The Anatomy of
Programming
[anguages

N—;. = W
T
sy ‘4 | ' ?ﬂ"?' "
b (| rgzt"-_
s .~
T .pja;_:.- 4 . f?’

Alice E. Fischer « Frances S.Grodzinsky

Contents

I

1

About Language

The Nature of Language

1.1 Communication v e e e e e
1.2 Syntax and Semantics e e
1.3 Natural Languages and Programming Languages
1.3.1 Structure e
1.3.2 Redundancy e
1.3.3 Using Partial Information: Ambiguity and Abstraction
1.3.4 Implicit Communication
1.3.5 Flexibility and Nuance
1.3.6 Ability to Change and Evolve,
1.4 The Standardization Process
1.4.1 Language Growth and Divergence
1.5 Nonstandard Compilers e

Representation and Abstraction

2.1 What Is a Program?
2.2 Representation e
2.2.1 Semantic Intent
2.2.2 Explicit versus Implicit Representation
2.2.3 Coherent versus Diffuse Representation
2.3 Language Design e
2.3.1 Competing Design Goals L oo
2.3.2 The Power of Restrictions,
2.3.3 Principles for Evaluating a Design
2.4 Classifying Languages e
2.4.1 Language Families
2.4.2 Languages Are More Alike than Different

iii

iv CONTENTS
3 Elements of Language 51
3.1 The Parts of Speech 51

3. 1.1 Nouns e e 51

3.1.2 Pronouns: Pointers 52

3.1.3 Adjectives: Data Types 53

3.1.4 Verbs e e 55

3.1.5 Prepositions and Conjunctions 58

3.2 The Metalanguage 59
3.2.1 Words: Lexical Tokens 59

3.2.2 Sentences: Statements Lo 62

3.2.3 Larger Program Units: Scope, 64

3.24 Comments. e e e 67

3.2.5 Naming Parts of a Program 70

3.2.6 Metawords That Let the Programmer Extend the Language 70

4 Formal Description of Language 7T
4.1 Foundations of Programming Languages 78
4.2 Syntax 78
4.2.1 Extended BNF e 82

4.2.2 Syntax Diagrams e 87

4.3 Semantics e e e 90
4.3.1 The Meaning of a Program 90

4.3.2 Definition of Language Semantics L. 90

4.3.3 The Abstract Machine 92

4.3.4 Lambda Calculus: A Minimal Semantic Basis 96

4.4 Extending the Semantics of a Language 107
4.4.1 Semantic Extension in FORTH 110

II Describing Computation 115
5 Primitive Types 117
5.1 Primitive Hardware Types 118
5.1.1 Bytes, Words, and Long Words 118

5.1.2 Character Codes e 118

5.1.3 Numbers 120

5.2 Types in Programming Languages 126
5.2.1 Typels an Abstraction 126

5.2.2 A Type Provides a Physical Description 127

5.2.3 What Primitive Types Should a Language Support? 130

5.2.4 Emulation L, 133

CONTENTS v

5.3 A Brief History of Type Declarations 133
5.3.1 Origins of TypelIdeas 133

5.3.2 Type Becomes a Definable Abstraction. 137

6 Modeling Objects 143
6.1 Kinds of Objects 144
6.2 Placing a Value in a Storage Object 146
6.2.1 Static Initialization 146
6.2.2 Dynamically Changing the Contents of a Storage Object 148
6.2.3 Dereferencing 152
6.2.4 Pointer Assignment 154
6.2.5 The Semantics of Pointer Assignment 156

6.3 The Storage Model: Managing Storage Objects 158
6.3.1 The Birth and Death of Storage Objects 158
6.3.2 Dangling References 169

7 Names and Binding 175
7.1 The Problem with Names, 175
7.1.1 TheRoleof Names e 176
7.1.2 Definition Mechanisms: Declarations and Defaults 178
7.1.3 Binding e e 180
7.1.4 Names and Objects: Not a One-to-One Correspondence 185

7.2 Binding a Name to a Constant 186
7.2.1 Implementations of Constants 190
7.2.2 How Constant Is a Constant? 191

7.3 Survey of Allocation and Binding 191
74 The Scopeof a Name. 193
7.4.1 Naming Conflicts 193
7.4.2 Block Structure 195
7.4.3 Recursive Bindings 198
7.4.4 Visibility versus Lifetime. 200

7.5 Implications for the Compiler / Interpreter 205
8 Expressions and Evaluation 211
8.1 The Programming Environment 212
8.2 Sequence Control and Communication 213
8.2.1 Nesting e 214
8.2.2 Sequences of Statements Lo 215
8.2.3 Imterprocess Sequence Control 216

8.3 Expression Syntax e 216

8.3.1 Functional Expression Syntax L L. 217

vi

CONTENTS

8.3.2 Operator Expressions e
8.3.3 Combinations of Parsing Rules
8.4 Function Evaluation e
8.4.1 Order of Evaluation
8.4.2 Lazy or Strict Evaluation
8.4.3 Order of Evaluation of Arguments

Functions and Parameters

9.1 Function Syntax e e e e
9.1.1 Fixed versus Variable Argument Functions
9.1.2 Parameter Correspondence
9.1.3 Indefinite-Length Parameter Lists

9.2 What Does an Argument Mean?
9.2.1 Call-by-Value
9.2.2 Call-by-Name e
9.2.3 Call-by-Reference
9.24 Call-by-Return e
9.2.5 Call-by-Value-and-Return
9.2.6 Call-by-Pointer

9.3 Higher-Order Functions e
9.3.1 Functional Arguments Lo
9.3.2 Currying o e e e e
9.3.3 Returning Functions from Functions

10 Control Structures

10.1 Basic Control Structures
10.1.1 Normal Instruction Sequencing
10.1.2 Assemblers
10.1.3 Sequence, Subroutine Call, IF, and WHILE Suffice
10.1.4 Subroutine Call e
10.1.5 Jump and Conditional Jump
10.1.6 Control Diagrams e

10.2 Conditional Control Structures
10.2.1 Conditional Expressions versus Conditional Statements
10.2.2 Conditional Branches: Simple Spaghetti
10.2.3 Structured Conditionals
10.2.4 The Case Statement

10.3 Tteration e e e e e
10.3.1 The Infinite Loop
10.3.2 Conditional Loops
10.3.3 The General Loop e

CONTENTS

10.3.4
10.3.5

Counted Loops e
The Iteration Element

10.4 Implicit Tteration L e

10.4.1
10.4.2

Iteration on Coherent Objects.
Backtracking

11 Global Control
11.1 The GOTO Problem e

11.1.1
11.1.2
11.1.3

Faults Inherent in GOTO e
To GOTO or Not to GOTO e s e
Statement Labels

11.2 Breaking Out e

11.2.1

Generalizing the BREAK

11.3 Continuations e e e e e
11.4 Exception Processing

11.4.1
11.4.2
11.4.3

What Is an Exception?
The Steps in Exception Handling
Exception Handling in Ada

IIT Application Modeling

12 Functional

Languages

12.1 Denotation versus Computationo

12.1.1

Denotation e

12.2 The Functional Approach .

12.2.1
12.2.2
12.2.3

Eliminating Assignment
Recursion Can Replace WHILE
SEQUENCES . . . v v v v o e e e e e e e e e e e

12.3 Miranda: A Functional Language,

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5

Data Structures.
Operations and Expressions
Function Definitionso
List Comprehensions e
Infinite Lists e

13 Logic Programming
13.1 Predicate Calculus e

13.1.1

Formulas e

13.2 Proof Systems e

13.3 Models

vii

293
298
301
301
303

309
310
310
313
315
317
320
321
327
327
328
331

335

337
338
339
341
342
344
347
350
351
351
352
355
358

viii

13.4

13.5

14 The
14.1

14.2

14.3

14.4

15 The
15.1

15.2

15.3

CONTENTS
Automatic Theorem Proving 368
13.4.1 Resolution Theorem Provers 370
Prolog o 375
13.5.1 The Prolog Environment 375
13.5.2 Data Objects and Terms 375
13.5.3 Horn Clauses in Prolog 376
13.5.4 The Prolog Deduction Process. 379
13.5.5 Functions and Computation oL 380
13.5.6 Cuts and the “not” Predicate 385
13.5.7 Evaluation of Prolog 389
Representation of Types 393
Programmer-Defined Types 394
14.1.1 Representing Types within a Translator 394
14.1.2 Finite Types e 396
14.1.3 Constrained Types o e 397
14.1.4 Pointer Types e 398
Compound Types. o e e e 400
14.2.1 Arrays e 400
14.2.2 Strings e e 406
14.2.3 Sets L e 408
14.2.4 Records e 412
14.2.5 Union Types o o e 419
Operations on Compound Objects, 422
14.3.1 Creating Program Objects: Value Constructors 422
14.3.2 The Interaction of Dereferencing, Constructors, and Selectors 423
Operations on Types o e 430
Semantics of Types 435
Semantic Description L 436
15.1.1 Domains in Early Languages 436
15.1.2 Domains in “Typeless” Languages 437
15.1.3 Domains in the 1970s 441
15.1.4 Domains in the 1980s e 444
Type Checking e e 444
15.2.1 Strong Typing e 445
15.2.2 Strong Typing and Data Abstraction 446
Domain Identity: Different Domain/ Same Domain? 448
15.3.1 Internal and External Domains 448
15.3.2 Internally Merged Domains 449

15.3.3 Domain Mapping L 450

CONTENTS ix

15.4 Programmer-Defined Domains oo 452
15.4.1 Type Description versus Type Name 452
15.4.2 Type Constructors o e 453
15.4.3 Types Defined by Mapping 454

15.5 Type Casts, Conversions, and Coercions 459
15.5.1 Type Casts. o o e 460
15.5.2 Type Conversions v v v v v vt e e e e e e 465
15.5.3 Type Coercion e 466

15.6 Conversions and Casts in Common Languages 470
15.6.1 COBOL e e 470
15.6.2 FORTRAN e 470
15.6.3 Pascal e 471
15.6.4 PL/1 . o o o 472
15.6.5 C .o e e e 472
15.6.6 Ada Types and Treatment of Coercion 475

15.7 Evading the Type Matching Rules 479

16 Modules and Object Classes 489

16.1 The Purpose of Modules 490

16.2 Modularity Through Files and Linking 492

16.3 Packages in Ada e 497

16.4 Object Classes. o o it 500
16.4.1 Classesin CH+4 o e e 501
16.4.2 Represented Domains 505
16.4.3 Friends of Classes e 506

17 Generics 511

17.1 GeNerics v v v e e e e e e 512
17.1.1 What Is a Generic? e 512
17.1.2 Implementations of Generics 513
17.1.3 Generics, Virtual Functions, and ADTs 515
17.1.4 Generic Functions e 516

17.2 Limited Generic Behavior 521
17.2.1 Union Data Types o e 521
17.2.2 Overloaded Names e 521
17.2.3 Fixed Set of Generic Definitions, with Coercion 523
17.2.4 Extending Predefined Operators 524
17.2.5 Flexible Arrays e 525

17.3 Parameterized Generic Domains oo 527
17.3.1 Domains with Type Parameters 530

17.3.2 Preprocessor Generics in C 531

X CONTENTS

18 Dispatching with Inheritance 541
18.1 Representing Domain Relationships. 542
18.1.1 The Mode Graph and the Dispatcher 542

18.2 Subdomains and Class Hierarchies. 549
18.2.1 Subrange Types e 549
18.2.2 Class Hierarchies e 550
18.2.3 Virtual Functions in C+4. 554
18.2.4 Function Inheritance 556
18.2.5 Programmer-Defined Conversions in C++ 558

18.3 Polymorphic Domains and Functions 561
18.3.1 Polymorphic Functions 561
18.3.2 Manual Domain Representation and Dispatching 562
18.3.3 Automating Ad Hoc Polymorphism 563
18.3.4 Parameterized Domains 567

18.4 Can We Do More with Generics? e 568
18.4.1 Dispatching Using the Mode Graph 571
18.4.2 Generics Create Some Hard Problems 575

A Exhibits Listed by Topic 585
Al Languages e e 585
AL Ada . . 585

A 1.2 APL . . 586
AL3 CHd 587
A14 Cand ANSIC o 588
A15 FORTH . . . 590
A1.6 FORTRAN 591
ALT LISP . . 991
A1.8 Miranda L 592
A9 Pascal 593
A110 Prolog o e 596
A1.11 Schemeand T e 597
A.1.12 Other Languages 0 597

A2 Concepts o e e 598
A.2.1 Application Modeling, Generics, and Polymorphic Domains 598
A.2.2 Control Structures e 599
A.2.3 Data Representation 600
A2.4 HIiStory o 600
A.2)5 Lambda Calculus 600
A.2.6 Language Design and Specification 601
A2.7 Logic e 601

A.2.8 Translation, Interpretation, and Function Calls 602

CONTENTS

A.2.9 Types

xi

xii CONTENTS

Preface

This text is intended for a course in advanced programming languages or the structure of pro-
gramming language and should be appropriate for students at the junior, senior, or master’s level.
It should help the student understand the principles that underlie all languages and all language
implementations.

This is a comprehensive text which attempts to dissect language and explain how a language
is really built. The first eleven chapters cover the core material: language specification, objects,
expressions, control, and types. The more concrete aspects of each topic are presented first, fol-
lowed by a discussion of implementation strategies and the related semantic issues. Later chapters
cover current topics, including modules, object-oriented programming, functional languages, and
concurrency constructs.

The emphasis throughout the text is on semantics and abstraction; the syntax and historical
development of languages are discussed in light of the underlying semantical concepts. Fundamental
principles of computation, communication, and good design are stated and are used to evaluate
various language constructs and to demonstrate that language designs are improving as these
principles become widely understood.

Examples are cited from many languages including Pascal, C, C++, FORTH, BASIC, LISP,
FORTRAN, Ada, COBOL, APL, Prolog, Turing, Miranda, and Haskell. All examples are annotated so
that a student who is unfamiliar with the language used can understand the meaning of the code
and see how it illustrates the principle.

It is the belief of the authors that the student who has a good grasp of the structure of computer
languages will have the tools to master new languages easily.

The specific goals of this book are to help students learn:

e To reason clearly about programming languages.

e To develop principles of communication so that we can evaluate the wisdom and utility of the
decisions made in the process of language design.

e To break down language into its major components, and each component into small pieces so
that we can focus on competing alternatives.

e To define a consistent and general set of terms for the components out of which programming
languages are built, and the concepts on which they are based.

xiii

xiv CONTENTS

e To use these terms to describe existing languages, and in so doing clarify the conflicting
terminology used by the language designers, and untangle the complexities inherent in so
many languages.

e To see below the surface appearance of a language to its actual structure and descriptive
power.

e To understand that many language features that commonly occur together are, in fact, inde-
pendent and separable. To appreciate the advantages and disadvantages of each feature. To
suggest ways in which these basic building blocks can be recombined in new languages with
more desirable properties and fewer faults.

e To see the similarities and differences that exist among languages students already know, and
to learn new ones.

e To use the understanding so gained to suggest future trends in language design.

Acknowledgement

The authors are indebted to several people for their help and support during the years we have
worked on this project. First, we wish to thank our families for their uncomplaining patience and
understanding.

We thank Michael J. Fischer for his help in developing the sections on lambda calculus, func-
tional languages and logic. and for working out several sophisticated code examples. In addition,
his assistance as software and hardware systems expert and TeX guru made this work possible.

Several reviewers read this work in detail and offered invaluable suggestions and corrections.
We thank these people for their help. Special thanks go to Robert Fischer and Roland Lieger for
reading beyond the call of duty and to Gary Walters for his advice and for the material he has
contributed.

Finally, we thank our students at the University of New Haven and at Sacred Heart University
for their feedback on the many versions of this book.

Parts of this manuscript were developed under a grant from Sacred Heart University.

Part 1

About Language

Chapter 1

The Nature of Language

Overview

This chapter introduces the concept of the nature of language. The purpose of language
is communication. A set of symbols, understood by both sender and receiver, is com-
bined according to a set of rules, its grammar or syntax. The semantics of the language
defines how each grammatically correct sentence is to be interpreted. Using English as
a model, language structures are studied and compared. The issue of standardization
of programming languages is examined. Nonstandard compilers are examples of the use
of deviations from an accepted standard.

This is a book about the structure of programming languages. (For simplicity, we shall use the
term “language” to mean “programming language”.) We will try to look beneath the individual
quirks of familiar languages and examine the essential properties of language itself. Several aspects
of language will be considered, including vocabulary, syntax rules, meaning (semantics), implemen-
tation problems, and extensibility. We will consider several programming languages, examining
the choices made by language designers that resulted in the strengths, weaknesses, and particular
character of each language. When possible, we will draw parallels between programming languages
and natural languages.

Different languages are like tools in a toolbox: although each language is capable of expressing
most algorithms, some are obviously more appropriate for certain applications than others. (You
can use a chisel to turn a screw, but it is not a good idea.) For example, it is commonly understood
that COBOL is “good for” business applications. This is true because COBOL provides a large
variety of symbols for controlling input and output formats, so that business reports may easily be

4 CHAPTER 1. THE NATURE OF LANGUAGE

made to fit printed forms. LISP is “good for” artificial intelligence applications because it supports
dynamically growing and shrinking data. We will consider how well each language models the
objects, actions, and relationships inherent in various classes of applications.

Rather than accept languages as whole packages, we will be asking:

e What design decisions make each language different from the others?

e Are the differences a result of minor syntactic rules, or is there an important underlying
semantic issue?

e Is a controversial design decision necessary to make the language appropriate for its intended
use, or was the decision an accident of history?

e Could different design decisions result in a language with more strengths and fewer weak-
nesses?

e Are the good parts of different languages mutually exclusive, or could they be effectively
combined?

e Can a language be extended to compensate for its weaknesses?

1.1 Communication

A natural language is a symbolic communication system that is commonly understood among a
group of people. Each language has a set of symbols that stand for objects, properties, actions,
abstractions, relations, and the like. A language must also have rules for combining these symbols.
A speaker can communicate an idea to a listener if and only if they have a common understanding
of enough symbols and rules. Communication is impaired when speaker and listener interpret a
symbol differently. In this case, either speaker and/or listener must use feedback to modify his or
her understanding of the symbols until commonality is actually achieved. This happens when we
learn a new word or a new meaning for an old word, or correct an error in our idea of the meaning
of a word.

English is for communication among people. Programs are written for both computers and
people to understand. Using a programming language requires a mutual understanding between a
person and a machine. This can be more difficult to achieve than understanding between people
because machines are so much more literal than human beings.

The meaning of symbols in natural language is usually defined by custom and learned by
experience and feedback. In contrast, programming languages are generally defined by an authority,
either an individual language designer or a committee. For a computer to “understand” a human
language, we must devise a method for translating both the syntax and semantics of the language
into machine code. Language designers build languages that they know how to translate, or that
they believe they can figure out how to translate.

1.2. SYNTAX AND SEMANTICS)

On the other hand, if computers were the only audience for our programs we might be writing
code in a language that was trivially easy to transform into machine code. But a programmer must
be able to understand what he or she is writing, and a human cannot easily work at the level of
detail that machine language represents. So we use computer languages that are a compromise
between the needs of the speaker (programmer) and listener (computer). Declarations, types,
symbolic names, and the like are all concessions to a human’s need to understand what someone
has written. The concession we make for computers is that we write programs in languages that can
be translated with relative ease into machine language. These languages have limited vocabulary
and limited syntax. Most belong to a class called context-free languages, which can be parsed easily
using a stack. Happily, as our skill at translation has increased, the variety and power of symbols
in our programming languages have also increased.

The language designer must define sets of rules and symbols that will be commonly understood
among both human and electronic users of the language. The meaning of these symbols is gener-
ally conveyed to people by the combination of a formal semantic description, analogy with other
languages, and examples. The meaning of symbols is conveyed to a computer by writing small
modules of machine code that define the action to be taken for each symbol. The rules of syntax
are conveyed to a computer by writing a compiler or interpreter.

To learn to use a new computer language effectively, a user must learn exactly what combinations
of symbols will be accepted by a compiler and what actions will be invoked for each symbol in the
language. This knowledge is the required common understanding. When the human communicates
with a machine, he must modify his own understanding until it matches the understanding of
the machine, which is embodied in the language translator. Occasionally the translator fails to
“understand” a phrase correctly, as specified by the official language definition. This happens
when there is an error in the translator. In this case the “understanding” of the translator must
be corrected by the language implementor.

1.2 Syntax and Semantics

The syntax of a language is a set of rules stating how language elements may be grammatically
combined. Syntax specifies how individual words may be written and the order in which words
may be placed within a sentence.

The semantics of a language define how each grammatically correct sentence is to be interpreted.
In a given language, the meaning of a sentence in a compiled language is the object code compiled
for that sentence. In an interpreted language, it is the internal representation of the program, which
is then evaluated. Semantic rules specify the meaning attached to each placement of a word in a
sentence, the meaning of omitting a sentence element, and the meaning of each individual word.
A speaker (or programmer) has an idea that he or she wishes to communicate. This idea is the
speaker’s semantic intent. The programmer must choose words that have the correct semantics so
that the listener (computer) can correctly interpret the speaker’s semantic intent.

All languages have syntax and semantics. Chapter 4 discusses formal mechanisms for expressing

6 CHAPTER 1. THE NATURE OF LANGUAGE

the syntax of a language. The rest of this book is primarily concerned with semantics, the semantics
of particular languages, and the semantic issues involved in programming.

1.3 Natural Languages and Programming Languages

We will often use comparisons with English to encourage you to examine language structures
intuitively, without preconceived ideas about what programming languages can or cannot do. The
objects and functions of a program correspond to the nouns and verbs of natural language. (We
will use the word “functions” to apply to functions, procedures, operators, and some commands.
Objects include variables, constants, records, and so on.)

There are a number of language traits that determine the character of a language. In this section
we compare the ways in which these traits are embodied in a natural language (English) and in
various programming languages. The differences between English and programming languages are
real, but not as great as they might at first seem. The differences are less extreme now than
they were ten years ago and will decrease as programming languages continue to evolve. Current
programming language research is directed toward:

e Easing the constraints on the order in which statements must be given.
e Increasing the uses of symbols with multiple definitions.

e Permitting the programmer to talk about and use an object without knowing details of its
representation.

e Facilitating the construction of libraries, thus increasing the number of words that can be
understood “implicitly”.

e Increasing the ability of the language to express varied properties of the problem situation,
especially relationships among classes of objects.

1.3.1 Structure

Programs must conform to very strict structural rules. These govern the order of statements and
sections of code, and particular ways to begin, punctuate, and end every program. No deviation
from these rules is permitted by the language definition, and this is enforced by a compiler.

The structure of English is more flexible and more varied, but rules about the structure of
sentences and of larger units do exist. The overall structure of a textbook or a novel is tightly
controlled. Indeed, each kind of written material has some structure it must follow. In any situation
where the order of events is crucial, such as in a recipe, English sentences must be placed in the
“correct” sequence, just like the lines in a program.

Deviation from the rules of structure is permitted in informal speech, and understanding can
usually still be achieved. A human listener usually attempts to correct a speaker’s obvious errors.

1.3. NATURAL LANGUAGES AND PROGRAMMING LANGUAGES 7

For example, scrambled words can often be put in the right order. We can correct and understand
the sentence: “I yesterday finished the assignment.” Spoonerisms (exchanging the first letters of
nearby words, often humorously) can usually be understood. For example, “I kee my sids” was
obviously intended to mean “I see my kids”. A human uses common sense, context, and poorly
defined heuristics to identify and correct such errors.

Most programming language translators are notable for their intolerance of a programmer’s
omissions and errors. A compiler will identify an error when the input text fails to correspond
to the syntactic rules of the language (a “syntax error”) or when an object is used in the wrong
context (a “type error”). Most translators make some guesses about what the programmer really
meant, and try to continue with the translation, so that the programmer gets maximum feedback
from each attempt to compile the program. However, compilers can rarely correct anything more
than a trivial punctuation error. They commonly make faulty guesses which cause the generation
of heaps of irrelevant and confusing error comments.

Some compilers actually do attempt to correct the programmer’s errors by adding, changing,
respelling, or ignoring symbols so that the erroneous statement is made syntactically legal. If the
attempted correction causes trouble later, the compiler may return to the line with the error and try
a different correction. This effort has had some success. Errors such as misspellings and errors close
to the end of the code can often be corrected and enable a successful translation. Techniques have
been developed since the mid-1970s and are still being improved. Such error-correcting compilers
are uncommon because of the relatively great cost for added time and extra memory needed. Some
people feel that the added costs exceed the added utility.

1.3.2 Redundancy

The syntactic structure of English is highly redundant. The same information is often conveyed by
several words or word endings in a sentence. If required redundancy is absent, as in the sentence “I
finishes the assignment tomorrow”, we can identify that errors have occurred. The lack of agreement
between “I” and “finishes” is a syntactic error, and the disagreement of the verb tense (present)
with the meaning of “tomorrow” is a semantic error. [Exhibit 1.1]

A human uses the redundancy in the larger context to correct errors. For example, most people
would be able to understand that a single letter was omitted in the sentence “The color of my coat
is back”. Similarly, if a listener fails to comprehend a single word, she or he can usually use the
redundancy in the surrounding sentences to understand the message. If a speaker omits a word,
the listener can often supply it by using context.

Programming languages are also partly redundant, and the required redundancy serves as a
way to identify errors. For example, the first C declaration in Exhibit 1.2 contains two indications
of the intended data type of the variable named price: the type name, int, and the actual type,
float, of the initial value. These two indicators conflict, and a compiler can identify this as an
error. The second line contains an initializer whose length is longer than the declared size of the
array named table. This lack of agreement in number is an identifiable error.

8 CHAPTER 1. THE NATURE OF LANGUAGE

Exhibit 1.1. Redundancy in English.
The subject and verb of a sentence must “agree” in number. Either both must be singular or both
plural:

Correct: Mark likes the cake.
Wrong: Mark like the cake.

The verb tense must agree with any time words in the sentence:

Singular subject, singular verb.
Singular subject, plural verb.

Past tense, past time.
Present tense, past time.

Correct: I finished the work yesterday.
Wrong: I finish the work yesterday.

Where categories are mentioned, words belonging to the correct categories must be used.

Black is a color.
Back is not a color.

Correct: The color of my coat is black.
Wrong: The color of my coat is back.

Sentences must supply consistent information throughout a paragraph. Pronouns refer to the
preceding noun. A pronoun must not suddenly be used to refer to a different noun.

Correct: The goalie is my son. He is the best. His name is Al

Wrong: The goalie is my son. He is the best. He is my father.
These errors in English have analogs in programming languages. The first error above is analogous
to using a nonarray variable with a subscript. The second and third errors are similar to type errors
in programming languages. The last error is analogous to faulty use of a pointer.

1.3.3 Using Partial Information: Ambiguity and Abstraction

English permits ambiguity, that is, words and phrases that have dual meanings. The listener must
disambiguate the sentence, using context, and determine the actual meaning (or meanings) of the
speaker.!

To a very limited extent, programming languages also permit ambiguity. Operators such as +
have two definitions in many languages, integer+integer and real+real. Object-oriented languages
permit programmer-defined procedure names with more than one meaning. Many languages are
block-structured. They permit the user to define contexts of limited scope, called blocks. The same
symbol can be given different meanings in different blocks. Context is used, as it is in English, to
disambiguate the meaning of the name.

LA pun is a statement with two meanings, both intended by the speaker, where one meaning is usually funny.

Exhibit 1.2. Violations of redundancy rules in ANSI C.

int price = 20.98; /* Declare and initialize variable. */
int table[3] = {11, 12, 13, 14}; /* Declare and initialize an array. */

1.3. NATURAL LANGUAGES AND PROGRAMMING LANGUAGES 9

The primary differences here are that “context” is defined very exactly in each programming
language and quite loosely in English, and that most programming languages permit only limited
ambiguity.

English supports abstraction, that is, the description of a quality apart from an instance. For
example, the word “chair” can be defined as “a piece of furniture consisting of a seat, legs, and
back, and often arms, designed to accommodate one person.”? This definition applies to many
kinds of chairs and conveys some but not all of a particular chair’s properties. Older programming
languages do not support this kind of abstraction. They require that all an object’s properties be
specified when the name for that object is defined.

Some current languages support very limited forms of abstraction. For example, Ada permits
names to be defined for generic objects, some of whose properties are left temporarily undefined.
Later, the generic definition must be instantiated by supplying actual definitions for those proper-
ties. The instantiation process produces fully specified code with no remaining abstractions which
can then be compiled in the normal way.

Smalltalk and C4+ are current languages whose primary design goal was support for abstraction.
A Smalltalk declaration for a class “chair” would be parallel to the English definition. Languages
of the future will have more extensive ability to define and use partially specified objects.

1.3.4 Implicit Communication

English permits some things to be understood even if they are left unsaid. When we “read between
the lines” in an English paragraph, we are interpreting both explicit and implicit messages. Under-
standing of the explicit message is derived from the words of the sentence. The implicit message
is understood from the common experience of speaker and listener. People from different cultures
have trouble with implicit communication because they have inadequate common understanding.

Some things may be left implicit in programming languages also. Variable types in FORTRAN
and the type of the result of a function in the original Kernighan and Ritchie C may or may not
be defined explicitly. In these cases, as in English, the full meaning of such constructs is defined
by having a mutual understanding, between speaker and listener, about the meaning of things left
unspecified. A programmer learning a new language must learn its implicit assumptions, more
commonly called defaults.

Unfortunately, when a programmer relies on defaults to convey meaning, the compiler cannot
tell the difference between the purposeful use of a default and an accidental omission of an important
declaration. Many experienced programmers use explicit declarations rather than rely on defaults.
Stating information explicitly is less error prone and enables a compiler to give more helpful error
comments.

2Cf. Morris [1969)].

10 CHAPTER 1. THE NATURE OF LANGUAGE

1.3.5 Flexibility and Nuance

English is very flexible: there are often many ways to say something. Programming languages
have this same flexibility, as is demonstrated by the tremendous variety in the solutions handed in
for one student programming problem. As another example, APL provides at least three ways to
express the same simple conditional branch.

Alternate ways of saying something in English usually have slightly different meanings, and
subtlety and nuance are important. When different statement sequences in a programming language
express the same algorithm, we can say that they have the same meaning. However, they might still
differ in subtle ways, such as in the time and amount of memory required to execute the algorithm.
We can call such differences nuances.

The nuances of meaning in a program are of both theoretical and practical importance. We
are content when the work of a beginning programmer has the correct result (a way of measuring
its meaning). As programmers become more experienced, however, they become aware of the
subtle implications of alternative ways of saying the same thing. They will be able to produce a
program with the same meaning as the beginner’s program, but with superior clarity, efficiency,
and compactness.

1.3.6 Ability to Change and Evolve

Expressing an idea in any language, natural or artificial, can sometimes be difficult and awkward.
A person can become “speechless” when speaking English. Words can fail to express the strength
or complexity of the speaker’s feelings. Sometimes a large number of English words are required to
explain a new concept. Later, when the concept becomes well understood, a word or a few words
suffice.

English is constantly evolving. Old words become obsolete and new words and phrases are
added. Programming languages, happily, also evolve. Consider FORTRAN for example. The
original FORTRAN was a very limited language. For example, it did not support parameters and
did not have an IF...THEN. . .ELSE statement. Programmers who needed these things surely found
themselves “speechless”, and they had to express their logic in a wordy and awkward fashion. Useful
constructs were added to FORTRAN because of popular demand. As this happened, some of the
old FORTRAN words and methods became obsolete. While they have not been dropped from the
language yet, that may happen someday.

As applications of computers change, languages are extended to include words and concepts
appropriate for the new applications. An example is the introduction of words for sound generation
and graphics into Commodore BASIC when the Commodore-64 was introduced with sound and
graphics hardware.

One of the languages that evolves easily and constantly is FORTH. There are several public do-
main implementations, or dialects, used by many people and often modified to fit a user’s hardware
and application area. The modified dialect is then passed on to others. This process works like
the process for adding new meanings to English. New words are introduced and become “common

1.4. THE STANDARDIZATION PROCESS 11

knowledge” gradually as an increasing number of people learn and use them.

Translators for many dialects of BASIC, LISP, and FORTH are in common use. These languages
are not fully standardized. Many dialects of the original language emerge because implementors are
inspired to add or redesign language features. Programs written in one dialect must be modified to
be used by people whose computer “understands” a different dialect. When this happens we say
that a program is nonportable. The cost of rewriting programs makes nonstandardized program-
ming languages unattractive to commercial users of computers. Lack of standardization can also
cause severe difficulties for programmers and publishers: the language specifications and reference
material must be relearned and rewritten for each new dialect.

1.4 The Standardization Process

Once a language is in widespread use, it becomes very important to have a complete and precise
definition of the language so that compatible implementations may be produced for a variety of
hardware and system environments. The standardization process was developed in response to
this need. A language standard is a formal definition of the syntax and semantics of a language.
It must be a complete, unambiguous statement of both. Language aspects that are defined must
be defined clearly, while aspects that go beyond the limits of the standard must be designated
clearly as “undefined”. A language translator that implements the standard must produce code
that conforms to all defined aspects of the standard, but for an undefined aspect, it is permitted
to produce any convenient translation.

The authority to define an unstandardized language or to change a language definition may
belong to the individual language designer, to the agency that sponsored the language design, or to
a committee of the American National Standards Institute (ANSI) or the International Standards
Organization (ISO). The FORTRAN standard was originated by ANSI, the Pascal standard by ISO.
The definition of Ada is controlled by the U.S. Department of Defense, which paid for the design
of Ada. New or experimental languages are usually controlled by their designers.

When a standards organization decides to sponsor a new standard for a language, it convenes
a committee of people from industry and academia who have a strong interest in and extensive
experience with that language. The standardization process is not easy or smooth. The committee
must decide which dialect, or combination of ideas from different dialects, will become the stan-
dard. Committee members come to this task with different notions of what is good or bad and
different priorities. Agreement at the outset is rare. The process may drag on for years as one or
two committee members fight for their pet features. This happened with the original ISO Pascal
standard, the ANSI C standard, and the new FORTRAN-90 standard.

After a standard is adopted by one standards organization (ISO or ANSI), the definition is
considered by the other. In the best of all worlds,the new standard would be accepted by the
second organization. For example, ANSI adopted the ISO standard for Pascal nearly unchanged.
However, smooth sailing is not always the rule. The new ANSI C standard is not acceptable to
some ISO committee members, and when ISO decides on a C standard,it may be substantially

12 CHAPTER 1. THE NATURE OF LANGUAGE

different from ANSI C.

The first standard for a language often clears up ambiguities, fixes some obvious defects, and
defines a better and more portable language. The ANSI C and ANSI LISP standards do all of
these things. Programmers writing new translators for this language must then conform to the
common standard, as far as it goes. Implementations may also include words and structures, called
extensions, that go beyond anything specified in the standard.

1.4.1 Language Growth and Divergence

After a number of years, language extensions accumulate and actual implementations diverge so
much that programs again become nonportable. This has happened now with Pascal. The standard
language is only minimally adequate for modern applications. For instance, it contains no support
for string processing or graphics. Further, it has design faults, such as an inadequate case state-
ment, and design shortcomings, such as a lack of static variables, initialized variables, and support
for modular compilation. Virtually all implementations of Pascal for personal computers extend
the language. These extensions are similar in intent and function but differ in detail. A program
that uses the extensions is nonportable. One that doesn’t use extensions is severely limited. We
all need a new Pascal standard.

When a standardized language has several divergent extensions in common use, the sponsoring
standards agency may convene a new committee to reexamine and restandardize the language. The
committee will consider the collection of extensions from various implementations and decide upon
a new standard, which usually includes all of the old standard as a subset.

Thus there is a constant tension between standardization and diversification. As our range of
applications and our knowledge of language and translation techniques increase, there is pressure
to extend our languages. Then the dialects in common use become diversified. When the diversity
becomes too costly, the language will be restandardized.

1.5 Nonstandard Compilers

It is common for compilers to deviate from the language standard. There are three major kinds of
deviations: extensions, intentional changes, and compiler bugs. The list of differences in Exhibit
1.3 was taken from the Introduction to the Turbo Pascal Reference Manual, Version 2.0. With
each new version of Turbo, this list has grown in size and complexity. Turbo Pascal version 5 is a
very different and much more extensive language than Standard Pascal.

An extension is a feature added to the standard, as string operations and graphics primitives are
often added to Pascal. Items marked with a “4” in Exhibit 1.3 are true extensions: they provide
processing capabilities for things that are not covered by the standard but do not change the basic
nature of the language.

Sometimes compiler writers believe that a language, as it is officially defined, is defective;
that is, some part of the design is too restrictive or too clumsy to use in a practical application
environment. In these cases the implementor often redefines the language, making it nonstandard

1.5. NONSTANDARD COMPILERS 13

Exhibit 1.3. Summary of Turbo Pascal deviations from the standard.

syntactic semantic semantic
extensions extensions changes
! Absolute address variables
! Bit/byte manipulation
! Direct access to CPU memory and data ports

+ Dynamic strings
* Free ordering of sections within declaration part
+ Full support of operating system facilities

In-line machine code generation
Include files
! Logical operations on integers
* Program chaining with common variables
Random access data files
Structured constants
Type conversion functions (to be used explicitly)

+ 4+

and incompatible with other translators. This is an intentional change. Items marked with a “!” in
Exhibit 1.3 change the semantics of the language by circumventing semantic protection mechanisms
that are part of the standard. Items marked by a “*” are extensions and changes to the syntax of
the language that do not change the semantics but, if used, do make Turbo programs incompatible
with the standard.

A compiler bug occurs where, unknown to the compiler writer, the compiler implements different
semantics than those prescribed by the language standard. Examples of compiler bugs abound. One
Pascal compiler for the Commodore 64 required a semicolon after every statement. In contrast, the
Pascal standard requires semicolons only as separators between statements and forbids a semicolon
before an ELSE. A program written for this nonstandard compiler cannot be compiled by a standard
compiler and vice versa.

An example of a common “bug” is implementation of the mod operator. The easy way to
compute 1 mod j is to take the remainder after using integer division to calculate i/j. According
to the Pascal standard, quoted in Exhibit 1.4,3 this computation method is correct if both i and
j are positive integers. If i is negative, though, the result must be adjusted by adding in the
modulus, j. The standard considers the operation to be an error if j is negative. Note that mod is
only the same as the mathematical remainder function if i >= 0 and j > 0.

Many compilers ignore this complexity, as shown in Exhibits 1.5 and 1.6. They simply perform
an integer division operation and return the result, regardless of the signs of i and j. For example,
in OSS Pascal for the Atari ST, the mod operator is defined in the usual nonstandard way. The OSS

3Cooper [1983], page 3-1.

14 CHAPTER 1. THE NATURE OF LANGUAGE

Exhibit 1.4. The definition of mod in Standard Pascal.

e The value of i mod j is the value of i—(k*j) for an integer value k, such that 0 <= (i mod j) <
j. (That is, the value is always between 0 and j.)

e The expression i mod j is an error if j is zero or negative.

Pascal reference manual (page 6-26) describes mod as follows:
The modulus is the remainder left over after integer division.

Compiling and testing a few simple expressions [Exhibit 1.5] substantiates this and shows how OSS
Pascal differs from the standard. Expression 2 gives a nonstandard answer. Expressions (3) through
(6) compile and run, but shouldn’t. They are designated as errors in the standard, which requires
the modulus to be greater than 0. These errors are not detected by the OSS Pascal compiler or
run-time system, nor does the OSS Pascal reference manual state that they will not be detected,
as required by the standard.

In defense of this nonstandard implementation, one must note that this particular deviation is
common and the function it computes is probably more useful than the standard definition for mod.

The implementation of mod in Turbo Pascal is different, but also nonstandard, and may have
been an unintentional deviation. It was not included on the list of nonstandard language features.
[Exhibit 1.3] The author of this manual seems to have been unaware of this nonstandard nature of
mod and did not even describe it adequately. The partial information given in the Turbo reference
manual (pages 51-52) is as follows:

mod is only defined for integers
its result is an integer
12mod 5 =2

Exhibit 1.5. The definition of mod in OSS Pascal for the Atari ST.

Expression | OSS result | Answer according to Pascal Standard
1. 5 mod 2 1 Correct.
2. | -5mod 2 -1 Should be 1 (between 0 and the modulus-1).
3. 5 mod -2 1 Should be detected as an error.
4. | -5 mod -2 -1 Should be detected as an error.
5. 5 mod 0 0 Should be detected as an error.
6. -5 mod 0 -1 Should be detected as an error.

1.5. NONSTANDARD COMPILERS 15

Exhibit 1.6. The definition of mod in Turbo Pascal for the IBM PC.

Expression | Turbo result Answer according to Pascal Standard
1. 5 mod 2 1 Correct.
2. -bmod 2 | -1 Should be -1 + 2 = 1.
3. 5 mod -2 1 Should be an error.
4. | -bmod-2 | -1 Should be an error.
9. 5mod 0 | Run-time error | Correct.
6. | -bmod 0 | Run-time error | Correct.

The reference manual for Turbo Pascal version 4.0 still does not include mod on the list of non-
standard features. However, it does give an adequate definition (p. 240) of the function it actually
computes for mod:

“the mod operator returns the remainder from dividing the operands:
imod j=1i—(i/j)*j.
The sign of the result is the sign of . An error occurs if j = 0.”

Compiling and testing a few simple expressions [Exhibit 1.6] substantiates this definition. FEx-
pression 2 gives a nonstandard answer. Expressions (3) and (4) are designated as errors in the
standard, which requires the modulus to be greater than 0. These errors are not detected by the
Turbo compiler. Furthermore, its reference manual does not state that they will not be detected,
as required by the standard.

While Turbo Pascal will not compile a div or mod operation with 0 as a constant divisor, the
result of “/ mod 0” can be tested by setting a variable, j, to zero, then printing the results of ¢ mod
j. This gives the results on lines (5) and (6).

Occasionally, deviations from the standard occur because an implementor believes that the
standard, although unambiguous, defined an item “wrong”; that is, some other definition would
have been more efficient or more useful. The version incorporated into the compiler is intended as
an improvement over the standard. Again, the implementation of mod provides an example here.
In many cases, the programmer who uses mod really wants the arithmetic remainder, and it seems
foolish for the compiler to insert extra lines of code in order to compute the unwanted standard
Pascal function. At least one Pascal compiler (for the Apollo workstation) provides a switch that
can be set either to compile the standard meaning of mod or to compile the easy and efficient
meaning. The person who wrote this compiler clearly believed that the standard was “wrong” to
include the version it did rather than the integer remainder function.

The implementation of input and output operations in Turbo Pascal version 2.0 provides another
example of a compiler writer who declined to implement the standard language because he believed
his own version was clearly superior. He explains this decision as follows:*

“Borland [1984], Appendix F.

16 CHAPTER 1. THE NATURE OF LANGUAGE

The standard procedures GET and PUT are not implemented. Instead, the READ and
WRITE procedures have been extended to handle all I/O needs. The reason for this is
threefold: Firstly, READ and WRITE gives much faster I/O, secondly variable space
overhead is reduced, as file buffer variables are not required, and thirdly the READ

and WRITE procedures are far more versatile and easier to understand than GET and
PUT.

The actual Turbo implementation of READ did not even measure up to the standard in a minimal
way, as it did not permit the programmer to read a line of input from the keyboard one character
at a time. (It is surely inefficient to do so but essential in some applications.) Someone who did not
know that this deviation was made on purpose would think that it was simply a compiler bug. This
situation provides an excellent example of the dangers of “taking the law into your own hands”.

Whether or not we agree with the requirements of a language standard, we must think carefully
before using nonstandard features. Every time we use a nonstandard feature or one that depends
on the particular bit-level implementation of the language, it makes a program harder to port from
one system to another and decreases its potential usefulness and potential lifetime. Programmers
who use nonstandard “features” in their code should segregate the nonstandard segments and
thoroughly document them.

Exercises

1. Define natural language. Define programming language. How are they different?
2. How are languages used to establish communication?
3. What is the syntax of a language? What are the semantics?
4. What are the traits that determine the character of a language?
5. How do these traits appear in programming languages?
6. What need led to standardization?
7. What is a “standard” for a language?
8. What does it mean when a language standard defines something to be “undefined”?
9. How does standardization lead to portability?
10. What three kinds of deviations are common in nonstandard compilers?

11. What are the advantages and disadvantages of using nonstandard language features?

Chapter 2

Representation and Abstraction

Overview

This chapter presents the concept of how real-world objects, actions, and changes in
the state of a process are represented through a programming language on a computer.
Programs can be viewed as either a set of instructions for the computer to execute
or as a model of some real-world process. Languages designed to support these views
will exhibit different properties. The language designer must establish a set of goals
for the language and then examine them for consistency, importance, and restrictions.
Principles for evaluating language design are presented. Classification of languages into
groups is by no means an easy task. Categories for classifying languages are discussed.

Representation may be explicit or implicit, coherent or diffused.

2.1 What Is a Program?

We can view a program two ways.

1. A program is a description of a set of actions that we want a computer to carry out. The
actions are the primitive operations of some real or abstract machine, and they are performed
using the primitive parts of a machine. Primitive actions include such things as copying
data from one machine register or a memory location to another, applying an operation to a
register, or activating an input or output device.

17

18 CHAPTER 2. REPRESENTATION AND ABSTRACTION

2. A program is a model of some process in the real or mathematical world. The programmer
must set up a correspondence between symbols in the program and real-world objects, and
between program functions and real-world processes. Executing a function represents a change
in the state of the world or finding a solution to a set of specifications about elements of that
world.

These two world-views are analogous to the way a builder and an architect view a house. The
builder is concerned with the method for achieving a finished house. It should be built efficiently
and the result should be structurally sound. The architect is concerned with the overall function
and form of the house. It should carry out the architect’s concepts and meet the client’s needs.

The two world-views lead to very different conclusions about the properties that a programming
language should have. A language supporting world-view (1) provides ready access to every part
of the computer so that the programmer can prescribe in detail how the computer should go
about solving a given problem. The language of a builder contains words for each material and
construction method used. Similarly, a program construction language allows one to talk directly
about hardware registers, memory, data movement, I/O devices, and so forth. The distinction isn’t
simply whether the language is “low-level” or “high-level”, for assembly language and C are both
designed with the builder in mind. Assembly language is, by definition, low-level, and C is not,
since it includes control structures, type definitions, support for modules, and the like. However,
C permits (and forces) a programmer to work with and be aware of the raw elements of the host
computer.

A language supporting world-view (2) must be able to deal with abstractions and provide
a means for expressing a model of the real-world objects and processes. An architect deals with
abstract concepts such as space, form, light, and functionality, and with more concrete units such as
walls and windows. Blueprints, drawn using a formal symbolic language, are used to represent and
communicate the plan. The builder understands the language of blueprints and chooses appropriate
methods to implement them.

The languages Smalltalk and Prolog were designed to permit the programmer to represent and
communicate a world-model easily. They free the programmer of concerns about the machine and
let him or her deal instead with abstract concepts. In Smalltalk the programmer defines classes
of objects and the processes relevant to these classes. If an abstract process is relevant to several
classes, the programmer can define how it is to be accomplished for each. In Prolog the programmer
represents the world using formulas of mathematical logic. In other languages, the programmer
may use procedures, type declarations, structured loops, and block structure. to represent and
describe the application. Writing a program becomes a process of representing objects, actions,
and changes in the state of the process being modeled [Exhibit 2.1].

The advantage of a “builder’s” language is that it permits the construction of efficient software
that makes effective use of the computer on which it runs. A disadvantage is that programs tailored
to a particular machine cannot be expected to be well suited to another machine and hence they
are not particularly portable.

2.1. WHAT IS A PROGRAM? 19

Exhibit 2.1. Modeling a charge account and relevant processes.

Objects: A program that does the accounting for a company’s charge accounts must contain
representations for several kinds of real-world objects: accounts, payments, the current balance,
items charged, items returned, interest.

Actions: Each action to be represented involves objects from a specified class or classes. The
actions to be represented here include the following:

e Credit a payment to an account.

e Send a bill to the account owner.

e Debit a purchase to an account.

e Credit a return to an account.

e Compute and debit the monthly interest due.

Changes of state: The current balance of an account, today’s date, and the monthly payment
date for that account encode the state of the account. The balance may be positive, negative,

or zero, and a positive balance may be either ok or overdue. Purchases, returns, payments, and
monthly due dates and interest dates all cause a change in the state of the account.

Moreover, a programmer using such a language is forced to organize ideas at a burdensome level
of detail. Just as a builder must be concerned with numerous details such as building codes, lumber
dimensions, proper nailing patterns, and so forth, the program builder likewise deals with storage
allocation, byte alignment, calling sequences, word sizes, and other details which, while important
to the finished product, are largely unrelated to its form and function.

By way of contrast, an “architect’s” language frees one from concern about the underlying
machine and allows one to describe a process at a greater level of abstraction, omitting the minute
details. A great deal of discretion is left to the compiler designer in choosing methods to carry out
the specified actions. T'wo compilers for the same architect’s language often produce compiled code
of widely differing efficiency and storage requirements.

In fact, there is no necessary reason why there must be a compiler at all. One could use the
architect’s language to specify the form and function of the finished program and then turn the
job over to a program builder. However, the computer can do a fairly good job of automatically
producing a program for such languages, and the ability to have it do so gives the program architect
a powerful tool not available to the construction architect—the ability to rapidly prototype designs.
This is the power of the computer, and one of the aspects that makes the study of programming
language so fascinating!

20 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Exhibit 2.2. Representations of a date in English.

Dates are abstract real-world objects. We represent them in English by specifying an era,
year, month, and day of the month. The era is usually omitted and the year is often omitted in
representations of dates, because they can be deduced from context. The month is often encoded
as an integer between 1 and 12.

Full, explicit representation: January 2, 1986 AD

Common representations: January 2, 1986
Jan. 2, ’86
Jan. 2
1-2-86
2 Jan 86
86-1-2

2.2 Representation

A representation of an object is a list of the relevant facts about that object in some language
[Exhibit 2.2]. A computer representation of an object is a mapping of the relevant facts about that
object, through a computer language, onto the parts of the machine.

Some languages support high-level or abstract representations, which specify the functional
properties of an object or the symbolic names and data types of the fields of the representation
[Exhibit 2.3]. A high-level representation will be mapped onto computer memory by a translator.
The actual number and order of bytes of storage that will be used to represent the object may vary
from translator to translator. In contrast, a computer representation is low level if it describes a
particular implementation of the object, such as the amount of storage that will be used, and the
position of each field in that storage area [Exhibit 2.4].

A computer representation of a process is a sequence of program definitions, specifications, or

Exhibit 2.3. High-level computer representations of a date.

An encoding of the last representation in Exhibit 2.2 is often used in programs. In a high-level
language the programmer might specify that a date will be represented by three integers, as in this
Pascal example:

TYPE date = RECORD year, month, day: integer END;
VAR BirthDate: date;
The programmer may now refer to this object and its components as:
BirthDate or
BirthDate.year or BirthDate.month or BirthDate.day

2.2. REPRESENTATION 21

Exhibit 2.4. A low-level computer representation of a date.

In a low-level language such as assembler or FORTH, the programmer specifies the exact number
of bytes of storage that must be allocated (or ALLOTted) to represent the date. In the FORTH
declaration below, the keyword VARIABLE causes 2 bytes to be allocated, and 4 more are explicitly
allocated using ALLOT. Then the programmer must manually define selection functions that access
the fields of the object by adding an appropriate offset to the base address.

VARIABLE birth_date 4 ALLOT

: year 0 + ; (Year is first -- offset is zero bytes.)
: month 2 + ; (Month starts two bytes from the beginning.)
: day 4 + ; (Day is the fifth and sixth bytes.)

The variable named birth_date and its component fields can now be accessed by writing:

birth_date or
birth_date year or birth_date month or birth_date day

statements that can be performed on representations of objects from specified sets. We say that
the representation of a process is wvalid, or correct, if the transformed object representation still
corresponds to the transformed object in the real world.

We will consider three aspects of the quality of a representation: semantic intent, explicitness,
and coherence. Abstract representations have these qualities to a high degree; low-level represen-
tations often lack them.

2.2.1 Semantic Intent

A data object (variable, record, array, etc.) in a program has some intended meaning that is known
to the programmer but cannot be deduced with certainty from the data representation itself. This
intended meaning is the programmer’s semantic intent. For example, three 2-digit integers can
represent a woman’s measurements in inches or a date. We can only know the intended meaning
of a set of data if the programmer communicates, or declares, the context in which it should be
interpreted.

A program has semantic validity if it faithfully carries out the programmer’s explicitly declared
semantic intent. We will be examining mechanisms in various languages for expressing semantic
intent and ensuring that it is carried out. Most programming languages use a data type to encode
part of the semantic intent of an object. Before applying a function to a data object, the language
translator tests whether the function is defined for that object and, therefore, is meaningful in its
context. An attempt to apply a function to a data object of the wrong type is identified as a
semantic error. A type checking mechanism can thus help a programmer write semantically valid
(meaningful) programs.

22 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Exhibit 2.5. The structure of a table expressed implicitly.

Pascal permits the construction and use of sorted tables, but the fact that the table is sorted
cannot be explicitly declared. We can deduce that the table is sorted by noting that a sort algorithm
is invoked, that a binary search algorithm is used, or that a sequential search algorithm is used
that can terminate a search unsuccessfully before reaching the end of the table.

The order of entries (whether ascending or descending) can be deduced by careful analysis of
three things:

e The comparison operator used in a search (< or >)
e The order of operands in relation to this operator

e The result (true or false) which causes the search to terminate.

Deductions of this sort are beyond the realistic present and future abilities of language translators.

2.2.2 Explicit versus Implicit Representation

The structure of a data object can be reflected implicitly in a program, by the way the statements
are arranged [Exhibit 2.5], or it can be declared explicitly [Exhibit 2.6]. A language that can declare
more kinds of things explicitly is more expressive.

Information expressed explicitly in a program may be used by the language translator. For
example, if the COBOL programmer supplies a KEY clause, the processor will permit the program-
mer to use the efficient built-in binary search command, because the KEY clause specifies that the
file is sorted in order by that field. The less-efficient sequential search command must be used to
search any table that does not have a KEY clause.

A language that permits explicit communication of information must have a translator that
can identify, store, organize, and utilize that information. For example, if a language permits
programmers to define their own types, the translator needs to implement type tables (where type
descriptions are stored), new allocation methods that use these programmer-defined descriptions,
and more elaborate rules for type checking and type errors.

These translator mechanisms to identify, store, and interpret the programmer’s declarations
form the semantic basis of a language. Other mechanisms that are part of the semantic basis are
those which implement binding (Chapters 6 and 9), type checking and automatic type conversion
(Chapter 15), and module protection (Chapter 16).

2.2.3 Coherent versus Diffuse Representation

A representation is coherent if an external entity (object, idea, or process) is represented by a single
symbol in the program (a name or a pointer) so that it may be referenced and manipulated as a
unit [Exhibit 2.7]. A representation is diffuse if various parts of the representation are known by

2.2. REPRESENTATION 23

Exhibit 2.6. COBOL: The structure of a table expressed explicitly.

COBOL allows explicit declaration of sorted tables. The key field(s) and the order of entries
may be declared as in the following example. This table is intended to store the names of the
fifty states of the United States and their two-letter abbreviations. It is to be stored so that the
abbreviations are in alphabetical order.

01 state-table.
02 state-entry
OCCURS 50 TIMES
ASCENDING KEY state—abbrev
INDEXED BY state-index.
03 state-abbrev PICTURE XX.
03 state-name PICTURE X(20).
This table can be searched for a state abbreviation using the binary-search utility. A possible call
is:
SEARCH ALL state-entry
AT END PERFORM failed-search-process
WHEN st-abbrev (state-index) = search-key PERFORM found-process.
COBOL also permits the programmer to declare Pascal-like tables for which the sorting order and
key field are not explicitly declared. The SEARCH ALL command cannot be used to search such a
table; the programmer can only use the less efficient sequential search command.

different names, and no one name or symbol applies to the whole [Exhibits 2.8 and 2.9].

A representation is coherent if all the parts of the represented object can be named by one
symbol. This certainly does not imply that all the parts must be stored in consecutive (or contigu-
ous) memory locations. Thus an object whose parts are connected by links or pointers can still be
coherent [Exhibit 2.10].

The older languages (FORTRAN, APL) support coherent representation of complex data objects

Exhibit 2.7. A stack represented coherently in Pascal.

A stack can be represented by an array and an integer index for the number of items currently in
the array. We can represent a stack coherently by grouping the two parts together into a record.
One parameter then suffices to pass this stack to a function.
TYPE stack = RECORD
store: ARRAY [1..max_stack] of stack_type;
top: O0..max_stack
END;

24 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Exhibit 2.8. A stack represented diffusely in FORTRAN and Pascal.

A stack can be represented diffusely as an array of items and a separate index (an integer in the
range 0 to the size of the array).

FORTRAN: A diffuse representation is the only representation of a stack that is possible in
FORTRAN because the language does not support heterogeneous records. These declarations create
two objects which, taken together, comprise a stack of 100 real numbers:

REAL STSTORE(100)
INTEGER STTOP

Pascal: A stack can be represented diffusely in Pascal. This code allocates the same amount of
storage as the coherent version in Exhibit 2.7, but two parameters are required to pass this stack
to a procedure.

TYPE stack_store = ARRAY [1..max_stack] of stack_type;
stack_top = 0..max_stack;

Exhibit 2.9. Addition represented diffusely or coherently.

FORTH: The operation of addition is represented diffusely because addition of single-length
integers, double-length integers, and mixed-length integers are named by three different symbols,
(+, D+, and M+) and no way is provided to refer to the general operation of “integer +”.

C: The operation of addition is represented coherently. Addition of single-length integers,
double-length integers, and mixed-length integers are all named “+”. The programmer may refer
to “+” for addition, without concern for the length of the integer operands.

Exhibit 2.10. A coherently but not contiguously represented object.

LISP: A linked tree structure or a LISP list is a coherent object because a single pointer to the
head of the list allows the entire list to be manipulated. A tree or a list is generally implemented
by using pointers to link storage cells at many memory locations.

C: A sentence may be represented as an array of words. One common representation is a
contiguous array of pointers, each of which points to a variable-length string of characters. These
strings are normally allocated separately and are not contiguous.

2.3. LANGUAGE DESIGN 25

only if the object can be represented by a homogeneous array of items of the same data type.! Where
an object has components represented by different types, separate variable names must be used.
COBOL and all the newer languages support coherent heterogeneous groupings of data. These are
called “records” in COBOL and Pascal, and “structures” in C.

The FORTRAN programmer can use a method called parallel arrays to model an array of
heterogeneous records. The programmer declares one array for each field of the record, then
uses a single index variable to refer to corresponding elements of the set of arrays. This diffuse
representation accomplishes the same goal as a Pascal array of records. However, an array of records
represents the problem more clearly and explicitly and is easier to use. For example, Pascal permits
an array of records to be passed as a single parameter to a function, whereas a set of parallel arrays
in FORTRAN would have to be passed as several parameters.

Some of the newest languages support coherence further by permitting a set of data represen-
tations to be grouped together with the functions that operate on them. Such a coherent grouping
is called a “module” in Modula-2, a “cluster” in CLU, a “class” in Smalltalk, and a “package” in
Ada.

2.3 Language Design

In this section we consider reasons why a language designer might choose to create an “architect’s
language” with a high degree of support for abstraction, or a “builder’s language” with extensive
control over low-level aspects of representation.

2.3.1 Competing Design Goals

Programming languages have evolved greatly since the late 1950s when the first high-level languages,
FORTRAN and COBOL, were implemented. Much of this evolution has been made possible by the
improvements in computer hardware: today’s machines are inconceivably cheap, fast, and large (in
memory capacity) compared to the machines available in 1960. Although those old machines were
physically bulky and tremendously expensive, they were hardly more powerful than machines that
today are considered to be toys.

Along with changes in hardware technology came improvements in language translation tech-
niques. Both syntax and semantics of the early languages were ad hoc and clumsy to translate.
Formal language theory and formal semantics affected language design in revolutionary ways and
have resulted in better languages with cleaner semantics and a more easily translatable syntax.

There are many aspects of a language that the user cannot modify or extend, such as the data
structuring facilities and the control structures. Unless a language system supports a preprocessor,
the language syntax, also, is fixed. If control structures and data definition facilities are not built

!The EQUIVALENCE statement can be used to circumvent this weakness by defining the name of the coherent
object as an overlay on the storage occupied by the parts. This does not constitute adequate support for compound
heterogeneous objects.

26 CHAPTER 2. REPRESENTATION AND ABSTRACTION

in, they are not available. Decisions to include or exclude such features must, therefore, be made
carefully. A language designer must consider several aspects of a potential feature to decide whether
it supports or conflicts with the design goals.

During these thirty years of language development, a consensus has emerged about the impor-
tance of some language features, for example, type checking and structured conditionals. Most new
languages include these. On other issues, there has been and remains fundamental disagreement,
for instance, over the question of whether procedural or functional languages are “better”. No
single set of value judgments has yet emerged, because different languages have different goals and
different intended uses. The following are some potential language design goals:

e Utility. Is a feature often useful? Can it do important things that cannot be done using other
features of the language?

e Convenience. Does this feature help avoid excessive writing? Does this feature add or elimi-
nate clutter in the code?

e Efficiency. Is it easy or difficult to translate this feature? Is it possible to translate this
feature into efficient code? Will its use improve or degrade the performance of programs?

e Portability. Will this feature be implementable on any machine?

e Readability. Does this form of this feature make a program more readable? Will a programmer
other than the designer understand the intent easily? Or is it cryptic?

e Modeling ability. Does this feature help make the meaning of a program clear? Will this
feature help the programmer model a problem more fully, more precisely, or more easily?

e Simplicity. Is the language design as a whole simple, unified, and general, or is it full of
dozens of special-purpose features?

e Semantic clarity. Does every legal program and expression have one defined, unambiguous,
meaning? Is the meaning constant during the course of program execution?

These goals are all obviously desirable, but they conflict with each other. For example, a simple
language cannot possibly include all useful features, and the more features included, the more
complicated the language is to learn, use, and implement. Ada illustrates this conflict. Ada was
designed for the Department of Defense as a language for embedded systems, to be used in all
systems development projects, on diverse kinds of hardware. Thus it necessarily reflects a high
value placed on items at the beginning and middle of the preceding list of design goals. The result
is a very large language with a long list of useful special features.

Some language researchers have taken as goals the fundamental properties of language shown
at the end of the list of design goals. Outstanding examples include Smalltalk, a superior language
for modeling objects and processes, and Miranda, which is a list-oriented functional language that
achieves both great simplicity and semantic clarity.

2.3. LANGUAGE DESIGN 27

Exhibit 2.11. A basic type not supported by Pascal.

Basic type implemented by most hardware: bit strings

Common lengths: 8, 16, and 32 bits (1, 2, and 4 bytes)

Operations built into most hardware | Symbol in C
a right shift n places a>n

a left shift n places a<<n

a and b a&b
aorb alb

a exclusive or b a”~b
complement a " a

2.3.2 The Power of Restrictions

Every language imposes restrictions on the user, both by what it explicitly prohibits and by what
it simply doesn’t provide. Whenever the underlying machine provides instructions or capabilities
that cannot be used in a user program, the programming language is imposing a restriction on the
user. For example, Pascal does not support the type “bit string” and does not have “bit string”
operators [Exhibit 2.11]. Thus Pascal restricts access to the bit-level implementations of objects.

The reader must not confuse logical operators with bitwise operators. Pascal supports the logical
(Boolean) data type and logical operators and, or, and not. Note that there is a difference between
these and the bitwise operators [Exhibit 2.12]. Bitwise operators apply the operation between every
corresponding pair of bits in the operands. Logical operators apply the operation to the operands
as a whole, with 00000000 normally being interpreted as False and anything else as True.

In general, restrictions might prevent writing the following two sorts of sentences:

1. Useless or meaningless sentences such as “3 := 72.9 + ‘a’ 7.

2. Sentences useful for modeling some problem, that could be written efficiently in assembly

Exhibit 2.12. Bitwise and logical operations.
The difference between bitwise and logical operations can be seen by comparing the input and
output from these operations in C:

Operation Operands as bit strings | Result Explanation

bitwise and 10111101 & 01000010 | 00000000 | no bit pairs match

logical and 10111101 && 01000010 | 00000001 | both operands represent True

complement ~ (01000010 10111101 | each bit is flipped
logical not ! 01000010 00000000 | operand is True

28 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Exhibit 2.13. Useful pointer operations supported in C.

In the C expressions below, p is a pointer used as an index for the array named “ages”. Initially, p
will store the machine address of the beginning of ages. To make p index the next element, p will
be incremented by the number of bytes in one element of ages. The array element is accessed by
dereferencing the pointer.

This code contains an error in logic, which is pointed out in the comments. It demonstrates one
semantic problem that Pascal’s restrictions were designed to prevent. The loop will be executed
too many times, and this run-time error will not be detected. Compare this to the similar Pascal
loop in Exhibit 2.14.

int ages[10]; /* Array "ages" has subscripts 0..9. */

p = ages; /* Make p point at ages[0]. x*/

end = &ages[10]; /* Compute address of eleventh array element. */

while (p <= end){ /* Loop through eleventh array address. */
printf("%d \n", *p); /* Print array element in decimal integer format. */
p++; /* Increment p to point at next element of ages. */

}

code but are prohibited.

A good example of a useful facility that some languages prohibit is explicit address manipulation.
This is supported in C [Exhibit 2.13]. The notation for pointer manipulation is convenient and is
generally used in preference to subscripting when the programmer wishes to process an array
sequentially.

In contrast, manipulation of addresses is restricted in Pascal to prevent the occurrence of mean-
ingless and potentially dangerous dangling pointers (see Chapter 6). Address manipulation is
prohibited and address arithmetic is undefined in Pascal. Nothing comparable to the C code in
Exhibit 2.13 can be written in Pascal. A pointer can’t be set to point at an array element, and it
cannot be incremented to index through an array.

This is a significant loss in Pascal because using a subscript involves a lot of computation: the
subscript must be checked against the minimum and maximum legal values, multiplied by the size
of an array element, and added to the base address of the array. Checking whether a pointer has
crossed an array boundary and using it to access an element could be done significantly faster.

Let us define flexibility to mean the absence of a restriction, and call a restriction good if it
prevents the writing of nonsense, and bad if it prevents writing useful things. Some restrictions
might have both good and bad aspects. A powerful language must have the flexibility to express a
wide variety of actions—preferably a variety that approaches the power of the underlying machine.

But power is not a synonym for flexibility. The most flexible of all languages is assembly
language, but assemblers lack the power to express a problem solution succinctly and clearly. A

2.3. LANGUAGE DESIGN 29

Exhibit 2.14. A meaningless operation prohibited in Pascal but not in C.

Subscripts are checked at run time in Pascal. Every subscript that is used must be within the
declared bounds.

VAR ages: arrayl[0..9] of integer;
p: integer;

p := 0;
while p <= 10 do begin /% Loop through last array subscript. */
writeln(ages[p]); /* Print the array element. */
p:=p+1 /* Make p point at next element of array. */
end;

The last time around this loop the subscript, p, has a value that is out of range. This will be
detected, and a run-time error comment will be generated. The analogous C code in Exhibit 2.13
will run and print garbage on the last iteration. The logical error will not be detected, and no error
comment will be produced.

second kind of power is provided by sophisticated mechanisms in the semantic basis of a language
that let the programmer express a lot by saying a little. The type definition and type checking
facility in any modern language is a good example of a powerful mechanism.

A third kind of power can come from “good” restrictions that narrow the variety of things that
can be written. If a restriction can eliminate troublesome or meaningless sentences automatically,
then programmers will not have to check, explicitly, whether such meaningless sections occur in
their programs. Pascal programs rarely run wild and destroy memory. But C and FORTH programs,
with unrestricted pointers and no subscript bounds checking, often do so. A language should have
enough good restrictions so that the programmer and translator can easily distinguish between a
meaningful statement and nonsense.

For example, an attempt to access an element of an array with a subscript greater than the
largest array subscript is obviously meaningless in any language. The underlying machine hardware
permits one to FETCH and STORE information beyond the end of an array, but this can have no
possible useful meaning and is likely to foul up the further operation of the program. The semantics
of standard Pascal prescribe that the actual value of each subscript expression should be checked at
run time. An error comment is generated if the value is not within the declared array bounds. Thus,
all subscripting in Pascal is “safe” and cannot lead to destruction of other information [Exhibit 2.14].

No such array bounds check is done in C. Compare Exhibits 2.13 and 2.14. These two code
fragments do analogous things, but the logical error inherent in both will be trapped by Pascal
and ignored by C. In C, a FETCH operation with too large a subscript can supply nonsensical
information, and a STORE can destroy vital, unrelated information belonging to variables allocated
before or after the array. This situation was exploited to create the computer network “worm” that

30 CHAPTER 2. REPRESENTATION AND ABSTRACTION

invaded hundreds of computer systems in November 1988. It disabled these systems by flooding
their processing queues with duplicates of itself, preventing the processing of normal programs.
This escapade resulted in the arrest and conviction of the programmer.

Often, as seen in Exhibit 2.13, a single feature is both useful and dangerous. In that case,
a language designer has to make a value judgement about the relative importance of the feature
and the danger in that feature. If the designer considers the danger to outweigh the importance,
the restriction will be included, as Wirth included the pointer restrictions in Pascal. If the need
outweighs the danger, the restriction will not be included. In designing C, Kernighan and Ritchie
clearly felt that address manipulation was vital, and decided that the dangers of dangling pointers
would have to be avoided by careful programming, not by imposing general restrictions on pointers.

2.3.3 Principles for Evaluating a Design

In the remaining chapters of this book we will sometimes make value judgments about the particular
features that a language includes or excludes. These judgments will be based on a small set of
principles.

Principle of Frequency

The more frequently a language feature will be used, the more convenient its use should be, and
the more lucid its syntax should be. An infrequently used feature can be omitted from the core of
the language and/or be given a long name and less convenient syntax.

C provides us with examples of good and poor application of this principle. The core of the C
language does not include a lot of features that are found in the cores of many other languages. For
example, input/output routines and mathematical functions for scientific computation are not part
of the standard language. These are relegated to libraries, which can be searched if these features
are needed. There are two C libraries which are now well standardized, the “math library” and the
“C library” (which includes the I/O functions).

The omission of mathematical functions from C makes good sense because the intended use of
C was for systems programming, not scientific computation. Putting these functions in the math
library makes them available but less convenient. To use the math library, the loader must have
the library on its search path and the user must include a header file in the program which contains
type declarations for the math functions.

On the other hand, most application programs use the input-output functions, so they should
be maximally convenient. In C they aren’t; in order to use them a programmer must include the
appropriate header file containing I/O function and macro declarations, and other essential things.
Thus nearly every C application program starts with the instruction “#include (stdio.h)”. This
could be considered to be a poor design element, as it would cost relatively little to build these
definitions into the translator.

2.3. LANGUAGE DESIGN 31

Principle of Locality

A good language design enables and encourages, perhaps even enforces, locality of effects. The
further the effects of an action reach in time (elapsed during execution) or in space (measured in
pages of code), the more complex and harder it is to debug a program. The further an action has
influence, the harder it is to remember relevant details, and the more subtle errors seem to creep
into the code.

To achieve locality, the use of global variables should be minimized or eliminated and all transfers
of control should be short-range. A concise restatement of this principle, in practical terms is:

Keep the effects of everything confined to as local an area of the code as possible.

Here are some corollaries of the general principle, applied to lexical organization of a program
that will be debugged on-line, using an ordinary nonhierarchical text editor:

e A control structure that won’t fit on one screen is too long; shorten it by defining one or more
scopes as subroutines.

e All variables should be defined within one screen of their use. This applies whether the user’s
screen is large or small—the important thing is to be able to see an entire unit at one time.

e If your subroutine won’t fit on two screens, it is too long. Break it up.

Global Variables. Global variables provide a far more important example of the cost of nonlo-
cality. A global variable can be changed or read anywhere within a program. Specifically, it can be
changed accidentally (because of a typographical error or a programmer’s absentmindedness) in a
part of the program that is far removed from the section in which it is (purposely) used.

This kind of error is hard to find. The apparent fault is in the section that is supposed to use
the variable, but if that section is examined in isolation, it will work properly. To find the cause
of the error, a programmer must trace the operation of the entire program. This is a tedious job.
The use of unnecessary global variables is, therefore, dangerous.

If the program were rewritten to declare this variable locally within the scope in which it is used,
the distant reference would promptly be identified as an error or as a reference to a semantically
distinct variable that happens to have the same name.

Among existing languages are those that provide only global variables, provide globals but
encourage use of locals and parameters, and provide only parameters.

Unrestricted use of global variables. A BASIC programmer cannot restrict a variable to
a local scope. This is part of the reason that BASIC is not used for large systems programs.

32 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Use of global variables permitted but use of locals encouraged. Pascal and C are
block structured languages that make it easy to declare variables in the procedure in which they
are used.? Their default method of parameter passing is call-by-value. Changing a local variable
or value parameter has only local effects. Programmers are encouraged to use local declarations,
but they can use global variables in place of both local variables and parameters.

Use of global variables prohibited. In the modern functional languages there are no global
variables. Actually, there are no variables at all, and parameter binding takes the place of assign-
ment to variables. Assignment was excluded from this class of languages because it can have
nonlocal effects. The result is languages with elegant, clean semantics.

Principle of Lexical Coherence

Sections of code that logically belong together should be physically adjacent in the program. Sec-
tions of code that are not related should not be interleaved. It should be easy to tell where one
logical part of the program ends and another starts. A language design is good to the extent that
it permits, requires, or encourages lexical coherence.

This principle concerns only the surface syntax of the language and is, therefore, not as impor-
tant as the other principles, which concern semantic power. Nonetheless, good human engineering
is important in a language, and lexical coherence is important to make a language usable and
readable.

Poor lexical coherence can be seen in many languages. In Pascal the declarations of local
variables for the main program must be near the top of the program module, and the code for main
must be at the bottom [Exhibit 2.15]. All the function and procedure definitions intervene. In a
program of ordinary size, several pages of code come between the use of a variable in main and its
definition.

Recently, hierarchical editors have been developed for Pascal. They allow the programmer to
”hide” a function definition "under” the function header. A program is thus divided into levels,
with the main program at the top level and its subroutines one level lower. If the subroutines have
subroutines, they are at level three, and so on. When the main program is on the screen, only
the top level code appears, and each function definition is replaced by a simple function header.
This brings the main program’s body back into the lexical vicinity of its declarations. When the
programmer wishes to look at the function definition, simple editor commands will allow him to
descend to that level and return.

A similar lack of coherence can be seen in early versions of LISP.? LISP permits a programmer
to write a function call as a literal function, called a lambda expression, followed by its actual
arguments, as shown at the top of Exhibit 2.16. The dummy parameter names are separated from
the matching parameter values by an arbitrarily long function body.

2Local declarations are explained fully in Chapter 6; parameters are discussed in Chapter 9, Section 9.2.
$McCarthy et al. [1962].

2.3. LANGUAGE DESIGN 33

Exhibit 2.15. Poor lexical coherence for declarations and code in Pascal.

The parts of a Pascal program are arranged in the order required to permit one-pass compilation:

e Constant declarations.

e Type declarations.

e Variable declarations.

e Procedure and Function declarations.

e Code.

Good programming style demands that most of the work of the program be done in subroutines,
and the part of the program devoted to subroutine definitions is often many pages long. The variable

declarations and code for the main program are, therefore, widely separated, producing poor lexical
coherence.

Exhibit 2.16. Syntax for lambda expressions in LISP.

The order of elements in the primitive syntax is:
((lambda
((list of dummy parameter names))
((body of the function)))
(list of actual parameter values))

The order of elements in the extended syntax is:
(let
((list of dummy name - actual value pairs))
((body of the function)))

34 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Exhibit 2.17. A LISP function call with poor coherence.
The following literal function is written in the primitive LISP syntax. It takes two parameters, x,

and y. It returns their product plus their difference. It is being called with the arguments 3.5 and
a + 2. Note that the parameter declarations and matching arguments are widely separated.

((lambda (x y)
+ (x x)
xy))
3.5 (+ a2))

This lack of lexical coherence makes it awkward and error prone for a human to match up the
names with the values, as shown in Exhibit 2.17. The eye swims when interpreting this function
call, even though it is simple and the code section is short.

Newer versions of LISP, for example Common LISP,* offer an improved syntax with the same
semantics but better lexical coherence. Using the let syntax, dummy parameter names and actual
values are written in pairs at the top, followed by the code. This syntax is shown at the bottom of
Exhibit 2.16, and an example of its use is shown in Exhibit 2.18.

A third, and extreme, example of poor lexical coherence is provided by the syntax for function
definitions in SNOBOL. A SNOBOL IV function is defined by a function header of the following

form:
(/{name) ((parameter list)) (local variable name list)’, '(entry label)’)

The code that defines the action of the subroutine can be anywhere within the program module,
and it starts at the line labeled (entry label). It does not even need to be all in the same place,

“Kessler[1988], p. 59.

Exhibit 2.18. A LISP function call with good coherence.

The following function call is written in LISP using the extended “let” syntax. It is semantically
equivalent to the call in Exhibit 2.17.

(let ((x 3.5) (y (+ a 2))
((+ (xxy)
-xy))))

Compare the ease of matching up parameter names and corresponding arguments here, with
the difficulty in Exhibit 2.17. The lexically coherent syntax is clearly better.

2.3. LANGUAGE DESIGN 35

Exhibit 2.19. Poor lexical coherence in SNOBOL.

SNOBOL has such poor lexical coherence that semantically unrelated lines can be interleaved,
and no clear indication exists of the beginning or end of any program segment. This program
converts English to Pig Latin. It is annotated below.

1. DEFINE('PIG(X) Y, Z/, 'PIG1’) :(MAIN)

2. PROC OUTPUT = PIG(IN)

3. MAIN IN = INPUT :F(END) S(PROC)
4. PIG1 PIG = NULL

5. X SPAN(' /) = :F (RETURN)

6. LOOP X BREAK(' /) . Y SPAN(' /) = :F(RETURN)

7. Y LEN(1) . Z =

8. PIG = PIG Y Z 'AY : (LOOP)

9. END OQUTPUT = '.’

Program Notes. The main program begins on line 1, with the declaration of a header for a
subroutine named PIG. Line 1 directs that execution is to continue on the line named MAIN. The
subroutine declaration says that the subroutine PIG has one parameter, X, and two local variables,
Y and Z. The subroutine code starts on the line with the label “PIG1”.

Lines 2, 3, and 9 belong to the main program. They read a series of messages, translate each
to Pig Latin, write them out, and quit when a zero-length string is entered.

Lines 4 through 8 belong to the subroutine PIG. Line 4 initializes the answer to the null string.
Line 5 strips leading blanks off the parameter, X. Line 6 isolates the next word in X (if any), and
line 7 isolates its first letter. Finally, line 8 glues this word onto the output string with its letters
in a different order and loops back to line 6.

since each of its lines may be attached to the next by a GOTO.

Thus a main program and several subroutines could be interleaved. (We do admit that a
sane programmer would never do such a thing.) Exhibit 2.19 shows a SNOBOL program, with
subroutine, that translates an English sentence into Pig Latin. The line numbers are not part of
the program but are used to key it to the program notes that follow.

Principle of Distinct Representation

Each separate semantic object should be represented by a separate syntactic item. Where a single
syntactic item in the program is used for multiple semantic purposes, conflicts are bound to occur,
and one or both sets of semantics will be compromised. The line numbers in a BASIC program
provide a good example.

BASIC was the very first interactive programming language. It combined an on-line editor, a
file system, and an interpreter to make a language in which simple problems could be programmed

36 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Exhibit 2.20. BASIC: GOT0s and statement ordering both use line numbers.

Line numbers in BASIC are used as targets of GOTO and also to define the proper sequence of the
statements; the editor accepts lines in any order and arranges them by line number. Thus the user
could type the following lines in any order and they would appear as follows:

2 SUM = SUM + A

4 PRINT SUM
6 IF A< 10 GO TO 2
8 STOP

Noticing that some statements have been left out, the programmer sees that three new lines
must be inserted. The shortsighted programmer has only left room to insert one line between each
pair, which is inadequate here, so he or she renumbers the old line 2 as 3 to make space for the
insertion. The result is:

LET SUM = 0O

LET A =1

SUM = SUM + A
PRINT SUM

LET A=A+ 1

IF A < 10 GO TO 2
STOP

0 O Ok WN -

Notice that the loop formed by line 6 now returns to the wrong line, making an infinite loop.
Languages with separate line numbers and statement labels do not have this problem.

quickly. The inclusion of an editor posed a new problem: how could the programmer modify the
program and insert and delete lines? The answer chosen was to have the programmer number every
line, and have the editor arrange the lines in order by increasing line number.

BASIC was developed in the context of FORTRAN, which uses numeric line numbers as statement
labels. It was, therefore, natural for BASIC to merge the two ideas and use one mechanism, the
monotonically increasing line number, to serve purposes (1) and (2) below. When the language
was extended to include subroutines, symbolic names for them were not defined either. Rather, the
same line numbers were given a third use. Line numbers in BASIC are, therefore, multipurpose:

1. They define the correct order of lines in a program.
2. They are the targets of GOTOs and IFs.
3. They define the entry points of subroutines (the targets of GOSUB).

A conflict happens because inserting code into the program requires that line numbers change,
and GOTO requires that they stay constant. Because of this, adding lines to a program can be a

2.3. LANGUAGE DESIGN 37

complicated process. Normally, BASIC programmers leave regular gaps in the line numbers to allow
for inserting a few lines. However, if the gap in numbering between two successive lines is smaller
than the number of lines to be inserted, something will have to be renumbered. But since the targets
of GOTOs are not marked in any special way, renumbering implies searching the entire program for
GOTOs and GOSUBs that refer to any of the lines whose numbers have been changed. When found,
these numbers must be updated [Exhibit 2.20]. Some BASIC systems provide a renumbering utility,
others don’t. In contrast, lines can be added almost anywhere in a C program with minimal local
adjustments.

Principle of Too Much Flexibility

A language feature is bad to the extent that it provides flexibility that is not useful to the pro-
grammer, but that is likely to cause syntactic or semantic errors.

For example, any line in a BASIC program can be the target of a GOTO or a GOSUB statement.
An explicit label declaration is not needed—the programmer simply refers to the line numbers used
to enter and edit the program. A careless or typographical error in a GOTO line number will not be
identified as a syntactic error.

Every programmer knows which lines are supposed to be the targets of GOTOs, and she or he
could easily identify or label them. But BASIC supplies no way to restrict GOTOs to the lines that
the programmer knows should be their targets. Thus the translator cannot help the programmer
ensure valid use of labels.

We would say that the ability to GOTO or GOSUB to any line in the program without writing
an explicit label declaration is excessively flexible: it saves the programmer the minor trouble of
declaring labels, but it leads to errors. If there were some way to restrict the set of target lines,
BASIC would be a better and more powerful language. Power comes from a translator’s ability
to identify and eliminate meaningless commands, as well as from a language’s ability to express
aspects of a model.

Another example of useless flexibility can be seen in the way APL handles GOTO and statement
labels. APL provides only three control structures: the function call, sequential execution, and a
GOTO statement. A GOTO can only transfer control locally, within the current function definition.
All other control structures, including ordinary conditionals and loops, must be defined in terms of
the conditional GOTO.

As in BASIC, numeric line numbers are used both to determine the order of lines in a program
and as targets of the GOTO. But the problems in BASIC with insertions and renumbering are avoided
because, unlike BASIC, symbolic labels are supported. A programmer may write a symbolic label
on a line and refer to it in a GOTO, and this will have the correct semantics even if lines are inserted
and renumbering happens. During compilation of a function definition (the process that happens
when you leave the editor), the lines are renumbered. Each label is bound to a constant integer
value: the number of the line on which it is defined. References to the label in the code are replaced
by that constant, which from then on has exactly the same semantics as an integer. (Curiously,
constants are not otherwise supported by the language.)

38 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Exhibit 2.21. Strange but legal GOTOs in APL.

The GOTO is written with a right-pointing arrow, and its target may be any expression. The
statements below are all legal in APL.

— (x+2) —6 Legal so long as the result is an integer.

— 347 An array of line numbers is given; control will be
transferred to the first.
— ¢ 0 ¢ N returns a vector of N numbers, ranging from 1 to

N. Thus, ¢ 0 returns a vector of length 0, which is the
null object. A branch to the null object is equivalent
to a no-op.

Semantic problems arise because the labels are translated into integer constants and may be
operated on using integer operations such as multiplication and division! Further, the APL GOTO is
completely unrestricted; it can name either a symbolic label or an integer line number, whether or
not that line number is defined in that subroutine. Use of an undefined line number is equivalent
to a function return. These semantics have been defined so that some interpretation is given no
matter what the result of the expression is [Exhibit 2.21].

Because the target of a GOTO may be computed and may depend on variables, any line of the
subroutine might potentially be its target. It is impossible at compile time to eliminate any line
from the list of potential targets. Thus, at compile time, the behavior of a piece of code may be
totally unpredictable.

APL aficionados love the flexibility of this GOTO. All sorts of permutations and selection may be
done on an array of labels to implement every conceivable variety of conditional branch. Dozens
of useful idioms, or phrases, such as the one in Exhibit 2.22, have been developed using this GOTO
and published for other APL programmers to use.

It is actually fun to work on and develop a new control structure idiom. Many language
designers, though, question the utility and wisdom of permitting and relying on such idiomatic
control structures. They must be deciphered to be understood, and the result of a mistake in
definition or use is a totally wrong and unpredictable branch. Even a simple conditional branch

Exhibit 2.22. A computed GOTO idiom in APL.

— (NEG, EQ, POS) [2 +x N |

This is a three-way branch very similar to the previous example and analogous to the FORTRAN
arithmetic IF. The signum function, X, returns -1 if N is negative, +1 if N is positive, and 0
otherwise. Two is added to the result of signum, and the answer is used to subscript a vector of
labels. One of the three branches is always taken.

2.3. LANGUAGE DESIGN 39

to the top of a loop can be written with four different idioms, all in common use. This makes it
difficult to learn to read someone else’s code. Proofs of correctness are practically impossible.

We have shown that APL’s totally unrestricted GOTO has the meaningless and useless flexibility
to branch to any line of the program, and that the lack of any other control structure necessitates
the use of cryptic idioms and produces programs with unpredictable behavior. These are severe
semantic defects! By the principle of Too Much Flexibility, this unrestricted GOTO is bad, and APL
would be a more powerful language with some form of restriction on the GOTO.

The Principle of Semantic Power

A programming language is powerful (for some application area) to the extent that it permits the
programmer to write a program easily that expresses the model, the whole model, and nothing but
the model. Thus a powerful language must support explicit communication of the model, possibly
by defining a general object and then specifying restrictions on it. A restriction imposed by the
language can support power at the price of flexibility that might be necessary for some applications.
On the other hand, a restriction imposed by the user expresses only the semantics that the user
wants to achieve and does not limit him or her in ways that obstruct programming.

The programmer should be able to specify a program that computes the “correct” results and
then be able to verify that it does so. All programs should terminate properly, not “crash”. Faulty
results from correct data should be provably impossible.

Part of a model is a description of the data that is expected. A powerful language should let the
programmer write data specifications in enough detail so that “garbage in” is detected and does
not cause “garbage out”.

The Principle of Portability

A portable program is one that can be compiled by many different compilers and run on different
hardware, and that will work correctly on all of them. If a program is portable, it will be more
useful to more people for more years. We live in times of constant change: we cannot expect to
have the same hardware or operating system available in different places or different years.

But portability limits flexibility. A portable program, by definition, cannot exploit the special
features of some hardware. It cannot rely on any particular bit-level representation of any object or
function; therefore, it cannot manipulate such things. One might want to do so to achieve efficiency
or to write low-level system programs.

Languages such as Standard Pascal that restrict access to pointers and to the bit-representations
of objects force the programmer to write portable code but may prohibit him or her from writing
efficient code for some applications.

Sometimes features are included in a language for historical reasons, even though the language
supports a different and better way to write the same thing. As languages develop, new features are
added that improve on old features. However, the old ones are seldom eliminated because upward
compatibility is important. We want to be able to recompile old programs on new versions of the

40 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Exhibit 2.23. An archaic language feature in FORTRAN.

The arithmetic IF statement was the only conditional statement in the original version of FOR-
TRAN. It is a three-way conditional GOTO based directly on the conditional jump instruction of
the IBM 704. An example of this statement is:
IF (J-1) 21, 76, 76
The expression in parentheses is evaluated first. If the result is negative, control goes to the first
label on the list (21). For a zero value, control goes to the second label (76), and for a positive
value, to the third (76). More often than not, in practical use, two of the labels are the same.
The arithmetic IF has been superseded by the modern block IF statement. Assume that
(block 1) contains the statements that followed label 21 above, and (block2) contains the statements
following statement 76. Then the following block IF statement is equivalent to the arithmetic
IF above:
IF J-1 .LT. O THEN
(block 1)
ELSE
(block 2)
ENDIF

translator. Old languages such as COBOL and FORTRAN have been through the process of change
and restandardization several times. Some features in these languages are completely archaic,
and programmers should be taught not to use them [Exhibit 2.23]. Many of these features have
elements that are inherently error prone, such as reliance on GOTOs. Moreover, they will eventually
be dropped from the language standard. At that point, any programs that use the archaic features
will require extensive modernization before they can be modified in any way.

Our answer to redundant and archaic language features is simple: don’t use them. Find out
what constitutes modern style in a language and use it consistently. Clean programming habits
and consistent programming style produce error-free programs faster.

Another kind of redundancy is seen in Pascal, which provides two ways to delimit comments:
(* This is a comment. *) and { This is a comment. } The former way was provided, as part of the
standard, for systems that did not support the full ASCII character set. It will work in all Pascal
implementations and is thus more portable. The latter way, however, is considered more modern
and preferred by many authors. Some programmers use both: one form for comments, the other
to “comment out” blocks of code.

The language allows both kinds of comment delimiters to be used in a program. However,
mixing the delimiters is a likely source of errors because they are not interchangeable. A comment
must begin and end with the same kind of delimiter. Thus whatever conventions a programmer
chooses should be used consistently. The programmer must choose either the more portable way
or the more modern way, a true dilemma.

2.4. CLASSIFYING LANGUAGES 41

2.4 Classifying Languages

It is tempting to classify languages according to the most prominent feature of the language and to
believe that these features make each language group fundamentally different from other groups.
Such categorizations are always misleading because:

e Languages in different categories are fundamentally more alike than they are different. Be-
lieving that surface differences are important gets in the way of communication among groups
of language users.

e We tend to associate things that occur together in some early example of a language category.
We tend to believe that these things must always come together. This impedes progress in
language design.

e Category names are used loosely. Nobody is completely sure what these names mean, and
which languages are or are not in any category.

e Languages frequently belong to more than one category. Sorting them into disjoint classes
disguises real similarities among languages with different surface syntax.

2.4.1 Language Families

Students do need to understand commonly used terminology, and it is sometimes useful to discuss
a group of languages having some common property. With this in mind, let us look at some of the
“language families” that people talk about and try to give brief descriptions of the properties that
characterize each family. As you read this section, remember that these are not absolute, mutually
exclusive categories: categorizations are approximate and families overlap heavily. Examples are
listed for each group, and some languages are named several times.

Interactive Languages. An interactive language is enmeshed in a system that permits easy
alternation between program entry, translation, and execution of code. We say that it operates
using a REW cycle: the system Reads an expression, Evaluates it, and Writes the result on the
terminal, then waits for another input.

Programs in interactive languages are generally structured as a series of fairly short function
and object definitions. Translation happens when the end of a definition is typed in. Programs are
usually translated into some intermediate form, not into native machine code. This intermediate
form is then interpreted. Many interactive languages, such as FORTH and Miranda, use the term
“compile” to denote the translation of source code into the internal form.

Examples: APL, BASIC, FORTH, LISP, T, Scheme, dBASE, Miranda.

Structured Languages. Control structures are provided that allow one to write programs with-
out using GOTO. Procedures with call-by-value parameters® are supported. Note that we call Pascal

5See Chapter 9.

42 CHAPTER 2. REPRESENTATION AND ABSTRACTION

a structured language even though it contains a GOTO, because it is not necessary to use that GOTO
to write programs.
Examples: Pascal, C, FORTH, LISP, T, Scheme.

Strongly Typed Languages. Objects are named, and each name has a type. Every object
belongs to exactly one type (types are disjoint). The types of actual function arguments are
compared to the declared types of the dummy parameters during compilation. A mismatch in
types or in number of parameters will produce an error comment. Many strongly typed languages,
including Pascal, Ada, and ANSI C, include an “escape hatch”—that is, some mechanism by which
the normal type-checking process can be evaded.

Examples: FORTRAN 77, Pascal, Ada, ANSI C (but not the original C), ML, Miranda.

Object-oriented Languages. These are extensions or generalizations of the typed languages.
Objects are typed and carry their type identity with them at all times. Any given function may
have several definitions, which we will call methods.® Each method operates on a different type of
parameter and is associated with the type of its first parameter. The translator must dispatch each
function call by deciding which defining method to invoke for it. The method associated with the
type of the first parameter will be used, if it exists.

Object-oriented languages have nondisjoint types and function inheritance. The concept of
function inheritance was introduced by Simula and popularized by Smalltalk, the first language to
be called “object-oriented”. A type may be a subset of another type. The function dispatcher will
use this subset relationship in the dispatching process. It will select a function belonging to the
supertype when none is defined for the subtype.

Actually, many of these characteristics also apply to APL, an old language. It has objects that
carry type tags and functions with multiple definitions and automatic dispatching. It is not a full
object-oriented language because it lacks definable class hierarchies.

Examples: Simula, Smalltalk, T, C++. APL is object-oriented in a restricted sense.

Procedural Languages. A program is an ordered sequence of statements and procedure calls
that will be evaluated sequentially. Statements interact and communicate with each other through
variables. Storing a value in a variable destroys the value that was previously stored there. (This
is called destructive assignment.) Exhibit 2.24 is a diagram of the history of this language family.
Modern procedural languages also contain extensive functional elements.”

Examples: Pascal, C, Ada, FORTRAN, BASIC, COBOL.

Functional Languages, Old Style. A program is a nested set of expressions and function calls.
Call-by-value parameter binding, not assignment, is the primary mechanism used to give names to
variables. Functions interact and communicate with each other through the parameter stack.

5This is the term used in Smalltalk.
"See Chapter 8.

2.4. CLASSIFYING LANGUAGES 43

Exhibit 2.24. The development of procedural languages.

Concepts and areas of concern are listed on the left. Single arrows show how these influenced
language design and how some languages influenced others. Dotted double arrows indicate that a
designer was strongly influenced by the bad features of an earlier language.

1950

1960

1970

1980

1985

Mathematical Notation

1950
Unit Record Equipment
Symbolic Names > Symbolic Assemblers (mid-1950s)
X —= FORTRAN
Data Specification —» COBOL (1958) (1956) \
Structured Control . L » ALGOL-58
" » y b= MAD (1959)
| \ . ALGOL- 1960
g APL " GOL-60
i (1962) g l
1" "
Nonalgorithmic " v
Specglfication—> RYDG (1964) w CPL (1963)
BASIC (1964)
Interactive Use
Structured Data P ¥ BCPL
Object-Oriented . 196
Programming — Simula (1967) PL/1 (1966) y (1967
ALGOL63 i 570
. B(1970)
; ¢ Y
Pascal (1973) C(1972)
Concurrency » Concurrent«—
Pascal (1975)
Data Abstraction e » Modula
\ L o (%?%
v 1980
Smalltalk
Ada (1982) Y Y
True BASIC (1980s)
1985
Y

44 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Exhibit 2.25. The development of functional languages.

LISP, McCarthy (1959)
1960 l 1960
Pure Functional Languages

INTERLISP (1974)
BB&N, Xerox .
ISWIM: Landin (1966)
MAC LISP, MIT
(1968) LOGP? - frec:urr]slg)n and
raphics for children
1970 Toarly 19702) 1970

Scheme, MIT (1975)
Lexical Scoping

Franz LISP p 979)
l Under Berleley UNIX |
ML: Milner (1978
1980 FP:Backus (1978) 1980
T, Yale (1982)
Object Oriented l
Common LISP (1985) .
Lexical Scoping Miranda (1986)
Haskell (1988)
1990 1990

Certain characteristics are commonly associated with functional languages. Most are interactive
and oriented toward the list data structure. Functions are objects that can be freely manipulated,
passed as parameters, composed, and so on. Permitting functions to be manipulated like other
objects gives a language tremendous power. Exhibit 2.25 is a diagram of the development of this
language family.

LISP and its modern lexically scoped descendants support destructive assignment and sequences
of expressions, which are evaluated in order. When these features are used, these languages become
“procedural”, like Pascal. These languages are, therefore, “functional” in the same sense that Pascal
is “structured”. It is never necessary to use the semantically messy GOTO in Pascal. Any semantics
that can be expressed with it can be expressed without it. Similarly, it is not necessary to use the
semantically messy destructive assignment in LISP, but it is used occasionally, to achieve efficiency,
when changing one part of a large data structure.

Examples: LISP, Common LISP, T, Scheme.

2.4. CLASSIFYING LANGUAGES 45

Functional Languages, New Style. Considerable work is now being done on developing func-
tional languages in which sequences of statements, variables, and destructive assignment do not
exist at all. Values are passed from one part of a program to another by function calls and parameter
binding.

There is one fundamental difference between the old and new style functional languages. The
LISP-like languages use call-by-value parameters, and these new languages use call-by-need (lazy
evaluation).® A parameter is not evaluated until it is needed, and its value is then kept for future
use. Call-by-need is an important semantic development, permitting the use of “infinite lists”,
which are objects that are part data and part program, where the program part is evaluated, as
needed, to produce the next item on the list.

The terminology used to talk about these new functional programming languages is sometimes
different from traditional programming terminology. A program is an unordered series of static
definitions of objects, types, and functions. In Miranda it isn’t even called a “program”, it is
called a “script”. “Executing a program” is replaced by “evaluating an expression” or “reducing
an expression to its normal form.” In either case, though, computation happens.

Since pure functional programming is somewhat new, it has not reached its full development
yet. For example, efficient array handling has yet to be included. As the field progresses, we should
find languages that are less oriented to list processing and more appropriate for modeling nonlist
applications.

Examples: ML, Miranda, Haskell.

Parallel Languages. These contain multitasking primitives that permit a program to fork into
two or more asynchronous, communicating tasks that execute some series of computations in paral-
lel. This class of languages is becoming increasingly important as highly parallel hardware develops.

Parallel languages are being developed as extensions of other kinds of languages. One of the
intended uses for them is to program highly parallel machines such as the HyperCube. There
is a great deal of interest in using such machines for massive numeric applications like weather
prediction and image processing. It is not surprising, therefore, that the language developed for
the HyperCube resembled a merger of the established number-oriented languages, FORTRAN and
APL.

There is also strong interest in parallel languages in the artificial intelligence community, where
many researchers are working on neural networks. Using parallelism is natural in such disciplines.
In many situations, a programmer wishes to evaluate several possible courses of action and choose
the first one to reach a goal. Some of the computations may be very long and others short, and
one can’t predict which are which. One cannot, therefore, specify an optimal order in which to
evaluate the possibilities. The best way to express this is as a parallel computation: “Evaluate
all these computations in parallel, and report to me when the first one terminates”. List-oriented
parallel languages will surely develop for these applications.

8Parameter passing is explained fully in Chapter 9.

46 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Finally, the clean semantics of the assignment-free functional languages are significantly easier to
generalize to parallel execution, and new parallel languages will certainly be developed as extensions
of functional languages.

Examples: Co-Pascal, in a restricted sense. LINDA, OCCAM, FORTRAN-90.

Languages Specialized for Some Application. These languages all contain a complete general-
purpose programming language as their basis and, in addition, contain a set of specialized primitives
designed to make it convenient to process some particular data structure or problem area. Most
contain some sophisticated and powerful higher-level commands that would require great skill and
long labor to program in an unspecialized language like Pascal. An example is dBASE Il which
contains a full programming language similar to BASIC and, in addition, powerful screen handling
and file management routines. The former expedites entry and display of information, the lat-
ter supports a complex indexed file structure in which key fields can be used to relate records in
different files.

Systems programming languages must contain primitives that let the programmer ma-
nipulate the bits and bytes of the underlying machine and should be heavily standardized and
widely available so that systems, once implemented, can be easily ported to other machines.

Examples: C, FORTH.

Business data processing languages must contain primitives that give fine and easy con-
trol over details of input, output, file handling, and precision of numbers. The standard floating-
point representations are not adequate to provide this control, and some form of fixed-point numeric
representation must be provided. The kind of printer or screen output formatting provided in FOR-
TRAN, C, and Pascal is too clumsy and does not provide enough flexibility. A better syntax and
more options must be provided. Similarly, a modern language for business data processing must
have a good facility for defining screens for interactive input. A major proportion of these languages
is devoted to I/O.

Higher-level commands should be included for common tasks such as table handling and sorting.
Finally, the language should provide good support for file handling, including primitives for handling
sequential, indexed, and random access files.

Examples: RPG (limited to sequential files), COBOL, Ada.

Data base languages contain extensive subsystems for handling internal files, and relation-
ships among files. Note that this is quite independent of a good subsystem for screen and printer
I/0.

Examples: dBASE, Framework, Structured Query Language (SQL).

List processing languages contain primitive definitions for a linked list data type and the
important basic operations on lists. This structure has proven to be useful for artificial intelligence

2.4. CLASSIFYING LANGUAGES 47

programming.

Implementations must contain powerful operations for direct input and output of lists, routines
for allocation of dynamic heap storage, and a garbage collection routine for recovery of dynamically
allocated storage that is no longer accessible.

Examples: LISP, T, Scheme, Miranda.

Logic languages are interactive languages that use symbolic logic and set theory to model
computation. Prolog was the first logic language and is still the best known. Its dominant char-
acteristics define the language class. A Prolog “program” is a series of statements about logical
relations that are used to establish a data base, interspersed with statements that query this data
base. To evaluate a query, Prolog searches that data base for any entries that satisfy all the con-
straints in the query. To do this, the translator invokes an elaborate expression evaluator which
performs an exhaustive search of the data base, with backtracking. Rules of logical deduction are
built into the evaluator.

Thus we can classify a logic language as an interactive data base language where both operations
and the data base itself are highly specialized for dealing with the language of symbolic logic and
set theory. Prolog is of particular interest in the artificial intelligence community, where deductive
reasoning on the basis of a set of known facts is basic to many undertakings.

Examples: HASL, FUNLOG, Templog (for temporal logic), Uniform (unifies LISP and Prolog),
Fresh (combines the functional language approach with logic programming), etc.

Array processing languages contain primitives for constructing and manipulating arrays
and matrices. Sophisticated control structures are built in for mapping simple operations onto
arrays, for composing and decomposing arrays, and for operating on whole arrays.

Examples: APL, APL-2, VisiCalc, and Lotus.

String processing languages contain primitives for input, output, and processing of char-
acter strings. Operations include searching for and extracting substrings specified by complex
patterns involving string functions. Pattern matching is a powerful higher-level operation that
may involve exhaustive search by backtracking. The well-known string processing languages are
SNOBOL and its modern descendant, ICON.

Typesetting languages were developed because computer typesetting is becoming an eco-
nomically important task. Technical papers, books, and drawings are, increasingly, prepared for
print using a computer language. A document prepared in such a language is an unreadable mix-
ture of commands and ordinary text. The commands handle files, set type fonts, position material,
and control indexing, footnotes, and glossaries. Drawings are specified in a language of their own,
then integrated with text. The entire finished product is output in a language that a laser printer
can handle. This book was prepared using the languages mentioned below, and a drafting package
named Easydraw whose output was converted to Postscript.

48 CHAPTER 2. REPRESENTATION AND ABSTRACTION

Examples: Postscript, TeX, LaTeX.

Command languages are little languages frequently created by extending a system’s user
interface. First simple commands are provided; these are extended by permitting arguments and
variations. More useful commands are added. In many cases these command interfaces develop
their own syntax (usually ad hoc and fairly primitive) and truly extensive capabilities. For example,
entire books have been written about UNIX shell programming. Every UNIX system includes one
or several “shells” which accept, parse, and interpret commands. From these shells, the user may
call system utilities and other small systems such as grep, make, and flex. Each one has its own
syntax, switches, semantics, and defaults.

Command languages tend to be arcane. In many cases, little design effort goes into them
because their creators view them as simple interfaces, not as languages.

Fourth-generation Languages . This curious name was applied to diverse systems devel-
oped in the mid-1980s. Their common property was that they all contained some powerful new
control structures, statements, or functions by which you could invoke in a few words some useful
action that would take many lines to program in a language like Pascal. These languages were
considered, therefore, to be especially easy to learn and “user friendly”, and the natural accompa-
niments to “fourth-generation hardware”, or personal computers.

Lotus 1-2-3 and SuperCalc are good examples of fourth-generation languages. They contain a
long list of commands that are very useful for creating, editing, printing, and extracting information
from a two-dimensional data base called a spreadsheet, and subsystems for creating several kinds
of graphs from that data.

HyperCard is a data base system in which it is said that you can write complex applications
without writing a line of code. You construct the application with the mouse, not with the keyboard.

The designers of many fourth-generation languages viewed them as replacements for program-
ming languages, not as new programming languages. The result is that their designs did not really
profit as much as they could have from thirty years of experience in language design. Like COBOL
and FORTRAN, these languages are ad hoc collections of useful operations.

The data base languages such as dBASE are also called “fourth-generation languages”, and
again their designers thought of them as replacements for computer languages. Unfortunately, these
languages do not eliminate the need for programming. Even with lots of special report-generating
features built in, users often want something a little different from the features provided. This
implies a need for a general-purpose language within the fourth-generation system in which users
can define their own routines. The general-purpose language included in dBASE is primitive and
lacks important control structures. Until the newest version, dBASE4, procedures did not even
have parameters, and when they were finally added, the implementation was unusual and clumsy.

The moral is that there is no free lunch. An adaptable system must contain a general-purpose
language to cover applications not supported by predefined features. The whole system will be
better if this general-purpose language is carefully designed.

2.4. CLASSIFYING LANGUAGES 49

2.4.2 Languages Are More Alike than Different

Viewing languages as belonging to “language families” tends to make us forget how similar all
languages are. This basic similarity happens because the purpose of all languages is to communicate
models from human to machine. All languages are influenced by the innate abilities and weaknesses
of human beings, and are constrained by the computer’s inability to handle irreducible ambiguity.
Most of the differences among languages arise from the specialized nature of the objects and tasks
to be communicated using a given language.

This book is not about any particular family of languages. It is primarily about the concepts
and mechanisms that underlie the design and implementation of all languages, and only secondarily
about the features that distinguish one family from another. Most of all, it is not about the myriad
variations in syntax used to represent the same semantics in different languages. The reader is
asked to try to forget syntax and focus on the underlying elements.

Exercises

1. What are the two ways to view a program?

2. How will languages supporting these views differ?

3. What is a computer representation of an object? A process?

4. Define semantic intent. Define semantic validity. What is their importance?

5. What is the difference between explicit and implicit representation? What are the implications
of each?

6. What is the difference between coherent and diffuse representation?
7. What are the advantages of coherent representation?
8. How can language design goals conflict? How can the designer resolve this problem?
9. How can restrictions imposed by the language designer both aid and hamper the programmer?
10. Why is the concept of locality of effect so important in programming language design?
11. What are the dangers involved when using global variables?
12. What is lexical coherence? Give an example of poor lexical coherence.
13. What is portability? Why does it limit flexibility?

14. Why is it difficult to classify languages according to their most salient characteristics?

50

15.

16.

17.

18.

CHAPTER 2. REPRESENTATION AND ABSTRACTION

What is a structured language? Strongly typed language? Object-oriented language? Parallel
language? Fourth-generation language?

Why are most languages more similar than they are different? From what causes do language
differences arise?

Discuss two aspects of a language design that make it hard to read, write, or use. Give an
example of each, drawn from a language with which you are familiar.

Choose three languages from the following list: Smalltalk, BASIC, APL, LISP, C, Pascal, Ada.
Describe one feature of each that causes some people to defend it as the “best” language for
some application. Choose features that are unusual and do not occur in many languages.

Chapter 3

Elements of Language

Overview

This chapter presents elements of language, drawing correlations between English parts
of speech and words in programming languages. Metalanguages allow languages to de-
scribe themselves. Basic structural units, words, sentences, paragraphs, and references,
are analogous to the lexical tokens, statements, scope, and comments of programming
languages.

Languages are made of words with their definitions, rules for combining the words into mean-
ingful larger units, and metawords (words for referring to parts of the language). In this section
we examine how this is true both of English and of a variety of programming languages.

3.1 The Parts of Speech

3.1.1 Nouns

In natural languages nouns give us the ability to refer to objects. People invent names for objects so
that they may catalog them and communicate information about them. Likewise, names are used
for these purposes in programming languages, where they are given to program objects (functions,
memory locations, etc.). A wariable declaration is a directive to a translator to set aside storage
to represent some real-world object, then give a name to that storage so that it may be accessed.
Names can also be given to constants, functions, and types in most languages.

51

52 CHAPTER 3. ELEMENTS OF LANGUAGE

First-Class Objects

One of the major trends throughout the thirty-five years of language design has been to strengthen
and broaden the concept of “object”. In the beginning, programmers dealt directly with machine
locations. Symbolic assemblers introduced the idea that these locations represented real-world data,
and could be named. Originally, each object had a name and corresponded to one storage location.
When arrays were introduced in FORTRAN and records in COBOL, these aggregates were viewed
as collections of objects, not as objects themselves.

Several years and several languages later, arrays and records began to achieve the status of first-
class objects that could be manipulated and processed as whole units. Languages from the early
seventies, such as Pascal and C, waffled on this point, permitting some whole-object operations on
aggregate objects but prohibiting others. Modern languages support aggregate-objects and permit
them to be constructed, initialized, assigned to, compared, passed as arguments, and returned as
results with the same ease as simple objects.

More recently, the functional object, that is, an executable piece of code, has begun to achieve
first-class status in some languages, which are known as “functional languages”. The type object
has been the last kind of object to achieve first-class status. A type-object describes the type of
other objects and is essential in a language that supports generic code.

Naming Objects

One of the complex aspects of programming languages that we will study in Chapter 6 involves the
correspondence of names to objects. There is considerable variation among languages in the ways
that names are used. In various languages a name can:

e Exist without being attached, or bound, to an object (LISP).
e Be bound simultaneously to different objects in different scopes (ALGOL, Pascal).
e Be bound to different types of objects at different times (APL, LISP).

e Be bound, through a pointer, to an object that no longer exists (C).

Conversely, in most languages, a single object can be bound to more than one name at a time,
producing an alias. This occurs when a formal parameter name is bound to an actual parameter
during a function call.

Finally, in many languages, the storage allocated for different objects and bound to different
names can overlap. Two different list heads may share the same tail section [Exhibit 3.1].

3.1.2 Pronouns: Pointers

Pronouns in natural languages correspond roughly to pointers in programming languages. Both
are used to refer to different objects (nouns) at different times, and both must be bound to (defined
to refer to) some object before becoming meaningful. The most important use of pointers in

3.1. THE PARTS OF SPEECH 93

Exhibit 3.1. Two overlapping objects (linked lists).
List1;:— The — Only —» Direction — From — Here —— k——» Up.

List2:— Your —» Time T

programming languages is to label objects that are dynamically created. Because the number of
these objects is not known to the programmer before execution time, he cannot provide names for
them all, and pointers become the only way to reference them.

When a pointer is bound to an object, the address of that object is stored in space allocated
for the pointer, and the pointer refers indirectly to that object. This leads to the possibility that
the pointer might refer to an object that has died, or ceased to exist. Such a pointer is called
a “dangling reference”. Using a dangling reference is a programming error and must be guarded
against in some languages (e.g., C). In other languages (e.g., Pascal) this problem is minimized by
imposing severe restrictions on the use of pointers. (Dangling references are covered in Section
6.3.2.)

3.1.3 Adjectives: Data Types

In English, adjectives describe the size, shape, and general character of objects. They correspond,
in a programming language, to the many data type attributes that can be associated with an object
by a declaration or by a default. In some languages, a single attribute is declared that embodies
a set of properties including specifications for size, structure, and encoding [Exhibit 3.2]. In other
languages, these properties are independent and are listed separately, either in variable declarations
(as in COBOL) or in type declarations, as in Ada [Exhibit 3.3].

Some of the newer languages permit the programmer to define types that are related hierarchi-
cally in a tree structure. Each class of objects in the tree has well-defined properties. Each subclass
has properties of its own and also inherits all the properties of the classes above it in the hierarchy.
Exhibit 3.4 gives an example of such a type hierarchy in English. The root of this hierarchy is
the class “vertebrate”, which is characterized by having a backbone. All subclasses “inherit” this

Exhibit 3.2. Size and encoding bundled in C.

The line below declares a number that will be represented in the computer using floating-point
encoding. The actual number of bytes allocated is usually four, and the precision is approximately
seven digits. This declaration is the closest parallel in C to the Ada declaration in Exhibit 3.3.

float price;

54 CHAPTER 3. ELEMENTS OF LANGUAGE

Exhibit 3.3. Size and encoding specified separately in Ada.

e The Ada declarations below create a new type named REAL and a REAL object, price.

e The use of the keyword digits indicates that this type is to be derived from some predefined
type with floating-point encoding.

e The number seven indicates that the resulting type must have at least seven decimal digits
of precision.

type REAL is digits 7;
price: REAL;

property. At the next level are birds, which have feathers, and mammals, which have hair. We
can, therefore, conclude that robins and chickens are feathered creatures, and that human beings
are hairy. Going down the tree, we see that roosters and hens inherit all properties of chickens,
including being good to eat. According to the tree, adults and children are both human (although
members of each subclass sometimes dispute this). Finally, at the leaf level, both male and female
subclasses exist, which inherit the properties of either adults or children.

“Inheritance” means that any function defined for a superclass also applies to all subclasses.
Thus if we know that constitutional rights are guaranteed for human beings, we can conclude that
girls have these rights.

Using an object-oriented language such as Smalltalk a programmer can implement types (classes)
with exactly this kind of hierarchical inheritance of type properties. (Chapter 17 deals with this
topic more fully.)

Exhibit 3.4. A type hierarchy with inheritance in English.
Vertebrate

Bird | Mammal
R Chicken ’%K_‘ | Human Being
: Aduit Chid

Rooster Hen Ram Ewe
Man Woman Boy Gir

3.1. THE PARTS OF SPEECH 55

3.1.4 Verbs

In English, verbs are words for actions or states of being. Similarly, in programming languages,
we see action words such as RETURN, BREAK, STOP, GOTO, and :=. Procedure calls, function calls,
and arithmetic operators all direct that some action should happen, and are like action verbs.
Relational operators (=, >, etc.) denote states of being—hey ask questions about the state of some
program object or objects.

In semistandard terminology, a function is a program object that receives information through
a list of arguments, performs a prescribed computation on that information, calculates some “an-
swer”, and returns that value to the calling program. In most languages function calls can be
embedded within the argument lists of other function calls, and within arithmetic expressions.
Function calls are usually denoted by writing the function name followed by an appropriate series
of arguments enclosed in parentheses. Expressions often contain more than one function call. In
this case each language defines (or explicitly leaves undefined) the order in which the calls will be
executed.!

A procedure is just like a function except that it does not return a value. Because no value
results from executing the procedure, the procedure call constitutes an entire program statement
and cannot be embedded in an expression or in the argument list of another call.

An operator is a predefined function whose name is often a special symbol such as “+”. Most
operators require either one or two arguments, which are called operands. Many languages support
infix notation for operators, in which the operator symbol is written between its two operands or
before or after its single operand. Rules of precedence and associativity [Chapter 8, Section 8.3.2]
govern the way that infix expressions are parsed, and parentheses are used, when necessary, to
modify the action of these rules.

We will use the word “function” as a generic word to refer to functions, operators, and procedures
when the distinctions among them are not important.

Some languages (e.g., FORTRAN, Pascal, and Ada) provide three different syntactic forms for
operators, functions, and procedures [Exhibit 3.5]. Other languages (e.g., LISP and APL) provide
only one [Exhibits 3.6 and 3.7]. To a great extent, this makes languages appear to be more
different in structure than they are. The first impression of a programmer upon seeing his or her
first LISP program is that LISP is full of parentheses, is cryptic, and has little in common with other
languages. Actually, various “front ends”, or preprocessors, have been written for LISP that permit
the programmer to write using a syntax that resembles ALGOL or Pascal. This kind of preprocessor
changes only cosmetic aspects of the language syntax. It does not add power or supply kinds of
statements that do not already exist. The LISP preprocessors do demonstrate that LISP and ALGOL
have very similar semantic capabilities.

IThis issue is discussed in Chapter 8.

56 CHAPTER 3. ELEMENTS OF LANGUAGE

Exhibit 3.5. Syntax for verbs in Pascal and Ada.

These languages, like most ALGOL-like languages, have three kinds of verbs, with distinct ways of
invoking each.

Functions: The function name is written followed by parentheses enclosing the list of arguments.
Arguments may themselves be function calls. The call must be embedded in some larger
statement, such as an assignment statement or procedure call. This is a call to a function
named “push” with an embedded call on the “sin” function.

Success := push(rs, sin(x));

Procedures: A procedure call constitutes an entire program statement. The procedure name is
written followed by parentheses enclosing the list of arguments, which may be function calls.
This is a call on Pascal’s output procedure, with an embedded function call:

Writeln (Success, sin(x));

Operators: An operator is written between its operands, and several operators may be combined
to form an expression. Operator-expressions are legal in any context in which function calls
are legal.

Success := push(rs, (x+y)/(x-y));

Exhibit 3.6. Syntax for verbs in LISP.

LISP has only one class of verb: functions. There are no procedures in LISP, as all functions return
a value. In a function call, the function name and the arguments are enclosed in parentheses (first
line below). Arithmetic operators are also written as function calls (second line).

(myfun argl arg2 arg3)
(+ B 1)

3.1. THE PARTS OF SPEECH o7

Exhibit 3.7. Syntax for verbs in APL.

APL provides a syntax for applying operators but not for function calls or procedure calls. Operators
come in three varieties: dyadic (having two arguments), monadic (having one argument), and niladic
(having no arguments).

e Dyadic operators are written between their operands. Line [1] below shows “4” being used
to add the vector (5 3) to B and add that result to A. (APL expressions are evaluated right-
to-left.) Variables A and B might be scalars or length two vectors. The result is a length two
vector.

e Monadic operators are written to the left of their operands. Line [2] shows the monadic
operator “|”, or absolute value.

e Line [3] shows a call on a niladic operator, the read-input operator, “0”. The value read is
stored in A.

[1]A+53+B
2] | A
B] A<D

The programmer may define new functions but may not use more than two arguments for those
functions. Function calls are written using the syntax for operators. Thus a dyadic programmer-
defined function named “FUN” would be called by writing:

A FUN B

When a function requires more than two arguments, they must be packed or encoded into two
bunches, sent to the function, then unpacked or decoded within the function. This is awkward and
not very elegant.

The Domain of a Verb

The definition of a verb in English always includes an indication of the domain of the verb, that is,
the nouns with which that verb can meaningfully be used. A dictionary provides this information,
either implicitly or explicitly, as part of the definition of each verb [Exhibit 3.8].

Similarly, the domain of a programming language verb is normally specified when it is defined.
This specification is part of the program in some languages, part of the documentation in others.
The domain of a function is defined in most languages by a function header, which is part of the
function definition. A header specifies the number of the objects required for the function to operate
and the formal names by which those parameters will be known. Languages that implement strong
typing also require the types of the parameters to be specified in the header. This information is
used to ensure that the function is applied meaningfully, to objects of the correct types [Exhibit
3.9].

58 CHAPTER 3. ELEMENTS OF LANGUAGE

Exhibit 3.8. The domain of a verb in English.

Verb: Cry
Definition for the verb “cry”, paraphrased from the dictionary.®

1. To make inarticulate sobbing sounds expressing grief, sorrow, or pain.

2. To weep, or shed tears.

3. To shout, or shout out.

4. To utter a characteristic sound or call (used of an animal).
The domain is defined in definitions (1) through (3) by stating that the object/creature that cries
must be able to sob, express feelings, weep, or shout. Definition (4) explicitly states that the

domain is an animal. Thus all of the following things can “cry”: human beings (by definitions 1,
2, 3), geese (4), and baby dolls (2).

“Morris [1969], p. 319.

The range of a function is the set of objects that may be the result of that function. This must
also be specified in the function header (as in Pascal) or by default (as in C) in languages that
implement type checking.

3.1.5 Prepositions and Conjunctions

In English we distinguish among the parts of speech used to denote time, position, conditionals, and
the relationship of phrases in a sentence. Each programming language contains a small number
of such words, used analogously to delimit phrases and denote choices and repetition (WHILE,
ELSE, BY, CASE, etc.). The exact words differ from language to language. Grammatical rules
state how these words may be combined with phrases and statements to form meaningful units.

Exhibit 3.9. The domains of some Pascal functions.

Predefined functions ‘ Domains

chr An integer between 0 and 127.
ord Any object of an enumerated type.
trunc A real number.

A user-defined function header : FUNCTION search (N:name; L:1list): 1list;

The domain of “search” is pairs of objects, one of type “name”, the other of type “list”. The
result of “search” is a “list”; its range is, therefore, the type “list”.

3.2. THE METALANGUAGE 99

By themselves these words have little meaning, and we will deal with them in Chapter 10, where
we examine control structures.

3.2 The Metalanguage

A language needs ways to denote its structural units and to refer to its own parts. English has
sentences, paragraphs, essays, and the like, each with lexical conventions that identify the unit and
mark its beginning and end. Natural languages are also able to refer to these units and to the
words that comprise the language, as in phrases such as “the paragraph below”, and “USA is an
abbreviation for the United States of America”. These parts of a language that permit it to talk
about itself are called a metalanguage. The metalanguage that accompanies most programming
languages consists of an assortment of syntactic delimiters, metawords, and ways to refer to struc-
tural units. We consider definitions of the basic structural units to be part of the metalanguage
also.

3.2.1 Words: Lexical Tokens

The smallest unit of any written language is the lexical token—the mark or series of marks that
denote one symbol or word in the language. To understand a communication, first the tokens must
be identified, then each one and their overall arrangement must be interpreted to arrive at the
meaning of the communication. Analogously, one must separate the sounds of a spoken sentence
into tokens before it can be comprehended. Sometimes it is a nontrivial task to separate the string
of written marks or spoken sounds into tokens, as anyone knows who has spent a day in a foreign
country.

This same process must be applied to computer programs. A human reader or a compiler
must first perform a lexical analysis of the code before beginning to understand the meaning. The
portion of the compiler that does this task is called the lexer.

In some languages lexical analysis is trivially simple. This is true in FORTH, which requires
every lexical token to be delimited (separated from every other token) by one or more spaces.
Assembly languages frequently define fixed columns for operation codes and require operands to
be separated by commas. Operating system command shells usually call for the use of spaces and
a half dozen punctuation marks which are tokens themselves and also delimit other tokens. Such
simple languages are easy to lexically analyze, or lex. Not all programming languages are so simple,
though, and we will examine the common lexical conventions and their effects on language.

The lexical rules of most languages define the lexical forms for a variety of token types:

e Names (predefined and user-defined)

Special symbols

Numeric literals

Single-character literals

60 CHAPTER 3. ELEMENTS OF LANGUAGE

e Multiple-character string literals

These rules are stated as part of the formal definition of every programming language. A lexer for a
language is commonly produced by feeding these rules to a program called a lexer generator, whose
output is a program (the lexer) that can perform lexical analysis on a source text string according
to the given rules. The lexer is the first phase of a compiler. Its role in the compiling process is
illustrated in Exhibit 4.3.

Much of the feeling and appearance of a language is a side effect of the rules for forming tokens.
The most common rules for delimiting tokens are stated below. They reflect the rules of Pascal, C,
and Ada.

e Special symbols are characters or character strings that are nonalphabetic and nonnumeric.
(193]

Examples are *;”, “4+”, and “:=”. They are all predefined by the language syntax. No new
special symbols may be defined by the programmer.

e Names must start with an alphabetic character and must not contain anything except letters,
digits, and (sometimes) the “_” symbol.

e Everything that starts with a letter is a name.
e Names end with a space or a special symbol.

e Special symbols generally alternate with names and literals. Where two special symbols or
two names are adjacent, they must be separated by a space.

13

e Numeric literals start with a digit, a “+”, or a “—”. They may contain digits, “.”, and “E”
(for exponent). Any other character ends the literal.

e Single-character literals and multiple-character strings are enclosed in matching single or
double quotes. If, as in C, a single character has different semantics from a string of length
1, then single quotes may be used to delimit one and double quotes used for the other.

Note that spaces are used to delimit some but not all tokens. This permits the programmer
to write arithmetic expressions such as “a*(b+c)/d” the way a mathematician would write them.
If we insisted on a delimiter (such as a space) after every token, the expression would have to
be written “a * (b + ¢) / 4 7, which most programmers would consider to be onerous and
unnatural.

Spaces are required to delimit arithmetic operators in COBOL. The above expression in COBOL
would be written “a * (b + ¢) / d”. This awkwardness is one of the reasons that programmers
are uncomfortable using COBOL for numeric applications. The reason for this requirement is that
the “-” character is ambiguous: COBOL’s lexical rules permit “-” to be used as a hyphen in
variable names, for example, “hourly-rate-in”. Long, descriptive variable names greatly enhance
the readability of programs.

3.2. THE METALANGUAGE 61

Hyphenated variable names have existed in COBOL from the beginning. When COBOL was
extended at a later date to permit the use of arithmetic expressions an ambiguity arose: the hyphen
character and the subtraction operator were the same character. One way to avoid this problem is
to use different characters for the two purposes. Modern languages use the “~” for subtraction and
the underbar, “_”, which has no other function in the language, to achieve readability.

As you can see, the rules for delimiting tokens can be complex, and they do have varied reper-
cussions. The three important issues here are:

e Code should be readable.
e The language must be translatable and, preferably, easy to lex.

e It is preferable to use the same conventions as are used in English and/or mathematical
notation.

The examples given show that a familiar, readable language may contain an ambiguous use of
symbols. A few language designers have chosen to sacrifice familiarity and readability altogether
in order to achieve lexical simplicity. LISP, APL, and FORTH all have simpler lexical and syntactic
rules, and all are considered unreadable by some programmers because of the conflict between their
prior experience and the lexical and syntactic forms of the language.

Let us examine the simple lexical rule in FORTH and its effects. In other languages the decision
was made to permit arithmetic expressions to be written without delimiters between the variable
names and the operators. A direct consequence is that special symbols (nonalphabetic, nonnumeric,
and nonunderbar) must be prohibited in variable names. It may seem natural to prohibit the use
of characters like “+” and “(” in a name, but it is not at all necessary.

FORTH requires one or more space characters or carriage returns between every pair of tokens,
and because of this rule, it can permit special characters to be used in identifiers. It makes no
distinction between user-defined names and predefined tokens: either may contain any character
that can be typed and displayed. The string “#%%” could be used as a variable or function name if
the programmer so desired. The token “ab*” could never be confused with an arithmetic problem
because the corresponding arithmetic problem, “a b *” , contains three tokens separated by spaces.
Thus the programmer, having a much larger alphabet to use, is far freer to invent brief, meaningful
names. For example, one might use “a+” to name a function that increments its argument (a
variable) by the value of a.

Lexical analysis is trivially easy in FORTH. Since its lexical rules treat all printing characters the
same way and do not distinguish between alphabetic characters and punctuation marks, FORTH
needs only three classes of lexical tokens:

e Names (predefined or user-defined).
e Numeric literals.

e String literals. These can appear only after the string output command, which is “."” (pro-
nounced “dot-quote”). A string literal is terminated by the next “"” (pronounced “quote”).

62 CHAPTER 3. ELEMENTS OF LANGUAGE

These three token types correspond to semantically distinct classes of objects that the interpreter
handles in distinct ways. Names are to be looked up in the dictionary and executed. Numeric
literals are to be converted to binary and put on the stack. String literals are to be copied to the
output stream. The lexical rules of the language thus correspond directly to its semantics, and the
interpreter is very short and simple.

The effect of these lexical rules on people should also be noted. Although the rules are simple
and easy to learn, a programmer accustomed to the conventions in other languages has a hard time
learning to treat the space character as important.

3.2.2 Sentences: Statements

The earliest high-level languages reflected the linguistic idea of sentences: a FORTRAN or COBOL
program is a series of sentencelike statements.? COBOL statements even end in periods. Most
statements, like sentences, specify an action to perform and some object or objects on which to
perform the action. A language is called “procedural”, if a program is a sequence statements,
grouped into procedures, to be carried out using the objects specified.

In the late 1950s when FORTRAN and COBOL were developed, the punched card was the
dominant medium for communication from human to computer. Programs, commands to the
operating system, and data were all punched on cards. To compile and (one hoped) run a program,
the programmer constructed a “deck” usually consisting of:

e An ID control card, specifying time limits for the compilation and run.3

e A control card requesting compilation, an object program listing, an error listing, and a
memory map.*

A series of cards containing the program.

A control card requesting loading and linking of the object program.

e A control card requesting a run and a core dump® of the executable program.

2Caution: In a discussion of formal grammars and parsing, the term “sentence” is often used to mean the entire
program, not just one statement.

3Historical note: Some of the items on the control cards are hard to understand in today’s environment. Limiting
the time that a job would be allowed to run (using a job time limit) was important then because computer time was
very costly. In 1962, time on the IBM 704 (a machine comparable in power to a Commodore 64) cost $600 per hour
at the University of Michigan. For comparison, Porterhouse steak cost about $1 per pound. Short time limits were
specified so that infinite loops would be terminated by the system as soon as possible.

4The memory map listed all variable names and their memory addresses. The map, object listing, and core
(memory) dump together were indispensable aides to debugging. They permitted the programmer to reconstruct the
execution of the program manually.

®Most debugging was done in those days by carefully analyzing the contents of a core (memory) dump. The kind
of trial and error debugging that we use today was impractical because turnaround time for a trial run was rarely less
than a few hours and sometimes was measured in days. In order to glean as much information as possible from each
run, the programmer would analyze the core dump using the memory maps produced by the compiler and linker.

3.2. THE METALANGUAGE 63

Exhibit 3.10. Field definitions in FORTRAN.
Columns Use in a FORTRAN program

1 A “C” or a “*” here indicates a comment line.
1-5 Statement labels

6 Statement continuation mark

772 The statement itself

73-80 Programmer ID and sequence numbers.

End of statement. At end of line, unless column 6 on the next card is punched to indicate a
continuation of the statement.

Indenting convention. Start every statement in column 7. (Indenting is not generally used.)

e A control card marking the beginning of the data.
e A series of cards containing the data.
e A JOB END control card marking the end of the deck.

Control cards had a special character in column 1 by which they could be recognized. Because
a deck of cards could easily become disordered by being dropped, columns 73 through 80 were
conventionally reserved for identification and sequence numbers. The JOB END card had a different
special mark. This made it easy for the operating system to abort remaining segments of a job
after a fatal error was discovered during compilation or linking.

Because punched cards were used for programs as well as data, the physical characteristics of
the card strongly influenced certain aspects of the early languages. The program statement, which
was the natural program unit, became tightly associated with the 80-column card, which was the
natural media unit. Many programmers wrote their code on printed coding forms, which looked
like graph paper with darker lines marking the fields. This helped keypunch operators type things
in the correct columns.

The designers of the FORTRAN language felt that most FORTRAN statements would fit on one
line and so chose to require that each statement be on a separate card. The occasional statement
that was too long to fit could be continued on another card by placing a character in column six of
the second card. Exhibit 3.10 lists the fields that were defined for a FORTRAN card.

COBOL was also an early fixed-format language, with similar but different fixed fields. Due to
the much longer variable names permitted in COBOL, and the wordier and more complex syntax,

The programmer would trace execution of the program step by step and compare the actual contents of each memory
location to what was supposed to be there. Needless to say, this was slow, difficult, and beyond the capabilities of
many people. Modern advances have made computing much more accessible.

64 CHAPTER 3. ELEMENTS OF LANGUAGE

many statements would not fit on one line. A convention that imitated English was introduced:
the end of each statement was marked by a period. A group of statements that would be executed
sequentially was called a “paragraph”, and each paragraph was given an alphanumeric label. Within
columns 13-72; indenting was commonly used to clarify the meaning of the statements.

Two inventions in the late 1960s combined to make the use of punched cards for programs obso-
lete. The remote-access terminal and the on-line, disk-based file system made it both unnecessary
and impractical to use punched cards. Languages that were designed after this I/O revolution re-
flect the changes in the equipment used. Fixed fields disappeared, the use of indentation to clarify
program structure became universal, and a character such as “;” was used to separate statements
or terminate each statement.5

3.2.3 Larger Program Units: Scope

English prepositions and conjunctions commonly control a single phrase or clause. When a larger
scope of influence is needed in English, we indicate that the word pertains to a paragraph. In pro-
gramming languages, units that correspond to such paragraphs are called scopes and are commonly
marked by a pair of matched opening and closing marks. FExhibits 3.11, 3.13, and 3.15 show the
tremendous variety of indicators used to mark the beginning and end of a scope.

In FORTRAN the concept of “scope” was not well abstracted, and scopes were indicated in a
variety of ways, depending on the context. As new statement types were added to the language
over the years, new ways were introduced to indicate their scopes. FORTRAN uses five distinct
ways to delimit the scopes of the DATA statement, DO loop, implied DO loop, logical IF (true
action only), and block IF (true and false actions) [Exhibit 3.11]. This nonuniformity of syntax
does not occur in the newer languages.

Two different kinds of ways to end scopes are shown in Exhibit 3.11. The labeled statement
at the end of a DO scope ends a specific DO. Each DO statement specifies the statement label of the
line which terminates its scope. (Two DOs are allowed to name the same label, but that is not
relevant here.) We say that DO has a labeled scope. In contrast, all block IF statements are ended
by identical ENDIF lines. Thus an ENDIF could end any block IF statement. We say that block
IF statements have unlabeled scopes.

The rules of FORTRAN do not permit either DO scopes or block IF scopes to overlap partially.
That is, if the beginning of one of these scopes, say B, comes between the beginning and end of
another scope, say A, then the end of scope B must come before the end of scope A. Legal and
illegal nestings of labeled scopes are shown in Exhibit 3.12.

All languages designed since 1965 embody the abstraction “scope”’. That is, the language
supplies a single way to delimit a paragraph, and that way is used uniformly wherever a scope is
needed in the syntax, for example, with THEN, ELSE, WHILE, DO, and so on. For many languages,
this is accomplished by having a single pair of symbols for begin-scope and end-scope, which are

5Most languages did not use the “” as a statement-mark because periods are used for several other purposes

(decimal points and record part selection), and any syntax becomes hard to translate when symbols become heavily
ambiguous.

3.2. THE METALANGUAGE 65

Exhibit 3.11. Scope delimiters in FORTRAN.

The following program contains an example of each linguistic unit that has an associated scope.
The line numbers at the left key the statements to the descriptions, in the table that follows, of
the scope indicators used.

1 INTEGER A, B, C(20), I

2 DATA A, B /31, 42/

3 READ* A, B, (C(I), I=1,10)

4 DO 80 I= 1, 10

5 IF (C(I) .LT. 0) C(I+10)=0

6 IF (C(I) .LT. 100) THEN

7 C(I+10) = 2 * C(I)

8 ELSE

9 C(I+10) = C(I)/2

10 ENDIF

11 80 CONTINUE

12 END

Scope of Begins at Ends at Line #s
Dimension list | “(” after array name The next)” 1
DATA values First «/” Second “/” 2
Implied DO “(” in I/0O list I/O loop control 3
Subscript list “(” after array name Matching “)” 3

DO loop Line following DO Statement with DO label | 5 - 11
Logical IF After ({condition)) End of line 5
Block IF (true) | After THEN ELSE, ELSEIF, or ENDIF | 7
Block IF (false) | After ELSEIF or ELSE ELSE, ELSEIF, or ENDIF |9

Exhibit 3.12. Labeled scopes.

Correct Nesting: Faulty Nesting:
Begin Scope A———— Begin Scope A
Begin Scope B—— Begin Scope B ——
End Scope B——— End Scope A

End Scope A —— End Scope B———

66 CHAPTER 3. ELEMENTS OF LANGUAGE

Exhibit 3.13. Tokens used to delimit program scopes.

Language Beginning of Scope End of Scope

C { }

LISP ()

Pascal BEGIN END
RECORD END
CASE END

PL/1 DO; END;

DO (loop control); END;

used to delimit any kind of scope [Exhibit 3.13]. In these languages it is not possible to nest scopes
improperly because the compiler will always interpret the nesting in the legal way. A compiler will
match each end-scope to the nearest unmatched begin-scope. This design is attractive because it
produces a language that is simpler to learn and simpler to translate.

If an end-scope is omitted, the next one will be used to terminate the open scope regardless
of the programmer’s intent [Exhibit 3.14]. Thus an end-scope that was intended to terminate an
IF may instead be used to terminate a loop or a subprogram. A compiler error comment may
appear on the next line because the program element written there is in an illegal context, or error
comments may not appear until the translator reaches the end of the program and finds that the
wrong number of end-scopes was included. If an extra end-scope appears somewhere else, improper
nesting might not be detected at all.

Using one uniform end-scope indicator has the severe disadvantage that a nesting error may
not be identified as a syntactic error, but become a logical error which is harder to identify and
correct. The programmer has one fewer tool for communicating semantics to the compiler, and the
compiler has one fewer way to help the programmer achieve semantic validity. Many experienced
programmers use comments to indicate which end-scope belongs to each begin-scope. This practice
makes programs more readable and therefore easier to debug, but of course does not help the
compiler.

A third, intermediate way to handle scope delimiters occurs in Ada. Unlike Pascal, each kind of
scope has a distinct end-scope marker. Procedures and blocks and labeled loops have fully labeled
end-scopes. Unlike FORTRAN;, a uniform syntax was introduced for delimiting and labeling scopes.
An end-scope marker is the word “end” followed by the word and label, if any, associated with the
beginning of the scope [Exhibit 3.15].

It is possible, in Ada, for the compiler to detect many (but not all) improperly nested scopes
and often to correctly deduce where an end-scope has been omitted. This is important, since a
misplaced or forgotten end-scope is one of the most common kinds of compile-time errors.

A good technique for avoiding errors with paired delimiters is to type the END marker when
the BEGIN is typed, and position the cursor between them. This is the idea behind the structured

3.2. THE METALANGUAGE 67

Exhibit 3.14. Nested unlabeled scopes in Pascal.

i:=0;
BeginScope ——— WHILE a <= 100 DO BEGIN
Begin Scope ——— IFamod 7 =0 THEN BEGIN
i=i+1;
writeln (i, a)
End Scope —— END
EndScope ———— END

editors. When the programmer types the beginning of a multipart control unit, the editor inserts
all the keywords and scope markers necessary to complete that unit meaningfully. This prevents
beginners and forgetful experts from creating malformed scopes.

3.2.4 Comments

Footnotes and bibliographic citations in English permit us to convey general information about
the text. Analogously, comments, interspersed with program words, let us provide information
about a program that is not part of the program. With comments, as with statements, we have
the problem of identifying both the beginning and end of the unit. Older languages (COBOL,
FORTRAN) generally restrict comments to separate lines, begun by a specific comment mark in a
fixed position on the line [Exhibit 3.16]. This convention was natural when programs were typed
on punch cards. At the same time it is a severe restriction because it prohibits the use of brief
comments placed out of the way visually. It therefore limits the usefulness of comments to explain
obscure items that are embedded in the code.

The newer languages permit comments and code to be interspersed more freely. In these

Exhibit 3.15. Lexical scope delimiters in Ada.

Begin-scope markers End-scope markers
(block_name): (declarations) BEGIN END (block_name)
PROCEDURE (proc_name) END (proc_name);
LOOP END LOOP;
(label):LOOP END LOOP (label);
CASE END CASE

IF (condition) THEN or

ELSIF (condition) THEN ELSIF, ELSE, or END IF

ELSE END IF

68 CHAPTER 3. ELEMENTS OF LANGUAGE

Exhibit 3.16. Comment lines in older languages.

In these languages comments must be placed on a separate line, below or above the code to
which they apply.

Language Comment line is marked by

FORTRAN A “C” in column 1

COBOL A “* in column 7

original APL The “lamp” symbol: @at the beginning of a line
BASIC REM at the beginning of a line

languages, statements can be broken onto multiple lines and combined freely with short comments
in order to do a superior job of clarifying the intent of the programmer. Both the beginning and
end of a comment are marked [Exhibit 3.17]. Comments are permitted to appear anywhere within
a program, even in the middle of a statement.

A nearly universal convention is to place the code on the left part of the page and comments
on the right. Comments are used to document the semantic intent of variables, parameters, and
unusual program actions, and to clarify which end-scope marker is supposed to match each begin-
scope marker. Whole-line comments are used to mark and document the beginning of each program
module, greatly assisting the programmer’s eye in finding his or her way through the pages of code.
Some comments span several lines, in which case only the beginning of the first line and end of
the last line need begin- and end-comment marks. In spite of this, many programmers mark the
beginning and end of every line because it is aesthetically nicer and sets the comment apart from
code.

With all the advantages of these partial-line comments, one real disadvantage was introduced
by permitting begin-comment and end-comment marks to appear anywhere within the code. It is
not unusual for an end-comment mark to be omitted or typed incorrectly [Exhibit 3.18]. In this
case all the program statements up to the end of the next comment are taken to be part of the
nonterminated comment and are simply “swallowed up” by the comment.

Exhibit 3.17. Comment beginning and end delimiters.

These languages permit a comment and program code to be placed on the same line. Both the
beginning and end of the comment is marked.

Language Comments are delimited by
PL/1 /¥ x

Pascal (*...%or{...}

FORTH (...)

3.2. THE METALANGUAGE 69

Exhibit 3.18. An incomplete comment swallowing an instruction.

The following Pascal code appears to be ok at first glance, but because of the mistyped end-comment
mark, the computation for tot_age will be omitted. The result will be a list of family members
with the wrong average age!

A “person_list” is an array of person cells, each containing a name and an age.

PROCEDURE average_age(p: person_list);
VAR famsize, tot_age, k:integer;
BEGIN
readln(famsize); (* Get the number of family members to process.*)
tot_age := 0;
FOR k := 1 TO famsize DO BEGIN
writeln(p[k] .name); (* Start with oldest family member. *)
tot_age := tot_age + plk].age; (* Sum ages for average. *)
END;
writeln('Average age of family =
END;

', tot_age/famsize)

The translator may not ever detect this violation of the programmer’s intent. If the next
comment is relatively near, and no end-scope markers are swallowed up by the comment, the
program may compile with no errors but run strangely. This can be a very difficult error to debug,
since the program looks correct but its behavior is inconsistent with its appearance! Eventually the
programmer will decide that he or she has clearly written a correct instruction that the compiler
seems to have ignored. Since compilers do not just ignore code, this does not make sense. Finally
the programmer notices that the end-comment mark that should be at the end of some prior line
is missing.

This problem is an example of the cost of over-generality. Limiting comments to separate lines
was too restrictive, that is, not general enough. Permitting them to begin and end anywhere
on a line, though, is more general than is needed or desired. Even in languages that permit
this, comments usually occupy either a full line or the right end of a line. A more desirable
implementation of comments would match the comment-scope and comment placement rules with
the actual conventions that most programmers use, which are:

e whole-line comments
e partial-line comments placed on the right side of the page
e multiple-line comments

Thus comments should be permitted to occur on the right end of any line, but they might as well
be terminated by the end of the line. Permitting multiple-line comments to be written is important,

70 CHAPTER 3. ELEMENTS OF LANGUAGE

Exhibit 3.19. Comments terminating at end of line.

These languages permit comments to occupy entire lines or the right end of any line. Comments
start with the comment-begin mark listed and extend to the carriage return on the right end of the
line. (TeX is a text processing language for typesetting mathematical text and formulas. It was
used to produce this book.)

Language Comment-begin mark

Ada --

LISP ; (This varies among implementations.)
TeX b

UNIX command shell #

C++ //

but it is not a big burden to mark the beginning of every comment line, as many programmers do
anyway to improve the appearance of their programs. The payoff for accepting this small restriction
is that the end-of-line mark can be used as a comment-end mark. Since programmers do not forget
to put carriage returns in their programs, comments can no longer swallow up entire chunks of
code. Some languages that have adopted this convention are listed in Exhibit 3.19.

Some languages support two kinds of comment delimiters. This permits the programmer to
use the partial-line variety to delimit explanatory comments. The second kind of delimiter (with
matched begin-comment and end-comment symbols) is reserved for use during debugging, when
the programmer often wants to “comment out”, temporarily, large sections of code.

3.2.5 Naming Parts of a Program

In order to refer to the parts of a program, we need meta-words for those parts and for whatever
actions are permitted. For example, C permits parts of a program to be stored in separate files and
brought into the compiler together by using “#include (file_name)”. The file name is a metaword
denoting a section of the program, and “#include” is a metaword for the action of combining it
with another section.

Most procedural languages provide a GOTO instruction which transfers control to a specific
labeled statement somewhere in the program. The statement label, whether symbolic or numeric,
is thus a metaword that refers to a part of the program. Since the role of statement labels cannot
be fully understood apart from the control structures that use them, labels are discussed with the
GOTO command in Section 11.1.

3.2.6 Metawords That Let the Programmer Extend the Language
There are several levels on which a language may be extended. One might extend:

e The list of defined words (nouns, verbs, adjectives).

3.2. THE METALANGUAGE 71

e The syntax but not the semantics, thus providing alternative ways of writing the same mean-
ings one could write without the extension.

e The actual semantics of the language, with a corresponding extension either of the syntax or
of the list of defined words recognized by the compiler.

Languages that permit the third kind of extension are rare because extending the semantics
requires changing the translator to handle a new category of objects. Semantic extension is discussed
in the next chapter.

Extending the Vocabulary

Every declaration extends the language in the sense that it permits a compiler to “understand”
new words. Normally we are only permitted to declare a few kinds of things: nouns (variables,
constants, file names), verbs (functions and procedures), and sometimes adjectives (type names)
and metawords (labels). We cannot normally declare new syntactic words or new words such as
“array”. The compiler maintains one combined list or several separate lists of these definitions.
This list is usually called the “symbol table”, but it is actually called the “dictionary” in FORTH.
New symbols added to this list always belong to some previously defined syntactic category with
semantics defined by the compiler.

Each category of symbol that can be declared must have its own keyword or syntactic marker
by which the compiler can recognize that a definition of a new symbol follows. Words such as TYPE,
CONST, and PROCEDURE in Pascal and INTEGER and FUNCTION in FORTRAN are metawords that
mean, in part, “extend the language by putting the symbols that follow into the symbol table.”

As compiler technology has developed and languages have become bigger and more sophis-
ticated, more kinds of declarable symbols have been added to languages. The original BASIC
permitted no declarations: all two-letter variable names could be used without declaration, and
no other symbols, even subroutine names, could be defined. The newest versions of BASIC permit
use of longer variable names, names for subroutines, and symbolic labels. FORTRAN, developed in
1954-1958, permitted declaration of names for variables and functions. FORTRAN 77 also permits
declaration of names for constants and COMMON blocks. ALGOL-68 supported type declarations
as a separate abstraction, not as part of some data object. Pascal, published in 1971, brought type
declarations into widespread use. Modula, a newer language devised by the author of Pascal, per-
mits declaration and naming of semantically separate modules. Ada, one of the newest languages
in commercial use, permits declaration of several things missing in Pascal, including the range
and precision of real variables, support for concurrent tasks, and program modules called “generic
packages” which contain data and function declarations with type parameters.

72 CHAPTER 3. ELEMENTS OF LANGUAGE

Exhibit 3.20. Definition of a simple macro in C.

In C, macro definitions start with the word #define, followed by the macro name. The string to
the right of the macro name defines the meaning of the name.

The #define statements below make the apparent syntax of C more like Pascal. They permit the
faithful Pascal programmer to use the familiar scoping words BEGIN and END in a C program. (These
words are not normally part of the C language.) During preprocessing, BEGIN will be replaced by
“{” and END will be replaced by “}”.

#define BEGIN {
#define END }

Syntactic Extension without Semantic Extension

Some languages contain a macro facility (in C, it is part of the preprocessor).” This permits the
programmer to define short names for frequently used expressions. A macro definition consists of
a name and a string of characters that becomes the meaning of the name [Exhibit 3.20]. To use a
macro, the programmer writes its name, like a shorthand notation, in the program wherever that
string of characters is to be inserted [Exhibit 3.21].

A preprocessor scans the source program, searching for macro names, before the program is

"The C preprocessor supports various compiler directives as well as a general macro facility.

Exhibit 3.21. Use of a simple macro in C.

Macro Calls. The simple macros defined in Exhibit 3.20 are called in the following code
fragment. Unfortunately, the new scope symbols, BEGIN and END, and the old ones, “{” and “}”,
are now interchangeable. Our programmer can write the following code, defining two well-nested
scopes. It would work, but it isn’t “pretty” or clear.

BEGIN x = y+2;
if (x < 100) { x += k; y = 0; END
else x = 0; }

Macro Expansion. During macro expansion the macro call is replaced by the defining string.
The C translator never sees the word BEGIN.
{ ==y
if (x < 100) { x +=k; y = 0; }
else x = 0; }

3.2. THE METALANGUAGE 73

parsed. These macro names are replaced by the defining strings. The expanded program is then
parsed and compiled. Thus the preprocessor commands and macro calls form a separate, primitive,
language. They are identified, expanded, and eliminated before the parser for the main language
even begins its work.

The syntax for a macro language, even one with macro parameters, is always simple. However,
piggy-backing a macro language on top of a general programming language causes some complica-
tions. The source code will be processed by two translators, and their relationship must be made
clear. Issues such as the relationship of macro calls to comments or quoted strings must be settled.

In C, preprocessor commands and macro definitions start with a “#” in column 1.% This distin-
guishes them from source code intended for the compiler. Custom (but not compiler rules) dictates
that macro names be typed in uppercase characters and program identifiers in lowercase. Case
does not matter to the translator, but this custom helps the programmer read the code.

Macro calls are harder to identify than macro definitions, since they may be embedded anywhere
in the code, including within a macro definition. Macro names, like program identifiers, are variable-
length strings that need to be identified and separated from other symbols. Lexical analysis must,
therefore, be done before macro expansion. Since the result of expansion is a source string, lexical
analysis must be done again after expansion. Since macro definitions may contain macro calls, the
result of macro expansion must be rescanned for more macro calls. Control must thus pass back
and forth between the lexer and the macro facility. The lexical rules for the preprocessor language
are necessarily the same as the rules for the main language.

In the original definition of C, the relationship among the lexer, preprocessor, and parser was
not completely defined. Existing C translators thus do different things with macros, and all are
“correct” by the language definition. Some C translators simply insert the expanded macro text
back into the source text without inserting any blanks or delimiters. The effect is that characters
outside a macro can become adjacent to characters produced by the macro expansion. The program
line containing the expanded macro is then sent back to the lexer. When the lexer processes this,
it forms a single symbol from the two character strings. This “gluing” action can produce strange
and unexpected results.

The ANSI standard for C has clarified this situation. It states that no symbol can bridge a macro
boundary. Lexical analysis on the original source string is done, and symbols are identified, before
macro expansion. The source string that defines the macro can also be lexed before expansion,
since characters in it can never be joined with characters outside it. These rules “clean up” a
messy situation. The result of expanding a macro still must be rescanned for more macro calls, but
it does not need to be re-lexed. The definition and call of a macro within a macro are illustrated
in Exhibits 3.22 and 3.23.

A general macro facility also permits the use of parameters in macro definitions [Exhibit 3.24].
In a call, macro arguments are easily parsed, since they are enclosed in parentheses and follow the
macro name [Exhibit 3.25]. To expand a macro, formal parameter names must be identified in the
definition of the macro. To do this, the tokens in the macro definition must first be identified. Any

8Newer C translators permit the “#” to be anywhere on the line as long as it is the first nonblank character.

74 CHAPTER 3. ELEMENTS OF LANGUAGE

Exhibit 3.22. A nest of macros in C.

The macros defined here are named PI and PRINTX. PRINTX expands into a call on the library
function that does formatted output, printf. The first parameter for printf must be a format
string, the other parameters are expressions denoting items to be printed. Within the format, a
% field defines the type and field width for each item on the I/O list. The “\t” prints out a tab
character.

#define PI 3.1415927
#define PRINTX printf("Pi times x = %8.5f\t", PI * x)

Exhibit 3.23. Use of the simple PRINTX macro.
The macro named PRINTX is used below in a for loop.
for (x=1; x<=3; x++) PRINTX;
Before compilation begins, the macro name is replaced by the string “printf ("Pi times x =
%8.5f\t", PI * x), giving a string that still contains a macro call:
for (x=1; x<=3; x++) printf("Pi times x = %8.5f\t", PI * x);
This string is re-scanned, and the call on the macro PI is expanded, producing macro-free source
code. The compiler then compiles the statement:

for (x=1; x<=3; x++) printf("Pi times x = %8.5f\t", 3.1415927 * x);

At run time, this code causes x to be initialized to 1 before the loop is executed. On each
iteration of the loop, the value of x is compared to 3. If x does not exceed 3, the words “Pi times
x = 7 are printed, followed by the value of 3.1415927 * x as a floating-point number with five
decimal places (%8.5f), followed by a tab character (\t). The counter x is then incremented. The

loop is terminated when x exceeds 3. Thus a line with five fields is printed, as follows:
Pi times x = 3.14159 Pi times x = 6.28319 Pi times x = 9.42477

3.2. THE METALANGUAGE 75

Exhibit 3.24. A macro with parameters in C.

The macro defined here is named PRINT. It is similar to the PRINTX macro in Exhibit 3.22, but
it has a parameter.

#define PRINT(yy) printf(#yy " = %d\t", yy)

The definition for PRINT is written in ANSI C. References to macro parameters that occur
within quoted strings are not recognized by the preprocessor. However, the “#” symbol in a macro
definition causes the parameter following it to be converted to a quoted string. Adjacent strings
are concatenated by the translator. Using both these facts, we are able to insert a parameter value
into a quoted format string.

token that matches a parameter name is replaced by the corresponding argument string. Finally,
the entire string of characters, with parameter substitutions, replaces the macro call.

The original definition of C did not clearly define whether tokens were identified before or
after macro parameters were processed. This is important because a comment or a quoted string
looks like many words but forms a single program token. If a preprocessor searches for parameter
names before identifying tokens, quoted strings will be searched and parameter substitution will
happen within them. Many C translators work this way; others identify tokens first. The ANSI
C standard clarifies this situation. It decrees that tokenization will be done uniformly before
parameter substitution.

Macro names are syntactic extensions. They are words that may be written in the program
and will be recognized by the compiler. Unlike variable declarations they may stand for arbitrarily
complex items, and they may expand into strings that are not even syntactically legal units when
used alone. Macros can be used to shorten code with repetitive elements, to redefine the compiler
words such as BEGIN, or to give symbolic names to constants. What they do not do is extend the

Exhibit 3.25. Use of the print macro with parameters.

The macro named PRINT is used here, with different variables supplied as parameters each time.
PRINT(x); PRINT(y); PRINT(z);
These macro calls will be expanded and produce the following compilable code:

printf("x = %d\t", x);
printf("y = %d\t", y);
printf("z = %d\t", z);

Assume that at run time the variables x, y, and z contain the values 1, 3, and 10, respectively.
Then executing this code will cause one line to be printed, as follows:

x=1 y =3 z =10

76

CHAPTER 3. ELEMENTS OF LANGUAGE

semantics of the language. Since all macro calls must be expanded into compilable code, anything
written with a macro call could also be written without it. No “power” is added to the language
by a macro facility.

Exercises

1. Why are function calls considered verbs?

2. What is the domain of a verb? Define the domain and range of a function.

3. What is a data type? Inheritance?

4. What is a metalanguage?

5. What is a lexical token? How are lexical tokens formed? Use a language with which you are
familiar as an example. What are delimiters?

6. How are programming language statements analogous to sentences?

7. What is the scope of a programming language unit? How is it usually denoted?

8. How is it possible to improperly nest scopes? How can this be avoided by designers of
programming languages?

9. What is the purpose of a comment? How are comments traditionally handled within pro-
grams? What is the advantage of using a carriage return as a comment delimiter?

10. The language C++ is an extension of C which supports generic functions and type checking.
For the most part, C++ is C with additions to implement things that the C++ designers
believed are important and missing from C. One of the additions is a second way to denote
a comment. In C, a comment can be placed almost anywhere in the code and is delimited
at both ends. In this program fragment two comments and an assignment statement are
intermingled:

x=y*z /* Add the product of y and z */+x; /* to x. */
C++ supports this form but also a new form which must be placed on the right end of the
line and is only delimited at the beginning by “//”:

x=y*z + x // Add the product of y and z to x.
Briefly explain why the original comment syntax was so inadequate that a new form was
needed.

11. How can we extend a language through its vocabulary? Its syntax?

12. What is a macro? How is it used within a program?

Chapter 4

Formal Description of Language

Overview

The syntax of a language is its grammatical rules. These are usually defined through
EBNF (Extended Backus-Naur Form) and/or syntax diagrams, both discussed in this
chapter. The meaning of a program is represented by p-code (portable code) or by a
computation tree. The language syntax defines the computation tree that corresponds
to each legal source program.

Semantics are the rules for interpreting the meaning of programming language state-
ments. The semantic specification of a language defines how each computation tree
is to be implemented on a machine so that it retains its meaning. Being always con-
cerned with the portability of code, we define the semantics of a language in terms
of an implementation-independent model. One such model, the abstract machine, is
composed of a program environment, shared environment, stack, and streams. The
semantic basis of a language means the specific version of the machine that defines
the language, together with the internal data structures and interpretation procedures
that implement the abstract semantics. Lambda calculus is an example of a minimal
semantic basis.

A language may be extended primarily through its vocabulary and occasionally through
its syntax, as in EL/1, or through its semantics, as in FORTH.

7

78 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

4.1 Foundations of Programming Languages

Formal methods have played a critical role in the development of modern programming languages.
Formal methods were not available in the mid-1950s when the first higher-level programming lan-
guages were being created. The most notable of these efforts was FORTRAN, which survives (in
greatly expanded form) to this day. Even though the syntax and semantics of the early FORTRAN
were primitive by today’s standards, the complexity of the language was at the limit of what could
be handled by the methods then available. It was quickly realized that ad hoc methods are severely
limited in what they can achieve, and a more systematic approach would be needed to handle
languages of greater expressive power and correspondingly greater complexity.

Contemporaneously with the implementation of the FORTRAN language and compiler, a new
language, ALGOL, was being defined using a new formal approach for the specification of syntax
and semantics. Even though it required several more years of research before people learned how to
compile ALGOL efficiently, the language itself had tremendous influence on the design of subsequent
programming languages. Concepts such as block structure (cf. Chapter 7) and delayed evaluation
of function parameters (cf. Chapter 8), introduced in ALGOL, have reappeared in many subsequent
modern programming languages.

ALGOL was the first programming language whose syntax was formally described. A notation
called BNF, for Backus-Naur Form, was invented for the purpose. BNF turned out to be equivalent
in expressive power to context-free grammars, developed by the linguist Noam Chomsky for de-
scribing natural language, but the BNF notation turned out to be easier for people, so variations on
it are still used in describing most programming languages. An attempt was made to give a rigor-
ous English-language specification of the semantics of ALGOL. Nevertheless, the underlying model
was not well understood at the time, and ALGOL appeared at first to be difficult or impossible to
implement efficiently.

Syntax and semantic interpretations were specified informally for early languages. Then, mo-
tivated by the new need to describe programming languages, formal language theory flourished.
Some of the major developments in the foundations of computer science are shown in Exhibit 4.1.
Formal syntax and parsing methods grew from work on automata theory and linguistics [Exhibit
4.1]. Formal methods of semantic specification [Exhibit 4.2] grew from early work on logic and
computability and were especially influenced by Church’s work on the lambda calculus. In this
chapter, we give a brief introduction to some of the formal tools that have been important to the
development of modern-day programming languages.

4.2 Syntax

The rules for constructing a well-formed sentence (statement) out of words, a paragraph (module)
out of sentences, and an essay (program) out of paragraphs are the syntax of the language. The
syntax definitions for most programming languages take several pages of text. A few are very
short, a few very long. There is at least one language (ALGOL-68) in which the syntax rules that

4.2. SYNTAX

79

Exhibit 4.1. Foundations of computer science.

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

Giuseppe
Set theory (1895)

Peano

Alfred North Whitehead

Bertrand Russel

Post

Symbolic logic (1910)

Automated mathematics

Incompleteness theorem, Goedel (1931)
Post systems — Recursive function theory

|
Formal Iangu lg(;e theory
Choms

|

Formal syntactic definition
Backus and Naur (1960)

Knuth: Parsing methods,
compiler theory

Compiler compilers
EL/1: Extensible syntax

Adelman (1 978)

— Computability theory
Church, Rosser (1930s) Turing (1936)
Information theory Electronics
Shannon
Switching theory
Automata theory
Rabin, Scott
Y
Complexity theory
Hartmanis, Blum
\J
C?mputﬁtlor%m
cryptogra
;y‘[élf?(; FI)-I(glllr?an Y
UDIC key system Randomized
Rivest, Shamir, algorithms

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

80 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

Exhibit 4.2. Formal semantic specification.

1930 Postsystems —— Recursive functiontheory —— Computability theory 1930
Church, Rosser (1930s) Turing (1936)
1940 Lambda calculus 1940
Church (1941)
1950 1950

Program correctness
and verification (1960s)

1960 Referential transparency, Strachey 1960
Formal semantic definition
SECD machine, Landin (1964)

Vienna definition of PL/1 (1967)

|
Denotational semantics (1971)
1970 Scott, Strachey 1970
Concurrency, Dijkstra (1968)
Milner: Type theory (1978) Hoare: ésp (1978)
Distributed computing (1978)
1980 Lamport 1980
Functional languages:
ML Collaborative computing
Miranda 1988
1990 Has#ell ¢ 1990

determine whether or not a statement should compile are so complicated that only an expert can
understand them.

It is usual to define the syntax of a programming language in a formal language. A variety
of formalisms have been introduced over the years for this purpose. We present two of the most
common here: Extended Backus-Naur Form (EBNF) and syntax diagrams.

An EBNF language definition can be translated by a program called a parser generator! into
a program called a parser [Exhibit 4.3].2 A parser reads the user’s source code programs and
determines the syntactic category (part of speech) of every source symbol and combination of

The old term was “compiler compiler”. This led to the name of the UNIX parser generator, yacc, which stands
for “yet another compiler compiler”.

2 A parser generator can only handle grammars for “context-free” languages. Defining this language class is beyond
the scope of this book. Note, though, that the grammars published for most programming languages are context free.

4.2. SYNTAX 81

Exhibit 4.3. The compiler is produced from the language definition.

In the following diagram, programs are represented by rectangles and data by circles. The lexer
and parser can be automatically generated from the lexical specifications and syntax of a context-
free language by a parser generator and its companion lexer generator. This is represented by the
vertical arrows in the diagram. The lexer and parser are the output data of these generation steps.

A code generator requires more hand work: the compiler writer must construct an assembly
code translation, for every syntax rule in the grammar, which encodes the semantics of that rule
in the target machine language.

The lexer, parser, and code generator are programs that together comprise the compiler. The
compilation process is represented by the horizontal chain in the diagram.

EBNF
rules for
Pascal
syntax

and-code
semantic

interpretation
for each

rule
Lexer Lexer Parser Generator
Generator » for »| also knownas
Pascal Compiler Compiler

ascal Compiler

\

Lexer Pascal
for > Code
Pascal Generator

symbols. Its output is the list of the symbols defined in the program and a parse tree, which
specifies the role that each source symbol is serving, much like a sentence diagram of an English
sentence. The parser forms the heart of any compiler or interpreter for the language.

The study of formal language theory and parsing has strongly affected language design. Older
languages were not devised with modern parsing methods in mind. Their syntax was usually
developed ad hoc. Consequently, a syntax definition for such a language, for example FORTRAN,
is lengthy and full of special cases. By today’s standards these languages are also relatively slow
and difficult to parse.

Newer languages are designed to be parsed easily by efficient algorithms. The syntax for Pascal
is brief and elegant. Pascal compilers are small, as compilers go, and can be implemented on
personal computers. The standard LISP translator? is only fifteen pages long!

3Griss and Hearn [1981].

82 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

4.2.1 Extended BNF

“Backus-Naur Form”, or BNF, is a formal language developed by Backus and Naur for describing
programming language syntax. It gained widespread influence when it was used to define ALGOL in
the early 1960s. The original BNF formalism has since been extended and streamlined; a generally
accepted version, named “Extended BNF”, is presented here.

An EBNF grammar consists of:

e A starting symbol.

e A set of terminal symbols, which are the keywords and syntactic markers of the language
being defined.

e A set of nonterminal symbols, which correspond to the syntactic categories and kinds of
statements of the language.

e A series of rules, called productions, that specify how each nonterminal symbol may be
expanded into a phrase containing terminals and nonterminals. Every nonterminal has one
production rule, which may contain alternatives.

The Syntax of EBNF

The syntax for EBNF itself is not altogether standardized; several minor variations exist. We define
a commonly used version here.

The starting symbol must be defined. One nonterminal is designated as the starting symbol.
Terminal symbols will be written in boldface and enclosed in ‘single quotes’.

Nonterminal symbols will be written in regular type and enclosed in (angle brackets).

14 ”

Production rules. The nonterminal being defined is written at the left, followed by a “::=” sign
(which we will pronounce as “goes to”). After this is the string, with options, which defines
the nonterminal. The definition extends up to but does not include the “.” that marks the
end of the production. When a nonterminal is ezpanded it is replaced by this defining phrase.

1 b

Blank spaces between the “::=" and the “.” are ignored.

Alternatives are separated by vertical bars. Parentheses may be used to indicate grouping.
For example, the rule

suz=(albc)d.

indicates that an ‘s’ may be replaced by an ‘ad’ or a ‘bed’.

An optional syntactic element is a something-or-nothing alternative—it may be included or
not included as needs demand. This is indicated by enclosing the optional element in square
brackets, as follows:

4.2. SYNTAX 83

su=[a] d.

This formula indicates that an ‘s’ may be replaced by an ‘ad’ or simply by a ‘d’.

An unspecified number of repetitions (zero or more) of a syntactic unit is indicated by en-
closing the unit in curly brackets. For example, the rule

s = {a}d .

indicates that an ‘s’ may be replaced by a ‘d’, an ‘ad’, an ‘aad’, or a string of any number of
‘a’s followed by a single ‘d’. A frequently occurring pattern is the following;:

s == t{t}

This means that ‘s’ may be replaced by one or more copies of ‘t’.

Recursive rules. Recursive production rules are permitted. For example, this rule is directly
recursive because its right side contains a reference to itself:
su=asz|w.
This expands into a single ‘w’, surrounded on the left and right by any number of matched pairs
of ‘a’ and ‘z’: awz, aawzz, aaawzzz, etc.
Tail recursion is a special kind of recursion in which the recursive reference is the last symbol
in the string. Tail recursion has the same effect as a loop. This production is tail recursive:
su=as|b.
This expands into a string of any number of ‘a’s followed by a ‘b’.
Mutually recursive rules are also permitted. For example, this pair of rules is mutually recursive
because each rule refers to the other:
su=at|b.
tu=Dbs|a.
A single ‘s’ could expand into any of the following: b, aa, abb, abaa, ababb, ababaa, etc.
Combinations of alternatives, optional elements, recursions, and repetitions often occur in a
production, as follows:
suz={a|b}[c]d.
This rule indicates that an ‘s’ may be replaced by any of the following: d, ad, bd, cd, acd, bcd,
aad, abd, aacd, abcd, bd, bad, bbd, bed, bacd, bbed, and many more.

Using EBNF

To illustrate the EBNF rules, we give part of the syntax for Pascal, taken from the ISO standard
[Exhibit 4.4]. The first few rules of the grammar are given, followed by several rules from the
middle of the grammar which define what a “statement” is. The complete set of EBNF grammar
rules cannot be given here because it is too long.* Following are brief explanations of the meaning

4Tt occupies nearly six pages in Cooper [1983].

84 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

Exhibit 4.4. EBNF production rules for parts of Pascal.

program ::= (program-heading) ‘;’ (program-block) .’

program-heading ::= ‘program’ (identifier) [‘(’ (program-parameters) ¢)’].
program-parameters ::= (identifier-list) .

identifier-1list ::= (identifier) { ¢, (identifier) } .

program-block ::= (block)

block ::= (label-declaration-part) (constant-declaration-part)

(type-declaration-part) (variable-declaration-part)
(procedure-and-function-declaration-part) (statement-part) .

variable-declaration-part ::= [‘var’ { (identifier-list) ‘:’ (typename) ’;’ }]
statement-part ::= compound statement .

compound-statement ::= ‘begin’ (statement-sequence) ‘end’

statement-sequence ::= (statement) { ;’ (statement) } .

statement ::= [(label) ‘:>] ((simple-statement) | (structured-statement)).
simple-statement ::= (empty-statement) | (assignment-statement) |

(procedure-statement) | (goto-statement) .

structured-statement ::= (compound-statement) | (conditional-statement) |
(repetitive-statement) | (with-statement) .

of these rules.

e The production for the starting symbol states that a program consists of a heading, a semi-
colon, a block and a period. The semicolon and period are terminal symbols and will form
part of the finished program. The symbols “program-heading” and “program-block” are
nonterminals and need further expansion.

e The program-heading starts with the terminal symbol “program”, which is followed by the
name of the program and an optional, parenthesized list of parameters, used for file names.

e The program parameters, if they are used, are just a list of identifiers, that is, a series of one
or more identifiers separated by commas.

e The program block consists of a series of declarations followed by a single compound state-
ment.

e The production for “compound statement” forms an indirectly recursive cycle with the rules
for statement sequence, and statement. That is, a statement can be a structured statement,

4.2. SYNTAX 85

which can be a compound statement, which contains a statement-sequence, which contains a
statement, completing the cycle.

e The rule for “statement” contains an optional label field and the choice between “simple-
statement” and “structured-statement”.

e The rules for simple-statement and structured-statement define all of Pascal’s control struc-
tures.

Generating a Program. To generate a program (or part of a program) using a grammar, one
starts with the specified starting symbol and expands it according to its production rule. The
starting symbol is replaced by the string of symbols from the right side of its production rule.
If the rule contains alternatives, one may use whichever option seems appropriate. The resulting
expansion will contain other nonterminal symbols which then must be expanded also. When all
the nonterminals have been expanded, the result is a grammatically correct program.

We illustrate this derivation process by using the EBNF grammar for ISO Standard Pascal to
generate a ridiculously simple program named “little”. Parts, but not all, of this grammar are
given in Exhibit 4.4.°

The starting symbol is (program). Wherever possible, more than one nonterminal symbol is
reduced on each line, in order to shorten the derivation.

(program)

(program-heading) ; (program-block) .

program (identifier) ; (block) .

program little ; (label-declaration-part) (constant-declaration-part)
(variable-declaration-part) (procedure-and-function-declaration-part)
(statement-part) .

program little ; var (variable-declaration) ; (compound-statement) .

program little ; var (identifier-list) : (type-denoter) ;
begin (statement-sequence) end .
program little ; var (identifier) : (type-denoter) ;
begin (statement) ; (statement) end .
program little ; var x : integer ;
begin (simple-statement) ; (simple-statement) end .
program little ; var x : integer ;
begin (assignment-statement) ; (procedure-statement) end .
program little ; var x : integer ;
begin (variable-access) := (expression) ;
(procedure-identifier) ((writeln-parameter-list)) end .

5The complete grammar can be found in Cooper [1983], pp 153-58.

86 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

program little ; var x : integer ;
begin (entire-variable) := (simple-expression) ;
writeln ((write-parameter)) end .

program little ; var x : integer ; begin (variable-identifier):= (term) ;
writeln ((expression)) end .
program little ; var x : integer ; begin (identifier) := (factor) ;
writeln ((simple-expression)) end.
program little ; var x : integer ; begin x := (unsigned-constant) ;
writeln ((term)) end .
program little ; var x : integer ; begin x := (unsigned-number) ;
writeln ((factor)) end .
program little ; var x : integer ; begin x := (unsigned-integer) ;
writeln ((variable-access)) end .
program little ; var x : integer ; begin x := 17 ;
writeln ((entire-variable)) end .

program little ; var x : integer ; begin x := 17 ;

writeln ((variable-identifier)) end .
program little ; var x : integer ; begin x := 17 ; writeln ((identifier)) end .
program little ; var x : integer ; begin x := 17 ; writeln (x) end .

Parsing a Program. The process of syntactic analysis is the inverse of this generation process.
Syntactic analysis starts with source code. The parsing routines of a compiler determine how the
source code corresponds to the grammar. The output from the parse is a tree-representation of the
grammatical structure of the code called a parse tree.

There are several methods of syntactic analysis, which are usually studied in a compiler course
and are beyond the scope of this book. The two broad categories of parsing algorithms are called
“bottom-up” and “top-down”. In top-down parsing, the parser starts with the grammar’s starting
symbol and tries, at each step, to generate the next part of the source code string. A brief description
of a “bottom-up” method should serve to illustrate the parsing process. In a “bottom-up” parse,
the parser searches the source code for a string which occurs as one alternative on the right side
of some production rule. Ambiguity is resolved by looking ahead k input symbols. The matching
string is replaced by the nonterminal on the left of that rule. By repeating this process, the program
is eventually reduced, phrase by phrase, back to the starting symbol. Exhibit 4.5 illustrates the
steps in forming a parse tree for the body of the program named “little”.

All syntactically correct programs can be reduced in this manner. If a compiler cannot do the
reduction successfully, there is some error in the source code and the compiler produces an error

4.2. SYNTAX 87

comment containing some guess about what kind of syntactic error was made. These guesses are
usually close to being correct when the error is discovered near where it was made. Their usefulness
decreases rapidly as the compiler works on and on through the source code without discovering the
error, as often happens.

4.2.2 Syntax Diagrams

Syntax diagrams were developed by Niklaus Wirth to define the syntax of Pascal. They are also
called “railroad diagrams”, because of their curving, branching shapes. This is the form in which
Pascal syntax is usually presented in textbooks. Syntax diagrams and EBNF can express exactly
the same class of languages, but they are used for different purposes. Syntax diagrams provide a
graphic, two-dimensional way to communicate a grammar, so they are used to make grammatical
relationships easier for human beings to grasp.

EBNF is used to write a grammar that will be the input to a parser generator. Corresponding to
each production is code for the semantic action that the compiler should take when that production
is parsed. The rules of an EBNF syntax are often more broken up than seems necessary, in order to
provide “hooks” for all the semantic actions that a compiler must perform. When a grammar for
the same language is presented as syntax diagrams, several EBNF productions are often condensed
into one diagram, making the entire grammar shorter, less roundabout, and easier to comprehend.

A Wirth syntax diagram definition has the same elements as an EBNF grammar, as follows:

e A starting symbol.

e Terminal symbols, written in boldface but without quotes, sometimes also enclosed in round
or oval boxes.

e Nonterminal symbols, written in regular type.

e Production rules are written using arrows (as in a flow chart) to indicate alternatives, options,
and indefinite repetition. Each rule starts with a nonterminal symbol written at the left and
ends where the arrow ends on the right.

Nonterminal symbols are like subroutine calls. To expand one, you go to the correct diagram,
follow the arrows through the diagram until it ends, and return to the calling point to finish the
calling production. Branch points correspond to alternatives and indicate that any appropriate
choice can be made. Repetition is encoded by backward-pointing arrows which form explicit loops.
Direct and indirect recursion are both allowed.

Syntax diagrams are given in Exhibits 4.6 and 4.7, which correspond exactly to the EBNF
grammar fragments in Exhibit 4.4.

In spite of the simplicity and visual appeal of syntax diagrams, though, the official definition
of Pascal grammar is written in EBNF, not syntax diagrams. EBNF is a better input language
for a parser generator and provides a clearer basis for a formal definition of the semantics of the
language.

Revision 1.8 1992/06/09 17:15:02 fischer

88

CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

Exhibit 4.5. Parsing a simple Pascal program.

We perform a bottom-up parse of part of the program named “little”, using standard Pascal
syntax, part of which is shown in Exhibit 4.4. Starting with the expression at the top, we identify
a single token or a consecutive series of tokens that correspond to the right side of a syntactic rule.
This series is then “reduced”, or replaced by the left side of that rule. The final reduction is shown

at the bottom of the diagram.

begin X = 17 ; writeln (X) end
| |
; o unsigned- rocedure- i i
|de|nt|f|er integer |Fc)j entifier |dei1t|f|er
|
variable- unsigned- variable-
identifier number identifier
| | \
entire- unsigned- entire-
variable constant variable
I
variable- fac|tor var!able-
access | access
term !
| factor
; |
simple-
expression teqm
I :
expression simple-
| | expression
L |
gﬁgﬂgﬁm expression
|)
; write-
e et
writeln-
statement Darameter-
|st|
procedure-
statement
simple-
statement
|
statement
|
statement-
sequence
|
compound-

statement

4.2. SYNTAX 89

Exhibit 4.6. Syntax diagram for “program”.

This diagram corresponds to the EBNF productions for program, program-heading, program-
parameters, and identifier list. The starting symbol is “program” .

N
el
program - program}—s-identifier < identifier @ @—>)
<_> program-block—s("+)———»

Exhibit 4.7. Syntax diagrams for “statement”.

These diagrams correspond to the EBNF productions for statement, simple-statement, structured-
statement, compound-statement, and statement-sequence.

statementl label ()~

\

N assignment-statement———
- procedure-call-statement —
- goto-statement
-— compound-statement
- if-statement]
~—» case-statement

-—» with-statement—
.
statement

—» While-
\-—» repeat-statement—————
- for-statement J

\/

compound—statement»@g_stgn:@»—»

90 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

Exhibit 4.8. Translation: from source to machine code.
The object code was generated by OSS Pascal for the Atari ST.
Source code: P-code tree:
begin
x := 17;
y:= x+1
end

Object code:

moveq #17,d0
move dO,x
addq #1,d0
move dO,y

4.3 Semantics

4.3.1 The Meaning of a Program

A modern language translator converts a program from its source form into a tree representation.
This tree representation is sometimes called p-code, a shortening of portable code, because it is
completely independent of hardware. This tree represents the structure of the program. The formal
syntax of the language defines the kinds of nodes in the tree and how they may be combined. In
this tree, the nodes represent objects and computations, and the structure of the tree represents
the (partial) order in which the computations must be done. If any part of this tree is undefined
or missing, the tree may have no meaning.

The formal semantics defines the meaning of this tree and, therefore, the meaning of the pro-
gram. A language implementor must determine how to convert this tree to machine code for a
specific machine so that his or her translation will have the same meaning as that defined by the
formal semantics. This two-step approach is used because the conversion from source text to tree
form can be the same for all implementations of a language. Only the second step, code generation,
is hardware-dependent [Exhibit 4.8].

4.3.2 Definition of Language Semantics

The rules for interpreting the meaning of statements in a language are the semantics of the language.
In order for a language to be meaningful and useful, the language designers, compiler writers,
and programmers must share a common understanding of those semantics. If no single semantic
standard exists, or no common understanding of the standard exists, various compiler writers will
implement the language differently, and a programmer’s knowledge of the language will not be
transferable from one implementation to another. This is indeed the situation with both BASIC

4.3. SEMANTICS 91

and LISP; many incompatible versions exist.

Knowing the full syntax of a programming language is enough to permit an experienced person
to make a guess about the semantics, but such a guess is at best rough, and it is likely to be wrong
in many details and in some major ways. This is because highly similar syntactic forms in similar
languages often have different semantics.

The syntax of a programming language needs only to describe all strings of symbols that com-
prise legal programs. To define the semantics, one must either define the results of some real or
abstract computer executing the program, or write a complete set of mathematical formulas that
axiomatize the operation of the program and the expected results. Either way, the definition must
be complete, precise, correct, and nonambiguous. Neither kind of definition is easy to make.

The semantics of a language must thus define a highly varied set of things, including but not
limited to:

e What is the “correct” interpretation of every statement type?

e What do you mean when you write a name?

What happens during a function call?

In what order are computations done?

Are there syntactically legal expressions that are not meaningful?
e In what ways does a compiler writer have freedom?

e To what extent must all compilers produce code that computes the same answers?

In general, answering such questions takes many more pages than defining the syntax of a
language. For example, syntax diagrams for Pascal can be printed in eight pages, three of which
also contain extensive semantic information.® In contrast, a complete semantic description of Pascal,
at a level that can be understood by a well-educated person, takes 142 pages.” Part of the reason
for this difference is the dissimilarity between the meta-languages in which syntax and semantics
are defined.

The semantics of natural languages are communicated to learners by a combination of examples
and attempts to describe the meaning. The examples are required because an English description
of semantics will lack precision and be as ambiguous as English. Similarly, English alone is not
adequate to define the semantics of a programming language because it is too vague and too
ambiguous to define highly complex things in such a way that no doubt remains about their
meaning.

Just as it is possible to create a formal system such as EBNF to define language syntax, it is
possible to create a formal system to define programming language semantics.® There is a major

®Dale and Lilly [1985], pages A1-AS.

"Cooper [1983].

S$Historical note: The “Vienna Definition of PL/1” defined a new language for expressing semantics and defined
the semantics of PL/1 in it. ALGOL-68 also had its own, impenetrable, formal language that tried to eliminate most
of the need for a semantic definition by including semantics in the syntax. The result was a book-length syntax.

92 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

difference, though. The languages used to express syntax are relatively easy to learn and can be
mastered by any student with a little effort. The languages used to express semantics are very
difficult to read and extremely difficult to write.

The primary use for a formal semantic definition is to establish a single, unambiguous standard
for the semantics of the language, to which all other semantic descriptions must conform. It defines
all details of the meaning of the language being described and provides a precise answer to any
question about details of the language, even details that were never considered by the language
designer or semantics writer. Precision and completeness are more important for this purpose than
readability, and formal semantic definitions are not easy to read.

A definition which only experts can read can serve as a standard to determine whether a compiler
implements the standard language, but it is not really adequate for general use. Someone must
study the definition and provide additional explanatory material so that educated nonexperts can
understand it. Following is a quote from Cooper’s Preface? which colorfully expresses the role of
his book in providing a usable definition of Pascal semantics:

The purpose of this manual is to provide a correct, comprehensive, and comprehensible
reference for Pascal. Although the official Standard promulgated by the International
Standards Organization (ISO) is ‘correct’ by definition, the precision and terseness
required by a formal standard makes it quite difficult to understand. This book is
aimed at students and implementors with merely human powers of understanding, and
only a modest capacity for fasting and prayer in the search for the syntax or semantics
of a domain-type or variant selector.

Cooper’s book includes the definitions from the ISO standard and provides added explanatory
material and examples. Compiler writers and textbook authors, in turn, can (but too many do not)
use books such as Standard Pascal to ensure that their translations, explanations, and examples
are correct.

4.3.3 The Abstract Machine

In order to make language definitions portable and not dependent on the properties of any particular
hardware, the semantics of a computation tree must be defined in terms of an abstract model of
a computer, rather than some specific hardware. Such a model has elements that represent the
computer hardware, plus a facility for defining and using symbols. It forms a bridge between the
needs of the human and computer. On one hand, it can represent symbolic computation, and on
the other hand, the elements of the model are chosen so that they can be easily implemented on
real hardware.

We describe an abstract machine here which we will use to discuss the semantics of many lan-
guages. It has five elements: the program environment, the stack, streams, the shared environment,
and the control.

9Cooper [1983], p. ix.

4.3. SEMANTICS 93

This abstract machine resembles both the abstract machine underlying FORTH!? and the SECD
machine that Landin used to formalize the semantics of LISP.!! Landin’s SECD machine also has
a stack and a control. Its environment component is our program environment, and our streams
replace Landin’s dump.

The FORTH model contains a dictionary which implements our program environment. FORTH
has two stacks (for parameters and return addresses) which together implement our stack, except
that no facility is provided for parameter names or local names.'?> The FORTH system defines input
and output from files (our streams) and how a stream may be attached to a program. Finally,
FORTH has an interpreter and a compiler which together define our control element.

Our abstract machine has one element, the shared environment, not present in either the FORTH
model or the SECD machine, as those models did not directly support multitasking.

Program Environment. This environment is the context internal to the program. It includes
global definitions and dynamically allocated storage that can be reached through global objects.
It is the part of the abstract machine that supports communication between any nonhierarchically
nested modules in a single program. Each function, F, exists in some symbolic context. Names are
defined outside of F for objects and other functions. If these names are in F’s program environment,
they are known to F' and permit F to refer to those objects and call those functions.

The program environment is implemented by a symbol table (“oblist” in LISP, “dictionary” in
FORTH). When a symbol is defined, its name is placed in the symbol table, which connects each
name to its meaning. Predefined symbols are also part of the environment. The meaning of a name
is stored in some memory location, either when the name is defined or later. Either this space itself
(as in FORTH) or a pointer to it (as in LISP) is kept adjacent to the name in the symbol table.
Depending on the language, the meaning may be stored into the space by binding and initialization
and/or it may be changed by assignment.

Shared Environment. This is the context provided by the operating system or program de-
velopment “shell”. It is the part of the abstract machine that supports communication between a
program and the outside world. A model for a language that supports multitasking must include
this element to enable communication between tasks. Shared objects are in the environment of two
or more tasks but do not “belong” to any of them.

Objects that can be directly accessed by the separate, asynchronous tasks that form a job are
part of the shared environment. Intertask messages are examples.

The Stack. The stack is the part of the computation model that supports communication between
the enclosing and enclosed function calls that form an expression. It is a segmented structure of

0Brodie [1987], Chapter 9.

"Landin [1964].

2The dictionary in FORTH 83 is structured as a list of independent vocabularies, giving some support for local
names.

94 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

theoretically unlimited size. The top stack segment, or frame, provides a local environment and
temporary objects for the currently active function. This local environment consists of local names
for objects outside the function (parameters) and for objects inside the function (local variables).
Local environments for several functions can exist simultaneously and will not interfere with each
other. Suspension of one function in order to execute another is possible, with later reactivation of
the first in the same state as when it was suspended.

The stack is implemented by a stack. A stack pointer is used to point at the stack frame (local
environment) for the current function, which points back to a prior frame. A frame for a function
F is created above the prior frame upon entry to F, and is destroyed when F exits. Storage for
function parameters and a function return address are allocated in this frame and initialized (and
possibly later removed) by the calling program.

Upon entry to F, the names of its parameters are added to the local environment by binding
them to the stack locations that were set up by the calling program. The local symbols defined
in F are also added to the environment and bound to additional locations allocated in F’s stack
frame. The symbol table is managed in such a way as to permit these names to be removed from
the environment upon function exit.

Streams. Streams are one medium of communication between different tasks that are parts of
a job. A program exists in the larger context of a computer system and its files. The abstract
machine, therefore, must reflect mass storage and ways of achieving data input and output. A
stream is a model of a sequential file, as seen by a program. It is a sequence, in time, of data
objects, which can be either read or written. Symbolic names for streams and for the files to which
they are bound must be part of the program environment.

The concept of a stream is actually more general than the concept of a sequential file. Suppose
two tasks are running concurrently on a computer system, and the output stream of one becomes
the input stream of the other. A small buffer to hold the output until it is reprocessed can be
enough to implement both streams.

Control. The control section of the abstract model implements the semantic rules of the language
that define the order in which the pieces of the abstract computation tree will be evaluated. It
defines how execution of statements and functions is to begin, proceed, and end, including the
details of sequencing, conditional execution, repetition, and function evaluation. (Chapter 8 deals
with expressions and function evaluation, and Chapter 10 deals with control statements.)

Three kinds of control patterns exist: functional, sequential, and asynchronous.'® These pat-
terns are supported in various combinations in different languages. Each kind of control pattern is
associated with its own form of communication, as diagrammed in Exhibit 4.9.

Functional control elements communicate with each other by putting parameters on the stack
and leaving results in a return register. In the diagram, functions F1, F2, and F3 are all part of
Process_1 and have associated stack frames on the stack for Process_1. When F3 is entered, its

BDeveloped fully in Chapter 8.

4.3. SEMANTICS 95

Exhibit 4.9. Communication between modules.

Program Program Shared
Stack Environment Environment Streams
=) .9) Global variables O.S. storage: Out | In
g Dynamic storage messages, efc.
. f? .
Pt 10 f: P2: ON Pipe|
s: 30 T
F return: 6 <
A
Hierarchical Sequential Concurrent Sequential
Execution Execution Execution Execution
Y
Y Y
F . Wait_for (P2). Pipe input from
Parameter s; y ait_for (P2) p
retun(s/5); Local g; Pipe output to Process 2
Igrocess 3.
Call Fg(10);
& Parametert; 8| 9=, Process 2 Process 3
F=F1(r3); Signal(P2);
Process 1

stack frame is created. Then when F3 calls F2 and F2 calls F1, frames for F2 and F1 are created on
the stack. The frame for F1, indicated by a “<”, is the “current” frame. Parameters are initialized
during the function-calling process. When F1 returns it will return a 6 to F2.

Functions within the same process share access to global variables in the program environment
for that process. Sequential constructs in these functions communicate by assigning values to these
variables. Function F2 communicates with F3, and sequential statements in F3 communicate with
each other through the global variable named “f” in the program environment. F1 will return the
value 6 to F2, which will assign it to a global variable, f. This variable is accessible to F3, which
will use its value to compute g.

Concurrent tasks communicate through the shared environment. Process_1 and Process_2
share asynchronous, concurrent execution and synchronize their operations through signals left in
the shared environment.

Sequential tasks communicate through streams. The output from Process_2 becomes the input
for Process_3. To implement this, the operating system has connected their output and input

96 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

streams through an operating system “pipe”. This pipe could be implemented either by conveying
the data values to Process_3 as soon as they are produced by Process_2 or by storing the output
in a buffer or a file, then reading it back when the stream is closed.

A Semantic Basis. The formal semantic definition of a language must include specific definitions
of the details of the abstract machine that implements its semantics. Different language models
include and exclude different elements of our abstract machine. Many languages do not support a
shared environment. The new functional languages do not support a program environment, except
for predefined symbols. The control elements, in particular, differ greatly from one language to the
next.

We define the term semantic basis of a language to mean the specific version of the abstract
machine that defines the language, together with the internal data structures and interpretation
procedures that implement the abstract semantics. Layered on top of the semantic basis is the
syntax of the language, which specifies the particular keywords, symbols, and order of elements to
be used to denote each semantic unit it supports.

The semantic basis of a language must define the kinds of objects that are supported, the
primitive actions, and the control structures by which the objects and actions are linked together,
and the ways that the language may be extended by new definitions. The features included in a
semantic basis completely determine the power of a language; items left out cannot be defined by
the programmer or added by using macros. Where two different semantic units provide roughly
the same power, the choice of which to include determines the character of the language and the
style of programs that will be written in it. Thus a wise language designer gives careful thought to
the semantic basis before beginning to define syntax.

4.3.4 Lambda Calculus: A Minimal Semantic Basis

It is perhaps surprising that a very small set of semantic primitives, excluding goto and assignment,
can form an adequate semantic basis for a language. This was proven theoretically by Church’s
work on lambda calculus.'

Lambda calculus is not a programming language and is not directly concerned with computers.
It has no programs or objects or execution as we understand them. It is a symbolic, logical system
in which formulas are written as strings of symbols and manipulated according to logical rules.

We need to be knowledgeable about lambda calculus for three reasons. First, it is a complete
system: Church has shown that it is capable of representing any computable function. Thus any
language that can implement or emulate lambda calculus is also complete.

Second, lambda calculus gives us a starting point by defining a minimal semantic basis for
computation that is mathematically clean. As we examine real computer languages we want to
distinguish between necessary features, nice features (extras), nonfeatures (things that the language

4 Church [1941].

4.3. SEMANTICS 97

Exhibit 4.10. Lambda calculus formulas.

Formulas ‘ Comments

T Any variable is a formula.
Az.((yy)x)) | Lambda expressions are formulas.

2.(y(Az.z))) | The body of this lambda expression is an application.
(Az.(zy))x) Why is this formula an application?

would be better off without), and missing features which limit the power of the language. The
lambda calculus gives us a starting point for deciding which features are necessary or missing.

Finally, an extended version of lambda calculus forms the semantic basis for the modern func-
tional languages. The Miranda compiler translates Miranda code into tree structures which can
then be interpreted by an augmented lambda calculus interpreter. Lambda calculus has taken on
new importance because of the recent research on functional languages. These languages come
exceedingly close to capturing the essence of lambda calculus in a real, translatable, executable
computer language. Understanding the original formal system gives us some grasp of how these
languages differ from C, Pascal, and LISP, and supplies some reason for the aspects of functional
languages that seem strange at first.

Symbols, Functions, and Formulas
There are two kinds of symbols in lambda calculus:

e A single-character symbol, such as y, used to name a parameter and called a variable.

’)Y ¢

e Punctuation symbols ‘(’, ¢)’, ., and ‘).
These symbols can be combined into strings to form formulas according to three simple rules:

1. A variable is a formula.

2. If y is a variable and F' is a formula, then (Ay.F) is a formula, which is called a lambda
expression; y is said to be the parameter of the lambda expression, and F' is its body.

3. If F and G are formulas, then (FG) is a formula, which is called an application.

Thus every lambda calculus formula is of one of three types: a variable, a lambda expression,
or an application. Examples of formulas are given in Exhibit 4.10.

Lambda calculus differs from programming languages in that its programs and its semantic
domain are the same. Formulas can be thought of as programs or as the data upon which programs
operate. A lambda expression is like a function: it specifies a parameter name and has a body that
usually refers to that parameter.!> An application whose first formula is a lambda expression is like

15The syntax defined here supports only one-argument functions. There is a common variant which permits
multiargument functions. This form can be mechanically converted to the single-argument syntax.

98 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

Exhibit 4.11. Lambda calculus names and symbols.

Formulas ‘ Comments
x,y, z, etc. Single lowercase letters are variables.
G = (Az.(y(yz))) | A symbolic name may be defined to stand for a formula.
= (GG) Previously defined names may be used in describing formulas.

a function call—the function represented by the lambda expression is called with the second formula
as an argument. Thus ((Az.F)G) intuitively means to call the function (Az.F') with argument G.
However, not all formulas can be interpreted as programs. Formulas such as (zz) or (y(Az.z)) do
not specify a computation; they can be thought of as data.

In order to talk about lambda formulas, we will often give them symbolic names. To avoid
confusing our names, which we use to talk about formulas, with variables, which are formulas,
we use uppercase letters when naming formulas. As a shorthand for the statement, “let F' be the
formula (Az.(yx))”, we will write simply F' = (Az.(yx)). If we then write a phrase like, “the formula
(Fz) is an application”, the formula we are talking about is ((Az.(yx))z). In general, wherever F'
appears, it should be replaced by its definition. Since names are just a shorthand for formulas, a
circular “definition” such as F' = (Az.(yF')) is meaningless. Examples of symbols and definitions
are shown in Exhibit 4.11.

As another shorthand, when talking about formulas, we may omit unnecessary parentheses.
Thus we may write A\z.y instead of (Az.y). In general, there may be more than one way to insert
parentheses to make a meaningful formula. For example, Az.yz might mean either (Az.(yz)) or
((Ax.y)z). We use the rules that the body of a lambda expression extends as far to the right as
possible, and sequences associate to the left. Thus, in the above example, the body of the lambda
expression is yx, so the fully parenthesized form is (Az.(yx)). Examples of these rules are given in
Exhibit 4.12.

Free and Bound Variables. A parameter name is a purely local name. It binds all occurrences
of that name on the right side of the lambda expression. A symbol on the right side of a lambda

Exhibit 4.12. Omitting parentheses when writing lambda calculus formulas.

Shorthand Meaning

fxy ((fz)y)

Az \Y.x (Az.(A\y.x))

Az.xAY.y E ((Ay.y)))
(

Az

Az.
(A (z2)) (2w | (. (w2)) ()
AT AY.yzw Az.(Ay.((yz)w)))

4.3. SEMANTICS 99

Exhibit 4.13. Lambda expressions for TRUE and FALSE.

Expressions ‘ Comments

T = Xx.\y.x | The symbol “I™” represents the logical value TRUE. You should read the defi-
nition of T as follows: T is a function of parameters x and y. Its body ignores
y and returns z. (We say the argument y is “dropped”.)

F =Xz y.y | “F” names the lambda expression which represents FALSE.

expression is bound if it occurs as a parameter, immediately following the symbol A, on the left side
of the same expression or of an enclosing expression. The scope of a binding is the entire right side
of the expression. In Exhibit 4.14, the Ax defines a local name and binds all occurrences of x in
the expression. We say that each bound occurrence of = refers to the particular Az that binds it.

An occurrence of a variable z in F' is free if z is not bound. Thus the occurrence of p in
(Ay.py) is free, but the occurrence of y in that same formula is bound (to Ay). In the formula
(z(Ax.((Az.z)x))), the variable x occurs five times. The second and third occurrences are bindings;
the other three occurrences are uses. The first occurrence is free, since it does not lie within the
scope of any Az-expression. The fourth occurrence is bound to the third occurrence, and the fifth
occurrence is bound to the second occurrence.

These binding rules are the familiar scoping rules of block-structured programming languages
such as Pascal. The operator Az declares a new instance of x. All occurrences of x within its scope
refer to that instance, unless x is redeclared by a nested Ax. In other words, an occurrence of a
variable is always bound to the innermost enclosing block in which z is declared.

Representing Computation

Church invented a way to use lambda formulas to represent computation. He assigned interpreta-
tions to certain formulas, making them represent the basic elements of computation. (Some, but
not all, lambda expressions have useful interpretations.) The formulas shown in this chapter are
some of the most basic in Church’s system, including formulas that represent truth values [Exhibit
4.13], the integers [Exhibit 4.15], and simple computations on them [Exhibit 4.16]. More advanced
formulas are able to represent recursion. As you work through these examples the purpose and
mechanics of these basic definitions should become clearer.

Now that we know what lambda calculus formulas are, we need to talk about what they do.
Evaluation rules allow one formula to be transformed to another. A formula which cannot be
transformed further is said to be in normal form. The meaning of a formula is its normal form, if it
has one; otherwise, the formula is undefined. An undefined formula corresponds to a nonterminating
computation. Exhibit 4.14 dissects an expression and looks at its parts.

100 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

Exhibit 4.14. Dissection of a lambda expression.

A lambda expression, with name: 2= \z.\y.z(zy)
Useful interpretation: the number two

Breakdown of elements
2= Declares the symbol “2” to be a name for the following expression.
Az. The function header names the parameter, “z”. Everything that follows this “.” is
the expression body.
Ay.z(xy) The body of the original expression is another expression with a parameter named
“y”. Parameter names are purely arbitrary; this expression would still have the
same meaning if it were rewritten with a different parameter name, as in: A\g.z(zq)
x(zy) This is the body of the inner expression. It contains a reference to the parameter

(49921

y” and also references to the parameter “z” from the enclosing expression.

Reduction. Consider a lambda expression which represents a function. At the abstract level,
the meaning, or semantics, of the expression is the mathematical function that it computes when
applied to an argument. Intuitively, we want to be able to freely replace an expression by a simpler
expression that has the same meaning. The rules for beta and eta reduction permit us to do so.

The main evaluation rule for lambda calculus is called beta reduction and it corresponds to the
action of calling a function on its argument. A beta reducible expression is an application whose left
part is a lambda expression. We also use the term beta redex as a shortening of “reducible expres-
sion”. When a lambda expression is applied to an argument, the argument formula is substituted
for the bound variable in the body of the expression. The result is a new formula.

A second reduction rule is called eta reduction. Eta reduction lets us eliminate one level of
binding in an expression of the form Axz.f(z). In words, this is a special case in which the lambda
argument is used only once, at the end of the body of the expression, and the rest of the body is
a lambda expression applied to this parameter. If we apply such an expression to an argument,
one beta reduction step will result in the simpler form f(z). Eta reduction lets us make this
transformation without supplying an argument. Specifically, eta reduction permits us to replace
any expression of the form Az.f(x), where f represents a function, by the single symbol f.

After a reduction step, the new formula may still contain a redex. In that case, a second
reduction step may be done. When the result does not contain a beta-redex or eta-redex, the
reduction process is complete. We say such a formula is in normal form.

Many lambda expressions contain nested expressions. When such an expression is fully paren-
thesized it is clear which arguments belong to which function. When parentheses are omitted,
remember that function application associates to the left; that is, the leftmost argument is substi-
tuted first for the parameter in the outermost expression.

We now describe in more detail how reduction works. When we reduce a formula (or subformula)
of the form H = ((Az.F)G), we replace H by the formula F’, where F’ is obtained from F by

4.3. SEMANTICS 101

Exhibit 4.15. Lambda calculus formulas that represent numbers.

0= Az.\y.y
1= Az Ay.xy
2= Az \y.x(zy)

The formula for zero has no occurrences of its first parameter in its body. Note that it is the
same as the formula for F'. Zero and False are also represented identically in many programming
languages.

The formula for the integer one has a single x in its body, followed by a y. The formula for two
has two x’s. The number n will be represented by a formula in which the first parameter occurs n
times in succession.

substituting G for each reference to x in F. Note that if F' contains another binding Az, the
references to that binding are not replaced. For example, ((Az.zy)(zw)) reduces to ((zw)y) and
((Az.z(Ax.(zy)))(22)) reduces to (zz)(Az.(zy)).

When an expression containing an unbound symbol is used as an argument to another lambda
expression, special care must be taken. Any occurrence of a variable in the argument that was
free before the substitution must remain free after the substitution. It is not permitted for a
variable to be “captured” by an unrelated A during substitution. For example, it is not permitted
to apply the reduction rule to the formula ((Az.(Ay.x))(zy)), since y is free in (zy), but after
substitution, that occurrence of y would not be free in (Ay.(zy)). To avoid this problem, the
parameter must be renamed, and all of its bound occurrences must be changed to the new name.
Thus ((Az.(Ay.x))(zy)) could be rewritten as ((Az.(Aw.z))(zy)), after which the reduction step
would be legal.

Examples of Formulas and Their Reductions

The formulas T and F in Exhibit 4.13 accomplish the equivalent of branching by manipulating
their parameters. They take the place of the conditional statement in a programming language.
T (true) returns its first argument and discards the second. Thus it corresponds to the IF..THEN
statement which evaluates the THEN clause when the condition is true. Similarly, the formula F
(false) corresponds to the IF..ELSE clause. It returns its second parameter just as an IF statement
evaluates the second, or ELSE clause, when the condition is false.

The successor function, S, applied to any integer, gives us the next integer. Exhibit 4.16 shows
the lambda formula that computes this function. Given any formula for a number n, it returns
the formula for n + 1. The function ZeroP (zero predicate) tests whether its argument is equal to
the formula for zero. If so, the result is T, if not, £'. Exhibit 4.17 shows how we would call S and
ZeroP. The process of carrying out these computations will be explained later.

Church was able to show that lambda calculus can represent all computation, by representing

102 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

Exhibit 4.16. Basic arithmetic functions.

The successor function for integers. Given the formula for any integer, n, this formula adds
one x and returns the formula for the next larger integer.

S = An.(Az. \y.nz(zy))
Zero predicate. This function returns T if the argument = 0 and F' otherwise.

ZeroP = An.n(Ax.F)T

numbers, conditional evaluation, and recursion. Crucial to the power of his system is that there is
no distinction between objects and functions. In fact, “objects”, in the sense of data objects, were
not defined at all. Expressions called “normal forms” take their place as concrete things that exist
and can be tested for identity. A formula is in normal form if it contains no redexes. Not all formulas
have a normal form; some may be reduced infinitely many times. These formulas, therefore, do not
represent objects. They are the analog of infinite recursions in computer languages.

For example, let us define the symbol “twin” to be a lambda expression that duplicates its
parameter:

twin = \r.xx

The function “twin” can be applied to itself as an argument. The application looks like this:
(twin twin)

The preceding line shows this application symbolically. Now we rewrite this formula with the

Exhibit 4.17. Some lambda applications.

An application consists of a function followed by an argument. The first three applications
listed here use the number symbols defined in Exhibit 4.15 and the function symbols defined in
Exhibit 4.16. These three applications are evaluated step-by-step in Exhibits 4.18, 4.19, and 4.20.

(S 1) Apply the successor function to the function 1.
(ZeroP 0) Apply ZeroP to 0 (Does 0 = zero?)
(ZeroP 1) Does 1 = zero?
((GH) z) Apply formula G to formula H, and apply the result to x.
The last application has the same meaning when written without the parentheses: “GHzx”.

4.3. SEMANTICS 103

name of the function replaced by its definition. Parentheses are used, for clarity, to separate
expressions:

((Az.zx)(twin))

This formula contains a redex and so it is not in normal form. When we apply the reduction
rule, the function, Az.xx, makes two copies of its parameter, giving:

(twin twin)

Thus the result of reduction is the same as the formula we started with! Clearly, a normal form
can never be reached.

Higher-Order Functions

If lambda calculus were a programming language, we would say that it treats functions as first-
class objects and supports higher-order functions. This means that functions may take functions
as parameters and return functions as results. With this potential we can do some highly powerful
things.

We can define a lambda expression, F, to be the composition of two other expressions, say G
and H. (This means that F' is the expression produced by applying G to the result of H.) This
cannot be done in most programming languages. C, for example, permits you to execute a function
G on the result of executing H. But C does not let you write a function that takes two functional
parameters, G and H, and returns a function, F', that will later accept some argument and apply
first H to it and then apply G to the result.

A formula that implements recursion can be defined as the composition of two higher-order
functions. Thus lambda calculus does not need to have recursion “built in”; it can be defined
within the system. In contrast, recursion is, and must be, “built into” C and Pascal.

A language with higher-order functions also permits one to curry a function. G is a currying
of F'if G has one fewer parameter than F' and computes its result by calling F' with a constant
in place of the omitted parameter. Currying, combined with generic dispatching,'® is one way to
implement functions with optional arguments.

Evaluation / Reduction

Any model of computation must represent action as well as objects. Actions are represented in
the lambda calculus by applying the reduction rule, which requires applying the renaming and
substitution rules.

To reduce a formula, F', one finds a subformula, S, anywhere within F', that is reducible. To be
reducible, S must consist of a lambda expression, L, followed by an argument, A. The reduction
process then consists of two steps: renaming and substitution.

16See Chapter 18.

104 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

Exhibit 4.18. Reducing (S 1).

Compute the Successor of 1. The answer should be 2. For clarity, the formula for one has been
written using p and ¢ instead of = and y. (This is, of course, permitted. The symbols that are used
for bound variables may be renamed any time.)

Write out S. (An.(AzAy.nz(zy))l)

Substitute 1 for n, reduce. Az Ay 1z(zy))

Write out the definition of 1. Az Ay.(Ap.Ag.pq)x(xy))

Substitute x for p, and reduce. Az \y.(Ag.xzq)(zy))

Substitute (xy) for ¢, reduce. (A\xAy.xz(xy))
The answer is the formula for 2, which is, indeed, the successor of 1.

Renaming. Renaming is required only if unbound symbols occur in A. They must not have the
same name as L’s parameter. If such a name conflict occurs, the parameter in L must be renamed
so that the unbound symbol will not be “captured” by L’s parameter. The new name may be any
symbol whatsoever. The formula for L is simply rewritten with the new symbol in place of the old
one.

Substitution. After renaming, each parameter reference on the right side of L is replaced by a
copy of the entire argument-expression, and the resulting string replaces the subexpression S. The
A, the dummy parameter, and the “.” are dropped.

Exhibits 4.18, 4.19, and 4.20 illustrate the reduction process. Three simple formulas are given
and reduced until they are in normal form. The comments on the left in these exhibits document
each choice of redex and the corresponding substitution process. The following explanations are
given so that you may develop some intuition about how these functions work.

Successor. Intuitively, the successor function must take a numeric argument (a nest of two
lambda expressions) and insert an additional copy of the outermost parameter into the middle of
the formula. This is accomplished as follows:

e On the first reduction step, the formula for S embeds its argument, n, in the middle of a
nested lambda expression. The symbols z and y in the formula for S are bound by the
lambdas at the left. We rename the bound variables in the formula for n to avoid confusion;
during the reduction process, this p and ¢ will be eliminated.

e The formula for n now forms a redex with the x in the tail end of the formula for S. Reducing
this puts as many copies of x into the result as there were copies of p in n. Remember, we
want to end up with exactly one additional copy of x.

e This added = comes from the (zy) at the right of the formula for S. The result of the preceding

4.3. SEMANTICS 105

Exhibit 4.19. Reducing (ZeroP 0).
Apply ZeroP to 0, that is, determine whether 0 equals zero. The answer should be T

Write out ZeroP followed by 0. ((An.n(Az.F)T)0)
Substitute 0 for n in the body of ZeroP and reduce. (0(Az.F)T)
Write out the formula for zero. (AxAy.y)(Ae.F)T)
Substitute (Az.F') for z, and reduce. ((Ayy)T)
Substitute T for y, reduce. T

So 0 does equal 0. Note that the argument, (Az.F'), was dropped in the fourth step because the
parameter, x, was not referenced in the body of the function.

reduction forms a redex with this (zy). When we reduce, this final = is sandwiched between
the other z’s and the y, as desired.

Essentially, the y in a number is a “growth bud” that permits any number of x’s to be appended
to the string. It would be easy, now, to write a definition for the function “plus2”.

Zero predicate. Remember, 0 and F' are represented by the same formula. Thus the zero
predicate must turn F into 7" and any other numeric formula into F. (The behavior of ZeroP on
nonnumeric arguments is undefined. Applying ZeroP to a nonnumber is like a type error.) Briefly,
the mechanics of this computation work as follows:

e An integer is represented by a formula that is a nest of two lambda expressions.

e ZeroP takes its argument, n, and appends two expressions, Ax.F and T, to n. These two

Exhibit 4.20. Reducing (ZeroP 1).

Write out ZeroP followed by 1. (Ann(Az.F)T)1)
Substitute 1 for n, reduce. (I1(A\x.F)T)
Write out the formula for 1. (AxAy.zy)(A\e. F)T)
Substitute (A\x.F') for z, reduce. (Ay.(Az.F)y)T)
Substitute 1" for y, reduce. (A\z.F)T)
Substitute 7" for z and reduce. F

On the last line, the parameter x does not appear in the body of the function, so the argument, 7,
is simply dropped. So 1 does not equal 0.

Applying ZeroP to any nonzero number would give the same result, but involve one more
reduction step for each x in the formula.

106 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

Exhibit 4.21. A formula with three redexes.

Assume that P3 (which adds 3 to its argument) and * (which computes the product of two
arguments) have already been defined. (They can be built up out of the successor function.) Then
the formula

(x (P34) (P39))

has three reducible expressions: (P34), (P39), and (x (P34) (P39)).

expressions form arguments for the two lambda expressions in n. The entire unit forms two
nested applications.

e We reduce the outermost lambda expression first, using the argument Ax.F. If n is 0, this
argument is “discarded” because the formula for zero does not contain a reference to its
parameter. For nonzero arguments, this expression is kept.

e The inner expression (from the original argument, n) forms an application with the argument
T. If n was zero, this reduces immediately to T'. If n was nonzero, there is one more reduction
step and the result is F.

The Order of Reductions

Not every expression has a normal form; some can be reduced forever. But if a normal form exists
it can always be reached by some chain of reductions. When each lambda expression in a formula
is nested fully within another, only one order of reduction is possible—from the outside in. But it
is possible to have a formula with two reducible lambda expressions at the same level, side by side
[Exhibit 4.21]. Further, whatever redex you select next, the normal form can still be reached. Put
informally, you cannot back yourself into a corner from which you cannot escape. This important
result is named the “Church-Rosser Theorem” after the logicians who formally proved it.

Some expressions that do have normal forms contain subexpressions that cannot be reduced to
normal form. This seems like a contradiction until you realize that, in the process of evaluation,
whole sections of a formula may be “discarded”. For example, in a conditional structure, either
the “then part” or the “else part” will be skipped. The computation enclosing the conditional can
still terminate successfully, even if the part that is skipped contains an infinite computation.

By the Church-Rosser theorem, a normal form, if it exists, can be reached by reducing subfor-
mulas in any order until there are no reducible subformulas left. However, although you cannot get
“blocked” in reducing such an expression, you can waste an infinite amount of effort if you persist
in reducing a nonterminating part of the formula. Since any subformula may be discarded by a
conditional, and never need to be evaluated, it is wiser to postpone evaluating a sub-expression un-
til it is needed. If, eventually, a non-terminating sub-formula must be evaluated, then the formula
has no normal form. If, on the other hand, it is “discarded”, the formula in which this infinite

4.4. EXTENDING THE SEMANTICS OF A LANGUAGE 107

computation was embedded can still be computed (reduced to normal form).

A further theorem proves that if a normal form can be reached, then it can be reached using
the outside-in order of evaluation. That is, at each step the outermost possible redex is chosen.
(The formulas in Exhibits 4.20, 4.19, and 4.18 were all reduced in outside-in order.) This order is
called the normal order of evaluation in lambda calculus and corresponds to call-by-name reduction
order in a programming language.'” It may not be a unique order, since sometimes the outermost
formula is not reducible, but may contain more than one redex side-by-side. In that case, either
may be reduced first.

The Relevancy of Lambda Calculus

Lambda calculus has been proven to be a fully general way to symbolize any computable formula.
Its semantic basis contains representations of objects (normal forms) and functions (A expressions).
Because functions are objects, and higher-order functions can be constructed, the system is able to
represent conditional branching, function composition, and recursion. Computation is represented
by the process of reduction, which is defined by the rules for renaming, parameter substitution,
and formula rewriting.

Although lambda calculus is a formal logical system for manipulating formulas and symbols, it
provides a model of computation that can be and has been used as a starting point for defining
programming languages. LISP was originally designed to be an implementation of lambda calculus,
but it did not capture the outside-in evaluation semantics.

4.4 Extending the Semantics of a Language

Let us define an extension to be a set of definitions which augment a language with an entirely new
facility that can be used in the same way that preexisting facilities are used. Some of the earliest
languages were not very extensible at all. The original FORTRAN allowed variables to be defined
but not types or functions (in a general sense). Function definitions were limited to one line. All
modern languages are extensible in many ways. Any time we define a new object, a new function,
or a new data type, we are extending the language. Each such definition extends the list of words
that are meaningful and adds new expressive power. Pascal, LISP, and the like. are extensible in
this sense: by building up a vocabulary of defined functions and /or procedures, we ultimately write
programs in a language that is much more extensive and powerful than the bare language provided
by the compiler.

Historically, we have seen that extensibility depends on uniform, general treatment of a language
feature. Any time a translator is designed to recognize a specific, fixed set of keywords or defined
symbols, that portion of the language is not extensible. The earliest BASIC was not extensible at all;
even variable names were all predefined (only two-letter names were permitted). FORTRAN, one
of the earliest computer languages, can help us see how the design of a language and a translator

17See chapter 9, Section 9.2.

108 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

can create barriers to extensibility. We will look at types and functions in early FORTRAN and
contrast them to the extension facilities in more modern languages.

Early FORTRAN supported a list of predefined mathematical functions. The translator rec-
ognized calls on those predefined functions, but users could not define their own. This probably
happened because the designers/implementors of FORTRAN provided a static, closed list of func-
tion names instead of simply permitting a list that could grow. The mechanics of translating a
function call are also simpler if only one- and two-argument functions have to be supported, rather
than argument lists of unlimited size.

In contrast, consider early LISP. Functions were considered basic (as lambda expressions are
basic in lambda calculus), and the user was expected to define many of them. The language as a
whole was designed to accept and translate a series of definitions and enter each into an extensible
table of defined functions. The syntax for function calls was completely simple and modeled after
lambda calculus, which was known to be completely general. LISP was actually easier to translate
than FORTRAN.

Consider type extensions. In FORTRAN, there were two recognized data types, real and integer.
These were “hard wired” into the language: variables whose names started with letters “I” through
“N” were integers, all other variables were real. On the implementation level, FORTRAN parsers
were written to look at each variable name and deduce the type from it. This was certainly a
convenient system, since it made declarations unnecessary, but it was not extensible. The system fell
apart when FORTRAN was extended to support alphabetic data and double-precision arithmetic.

In contrast, look at Pascal. Pascal has four primitive data types and several ways to build new
simple and aggregate types out of the primitive types. The language has a clear notion of what
a type is, and when a new type is or is not constructed. Each time the programmer uses a type
constructor, a new type is added to the list of defined types. Thereafter, the programmer may use
the new type name in exactly the same ways that primitive type names may be used.

Although Pascal types are extensible, there are predefined, nonextensible relationships among
the predefined types, just as there are in FORTRAN. Integers may be converted to reals, and vice
versa, under specific, predefined circumstances. These conversion relationships are nonextensible;
the triggering circumstances cannot be modified, and similar conversion relationships for other types
cannot be defined. Object-oriented languages carry type-extensibility one step farther, permitting
the programmer to define relationships between types and extend the set of situations in which a
conversion will take place. This is accomplished, in C++ for example, by introducing the notion of
a “constructor function”, which builds a value of the target type out of components of the original
type. The programmer may define her or his own constructors. The translator will use those
constructors to avoid a type error under specified circumstances, by converting an argument of the
original type to one of the target type.

In all the cases described here, extension is accomplished by allowing the programmer to define
new examples of a semantic category that already exists in the translator. To enable extension, a
new syntax is provided for defining new instances of existing categories. However, the programmer
writes the same syntax for using an extension as for using a predefined facility. Old categories are
extended; entirely new things are not added. Some languages, those with macro facilities, allow

4.4. EXTENDING THE SEMANTICS OF A LANGUAGE 109

the programmer to extend the language by supplying new notation for existing facilities. However,
very few languages support additions or changes to the basic syntactic structure or the semantic
basis of the language. Changing the syntactic structure would involve changing the parser, which is
normally fixed. Changing the semantic basis would involve adding new kinds of tables or procedures
to the translator to implement the new semantics.

What would it mean to extend the syntactic structure of a language? Consider the break
instruction in C and the EXIT in Ada. These highly useful statements enable controlled exits from
the middle of loops. Pascal does not have a similar statement, and an exit from the middle of a
loop can be done only with a GOTO. But the GOTO lacks the safely controlled semantics of break
and EXIT. Because it is so useful, EXIT is sometimes added to Pascal as a nonstandard extension.
Doing this involves extending the parsing phase of the compiler to recognize a new keyword and
modifying the code generation phase to generate a branch from the middle of a loop to the first
statement after the loop. Of course, a programmer cannot extend a Pascal compiler like this. It
can only be done when the compiler is being written.

The ANSI C dialect and the language C++ are both semantic extensions of C. ANSI C extended
the original language by adding type checking for function calls and some coherent operations on
structured data. C++ adds, in addition, semantically protected modules (classes), virtual functions,
and polymorphic domains. This kind of semantic extension is implemented by changing the compiler
and having it do work of a different nature than is done by an old C compiler. These extensions
mentioned required modifying the process of translating a function call, adding new information to
the symbol table, implementing new restrictions on visibility, and adding type checking and type
conversion algorithms.

The code and tables of a compiler are normally “off-limits” to the ordinary language user. In
most languages, a programmer cannot access or change the compiler’s tables. The languages EL/1,
FORTH, and T break this rule; EL/1'® permitted additions to the compiler’s syntactic tables, with
accompanying semantic extensions, and FORTH permits access to the entire compiler, including
the symbol table and the semantic interpretation mechanisms.

EL/1 (Extensible Language 1) actually permitted the programmer to supply new EBNF syntax
rules and their associated interpretations. The translator included a preprocessor and a compiler
generator which combined the user-supplied syntax rules with the built-in ones and produced a
compiler for the extended language. The semantic interpretations for the new syntactic rules,
supplied by the user, were then used in the code generation phase.

A very similar thing can be done in T. T is a semantic extension of Scheme which includes data
structuring primitives, object classes, and a macro preprocessor which can be used to extend the
syntax of the language. Each preprocessor symbol is defined by a well-formed T expression. With
these tools, extensions can be constructed that are not possible in C, Pascal, or Scheme. We could,
for example, use the macro facility to define the syntax for a for loop expression and define the
semantics to be a complex combination of initializations, statement executions, increments, and
result-value construction.

8Wegbreit [1970].

110 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

4.4.1 Semantic Extension in FORTH

We use FORTH to demonstrate the kind of extension that can be implemented by changing the
parser and semantic interpretation mechanisms of a translator. Two kinds of limited semantic
extension are possible in FORTH:

e We may add new kinds of information to the symbol table, with accompanying extensions to
the interpreter.

e We may modify the parser to translate new control structures.

We shall give an example of each kind of extension below. In both cases, the extension is
accomplished by using knowledge of the actual implementation of the compiler and accessing tables
that would (in most compilers) be protected from user tampering. FORTH has several unusual
features that make it possible to do this kind of extension.

First, like LISP, FORTH is a small, simple language with a totally simple structure. FORTH
books explain the internal structure of the language and details of the operation of the compiler
and interpreter. Second, the designers of FORTH anticipated the desire to extend the rather
rudimentary language and included extension primitives, the words “CREATE” and “DOES>", that
denote a compiler extension, and the internal data structures to implement them.

Finally, FORTH is an interpretive language. The compiler produces an efficient intermediate
representation of the code, not native machine code. Control changes from the interpreter to the
compiler when the interpreter reaches the *“:” at the beginning of a definition, and switches back
to the interpreter when the compiler reaches the *;” at the end of the definition. Words are also
included that permit one to suspend a compilation in the middle, interpret some code, and return
to the compilation. Thus variable declarations, ordinary function definitions, segments of code to
be interpreted, and extensions to the compiler can be freely intermixed. The only requirement is
that everything be defined before it is used.

New Types. Unextended, FORTH has three semantic categories, or data types, for items in the
dictionary (symbol table): constant, variable, and function. By using the words CREATE and DOES>
inside what otherwise looks like a normal function definition, more types can be added. CREATE
enters the name of the new type category into the dictionary. Following it must be FORTH code
for any compile-time actions that must be taken to allocate and/or initialize the storage for this
new type. This compile-time section is terminated by the DOES>, which marks this partial entry
as a new semantic category. Finally, the definition includes FORTH code for the semantic routine
that should be executed at run time when items in this category are referenced [Exhibit 4.22].
Having added a type, the FORTH interpreter can be extended to check the type of a function
parameter and dispatch (or execute) one of several function methods, depending on the type. New
data types are additional examples of a category that was built into the language. However, type
checking was not built into FORTH in any way. When we implement type checking, we add a
semantic mechanism to the language that did not previously exist. This is true semantic extension.

4.4.

EXTENDING THE SEMANTICS OF A LANGUAGE 111

Exhibit 4.22. Definition in FORTH of the semantics for arrays.

0 2by3array (The ":" marks the beginning of a definition.)

1 create (Compile time actions for type declarator 2by3array.)
2 2,3, (Store dimensions in the dictionary with the object.)
3 12 allot (Allocate 12 bytes for 6 short integers.)

4 does> (Run time actions to do a subscripted fetch.)

5 rangecheck (Function call to check that both subscripts are)

6 (within the legal range.)

7 linearsub (Function call to compute the effective memory)

8 (address, given base address of array and subscripts.)
9 (End of data type definition.)

10

11 2by3array box (Declare and allocate an array variable named box.)
12 10 1 2 box ! (Store the number 10 in box[1,2].)

Program Notes

Comments are enclosed in parentheses.

The definition of the new type declarator goes from line 0 to line 9.

“” stores the prior number in the dictionary.

Lines 5 and 7 are calls on the functions rangecheck and linearsub, which the programmer
must define and compile before this can be compiled. Linearsub must leave its result, the
desired memory address, on the stack.

Line 11 declares a 2by3array variable named box. When this line is compiled, the code on
lines 2 and 3 is run to allocate and initialize storage for the new array variable.

Line 12 puts the value 10 on the stack, then the subscripts 1 and 2. When the interpreter
processes the reference to box, the semantic routine for 2by3array (lines 5-8) is executed. This
checks that the subscripts are within range, then computes a memory address and leaves it
on the stack.

«p “y

Finally, that address is used by to store the 10 that was put on the stack earlier. is
the assignment operation. It expects a value and an address to be on the stack and stores
the value in that address.

112 CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

Adding a new control structure. CREATE and DOES> provide semantic extension without
corresponding syntactic extension. They permit us to extend the data structuring capabilities of
the language but not to add things like new loops that would require modifying the syntax. To the
extent that the FORTH compiler’s code is open and documented, though, the clever programmer
can even extend the syntax in a limited way. We have code that adds a BREAK instruction to exit
from the middle of a FIG FORTH loop. This code uses a compiler variable that contains the address
of the end of the loop during the process of compiling the loop. The code for BREAK cannot be
added to FORTH 83. Many compiler variables that were documented in FIG FORTH are kept secret
in the newer FORTH 83. These machine- and implementation-dependent things were taken out of
the language documentation in order to increase the portability of programs written in FORTH,
and the portability of the FORTH translator itself. Providing no documentation about the internal
operation of the compiler prevents the syntax from being extended.

Exercises
1. Briefly define EBNF and syntax diagrams. How are they used, and why are they necessary?

2. Describe the compilation process from source code to object code.

3. Consider the following EBNF syntax. Rewrite this grammar as syntax diagrams.

sneech ::= ‘%’ |
(“C’ (sneech))’) |
[(bander)] ‘x’ (sneech)
bander ::= { ‘+$+> | ‘#> } | (‘%’ (bander))

4. Which of the following “sentences” are not legal according to the syntax for sneeches, given
in question 37 Why?

a. (%) £ sk
b. (+$+x) g, (+$+#

c. * h. +$+i=

d. kkkkok 1. x+§+#

e. UhYx* J- Yotk + P+ %

5. Rewrite the following syntax diagrams as an EBNF grammar.

4.4. EXTENDING THE SEMANTICS OF A LANGUAGE 113

oo

10.

11.
12.
13.
14.

15.

bt ﬁ@@lCDj_'
N it = (%)~ bit —

grit ﬁ»@)
L»‘—» slit —/

Sit ——» grit — §>—>

. What is the difference between a terminal and nonterminal symbol in EBNF?
. What is a production? How are alternatives denoted in EBNF? Repetitions?

. Using the production rules in Exhibit 4.4, generate the program called “easy” which has two

variables: a, an integer, and b, a real. The program initializes a to 5. Then b gets the result
of multiplying a by 2. Finally, the value of b is written to the screen followed by a new line.

. What are the EBNF productions for the conditional statement in Pascal? Show the corre-

sponding syntax diagrams from a standard Pascal reference.

Show the syntax diagram for the For statement in Pascal. List several details of the meaning
of the For that are not defined by the syntax diagram.

What are semantics?

What is the difference between a program environment and a shared environment?
What is a stream?

Why is lambda calculus relevant in a study of programming language?

Show the result of substituting u for = in the following applications. Rename bound variables
where necessary.

a. (A\z.\y.z)u)
((Az.Ay.2)u)

c. (AzAu.ux)u)
(A\xAz.uz)u)

114

16.

17.

18.

19.

20.

21.

CHAPTER 4. FORMAL DESCRIPTION OF LANGUAGE

Each item below is a lambda application. We have used a lot of parentheses to help you parse
the expressions. Reduce each formula, until no redex remains. One of the items requires
renaming of a bound variable.

- ((AzAy.z(zy)) (pg)g)

- (A2 Ay.y)(pa)q)

- (Az(Myyz))(Aa.zy))

- (A2 y.y(zy)) (Ap-pp)q)

6 o o @

Verify the following equality. Start with the left-hand side and substitute the formula for
twice. Then reduce the formula until it is in normal form. This may look like a circular
reduction, but the formula reaches normal form after eight reduction steps.

Let twice = A\f x.f(fx).
Show that twice twice gz = g(g(g9(gz)))-

Hints: Write out the formula for twice only when you are using it as a function; keep arguments
in symbolic form. Each time you write out twice, use new names for the bound variables. Be
careful of the parentheses. Remember that function application associates to the left.

Show that 3 is the successor of 2, using the lambda calculus representations defined for
integers.

Define the function “plus2” using a lambda formula. Demonstrate that your formula works
by applying it to the formula for 1.

Construct a lambda formula to express the following conditional expression. (Assume that
x is a Boolean value, T or F.) Verify the correctness of your expression by applying it to T’
and F' and reducing to get 0 or 2.

If x is true then return 0 else return 2.

How do EL/1 and FORTH allow the semantics of the languages to be extended?

Part 11

Describing Computation

115

Chapter 5

Primitive Types

Overview

This chapter explains the concept of types within programming languages and the
hardware that supports these types. Computer memory is an array of bits usually
grouped into addressable 8-bit segments called bytes. Words are groups of bytes, usually
2, 4, and sometimes 8 bytes long. All data types in programming languages must be
mapped onto the bytes and words of the machine. Logical computer instructions operate
on bytes and words, but other instructions operate on objects that are represented by
codes which are superimposed on bit strings. Common codes include ASCII, EBCDIC,
binary integer, packed decimal and floating point.

A data type is an abstraction: a description of a set of properties independent of any
specific object that has those properties. A previously defined type is referred to by a
type name. A type description identifies the parts of a nonprimitive type. A specific
type is a homogeneous set of objects, while a generic type is a set that includes objects
of more than one specific type. Each type is a set of objects with an associated set of
functions. A type defines the representation for program objects. Several attributes are
defined by the type of an object, including encoding, size, and structure.

Every language supports a set of primitive data types. Usually these include integer,
real, Boolean, and character or string. A language standard determines the minimum
set of primitive types that the language compiler must implement. Hardware charac-
teristics influence which types a language designer chooses to make primitive. If the
hardware does not support a required type, that type may have to be emulated, that
is, implemented in the software.

Type declarations have a long history, going back to the earliest languages which sup-

117

118 CHAPTER 5. PRIMITIVE TYPES

ported primitive types built into the instruction set of the host machine. By the late
1960s, types were recognized as abstractions. Type declarations defined value construc-
tors, selectors, and implicit type predicates. In the 1970s, with the emergence of Ada,
types were treated as objects in a limited way. There were cleaner type compatibility
rules, support for type portability, and explicit constraint on the values of a type. Re-
cent research includes the issues of type hierarchies with inherited properties and the
implementation of nonhomogeneous types in a semantically sound way.

5.1 Primitive Hardware Types

A translator must map a programmer’s objects and operations onto the storage and instructions
provided by the computer hardware. To understand the primitive types supported by languages,
one should also understand the hardware behind those types.

5.1.1 Bytes, Words, and Long Words

Computer memory is a very long array of bits, normally organized into groups.! Each group has
an address, used to store and fetch data from it. Modern machines usually have 8-bit bytes and are
byte addressable. Bytes are grouped into longer 2- and 4-byte units called words and long words.
Some machines have a few hardware instructions that support double word, or 8-byte, operations.

Bytes and words form the basis for all representation and all computation. They are the
primitive data type onto which all other data types must be mapped.

Computer instruction sets include some instructions that operate on raw, uninterpreted bytes
or words. These are called logical instructions. They include right and left shifts, and bitwise
complement, and, or, and exor operations.

Most computer instructions, though, are intended to operate on objects other than bit strings,
such as numbers or characters. All objects must be represented by bit strings, but they have
semantics above and beyond the bits that represent them. These objects are represented by codes
that are superimposed on the bit strings. Common encodings include ASCII, EBCDIC, binary
integer, packed decimal, and floating point.

5.1.2 Character Codes

Long before IBM built computers, it built unit record equipment, which processed data recorded
on punched cards. Keypunches were used to produce this data, and line printers could copy cards
to fanfold paper. Tabulating machines were used to process the data. These had “plug boards”,

The Burroughs memory of the B1700/B1800 series of computers was an undivided string of bits that was actually
bit-addressable.

5.1. PRIMITIVE HARDWARE TYPES 119

on which a skilled person could build programs by using plug-in cables to connect holes that
represented card columns to holes that represented functions such as “+” and “—".2

Punched cards were in common use before computers were invented and quite naturally became
the common input medium for computers. The Hollerith character code, used for punched cards,
was adapted for use in computers, and called Binary Coded Decimal, or BCD. Hollerith code was
a decimal code. It used one column with twelve punch positions to represent each digit. (These
positions were interpreted as 4, —, 0...9.) Alphabetic letters were represented as pairs of punches,
one in the “zone” area (+, —, 0), and one in the “digit” area (1..9). This gives 27 combinations,
which is one too many for our alphabet, and the 0:1 punch combination was not used for any letter.
The tradition was that this combination was omitted from the alphabet because the two closely
spaced punches made it physically weak. However, this combination was used to represent “/”.
Thus the alphabet had a nonalpha character in its middle.

The entire Hollerith character set had no more than 64 codes. Letters and digits accounted for
36 of these; the rest were other punctuation and control characters and were represented by double
or triple punches. The BCD code used sixty four 6-bit codes to represent this character set.

The BCD character code was reflected in various ways in the computer hardware of the 1950s
and early 1960s. It has always been practical to make word size a multiple of the character code
size. Hardware was built with word lengths of 24, 36, 48, and 60 bits (making 4, 6, 8, and 10
characters per word). Floating-point encoding was invented for the IBM 704; its 36-bit words were
long enough to provide adequate range and precision.

Software, also, showed the effects of this character code. FORTRAN was designed around this
severely limited character set (uppercase only, very few available punctuation symbols). FORTRAN
identifiers were limited to six characters because that is what would fit into one machine word on
the IBM 704 machine. COBOL implemented numeric data input formats that were exactly like
Hollerith code. If you wanted to input the number —371, you punched only three columns, and put
the “—” sign over the rightmost, giving the number code “37J”. The number +372 was encoded
as “37B”. This wholly archaic code is still in use in COBOL today and is increasingly difficult to
explain and justify to students.

Dissatisfaction with 6-bit character codes was rampant; sixty four characters are just not enough.
People, reasonably, wanted to use both upper- and lower-case letters, and language designers felt
unreasonably restricted by the small set of punctuation and mathematical symbols that BCD
provided. Two separate efforts in the early 1960s produced two new codes, EBCDIC (Extended
BCD Interchange Code) and ASCII (American Standard Code for Information Interchange).

EBCDIC was produced and championed by IBM. It was an 8-bit code, but many of the 256
possible bit combinations were not assigned any interpretation. Upper- and lowercase characters
were included, with ample punctuation and control characters. This code was an extension of
BCD; the old BCD characters were mapped into EBCDIC in a systematic way. Certainly, that
made compatibility with old equipment less of a problem.

2These were archaic in the early 1960s, but a few early computer science students had the privilege of learning to
use them.

120 CHAPTER 5. PRIMITIVE TYPES

Unfortunately, the EBCDIC code was not a “sensible” code because the collating sequence
was not normal alphabetical order.? Numbers were greater than letters, and like BCD, alphabetic
characters were intermingled with nonalphabetic characters.

ASCII code grew out of the old teletype code. It uses seven bits, allowing 128 characters. Upper-
and lowercase letters, numerals, many mathematical symbols, a variety of useful control characters,
and an “escape” are supported. The “escape” could be used to form 2-character codes for added
items.* ASCII is a “sensible” code; it follows the well-established English rules for alphabetization.
It has now virtually replaced EBCDIC, even on IBM equipment.

An extended 8-bit version of ASCII code is now becoming common. It uses the additional
128 characters for the accented and umlauted European characters, some graphic characters, and
several Greek letters and symbols used in mathematics. Hardware intended for the international
market supports extended ASCII.

5.1.3 Numbers

We take integers and floating-point numbers for granted, but they are not the only ways, or even
the only common and useful ways, to represent data.

In the late 1950s and early 1960s, machines were designed to be either scientific computers or
business computers. The memory of a scientific computer was structured as a sequence of words
(commonly 36 bits per word) and its instruction set performed binary arithmetic. Instructions were
fixed length and occupied one word of memory.

Packed Decimal

The memory of a business computer was a series of BCD bytes with an extra bit used to mark the
beginning of each variable-length “word”. Objects and instructions were variable length. Numbers
were represented as a series of decimal (BCD) digits. Arithmetic was done in base ten, not base
two.

The distinction between scientific and business computers profoundly affected the design of pro-
gramming languages. COBOL, a “business language”, was oriented toward variable-length objects
and supported base ten arithmetic. In contrast, FORTRAN was a “scientific language”. Its data
objects were one word long, or arrays of one-word objects, and computation was done either in
binary or in floating point. Characters were not even a supported data type.

In 1964, IBM introduced a family of computers with innovative architecture, intended to serve
both the business and scientific communities.® The memory of the IBM 360 was byte-addressable.
The hardware had general-purpose registers to manipulate byte, half-word (2-byte), and word
(4-byte) sized objects, plus four 8-byte registers for floating-point computation. The instruction

3The collating sequence of a code is the order determined by the “<” relationship. To print out a character code
in collation order, start with the code 00000000, print it as a character, then add 1 and repeat, until you reach the
largest code in the character set.

Tt is often used for fancy I/O device control codes, such as “reverse video on”.

Gorsline [1986], p. 317.

5.1. PRIMITIVE HARDWARE TYPES 121

Exhibit 5.1. Packed-decimal encoding.

e A number is a string of digits. The sign may be omitted if the number is positive, or
represented as the first or last field of the string.

e Each decimal digit is represented by 4 bits, and pairs of digits are packed into each byte. The
string may be padded on the left to make the length even.

e The code “0000” represents the digit 0, and “1001” represents 9. The six remaining possible
bit patterns, “1010” ... “1111”, do not represent legal digits.

set supported computation on binary integers, floating point, and integers represented in packed
decimal with a trailing sign [Exhibit 5.1].

Many contemporary machines support packed decimal computation. Although the details of
packed-decimal representations vary somewhat from machine to machine, the necessary few instruc-
tions are included in the Intel chips (IBM PC), the Motorola chips (Apollo workstations, Macintosh,
Atari ST), and the Data General MV machines.

Packed-decimal encoding is usually used to implement decimal fized-point arithmetic. A decimal
fixed-point number has two integer fields, one representing the magnitude, the other the scale (the
position of the decimal point). The scale factors must be taken into account for every arithmetic
operation. For instance, numbers must be adjusted to have the same scale factors before they can
be added or subtracted. Languages such as Ada and COBOL, which support fixed-point arithmetic,
do this adjustment for the programmer.°

Base two arithmetic is convenient and fast for computers, but it cannot represent most base ten
fractions exactly. Furthermore, almost all input and output is done using base ten character strings.
These strings must be converted to/from binary during input/output. The ASCII to floating point
conversion routines are complex and slow.

Arithmetic is slower with packed decimal than with binary integers because packed-decimal
arithmetic is inherently more complex. Input and output conversions are much faster; a packed-
decimal number consists of the last 4 bits of each ASCII or EBCDIC digit, packed two digits per
byte. Arithmetic is done in fized point; a specified number of digits of precision is maintained, and
numbers are rounded or truncated after every computation step to the required precision. Control
over rounding is easy, and no accuracy is lost in changing the base of fractions.

In a data processing environment, packed decimal is often an ideal representation for numbers.
Most business applications do more input and output than computation. Some, such as banking

SUnfortunately, the Ada standard does not require that fixed-point declarations be implemented by decimal fixed-
point arithmetic! It is permissible in Ada to approximate decimal fixed-point computation using numbers represented
in binary, not base ten, encoding!

122 CHAPTER 5. PRIMITIVE TYPES

Exhibit 5.2. Representable values for signed and unsigned integers.

These are the smallest and largest integer values representable on a two’s complement machine.

Type Length Minimum Maximum
Signed 4 bytes | -2,147,483,648 2,147,483,647
2 bytes -32,768 32,767
1 byte -128 127
Unsigned 4 bytes 0 4,294,967,295
2 bytes 0 65,535
1 byte 0 255

and insurance computations, require total control of precision and rounding during computation
in order to meet legal standards. For these applications, binary encoding for integers and floating-
point encoding for reals is simply not appropriate.

Binary Integers

Binary numbers are “built into” modern computers. However, there are several ways that binary
numbers can be represented. They can be different lengths (2- and 4-byte lengths being the most
common), and be signed or unsigned. If the numbers are signed, the negative values might be
represented in several ways.

Unsigned integers are more appropriate than signed numbers for an application that simply
does not deal with negative numbers, for example, a variable representing a machine address or a
population count. Signed and unsigned numbers of the same length can represent exactly the same
number of integers; only the range of representable numbers is different [Exhibit 5.2]. On a modern
two’s complement machine, unsigned arithmetic is implemented by the same machine instructions
as signed arithmetic.

Some languages, for example C, support both signed and unsigned integers as primitive types.
Others, for example Pascal and LISP, support only signed integers. Having “unsigned integer” as a
primitive type is not usually necessary. Any integer that can be represented as an “unsigned” can
also be represented as a “signed” number that is one bit longer. There are only a few situations in
which this single bit makes a difference:

e An application where main storage must be conserved and a 1-byte or 2-byte integer could
be used, but only if no bit is wasted on the sign.

e An application where very large machine addresses or very large numbers must be represented
as integers, and every bit of a long integer is necessary to represent the full range of possible
values.

5.1. PRIMITIVE HARDWARE TYPES 123

e The intended application area for the language involves extensive use of the natural numbers
(as opposed to the integers). By using type “unsigned” we can constrain a value to be
nonnegative, thereby increasing the explicitness of the representation and the robustness of
the program.

“Unsigned” will probably be included as a primitive type in any language whose intended
applications fit one of these descriptions. C was intended for systems programming, in which access
to all of a machine’s capabilities is important, and so supports “unsigned” as a primitive type.”

Signed Binary Integers The arithmetic instructions of a computer define the encoding used for
numbers. The ADD 1 instruction determines the order of the bit patterns that represent the integers.
Most computers “count” in binary, and thus support binary integer encoding. Most compilers use
this encoding to represent integers. Although this is not the only way to represent the integers,
binary is a straightforward representation that is easy for humans to learn and understand, and it
is reasonably cheap and fast to implement in hardware.®

Large machines support both word and long word integers; very small ones may only support
byte or word sized integers. On such machines, a compiler writer must use the short word in-
structions to emulate arithmetic on longer numbers that are required by the language standard.
For example, the instruction set on the Commodore 64 supported only byte arithmetic, but Pas-
cal translators for the Commodore implemented 2-byte integers. Adding a pair of 2-byte integers
required several instructions; each half was added separately and then the carry was propagated.

Negative Numbers One early binary integer representation was sign and magnitude. The left-
most bit was interpreted as the sign, and the rest of the bits as the magnitude of the number. The
representations for +5 and —5 differed only in one bit. This representation is simple and appealing
to humans, but not terrific for a computer. An implementation of arithmetic on sign-and-magnitude
numbers required a complex circuit to propagate carries during addition, and another one to do
borrowing during subtraction.

CPU circuitry has always been costly, and eventually designers realized that it could be made less
complex and cheaper by using complement notation for negative numbers. Instead of implementing
“+” and “—”, a complement machine could use “+” and “negate”. Subtraction is equivalent to
negation followed by addition. Negation is trivially easy in one’s complement representation—just
flip the bits. Thus “00000001” represented the integer 1 and “11111110” represented the integer
negative one. A carry off the left end of the word was added back in on the right. The biggest
drawback of this system is that zero has two representations, “0000000” (or +0) and “11111111”
(or —0).

A further insight occurred in the early 1960s: complement arithmetic could be further simpli-
fied by using two’s complement instead of one’s complement. To find the two’s complement of a

"We must also note that the primitive type “byte” or “bitstring” is lacking in C, and “unsigned” is used instead.
While this is semantically unattractive, it works.
8Other kinds of codes have better error correction properties or make carrying easier.

124 CHAPTER 5. PRIMITIVE TYPES

Exhibit 5.3. IEEE floating-point formats.

Bit fields in representation

Format Name Length | Sign Exponent Mantissa
Short real 4 bytes 31 30-23 22-0, with implicit leading 1
Long real 8 bytes 63 62-52 51-0, with implicit leading 1

Temporary real 10 bytes | 79 78-64 63-0, explicit leading 1

number, complement the bits and add one. The two’s complement of “00000001” (representing 1)
is “11111111” (representing —1). Two’s complement representation has two good properties that
are missing in one’s complement: there is a unique representation for zero, “00000000”, and carries
off the left end of a sum can simply be ignored. Two’s complement encoding for integers has now
become almost universal.

Floating Point

Many hardware representations of floating-point numbers have been used in computers. Before the
advent of ASCII code, when characters were 6 bits long, machine words were often 36 or 48 bits
long. (It has always been convenient to design a machine’s word length to be a multiple of the byte
length.) Thirty-six bits is enough to store a floating-point number with a good range of exponents
and about eight decimal digits of precision. Forty-eight or more bits allows excellent precision.
However, word size now is almost always 32 bits, which is a little too small.

In order to gain the maximum accuracy and reasonable uniformity among machines, the IEEE
has developed a standard for floating-point representation and computation. In this discussion,
we focus primarily on this standard. The IEEE standard covers all aspects of floating point—the
use of bits, error control, and processor register requirements. It sets a high standard for quality.
Several modern chips, including the IBM 8087 coprocessor, have been modeled after it.

To understand floats, you need to know both the format and the semantics of the representation.
A floating-point number, N, has two parts, an exponent, e, and a mantissa, m. Both parts are
signed numbers, in some base. If the base of the exponent is b, then N = m * b€.

The IEEE standard supports floats of three lengths: 4, 8, and 10 bytes. Let us number the bits
of a float starting with bit 0 on the right end. The standard prescribes the float formats shown in
Exhibit 5.3. The third format defines the form of the CPU register to be used during computation.
Exhibit 5.4 shows how a few numbers are represented according to this standard.

The sign bit, always at the left end, is the sign of the entire number. A “1” is always used for
negative, “0” for a positive number.

The exponent is a signed number, often represented in bias notation. A constant, called the bias,
is added to the actual exponent so that all exponent values are represented by unsigned positive
numbers. In the case of bias 128, this is like two’s complement with the sign bit reversed.

The advantage of a bias representation is that, if an ordinary logical comparison is made,

5.1. PRIMITIVE HARDWARE TYPES 125

Exhibit 5.4. Floating point on the SparcStation.

The SparcStation is a new RISC workstation built by Sun Microsystems. It has a floating-point
coprocessor modeled after the IEEE standard. Using the Sun C compiler to explore its floating-
point representation, we find that the C “float” type is implemented by a field with the IEEE 4-byte
encoding. A few numbers are shown here with their representations printed in hex notation and in
binary with the implied 1-bit shown to the left of the mantissa.

Binary Representation
Decimal Hex Sign Exponent Mantissa
0.00 | 00000000 0 00000000 0.0000000 00000000 00000000

0.25 | 3E800000 01111101 1.0000000 00000000 00000000
0.50 | 3F000000 01111110 1.0000000 00000000 00000000
1.00 | 3F800000 01111111 1.0000000 00000000 00000000
-1.00 | BF800000 01111111 1.0000000 00000000 00000000

10.00 | 41200000 10000010 1.0100000 00000000 00000000
5.00 | 40A00000 10000001 1.0100000 00000000 00000000
2.50 | 40200000 10000000 1.0100000 00000000 00000000
1.25 | 3FA00000 01111111 1.0100000 00000000 00000000

OO OO = O OO

positive numbers are greater than negative numbers. Absolutely no special provision needs to be
made for the sign of the number. With 8 bits in the exponent, “00000000” represents the smallest
possible negative exponent, and “11111111” is the largest positive exponent. “10000000” generally
represents an exponent of either zero or one. When interpreted as a binary integer, “10000000”
is 128. If this represents an exponent of zero, we say that the notation is “bias 128”7, because
128 — 0 = 128. When “10000000” represents an exponent of one, we say the notation is “bias 1277,
because 128 — 1 = 127.

In the IEEE standard, the exponent is represented in bias 127 notation, and the exponent
“10000000” represents +1. This can be seen easily in Exhibit 5.4. The representation for 2.50 has
an exponent of “10000000”. The binary point in “1.010000” must be moved one place to the right
to arrive at “10.17, the binary representation of 2.50. Thus “10000000” represents +1.

Floating-point hardware performs float operations in a very long register, much longer than the
24 bits that can be stored in a float. To maintain as many bits of precision as possible, the mantissa
is normalized after every operation. This means that the leading “0” bits are shifted to the left
until the leftmost bit is a “1”. Then when you store the number, all bits after the twenty-fourth
are truncated (discarded). A normalized mantissa always starts with a “1” bit, therefore this bit
has no information value and can be regenerated by the hardware when needed. So only bits 2—24
of the mantissa are stored, in bits 22-0 of the float number.

The mantissa is a binary fraction with an implied binary point. In the IEEE standard, the
point is between the implied “1” bit and the rest of the mantissa. Some representations place the

126 CHAPTER 5. PRIMITIVE TYPES

Exhibit 5.5. A hierarchy of abstractions.

Electronic Device

| Computer Microwave Oven
Microphone
Microcomputer Minicomputer Amana Litton
| DG MV8000

ApplellE TRS80 IBMPC

binary point to the left of the implied “1” bit. These interpretations give the same precision but
different ranges of representable numbers.

5.2 Types in Programming Languages

5.2.1 Type Is an Abstraction

An abstraction is the description of a property independent from any particular object which has
that property. Natural languages contain words that form hierarchies of increasing degrees of
abstraction, such as “TRS-80", “microcomputer”, “computer”, and “electronic device” [Exhibit
5.5]. “TRS-80” is itself an abstraction, like a type, describing a set of real objects, all alike. Most
programming language development since the early 1980s has been aimed at increasing the ability
to express and use abstractions within a program. This work has included the development of
abstract data types, generic functions, and object-oriented programming. We consider these topics
briefly here and more extensively later.

A data type is an abstraction: it is the common property of a set of similar data objects. This
property is used to define a representation for these objects in a program. Objects are said to
“have” or to “be of” that type to which they belong. Types can be primitive, defined by the
system implementor, or they can be programmer defined. We refer to a previously defined type by
using a type name. A type declaration defines a type name and associates a type description with
it, which identifies the parts of a nonprimitive type [Exhibit 5.6]. The terms type and data type
are often used loosely; they can refer to the type name, the type description, or the set of objects
belonging to the type.

If all objects in a type have the same size, structure, and semantic intent, we call the type
concrete or specific. A specific type is a homogeneous set of objects. All the primitive types in
Pascal are specific types, as are Pascal arrays, sets, and ordinary records made out of these basic
types. A wariant record in Pascal is not a specific type, since it contains elements with different
structures and meanings.

5.2. TYPES IN PROGRAMMING LANGUAGES 127

Exhibit 5.6. Type, type name, and type description.

e Real-world objects: a set of rectangular boxes.
e Type: We will represent a box by three real numbers: its length, width, and depth.
e Type name declared in Pascal: TYPE box_type =

e Possible type descriptions in Pascal:

ARRAY [1..3] OF real
RECORD length, width, depth: real END

A generic domain is a set that includes objects of more than one concrete type [Exhibit 5.7].
A specific type that is included in a generic domain is called an instance or species of the generic
domain, as diagrammed in Exhibit 5.8. Chapters 15 and 17 explore the subjects of type abstraction
and generic domains.

5.2.2 A Type Provides a Physical Description

The properties of a type are used to map its elements onto the computer’s memory. Let us focus
on the different attributes that are part of the type of an object. These include encoding, size, and
structure.

Exhibit 5.7. Specific types and generic domains.
Specific types:

Integer arrays of length 5
Character arrays of length 10
Real numbers

Integer numbers

Generic domains:

e Intarray: The set of integer arrays, of all lengths.

e Number: All representations on which you can do arithmetic, including floating point, integer,
packed decimal, etc.

128 CHAPTER 5. PRIMITIVE TYPES

Exhibit 5.8. Specific types are instances of generic domains.

e The generic domain Number has several specific subtypes, including Real, Integer, and Com-
plex.

e Objects (variables) have been declared that belong to these types. Objects named V, W,
and X belong to type Real; objects J and K belong to type Integer, and C belongs to type
Complex.

e All six objects also belong to the generic domain Number.

Number
Real Complex Integer
v W X C J K

| | | | | | {:1 | | |

Encoding. The instruction set of each machine includes instructions that do useful things on
certain encodings (bit-level formats) of data. For example, the Data General MV8000 has instruc-
tions that perform addition if applied to numbers encoded with 4-bits per decimal digit. Because
of this “built-in” encoding, numbers can be conveniently represented in packed-decimal encoding
in Data General COBOL. Where an encoding must be implemented that is not directly supported
by the hardware, the implementation tends to be inefficient.

Size. The size of an object can be described in terms of hardware quantities such as words or
bytes, or in terms of something meaningful to the programmer, such as the range of values or the
number of significant digits an object may take on.

Structure. An object is either simple or it is compound. A simple object has one part with no
subparts. No operators exist within a language that permit the programmer to decompose simple
objects. In a language that has “integer” as a simple type, integer is generally undecomposable.

In standard Pascal, integers are simple objects, as are reals, Booleans, and characters. In various
Pascal extensions, though, an integer can be decomposed into a series of bytes. In these dialects
“integer” is not a simple type. Primitive types may or may not be simple. In both cases, “integer”
is a primitive type; that is, it is a predefined part of the language.

A compound object is constructed of an ordered series of fields of specific types. A list of these
fields describes the structure of the object. If the fields of the compound object all have the same
type, it is a homogeneous compound. These are commonly called “array”, “vector”, “matrix”,

5.2. TYPES IN PROGRAMMING LANGUAGES 129

or “string”. The dimensions of an array and its base type (the type of its elements) define its
structure.

If the fields of a compound object have different types, it is a heterogeneous compound. These
are commonly called “records” or “structures”. An ordered list of the types of each field of a record
defines its structure.

The distinctions among structure, encoding, and size are seen most clearly in COBOL, where
these three properties are specified separately by the programmer.

Structure in COBOL. The internal structure of each data object is defined by listing its fields
and subfields, in order. The subfields of a field are listed immediately following the field and given
higher level numbers to indicate that they are subordinate to it.

Encoding in COBOL. Character data has only one encoding: the character code built into the
machine hardware. Depending on the compiler, several encodings may be provided for numbers,
with DISPLAY being the default. The COBOL programmer may specify the encoding in a USAGE
clause. In Data General COBOL, the programmer can choose from the following set:

DISPLAY ASCII or EBCDIC characters
COMPUTATIONAL binary fixed point

COMP-2 packed binary-coded-decimal fixed point
COMP-3 floating point

Double-precision encoding is also provided in some COBOL implementations. Each encoding
has inherent advantages, which must be understood by the programmer. Input and output require
operands of DISPLAY usage. Arithmetic can be done on all usages except DISPLAY. The most
efficient numeric I/O conversion is between DISPLAY and COMP-2. The most efficient arithmetic is
done in COMPUTATIONAL.

Conversion from one encoding to another is performed automatically when required in COBOL.
If a numeric variable does not have the default usage, DISPLAY, conversion is performed during the
input and output processes, as in most languages. If a numeric variable represented in DISPLAY
usage is used in an arithmetic statement, it will be converted to packed decimal. (This conversion
is fast and efficient). The arithmetic will be done in packed-decimal encoding, and the result will
be converted back to display usage if it is stored in a DISPLAY variable.

Size in COBOL. Size is defined by supplying a PICTURE clause for every field that has no sub-
fields [Exhibit 5.9]. The PICTURE illustrates the largest number of significant characters or decimal
digits that will ever be needed to represent the field. Note that the programmer describes the size
of the object being represented, not the size, in bytes, of the representation. Different amounts of
storage could be allocated for equal size specifications with different encoding specifications.

At the other extreme from COBOL, the language BASIC permits the programmer to specify
only whether the object will encode numeric or alphanumeric objects, and to declare the structure
of arrays (number of dimensions and size of each). The encoding is chosen by the translator and
hidden from the user. Thus BASIC is simpler to use. It frees the programmer from concern about
the appropriateness of the encoding. At the same time, it provides no easy or efficient control over

130 CHAPTER 5. PRIMITIVE TYPES

Exhibit 5.9. Size and encoding specifications in COBOL.
Three simple variables are defined, named PRICE, DISCOUNT, and ITEM.

01 PRICE PICTURE 999V99.
01 DISCOUNT PICTURE V999 USAGE COMPUTATIONAL.
01 ITEM PICTURE XXXX.

PRICE has a numeric-character encoding, indicated by the 9s in the PICTURE clause and the
absence of a USAGE clause. The size of this variable is defined by the number of 9s given, and
decimal position is marked by the “V”. In this case, the number has two decimal places and is less
than or equal to 999.99.

DISCOUNT has binary fixed-point encoding (because of the USAGE clause). Its size is three decimal
digits, with a leading decimal point.

ITEM has alphanumeric encoding, indicated by the Xs in its PICTURE. Its size is four characters.
Any alphanumeric value of four or fewer characters can be stored in this variable.

precision and rounding. BASIC is thus a better tool for the beginner, but a clumsy tool for the
professional.

5.2.3 What Primitive Types Should a Language Support?

The usual set of primitive data types in a language includes integer, real, Boolean, and character
or string. However, Ada has many more and BASIC has fewer.

A language standard determines the minimum set of primitive types that must be implemented
by a compiler. Choosing this set is the job of the language designer. A language implementor may
choose to support additional types, however. For example, Turbo Pascal supports a type string
that is not required by the standard. The string type is a language extension.

The decision to make a type “primitive” in a computer language is motivated by hardware
characteristics and the intended uses of the language. Compromises must often be made. A lan-
guage designer must decide to include or exclude a type from the primitive category by considering
the cost of implementing and using it [Exhibit 5.10] as opposed to the cost of not implementing it
[Exhibit 5.11].

Types that are not primitive sometimes cannot be implemented efficiently, or even implemented
at all, by the user. For example, the ANSI C standard does not support packed-decimal numbers. A
user could write his or her own packed decimal routines in C. To achieve adequate precision the user
would probably map them onto integers, not floats. Masking, base 10 addition and multiplication,
carrying, and the like could be implemented. However, the lack of efficiency in the finished product
would be distressing, especially when you consider that many machines provide efficient hardware
instructions to do this operation.

If users are expected to need a certain type frequently, the language is improved by making
that type primitive. Packed decimal is not a primitive type in C because the intended usage of C

5.2. TYPES IN PROGRAMMING LANGUAGES 131

Exhibit 5.10. Costs of implementing a primitive type.

e Every added feature complicates both the language syntax and semantics. Both require added
documentation. If every useful feature were supported, the language would become immense
and unwieldy.

e Standardization could become more difficult, as there is one more item about which committee
members could disagree. This could be an especially severe problem if a type is complex, its
primitive operations are extensive, or it is unclear what the ideal representation should be.

e The compiler and/or library and/or run-time system become more complex, harder to debug,
and consume more memory. Literals, input and output routines, and basic functions must be
defined for every new primitive type.

e If typical hardware does not provide instructions to handle the type, it may be costly and
inefficient to implement it. Perhaps programmers should not be encouraged to use inefficient

types.

Exhibit 5.11. Costs of omitting a primitive type.

e Inefficiency: failing to include an operation that is supported by the hardware leads to a huge
increase in execution time.

e Language structure may be inadequate to support the type as a user extension, as Pascal
cannot support variable-length strings or bit fields with bitwise operators.

e Some built-in functions such as READ, WRITE, assignment, and comparison are generic in
nature. They work on all primitive types but not necessarily on all user-defined types. If
these functions cannot be extended, a user type can never be as convenient or easy to use as
a primitive type.

e Primitive types have primitive syntax for writing literals. Literal syntax is often not extensible
to user-defined types.

132 CHAPTER 5. PRIMITIVE TYPES

was for systems programming, not business applications. In this case, the cost of not implementing
the type is low, and the cost of implementing it is increased clutter in the language.

As another example, consider the string type in Pascal. It was almost certainly a mistake to
omit a string manipulation package from the standard language. Alphabetic data is very common,
and many programs use string data. The Pascal standard recognizes that strings exist but does
not provide a reasonable set of string manipulation primitives. The standard defines a “string”
to be any object that is declared as a “packed array[l..n] of char”, where n is an integer
> 1. String output is provided by Write and Writeln. String comparison and assignment are
supported, but only for strings of equal length. Length adjustment, concatenation, and substrings
are not supported, and Read cannot handle strings at all. A programmer using Standard Pascal
must read alphabetic fields one character at a time and store each character into a character array.

Virtually all implementations of Pascal extend the language to include a full string type with
reasonable operations. Unfortunately, these extensions have minor differences and are incompatible
with each other. Thus there are two kinds of costs associated with omitting strings from standard
Pascal:

1. User implementations of string functions are required. These execute less efficiently than
system implementations could.

2. Because programmers use strings all the time, many compilers are extended to support a
string type and some string functions. Using these extensions makes programs less portable
because the details of the extensions vary from compiler to compiler.

Including strings in the language makes a language more complex. Both the syntax and seman-
tic definitions become longer and require more extensive documentation. The minimal compiler
implementation is bigger. In the case of Pascal and strings, none of these reasons justify the
omission.

When language designers do decide to include a primitive type, they must extend the language
syntax for declarations, but they have some choices about how to include the operations on that
type. The meanings of operators such as “<” are usually extended to operate on elements of the
new type. New operators may also be added. Any specific function for the new type may be
omitted, added to the language core, or included in a library. The latter approach becomes more
and more attractive as the number of different primitive types and functions increases. A modular
design makes the language core simpler and smaller, and the library features do not add complexity
or consume space unless they are needed.

For example, exponentiation is a primitive operation that is important for much scientific com-
putation. Pascal, C, and FORTRAN all support floating-point encoding but have very unequal
support for exponentiation. In Pascal, exponentiation in base 10 is not supported by the standard
at all; it must be programmed using the natural logarithm and exponentiation functions (“ln”
and “exp”). In C, an exponentiation function, “pow”, is included in the mathematics library along
with the trigonometric functions. In contrast, FORTRAN's intended application was scientific com-

5.3. A BRIEF HISTORY OF TYPE DECLARATIONS 133

wkkn

putation, and the FORTRAN language includes an exponentiation operator, , as part of the

language core.

5.2.4 Emulation

The types required by a language definition may or may not be supported by the hardware of
machines for which that language is implemented. For example, Pascal requires the type “real”,
but floating-point hardware is not included on many personal computers. In such situations, data
structures and operations for that type must be implemented in software. Another example: fixed-
point arithmetic is part of Ada. This is no problem on hardware that supports packed-decimal
encoding, but on a strictly binary machine, an Ada translator must use a software emulation or
approximation of fixed-point arithmetic.

The representation for an emulated primitive type is a compromise. On the one hand, it should
be as efficient as possible for the architecture of the machine. On the other hand, it should conform
as closely as possible to the typical hardware implementation so that programs are portable. The
hardware version and the emulation should give the same answers!

When floating point is emulated, the exponent is sometimes represented as a 1-byte integer, and
the mantissa is represented by 4 or more bytes with an implied binary point at the left end. This
produces an easily manipulated object with good precision. A minimum of shifting and masking is
needed when this representation is used. However, it sometimes does not produce the same answers
as a 4-byte hardware implementation.

Other software emulations try to conform more closely to the hardware. Accurate emulation
of floating-point hardware is more difficult and slower, but has the advantage that a program will
give the same answers with or without a coprocessor. A good software emulation should try to
imitate the IEEE hardware standard as closely as possible without sacrificing acceptable efficiency
[Exhibit 5.12].

5.3 A Brief History of Type Declarations

The ways for combining individual data items into structured aggregates form an important part
of the semantic basis of any language.

5.3.1 Origins of Type Ideas

Types Were Based on the Hardware. The primitive types supported by the earliest languages
were the ones built into the instruction set of the host machine. Some aggregates of these types
were also supported; the kinds of aggregates differed from language to language, depending on both
the underlying hardware and the intended application area. In these old languages, there was an
intimate connection between the hardware and the language.

For example, FORTRAN, designed for numeric computation, was first implemented on the IBM
704. This was the first machine to support floating-point arithmetic. So FORTRAN supported one-

134 CHAPTER 5. PRIMITIVE TYPES

Exhibit 5.12. An emulation of floating point.

This is a brief description of the software emulation of floating point used by the Mark Williams
C compiler for the Atari ST (Motorola 68000 chip). Note that it is very similar to, but not quite
like, the IEEE standard shown in Exhibits 5.3 and 5.4.

Bit 31: Sign

Bits 30-23: Characteristic, base 2, bias 128

Bits 22-0: Normalized base 2 mantissa, implied high-order “1”, binary point immedi-
ately to the left of the implied “1”.

Binary Representation
Decimal Hex Sign Exponent Mantissa
0.00 | 00000000 0 00000000 .00000000 00000000 00000000

0.25 | 3F800000 01111111 .10000000 00000000 00000000
0.50 | 40000000 10000000 .10000000 00000000 00000000
1.00 | 40800000 10000001 .10000000 00000000 00000000
-1.00 | C0O800000 10000001 .10000000 00000000 OO000000

10.00 | 42200000 10000100 .10100000 00000000 00000000
5.00 | 41A00000 10000011 .10100000 00000000 00000000
2.50 | 41200000 10000010 .10100000 00000000 00000000
1.25 | 40A00000 10000001 .10100000 00000000 00000000

OO OO = O OO

word representations of integers and floating-point numbers. The 704 hardware had index registers
that were used for accessing elements of an array—so FORTRAN supported arrays.

COBOL was used to process business transactions and was implemented on byte-oriented “busi-
ness” machines. It supported aggregate variables in the form of records and tables, represented
as variable-length strings of characters. One could read or write entire COBOL records. This cor-
responded directly to the hardware operation of reading or writing one tape record. One could
extract a field of a record. This corresponded to a hardware-level “load register from memory”
instruction. The capabilities of the language were the capabilities of the underlying hardware.

“Type” was not a separate idea in COBOL. A structured variable was not an example of a
structured type—it was an independent object, not related to other objects. The structured variable
as a whole was named, as were all of its fields, subfields, and sub-subfields. To refer to a subfield,
the programmer did not need to start with the name of the whole object and give the complete
pathname to that subfield; it could be referred to directly if its name was unambiguous.

FORTRAN supported arrays, and COBOL supported both arrays (called “tables”) and records.
It would be wrong, though, to say that they supported array or record types, because the structure
of these aggregates was not abstracted from the individual examples of that structure. One could
use a record in COBOL, and even pass it to a subroutine, but one could not talk about the type of

5.3. A BRIEF HISTORY OF TYPE DECLARATIONS 135

Exhibit 5.13. Declaration and use of a record in COBOL.

We declare a three-level record to store data about a father. If other variables were needed to
store information about other family members, lines two through six would have to be repeated.
COBOL provides no way to create a set of uniformly structured variables. Field names could be
the same or different for a second family member. The prevailing style is to make them different
by using a prefix, as in F-FIRST below.

1 FATHER.
2 NAME.
3 LAST PIC X(20).
3 F-FIRST PIC X(20).
3 F-MID-INIT PIC X.
2 F-AGE PIC 99.

Assume that FATHER is the only variable with a field named F-FIRST, and that MOTHER also has
a field named LAST. Then we could store information in FATHER thus:

MOVE ’Charles’ TO F-FIRST. MOVE ’Brown’ TO LAST IN FATHER.

Note that the second line gives just enough information to unambiguously identify the field desired;
it does not specify a full pathname.

that record. Each record object had a structure, but that structure had no name and no existence
apart from the object [Exhibit 5.13].

LISP Introduced Type Predicates. LISP was the earliest high-level language to support dy-
namic storage allocation, and it pioneered garbage collection as a storage management technique.
In the original implementation of LISP, its primitive types, atom and list, were drawn directly from
the machine hardware of the IBM 704. An “atom” was a number or an identifier. A “list” was
a pointer to either an atom or a cell. A “cell” was a pair of lists, implemented by a single ma-
chine word. The 36-bit machine instruction word had four fields: operation code, address, index,
and decrement. The address and decrement fields could both contain a machine address, and the
hardware instruction set included instructions to fetch and store these fields.

Here again we see a close relationship between the language and the underlying hardware. This
two-address machine word was used to build the two-pointer LISP cell. The three fundamental
LISP functions, CAR, CDR, and CONS, were based directly on the hardware structure. CAR extracted
the address field of the cell, and CDR extracted the decrement field. (Note that the “A” in CAR and
the “D” in CDR came from “address” and “decrement”.) CONS constructed a cell dynamically and
returned a pointer to it. This cell was initialized to point at the two arguments of CONS.

Note that all LISP allocations were a fixed size—one word. Only one word was ever allocated at
a time. However, the two pointers in a cell could be used to link cells together into tree structures

136 CHAPTER 5. PRIMITIVE TYPES

of indefinite size and shape.

The concept of “type” was more fully developed in LISP than in FORTRAN or COBOL. Types
were recognized as qualities that could exist separately from objects, and LISP supported type
predicates, functions that could test the type of an argument at run time. Predicates were provided
for the types “atom” and “list”. These were essential for processing tree structures whose size and
shape could vary dynamically.

SNOBOL: Definable “Patterns”. SNOBOL was another language of the early 1960s. It was
designed for text processing and was the first high-level language that had dynamically allocated
strings as a primitive type. This was an important step forward, since strings (unlike arrays,
records, and list cells) are inherently variable-sized objects.

New storage management techniques had to be developed to handle variable-sized objects.
Variables were implemented as pointers to numbers or strings, which were stored in dynamically
allocated space. Dynamic binding, not assignment, was used to associate a value with a variable.
Storage objects were created to hold the results of computations and bound to an identifier. They
died when that identifier was reused for the result of another computation. A storage compaction
technique was needed to reclaim dead storage objects periodically. The simplest such technique is
called storage compaction. It involves identifying all live storage objects and moving them to one
end of memory. The rest of the memory then becomes available for reuse.

A second new data type was introduced by SNOBOL: the pattern. Patterns were the first
primitive data type that did not correspond at all to the computer hardware. A pattern is a
string of characters interspersed with “wild cards” and function calls. The language included a
highly powerful pattern matching operation that would compare a string to a pattern and identify
a substring that matched the pattern. During the matching process, the wild cards would be
matched against first one substring and then another, until the entire pattern matched or the
string was exhausted.’

COBOL permitted the programmer to define objects with complex structured data types but
not to refer to those types. LISP provided type predicates but restricted the user to a few primitive
types. PL/1 went further than either: its “LIKE” attribute permitted the programmer to refer to a
complex user-defined type.

PL/1 was developed in the mid-1960s for the IBM 360 series of machines. It was intended to be
the “universal” language that would satisfy the needs of both business and scientific communities.
For this reason, features of other popular languages were merged into one large, conglomerate
design. Arithmetic expressions resembled FORTRAN, and pointers permitted the programmer to
construct dynamically changing tree structures. Declarations for records and arrays were very much
like COBOL declarations.

Types could not be declared separately but were created as a side effect of declaring a structured
variable. Once a type was created, though, more objects of the same type could be declared by
saying they were LIKE the first object [Exhibit 5.14].

9Compare this to the pattern matching built into Prolog, Chapter 10, Section 10.4.

5.3. A BRIEF HISTORY OF TYPE DECLARATIONS 137

Exhibit 5.14. Using the LIKE attribute in PL/1.

The design of PL/1 was strongly influenced by COBOL. This influence is most obvious in the
declaration and handling of structures. Here we declare a record like the one in Exhibit 5.13. We
go beyond the capabilities of COBOL, though, by declaring a second variable, MOTHER, of the same
structured type.

DCL 1 FATHER,

2 NAME,
3 LAST CHAR (20),
3 FIRST CHAR (20),
3 MID-INIT CHAR (1),
2 F-AGE PIC ’997;

DCL 1 MOTHER LIKE FATHER;

To create unambiguous references, field names of both MOTHER and FATHER must be qualified
by using the variable name:

MOTHER.LAST = FATHER.LAST;

5.3.2 Type Becomes a Definable Abstraction

By the late 1960s, types were recognized as abstractions—things that could exist apart from any
instances or objects. The fundamental idea, developed by C. Strachey and T. Standish, is that a
type is a set of constructors (to create instances), selectors (to extract parts of a structured type),
and a predicate (to test type identity). Languages began to provide ways to define, name, and use
types to create homogeneous sets of objects. ALGOL-68 and Simula were developed during these
years.

Simula pioneered the idea that a type definition could be grouped together with the functions
that operate on that type, and objects belonging to the type, to form a “class”. Thus Simula was
the first language to support type modules and was a forerunner of the modern object-oriented
languages. 1°

ALGOL-68 contained type declarations and very carefully designed type compatibility rules.
The type declarations defined constructors (specifications by which structured variables could be
allocated), selectors (subscripts for arrays and part names for records), and implicit type predicates.
Type identity was the basis for extensive and carefully designed type checking and compatibility
rules. Some kinds of type conversions were recognized to be (usually) semantically valid, and so
were supported. Other type relationships were seen as invalid. The definition of the language
was immensely complex, partly because of the type extension and compatibility rules, and partly
because the design goal was super-generality and power.

10See Chapter 17 for a discussion of object-oriented languages.

138 CHAPTER 5. PRIMITIVE TYPES

Reactions to Complexity: C and Pascal

Two languages, C and Pascal, were developed at this time as reactions against the overwhelming
size and complexity of PL/1 and ALGOL-68. These were designed to achieve the maximum amount
of power with the minimum amount of complexity.

C moved backwards with respect to type abstractions. The designers valued simplicity and
flexibility of the language more than its ability to support semantic validity. They adopted type
declarations as a way to define classes of structured objects but omitted almost all use of types
to control semantics. C supported record types (structs and unions) with part selectors and
arrays with subscripting. Record types were full abstractions; they could be named, and the names
used to create instances, declare parameters, and select subfields. Arrays, however, were not fully
abstracted, independent types; array types could not be named and did not have an identity that
was distinct from the type of the array elements.

The purpose of type declarations in C was to define the constructors and selectors for a new
type. The declaration supplied information to the compiler that enabled it to allocate and access
compound objects efficiently. The field names in a record were translated into offsets from the
beginning of the object. The size of the base type of an array became a multiplier, to be applied to
subscripts, producing an offset. At run time, when the program selected a field of the compound,
the offset was added to the address of the beginning of the compound, giving an effective address.

At this period of history, types were not generally used as vehicles for expressing semantic
intent. Except for computing address offsets, there were very few contexts in early C in which the
type of an object made a difference in the code the translator generated.'’ Type checking was
minimal or nonexistent. Thus C type declarations did not define type predicates. Type identity
was not, in general, important. The programmer could not test it directly, as was possible in LISP,
nor was it checked by the compiler before performing function calls, as it is in Pascal.!?

Niklaus Wirth, who participated in the ALGOL-68 committee for some time, designed Pascal to
prove that a language could be simple, powerful, and semantically sound at the same time.'? Pascal
retained both the type declarations and type checking rules of ALGOL-68 and achieved simplicity
by omitting ALGOL-68's extensive type conversion rules. The resulting language is more restrictive
than C, but it is far easier to understand and less error prone.

Ada: The Last ALGOL-Like Language?

In the late 1960s, the U.S. Department of Defense (DoD) realized that the lack of a common
computer language among its installations was becoming a major problem. By 1968, small-scale
research efforts were being funded to develop a core language that could be extended in various
directions to meet the needs of different DoD groups. Design goals included generality of the core
language, extensibility, and reasonable efficiency.

"' The exception was automatic conversions between numeric types in mixed expressions.
2Type checking and the semantic uses of types are discussed at length in Chapter 15.
131t is said that he never dreamed that Pascal would achieve such widespread use as a teaching language.

5.3. A BRIEF HISTORY OF TYPE DECLARATIONS 139

In the early 1970s, DoD decided to strictly limit the number of languages in use and to begin
design of one common language. A set of requirements for this new language were developed by
analyzing the needs of various DoD groups using computers. Finalized in 1976, these requirements
specified that the new language must support modern software engineering methods, provide supe-
rior error checking, and support real-time applications. After careful consideration, it was decided
that no existing language met these criteria.

Proposals were sought in 1977 for an ALGOL-like language design that would support reliable,
maintainable, and efficient programs. Four proposals were selected, from seventeen submitted, for
further development. One of these prototype languages was selected in 1979 and named Ada. Major
changes were made, and a proposed language standard was published in 1980.

Ada took several major steps forward in the area of data types. These included

e Cleaner type compatibility rules.
e Explicit constraints on the values of a type.
e Support for type portability.

e Types treated as objects, in a limited way.

Ada was based on Pascal and has similar type compatibility rules. These rules are an important
aid to achieving reliable programs. However, Pascal is an old language, and its compatibility rules
have “holes”; some things are compatible that, intuitively, should not be. Ada partially rectified
these problems.

The idea of explicit constraints on the values belonging to a type was present in Pascal in the
subrange types. In Ada, this idea is generalized; more kinds of constraints may be explicitly stated.
These constraints are automatically checked at run time when a value is stored in a constrained
variable.

In the older languages, the range of values belonging to a type often depended on the hardware
on which a program ran. A program, debugged on one computer, often ran incorrectly on another.
By providing a means to specify constraints, Ada lets the programmer explicitly state data char-
acteristics so that appropriate-sized storage objects may be created regardless of the default data
type sizes on any given machine. A programmer can increase the portability of code substantially
by using constrained types.

A Pascal type can be used to declare a parameter, but it cannot be a parameter. Ada carries
the abstraction of types one step further. Ada supports modules called generic packages. These are
collections of declarations for types, data, and functions which depend on type parameters and/or
integer parameters. Each type declaration in a generic package defines a generic type, or a family
of types, and must be instantiated, or expanded with specific parameters, to produce a specific type
declaration during the first phase of compilation.'® Thus although the use of type as parameters
is restricted to precompile time, Ada types are objects in a restricted sense.

T achieve efficiency, Ada permits this checking to be “turned off” after a program is considered fully debugged.
158ee Chapter 17.

140

CHAPTER 5. PRIMITIVE TYPES

Recent Developments

Since the early 1980s, data type research has been directed toward implementing abstract data
types, type hierarchies with inherited properties, and implementing nonhomogeneous types in a
semantically sound way. These issues are covered in Chapter 17.

Exercises
1. Define: bit, byte, word, long word, double word.
2. What is unique about logical instructions?
3. How are objects represented in the computer? Explain.
4. What is the purpose of computer codes? Explain.
5. What were the dissatisfactions with early computer codes?
6. What was the difference between the memory of a business and a scientific computer?
7. What is packed decimal? How is it used?
8. What is an unsigned number? How is it represented in memory?
9. What is sign and magnitude representation? One’s complement? Two’s complement?
10. How are negative numbers represented in modern computers?
11. What is a floating-point number? What are the problems associated with the representation
of floating-point numbers?
12. Name the computer that you use. For each number below, give the representation (in binary)
that is used on your computer.
a. The largest 32-bit integer
b. The largest positive floating-point number
c. Negative one-half, in floating-point
d. The smallest positive float (closest to zero)
e. The negative floating-point number with the greatest magnitude
13. Even though FORTH does not contain semantic mechanisms that implement subscripting,
array bounds, or variables with multiple “slots”, it can be said that FORTH “has” arrays.
Explain.
14. What is a data type? Type declaration? Type description?

5.3. A BRIEF HISTORY OF TYPE DECLARATIONS 141
15. Compare the way that the type of an object is represented in Pascal and in APL. Point out
similarities and differences.
16. What is a specific data type? Generic data type?
17. Explain the three attributes of a data type: encoding, size, and structure.
18. What determines the set of primitive data types associated with a language?
19. What is the usual set of primitive types associated with a language?
20. What is type emulation? Why is it needed?
21. How were types supported by the earliest languages? Give a specific example.
22. How is type represented in COBOL? LISP? SNOBOL?
23. Compare the pattern matching in SNOBOL to the database search in Prolog.
24. What is type checking? Type compatibility?
25. What are value constructors? Selectors?
26. What new ideas did Simula pioneer?
27. Why was Ada developed?

28. What major steps in the area of data typing were used in Ada?

142 CHAPTER 5. PRIMITIVE TYPES

Chapter 6

Modeling Objects

Overview

This chapter creates a framework for describing the semantics and implementation of
objects so that the semantics actually used in any language can be understood and the
advantages and drawbacks of the various implementations can be evaluated.

We assume the reader is familiar with the use of objects such as variables, constants,
pointers, strings, arrays, and records. When we survey the popular programming lan-
guages, we see a great deal of commonality in the semantics of these things in all lan-
guages. There are also important differences, sometimes subtle, that cause languages
to “feel” different, or require utterly different strategies for use. A program object em-
bodies a real-world object within a program. The program object is stored in a storage
object, a collection of contiguous memory cells. Variables are storage objects that store
pure values; pointer variables store references.

Initialization and assignment are two processes that place a value in a storage object.
Initialization stores a program object in the storage object when the storage object is
created. Assignment may be destructive or coherent. FExtracting the contents from a
storage object is known as dereferencing. Assignment and dereferencing of pointer vari-
ables usually yield references to ordinary variables rather than pure values. Managing
computer memory involves creating, destroying, and keeping storage objects available.
Three strategies are static storage, stack storage, and heap storage.

143

144 CHAPTER 6. MODELING OBJECTS

Exhibit 6.1. Representing objects.

External object: a length of 2" by 4" lumber.
Program object: a 32-bit floating-point value.
Storage object: a memory location with four consecutive bytes reserved for this number.

External object: a charge account.
Program object: a collection of values representing a customer’s name, address,
account number, billing date, and current balance.
Storage object: a series of consecutive memory locations totaling 100 bytes.

6.1 Kinds of Objects

A program is a means of modeling processes and objects that are external to the computer. Fxternal
objects might be numbers, insurance policies, alien invaders for a video game, or industrial robots.
Each one may be modeled in diverse ways. We set up the model through declarations, allocation
commands, the use of names, and the manipulation of pointers. Through these, we create objects
in our programs, give them form, and describe their intended meaning. These objects are then
manipulated by the functions and operators of a language.

We start by making a distinction between the memory location in which data is stored and the
data itself. The ways of getting data into and out of locations are explored.

A program object is the embodiment of an object in the program. It may represent an external
object, such as a number or a record, in which case it is called a pure value. It may also represent
part of the computer system itself, such as a memory location, a file, or a printer. During execution,
the program manipulates its program objects as a means of simulating meaningful processes on
the external objects or controlling its own internal operations. It produces usable information from
observed and derived facts about the program objects.

A program commonly deals with many external objects, each being represented by a pure value
program object [Exhibit 6.1]. While all the external objects exist at once, their representing program
objects can be passed through the computer sequentially and so do not have to be simultaneously
present. For example, an accounting program deals with many accounts. Representations of these
accounts are put in some sequence on an input medium and become program objects one at a time.

In order to manipulate program objects, the program must generally store all or part of a
program object in memory. It uses a storage object for this purpose. A storage object is a collection
of contiguous memory cells (bits, bytes, etc.) in which a program object, called its value or contents,
can be stored.!

A reference is the memory address of a storage object and is the “handle” by which the object

LA storage object sometimes encompasses more cells than are needed to store the value. These cells, commonly
added to achieve word alignment, are called padding.

6.1. KINDS OF OBJECTS 145

Exhibit 6.2. Values, variables, and pointers.

The relationship between storage objects and program objects is illustrated. Boxes represent
storage objects, letters represent pure values of type “character”, small circles (o) from which arrows
emerge represent references, and dotted lines represent dereferencing.

-0 Areferencetoa
pointer variable

102
A pointer variable: m —~0 Areferenceto
136 a variable
1% ' /

A pure value -
array 3 of char

A variable -
array 3 of char :

C
A contains
T

= (> |0

is accessed. In older terminology, a pure value is called an r-value or right-hand-value, because it
can occur to the right of an assignment operator. A reference is called an [-value or left-hand-value.
A reference is created when a storage object is allocated. This reference is itself a program object
and may be stored in another storage object for later use [Exhibit 6.2]. A program must possess a
reference to a program object in order to use that object.

The allocation process sets aside an area of unused computer memory to make a new storage
object. The process is essentially the same whether it is being carried out by an interpreter, which
does the allocation at run time when the command is interpreted, or by a compiler, which deals
with addresses of the storage objects that will be allocated at some future time when the program
is executed.

Allocation procedures are usually part of the implementation of a language, not part of the
language definition, so the actual allocation process often differs from one translator to the next,
as well as from one language to the next. Typically, though, the allocation process will include the
following actions:

1. The translator must determine /N, the number of bytes of memory that are needed. In some
languages the programmer communicates this information by specifying the data type of the
new object. Size, in bytes, is calculated by the translator and stored as part of the definition
of a type. In lower-level languages the programmer specifies the allocation size explicitly.

2. A segment of free storage is located with length L > N. A reference to the first location in
this segment is saved.

3. The address of the beginning of the free storage area is incremented by NN, thus removing N

146 CHAPTER 6. MODELING OBJECTS

bytes from free storage.
4. If an initial value was defined, it is stored in the new storage object.

5. The address, or reference, saved in step 2 is returned as the result of the allocation process.
It is the means by which the program is able to find the new storage object.

A wariable is a storage object in which a pure value may be stored. Pure values and the
variables in which they are stored have the same size and structure and are considered to be the
same data type in many languages. We distinguish between them here because they have very
different semantics. Operations you can perform with variables are to allocate and deallocate them
and to fetch values from and store values into them. In contrast, pure values can be combined and
manipulated with operators and functions, but not allocated and deallocated.

A pointer variable is a storage object, or part of a storage object, in which a reference may
be stored. (Often this term will be shortened to “pointer”.) Pointers are used to create storage
structures such as game trees and linked lists and are an important means of modeling external
objects.

6.2 Placing a Value in a Storage Object

6.2.1 Static Initialization

A storage object receives a value by one of two processes: initialization or assignment. Until a value
is stored in a storage object, it is said to contain garbage, or to have an undefined value. (When we
wish to indicate an undefined value we will write “?”.)

Using an undefined value is a commonly made semantic error which generally cannot be detected
by a language translator. For this reason some translators initialize all variables to zero, which is the
most commonly useful initial value, or to some distinctive bit pattern, so that the semantic error can
be more easily detected. It is poor programming practice to depend on such automatic initialization,
however. Different translators for the same language may implement different initialization policies,
and the program that depends on a particular policy is not portable.

Initialization stores a program object in the storage object when the storage object is created.
Many languages permit the programmer to include an initializing clause in an object declaration.
Typical declaration forms are shown in Exhibits 6.3 and 6.4. In each exhibit, declarations are given
for an integer variable, a character string, and an array of real numbers, and initial values are
declared for each.

Initializing compound objects, such as arrays and records, is restricted or not allowed in some
languages. Two problems are involved here: how to denote a structured value, and how to imple-
ment initialization of dynamically allocated structured objects. The FORTRAN and C examples
[Exhibits 6.3 and 6.4] illustrate two approaches to defining the structure of the initializer.

In FORTRAN, the programmer writes an explicit loop or nest of loops which specify the order
in which the fields of an array will be initialized and then provides a series of constants that will

6.2. PLACING A VALUE IN A STORAGE OBJECT 147

Exhibit 6.3. Initial value declarations in FORTRAN.

CHARACTER*3 EOQOFLAG
DIMENSION A (8)
DATA EOFLAG, ISuM / °NO ’, O/, (A(I), I=1,8) / 8.2, 2.6, 3.1, 17.0, 4 *x 0.0 /

Notes:

e In FORTRAN, simple integers and reals may be declared implicitly. Explicit declarations
must be given for arrays and strings.

e Initial values are given in separate DATA declarations which must follow the statements that
declare the storage objects.

e A single DATA statement can initialize a list of objects. It must contain exactly as many
initial values as fields to be initialized. Initial values may be repeated by using a repeat count

with a .

e An array may be initialized by giving a loop-controlling expression.

Exhibit 6.4. Initial value declarations in C.

static char end_of_file_flag [] = "no ";
int isum =
static float al8]

)

I ol

{8.2, 2.6, 3.1, 17.0};

Notes:
e In C an initial value may be given as part of a variable declaration.

e Static arrays can be initialized by listing the correct number of values for the array enclosed
in brackets. (The property “static” is explained in Section 6.3.)

e The programmer may omit the array length specifier from the declaration, as in the top line,
and the length of the storage object will be deduced from the length of the initial value list.

e If too few initializers are given to fill an array, remaining elements are initialized to zero.

148 CHAPTER 6. MODELING OBJECTS

evaluate to the desired initial values. A repetition count can be specified when several fields are
to be initialized to the same value. Part or all of an array may be initialized this way. This is a
powerful and flexible method, but it does complicate the syntax and semantics of the language.

Contrast this to a C initializer. Its structure is denoted very simply by enclosing the initial
values in brackets, which can be nested to denote a type whose fields are themselves structured
types. The same simple syntax serves to initialize both records and arrays. Initializers can be
constants or constant expressions; that is, expressions that can be evaluated at compile time. In
some ways, this is not as flexible a syntax as FORTRAN provides. If any field of a C object is
initialized, then all fields will be initialized. If the same nonzero value is to be placed in several
fields, it must be written several times. The one shortcut available is that, if the initializer has too
few fields, the remaining fields will default to an initial value of zero.

It is likely that the designers of C felt that FORTRAN initializers are too flexible—that they
provide unnecessary flexibility, at the cost of unnecessary complication. Applying something akin
to the principle of Too Much Flexibility, they chose to include the simpler, but still very useful,
form in C.

All data storage in FORTRAN is created and initialized at load time. A translator can evaluate
the constant expressions in an initializer and generate store instructions to place the resulting
values into storage when the program code is loaded. Modern languages, though, support dynamic
allocation of local variables in stack frames. (These are called “automatic” variables in C.) The
initialization process for automatic variables is more complex than for static variables.

Suppose a function F' contains a declaration and initializations for a local array, V. This array
cannot be initialized at load time because it does not yet exist. The translator must evaluate the
initializing expressions, store the values somewhere, and generate a series of store instructions to
be executed every time F' is called. These copy precomputed initial values into the newly allocated
area. This process was considered complex enough that the original definition of C simply did not
permit initialization of automatic arrays. ANSI C, however, supports this useful facility.

6.2.2 Dynamically Changing the Contents of a Storage Object
Destructive Assignment.

In many languages, one storage object can be used to store different program objects at different
times. Assignment is an operation that stores a program object into an existing storage object and
thus permits the programmer to change the value of a storage object dynamically. This operation
is sometimes called destructive assignment because the previous contents of the storage object are
lost. The storage object now represents a different external object, and we say that its meaning
has changed.

Functional languages are an important current research topic. The goal of this research is to
build a language with a clean, simple semantic model. Destructive assignment is a problem because
it causes a change in the meaning of the symbol that names the storage object. It complicates a
formal semantic model considerably to have to deal with symbols that mean different things at

6.2. PLACING A VALUE IN A STORAGE OBJECT 149

Exhibit 6.5. Initializing and copying a compound object in Pascal.

Pascal declarations are given below for a record type named “person” and for two person-
variables, a and b. In Pascal, compound objects cannot be initialized coherently, so three assign-
ments are used to store a record-value into b. On the other hand, records can be assigned coherently,
as shown in the last line, which copies the information from b to a.

TYPE person = RECORD age, weight: integer; sex: char END;
VAR a, b : person;

BEGIN
b.age := 10;
b.weight := 70;
b.sex := 'M’;
a := b;

END;

different times.

In a functional language, parameter binding is used in place of destructive assignment to asso-
ciate names with objects. At the point that a Pascal programmer would store a computed value in
a variable, the functional programmer passes that value as an argument to a function. The actions
following the assignment in the Pascal program, and depending on it, would form the body of the
function. A series of Pascal statements with assignment gets turned “outside in” and becomes a
nest of function calls with parameter bindings.?2 This approach produces an attractive, semanti-
cally clean language because the parameter name has the same meaning from procedure entry to
procedure exit.

Coherent Assignment. An array or a record is a compound object: a whole made up of parts
which are objects themselves. Some but not all programming languages permit coherent assignment
of compound objects. In such languages an entire compound variable is considered to be a single
storage object, and the programmer can refer to the compound object as a whole and assign
compound values to it [Exhibits 6.5 and 6.7].

In COBOL any kind of object could be copied coherently. It is even possible to use one coherent
READ statement to load an entire data table from a file into memory. In most older languages,
though, assignment can only be performed on simple (single-word) objects. An array or a record
is considered to be a collection of simple objects, not a coherent large object. The abstract process
of placing a compound program object into its proper storage object must be accomplished by a
series of assignment commands that store its individual simple components.

2A deeply nested expression can look like a “rat’s nest” of parentheses; deep nesting is avoided by making many
short function definitions.

150 CHAPTER 6. MODELING OBJECTS

Exhibit 6.6. Initializing and copying a compound object in K&R C.

A record type named “person” is defined, and two person-variables, a and b, are declared. The
variable b is initialized by the declaration and copied into a by the assignment statements.

The property “static” causes the variable to be allocated in the program environment rather
than on the stack, so that it can be initialized at load time. K&R C did not support initialization
of dynamically allocated structured objects.

typedef struct {int age, weight; char sex;} person;
static person a, b = {10, 70, ’M’};
{ a.age = b.age;

a.weight = b.weight;

a.sex = b.sex;

!

An example of the lack of coherent assignment can be seen in the original Kernighan and Ritchie
definition of C. Coherent assignment was not supported; to copy a record required one assignment
statement for each field in the record. Thus three assignments would be required to copy the
information from b to a in Exhibit 6.6. However, coherent initialization of record variables was
supported, and b could be initialized coherently.

Even in languages that support coherent compound assignment, the programmer is generally
permitted to assign a value to one part of the compound without changing the others. In such
situations, care must always be taken to ensure that a compound storage object is not left containing
parts of two different program objects!

Exhibit 6.7. Initializing and copying a compound object in ANSI C.

This example is written in ANSI C, which is newer than both K&R C and Pascal. The difference
between this and the clumsier versions in Exhibits 6.5 and 6.6 reflects the growing understanding
that coherent representations and operations are important.

The type and object declarations are the same in both versions of C, as are initializations. But
compound objects can be assigned coherently in ANSI C; so only one assignment is required to copy
the information from b to a. Further, dynamically allocated (automatic) structs may be initialized

in ANSI C.

typedef struct {int age, weight; char sex;} person;
person a, b = {10, 70, ’M’};

{a=0b; ...}

6.2. PLACING A VALUE IN A STORAGE OBJECT 151

Exhibit 6.8. Languages where assignment is a statement.

A “yes” in the third column indicates that compound objects (such as arrays and records) may
be assigned coherently, as a single action. A “yes” in the fourth column indicates that one ASSIGN
statement may be used to store a value in several storage objects.

Compound Multiple

Language Assignment Symbol Assignment? Assignment?
COBOL MOVE yes yes
= (in a COMPUTE statement) no yes
ADD, SUBTRACT, MULTIPLY, DIVIDE no yes
FORTRAN = no no
ALGOL = no no
PL/1 = yes yes
FORTH ! no no
Pascal = yes no
Ada = yes no

Assignment Statements versus Assignment as a Function. Assignment is invoked either
by writing an explicit ASSIGN operator or by calling a READ routine. In either case, two objects
are involved, a reference and a value. The reference is usually written on the left of the ASSIGN
operator or as the parameter to a READ routine, and the value is written on the right of the
ASSIGN or is supplied from an input medium.

Assignment is one of a very small number of operations that require a reference as an argument.
(Others are binding, dereference, subscript, and selection of a field of a record.) The purpose of an
assignment is to modify the information in the computer’s memory, not to compute a new value. It is
the only operation that modifies the value of existing storage objects. For this reason, ASSIGN and
READ occur in many languages as statement types or procedures rather than as functions. Exhibit
6.8 lists the symbols and semantics for the ASSIGN statements in several common programming
languages.

In other languages, ASSIGN is a function that returns a result and may, therefore, be included
in the middle of an expression. Exhibit 6.9 shows ASSIGN functions in common programming
languages. LISP returns the reference as the result of an assignment. C returns the value, so that
it may be assigned to another storage object in the same expression or may be used further in
computing the value of an enclosing expression. Exhibit 6.10 demonstrates how one assignment
can be nested within another.

When ASSIGN returns a value, as in C, a single expression may be written which assigns that
value to several storage objects. We call this multiple assignment. While this facility is not essential,
it is often useful, especially when several variables need to be zeroed out at once. The same end is
achieved in other languages, such as COBOL, by introducing an additional syntactic rule to allow

152 CHAPTER 6. MODELING OBJECTS

Exhibit 6.9. Languages where assignment is a function.

A “yes” in the third column indicates that compound objects (such as arrays and records) may
be assigned coherently, as a single action.

Compound Result

Language Assignment Symbol Assignment? Returned
LISP replaca, replacd some versions reference
APL — (also used for binding) yes value
C(1973) = no value
C (ANSI) = yes value

an ASSIGN statement to list references to several storage objects, all of which will receive the single
value provided.

6.2.3 Dereferencing

Dereferencing is the act of extracting the contents from a storage object. It is performed by the
FETCH operation, which takes a reference to a storage object and returns its value. When a pointer
variable is dereferenced, the result is another reference. This could be a reference to a variable,
which itself could be dereferenced to get a pure value, or it could be a reference to another pointer,
and so forth.

Whereas ASSIGN is always written explicitly in a language, its inverse, FETCH, is often invoked
implicitly, simply by using the name of a storage object. Many languages (e.g., FORTRAN, Pascal,
C, COBOL, BASIC, LISP) automatically dereference a storage object in any context where a program

Exhibit 6.10. Assignment as a function in C.

An array length is defined as a constant at the top of the program to facilitate modifications.
Then the array “ar” is declared to have 100 elements, with subscripts from 0 to 99. Two integers
are declared and set to useful numbers: num_elements holds the number of elements in the array,
and high_sub holds the subscript of the last element.

#define MAXLENGTH 100
float ar[MAXLENGTH 1];
int high_sub, num_elements;
high_sub = (num_elements = MAXLENGTH) - 1;

The last line contains two assignments. The constant MAXLENGTH is stored into the variable
num_elements, and it is also returned as the result of the assignment function. This value is then
decremented by one, and the result is stored in high_sub.

6.2. PLACING A VALUE IN A STORAGE OBJECT 153

Exhibit 6.11. Dereferencing by context in Pascal.

We analyze the dereferences triggered by evaluating this expression:
xarray[point_17.number] := eval_function(point_2) ;
Assume the objects referenced have the following types:

xarray: An array of unspecified type.
point_1, point_2: Pointer to a record with a field called “number”.
eval_function: A function taking one pointer parameter and returning something of
the correct type to be stored in xarray.

A variety of dereference contexts occur. Contexts (1), (3), and (4) occur together on the left,
as do contexts (2) and (5) on the right.

Reference | Is it dereferenced here?

xarray No, it is on the left of a := operator.

point_1 | Yes, explicitly, by the T operator. Although this is part of a subscript ex-
pression, explicit dereference must be used because pointer variable names
are not dereferenced in a pointer expression.

point_2 | You cannot tell from this amount of context. It will not be dereferenced if
the function definition specifies that it is a VAR parameter. If VAR is not
specified, it will be automatically dereferenced.

object is required. Thus a variable name written in a program sometimes “means” a reference and
sometimes a pure value, depending on context. This introduces complexity into a language. You
cannot just see a symbol, as in lambda calculus, and know what it means. You must first examine
where it is in the program and how it is used. To define the dereferencing rules of a language,
contexts must be enumerated and described. The commonly important contexts are:

The left-hand side of an assignment operator.

The right-hand side of an assignment operator.

Part of a subscript expression.

A pointer expression.

A

A parameter in a function or procedure call.

Note that these contexts are not mutually exclusive but can occur in a confusing variety of com-
binations, as shown in Exhibit 6.11. Many other combinations of dereferencing contexts are, of
course, possible.

Whether or not a reference is dereferenced in each context varies among languages. In context
(1) dereferencing is never done, as a reference is required for an ASSIGN operation. But when a
subscript expression (3) occurs in context (1), dereferencing will happen within the subscript part

154 CHAPTER 6. MODELING OBJECTS

Exhibit 6.12. Explicit dereferencing in FIG FORTH.

All FORTH expressions are written in postfix form, so you should read and interpret the oper-
ators from left to right. The FETCH operator is “@”. It is written following a reference and extracts
the contents from the corresponding storage object.

On lines 1 and 2, variables named XX and Y are declared and initialized to 13 and 0, respectively.
Line 3 dereferences the variable XX and multiplies its value by 2. The result is stored in Y, which
is not dereferenced because a reference is needed for assignment.

1 13 VARIABLE XX
2 O VARIABLE Y
3 XX@2x*Y ! (Same as Y = XX * 2 in FORTRAN.)

The expression XX 2 * would multiply the address, rather than the contents, of the storage
object named XX by 2.

of the expression (the subscripted variable itself will not be dereferenced). In contexts (2) and (3)
most languages will automatically dereference, as long as the situation does not also involve context
(4).

In context (4) languages generally do not dereference automatically. They either provide an
explicit FETCH operator or combine dereferencing with other functions. Examples of FETCH op-
erators are the Pascal “1” and C “x¥”. Examples of combined operators are “->” in C, which
dereferences a pointer and then returns a reference to a selected part of the resulting record, and
“car” and “cdr” in LISP, which select a part of a record and then dereference it.

In context (5), there is no uniformity at all among languages. The particular choices and
mechanisms used in various languages are discussed fully in Chapter 8, Section 8.4, and Chapter
9, Section 9.2.

There are also languages in which storage objects are never automatically dereferenced, the
most common being FORTH. In such languages the dereference command must be written explicitly
using a dereference operator (“@Q” in FORTH) [Exhibit 6.12]. The great benefit of requiring explicit
dereference is simplicity. A variable name always means the same thing: a reference. Considering
the kind of complexity (demonstrated above) that is inherent in deriving the meaning of a reference
from context, it is easy to understand the appeal of FORTH’s simple method. The drawback of
requiring explicit dereference is that an additional symbol must be written before most uses of a
variable name, adding visual clutter to the program and becoming another likely source of error
because dereference symbols are easily forgotten.

6.2.4 Pointer Assignment

Pointer assignment is ordinary assignment where the required reference is a reference to a pointer
variable and the value is itself a reference, usually to an ordinary variable. Languages that support
pointer variables also provide a run-time allocation function that returns a reference to the newly

6.2. PLACING A VALUE IN A STORAGE OBJECT 155

Exhibit 6.13. Pointer assignments in Pascal.

We assume the initial state of storage shown in FExhibit 6.14.

TYPE list = Tcell;
cell = RECORD value:char; link:1list END;
VAR P1, P2, P3: 1list;

Code ‘ Comments

P2 .= P1; Dereference P1 and store its value in P2.

P3 := P1 7.link; | Dereference P1, select its link field, which is a pointer variable, and
dereference it. Store the resulting reference in P3.

P1, P2, and P3 all share storage now. We can refer to the field containing the % as
P27.linkl.value or as P37.value. Note that a pointer must be explicitly dereferenced, us-
ing T, before accessing a field of the object to which it points.

allocated storage. This reference is then assigned to a pointer variable, which is often part of a
compound storage object. Pointer assignment allows a programmer to create and link together
simple storage objects into complex, dynamically changing structures of unlimited size.

Multiple pointers may be attached to an object by pointer assignment. The program object
of a pointer is a reference to another storage object. When the pointer assignment P2 := P1 is
executed, the program object P1, which is a reference to some object, Celll, is copied into the
storage object of P2, thus creating an additional pointer to Celll and enabling P2 as well as P1
to refer to Celll. Thus two objects now store references to one storage object, and we say they
“share” storage dynamically. This is illustrated in Exhibits 6.13 and 6.14.

While such sharing is obviously useful, it creates a complex situation in which the contents of
the storage structure attached to a name may change without executing an assignment to that
name. This makes pointer programs hard to debug and makes mathematical proofs of correctness
very hard to construct. Many programmers find it impossible to construct correct pointer programs

Exhibit 6.14. Pointer structures sharing storage.

Storage, diagrammed before and after the pointer assignments in Exhibit 6.13.

Before: After:

P1 P2 P3 P1 P2 P3
y | \ y \ y
L] [2] [?72] Lal] Lol Le]

|
< N /7
(ST o =[] o =[] (] o Je%[o[8[o]

156 CHAPTER 6. MODELING OBJECTS

Exhibit 6.15. Pointer assignments with dereference in C.
The right side of the assignment is dereferenced if it evaluates to a structure or a simple object.

typedef struct { int age; float weight; } body;

body s; /* A variable of type ‘body’. */
body *ps, *gs; /* Two pointers to bodies. */

int k; /* An integer variable. */

int *p, *q; /* Two pointers to integers. x*/

p = &k; /* Store the address of k in p, that is, make p point at k.

Note: the & operator prevents automatic dereferencing. */
ps = &s; /* Make ps point at s. */

q = p; /* Dereference p to get the address stored in p, and store
that address in q, making q point at the same thing as p. */

gs = ps; /* Make gs point at the same thing as ps. */

Kk

S
¥ i
P oF—T17] m= o0 & [102 |

q»E—/ qs»E—/

without making diagrams of their storage objects and pointer variables.

6.2.5 The Semantics of Pointer Assignment

There are two likely ways in which a pointer assignment could be interpreted: with and without
automatic dereferencing of the right-hand side. Pascal does dereference, as is shown in Exhibit
6.13. In such a language the statement Q := P is legal if P and Q are both pointers. This makes Q
point at whatever P is pointing at. The assignment P := K is illegal if P is a pointer and K is an
integer. Exhibit 6.15 shows several pointer assignments in C where the right side is dereferenced.
In a hypothetical language, “:=" could be defined such that the assignment “p := k” would
be legal and would make p point at k. In this case, pointer assignment is interpreted without
dereferencing the right side. In such a language we could create a chain of pointers as follows:

k := 5.4; -- k is type float.
P := k; -— p must be type pointer to float.
q = p; -- q must be type pointer to pointer to float.

These assignments, taken together, would construct a pointer structure like this:

6.2. PLACING A VALUE IN A STORAGE OBJECT 157

Exhibit 6.16. Pointer assignment without dereference in C.

We declare an integer variable, k; integer pointers, pl and p2; an array of five integers, a; a
function that returns an integer, f; and a pointer to a function that returns an integer, p3.
The right side of a C assignment is not dereferenced if it refers to an array or a function.

int k, *pl, *p2, a[5], £(), *p30);

pl = &k; /* Make pl point at k. */
P2 = a; /* Make p2 point at the array. Note absence of "&".*/
p2 = &al0]; /* Make p2 point at the address of the zeroth element of the
array. This has the same effect as the line above. */
p3 = £; /* Store a reference to the function f in pointer p3.
Note that f is not dereferenced.*/
Kk

f
' v
pi=_c | | I Machine code

a
¥

el o—{ [[[[]
al0] a[1] a[2] af3] a4]

Note that “p2 = &a;” is syntactically incorrect because the name of an array means the address
of its zeroth element. One must either omit the “&” or supply a subscript.

Q P K
Y Y

v
[

Exhibit 6.16 shows pointer assignments in C which set pointers to an array and a function. In
these contexts, in C, the right side will not be dereferenced.

While either interpretation of pointer assignment could make sense, we would expect to see
either one or the other used consistently in a language. One of the unusual and confusing facets of
C is that the semantics of pointer assignment depends on the type of the expression on the right.
If it denotes a simple object (such as an integer or a pointer) or an object defined as a struct,
automatic dereferencing is used [Exhibit 6.15]. If the right-hand object is an array or a function,
the second meaning, without dereferencing, is implemented [Exhibit 6.16].

158 CHAPTER 6. MODELING OBJECTS

6.3 The Storage Model: Managing Storage Objects

The differences among languages are easier to understand when the underlying mechanisms are
known. A key part of any translator is managing the computer memory; storage objects must be
created, kept available, and destroyed when appropriate. Three storage management strategies are
in common use with all three present in some translators, but only one in others. These are static
storage and two kinds of dynamic storage: stack storage and heap storage.

6.3.1 The Birth and Death of Storage Objects

A storage object is born when it is allocated, and it dies when it is no longer available for use by
the program. The lifetime, or extent, of a storage object is the span of time from its birth to its
death. An object that lives until the program is terminated is immortal. Most objects, however, die
during program execution. It is a semantic error to attempt to reference a storage object after it
has died. The run-time system will typically reuse the formerly occupied storage for other purposes,
so references to a dead object will yield unpredictable results.

Deallocation is the recycling process by which dead storage objects are destroyed, and the
storage locations they occupied are made available for reuse by the allocation process. Deallocation
happens sometime, often not immediately, after death.

All live objects must be simultaneously in the computer’s virtual memory. Real computers have
limited memory, so it is important that the lifetimes of objects correspond to the period of time
during which they are actually needed by the program. By having an object die when it is no
longer useful, we can recycle the storage it formerly occupied. This enables a program to use a
larger number of storage objects than would otherwise fit into memory.

Static Storage Objects

A compiler plans what storage objects will be allocated to a program at load time, and when the
object code will be copied into computer memory, linked, and made ready to run. Such objects
are allocated before execution begins and are immortal. These are called static storage objects
because they stay there, unmoved, throughout execution. Static allocation is often accompanied
by initialization. The compiler chooses run-time locations for the static objects and can easily put
initial values for these locations into the object code.

The number of static storage objects in a program is fixed throughout execution and is equal to
the number of static names the programmer has used. Global variables are static in any language.
Some languages (for example, COBOL) have only static objects, while others (for example, Pascal)
have no static storage except for globals. Still others (ALGOL, C) permit the programmer to declare
that a nonglobal object is to be static. In ALGOL, this is done by specifying the attribute “OWN”
as part of a variable declaration. In C, the keyword “static” is used for this attribute.

A language with only static storage is limiting. It cannot support recursion, because storage
must be allocated and exist simultaneously for the parameters of a dynamically variable number of
calls on any recursive function.

6.3. THE STORAGE MODEL: MANAGING STORAGE OBJECTS 159

A language that limits static storage to global variables is also limiting. Many complex appli-
cations can be best modeled by a set of semi-independent functions. Each one of these performs
some simple well-defined task such as filling a buffer with data or printing out data eight columns
per line. Each routine needs to maintain its own data structures and buffer pointers. Ideally, these
are private structures, protected from all other routines. These pointers cannot be ordinary local
variables, since the current position on the line must be remembered from one call to the next, and
dynamically allocated variables are deallocated between calls. On the other hand, these pointers
should not be global, because global storage is subject to accidental tampering by unrelated rou-
tines. The best solution is to declare these as static local storage, which simultaneously provides
both continuity and protection.

Finally, the unnecessary use of static objects, either global or local, is unwise because they are
immortal. Using them limits the amount of storage that can be recycled, thereby increasing the
overall storage requirements of a program.

Dynamic Storage Objects

Storage objects that are born during execution are called dynamic. The number of dynamic storage
objects often depends on the input data, so the storage for them cannot be planned by the compiler
in advance but must be allocated at run time. The process of choosing where in memory to allocate
storage objects is called memory management. A memory manager must be sure that two storage
objects that are alive at the same time never occupy the same place in memory. It should also try
to use memory efficiently so that the program will run with as small an amount of physical memory
as possible.

Memory management is a very difficult task to do well, and no single scheme is best in all
circumstances. The job is considerably simplified if the memory manager knows something in
advance about the lifetimes of its storage objects. For this reason, languages typically provide
several different kinds of dynamic storage objects which have different lifetime patterns.

The simplest pattern is a totally unrestricted lifetime. Such an object can be born and die at
any time under explicit control of the programmer. Nothing can be predicted about the lifetimes
of these objects, which are generally stored in an area of memory called the heap. Whenever a new
one is born, the storage manager tries to find a sufficiently large unused area of heap memory to
contain it. Whenever the storage manager learns of the death of a heap object, it takes note of the
fact that the memory is no longer in use.

There are many problems in recycling memory. First of all, the blocks in use may be scattered
about the heap, leaving many small unused “holes” instead of one large area. If no hole is large
enough for a new storage object, then the new object cannot be created, even though the total size
of all of the holes is more than adequate. This situation is called memory fragmentation.

Second, a memory manager must keep track of the holes so that they can be located when
needed. A third problem is that two or more adjacent small holes should be combined into one
larger one. Different heap memory managers solve some or all of these problems in different ways.
We will talk about some of them later in this chapter.

160 CHAPTER 6. MODELING OBJECTS

Because of the difficulty in managing a heap, it is desirable to use simpler, more efficient but
restricted memory managers whenever possible. One particularly common pattern of lifetimes is
called nested lifetimes. In this pattern, any two objects with different lifetimes that exist at the
same time have well-nested lifetimes; that is, the lifetime of one is completely contained within the
lifetime of the other. This pattern arises from block structure and procedure calls.

Storage for local block variables and procedure parameters only needs to exist while that block
or procedure is active. We say that a block is active when control resides within it or within some
procedure called from it. A storage object belonging to a block can be born when the block begins
and die when the block ends, so its lifetime coincides with the time that the block is active. Blocks
can be nested, meaning that a block B that starts within a block A finishes before A does. It
follows that the lifetimes of any storage objects created by B are contained within the lifetimes of
objects created by A.

Dynamic Stack Storage

Storage for objects with nested lifetimes can be managed very simply using a stack, frequently
called the run-time stack. This is an area of memory, like the heap, on which storage objects are
allocated and deallocated. Since, in the world of nested lifetime objects, younger objects always die
before older ones, objects can always be allocated and deallocated from the top of the stack. For
such objects, allocation and deallocation are very simple processes. The storage manager maintains
a stack allocation pointer which indicates the first unused location on the stack. When a program
block is entered, this pointer is incremented by the number of bytes required for the new storage
object(s) during the allocation process. Deallocation is accomplished at block exit time by simply
decrementing the stack allocation pointer by the same number of bytes. This returns the newly
freed storage to the storage pool, where it will be reused.

In languages that support both heap and stack storage objects, the stack objects should be
used wherever possible because their lifetime is tied to the code that uses them, and the birth and
death processes are very efficient and automatic. (This is the reason that stack-allocated objects
are called “auto” in C.)

Storage managers typically use stack storage for a variety of purposes. When control enters a
new program block, a structure called a stack frame, or activation record, is created on the top of
the stack. The area past the end of the current stack frame is used for temporary buffers and for
storing intermediate results while calculating long arithmetic expressions [Exhibit 6.17, right side].

A stack frame® includes several items: parameters, local variables, the return address, and the
return value (if the block is a function body). It also contains two pointers, called the static link
and dynamic link [Exhibit 6.17, left side].

Let us define the lexical parent of a block to be that block which encloses it on the program
listing. The lexical parent of the outermost block or blocks is the system. A lexical ancestor is a
parent or the parent of a parent, and so on. The static link points to the stack frame of the current

3The rest of this section explains the structure of the stack for a lexically scoped, block-structured language.

6.3. THE STORAGE MODEL: MANAGING STORAGE OBJECTS 161

Exhibit 6.17. The structure of the run-time stack.

The order of the parts within a stack frame is arbitrary, as is the relationship of global storage and
program code to the stack. The diagrams indicate a functional arrangement of the necessary kinds
of information.

A single stack frame: The program and stack at run time:
(" Program Code
- N Global and
E) aamelers _static storage
Retum Address (Staigk freglne &or\
““““““““ oldest bloc
Dynamic Link < Top of stack \ J
Static Link Stack frames for
____________ other blocks
Retum Value > <
—————— i Stack frame for
\Local Variables) L newest block /<Topofstack
4 Temporary N
locations

block’s lexical parent. At run time, these links form a chain that leads back through the stack
frames for all the blocks that lexically enclose the current block. Since the location of a lexical
ancestor’s frame is not predictable at compile time, the chain of static links must be followed to
locate a storage object that was allocated by an ancestor. This is, of course, not as efficient as
finding a local object, and it is one good reason to use parameters or local variables wherever
possible.

The dynamic parent of a block is the block which called it during the course of execution and to
which it must return at block exit time. The dynamic link points to the stack frame of the current
block’s dynamic parent. This link is used to pop the stack at block exit time.

The static and dynamic links are created when the stack frame is allocated at run time. During
this process, several things are entered into the locations just past the end of the current frame.
This process uses (and increments) the local-allocation pointer which points to the first free location
on the stack. Before beginning the call process, this pointer is saved. The saved value will be used
later to pop the stack. The sequence of events is as follows:

162 CHAPTER 6. MODELING OBJECTS

1. The calling program puts the argument values on the stack using the local-allocation pointer.
Typically, the last argument in the function call is loaded on the stack first, followed by the
second-last, and so on. The first argument ends up at the top of the stack.

2. The return address is written at the top of the stack, above the first argument.

3. The current top-of-stack pointer is copied to the top of the stack. This will become the new
dynamic link field. The address of this location is stored into the top-of-stack pointer.

4. The static link for the new frame is written on the stack. This is the same as either the static
link or the dynamic link of the calling block. Code is generated at compile time to copy the
appropriate link.

5. The local allocation pointer is incremented by enough locations to store the return value and
the local variables. If the locals have initializers, those values are also copied.

6. Control is transferred to the subroutine.

At block exit time, the stack frame must be deallocated. In our model, the return value is in
the frame (rather than in a register), so the frame must be deallocated by the calling program.
To do this, the value in the dynamic link field of the subroutine’s frame is copied back into the
top-of-stack pointer, and the local-allocation pointer is restored to its value prior to loading the
arguments onto the stack.

Stack storage enables the implementation of recursive functions by permitting new storage ob-
jects to be allocated for parameters and local variables each time the function is invoked. An
unlimited number of storage objects which correspond to each parameter or local name in the
recursive function can exist at the same time: one set for every time a recursive block has been
entered but not exited [Exhibits 6.18 and 6.19]. Each time a recursive procedure exits, the cor-
responding stack frame is deallocated, and when the original recursive call returns to the calling
program, the last of these frames dies. The number of storage objects simultaneously in existence
for a recursive program is limited only by the program logic and the amount of storage available
for stack allocation, not by the number of declared identifiers in the program.

Dynamic Heap Storage

There are situations in which heap storage must be used because the birth or death patterns
associated with stack storage are too restrictive. These include cases in which the size or number
of storage objects needed is not known at block entry time and situations in which an object must
outlive the block in which it was created.

Heap Allocation. Heap allocation is invoked by an explicit allocation command, which we will
call ALLOC. Such commands can occur anywhere in a program, unlike local variable declarations
which are restricted to the beginning of blocks. Thus a heap-allocated object can be born at any

6.3. THE STORAGE MODEL: MANAGING STORAGE OBJECTS 163

Exhibit 6.18. A recursive function in Pascal.

The following (foolish) recursive function multiplies jj inputs together. Exhibit 6.19 traces an
execution of this function.

FUNCTION product (jj: integer):integer;

VAR kk: integer;

BEGIN
IF jj <= 0 THEN product :=1
ELSE BEGIN
readln(kk) ;
product := kk * product(jj-1);
END
END;

Exhibit 6.19. Stack frames for recursive calls.

If the function “product” in Exhibit 6.18, were called with the parameter 2, two recursions would
happen. Assume the inputs 25 and 7 were supplied. Just before returning from the second recursion
the stack would contain three stack frames as diagrammed. The “?” in a stack location indicates
an undefined value.

— Points at stack frame from lexical parent Keé/:
L is a Static Link
- DL is a Dynamic Link
['
(2)
~ | reumn:? - Stack frame from original call
Kk : 25) o
(it)
o[reum 7 = Stack frame from first recursive call
sL\ kk:7 / O
o D\
- _O ______ Stack frame from second recursive call

L rkiturrj) 1) < Top of stack

("~ Temporary)
locations

164 CHAPTER 6. MODELING OBJECTS

Exhibit 6.20. Dynamic allocation in FORTH.

e Allocation: HERE (expression) ALLOT

Storage can be allocated dynamically in the “dictionary”, which stores the symbol table and
all global objects. The programmer is given access to the top-of-dictionary pointer through
the system variable named HERE. The code above puts the current value of HERE on the
stack. Then it evaluates the expression, which must produce an integer, N. Finally, ALLOT
adds N bytes to the dictionary pointer. The address of the newly allocated area is left on the
stack; the user must store it in a pointer variable.

e Deallocation: Users must write their own storage management routines if they wish to free
and reuse dynamic storage.

time. ALLOC reserves storage in the heap and returns a reference to the new storage object. The
allocation process for heap storage is somewhat more complicated than that for stack storage, since
there may be two places to look in the heap for available storage. Initially there is only a large,
empty area with an associated allocation pointer which is incremented (like the stack pointer) when
storage is allocated from that area. After some objects have died, there may also be a freelist which
contains references to these formerly used locations. Clearly, items on the freelist might be scattered
all over the heap and be of quite varied sizes. The memory manager must contain algorithms to
keep track of the sizes and merge adjacent free areas, and these algorithms must be fast to avoid
degrading the performance of the system.

An ALLOC command takes some indication of the required size of the new object and finds
and reserves that much memory. Either it returns a reference to the memory location, or it stores
that reference in a pointer variable which thereafter gives access to the new object. The ways these
actions are incorporated into current languages are truly varied [Exhibits 6.20 through 6.25]. The
new storage object is used, later, by dereferencing this pointer, and it remains alive as long as the
pointer or some copy of the pointer points at it.

Exhibit 6.21. Dynamic allocation in LISP.

e Allocation: (cons (exprl) (expr2))

This allocates a new list cell and returns a reference to it. The left field of the cell is initialized
to the result of evaluating (exprl) and its right field to (expr2).

e Deallocation: Most LISP systems rely on garbage collection.

6.3. THE STORAGE MODEL: MANAGING STORAGE OBJECTS 165

Dead Heap Objects. We call a dead heap object garbage. Management of dead heap objects
is very different from stack management. A heap object dies either when the last reference to the
object is destroyed (let us call this a natural death) or when it is explicitly killed using a KILL
command.

The run-time system of a language translator must manage heap storage allocation just as it
manages stack frame allocation. However, when an object dies a natural death, both the program-
mer and the run-time system may be unaware of that death. A hole containing garbage is left in
the heap at an unknown location.

A KILL command takes a reference to a storage object, kills the storage object, and puts the ref-
erence onto the freelist, where it can be recycled. In languages that implement KILL, programmers
who use extensive amounts of dynamic storage are strongly urged to keep track of their objects
and KILL them when they are no longer useful. (In general, this will be well before the object dies
a natural death.) It is only through an explicit KILL command that the system can reclaim the
storage.

Recycling a dead heap cell is more complex than recycling stack cells. The system cannot
simply decrement the heap allocation pointer because, in general, dead objects are in the middle
of the heap, not at the end. A data structure called a freelist is generally used to link together the
recycled cells and provide a pool of cells available for future reuse. Conceptually, a freelist is just
a list of reclaimed and reusable storage objects. However, that is not a simple thing to implement
efficiently. The objects might all be interchangeable, or they might be of differing sizes. In any case,
they are probably scattered all over heap memory. The language designer or system implementor
must decide how to organize the freelist to maximize its benefits and minimize bookkeeping.

Ignore dead cells. The easiest implementation of KILL is to ignore it! Although this seems
to be a misimplementation of a language, it has been done. The Pascal reference manual for the
Data General MV8000 explicitly states that the Dispose command is implemented as a no-op.
This compiler runs under the AOS-VS operating system, which is a time-shared, paged, virtual
memory system.

The philosophy of the compiler writer was that most programs don’t gobble up huge amounts
of storage, and those that do can be paged. Old, dead storage objects will eventually be paged out.
If all objects on the page have died, that page will never again be brought into memory. Thus the
compiler depends on the storage management routines of the operating system to “deep-six” the
garbage. This can work very well if objects with similar birth times have similar useful lifetimes.
If not, each of many pages might end up holding a few scattered objects, vastly increasing the
memory requirements of the process and degrading the performance of the entire system.

Keep one freelist. One possibility is to maintain a single list which links together all free
areas. To do this, each area on the list must have at least enough bytes to store the size of the area
and a link. (On most hardware that means 8 bytes.) Areas smaller than this are not reclaimable.
Many or most C and Pascal compilers work this way.

166 CHAPTER 6. MODELING OBJECTS

Exhibit 6.22. Dynamic allocation in C.

e Allocation: In the commands that follow, T and basetype are types, N is an integer. The
malloc function allocates one object of type T or size N bytes. calloc allocates an array of
N objects of type basetype and initializes the entire array to zero. Both malloc and calloc
return a reference to the new storage object. The programmer must cast that reference to
the desired pointer type and assign it to some pointer variable.

malloc(sizeof (T))
malloc(N)
calloc(N, sizeof (basetype))

e Deallocation: free(ptr);

ptr must be a pointer to a heap object that was previously allocated using malloc or calloc.
That object is linked onto a freelist and becomes available for reuse.

A compiler could treat this 8-byte minimum object size in three ways. It could refuse to allocate
anything smaller than 8 bytes; a request for a smaller area would be increased to this minimum.
This is not as wasteful as it might seem. Those extra bytes often have to be allocated anyway
because many machines require every object to start on a word or long-word boundary (a byte
address that is divisible by 2 or 4).

Alternately, the compiler could refuse to reclaim anything smaller than the minimum. If a tiny
object were freed, its bytes would simply be left as a hole in the heap. The philosophy here is that
tiny objects are probably not worth bothering about. It takes a very large number of dead tiny
objects to fill up a modern memory.

A fragmentation problem can occur with these methods for handling variable-sized dead objects.

Exhibit 6.23. Dynamic allocation in Pascal.

e Allocation: New((PtrName)) ;

The (PtrName) must be declared as a pointer to some type, say T. A new cell is allocated of
type T, and the resulting reference is stored in the pointer variable.

e Deallocation: Dispose ((PtrName)) ;

The object pointed at by PtrName is put onto the freelist.

6.3. THE STORAGE MODEL: MANAGING STORAGE OBJECTS 167

With many rounds of allocation and deallocation, the average size of the objects can decrease, and
the freelist may end up containing a huge number of tiny, worthless areas. If adjacent areas are not
“glued together”, one can end up with most of the memory free but no single area large enough to
allocate a large object.

Joining adjacent areas is quick and easy, but one must first identify them. Ordinarily this would
require keeping the freelist sorted in order of address and searching it each time an object is freed.
This is certainly time-consuming, and the system designer must decide whether the time or the
space is more valuable.

One final implementation of variable-sized deallocation addresses this problem. In this version,
each allocation request results in an 8-byte header plus the number of bytes requested, rounded up
to the nearest word boundary. At first this seems very wasteful, but using the extra space permits
a more satisfactory implementation of the deallocation process.

The 8-byte header contains two pointers that are used to create a doubly linked circular list of
dynamically allocated areas. One bit somewhere in the header is set to indicate whether the area
is currently in use or free. The areas are arranged on this list in order of memory address. Areas
that are adjacent in memory are adjacent in the list. Disposing of a dead object is very efficient
with this implementation: one only needs to set this bit to indicate “free”. Then if either of the
neighboring areas is also free, the two can be combined into one larger area.

When a request is made for more storage, the list can be scanned for a free cell that is large
enough to satisfy the new request. Scanning the list from the beginning every time would be very
slow, since many areas that are in use would have to be bypassed before finding the first free area.
But a scanning pointer can be kept pointing just past the most recently allocated block, and the
search for a free area can thus start at the end of the in-use area. By the time the scanner comes
back around to the beginning of the list, many of the old cells will have been freed. Thus we have a
typical time/space trade-off. By allocating extra space we can reduce memory-management time.

Keep several freelists. A final strategy for managing free storage is to maintain one freelist
for every size or type of storage object that can be freed. Thus all cells on the list are interchange-
able, and their order doesn’t matter. This simplifies reallocation, avoids the need for identifying
adjacent areas, and, in general, is simpler and easier to implement. This reallocation strategy is
used by Ada and Turing [Exhibits 6.24 and 6.25].

One of the problems with heap-allocated objects is in knowing when to kill them. It is all too
easy to forget to kill an object at the end of its useful lifetime or to accidentally kill it too soon.
This situation is complicated by the way in which pointer structures may share storage. A storage
object could be shared by two data structures, one of which is no longer useful and apparently
should be killed, while the other is still in use and must not be killed. If we KILL this structure we
create a dangling pointer which will eventually cause trouble. Identifying such situations is difficult
and error prone, but omitting KILL instructions can increase a program’s storage requirements
beyond what is readily available.

For this reason, some languages, such as LISP, automate the process of recycling dead heap

168 CHAPTER 6. MODELING OBJECTS

Exhibit 6.24. Dynamic allocation in Ada.

e Allocation: NEW (type) ' ({(expression))

This allocates an object of the type requested. If the optional expression is supplied, it is
evaluated and the result is used to initialize the new storage object. NEW is a function that
returns a reference to the new object. The programmer must assign this reference to a variable
of an ACCESS type (a pointer).

e Deallocation: Explicit deallocation is not generally used in Ada. In most Ada implemen-
tations, the dynamically allocated cells in a linked structure are automatically deallocated
when the stack frame containing the pointer to the beginning of the structure is deallocated.
Some Ada implementations contain full garbage collectors, like LISP.

When it is necessary to recycle cells explicitly, a programmer may use a generic package named
Unchecked_Deallocation.* This package must be instantiated (expanded, like a macro, at
compile time) for each type of cell that is to be deallocated. Each instantiation produces a
procedure, for which the programmer supplies a name, that puts that kind of cell on a freelist.
(Different cell types go on different freelists.) Use of this facility is discouraged because it
may lead to dangling pointers.

Exhibit 6.25. Dynamic allocation in Turing.

e Allocation: new (collection), (ptr)

To dynamically allocate cells of a particular type, the programmer must explicitly declare
that the type forms a “collection”. The new command allocates one cell from the desired
collection and stores the reference in (ptr).

e Deallocation: free (collection), (ptr)

The object pointed at by ptr is returned to the collection it came from, where it will be
available for reuse. The pointer object ptr is set to nil.

6.3. THE STORAGE MODEL: MANAGING STORAGE OBJECTS 169

objects. In cases where a KILL command does not exist or is not used, heap objects still die, but
the memory manager is not aware of the deaths when they happen. To actually recycle these dead
heap cells requires a nontrivial mechanism called a garbage collector, which is invoked to recycle
the dead storage objects when the heap becomes full or nearly full.

A garbage collector looks through storage, locating and marking all the live objects. It can tell
that an object is alive if it is static or stack-allocated or if there is a pointer to it from some other
live object anywhere in storage. The garbage collector then puts references to all of the unmarked,
dead areas on the freelist, where the allocator will look for reusable cells.

While this scheme offers a lot of advantages, it is still incumbent on the programmer to destroy
references to objects that are no longer needed. Furthermore, garbage collection is slow and costly.
On the positive side, the garbage collector needs to be run only when the supply of free storage
is low, which is an infrequent problem with large, modern memories. Thus garbage collection has
become a practical solution to the storage management problem.

6.3.2 Dangling References

The case of a name or a pointer that refers to a dead object is problematical. This can happen
with heap storage where the programming language provides an explicit KILL command. The
programmer could allocate a heap-object, copy the resulting reference several times, then KILL the
object and one of its references. The other references will still exist and point at garbage. These
pointers are called dangling references or dangling pointers.

This situation could also arise if the program is able to store references to stack-allocated
objects. Assume that a reference to a stack-allocated variable declared in an inner block could be
stored in a pointer from an outer block. During the lifetime of the inner block, this can make good
sense. When storage for the inner block is deallocated, though, the reference stored in the outer
block becomes garbage. If it were then used, it would be an undefined reference.

Initially, a dangling reference points at the value of the deallocated variable. Later, when the
storage is reused for another block, the address will contain useful information that is not relevant
to the pointer. Thus the pointer provides a way of accessing and modifying some random piece of
storage.

Serious errors can be caused by the accidental use of a dangling reference. Because the storage
belonging to any inner block might be affected, the symptoms of this kind of error are varied and
confusing. The apparent error happens at a point in the program that is distant from the block
containing the dangling reference. If the inner blocks are modified, the symptoms may change; the
part that was malfunctioning may start to work, and some other part may suddenly malfunction.
This kind of error is extremely difficult to trace to its cause and debug.

Because of the potential severe problems involved, pointers into the stack are completely pro-
hibited in Pascal. Pascal was designed to be simple and as foolproof as possible. The designer’s
opinion is that all programmers are occasionally “fools”, and the language should provide as much
protection as possible without prohibiting useful things.

Pascal completely prevents dangling pointers that point into the stack by prohibiting all pointers

170 CHAPTER 6. MODELING OBJECTS

to stack-allocated objects. The use of Pascal pointers is thus restricted to “heap” storage. Linked
lists and trees, which require the use of pointers, are allocated in the heap. Simple variables and
arrays can be allocated on the stack. Address arithmetic is not defined. Although this seems like
a severe restriction, its primary bad effect is that subscripts must be used to process arrays, rather
than the more efficient indexing methods which use pointers and address arithmetic.

In contrast, the use of pointers is not at all restricted in C. The “&” operator can be used freely
and lets the programmer point at any object, including stack objects that have been deallocated.
When control leaves an inner block, and its stack frame is deallocated, any pointer that points into
that block will contain garbage. (An example of such code and corresponding diagrams are given
in Exhibits 9.25 and 9.26.)

A language, such as C, which permits unrestricted use of addresses must either forgo the use of
an execution stack or cope with the problem of dangling references. Allocation of parameters and
local variables on the execution stack is a simple and efficient method of providing dynamically
expandable storage, which is necessary to support recursion. Alternatives to using a stack exist
but have high run-time overhead.

The other possibility is to permit the programmer to create dangling references and make it
the programmer’s responsibility to avoid using them meaninglessly. A higher level of programming
skill is then required because misuse of pointers is always possible. A high premium is placed on
developing clean, structured methods for handling pointers.

One design principle behind the original C was that a systems programmer does not need a
foolproof language but does need free access to all the objects in his or her programs. Permitting
free use of pointers was also important in the original C because it lacked other important features.
Since structured objects could not be passed coherently to and from subroutines, any subroutine
that worked on a structure had to communicate with its calling program using a pointer to the
structure.

In the new ANSI C, this weakness is changed but not eliminated. It permits coherent assignment
of structures, but not arrays. Similarly, structures may be passed to and from functions without
using pointers, but an array parameter is always passed by pointer. Thus if C had the same
restriction on pointers that Pascal has, the language would be much less powerful, perhaps not
even usable.

How, then, can Pascal avoid the need to have pointers to stack objects? It has two facilities
that are missing in C:

e Compound stack-allocated objects are coherent. They can be operated on, assigned, com-
pared, and passed as parameters coherently.

e References to objects can be passed as parameters by using the VAR parameter declarator.
Unfortunately, returning a compound value from a function is not permitted in the standard
language and must be accomplished by storing the answer in a VAR parameter.

Most standard algorithms and data structures can be coded easily within these restrictions, using
the fact that compound objects are coherent. Some experts assert that Pascal is a “better” language

6.3. THE STORAGE MODEL: MANAGING STORAGE OBJECTS 171

for these applications because the programmer does not need to exercise as much care.

On the other hand, there are, occasionally, situations in which the pointer restrictions in Pascal
prevent the programmer from coding an algorithm at all, and others in which the code would have
been much more efficient if the programmer had used pointers to stack objects. One might say
that C is a “better” language for these applications.

Exercises

1.

10.
11.

12.

13.

Define and explain the relationship among: external object, program object, storage object,
and pointer object.

. What is the difference between a variable and a pointer variable?

. By what two means can a value be placed in a storage object? What is the difference between

the two processes?

. What is the difference between destructive assignment and coherent assignment?

What is multiple assignment? How is it used?

Why do languages that implement assignment as a function allow the programmer more
flexibility than those that implement assignment as a statement?

. Define dereferencing. Which abstract function implements it?

. Choose a programming language with which you are familiar. Give a sample of code in which

dereferencing is explicit. Give another in which it is implicit.

. What language contexts must be enumerated in order to define the implicit dereferencing

rules in a language?
Give some examples of FETCH operators which are used to dereference pointer expressions.
How does a pointer assignment differ from an ordinary assignment?

Given p1l pointing at this list of integers, write legal pointer assignments for p2 and p3.

pt ® B

(50| 5] —G-{ee]]

Wk

In the C language, what are the meanings of “&” and in pointer notation?

172

14

15.
16.
17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

CHAPTER 6. MODELING OBJECTS
In C, what is the meaning of the name of an array? Do you need an “&” when assigning a
pointer to an array? Why or why not?
What is the lifetime of a storage object?
What is the difference between a static storage object and a dynamic one?
Why is a language that only supports static storage items limiting?
What is memory management? Why is it important?
What is a run-time stack? A stack-frame? A heap?
What are the purposes of the static and dynamic links in a stack frame?

Name two languages in which local variables can be declared and are allocated each time a
subroutine is entered. Give examples of local variable declarations.

Name a language in which local variables cannot be defined.

What is static local storage? In what ways is it better than global storage and ordinary local
storage? Give an example, in some language, of a declaration that creates static local storage.

Suppose a language allows initial values to be specified for local variables, for example, the
following declarations which define X and initialize it to 50:

Language ‘ Declaration
Ada X: integer := 50;
C int X=50;

When and how often does initialization happen in the following two cases?

a. X is an ordinary local variable.

b. X is a static local variable.
Explain the differences in lifetime, accessibility, and creation time between:

a. An ordinary local variable.
b. A static local variable.
c. A global variable.

See page 77.

Name a language that does not support dynamic storage at all. (All storage is static.) Explain
two ways in which this limits the power of the language.

6.3.

27.

28.
29.
30.
31.

32.

33.

34.

THE STORAGE MODEL: MANAGING STORAGE OBJECTS 173

What is the purpose of an ALLOC command? What is garbage? A freelist? What is the
function of a KILL command?

Give examples in LISP and C of expressions that allocate nonstack (heap) storage dynamically.
Explain the reallocation strategy used by Turing. What are its advantages?
What is a dangling reference, and what problems can be caused by it?

Name a language in which pointers exist but can only point at dynamically allocated heap
objects, not at objects allocated in the stack.

Name a language in which a pointer can point at any variable and pointer arithmetic is
possible. Give an example of code.

Write a paragraph discussing the following questions: In what sense does FORTH or assembly
language have pointers? What can be done with them? Are there any restrictions? Name
two common errors that can occur with this kind of pointers.

Choose three languages from the list: APL, Ada, Pascal, C, FORTH, and assembler. What
restrictions are there on the use of pointers in each? What effect do these restrictions have
on flexibility and ease of use of the language? What effect do they have on the “safety” of
code?

174 CHAPTER 6. MODELING OBJECTS

Chapter 7

Names and Binding

Overview

This chapter discusses the definition, implementation, and semantics of names. The
meaning of a symbol or name in a programming language is its binding. In most
languages, all sorts of entities can have names. Binding creates an association between
a name and its storage object. Binding can be static; the name is bound to the object
when the object is allocated and remains bound throughout the program. Or, binding
can be dynamic. In this case, a name can be bound to one object, unbound, and rebound
to another within the run of a program. Constant declarations bind a symbolic name
to a literal value.

The scope of a name is that part of the program where a name is known by the translator.
Naming conflicts occur when some name is accidentally used more than once within a
linear program. Modularity and block structure allow the programmer to limit the scope
of a name to a block and all its nested blocks. It is the job of the interpreter or compiler
to determine the proper meaning of ambiguous names according to the semantics of the
language.

7.1 The Problem with Names

This section concerns the ways that we define symbols, or names, in a programming language, give
those names meaning (or meanings), and interpret references to names. In lambda calculus this
issue is very simple; every name acquires a unique meaning in one of two ways:

175

176 CHAPTER 7. NAMES AND BINDING

1. Some names are defined, by declaration, to stand for formulas.

2. Parameter names acquire meaning during a reduction step. When a lambda expression is
applied to an argument, that argument becomes the meaning of the parameter name.

Lambda calculus is referentially transparent: wherever a name appears in an expression, the defining
formula can be substituted without changing the meaning of the expression. The reverse is also true;
the meaning of an expression does not change if a defined name is substituted for a subexpression
which matches its defining formula.

Thus lambda calculus makes a simple one-to-one correspondence between names and mean-
ings. Most programming languages, however, are not so simple. This section tries to explain and
straighten out all the myriad ways in which real languages complicate the naming problem.

7.1.1 The Role of Names

We use names to talk about objects in a computer. In simplest terms, a name is a string of
characters that a programmer can write in a program. Different languages have different rules for
the construction of names, but intuitively, a name is just like a word in English—a string of letters.
A name must be given a meaning before it can be used. The meaning of a name is its binding, and
we say the name is bound to that meaning.

While objects can be created dynamically in most languages, names cannot. Names are written
in the program, and the text of the program does not change when the program is executed. Bind-
ings, though, change when objects are created or destroyed. They attach the changing collection
of objects to the fixed collection of names.

Naming would need little explanation if languages followed a “one object-one name” rule. How-
ever, the situation is not so simple. Languages permit a bewildering mismatch between the number
of objects that exist and the number of names in the program. On the one hand, an object can have
no name, one name, or multiple names bound to it. On the other hand, a name can be bound to
no object (a dangling pointer), one object (the usual case), or several objects (a parameter name in
a recursive function). This complexity comes about because of block structure, parameters, recur-
sion, pointers, alias commands, KILL commands, and explicit binding commands. In this section,
we explore the way names are used in writing programs and the binding mechanisms provided by
various languages.

Symbolic names are not necessary for a computer to execute a program: compilers commonly
remove names altogether and replace them by references. Nor are names necessary for a person
to write a program: the earliest method for programming computers, writing absolute machine
code, did not use names. Nonsymbolic programming requires considerable skill and extraordinary
attention to detail, and “symbolic assemblers”, which permit the programmer to define names for
locations, were a great leap forward because names help the programmer write correct code. It is
much easier for a human to remember a hundred names than a hundred machine addresses.

In addition, names have an important semantic aspect that is appreciated by experienced pro-
grammers. A program that uses well-chosen names that are related to the meaning of the objects

7.1. THE PROBLEM WITH NAMES 177

Exhibit 7.1. Bad names.

You may enjoy the challenge of figuring out what this function does without using diagrams.
At least one highly experienced Pascal programmer failed on his first try.

TYPE
my_type = [x_type;
x_type = RECORD next: char; prior: my_type END;
FUNCTION store_it (temp: my_type, jxq: char): my_type;
VAR jgx, first: my_type;
BEGIN
first := temp;
jgx := temp].prior;
WHILE (jgx <> NIL) DO BEGIN
IF jgxT.next = jxq
THEN jgx := NIL

ELSE BEGIN
first := jgx;
jax := jgxT.prior
END
END;
store_it := first;

END;

being named is much easier to debug than a program with randomly chosen, excessively general, or
overused names like “J” and “temp”. A program that uses names inappropriately can be terrible
to debug, since the human working on the program can be misled by a name and fail to connect
the name with an observed error. It is even harder for another programmer, unfamiliar with the
program, to maintain that code.

The function definition in Exhibit 7.1 was written with names purposely chosen to disguise and
confuse its purpose. The English semantics of every name used are wrong for the usage of the
corresponding object. A compiler would have no trouble making sense of this clear, concise code,
but a human being will be hindered by ideas of what names are supposed to mean and will have
trouble understanding the code. You may enjoy trying to decode it before reading further.

Several naming sins occur in Exhibit 7.1:

e Two names were used that have subtle differences: jxq, jgx.
e Nonsuggestive names were used: temp, my_type, x_type, jxq.

e Suggestive names were inappropriately used: “store_it” names a search routine that does no

178 CHAPTER 7. NAMES AND BINDING

Exhibit 7.2. Good names.

TYPE
list_type = Tcell_type;
cell_type = RECORD value: char; next: 1list_type END;

FUNCTION search (letter_list: 1list_type, search_key: char): 1list_type;
VAR scanner, follower: 1list_type;

BEGIN
follower := letter_list;
scanner := letter_list].next;

WHILE (scanner <> NIL) DO BEGIN
IF scanner(.value = search_key
THEN scanner := NIL

ELSE BEGIN
follower := scanner;
scanner := scanner].next
END
END;
search := follower;

END;

storing. “Next” names a value field, rather than the traditional pointer. “Prior” names a
pointer field pointing at the next item in the list.

e A name was used that seemed appropriate on first use but did not reflect the actual usage
of the object: “first” started as a pointer to the first thing in the list, but it is actually a
scanning pointer.

A list of good name substitutions for the program in Exhibit 7.1 is:

my_type = list_type prior = next jxq = search_key
x-type = cell_type next = value jgx = scanner
store_it = search temp = letter_list first = follower

Rewritten with the names changed, the purpose of this code should be immediately apparent.
Try reading the code in Exhibit 7.2. Anyone familiar with Pascal and with list processing should
understand this code readily.

7.1.2 Definition Mechanisms: Declarations and Defaults

All sorts of entities can have names in most languages: objects and files (nouns), functions and
procedures (verbs), types (adjectives), and more. Depending on the rules of the language, the

7.1. THE PROBLEM WITH NAMES 179

Exhibit 7.3. Predefined names in Pascal.
This is a list of all the names that are predefined in UCSD Pascal.

types integer, real, Boolean, char, text
constants | NIL, TRUE, FALSE, MAXINT
files input, output

functions odd, eof, eoln, abs, sqr, sqrt, sin, cos, arctan,
In, exp, trunc, round, ord, chr, succ, pred
procedures | read, readln, write, writeln, get, put, rewrite,
reset, page, new, dispose, pack, unpack

programmer might or might not be permitted to use the same name for entities in different classes.
As in English, there must be some way to give meaning to a name and some way to find the meaning
of a name when it is used. Declarations, defaults, and the language definition itself are the means
used in programming languages to give meaning to names.

The symbol table is a data structure maintained by every translator that is analogous to a
dictionary. It stores names and their definitions during translation.’

A name must be defined before it can be used. In some languages this happens the first time
it is used; in others all names must be explicitly declared. A declaration is a statement that causes
the translator to add a new name to its list of defined names in the symbol table.

Many functions, types, and constants are named by the language designer, and their definitions
are built into all implementations of the language. We call these primitive symbols [Exhibits 7.3
and 7.4]. These names are not like other reserved words. They do not occur in the syntax that
defines the language, and the programmer may define more names in the same categories. They
are a necessary part of a language definition because they provide a basic catalog of symbols in
terms of which all other symbols must be defined.

IThis structure has also been called the environment or dictionary.

Exhibit 7.4. Predefined names in C.
These are the names that are predefined in C:
types int, long, short, unsigned, float, double, char

constants | NULL (TRUE, FALSE, and EOF are also defined in many versions of
(stdio.h), the header file for the standard I/O package.)

functions | Every C implementation has a library, which contains I/O functions, numeric
functions, and the like. The libraries are fairly well standardized from one
implementation to another and are far too extensive to list here.

180 CHAPTER 7. NAMES AND BINDING

In many interpreted languages the programmer is not required to declare types, because allo-
cation decisions do not have to be made in advance of execution, and at execution time, the type
of a datum can often be determined by examining the datum itself. Names are generally added
to the symbol table the first time they are mentioned. Thus names are typeless. These languages
are sometimes called “typeless” because types are not declared and not stored in the symbol table
with the names.

Objects, on the other hand, are never “typeless”. Every storage object has a fixed size, and size
is one aspect of type. Every program object has a defined encoding, another aspect of type. In a
“typeless” language, the type of an object must still be recorded. Since the type is not stored with
the name, it must be encoded somehow as part of the object itself.

In a compiled language, the type of each name must be supplied either by a declaration or by
a default so that the compiler can know how many bytes to allocate for the associated storage
object. The type is stored in the symbol table with the name, and remains unchanged throughout
the rest of translation. Pascal requires that a type be declared for each name. FORTRAN permits
the programmer to write explicit declarations, but if an identifier does not appear in a declaration,
a default type will be used which depends on the first letter of the name. The original C permitted
function return types and parameter types, but not variable types, to be declared as “integer” by
default.

7.1.3 Binding

In compiled languages, a name exists only in the symbol table at translation time and objects
exist only at run time. Names are gone before objects are created; they are not part of objects.
In interpreted languages, names and objects coexist. In both cases, a name acquires one or more
meanings during the course of translation, by a process called binding.

Binding creates an association between a name (in the symbol table) and a storage object (an
area of memory). We can picture a binding as a pointer from the name to the storage object. A
binding differs from an ordinary pointer, though, because it reaches from the system’s storage area
into the programmer’s area. Moreover, in compiled languages, the binding spans time as well as
space. At compile time it holds the location where an object will someday be allocated. Finally,
bindings are unlike pointers because the translator automatically dereferences bindings but does
not dereference pointers. We represent bindings in our diagrams as arrows (like pointers) but drawn
in boldface, because they are not ordinary pointers.

Binding is invoked by the translator whenever a declaration is processed but can also be invoked
explicitly by the programmer in many languages. A binding is static if it never changes during the
lifetime of the program. Otherwise it is said to be dynamic. At any time a name might be bound
to a particular object to which it refers, or it might be unbound, in which case it refers to nothing
and is said to be undefined, or it might be multiply bound to different objects in different scopes.

Names of variables, types, pure values, and functions are identified and recorded in the symbol
table during translation of a program. Another column of the symbol table records the bindings.
Like allocation, binding can be static, block structured, or dynamic.

7.1. THE PROBLEM WITH NAMES 181

Exhibit 7.5. A symbol table with static bindings.

Symbol Table Run-Time Memory
type name binding storage object

real length 4’| |
array[1..4] of integer ages 4>| | | | |

Typed Languages / Static Binding

Most of the familiar languages (COBOL, FORTRAN, ALGOL, C, Pascal, Ada) belong to a class called
“typed languages”. In these languages each name defined in a program unit has a fixed data type
associated with it, and often declared with it.

In the oldest and simplest of these languages, such as symbolic assemblers and COBOL, name
binding is static. A name is bound to an object when the object is allocated and remains bound to
the same storage object until the end of the program. In such languages, when a meaning is given
to a name, that name retains the meaning throughout the program.

Static binding occurs in typed languages that are non-block structured. In a static language,
there is no concept of a program block enclosed within another program block, producing a local
program scope in which a name could be redefined.? A static binding associates a name with a
storage object of fixed type and size at a fixed memory address.

Static binding can be implemented simply by using three columns in the symbol table to store
the name, type, and binding [Exhibit 7.5]. We can describe this kind of symbol table as “flat” —it
has the form of a simple one-dimensional list of entries, where each entry has three fields.

Each declaration (explicit or default) specifies a name and a type. It causes the compiler to
select and set aside an area of storage appropriate for an object of that type. Although this storage
will not exist until run time, its address can be computed at compile time and stored in the symbol
table as the binding for the name. Note, in Exhibit 7.5, that the run-time memory contains only
the storage object; the symbol table no longer needs to be present. It was used to generate machine
code and discarded at the end of translation.?

A Typed Language with Dynamic Binding

FORTH is an interactive, interpretive language embedded in a program development system. A
complete system contains an editor, an assembler, an interpreter, and a “compiler”. This compiler
does not generate machine code, rather, it lexes and parses function definitions and produces an

2However, additional names can be bound to a COBOL object, by using REDEFINES, as explained in Section 7.1.4.
3Some translators are embedded in systems that provide a symbolic debugger. These systems must keep the
symbol table and load it along with the object code for the program.

182 CHAPTER 7. NAMES AND BINDING

Exhibit 7.6. Names, types, and bindings in FIG FORTH.

This dictionary segment contains two words, an integer and an array of four integers. The right-
hand column has 4 bytes of memory per line in the diagram.

name : %ﬂ (Length of name followed by name.)

link : :f?: : (Pointer to previous word in dictionary.)

type: | =int | (Pointer to run-time code for integer variables.)
body : (4 bytes, properly called the "parameter field".)
name: ‘S‘age

link: | »=length

type: | »int | (Pointer to run-time code for integer variables.)
boady: | (16 bytes of storage, enough for four variables.)

intermediate program form that can be interpreted efficiently.

FORTH is a typed language. Its symbol table, called the “dictionary”, is only a little more
complex than the simple, flat symbol table used for a static language. The dictionary is organized
into several “vocabularies”, each containing words for a different subsystem. Each vocabulary is
implemented by a simple, flat symbol table. Unlike COBOL and assembler, though, FORTH is an
interactive language system. A user wishing to create a new application subsystem is permitted
to create a new vocabulary or to add to an existing vocabulary. The user may alternate between
defining objects and functions, and executing those functions. The dictionary may thus grow
throughout a session.

The dictionary contains an entry for each defined item [Exhibit 7.6]. Function names, variable
names, and constant names are all called “words”. Entries for all the primitive words are loaded
into the dictionary when you enter the FORTH system. A dictionary entry is created for a user-
defined word when a declaration is processed, and it will remain in the dictionary until the user
gives the command to FORGET the symbol. The FORTH dictionary is stack-structured; new items
are added at the top of the stack and can be defined in terms of anything below them on the stack.

Each entry has four fields:

e The name field holds the name of the word, stored as a string whose first byte contains the
length of the name.

e The link field is used to organize the dictionary into a data structure that can be searched
efficiently. Searching must be done during translation, when the definition of a function refers
to a symbol, or at run time when the interpreter evaluates a symbolic expression interactively.
The implementation of the link field and its position relative to the name field varies among

7.1. THE PROBLEM WITH NAMES 183

different versions and implementations of FORTH. Exhibit 7.6 shows the relationships defined
for FIG FORTH.

e The code field is the functional equivalent of a type field. It identifies, uniquely, the kind of
object this word represents (function, variable, constant, or programmer-defined type).

e The parameter field, or body, contains the specific meaning of the word. For constants, it is
a pure value. For variables it is a storage object. For functions, it contains code that can be
interpreted.

FORTH maintains a rudimentary sort of type information in the “code field” of each dictionary
entry. This field is a pointer to a run-time routine that determines the semantics of the name.
It is actually a pointer to some code which will be run whenever this word is used at run time.
This code defines the interpretation method for objects of this type. Thus constants, variables, and
user-defined types can be interpreted differently. Initially only the types “function”, “variable”,
and “constant” are built in, but others can be added. When a new type declarator is defined, two
pieces of code are given: one to allocate and initialize enough storage for an object of the new type,
and a second to interpret run-time references to the name of an object of this type. A pointer
to this second piece of code becomes the unique identifier for the new type, and also becomes the
contents of the code field for all objects declared with the new type.

FORTH differs from the simple static languages in one important way: it permits the user to
redefine a word that is already in the dictionary. The translator will provide a warning message, but
accept the redefinition. Henceforth the new definition will be used to compile any new functions,
but the old one will be used to interpret any previously compiled functions. This opens up the
possibility of redefining primitive symbols. The new definition can call the original definition and,
in addition, do more elaborate processing. The simple relationship between a name and its meaning
no longer holds at all.

The FORGET command is an unusual feature that has no counterpart in most language trans-
lators. It does not just remove one item from the dictionary, it pops the entire dictionary stack
back to the entry before its argument, forgetting everything that has been defined since! This is a
rudimentary form of symbol table management which does not have either the same purpose or the
same power as the stack-structured symbol tables used to implement block structure. A FORTH
programmer alternates between compiling parts of his or her code and testing them. FORGET lets the
programmer erase the results of part of a compilation, correct an error in that part, and recompile
just one part. Thus FORGET is an important program-development tool.

Typed Languages / Block Structured Binding. The connection between a name and its
meaning is further complicated by block structure. FORTH permits a new definition of a name to
be given, and it will permanently replace the old version (unless it is explicitly “forgotten”). A
block structured language permits this same kind of redefinition, but such a language will restore
the original definition after exit from the block containing the redefinition. Block structure and the
semantic mechanisms that implement it are taken up in Section 7.4.

184 CHAPTER 7. NAMES AND BINDING

Exhibit 7.7. A symbol table with dynamic binding.

Symbol Table Run-Time Memory
name binding storage object : type tag

length 173 :real

Explicit Dynamic Binding. Fully dynamic binding is available only in interpreted languages or
ones such as LISP with simple, uniform type structures. In such a language, types can be associated
with objects, not names, and are stored with the object in memory, rather than in the symbol table.
The symbol table has only two columns, the name and its current binding. The type must be stored
with or encoded into the object in memory, or discarded altogether as in assembly language. This
is illustrated in Exhibit 7.7.

With fully dynamic binding, a name can be unbound from one object and rebound to any
other at any time, even in the middle of a block, by explicit programmer command. In such a
language, the type of the object bound to a name may change dramatically, and these languages
are sometimes called “typeless” because no definite type is associated permanently with a name.
SNOBOL and APL are examples of this language class.

These “typeless” languages nevertheless commonly do implement objects of different types. For
example, in APL there are two basic types, number and character. These types are implemented
by attaching a type tag to the object itself, rather than to the name in the symbol table [Exhibit
7.8]. The symbol table contains only the name and the binding, and the programmer is permitted
to bind a name to any object. Thus at different times a name may be bound to storage areas of
different sizes, each with an associated type tag.

In such languages, binding often serves the same purpose as does assignment in Pascal and is
often mistaken for assignment. The essential difference is that assignment does not change the
storage object to which a name is bound, but changes the program object which is the contents of

Exhibit 7.8. Names, types, and binding in APL.

APL is a “typeless” language and so has no permanent association of types with names. Rather,

a type tag is associated with each storage object, and the combination may be bound to any name.
Symbol Table Run-Time Memory
name binding storage object : type tag

length 4>|:| : scalar number

ages —>| | | | | - array of 4 numbers

7.1. THE PROBLEM WITH NAMES 185

Exhibit 7.9. Dynamic binding in APL.

On two successive executions of the input statement
Q «— O

one could legally supply the following inputs: ‘aeiouy’ (which is a character array) and 37.1 (which
is a number). Thus we would get first the following binding:

Symbol Table Run-Time Memory
name binding storage object : type tag

Q ——»la|e|i]|of u]y] :arayof6characters

and second the following binding:

Symbol Table Run-Time Memory
name binding storage object : type tag

Q : scalar number

that storage object. Binding results in a different storage object being bound to a name.

The APL input command is: <+ O. Executing O causes a pure value of some type to be accepted
as input from the user’s terminal. The input may be a single number or character (called a scalar)
or it may be an array (or vector) of any length of either base type. The type of the value is
determined, storage is allocated and initialized to this value, and a reference to this storage is
returned. The operator «— binds this new object to the name on its left. Exhibit 7.9 uses the O
operator to illustrate the dynamic nature of binding in APL.

7.1.4 Names and Objects: Not a One-to-One Correspondence

We have seen that although the number of names in a program cannot change dynamically, many
applications require that the storage in use expand dynamically. We, therefore, must be able to
refer to storage locations that do not have unique names. This need is met by using addresses,
or pointers, rather than names to refer to storage, and by binding the same name, recursively, to
objects in different stack frames.

Conversely, there are times when it is convenient to bind multiple names to a single storage
object or a part of an object. This is often done in order to associate a second data type with that
object, or to package logically independent objects together into a group to facilitate their handling.
(A full discussion of this topic is in Chapter 15.) The names given to this kind of declaration in
some common languages are as follows:

186 CHAPTER 7. NAMES AND BINDING

Exhibit 7.10. Sharing through EQUIVALENCE in FORTRAN.

DIMENSION P1(3)
EQUIVALENCE (P1, P2), (P1(2), P3)

The DIMENSION statement causes an array of length 3 to be allocated and bound to P1. The
EQUIVALENCE statement binds a second name to the base address of the array P1, and a third name
to a segment of that array, as illustrated below. P1, P2, and P3 now “share” storage.

P1 P2 P3

'
I

FORTRAN | EQUIVALENCE declaration
COBOL REDEFINES clause in a declaration
Pascal Variant record with no tag field

C Union data type

When multiple-name binding is used, storage is not allocated for the second name, but it is
bound to the same address as the first and serves as a second way to refer to the same storage
object [Exhibit 7.10]. If used carelessly, this can cause bizarre misinterpretations of data.

On the other hand, misinterpreting the data on purpose can be an easy way to compute a
pseudo-random function. Exhibit 7.11 shows a variant record used as the input to a hashing
function. The data is really a character string, but the hashing function is told to construe it as
an integer and square it. The result is semantically meaningless but can be used to access a hash
table. A diagram of this dual-type object is shown in Exhibit 7.12.

7.2 Binding a Name to a Constant

A constant declaration permits the programmer to attach a symbolic name to a literal value.
Although giving a name to a constant does not change the meaning of a program, a judicious
choice of names can clarify the programmer’s intended meaning to other programmers. Defining
the name once and then using it many times in place of a frequently used value also makes it easier
to modify a program: only the definition needs to be changed to change all occurrences of that
value.

Many but not all languages permit the programmer to name constants. Some place severe
restrictions on the kinds of constants that can be named and/or on the ways initial values can be
specified. For example, Pascal requires that the value of a constant be a literal value of a primitive
type. Constant expressions may not be used as initial values [Exhibit 7.13] even though they could
easily be evaluated by the compiler, as they are in FORTRAN 77 [Exhibit 7.14].

7.2. BINDING A NAME TO A CONSTANT 187

Exhibit 7.11. A variant record used to compute a hash index.

We define a type that provides storage for 4 bytes, which can be interpreted either as a single
integer or an array of four characters. This type is useful in writing a hash function that takes a
character array as its parameter and uses integer operations to compute a hash address. Diagrams
of the variant-record object are shown in Exhibit 7.12.

TYPE twokinds = 1..2;
hashkey = RECORD CASE twokinds OF
1: (char_ar: ARRAY [1..4] of char);
2: (int_way: integer)
END;

FUNCTION hash (k: hashkey): integer;

BEGIN
hash := (k.int_way * k.int_way) MOD table_size

END;

Exhibit 7.12. Diagrams of a Pascal variant record.

The storage object for k in Exhibit 7.11 would have the following structure:
k.char_ar

'
[

K.int_way

This object has dual semantics. If the actual parameter were the string ’ABCD’, the two
interpretations of the program object would be as follows:

kchar_ar _
(in hexadecimal notation)

| 41424344 |
(4 [2 [[4]
k.int_way
k.char_ar (shown as ASCII) (The hexdecimal integer
¢ 41,424,344 equals the
decimal integer 1,094,861,636.)

Al BJ]C|D]

188 CHAPTER 7. NAMES AND BINDING

Exhibit 7.13. Constant declarations in Pascal.

CONST pi = 3.1416;
max_length = 500;
max_index = 499; { Equals max_length - 1 }

A real constant and two integer constants are declared. As is often the case, the last one depends
on the second, but the dependency cannot be made explicit in Pascal and is indicated only by a
comment.

In Ada, constant declarations do not have to precede the rest of the program. A constant
declaration may come after variable declarations and depend on the initial values given to those
variables [Exhibit 7.15].

FORTH, like Ada, permits the declaration of a constant at any point during a program. A
constant definition consists of an expression, the word CONSTANT, and the name of the constant.
The expression will be evaluated first, and its value will be bound to the name. FORTH, unlike

Exhibit 7.14. Constant declarations in FORTRAN 77.

PARAMETER (PI = 3.1416, MAXLEN = 500, MAXIX = MAXLEN-1)

The same three constants are created as in the Pascal example of Exhibit 7.13. In FORTRAN it
1s possible to use a constant expression to specify the value of a constant. PARAMETER declarations
must precede the executable code.

Exhibit 7.15. Mixed variable and constant initializations in Ada.

pi: CONSTANT float := 3.1416;

m: integer;

n: integer := 5;

max_length: CONSTANT integer := n * 100;
max_index: CONSTANT integer := max_length - 1;

The real constant pi and two integer variables are declared. The second variable is initialized
to 5. The integer constants max_length and max_index are declared and bound, respectively, to
500 and 499. These are legal defining expressions because n is previously initialized. The following
constant declaration would not be legal because the value of m is not defined:

max_width: CONSTANT integer :=m - 1; -- Not legal.

7.2. BINDING A NAME TO A CONSTANT 189

Exhibit 7.16. Variable and constant declarations in FIG FORTH.

100 VARIABLE offset
500 CONSTANT max_length
max_length offset + CONSTANT max_index

A variable named offset is defined and initialized to 100. A constant named max_length is
defined and initialized to 500. A second constant named max_index is initialized to the sum of
offset plus max_length.

Ada, is interactive. This declaration is translated at run time, not at a prior compile time. Thus
there is no need to restrict the initializing expression, which may depend on the current (run-time)
value of any name [Exhibit 7.16]. The scope of the constant name is all of the program that follows
the declaration. *

The original K&R C contained no special defining word for constants, but a semantics that
meets the same needs as the constant declaration in Pascal can be achieved by using the compile-
time preprocessor that is part of C. Each #define statement is a macro definition and is expanded
by the preprocessor, replacing the defined names by the defining strings before the beginning of
actual compilation. [It is conventional, in C, to use capital letters for macro (constant) names and
lowercase for other identifiers.]

There is an important difference between a using a macro name and using a true constant. In
a constant declaration, if the constant value is defined by an expression, that expression will be
evaluated once, at compile time. In a macro definition, the expression will be evaluated at run
time every time the constant name is used. Of course this is inefficient, but it also leaves open the
possibility that the wrong answer might be computed because of unintended interactions between
the macro expansion and its context.

In Exhibit 7.17, the parentheses around the expression on the third line prevent unintended
interaction between the “~” operator in the expanded macro and other operators in the surrounding
program. Assume the parentheses were omitted, and consider this call on the constant MAX_INDEX:

totsize = MAX_INDEX * 10
This macro call would be expanded before parsing, yielding:
totsize = 500 - 1 * 10
Thus the value of totsize would be 490, not the intended 4990.
For two reasons, then, a macro-preprocessor does not wholly take the place of a constant
declarator in a language. First, it can lead to unnecessary run-time calculations unless the compiler
performs optimization on constant expressions. Second, macros can be tricky and misleading to

use. True constants are efficient and simple. Thus a const declaration, with semantics similar
to that in Ada, was added to the language by the ANSI C standard. The last line in Exhibit 7.17

4Scope is explained in Section 7.4.

190 CHAPTER 7. NAMES AND BINDING

Exhibit 7.17. “Constant” declarations in C.

#define PI 3.1416
#define MAX_LENGTH 500
#define MAX_INDEX (MAX_LENGTH - 1)

const int max_index = MAX_LENGTH - 1; /* ANSI C only */

shows the declaration of a constant integer. The initializing expression will be evaluated once, when
storage for max_index is allocated, and the result will be stored in the allocated object. Thereafter,
the value cannot be changed.

7.2.1 Implementations of Constants

In spite of the differences in syntax, the semantics of constants are nearly identical in FORTH,
FORTRAN, and Pascal.® In all three languages, a name is entered into the symbol table, a value is
provided or calculated and bound to it at compile time, and that binding does not change thereafter.

These semantics can be implemented in two ways. One alternative is to evaluate the defining
expression for the constant before compilation, and substitute the result for the constant’s name in
the source code. There can be no possibility of accidentally assigning a new value to the constant,
because constant names are eliminated from the program before compile time. In this case, it might
not even be necessary to allocate any run-time storage for the constant. Instead of compiling the
code to fetch from a memory address (like a variable), the compiler might make the constant into
a part of the compiled code by generating a “load immediate” instruction.

The second implementation for constants permits their names to exist in symbolic form during
translation. This is necessary if the constant name is to have a block structured scope. The
translator allocates a run-time storage location for the constant, evaluates the defining expression,
and stores the result in the allocated space. This is the same way a variable would be initialized.
In this case, some mechanism must be embedded in the translator to prevent the programmer from
changing the constant by an assignment or read statement. We can say that this implementation
provides an initialized read only variable (IROV).

Constants are implemented as IROVs in FORTH. The storage set aside for constants and vari-
ables is the same, and the initialization process is the same. Different semantic behavior is achieved
at run time by associating different semantic routines with constants and variables. The translator
puts a constant’s value on the stack when its name is referenced. But when a variable name is
referenced, the storage address is placed on the stack and must be explicitly dereferenced to obtain
the value of the variable.

SExcept that the scope of definition of the constant name cannot be restricted to an inner block in FORTH or
FORTRAN.

7.3. SURVEY OF ALLOCATION AND BINDING 191

7.2.2 How Constant Is a Constant?

The IROV implementation of constants leads to a generalization that is found in Ada and ANSI C.
We see that the constant names in Pascal can have local scope. (That is, a constant name declared
in an inner block or subroutine is only “known” in that block.) It would be logical to evaluate the
initializing expression at block entry time, rather than at compile time.

If we defer evaluation and binding for a constant until block entry time, constants can be
created and initialized when local variables are allocated. They are essentially initialized read-only
variables. An initializing expression can contain references to parameters and variables in outer
blocks as well as to literal constants. With this interpretation, the defining expression is reevaluated
each time the block is reentered, leading to the situation that a constant might not be constant!
(Such a local constant would remain constant for the lifetime of its block, but the name might be
bound to a different constant value the next time the block was entered.)

The primary advantage of such a block entry constant is that a constant can be calculated based
on input parameters, and yet the language translator guarantees the integrity of the value: it can
not be accidentally changed. The cost is more time spent during block entry.

7.3 Survey of Allocation and Binding

Early High-Level Languages.

The designers of the earliest high-level languages expected the language users to want to represent
certain types of external objects. They made it easy for the programmer to represent those types.
COBOL records are a natural representation of a business transaction, being very much like the
paper representation of those transactions. FORTRAN makes the representation of numbers and
vectors natural. At this historical stage of language development, there was a close relationship
among (1) external objects being represented, (2) internal names for those objects, and (3) the
storage objects that implemented them. There is no question of what constitutes an object in these
languages: it is the combination of all of the above.

Allocation is static, and binding is static except for parameter binding. Each set of similar
external objects (policies, dimensions, etc.) is represented by a typed identifier. If the external
object has parts and subparts, each part in the representation can be named and referenced. When
an identifier is defined by the programmer, a storage object is allocated and bound to that identifier
for the life of the program.

Additional names can be bound to a storage object through REDEFINES or EQUIVALENCE
statements. Additional names can also be bound to objects temporarily by parameter binding
during a call on a subprogram.

Interactive Languages. An interesting and different set of choices was made in BASIC. Name
binding is totally static: subprograms do not have parameters, so unlike FORTRAN, there is no
need to deviate from totally static binding. On the other hand, allocation of storage for string

192 CHAPTER 7. NAMES AND BINDING

variables is dynamic. This is done by statically binding the string identifier to a pointer object and
dynamically binding the pointer to a string object in string storage.

Block Structured Languages. Concern over the difficulty of debugging large programs was
beginning to develop in the late 1950s when ALGOL was designed. ALGOL was a remarkably
advanced language for those years: it incorporated a clean design, adequate control structures, and
recursion.

Block structure, local variables, and parameter binding were devised to ease the problems
of name conflicts. With these new semantic mechanisms, the same identifier could be used to
correspond to different external objects in different program blocks. This eased the writing of large
programs by permitting the programmer to disregard or forget that an identifier had already been
used once, so long as the previous use was in an irrelevant context. Block structure is also needed
to support recursion.

Dynamic Languages.

With LISP, we see a radically different approach to modeling external objects and processes. LISP
objects are implemented by linked structures, called lists of storage objects called cells. A list is a
pointer to a cell or to a simple object called an atom. A cell is a pair of lists. Identifiers do not
have data types, but can be bound to any object at any time. Storage is allocated dynamically
for parameters and also by calling the allocation function CONS. (CONS takes two parameters. It
constructs a cell and initializes its two fields to those parameters.)

We see that the relationship between external objects and storage objects exhibited by the
block structured languages breaks down completely in LISP. External objects are represented by
lists, which can point at lists that represent smaller external objects. Big objects are made out
of references to smaller objects, which are true objects, not subfields. This is in contrast to the
COBOL concept that big objects may have many small parts, but these parts are not, literally, at
the same level.

Variable names exist in LISP, corresponding roughly to FORTRAN object names. However, the
number of variable names is not limited to the number of names introduced by the programmer;
names can be generated dynamically by a program. Variables may be bound to LISP objects,
but the binding is dynamic, not static, so that one variable name may refer to different program
objects with different storage amounts and locations at different times. Since storage objects may
be dynamically created and pointer assignment is provided, the size of a single program object is
bounded only by available storage.

APL, another early interactive language, has dynamic allocation and binding for parameter
names and local variables in functions. The basic objects in APL are arrays, either numeric or
alphabetic. A tremendous variety of array and matrix operations are predefined. These can produce
results of any size and shape, for which storage is allocated dynamically. The resulting references
are bound dynamically to untyped identifiers. Global names can be used without declaration.

7.4. THE SCOPE OF A NAME 193

Local variable names, parameter names, and a local name for the function’s return value need to
be declared in the function header to distinguish them from global names.

Smalltalk is a relatively new language that extends the LISP concept of object by having all
objects belong to classes, either system-defined or programmer-defined. With this extension, objects
must now contain a class (or type) indicator as well as private storage. Again, big objects are made
out of smaller ones. It is significant that, as in APL, this type information is attached to the
storage object rather than to an identifier. It is this property that has earned the label object-
oriented language for Smalltalk.

Combining Static and Dynamic Objects. In Pascal, ALGOL-like block structured allocation
and binding exist side-by-side with LISP-like dynamic creation and pointer assignment, although
the two facilities are not closely merged. Pascal programs tend to use either one allocation scheme
or the other, with little mixing, because you cannot point at stack-allocated objects.

In C, this restriction on what a pointer may point at is lifted. The address of any storage object
and any part of that object is available within the program and can be stored in a pointer. Pointers
may, therefore, point at any object.

Identifier binding is block structured in both C and Pascal. An identifier is bound to a new
storage object at block entry and remains bound to the same object until it is deallocated. Even
though objects can be dynamically allocated from heap storage, these are bound to pointers rather
than identifiers.

Data types are associated with identifiers, as in FORTRAN, not with objects, as in Smalltalk and
APL. Pointers have a declared base type and should only be bound to objects of the appropriate
type. C will give warning errors but still compile if this rule is breached. Pascal will fail to compile.

7.4 The Scope of a Name

7.4.1 Naming Conflicts

When symbolic programming languages were new, each identifier stood for one storage object, and
there was no need to distinguish between identifiers and internal names. Very soon though, people
began to compile programs that included subroutines written by other people. They began to
encounter naming conflicts when they would accidentally use some name that was used internally
by the subroutine.

The first approach to avoiding such name conflicts was to assign a unique prefix to all of the
names used in the subroutine. For example, a SIN subroutine that needed a local variable COUNT
might use the name SINCOUNT. The programmer needed only to avoid using names with that
prefix in other subroutines. To simplify the programmer’s task, some early symbolic languages
contained a PREFIX statement that would automatically prefix the name, so the programmer
could write COUNT and the translator would convert it to SINCOUNT.

As programs became longer, naming conflicts became a problem even within the same program.
A programmer working on one part of the program could not easily remember all of the names

194 CHAPTER 7. NAMES AND BINDING

used in other parts of the program, and accidental duplication of names could lead to bugs that
were very difficult to locate.

The concepts of modularity and scope were developed to alleviate this problem. A program is
written as many manageable-sized modules, each with a particular well-defined purpose. Modules
interact with each other only in well-defined ways. Names defined within a module, unless explicitly
“exported”, are not “visible” outside of the module. This introduced the new concept of the scope
of a name, which is the portion of code in which the name is meaningful. Scoped names could be
reused for new objects in different scopes.

The scope of a name is that part of the program in which the name is known and will be
recognized by the translator. Scope can be global, in which case the name is known throughout the
program, or it can be local, meaning that it is only known within that program block in which it
was defined. In programs with nested scopes, a name, N, may also be relatively global by being
declared in a block that is neither innermost nor outermost. In programs that are compiled in
many modules, names can also have external scope, which means that the name is known to all
modules.

Along with scoping came the need to distinguish between two concepts that until then had been
synonymous—identifiers and complete names. Identifiers are the symbols that the programmer
writes, and complete names are the things that receive bindings. The scope is added to the identifier
the programmer writes in order to obtain the complete name. Thus if COUNT is defined in two
modules SIN and SORT, then the complete names generated by the translator might be written
SIN.COUNT and SORT.COUNT. Only one declaration for an identifier may occur per scope, and
thus the translator can form a unique name by sequentially numbering the scopes it encounters
and concatenating a scope number with the identifier that the programmer used. An attempt to
redefine an identifier in the same scope is a translation-time semantic error.

In most modern languages, however, the programmer does not give names to all scopes. Nev-
ertheless, the same rules apply. The identifier COUNT, defined in two different scopes sl and s2,
denotes two different names. When programs are translated, the complete name is formed auto-
matically by the translator. There is no need for the programmer to write the complete names, so
complete names are not a part of the syntax for programming languages. However, we still need
a way to write a complete name in this chapter, so we will write the name as a pair of a scope
number and an identifier, for example, (s1.COUNT) and (s2.COUNT).

The programmer refers to (s1.COUNT) when writing the identifier COUNT within scope sl
and has no way to refer to this variable elsewhere. This limitation is intentional and is what gives
scope its power. By providing no way to write the complete name (sl.y) outside of the scope s1, we
are making accidental references to (sl.y) impossible. The information stored in a named variable
is only “visible” or accessible within the scope of the name. It is “hidden” from the rest of the
program.

In most languages, each subroutine definition comprises a scope, and thus parameters can be
given “dummy names”. It is immaterial whether the identifiers used for dummy names are the
same as or different from names in the calling program, for the translator will generate different
complete names for them.

7.4. THE SCOPE OF A NAME 195

Language design came full-circle with the invention of object-oriented languages, where pro-
grammers, again, have reason to write complete names. Each object class has a name and defines
a scope. Within the definition of a class, the programmer uses simple names to refer to the class
members (objects and functions). Some class members are private, and are accessible only within
the class definition. However, a class may also have public members, which can be used by other
parts of the program.® When this is done, a double colon symbol, called the scope-resolution
operator is written between the class name and the member name to form a complete name.

7.4.2 Block Structure

The idea of block structure, introduced in ALGOL-60, permitted the programmer to define nested
modules called blocks. In a block structured language, the programmer can introduce additional
blocks at quite arbitrary places, wherever they are convenient. Identifiers declared within a block
are translated to complete names whose scope is that block and all nested blocks. A well-written
program uses many short blocks, and names are declared in the smallest possible block. Each block
corresponds to a scope. Thus several sets of declarations might be relevant to a particular use of a
name in the program.

This situation can arise in C because a new block may by opened anywhere, using “{”, and
names may be defined at the beginning of any block.

In Pascal, blocks cannot be opened and closed at arbitrary places. But each function or proce-
dure body is a block, and it may be nested inside other function or procedure definitions.” Thus we
arrive at nested scopes by a different path. The simple program in Exhibit 7.18 has three scopes
which are outlined by boxes. One scope is created by the main program, and two by functions
within it. Let us call the scopes A, B, and C. Scope A is the lexical parent of scopes B and C.

Nested blocks reintroduce ambiguity into the naming rules that scopes were invented to avoid.
We said previously that although an identifier might refer to different names in different scopes, the
identifier together with the scope in which it was contained was enough to disambiguate it. Now,
however, we see that scopes can be nested, so an instance of an identifier can appear simultaneously
in the several scopes of its enclosing blocks. Once again we are faced with an ambiguity. We must
determine which scope identifier to use in forming the complete name.

To resolve this ambiguity, we introduce yet another concept—that of a defining occurrence of
an identifier. Each identifier is given meaning by a declaration.® At that point, the identifier, with
its type, is entered into the symbol table. All other occurrences of that identifier are nondefining
occurrences and are called uses. Uses are found in executable statements and initial value clauses.

An identifier can be redefined by a new declaration in a nested block, and this introduces a
new complete name. The scope of each complete name is the smallest scope that contains its
declaration. In order to translate a use of an identifier, the compiler must decide which complete

50bject oriented scope and referencing rules are explained in Chapter 16, Section 16.4 and in Chapter 18, Section
18.2.

7All function definitions in C are at the top level. They may not be nested within each other.

8In some languages a name is defined by default when the translator sees the identifier for the first time.

196 CHAPTER 7. NAMES AND BINDING

Exhibit 7.18. Nested scopes in Pascal.

PROGRAM A;
VAR x, y: integer;
scope A

FUNCTION B(d: integer): integer;
BEGIN B:=x£-d END:):integ scope B

FUNCTION C(d: integer): real;

VAR x: real;
BEGIN x :=5.1; C =x+B(d+1) END; scope C

BEGIN x:=3; y:=0; writeln(C(y)) END.

name corresponds to it. The rule used is called lezical scoping:® The complete name to which a
use, U, refers is the one produced by the nearest declaration for U. The nearest declaration is the
one in the smallest enclosing block.

Exhibit 7.18 has a short program with a nest of three scopes, defined by the main program,
(scope A) and the two subroutines (scopes B and C). The object identifiers in use are x, y and
d. Each parameter or local variable declaration defines a complete name, thus the complete names
formed from these identifiers are: (A.x), (A.y), (B.d), (C.x), and (C.d). Subroutine names
are visible in the scope of the enclosing block (so that they may be called from that block). Thus
the complete names of the subroutines are A.B and A.C. This program is rewritten using complete
names in Exhibit 7.19. Exhibit 7.20 shows the contents of the stack during execution of function B.

A straightforward implementation of lexical scoping works as follows. When a block or subpro-
gram is entered, storage for its parameters and local variables is allocated in a stack frame on the
run-time stack. The stack frame also includes the return address for the subprogram and a pointer
to the stack frames of the lexical and dynamic parents of the block. The pointer to the lexical
parent is called the static link, and the pointer to the dynamic parent is called the dynamic link.

The static links are the means of implementing complete names, and they provide an easy way
to describe lexical scoping. To find the correct complete name for a use, U, the compiler must start
at the stack frame for the block that contains U. If there is no declaration for U in that stack
frame, start following the chain of static links backward through the stack. The first declaration
for U that you find is the relevant one. Following the static link can bypass a variable number of
stack frames that were allocated for blocks called by the lexical parent of the current block.

Once the compiler determines which scope defines U, the chain of stack frames can be short-

9The word “lexical” is used because the scope of a name is a static property determined by how the program is
laid out on the listing.

7.4. THE SCOPE OF A NAME 197

Exhibit 7.19. Complete names in Pascal.

PROGRAM A;
VAR (A.X), (A.y): integer;

FUNCTION B((B.d): integer): integer;
BEGIN B :=(.(x)+(E.d) ENI%; 9

FUNCTION C(C.d: integer): real;
VAR C.x: real;
BEGIN (C.x):=5.1; A.C:= (C.x)+A.B((C.d)+1) END;

BEGIN (A.x):=3; (A.y):= 0; writeln(A.C(A.y)) END.

Since x is not redefined in scope B, the x referred to in that scope is the one in the lexically enclosing
scope, which is scope A.

circuited so that run-time references will be more efficient. If the definition is found at a global
level, the address to which it is bound is static and may simply be compiled into the code. If
the definition of U is neither local nor global, but occurs in some scope between local and global,
extra storage can be allocated in the local stack frame for a pointer to the defining reference. At
block entry time the actual address of the proper binding can be determined by tracing through
the frames by the above method, then copied into this pointer area. A use of a relatively global
variable then becomes like a use of a VAR parameter, causing an automatic dereferencing of the
pointer. (VAR parameters are explained in Chapter 9, Section 9.2.)

A final, confusing aspect of nested scopes must be mastered: the phenomenon of masking. Re-
declaration of an identifier locally will mask any definitions of the same identifier that are relatively
global to it. By this we mean that the object created by the declaration in the enclosing block can-
not be accessed within the enclosed block because every use of that identifier in the enclosed block
will be associated with the object created in the smaller scope. In the Pascal example [Exhibits
7.18 and 7.19], the object (A.y) is accessible within function C because it was declared globally.
But the object (A.x) cannot be accessed within C because the local declaration for x will “swallow
up” all references to x.

A Block Structured Symbol Table.

Let us say that a complete name is born when the compiler begins translating the block in which
it is defined. It dies at the end of that block. The symbol table must include only names that are
alive, since dead names must not be used to interpret any references.

198 CHAPTER 7. NAMES AND BINDING

Exhibit 7.20. A stack diagram for nested scopes.

This diagram shows the contents of the stack during execution of the program in Exhibit 7.18, at
the point that the main program has called function ¢ and c has called function b, but b has not
yet returned.

/ N Key:
Global storage x: 3 3L is a Static Link
- block a LY 0 e DL is a Dynamic Link
(d:0) DL
Frameforblockc | | —_________ >
. X: 5.1 J
d: 1 DL
Frame for block b il ML < Top of stack
N J

In a block structured language, a name becomes wvisible when it is born and invisible again
when it dies. However, a living name also becomes temporarily invisible when it is masked by a
declaration in an inner block, and it becomes visible again when the masking variable dies.

Block structured binding cannot be implemented with a “flat” symbol table (that is, a one-
dimensional list) because bindings for invisible names must be retained, and bindings for dead
names must be discarded. Thus the symbol table grows and shrinks, and we can describe it as
“stack-structured”. For each name declared in a block, a type and binding are pushed onto the
stack for that name when the compiler begins translating the block and are popped off when the
translator reaches the lexical end of the block. There are two ways to organize the stack—either
the bindings for the block can be inserted as a group, or each variable name can have an associated
stack of bindings. Exhibit 7.21 shows a program in which several variables are declared in more
than one block. Note that a function name is in the scope of its enclosing block, not the block
created by the function definition. Exhibit 7.22 shows this stack-structured symbol table with a
stack of bindings for each multiply defined name.

7.4.3 Recursive Bindings

The number of names in a particular program is determined by the programmer and does not
change after the program is translated. However, any language with recursion permits creation
of an unlimited number of stack-allocated objects at run time. On each invocation of a recursive
function, new storage is allocated, in a new stack frame, for parameters and local variables. This
new storage is bound to the parameter and local names and remains bound to them until control
exits from the subprogram. We say that each stack frame corresponds to one dynamic scope.
Thus each name declared in a recursive function must be bound simultaneously to several objects
in different dynamic scopes. If a subprogram has called itself five times and not yet returned once,

7.4. THE SCOPE OF A NAME 199

Exhibit 7.21. A Pascal program demonstrating block structure.

This program contains a function within a function. During translation of the innermost func-
tion block, block III, three sets of bindings are recorded in the symbol table. This is diagrammed
in Exhibit 7.22. However, only the bindings for the innermost block are active, or wvisible, at this
time.

program demo_bind; I
const a=10;
var b, c: real;

function d (a:real): real; II

function ¢ (b:integer): real; III
begin c:=b/2 end;

begin d := a+c(b) end;

begin writeln(a+trunc(d(c))) end.

Exhibit 7.22. A symbol table with block structured bindings.

We depict a block structured symbol table using columns for the object’s type, block identifier,
name, and binding. The symbol table entry for each name is a stack of types and bindings. These
are pushed onto and popped off of the symbol stacks at the beginning and end of translation of the
relevant program block.

Symbol Table Run-Time Memoty
type block name binding storage object
real variable I a > | |
integer constant | a » 10

integer variable b —>|:|

real variable | b | |

—_—>
function(integer): real I ¢ —>| A piece of executable code |
real variable e ——» |

function(real): real | d —>| A piece of executable code |

200 CHAPTER 7. NAMES AND BINDING

there are six sets of storage objects simultaneously bound to the local names (one for the original
call and one for each of the five recursive calls).

Recursively bound names are ambiguous, and this ambiguity is not like the static ambiguity
introduced by block structure. In a block structured program, a name may be simultaneously
within the scope of several definitions [Exhibit 7.18]. But we are able to identify and resolve the
resulting ambiguity at compile time by identifying the lexical scope of each name and forming a
unique complete name from the block identifier and object identifier.

This method for disambiguation will not work for the dynamic, run-time ambiguity caused by
recursion because the recursive invocations all come from the same lexical block. A single symbol
declaration, such as the declaration for jj or kk in Exhibit 6.18, produces more than one allocation
and binding. The disambiguation rule that applies here is the rule for dynamic scoping: the most
recent active binding is used. To find that binding, start searching in the current stack frame. If the
name is not defined there, follow the dynamic link back to the stack frame of the calling function,
and so on. All frames on the stack will be examined in order, until the definition of the identifier
is found.

Lexical versus Dynamic Scoping. The rule for dynamic scoping is used in place of the lexical
scoping rule in non-block-structured languages such as APL and the older forms of LISP. In any
language where both recursion and nested scopes are supported (such as Pascal or C), both lexical
and dynamic scoping rules must be used. The rule for lexical scoping determines the mapping from
multiply defined identifiers onto complete names. Then the rule for dynamic scoping defines the
meaning of names in recursive scopes.

For simple situations, lexical and dynamic scoping produce the same result. However, in gen-
eral, they do not. The difference is illustrated by the interpretation of the global variable x in
Exhibits 7.23 (LISP) and 7.25 (Pascal). LISP uses dynamic scoping, as diagrammed in Exhibit 7.24,
and Pascal uses lexical scoping, as diagrammed in Exhibit 7.26 The functions defined in the two
languages are identical except for the scoping rules used to interpret them, but they compute and
print different answers.

7.4.4 Visibility versus Lifetime.

The scope of a name is not necessarily the same as the lifetime of the object to which it is bound.
This mismatch of scope and lifetime can happen in several ways. The most familiar is by using a
reference (VAR) parameter in a subroutine call. During the procedure call the dummy parameter
name is bound to an actual parameter. Storage for a calling block has a longer lifetime than the
called block, since the called block will exit first. Thus, within the procedure, the parameter name
refers to an object with permanence greater than the scope of the name.

In languages with dynamic allocation, such as Pascal and C, list and tree structures can be built
out of heap-allocated objects. As each new cell of the structure is allocated, a reference to it is
stored in its predecessor. A reference to the first cell of the structure must be stored in a named,
stack-allocated, pointer variable. Frequently the scope of these pointers is less than global, while

7.4. THE SCOPE OF A NAME 201

Exhibit 7.23. Dynamic scoping in LISP.

Program Notes

(defun A Define a function named A,
(xy) with two parameters, x and y.
(printc (C y))) The function prints the result of calling a function named C
on the parameter y.
(defun B Define a function named B,
(d) with one parameter, d.
(+ d x)) The function returns the result of adding d and x. Since x is
not defined locally, it is a global reference .
(defun C Define a function named C,
(d) with one parameter, d.
(let (x ’5.1)) Set local variable x to value 5.1.

(+x (B (+d1)))) | Return the result of adding x to the result of executing func-
tion B on the parameter d incremented by 1.

(A30) Call function A with parameters 3 and 0. It will print the
number 11.2.

Exhibit 7.24. Diagram of bindings in dynamic scoping.

Stack frames (with dynamic links) are shown for the stage of execution at which all the functions
in Exhibit 7.23 have been called and none has returned. The name x is used but not defined in
function B, so its meaning is determined by following the dynamic links backward until the definition
of x in function C is encountered.

InfunctonA: X y —>|I| Dynamic parent: LISP system
InfunctionC: d _>|I| X _> Dynamic parent: A

Dynamic parent: C, so x

In function B : d X _ 4 refers to the binding in C.

202

CHAPTER 7. NAMES AND BINDING

Exhibit 7.25. Lexically scoped functions in

PROGRAM a;
VAR x, y:

FUNCTION b(d: integer):integer;
BEGIN b:= x+d END;

FUNCTION c(d:

integer;

integer) :real;

VAR x: 7real;
BEGIN x:= 5.1; c:= x + b(d+1) END;
BEGIN x:= 3; y:= 0; writeln(c(y)) END.

Pascal.

We define a main program, named a, and two functions, b and c. The program is the lexical parent
of both functions. When this is executed, a calls ¢ which calls b. The number 9.1 will be printed.

Exhibit 7.26. Lexical scoping in Pascal.

At one point during execution, the main program has called function ¢ which has called function b,
so stack frames for all three coexist. Program a is the dynamic parent of c, which is the dynamic

parent of b.

Pascal is a lexically scoped language, so one follows the static link from the current stack frame
to find the meaning of nonlocal names. The x referred to in function b is not the object in c’s
frame, but the one in a’s frame, because a is the lexical parent.

Inprograma: X
d> 0]
T]

In function ¢ :

In function b

o]

Dynamic parent: system
Lexical parent: system
Dynamic parent: a
Lexical parent: a

Dynamic parent: ¢
Lexical parent: a

7.4. THE SCOPE OF A NAME 203

heap storage is permanent. Thus the head-pointer points at an object that could live longer than
itself and could be passed outward by copying its reference into a pointer with a longer lifetime.

Nonhierarchical Sharing. A serious shortcoming of lexical scoping is its strict hierarchical
nature: names defined within a block cannot be exported and made known outside the block. In a
language that is limited to hierarchical scoping, there are useful protection and sharing mechanisms
that cannot be defined or emulated. Examples of such data facilities are “named common” storage
in FORTRAN and “packages” in Ada. Such facilities can be superimposed on lexical scoping only
by expanding a language’s semantic basis to include more than one kind of scoping.

An Ada package has two classes of names, some which are known outside the scope of the
package, some known only within the package.!”

In FORTRAN, access to a storage object may be shared by several subroutines. To do this
you place the object’s name in a COMMON statement and include identical COMMON declarations in
all subroutines that need access to the object. The user can create and name several independent
COMMON areas. These named COMMON areas can be used to set up a nonhierarchical sharing structure
[Exhibit 7.27]. This sharing structure cannot be built in a strictly block structured language, since
block structure and lexical scoping either permits no sharing of data at all, or indiscriminate sharing
among all subroutines at the same level.

A COMMON area does not “belong” to any single subroutine, but is allocated in the program
environment area where it can be accessed by any subroutine containing the right declaration. The
declaration for a COMMON statement supplies names (with associated types) which will be bound to
successive locations in the common area.

It is the programmer’s job to ensure that all subroutines that share a common area contain
compatible declarations. The compiler will not check that. If the order or types of the names
declared in two subroutines differ, everything will compile and link, but compute nonsense. On the
other hand, the particular names declared in different subroutines are completely arbitrary and can
be different.

An example of the use of COMMON to achieve nonhierarchical sharing is shown in Exhibit 7.27.
There are three common areas, and matching common declarations are included in the pair of
subroutines that share each area. Subroutines POINT and BLANK share the storage area named
POINTBLANK which contains the variables X and Y. Likewise, subroutines POINT and CHECK share
area CHECKPOINT and BLANK and CHECK share BLANKCHECK. The common areas and bindings created
by these definitions are diagrammed in Exhibit 7.28. Note that CHECK and POINT call the variables
in area CHECKPOINT by different names, but the data types of the components do match.

Static Local Storage. ALGOL OWN variables and C variables with the “static” storage class are
examples of another kind of mismatch between lifetime and scope. These variables are statically
allocated and are immortal like global variables, but the scope of the names of these objects is
block structured. Each time a block is entered in which a static variable is declared, the variable

108ee Chapter 16 where this topic is fully developed.

204 CHAPTER 7. NAMES AND BINDING

Exhibit 7.27. Named common in FORTRAN.

Just the COMMON declarations are given here for three subroutines that share storage in a non-
hierarchical fashion.
SUBROUTINE POINT
COMMON /POINTBLANK/ X, Y(100)
COMMON /CHECKPOINT/ JJ, KK, LL

SUBROUTINE BLANK
COMMON /POINTBLANK/ X, Y(100)
COMMON /BLANKCHECK/ F(5), G

SUBROUTINE CHECK
COMMON /BLANKCHECK/ F(5), G
COMMON /CHECKPOINT/ J, K, L

Exhibit 7.28. A diagram of common storage in FORTRAN.

This is a storage diagram of the common areas created in Exhibit 7.27. An arrow represents a
binding.

X
Y
F

G
BLANK
Area POINTBLANK : | | o L me

FIE <X
>
[0
Q
o
5
Z
P
(@)
T
m
o
3

POINT Y
AmaCHECKPomw:| | |

CHECK

rxXcomm

7.5. IMPLICATIONS FOR THE COMPILER / INTERPRETER 205

name becomes known again and refers to the static object, which becomes accessible. The run-time
system ensures that the name always refers to the same storage address. At block exit time the
name becomes undefined, and outside the block, no name refers to the object. The object is then
invisible and remains inaccessible and unchangeable until its block is reentered.!!

This is an important facility. It permits the value of a variable to be retained between executions
of a subprogram and yet protected from external tampering. The need for this is apparent if you
consider an output buffering procedure which must remember how full it left the buffer in order
to know where to store the next value. The buffer pointer must be retained between calls on
the output function, yet it should be “hidden” from all other parts of the program to ensure
unhindered operation. The ability to “hide” information is now recognized as a cornerstone of
good programming practice.

In a language such as Pascal, which does not support static local objects, the buffer pointer
would have to be declared globally (all globals are static). This works, but it increases the scope
of the pointer to the entire program and creates the possibility that the value of the pointer can be
accidentally changed by some remote and irrelevant section of code.

7.5 Implications for the Compiler / Interpreter

A language translator must determine the proper meaning of an ambiguous name according to
the semantics defined for that language. We need to make a distinction here between the way
interpreters and compilers handle the task.

One of the essential differences between interpreters and compilers stems from the fact that
more information is often available at run time than at compile time. An interpreter can query
the user about the required amount of data on each run and allocate arrays exactly as long as
are needed. A compiler must allocate storage before actual data values are known, and therefore,
perhaps, before actual storage requirements are known. The programmer using a compiler must,
therefore, establish array lengths adequate for the maximum size data set the program will ever
process. If a program is to process data sets whose size is highly variable, its array lengths will be
excessive on most runs, and considerable storage will be allocated that is never used or needed.

Typed languages can be translated by a compiler. Type declarations permit a compiler to
anticipate how much storage will be needed in the future to hold program objects. Commands can
be compiled to increment and decrement the stack allocation pointer by the appropriate amounts
when control enters and leaves program blocks at run time. Typeless languages cannot be compiled
in the same sense; the source code can be parsed and symbol tables can be set up, but storage
management must be done dynamically because the size of the storage objects that will be needed
is not predictable.

In an interpreter, translation and execution proceed at the same time. Dynamic allocation
with dynamic binding is the natural and easy method to implement. The symbol table exists
during execution, and binding of allocation address to symbol is done when the allocation happens.

1 An extended example of the use of static storage in C is given in Chapter 16.

206 CHAPTER 7. NAMES AND BINDING

Each symbolic reference is interpreted just before it is executed, in the context of the results of
prior computations, and thus the most recent binding of a symbol is used. The path of execution
of any program may depend on inputs and conditionals and, therefore, be impossible to predict.
Consequently, dynamic binding may bind a name differently from run to run, causing inconsistent
interpretations of global references and errors that are hard to track down or identify.

In a compiler, on the other hand, all symbolic names are discarded at the end of compilation,
before execution begins (except when a symbolic debugger is in use). All binding of symbolic name
to storage location is done within the compiler, even for local variables that become allocated in the
middle of execution. For locals, the compiler determines the address, relative to the current stack
frame, that they will occupy in the future when they become allocated. Thus, for an ambiguous
name, a compiler must maintain a stack of bindings that is parallel to the stack of allocation areas
that will exist in the future when the program is executed. A binding is pushed onto the stack at
the time the compiler begins to translate a subprogram and is popped off it when the end of the
subprogram is compiled. The binding used to interpret a symbolic reference in the program is the
one on the top of the stack. This translation scheme implements lexical scoping: the binding used
to interpret a name is the one in the smallest enclosing block in which the symbol is defined. Lexical
scoping is the only method that can be implemented by a compiler. A compiler can determine how
definitions are nested, but it cannot guess the order in which they will be executed.

Lexical scoping is considered to be superior for two reasons. First, the binding that will be used
is always predictable, and, therefore, programs with lexical scoping are easier to debug. Second,
there are languages, for example LISP, for which it is common to write both interpreters and
compilers. The interpreter is used while a program is being developed and debugged, then the
compiler is used to produce code that executes faster. Since dynamic and lexical scoping produce
different semantics, it has often been the case that a program, fully debugged under an interpreter
using dynamic scoping, will not work when it is compiled and will have to be debugged again.
The scoping discipline affects the meaning of a program and, therefore, should be part of a formal
definition of any programming language.

Interpreting Block Structure. Block structure is implemented using stack allocation and block
structured binding. The following is a description of the operation of block structure in an inter-
preted language:

1. Storage objects are allocated on the run-time stack whenever a block is entered. One object
is allocated for each locally declared name or parameter. Local variables are usually not
initialized. Parameter storage is initialized to the actual parameter values or references to
variable parameters.

2. The new storage object is bound to the local name, giving the name an additional binding.
If the block is a recursive procedure, the name could have bindings created in the enclosing
blocks, in which case more than one storage object is bound to the same name, and the
meaning of the name is the most recent (dynamic) binding. If control leaves the block and
then reenters it, the name will be bound to a different storage object.

7.5. IMPLICATIONS FOR THE COMPILER / INTERPRETER 207

3. Local bindings remain static until control leaves the block at block exit time. A given name
refers to the same storage object from block entry until block exit. At block exit, all local
storage objects are deallocated and local identifiers revert to their prior bindings (possibly
“undefined”). The freed storage is made available for reuse by “popping” the run-time stack.

The number of storage objects on the stack changes only when blocks are entered or exited,
and then only changes by the number of names (locals + parameters) declared in that block.

Compiling Block Structure. The implementation of block structure in a compiled language
is not quite the same as the implementation in an interpreted language. The difference is that
the compiler deals with storage that will be allocated rather than storage that ¢s allocated. The
address at which a stack frame will start is completely unpredictable at compile time. However,
the number, size, and order of the items in each future stack frame is known to the compiler.

A common frame-management scheme is to have a central “core” in each stack frame that
contains everything except parameters and local variables. A calling program puts parameters on
the stack and increments the stack pointer (which is kept in a machine register which we will call
the SP). Then the calling program fills in the static link, dynamic link, and return address in the
core area of the stack frame. It puts a pointer to the dynamic link field of the new frame into a
machine register. (Let us call this register the FP, for frame pointer.) The contents of the new
dynamic link is the current value of FP. Finally, the program branches to the subroutine.

The subroutine can now find its stack frame because the address is in the FP. It can use the SP
to find the top of the stack. The first action of the subroutine is to increment the SP to allocate
space for local variables. The subprogram code is compiled to refer to its parameters and local
variables using addresses that are relative to the FP. The last parameter might be FP — 2, and
the first might be FP — 12. The local variables will be in locations such as FP + 4 and FP + 20.
Stack locations past the SP are available for use as a scratch pad and will be used for temporary
storage during calculations.

At block exit, several things happen:

e The return value, if any, of the subprogram is loaded into a machine register. (It is often
called the return register.)

e The dynamic link field is copied back into the FP.
e The SP is decremented by the size of the stack frame.

e A branch is taken to the return address.

This erases all trace of the subprogram.

Exercises

1. What is a name? What is the meaning of a name? Do languages follow a one object-one
name rule? Explain.

208

® N>

10.

11.

12.

13.
14.

15.

CHAPTER 7. NAMES AND BINDING

. Do compilers need names to execute a program? Explain. What is the semantic aspect of a

name? Why is this important for human interpretation of a program?

. What is the role of the symbol table? How are new names added to it?

In APL, why are names typeless?

What are primitive symbols? Why are they necessary?

How do names relate to objects in a compiled language? In an interpreted one?
What is binding? How is it invoked?

What do we call storage that is allocated once at load time and remains until program exit,
but whose usage is restricted to one function?

Define and contrast static binding, dynamic binding, and block structured binding.

In modern functional languages, assignment is not supported, and in APL, it is rarely used.
Dynamic binding takes the place of assignment. Explain how this is implemented.

In block structured languages, when is a name visible? Invisible?

This question and the next seven involve the following skeletal program written in C. How
many name scopes are defined in this program skeleton? Draw a box around each block and
label these blocks with the letters A, B, C, etc.

int x, y, 2;
funi ()
{ int j, k, 1;
{ int m, n, x;

}
}
fun3()
{ int y, z, k;

}

main()

Name a block that is nested within another block.
In which scopes are the global variables x, y, and z all accessible?

What variables are accessible to the main function?

7.5.

16.
17.
18.
19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

IMPLICATIONS FOR THE COMPILER / INTERPRETER 209

Are k in fun1l and k in fun3 the same variable? Why or why not?

Are the global variables y and z accessible in fun3? Why or why not?

In which blocks does j refer to a global variable? In which blocks is j a local variable?
In which block or blocks can we use both m and k?

Name a language in which storage can be shared by two functions, neither of which is enclosed
within the other, but kept private from all other functions and from the main program.
Explain how to accomplish this goal in your language.

How are FORTRAN’s “named common storage” and Ada’s “packages” examples of nonhier-
archical data facilities?

What is the function of a constant declaration? Why is it useful to the programmer?

What is the difference between defining a true constant whose meaning is a constant expression
and using a macro to define a symbolic name for that expression?

How are constants implemented in these languages: Pascal, Ada, FORTRAN, FORTH?
What is a naming conflict?

How did the concept of scope and modularity resolve the problem of naming conflicts? What
is the difference between an identifier and a complete name?

What is a block structure? What are nested blocks? What is the scope of the complete name
of identifiers declared within a block?

Consider a language in which all variables must be declared with fully specific types. Is this
language more likely to be interpreted or compiled? Why?

Why is the scope of a name not equal to its lifetime? Explain.

Explain how the compiler and interpreter each determine the semantics of an ambiguous
name.

210 CHAPTER 7. NAMES AND BINDING

Chapter 8

Expressions and Evaluation

Overview

This chapter introduces the concept of the programming environment and the role of
expressions in a program. Programs are executed in an environment which is provided
by the operating system or the translator. An editor, linker, file system, and compiler
form the environment in which the programmer can enter and run programs. Interac-
tive language systems, such as APL, FORTH, Prolog, and Smalltalk among others, are
embedded in subsystems which replace the operating system in forming the program-
development environment. The top-level control structure for these subsystems is the
Read-Evaluate-Write cycle.

The order of computation within a program is controlled in one of three basic ways:
nesting, sequencing, or signaling other processes through the shared environment or
streams which are managed by the operating system.

Within a program, an expression is a nest of function calls or operators that returns
a value. Binary operators written between their arguments are used in infix syntax.
Unary and binary operators written before a single argument or a pair of arguments
are used in prefix syntax. In postfix syntax, operators (unary or binary) follow their
arguments. Parse trees can be developed from expressions that include infix, prefix and
postfix operators. Rules for precedence, associativity, and parenthesization determine
which operands belong to which operators.

The rules that define order of evaluation for elements of a function call are as follows:

e Inside-out: Evaluate every argument before beginning to evaluate the function.

211

212 CHAPTER 8. EXPRESSIONS AND EVALUATION

e Outside-in: Start evaluating the function body. When (and if) a parameter is
used in the body, evaluate the corresponding argument. There are two variants,
as follows:

1. Call-by-name: An argument expression is evaluated each time the correspond-
ing parameter is used. This is inefficient and may result in different values for
the argument at different times.

2. Call-by-need: An argument expression is evaluated the first time its parameter
is used, and the result is stored for future use.

Inside-out evaluation has been used for most block-structured languages; outside-in
has recently been efficiently implemented, in the form of call-by-need, for functional
languages. Some languages, however, use a mixture of strategies. Call-by-value-and-
return is used in order to facilitate concurrent, multitasked operations.

8.1 The Programming Environment

Each program module is executed in some environment. In these days that environment is rarely
the bare machine; almost all machines run under an operating system (OS). The OS forms an
interface between the hardware, the user, and the user’s program, and it creates the environment
in which the user’s program runs.

Compiled Language Systems

When working with a compiler, a programmer either works in the environment provided by the OS
or uses a development shell, often provided with the translator, to tailor the OS environment to
current needs. An editor, linker, file system, and the compiler itself are included in this environment.
Together they enable the programmer to enter, compile, and link/load programs. The programmer
can give OS commands to execute his or her own program or others, and when execution is done,
control returns to the OS or to the shell.

If the OS supports multitasking (making it an M-OS) there may be other programs, or tasks,
in this context, and the M-OS will mediate between them. It supervises messages, controls signals,
and manages shared memory. A task might run indefinitely, putting itself to sleep when it needs
information from another task and waking up in response to an interrupt generated when that
other task supplies the information.

8.2. SEQUENCE CONTROL AND COMMUNICATION 213

Interactive Language Systems

The category of interactive languages includes APL, FORTH, the functional languages, Prolog,
Smalltalk, and many others. These languages are embedded in subsystems that take the place of
the OS in forming the user’s program development environment. Many of these contain independent
file systems and editors, and a separate interactive control cycle.

Access to the enclosing OS is almost always restricted. For example, just one language is
generally supported, with no possibility of interaction with subprograms written in a different
language. Also, even if the OS supports multitasking, the language subsystem may not give access
to it. It also may not support use of an outside text editor and may restrict file system access,
allowing fewer kinds of operations than the OS.

These language subsystems implement a top-level control structure known as the Read-Fvaluate-
Write (REW) cycle. When the programmer enters this environment she or he sees a prompt on the
terminal and the interpreter is in control, waiting for programmer input. The programmer enters
expressions which the interpreter reads and evaluates. It then writes the value of the expression, if
any, and a prompt on the user’s terminal. The user initiates all actual execution.

Three kinds of items are entered to form a complete program: (1) definitions of objects (name-
value pairs), (2) definitions of functions, with parameter names, and (3) expressions or function
calls with actual arguments. Items of type (1) are handled by the interpreter. Names are entered,
with their value bindings, into the program environment.

For items of type (2), the interpreter will call a half-compiler, which reads the expression, lexes
it, parses it, and converts it to an internal form which represents the semantics of the expression in
a form that is convenient for later evaluation. This form might be a computation tree or a linear
list of actions in postfix order. (A full compiler would also generate native machine code.)

For items of type (3), the interpreter evaluates the expression and leaves the result on the stack.
During execution, this expression may call functions that are defined in its program environment.
After returning from the top-level call, the value left on the stack is generally printed out by the
REW cycle for inspection by the programmer.

8.2 Sequence Control and Communication

A program specifies a set of actions that must be done with a set of representations of objects. In
some cases the order of these actions is not important, but generally order matters, particularly
when interaction with the outside environment (user or file system) is involved. The words the
programmer writes in the program to invoke this ordered series of actions must be arranged in a
way that specifies this order, or the programmer might specify that the order is not important. In
any case, the connection between the way the programmer writes things and the order of resulting
outputs must generally be predictable, easy to control, and stable.

Three basic ways have been developed for specifying the order in which computation will happen:

e Nesting of expressions, lexically or symbolically.

214 CHAPTER 8. EXPRESSIONS AND EVALUATION

e Sequencing of statements and procedure calls.

e Signaling to other tasks.

8.2.1 Nesting

Individual symbols are the lowest-level construct in any programming language. These are formed
into expressions (see Section 8.3) which are contained in larger expressions and, in the end, organized
into some larger unit. In some languages these units are statements, written in sequence. In others
they are function definitions, written sequentially or in nested form.

Lexical Nesting by Parenthesization

Each function call is a function name with expressions as arguments, which might themselves be
function calls. When a call does contain another function call, we say that it is a nested expression.

A nested expression can be evaluated using only a stack for intermediate results, and without
use of assignment or nonstack variables.! Here we consider in detail how the stack works. Before a
function call can be evaluated, its argument expressions must be evaluated. Evaluation of arguments
thus proceeds inward through the nest of function calls, until there are no more enclosed expressions.
As each argument expression is evaluated, its value is left at the top of the stack. When all
arguments for a function call have been evaluated, the function can be called. The values on the
stack will be bound to parameter names within the function. The function will run, compute an
answer, and leave it on the stack for later use by an enclosing expression.

Parameter binding enables communication of information in and out through the hierarchical
nest of function calls. During execution, the position on the stack where an expression’s results will
be stored corresponds directly to the position in which the programmer wrote the subexpression in
the program, and to the position in the program of the expression that will use the results.

Symbolic Nesting by Declaration

A function call with function calls in its parameter list, which, in turn, have embedded function
calls can become quite incomprehensible. This is so even if indentation and spacing are used to
clarify the structure of the whole unit.

Declarations are used (among other reasons) to reduce the apparent nesting depth of expres-
sions. A local variable declaration permits the programmer to define a name for the result of a
subexpression. A subroutine declaration permits one to isolate and name some part of the program
code. These defined names can then be used to build routines with a lower apparent degree of
nesting, which are easier for a human to cope with than a deeply nested program. Modularizing a
program by defining local names and short functions helps a programmer create a correct program
more easily.

! All the familiar older languages use a stack. Some of the modern functional languages use a more complex data
structure that avoids evaluating arguments that are not actually used in the function code.

8.2. SEQUENCE CONTROL AND COMMUNICATION 215

Programs in functional languages tend to be highly modular because of this. Since parameter
binding, not assignment, is used to give names to computed values, a new function must be defined
whenever the programmer wishes to name an intermediate result. Further, when a nested expres-
sion has many nesting levels, humans tend to become confused about the meaning of the code.
Subroutines are used to minimize the depth of nesting in a single program unit.

8.2.2 Sequences of Statements

A statement is an expression that leaves no return value on the stack and thus cannot be used as the
argument to a function. Statements are executed for their side effects, not for their return values.
Side effects include changing the value in a storage object and changing the status of anything in
the program environment, the shared environment, or the streams. To be useful, a statement must
use one of these channels to affect the world, since it does not change the program stack. Either it
must alter program memory or produce input/output activity.

A procedural language is one in which a program is a sequence of statements. Procedural
languages commonly contain statement forms to do the following tasks:

e Assignment statement: Changes the value of a variable.
¢ Binding statement: Enters a named value into the symbol table.

Procedure call: A call on a user-defined function that returns no result.

Input statement: Changes the values of some variables.

Output statement: Changes the state of the external world.

Control statement: A compound of other statements which implements a loop or condi-
tional structure.

Procedural and functional languages both contain expressions. Within an expression, one func-
tion communicates its result directly to the enclosing function without using the program environ-
ment. This is done by taking arguments from the program stack and leaving results on it.

In functional languages, the expression is the outermost control structure, and the stack is
the only form of communication between the parts of a program. Modern functional languages
do not support data objects in the program environment. In contrast, in procedural languages
(ALGOL, FORTRAN, Pascal, APL, etc.) all expressions eventually become part of some statement,
and a program body is a series of statements, written top to bottom in the order they are to be
executed. Communication between one statement and another can go through variables in the
program environment; each statement finds its inputs in a set of variables and leaves its results in
variables for possible later use [Exhibit 4.9].

216 CHAPTER 8. EXPRESSIONS AND EVALUATION

8.2.3 Interprocess Sequence Control

When all computers had small memories and single, slow processors, it was adequate to design
languages for writing independent programs. Such a program would follow one control path during
execution, which was independent of all other programs. Its memory was its own, and it could
interact with the world only through input and output. But as multiprocessor systems and networks
have become common, we have had to expand our area of consideration from a single, isolated
program (or process or task) to a group of asynchronous processes that are actively interacting and
communicating.

A single process, no matter how large, can communicate through global variables and param-
eters. If that process were to be compiled in several modules, each module could have external
symbols (variables and functions) that would be defined in other modules. In this case, the linking
loader would connect each external reference from one module with the definition of that object
or function in another module, creating a single, connected unit that could communicate through
variables and subroutine calls.

Communication for two separate interacting processes is quite different. No compiler or linking
loader links up external references in one process to symbols defined in the other. In a modern
system, one process may not know the location of another process with which it is interacting.
All communication must take place through the operating system or systems which host the two
processes, or through the file system. In terms of our formal model, communication must be through
the shared environment or through streams, and both of these areas of storage are managed by the
OS. The specific kind of communication possible depends on the operating system host.

One common mechanism is message passing. A message is a string of bytes that is written
into an OS buffer and either broadcast to all processes or addressed to one particular process
whose process-ID is known to the sender. To send a message, a program calls the operating
system’s message sending routine. To receive a message, a process makes a corresponding call to
the operating system, signaling that it is ready to process a message either from anyone or from a
particular sender. The message is then copied into a buffer belonging to the receiver.

Another common communication mechanism is the semaphore. This is a storage location in
protected OS memory, accessible to a program only through system calls. Semaphores come in
many varieties, but they basically function as pigeonholes that contain one of two signals meaning
either “wait until I'm ready” or “go ahead”. These are commonly used to control and synchronize
access to files and buffers that are shared among interacting processes.

8.3 Expression Syntax

An expression is a nest of function calls (or operators, in some languages) that returns a value. The
syntax for writing an expression varies among languages. Exhibit 8.1 shows examples of function
calls drawn from several languages which illustrate the various kinds of syntax in common use. In
all cases, the action represented is adding one to an integer, A, and returning the result.

8.3. EXPRESSION SYNTAX 217

Exhibit 8.1. Syntax for expressions.

Lambda calculus

An application (s A) — Compute the successor of A.
LISP

An expression (+ A1) — Addthe value of A and 1.

An expression (1+ A) — Add 1 to the value of A.
Pascal

A function call succ(A) — Compute the successor of A.

Use of an operator A + 1 — Add the value of A and 1.
APL

An expression A+ 1 — Add the value of A and 1.

(APL has no other syntax for function calls.)

8.3.1 Functional Expression Syntax

In the most basic syntax, one writes an expression by writing a function name, with its actual
arguments, enclosed in parentheses. In lambda calculus and in LISP the function name is inside
the left paren [Exhibit 8.1]; in most languages it is outside the left paren. We will call the first
variant lambda calculus function-call syntax and the latter variant normal function-call syntazx.

In modern languages, an actual argument is an expression. It is evaluated, in the context of
the calling program, either before control is transferred to the function or during evaluation of
the function. The value of each argument expression is used to initialize the corresponding formal
parameter.

There are two ways that the correspondence between arguments and parameters can be spec-
ified: positionally or by keyword. With positional notation, which is supported in virtually every
language, the first argument value initializes the first parameter name, the second argument corre-
sponds to the second name, and so on. To call a function positionally one must know the number
and order of the parameters, and know the type and semantics of each, but not its declared name.

A few languages support a second parameter correspondence mechanism, sometimes called
correspondence-by-keyword, or named parameter association. To use named association, the ar-
gument expression in the function call is preceded by the dummy parameter name as defined in
the procedure definition. This mechanism has the advantage that the arguments in a call may be
written in any order, and it is useful for implementing functions with optional arguments (Section
9.1.1). It is syntactically more complex, though, than positional correspondence, and more com-
plex to implement. Further, the parameter names, which are otherwise arbitrary and local to the
function, must be made known to all users.

Some confusion of terminology has developed among different programming languages. In LISP
“+” is called a “function” and is written with lambda calculus function-call syntax. In Pascal it

218 CHAPTER 8. EXPRESSIONS AND EVALUATION

is called an “operator” and written with infiz operator syntar; that is, each operator is written
between its operands. In APL “+4” is called a “function” but written in infix operator syntax.

Operators are just a syntactic variant of functions; the underlying semantics are the same.
Both denote an action which, when applied to some objects (the arguments), will produce another
object (the function result). Some languages include only the function call syntax; some include
only the operator syntax; some include both. There are two minor differences between operators
and functions. First, functions may have any number of arguments, while operators are almost
universally limited to one or two. Second, in languages that include both functions and operators,
it is generally not possible to define new operators; all newly defined verbs are functions.

8.3.2 Operator Expressions

An operator with two arguments is called binary or dyadic. 1t is generally called using infix operator
syntax; that is, the operator is written between its arguments. A single-argument operator, known
as unary or monadic, is generally called using prefiz syntax; that is, the operator is written before
its argument. Some languages also have monadic postfix operators, which are written after the
operand. C has a diverse collection and even has one two-part operator with three operands!

Any expression specifies a computation tree, which is the meaning of the source expression. The
task of a compiler (specifically, the parsing phase of a compiler) is to take the source syntax of an
expression and produce the computation tree, or parse tree, that it denotes.

For normal function-call syntax, producing a parse tree is an easy task. Each function call
corresponds to a node in the tree, and each argument corresponds to a child of that node. If some
argument position contains a nested function call, then that child is itself a node with children
[Exhibit 8.2].

Developing a parse tree from an expression that includes a combination of infix, prefix, and
postfix operators is much more complex. Two sets of rules (the rules for precedence and the
rules for associativity), plus explicit parenthesization, determine which operand belongs to which
operator.

Parenthesization

Languages that have infix operators permit the programmer to use explicit parentheses to surround
an operator and its one or two operands. Like an expression written using nested function calls, a
fully parenthesized infix expression explicitly and unambiguously specifies which operands belong
to each operator. Exhibit 8.2 shows the parse trees derived from a LISP expression that is a nest of
function calls, and the analogous Pascal expression, written with operators. The trees are identical
except for the order of the operator and the first operand.

Postfix and Prefix: Unambiguous Unparenthesized Expression Syntax

The parentheses in LISP, or in a fully parenthesized infix expression, group each function or operator
with its operands. This permits one to draw a parse tree with no further information and no

8.3. EXPRESSION SYNTAX 219

Exhibit 8.2. Nested function calls and parenthesized infix expressions.

An expression written in LISP, using functional notation, and in Pascal, using fully parenthesized
infix notation. Both denote the same computation tree.

vl |

(*a(+ (-bc)a)) (a® ((b-c)+ a))
LISP: a nested expression. Pascal: fully parenthesized infix notation.

knowledge of the meaning of the operator. In a language where each operator has a fixed number
of operands, these parentheses are nice but not necessary. They guide the eye and the parser, and
permit us to check whether each operator has been written with the correct number of operands.
There are other ways, however, to indicate which operands belong to which operator.

We can actually eliminate the parentheses if we are willing to restrict each operator to exactly
one meaning and require that its number of operands be fixed. (This eliminates the possibility of
an ambiguous operator, such as “—” in FORTRAN, which exists in both unary and binary forms.)

With this restriction, there are two forms for expressions, called prefiz order and postfix order,
that unambiguously specify the computation tree without the use of parentheses or precedence. In
a prefix expression, each operator is written before its operands, like a LISP expression without the
parentheses [Exhibit 8.3].

In postfix order,? an operator is written after its operands. The FORTH language and Postscript?
use postfix notation exclusively. This order corresponds to the actual order of machine instructions
needed to compute the value of an expression using a stack machine. The evaluation process is
illustrated in Exhibit 8.4, and works like this:

2 Also known as reverse Polish notation.
3 A language for controlling graphic output devices. Adobe Systems [1985].

Exhibit 8.3. Unambiguous ways to write an arithmetic expression.
This is how the expression (a * ((b - ¢) + a)) would be written in prefix and postfix notations.

Prefic: * a + - b c a This is like LISP, but without parentheses. The scope of each
operator is the two operands or subexpressions following it.

Postfix: a b c - a + * Thisis used in FORTH. The scope of each operator is the two
operands or subexpressions preceding it.

220 CHAPTER 8. EXPRESSIONS AND EVALUATION

Exhibit 8.4. Evaluation of a postfix expression using a stack.

We evaluate the expression a b ¢ - a + * from Exhibit 8.3. Assume the stack is initially
empty and the names a, b, and ¢ are bound to constant values: a = 5, b = 4, ¢ = 7.

Evaluation Step | Stack Contents (top is at right)
a 5
b 5, 4
C 5, 4, 7
- 5, -3
a 5, -3, 5
+ 5, 2
* 10

e Evaluate the expression left-to-right.
e As each symbol is encountered, put its current value on the stack.

e For each operator, take two values off the stack and execute the operation. Put the result
back on the stack.

One might ask why LISP uses both prefix order and parentheses if prefix order is unambiguous
without the parentheses. The parentheses in LISP permit its functions and operators to take
a varying number of operands [Exhibit 8.5, line 6]. Several primitive LISP functions can have
variable-length argument lists, including one at the core of the language. The LISP conditional
expression, COND, is a variable-argument function.

Note the similarity between form 4, prefix notation, and form 5, written in LISP. If functions
in LISP were restricted to a fixed number of parameters, the parentheses would not be necessary.
But LISP has variable-argument functions, including +. In form 6, the expression is rewritten using
the variable-argument form of +, and parentheses are used to delimit the scope of the +. It can be
cogently argued that this is the clearest way to write this expression.

Form 6, in LISP, strongly resembles form 7, in COBOL, which adds a variable number of items
to the last item. Reserved words are used in COBOL instead of parentheses to bracket the variable-
length parameter list, but the principle is the same; it is possible to parse a language that has
variable-length parameter lists as long as the lists are bracketed somehow.

Precedence

The early computer languages FORTRAN and ALGOL-60 were designed for use by scientists and
engineers who were accustomed to traditional mathematical notation for expressions.? Engineers
wanted a “natural” way to write formulas in their programs; that is, they wanted the formulas

4This is evident from their names. FORTRAN was derived from FORmula TRANslator, and ALGOL from ALGO-
rithmic Language.

8.3. EXPRESSION SYNTAX 221

Exhibit 8.5. Bracketing used to permit variable-argument expressions.

Seven forms are given of an expression which sums four items. In the first four forms the + operator
must be written three times, because it is “built into” these languages that the + operator takes
two operands.

Forms 5 and 6 show an analogous expression written in LISP. Form 5 has two operands for each
+, but version 6 takes advantage of the fact that + can accept a variable number of arguments.

Form 7 is a statement, not a function: it modifies the value of C rather than returning a
value. Note that it uses the reserved words ADD and TO, rather than parentheses, to bracket the
variable-length list.

1. Fully parenthesized infix: (C (a+Db) +3) +c) PascalorC
2. Infix without parentheses: a+b+3+c Pascal or C
3. Postfix notation: ab+3+c+ FORTH

4. Prefix notation: +++ab3c

5. Use of + in binary form: (+ (+ (+ ab) 3) ¢) LISP

6. Multiple arguments for +: (+ab3c LISP

7. A statement that modifies C: ADD AB3TO C. COBOL

in their computer programs to look as much as possible like formulas on paper. Engineers and
mathematicians have never considered full parenthesization, prefix order, or postfix order to be
“natural” ways to express a formula. The familiar way of writing expressions using operator
precedence was used in FORTRAN and ALGOL-60 because it had been in use in mathematics for
many years. Since then precedence expressions have been implemented in all their descendents.

Without parentheses or additional parsing rules, infix notation is ambiguous. The symbols
written on the page do not indicate which operands belong with each operator. Consider the
expression in Exhibit 8.6, where opl and op2 are two unspecified binary operators. Two parses of
this expression are possible and correspond to the two trees shown. The rule of operator precedence
was adopted from mathematics to disambiguate the nonparenthesized parts of infix expressions.
The precedence rule determines which parse is correct, and thus whether the scope of op2 includes
the result of opl or vice versa.

In a precedence language, each operator is assigned a precedence level. These levels can be
arbitrary integers; only their order matters. The standard precedence rule can now be stated:

o If precyp1 > precyp then the meaning is parse tree I.
e Else if precyp1 < precepe then the meaning is parse tree II.

e Else precyp1 = precopz. Use the rule of associativity to determine which parse is correct.

222 CHAPTER 8. EXPRESSIONS AND EVALUATION

Exhibit 8.6. Infix notation is ambiguous without precedence.

Source expression: A opl B op2 C
Possible parse trees:

0 | (I

1 LT

A opl B op2 C A opt B op2 C

Associativity

Associativity is used as a tie-breaking rule in languages with precedence. It is also used in APL as
the only added parsing rule to disambiguate infix expressions. Associativity governs the choice of
parse trees when there are consecutive binary operators with equal precedence. Associated with
each precedence class is an associativity direction, either left-to-right or right-to-left. All operators
with the same precedence must have the same associativity. This direction is used as follows:

e If the associativity of opl and op2 is left-to-right then the meaning of the expression is parse
tree 1.

e Else (the associativity of opl and op2 is right-to-left) the meaning of the expression is parse
tree II.

The associativity of each operator is determined by the language designer and is usually chosen
to seem natural to mathematicians. For example, in C, the associativity of - (subtraction) is left-
to-right, but the associativity of = (assignment) is right-to-left. The programmer can write: X= Y=
Z-1-X to compute the value ((Z-1)-X) and store the answer in both Y and X.

In APL there were so many operators that the language designer evidently felt that estab-
lishing precedence classes for them would cause more confusion than help. Therefore, although
APL functions are written with infix notation, only an associativity rule, right-to-left, is used for
disambiguation.

8.3.3 Combinations of Parsing Rules

Existing languages use varying combinations of rules to define the meaning of an expression. Very
different effects can be achieved by combining these few simple rules, as illustrated by Exhibits
8.7, 8.8, and 8.9. Exhibit 8.7 gives brief summaries of the parsing rules in some of the languages
previously mentioned. Exhibit 8.8 shows how the arithmetic expression ((bxc)/((a+ 1) * (b—2)))
would be written in each language using as few parentheses as possible. Exhibit 8.9 shows the

8.3. EXPRESSION SYNTAX 223

Exhibit 8.7. Varying rules for parsing expressions.

Summaries of the parsing rules are given below for several languages.

e FORTH: postfix notation, no precedence, no associativity, no parentheses. Operators are
executed left-to-right. Parameter lists are not delimited at all.

e APL: infix notation for all functions, no precedence, right-to-left associativity. Parentheses
may be used to override associativity.

e Pascal: infix notation for operators, with precedence and left-to-right associativity. Paren-
theses may be used to override precedence or associativity.

e C: infix, prefix, and postfix operators, with precedence. Left-to-right or right-to-left asso-
ciativity, depending on the operator. Parentheses may be used to override precedence or
associativity.

Exhibit 8.8. Varying syntax for the use of operators.

Each expression below illustrates the rules summarized in Exhibit 8.7 and will translate into
the computation tree in Exhibit 8.9. A, B, and C are integer variables.

e FORTH: B@C@*A@1+B@2-*/

Note: A variable name in FORTH is interpreted to mean the address of the variable. The
symbol @ must be used explicitly to fetch the value from that address.

e APL: (BxC)+(A+1)xB—2

e Pascal: B *xC / ((A+ 1) x (B - 2))

Relevant precedence values, with highest precedence listed first: (*, /) > (+, -).

224 CHAPTER 8. EXPRESSIONS AND EVALUATION

Exhibit 8.9. A computation tree.

This tree represents the computation ((b* c¢)/((a + 1) % (b — 2))). Each leaf represents the value
of an integer variable, and each interior node represents an operation to be applied to the values
returned by its children. The expressions in Exhibit 8.8 will all translate into this computation
tree.

computation tree into which all of these expressions will be translated. Note the similarities and
contrasts in these languages, especially the contrast in placement of parentheses.

The language syntax, parentheses, precedence, and associativity all help the translator to parse
a program and produce a parse tree. After the parse tree is produced, it is interpreted, or code is
generated that will later be executed to evaluate the parse tree. It is perhaps surprising, but true,
that the same parse tree can have very different meanings in different languages. There are still
semantic issues to be resolved after parsing that determine the meaning of the expression.

8.4 Function Evaluation

A function call (like a lambda calculus application) consists of a literal function or a function name,
with formulas representing actual arguments, and an indication that the function is to be applied to
those arguments. In many languages, the actual arguments may contain function calls, producing
a hierarchy, or nest, of calls. The order and method of evaluation of such a nest depends on the
programming language and sometimes also on the compiler writer.

8.4.1 Order of Evaluation

Two very different evaluation rules are in use which govern the order of evaluation of the elements
of a function call:

1. Inside-out evaluation: Evaluate every actual argument before beginning to evaluate the func-
tion itself. In a given language, arguments might be evaluated left-to-right, right-to-left, or
in an order determined by the compiler writer.

8.4. FUNCTION EVALUATION 225

Exhibit 8.10. The substitution rule.

The “substitution rule” of lambda calculus defines the semantics of arguments. It is stated here
using the familiar terms “function”, “argument”, and “parameter” instead of the usual lambda
calculus terminology.

e Let P be a parameter for function F.
e Let Exp, an expression, be the corresponding actual argument.

e Declarations in F must not capture unbound variables in Exp. If some variable, V', defined
in F' has the same name as an unbound symbol in P, rename it with a unique name, say V2,
and replace all Vs in F' by V2.

e Now the meaning of F'(Exp) is found by replacing every occurrence of P in F' by Exp.

2. Outside-in evaluation: Start evaluating the function call first. The first time the value of an
argument is needed, evaluate that argument and remember the answer in case that argument
is used again.

Rule (1) has been used for LISP, Pascal, ALGOL-60, C, and most other languages designed since
block structure was developed for ALGOL-60. Implementations of these languages are based on the
use of a stack to store arguments and local variables.

Recently, efficient implementation methods for rule (2) have been developed, leading to a new
class of languages called “functional languages” (Miranda, Haskell, etc.). Let us examine the rela-
tionship between evaluation order, stacks, and block structure.

The substitution rule of lambda calculus says that if an expression, E, contains a nonprimitive
symbol, S, the meaning of the F is the same as if each occurrence of the symbol S were replaced
by its definition. This rule applies in the following two situations:

e S is a symbol whose meaning is defined by the user in a declaration.

e S is a parameter of E, and S is given a meaning by applying E to a list of arguments. (The
meaning of S is the expression that forms the argument corresponding to S.)

This seems to be an obvious definition and clearly something that should be part of the im-
plementation of any programming language. But implementing it directly causes some trouble for
two reasons. Let Fxp be the meaning of S. Exp may contain unbound symbols, that is, symbols
whose meaning is not defined within Exp. We say there is a name conflict if one of these unbound
symbols also occurs in F. If we simply substitute Exp for S in E, these unbound symbols will be
captured and given spurious meanings by bindings declared in E. Thus symbols involved in name
conflicts must be renamed. The substitution rule is stated formally in Exhibit 8.10.

226 CHAPTER 8. EXPRESSIONS AND EVALUATION

The need for renaming complicates the substitution rule. A second problem is presented by
recursion. A recursive definition would lead to an infinite number of substitutions if you actually
tried to physically substitute the definition of S into the expression E.

At this point we can take a shortcut. To the extent that every copy of S is identical, a single
copy is able to emulate multiple copies. Thus we only need to copy the wvariable parts of S. We
are thereby led directly to making a distinction between “pure code”, which never varies, and
“data”, which does. Multiple copies of “pure code” may be implemented efficiently by making
one copy and accessing it with a “jump to subroutine” instruction. On the other hand, a correct
implementation of the substitution rule implies that multiple copies of data and argument values
must exist simultaneously.

The oldest computer languages, FORTRAN and COBOL, use only static storage, with one storage
location for each variable or parameter. For this reason neither language can support recursion.
When ALGOL-60 was first designed no one knew how to implement it efficiently, because an efficient
implementation for multiple copies of local variables had not been invented.

Within a few years, however, a significant insight was gained. No matter how many copies of
the variables for a function S exist, the real computer has only one processor and, therefore, can
be actively using only one copy at a time. All that is necessary to implement the substitution
rule efficiently is to make one copy (the one needed at the moment) of S’s variables conveniently
available and bind them to the local names defined in S. When a copy of S is fully evaluated we no
longer need its corresponding variables. They can be forgotten, and the names in S can be bound
to some other copy. All is well so long as the correct copy of the variables always gets bound to
the names.

When function evaluation rule (1) is used, the groups of variables are allocated, used, and
deallocated in a last-in-first-out manner. The only set of variables needed at the moment are
those for the current function. They can be created at the beginning of function execution and
forgotten at the end. The stack of our abstract machine is able to perform all the required allocation,
binding, and deallocation operations efficiently. But to use a stack like this we must always evaluate
the arguments to a function before evaluating the function. At first sight this restriction seems
to prohibit nothing of importance, and the evaluation order it requires is intuitively appealing.
Actually, it is an important and fundamental restriction, as we shall see.

The evaluation rule of lambda calculus specifies that the order of evaluation of parts of an
expression is undefined, but that parameters must be evaluated if and when they are used (if not
earlier). It can be shown that anything that can be computed using this unconstrained evaluation
order can also be computed using outside-in order, but some computable things cannot be computed
using inside-out order.

The outside-in evaluation rule is: evaluate as much of an expression as possible before using the
substitution rule, then replace a symbolic parameter by its definition. This strategy has one very
nice property: a parameter that is never used does not ever have to be evaluated. This can happen
when the only references to that parameter are in a part of the program that is skipped over by a
conditional.

8.4. FUNCTION EVALUATION 227

Outside-in evaluation also has one awkward property: the simple stack implementation for
parameters won’t work. A different parameter evaluation method named call-by-need has been
developed which produces an efficient implementation of outside-in evaluation. It avoids both
the unnecessary evaluation of unused parameters that is inherent in call-by-value, and the repeated
evaluation of the same parameter inherent in call-by-name. It is often referred to as lazy evaluation,
because all unnecessary parameter evaluation is avoided.

In call-by-need evaluation, every function is evaluated until the point that it refers to one of
its parameters, P. That parameter is then evaluated, and its value is saved. Evaluation then
proceeds until the next parameter reference. All future references to P in the same function will
be interpreted to have this saved value.

A programmer can exploit the lazy nature of this evaluation order by using, as arguments,
expressions that are erroneous or nonterminating under some conditions. The programmer must
then use these parameters in guarded ways, checking for the dangerous conditions and being sure
not to evaluate the argument if they occur. Lazy evaluation can also be used to build a useful kind
of data structure called an “infinite” list. These lists have a head section that is like an ordinary list,
and a tail that is a function that can be evaluated to produce the next item on the list. Evaluating
it N times extends the list by N elements.

An if..then..else conditional is actually a function of three arguments, but a very special
kind of function. The intent and meaning of a conditional is that either the second argument or
the third, but never both, is evaluated. Thus, by its very nature, a conditional, must be evaluated
outside-in. All languages use a variant of lazy evaluation for conditional statements and expressions.
Thus a programmer can emulate lazy evaluation in any language by using conditionals liberally.
Exhibit 12.14 shows the use of if in Pascal to emulate the lazy evaluation built into Miranda.

8.4.2 Lazy or Strict Evaluation

The most important issue concerning order of evaluation is whether an expression will be evalu-
ated outside-in or inside-out. The modern functional languages are the only ones that apply either
rule consistently; they use outside-in evaluation order. Other languages use a mixture of strate-
gies, inside-out for most things, but outside-in for conditionals and sometimes also for Boolean
expressions.

Ordinary inside-out evaluation is called strict evaluation. An evaluator is strict if it evaluates
all the arguments to a function before beginning to evaluate a function. Its opposite is lazy eval-
uation. Evaluation is lazy if subexpressions are evaluated only when necessary; if the outcome of
an expression does not depend on evaluation of a subexpression, the subexpression is skipped. In
modern functional languages, all function calls are interpreted using call-by-need, a kind of lazy
evaluation. Each argument expression is evaluated the first time the function body refers to the
corresponding parameter. The resulting value is bound to the parameter name and is available for
future use. If an argument is not used, it will not be evaluated.

In general, to evaluate an arithmetic expression one must first evaluate all its subexpressions.
(For example, to calculate a + b one must first know the values of a and b.) But Boolean expres-

228 CHAPTER 8. EXPRESSIONS AND EVALUATION

Exhibit 8.11. Lazy evaluation of AND.

Value of L Value of R | Value of L AND R
T T T
T F F
F T F
F F F

We see that if L is FALSE, the value of the expression is always FALSE, and R does not need
to be evaluated.

sions are different. Exhibits 8.11 and 8.12 show that it is sometimes possible to know the outcome
of a logical AND or OR operation after evaluating only one of its subexpressions. Thus evaluation
of the second subexpression can be skipped and execution time can be saved. Some languages,
for example, MAD and C, use lazy evaluation for Boolean expressions (also called short circuit
evaluation) because it is more efficient.

Boolean expressions in many other languages, for example, Pascal, are evaluated inside-out.
Thus parts of a program that could, under some circumstances, cause run-time errors must be en-
closed inside a control statement (an IF or a WHILE) which checks the error condition and determines
whether or not to execute the code.

For example, in Exhibit 8.13, an extra control statement must be used to check for a subscript-
out-of-bounds error before executing the subscripted expression. There are two possible reasons for
leaving any search loop: either the key item was found, or the array to be searched was exhausted.
We would like to test both conditions in the following WHILE statement:

WHILE (scan < 101) and (alscan] <> key)

But this would cause the program to “bomb” when scan exceeded 100, and a[101] was tested.
This happens because Pascal uses inside-out evaluation order, and both comparisons are made before

Exhibit 8.12. Lazy evaluation of OR.

Value of L Value of R | Value of L OR R
T T T
T F T
F T T
F F F

We see that if L is TRUE, the value of the expression is always TRUE, and R does not need to
be evaluated.

8.4. FUNCTION EVALUATION

229

Exhibit 8.13. Extra code needed with inside-out evaluation.

TYPE array_type = array[0..100] of char;
FUNCTION search (a:array_type, key:char):integer;
VAR done_flag: Dboolean;

scan: -1 .. 101; (* An integer in the range -1 to 101.
BEGIN

done := FALSE; (* Flag to control loop exit. *)

scan := 0;

WHILE (scan < 101) and not done DO
IF alscan] = key

THEN done := TRUE (¥ Leave loop next time. *)
ELSE scan := scan + 1;
IF scan = 101 THEN search := -1 ELSE search := scan;

END

*)

performing the WHILE test.

To code this function in Pascal, the two tests must be written separately. An extra boolean
variable is then introduced to effect exit from the loop when the second condition becomes true.
We see that the Pascal version requires an extra control statement and makes exit from a simple

loop awkward.

Compare this to the parallel form in Exhibit 8.14 written in C. C uses lazy evaluation for Boolean
expressions, with arguments evaluated in a left-to-right order. Further evaluation is aborted as soon
as the outcome of the expression is determined. The expression that controls the while statement

can, therefore, encompass both the subscript-out-of-range test and the search test.

The error

condition is tested first. If the subscript is too large, the rest of the expression (including the part

that would malfunction) is not evaluated. This greatly simplifies construction of the loop.

Exhibit 8.14. Simpler control structures with outside-in evaluation.

int search (char al[l, char key);
{ int scan;

scan = 0;
while (scan < 101 && alscan] != key) ++scan;
if (scan == 101) return -1; else return scan;

230 CHAPTER 8. EXPRESSIONS AND EVALUATION

Exhibit 8.15. Expressions whose values are indeterminate in C.

int x, z, al10];
int throwaway (int b, int c¢) { return c };

x = 3; Z = X ¥ ++x; /* z could be 9 or 12. x/
x = 3; z = throwaway(++x, x); /* z could be 3 or 4. x/
x = 3; alx] = x++; /* 3 is stored in either al[3] or al[4]. x*/

8.4.3 Order of Evaluation of Arguments

One final design decision is whether to specify that arguments are evaluated left-to-right or right-
to-left, or leave the order unspecified. This makes no difference when inside-out evaluation is used
and the subexpressions have no side effects. But when expressions can produce output or modify
memory, the order of evaluation can determine the outcome of the program.

In the modern functional languages, this order is unspecified. These languages do not implement
destructive assignment, and, therefore, there is no problem with side effects except where output
is concerned. For these situations, the languages provide a way, called strict evaluation, to specify
an ordered evaluation of all subexpressions.

In languages such as Pascal where functions and operators cannot have side effects, there is
also no problem. All side effects (assignment, input, output) are restricted to statements, whose
order is clearly specified. It is impossible to tell whether a Pascal compiler evaluates expressions
left-to-right or right-to-left.

Finally, there are languages such as C and APL where expressions can have side effects. Assign-
ment, input, and output are all expressions in these languages. In addition, C has an increment
operator. The language definition in these cases must clearly specify what the evaluation order is.
APL does specify right-to-left.

In C, though, the decision was left to the language implementor, and both right-to-left and
left-to-right evaluation are permitted and considered to conform to the standard. It is, therefore,
incumbent upon a C programmer to avoid using any variable in an expression whose value is changed
by a preceding or following subexpression with a side effect [Exhibit 8.15]. The result of such an
expression is called indeterminate; that is, it may vary from compiler to compiler, even on the same
hardware.

Exercises

1. What is the programming environment? How is it provided?
2. What is the Read-Evaluate-Write cycle? How is it implemented?

3. What are the three basic methods that specify order of computation?

8.4.

10.
11.
12.

13.

14.

15.

16.

17.

18.
19.
20.

FUNCTION EVALUATION 231

. Explain how an expression can be nested.
. How is a stack used in evaluating a nested expression?

. What is an expression? How does the role of expressions differ in procedural and functional

languages?

. What is “message passing”’, and how is it accomplished between two separate interacting

processes?

. Parameters allow program modules to communicate with each other. Name at least three

mechanisms or data structures that must be a part of the semantic basis of a langu