost and assuming that the correlations
are not strong, it would be preferable to use more local features from the point of
view of false-positive and false-negative probabilities.

Following a detection, one could smoothly deform the model to best fit the trans-
formed data—namely, the local features extracted from the image. This is precisely
what is done by the Bernoulli model for deformable images. In other words, feature-
based image deformation is a natural algorithmic sequel to the feature-based detection
using sparse models. It is a refinement of the detection process. On the other hand,
the “dense” Bernoulli model can be viewed as the “true” model, which is difficult
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to compute if pose is not predetermined. This is obtained using a sparse subset that
enables efficient detection of coarse instantiation information providing an initializa-
tion to the smooth deformable model, which fine tunes the instantiation in terms of
the full model. The one-dimensional models can be viewed as intermediate approxi-
mations that identify continuous curves given the initial matching of the sparse set of
local features. So rather than a collection of different models, we can embed all these
models as successive approximations to a “dense” two-dimensional model.

A related but different approach to coarse-to-fine modeling and computation is
presented in Fleuret and Geman (2001). Pose space is recursively partitioned and a
detector is trained for each cell of pose space, using examples with poses randomly
sampled from the cell (in contrast to the approach here, where training is performed
at a reference pose). There is then a systematic method of exploring the image—first
in terms of detecting the object at one of the coarse poses and subsequently narrowing
down to more refined poses.

The use of only eight edge types to define the local arrangements is quite limited.
This family of elementary features should be extended to include texture informa-
tion and color and motion information when available. Texture discontinuities may
define important transitions that are not well captured using the simple edge detec-
tors. However, once an appropriate set of elementary features is defined, the same
mechanism can be used to construct the more complex local features, and finally the
global models. The models described in the experiments above were all trained with
the same parameters. Some small choices had to be made regarding the size of the
reference grid and locations of the reference points, but no particular information we
might have had regarding the object is used. Other parameters produce similar results,
perhaps at some computational cost. In this sense, we have here a generic method of
producing object models from very primitive elementary features, using very small
training sets.
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Recognition refers to the classification of an object or shape present in an image.
Classification is meaningful only when the image under investigation contains a
single object. Thus it must be preceded by some procedure whereby a subimage of
the entire scene is selected, in which it is hoped only one object is present. This is still
quite vague, because the subimage could, for example, contain only one whole object,
but parts of many others. These may not necessarily pass as objects, however, they
are part of the subimage and need to be ignored in the classification. In other words,
one would want to identify on-object pixels, and use only those to classify. This is
precisely the segmentation problem discussed in the Introduction. Some preliminary
ideas for segmentation based on a top-down flow of information, as opposed to a
purely bottom-up approach, are explored in chapter 10. There, detection is used to
identify instantiations of coarse models, which detect object clusters with elements
from several object classes, and following detection, a classification among these
classes is performed.

In this chapter, we proceed as though some mechanism is able to identify a region
of interest (ROI) in the large image, which contains an object and not much else.
The goal is to classify which object is present. We can even assume that the region
is registered to a fixed-size reference grid. Either a bounding rectangle is provided
and the ratio between the largest dimension (width or height) and the dimension of
the reference grid determines a scaling, or a pose has been estimated, determining a
region of interest in the image, which is mapped onto the reference grid.

We work in the context of characters and symbols because it is easy to produce data
and study various aspects of the classifiers. The two examples used in this chapter
are the LATEX database, which we have already encountered, and some handwritten
digit databases. In the first case, it is possible to control the degree of variability in
each class and study the behavior of the classifiers in different situations. Moreover,
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Figure 9.1 The 293 LATEX symbols.

it is interesting to study how classifiers behave in the presence of hundreds of classes.
Ultimately, one would hope to be able to recognize among the thousands of objects
the human is familiar with (see Biederman 1995).

Figure 9.1 shows the 293 prototypes, and figure 9.2 shows 20 samples of one
deformed symbol, as well as some examples of deformations of a random collection
of other symbols. The handwritten digit databases are used as a reality check to
see how well one can perform on real data. We use the NIST (National Institute of
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Figure 9.2 (Top) Deformed images of one symbol. (Bottom) One deformed sample from a
collection of symbols.

Standards and Technology) special database (Garris and Wilkinson 1976) and parts of
the USPS database produced and distributed by CEDAR, SUNY Buffalo. One could
also experiment with recognizing views of 3D objects placed against homogeneous
backgrounds, but then there is hardly any difference from recognizing shapes and
characters, where more abundant databases are available. Object recognition in more
complex gray-level images is explored in chapter 10.

It is important to note that the particular domain of optical character recognition
(OCR) has many interesting dedicated solutions, some of the most successful being
LeCun and colleagues (1998) and Simard and colleagues (2000), which are discussed
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in the last section. Extensive reviews can also be found in Nagy (2000) and Plamondon
and Srihari (2000). Although we will be working with binary character data, we want
to be able to extend the methods to objects in gray-level images. For that reason,
we will also experiment with the photometric invariant binary features introduced in
earlier sections, which have proved to be powerful for detection in gray-level images.

In the preceding chapters, we have seen that objects and shapes can be detected
in terms of sparse models defined as flexible arrangements of local image features.
The simplest model encountered corresponds to the first step of the counting detector
and has the form of a star type arrangement, where the features are constrained
to lie in regions defined relative to a center (see figure 8.1). In this chapter, we
consider the problem of classification among several shapes using similar ingredients.
Arrangements of local features are used to discriminate among objects. Geometric
and photometric invariance are explicitly incorporated in the flexibility introduced in
the arrangements, as well as in the definition of the local features.

Two alternatives to defining the local features are explored. The first employs a
form of local image coding that is adapted to the particular family of images being
analyzed—in this case binary images. The alternative to such dedicated local features
is to employ the same edges and edge arrangements used for detection in the previous
chapters. These are generic and not adapted to a particular data set, but have proven
to have the desired invariance properties. As we will see, the results with the two
families of features are comparable. Two approaches to describing the local feature
arrangements are explored.

Absolute. An arrangement is a list of feature/region pairs denoting which features
are expected to be found in which region of the reference grid. The larger the regions
the more invariant is the arrangement to various linear and nonlinear deformations,
but then the arrangement is less discriminating. Because information is expressed
in terms of absolute regions in the reference grid, preregistration to the reference
grid is assumed here.

Relational. Arrangements are described in terms of coarse constraints on the rel-
ative angles between pairs of features. There are no fixed regions or locations in
the definition of these arrangements. The information is not coded in terms of
absolute locations. This means that there is no need for preregistration of the im-
age to the reference grid. This approach will allow us to classify images that are
of different dimensions. The arrangements are similar to those employed in the
graphical-template algorithm in chapter 7 and in the object-detection algorithm in
chapter 8.
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9.1 Classification Trees

Most literature on classification methods assumes that a fixed-size predictor vector,
X f , f ∈ F , is precomputed for each data point. The main focus is then which type
of classifier to employ, how to train, and how to predict test error. A large vari-
ety of classifiers have been proposed over the years, the most popular ones being
Fisher’s linear discriminant analysis and variations thereof, discussed in Duda and
Hart (1973) and Ripley (1994); feed-forward neural networks, extensively covered in
Ripley (1994) and Bishop (1995); support vector machines (see Vapnik 1995); and
binary classification trees (see Breiman and colleagues 1984).

In this chapter, recognition will be achieved using binary classification trees, which
are especially well suited for tapping into the information provided by the feature
arrangements—particularly the relational arrangements. A binary query is associated
to each node in the tree. The query at the top node is applied to a data point. If the
answer is “yes,” the data point moves to the right-hand child node, if it is “no,” the
data point moves on to the left-hand child node. At the new node, the associated
query is applied. Again, according to whether the answer was positive or negative,
the data point proceeds right or left. When the point reaches a terminal node, it reads
out a label associated to that node. The queries attached to the nodes are found during
training. The goal is to split the training data at a node so that the distribution on class
in the children nodes will be as peaked as possible.

As we will see, it is crucial to produce multiple classification trees from the same
training set. Relying on one classifier is unstable, even with rather large training sets.
Using a randomization procedure, classification trees are produced that are signifi-
cantly different from each other. They classify the data from “different points of view.”
Combining the output of such collections of classifiers yields drastic reductions in
error rates. Randomization also allows us to grow a tree trained on tens of thousands
of images in a few seconds. Typically, other classifiers take much more time to train.
Moreover, there are very few parameters to set in growing the tree and it appears that
the results are not too sensitive to the setting of these parameters.

Recognition with trees is also fast. A data point simply proceeds down the tree
and at each node, the appropriate query is applied. The number of operations is thus
determined by the depth of the tree. This is typically no more than 10 on average with
the large data sets employed here. We start by describing how a classification tree is
grown.
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9.1.1 Training

Let L be the training data set with data from K classes. For an element ω ∈ L,
let 1 ≤ Y (ω) ≤ K denote the class label and let X (ω) = {X f } f ∈F be the vector of
predictors, assumed to be binary. Let Lt be the data at node t , let P̂t be the empirical
distribution determined by the data points at node t (i.e., the uniform distribution
on Lt ) and let Ft be some subset of the full set of predictors F . For each f ∈ Ft ,
calculate the conditional entropy on class given X f —that is,

C( f ) = Ht (Y | X f )

= −P̂t (X f = 1)
∑

P̂t (Y = c | X f = 1) log P̂t (Y = c | X f = 1)

−P̂t (X f = 0)
∑

P̂t (Y = c | X f = 0) log P̂t (Y = c | X f = 0) (9.1)

This is a special case of the conditional entropy defined in equation 4.19, because X f

is binary.
The function C( f ) is a measure of the “purity” of the split induced by X f . The

aim is to produce children nodes where the data is more concentrated around one
class or a small number of classes. Other purity measures have been used to deter-
mine node purity and are described in Breiman and colleagues (1984). The overall
performance is typically not affected by choice of purity measure. Pick ft , which
minimizes C( f ), over f ∈ Ft . The associated predictor X ft most reduces the entropy
or uncertainty regarding class, and ft becomes the query associated to node t in the
tree.

All training data points inLt for which X ft = 1 proceed to the yes node ty and form
the set Lty and all those for which X ft = 0 proceed to the no node tn and form the set
Ltn . Note that ft is chosen based on the training data at node t , which determines P̂t .
All these data points have answered the same way to all queries along the path from the
root node to t . Thus using P̂t is equivalent to using the original empirical distribution
at the root node, but conditioning on the sequence of answers to the queries along the
path.

The set of predictors Ft inspected at node t depends on the context. In all applica-
tions reported here, it is a random subset of F . The nodes of the tree are split depth
first starting from the root node. Various criteria can be used to stop the splitting—for
example, a lower bound on the number of data points at a node, or on the number
of data points in the top two classes, or on the entropy on class. Also, if none of
the candidate predictors further reduces entropy, the node is not split and becomes a
terminal node.
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Once the tree T is grown, at each terminal node t we denote the conditional
distribution on class given that node by P(Y = c | t). This distribution is estimated
using the training data through

µT (c)
.= P̂(Y = c | t) =

∣∣L(c)
t

∣∣
|Lt |

where L(c)
t is the set of training points of class c at node t . These estimates are not

necessarily reliable, and depend on the number of training data points that reached
the node. Finally, the terminal node t is labeled by the mode of µ—that is,

Ŷt = argmax1≤c≤K µt (c)

9.1.2 Testing and Error

A test data point ω can now be “dropped” down the tree. At each node t , the point
goes left or right according to whether the value of X ft (ω) = 0 or 1. The data point
reaches some terminal node denoted T (ω), and is classified according to the label
ŶT (ω) attached to that node.

It is possible to grow the tree until pure nodes are reached, meaning that the error
rate on the training set is 0. This of course does not imply a 0 error rate on the test
set, because the estimated “pure” conditional distributions in the terminal nodes are
unreliable. More-reliable estimates are obtained with shallower trees where more
training data is present in each terminal node. Then the error rate on the training
set is nonzero—however, the difference between training error rate and testing error
rate may be smaller. There have been many attempts to deal with this payoff by
growing pure trees and then pruning them backward (see Breiman and colleagues
1984). This more-refined processing becomes unnecessary when multiple trees are
grown.

Note that if the depth of the tree is say, 10, a data point dropped down the tree
has been classified with only 10 predictors having been evaluated. In our case, there
may be thousands of predictors, and obviously a very small number has been used
to classify the data point. One way to access this large pool of predictors is to grow
very deep trees, but even with data sets of several tens of thousands, one runs out of
data quite quickly. Only very few terminal nodes will be of depth greater than, say,
20. The alternative is to grow multiple trees instead of only one and then somehow
combine the information.
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9.1.3 Unsupervised Trees

There are situations where data is provided without labels, and we seek to find clusters
of similar shapes, which can subsequently be labeled. This is called unsupervised
learning, also known as clustering or vector quantization. (For a broad range of
methods see Duda and Hart 1973; Gersho and Gray 1992; Ripley 1994; and Bishop
1995.) Here we describe one way to achieve this using binary trees.

Because no labels are provided, all data points with exactly the same values of all
the predictors are a “class.” Thus there are 2|F | classes, where |F | denotes the number
of predictors, and the class variable Y and the predictor vector X uniquely determine
each other. Recall that at node t we denote by P̂t the empirical distribution on the data
at that node, and Ht is the entropy with respect to that distribution. Using the same
cost function introduced in equation 9.1 for the case of labeled data, and the relation
between conditional entropy and joint entropy of equation 4.20, we write

Ht (Y | X f ) = Ht (Y, X f ) − Ht (X f )

= Ht (Y ) − Ht (X f ) (9.2)

The second equality follows from the fact that Y completely determines X and in
particular X f , so that the joint entropy of Y and X f is the same as the entropy of Y .
Because Ht (Y ) does not depend on f ,

argmin f Ht (Y | X f ) = argmax f Ht (X f ) (9.3)

Because X f is binary, setting p f = P̂t (X f = 1) we have

Ht (X f ) = −p f log p f − (1 − p f ) log(1 − p f )

The function −p log p − (1 − p) log(1 − p) is concave and maximized at the value
1/2, so that the maximization in 9.3 reduces to searching for that predictor f that is
closest to splitting the data at the node in half, or

C( f ) = |P̂t (X f = 1) − 1/2|
A stopping criterion based on depth or number of data in a node can be used.

Such trees provide some form of partitioning of the population of images. Typically,
images falling into the same terminal node will be similar in shape because they have
in common the answers to the sequence of queries on the path from the root of the tree
to the terminal node. Furthermore, if class labels are assigned to some collection of
images, possibly different images from those used to produce the unsupervised tree,
it is possible to drop these down the tree and obtain class distributions at the terminal
nodes. The tree can then be used as a classification tree.
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9.1.4 Multiple Trees

Randomization

In the description of the basic tree-growing protocol, we already mentioned the possi-
bility of choosing the set Ft randomly from all possible predictors F . This could be a
rather small subset—indeed, in the experiments reported below we sometimes sample
several tens from a collection of hundreds of thousands of possible predictors. This
randomization allows us to generate different trees from the same training data set. A
data point dropped down two such trees will have had different predictors evaluated
along the paths from root to terminal nodes.

There are two ingredients in randomization. The most important is choosing the
sets Ft of candidate predictors at each node as a random sample from the collection of
all possible predictors. The second is estimating the optimal predictor using a random
sample of the data points at each node. The sizes of these two random samples are
parameters that need to be set. In most experiments below, both are on the order of a
few hundred or less.

Aggregation

After N trees T1, . . . , TN have been produced, the optimal way to aggregate the in-
formation is to maximize the posterior given the N random variables defined by the
trees. Namely, classify a test point ω as

Ŷ (ω) = argmax1≤c≤K P(Y = c | T1(ω), . . . , TN (ω))

where Tn(ω) is the terminal node reached by ω in tree Tn . This posterior is impossible
to estimate for much the same reason it was impossible to grow a very deep tree.
There is not enough data.

However, if the random variables Tn , defined by the trees, were conditionally
independent given Y —that is,

P(T1 = τ1, . . . , TN = τN | Y = c) =
N∏

n=1

P(Ti = τi | Y = c)

the posterior on class given the N trees could be given analytically in terms of the indi-
vidual posteriors. Specifically, given a sample point ω, let τi = Ti (ω), i = 1, . . . , N .
If the prior on class is uniform, P(Y = c) = 1/K , then using Bayes’s rule twice, and



amit-79020 book May 20, 2002 13:19

190 Chapter 9 Object Recognition

the fact that the trees are conditionally independent, we have

P(Y = c | T1 = τ1, . . . , TN = τN ) = P(T1 = τ1, . . . , TN = τN | Y = c) · C1

K

= C2

N∏

n=1

P(Tn = τn | Y = c)

= C3

N∏

n=1

P(Y = c | Tn = τn)P(Tn = τn)

= C4

N∏

n=1

P(Y = c | Tn = τn)

where C1, C2, C3, C4 do not depend on the class c. Thus maximizing the posterior,
given the output of all the trees, is equivalent to maximizing

N∑

n=1

log P(Y = c | Tn = τn)

over c = 1, . . . , K . Using estimates of these conditional probabilities, the classifier
would be

Ŷ (ω) = argmaxc

N∑

n=1

log µTn(ω)

This assumption of conditional independence is of course very strong and unreal-
istic. Also, using logarithms may be somewhat unstable. The simplest alternative is
to directly average the terminal distributions—namely, to classify by maximizing

ŶA(ω) = argmax1≤c≤K AN (c, ω)

where

AN (c, ω) = 1

N

N∑

n=1

µTn(ω)(c), c = 1, . . . , K (9.4)

We call A(N ) the aggregate distribution and ŶA the aggregate classifier. As will be
shown below, aggregating multiple trees leads to drastic decreases in error rates
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relative to the best achievable individual tree in the context of shape recognition.
It provides very robust classification even with quite small data sets and is quite
insensitive to parameter settings. In section 9.5, we provide some additional pointers
as to why this aggregation produces significant improvements.

Boosting

Thus far, we have described a mechanism for generating different trees using ran-
domization. Each tree is produced disregarding all the others according to the same
protocol, determined by the number of random queries sampled at each node, and
the stopping criterion on splitting nodes. Another related approach to producing mul-
tiple trees is known as boosting, as described in Freund and Shapire (1997) and in
Schapire, Freund, Bartlett, and Lee (1998), where the trees or more generally the
classifiers are produced with some dependence on the previously generated classi-
fiers. The idea is that more effort should be dedicated to the “hard” examples, namely,
those examples in the training set that have been misclassified by the trees already
grown. This is done by using a weight vector on the training data, with the weight on
a data point increasing every time it is misclassified and decreasing if it is correctly
classified.

In the simplest two-class case, this is done by setting an initial uniform weight
vector W1 on the training set L. A tree T1 is grown with the training data using some
chosen protocol. The training error e1 = P̂(Y 
= ŶT1) of the tree is obtained, where we
recall that P̂ is the empirical distribution and Ŷt is the class label attached to the node t .
The misclassified points in the training set have their weight increased by a factor of
(1− e1)/e1. The weights on the training set are then renormalized to produce the new
weight vector W2. After n − 1 trees T1, . . . , Tn−1 have been produced and given an
updated weight vector Wn , a new tree Tn is grown with the weighted training sample.
All probabilities and entropies are calculated using the empirical distribution P̂Wn

determined by the current weights on the individual training points. In particular, the
training error en of Tn is evaluated in terms of the weighted training data. The weights
on the misclassified points are again multiplied by (1 − en)/en , and the entire weight
vector normalized to produce Wn+1.

After N trees are produced, they are aggregated either as described in equation 9.4
or as proposed in Schapire, Freund, Bartlett, and Lee (1998) by a weighted vote
between the N classifications YTn , namely,

ŶB(ω) = argmax1≤c≤K AB
N (ω, c)
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where

AB
N (ω, c) =

N∑

n=1

βn1Y[Tn (ω)=c]

and

βn = log

(
1 − en

en

)
(9.5)

In Friedman, Hastie, and Tibshirani (2000), it is shown that the somewhat mys-
terious protocol of boosting, together with the particular weighting in equation 9.5,
corresponds to a step-wise gradient descent on a cost function formulated in terms of
an exponential moment of the aggregate classifier, which is evaluated on the training
set. Under quite general conditions, this gradient-descent procedure is guaranteed to
decrease the value of the cost function very rapidly toward zero, on the training set.
However, typically on test sets this same cost function diverges very quickly. So the
success of boosting cannot be attributed to the particular cost function being used.
Indeed, many variations, including the one used in the experiments below, produce
very good results. The main reason for this success lies in the fact that boosting is
producing weakly dependent trees, perhaps even more so than the randomization
protocol, as discussed in section 9.5 at the end of this chapter.

The original boosting protocol encounters problems when en ≤ .5, namely, when
the error of classifier Tn is higher than .5. This is by no means uncommon in multiclass
problems. We therefore substitute a reweighting of the form 1/en . The protocol no
longer has the appealing interpretation of a gradient descent on a simple cost func-
tion. However, it performs just as well and produces stable results. All experiments
reported here with boosting employ this reweighting scheme. Furthermore, we use
the aggregation scheme of equation 9.4 as opposed to that of equation 9.5, so that the
trees are all equally weighted.

9.2 Object Recognition with Trees

We now return to the original problem of object recognition. The crucial question is
which predictors to use in producing the tree, or any other classifier. The most naive
approach would simply use the gray-level intensities at each pixel on the reference
grid, which is the original form of the data. However, we have seen throughout
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previous chapters that this would not accommodate the geometric and photometric
variabilities inherent in the problem. The gray-level intensities are therefore again
transformed into collections of binary features—robust to local geometric variations
and to photometric transformations. Such binary features can then be spread, (the
or-ing operation) in various ways to obtain flexible representations invariant to global
geometric variations.

9.2.1 Local Features

Two types of binary local features have been used in the experiments. The first is
adapted to the particular image population being analyzed, and the second is generic.

Microimage Codes

In the particular setting of binary images, we define local features that are adapted
to the training data. These ideas can in principle be extended to gray-level images,
however, in this more complex context it is not clear how to accommodate photomet-
ric invariance as well as invariance to local deformations. This is definitely a direction
requiring more research.

Start with a sample S of small, 4 × 4 subimages, henceforth called microimages,
of the training data, keeping only those that are not constant, namely, those that are
neither all black nor all white. Produce an unsupervised tree of depth d with this data,
using the methodology described in section 9.1.3. There are only 16 predictors corre-
sponding to the pixel value (1/0) at any of the 16 locations in the 4 × 4 microimage,
thus there are at most 216 “classes” in this data. Such a tree provides a partition or
quantization of the population of binary microimages. Each terminal node of the tree
contains approximately the same number of microimages. The path from the root to a
terminal node determines a subset of the form {s ∈ S : si0 = a1, . . . , si4 = a4} where
i0, . . . , i4 are the locations (on the 4 × 4 grid) used at the nodes along the path and
a1, . . . , a4 are 0 or 1 according to whether the path goes left (no) or right (yes) at a
node. Not surprisingly, the most common microimage in the deeper nodes of the tree
actually represents some form of oriented edge.

Any local 4 × 4 microimage is now classified by dropping it down the tree and
determining which terminal node it belongs to. The microimage is labeled not only
by the terminal node, but also by the intermediate nodes along the path to the terminal
node. Thus if the tree is of depth 5, the microimage is given 5 labels. The labels
corresponding to depth 1 nodes are assigned to about half the data. They are very
crude characterizations of the microimage and are very common. The labels further
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Figure 9.3 Locations of features corresponding to depth 1, 2, and 3 along one path of the
code tree.

down along the path to the terminal node represent finer and finer characterizations.
In figure 9.3, we show the locations of features corresponding to depths 1, 2, and
3 along one path of the code tree. We perform a clustering on the locations of the
features so that only one instance of each local feature type is present in each 5 × 5
region. Due to this clustering, the locations of depth k are not precisely a subset of
the locations for depth k − 1.

In the experiments, we find that all levels of detail are necessary, not only the
finest one. The coarser nodes are more invariant to local deformations, the finer nodes
convey more information on the local binary configuration.

In figure 9.4, we show 3 levels of this tree and the most common configuration
found at each of the eight depth-3 nodes. Observe that the tree partitions among
microimages corresponding to edges of different orientations. This is achieved in a
purely data-driven manner. The most common images in deeper nodes typically cor-
respond to boundaries with a slight curve or bend, and may be viewed as a conjunction
of two edges.

Generic Local Features Produced from Edges

From the quantization described above, we see that oriented edges are reasonable
representations of clusters of microimages, as are finer features, represented by lo-
cal edge arrangements, of which we have made extensive use in previous chapters.
As an “engineered” alternative to the features defined above, we use the following
264 local features: 8 edges corresponding to the 8 basic orientations defined in section
5.4 and 256 = 8 × 8 × 4 two-edge arrangements defined in chapter 6. We use the
larger wedges shown in figure 6.7 corresponding to the angles 0, π/4, π/2, 3π/4.
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Figure 9.4 First three levels of the code tree. The location of the query at a node is shown
in the children nodes as white if the value is “1”, and as black if the value is “0”. The most
common configurations at the eight depth three nodes are shown.
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Due to symmetry, other angles are not needed. The advantage of these features is that
they are not specifically tailored to any particular data set and can be used in both
binary and gray-level images.

9.2.2 Absolute Arrangements

Assume all images have been registered to a fixed reference grid G (say, 32 × 32).
The LATEX database is created this way in the first place. In other cases, one assumes
that a bounding box has been identified for the symbol or a pose has been estimated,
allowing us to register the data to the reference grid. The dependence of the classifier
on this step is crucial and should not be taken lightly. It implies that some form of
detection is necessary prior to classification. We continue to explore this issue in
chapter 10.

The collection of binary local features X1, . . . , X N is now applied at all locations in
G to produce a fixed dimensional binary predictor vector Xα(z), α = 1, . . . , N , z ∈ G,
of length |G| · N . The gray-level intensities have been replaced by an N -vector of
binary variables. The setF is the collection of all pairs f = (α, z), α = 1, . . . , N , z ∈
G. This predictor vector, after being calculated for each image in the training set, can
be fed into any standard classifier: feed-forward neural nets, classification trees, linear
discriminant analysis, and so on.

First we should note that any of these classifiers would produce a very sensitive and
unstable classifier—the reason being that under the smallest variations of an instance
of a symbol of some class, the locations of quite a number of the local features will
move and hence completely change the corresponding predictor vector. Invariance
to local variations and a certain degree of scaling and translation must be explicitly
incorporated into the predictors. With binary features, this is easily and naturally
done by “spreading” (or-ing) the output of the original local feature detectors to s × s
neighborhoods. Define

Xs
α(z) = max

y∈Ns (z)
Xα(y) (9.6)

where Ns(z) is an s×s neighborhood of z, namely, Xs
α(z) = 1 if Xα(y) = 1 anywhere

in the s × s neighborhood of x . This is an explicit disjunction or or-ing that is directly
incorporated into the data and any resulting classifier will inherit a certain degree of
invariance. In our context, spreading on rather large 15 × 15 regions yields optimal
results. It should be kept in mind that while or-ing increases the stability of the
classifier, it decreases the discriminating power of each of the coordinates of the
predictor vector.
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Multiple randomized classification trees are trained using these predictors and
aggregated as described above. Results obtained on the LATEX and NIST databases
are reported in section 9.4 where they are also compared to results with the relational
arrangements described in the following section.

9.3 Relational Arrangements

In this section, we describe a more complex approach to the object classification
problem. We no longer assume that the object has been registered to a reference
location and scale. This means that absolute locations of features are meaningless
and we can only use information regarding the relative spatial arrangement of local
features; for example, information on the angles of the vectors connecting pairs of
local features. Once a relational arrangement is defined, the associated query asks
whether or not such an arrangement is present anywhere in the image. The arrangement
is also defined in an entirely scale-invariant manner—it can be present at any scale. In
the sequel, we will define these arrangements more precisely, define a partial ordering
on the set of arrangements, and explain how the associated queries can be incorporated
into classification trees. As will become apparent, it is not clear how such “queries”
can be systematically employed in the context of other types of classifiers.

In figure 9.5, we show a collection of symbols in all of which a particular relational
arrangement has been found, described in terms of a graph with edges between pairs of

Figure 9.5 Eight images from a depth 5 node in a classification tree with the associated
arrangement. Two of the queries on the path to this node were answered no.
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features between which a relation has been defined. Note the variations on the angles
and distances between the nodes of the graph. There are no distance constraints in the
relations defined between the features. All these images reached some internal node
of a classification tree grown with relational arrangements as described below. The
conditional distribution on the 293 LATEX classes given the presence of this arrange-
ment is far more concentrated than the original uniform distribution. The entropy is
5.74 down from the entropy on the uniform distribution on 293 class, which is 8.19.
Despite the large degree of flexibility introduced in the definition of the arrangement,
it carries a significant amount of information on the shape in the image.

9.3.1 Relations Between Local Features

Define wedges Wk, k = 1, . . . , Kw centered at the origin spanning the angle
2(k − 1)π/Kw to 2(k + 1)π/Kw. If feature Xα is present at location x and feature
Xα′ at location y, we say that they satisfy relation Rk if y ∈ x + Wk . Typically, we
use Kw = 16 so that there are 16 possible binary relations between any two features.

A relational arrangement is a labeled graph with vertices V = {1, . . . , d} and di-
rected edges defined as some subset of V × V . Each vertex i ∈ V is assigned a label
1 ≤ α(i) ≤ n, which corresponds to one of the local features. Each edge (i, j) ∈ E is
assigned a label 1 ≤ β(i, j) ≤ Kw. The arrangement is present in the image if there
exists an ordered set of locations x1, . . . , xd such that a feature of type α(i) is present
at xi , for each i ∈ V , and x j ∈ xi + Wβ(i, j), for each (i, j) ∈ E . Each arrangement
defines a binary variable on images: either it is present or it is not. Note that any
ordered set of locations satisfying these conditions is an instance of this arrangement.
Because the relations are defined very loosely and only constrain the relative angles,
a relational arrangement can have a quite a number of possible instances.

We denote by A the set of all possible arrangements. Note that the local edge
arrangements defined in chapter 6 are special cases of relational arrangements, where
all relations are with respect to the first vertex, with an additional constraint on the
distance between the local features in the relation.

9.3.2 Growing Trees with Relational Arrangements

The arrangements are defined in terms of graphs, thus providing a natural partial
ordering, under which a graph precedes any of its extensions. The partial order-
ing corresponds to a hierarchy of structure. Small arrangements with few local fea-
tures produce coarse splits of shape space. As the arrangements increase in size,
they convey more information about the images that contain them. However, fewer
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images contain these arrangements. One straightforward way to exploit this hierar-
chy is to build a classification tree, using the collection of arrangements as candidates
for the queries, with the complexity of the queries increasing with the depth of the
node.

Define a minimal extension of an arrangement A ∈ A to mean the addition of
exactly one local feature and one relation binding the new local feature to an existing
one. Let B ⊂ A denote the set of arrangements involving only two local features and
one relation. Now build a tree using the protocol described in section 9.1.1. At the
root node r , Fr is a random sample from B. Denote the chosen query Ar . Those data
points that do not have an instance of the arrangement proceed to the “no” child node
rn , where again we search through B. Those data points that do have an instance of
Ar proceed to the “yes” child node ry and have one or more instances of Ar , which
we call the pending arrangement, at ry and denote it by Pry .

At the node ry , the set Fry of candidate queries is a random sample of minimal
extensions of the pending arrangement Pry . If we select Ary as the query for node ry ,
this will be an arrangement with three local features and two relations. The “no” child
node of ry inherits the same pending arrangement Pry . The “yes” child node ryy has
the pending arrangement Pryy = Ary .

More generally, at any given node t , the pending arrangement Pt is the same as
at the parent node p if t is the “no” child (t = pn). At t = py we have Pt = Ap,
which again is a minimal extension of Pp. Ft is always a random sample of minimal
extensions of Pt . There is no pending arrangement at a “no” node t , for which all
ancestors are also “no” nodes, and the set Ft is again a random sample of B.

The number of possible arrangements in A is essentially infinite. Using only min-
imal extensions greatly reduces the number of candidate queries at a node. It is also
very easy to check if the minimal extension exists for each instance of the pending
graph. Still, there are very large numbers of possible minimal extensions at every
stage. In this context, randomization not only serves to create different trees, it also
reduces the number of queries that need to be checked.

An illustration of the effects of these queries on splitting the data can be seen in
figures 9.5 and 9.6. Figure 9.5 shows a collection of images that reached a depth-5
node, with one instance of the pending arrangement. The first row of figure 9.6 shows
images that reached that same node and continued to the “yes” child. The additional
feature was found in these images in the proper angle relative to an existing feature
in one of the instances of the pending arrangement. The 2s in figure 9.5 did not have
such a feature and went to the “no” child node. One more split of the depth-6 node is
also shown in the second row of figure 9.6. The αs have gone to the “no” node and
the ��s to the “yes” node.
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Figure 9.6 Examples of node splitting. All five images in the top row lie in the same node and
have a pending arrangement with four vertices. All these images were in the node represented
in figure 9.5. The two’s shown in that figure went to the “no” node. One more step of the
splitting separates the αs from the ��s by asking for the presence of an additional feature.

Figure 9.7 The pending arrangement at the terminal node in five different trees for a single
instance of a 2.

Training is more complex than for standard classification trees described earlier.
At each node, a list must be assigned to each data point consisting of all instances of
the pending arrangement, including the coordinates of each participating feature. If a
data point passes to the “yes” child, then only those instances that can be incremented
with the new relation are maintained and updated; the rest are deleted. The more
data points, the more bookkeeping. There is an inherent asymmetry in the tree, in
that the pending arrangement at terminal nodes with many “no” answers on the path
from the root will be small. However, in many terminal nodes, as shown in figure 9.7,
the arrangement describes a complex structure, and dropping the data down the tree
automatically identifies the instantiations of this structure in the image. In this sense,
the relational trees can be viewed as a classification combined with a sparse model
instantiation.
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The importance of using multiple randomized trees is illustrated in figure 9.7, where
we show the arrangement found on a single instance of a 2 in the terminal node it
reached in five different trees. The five trees are using different aspects and properties
of the shape to classify this data point. A more robust classification is then possible
when the information from all trees is pooled together. Because the arrangements are
defined in an entirely scale- and translation-invariant manner, the resulting trees are
very robust to scaling and translation. Indeed, the incoming data does not need to be
registered in any way, as will be illustrated in the experiments below.

9.4 Experiments

We experiment with the LATEX database and portions of the National Institute of
Standards and Technology (NIST) database (Garris and Wilkinson 1976), which
consists of approximately 223,000 binary images of isolated digits written by more
than 2000 writers. We use 100,000 for training and 50,000 for testing. For this database
we use microimage codes dedicated to binary images. On the LATEX database, the
generic features are used.

In all trees reported below, the nodes are split as long as there are at least m data
points in the second-largest class. The default value we use is m = 3, but in some
experiments, m can reach up to several hundreds. The parameter Q represents the
number of random queries sampled at each node while training the tree—this can range
anywhere from several tens to hundreds of thousands. For absolute arrangements,
the parameter s denotes the degree of “spread” (a detected feature is spread to the
s × s neighborhood of the original location) and ranges from 3 to 15. For relational
arrangements, the parameter Kw determines the number of wedges used and their
width. At all nodes with more than 200 training points, we take a random sample
of 200 to determine the best query from among the Q randomly sampled queries;
otherwise, we use all training data at the node. Unless otherwise specified, 100 trees
are produced in each experiment.

9.4.1 NIST

The NIST data is initially preprocessed as follows. The original images are binary.
Each image is blurred with a Gaussian filter of standard deviation 1 pixel. If the
dimensions of the image are less than 32, the bounding rectangle of the digit is
identified and is placed in the center of a 32 × 32 grid. If the largest dimension d of
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Table 9.1 NIST: Different protocols

Absolute Absolute Absolute Relational Relational
Tree Q = 20 Q = 100 Q = 200 Q = 20 Q = 100
Protocol s = 15 s = 15 s = 15 Kw = 8 Kw = 24

Aggregate rate 98.7% 99.03% 98.9% 98.5% 98.8%
Individual rate 90% 93% 94.2% 77.2% 86.7%

100,000 training data and 50,000 test. Q, number of random queries sampled at a node; s, size
of “spread” parameter for trees with absolute arrangements; Kw , number of wedges in relative
arrangements (width of wedge is 2π/Kw); m = 3, number of data points in second largest class
at a node to stop splitting. Row 1: aggregate classification rate with 100 trees. Row 2: average
classification rate of the individual trees.

the image is greater than 32, the image is downscaled by a ratio of 32/d and is again
centered in a 32 × 32 grid. Then the image is rebinarized using a threshold of .25,
assuming the pixel values are in the range (0, 1). It is necessary to binarize the image
to detect the microimage codes.

The results in table 9.1 show the effect of producing multiple classification trees.
(The aggregate classification rate as a function of the number of trees for one of the
experiments is shown in figure 9.9.) Note how very similar aggregate classification
rates are obtained with very different classification rates on the individual trees. The
best result obtained on one tree using no randomization at all was 95.8%, thus the
aggregation of multiple randomized trees plays a very important role in reaching above
99% classification rates. With absolute arrangements, similar results are obtained
using a coarser grid for the features. Features are extracted on the original image;
however, their coordinates are rounded off to the nearest multiple of 2 or 4. The
number of predictors is then reduced by a factor of 4 and 16, respectively. The s
parameter is adjusted accordingly to s = 7 and s = 2, respectively. In both settings,
the classification rates obtained were 98.8%. In figure 9.8, we show the first 100 of
the 500 misclassified NIST digits.

The trees generalize well to other data sets. For example, the relational arrangement
trees were applied to a data set of 5,000 handwritten digits obtained from the USPS
database produced and distributed by CEDAR, SUNY Buffalo. The classification rate
was 97.3%. The conditions under which the postal digits are written are very different.
In writing zip codes on an envelope, no bounding box is provided, so that their sizes
and slants exhibit a larger variability than that of the NIST database. Several other
comparisons are interesting for this database. In table 9.2, we show classification rates
as a function of the size of the training set—all other parameters fixed. In table 9.3, we
compare results on the small 5,000 sample training set as a function of the stopping
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Figure 9.8 100 misclassified NIST handwritten digits.

Table 9.2 NIST: Classification rates of the aggregate classifier and the individual trees as a
function of the training sample size—absolute arrangements (m = 3, s = 15, Q = 20)

Sample Size 5,000 10,000 50,000 100,000

Aggregate rate 97.3% 97.9% 98.6% 98.7%
Individual rate 80.23% 83.3% 88.6% 90%

rule, which affects the depth of the trees. As the value of m decreases the trees get
deeper. In many instances of the use of classification trees, deeper trees may exhibit
lower classification rates due to overfitting. This does not seem to occur in this case,
probably due to the large degree of spreading. For m = 1 we obtain pure trees, namely,
trees for which there is only one class of training data present at each terminal node.
These appear to perform best.

Boosting

We implement the boosting protocol with the reweighting factor of 1/en and ag-
gregate the trees according to equation 9.4. The terminal distributions µTn are in
this case estimated during training with the weighted training data. It appears that
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Table 9.3 NIST: Absolute arrangements—classification rates of the aggregate classifier and
the individual trees with 5000 training data, as a function of the stopping criterion (m = 3, s =
15, Q = 20)

Stopping Criterion m = 20 m = 10 m = 3 m = 1

Aggregate rate 96.0% 96.5% 97.2% 97.6%
Individual rate 72.8% 76.8% 80.2% 80.4%
Average depth 6.1 6.93 8.49 9.86

Table 9.4 NIST: Absolute arrangements—classification rates of the aggregate classifier with
and without boosting as a function of the stopping criterion

Stopping Criterion m = 20 m = 10 m = 3 m = 1

Randomized aggregate rate 96.0% 96.5% 97.2% 97.6%
Boosting aggregate rate 96.8% 96.5% 95.2% ∗
5000 training data are used. Boosting is not applicable for pure trees since the training error
rate is 0 (Q = 20, s = 15).

when deep trees are used, so that the training classification rate is very high, boost-
ing overfits the training data and performs worse than simple randomization
(table 9.4). However, for shallower trees, boosting enables the aggregate classifier
to “overcome” some limitations of the individual classifiers. If certain data points
of different classes are hard to separate without querying a large portion of their re-
spective strokes, shallow trees risk having them end up in the same terminal nodes,
especially because the trees are aiming at improving the purity of the nodes over the
entire training set. Boosting will cause the weights of such data points to increase
significantly. Their relative weight in determining the purity of a node increases
and subsequent trees in the boosting procedure may be able to separate these hard
examples.

For the larger data set, we observe the same properties of boosting. Using the
parameters yielding the best performance with 100,000 training data for the ran-
domized protocol produces a rather low classification rate with boosting. However,
table 9.5 shows randomized boosting outperforms simple randomization with shal-
lower trees with m = 100, (average depth of 9.76 vs. 12). In figure 9.9, we show the
aggregate classification rate as a function of the number of trees. The curves for other
experiments look very similar.
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Table 9.5 NIST: Absolute arrangements—classification rates of the aggregate classifier with
boosting for various protocols with boosting and 100000 training data

m = 100 m = 100 m = 50 m = 20
Protocol Q = 1000 Q = 20 Q = 20 Q = 20

Boosting aggregate rate 99.29% 99.09% 99.07% 98.8%
Individual rate 74.7% 62.4% 69.3% 76.4%
Average depth 9.8 9.8 10.8 12.0

The best result of 99.29% was achieved with boosting: m = 100 and Q = 1000.
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Figure 9.9 Classification rate as a function of the number of trees.

The “Hard” NIST Data Set

One additional portion of the NIST data set, containing approximately 50,000 sam-
ples, was produced by high school students as opposed to employees of NIST. This
data set is more challenging—the variability in shape and size appears to be greater.
Using the best trees reported above on this more difficult set, we achieve a very low
classification rate of 95.2; with a combination of 30,000 samples from the original
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set and 30,000 from the hard set, we reach 98.75% on a mixed test set of 10,000
images. The best results on this combination of the data sets is reported in LeCun and
colleagues (1998) and discussed below.

9.4.2 LATEX

Similar results emerge from experiments with the LATEX database. Here, however,
there are only 32 training samples per image and the number of classes is 293. We use
50 samples per class for testing. Quite a large variability is introduced in the images
with the synthesized deformations. Table 9.6 illustrates the importance of spreading,
showing that the optimal spreading box is around 15, which is half the image size.
From this table, we also see the drastic improvement in performance enabled by
aggregation. Here we use absolute arrangements with the 264 generic features of
edges and edge arrangements.

An interesting comparison in table 9.7 shows the effect of the number of randomly
sampled questions on performance. No randomization is done in the data points used
to select the split at each node—that is, all data points are used to choose the optimal
split. The optimal number appears to be at Q = 20. Although the individual trees
produced with higher values of Q have a higher classification rate, the aggregate rate
decreases due to the fact that the trees become more similar. The optimal performance

Table 9.6 LATEX: Comparison of results for different values of the spread parameter s

Spread Parameter s = 3 s = 7 s = 15 s = 23 s = 31

Aggregate rate 82.9% 94.7% 96.1% 94.9% 90%
Individual rate 10% 28% 39% 40% 38%

Absolute arrangements are used with the 264 generic features and Q = 20.

Table 9.7 LATEX: Comparison of results for different values of Q

Number of Questions Q = 20 Q = 500 Q = 1000 Q = 10000

Aggregate rate 96.1% 96.08% 95.9% 93.6%
Individual rate 41.5% 58.9% 60.86% 64.99%

Boosting aggregate rate 96.9% 97.2% 97.2% 96.6%
Individual rate 32% 51% 52% 56%

Top two rows: randomized trees. All data points at a node were used to select the optimal query.
Absolute arrangements, m = 3, s = 15. Bottom two rows: with boosting.
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is achieved with randomization both in the queries and in the sample used to choose
the optimal split. When using Q = 200 and a random sample of 200 of the entire
training sample at a node (when the size is larger than 200), the classification rate
achieved is 96.7%, with a mean classification rate per tree of 52%. A different pattern
emerges for boosting. Here, there is improvement with the number of random queries
used, and the best rate achieved is 97.2%, with Q = 500. This difference is discussed
in section 9.5.

Clutter

The performance of the relational arrangements under various protocols is shown
in table 9.8. On the whole, it seems that the absolute arrangements perform slightly
better than relative arrangements. However, this is in an idealized setting, where the
object is well centered in the image.

It is therefore of interest to study the effect of clutter on the classifier. The clut-
ter is produced by taking c additional random symbols, extracting a random 6 × 6
window, and adding it to the image at random locations. Examples of cluttered im-
ages are shown in figure 9.10, with c = 2 in the top row and c = 4 in the bottom
row. After clutter is added, the bounding box of the data is recomputed and used
for centering the image. This mimics the effect of clutter on the image-registration
procedure. The relational arrangements are by definition entirely translation invari-
ant. With absolute arrangements, despite the spreading, there is some sensitivity to
moderate shifts.

The performance with absolute arrangements degrades faster than that with re-
lational arrangements, as shown in table 9.9. It appears that this is not only due to
shifting, but also due to higher sensitivity to erroneous noisy features that are present
in the background. However, the drop in performance is too large in both cases, im-
plying something is missing in these classification schemes. Some consolation can
be found if instead of taking the mode of AN , we check if the correct class is among
the top 5 classes. After all, we start out with 293 classes, and reducing to a choice
among 5 is still useful. The results are shown in table 9.9 in parentheses.

Table 9.8 LATEX: Different protocols with relational arrangements

Q = 200 Q = 200 Q = 1000 Q = 20
Number of Questions Kw = 8 Kw = 16 Kw = 16 Kw = 16

Randomized aggregate rate 94.5% 95% 95.5% 92%
Individual rate 37% 35% 41% 19%
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Figure 9.10 LATEX symbols with clutter. (Top) Two clutter elements. (Bottom) Four clutter
elements.

Table 9.9 LATEX: Performance results in the presence of clutter for relational arrangements
and absolute arrangements

Relational Absolute
Q = 200 Q = 200
Kw = 16 s = 15

c = 0 95% (99.6%) 96.6% (99.8%)
c = 2 78.4% (91.4%) 62.5% (80.4%)
c = 4 57.8% (73.8%) 44.7% (63.8%)

The values in parentheses denote the percentage of test points which had the correct class
among the top 5.

Possibly the final discrimination between these 5 candidates should be done using
some more-detailed analysis in terms of a deformable model. We have already seen
that the deformable curve models are very robust to clutter. We could try to fit each of
these five models and choose the one with the highest value of the cost function given
in equation 4.12. Trying all 293 models would be computationally very intensive, but
trying 5 is reasonable. Moreover, it may not be necessary to try them at each classified
data point, only for those where there is evidence of ambiguity.
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9.5 Why Multiple Trees Work

In section 9.1, we motivated the aggregation of multiple trees with an ideal situation
where the trees Tn , considered as random variables, are conditionally independent
given the class label. Intuitively, this is related to the observation made later that
different trees classify the data using different aspects of the data, or different points
of view. If we know the label of a data point ω, then observing Tn(ω), say, in terms of
the terminal distribution µTn(ω), will not help us predict the terminal distribution at the
terminal node Tm(ω) encountered by ω in another tree. This is because the two trees are
using different aspects of shape to classify ω, and therefore the confusions, reflected
in the terminal distribution, will probably be different. This is only a conditional
property. If we do not know the class label of ω ahead of time, than the mode class in
Tn(ω) would serve as a good prediction for the mode class in Tm(ω). Otherwise put,
these trees are in no way unconditionally independent.

The trees are never really conditionally independent. Rather, one observes that
the conditional covariances between these trees, computed in terms of the terminal
distributions µTn , are much smaller than the conditional variances. Let ν denote a
bound on the conditional variances, and let γ denote some bound on all the conditional
covariances. We denote the conditional variance given Y = c as Varc( ), and the
conditional covariance as Covarc( ). The conditional variance of the aggregate AN (d)

is expanded as follows.

Varc(AN (d)) = 1

N 2

N∑

n=1

VarcµTn (d) + 1

N (N − 1)

∑

n 
=m

Covarc(µTn (d), µTm (d))

< ν/N + γ, for d = 1, . . . , K (9.7)

Thus when the number of trees is large, the conditional variance of the aggregate is
dominated by γ .

For each class c, write the conditional mean of the aggregate as

θ(N )
c (d) = Ec(AN (d)) = 1

N

N∑

n=1

Ec(µTn (d)), d = 1, . . . K

If the individual trees have reasonable classification rates, then the mean weight on
class c, given Y = c will be larger than the mean weight on all other classes—that is,

θ(N )
c (c) − θ(N )

c (d) > M (N ) > 0, for all d 
= c

for some constant M (N ).
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If M (N ) is significantly larger than the standard deviation of each of the variables
AN (d) for d = 1, . . . , K , restricted to class c (i.e., if M (N ) � √

γ ), then AN (c), with
high probability, will be larger than AN (d) for all d 
= c and hence the probability of
error is small. We see that the key to low error rates with multiple trees is having γ

small relative to M (N ). By contrast, the key to low error rates with one tree is having
ν small relative to M (1), which is approximately the same as M (N ) because it is an
average of means. However, in all LATEX experiments, ν is 10–20 times larger than γ .

The expectations and variances used in this discussion are never known—at best
they can be estimated from training data. It is, however, interesting to observe that
there is a high correlation between the quantities γ and M estimated from train-
ing data and the ultimate error rates on test data. We implemented 19 different
protocols for the NIST database with absolute arrangements, with 5,000 training
data (500 per class), varying the stopping rule and the number of random questions
sampled, with and without boosting. The log of the test error rate log(e) is then re-
gressed on log(γ ) and log(M). Here, instead of upper bounds we redefine γ and M as
follows.

γ = 1

K

K∑

c=1

K∑

d=1

Varc(AN (d))

M = 1

K

K∑

c=1

(θc(c) − argmaxd 
=cθc(d))

These quantities are all estimated from training data.
We obtain R2 = .92 and the regression equation is log(e) = .32 − 1.8 log(M) +

1.3 log(γ ). The scatter plot of log error versus predicted log error is given in
figure 9.11. Although the information in γ and M is not sufficient for precise pre-
diction of the test error, it is quite suitable for deciding which protocol is preferable
once the regression estimates are obtained. This decision can be made on the basis of
training data alone.

Predicting the test error rate directly from the training error rate would be far less
stable—particularly for protocols such as boosting, which typically quickly achieve
close to 0 error rate on the training data, or protocols growing pure trees, which by
definition have 0 error rate on the data.

Note that the test classification rates for the different protocols ranged between 73%
and 98%. The variable M ranged between .02 and .85, whereas γ ranged between
.001 and .04. The best performance, 98%, was achieved at M = .58 and γ = .034.
These values also gave the highest predicted classification rate of 97.7%.
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Figure 9.11 Scatter plot of log-error vs. predicted log-error for a variety of protocols. (Left)
NIST dataset. (Right) LATEX dataset.

A similar regression using LATEX experiments yields R2 = 97.2. It is clear from
these regressions that the error rate depends on a ratio γ a/Mb. Indeed, in some cases
M can be higher but the error rate is also higher because γ is high as well.

Both randomization and boosting are somehow achieving low values of γ relative
to M . For randomization, we already discussed the intuition behind this. Different
trees, using an enormous pool of features and queries, are accessing the data from
different points of view. There is no danger of overfitting because the trees are trained
in total disregard of each other.

By contrast, in boosting, the reduction of γ is achieved through the reweighting
of the training points that are misclassified. In concentrating on these points, the
algorithm is actually trying to produce a negative conditional covariance between the
new classifier and the current aggregate. This general effect can be achieved with a
variety of protocols and has very little to do with the specific protocol involved in
the original derivation of the boosting algorithm. However, boosting still depends
on estimates provided by the training set and risks overfitting, as seen in the deeper
trees reported in table 9.4. On the other hand, on the NIST database with the large
training set of 10,000 data points per class, when randomization is used in conjunction
with boosting and a conservative stopping rule, the best results are achieved. On the
LATEX database, the best results are also achieved with boosting using somewhat larger
numbers of randomized queries.
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9.6 Bibliographical Notes and Discussion

The work in this chapter is based on Amit and Geman (1997) and Amit, Geman, and
Wilder (1997), where only relational arrangements were studied. Some of the ideas on
shape quantization explored in Amit and Geman (1997) led to the development of the
sparse models described in chapter 8. On the other hand, the very large disjunctions
used in step I of the counting algorithm motivated the current experiments with
absolute arrangements, where very large values of the spread parameter s is used.

In studying shape recognition, we have touched on two research areas. The first
is general classification theory, otherwise known as pattern recognition or machine
learning. This covers general issues such as types of classifiers, aggregation methods,
estimation of test errors, and so on. The literature on this subject is described in de-
tail in books such as Ripley (1994), Bishop (1995), and the classic book on pattern
recognition by Duda and Hart (1973). The main reference for classification trees in
the statistics literature is Breiman and colleagues (1984) and in the computer science
literature, it is Quinlan (1986). The idea of growing multiple classifiers and aggregat-
ing them is more recent and can be found in Kwok and Carter (1990), Breiman (1994,
1998), and Schapire, Freund, Bartlett, and Lee (1998). A more detailed analysis of
multiple classifiers from the point of view of the discussion in section 9.5 can be
found in Amit and Blanchard (2001).

The second area of research is more specific to computer vision and involves
identifying what are the appropriate predictors to be used in the shape and object
classifiers; what functions of the data will have appropriate invariance properties on
one hand, and discriminatory power on the other. Descriptions of different types of
local features can be found in books on computer vision such as Haralick and Shapiro
(1992), and many proposals for local features can be found in recent work such as
Malik and Perona (1990) and Wiskott and colleagues (1997). Any form of binary
feature can be incorporated in the methodology described in this chapter. The binary
aspect is crucial for the “spreading” operation in the context of absolute arrange-
ments, or for the definition of the relational arrangements. In principle, features with
continuous outputs could be quantized, each quantile serving as one form of binary
feature. Alternatively, continuous outputs can be maximized over a neighborhood, as
a generalization of or-ing; this has been proposed in Riesenhuber and Poggio (1999).

Much work has also gone into identifying functions of the data that are invariant to
geometric transformations—in particular, various functions on distances and angles
between specific points that are entirely invariant to certain groups of linear trans-
formations. An extensive treatment of such methods can be found in Reiss (1993).
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These methods are based on prior localization of very particular landmarks on the
object and do not address the stochastic aspect of images, which precludes such pre-
cise localization based only on local information. One could view the use of multiple
flexible arrangements of robust local features as an attempt to adapt such ideas to a
more realistic view of the data. However, this adaptation means losing full invariance.
The shape recognition methods described above, as with the detection algorithms de-
scribed in earlier chapters, are not fully rotation invariant, nor are they fully invariant
to other linear deformations.

Another interesting approach to the classification of characters, which attempts to
deal explicitly with invariance to linear and nonlinear deformations, is described in
Hastie and Simard (1998), and Simard and colleagues (2000). The idea is to imple-
ment nearest-neighbor classification, or approximations to nearest neighbors using
a deformation-invariant distance. The distance is essentially based on the linearized
two-dimensional template matching described in chapter 5. The distance between a
sample image and a training example from a given class is measured after the op-
timal deformation between the two is computed. A very low-dimensional space of
deformations is used. It is very computationally demanding to do this with respect
to large numbers of training examples, so the authors describe a method for creating
smaller numbers of prototypes for each class, essentially centroids of the training data
of each class, computed using the deformation distance. The method still relies on
preprocessing the data into fixed-size images and uniform gray-scale ranges.

The most successful handwritten character recognition reported to date can be
found in LeCun and colleagues (1998). The classification tools used are multilayer
feed-forward neural networks based on the raw pixel intensity input. Although the
authors emphasize the fact that very little is done in terms of design of features and
that everything is left to the training procedure, the actual architecture and constraints
imposed on the network are of primary importance and interest. Due to the enforcing
of translation invariance of the network weights at certain layers, and blurring and
subsampling in other layers, the network ends up producing a sequence of feature
detectors that are then in some sense “or-ed” to allow for local invariances. The lay-
ers involving translation-invariant weights are called convolution nets. If instead of
classification trees we had used a feed-forward network based on conjunctions of
edges, the resulting network would be qualitatively very similar to the one reported
in LeCun and colleagues (1998). The difference would that we would have hand
designed the input-level weights defining the input convolution network, as well as
the weights defining the second-layer convolution network. We revisit this issue in
chapter 11, where we design a biologically plausible network for detection and recog-
nition. The classification rate reported in LeCun and colleagues (1998) is 99.3%;
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this is done by training on a mixed set of 30,000 from the “easy” set and 30,000 from
the “hard” set, and testing on a mixed set of 10,000. An additional aspect of the work
described in LeCun and colleagues (1998) is the parsing of character strings—namely,
zip codes. We will discuss that aspect in chapter 10.

Two aspects are clearly missing from the experiments described above, which could
easily be incorporated in the same framework, both of which may also help with the
sensitivity to clutter encountered earlier. The first is the use of features from more
than one resolution. It is possible to extract edges from the data both at the original
resolution and at lower resolutions and use them all in growing the trees. The second
aspect, which has been explored in the literature, is the use of “parts” (see Shapiro
1980; Brooks 1981; and Haralick and Shapiro 1992 for an extensive review). Usually,
parts are given a very clear semantic meaning such as loop or crossing or ending, or
a generalized cylinder in 3D. One expects to find a loop in an 8, but not in a 4.
However, the description of a loop would need to be very flexible if it were to “hit”
all possible 8s, and then probably loops would be found in many other places where
they are not expected, including in some 4s. However, if we view loops just as another
generic object being detected, as described in chapter 8, then it becomes a feature
detected at certain locations. It would have certain statistics on the different classes
that would affect its use in the classification trees. It is a more global feature than the
ones used up to now and perhaps bears more discriminating power. We will see some
pointers to this in the next chapter. Fully incorporating features that are more global
and involve a prior detection process into classification appears to be a promising
research direction.
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and Recognition

The object-detection algorithms described in earlier chapters are dedicated to finding
instances of a particular predefined object in a scene. On the other hand, the input to
the classification trees in chapter 9 was an image in which the object is more or less
centered and not much else is present. What should be done when faced with a scene
containing several tens from a collection of hundreds or thousands of objects? If for
each object we had a very accurate detector with extremely low false-positive and
false-negative rates, we could in principle run each such model and obtain a labeling
of all the objects in the image. However, this would undoubtedly be a very inefficient
approach.

As discussed in the Introduction, the prevailing paradigm for analyzing complex
scenes assumes an initial “bottom-up” stage of segmentation that does not employ
any prior information on the object class or classes. This stage provides candidate
regions of objects in the scene that should, in principle, include the object and not
much more. The regions would subsequently be fed into a classifier.

We will explore a different approach in which the initial processing stage always
involves detection of a sparse model. However, the detector is now designed to detect
more than one particular class—it is a detector for a cluster of objects, which may
contain subsets of some classes and the entire population of other classes. The detec-
tion provides an estimate of pose with which data in a region of interest in the image
can be registered to the reference grid. This registered data is then classified into one
of the several classes in the object cluster. Even though the detector we use is less
specific, it still selects only a small number of candidate poses for further process-
ing, determined by the shape information encoded in the model. The advantage over
bottom-up processing is that even if parts of the object boundaries are ambiguous
(e.g., the object is partially covered by another and segmentation merges the two into
one region, or a lighting effect creates an artificial boundary inside the object), the

215
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detector can still identify an approximate pose for the target object and thus provide
reasonable input into the classifier. Another advantage is the following: The detection
algorithm uses complex features such as edge arrangements, which are rare in the
background. If these are the local features being registered to the reference grid and
used to classify, there is much less clutter in the neighborhood of the object.

In the next section, we illustrate these ideas in the context of detection and recogni-
tion among three different chess pieces in a real image. Following that, we explore de-
tection and recognition in scenes produced with symbols, both artificial LATEX scenes
and zip codes. Finally, in section 10.3 we discuss possible strategies for creating
object clusters in a more systematic way.

10.1 Classification of Chess Pieces in Gray-Level Images

We study a very limited problem of detecting and recognizing among three different
chess pieces: a knight, a rook, and a queen, all black. The difference between the
queen, the bishop, and the king at the resolution of images we acquired was too
small to obtain reasonable discrimination. One prototype image is acquired on a flat
background for each of the three objects, as shown in figure 10.1.

Each of the prototypes is perturbed with a sequence of 100 random affine maps
to produce a database for training a sparse model and a set of classification trees.
In terms of the production of the training set, this is the very same procedure used for
the LATEX data in the previous chapter and for the clip detector: One prototype is used
to produce a small sample for training. Samples of each are shown in figure 10.2. The

Figure 10.1 The prototype image of three chess pieces. Overlaid on the prototype are the
three pose reference points used to register the object to the reference grid.
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Figure 10.2 Samples of randomly perturbed prototypes of the three objects.

coordinates of the three pose reference points chosen on the prototypes are mapped
according to the random affine map to produce three anchor points for each of the
perturbed images.

Edges are extracted from each of the 300 perturbed images, 100 per class, and
reregistered to the reference grid. This data is then used to train a sparse model for
the union of the three classes. We use features with three edges, a center edge and
two additional edges (nr = 2), requiring each feature to be present in at least 50% of
the data. These features will be used for classification as well, so we take as many as
are found (i.e., one for each 3 × 3 region in the reference grid), yielding 30 features.
The threshold τ , for the number of hits to declare a detection, was set to 17 by finding
the largest value with no false negatives on the training data. The local features
obtained in the model are shown in figure 10.3.

The model we observe is some combination of common elements we would obtain
from producing separate models for the three different pieces. In figure 10.4, we
show several detections of this model on training data from the three classes. Note
in figure 10.4 that due to the low threshold, a given instance of an object may be hit
with several detections, yielding several different poses. We need to keep this in mind
when training the classification trees.

The detector is run on the training data of the three classes. For every training
image, we register the feature data to the reference grid, for each detection obtained
in terms of the detected pose, using equation 8.2. In this case, the data consist of all
instances of the 30 features used for the detection. Thus if a detection hits the upper
part of the shape, the registered data concentrates on the lower part of the reference
grid, and vice versa if the lower part of the shape is hit. This is illustrated in figure 10.5,
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Figure 10.3 The 42 model features obtained for the combined class of rooks, knights and
queens.

Figure 10.4 Hits of the detector on a sample rook, knight and queen.
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Figure 10.5 (Top) Registered local features 0 and 4 for the two detections on the rook in
figure 10.4. (Bottom) The data after spreading the features in 5 × 5 neighborhoods prior to
classification.

where the registered locations of 2 of the 30 features are shown for the detections on
the rook in figure 10.4. Note that we have constrained the reference grid to a 60 × 30
window around the three reference points. This allows us to limit the clutter to the
close neighborhood of the detection. The labeled and registered local feature maps
obtained from training data are used to produce fifty randomized decision trees using
absolute arrangements and a spreading parameter s = 5.

In figure 10.6, we show a detection and classification on an image with a rook. The
rook is placed on a wood texture that responds to the edge detectors in many locations.
Despite the fact that to our eyes the rook appears perfectly well separated from the
background, in terms of the initial edge input to the algorithm, there is significant
clutter in the neighborhood of the object. The left-hand column of figure 10.6 shows
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Figure 10.6 (Left column) Locations of horizontal and vertical edges of two polarities in
the image. (Right column) Top: Classified detection. Locations of local features 0, 4, 12 of the
sparse model in the image.
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Figure 10.7 Registered local features 0, 4, and 12 on the reference grid from around the
detection shown in figure 10.6.

the locations of horizontal and vertical edges of the two polarities. The lower three
panels of the right-hand column show the locations of three of the edge arrangements
in the model. The density is significantly lower. It is possible to employ other complex
local features for classification; however, from the computational point of view, it is
very convenient to use features that have already been detected.

In figure 10.7, we show registered local features (0, 4, 12) from the region of interest
(ROI) around the detection. Despite the fact that these features are less frequent,
they still produce noise in the background that can potentially confuse the classifier.
Constraining the reference grid to a narrow window around the three pose reference
points helps but cannot entirely solve the problem (see, for example, the registered
data for feature 0). Moreover, constraining the window too far will lead to a loss
of important information for classification. In figures 10.8 and 10.9 we show some
additional examples of classified detections, including some misclassifications.

First note that classification is invariant to a range of variations in scale, rotation, and
other transformations occurring due to the change of the position of the object relative
to the camera. The reasons for the misclassifications are usually quite apparent. For
example, in many cases, if some long dark vertical object is standing behind the rook it
will be misclassified as a queen, which has no horizontal structure at the top. If a dark
structure is present near the upper left-hand part of the rook, it will be misclassified
as a knight. In addition, there are false positives that do not correspond to any of
the three pieces. The human eye is rarely fooled by such problems. This is probably
due to two factors. At the low level, the visual system probably employs a richer and
more powerful collection of local features not solely based on edges. At the high
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Figure 10.8 Example of detections and their classification.
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Figure 10.9 Example of detections and their classification.
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level, we are probably able to simultaneously classify other objects in the immediate
neighborhood of the piece and thereby provide more convincing explanations of the
data.

Further analysis of the output of the classifier is always possible. One of the de-
formable models for the identified class can be fit to the data in the region of interest in
order to obtain more detailed instantiation information. Furthermore, an upper bound
on the fit of each model to examples of the correct class can be estimated from training
data. Any fit above this bound is rejected. We have not implemented such a step in
the current experiments.

This form of processing can also be used to solve ambiguities. Note that the output
of the multiple classification trees consists of a weight on each of the classes. If other
classes have weight close to that of the mode, it may be of use to check each of these
candidates in terms of a more detailed model.

Some degree of rotation invariance in detection and classification is apparent, but
these are limited, and the algorithm will fail with significant rotations in the plane of
view or rotations around the vertical axis of a piece, such as the knight, which is not
rotationally symmetric. In the present context, the opposite orientation of the knight
would have to be treated as a separate object in the collection.

10.2 Detecting and Classifying Characters

10.2.1 LATEX Scenes

In this section, we report similar experiments with 62 LATEX symbols (10 digits, 26
uppercase and 26 lowercase letters) and handwritten zip codes. The only difference
with the previous section is that we use a sparse model trained on a particular class, in
this case the symbol “0,” as opposed to the entire collection of classes. The motivation
here is that training with the union of all the classes would result in a very nonspecific
model with numerous false positives. There is not much in common in terms of the
shapes of all 62 symbols. One alternative is to train for one class and then resolve
the ambiguities due to false positives using a classifier. The sparse model for the “0”
is trained with 32 random samples of the “0” class. From this sample, 32 local edge
arrangements were found of complexity nr = 3. The threshold τ = 24 is needed to
keep all training samples of the “0.” This detector is then run on examples from all
62 classes (32 of each) with a threshold .8 ∗ τ = 19. This is quite a loose threshold,
permitting quite a number of detections on other classes. Detections are registered to
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Figure 10.10 The histograms show the distribution over the 62 classes of the number of
samples (out of 32) hit by the corresponding union of detectors. For example with the “0”
detector alone only six classes are hit at above 28 samples out of the 32. With all four detectors
20 classes are hit at above 28 samples out of the 32.

the reference grid, and multiple classification trees are trained, using the local features
from the “0” model. In the first histogram in figure 10.10, we show the distribution
over the 62 classes of the number of training examples (out of 32) hit by the “0”
detector.

In figure 10.11, we show results on some artificial LATEX scenes. The entire pro-
cedure of detection and classification on images with approximately 30 symbols
takes on the order of 250 milliseconds on the Pentium III 700 MHz. There are more
detections present than shown in the image. Detections are clustered according to
the procedure outlined in chapter 8. However, now, to represent the cluster, we no
longer choose the detection with the largest number of detected local features, rather,
the choice depends on the output of the classifier. Recall that classification is per-
formed with 50 randomized trees, which are aggregated as in equation 9.4. Each
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Figure 10.11 Synthetic LATEX scenes with classified detections of the “0” detector.

detection in the cluster is classified according to the mode of the aggregate. We
choose the detection with highest weight at the mode. This, in some sense, is the
detection in the cluster that is classified with the most “confidence.” Because every
detection is classified prior to clustering, there is more information available that
is not used in the present context—for example, the actual weights on the different
classes provided by the aggregates, or the class labels assigned to other detections in
the cluster. All these could help disambiguate confusions and reduce the number of
errors.
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Figure 10.12 Detection and classification on zip codes.

10.2.2 Zip Codes

For the zip code experiment, a “0” detector is trained on 1,000 zeros from the NIST
data set. Due to an erroneous setting of the scaling of the training set, the detector was
produced for a “0” half the size of the standard 32 × 32. This detector is therefore
hitting loops and parts of loops in the larger images. The detector is run on a subset of
20,000 images from the NIST data set from all classes to produce the data for training
the classification trees. In this case, the edges and not the edge arrangements were
used for classification. Twenty randomized classification trees were trained. Some
results of detection and classification on zip code images are shown in figure 10.12.
This does not represent the final analysis of a zip code, merely the classification of
the detections of the “0” detector.

In some of these images, one could have easily implemented a prior segmentation
using some simple principle. This is not always the case, and any bottom-up seg-
mentation of zip codes must be able to identify the misleading cases. One example is
shown in figure 10.13. Here, some digits are joined together. We purposefully show
all the detections in this image with no clustering to illustrate the fact that there is
information to be obtained from all detections not just those that end up representing
a cluster.

There are still plenty of errors in these initial detection-and-recognition
experiments—less so if tested on isolated digits. For example, the same procedure was
applied to 10,000 USPS digits. On each USPS image, all detections are classified and
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Figure 10.13 All classified detections on a zip code with no clustering.

if any one of them is correct, the digit is counted as correctly classified. Of the 10,000
images, there was a detection in 7,416 and of these, 93% were correctly classified
in this manner. The large number of detections of the “0” detector is due to the fact
that the model was trained for zeros half the standard size. With the lower threshold,
any part of a loop is detected—for example, the upper part of a “4.” It appears that
we have used something between a global model for a particular object and a local
feature. The “0” detector trained on the smaller scale can be viewed as a generic part
that appears in many classes; however, when detected, this part helps determine the
location and scale of the object as opposed to a local feature, which in itself can only
loosely indicate location.

Bear in mind that these results are produced through direct implementation of
the detection and classification procedures. Both the detection and the classification
models are trained on relatively small samples of the NIST and are being tested on
the more variable USPS database. Thus there appears to be some promise in such a
top-down approach in which scene analysis is guided by some form of sparse object
model that facilitates useful groupings of local features. It is important to recall that
no prior segmentation is performed to identify objects, and the computation time is
on the order of one second or less.

10.3 Object Clustering

A fundamental question arises in this context. How should the sparse-detection models
be constructed so that on one hand, all elements of all classes are detected by at least
one detector, and on the other hand, the number of detectors and the number of false
positives on generic background is minimized? This can be formulated as a clustering
problem. We want to form object clusters that cover the entire population, minimizing
the number of clusters on one hand, and the “diameter” of the clusters on the other.
Here the term diameter is used figuratively. Clusters with a large diameter will yield
detectors with many hits and false positives. Note that there is no particular need for
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the clusters to be disjoint. However, it is obviously wasteful to detect the same object
class multiple times.

Another question is how to produce the final scene interpretation. As we have seen,
the detectors hit different parts of the object and the same object can be classified in
several ways. Some classified detections will be inconsistent, as can be observed in the
top-left zip code image of figure 10.12. There needs to be a clearly defined mechanism
to generate candidate scene interpretations from the set of classified detections and
to rank them according to some cost function. An interpretation involves making
decisions regarding inconsistent classifications, deciding which objects are occluded,
and so on. This also requires deciding exactly what are the “on-object” pixels for a
particular classified detection and is closely related to final processing, perhaps using
some of the deformation algorithms described in earlier chapters. Solutions to the
second question of scene interpretation are beyond the scope of this book, although it
is hoped that the array of tools we have presented can contribute to the solution. In the
discussion section, we briefly mention some scene interpretation methods dedicated
to “linear” scenes, such as zip codes and other images of text.

In the next section, we offer some suggestions for dealing with the problem of object
clustering. We describe two possible approaches: In the first, we do not assume all
classes are presented from the start—classes are learned sequentially. In the second
approach, we assume all examples are present at the initial stage, and clusters are
created using classification trees.

10.3.1 Sequential Object Clustering

Classes are presented sequentially in some predetermined order. A sparse model for
the first class is trained and the detection algorithm corresponding to this model is
applied to samples from a number of new object classes, as demonstrated in the
previous section. Those data points from the training set that are hit form a cluster.
The cluster is entirely defined in terms of the detector and the threshold used. A lower
threshold produces a larger cluster. The training data can be used to estimate the
conditional probabilities on class within this cluster.

Some classes will be fully detected and need not be addressed further—the original
“0” detector serves as their detector as well. Other classes are partially detected and
will need an additional detector to fully cover all samples. One approach is to produce
a detector for a class that is poorly detected by the “0”—for example, the “4” (we
skip the “1” because it has very little structure). Run the identical procedure with
this detector, identify the training data in the new cluster, and produce appropriate
classifiers. There will be overlaps between the two clusters, meaning that some data
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will be hit by the two detectors and may even be classified in two different ways. In the
second histogram in figure 10.10, we show the distribution over the 62 classes of the
number of training examples (out of 32) hit by the “0” or the “4” detector—namely,
the union of the two clusters. Some progress has been made in terms of covering the
entire population. The third and fourth histograms show the same information for the
union of the “0,” “4,” “7” detectors and of the “0,” “4,” “7,” and “a” detectors.

One hopes that the number of models needed to cover the entire population grows
more slowly than the number of classes. In the context of view-based 3D object
detection and recognition, each object is represented by a number of 2D models,
namely, each 3D object generates a number of 2D classes, corresponding to different
viewpoints. If the number of models grows linearly with the number of 2D classes,
we are headed toward an explosion in the number of required models. It is hoped
that different views of different objects will merge into common clusters, and this
explosion can be avoided.

This clustering approach does not require having all the training data for all the
classes available ahead of time and can be viewed as a crude way to mimic sequential
learning of new classes. However, it is very redundant in that many data points will
be hit by more than one detector. In other words, the clusters are far from disjoint.

10.3.2 Tree-Based Class Clustering

An alternative approach to creating the clusters is using the classification tree machin-
ery introduced in chapter 9. We start with a simplifying assumption that all detectors
are produced with a fixed set of feature types—for example, all two-edge arrange-
ments such as those defined in chapter 9. Grow a classification tree (or an unsupervised
tree, ignoring class labels; see section 9.1) of moderate depth on the training data,
using absolute arrangements, as described in chapter 9. Each terminal node of the
tree defines an object cluster. These are images of various classes that have answered
the same way to a sequence of queries and hence necessarily have certain similarities
in terms of shape. They all carry the same absolute arrangement. In fact, the queries
along the path to the terminal node can serve as part of the model that is subsequently
derived for the cluster. More than one tree can be used to obtain a more robust covering
of the population.

Once a model is determined for the data at a terminal node, a classifier is trained
to discriminate between the classes in the cluster. The detector is applied to each of
the training images, the labeled data is registered to the reference grid in terms of
the detected pose, and then multiple randomized classification trees are used to pro-
duce a classifier. Note that in this context the depth of the clustering tree determines
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the number of clusters. By definition, the set of terminal nodes of the tree covers the
entire training set. This is in contrast to the previous clustering method where there
was no way to predetermine the number of clusters. The deeper the tree, the larger
the number of clusters on one hand, but then the associated models are more specific,
and one would expect a smaller number of false positives from this collection of
models. The hard task is to find the appropriate balance between these two variables.

It is interesting to note that this approach closes the loop between sparse models
and classification trees based on arrangements of local features. A detection model
is based on a cluster defined by a classification tree, and the registered data around a
detection is subsequently classified with additional classification trees.

10.4 Bibliographical Notes and Discussion

In this chapter, no model is presented for the layout of the objects in the scene or
their number. Typically, there is more contextual information that can be exploited.
Zip codes are a very clear example wherein there is a fixed number of objects in the
scene, and there are very clear constraints on how the objects are arranged. Given a
set of multiple trees trained to classify among the digits, any candidate slice of the
zip code image can be classified and also assigned a “confidence level” according to
the magnitude of the mode of the aggregate distribution AN (c) (see equation 9.4).
A range of slices covering some locations and slants is determined for each of the
five digits. Dynamic programming based on the confidence levels of the slices finds
the optimal set of five slices. The labels assigned to these slices have already been
recorded and provide the outcome—this is the outline in the approach taken in Wang
(1998). In LeCun and colleagues (1998), a much more sophisticated version of this
idea is implemented. A bottom-up oversegmentation of the image is performed, with
certain segments possibly containing subsets of the digits. Dynamic programming
is now performed on possible individual segments or consecutive pairs. The system
is improved by training classifiers with “parts” of other digits in the image, as well
as training the weighting of the different components of the cost functions of the
dynamic programming using labeled zip codes, where the answer is known. Another
interesting idea suggested in this work is using the classifier to determine candidate
segments. The classifier is run on the entire scene, and locations with high confidence
become candidate segments for the dynamic programming. Other ideas on the use of
high-level knowledge on the layout of the scene have been extensively exploited in
the document analysis community (see Nagy 2000).
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Typical images that our visual system encounters do not have such clear struc-
ture. Humans can quickly and successfully parse a scene with digits scattered about
randomly with various sizes, shapes, and occlusions. It is therefore of interest to pur-
sue the issue of scene analysis using models less restrictive than the “linear” ones
described above.

It is important to reiterate that each detection carries with it much more information
than has actually been used—for example, the precise locations of those features
detected by the detector. So far, we have classified by registering all features found in
the region of interest to the reference grid. It may be that there is useful information in
the particular features found by the detector. Other information comes in the form of a
match to a deformable model. In chapter 8, we showed how more-detailed models can
be matched to the object following detection. Quantities measured in terms of these
matches may be useful in pruning out false positives and making final determinations
in classification.

The sparse models used here are quite successful in detecting objects with reason-
able numbers of false positives. These models make a “leap” directly from the local
features to the global models. With hundreds of possible local features and hundreds
of possible locations on the reference grid, the number of possible models is enor-
mous. The question is whether a relatively small number of models can cover a large
collection of object classes without being too “trivial” in the sense that these models
end up having numerous false positives. In chapter 8, we mentioned the ideas pro-
posed in Biederman (1995), whereby objects are represented as coarse arrangements
of generic parts. It may be that an intermediate level is necessary, involving a rather
small number of generic-shape models, much like the “0” model used for the zip
codes, which effectively detects small loops. These generic-shape models are then
used to produce the entire library of object models. The object models could be even
coarser than the current sparse models, because the components are more complex.
For example, they could be defined on a much coarser reference grid. The chance of a
particular configuration of these components occurring at random is very small. It is
possible that detection is then limited to very simple configurations of these generic
shapes. The difficult question is what price is paid in terms of false positives, if these
generic components are to be stable on the objects.
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There are fundamental differences between the form of computation performed in a
serial computer and that performed in a massively parallel system of very primitive
computational units. On a computer, we can learn a model for faces or any other
object using our favorite technique, the model is stored using whatever complex
data structures we need, and then by brute force, using the power of random-access
memory, the model can be applied at every shifted location and scale to decide if an
object is present there or not. In a parallel system, which mirrors the visual scene with a
unit or multiple units for every pixel location, processing the data in its neighborhood,
the question is how to shift a model learned and stored in some central location to all
other locations in the system.

The dominant paradigm for learning in neural systems is through modification of
the value of the connections between pairs of units. If, say, the connections at the
central location of the system have been modified to classify face versus nonface, we
can hardly imagine the values of these connections being shifted in some mysterious
way to all other locations of the system. Moreover, what happens when we want to
detect a clip and not a face? How does the entire parallel system know to change so
as to detect clips and not faces?

Turning to classification, assume that the connections at the central location have
been modified so that we can classify among the ten handwritten digits. What if a digit
appears at a shifted location? The visual system can still recognize the digit without
actually directly looking toward it, as long as it is not too far out in the periphery.
Again we ask, how does the classifier encoded in the central location get shifted? One
possibility is that the classifier is learned separately at each location—the appropriate
connections are modified at each location in the system using training data presented
at that location. This is not a viable solution, because we can very well learn an object

233
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model or a classifier at one location and scale and then recognize it anywhere else in
the scene.

Both the sparse-detection models and the recognition algorithms described in the
previous chapters are based on simple computations in terms of simple binary local
features. In this chapter, these ingredients will be used to construct a parallel system
able to overcome the difficulties described above. The system will integrate learning of
individual object models for detection, learning of classifiers, and the implementation
of detection and recognition over the entire visual scene. Neurons and their synaptic
connections are modeled at a very simplistic level, avoiding the detailed complexities
of their operation; however, the entire system does offer a “global” hypothesis as
to how the visual system learns objects and detects them and how different object
classes are recognized. After describing this network architecture, some analogies to
the architecture of the biological visual system will be discussed.

11.1 Basic Network Architecture

11.1.1 Neurons and Synapses

The building block of the model is a binary neuron v receiving input from binary
neurons ui through directed synapses with efficacies Ji j , as illustrated in figure 11.1.
The input connections from the neurons ui are called afferent connections of v j . Each
neuron can either be on or off, denoted 1 and 0, respectively, and has an associated
threshold θ . The neuron is on if the local field of the neuron, namely, the weighted

�j � 1[� Ji j ui � �j]
k
i�1

u1
J1j

Jkj

J2j
u2

uk

Figure 11.1 k presynaptic units feeding into v. The output of all units is binary 0/1. The
output of v j is obtained by taking the thresholded sum of the output of the units ui .
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sum of its inputs, is above the threshold θ . Specifically,

v j =
{

1 if
∑k

i=1 ui Ji j > θ

0 Otherwise
(11.1)

The local field h j of the neuron j is defined as

h j =
k∑

i=1

ui Ji j (11.2)

11.1.2 Layer Connections

The network architecture has the form of layers of neurons feeding into other layers.
Different neurons can have different thresholds; however, in order to maintain the
simplicity of the system, neurons of the same layer all have the same threshold. In the
material presented below, there are no connections within a layer—known as recurrent
connections. Such connections are a crucial component of the real neural system and
have a very important role to play in stabilizing the system and enabling consistent
memory recovery, but they are beyond the scope of this chapter. Material on recurrent
mechanisms can be found in Amit (1989) and Brunel, Carusi, and Fusi (1998).

In figure 11.2, we see a schematic diagram of a number of layers with connections
between them. The arrows represent synaptic connections and indicate the direction
in which information is flowing. Given two layers, A and B, we denote by A → B

C

B

A

�C

JBC

JAB

�B

Figure 11.2 A schematic diagram of layers of neurons feeding into other layers. The efficacies
of A → B synapses are all fixed at J AB , and efficacies of B → C synapses are all J BC . Neuron
thresholds in B are all θB and in C are all θC .
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synapses, those directed from layer A to B. We will also assume that the maximal
synaptic efficacy for A → B synapses is constant at J AB .

Input presented at some point in the system—for example, layer A in figure 11.2,
is assumed to propagate in an orderly fashion from layer to layer one step at a time.
This is a gross oversimplification, because the actual dynamics of a neural system
are much more complex and chaotic, with neurons typically firing asynchronously at
random times.

11.1.3 Visual Input: Edges and Edge Arrangements

The visual input layers are organized retinotopically, meaning that they form a two-
dimensional grid corresponding to the entire image lattice L . These layers will consist
of coarse-oriented edge detectors of the same type described in chapters 5 and 6. For
any retinotopic layer B, we write B(x) = 1/0 according to whether the unit in B
corresponding to location x ∈ L is on or off. We thus have eight retinotopic layers
Ee, e = 1, . . . , 8, where a unit Ee(x) = 1 if an edge of type e is found at location x
in the image.

The next system of layers will be wired to compute the locations of all N = 256 two-
edge arrangements consisting of a center edge and one additional edge, as described
in section 6.4. This particular collection of simple two-edge arrangements was also
used as input to the classification trees in chapter 9. Let R = {R1, . . . , Rm} be the
collection of regions used to define the edge arrangements (see section 6.4). For each
edge type e, define a system of retinotopic layers Ce,k, k = 1, . . . , m. A unit x ∈ Ce,k

receives input from the region x + Rk in Ee. It is on (i.e., Ce,k(x) = 1) if any unit in
x + Rk is on in Ee, namely, if

max
y∈x+Rk

Ee(y) = 1

Let the synaptic efficacies between layers E and C all be of value J EC , and let the
threshold of all neurons in C be θC = J EC − ε. This implies that input from only one
presynaptic neuron is sufficient to activate the neuron in C .

The two-edge local features are computed in retinotopic layers Fα, α = 1, . . . , N .
Each feature α is defined by a triple (e, e′, Rk), where e denotes the type of the center
edge and e′ the second edge, which is required to be present somewhere in the region
Rk relative to the location of e. Each x ∈ Fα receives input from x ∈ Ee and from
x ∈ Ce′,k and is on only if both are on,

Fα(x) = min(Ee(x), Ce′,k(x))

Let J E F = J C F = J , and for the neurons in the F layers, set the threshold to
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C1,k

C4,k

E1

F1

C1,2

C1,1

C4,2

C4,1

E4

F�

FN

x � R1   x � R2

Wedges representing
region of influence
in E-layer.

Figure 11.3 Retinotopic layers for detecting two-edge arrangements. Four E layers detect
edge locations. For each Ee layer there is a Ce,k corresponding to each Rk, k = 1, . . . , m. All
in all 4 × m − C layers. There is an F layer for each local feature. For feature α = (4, 1, R1)

each location x in the Fα layer receives input from the same location x in C1,1 and in E4.

θF = 2J − ε. In this case, two presynaptic neurons need to be on for the unit in
the F layer to be on. The full system of E, C , and F layers is shown in figure 11.3.

11.2 Hebbian Learning

The prevailing assumption regarding synaptic modification, formulated in Hebb
(1949), is that it depends only on the state of the presynaptic neuron a and that of
the postsynaptic neuron b. There are many possible ways to implement this general
principle (see, for example, Hopfield 1982; Kohonen 1984; Amit 1989; Fusi and col-
leagues 2000). In the current context, we employ a simple version of the methods used
in Amit and Brunel (1995). Information learned by the system is coded exclusively in
internal states of the synapses denoted Sab, for a synapse connecting neurons a and b.
The activity of the two neurons produces modifications in the internal synaptic states
that then translates through a transfer function into the synaptic efficacy.
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If both neurons are on, synaptic potentiation occurs, namely, the internal state
increases by c+. If the presynaptic neuron is on but the postsynaptic neuron is off,
synaptic depression occurs, namely, the internal state decreases by c−. The values of
Sab are always restricted between 0 and Smax . This is written in compact form as

�Sab = c+uaub − c−ua(1 − ub), if 0 ≤ S + �Sab ≤ Smax (11.3)

otherwise, �Sab = 0.
The synaptic efficacies are simple functions of this internal state—that is, Jab =

J (Sab) where

J (S) =





0 for S ≤ L
S − L
H − L J AB for L < S < H

J AB for S ≥ H

(11.4)

for some positive L ≤ H and J AB , which is the maximal value of the efficacy of a
synapse connecting two layers A and B. If H = L , the synaptic efficacies are binary
with values 0 and J AB only. If L < H , there is a ramp between the low value 0 and
the high value J AB .

11.3 Learning an Object Model

Images from a training set for a particular object class are now presented to the system,
registered to the reference grid G. Think of G as a subgrid placed at the center of the
image grid L . Those parts of the F layers corresponding to the region G feed directly
into a module M . This component of the network is no longer assumed to be retino-
topic and is therefore called a module. Each unit in M receives input from one unit in
the G subregion of the F layers. Thus M has a unit for each pair consisting of local
feature α and a location z ∈ G, namely, N × |G| units. In our particular example,
we will be using a 32 × 32 reference grid and 256 two-edge features so that the
number of units in M is NM = 262, 144. A unit m = (α, z) ∈ M is on if Fα(z) = 1.

Also feeding into M is an “abstract” module A that we use to code object classes.
For each class c, there is a class subset Ac of A, which is randomly selected, of fixed
proportion PA. The set Ac is used to code for class c. While the system is learning the
model for class c, there is some hidden “teacher” that is able to activate the subset Ac

through channels outside the visual system. Each unit in M receives input from some
random collection of units in A, of proportion PAM . We place random connections
because these modules are not retinotopically organized, and there is no preference
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A

Ac

Activated features

M

Figure 11.4 (Left) Learning the object model. Ac units are activated at the same time data
from class c is presented to F and replicated in M . Dark solid arrows: potentiating synapses
(pre- and postsynaptic neurons on.) Dark dashed arrows: depressing synapses (presynaptic
neuron on, postsynaptic neuron off.) Dotted arrows: no change in synaptic state. (Right) An
object model learned for faces using two-edge features.

for any particular connection. During training, the local features from a registered
image of class c are computed in F and the corresponding units are turned on in M .
At the same time, the units in Ac are turned on in A (figure 11.4).

Let m = (α, z) be an activated unit in M . About PA · PAM · |A| units a ∈ Ac are
feeding into m and all are on. The synaptic state Sam from each such unit is increased
by c+, as prescribed in equation 11.3. The synaptic state of any synapse connecting
a unit a ∈ Ac to a unit m ∈ M , which is not on, is decreased by c− (figure 11.4).
As examples of objects of class c are presented, the internal state of each synapse,
connecting a unit a ∈ Ac to some unit m ∈ M , is performing a random walk. The
mean increment of this walk is given by

δam = c+ pm,c − c−(1 − pm,c)

where

pm,c = P(Fα(z) = 1 | Y = c)

is the probability of feature α occurring at location z for object class c. Let σ = c−/c+,
then, after a large number of presentations, for those units m with

pm,c

1 − pm,c
> σ, or pm,c >

σ

1 + σ

.= ρ (11.5)

The synaptic state Sam will tend to have a value closer to Smax , otherwise, the synaptic
state will have a lower value closer to 0. If the efficacies are binary, it is possible to set
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the value of L = H in equation 11.4 in such a way that when pm,c > ρ, the synapse
Jam will be enabled with high probability. This system is learning an object model as
prescribed in the learning stage of the sparse model described in section 6.4. For each
training image, all two-edge arrangements are computed and detected at all locations
on the reference grid. Those above some probability are recorded as part of the model.
This learning mechanism is schematically described in figure 11.4. The efficacy J AM

is set so that the input into a unit m from afferent units in Ac is above threshold only
if most of these units are on. Thus we take J AM ∼ (θM − ε)/(PA · PAM · |A|), for
some small ε > 0.

We have already defined the visual low-level input obtained in the layers of oriented
edges Ee. High-level input, telling the system which object to look for, is given through
external activation of a particular subset Ac, which in turn, after training, will cause
the activation of the elements mi = (αi , zi ), i = 1, . . . , nc, belonging to the model
for class c. Ultimately, this evoked model will drive a detection system that is capable
of applying the model at every location in the image. This is described in section 11.5.
On the right panel of figure 11.4, we show a model based on two-edge features trained
on the face data. A schematic diagram showing the connections between A, M, F ,
and E is shown in figure 11.5.

E

F

M W

A

G

{

Figure 11.5 Network architecture. E layers—oriented edge detection on visual input. The
two-edge arrangements are computed in the F layers. The center part corresponding to the
reference grid G is replicated in the M and W modules. The M module receives input from
the “abstract” A module. The A → M synapses are used to learn object models. A receives
input from W and the W → A synapses are used to learn classifiers.
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In the sequel, it will be important that the same number of features/location pairs
mi are activated for each object model. However, different object classes may have
different numbers of activated model units, corresponding to feature-location pairs
m with probability pm,c > ρ. If all models are expected to have a fixed number n of
features, using inhibitory units that receive input from the M layer and feed back into
it, it is possible to ensure that only a random subset of size n of the total collection of
nc units remains active. We will not describe the details of such a mechanism here,
because it requires introducing some real dynamics into the system.

11.4 Learning Classifiers

The previous section presented a mechanism for learning object models by activating
the units Ac at the same time that examples from class c are presented at the reference
grid. The two-edge arrangements in the central area of the F layers are computed and
activate the corresponding units in M . Now we turn to the problem of recognition or
classification, which involves discriminating between different object classes.

While the object models are being learned, the same visual information is copied
from the F layers into another module W, similar to M , which again has a unit (α, z)
for every feature/location pair (i.e., N ×|G| units). A unit w = (α, z) is on if any unit
in some neighborhood of Ns(z) of z in Fα is on. The radius s of the neighborhood
determines the degree of “spreading,” which was introduced in chapter 9 and is
important to ensure geometric invariance of recognition over local deformations and
some range of linear transformations. The W module is also connected to A, but now
the synapses are directed from W into A (see figure 11.5). Each neuron in A receives
connections from a random subset of proportion PW A in W .

11.4.1 Hebbian Learning

When an image from class c is presented in the reference grid, and the neurons in
Ac are activated, those synapses connecting activated neurons in W to neurons in
Ac are potentiated. If w corresponds to a high probability unit for class c, those
synapses connecting w to units in Ac will all tend to have a high internal state after
several presentations of samples from class c. When an object from another class d
is presented to the system, a different subset Ad is activated in module A. If w

also corresponds to a high probability unit in class d it will tend to be on during
presentations of class d , but the corresponding units in Ac will be off. This is precisely
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the setting in which the synapses connecting W to elements in Ac get depressed—that
is, the internal state decreases.

For each unit w = (α, z), let pw,c denote the probability of feature α in the neigh-
borhood of z on class c

pw,c = P
(

max
y∈Ns (z)

Fα(y) = 1 | Y = c
)

We introduce an additional quantity qw,c, which is the probability of feature α at
location z on the set of images not of class c

qw,c = P
(

max
y∈Ns (z)

Fα(y) = 1 | Y �= c
)

Let P(c), c = 1, . . . , K denote the prior distribution on object classes. Finally, let

p̃w,c
.= pw,c P(c), q̃w,c

.= qw,c(1 − P(c)) ρw,c
.= p̃w,c

q̃w,c
(11.6)

The mean synaptic change for a synapse connecting a unit w to a unit a ∈ Ac is given
by

δSwa = c+ p̃w,c − c−q̃w,c

With a large number of training examples for each class, Swa will move toward one
of the two reflecting barriers 0 or Smax according to whether the probability ratio

ρw,c > σ = c−
c+

(11.7)

or not. The resulting synaptic efficacies will then be either 0 or J W A, respectively.
This is in contrast to the situation for A → M synapses, where the only relevant
information is the probability pm,c (except for the case where a ∈ Ac ∩ Ad , which
we ignore).

After learning is completed, presenting an image from class c at the reference grid
will bring about the activation of units in W , which in turn will cause the activation
of units in A. The goal is to have the number of units activated in the set Ac to be
larger than the number activated in other sets, thus signaling the presence of class c,
or the fact that the system has recognized the input as being from class c. The number
of units activated in each class subset Ad will depend on the value of J W A, on
the threshold θA of units in A, on the statistics p̃w,d , q̃w,d of the units w, and on
the particular image presented. In real data sets, the distribution of the quantities
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Figure 11.6 pq scatter plots for classes ‘0’ and ‘1’ in the NIST dataset. Each point corre-
sponds to one of the feature/location pairs = (α, z). The horizontal axis represents the on class
p-probability of the feature, and the vertical axis is the off class q-probability.

p̃w,c, q̃w,c, w ∈ W , and hence of ρw,c, is highly variable among different classes. See,
for example, figure 11.6, where we show the 2D distribution of these pq probabilities
for classes “0” and “1” of the NIST data set with which we worked in chapter 9.

The ratio θA/J W A determines how many enabled units w ∈ W need to be on in
order to activate a unit in a ∈ Ac. These are, necessarily, units for which ρw,c > σ,

(defined in equation 11.7); otherwise, the efficacy Jwc = 0. As an example, take
θA/J W A

M = 10—that is, input from ten afferent units is sufficient to activate a unit in
A. Assume that in class c there are 64 out of 262,144 units satisfying ρw,c > σ . For
each unit in a ∈ A, let Wa be the set of afferent units of a and suppose that PW A = .5
so that Wa is half the size of W (i.e., |Wa| = 131,072). Because Wa is a random
subset, the expected number of units from Wa satisfying ρw,c > σ is 32 (one half of
64), and the corresponding synapses will have efficacy J W A. Assume that for each
such unit pw,c > .5. Then, upon presentation of an image of class c, the expected
number of these units that are activated is 16. Taking the various random fluctuations
into account, the actual number of activated units will be greater than 10, so that with
high probability, most units in Ac will be activated.

If, on the other hand, in class d there are only 32 features satisfying the inequality,
there is high chance that upon presentation of an image of class d, only a small number
of units of Ad will be activated. There is a significant probability that the number of
units activated in Ad will be less than the number activated in some other subset Ad ′ ,
leading to a high error rate for class d. Lowering σ in equation 11.7 will enable more
synapses from class d to have nonzero efficacy, but then units in Ac will tend to be
activated too easily. One solution is to adapt the threshold of the units in Ac to the
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particular statistics of class c. This, however, would require quite a wide range of
thresholds and violates our assumption that neurons in the same module have the
same threshold.

11.4.2 Field-Dependent Hebbian Learning

An alternative is to modify the learning rule to depend on the local field of the
postsynaptic neuron, which is recomputed for each training image. When the subset
Ac is activated together with the presentation of an image from class c, potentiation
of an afferent synapse occurs only if the local field ha , as defined in equation 11.2,
is below θ(1 + kp), where θ is the threshold of a and kp > 0. Formally, the internal
synaptic state is modified as follows.

�Swa =




c+, if ha < θ(1 + kp) and uw = 1, ua = 1
−c−, if uw = 1, ua = 0
0. otherwise

(11.8)

The transfer from internal synaptic state to synaptic efficacy, Jwa = J (Swa), needs
to be computed at every update step of training in order to calculate the local field
ha = ∑

Wa
Jwauw.

Assume that for some a ∈ Ac, at some stage of training, there are K afferent
units wk ∈ Wa, k = 1, . . . , K for which the internal state Swk ,a > H . The efficacies
of these synapses are at the maximum value J W A. If K = θ(1 + kp)/J W A, and if
the particular units wk, k = 1, . . . , K are activated by the current presented image
of class c, the field ha will be at least θ(1 + kp). This prevents the internal states
of any synapse feeding into a from increasing at this presentation, not only those at
high internal state. Other images of the same class c may not activate all the units
wk, k = 1, . . . , K . The resulting field on a could be smaller. For those units w that
are activated by such images, potentiation can occur on Swa (figure 11.7). In contrast
to regular Hebbian learning, this form of learning is not entirely local at the synaptic
level due to the dependence on the field of the neuron.

The main purpose of field constraints on synaptic potentiation is to ensure that after
training, the average field at a unit a ∈ Ac is at approximately the same level upon
presentation of an example of class c, irrespective of the specific class distribution of
feature probabilities.

For example, after field-dependent training is completed for the NIST database,
a certain distribution on the local field of units in A0 and A7 will be observed for
examples from the correct and incorrect class. This is illustrated in the left panel of
figure 11.8. The top panels show the distribution of the field for 0 and 7, respectively
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A

Activated features

W
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W

Activated features
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Figure 11.7 Training of classification network. (Top) Class c is presented. (Bottom) Class d is
presented. Activity on the same synapses is compared. Thin solid line arrows: nothing happens
in these synapses. Thick solid line arrows: potentiating synapses (the local field is not too
large.) Thick dashed arrows: local field at neuron is high (three incoming enabled synapses)
hence no potentiation, although both pre- and postsynaptic neurons are on. Thin dashed arrows:
depressing synapses, presynaptic neuron is on, postsynaptic neuron is off.

when the correct class is presented. The bottom two panels show the distributions for
the incorrect class. It is clear that the average fields are very similar for both cases. This
allows us to use a fixed threshold for all neurons in A. Note that the separation between
the correct and incorrect class distributions does not reflect on the classification rate
of the network as a whole, as will emerge from the discussion below. For comparison,
in the right panel of figure 11.8 we show the histograms of the fields when standard
Hebbian learning is employed, all else remaining the same. The large variation in
the location of these histograms between the two classes precludes the use of a fixed
threshold for both classes.

Field-Dependent Hebbian Learning and Feature Statistics

An interesting question is Which synapses does the field-dependent Hebbian learning
tend to enable? There is some form of competition over “synaptic resources” and if
there are many units w connected to a unit a ∈ Ac with a high value of ρw,c, not all
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‘zero’

Field dependent Hebbian learning Hebbian learning

‘seven’ ‘zero’ ‘seven’

Figure 11.8 (Left) Field dependent Hebbian learning. (Right) Hebbian learning. In each
panel the top two histograms are of fields at neurons belonging to class ‘0’ on the left, class
‘7’ on the right, when data points from the correct class are presented. The bottom row in each
panel shows histograms of fields at neurons belonging to class ‘0’, ‘7’ when data points from
the other classes are presented.

will be enabled. On the other hand, if there is only a small number of such units, the
learning rule will tend to employ more features with lower ratios. In all cases, those
synapses coming from units with a higher ρw,c have a higher chance of being enabled
after presentations of examples from class c. Those with higher on-class probability
pw,c may get potentiated sooner, but synapses with low pw,c but large ρw,c gradually
get potentiated as well.

If the W → A synapses are binary, the outcome of the potentiation rule can be
approximated quite well as follows: Sort all units according to their ρw,c ratio. Let
p(w),c denote the sorted probabilities on class c in decreasing order of ρ. Pick as many
features from the top of the sorted list as are necessary to obtain an expected field of
θ(1 + kp).

gc∑

(w)=1

J W A
m p(w),c ∼ θ(1 + kp) (11.9)

The number gc depends on the class c.
If the transfer function J (S) is not a simple step function but has a “ramp,” the situ-

ation is somewhat more complex. However, this allows the network greater flexibility
and the classification rates are better.
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11.4.3 Classification with Multiple Randomized Perceptrons

After training is completed, each unit a ∈ Ac has a number of afferent connections
(approximately gc as defined in equation 11.9) from the set Wa ⊂ W that have been
enabled. Due to the randomized connections from W to A, these subsets Wa are
different. Now each unit a ∈ Ac can be viewed as a simple classifier Pa , which
discriminates between class c and all the rest.

Pa =
{

1 if
∑

w∈Wa
Jwauw > θA

0 otherwise
(11.10)

In other words, unit a is a simple two-class linear classifier, also known as a perceptron
(see Minsky and Papert 1969; Duda and Hart 1973). It is a very simple and constrained
perceptron in that the weights on the synapses are all positive and bounded by J W A.
The classical perceptron can have negative weights on the connections. Because there
are many units in Ac, and because Wa is selected randomly, we have produced a large
number of such simple classifiers with different sets of enabled synapses.

Visual input is presented at the reference grid and activates units in the W module
through the E and F layers. The W layer then causes certain units in A to be acti-
vated. Classification is represented by the set Ac, with the largest number of activated
neurons—namely, the class that received the most votes from its set of perceptrons.

This classifier, based on multiple randomized perceptrons that are aggregated by
voting, is based on the same principle that led to the production of multiple random-
ized trees in chapter 9. The difference is that each of the classifiers employed here
distinguishes only between one class and all other classes joined together. This ag-
gregation of simple classifiers yields surprisingly good results, given the limitations
imposed on each of the individual classifiers. For example, on the NIST data set,
with 10,000 training samples, a network with 3,000 neurons in the A layer, taking
Ac to be of size 300, and PW A = .2, J W A = 10, θA = 100, and in equation 11.8,
kp = .2, c+ = 4, and c− = 1, the classification rate is higher than 94%. If several
such networks are used with a simple boosting procedure, we observe classification
rates of 97.4%. Even for the LATEX database, with 293 classes, such networks can
reach classification rates near 80%, which, although much less than that achieved
with trees, is still very encouraging. Note that currently there is no neural analogue
of the boosting procedure. For more details on the performance of such networks
and the incorporation of attractor dynamics in the A layer, see Amit and Mascaro
(2001).
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11.5 Detection

We now construct a network for implementing the first step of the counting detector
described in chapter 8. Recall that all features used in any object representation come
from a predetermined pool F of 256 features, and the image locations of each feature
in F are detected in the arrays Fα, α ∈ F . A location x in Fα is on if local feature α

is present at location x in the image.
When a particular class Ac is activated in A, the corresponding units mi =

(αi , zi ), i = 1, . . . , n of the model are activated in M . This is a result of the learning
procedure for the object representation. Step I of the counting detector described in
chapter 8 involved counting at each location x ∈ L how many of the regions x + Bzi

contained an instance of the feature αi for i = 1, . . . , n (see section 8.1). To imple-
ment this in a network, we define, for each local feature array Fα, α ∈ F , a system
of retinotopic layers Qα,z indexed by the locations z in the reference grid G. A unit
at location x ∈ Qα,z receives input from the region x + Bz in Fα and is responsible
for checking whether feature α is present in x + Bz .

For each unit m = (α, z) in M there is a corresponding Qα,z array. In order for
x ∈ Qα,z to be activated, both m = (α, z) ∈ M must be on and at least one unit in the
region x + Bz in Fα . Thus the model evoked in M primes the appropriate Qα,z layers
to a point where they could be activated if the appropriate input comes from below
(i.e., the Fα layer). In terms of synaptic efficacies, this can be achieved by having a
very strong connection J M Q = θ − δ from m = (α, z) to each unit in Qα,z but very
weak connections J F Q of order δ such that |Bz|δ < θ . Input from the region x + Bz

in Fα alone cannot activate x ∈ Qα,z . It is necessary for Qα,z to also receive input
from m = (α, z). This form of “priming” is rather unrealistic because it assumes a
very strong input from one unit m ∈ M to an entire Q layer of units. One solution
is to have a population of units corresponding to each (α, z) ∈ M that collectively
increases the input to all units in Qα,z . The system of Q layers sum into a retinotopic
detection layer S. A unit at location x ∈ S receives input from all Qα,z arrays at
location x , and is on if
∑

α∈F

∑

z∈G

Qα,z(x) ≥ θS

where θS = τ is the threshold for step I of the counting detector. Because the only
units active in the Q layers are those corresponding to a count for the specific sparse
model activated in M , the active units in the S layer are precisely those locations
detected by step I of the counting detector.
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Note that if we traverse the Qα,z layers at a fixed location x , those units that are
primed by input from M constitute a shifted copy of the object model to the region
x + G. Thus the Q layers are the means by which the model learned in the central M
module gets shifted to all locations. Because the detector is a simple thresholded sum
with uniform weights, all that needs to be “shifted” is the information on the features
and their relative locations, and as we see, this can be achieved by a fixed wiring. No
connections need to be changed. If the detector was more complex, even involving a
weighted sum, it is not at all clear how the weights in the sum could be shifted in a
simple and transparent manner.

This detection network is described in figure 11.9. This is a clear example of
location selection driven by top-down flow of information. If a unique location needs

S

A M
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4 local features
at 4 locations.

Wedges-
region of influence
in F-layer.

Q�1,z

Q�1,z1
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Figure 11.9 Detection network: The sparse model is composed of four features at four lo-
cations. Neurons of class c are evoked in the A module and turn on the model of class c in
M . Each feature/location (α, z) ∈ M pair provides input to all units in the corresponding Qα,z

layer (thick lines). The locations of the feature detections in the F layers, are shown as dots.
They provide input to regions in the Q layers shown as double thick lines. At least three local
features need to be found for a detection. Each x ∈ S sums all inputs Qα,z(x) and is on if
this sum is above a threshold τ . In this example the fourth feature does not contribute to the
detection—it is not present in the correct location.
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to be selected, say, for the next saccade (eye movement), then picking x ∈ S with
the highest sum seems a natural choice and can be achieved through competitive
mechanisms within S using recurrent connections.

11.6 Gating and Off-Center Recognition

The visual system is able to recognize objects that are not present in the center of
the visual field. So far, our recognition scheme assumed that the data was present
in region G, located at the center of the F layers, and fed directly into W . We
now introduce an intermediate system of layers between F and W whose role is to
translate data from subregions of the size of the reference grid to the center. The main
assumption is that all the information needed for recognition is stored in the synaptic
connections between W and A and cannot be physically transferred to other regions
of the image lattice.

For every possible location y ∈ L , define a layer Uy of units corresponding to
feature/location pairs (α, z), α ∈ F, z ∈ G, as in W . A unit (α, z) ∈ Uy receives
input from the neighborhood Ns(z + y) in Fα . Each of the Uy layers also receives
input from the corresponding unit y in the detection layer S. The unit (α, z) ∈ Uy is
on if any of the units in a neighborhood Ns(z + y) of z + y is on in Fα , so that Uy

replicates the information in the F layers, in a window the size of the reference grid
centered at y.

The input to W no longer arrives directly from F . Rather, we set w = (α, z) ∈ W
to be on if the unit (α, z) is on in any of the Uy layers. Thus the activity in W at (α, z)
is the union of activities of (α, z) in all Uy layers. In the absence of any gating of
activity in the U system, a complex image will generate a large amount of incoherent
activity in W , because each unit (α, z) ∈ W is on if the corresponding unit is on in
any of the Uy layers, it is on if feature α is present anywhere in the visual field.

Only when a particular location is selected for attention, namely, a particular unit in
S is activated, does order emerge. If a particular location y is activated in the detection
layer S, there is an increase in input to Uy through priming mechanisms similar to
those suggested for the Q layers. At the same time, any activity in S will activate a
pool of inhibitory neurons that feeds into the entire system of U layers. This inhibitory
input weakens the input to all neurons in U , and the only ones surviving with inputs
above threshold are the units in Uy , corresponding to the selected location, which also
received input from the F layer. We will not describe the details of such mechanisms
but refer the reader to Amit and Brunel (1997) and Mascaro and Amit (1999), where
inhibitory units are employed to achieve similar results.
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Figure 11.10 The translation and gating mechanism. Each region G + y is replicated in the
layer Uy , which also receives input from y ∈ S. The W module takes in all the activity in
the U layers. y′—selected location in S, primes Uy′ and suppresses the other U layers. The
activity in W is then a copy of Uy′ . The system of Q layers is shown as one line with the
arrows representing the direction of information flow. The F layers feed into the Q layers.
The object model in M primes Q, and the detected location y′ in S is obtained by summing
and thresholding the Q layers at each location.

Now the only input into W is therefore a translation of the data in the neighborhood
of the activated location y ∈ S. This is a gating procedure that singles out a particular
spot in the scene for classification. Whereas the Q layers are primed by the detection
model in M in terms of which local features should be attended to, the U layers
are primed by S in terms of which location to attend to. This network is shown in
figure 11.10. Note that if y is close to y′, the windows G + y, G + y′ can have
significant overlaps, hence the need for replication. Otherwise, the priming could
occur directly in the F layers.

The location y in S can be selected through the detection process described earlier,
which is initiated with a top-down flow of information through the model evoked in
M . As discussed in chapter 10, this may be a coarse model representing an object
cluster, and further classification is needed. Once W is activated by the translated
data from Uy , the connections from W to A produce a classification of the data.
This is essentially equivalent to the detection and classification scheme proposed in
chapter 10.

Alternatively, the selected location in S can be the outcome of very primitive
bottom-up processing. For example, if only one object is present in the scene, its
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location pops out easily as a “blob” at very low resolution and perhaps there is a
separate mechanism whereby S gets activated by such simple blob detections, as
suggested in Olshausen, Anderson, and Van Essen (1993). During learning, only one
example of the object is presented in the image at each presentation. This simple
form of bottom-up selection provides a mechanism whereby the information gets
properly translated into W . Because only one object is present in the scene, there is
no ambiguity. Another mechanism to overcome ambiguity during the learning phase
is motion. If the learned object is moving against a static background, again, a simple
mechanism is able to detect the location of interest.

11.7 Biological Analogies

The system described above provides a possible answer to the main questions posed at
the outset. Learning is achieved in a central module. The object models are simple lists
of binary features at particular locations on the reference grid. This allows for simple
mechanisms for transmitting model information to the entire field of view. Those units
coding for the features appropriately shifted are primed and detection is achieved by
simple counting at the S layer. Implicitly, we have achieved the implementation of a
centrally stored classifier (object/nonobject) at every place in the scene, because all it
requires is counting and thresholding. It would be very hard to do so for more-complex
types of classifiers.

Recognition is achieved by selecting a particular location for processing and trans-
lating the data to the central recognition module. One could argue that detection can
also be achieved by simply shifting every reference grid window to the center and
classifying object/nonobject. This would be prohibitive in time, because the windows
would have to be processed sequentially, whereas detection occurs very fast. The sys-
tem also has interesting analogies to the biological visual system, which we describe
below.

11.7.1 Labeling the Layers

Analogies can be drawn between the layers defined in the network and existing layers
of the visual system. Edge-detector layers Ee, e = 1, . . . , 8 correspond to simple
orientation-selective cells in layer V1. As noted in the Introduction, these layers
represent a schematic abstraction of the information provided by the biological cells.
However, the empirical success of the algorithm on real images indicates that not
much more information is needed for the task of detection and recognition.
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The Ce,z layers correspond to complex orientation-selective cells in layer V1. One
could imagine that all cells corresponding to a fixed-edge type e and fixed-image
location x are arranged in a cortical column. The only difference as one proceeds
down the column is the region over which spreading (or-ing) is performed, namely, the
receptive field. In other words, the units in a column are indexed by the displacement
region Rk . Indeed, any report on vertical electrode probings in V1, in which orientation
selectivity is constant, will show a variation in the displacement of the receptive fields
(see Hubel 1988; Zeki 1993).

The local-feature layers Fα correspond to cells in layer V2 that respond to more-
complex structures, as reported in von der Heydt (1995) and Hedgé and Van Essen
(2000). The Q and the U layers may correspond to layer V4 cells. These have much
larger receptive fields, and the variation of the location of these fields as one proceeds
down a column is much more pronounced than in V1 or V2—it is on the order of the
size of the reference grid.

Alternatively, it may be that the Q and U layers are within V2. Without a hypothesis
on the particular shifting function of the neurons in these layers, one would not be able
to distinguish the behavior of Q- or U -layer neurons from F-layer neurons. They all
respond to more-complex features, perhaps with some differences in the size of the re-
ceptive field. The difference would then be in terms of their projections to higher levels
of the system. Under this hypothesis, V4 is simply a collection of even-more-complex
features, perhaps generic parts such as the “loop” encountered in chapter 10. These
are hardwired retinotopically because they are useful in constructing object models
and classifiers. Furthermore, associated Q and U layers exist within V4 as well.

11.7.2 Learning

Hebbian learning is the dominant paradigm in the neural network literature (see Hebb
1949; Hopfield 1982; Amit 1989; Oja 1989; and Durtewitz, Seamans, and Sejnowski
2000). The idea that synaptic potentiation is modulated as a function of the local
field or firing rate of the postsynaptic neuron is still speculative, although some form
of regulation of synaptic activity as a function of the postsynaptic neural activity is
reported in Abbott and Nelson (2000). The attractive aspect of the simple classification
network described above, together with the field-dependent Hebbian learning rule,
is that real data can actually be successfully classified with such a system. High
classification rates on character recognition have been achieved with two-layer feed-
forward networks LeCun and colleagues (1998), but the training procedure for such
networks is not local and depends on the optimization of a global function of all the
synaptic weights.
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The “abstract” module A, which codes for the classes, could well be in parts of the
cortex that are not directly involved in processing visual input, or it could be present
in higher levels of inferotemporal cortex (IT). It could fit in a location that integrates
inputs from diverse sensory modules, such as prefrontal cortex, or receive input from
such a location. The external activation of the units corresponding to a class, during
training, could be enabled by a nonvisual stimulus that is well recognized. This can
be viewed in the context of reward-type stimuli, arriving from some other pathway
(auditory, olfactory, tactile), as described in Rolls (2000), potentiating cues described
in Levenex and Schenk (1997), or mnemonic hooks introduced in Atkinson (1975).

11.7.3 Interaction Between Bottom-Up Processing and Top-Down
Information Flow

Top-down and bottom-up processing are explicitly modeled. Bottom-up processing
is constantly occurring in the simple cell arrays Ee, which feed into the complex cell
arrays Ce,z , which in turn feed into the F-V2 type arrays. The priming from the M
module or from the S layer determines which components of the data flowing up from
the bottom will be processed at higher stages. The object class that is evoked in the
main memory module A activates the object representation in M and this determines
which of the Q arrays will have enhanced activity toward their summation into S.
Thus the final determination of the candidate locations is given by an interaction
of the bottom-up processing and top-down information flow. The active location in
the S layer determines which data flows from the U layers to the W module to be
ultimately classified in the A module.

11.7.4 Gating and Invariant Detection

The summation array S serves as a gating mechanism for visual selection through
its input into the U layers. This could provide a model for the somewhat puzzling
behavior of IT neurons in delay match to sample (DMS) experiments (see Chelazzi
and colleagues 1993; Desimone and colleagues 1995). Two objects are selected and
neurons in IT are identified that respond to the first and not to the second and vice
versa. The subject is then presented with one of the two objects as a target to be
detected—the sample. After a delay period, an image with both objects is displayed,
both displaced from the center. The subject is supposed to saccade to the sample object.
After presentation of the test image, neurons responsive to both objects become active.
About 100 milliseconds later, and a few tens of milliseconds prior to the saccade, the
activity of the neurons selective for the nonsample object decays. Only those neurons
selective for the sample object remain active.
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At first glance, the fact that both types of neurons are active at the start could be
interpreted as the brain having very quickly recognized the two objects, as well as
having identified their location. In other words, two detection and recognition tasks
had already been performed. This explanation is quite unlikely if, as discussed above,
we preclude the possibility of many classifiers operating simultaneously in parallel
across the scene.

Alternatively, this experiment can be explained in terms of the network described
above. Assuming the recordings were made in A, at the outset there is no gating,
and all information from all U layers flows into W. Sets of features characteristic of
the two objects, and probably many others, are activated and subsequently activate
quite a number of class populations in A. This activation is essentially meaningless
and conveys very little information to the higher processing centers of the brain.
However, once the object model, which was evoked in M at the sample presentation
stage, is detected through the S layer, the detected position gates the activity from
the U layers. Now the resulting activity in W comes from a particular window in the
field of view, which contains the target. The only activity persisting in A corresponds
to the subset coding for that object. This corresponds to the weakening of the activity
of the nonsample neurons in the DMS experiment. Indeed, this weakening signals that
the information conveyed by the A layer, IT in this context, has become meaningful
and represents recognition of the sample object.

11.8 Bibliographical Notes and Discussion

Detailed descriptions of the human and primate visual systems can be found in Hubel
(1988), Zeki (1993), and Tovee (1996). Recent physiological experiments on object
recognition and detection in primates are summarized in a number of reviews (see
Tanaka and colleagues 1991; Desimone and colleagues 1995; Desimone and Dyuncan
1995).

The detection and recognition networks described in this chapter were proposed
in Amit (2000) and Amit and Mascaro (2001). In the use of simple/complex layers,
there are important similarities with Fukushima (1986) and Fukushima and Wake
(1991). Indeed, in both papers, the role of or-ing in the complex cell layers as a
means of obtaining invariance is emphasized. However, there are major differences.
In the detection model presented here, training is only done for local features. The
global integration of local-level information is done by a fixed architecture, driven
by top-down flow of information. Therefore, features do not need to get more and
more complex, as in Fukushima and Wake (1991)—namely, there is no need for a
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long sequence of layers. Robust detection occurs directly in terms of the local feature
level that has only the oriented edge level below it. With large numbers of learned
complex features it is not clear how invariant detection can take place.

The ideas behind the translation mechanism in the U layers are very similar to
that of Olshausen, Anderson, and Van Essen (1993). Here, translation is simply done
through replication. By contrast, in Olshausen, Anderson, and Van Essen (1993), a
more complex mechanism is proposed involving control neurons that directly affect
synaptic connections and allow for an orderly translation of data directly from the
F layer to W . The proposal in Olshausen, Anderson, and Van Essen (1993) for
selecting a location for translation is limited to very low resolution “blob” detection.
This could be useful for direct bottom-up selection, but cannot accommodate top-
down selection due to a specific target object.

The network learning mechanism proposed above consists of an input module cod-
ing for feature/location pairs feeding into an “abstract” classification module. The
main activity during learning involves updating the synaptic weights of the connec-
tions between the input module and the classification module. Such simple networks
have recently been proposed both in Riesenhuber and Poggio (1999) and in Bartlett
and Sejnowski (1998). In the former, the classification module is a classical output
layer with individual neurons coding for different classes. This is insufficient for clas-
sification in relatively simple problems such as character recognition. Populations of
large numbers of perceptrons are essential.

In Riesenhuber and Poggio (1999), the input layer computes large range or-ing,
or MAX operations, of complex features that are in turn conjunctions of pairs of
“complex” edge-type features. In an attempt to achieve large range translation and
scale invariance, the range of or-ing is the entire central visual field, corresponding
more or less to the reference grid. This means that objects are recognized based solely
on the presence or absence of the features, entirely ignoring their relative locations.
With sufficiently complex features, this may well be possible, but then the combina-
torics of the number of necessary features appears overwhelming. It should be noted
that in the context of character recognition studied here, we find a significant drop in
classification rates when the range of or-ing or maximization is on the order of the
reference grid size—see, for example, the experiments reported in section 9.6 in the
context of classification trees. This trade-off between feature complexity, combina-
torics, and invariance is a crucial issue that has yet to be systematically investigated.

In the architecture proposed in Bartlett and Sejnowski (1998), the input features are
again edge filters. Training is semisupervised—not directly through the association
of certain neurons to a certain class, but through the sequential presentation of slowly
varying stimuli of the same class. Hebbian learning of temporal correlations is used
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to increase the weight of synapses, connecting units in a recurrent layer responding to
these consecutive stimuli. At the start of each class sequence, the temporal interaction
is suspended. This is a very appealing alternative form of supervision that employs the
fact that objects are often observed by slowly rotating them in space. This network
employs continuous valued neurons and synapses, which can in principle achieve
negative values, and learning is not really local and incremental. It would be interesting
to study whether field-dependent Hebbian learning can lead to similar results without
use of such global operations on the synaptic matrix.

The field-dependent learning rule is motivated on one hand by work on binary
synapses in Amit and Fusi (1994) and Mattia and Del Giudice (1999), where the
synapses are modified stochastically only as a function of the activity of the pre-
and postsynaptic neurons. Here, however, we have replaced the stochasticity of the
learning process with a continuous internal variable for the synapse. This is more
effective for neurons with a small number of afferent synapses. On the other hand,
there is a close connection to the work in Diederich and Opper (1987), where Hopfield-
type nets with positive and negative valued multistate synapses are modified using the
classical Hebbian update rule, but modification stops when the local field is above or
below certain thresholds. There exists ample evidence for local synaptic modification
as a function of the activities of pre- and postsynaptic neurons (Bliss and Collingridge
1993; Markram and colleagues 1997). However, at this point we can only speculate
whether this process can be somehow controlled by the activity of the postsynaptic
neuron.

The network described above is based on a fixed set of hardwired two-edge features.
In Amit (2000), it is shown how more-complex features can be used for detection.
These are no longer hardwired and are adapted to the detection task at hand. Again,
top-down priming plays a central role. In this context, it is operating at the lower level
of the C layers. The complex edge arrangements are detected in certain F layers.
These will be responding to different features, depending on the detection task at
hand and the models evoked in the M module.

The suggested architecture provides an explanation to a variety of physiological
experiments and also performs well on detection and recognition tasks involving
real data (i.e., detection of objects in gray-scale images, and classification of shapes
from a large number of classes). There are many aspects that may turn out to be
biologically impossible, such as the particular connections required between M and
Q or between S and U , or even whether U - and Q-type neurons exist. Yet it appears
to be a productive framework for formulating hypotheses on the mode of operation
of higher-level functions of the visual system.
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This chapter provides some information regarding the software and data sets that ac-
company this book. The important data structures as well as the most commonly used
parameters are described. More information can be found in the documentation writ-
ten in the source files and the script files. There is no guarantee attached to this software
(it is not too hard to make it crash), nor is any support to be expected. A certain level of
proficiency in C++ is essential to understand the program, and some experience with
Unix and an X11-based window manager are necessary to get things running smoothly.

12.1 Setting Things Up

The source code provided here will compile on Linux.
Download

detect.tgz

from

http://galton.uchicago.edu/~amit/book.

to a directory whose full path will be called base for further reference.
Type

tar xvfz detect.tgz.

The following must be set for things to work:

Set an environment variable $DETDIR to base.

In csh add the line

setenv DETDIR base

259
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to your .cshrc file.

In bash add the line

DETDIR=base

to your .bashrc file.

Add base/bin and base/bin/script to your path.

In csh add the line setenv PATH "$PATH:base/bin:/base/bin/script"

In bash add the line

PATH="$PATH:base/bin:/base/bin/script"

Add the bash shell program to your /bin directory. All the scripts are written in
bash and assume it is in directory /bin

In directory base you will now see several directories.

source. Contains the code with graphic options. cd into source and type
make

The program will compile and face will be written to base/bin

sourcenox. Contains the code with no graphic options. cd into sourcenox and
type
make

The program will compile and facenox will be written to base/bin

bin. Contains the compiled executables, face and facenox, and a subdirectory
scripts where all the script files written in bash are stored.

book. This directory has subdirectories corresponding to the chapters of the book
(chap1, chap2, . . . ), as well as a subdirectory data. Within each subdirectory cor-
responding to a particular chapter are parameter files that more or less reproduce
the figures in that chapter. Running these scripts is a good way to begin getting
acquainted with the program and the relevant parameters.

The subdirectories of data are the following.

– FACES. Contains a subdirectory train with three hundred 110 × 96 images of
faces from the Olivetti data set, ten images per person. These are used to train
the detectors. There is an additional directory test with hundred faces from the
same data set. The directory pgm contains a number of pgm images on which
detectors can be tested. The directories filt1, filt d2, filt from edges

contain different sparse models trained using different parameters.
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– HEART. Contains ultrasound images of heart ventricles in directories pat1,

pat2, pat3, and a couple of angiograms in directory ang.

– BRAIN. Contains two directories of axial MRI brain scans, train and test, as
well as a directory filt3 which contains a sparse model for these images and
a directory grmtch containing parameters for a sparse model of these scans for
detection with dynamic programming.

– LATEX. Contains a directory protos with the prototypes of all the 293 LATEX
symbols, and a subdirectory latex 0 with a sparse model for the symbol 0 as
well as a classifier for the hits of this detector (see chapter 10). Subdirectories
latex 1, latex 4, latex 7 contain models for the 1, 4 and the 7.

– ESCR. Contains a sparse model and various templates for the E used in
chapter 2—also, the classifier for hits of this detector on other script-style
symbols.

– CLIP. Contains a sparse model for the clip shown in chapter 8.

– CHESS. Contains the sparse model and classifiers for the chess pieces.

– NIST. Contains one set of classification trees trained on the NIST data set and
a small sample of 10,000 NIST digits for testing. The full data set is very large
but can be obtained upon request.

12.1.1 Running the Program

The program face can receive input from a parameter file, from the command line,
or from the parameter file and the command line. The general form for running face

from the command line is

face file par1=n1 par2=n2 ...

or

face par1=n1 par2=n2 ...

The parameter file, if used, must come first. Parameters set on the command line
override values set in the parameter file. Among the parameters, opt must be set to a
particular option that tells the program what routine to use.

If no graphics are needed, then facenox can be run the same way. The list of
parameters needed for each of the algorithms is detailed in section 12.4.

In each subdirectory of book,with a name corresponding to a chapter, are prepared
parameter files for the figures in that chapter. Type
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face f.par

on the command line to obtain the corresponding figure.

12.1.2 Graphics

The program will show results of the algorithms as they are computing, as well as
the final result, depending on parameter settings. Often the program will show one
or several windows and will not continue until prompted by the user. This is done
by typing c inside the active window which is highlighted by the window manager.
Typing q kills the window and the program. Typing nmagnifies the window to n times
the original size of the image.

12.2 Important Data Structures

In this section, we provide a brief summary of the important C++ templates and classes
used in the program. More details are to be found in the corresponding .h files. All
classes come with some I/O functions for reading, writing, and printing information.

12.2.1 Grid

The grid, defined in grid.h, is a template for arrays of all types. It contains
functions for allocating memory, accessing coordinates, copying, copying subarrays,
and so on; dgrid, igrid, ucgrid are particular instantiations of this template for
the types double, int, and unsigned char.

12.2.2 Image

The classimage, defined inimage.h, is a friend class toucgrid (unsigned character
grid). This class has various image-processing-type member functions.

The program reads in images from Images n files n = 0, 1, . . . , N . These files
contain up to 100 images. If N > 0, then all files for n < N contain exactly 100
images and the last one may contain less. Multiple images created in the program can
also be written in to such files. There is a function that takes a sequence of pgm images
called pic0.pgm, pic1.pgm,..., picN.pgm and translates them into Images n

files. The corresponding script is call pgmtoIm. Images are stored with 1 byte per
pixel, allowing for 256 gray-scale values. The only exception is the NIST data, which
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is stored with 1 bit per pixel. To view an image from such a data set, which is located
in directory IM, type

face opt=40 dataset=IM first=10 numdigits=30

Each image will appear, and you will need to type “c” in the window to proceed to
the next (see script viewim). To see a collection of images at once, type

face opt=41 dataset=IM first=10 numdigits=30 last=10 scale=32

This will put up the 30 images starting from the tenth, 10 images per row, each
taking up a 32 × 32 box. If viewing NIST data, add datadepth=1 to the command
line.

12.2.3 Viewport

The viewport, defined in viewport.h, manages the interface between the images
and the X11 graphics and has various graphics functions such as line, point, and text
drawing on images. It is used in conjunction with xobject, defined in xobject.h.
An image or ucgrid is attached to a viewport and then the viewport is displayed
with all the relevant information on points, lines, and so on. The display is
interactive; the window can be magnified by typing the magnification digit on the
window, q kills the entire process, c continues the program, r reverses the video.

12.2.4 Landmarks

The class landmarks, defined in landmark.h, is a class for storing locations of
detected local features of several types. The type is coded by an increasing index from
0, 1, 2, and so on. Functions are included to obtain the number of instances of each
type and the coordinates of each instance of each type. The landmark (without an s)
class is a structure used within the programs to record two coordinates and a type.
These are accumulated during the actual detection process. Then a member function
of landmarks called setup from lmarklist takes the array of landmark - s and
arranges them in one landmarks class. For the use of various training procedures,
landmarks for large numbers of images are stored in files Lands n, organized like
the Images n files in batches of 100. The member functions for reading and writing
landmarks from these files are provided. To dump the landmarks of an image, see
script dumplandmarks.
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12.2.5 Tree

The tree template is defined in tree.h and includes definitions needed to create
binary trees with quite general nodes. The main component is the treeiterator,

which has built-in functions for moving up and down the tree, creating children nodes,
and so forth. The information in each node, denoted data, is defined for particular
instantiations of this template, such as an ltatree defined in ltatree.h.

ltatree. LTA stands for local tag arrangement, where local tag refers to
any local feature such as an edge, a microimage code, ridge-detector, and so on. This
class is used to construct and store trees with relational and absolute arrangements
of local features, as described in chapter 9, as well as the local-edge arrangements.
The local-edge arrangements can be viewed as relational trees with only a small
number of yes answers, all the relations being with respect to the first edge, and
all edges constrained to be near the center edge.

Class ltadata is used for the data entry. The ltadata class codes for the
additional relational question asked at the current node using the question class,
it codes for the list of data points at the node while growing the tree and the
histogram of frequencies, also used for growing the tree. To view an ltatree, use
script dumpltatree.

carttree. Another tree example is carttree, defined in carttree.h. The
query at each node is simply a pair ( f, s), where f is a predictor index, and s is a
threshold for the value of the predictor. The query is whether X f > s. When using
binary local features, s = 0, and the size of the predictor vector is dx ·dy · N , where
dx, dy are the dimensions of the image, and N is the number of local features. The
class cartdata is where the information for simple cart-type questions (coordinate
and threshold) are stored as well as the list of data points and the histogram also
used in training. There is some duplication in that carttrees do exactly what
ltatrees with absolute arrangements do. For various reasons, the former are used
for postdetection classification: classifying one class against the rest of the world,
and then among several object classes. The latter is used in the experiments on
isolated object recognition. To view a carttree, use script dumpcarttree.

12.2.6 Detection

The detection class is defined in detection.h. The important data entries are the
scale, which records at which resolution the detection was found, and tripts, the
coordinates of the detection triangle; cartprobs, cartprobs2, and cartprobs3

are used to record the output from the various classification stages; counts is used
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to store the number of hits from the counting detector and other related information;
and locs is an igrid for storing the coordinates of the instantiation. The number of
points depends on the particular application.

12.3 Local Features

All routines for detecting binary local features in an image can be found in the file
edge.C. Below, we list the different types together with the relevant parameters and
how they can be computed and displayed.

12.3.1 Edges and Ridges

Edges and ridges are computed through the detectedges subroutine, which loops
through disjoint blocks of size EdgeSizeBlock in the image, calls a routine to find
all binary features in that block, sorts these detections according to some criterion,
and keeps the top EdgeNumberOfPixels. The final detected features are stored in
a landmarks structure. To view the edges on an image (say no. 3) in Image files in
directory IM, run

face parfile opt=53 dataset=IM showedges=1 first=3 last=4

with parfile set according to one of the parameter sets defined below. To create a
database of local features. Do

mkdir LF

face parfile opt=44 onlyedges=1 dataset=IM numdigits=num

landdir=LF

with parfile set according to one of the parameter sets defined below. See also script
getedges.

EdgeType=0. 0—detect edges defined in section 5.4 using find edge in block

subroutine. 1—Detect ridges with values on the ridge higher than outside. 2—values
on the ridge lower, (see section 4.1). Last two use find ridg in block subroutine.

EdgeNumberOfPixels=2. Keep the top two edges found in each disjoit block, in
terms of absolute value of the differences.

EdgeSizeBlock=2. Use disjoint 2 × 2 blocks.

EdgeRadius. The value of distance along ridge for comparisons, µa in section 4.1.

EdgeEpsilon=.03. Minimal edge threshold is 255 × .03
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edgeinc=1. Use all eight oriented edges. edgeinc=2, use only vertical and
horizontal.

primitiveedges=0. Use polarity-sensitive edges. primitiveedges=50, use po-
larity insensitive edges (so only four types: horizontal, vertical, and two diagonals).

EdgeGoodTests=5. Number of inequalities defining an edge (in equation 5.11) that
are satisfied is greater than 5. Total number is 6. Lower values make more-robust and
more-frequent edges.

12.3.2 Local Edge Arrangements—LTAs

Local edge arrangements are chosen through training for a particular object (see
below), or a fixed pool can be defined. The individual trees containing the information
for each of the local-edge arrangements are all stored in a file ltatrees in a directory
(say, treesgood). These arrangements are detected in the routine edges to ltas,

which is called from extract landmarks. The number of local-edge arrangements
is also stored in this file. To view the locations of local-edge arrangements on an
image (say, no. 3), do

face parfile opt=53 onlyedges=0 showltas=2 ltatreedir=treesgood

first=3 last=4

where parfile contains the parameter settings for the edge extraction, as described
in the previous section, which must precede the computation of local-edge arrange-
ments. The locations of each local-feature type are shown in sequence. Press c to
proceed. To create a database of local edge arrangements, do

mkdir LF

face parfile opt=44 onlyedges=0 merge=0 dataset=IM numdigits=num

landdir=LF ltatreedir=treesgood

If merge=1, the edge information is appended after the local feature information in
the landmarks structure. See script getedges.

12.3.3 Hardwired Edge Pairs

A special case is local-edge arrangements with only two edges and 8 possible boxes
defining the relative location of the second edge (as opposed to wedges). The advan-
tage of these is the speed of computation. All 256 are computed in one loop based on an
initial edge extraction, in detectpairs,which is called from extract landmarks.
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face parfile opt=53 onlyedges=0 ltausedepth=0 showltas=1

spread=1 EdgeRadius=2 first=3 last=4

spread—radius of the box, EdgeRadius—the distance of the box center from the
center edge of the arrangement. For storing the information in files, do

mkdir LF

face parfile opt=44 onlyedges=0 merge=0 dataset=IM numdigits=num

landdir=LF

See also script getedges.

12.3.4 Comparison Arrays

The comparison arrays defined in section 6.3 are computed in detect masks using
a file masks.asc that has the masks used by the current model and the minimal
thresholds for the -1 and +1 regions. The format for this file is defined through the
mask class in mask.h. The file directory is given in maskdir. Also in this directory
is a parameter file defining the graph to be used and the hard constraints on the angles
and lengths in the triangles composing the graph. The format for this file is defined
in the graph class in graph.h.

12.3.5 Microimage Codes

These are features used exclusively for recognition of binary images. (see
chapter 9). The training procedure is described below. The quantization tree is stored
in a carttree structure in a file called codes.tree. The microimage codes in the
image are computed in detecttags. To store the codes in Lands , codes.tree

must be in the current directory. Then do

mkdir LF

detecttags dataset=IM newlanddir=LF

12.4 Deformable Models

In each subsection is a list of the parameters used for a particular algorithm, some
possible values, a short description, and references to the notation used in the corre-
sponding chapter. Further information can be obtained in the documentation within
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each program. Each of these algorithms can either be run directly on an image, as
described in this section, or following a detection of the sparse model, as described
in the next section.

12.4.1 Deformable Contours

These parameters refer to the deformable-contour algorithms described in chapter 3.
The program file is defcont.C.

opt=113. Option number.

tempfile=snake.circ. File with a list of coordinates for model. If tempfile=""
then the program prompts the user to point out the curve by hand and writes it to
defcont.temp.

detfile=detout. File for writing out detection class with coordinates of final
curve in the locs entry.

dumpdetections=1. Dump the detection info to command line.

curve length=128. Length of curve to work with, can be larger or smaller than
model, in which case the program interpolates to the desired size.

dataset=IM. The directory containing the Images files.

inside=0. The average value of the inside µin ≥ 0. If inside = -1, the on-line
estimation of the parameters is enabled.

outside=.1. The average value outside µout.

dt scale factor=1. A scaling factor for the computed time step.

base=5. Wavelet basis to use in expanding curve—base=1—Haar, up to base=6—
smoothest.

numiters=10000. Number of iterations.

post=.3. Scaling of model curve.

minenergychange=.001. If change in coefficients is below this value, add more
coefficients for optimization or exit if at maximal number of coefficients.

FIRSTDIM=1. Initial number of coefficients updated N1, for each curve component.

LASTDIM=16. Final number of coefficients to update NA.

prior fac=0. Factor multiplying the prior term.

first=3. Index number of first image to run.

imrange=.2. For graphic purposes, reduces gray-value range of image display.
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basecol=10. Color of the curve, basecol=0—red, basecol=10—white.

displayinter=100. Display result every 100 iterations.

point1x=79. Initial points, if point1x=-1 (default), the user provides the initial
point by pointing with the mouse.

point1y=67.

12.4.2 Deformable Curves: Dynamic Programming

This algorithm is described in section 4.2. Only the simpler model of equation 4.9,
which involves only two parameters, po and pb, has been implemented. The program
file is curve dyna.C.

opt=112. Option number.

tempfile=dyna.escr. File name with coordinates of model curve. If
tempfile="", user is prompted to pick points on displayed image. When finished,
type c inside image. Points will be written to default file dyna.temp.

detfile=detout. File for writing out detection class with coordinates of final
curve in the locs entry.

dyna dis=2. Distance of comparison pixels in the orthogonal direction to the curve
for determining ridg-type features; µa in equation 4.1; νa is taken to be half µa .

prior angle=10. Factor on prior term penalizing changes in angle of segment rel-
ative to model curve; A in equation 4.10.

prior length=30. Factor on prior term penalizing changes in length; B in equa-
tion 4.10.

dyna regionsize=10. Radius of a square neighborhood around each pixel of model
curve. This is the radius of each of the Si neighborhoods (see section 4.2).

inside=.95. Probability of getting Xa = 1 for curve of angle a (i.e., po in equa-
tion 4.9).

outside=.05. Probability of getting Xa = 1 otherwise (i.e., pb in equation 4.9).

dataset=IM. Data set with images to process.

first=3. First image to process.

revvideo=0. Reverse video graphic display.

dumpdetections=3. How much information to dump on screen and show. If value
is 3, show each step of the dynamic programming. If value is 1, only show final result.
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imrange=.3. Gray-level value range.

basecol=10. Color for showing curve.

pixsize=2. Size of pixel in display.

point1x=43. Two initial points determining location, rotation, and scale of curve.

point1y=23.

point2x=43.

point2y=33.

12.4.3 Deformable Curves: Tree-Based Algorithm

This algorithm is described in section 4.3. The data structure needed for this algorithm
is very similar to the tree template, except it is ternary—three children for each
node—and is defined in curve tree.h. The algorithm is coded in curve tree.C.

opt=117. Option number.

dataset=IM. Directory with images.

inside=.7. Probability po of getting Xa = 1 on segment with angle a.

outside=.4. Probability pb of getting Xa = 1 otherwise.

LEN=10. Length of each arc.

ORTHLEN. Length orthogonal to arc for testing µa (same as dyna dis above).

deg=10. Degree of change allowed from one arc to the other (β).

ZSTAR=.999. Above which posterior to declare an arc on the curve and restart
algorithm.

mindepth=3. Minimum depth of arc with posterior above ZSTAR to allow reini-
tialization (the top arcs quickly reach a posterior of over ZSTAR and are not so
interesting).

numtrack=10. Number of times to reinitialize with high posterior arc.

numiters=10000. Maximal number of arc testings in each reinitialized run.

first=0. First image to process.

last=1. Last image to process.

pixsize=2. Image magnification.

imrange=.3. Gray-value range (imrange = 0) maximal range.

basecol=10. Color of curve.



amit-79020 book May 20, 2002 13:24

271 12.4 Deformable Models

point1x=43. Two initial points determining first arc. If any of these is negative, user
is prompted to provide initial two points.

point1y=98.

point2x=41.

point2y=112.

12.4.4 Deformable Images: Gaussian Data Model

This corresponds to the algorithm described in 5.3, based on the least-squares data
term and the linearized algorithm described in section 5.5. These are implemented in
defimage gaus.C. Only a wavelet expansion of the deformation is coded. Because
of this, the dimensions of the image need to be a power of 2. If they are not, the
program embeds the image in the smallest power of 2 larger than the dimensions.

opt=111. Option number.

tempdataset=TEMPIM. Data set with template.

tempnum=45 Template image number.

dataset=IM. Data set with images.

first=123. Data image number.

post=1. Factor multiplying data term.

prior fac=.3. Factor multiplying prior term. Relative weighting of prior on coef-
ficients λk is computed as in equation 5.6, with ρ = 2.

minenergychange=.01. Minimum total change in coefficients to increase dimen-
sion Na to Na+1 by factor of two or stop, if a = A.

linear elas=0. Regular deformation algorithm. linear elas=1 uses iterations of
linearization step described in section 5.5. Starts solving at FIRSTDIM and increases
dimension at each iteration.

FIRSTDIM=1. First level of coefficients to be updated. This is half of N1.

LASTDIM=8. Last level of coefficients to be updated. This is half of NA.

dt scale factor=1. Factor multiplying computed time step.

numiters=1200. Maximum number of iterations.

pixsize=4. Magnification

displayinter=100. Display result every 100 iterations.

arrow spacing=2. Spacing of arrows in display of displacement field.
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imrange=.2. Range of gray levels.

basecol=10. Color for displaying arrows.

12.4.5 Image Warping with Bernoulli Model

This implements the Bernoulli model for deformable images described in section 5.4.

Training

The probabilities of the edges on a reference grid of size DIMX by DIMY are saved
in a file edgetemps. The training is implemented in routine get edgetemps in
trainstat.C (see script getedgetemps).

opt=28.

DIMX=64. Dimensions of the reference grid to which the extracted local features are
registered.

DIMY=64.

point1x=25. Coordinates of three reference points p1, p2, p3, to which the anchor
points in each training image are mapped

point1y=32.

point2x=40.

point2y=32.

point3x=32.

point3y=46.

dataset=train. Data set with training images.

num=300. Number of training images in data set.

rt=.4. Downsampling ratio to apply to each image (this is the ratio used for the
faces).

onlyedges=1. Only use edge features. onlyedges=0 together with an ltatreedir
will extract edge arrangements and then register. Edge parameters are below.

EdgeEpsilon=.03.

edgeinc=1.

EdgeGootTests=4.

EdgeNumberOfPixels=2.



amit-79020 book May 20, 2002 13:24

273 12.4 Deformable Models

EdgeSizeBlock=1.

spread=1. Radius of box into which each detected edge is spread.

tempfile=edgetemps. File for writing out the frequencies.

showtriangles=1. Show images with the frequencies.

Detection

Implemented in defimage ber.C.

opt=115. Option number.

dataset=IM. Data set with face images of more or less the correct size (DIMX by
DIMY) with faces more or less centered so that the eyes are about 14 pixels apart.
Significant variation is tolerated.

tempfile=edgetemps. Name of probability map file produced in training.

minval=.3. Background edge probability. All areas where the edge probabilities pb

are less than minval are set to minval.

first=0. First image to process.

last=10. Last image to process.

eyex=32. Use these dimensions of the data around the middle point. Allows use of
smaller windows for matching.

eyey=32.

shift=5. Range of shifts (+/−) in brute-force search for optimal shift and scale.

lowscale=.6. Lower and upper bounds of scaling in brute-force search for optimal
scaling.

highscale=1.4.

spread=1. Amount of spread of detected edges in data.

dt scale factor=1. Factor multiplying computed time step for gradient-descent
stage.

minenergychange=.01. As in Gaussian model.

FIRSTDIM=1. First level of optimized coefficients. N1 = 2 × FIRSTDIM ×
FIRSTDIM

LASTDIM=4. Last level of optimized coefficient. NA = 2 × LASTDIM ×
LASTDIM

numiters=20. Number of iterations of gradient descent.
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prior fac=.01. Factor of prior term.

post=1. Factor of data term.

pixsize=1. Magnification.

displayinter=10. Display every 10 iterations.

imrange=0. Gray-level range.

basecol=10. Color for dots and lines.

12.5 Sparse Models

12.5.1 Dynamic Programming

There is no routine for identifying the comparison arrays and thresholds for the chosen
landmarks on the training sample. All we provide is an existing model that is encoded
in two files: masks.asc, containing the masks being used with the corresponding
thresholds, and tempfile, containing information on the graph and model locations.
The algorithm is implemented in sparse dyna.C. The corresponding scripts are to
be found in directory chap7 and the files in BRAIN/grmtch.

opt=116.

maskdir=grmtch. Directory where masks.asc is found as well as the tempfile.

usemasks=1. If set to 0—use ltas defined in ltatreedir

dataset=test. Images data set.

first=2. First image.

last=30. Last image.

ratio=.5. Downsampling ratio to apply to image.

pixsize=2.

dumpdetections=1. Show final result. 2—show each step in dynamic program-
ming. 3—show template and locations of local features.

tempfile=PRMla.asc. File containing graph information.

imrange=.3.

basecol=10.



amit-79020 book May 20, 2002 13:24

275 12.5 Sparse Models

12.5.2 Counting Detector—Running an Existing Detector

A trained detector stored in directory filt consists of some subdirectories and one
parameter file pars:

All edge parameters.

ltatree1x, ltatree1y, ltatree2x, ltatree2y, ltatree3x, ltatree3y—
coordinates of the anchor points.

hits, acchits. The thresholds τ and τe for steps I and II of the counting detector.

numcarts=20. Number of classification trees—object against false positives. 0—no
classification.

fnumcarts=20. Number of classification trees among detected classes. 0—no
classification.

numratios=6. Number of resolutions at which to run detector.

testrotations=1/0. Whether to estimate rotations.

boxcluster=5. How close are two detected triangles (3 reference points) for them
to be clustered.

ltatreedir=treesgood. Contains a file ltatrees with information regarding the
LTAs and their coordinates in the reference grid.

edgetreedir=treesedge. Contains a file ltatrees with information regarding
the edge model for step II. This model is used to adjust scale if parameter
edgesforscale=1. If edgesforscale=0 the LTAs are used to adjust for scale and
treesedge is not needed.

carttreedir=treescart. Contains classification trees to classify detections of
steps I and II as object or not-object. If numcarts=0, no classification is performed,
and this directory is not needed.

carttreedir=facecart. Contains classification trees to classify detections of
steps I and II among different classes. If fnumcarts=0, no classification is per-
formed, and this directory is not needed.

showtriangles=1. Show detection triangles; 2—show only vertices of triangle.

dumdetections=1. Print out some information as detection proceeds; 2—print out
all information on all detections, dump the detection structures.

If there is a list of pgm files in file image list and the detector parameters are in
directory filt run:

test pgm list image list filt first=3 last=20
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If the images are in a directory image data in Images format,

test imaged 3 20 filt

will run the detector on images 3–20.

12.5.3 Running a Deformable Model Initialized
with a Sparse-Model Detection

The parameter templatestyle, if greater than 0, determines which deformable
model is run. Depending on the model, the appropriate parameters (defined earlier)
must be included in the parameter file.

templatestyle=1. Apply deformable contour directly on image—the pose ap of
the detection is applied to the template contour to produce initial contour.

templatestyle=2. Apply deformable curve dynamic programming algorithm di-
rectly on image—the pose ap of the detection is applied to the template curve to
produce initial curve.

templatestyle=3, 4, 5, 6. The region of interest around the detection is regis-
tered to a reference grid. This reference grid could have different dimensions and
the reference points could be different from those of the sparse model. The dimen-
sions of the reference grid are set in defsizex, defsizey, and the three reference
points in the reference grid are given by defpoint1x, defpoint1y, defpoint2x,
defpoint2y, defpoint3x, defpoint3y. The detection triangle det.tripts is
mapped to these three points, determining the affine map for registration.

The registered image is then processed with a deformable model as follows:

templatestyle=3. Deformable image—Gaussian model.

templatestyle=4. Deformable image—Bernoulli model.

templatestyle=5. Deformable contour.

templatestyle=6. Deformable curve—dynamic programming.

12.6 Sparse Model—Counting Detector: Training

Here we describe how to train models for step I and step II of the counting detector
described in chapters 6 and 8.

Assume we are in directory object with numtr training images in directory
train, and numte training images of the object in directory test. These images
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are used to adjust the two thresholds τ and τa . In both directories, there is supposed
to be a coords file with the coordinates of the three anchor points for each image,
marked beforehand, three rows per image, two coordinates per row. The training
procedure is implemented with the script doitob. The parameters defining the edge
detection are set in doitob and can be changed. Also, two parameters defining the
wedges for the edge arrangements—numang=16 number of wedges. The angle of
each wedge is 360◦/numang (see section 6.4.); near=4 is the radius of the neighbor-
hood containing the wedges. The script doitob is run from the command line with
eight arguments—for example:

doitob 32 20 3 2 3 .5 1

1. Number of training data.

2. Number of LTAs to use in final model.

3. Complexity of edge arrangements, number of edges (nr ).

4. The features used for the classification trees of object against the false positives:
0—normalized and registered gray levels, 2—edges, 3—edge arrangements.

5. Size of disjoint blocks in which only one edge arrangement is chosen—typically,
3 × 3.

6. In each block, the highest frequency edge arrangement is found. It is taken only if
its probability is higher than objprop; ρ—in algorithm 6.1.

7. By what factor to downscale the training images before edge extraction.

8. If greater or equal to 0, the classification trees are made of this object class against
false positives obtained by the detector. Otherwise, classification trees are made
between the different class labels of the detections of the detector. The false posi-
tives for this step are found on images in directory ../trainall, which contains
training images from all object classes.

The steps in doitob are the following:

1. Write edge extraction parameters to pars.

2. Obtain three reference points either from user (written in newbasis) or by taking
averages of anchor points in training images.

3. Extract edges from data in train.

4. Register the edge locations to reference grid, anchor points get mapped to refer-
ence points; script—register edges.

5. Find high-probability edge locations (>objprop) and store them in treesedge/
ltatrees. Assume nume are found; script—choose edgelocs.
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6. Find high-probability edge arrangement locations (> objprop) and store them in
treesgood/ltatrees. Assume numl are found; script—make ltas.

7. Find thresholds for two steps of counting detector using test set. First find τ

by starting at τ=numl/2 and incrementing by one until a test point is missed.
The estimated τ is assigned to variable hits. Write hits to pars; script—
findhits.

8. Then with this τ find maximal τa for step II of counting detector in the same way.
Assigned to variable acchits. Write acchits to pars; script—findacchits.

9. Classification trees (optional). Script findnewp.
findnewp 0 cartstyle classlabel

The parameters inside findnewp are described in section 12.10.

(a) Extract detections from data set ../trainall, using parameter file pars. The
detection triangle is recorded in file detcoords. Each detection in an image is
reported in one line with eight numbers, two coordinates of three points, the image
number, and class number of that image. If no detections occur in the image, there
is a line with −1s and the image number. Several detections are possible in one
image.

(b) Loop over images of ../trainall, extract data (gray level, edges, or edge
arrangements), and register using affine map determined by detection triangle in
detcoords. Data is stored in file ftrraw.

(c) Read in data in ftrraw and train multiple randomized classification trees using
the carttree structure.
If these trees classify object against the rest of the world, set numcarts to number
of carttrees and write to pars. Store carttrees in directory treescart.
If these trees classify among detected object classes, set fnumcarts to number
of carttrees and store trees in directory facecart.

12.7 Example—LATEX

In directory LATEX, the subdirectory protos contains images of the 293 LATEX sym-
bols. Synthetic deformations of any number of these are obtained using the parameters
bellow; script—make train. These synthetic deformations also create a coords file,
mapping the three reference points marked on the prototype according to the generated
random map.
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opt=47.

dataset=protos.

ratio=1.0. What scaling to apply to each prototype.

first=0. First prototype to be deformed.

last=292. Last prototype to be deformed.

randomize=1. Produce random deformations.

rotate=.3. Sample uniformly from ±.3 radians (about 18◦). (0—do not rotate)

scale=3. Sample uniformly from log-scale ±(.5/3) giving approximately ±20%.
(0—do not scale)

skew=3. Sample uniformly from log-skew (ratio of x-scaling and y-scaling) ±(.5/3)

giving approximately ±20%. (0—do not skew)

numdigits=50. Number of random samples per prototype.

synthesize=1. Generate random nonlinear deformations. Using random Gaussian
wavelet coefficients with exponential decay in variances. (0—do not deform)

base=3. Daubechies wavelet basis to use, the coefficients for 2–6 are stored in the
program.

LASTDIM=4. 2 × LASTDIM × LASTDIM is the number of randomly generated co-
efficients to use in wavelet expansion.

latexdim. Dimension of image in which to put the randomly perturbed prototypes;
default is 32.

The images are written to the directory in which face is called. The above param-
eters would create fifty randomly deformed images for all 293 classes. These can be
stored in a directory trainall.

The script makedet is called to create a directory for a particular class, create train-
ing and test sets for this class, train the detector using doitob, and run the classifi-
cation on false positives obtained from the data set ../trainall using findnewp,

which is called from doitob.

makedet latex n n 32 20 3 2 3 .5 1.

The parameters to makedet are:

1. Name of directory that contains the object information.

2. Index number of prototype from protos to use.

3. Number of synthetic training data to produce.

4. Maximal number of local features to create in model.
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5. Complexity of local features (number of edges).

6. Type of features for the classification trees (0, 2, 3).

7. Size of disjoint regions in each of which at most one local feature is found.

8. Proportion of training data required to keep a local feature.

9. Scaling to apply to each training image before edge extraction.

The parameters determining the type of deformations to apply to create training and
test sets are written in the file makedet and can be changed.

The steps taken in makedet are the following. Assume directory name is object.

1. mkdir object. cd object.

2. Creates a train directory—cd to train; apply make train; cd back to object.

3. Creates a test directory—cd to test; applies make train; cds back to object.

4. Runs doitob with the parameters given to makedet.

12.8 Other Objects with Synthesized Training Sets

We outline the steps for making object models for a collection of objects where we
assume one image of each object is taken on a flat background. (This prevents training
to incorporate background information in the object model.)

1. Make a base directory objects.

mkdir objects

cd objects

2. Take images of objects such as the clip or the chess pieces shown in chapters 8 and
10. Convert to pic0.pgm, pic1.pgm,..., picN.pgm (assuming N objects).

3. Make a protos directory

mkdir protos

mv pic*.pgm protos

cd protos

4. Convert to Images format.

pgmtoIm numdigits=N
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5. Choose anchor points by clicking on three points in each prototype image with the
left mouse button. The coordinates of the three points get stored in coords.

face opt=40 numdigits=N dataset=./ >> coords

6. Go back to objects directory and make trainall directory.

cd..

and prepare a trainall directory with, say, 50 randomly deformed images of
each prototype:
mkdir trainall

cd trainall

make train 50 first=0 last=N latexdim=40 dataset=../protos

rotate=.3 skew=3

cd..

For parameters of random deformations, see above.

7. To make a model for object “n” with 32 training images:

makedet object n n 32 20 3 2 3 .5 1

12.9 Shape Recognition

In base/NIST there is a subdirectory trees with 100 classification trees trained on
the NIST data base with absolute arrangements. The directory test has 10,000 NIST
test images on which to try the trees.

face par.online

will classify the 10,000 images using the trees, computing the landmarks on the fly.
Similarly in base/LATEX/CLASS is a subdirectory with trees made with relational

arrangements. The data for testing can be made by going to subdirectory test and
running make-lands. The data is classified by returning to base/LATEX/CLASS and
running

face par.rel

To see some of the arrangements detected on an image and other images in the same
terminal node run

face par.show.
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12.9.1 Extracting Features

The first step is creating the feature files for the training data and the test data.

cd train (or cd test)

face pars opt=44

Generic edge-based features
The file pars should contain the parameters defining the type of features.

ratio=1. What downscaling to apply to image before feature extraction.

onlyedges=1. Extract only edges; 0—extract edge arrangements defined in
base/all.

merge=1. Merge the edge features with the edge arrangements.

ltatreedir=base/all. Directory with definition of predetermined collection of
edge arrangements.

dataset=./

numdigits=10. Number of data points.

EdgeParameters: See above for parameters defining the type of edges being
extracted.

Microimage codes
First a cart tree describing quantization of the microimages must be made. It is
written to codes.tree. The training images are assumed binary. For the NIST
data set they are stored with 1 bit per pixel and datadepth must be set to 1.

opt=48

datadepth=1 For NIST image set to 1.

codesize=4 Size of subimages to code.

maxdepth=5 Maximum depth of tree.

numdigits=100 Number of images from which to extract random codesize

subimages.

numperts=5 Number of random subimages to extract from each image.

nist=1 Preprocess binary image:
– Run median filter to eliminate little spots.
– Blur image with Gaussian filter.
– If any dimension of image is greater than scale downsample to size scale.

Default value for scale is 32.
– Threshold image at fraction threshold of maximal value. Default value is .2.
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For extracting code labels for all subimages of all training images.

opt=1000

numltas=62 Total number of microcodes.

datadepth=1 Binary images.

ltacluster=6 Size of blocks for clustering features of the same type.

numdigits=100 Number of training images.

12.9.2 Training and Testing Trees

Assume the training landmark files are in subdirectory train

opt=148.

nist=48. Class labels of NIST data are in ASCII code, so, need to substract 48.

althistsize=10. How many classes to keep in terminal node. This is useful for
problems with many classes (i.e., LATEX). Stores only top althistsize classes in
the terminal node.

numcarts=100. Number of trees to grow.

class tree=2. Absolute arrangements; 1—relative arrangements.

cartsizex=32. Dimension of grid on which absolute locations are defined. Must
be the same for all if class tree=2 (absolute arrangements); cartsizey=32.

cartspread=1. If absolute arrangements are used, locations of features can be down-
sampled to coarser grid by factor cartspread. Warning: cartspread*cartsizex
should equal true dimension of images.

near=8. Radius of box of spread for each feature, s = 2 ∗ (near − 1) + 1.

numland=62. Number of local feature types.

maxdepth=20. Maximum depth of the tree.

numtreedata=100000. Number of data to use.

landdir=train. Directory with landmark data.

numclass=10. Number of classes.

numquesask=200. Number of random questions to sample at each node.

mindata=0. Minimum amount of data for splitting a node.

modetwo=3. Minimum amount of data at second largest class to stop splitting.

boost=1. Use boosting.



amit-79020 book May 20, 2002 13:24

284 Chapter 12 Software

alpha=1. Extra factor to multiply boosting factor.

carttreedir=./. Directory to write the trees.

useques(5)=1. In case of relational trees, use questions 5 and 6; 5—asks for the
first two features with a relation; 6—asks for an additional feature in relation to one
existing in the pending graph.

useques(6)=1.

Testing is achieved as follows:

opt=147. 147—loops through test points and then through all the trees, and reports
aggregate classification rate at the end; 149—Loops by tree and reports aggregate rate
after each tree.

nist=48.

numtreedata=10000. Number of test data points.

landdir=test. Directory with landmark data.

numclass=10. Number of classes.

carttreedir=./. Directory with trees.

12.10 Combining Detection and Recognition

The same scripts used above for creating a detector for a particular class and classifiers
for the object against false positives obtained from trainall will produce classifiers
among the classes detected by the detector. The only change is to run

findnewp 0 cartstyle -1 and set the parameters inside findnewp.

nd=3100. Number of data to use from trainall.

ncl=62. Total number of classes.

npcl=50. Number of elements per class (usually 50).

acf=.8. The factor to apply to the threshold hits to lower it and thereby obtain
more detections in other classes.

numcarts=50. Number of classification trees.

cartdepth=10. Maximal depth of a tree.

nq=200. Number of random questions to sample.

crtsp=2. The radius of spreading for a binary feature used in the classification trees.



amit-79020 book May 20, 2002 13:24

285 12.10 Combining Detection and Recognition

The program creates a file good, showing how many of each class are detected.
In order for the program to know how to label detected and classified objects, a file
with labels for the classes must be appended to pars

facenames(0) = marx

facenames(1) = lenin.

When classification trees for multiple classes are produced, they are written to
a directory called facecart and are used if the parameter fnumcarts is positive.
Otherwise, they are ignored and regular unclassified detection is performed.
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absolute arrangements, 26, 184, 196,
201–208, 219, 230

aggregate classifier, 190, 192, 202–205
anchor points, 123, 163
angiogram, 76, 80
area integral, 39
arrangement of local features, 26, 184

absolute, see absolute arrangements 181
constraints, 113, 151
relational, see relational arrangements 181
star type, 184

backward transform, 41, 55, 89
discrete, 42, 90, 91

basis coefficients, 33, 42, 85, 86, 88
basis functions, 32, 33, 38, 41, 42, 45, 53,

85, 105
Fourier, see Fourier basis 33
linear, 92
principal components, 54
wavelets, see wavelet basis 33

Bayes classifier, 8
Bayes’ rule, x, 17
Bayesian modeling, x, 11, 18
Binomial distribution, 68, 128, 135
boosting, 191, 192, 203–205
bottom-up processing, 1, 7, 215
brain, 101, 173

activity, 101
matching, 101
ventricle, 109–111, 120

brute force search, 153, 154, 156

chess piece, 45, 216
classification, 216

Cholesky decomposition, 98
classification tree, x, 25, 185, 186, 188, 196,

215, 230, 236
depth, 185, 187, 203
multiple, see multiple classification

trees 181
node

empirical distribution, 186
query, 185, 186, 189

predictors, 25
purity measure, 186
recursive partitioning, 26
relational arrangements, 198
split, 186, 200
stopping rule, 186, 203
terminal node, 186, 187

class distribution, 187
class distribution estimates, 187

testing, 187
training, 26, 185, 186, 200

clutter, 45, 57, 64, 76, 79, 207, 208, 219
coarse to fine

computation, 34, 45, 53, 87, 89, 93, 99,
145, 180

object model, 180
sparse model, 145

comparison arrays, 110, 118, 119
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compositional models, 11
computer vision, 1, 2, 40
conditional independence, 16, 36, 53, 57, 61,

69, 72, 95, 115, 128
conjugate gradient, 45, 91
continuum, 57, 84, 87
continuum formulation, 32, 36, 37, 49, 53, 81
correspondence space search, 5, 148
cost function, 18, 57, 112

deformable contour, 37
deformable image, 95
non-linear, 41, 107

covariance matrix, 54

data model
deformable contour, 35, 48
deformable curve, 59, 68
deformable image, 84, 93
sparse model, 114

Daubechies wavelet, 33, 100
decomposability, 140
deformable contour, 4, 19, 40, 51, 53, 57, 78,

88, 179
algorithm, 42, 46

coarse to fine, 45, 47, 53, 89
computation, 41
cost function, 37
data model, 35, 37, 48
deformations, 31, 32, 34, 54, 88
detection, 169
discretization, 42
edge model, 40, 53
initialization, 79
inside-outside model, 31, 36, 55, 88
instantiation, 32, 42, 48, 54
lattice parameterization, 53
likelihood, 36, 37
parameter estimation

off-line, 48, 52
on-line, 48, 51, 52

posterior, 35, 36, 48, 49
prior, 32, 35
shape, 31, 174
sparse model initialization, 169, 171, 174

spectral parameterization, 33, 53
template, 32, 79
time step, 42, 44
variational analysis, 37

deformable curve, 4, 20, 78, 116, 179
algorithm

dynamic programming, 63–66, 78, 80
tree based, 67, 74, 78, 80

background model, 59, 68
backtracking, 76
computation time, 64
data model, 57, 59, 61, 62, 68
deformations, 57
detection, 169
image transform, 58
initialization, 79, 80
instantiation, 57, 60, 62, 67, 79
jump ahead, 76
likelihood, 59–61, 68
local features, 58
model, 62, 63
parameter estimation, 61
posterior, 62, 71

partial, 71, 73, 74
prior, 57, 62, 80

tree structured, 67
shape, 67
template, 57, 62, 79

deformable image, 21, 101, 105, 179
algorithm, 101

coarse to fine, 89, 99, 101, 104
Bernoulli model, 4, 85, 93, 97, 105, 112,

121, 168, 179
background, 96
image transform, 94

computation time, 100
cost function, 87, 88, 95

linearization, 92, 97, 98, 100, 101
deformations, 81–83, 87, 88, 93, 95,

101, 105
discretization, 90
displacement field, 84, 85, 87, 93, 99
flow models, 104
Gaussian model, 84, 97, 112



amit-79020 book May 20, 2002 13:25

301 Index

image transform, 85
initialization, 92
instantiation, 84, 95, 96
lattice parameterization, 92, 100, 104
likelihood, 84, 87, 95
parameter estimation, 85, 96, 105
pose parameters, 92
posterior, 87, 95
prior, 85, 87
prototype image, 84, 88, 96, 104
regularizing term, 87
sparse model initialization, 168, 180
spectral parameterization, 85, 87, 93,

98, 104
template, 82
time step, 91
training, 96

deformable models, x, 3, 6, 19, 24, 111
automatic initialization, 163, 166
instantiation, 161
sparse model initialization, 180
user initialization, 19

deformations
deformable contour, 31, 32, 54
deformable curve, 57
deformable image, 81–83, 87, 88, 93, 95,

101, 105
dynamic programming, 17, 57, 63, 67, 117,

140, 151
deformable curve, 63, 148
sparse model, 148
state space, 63, 142, 148, 149

edge arrangements, 7, 113, 121, 122, 125,
128, 157, 163, 184, 194, 206, 216,
221, 224

background density, 129–131, 133
complexity, 121, 129–131
subregions, 121, 129
two-edge arrangements, 123, 194, 236, 240
wedges, 121, 122, 128

edge maps, 128, 161, 162
edges, 93, 94, 113, 121, 184, 194, 219, 236

background density, 129–131, 136, 160

entropy, 69, 72
conditional, 70, 186
joint, 69

Euler equations, 100

face, 128, 132, 162, 163, 168
deformations, 81, 82
detection, 97, 125
detector, 161–163
edge arrangements

frequencies, 125
edges

frequencies, 125
instantiation, 96
matching, 82
sparse model, 125, 126, 155

Fast Fourier Transform, 42
feed forward neural net, 185, 196, 253
Fisher, 185
forward transform, 38, 41, 50, 55, 89, 95

discrete, 42, 90, 91
Fourier basis, 35, 42, 86, 87

Gaussian, 35, 37, 48, 52, 84, 85, 93
generative models, 11
geometric invariance, 10, 26, 118, 122, 184,

193, 212, 241
geons, 178
global optimization, 57
global optimum, 55, 79
gradient descent, 17, 31, 41, 57, 84, 88, 89,

92, 95, 99, 100, 112
gradient flow, 38, 41, 91
Green’s theorem, 39, 50

handwritten digits, 181, 202, 233
heart, 51
heart ventricle, 46
Hebbian learning, 29, 237, 241, 245,

253, 256
field dependent, 244, 245, 253, 257

Hessian, 44, 91, 100
high-level processing, 1
homeomorphisms, 104
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Hopfield networks, 257
Hough transform, 6, 153–155
hypothesis, 128

image compression, 93
image deformation, 81
image grid, 13
image normalization, 9
image registration, 9
image segmentation, 1, 7, 11, 27, 53, 181,

215, 227
image sequence analysis, 4, 100
image surface, 20, 41, 81

local topography, 14, 109, 120
topography, 81, 85

image synthesis, 5, 111
image transforms, 4, 16, 18, 21
images

background, 129, 135, 161
office, 136

inexact consistent labeling, 6, 148
initialization, 31, 55

deformable contour, 79
deformable curve, 78, 79
deformable image, 107

instantiation
deformable contour, 32
deformable curve, 57, 79
deformable image, 95, 96
region of interest, 161, 162, 181

registration, 161
sparse model, 112, 116

interpolation, 160
linear, 90

Laplacian, 100
LATEX symbols, 201, 206, 247
detection, 226
prototype, 168
random deformations, 168
recognition, 226
scene analysis, 224–226
sparse model, 168

detection, 170

local features, 168
training, 168

least squares, 98, 100
level curves, 81
level set methods, 54
likelihood

deformable contour, 36, 37
deformable curve, 59
deformable image, 87
ratio, 60
sparse model, 114, 115

linear discriminant analysis, 185, 196
local features, 16, 20, 24, 93, 112, 184, 221

background density, 111, 128, 129,
135–137, 145, 161

background probabilities, 115, 118
binary, 16, 21
clustering, 158
comparison arrays, see comparison

arrays 118
consistent arrangement, 5
density, 149
edge arrangements, see edge

arrangements 121
edges, see edges 93
false positives, 109
invariant, 112
micro-image codes, see micro-image

codes 184
on class probability, 246
pose invariance, 133
registered, 216, 217, 219, 221
ridges, see ridges 93
spreading, 193, 196, 201, 206, 219, 241
statistics, 111, 128, 245

low-level processing, 1

machine learning, 212
maximum likelihood, 48, 61
mean curvature, 41
medical imaging, 31
micro-image codes, 193, 202
minimal cut, 55
model shifting, 233



amit-79020 book May 20, 2002 13:25

303 Index

motion estimation, 93, 104
MPEG, 93
MRI, 31, 101, 109

brain scan, 48, 58, 65, 66, 76, 77, 102, 106,
109, 110, 144, 147
instantiation, 174
sparse model, 146, 173, 174
ventricle, 109

functional, 101
multiple classification trees, 27, 165, 189,

202, 216, 217, 225
aggregation, 189–191, 202
boosting, 191, 192

overfit, 204
conditional covariance, 209
conditional independence, 209
experiments, 201
mean margin, 210
object recognition, 192
randomized, 165, 185, 187, 189, 197,

219, 247
with absolute arrangements, 196
with relational arrangements, 198

multiple objects, 116
mutual information, 71–73, 106

network, x, 12, 28
abstract module, 238, 256

class subset, 238
architecture, 235, 255
biological analogies, 252
bottom-up processing, 254
classification, 12, 29, 248
detection, x, 12, 28, 252
detection layer, 248–250
gating, 250, 254, 255
Hebbian learning, see Hebbian learning 241
inhibitory units, 241, 250
input

high level, 240
low level, 240
visual, 236

invariant detection, 254
layers, 235

learning, 12, 28, 253, 256
classifier, 241
object model, 238, 240

location selection, 250, 252
bottom-up, 251, 252
pop-out, 252
top-down, 249, 251

module, 238
priming, 248, 250–252
recognition, x, 250, 252

off center, 250
retinotopic layers, 236, 248
top-down information flow, 249, 251,

254, 255
training, 239, 244
translation, 251, 252
translation layer, 250

neural dynamics, 236
neural system, 235, 236
neuron

afferent connections, 234
afferent units, 240
binary, 234
local field, 234, 244
output, 234
post-synaptic, 237–239, 244, 257
pre-synaptic, 234, 236–239, 257
threshold, 234, 235

NIST database, 201, 228, 244
misclassified digits, 202
pre-processing, 201

non-linear deformations, 19, 158
normal equations, 98

object boundary, 31, 81
object cluster, 27, 215, 216, 228, 230, 251
object clustering, 228

sequential, 229
tree based, 230

object detection, ix, 3, 11, 18, 215, 219
and recognition, 7, 27, 215, 219, 220,

221, 229
as classification, 25
Bayesian approach, 13
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object detection (cont.)
model points, 14
non-rigid 2d, 3, 7, 8

deformable contour, see deformable
contour 178

deformable curve, see deformable
curve 178

deformable image, see deformable
image 178

sparse model, see sparse model 178
rigid 3d, 5, 7, 178

3d models, 178
sparse model, 171, 172
view based, 230
view based models, 8, 171, 178

object model, 2, 241
admissible instantiation, 15, 18
coarse to fine, 180
complexity, 14
computation, 17, 18
cost function, 17
data model, 16
efficient computation, 17
image transforms, 16, 18
instantiation, 14–17
learning, 241
likelihood, 16–18
model points, 13, 14, 18
one dimensional, 31, 81, 88, 107, 180
parameter estimation, 18
posterior, 16, 17
prior, 15, 17, 18
sparse, 109
template, 3, 13, 15, 18, 179
two dimensional, 88, 107, 180

object pose, 96
object recognition, ix, x, 8, 11, 25, 181,

215, 219
deformable models, 8
local features, 193, 194
multiple classification trees, 192

Occam’s razor, 18
occlusion, 17, 23, 113, 151, 159
Olivetti data set, 163

optical flow, 100
or-ing, 10, 12, 113, 121, 193, 196, 256

parameter estimation
deformable contour, 48
deformable curve, 61
deformable image, 96
sparse model, 119, 122

parts, 214, 232, 253
pattern recognition, 212
peeling, 141, 142
perceptrons, 247

multiple randomized, 247, 256
voting, 247

photometric invariance, 4, 10, 16, 20, 58, 93,
94, 105, 113, 118, 120, 184, 193

pose space search, 6
coarse to fine, 6

positron emission tomography, 101
posterior

deformable contour, 35, 48
deformable curve, 62
deformable image, 87, 95
sparse model, 114–116

pq probabilities, 243
predictors, 185–188, 193, 196

random subset, 186, 189
prefrontal cortex, 254
priming, 254
principal components, 35, 54, 106
prior

deformable contour, 32
deformable curve, 57, 62
deformable image, 87
sparse model, 114, 139

prototype image, 14, 17, 21, 82–84, 93, 111,
133, 216

QR, 98
quasi-Newton, 92, 100

recurrent connections, 235
reference grid, 13, 57, 96, 111, 113,

160–162, 173, 238
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reference points, 123, 125
region growing, 53
region of interest, 215, 221
relational arrangements, 26, 184, 197–208

as labeled graph, 198
as query, 199
instances, 198, 200
minimal extension, 199
partial ordering, 197, 198
pending, 199, 200

ridges, 58, 93
road tracking, 78
rotation invariance, 133, 139, 213

saccade, 250
scale invariance, 62, 139, 144, 196, 201
scene, 13
scene analysis, x, 7, 10, 27, 215, 228
scene interpretations, 229
serial computation, 233
shape, 2, 45, 48, 53, 54, 81
shape classification, 184
smoothness penalty, 87
sparse model, 4, 7, 21, 23, 24, 111–113, 179,

215–217, 224, 228, 229, 248
admissible instantiation, 117, 135, 151
as initialization, 163
candidate centers, 117, 151, 154, 156,

160, 249
density, 159

coarse to fine, 145, 151, 153
computation time, 148, 153, 160, 179
counting detector, 23, 28, 153, 155, 159,

163, 172, 184, 248
step I, 23, 154, 157, 159, 161, 164,

169, 248
step II, 23, 157, 159, 160, 163, 164,

166, 169
data model, 114
detection, 152, 163, 251
dynamic programming, 6, 23, 142–145, 148
false negative probability, 135
false positive density, 128, 135–137, 159
false positives, 152, 157

final classifier, 161, 165, 169
image transform, 114
instantiation, 112, 114, 116, 128, 135, 145,

147, 157, 158, 160, 200
clustering, 158

landmarks, 109, 119, 122
user defined, 109

likelihood, 114, 115
local features, 113, 117, 140, 151, 157, 220

consistent arrangement, 111–113, 151,
152, 184

on object probabilities, 114, 128, 129,
131–134, 153

multiple objects, 116
parameter estimation, 119, 122
pose detection, 147, 156, 168, 215, 217
posterior, 114–117, 135
prior, 114, 139

decomposable, 23, 140
template, 113, 119
threshold, 117, 126, 128
training, 119, 122, 157, 224, 240

edge arrangements, 124
splines, 35
statistical model, 40, 48, 53, 54, 104
statistical modeling, 18
support vector machine, 185
synapse, 234

depression, 238, 242
efficacy, 234–238, 240, 242, 244, 248
internal state, 237–239, 241, 244
potentiation, 238, 241, 244, 253

synaptic connections, 235
directed, 235

synaptic modification, 237

template
deformable contour, 32, 81
deformable curve, 57, 81
deformable image, 82
sparse model, 119

test error rate, 187
thin plate splines, 160
tracking in time, 54
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training error rate, 187
translation invariance, 196, 201

ultrasound, 46
unsupervised learning, 188
unsupervised tree, 188

class distribution estimates, 188
user initialization, 3, 4, 57, 109, 149
USPS database, 202, 228

ventricles, 45
visual scene, 233
visual system, 7, 8, 233, 234, 250, 252, 253

complex cells, 253
cortical column, 253
infero-temporal cortex, 254
layers, 253, 254
object detection, 234
object recognition, 234
orientation selectivity, 253
receptive field, 253

wavelet basis, 33, 35, 42, 45, 86, 87, 100
Daubechies, 33
discrete transform, 34, 42, 43, 90
packets, 35, 87, 106
pyramid, 33, 86
resolution, 34, 35, 86
two dimensional, 86

discrete transform, 90
weighted training sample, 191


